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Abstract 

Pathology reporting on radical prostatectomy (RP) specimens is essential to post-surgery 

patient care. However, current pathology interpretation of RP sections is typically qualitative 

and subject to intra- and inter-observer variability, which challenges quantitative and 

repeatable reporting of lesion grade, size, location, and spread. Therefore, we developed and 

validated a software platform that can automatically detect and grade cancerous regions on 

whole slide images (WSIs) of whole-mount RP sections to support quantitative and visual 

reporting. Our study used hæmatoxylin- and eosin-stained WSIs from 299 whole-mount RP 

sections from 71 patients, comprising 1.2 million 480μm×480μm regions-of-interest (ROIs) 

covering benign and cancerous tissues which contain all clinically relevant grade groups. 

Each cancerous region was annotated and graded by an expert genitourinary pathologist. We 

used a machine learning approach with 7 different classifiers (3 non-deep learning and 4 deep 

learning) to classify: 1) each ROI as cancerous vs. non-cancerous, and 2) each cancerous ROI 

as high- vs. low-grade. Since recent studies found some subtypes beyond Gleason grade to 

have independent prognostic value, we also used one deep learning method to classify each 

cancerous ROI from 87 RP sections of 25 patients as each of eight subtypes to support 

further clinical pathology research on this topic. We cross-validated each system against the 

expert annotations. To compensate for the staining variability across different WSIs from 

different patients, we computed the tissue component map (TCM) using our proposed 

adaptive thresholding algorithm to label nucleus pixels, global thresholding to label lumen 

pixels, and assigning the rest as stroma/other. Fine-tuning AlexNet with ROIs of the TCM 

yielded the best results for prostate cancer (PCa) detection and grading, with areas under the 

receiver operating characteristic curve (AUCs) of 0.98 and 0.93, respectively, followed by 
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fine-tuned AlexNet with ROIs of the raw image. For subtype grading, fine-tuning AlexNet 

with ROIs of the raw image yielded AUCs ≥ 0.7 for seven of eight subtypes. To conclude, 

deep learning approaches outperformed non-deep learning approaches for PCa detection and 

grading. The TCMs provided the primary cues for PCa detection and grading. Machine 

learning can be used for subtype grading beyond the Gleason grading system.  

Keywords 

Prostate cancer, radical prostatectomy, cancer grading, cancer subtype grading, whole slide 

image, whole-mount, digital pathology, machine learning, deep learning, nuclei 

segmentation, texture feature analysis  
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Summary 

Prostate cancer (PCa) is the most prevalent non-skin cancer for Canadian men. Radical 

prostatectomy (RP) is a surgery that removes the prostate. It is considered to be one of the 

most effective treatments for PCa patients. However, approximately 30% of patients suffer 

from recurrence after surgery. Post-surgery patient care, which is advised by pathology 

reporting on RP specimens, is essential and can be life-saving. Pathology reporting usually 

provides information such as the presence of tumours, tumour location, and Gleason grade 

(i.e. a numerical indicator reflecting the aggressiveness of the tumour). However, current 

pathology interpretation on RP sections is typically qualitative and subject to intra- and inter-

observer variability, which challenges quantitative and repeatable reporting of lesion grade, 

size, location, and spread. Graphical and quantitative reporting, which annotates and grades 

each tumour with quantitative tumour information associated, can potentially resolve those 

challenges to better advise post-surgery patient care and pathological studies. However, 

manually annotating and grading each cancerous region is not feasible in the standard clinical 

workflow, because tissue sections are enormous under the microscope. Therefore, there is an 

unmet need for an automatic system that can label and grade cancerous regions on whole 

slide images (WSIs) of RP specimens. The advancement of scanning technology enables the 

digitization of WSIs with enough resolution for pathology evaluation. Machine learning is a 

technique which can identify objects by training the machine with human-labeled examples. 

Previous research has demonstrated the feasibility of using machine learning to identify and 

grade regions of interest of prostate tissues. However, detecting and grading each tumour on 

whole-mount WSIs is still challenging due to the large sizes of high-resolution WSIs, and the 

staining variability across WSIs. We developed and validated a machine learning based 

system against expert annotations for PCa detection and grading on 299 whole-mount WSIs, 
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and for PCa subtype grading on 87 whole-mount WSIs. The systems yielded areas under the 

receiver operating characteristic curve (AUCs) of 0.98 and 0.92 for PCa detection and 

grading, respectively, and AUCs ≥ 0.7 for seven of the eight subtypes. This demonstrates 

state-of-the-art performance and the potential for clinical translation of this tool.     
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Chapter 1  

1 Introduction 

Currently, pathology interpretation of prostate cancer (PCa) in removed 

specimens from radical prostatectomy (RP) is primarily qualitative, leading to challenges 

in quantitative and repeatable interpretation of tumour size, location, aggressiveness and 

spread after surgery. Annotating and grading each tumour on the tissue of RP sections 

allow for graphical and quantitative pathology reporting, which potentially benefit post-

surgery risk management, recurrence prediction, follow-up treatment planning, and 

pathology related studies. 

However, manual annotation of each tumour on the digital histopathology images 

and grading each of them based on the Gleason grading system [1] (i.e. stratifying the 

tumours based on their morphological patterns, which reflect the aggressiveness of the 

tumours) are not currently performed in the standard clinical workflow since they require 

expert-level knowledge, and are time consuming (e.g. one patient case can take up to 70 

working hours for a trained physician to finish [2]). Therefore, there is an unmet need for 

a system that can automatically delineate and grade tumours on digital histopathology 

images of RP tissue sections. However, there are key challenges in developing and 

validating such a computational system: 1) since the tissue is scanned at very high 

resolution, the image is usually large in size (e.g. 4 – 5 billion pixels per mid-gland 

whole-mount whole slide image (WSI)), requiring the system to process large amount of 

image data efficiently; 2) the tissue appearance is largely heterogeneous in both 

cancerous and non-cancerous tissues, thus the system needs to be able to identify various 
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patterns for each tissue type for correct classification; and 3) since there are large staining 

variations across the WSIs within and across patients, the system needs to be robust 

enough to overcome staining variability to achieve consistent performance for 

translational applications. 

This thesis describes our work on developing and validating machine learning 

based systems for automatic PCa (1) detection, (2) grading, and (3) subtype grading on 

whole-mount WSIs of RP sections. 

1.1 Background 

1.1.1 Prostate cancer epidemiology 

PCa has surpassed lung cancer as the most frequently diagnosed non-skin cancer 

in Canadian men since 1998 [3]. From a recent statistical report, in 2017, there were an 

estimated 21,300 men diagnosed with prostate cancer, representing 21% of the total new 

cases in men. It is the third most common cause of death from cancer in men in Canada, 

which accounts for approximately 10% of all cancer deaths in men. It is estimated that 

about one in seven Canadian men is expected to be diagnosed with prostate cancer during 

his lifetime and one in 29 will die from it [4]. 

Prostate cancer is a highly variable disease, such that a man is more likely to die 

with prostate cancer than of it. Despite the high incidence of prostate cancer, the five-year 

overall survival rate is 95% [4]. On the other hand, there are lethal forms of PCa that can 

be fatal. Early detection and treatment play important roles for PCa patient care. In one 

study [5], radical treatment (i.e. radical radiotherapy and radical prostatectomy) have 
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been proven to be associated with reduction of death. In a controlled trial [6], RP was 

found to reduce the death rate cause by PCa for younger (i.e. age ≤ 65) PCa patients. 

Although RP is considered to be an effective treatment for PCa, there is still a 

large number of patients suffering from cancer recurrence and metastasis after the surgery 

[7]. Post-surgery patient care is important and can be life-saving. For example, adjuvant 

local/systemic therapy may benefit men with extraprostatic extension (EPE) [6].   

Pathological assessment of the prostate tissue of RP specimens plays an essential 

role for patient post-surgery follow-up, which provides information for recurrence 

prediction, prognosis, and supports selection and guidance of post-surgery treatment. 

However, currently, pathological interpretation is primarily qualitative, leading to many 

clinical challenges in reporting pathological parameters (e.g., Gleason score, tumour 

volume, pathological stage, and tumour zonal location) accurately, efficiently, and 

consistently. In addition, many prognostic predictors of pathological parameters, such as 

maximum diameter of the dominant tumour and the presence/absence of intraductal 

carcinoma etc. have not been fully explored because only a limited number of studies 

exist. Further study of these questions required a large amount of data (i.e., pathological 

reporting on those parameters) from large patient cohorts across multiple institutions. 

These studies are limited primarily due to technical difficulties of accurately reporting 

those parameters, which usually requires contouring and grading of each tumour on the 

tissue sections. This is not feasible in current clinical practice.  

Thus, the key challenge lies in having graphical pathology reporting with 

annotations for each tumour at high-precision on RP tissue sections, which yields 
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associated quantitative pathology reporting, for quantitative and repeatable interpretation 

of lesion size, location, aggressiveness and spread. 

1.1.2 Radical prostatectomy 

RP is a surgery that removes the prostate and/or its surrounding tissues through 

open surgery (e.g. retropubic or perineal surgery) or minimally invasive surgery (e.g. 

laparoscopic robot-assisted surgery). RP is the most common treatment for patients with 

organ-confined PCa, which is performed on approximately 40% of PCa patients annually 

[8] and is considered as gold-standard treatment for clinically localized PCa (i.e. clinical 

stage ≤ T2) [9]. Although there are many potential surgical complications such as 

urinary incontinence, erectile dysfunction, and impotence, there is no evidence showing 

that any treatment provides better disease control than radical prostatectomy for the 

primary tumour and distant metastases [10].  

1.1.2.1 Indication for radical prostatectomy. 

RP is an appropriate treatment for patients who have clinically organ-confined 

PCa. However, RP should be recommended for patients who have life expectancy of ≥ 

10 years, considering the potential perioperative morbidity [11]. 

PCa patients of very low to intermediate – risk are candidates for RP, with clinical 

stage from T1 to T2 (i.e. organ-confined). Other criteria are used for the selection and 

guidance of RP, such as life expectancy, the predicted probability of lymph node 

metastasis, prostate-specific antigen (PSA) level, and pathological grade group of 

biopsies [11]. 
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Some patient groups of high or very high risk may benefit from RP with pelvic 

lymph node dissection (PLND) especially for the younger and healthier patients. RP with 

PLND is also an option used as salvage therapy (i.e. therapy for patients having 

biochemical recurrence after definitive treatment) for patients with post-irradiation 

recurrence, whose original clinical stage are T1 – 2 with life expectancy of 10 years or 

more, PSA < 10 ng/ml, and low suspicion of metastases [11]. 

1.1.2.2 Post-surgery patient care 

Although RP is the most common treatment for organ-confined PCa with the 

advantages of reduction of mortality rate from the disease and the intent of curing the 

disease, recurrence after the surgery is common. Approximately one third of RP patients 

have experienced recurrence within 10 years [12]. Also, Pound et al. found that 45%, 

77%, and 96% of the patients experienced recurrence within the first 2, 7, and 10 years 

respectively [13]. In addition to the recurrence, some RP patients may have adverse 

pathological features, or positive lymph nodes during or after surgery [11], which 

indicates high risk of biochemical recurrence. 

After RP, patients may be recommended for active surveillance, which is a watch 

and wait strategy with frequent checking for signs of recurrence. Also, adjuvant therapy 

may be an option, which administers additional therapy to the patients who have a high-

risk of recurrence suggested by adverse pathological features found in the surgical 

specimens [e.g. positive surgical margin (PSM), seminal vesicle invasion (SVI), EPE and 

higher Gleason scores (GS) 8 – 10], and/or other clinical features without evidence of 

disease recurrence (i.e. detectable PSA of 0.2 ng/ml). Salvage therapy may also be 

recommended to patients, which is the administration of treatment to patients with 
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biochemical recurrence (i.e. PSA level > 0.2 ng/ml with a second confirmation), 

persistent PSA, and/or local recurrence with/without evidence of metastatic disease. For 

patients without distant disease, the treatment is primarily via administrating radiation 

therapy with or without combining other treatments (e.g. hormone therapy) [12].  

Selecting patients for adjuvant/salvage therapy after surgery is essential since 

adjuvant therapy may result in overtreatment for the patients. It may treat the patients 

who never would have developed recurrence. However, salvage therapy may result in the 

progression of the disease because its use is limited to the recurrence patients, particularly 

with high-risk disease [12]. 

Generally, adjuvant and salvage therapy have shown improved outcomes for RP 

patients. Patients with adverse features may benefit from adjuvant therapy and patients of 

certain risk groups [e.g. PSA doubling time (PSADT) of 6 months, PSM, pathological 

stage (pT) 3 cancer, GS 8 – 10] may benefit from salvage therapy. However, selecting 

patients for adjuvant or salvage therapy is still difficult since there is no certain 

conclusion to suggest that adjuvant or salvage therapy can improve the clinical outcomes 

for the specific patient group (e.g. GS 8/EPE alone). As a result, the literature [12] has 

noted the clinical need for evidence-based risk stratification with specific pathological 

features to advise adjuvant therapy. The benefit of salvage therapy may be specific to 

certain patient groups for a specific outcome. However, those findings were primarily 

based on observational studies and the benefit of salvage therapy was demonstrated by 

two randomized controlled trials [14, 15] that were based on internal subgroup analysis 

[12].   
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1.1.2.3 Pathology role for post-surgery patient care 

Based on the treatment options and the benefits to the patient groups as discussed 

above, we can summarize that the adverse pathological features on RP specimens (i.e. 

PSM, EPE, SVI and GS 8 – 10) are important indicators for recurrence prediction and 

selection and guidance for adjuvant and salvage therapy.  

In addition, pathological features derived from RP specimens (i.e. Gleason score, 

pathological stage, and tumour volume) have been demonstrated to have high prognostic 

value to predict disease progression [16-18], in which the Gleason score of the RP 

specimen is the most powerful predictor [19, 20]. Pound et al [13] found in their study 

that patients with surgical specimens of GS 8 – 10 usually were found having metastases 

within five years and those with GS 5 – 7 usually were found having metastases within 

ten years. A large retrospective study [21] has shown that GS 8 – 10, pre-external beam 

radiation therapy PSA level > 2 ng/ml, SVI, negative surgical margins, and PSADT ≤ 10 

months were predictors of progression for 501 patients with biochemical recurrence who 

received salvage radiation therapy.   

Pathological features may also have a role for potentially more specific patient 

stratification for guidance and selection for adjuvant and/or salvage therapy. Since the 

trials [14, 22, 23] studying the effectiveness of adjuvant and salvage therapy were not 

designed for subgroup analysis, the subgroup results have limitations because of 1) the 

inconsistency across trials in subgroup selection for analysis and findings across 

subgroups, and 2) insufficient statistical power since the initial design of those trials were 

not for subgroup analysis; for example, the stratifications were not randomized by 

subgroups. Although the results should be interpreted with caution due to those 
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limitations, the findings can be used as direction for future research. It is noted that 

pathological features, including positive/negative surgical margins, presence/absence of 

SVI, presence/absence of EPE, and Gleason scores, may be further analyzed for efficacy 

outcome and the clinical need for evidence based risk stratification to guide adjuvant 

therapy for patients with specific pathological findings [12].  

1.1.3 Histopathology assessment on RP tissue sections 

Histopathology for PCa refers to the assessment of the tissue under the 

microscope by pathologists for finding and studying the manifestation of disease. The 

tissue samples may come from biopsy or surgical specimens (RP specimens). The 

pathological assessment of prostate tissue for PCa is primarily on hematoxylin and eosin 

(H&E) stained tissue samples, which includes finding and grading the adenocarcinoma 

using the Gleason grading system, assessment of tumour size, tumour zonal origin, and 

the pathological stage. It also includes the identification of cancer penetrating through the 

prostate which includes EPE, PSM, and SVI. EPE means that the cancer has grown 

outside of the prostatic capsule into the peri-prostatic regions. PSM means that the cancer 

is found at the boundary where the surgeon’s knife cut the tissue to remove the prostate. 

SVI means that the cancer has grown into the seminal vesicles. Some other features such 

as high-grade prostatic intraepithelial neoplasia (PIN), atrophy, and benign prostatic 

hyperplasia (BPH) may be noted in some clinical scenarios and used for study purposes. 

The subtypes of PCa are used for grading purposes, and are usually not reported 

independently in clinical practice. However, they may be reported for study purposes 

since some studies have shown the prognostic value of some subtypes.  
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This thesis primarily focuses on identifying, locating, and grading 

adenocarcinoma on RP specimens after surgery; thus, related background will be 

discussed in more detail (i.e., Gleason grading system, tumour volume, tumour zonal 

origin, and pathological stage on RP specimens). However, some histopathological 

biopsy related content will be discussed briefly for comparison purposes. 

1.1.3.1 RP specimen processing protocol  

RP specimens can be processed by either whole-mount or routine section [24]. 

After sectioning the apex and base of the removed specimen, the rest of the specimen is 

sectioned transversely at 3 to 5 mm intervals in a serial fashion. Routine sectioning refers 

the cutting of the transverse sections into quadrants to fit standard cassettes, while the 

whole-mount section refers to the intact transverse section. The tissue sections are then 

further processed by recutting and mounting on to the physical slides for staining (Figure 

1.1) [25].  

Although whole-mount sections are more expensive, harder to make, difficult to 

use for immunohistochemistry, and do not fit into standard slide holders for slide archives 

and collections, they yield a better overview for the pathologists and facilitate the 

identification of multifocal tumours. The primary advantages of using whole-mount 

sections are in displaying the prostate architecture, identifying and locating tumours more 

clearly [24]. These advantages support more straightforward tumour volume estimation 

[25], pathological staging, tumour origin zonal estimation and Gleason scoring [26]. In 

addition, technicians who are experienced in cutting whole-mount sections may find that 

it is less time consuming for them to cut whole-mount sections than cutting multiple 

blocks [24].  
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Figure 1.1: RP Specimen handled by whole-mount vs. routine section. Reproduced with 

permission from Sung et al. [25]. A: inked RP specimen. B: sections of RP. C1: whole-

mount section. C2 – C4: sectioning whole-mount section into quadrant routine sections. 

D: H&E stained mid-gland whole-mount section. 

 

Considering the advantages of using whole-mount sections, we used whole-mount 

sectioning in our study and the protocol is described in the following paragraph. 
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After surgery, we used 10% formalin buffered fixative to fix the specimen for 48 

hours. The prostatic apex and base were removed and the mid-gland was sliced into 4.4 

mm thick tissue sections which were then embedded using paraffin. The 4 µm thick 

tissue was taken by recutting the paraffin embedded tissue sections using the microtome 

and then mounted onto glass slides to be stained with H&E, which yields the H&E 

stained physical slide for pathological examination. 

1.1.3.2 Gleason grading system for PCa 

The Gleason grading system for PCa, which stratifies the aggressiveness of the 

tumours based on histological assessment, is a powerful tool for prognosis and aiding the 

treatment of PCa patients. It is the predominant prostate cancer grading method in 

research and daily practice worldwide. Its prognostic value was demonstrated by a study 

with long-term follow-up using survival as an endpoint in a large population [27]. 

The Gleason score, which sums the primary and secondary patterns [1] of the 

tumour on the RP specimen is the strongest indicator of tumour progression after RP 

[27]. 

1.1.3.2.1 Discrepancies in histology assessment between using 
biopsy and RP specimens 

Biopsy is widely used in clinical practice for PCa diagnosis before and after 

treatment. However, pathology reporting from biopsy may differ from that of the RP 

specimens. The exact correlations in Gleason scores ± one Gleason score are in 43%, and 

77% of cases respectively based on the data from 18 studies [17], where under-grading 

and over-grading in biopsy were respectively reported in 42% and 15% of reviewed cases 

[27]. In addition, using biopsy to determine histological boundaries of the tumour is 
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challenging unless the sampling is extremely dense, which makes it clinically impractical 

[28].  

The source of the discrepancies is mainly from the heterogeneity of the PCa tissue 

and the small amount of the tissue being sampled by the biopsy cores (e.g. approximately 

0.04% of the average gland (40 ml) was sampled by using 20 mm 18-gauge core biopsy 

samples), which results to sampling error, error in pathologic interpretation, and error 

from borderline cases. More specifically, the sampling error may result in under-grading 

when the sampling failed to sample the tissue with higher Gleason grade [29], and over-

grading when sampling tissue with high-grade which only represents a very minor 

portion of the RP specimen. The error in pathologic interpretation of under-grading the 

biopsy core by the pathologist is common because the presence of confusing patterns 

changes the designation of the Gleason grade. For example, the limited foci of small 

glands of cancer may lead to the designation of G3 by definition. It is usually present in 

closely packed fashion instead of an infiltrating growth pattern. Challenges in 

recognizing the infiltrative growth pattern or presence of small areas of gland fusion 

(signs of presence of G4) from the biopsy cores may lead to under-grading [30]. In 

addition, for borderline cases (e.g. scoring a case of GS7 = G3+4 vs. GS7 = G4+3), intra- 

or inter- observer variability may be the source of discrepancies [27]. As a result, 

pathological features based on the assessment of RP specimens, when available, are 

considered essential for predicting the progression after RP. 

1.1.3.2.2 Gleason grading system for RP specimens 

The Gleason grading system was first proposed by Donald Gleason et al. [31] in 

1966. It stratifies PCa into five grades reflecting its aggressiveness numerically based on 
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the microscopic morphological patterns of the tumour growth at lower power (i.e. 40 to 

100X). The Gleason grade is increasing in numbers referring to the cancer growth: 

Gleason grade 1 (G1) to G5 range from well-differentiated to poorly-differentiated 

tumour tissue (Figure 1.2) [1]. Due to the heterogeneity of PCa, reporting the primary and 

secondary tumour (based on tumour size) grades is typically done, adding the grades to 

yield the Gleason score (GS). The system was first developed by evaluating biopsies, 

transurethral resections, and RPs from 270 PCa patients and tested on 1032 patients using 

cancer-related mortality as outcome. Since then, the system has been widely accepted and 

referred to as the Gleason grading system [17].  
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Figure 1.2: Illustrated Gleason patterns from the updated Gleason grading system. 

Reproduced with permission from Epstein et al. [32]. 
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Since first proposed in 1966, the Gleason grading system has been influencing 

clinical practice. However, there have been many new discoveries and changes in clinical 

practice and pathology that justified the need for revision. The most recent revision was 

made by the International Society of Urological Pathology (ISUP) in the consensus 

meetings in 2005 and 2014. The resulting revised grading system is widely accepted and 

used [17].  

The revision primarily made changes in the following aspects: 1) to reassess the 

G1 and G2 pattern, many of which are now considered as cancer mimickers instead of 

cancer; 2) to deal with the situation when high grade cancer is present as neither the 

primary nor the secondary tumour on RP, such that the presence of high-grade cancer 

may be noted as tertiary or replace the secondary grade based on the percentage of the 

high-grade cancer;  3) to address the issue of multifocal nodules on RP via 

recommending assigning Gleason score/grade group to each separate tumour on RP; 4) to 

incorporate newly discovered patterns [17]. 

In addition to those changes in the grading system, the newly developed grade 

group was first presented at the ISUP 2014 meeting and was widely accepted to replace 

the old 3-tier grade group system. The grade group was developed for patient risk-level 

stratification based on the GS to support treatment planning. The new system was 

initially developed in 2013 on a cohort of 7,869 RP patients at the John Hopkins Hospital 

and then validated on 20,845 patients from 5 academic centres [33]. The new grade group 

system stratifies patients into five groups reflecting risk-levels, based on the Gleason 

score. The five grade groups are: grade group 1 (GS6 = G3+3), grade group 2 (GS7 = 

G3+4), grade group 3 (GS7 = G4+3), grade group 4 (GS8 = G4+4), grade group 5 (GS9 – 
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10). In comparison, the old system frequently combined Gleason scores into a 3-tier 

groups of GS6, GS7, GS8 – 10 for prognosis and therapy guidance [17].  

The major changes in the revision arise from the emphasis on the presence and the 

percentage of the high-grade cancer (i.e. G4 and G5) and dealing with multifocal 

specimens. Comparing to the old system, the new system separates the GS7 into two 

groups of G3+4 and G4+3, in which the G4 is secondary and primary grade respectively, 

due to the significant difference in prognosis found in the studies. Similarly, GS8 – 10 

was separated into two groups of GS8 and GS9 – 10. The latter group indicates the 

presence of G5 and has much worse prognostic outcome [34]. In addition, for RP 

specimens, reporting the Gleason score based on the percentages of the presence of G4 

and G5 is proposed with a threshold of less than 5% to be considered as tertiary. 

Otherwise, the GS is to be calculated by summing the primary Gleason grade and the 

highest Gleason grade. It is important to identify the percentage of G4 of very limited, 

close to 50%, or closer to 90%, which are used as borderlines for differentiating GS6 and 

GS7 = G3+4, GS7 = G3+4 and GS7 = G4+3, and GS7 = G4+3 and GS8, respectively 

[17]. In addition, a larger percentage of G4 is related to higher risk of biochemical failure 

after RP [35]. 

Although the revision noted the need for reporting the percentage of G4 and G5 

on RP specimens to support better pathological reporting, it is challenging to report 

appropriately. Reporting on borderline cases of GS7 = G3+4 and GS7 = G4+3 based on 

the percentage of G4 is a chance of flipping coins [17], therefore can result in large inter- 

and intra-observer variability. Similarly, for reporting on borderline cases of GS6 versus 

GS7 = G3+4, the challenge remains, and it is recommended to include the percentage of 
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G4 for the purpose of confirmation. There is evidence that GS8 = G4+4 disease with the 

presence of G5 has different prognostic outcomes, comparing cases without G5 [33, 36]. 

However, it is still unclear whether GS8 = G3+5 and GS8 = G5+3 have different 

prognoses. Although one study [33] suggested that GS8 = G3+5 and GS8 = G4+4 have 

similar cancer-specific mortality rates, and GS8 = G5+3 and GS9 have similar cancer-

specific mortality rates, it was noted that those results may be affected by potential error 

that may result from underscoring the separate nodules of GS10 and GS6 as an overall 

tumour of GS8 = G5+3 in an RP specimen [17].  

1.1.3.3 Subtypes of PCa 

The Gleason grading system classifies tissues based on the relationships of their 

morphological appearances to different prognostic outcomes. There is more than one 

underlying pattern in each of the Gleason grades. Following the most recent consensus 

from the ISUP meeting 2014 [34], the general rule for grading PCa is to grade well-

formed glands as G3, cribriform, poorly formed, and fused glands as G4, and the absence 

of gland formation and necrosis as G5 [17]. More specifically, G3 includes the subtypes 

of sparse G3, intermediate G3, and packed G3, which depict well formed cancerous 

glands intervened with decreasing amounts of stroma tissue [37]. G4 includes the 

subtypes of “1) cribriform glands (including the glomerulid pattern), 2) poorly formed 

glands, and 3) fused glands.” G5 includes the subtypes of “1) solid nests, 2) cords of 

cells, 3) individual cells, or 4) nests of cribriform glands with unequivocal necrosis [17].” 

Based on the consensus reached in 2014 ISUP meeting [34], mucinous adenocarcinoma 

should be graded based on the underlying pattern instead of designating it as independent 

grade of mucinous adenocarcinoma without the presence of extraglandular mucin, since 
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there is no necessary correlation between this type of cancer and an aggressive clinical 

behavior [17].  

The subtypes are not limited to be used for grading the tissue using the Gleason 

grading system; literature has shown evidence that certain subtypes can be used as 

predictors for prognosis [38, 39]. For example, Dong et al. [39] found in their study that 

the presence of a cribriform pattern is predictive for biochemical recurrence and 

metastasis after RP. Also, Trudel et al. [38] found that the presence of any amount of 

large cribriform/intraductal carcinoma is a significant prognostic factor for estimating 

biochemical recurrence-free rate. However, these findings are limited since there are very 

few studies on this topic and larger scale studies using other clinical outcomes have been 

urged to integrate those findings into routine pathology practice [38]. In addition, the 

prognostic power of other subtypes were not discovered. It is challenging to conduct 

further study since detailed subtype annotation will be needed in large cohorts. This is not 

feasible within standard clinical pathology procedures, and requires significant extra 

effort from pathologists.   

1.1.3.4 Tumour volume of RP for prognosis  

Although most studies have failed to provide evidence that tumour volume and 

percentage of cancer involvement on RP have independent prognostic value, these 

parameters have been found to be associated with other pathological features (e.g. GS 

and EPE) [26]. Studies [32] have demonstrated that tumour volume is a predictive 

parameter for predicting the development of metastasis, SVI, and EPE. Some studies 

have shown that the percentage of cancer involvement has an even stronger correlation to 

pathological stage and tumour progression [40, 41]. Therefore, the prognostic 
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significance of providing quantitative information of tumour volume and proportion of 

tumour volume involvement is not disputed [26]. 

Reporting tumour volume in PCa is challenging since the assessment of tumour 

volume is technically difficult and is much more difficult than that for most other organs, 

and the methods for measuring PCa volume on RP specimens vary. The methods range 

from using computer assisted systems to naked eye examination without tumour 

annotations on the glass slides [26]. The methods using glass slides are more appropriate 

for routine clinical practice. The more sophisticated methods (e.g. counting numbers of 

involved blocks [42]) may involve much more effort from the pathologists, while the 

simpler methods (e.g. naked eye examination without tumour annotation on the slide 

[43]) is more subjective, which leads to intra- and inter- observer variability, especially 

considering the volume estimation requires virtual 3D reconstruction using 2D serial 

sections that are 3–5 mm apart and estimating tumour sizes on each 2D section. In 

addition, in the landmark studies [44-47], authors have noted that the difficulty of 

assessing the largest tumour on RP specimens. A method of measuring the maximum 

diameter of the largest tumour after annotating the tumour on the slide was proposed [48] 

as a surrogate for reporting.  

In general, consensus was reached that it is required to report some quantitative 

measurement of tumour volume instead of  using a qualitative description (e.g. reporting 

small vs. large tumour) with methods which are feasible in routine clinical practice based 

on each laboratory because of the prognostic value and the potentially superior 

importance for both clinical and pathological staging. However, the vote was nearly 

evenly split on reporting the maximum diameter as the clinical standard, which may be 
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due to the uncertainty of its independent prognostic value. Imaging techniques may 

support the need for reporting tumour size parameters and other parameters which reflect 

tumour volume [26]. 

1.1.3.5 Zonal origin of RP for prognosis  

Most studies have shown that tumours originating from the peripheral zone are 

more aggressive than those from the transition zone, which usually have lower GS and 

pathological stage [26]. Transition zone tumours are more likely to have longer 

biochemical failure-free interval for recurrence patients after curative therapy, compared 

to peripheral zone tumours [49-52]. In addition, even for tumours from the transition 

zone having larger tumour volumes with significantly higher PSA levels than tumours 

from the peripheral zone, the biochemical cure rates are similar [53]. Although there are 

other studies [54, 55] showing contradictory findings, in a study analyzing zonal location 

of PCa as a possible indicator for progression-free survival post-surgery, Augustin et al 

[56] indicated that tumours from the transition zone, which is not an independent 

predictor in the multi-variate analysis, are correlated with better biochemical cure rate 

after RP [26].   

Reporting the zonal origin in routine practice was not finalized and consensus was 

not reached, while consensuses were reached on reporting zonal location of the 

dominant/index tumour and dominant tumours found in the anterior of the gland. This 

might be due to the fact that the zonal origin is technically hard to determine and report 

on standard sections of RP specimens (quadrant sections from whole-mount). It is 

common to find that tumours cross both the transition and peripheral zones. In such 
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cases, the Gleason grade and the proportion of tumour in the transition zone may be used 

to deciding whether the tumour is from transition zone [26].  

1.1.3.6 Pathological stage 

Pathological stage, which stratifies PCa based on the findings reflecting tumour 

size and location on the sampled tissues, is considered as essential information for patient 

risk management. The final pathological stage from assessing the RP specimen is a more 

accurate predictor for cancer recurrence after surgery than other clinical preoperative 

parameters (e.g. PSA level, biopsy GS etc.). The staging criteria are summarized in Table 

1.1 based on the most recent tumour-node-metastasis (TNM) system [57]. 

The debate regrading reporting the substages (i.e., pT2a, pT2b, and pT2c) of pT2 

(organ confined) PCa was discussed in the 2009 ISUP consensus meeting due to the lack 

of evidence of prognostic value of the substages. Also, there are no uniform criteria and 

methods for staging pT2a and pT2b disease, which were defined as the unilateral cancer 

involvement less than and more than half of one lobe, respectively, which leads to 

technical challenges in reporting (e.g. large intra- and inter-observer variability). 

Consensuses were reached on discontinuing reporting the substages of pT2 using the 

2002/2012 TNM guidelines. Recommending optional reporting of this parameter is under 

debate as most pathologists indicated a belief in its clinical and academic relevance in the 

pre-meeting survey [26].  
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Table 1.1: Pathological stage for prostate cancer. Reproduced with permission from 

AJCC [57]. 
 

Pathological stage (pT)* 

pT2 Organ confined 

pT2a Unilateral, one-half of one side or less 

pT2b 
Unilateral, involving more than one-half of side but not both sides 

pT2c Bilateral disease 

pT3 Extraprostatic extension 

pT3a 
Extraprostatic extension or microscopic invasion of bladder neck** 

pT3b Seminal vesicle invasion 

pT4 
Invasion of rectum, levator muscles, and /or pelvic wall 

* Note: There is no pathologic T1 classification. 

** Note: Positive surgical margin should be indicated by an R1 descriptor (residual 

microscopic disease). 
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1.1.3.7 Role of computational tools for RP specimen pathological 
reporting 

Although the importance of reporting tumour volume in pathological reports is 

widely accepted, the required substantial extra effort from the pathologists and the 

technical difficulties of assessing the tumour volume result hesitation to report tumour 

volume in clinical practice. The technical difficulties include inter- and intra- observer 

variabilities, and the lack of standard protocol of reporting. Digital pathology imaging 

techniques may enable automatic contouring of each individual tumour to have a 

graphical pathological report with associated tumour quantification. This could 

potentially yield more accurate tumour volumes, or estimation of the maximum diameter 

of the dominant tumours. Therefore, computational tools are expected to be essential to 

addressing questions around reporting of those parameters in routine clinical practice by 

supporting studies of the predictive power of those parameters for clinical outcomes [26]. 

Computational pathology systems may also be beneficial to more efficient pathological 

workflow for reporting zonal locations of dominant tumours and pT staging. In addition, 

the uncertainties related to reporting the pathological features (such as reporting 

maximum diameters and substage of pT2 PCa) may be resolved by studies using large 

cohorts with the graphical and quantitative information for each tumour on whole-mount 

RP sections provided by the computational pathology system. 

1.1.4 Digital and computational pathology  

The advent of digital pathology systems and increasing applications using 

machine learning in medical imaging analysis enable the use automated tools for 

analyzing pathology images to potentially assist clinical work and medical studies.  
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1.1.4.1 Digital pathology 

Digital pathology is an image-based platform for pathological information 

acquisition, management, and interpretation from digitized slides. It is powered by virtual 

microscopy, which is a method for glass slide digitization and using a computer to review 

the digitized tissue of the glass slides [58]. Because of the progress in scanning 

technology, whole-slide-imaging (WSI) systems are available, which enable the scanner 

to scan the entire slide and save as a digital file for review. By using a modern WSI 

system, the pathologist can review a virtual slide in a way that is similar to reviewing a 

Google map [i.e. to navigate the virtual slide, and zoom in and out the regions of interest 

(ROIs) to review it at multiple resolutions] [59].  

Compared to using the conventional physical slides, the use of WSI systems has 

advantages in terms of image viewing, remote consulting, portability, data archiving and 

retrieving, education, and integration of automated tools. The digitized files can be shared 

through the Internet to support distance teaching and remote pathology consultation [58]. 

Also, virtual slides are saved and managed electronically, they do not deteriorate or 

bleach over time and the accessibility of the file is higher. In addition, WSIs make the use 

of computational tools possible, for example using machine learning based algorithms to 

analyze the data (e.g. digital images, features extracted from the digital images etc.) from 

WSIs to assist with the diagnosis of cancer. 

In order to use virtual slides for pathological examination, the slides have to be 

scanned at adequately high resolution and sufficient colour depth [59]. The resolution is 

usually represented using the unit of micrometer per pixel. For example, a virtual slide 

generated at 0.5 µm/pixel means the side length of each pixel in the image of the virtual 
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slide is equal to 0.5 µm in the physical slide. The colour depth is typically expressed 

using the number of bits per pixel. For example, a 24-bit colour depth in red-green-blue 

(RGB) colour image usually uses 8 bits for each of the R, G, B, such that it gives 

16,777,216 colour variations. This 24-bit colour depth is also called “true colour”, which 

covers the range with more detail than human eye can perceive using a typical display 

[60].  

Due to the high resolution with the given colour depth of the virtual slide, a single 

WSI can have a large file size, ranging from hundreds of megabytes for a single small 

region to multiple gigabytes for a single WSI of a tissue section. This raises challenges 

for viewing the scanned virtual slide, especially for reviewing through the Internet since a 

large amount of data needs to be rendered for the purposes of display and navigating. The 

solution to this challenge is the use of a pyramid structure to save the scanned virtual 

slide, which saves it at multiple resolutions (Figure 1.3). When a viewer needs to review 

a larger field of view, the computer can render the image by retrieving image data at 

much lower resolution. For example, using an Aperio Scanscope whole slide scanner to 

acquire a virtual slide at 20X, the same image is usually downsampled to 5X, 1.25X, and 

0.625X respectively. This enables fast browsing and navigation of a large field of view of 

the image in a zoomed out view via rendering the image information through retrieving at 

low resolution (e.g. 1.25X) [59]. 
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Figure 1.3: Pyramid structure of the digital pathology image file. Reproduced with 

permission from Higgins et al. [58]. 

 

1.1.4.2 Computational pathology using machine learning 

There is a more than two decade (since 1998) history of using computational 

methods to analyze pathology images to assist with disease diagnosis, prognosis, and 

quantitative characterization of biological features of the tissue. Machine learning plays 

important roles in pathology image analysis for, but not limited to, disease detection, 

classification, and object segmentation. Based on the machine learning methods used, it 

can be classified into two major categories: the traditional non-deep learning based 

methods and the deep learning based approaches. The non-deep learning based 

approaches include developing algorithms for object segmentation, detection, 

registration, and classification. For example, this approach can involve using feature 

engineering (e.g. extracting features from the images/sub-regions and converting to a 
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quantitative representation, selecting and analyzing features etc.) and/or machine learning 

methods (using data to build a model for prediction) to classify ROIs from the WSI as 

cancerous vs. non-cancerous [61]. The deep learning based approaches are one type of 

machine learning approach, which usually directly uses the “raw data” from the input 

(ROI of images/sub-images) without feature engineering and/or with minimal 

preprocessing. 

Computational pathology has been impacted by deep learning. Deep learning 

based methods usually do not require engineered features. However, a large labeled 

training set is usually recommended to build such models/systems. Studies have 

demonstrated excellent performance using deep learning based methods for prostate 

cancer detection on digital pathology images [62, 63], outperforming traditional methods 

[61]. In addition, the deep learning based approaches are considered more flexible, which 

do not need intensive changes to the algorithms, while conventional machine learning 

methods usually require substantial efforts for feature engineering and data 

preprocessing. However, deep learning methods are known to require large amounts of 

annotated data [64, 65] and there is a noted difficulty in relating the results to the input 

for interpretation [66]. Therefore, estimating the robustness and generalization capability 

of such systems is challenging. 

Given the evidence of the excellent performance of deep learning methods and the 

long history of traditional methods [61], it is essential to identify the application cases for 

each of the methods via direct comparisons using properly designed validation studies. 

This can help researchers and users to better understand the underlying principles of the 

deep learning based methods, therefore better estimating their robustness and 
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generalization capability, while on the other hand helping the algorithm design by 

integrating the findings (e.g., identified important features) from non-deep learning 

methods. Computational pathology is more and more widely accepted as key element for 

precision medicine, supporting quantitative and graphical pathology reporting and the 

development of computational pathology-based biomarkers for outcome prediction. 

Example use cases included as tumour volume estimation for PCa, and better treatment 

guidance (e.g., reporting the percentage of G3 and G4 cancer tissue for differentiating 

grade group 2 and 3 for more specific patient stratification for treatment 

recommendation). 

1.2 Research challenges and related works 

The work in this thesis includes computational pathology in the context of 

analyzing histological tissue of the prostate for automatic cancer detection and grading on 

whole-mount RP tissue sections. Many studies (see related studies in review [61]) have 

used computational methods to tackle problems of PCa detection and grading on H&E 

stained histopathology tissues in different aspects (e.g. using different methods/materials, 

aiming for different clinical purposes) [67, 68]. They demonstrated the feasibility and 

need for using computational pathology to detect and grade PCa on histology.  

1.2.1 Computational pathology for PCa detection  

Many studies [2, 62, 63, 67-84] have worked on classifying prostate tissue as 

cancer vs. non-cancer using computational methods. Based on the materials used in those 

studies, we can divide those studies into two broad categories of problems: 1) 

identification (i.e. given an ROI, indicate whether or not it is cancerous), and 2) detection 
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(i.e. given an image, indicate whether or not the image contains any cancer, and, 

optionally, indicate the locations of the cancerous regions). For the selected ROI based 

problem, studies usually worked with pre-selected ROIs with a smaller sample size [2, 63, 

67-71, 73-76, 83, 84]. Those studies provided valuable insights in terms of potential 

methodologies, but the conclusions are limited by the small sample sizes used. Because 

prostate cancer tissue is heterogeneous, the generalization capability of the proposed 

systems in those studies is not clear. Also, whole-mount WSI files are usually large in 

size (e.g. 4~5 gigapixels, and each pixel may be 24-bits); thus, the efficiency of the 

system is important for clinical translation. Systems that were tested using pre-selected 

samples may not be scalable to process much larger tissue sizes within a practical time 

frame. In addition, there are large variations arising from tissue processing, therefore the 

robustness of the system is essential in application. Systems that were tested on samples 

from small patient cohorts may not be able to compensate for those variations. 

  Some studies (Table 1.2) developed and validated their methods on WSIs of 

prostate tissues. For the purpose of detection, studies usually worked with WSIs without 

sample selection. Most of the studies were conducted using biopsy tissues with the 

purpose of screening the negative samples to reduce the workload for pathologists. Since 

biopsy tissue is much smaller than RP tissue sections (e.g. sample tissues were 

approximately 0.04% of an average prostate gland, using a 20 mm long, 18 gauge biopsy 

needle core), the systems developed using biopsy tissues have similar limitations to those 

discussed above. In addition, biopsy tissues have sampling bias. Therefore, systems 

designed using those samples may not achieve the same performance on RP tissue 

sections. There are a few studies using WSIs of RP tissue sections [79-82]. In those 
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studies, only Monaco et al. [79] and Rashid et al [80] used whole-mount WSIs of RP 

tissue sections. In their studies, they noted limitations of their work in detecting high-

grade cancer since the method is based on gland classification. Commonly, high-grade 

cancer may not have clear glands, as discussed in the background section, and is of high 

prognostic value clinically. In their studies, a very limited number of high-grade cancer 

samples was used. DiFranco et al. [81] used 15 WSIs from a 14-patient cohort without 

reporting system processing time. Because their methods extracted features at the pixel 

level at each of the colour channels, the processing time may be impractical for 

processing WSIs of RP sections. Nguyen et al. [82] reported a false positive rate of 6% 

and 78% sensitivity, testing on 11 WSIs. Because a very limited number of WSIs were 

used for testing in these two studies [81, 82], the generalization capability and practical 

applicability of the systems are not clear. 
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Table 1.2: A summary of previous work on PCa detection on WSIs. Acc.: accuracy. 

CV: cross-validation. LOO: leave-one-out. WM: whole-mount. AUC: area under the 

receiver-operating-characteristic (ROC) curve.  The work described in this thesis is in 

boldface. 
 

Year 
1st  

Author 
Results 

Validation 

method 
Data set 

Total 

processed  

tissue 

(𝑚𝑚2) 

Tissue 

form 

Reported 

speed 

(minutes) 

2010 Monaco 0.87  

(sensitivity), 

0.9 

(specificity) 

3-fold 

CV 

40 WSIs 

from 20 

patients 

14,000 RP 2.75/ 

WSI 

2011 DiFranco 0.955 (AUC) 2-fold 

CV at 

WSI 

level 

15 WSIs 

from 14 

patients 

10,134 RP Not 

reported 

2011 Nguyen 6% FPR, 

78% TPR 

2-way 

split 

11 WSIs 316 RP Not 

reported 

2012 Doyle 0.84 (AUC) 3-fold 

CV at 

WSI 

level 

100 

WSIs 

from 58 

patients 

3,125 Biopsy 3/ROI 

2016 Litjens 0.92 (AUC) 10-fold 

CV at 

patient 

level 

204 

WSIs 

from 163 

patients 

Up to 

~4,800 

Biopsy 4/WSI 

2016 Litiens 0.99 (90th  

percentile) 

(AUC) 

3-split at 

WSI 

level 

225 

WSIs 

from 50 

patients 

Up to 

~5,600 

Biopsy Not 

reported 

2019 Rashid 93% (Acc.) 2-split at 

WSI 

level 

70 WSIs 

from 30 

patients 

Up to 

~84,000 

RP Not 

reported 

2019 Han 0.98 (AUC) 

94.4% (Acc.) 

LOO, 5-

fold, 2-

fold CV 

at 

patient 

level 

299 

WSIs 

from 71 

patients 

358,800 WM 

RP 

2 /whole-

mount 

WSI 
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In short, it is important to develop and validate systems using WSIs of whole-

mount RP tissue sections from a large patient cohort with strict validation methods (e.g. 

stratifying training and test cases at the per-patient level) with practical processing time 

for translational purposes. Our work aimed to fill the gap between the previous work and 

this purpose. 

1.2.2 Feature extraction  

Features are typically calculated to characterize image samples for classification. 

At a high-level, the methods for calculating those features may be divided into two major 

streams: 1) extracting features directly from digital images at the pixel level, and 2) 

extracting features at the object level (e.g. tissue components) after object segmentation 

or identification. 

 Some studies used features that were calculated at the pixel level (see review in 

[61]). The primary advantage of those methods is the use of most of the information 

within the sample images. However, challenges include the resulting variations in 

calculated features that come from the image variability, which may result from various 

artifacts such as staining variability [85]. Also, the computational cost is usually high 

based on the reported processing times in previous studies. To resolve the issue of 

staining variability, normalization has typically been used [86-88]. Normalization 

methods usually used the selected images as standard/target images for calibration, or 

normalized pixel colour/intensity across selected image samples.  

Extracting features at the object level usually requires accurate object 

segmentation and identification. For object segmentation, methods include using machine 
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learning to classify each object, or segmentation algorithms to segment objects directly 

[61]. However, staining variability is still a problem that negatively affects the 

segmentation results [61, 85]. This is because, similar to normalization as discussed 

above, classification used other image samples for the purpose of system training, and 

segmentation algorithms were usually performed after normalization. Studies were 

usually single centre studies with fewer than hundreds of manually annotated samples for 

training and validation. 

In short, for sample image classification (e.g. cancer vs non-cancer or grading), 

extracting features that are robust to staining variability and fast to compute is still a 

challenging problem domain. Our work developed a tissue component segmentation 

method that is independent of other sample images, and is fast in computation to support 

consistent feature extraction.  

1.2.3 Computational pathology for PCa grading based on the 
Gleason grading system 

For grading PCa as high- vs. low-grade, studies (Table 1.3) used various methods, 

but those methods were similar to the methods used for classifying cancer vs. non-cancer 

at a high-level. They also typically used machine learning based approaches to classify 

positive and negative image samples after feature extraction. The challenges in PCa 

detection, as discussed above, are also applicable to this problem. In addition, grading 

PCa on histology is a more challenging problem because morphological patterns of 

cancerous tissues between different Gleason grades are more similar, compared to those 

between cancer and non-cancer tissues. For example, packed G3 and small fused G4 are 

more similar in morphology, and both show packed cancer glands with different amounts 
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of fused glands. Therefore, those tissues are harder to differentiate. Also, for samples 

having the same Gleason grade, there are various patterns. For example, G4 can be 

divided into cribriform G4, poorly formed G4, and small fused G4. The system needs to 

be able to identify all those patterns and correctly classify them as G4. In addition, PCa is 

highly heterogeneous, thus the cancerous tissues show large variations in appearance 

across different patients. Validation using samples from the same patient may positively 

bias the system performance. In short, it is important to design a grading system with 

high accuracy that was tested on all cancerous regions of WSIs of RP sections, which 

covers enough variability of cancerous samples for each Gleason grade. It is also 

important to validate the system using samples from different patients that were not used 

for training. 
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Table 1.3: A summary of selected previous work on PCa grading using computational 

methods. The listed works were selected based on the relevance of problem and 

methodology to this thesis. The work described in this thesis is in boldface. 
 

Year 1st Author Results 
Validation 

method 
Data set 

Total 

processed  

tissue 

(𝒎𝒎𝟐) 

Tissue 

form 

Reported 

speed 

2007 Naik 95.2% 

(Acc.) 

2-fold 20 ROIs Not 

reported 

Not 

reported 

Not reported 

2012 Doyle G3 

0.77, 

G4 

0.76, 

G5 0.95 

(Acc.) 

3-fold 

CV 

2000 

ROIs 

from 

214 

patients 

0.13~1.3 Biopsy Not reported 

2013 Gorelick 85% 

(Acc.) 

LOO CV 120 

ROIs 

from 15 

patients 

2.7 RP 2 

minutes/ROI 

2013 Sparks 0.78 

(AUC) 

2-fold at 

patient 

level 

120 

ROIs 

from 58 

patients 

Not 

reported 

Biopsy Not reported 

2014 Nguyen 0.82 

(AUC) 

LOO CV 221 

cores of 

368 

patients 

108 TMA Not reported 

2016 Niazi 90.9% 

(Acc.) 

2-split 88 ROIs 

from 58 

WSIs 

178 Not 

reported 

Not reported 

2018 Nir 79.2% 

(Acc.) 

LOO CV 

at patient 

level 

333 

cores 

from 

231 

patients 

333 TMA 14 hours total 

2019 Han 0.92 

(AUC)  

LOO CV 

at 

patient 

level 

286 

RPs 

from 68 

patients 

17124 RP <2 

minutes/WSI 



36 

36 

In previous work [2, 83, 89-93], all studies used pre-selected ROIs and total 

processed tissue sizes ranged from 0.13 mm2 to 333 mm2. We observe from Table 1.3 

that from the earlier work [2, 89, 92, 93] to more recent work [83, 90, 91], the reported 

system performances have not necessarily improved with time, and in fact some more 

recent studies [83, 90] reported worse performance than earlier studies [2, 93]. However, 

larger tissue amounts were used in the more recent studies. This suggests that grading 

was becoming more challenging when processing a larger amount of tissue, which brings 

greater variability of tissue patterns. The most recent work demonstrated the need for 

processing a large amount of tissue that covers large variability of tissue samples with 

more strict validation methods. Nir et al. [83] processed a total amount of approximately 

333 mm2 of tissue that consisted of 333 tissue microarrays (TMAs), which were sampled 

from 231 RP tissue sections. They tested their system used leave-one-out CV with data 

grouped on a per-patient basis and reported an accuracy of 79.2% for high- (G4 and G5) 

vs. low-(G3) grade classification with total processing time of 14 hours. Our work 

reported AUCs of 0.92 for classifying high-(G4 and G5) vs. low-(G3) grade and used all 

cancerous tissues from 286 RP sections (i.e. total amount of 17124 mm2) without sample 

preselection, covering all clinically relevant grade groups, with a processing time of 2 

minutes per mid-gland whole-mount WSI. 

1.2.4 Technical methodology  

As discussed above, a large number of publications demonstrated the feasibility of 

using computational methods to detect and grade PCa on digital histopathology images. 

Most studies used machine learning based approaches for classification after extracting 

features. Recently, deep learning based approaches have demonstrated their efficacy for 
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image classification problems [94]. Studies [62, 63, 83, 84] have also demonstrated 

excellent performance of using this method to analyze the digital histopathology images 

for PCa detection. Litjens et al. [62] reported an AUC of 0.99 (90th percentile) using 238 

biopsy tissues. Chen et al. [84] reported an AUC of 0.99 (95% confidence interval, 0.97-

0.99) using 1360 ROIs from 34 WSIs. Kwak et al. [63] reported an AUC of 0.974 (95% 

CI:0.961–0.985) using 655 TMAs. Nir et al. [83] reported an overall accuracy of 91.9% 

using 333 TMAs from 231 patients. In a study [83], Nir et al. also used a deep learning 

based approach to grade cancerous TMAs as high- (G4 and G5) vs. low- (G3), and 

reported an overall accuracy of 77.8%. 

Most studies using deep learning based approaches used raw image samples as 

input without pre-processing [62, 83, 84], while Kwak et al. [63] used both raw images 

and segmented nuclei maps as inputs for comparison. In addition, they also compared 

conventional machine learning based approaches to deep learning approaches. In their 

study, they found that the deep learning based approach using their nuclei seed maps as 

input yielded the best performance. Since deep learning is considered as a “black box”, 

lacking comprehensive understanding [95], it is more difficult to interpret the results and 

estimate the generalization capability and robustness of the system for practical 

application. Kwak et al. [63] demonstrated the need for and importance of comparing 

deep learning and conventional machine learning based approaches, and that of 

incorporating preprocessing into the deep learning based methods. 

We summarize that existing studies using deep learning based methods used 

WSIs of biopsy specimens and TMAs. One of those studies compared the methodologies 

between deep learning and conventional machine learning, and incorporated image 
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preprocessing into the deep learning method. Our work used whole-mount WSIs of RP 

sections without sample selection for both PCa detection and grading. We provided 

comparisons between using conventional machine learning based approaches and using 

deep learning based approaches, and comparisons using 4 different tissue component 

maps and using raw image input. 

1.2.5  Computational pathology for PCa sub-type grading  

Although there are many studies in PCa detection and grading on histopathology 

images as discussed above, to the best of our knowledge, there is no study that used 

computational methods to grade PCa sub-types beyond Gleason grade. The need for this 

study was discussed in section 1.1.3.3. Our work used a deep learning based approach to 

detect each of eight sub-types on the WSIs of whole-mount RP tissue sections. 

1.3 Thesis outline 

To resolve the technology gap in applying machine learning methods for PCa 

detection and grading on whole-mount RP sections for clinical translation, the primary 

objective of this thesis work is to develop and validate an automatic system. The system 

needs to be accurate and fast. The validation needs to be done using all tissues from 

whole-mount RP sections, grouped on a per patient basis for training and testing.The 

major research questions are:  

1. Can features extracted from 3-class (i.e. nuclei, lumen, and stroma/other) tissue 

component maps (TCMs) provide the major information for PCa detection and 

grading on whole-mount RP sections? 
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2. Can 3-class TCMs compensate for staining variability for robust PCa detection 

and grading on whole-mount RP specimens? 

3. What is the most important information on the histology tissue that can be used 

for PCa detection and grading? 

4. How do deep learning based approaches perform for PCa detection and grading? 

5. What is the feasibility of detecting subtypes of G3 and G4 PCa using a deep 

learning approach? 

To answer these research questions, this thesis breaks down the objective into the 

following specific aims using whole-mount RP tissue sections: 

1. To develop an algorithm to segment tissue components from histology images 

and validate its performance for PCa detection and grading. 

2. To develop and validate a machine learning based system using segmented tissue 

component maps for PCa detection and grading. 

3. To validate and compare the performance using different tissue component maps 

(i.e. nuclei maps, lumen maps, and 3-class TCMs) for PCa detection and grading. 

4. To develop and validate a deep learning based pipeline for PCa detection and 

grading and compare the performance to that using conventional machine learning 

based approaches. 

5. To develop and validate a machine learning based system for PCa sub-type 

grading . 
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Chapter 2: Automatic cancer detection on digital histopathology images of mid-

gland radical prostatectomy specimens 

The objective of this work was to develop and validate an automatic system for 

PCa detection on whole-mount WSIs of H&E-stained RP tissue sections. We aimed for 

the developed system to be robust to staining variability across WSIs, efficient in 

computation, and accurate in performance with CV grouping data on a per patient basis 

using a large data set. This would support clinical translation upon further multi-centre 

validation and user-study. We generated 3-class TCMs using our proposed segmentation 

method, allowing fast and accurate tissue component segmentation. First and second-

order statistical features were extracted at the object-level (i.e. from 3-class TCMs) to 

train three different classifiers to improve the generalization capability and robustness of 

the system. We used two deep learning based methods of transfer learning by fine-tuning 

pre-trained AlexNet (pre-trained by ImageNet data [64]) [94] with minimal preprocessing 

(i.e. down-sampling using binary interpolation to conform the input image size) of raw 

image samples and 3-class TCMs, respectively, for comparison. We demonstrated the 

state-of-art performance of the presented systems, and the fastest processing time 

comparing to that in literature, with validation conducted using the largest expert-

annotated data set thus far. We found that 3-class TCMs encoded most the information in 

the form of tissue component patterns for PCa detection and grading, can compensate for 

staining variability, and reduced the sensitivity to sample size for deep learning based 

systems for accurate and consistent performance in PCa detection. 

Chapter 3: Histological tissue components provide major cues for machine learning-

based prostate cancer detection and grading on prostatectomy specimens 
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The purpose of this work was to grade cancerous regions on whole-mount RP 

tissue sections using an automated pipeline. We aimed to re-tune the pipeline that was 

developed for PCa detection as described in chapter 2, for PCa grading. We expanded 

previous pipeline by using nuclei maps and lumen maps respectively as system inputs for 

comparison. We aimed to discovery the importance of each of the 3-class tissue 

components for both PCa detection and grading. In addition, we comprehensively 

compared the conventional machine learning based approach and the deep learning based 

approaches for both PCa detection and grading, which includes direct comparisons in 

terms of overall performance and performance for each tissue type (e.g. G4 cancer, G5 

cancer etc.). This will help us to better understand the underlying principles behind using 

a machine learning based approach for PCa detection and grading, and to estimate the 

utility of those methods. We found that the 3-class TCM included most of the 

information for both PCa detection and grading, and nuclei maps provided the key 

information for identifying high-grade (i.e. GS ≥ 9) cancer.   

Chapter 4: Automatic prostate cancer sub-grading on digital histopathology images 

of radical prostatectomy specimens 

The purpose of this work is to investigate the feasibility of using a machine 

learning based approach to automatically detect each sub-type of cancerous tissue on 

WSIs of whole-mount RP sections. We aimed to use transfer learning to classify all the 

cancerous samples as each sub-type vs. other. In addition, because deep learning 

demonstrated overall better performance than conventional machine learning based 

approaches when a large sample size is given, we used a deep learning based method for 
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this novel and challenging problem. Since a much smaller sample size is available for 

each of the sub-type, we used transfer learning to reduce the usual requirement of a large 

sample size for system training. We found that transfer learning that fine-tunes pre-

trained AlexNet with raw image samples (i.e. image samples extracted from the WSI 

with minimal processing consisting only of downsampling), can be used for 

automatically detecting each of eight different sub-types of cancerous tissue beyond 

Gleason grade, and system performance is subject to sub-type. 

Chapter 5: contributions and impact of the thesis, and future directions 

This chapter summarizes the achievements, impacts, advances in knowledge 

relating to each of the research questions, potential applications, and future directions 

relating to the work of this thesis. 
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Chapter 2 

A version of this chapter has been submitted to Journal of Medical Imaging for 

publication and is currently under review: Wenchao Han, Carol Johnson, Mena Gaed, 

Jose A. Gomez-Lemus, Madeleine Moussa, Joseph Chin, Stephen Pautler, Glenn 

Bauman, and Aaron Ward, “Automatic cancer detection on digital histopathology images 

of mid-gland radical prostatectomy specimens.” 

2 Automatic cancer detection on digital histopathology 
images of mid-gland radical prostatectomy specimens 

2.1 Introduction 

Radical prostatectomy (RP), the removal of the prostate gland, is the most 

common treatment for organ-confined prostate cancer (PCa), which is performed on 

approximately 40% of prostate cancer patients annually in the United States [1]. 

Approximately 17%–29% of patients experience cancer recurrence after surgery, 

portended by serum prostate-specific antigen (PSA) relapse [2, 3]. Adjuvant and salvage 

therapy, including radiation therapy to the prostate bed, can be life-saving for patients 

with recurrence to prevent or delay mortality due to metastatic disease [3].  

The surgical pathology report provides valuable information for post-surgery 

prognosis, recurrence risk management, and selection and guidance of adjuvant therapy. 

The primary and secondary tumours in the specimen are reported in terms of location, 

volume, and the aggressiveness of differentiation based on the Gleason grading system, 

which classifies the tumours into five grades based their morphological patterns, 

considering Gleason grade 1 – 3 as low-grade and 4 – 5 as high-grade [3].  
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Advances in pathology have included establishing standards for important report 

elements and a move towards synoptic summaries [4]. However, current clinical 

pathology reporting is still primarily text-based, qualitative, and subject to inter-observer 

variability, which leads to challenges in terms of quantitative and repeatable 

interpretation of lesion size, location, and spread. Methods of measuring and reporting 

tumour volume vary, and no generally accepted standard has been established [5]. Large 

inter-observer variability has been reported for identifying extra prostatic extension 

(EPE) (i.e. where the tumour extends outside of the prostate into the surrounding region) 

without anatomic landmarks [6]. In addition, assessing the differentiation degree of the 

tumour using Gleason score [7] (i.e. assigning a total Gleason score using the sum of 

Gleason grades of primary and secondary tumours) has been established for decades, but 

reporting the total Gleason score remains problematic. For cases with multiple nodules, 

reporting the overall score may underestimate the tumour aggressiveness [8].  

Currently, pathology reports include or seek to incorporate accurate and detailed 

information to maximize clinical utility [9, 10]. Bettendorf et al. [9] proposed a hand-

drawn tumour map of the prostatectomy specimen for pathology reporting which 

provides a way for visual estimation of tumour size and location. To quantify the hand-

drawn loci on the anatomical maps in prostatectomy specimens, Eminaga et al. [10] 

developed an extensible markup language (XML) based document architecture. 

However, this method requires substantial effort from the pathologist, with potential to 

slow the workflow and increase fatigue. Also, the quantitative reporting based on these 

approaches is derived from approximate hand-drawn representations. Thus, the clinical 

challenges remain. Annotating each cancerous region of interest (ROI) at high resolution 
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(20X or higher) on whole-mount RP sections enables quantitative reporting, giving 

measurements of tumour size, location, and grade. This would resolve the clinical 

challenges mentioned above and would also benefit research studies investigating the 

relationship between quantitative pathologic parameters, such as tumour volume, and 

clinical outcomes. Moreover, PCa is challenging to detect and localize on imaging, such 

as multi-parametric magnetic resonance imaging. This has motivated the undertaking of 

imaging validation studies that use annotated prostatectomy histology as the reference 

standard [11, 12]. Adequate target delineation of the tumour through such studies can 

potentially improve disease control by allowing safe boosting of radiation dose (or 

targeting other ablative therapies) to corresponding areas of the prostate bed and 

reduction of side effects by reducing the treatment margins [13]. 

The time required to conduct such contouring manually precludes its use within a 

clinical pathology workflow and adds substantial time and expense to imaging validation 

studies. Therefore, there is an unmet need for a software tool that can provide accurate 

and fast automatic contouring of cancerous regions on whole-mount digital 

histopathology images of radical prostatectomy specimens. 

Distinguishing cancer from non-cancer tissue on histology is challenging since 

their appearance are visually similar (e.g. in Figure 2.1, Gleason grade 3 (G3), small 

gland G4, and benign prostatic hyperplasia (BPH) (non-cancer), are visually similar). 

Previous studies have demonstrated the potential for computational approaches to address 

this problem (see the   recent review article [14]). Most studies involved training and 

validation on a small subset (typically hundreds) of selected ROIs. In comparison, 

detecting cancerous regions throughout entire whole-mount slide images (WSIs) of RP 
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sections from different patients is more challenging for three primary reasons.  First, the 

high resolution of the digital histopathology images leads to a large number of pixels in 

each WSI (e.g. a WSI of a mid-gland prostate section often includes > 4 gigapixels), 

requiring an efficient approach. Second, there is substantial heterogeneity of appearance 

in cancerous and non-cancerous prostate tissue. Non-cancerous tissue includes normal 

parenchyma, high-grade prostatic intraepithelial neoplasia (PIN), cancer-mimicking 

atrophy, and BPH, all of which having different appearances and some of which (e.g. 

PIN) sharing many common features with cancerous tissue. For cancerous tissue, there 

are different morphological patterns across different Gleason grades (e.g. different 

appearance for cancer samples G3 and G4, and non-cancer samples Benign, PIN, and 

BPH in Figure 2.1). Even within the same grade, the tissue appearance can be quite 

heterogeneous [3]. For instance, Gleason grade 4 has several subtypes which have 

different morphological patterns (e.g. small glands, large cribriform glands, mucinous 

glands, poorly formed glands, etc.) (Figure 2.1). Testing a system on all of the tissue 

throughout the WSIs thus introduces more heterogeneity into the samples, resulting in a 

more challenging classification problem. Third, staining variability is a substantial issue, 

with contributing factors such as slide preparation and batch effects [15, 16]. Although 

many color normalization methods have been proposed [17-19], colour normalization on 

all images to a template did not reduce instability of texture features and therefore has not 

completely resolved the problem [15]. Other challenges arise from factors including the 

presence of tissue marking dye due to the inking of the surfaces as part of pathology 

processing, artifacts (e.g. tissue folding, out-of-focus regions, tissue tearing), presence of 

red blood cells, and within-ROI heterogeneity (i.e. ROIs contain both cancerous and non-
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cancerous tissue). Validation using all available tissue avoids bias from ROI selection 

and tests the system against the full variability in staining and tissue appearance. 

 

Figure 2.1: Tissue samples. Top row are cancer (G3) and non-cancer tissue samples 

(Benign, PIN, and BPH). Bottom row are sub-types of cancer (G4). 

 

Chapter 2 presents a system for cancer detection and localization on WSIs of mid-

gland RP sections, yielding state-of-the-art accuracies using three different methods with 

fast processing times. To the best of our knowledge, we have validated the system on the 

largest reported annotated data set, with highly detailed reference standard contours 

provided by an expert pathologist. The primary contributions of this chapter are: 

(1) A calibration-free adaptive thresholding algorithm for fast and accurate nuclei 

segmentation, which yields consistent 3-class tissue component maps (TCMs) despite 

staining variability across WSIs. 

(G3)

(Mucinous)(Small gland)

(BPH)(PIN)(Benign)

(Ill formed)(Large cribriform)
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(2) Validation of a conventional machine learning approach with 3 classifiers, and 

a deep learning approach using the inputs of raw images and TCMs for cancer detection 

on 286 WSIs of mid-gland RP sections from 68 patients (4–5 WSIs/patient). Cross-

validation (CV) was performed grouping data on per-patient basis (i.e. tissues from a 

single patient never appeared in both the training and testing sets).  

(3) Identified 14 TCM based texture features for effective cancer detection from 

the conventional machine learning approach, yielding better than state-of-the-art 

performance compared to other non-deep learning-based methods. 

(4) Achieved the best overall performance across all methods using deep-learning 

approaches, and the use of the 3-class TCM as input reduced the sensitivity to sample 

size.  

2.2 Related work 

Substantial work has been published on the problem of prostate cancer detection 

on digital histology images of hematoxylin and eosin (H&E)-stained specimens [14]. 

Most previous research has focused on the classification of cancerous vs. non-cancerous 

using pre-selected ROIs, with a few previous studies focused on cancer identification and 

localization on whole-mount tissues (biopsy and RP).  

Studies [20-28] performed cancer vs. non-cancer classification using pre-selected 

ROIs. Their overall positive results are valuable in that they point to the potential utility 

of the methods employed.  However, the total processed tissue amount in each study was 

less than 4 𝑐𝑚2, which is about half of the size of a single WSI of a mid-gland tissue 

section. Considering the heterogeneity of the prostate cancer tissue and staining 
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variability among WSIs, the limited extent of the processed tissue points to the need for a 

study with more comprehensive validation throughout entire WSIs. Also, these studies 

generally did not prioritize computational cost and the scalability to larger tissue samples 

as would be encountered in clinical practice.  

Several proposed approaches have demonstrated the potential for detection and 

localization of cancerous regions on WSIs of biopsy tissues. Doyle et al. [29] used a 

multiresolution approach to detect PCa with a boosted Bayesian classifier, reported areas 

under the receiver operating characteristic curve (AUCs) of 0.84, 0.83, and 0.76 at the 

lowest, intermediate, and highest resolution levels respectively on 100 biopsy WSIs from 

58 patients with average processing time of approximately 3 minutes per 1000 ×1000 

pixel region. Litjens et al. [30] used a super-pixel based approach and reported an AUC 

of 0.96 at the per-slide level with a sensitivity of 1.0 and specificity 0.4, and an AUC of 

0.92 at the super-pixel patch level using 10-fold CV (data were stratified on a per-patient 

basis) using 204 WSIs of biopsy tissues from 163 patients. Approximately 4 minutes of 

processing time per WSI was reported. Their more recent work [31] used a convolutional 

neural network and reported an AUC of 0.99 (90th percentile) and 0.98 (median 

percentile). The processing time was not reported. Overall, it is not clear that these 

systems would scale up to the data sizes involved in RP specimens; for instance, a 

computation time of 4 minutes per WSI of biopsy tissue [30] would result in a 

requirement of approximately 17 days of computation per mid-gland RP WSI. 

Several studies reported system designs for detecting PCa on WSIs of prostate 

tissue sections. Monaco et al. [32] and Rashid et al. [33] classified each individual gland 

as malignant or benign by extracting gland features. Monaco et al. reported a sensitivity 
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and specificity of 0.87 and 0.90 respectively using 40 RP tissue sections from 20 patients 

at low resolution (8μm/pixel) with average processing time of 2.75 minutes per whole-

mount tissue section. Rashid et al. reported a sensitivity of 90%, a specificity of 93%, and 

an accuracy of 93%, validating on 20 WSIs from 11 patients with a training data set of 50 

WSIs from 19 patients without reporting system processing time. Both works reported a 

limitation that the system was unable to detect poorly differentiated cancer due to the 

dependence of the method on gland classification. This is an issue for Gleason grade 5 

(G5) cancer, in which the glands are disrupted. In their data set, no G5-inclusive tissue 

samples (i.e. pure G5 and mixed grades including G5, such as G4+5) were used.  

However, the presence of G5 cancer is highly negatively prognostic [34] and therefore it 

is critical to detect G5 cancer. 

DiFranco et al. [35] used a tile-based approach, classifying each 512×512 pixel 

tile of the WSI from RP specimens and reported an AUC of 0.95 using 15 WSIs from 14 

different patients. Texture features were calculated at different colour channels of RGB 

and CIE L*a*b colour space. The experiments conducted in the study used a 16-core 

server without reporting computational time, and the need for parallel computing was 

described. 

Nguyen et al. [36] reported a false positive rate of 6% with 78% sensitivity using 

6 images (approximate size of 4000×7000 pixels) for training and 11 WSIs (approximate 

size of 5000×23000 pixels) for testing, incorporating nucleus-related cytology features 

with texture features without reporting the processing time.  
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Nir et al. [37] used multiple pathologists’ annotations with hand-crafted features 

and reported an AUC of 0.85 with an accuracy of 90.5%, a sensitivity of 91.5%, and a 

specificity of 85.2% at the optimal operating point. They tested on 333 tissue microarray 

(TMA) cores sampled from 231 RP specimens for classifying TMA patches as cancerous 

vs. non-cancerous. The validation was conducted using leave-one-patient-out (LOPO) 

CV with processing time of approximately 14 hours for feature extraction for 333 TMAs, 

and approximately 4.5 hours for 231 LOPO simulations for training and classification 

using parallel computing via two 12-core computers. They reported an overall AUC of 

0.75 when testing their system, trained using all of the TMAs, on an external dataset of 

230 WSIs of RP sections from 56 patients using all of the cancerous tissues, and 10% of 

the non-cancerous tissue by random sampling.   

To the best of our knowledge, no system for prostate cancer detection has been 

reported and validated for performance throughout all tissues on RP WSIs including all 

clinically relevant grade groups, with practical processing time. 

2.3 Methods 

Figure 2.2 is a block diagram depicting the training of conventional and deep 

learning-based classifiers for automatic cancer detection on WSIs of RP sections, 

building on our previously reported prototype system [38]. In training, cancerous and 

non-cancerous ROIs were determined using gold-standard histopathology annotations. 

We computed a 3-class TCM for each ROI using our proposed segmentation method. The 

three machine learning approaches used in our study were as follows. (1) We computed 

14 selected first- and second-order statistical features [39, 40] from TCMs and trained 

three classifiers (a Fisher linear discriminant classifier [FisherC], a Logistic linear 
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classifier [LoglC], and a support vector machine classifier [SVM]). (2) Pre-trained 

AlexNet [41] (pre-trained on the ImageNet database [42]), was fine-tuned using the 

TCMs. (3) Pre-trained AlexNet was fine-tuned using raw image ROIs without any image 

processing. During testing, the trained system classified all of the ROIs covering each 

WSI as cancerous or non-cancerous. We validated the classification results against gold 

standard histopathology annotations using CV, with data grouped on a per-patient basis, 

ensuring that samples from the same patient never appeared in both the training and 

testing sets in any fold. We performed the validation using each of the trained systems, 

and the results were collected for analysis and comparison. Our implementation used 

Matlab 2018a (The Mathworks, Natick, MA), OpenCV 3.1 for SVM implementation, and 

PRtools 5.0 (Delft Pattern Recognition Research, Delft, The Netherlands) for the 

implementation of FisherC and LoglC.  
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Figure 2.2: Method overview for system training using 3 different machine learning 

methods. (a) WSIs with our expert annotations. Different coloured annotations represent 

different types of tissue based on the Gleason grading system. (b) and (c) are zoomed 

views from the black square regions in (a) and (b) respectively. 

 

2.4 Data 

2.4.1 Manual annotation 

This study was approved by our institutional Human Subjects Research Ethics 

Board with informed consent of all patients. We obtained 299 WSIs of H&E-stained, 

4 𝜇𝑚 thick, paraffin-embedded mid-gland tissue sections from 71 radical prostatectomy 

specimens from patients with biopsy-confirmed prostate cancer (clinical stage T1 or T2). 

All tissue sections were prepared and scanned in our hospital pathology laboratory 

following the same protocol [26]. Two different types of scanners were used: an Aperio 

ScanScope GL (Leica Biosystems, Wetzlar, Germany) for sections from 46 patients and 
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an Aperio ScanScopeAT Turbo (Leica Biosystems, Wetzlar, Germany) for sections from 

the other 25 patients. There is no difference in scanning specifications between the two 

models. Sections were scanned at 20X (0.5μm/pixel) in bigtiff pyramid format without 

compression. The resulting 24-bit RGB colour images have a pixel size of 0.5μm/pixel. 

Each WSI was contoured and graded by a trained physician (Gaed) at 20× 

magnification using different colours for different Gleason grades, and verified by one of 

two genitourinary pathologists (Moussa or Gomez). Contouring was performed using a 

Cintiq 12WX pen-enabled display (Wacom Co. Ltd., Saitama, Japan) with the ScanScope 

ImageScope v11.0.2.725 image viewing software (Aperio Technologies, Vista, CA, 

USA).  Contouring was conducted at high precision (Figure 2.2 (b, c)), which takes about 

70 hours per case. Where Gleason grades were intermingled to a degree where they could 

not be readily separated, foci were given a grade such as 4+3, indicating that the majority 

of the focus contained grade 4 cancer, and the remainder contained grade 3 cancer. 

2.4.2 Ground truth ROI labeling 

Each WSI was separated into a set of square 960×960 pixel ROIs. ROIs 

containing at least 50% cancerous tissue according to the manual pathology annotations 

were considered cancerous; all other ROIs were considered non-cancerous.  

2.4.3 Data separation for system tuning and feature selection 

We performed classifier hyper-parameter tuning and feature selection on a 

separate “tuning data set” comprising 13 WSIs from 3 different patients. We did not use 

the patients in the tuning data set for CV; we used only the 68 remaining patients for CV. 

The tuning and CV data sets each have a mixture of WSIs from both scanners. 
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2.5 Tissue component mapping 

The purpose of tissue staining is to assist in identifying different types of tissue 

components which have semantic meaning to the pathologist for identifying 

abnormalities. We developed an algorithm that assigns a label to each image pixel to 

generate a TCM for further analysis. We labeled each pixel as one of the three tissue 

components: nuclei, lumen, and stroma/other tissue. The main steps of our TCM 

generation algorithm are: (1) segmentation of nuclei using colour deconvolution and a 

proposed adaptive thresholding method, (2) segmenting luminal areas by global 

thresholding in the red-green-blue (RGB) colour space, and (3) designating other pixels 

as stroma/other tissue.  These steps are described in more detail as follows. 

2.5.1 Nucleus mapping 

We segmented cell nuclei by adaptive thresholding of the hematoxylin channel 

after colour deconvolution [43] to compensate for staining variability that observed 

across different WSIs in our dataset. We then used morphological operations to reduce 

red blood cells (RBCs) pixels that were falsely labeled as nuclei, by relabeling them as 

stroma/other tissue. The details of these steps are described below. 

Colour deconvolution: We used a colour deconvolution algorithm [43] to separate 

the H&E stains into three image channels corresponding to the hematoxylin stain, eosin 

stain, and the background. 

Following the Beer-Lambert law [44], y=CM; i.e. the optical density y detected 

for a particular pixel is linear with respect to the stain amount C, where M is the optical 

density matrix for the colour stains.  In our case, the colour stains are hematoxylin, eosin, 
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and background. The stain-specific values for the optical density (matrix M) in each of 

the three channels can be determined by measuring relative absorption for red, green, and 

blue on slides stained with a single stain [43]. It is straightforward to see that 𝐶 = 𝐷𝑦, 

where 𝐷 = 𝑀−1 is the colour deconvolution matrix. 

We used the standard deconvolution matrix used by Ruifrok and Johnston [43] 

and applied this algorithm to each ROI independently. This separated each ROI into three 

grey-level images representing the amount of hematoxylin (e.g. Figure 2.3 (b), darker 

region corresponding to larger amount of hematoxylin stain), eosin, and background 

respectively. Since most substances within nuclei are basophilic, they bind to 

hematoxylin. We therefore used the hematoxylin channel to segment nuclei. 

Cell nucleus segmentation using adaptive thresholding: Staining variability results 

in variations in hematoxylin channel intensity across different WSIs (see the middle 

images for the two sample ROIs in Figure 2.4 (a)). The left case has much more darkly 

hematoxylin-stained stroma/fibromuscular tissue than the right, where the nuclei are 

more prominent. This makes global thresholding inapplicable for nucleus segmentation. 

We therefore propose an adaptive thresholding method. The algorithm computes an 

optimal threshold for each WSI. This threshold is used as a global threshold for the WSI 

to segment the nuclei pixels from the grey-level images of hematoxylin channel of each 

ROI after colour deconvolution.  
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Figure 2.3: Plot of number of connected components and the binarized hematoxylin 

channel at the corresponding thresholds. (a) Sample ROI. (b) Grey-level image 

representation of the hematoxylin channel after colour deconvolution. (c), (d), (e), (f), 

and (g) are binary maps after thresholding using the thresholds where the blue triangle,  

purple circle, black square, red arrow, and blue square labeled in the plot respectively. 

The red square highlighted region in a zoomed in view shows in (h). (i) and (j) are images 

of zoomed in view highlighted by the red squares in (e) and (f) respectively 

 

Our proposed algorithm is based on the observation that as the threshold on the 

hematoxylin channel increases, causing more hematoxylin-stained tissue to be excluded 

in the thresholded image (Figure 2.3 (c–g)), initially the components of background tissue 

are excluded as a sharp decreasing number of connected components (Figure 2.3 (c–d)), 

resulting in a nuclei map with some background tissue. With further increase of the 

threshold, background tissue were excluded to form a nuclei-only map (Figure 2.3 (e)). 
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At this point of inflection, the threshold can separate nuclei from other tissue components 

(Figure 2.3 (e)). With further increasing of the threshold, the number of connected 

components increase slightly (shown qualitatively in Figure 2.3 (e–f) and quantitatively 

in Figure 2.3 (h) between the black square and the red arrow) because pixels from the 

same full nucleus disappear to separate the nucleus to form multiple independent 

connected components (Figure 2.3 (e, f, i, j)).   

 

Figure 2.4: Tissue component segmentation. Top row: Two cases of H&E stained WSIs 

with their TCMs to the right. (a) Left: ROI samples from each of the cases, middle: 

grey-level hematoxylin channel images, right: nuclei map after adaptive thresholding. 

(b) Left: ROI samples from each of the cases, right: computed TCM using our 

segmentation method. (c) Left: ROI samples from the two cases with RBCs included, 

right: TCM computed using our segmentation method. RBCs are circled in the first case 

and pointed by yellow arrows in the second case. 
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Figure 2.5: Plots of (a) number of connected components and amount of hematoxylin 

stain with fitted curve in red, (b) first derivative of curve in (a), (c) second derivative of 

curve in (a). 
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To detect this inflection point, we first fit a high-order polynomial curve to the 

data depicting the number of connected components as a function of threshold. The 

hyper-parameter of curve order was tuned manually to 20 using our tuning data set, with 

two objectives in mind: (1) making the polynomial order as low as possible to avoid 

noise generated from oscillation based on the Runge phenomenon [45], and (2) 

minimizing the squared error between the curve and the original points. The resulting 

continuous and differential plane curve was fit using least squares approximation, and the 

coefficients were calculated using the Vandermonde method [46] with the chosen curve 

order. 

Using the fit curve, we computed the desired inflection point in three steps. First, 

we computed the threshold �̃� giving the largest number of connected components (blue 

triangle in Figure 2.3 and Figure 2.5 (a)) as denoted, 

where 𝑥 is a threshold on the hematoxylin channel, 𝑋 is the domain of thresholds 

on the hematoxylin channel and 𝐹 is the fit polynomial curve. Second, we computed the 

threshold �̈� > �̃� corresponding to the most rapid decrease in connected components 

(purple circle in Figure 2.3 and Figure 2.5 (a, c)) as denoted, 

 �̈� = arg max
𝑥∈𝑋,   𝑥>�̃�

𝐹′′(𝑥) 2.2 

Third, the threshold  𝑥𝑇 ∈ 𝑋 is defined as the closest rising inflection point to �̈� 

(black square in Figure 2.3 and Figure 2.5 (a, b)): 

 �̃� =  arg max
𝑥∈𝑋

𝐹(𝑥) 2.1 
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𝑥𝑇 = argmin
𝑥∈𝑋𝑇

𝑥 − �̈� 2.3 

𝑋𝑇= arg
𝑥0∈(𝑥−𝛿,   𝑥+𝛿),   𝑥>�̈�

𝐹′(𝑥) > 𝐹′(𝑥0) 2.4 

where (𝑥 − 𝛿,   𝑥 + 𝛿) is the local neighborhood of x.  𝑋𝑇 is the set of isolated 

local maxima of the first derivative (therefore the set of rising inflection points) of curve 

𝐹 such that 𝑥𝑇 > �̈�. 

This threshold was found for each WSI via a cumulative assessment of 2,000 

randomly-selected 120𝜇𝑚 × 120𝜇𝑚 samples lying within the prostate (i.e. avoiding 

clear slide areas) and not containing tissue marking dye (i.e. avoiding areas of artefact). 

RBC removal: Since RBCs (Figure 2.6 (a, f)) also stain with hematoxylin, the 

adaptive thresholding process erroneously labels them as nuclei (Figure 2.6 (b)). 

However, RBCs have higher saturation than nuclei in a red-pink hue, allowing us to 

distinguish them from nuclei. We selected and applied hue-saturation-intensity RBC 

thresholds (hue ≥ 0.95/1, saturation ≥ 0.72/1, and intensity ≥ 0.6/1) based on a cumulative 

histogram from 100 40𝜇𝑚 × 40𝜇𝑚 RBC ROIs selected from our tuning data set (see a 

sample thresholding result in Figure 2.6 (c)). We then applied morphological dilation 

with a disk-shaped structuring element of radius = 4𝜇𝑚 (approximate radius of human 

red blood cells) (Figure 2.6 (f)).  This resulted in an RBC mask (Figure 2.6 (e)) that was 

subtracted from the nucleus map (Figure 2.6 (b)) to eliminate falsely detected RBCs 

(Figure 2.6 (d)). 
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Figure 2.6: Red blood cell (RBC) removal for an example ROI (a). (b) and (d) are nuclei 

maps before and after RBC removal respectively. (c) is a binary mask covering the 

RBCs, generated by thresholding in HSV colour space. (e) is a binary mask created from 

(c) after morphological operation with a disk shaped structuring element of radius = 4µm 

(approximate radius of human red blood cell (f)). 

 

2.5.2 Lumen and stroma/other tissue component segmentation 

  Luminal regions are consistently nearly white on each WSI. We used global 

thresholding to segment luminal pixels with threshold values of red ≥ 0.86/1, green ≥ 

0.71/1, and blue ≥ 0.82/1 (threshold values were chosen using a cumulative histogram 
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calculated from luminal ROIs sampled from the tuning data set). All pixels that were not 

labeled as nuclei or lumen were labeled as stroma/other. 

2.5.3 Tuning ROI size and down-sampling ratio 

The ROI size used in the experiment affects the resolution of the resulting cancer 

map, and the down-sampling ratio of the TCM affects computation time. We selected an 

ROI size of 480μm×480μm (960×960pixel) and nearest-neighbor down-sampling ratio of 

0.25 by experimentation with our tuning data set. We tested ROI sizes from 

120μm×120μm to 720μm×720μm in 120μm steps. We tested down-sampling ratios of 

0.25 to 1 in increments of 0.25. The selection of those two parameters was manually 

performed based on evaluating the performance (area under the receiver operating 

characteristic curve) for cancer detection (using FisherC) in leave-one-patient-out cross-

validation on the tuning data set.   

2.6 Feature extraction and selection 

We calculated 24 first-order and 132 second-order statistical features [39, 40] 

from the TCM of each ROI, giving a total of 156 features. The second-order statistical 

features were based on the grey-level co-occurrence matrix (GLCM) [39]and grey-level 

run length matrix (GLRLM) [40]. GLCMs and GLRLMs were calculated using neighbors 

in four directions [(0,1) denoted direction 1 in Table 2.1, (-1,1) denoted 2, (-1,0) denoted 

3, and (-1,-1) denoted 4] without aggregation over the directions. In total, we calculated 

156 features: (22 GLCM + 11 GLRLM) × 4 directions + 24 first-order features =156.  

We selected the 14 top ranked features using backward feature selection via 

ranking the AUCs from leave-one-patient-out cross-validation (LOPO CV) of a Fisher 
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linear classifier with the TCMs on the tuning dataset. The number of features was chosen 

by iterative experiments from 1 to 156 using feature selection as described. The chosen 

texture features are listed in Table 2.1. 

Table 2.1: Selected features used in cross validation 

 

Mean gradient value 

GLRLM Short Run Low Gray Level 

Emphasis-1 

GLRLM Short Run Low Gray Level 

Emphasis-3 

GLRLM Short Run Low Gray Level 

Emphasis-4 

GLCM Energy-1 

GLCM Energy-2 

GLCM Information Measure of Correlation-1 

GLCM Information Measure of Correlation-2 

GLCM Inverse Difference Moment -2 

GLCM Inverse Difference Moment -3 

GLCM Cluster shade-3 

GLCM Correlation-1 

GLCM Entropy-2 

GLRLM Short Run Emphasis-3 
 

2.7 Cancer detection using machine learning 

We classified each ROI as cancerous vs. non-cancerous using the calculated 

features. We performed supervised machine learning on the TCMs using (1) FisherC, (2) 

LoglC, and (3) SVM (NU-SVC with a radial basis function kernel, parameters tuned as 

cost = 12.5, gamma = 0.50625 using our tuning dataset). Each of these classifiers is 

henceforth denoted as: (1) TCM-Texture-FisherC, (2) TCM-Texture-LoglC, and (3) 

TCM-Texture-SVM, respectively. 

We also used transfer learning by fine-tuning pre-trained AlexNet with our TCMs 

and raw image ROIs, which denoted as: (4) Tune-AlexNet-TCM, and (5) Tune-AlexNet-
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RawIM. AlexNet is a convolutional neural network. It consists of 5 convolutional layers 

followed by 3 fully connected layers with one classification layer of 1000 outputs. The 

model demonstrated a winning performance in the ILSVRC-2012 challenge. The model 

was trained by 1.2 million training images from ImageNet [42], which is a natural image 

data base [41]. The idea is to tune the pre-trained model, which is trained by natural 

images, with our histopathology image ROIs to train a system for classifying cancer vs. 

non-cancer ROIs. The methodological details of using transfer learning are described in 

the following paragraphs. 

We used TCMs as input images to fine-tune the pre-trained AlexNet. The TCMs 

were converted into RGB colour images, in which red, green, and blue represent nuclei, 

stroma/other, and lumen respectively. All the ROIs of size of 240×240×3 were resized to 

227×227×3 (to conform to the necessary input size for AlexNet) using bilinear 

interpolation.  For comparison, the same method as that used for Tune-AlexNet-TCM 

was repeated using the “raw” unmodified H&E images instead of TCMs. 

We replaced the final fully connected layer of AlexNet with a fully connected 

layer, which has a 2-way output followed by the 2-way softmax algorithm with a 2-class 

label output (cancerous vs. non-cancerous). We calculated the loss function using cross-

entropy. The weights and biases of the replaced layers were initialized with random 

numbers. We set the initial learning rate α = 0.0001 for all the other layers, and α= 0.002 

for the output layer to make the weights and biases from other layers almost unchanged 

while those from the output layer learn faster. We used the adaptive moment estimation 

(‘Adam’) optimizer [47] for gradient descent. The following hyper-parameters were set 

as: 𝛽1= 0.9, 𝛽2 = 0.999, and ε= 10−8 [47]. Other training parameters were set as: mini-
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batch size = 200, maximum epoch = 10, which (including α) were chosen by using our 

tuning dataset. 

2.8 Experimental design and evaluation methods 

2.8.1 Cross validation 

We performed LOPO, 5-fold and 2-fold CV for each classifier to classify each 

ROI as cancerous vs. non-cancerous covering each WSI. In each CV, data were grouped 

on a per-patient basis, such that no same-patient samples were used in both the training 

and testing sets. During training, the positive (cancerous) and negative (non-cancerous) 

samples were balanced by random subsampling of the negative samples. We performed 

testing on all ROIs covering each WSI in our 68-patient set (i.e. all tissue on all slides 

was classified; we did not use only selected ROIs in our experiments).  

We calculated the error metrics (using a fixed operating point at the confidence 

level of 0.5) of error rate, false positive rate (FPR), false negative rate (FNR), and AUC 

by validating against our expert manual annotations. The overall performance was 

measured by averaging each of the error metrics across all the patients. The sample sizes 

for each tissue type are shown in Table 2.2. We also calculated the error rates (FNRs for 

cancerous tissue types; FPRs for non-cancerous tissue types) for each tissue type using 

LOPO CV.  

We did statistical tests to compare the AUCs obtained from the different methods. 

We grouped AUC values into three groups: group 1 (TCM-Texture-Fisher, TCM-

Texture-LoglC, and TCM-Texture-SVM); group 2 (Tune-AlexNet-TCM); group 3 

(Tune-AlexNet-RawIM). We tested the AUCs for normality using the Shapiro-Wilk test. 
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We compared the AUCs for the three groups (i.e. group 1 vs. group 2 vs. group 3) using 

the Kruskal-Wallis test. We then compared each pair of groups using the Wilcoxon rank 

sum test. 

 

Table 2.2: Sample size for each tissue type (480 mm × 480 mm) 
 

Cancerous tissue types Non-cancerous tissue types 

G3 G4 G5 EPE G3+4 G4+3 G4+5 G5+4 G5+3 Atrophy PIN Healthy 

14718 3949 37 272 6008 3839 727 8216 16 5433 26449 1178814 

2.8.2 Training sample size experiment 

We conducted an experiment to investigate how the number of patients in the 

training set influences the system performance for each machine learning approach. We 

randomly selected 34 patients as the testing set, then iteratively trained the classifiers 

using training set sizes ranging from 1 patient to 33 patients. At each iteration, we trained 

all of the classifiers described in Sec. 2.7, tested the trained systems on the entire 34-

patient testing set, and computed error metrics as described in Sec. 2.8.1. 

2.9 Results 

2.9.1 Tissue component segmentation 

The average adaptive threshold on the hematoxylin channel for WSIs within each 

patient ranged from 0.5 to 1.1. The standard deviation ranged from 0 to 0.4, with 42% of 

patients having a standard deviation ≥ 0.1. The average ± standard deviation threshold for 

all patients was 0.7±0.2. 

Qualitative results are shown in Figure 2.4, where staining variability was 

observed for the two WSIs shown (Figure 2.4 (a)). The hematoxylin channel thresholds 
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are different for the samples after colour deconvolution (Figure 2.4 (a), middle image for 

each case). The nuclei were segmented by our adaptive thresholding method to generate 

nuclei maps (Figure 2.4 (a), right image for each case).  

Figure 2.4 illustrates TCMs for the two WSIs right beside each case. Note the 

consistency of the maps despite the observed staining variability. Figure 2.4 (b) and (c) 

show zoomed views for samples taken from the two cases, and their TCMs after 

segmentation. Also note that the confounding red blood cells in the oval in Figure 2.4 (c) 

left and indicated by the yellow arrows in Figure 2.4 (c) right were correctly classified 

into the “stroma/other” category and not as nuclei.  

 

Table 2.3: Error metrics for cancer vs. non-cancer classification from each cross 

validation 

 

 Error rate (%) FNR (%) FPR (%) AUC [0, 1] 

Leave-one-patient-out cross-validation (LOPO CV)  

TCM-Texture-FisherC 13.7±6.7 12.6±16.9 13.6±7.1 0.94±0.05 

TCM-Texture- LoglC 12.3±6.0 12.4±15.6 12.2±6.4 0.95±0.05 

TCM-Texture-SVM 8.5±4.6 13.1±13.7 8.2±4.6 0.96±0.04 

Tune-AlexNet-TCM 6.2±4.0 10.7±12.6 6.0±4.2 0.98±0.03 

Tune-AlexNet-RawIM 5.5±6.9 8.5±13.8 5.2±6.7 0.98±0.02 

5-fold cross validation (5-fold CV) 

TCM-Texture-FisherC 13.7±6.4 13.0±17.4 13.7±6.9 0.94±0.05 

TCM-Texture- LoglC 12.1±5.6 12.7±15.8 12.1±6.0 0.95±0.05 

TCM-Texture-SVM 8.4±4.4 13.6±13.7 8.2±4.5 0.96±0.05 

Tune-AlexNet-TCM 7.4±5.4 10.5±11.5 7.1±5.3 0.97±0.02 

Tune-AlexNet-RawIM 4.8±4.5 8.8±11.8 4.3±3.8 0.98±0.02 

2-fold cross validation (2-fold CV) 

TCM-Texture-FisherC 13.7±6.1 14.0±17.7 13.5±6.5 0.94±0.05 

TCM-Texture- LoglC 12.0±5.6 14.7±15.8 11.6±6.0 0.94±0.05 

TCM-Texture-SVM 8.5±5.0 16.6±17.5 7.8±4.2 0.94±0.06 

Tune-AlexNet-TCM 7.7±4.3 8.1±10.0 7.8±4.5 0.97±0.03 

Tune-AlexNet-RawIM 9.0±7.6 6.1±10.3 9.0±7.9 0.98±0.02 
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2.9.2 Cancer vs. non-cancer classification 

The quantitative results for cancer vs. non-cancer classification from our CV 

experiments are reported in Table 2.3.  For LOPO CV experiments, from the normality 

test, AUCs were normally distributed. The Wilcoxon rank sum test results for the two 

groups are shown in Table 2.4. For AUCs, group 1 and 2, group 1 and 3, and group 2 and 

3 were significantly different. The confusion matrix was calculated, as shown in Table 

2.5, using the fixed operating point corresponding to the confidence level of 0.5. The 

calculated error rates for each tissue type (i.e. the FNRs for cancerous tissue types, and 

the FPRs for the non-cancerous tissue types) are shown in Figure 2.7.   

Figure 2.8 shows the quantitative results from the training sample size 

experiment.  

The qualitative results for the example cases are shown in Figure 2.9. It illustrates 

the capability of our system to map cancer throughout entire WSIs. The upper and lower 

cases in Figure 2.9 depict average and below average performance of the methods (see 

error metrics below each map in Figure 2.9 in comparison to Table 2.3) for LOPO CV 

using each of three classifiers.  
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Table 2.4: Wilcoxon rank sum test results for each of the two groups 

 

Testing groups p values 

AUC 

Group 1 Group 2  <0.0001 

Group 1  Group 3 <0.0001 

 Group 2 Group 3 <0.006 

p values that are significant (p<0.05) are bolded in the table. Groups that 

have better performance are bolded in the table. 
 

Table 2.5: Confusion matrix for each method from leave-one-patient-out cross-

validation; each sample is a 480 µm × 480 µm ROI. 

 

TCM-Texture-FisherC 
Pathologist annotation 

Cancerous Non-cancerous 

System 

predicted label 

Cancerous 32134 162974 

Non-cancerous 5647 1047722 

 

TCM-Texture-LoglC 
Pathologist annotation 

Cancerous Non-cancerous 

System 

predicted label 

Cancerous 31385 145563 

Non-cancerous 6396 1065133 

 

TCM-Texture-SVM 
Pathologist annotation 

Cancerous Non-cancerous 

System 

predicted label 

Cancerous 30260 99523 

Non-cancerous 7521 1111173 

 

Tune-AlexNet-TCM 
Pathologist annotation 

Cancerous Non-cancerous 

System 

predicted label 

Cancerous 32092 70530 

Non-cancerous 5689 1140166 

 

Tune-AlexNet-RawIM 
Pathologist annotation 

Cancerous Non-cancerous 

System 

predicted label 

Cancerous 30537 66983 

Non-cancerous 7244 1143713 
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Figure 2.7: Mean ± standard deviation of FNR for each cancerous tissue type; mean ± 

standard of FPR for each non-cancerous tissue type (atrophy, PIN, and healthy tissue) 

from the LOPO CV. 

 

Our implementation is not optimized for speed, and consists primarily of Matlab 

code. The non-deep learning methods require approximately 45 minutes to map cancer 

throughout an entire WSI using an Intel i5 workstation @ 3.10GHz- with 24 GB of 

random access memory.  For the deep learning methods, the Tune-AlexNet-TCM method 

requires 15 minutes, and the Tune-AlexNet-RawIM method requires 3 minutes.   
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Figure 2.8: Plots for error metrics at each training patient number for cancer detection. 

Green: TCM-Texture-FisherC. Orange: TCM-Texture-LoglC. Grey: TCM-Texture-

SVM. Yellow: Tune-AlexNet-TCM. Blue: Tune-AlexNet-RawIM. Red and black 

dashed lines: reference points using 12 and 32 patients for training respectively. 
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 ER FNR FPR AUC ER FNR FPR AUC ER FNR FPR AUC 

6.1% 18.5% 4.8% 0.95 5.8% 8.9% 5.5% 0.97 2.6% 11.9% 1.5% 0.99 

      

 

ER FNR FPR AUC ER FNR FPR AUC ER FNR FPR AUC 

17.6% 37.7% 7.4% 0.87 12.4% 20.1% 8.5% 0.93 21.5% 54.9% 4.5% 0.89 

            

Figure 2.9: Cancer maps for two example whole slide images (WSIs). (a) and (e) are 

example WSIs; (b) and (f) are cancer maps from TCM-Texture-SVM; (c) and (g) are 

cancer maps from Tune-AlexNet-TCM; (d) and (h) are cancer maps from Tune-AlexNet-

RawIM. Colour contours in each image are the pathologist’s annotations. The error 

metrics are below each cancer map. Labels in the cancer maps are: dark grey – true 

positives, light grey – true negatives, black – false positives, white – false negatives. ER: 

Error rate. 

(a)5.5 mm

TCM-Texture-SVM

(b)5.5 mm

Tune-AlexNet-TCM

(c)5.5 mm

Tune-AlexNet-RawIM

(d)5.5 mm

(e)4.9 mm (f)4.9 mm

TCM-Texture-SVM Tune-AlexNet-TCM

(g)4.9 mm

Tune-AlexNet-RawIM

(f)4.9 mm (h)
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2.10 Discussion 

In this chapter, we proposed an approach to tissue component mapping that finds 

the loci of nuclei, luminal regions, and other tissue components (including stroma) based 

on our adaptive thresholding algorithm which compensates for staining variability across 

the WSIs. This algorithm is amenable to fast implementation and yields consistent TCMs 

supporting cancer detection using machine learning algorithms. We validated 

conventional and deep learning-based approaches for classifying 480𝜇𝑚 × 480𝜇𝑚 ROIs 

as cancer or non-cancer throughout digitized mid-gland WSIs of RP sections.  We did not 

subsample the tissue available in our data set; we cross-validated using all of the tissue on 

every slide, ensuring that tissues from the same patient never appeared in both the 

training and testing sets. For CV, we used 286 WSIs from 68 patients including 1.3 

million 480𝜇𝑚 × 480𝜇𝑚 ROIs, which is 3588𝑐𝑚2 of prostate tissue in total. To the best 

of our knowledge, this represents the largest validation data set presented thus far in the 

literature for this problem.  All of the validated methods achieved similar or better 

performance with respect to comparable previously published approaches. The necessary 

processing times suggest the potential of an optimized, parallel implementation of the 

algorithms to yield processing speeds compatible with the clinical pathology workflow, 

upon further multi-centre validation. 

2.10.1   Tissue component mapping 

The proposed nuclei segmentation method demonstrated robustness to staining 

variability. In our single-centre data set where manual staining were used, we observed 

substantial staining variability across and within patients. This was evidenced by the 

substantial WSI-to-WSI variability in the optimal thresholds on the hematoxylin channel 
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for accurate nuclei segmentation. This suggests that the concentration of hematoxylin 

stain for nuclei in WSIs from different patients varies substantially. This is illustrated 

qualitatively with two example WSIs that were stained very differently (Figure 2.4) and 

the corresponding hematoxylin channel images (Figure 2.4 (a) middle image sets for both 

cases). The hematoxylin channel intensity of the nuclei in the more lightly stained image 

(Figure 2.4 (a) right case) is similar to that of the stroma in the more darkly stained image 

(Figure 2.4 (a) left case). The proposed method can achieve accurate nuclei segmentation 

despite the staining variation, as can be observed by comparing the loci and shapes of the 

nuclei in the output label map images with the original stained images shown in Figure 

2.4 (a) and (b). In addition, our method successfully assigned RBCs as stroma/other 

tissue (Figure 2.4 (c)).  

Comparing to machine learning or normalization based approaches [26, 33, 48], 

our proposed algorithm has lower computational cost, which is important especially for 

cancer detection throughout entire slides within a reasonable time frame. The algorithm is 

also case independent, whereas machine learning/normalization-based methods use other 

images for calibration/training. This suggests the generalization capability of the 

proposed algorithm. 

2.10.2   Cancer vs. non-cancer classification 

2.10.2.1 Overall system evaluation 

Our system yielded state-of-the-art overall performance (Table 2.3) comparing to 

literature-reported performance on this problem. Considering we have a large number 

(1.2 million) of negative samples, our FPRs (Table 2.3) imply a large number of false 

positives in detection. However, the FPR values (Table 2.3) are small, which also 
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indicates that the number of false positives is small relative to the total number of 

negatives. In addition, our FNRs (Table 2.3) imply high recall. More intuitively, in 

interpreting the confusion matrices (Table 2.5), it is important to note that the total 

number of negatives in our data set is far larger than the total number of positives. This 

leads to what appears to be, on first impression, a large number of false positive 

classifications. However, this concern is tempered when comparing the number of false 

positives to the generally much larger number of true negatives in each case (i.e. there is 

a large amount of negative tissue, and the classifiers are correctly identifying it as such 

most of the time). This is helpful to the clinical scenario where this system is providing 

assistance in reviewing slides to the pathologist, since a high-recall system minimizes the 

chance that a cancerous region will be missed and improves pathologist efficiency by 

drawing attention to most of the cancer on each slide. This is the first study that used all 

tissues covering WSIs of whole-mount RP sections including all clinically relevant grade 

groups. This performance suggests the potential to use our proposed pipeline for cancer 

detection in a clinical setting after multi-centre validation. Deep learning approaches 

overall outperformed the conventional machine learning based approaches (AUCs in 

Table 2.3, and the statistical tests in Table 2.4). Also, Tune-AlexNet-RawIM yielded 

superior overall performance compared to Tune-AlexNet-TCM using the AUC metric 

(Table 2.3 and Table 2.4).  

All the methods were affected by tissue type and the corresponding sample size of 

each tissue type (Figure 2.7 and Table 2.2). Lower FNRs and FPRs were often associated 

with larger sample sizes for the different tissue types, while higher error rates were 

associated with smaller sample sizes, with one anomaly. Although G5+4 has a relatively 
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large sample size of 8216, its training sample size was small because most of the G5 

cancer was concentrated in very few patients, and no tissue from the same patient was 

used in both training and testing.  

The sensitivity of classifier performance to the sample sizes of the different tissue 

types varies according to the machine learning method used. Tune-AlexNet-RawIM and 

TCM-Texture-SVM are the most sensitive to sample size, performing worse than the 

other methods for G5, G4+5, G5+4, and EPE, all of which have relatively small sample 

sizes (Figure 2.7 and Table 2.2). In comparison, the performances of Tune-AlexNet-TCM 

and TCM-Texture-FisherC were the least sensitive to the smaller sample sizes of these 

tissue types. This is reinforced by the observation that in the training sample size 

experiment, the FNRs of Tune-AlexNet-RawIM and TCM-Texture-SVM decreased 

much more with increasing sample sizes, compared to the other methods (Figure 2.8, 

FNR metric). Tune-AlexNet-TCM and Tune-AlexNet-RawIM showed larger fluctuations 

in FNR compared to the TCM-Texture based methods, when the training sample size is 

small (Figure 2.8 FNR before red dashed line). We speculate that this may arise due to 

the inherent randomness associated with fine-tuning AlexNet. As the number of training 

patients increases, the amplitude of the fluctuation reduces (all error metrics in Figure 

2.8, especially FNR), suggesting that larger training sample sizes may increase the 

stability in performance of the Tune-AlexNet methods. In addition, we found that the 

amplitude of the FNR fluctuations was larger than the amplitude of the FPR fluctuations. 

This may be due to the heterogeneity of prostate cancer tissue, such that we have many 

different cancerous tissue types with relatively smaller samples sizes, compared to the 

larger samples of non-cancerous tissue.  
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In the LOPO CV, we also found that, for PIN, the FPRs were smaller when using 

more complex models (Tune-AlexNet-TCM and -RawIM) (Table 2.3). We speculate that 

this could be due to PIN’s resemblance to cancerous tissue, requiring more complex 

models or more image information (i.e. raw images or TCMs rather than 14 calculated 

texture features) to differentiate it from other cancerous tissue. From a clinical 

perspective, high grade PIN is considered as a putative precursor lesion, as PIN shares 

features with cancer tissue [49].  

2.10.2.2 Performance comparison by methods 

Tune-AlexNet-RawIM yielded the highest AUC in all the CV experiments and in 

the training sample size experiment, but it is more sensitive to sample size. Although 

Shin et al. [50] have demonstrated efficient (i.e. smaller sample size) training by fine-

tuning pre-trained AlexNet, it only performs better than or equal to Tune-AlexNet-TCM 

and the TCM-Texture based methods with training sets larger than 12 patients (Figure 2.8 

after red dotted line, and all CVs in Table 2.3).  This is also reflected by the inferior 

performance of Tune-AlexNet-RawIM on cancerous tissue types involving G5 (see blue 

bars in Figure 2.7). This could be due to the fact that our data set consisted of two 

patients having any G5 cancer, combined with the fact that we performed LOPO CV. To 

illustrate, note the large portion of G5+4 cancerous regions that were missed by Tune-

AlexNet-RawIM (white regions in Figure 2.9 (h)). This is of particular concern because 

overlooking G5 cancer could result in failure to apply adjuvant therapy after surgery, or 

could increase the pathologist’s necessary editing time to correct the cancer maps. 

Although Tune-AlexNet-RawIM had an error rate of 0% on G5+3 using a large training 
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sample size of G5 from tissues of G5, G4+4, G4+5, the sample size being tested was too 

small (9 ROIs from one patient) to be considered representative. 

In comparison, Tune-AlexNet-TCM yielded more stable performance in the 

training sample size experiment and demonstrated superior performance on tissue types 

with smaller sample sizes. With fewer than 12 training patients, the Tune-AlexNet-TCM 

yielded a lower FNR than Tune-AlexNet-RawIM in nearly every case (Figure 2.8 before 

the red dotted line). In LOPO CV, even the samples of G5 involved tissue types were 

restricted in two patients, lowest FNRs and FPRs were achieved most of the time (Figure 

2.7). More intuitively, for example, in Figure 2.9 (g) we can see most of the cancerous 

regions of G4+5 and G5+4 were captured by Tune-AlexNet-TCM. This suggests that 

higher-order tissue features (e.g. TCMs) can enhance the performance of Tune-AlexNet 

when sample size is small. Also, comparing the results between using Tune-AlexNet-

TCM and Tune-AlexNet-RawIM in CVs (Table 2.3), the performance differences are 

negligible. Considering the huge dimensionality reduction from the raw image (227 

pixels × 227 pixels × 3 colour channels × 256 intensities per channel) to TCM (227 pixels 

× 227 pixels × 3 tissue component labels), the computed TCM can effectively reduce the 

dimensionality, and make salient the key visual cues for the cancer detection problem. 

Comparable results between using TCM-Texture-SVM and Tune-AlexNet-TCM 

and -RawIM in CVs (Table 2.3) suggest that extracting features from TCMs can 

effectively reduce the high-dimensional image information to 14 TCM-based texture 

features, and the resulting feature set is appropriate for our problem. This could support 

better understanding of the key visual cues for our problem. For TCM-Texture based 

methods, the SVM was more sensitive to sample size than FisherC and LoglC because 
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(1) its performance monotonically and substantially improved as the training sample size 

increased, and exceeded the performance of the FisherC and LoglC classifiers with a 

training sample size of 33 in the training sample size experiment (Figure 2.8 after the 

black dotted line), and (2) higher FNRs and FPRs were found for tissue types having 

smaller sample sizes (G5 involved tissue types, excepting PIN as discussed previously) in 

LOPO CV (Figure 2.7, and Table 2.2). 

2.10.3   Limitations 

Our results should be interpreted in the context of several limitations of our study. 

All of our tissues were processed in the same clinical pathology laboratory, and the 

cancerous annotations were done by one physician and verified by one of the two 

pathologists. These aspects of our study limit the variability of the material (i.e. the 

tissues and resulting images) and observers’ contours. Also, validations were conducted 

at the 480𝜇𝑚 × 480𝜇𝑚 ROI level with regions containing more than 50% cancer 

considered as positive. We used backward feature selection, which is a greedy algorithm 

that may lead to suboptimal performance of the system. Although we used an adaptive 

threshold for nuclei segmentation, it was a global threshold for each WSI. Although our 

informal experiments (not reported here) suggested that locally adaptive thresholding did 

not improve performance, such an approach could be straightforwardly adapted from our 

methods if needed. Finally, it must be acknowledged that all CV studies may be subject 

to positive bias in their results; validation using an external data set is required to support 

clinical translation of this tool. 
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2.10.4   Conclusion 

In conclusion, our proposed methods can automatically map cancerous regions on 

digitized WSIs of mid-gland RP tissue sections. We validated and compared our 

proposed methods using the largest pathologist-annotated data reported thus far, with 

high-precision annotations used as the gold standard. State-of-the-art classification 

accuracy and speed were achieved. A deep learning approach based on transfer learning 

with AlexNet using raw image ROIs performed the best overall, outperforming methods 

based on handcrafted features. However, the deep learning approach was more sensitive 

to training sample size and was limited in its ability to detect G5 cancer, which is 

prognostically important. By contrast, training the deep learning system based on our 

TCMs resulted in less sensitivity to sample size and better detection of G5 cancer. Our 

proposed adaptive thresholding technique efficiently computes TCMs showing the loci of 

nuclei, luminal regions, and regions containing stroma and other tissue, compensating for 

staining variation without any training requirement. This suggests that the proposed 3-

class TCM can reduce noise and image complexity while preserving the key information 

required to enhance the performance of AlexNet when training sample size is small. 

Upon successful multi-centre validation, this system could support imaging validation 

studies using annotated histopathology as the gold standard. It could also facilitate 

quantitative and graphical pathology reporting after RP, which has the potential to 

support better prognosis, recurrence risk management, and adjuvant therapy planning. 
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Chapter 3 

A version of this chapter has been submitted to Scientific Reports for publication and is 

currently under review: Wenchao Han, Carol Johnson, Mena Gaed, Jose A. Gomez-

Lemus, Madeleine Moussa, Joseph Chin, Stephen Pautler, Glenn Bauman, and Aaron 

Ward, “Histologic tissue components provide major cues for machine learning-based 

prostate cancer detection and grading on prostatectomy specimens.” 

3 Histologic tissue components provide major cues for 
machine learning-based prostate cancer detection and 
grading on prostatectomy specimens 

3.1 Introduction 

The most used treatment for prostate-cancer (PCa) that is organ-confined is 

radical prostatectomy (RP), the removal of the prostate gland. Approximately 40% of 

prostate cancer patients undergo this surgery each year in the United States [1]. Serum 

prostate-specific antigen (PSA) relapse occurs in 17%–29% of patients, reflecting cancer 

recurrence [2, 3]. Post-surgery prognosis, recurrence prediction, and selection and 

guidance for adjuvant therapy are all informed by the surgical pathology report. Typical 

pathology reports include tumour size, location, spread, and aggressiveness levels. In 

addition, PCa patients are grouped based on the Gleason score (GS), which is computed 

as the sum of the primary and secondary Gleason grades [3] at RP, into grade group 1 

(GS 6; G3+3), grade group 2 (GS 7; G3+4), grade group 3 (GS7; G4+3), grade group 4 

(GS 8; G4+4) and grade group 5 (GS 9–10; G4+5, G5+4, and G5+5) disease [4, 5], with 

treatment determined according to the risk level [6]. Thus, although accurate post-RP risk 

stratification is crucial, currently, clinical pathology reporting is primarily qualitative and 

subject to intra- and inter-observer variability. This leads to challenges for quantitative 
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and repeatable pathology reporting and interpretation regarding the lesion size, location, 

spread, and Gleason grade or score [3, 7-10].  

Whole-mount tissue sections, where the entire cross section of tissue from the 

gross section is mounted to the slide, give the pathologist a better overview to facilitate 

the identification of multiple tumour foci [11]. If cancerous regions of interest (ROI) 

could be accurately and precisely contoured on whole mount WSIs of RP sections, this 

would enable quantitative reporting of tumour size, location, and grade. This would yield 

quantitative clinical pathology reporting and would benefit research studies, including 

imaging validation studies, which require an annotated histologic gold standard [12-14].  

However, such manual contouring is too time consuming to perform as part of a routine 

clinical workflow, and is resource-intensive when performed as part of research studies. 

There is therefore an unmet need for an approach that can detect and grade cancerous 

regions accurately and quickly on digitized whole-mount histopathology images of RP 

tissue sections. 

Many published methods have demonstrated the potential of machine learning 

approaches for automatic prostate cancer detection and grading on digital histopathology 

images [15]. High-resolution digital histopathology images acquired from RP specimens 

contain a large number of pixels; for instance, a typical whole-mount image of the mid-

gland can contain more than four gigapixels. Consequently, most published work 

performs validation using a small subset of selected regions of interest (ROIs) to reduce 

computational demands [15]. A few studies [16-22] have worked on cancer detection 

using whole-slide-images (WSIs). Doyle et al. [16] and Litjens et al. [17, 18] have 

demonstrated the ability to process WSIs of much smaller biopsy tissues for finding 
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prostate cancer using automatic systems. Monaco et al. [19] and Rashid et al. [22] have 

demonstrated cancer detection systems for finding prostate cancer on WSIs of RP tissue 

sections with practical processing times by classifying segmented glands, but they 

reported limitations regarding detection of high-grade cancer tissue using their methods. 

DiFranco et al. [20] and Nguyen et al. [21] have tested their methods on the WSIs of RP 

tissue sections, but the sample sizes were 14 patients and 11 WSIs for the two studies,  

respectively. For grading, Nir et al. [23] validated on the largest number of tissue samples 

from the tissue micro arrays (TMAs) of RP tissue sections.  

Comprehensive validation using all available tissue covering all clinically 

relevant grade groups avoids bias due to ROI selection and tests the system against the 

full variability in terms of staining and cancerous tissue appearance. It is also important 

to ensure that in cross-validation, samples are chosen such that the training and testing 

sets do not contain samples from the same patient. This is particularly important 

considering 1) the heterogeneous patterns of each grade [3], 2) the similar patterns among 

different grades, 3) the large staining variability among WSIs [24, 25], and 4) the 

requirement for practical processing times for clinical translation to the pathology 

laboratory. 

In recent years, deep learning has demonstrated potential for analyzing digital 

histology images. For example, Litjens et al. [18] used deep learning to find prostate 

cancer on biopsy tissues. Kwak et al. [26] used deep learning to classify ROIs from 

TMAs of RP tissue sections as cancerous vs. non-cancerous. However, the use of deep 

learning in finding and, in particular, grading prostate cancer is still new. In addition, in 

the previous studies, semantic features (i.e. higher-level tissue components such as 
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nuclei, lumen, etc.) have been demonstrated as crucial factors for finding and grading 

prostate cancer as they reflect the differentiation of cancerous tissue [27]. Many studies 

used features extracted from semantic feature maps and reported promising results [15]. 

However, the importance and applicability of those methods were not fully evaluated due 

to lack of comprehensive comparisons of system performance for detecting and grading 

PCa, especially validating on mid-gland whole-mount WSIs of RP sections.  

In this study, we investigated the utility of tissue components (specifically, nuclei, 

lumen, and stroma/other tissue) as cues used in 7 different machine learning approaches 

(3 non-deep learning and 4 deep learning) for finding and grading prostate cancer on 

whole-mount WSIs of RP sections, validating on all available ROIs covering each WSI in 

a data set of 286 WSIs from 68 RP patients.  

Of the 299 whole-mount WSIs of mid-gland tissue sections obtained from 71 RP 

surgical specimens using a standard protocol at our local centre [27], 13 WSIs from 3 

patients were used for system tuning and the remaining 286 WSIs from 68 patients were 

used for validation. After digitization, each WSI was annotated at 20X by our trained 

physician with each tumour contoured and the grade indicated by contour colour (Figure 

3.1 and Figure 3.2). The annotations were verified by one of two genitourinary 

pathologists. Each WSI was partitioned into a set of ROIs with sizes of 480µm × 480µm.  

Figure 3.1 describes the training of the system. We assigned each ROI a tissue 

type label (i.e. cancer or non-cancer, and the Gleason grade for cancerous ROIs) based on 

the manual annotations done by the expert. We labeled each image pixel as one of three 

classes: nuclei, lumen, and stroma/other using our previously proposed method [28], to 
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generate three-class tissue component maps (TCMs). We also used the same technique to 

generate simpler binary maps: nuclei maps and lumen maps. We trained the system with 

7 different machine learning approaches, enumerated as follows: 3 conventional machine 

learning approaches: (1) a Fisher linear discriminant classifier (FisherC), (2) a logistic 

linear classifier (LoglC), (3) a support vector machine classifier (SVM) with calculated 

texture features extracted from the TCMs, and 4 deep learning approaches via fine-tuning 

of AlexNet[29] with the (4) nuclei maps (AlexNet-Nuclei), (5) lumen maps (AlexNet-

Lumen), (6) three-class TCMs (AlexNet-TCM), and (7) raw image ROIs (AlexNet-

RawIM). 

 

Figure 3.1: Pipeline for system training for cancer vs. non-cancer classification or high- 

vs. low-grade classification. For tissue component maps, nuclei are labeled in red, 

luminal regions are labeled in blue, and stroma or other tissue components are labeled in 

green. 
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Figure 3.2: WSI of H&E stained histology prostate tissue. (b), (c), 

(d), and (e) are zoomed from the black square highlighted regions 

from the WSI.  (d) and (e) show a region of torn tissue (yellow 

dashed square) and a region of poor focus (circle).  

We performed 3 experiments for our cancer detection and grading problems: 

classifying all relevant ROIs as 1) cancer vs. non-cancer, 2) high-(G4) vs. low-(G3) grade 

cancer, 3) high-(G4 & G5) (i.e., G4, G5, G4+5, G5+4) vs. low-(G3) grade cancer. For 

experiment 2), ROIs containing ≥50% G4 cancer were considered as high-grade, and ≥ 

50% G3 as low-grade.  For experiment 3), ROIs containing ≥50% G4 and G5-involved 

(i.e., G4, G4+5, G5, G5+4), denoted as G4 & G5, cancer were considered as high-grade, 

and ≥ 50% G3 as low-grade. Since G4+3 and G3+4 cancer have both high- and low-

grade cancer tissue, we used those tissue samples for cancer detection but not for grading 

experiments. The validations were conducted using all available ROIs for each WSIs 

using leave-one-patient-out (LOPO) cross-validation (CV), during which training and 
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testing ROIs were never drawn from the same patient. We measured cumulative error 

metrics of error rate, false negative rate (FNR), false positive rate (FPR), and area under 

the receiver operating characteristic curve (AUC), comparing the predicted label from 

each machine learning technique for each ROI with the reference standard label assigned 

to the ROI based on the pathologist’s annotations. We also measured the error rate for 

each tissue type separately using each of our seven approaches. Our implementation used 

Matlab 2018a (The Mathworks, Natick, MA), OpenCV 3.1 for SVM implementation, and 

PRtools 5.0 (Delft Pattern Recognition Research, Delft, The Netherlands) for 

implementation of FisherC and LoglC machine learning algorithms. 



100 

100 

Table 3.1 Cumulative error metrics for cancer vs. non-cancer and high-vs. low-grade 

cancer classifications from leave-one-patient-out cross-validation. G4 vs. G3: high-(G4) 

vs. low-(G3) grade classification. G4 & G5 vs. G3: high-(G4 & G5) vs. low-(G3) grade 

classification. Bolded number: highest AUC in the experiment across 7 different 

methods. 

 FisherC LoglC SVM AlexNet-

RawIM 

AlexNet-

TCM 

AlexNet-

Nuclei 

AlexNet-

Lumen 

Cancer vs. non-cancer 

Error rate 13.50% 12.20% 8.60% 5.90% 6.10% 9.00% 13.20% 

FNR 14.90% 16.90% 19.90% 19.20% 15.10% 15.80% 21.00% 

FPR 13.50% 12.00% 8.20% 5.50% 5.80% 8.80% 13.00% 

AUC 0.927 0.926 0.928 0.957 0.964 0.937 0.896 

G4 vs. G3 

Error rate 20.40% 20.00% 21.90% 11.40% 12.70% 13.90% 25.90% 

FNR 26.20% 27.00% 38.00% 24.00% 28.90% 32.30% 61.80% 

FPR 18.90% 18.20% 17.80% 8.20% 8.60% 9.20% 16.70% 

AUC 0.858 0.85 0.783 0.934 0.904 0.891 0.654 

G4 & G5 vs. G3 

Error rate 20.40% 20.90% 26.20% 16.90% 13.20% 15.20% 35.30% 

FNR 33.10% 32.60% 43.90% 27.40% 20.00% 19.80% 52.90% 

FPR 9.30% 10.80% 10.80% 7.60% 7.30% 11.20% 20.10% 

AUC 0.886 0.875 0.815 0.916 0.923 0.919 0.66 
 

3.2 Results 

3.2.1 Prostate cancer detection 

The quantitative results for cancer vs. non-cancer classification from our LOPO 

CV using each method are reported in Table 3.1. All methods yielded AUCs higher than 
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0.92 except AlexNet-Lumen, which has an AUC of 0.896. AlexNet-TCM yielded the 

highest AUC of 0.964 (bolded in Table 3.1). AlexNet-RawIM and AlexNet-Nuclei 

yielded the second- and third-highest AUCs of 0.957 and 0.93 respectively. In general, 

the methods of fine-tuning AlexNet have higher AUCs and much lower FPR than the 

conventional machine learning methods. 

Table 3.2: Number of ROIs for each tissue type. 

 Tissue types Sample size 

Cancerous 

ROIs 

 

G3 14719 

G3+4 6008 

G4+3 3839 

G4 3949 

G4+5 725 

G5+4 8216 

G5 37 

G5+3 16 

EPE 272 

Non-cancerous 

ROIs 

 

Atrophy 5433 

PIN 26449 

Healthy tissue/BPH 1178814 
 

Figure 3.3 shows our system’s mapping of cancer throughout entire WSIs for two 

samples cases. The major cancerous and non-cancerous regions were correctly labeled by 

the systems for both cases. In case 1, AlexNet-TCM and AlexNet-Nuclei have similar 

results, while AlexNet-RawIM performs the worst, with many more false negatives in the 

G5+4 cancerous region. Figure 3.2 shows the original H&E stained WSI of case 1. The 
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bottom two images are the zoomed in view from the square highlighted region from the 

WSI. It includes an unfocused region, and a region with torn tissue (yellow dashed square 

highlighted region in Figure 3.2 (e)). For those regions, all methods falsely classified 

them as negatives (regions indicated by purples arrows in Figure 3.3 (case 1)). In case 2, 

AlexNet-RawIM and AlexNet-TCM have similar results, while AlexNet-Nuclei has more 

false positives. The major cancerous regions are G3, G3+4, and G4. 

We calculated the FNRs for cancerous ROIs and the FPRs for non-cancerous 

ROIs, effectively computing the error rates for each of these tissue types. The results of 

the LOPO CV experiments are shown in Figure 3.4. Table 3.2 shows the number of ROIs 

used for each tissue type. G5, G4+5, G5+4, and EPE yielded higher error rates. Table 3.2 

and Figure 3.4 demonstrate that in general, higher error rates corresponded to smaller 

sample sizes; G5+4 was the exception. For those tissue types, with the exception of EPE, 

AlexNet-Nuclei, AlexNet-TCM, and FisherC yielded much lower error rates than the 

other methods. Among those methods, AlexNet-Nuclei has the lowest error rate. For G4-

involved tissue types (i.e. G3+4, G4+3, and G4), FisherC yields the lowest error rates, 

and LoglC achieved similar performance. For other tissue types, AlexNet-RawIM yielded 

the lowest error rates. Those tissue types are primarily non-cancerous and G3 cancerous 

tissues, and they have larger sample sizes. 
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Figure 3.3: Cancer maps generated by each of the trained systems. 

White: cancerous tissue regions. Black: non-cancerous tissue regions. 

Colour contours: pathologist manual annotations. The purple arrows point to unfocused 

areas and areas with torn tissue as indicated in Figure 3.2 (d, e). 
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Figure 3.4: FNR for cancer tissue types, and FPR for non-cancer tissue types to 

reflect the error rate for each tissue type, for each classifier from leave-one-patient-out 

cross-validation of cancer vs. non-cancer classification. 

3.2.2 Prostate cancer grading (high- vs. low- grade) 

The quantitative results for high- vs. low-grade cancer classification from our 

LOPO CV using each method are reported in Table 3.1. For high-(G4) vs. low-(G3) 

grade classification, AlexNet-RawIM yielded the highest AUC of 0.934, followed by 

AlexNet-TCM and AlexNet-Nuclei with AUCs of 0.904, and 0.891 respectively. For 

high-(G4 & G5) vs. low-(G3) grade classification, AlexNet-TCM, AlexNet-Nuclei and 

AlexNet-RawIM are the top three performing methods with AUCs of 0.923, 0.919, and 

0.916 respectively. SVM and AlexNet-Lumen had much lower AUCs than other methods 
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for both of the experiments. Except for AlexNet-Lumen, methods of fine-tuning AlexNet 

yielded higher AUCs, lower FPRs and FNRs than the conventional machine learning 

approaches for both experiments.  

In Figure 3.5, two samples of whole-slide mapping of graded cancer are shown. 

The major cancerous regions are correctly graded and labeled by the systems. For case 1, 

similar to cancer detection, AlexNet-TCM and AlexNet-Nuclei yield similar 

performance, and AlexNet-RawIM has many more false negatives. For the unfocused and 

torn tissue regions (Figure 3.2 (d) and (e)) and the regions with lower Gleason patterns 

(Figure 3.2 (b) and (c)), all methods incorrectly labeled the tissue as negative (regions 

highlighted with a yellow dashed square in Figure 3.5). In case 2, AlexNet-TCM and 

AlexNet–RawIM yielded similar performance, while AlexNet-Nuclei had more false 

negatives (regions highlighted with a green square in the zoomed in view in Figure 3.5).    

From the LOPO CV experiments for high-(G4 &G5) vs. low-(G3) classification, 

we calculated the error rates for each tissue type (i.e. taking high-grade cancer as 

“positive” in these experiments, we calculated FNRs for high-grade cancer tissues types, 

and the FPRs for the low-grade cancer tissue types). The results are shown in Figure 3.6. 

We found higher error rates for each of the high-grade cancer tissue types, compared to 

the error rate for the low-grade cancer tissue type. For tissue types which have G5 cancer 

tissue involved, AlexNet-Nuclei yielded the lowest error rates. For all other tissue types, 

AlexNet-TCM had the lowest error rates. 
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Figure 3.5: Label maps for high- vs. low-grade cancer grading 

generated by each of the trained systems. White: high-grade cancerous 

tissue regions. Grey: low-grade cancerous tissue regions. Black: tissue 

section. Colour contours: pathologist’s manual annotations. The region highlighted by the 

yellow square refers to the tissue regions in Figure 3.2 (b, c). The region indicated by the 

pink arrow refers to the unfocused areas and regions with torn tissue in Figure 3.2 (d, e) 
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Figure 3.6: Error rate (FNR for high grade cancer, FPR for low-grade cancer)) for each tissue type for 

each classifier from leave-one-patient-out cross-validation of high-(G4 & G5) vs. low-(G3) grade 

classification. 

3.3 Discussion 

Although using machine learning to analyze H&E histology images for prostate 

cancer detection and grading is an active research field, there are relatively few studies 

validating on whole-mount RP tissue sections, and the use of deep learning for this 

problem is still relatively new [18]. In addition, many studies have demonstrated that 

tissue component features are important for prostate cancer detection and grading [15], 

but the effects of those tissue components on system performance for cancer detection 

and grading for different types of tissue were not directly compared. Therefore, in our 
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study we used different machine learning approaches with different tissue component 

maps, and compared the performances for both the cancer detection and grading 

problems on the largest expert-annotated dataset of RP tissue sections reported thus far. 

In general, for both cancer detection and grading, AlexNet-TCM achieved the 

best overall performance, followed closely by AlexNet-RawIM. Conventional machine 

learning approaches demonstrated inferior but comparable overall performance (AUCs in 

Table 3.1). This suggests that the 3-class TCMs provide a set of major cues for prostate 

cancer detection and grading. This is also reflected by very similar performance of 

AlexNet-RawIM to that of AlexNet-TCM. The observed slightly inferior overall 

performance by using raw images could be due to irrelevant or redundant information 

(e.g. red blood cells) from the raw images, resulting in confounders to which the network 

could overfit. 

With the exception of AlexNet-Lumen, fine-tuning AlexNet based approaches 

achieved better performance than the conventional machine learning based approaches 

for both cancer detection and grading. This suggests fine-tuning AlexNet outperforms 

conventional machine learning based approaches overall. This can also be supported by 

direct comparison of AlexNet-TCM and conventional machine learning approaches. For 

cancer detection, AlexNet-TCM had lower error rates for most tissue types (Figure 3.4), 

therefore better overall performance was achieved. For grading, it had higher AUCs for 

the two grading experiments (Table 3.1). For the second experiment, with the exception 

of G5 involved cancer, AlexNet-TCM had lower error rates for all tissue types (Figure 

3.6). The worst performance was yielded using AlexNet-Lumen, suggesting that the 

lumen maps provide insufficient information for our problem. This is also suggested by 



109 

109 

the much larger performance differences between AlexNet-Lumen and other methods for 

cancer grading, compared to the performance differences for cancer detection (Table 3.1). 

We speculate that because the tissue appearances are much more similar for cancerous 

tissues of different grades than for cancer vs. non-cancerous tissues, more tissue 

information is needed for cancer grading.   

The performances of all the machine learning methods we used are sensitive to 

sample size, with sensitivity varying according to machine learning method used, 

classification task, and tissue type. Lower error rates are usually associated with larger 

sample sizes, and vice versa, except for G5+4 cancer tissue (Table 3.2, Figure 3.4, and 

Figure 3.6). G5+4 appears to be an exception with a sample size of 8,216, which is 

relatively large. However, most of the G5 involved cancer (including G5+4) occurred in a 

small number of patients. Since we used LOPO CV, tissue from a single patient never 

appeared in both the training and testing sets, reducing the number of occurrences of G5 

cancer in training.  For cancer detection, AlexNet-RawIM was the most sensitive to the 

sample size, while AlexNet-TCM and AlexNet-Nuclei, and the conventional machine 

learning approaches (except for SVM) were less sensitive to sample size (Figure 3.4 and 

Table 3.2). This suggests higher-order semantic features (e.g. tissue component based 

features) can improve the robustness of the system to smaller training sample sizes. 

However, for cancer grading, this was not the case for G4 cancer tissues (Figure 3.6), 

where conventional machine learning based approaches had substantially higher error 

rates than the AlexNet-based approaches, compared to other tissue types. We speculate 

that this could be due to the relative similarity of the G3 and G4 patterns, requiring more 

complex deep learning model to differentiate them. 
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For both cancer detection and grading, AlexNet-Nuclei achieved similar but 

slightly inferior overall performance to AlexNet-TCM and AlexNet-RawIM (Table 3.1), 

and the best performance for high-grade cancer tissue types (Figure 3.5 and Figure 3.6). 

This suggests that among the 3-class TCMs, the nuclei maps capture the key cues for our 

problems, especially for higher-grade cancer tissue types (i.e. G5, G4+5, G5+4). Adding 

lumen features (using AlexNet-TCM) or other features (using AlexNet-RawIM) 

improved the performance for most tissue types, but not for higher-grade cancer tissue 

types (Figure 3.5 and Figure 3.6). This also makes sense from the clinical pathology 

perspective. Since higher grade cancer tissue (G5-involved cancer tissues) are poorly 

differentiated with merged glands and much less stroma tissue (Figure 3.2), luminal and 

stroma features are not helpful for identifying those tissue types. Also, those tissues have 

larger amounts of nuclei, which leads to darker hematoxylin stain (Figure 3.2). Thus, the 

3-class TCMs and raw images are likely to contain more extraneous information, 

compared to the nuclei maps. Vice-versa, this explains better performance for the G3-

involved and non-cancerous tissue types (Figure 3.5 and Figure 3.6, and Table 3.1, G4 vs. 

G3) using raw images, and consistent performance across all tissue types using TCMs. 

Kwak et al. [26] have also previously reported that a nucleus seed map is essential 

for prostate cancer detection using machine learning techniques. On a data set consisting 

of 707 sample cores from 4 TMAs, they found that nucleus seed maps trained with their 

proposed convolutional neural network (CNN) yielded better performance than raw 

images trained with other CNNs (including AlexNet). The use of different data sets and 

sample sizes in their study may explain the differences with respect to our results.  
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The results of this study must be interpreted in the context of its limitations. First, 

all of the tissue sections were processed in one clinical pathology facility. Since tissue 

processing conditions and protocols vary from centre to centre, multi-centre studies are 

needed to translate these techniques to practice. We would expect these issues to affect 

the methods using raw images more than those using TCMs, the computation of which is 

adaptive and calibration-free. Second, since our study was validated using annotations 

made by one physician and verified by one of two genitourinary pathologists, 

measurement of the impact of inter-pathologist assessment variability not within the 

scope of this study. Third, our conventional machine learning methods may yield sub-

optimal performance due to the following reasons: 1) we only investigated first- and 

second-order statistical features for texture feature quantization, 2) backward feature 

selection is a greedy algorithm, and 3) there exist many types of classifiers that were not 

tested in our study. 

In conclusion, this work demonstrated automatic prostate cancer detection and 

grading on gigapixel WSIs of RP tissue sections using machine learning approaches with 

the state-of-the-art performance and practical processing time, and testing on the largest 

amount of expert annotated tissue so far. Fine-tuning pre-trained AlexNet demonstrated 

better performance than conventional machine learning based approaches overall. We 

found that the 3-class TCMs captured the main information for both prostate cancer 

detection and grading, and yielded robust performance across different tissue types and 

sample sizes. The best overall performance was achieved using the 3-class TCMs with 

transfer learning using AlexNet. In the 3-class TCMs, the nuclei maps provided the most 

important information overall, and was essential for classifying G5-involved cancerous 
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tissue types for both cancer detection and grading. Future work could include detection 

and quantification of tissue margin involvement and other prognostic pathology features. 

3.4 Methods 

3.4.1 Data 

3.4.1.1 Materials and imaging 

We obtained informed consent from all 71 patients in our study, and this study 

was approved by our institutional Human Subjects Research Ethics Board. All 

experiments were performed in accordance with relevant guidelines and regulations. All 

patients had biopsy-confirmed prostate cancer, clinical stage T1 or T2.  From these 

patients we obtained 299 H&E-stained, 4μm thick, paraffin-embedded mid-gland tissue 

sections, and acquired a whole-slide image from each. We used the same protocol as 

described in our previous paper [27] and processed all tissues in our clinical pathology 

laboratory. We used two different scanners to obtain images at 20X (0.5μm/pixel) in 

bigtiff pyramid format without compression: an Aperio ScanScope GL (Leica 

Biosystems, Wetzlar, Germany) for sections from 46 patients and an Aperio 

ScanScopeAT Turbo (Leica Biosystems, Wetzlar, Germany) for sections from the other 

25 patients. This process yielded 24-bit RGB colour images at 0.5μm/pixel. 

3.4.1.2 Manual annotation 

A trained physician (Gaed) contoured and graded each WSI at 20× magnification 

using a Cintiq 12WX pen-enabled display (Wacom Co. Ltd., Saitama, Japan) with the 

ScanScope ImageScope v11.0.2.725 image viewing software (Aperio Technologies, 

Vista, CA, USA) [3]. Each contour was verified, and edited as necessary, by one of two 
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genitourinary pathologists (Moussa or Gomez). The zoomed region in Figure 3.2 

demonstrates the level of precision of our contouring.  

3.4.1.3 Ground truth ROI labeling 

We separated each WSI into a set of square 960 × 960 pixel ROIs. We assigned 

each ROI a label according to the manual pathology annotations with 50% threshold. For 

cancer detection, ROIs containing more than 50% cancerous tissue were considered 

cancerous; all other ROIs were considered non-cancerous. Non-cancerous regions 

contained confounders such as atrophy, benign prostatic hyperplasia (BPH), high-grade 

prostate intraepithelial neoplasia (PIN), and inflammation. For cancer grading, ROIs 

containing more than 50% high-grade cancer tissue were considered positive, otherwise 

negative. The sample size of each tissue type is shown in Table 3.2.  

3.4.2 Data separation for system tuning and feature selection 

We used a “tuning data set” of 13 WSIs from 3 patients for hyper-parameter 

tuning and feature selection.  The tuning data set was entirely separate from the rest of 

the data and was not used for cross validation. We used the 68 remaining patients for 

cross-validation. WSIs from both scanners were included in both the tuning and cross-

validation data sets. 

3.4.3 Tissue component mapping  

Tissue staining makes salient tissue components having semantic meaning to the 

pathologist. We used our previously developed methods [28] to assign a label to each 

image pixel to generate (1) a nuclei map, (2) a lumen map, (3) a 3-class TCM for further 

analysis, via (1) segmentation of nuclei using colour deconvolution [30] and our 
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previously proposed adaptive thresholding algorithm [28] to generate the nuclei map, (2) 

segmenting luminal areas by global thresholding in the red-green-blue (RGB) colour 

space to generate the lumen map, and (3) combining the results of nuclei and lumen 

segmentation and designating the rest pixels as “other” to generate the 3-class TCM. The 

details of these methods are described as follows. 

3.4.3.1 Nucleus mapping 

We separated the H&E stains into three image channels of hematoxylin stain, 

eosin stain, and the background, using a colour deconvolution algorithm [30]. We applied 

this algorithm to each ROI independently using the standard deconvolution matrix used 

by Ruifrok and Johnston [30], which separated each ROI into three grey-level images 

corresponding to the amount of hematoxylin, eosin, and background respectively. Most 

substances within nuclei bind to hematoxylin since they are basophilic. Therefore we 

used the hematoxylin channel for  nuclei segmentation by adaptive thresholding [28].   

There are large staining differences across different images from different patients 

even if the tissue sectioning, staining and scanning were performed using consistent 

protocols in the same laboratory. The grey-level intensity variation in the hematoxylin 

channel across different WSIs, which results from staining variability, makes global 

thresholding not applicable for nucleus segmentation. We therefore used our previously 

proposed adaptive thresholding method [28]. For each WSI, the segmentation threshold 

was selected based on a cumulative assessment of 2,000 randomly-selected 120𝜇𝑚 ×

120𝜇𝑚 ROIs to lie within the prostate (i.e. to avoid clear slide areas) and to not contain 

tissue marking dye (i.e. to avoid areas of artefact). This makes the segmentation threshold 

specific to each WSI of the RP tissue section, therefore compensating for the staining 
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variability across different WSIs. The thresholds for sample selection were derived by 

inspection of the tuning data set only.    

This process will sometimes mislabel RBCs as nuclei because, like nuclei, RBCs 

stain with hematoxylin. We can distinguish RBCs from nuclei based on the fact that 

RBCs have higher red-pink saturation. We computed a cumulative histogram from 100 

40𝜇𝑚 × 40𝜇𝑚 RBC ROIs from our tuning data set and used hue-saturation-intensity 

thresholds (hue ≥ 0.95/1, saturation ≥ 0.72/1, and intensity ≥ 0.6/1). After morphological 

dilation with a disk-shaped structuring element of radius = 4𝜇𝑚 (approximate radius of 

human red blood cells), we obtained an RBC mask and subtracted it from the nucleus 

map to eliminate false RBCs [28].  

3.4.3.2 Lumen mapping 

Lumen is typically nearly white on microscopy images. We therefore thresholded 

luminal pixels with values of red ≥ 0.86/1, green ≥ 0.71/1, and blue ≥ 0.82/1, using the 

same approach as described above (cumulative histogram based on the tuning data set).  

3.4.4 Tuning ROI size and down-sampling ratio  

Experimenting with our tuning data set, we selected a nearest-neighbor down-

sampling ratio of 0.25, and an ROI size of 480𝜇𝑚 × 480𝜇𝑚 (960 𝑝𝑖𝑥𝑒𝑙𝑠 × 960 𝑝𝑖𝑥𝑒𝑙𝑠). 

We ranked cancer detection performance according to the area under the receiver 

operating characteristic curve using FisherC with all features in a leave-one-patient-out 

cross-validation scheme to select these parameters [28]. These parameters were 

unchanged for all experiments in this chapter. 
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3.4.5 Feature extraction and selection 

24 first-order and 132 second-order statistical features were calculated from the 

TCM of each ROI, giving a total of 156 features. The second-order statistical features 

were calculated from the grey-level co-occurrence matrix (GLCM) [31] and grey-level 

run length matrix (GLRLM) [32]. GLCMs and GLRLMs were calculated using neighbors 

in four directions without aggregation ([(0,1) represents direction 1 in the Appendix A, (-

1,1) represents 2, (-1,0) represents 3, and (-1,-1) represents 4]). 22 different GLCM 

(neighbor distance = 1) and 11 GLRLM features were calculated. We calculated a total of 

156 features; (22 GLCM + 11 GLRLM) × 4 directions + 24 first-order features = 156. 

For cancer vs. non-cancer classification, the 14 top-ranked features were selected 

from the calculated feature set of 156 features using backward feature selection on the 

tuning dataset, which selects the features by ranking the AUCs from the LOPO CVs 

using a Fisher linear classifier. The chosen texture features are listed in the Appendix A.  

For high- vs. low-grade cancer classification, we selected the 41 top ranked features by 

using the same feature selection method for cancer vs. non-cancer classification with the 

tuning dataset of high-(G4) and low-(G3) grade cancer samples. The chosen features 

were used for both G4 vs. G3, and G4 & G5 vs. G3 grading experiments. The chosen 

texture features are listed in the Appendix B. 

3.4.6 Cancer detection and grading using machine learning 

For prostate cancer detection, we classified each ROI as cancerous vs. non-

cancerous using the 14 selected features calculated from the 3-class TCMs. We 

performed supervised machine learning using (1) a Fisher’s least square linear 

discriminant classifier, (2) a logistic linear classifier, and (3) a NU-SVM with a radial 
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basis function kernel (parameters tuned as cost = 12.5, and gamma = 0.50625 using our 

tuning dataset). Each of these approaches is denoted as follows throughout this chapter: 

(1) FisherC, (2) LoglC, and (3) SVM, respectively.  

For cancer grading, we classified each ROI of all relevant cancerous regions as 

high- vs. low-grade by two experiments: (1) all cancerous regions of G4 and G3 for high-

(G4) vs. low-(G3) classification; (2) all cancerous regions of G4 & G5 and G3 for high-

(G4 & G5) vs. low-(G3) grading); using the 44 selected features calculated from the 3-

class TCMs. Similarly as for cancer detection, we performed supervised machine 

learning using (1) FisherC, (2) LoglC, (3) SVM (a C-SVC with a linear kernel with 

parameters tuned as cost = 2.7, and gamma = 0.03375 by tuning using high-(G4) and 

low-(G3) grade samples from the tuning data set).  

For both cancer detection and grading, we also used transfer learning via fine-

tuning AlexNet with our nuclei maps, lumen maps, 3-class TCMs and raw image ROIs, 

denoted as: AlexNet-NucleiMap, AlexNet-LumenMap, AlexNet-TCMs, and AlexNet-

RawIM, respectively. AlexNet was trained using 1.2 million non-medical images from 

the ImageNet LSVRC-2010 challenge [29]. The final fully connected layer of AlexNet 

was replaced by a fully connected layer with a 2-way output followed by the 2-way 

softmax algorithm with a 2-class label output for each of our experiments ((1) cancerous 

vs. non-cancerous for cancer detection, (2) high- (G4) vs. low-grade (G3), and (3) high-

(G4 & G5) vs. low-(G3) grade for cancer grading). We used cross-entropy as our loss 

function. We used random numbers to initialize the weights and biases of the replaced 

layers. For all other layers, we set the initial learning rate to α = 0.0001, and α=0.002 for 

the output layer. For gradient descent, we used the adaptive moment estimation (‘Adam’) 
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optimizer [33],  with 𝛽1 = 0.9, 𝛽2= 0.999, and ε = 10−8 [33]. We used our tuning data 

set to set mini-batch size = 200, maximum epoch = 10. 

We used nuclei maps, lumen maps, and 3-class TCMs as input images to fine-

tune pre-trained AlexNet respectively for each of the 3 experiments. These maps were 

converted into RGB colour images, such that the nuclei, stroma/ other tissue, and lumen 

are labeled in red, green, and blue respectively. We resized each ROI with size of 

240×240×3 to 227×227×3 to conform to the standard input size for AlexNet by using 

bilinear interpolation. We repeated the experiment using the same method with the “raw” 

unmodified H&E images instead of the TCMs. 

3.4.7 Experiments and validation 

3.4.7.1 Prostate cancer detection 

We performed LOPO CV for each of the tested machine learning approaches. No 

same-patient samples were used in both the training and testing sets in any CV iteration. 

Our data set contains many more non-cancerous than cancerous ROIs in our data set. 

Consequently, during training, we performed random subsampling of the negative 

samples to balance the positive (cancerous) and negative (non-cancerous) samples. 

During testing, all tissue on all slides was classified. That is, we performed testing on all 

ROIs covering each WSI in our 68-patient set. The receiver operating characteristic 

(ROC) curve was computed using the cumulative predicted confidences from each 

trained system, and we calculated the AUC from the ROC. We calculated the cumulative 

error rate, FPR, and FNR by comparing the predicted labels (using the fixed operating 

point corresponding to the confidence level of 0.5 in all experiments) of each ROI to the 

designated ROI label based on the pathologist’s annotations, with an ROI considered 
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positive when assessed by the pathologist to contain ≥ 50% cancer. The sample sizes for 

each tissue type are shown in Table 3.2. We also calculated the error rates (FNRs for 

cancerous tissue types; FPRs for non-cancerous tissue types) for each tissue type using 

LOPO CV. 

3.4.7.2 Prostate cancer grading 

We performed the same CV as for cancer detection, for each approach for high- 

vs. low-grade cancer classification. During training, we balanced the positive (high-

grade) and negative (low-grade) samples by random duplication of the samples for 

whichever class had the smaller sample size. The validation was done by comparison to 

the pathologist’s annotations, with an ROI considered high-grade when assessed by the 

pathologist to contain ≥ 50% 1) G4 for high-(G4) vs. low-(G3) grading, and 2) G4 or G5 

for high-(G4 & G5) vs. low-(G3) grading. For high-(G4 & G5) vs. low-(G3) grading, we 

calculated the FNRs for the high-grade cancer tissue types using LOPO CV. 
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Chapter 4 

A version of this chapter is currently in preparation for journal publication: Wenchao 

Han, Michelle Downes, Theodorus van der Kwast, Joseph Chin, Stephen Pautler, and 

Aaron Ward, “Automatic cancer subtype grading on digital histopathology images of 

radical prostatectomy specimens.” 

4 Automatic cancer subtype grading on digital 
histopathology images of radical prostatectomy 
specimens 

4.1 Introduction:  

Prostate cancer (PCa) has been the most commonly diagnosed non-skin cancer in 

men in Canada since 1998 [1]. It is a highly variable disease, with some cases being 

indolent and others lethal. Early detection and treatment play important roles in curing 

the disease and improving survival. Radical prostatectomy (RP) has been demonstrated to 

have excellent disease control [2] but many patients still suffer from recurrence and 

metastasis [3]. Patient risk management is important for selecting and guiding treatment 

post-surgery (e.g. adjuvant/salvage therapy). The Gleason grading system was first 

proposed by Donald Gleason et al [4] in 1966. It stratifies tumours into five 

aggressiveness levels based solely on their morphological patterns that have been 

correlated to clinical outcomes. The Gleason score is a summation of the Gleason grades 

of the primary and secondary tumours (based on tumour size and corresponding Gleason 

grade). The Gleason score at RP is considered to be the most powerful indicator for 

predicting disease progression [5, 6] and therefore is an essential factor for patient 

stratification.  
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Clinical reporting of Gleason grades has the intention of optimally reflecting 

tumour progression; this is supported by clinical studies correlating Gleason grades with 

patients’ clinical outcomes. In the most recently updated scoring system, Gleason grade 3 

(G3) usually involves small and infiltrative glands, with large variations in the amount of 

intervening stroma to form a more sparse or dense tumour. G4 includes the subtypes of 

cribriform glands (including the glomeruloid pattern), poorly formed glands, and fused 

glands [7]. G5 includes the subtypes of solid nests, cords of cells, individual cells, or 

nests of cribriform glands with unequivocal necrosis [7]. In the latest scoring system, 

cribriform patterns are assigned as G4 instead of G3 since they correlate with poorer 

clinical outcomes. In addition, the newly proposed grade groups separate G3+4, G4+3, 

and G4+4 into three grade groups based on the amount of G4 presenting within the 

tumour, since studies have demonstrated different prognostic outcomes from these three 

grade groups [8]. 

There is now increasing interest in finding pathological indicators beyond the 

Gleason score [9, 10] for informing interventions leading to better disease control and 

treatment planning. Dong et al. [11] found that the presence of cribriform G4 was an 

independent predictor of biochemical recurrence and metastasis after surgery. In addition, 

they found that the presence of poorly formed glands, fused glands, and cribriform glands 

simultaneously indicated shorter biochemical disease-free survival. Therefore, they 

suggest the potential need for sub-classification of G4 patterns beyond the Gleason 

grading system. Trudel et al. [12] found that any amount of cribriform G4/intraductal 

carcinoma was a significant predictor of biochemical recurrence-free rate after adjusting 

for Gleason score and T stage. They suggested the reporting of those features 
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independently upon validation using other clinical outcomes as end-points, with a larger 

cohort of data. 

From these studies and the findings of recent ISUP meetings [6, 8], we may 

surmise that the presence and amounts of sub-Gleason morphological patterns could be 

informative for predicting disease progression. Since there are many sub-patterns within 

each Gleason grade, further studies may be needed to find other indicators having 

different prognostic values. Also, to incorporate such findings into routine clinical 

practice, larger studies are generally needed to support the value of reporting those 

features clinically. Conducting such studies is technically difficult since they require 

manual annotation and subtyping of a large number of RP sections for each individual 

tumour. Subtype reporting is not a standard clinical procedure and requires extra time 

from busy pathologists, challenging the practicality of such studies. Therefore, there is a 

need for an automatic tool which automatically annotates cancerous region of RP 

specimens according to Gleason subtype. Such a tool would enable the automated 

annotation of large numbers of tissue sections, making correlation of subtype with 

clinical outcomes more straightforward and practical. 

Many published methods have demonstrated the potential for computer-assisted 

detection and grading of PCa on digital histopathology images. A recent review 

summarizes texture-based approaches to these problems [13], with more recent 

publications showing very high accuracies using deep learning-based approaches for PCa 

detection [14]. However, there is no study in the literature demonstrating the use of an 

automated tool for PCa subtype grading. PCa subtype grading is a more challenging 

problem since the levels of differentiation of the cancer cells are more similar within each 
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Gleason grade than across different Gleason grades and thus are visually more similar in 

terms of tissue patterns and harder for the learning algorithm to distinguish.  

In our previous work, we developed and validated automated systems, which 1) 

detect and map cancerous regions on whole-slide-images (WSIs) of whole-mount RP 

sections with an area under the receiver-operating-characteristic curve (AUC) of 0.98 

[15] and 2) grade cancer as high vs. low grade with an AUC of 0.92 [16]. In this work, 

our objective is to develop and validate a system which grades cancerous regions of 

interest (ROIs) according to eight subtypes (i.e. sparse G3, packed G3, intermediate G3, 

desmoplastic G3, large cribriform G4, small fused G4, poorly formed G4, benign 

intervening; see Figure 4.1 for examples). 

4.2 Materials and Methods 

4.2.1 Materials 

This study was approved by our institution’s Human Subjects Research Ethics 

Board with informed consent of all patients. From 25 RP patients, we obtained 92 mid-

gland whole slide images (WSIs) of whole-mount tissue sections (tissue sizes are 

approximately 3×4 𝑐𝑚2). The tissue sections were cut at 4𝜇𝑚 from paraffin blocks and 

stained with hematoxylin and eosin (H&E). We scanned using a ScanScope (Leica 

Biosystems, Wetzlar, Germany) at 20X (0.5𝜇𝑚/𝑝𝑖𝑥𝑒𝑙) in bigTiff format with no 

compression. 
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4.2.2 Methods 

4.2.2.1 Method overview 

Each WSI was annotated (via contouring and sub-grading of each tumour region) 

by two genitourinary pathologists (Downes and van der Kwast). The subtypes were 

indicated by contour colours (see the example WSIs in Figure 4.4 and Figure 4.5). Our 

implementation used Matlab 2018b (The Mathworks, Natick, MA).  

Our method consists of five steps, described in detail as follows.  

4.2.2.2 Tumour annotation and subtype grading 

Each of the RP sections was reviewed cooperatively by two pathologists (van der 

Kwast and Downes with 28 years and 11 years of experience, respectively). They 

identified tumour foci and assigned a Gleason grade to each. They further evaluated G3 

and G4 tissues to assign a subtype. G3 was divided into desmoplastic, sparse, 

intermediate, and packed G3 (Figure 4.1); the latter three subtypes were divided based on 

the proportion of the intervening stroma tissue and the apposition of glands. The G3 

patterns have separate glands which do not merge with their neighbours. They were 

separated by various amounts of stroma tissue. Sparse G3 contains predominantly stroma 

tissue with scattered glands, while packed G3 contains dense glands with minimal 

intervening stroma tissue. G4 was separated into 1) large cribriform, 2) small fused 

glands, 3) poorly formed glands (Figure 4.1). The annotation was performed on digitized 

whole-mount WSI using different colours to represent different subtypes. All annotations 

were performed at 2× by agreement of the two pathologists. After the annotation, a 

review was performed at higher power [17]. 
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Figure 4.1: 480 × 480 µm samples of each of the tissue types classified in this chapter. 

Note the heterogeneity of appearance of the tissues within each Gleason grade.  Note 

also the similarity of appearance of tissues across different Gleason grades in some 

cases (e.g. packed G3 vs. small fused G4). 

4.2.2.3 ROI labeling 

Each WSI was separated into a set of square 480×480 µm ROIs, with the ROI 

size chosen by experimenting ROI sizes from 120×120 µm to 600×600 µm with 120 µm 

incremental intervals on our tuning data set for cancer vs. non-cancer classification [15]. 

ROIs containing more than 50% cancerous tissue were used in our experiment and a 

subtype label was assigned to each ROI according to the manual pathology annotations. 

For an ROI containing a mixture of more than two subtypes of cancer tissue, we assigned 

the subtype label using the subtype with the largest amount of tissue in the ROI.  
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4.2.2.4 System training 

 For each subtype, we fine-tuned AlexNet [18] (pre-trained using the ImageNet 

[19] data set) by training the network using our labeled ROI samples. We down-sampled 

each ROI to 227×227×3 pixels to conform to the necessary input size for AlexNet. We 

replaced the final AlexNet layer with a fully connected layer, which has a 2-way output 

followed by 2-way softmax with a two possible outputs: the subtype on which the 

network was trained, or other (i.e. the output label indicates whether or not the ROI 

contains the subtype on which the classifier was trained). We calculated the loss function 

using cross-entropy. The weights and biases of the replaced layers were initialized with 

random numbers. We set the initial learning rate to be α = 0.0001 for all the other layers, 

and α = 0.002 for the output layer to make the weights and biases from other layers 

almost unchanged while those from the output layer learn faster. We used the adaptive 

moment estimation (“Adam”) optimizer [20] for gradient descent. The hyper-parameters 

were set as: β1 = 0.9, β2 = 0.999, andε= 10−8 based on [20]. Other training parameters 

were set as: mini-batch size = 200, maximum epoch = 10. We chose all the hyper-

parameters in accordance with our previous study on cancer grading [16].     

4.2.2.5 Classification 

We performed supervised machine learning for each experiment classifying: (1) 

sparse G3, (2) packed G3, (3) desmoplastic G3, (4) intermediate G3, (5) large cribriform 

G4, (6) poorly formed gland G4, (7) small fused G4, (8) benign intervening vs. negative 

samples (i.e. all the samples which were not defined as positive in the experiment) 

respectively. During training, the positive and negative samples were balanced by 

replication of positive samples.  
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4.2.2.6 Validation 

We performed leave-one-WSI-out cross-validation (CV) using all relevant ROIs 

throughout all WSIs with testing on all WSIs containing both positive and negative 

samples for each fold. We calculated the AUC using the classifier’s confidence value and 

the assigned ROI labels (see ROI labeling) according to the pathologists’ annotations. We 

calculated the false positive rate (FPR) and the false negative rate (FNR) using the 

classifier confidence threshold which yielded the closest operating point to top left corner 

of the receiver-operating-characteristic (ROC) curve. We also calculated the error rate 

using the same operating point.  

Table 4.1: Sample sizes (number of 𝟒𝟖𝟎𝝁𝒎× 𝟒𝟖𝟎𝝁𝒎 ROIs) for each subtype. 

G3 

Sparse G3 1867 

Intermediate G3 4140 

Packed G3 893 

Desmoplastic G3 515 

G4 

Large cribriform G4 275 

Small fused G4 2423 

Poorly formed G4 1099 

Benign Benign intervening 225 
 

4.3 Results  

Table 4.1 shows the sample size of each subtype used in the experiments. Table 

4.2 shows the error metrics for cancer subtype grading, classifying each ROI either as the 

given subtype in the row, or not the subtype in the given row. Since we have a small 

sample size for some subtypes and not all WSIs had all the subtypes, we computed 
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cumulative error metrics per-ROI from the leave-one-WSI-out CV. The system yielded 

AUCs larger than 0.7 for all the subtypes except for packed G3. The subtypes of 

desmoplastic G3, small fused G4, poorly formed G4, and benign intervening have AUCs 

larger than 0.8. 

Table 4.2: Error metrics from leave-one-WSI-out cross-validation classifying each 

subtype. 

 Error Rate 
(%) FNR (%) FPR (%) AUC 

Sparse G3 26.8 29.9 26.2 0.78 

Intermediate G3 36.0 32.0 38.3 0.70 

Packed G3 50.2 34.0 51.5 0.58 

Desmoplastic G3 22.0 26.8 21.8 0.82 

Large cribriform G4 23.7 33.8 23.4 0.74 

Small fused G4 23.1 28.6 21.5 0.82 

Poorly formed G4 23.8 18.4 24.4 0.86 

Benign intervening 26.6 20.9 26.7 0.82 
 

Figure 4.2 shows the FPR for each subtype for each of the eight experiments. For 

example, for the classifier trained to detect sparse G3, the FPR of 33.8% for the negative 

sample of intermediate G3 means that 33.8% of the intermediate G3 samples were falsely 

labeled as sparse G3. We found that the FPRs were higher for classifiers trained to detect 

intermediate G3, packed G3 and poorly formed G4, in comparison to the other classifiers. 

For the classifier trained to detect packed G3, most of the FPRs were larger than 40% and 

two of them (i.e. desmoplastic G3 and benign tissue) were close to 40%. For the classifier 

trained to detect intermediate G3, we found FPRs larger than 50% for the negative 

samples of sparse G3 and packed G3, which were followed closely by large cribriform 
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G4 and poorly formed G4. We found substantially lower FPRs for the negative samples 

of the other subtypes. For the classifier trained to detect poorly formed G4, we found 

higher FPRs for the negative samples of packed G3, desmoplastic G3, large cribriform 

G4, and benign intervening. The highest FPR was found for the negative samples of large 

cribriform G4. 

Since this is the first preliminary study to attempt the challenging task of 

classifying Gleason subtypes using machine learning, our intention is to generate 

observations and hypotheses that could be helpful to further engineering efforts to render 

a robust tool that will be useful in research studies automatically correlating the presence 

of Gleason subtypes with ultimate clinical outcomes. To that end, Figure 4.3 shows 

scatter plots correlating the amount of each subtype observed in each patient by the 

pathologists, versus the amount predicted by the classifiers. Each data point on the scatter 

plot represents an individual patient.  We found that all the classifiers had sensitivities of 

100% (i.e. no data points lie at zero on the horizontal axis and at non-zero points on the 

vertical axis).  However, this was at the expense of specificity as indicated by the points 

on the scatter plots showing cases where the system overestimated the amounts of the 

subtypes. This is also illustrated by the points lying at zero on the vertical axis and at 

non-zero points on the horizontal axis; these are false positive detections. In general, the 

false positives involve smaller amounts of detected cancer, compared to the true 

positives. The system yielded higher specificities for the G3 subtypes (except for 

desmoplastic G3) compared to the G4 subtypes. We found the systems performed best for 

sparse G3 and intermediate G3, which have the fewest false positives and better 
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agreements between manual annotated tumour size and system predicated tumour size, 

compared to the other subtypes.  
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Figure 4.2: FPRs for each tissue subtype, broken down by confounding subtype. 
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Figure 4.3: Scatter plot of manual annotated tumour size per patient vs. system predicted 

tumour size per patient for each subtype 
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Figure 4.4: Label maps from an example WSI for PCa sub-grading. Left column: 

example WSI with two tissue samples shown below zoomed in from the black and yellow 

boxes on the WSI. (a) – (h) are label maps after validating system predicated results 

against manual annotation. Map annotations: Blue = true negative, Green = true positive, 

Red = false negative, white = false positive. Pathologist’s annotations on histology: Pink 

= packed G3, blue =  small fused G4, dark green = intermediate G3,  brown = benign 

intervening. Yellow arrows indicate the false negative regions. Grey arrows indicate the 

false positive regions. 
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Figure 4.5: Label maps from an example WSI for PCa sub-grading. Left column: 

example WSI with two tissue samples shown below zoomed in from the black and 

yellow boxes on the WSI. (a) – (h) are label maps after validating system predicated 

results against manual annotation. Map annotations: Blue = true negative, Green = true 

positive, Red = false negative, white = false positive. Pathologist’s annotations on 

histology: Pink = packed G3, yellow = Sparse G3, dark green = intermediate G3. Black 

circle: highlighted regions. 
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Figure 4.4 and Figure 4.5 show the systems’ outputs for two selected cases. The 

case in Figure 4.4 contains confounding cancer regions of packed G3 and small fused G4. 

The case in Figure 4.5 contains confounding subtypes of sparse, intermediate, and packed 

G3. Our system outputs were validated against our pathologists’ annotations in the form 

of label maps for detecting the subtype regions from each of the eight experiments. For 

the first case (see Figure 4.4), we found that generally the eight predicted label maps 

correctly mapped out most of the positive and negative regions. The major errors 

happened in the regions of packed G3, which were missed by the system and falsely 

labeled as small fused G4 and intermediate G3 (see the yellow and grey arrows pointed 

regions in  Figure 4.4 (b), (c), and (f)). We also observe that those regions of packed G3 

with false detections appeared adjacent to cancerous regions containing small fused G4 

and intermediate G3 to form tumours, instead of appearing in the form of independent 

tumours. For the second case (see Figure 4.5), similarly, generally most system outputs 

correctly labeled positive and negative regions. The major errors were within the G3 

tumour regions. The black circled regions show the conflicting results from the systems 

for detecting sparse G3 and intermediate G3 (Figure 4.5 (a) and (b)), with both systems 

labeling the region as positive. We found that the system trained to detect packed G3 had 

an overall oversensitivity in terms of labeling both regions of sparse G3 and intermediate 

G3 as positive (Figure 4.5 (c)). 

4.4 Discussion 

In general, our experiments demonstrated promising results for this novel and 

challenging problem, using binary classification. The systems yielded AUCs higher than 

0.7 for detecting all of the subtypes, except for the system for detecting packed G3. Four 
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of the eight systems yielded AUCs higher than 0.8 (Table 4.2). FPRs and FNRs were 

generally smaller than 35% for most of the systems (Table 4.2), which suggests the 

systems were sensitive and specific in detecting those subtypes. For most of the systems, 

the FPRs for each subtype were generally lower than 40%, with most of them close to 

20% (see the bar charts for each subtypes in Figure 4.2). This suggests that the systems 

are generally capable of differentiating the subtypes from each other, except for a few 

confounding subtypes. On the qualitative results we illustrated, the systems successfully 

labeled the primary tumour and secondary tumour as small fused G4 and intermediate G3 

(Figure 4.4 (b) and (f)) respectively, with good agreement among each of the systems 

(Figure 4.4). We can see that, for the primary tumour, all the systems labeled the major 

region as negative except for the system trained to detect packed G3 (Figure 4.4 (c)). 

Similarly, the systems labeled most of the tumour regions correctly (Figure 4.5).  

Although, in principle, larger sample sizes should improve the systems’ 

performance, some subtypes may be harder to differentiate than others and vice versa. 

We found that the systems yielded good performance even for some subtypes with 

relatively smaller sample sizes. For detecting subtypes of desmoplastic G3 and benign 

intervening, the system yielded AUCs of 0.82; they have sample sizes of 515 and 225, 

respectively. Similarly, for large cribriform G4, although we have a small sample size of 

275, the system still yielded an AUC of 0.74 (see Table 4.1 and Table 4.2). We speculate 

that this is because those subtype tissue appearances are more unique in morphology, 

which is not confounding with respect to other subtypes. However, for some subtypes, 

even if a large sample size was given, the systems still had inferior performance. This can 

be evidenced by the relatively poorer performance in detecting subtypes of intermediate 
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G3 and packed G3. For intermediate G3, although the largest sample size of 4140 was 

given, which was 10 to 20 times than that of the subtypes mentioned above, the system 

yielded lower AUC of 0.7. In addition, for packed G3, with a sample size of 893, we 

found the lowest AUC of 0.58 (see Table 4.1 and Table 4.2).  

We observed that the G3 subtypes are confounding to each other. This may be 

because they have similar morphological patterns. For intermediate G3, we found that the 

highest FPRs (> 50%) were for sparse and packed G3 (see plot of intermediate G3 in 

Figure 4.2). Likewise, for packed G3, we found high FPRs for sparse and intermediate 

G3 (see plot of packed G3 in Figure 4.2). Although, for sparse G3, the FPRs were 

generally much lower, the two highest FPRs were for the subtypes of intermediate, 

packed, and desmoplastic G3 (see plot of sparse G3 in Figure 4.2). From the graphical 

results of the example cases (Figure 4.4 and Figure 4.5), we observed false detections 

among the sparse G3 (Figure 4.5 (a)), intermediate G3 (Figure 4.5 (b)), and packed G3 

(Figure 4.5 (c)), and the over sensitivity of the system trained to detect packed G3 falsely 

labeling regions of different subtype tissues as positive (Figure 4.5 (c)). These results 

make sense because those three subtypes of G3 (i.e. sparse, intermediate, and packed G3) 

were similar in morphology; all of them have similar gland structure with different 

amounts of intervening stroma tissue (see the two example ROIs of sparse G3 and 

intermediate G3 in Figure 4.5; similar gland structure was observed with different 

amounts of intervening stroma). Also, since our method classified non-overlapped ROIs 

with a fixed ROI size, sampling error may negatively affect system performance. For 

example, a sampled ROI could capture a region which containing primarily stroma tissue, 

with limited glandular tissue from the region containing intermediate G3. This can result 
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in the system incorrectly labeling the ROI as sparse G3. In the process of manual 

annotation, the pathologist usually first identifies the ROI and then zooms in and out to 

estimate the region to assign the subtype. In this way, a better estimation of stroma 

proportion may be achieved.  

We speculate that the varied nature of spatial patterns of packed G3 makes 

correctly detecting packed G3 difficult (see AUC for packed G3 in Table 4.2). For 

packed G3, the system tended to be oversensitive to most of the subtype tissues except 

for desmoplastic G3 and benign tissue, which is evidenced by overall high FPRs for most 

subtypes (see plot of packed G3 in Figure 4.2). We speculate this is because the gland 

structure of packed G3 is similar to that of sparse and intermediate G3 and it was so 

dense that the system trained to detect packed G3 was trained to recognize those gland 

structures to label them as positive for any ROI containing similar gland structures in 

sparse and intermediate G3 regions (see example ROI of packed G3 in Figure 4.4, and 

sparse and intermediate G3 in Figure 4.5). In addition, we speculate that since the cancer 

tissue containing packed G3 may be in the process of progression to G4, they often 

appear simultaneously and intertwined with each other. This means that samples of 

packed G3 may unavoidably contain some intervening G4 patterns and thus the system 

was trained to recognize those patterns as packed G3 (see the example ROI of packed G3 

in Figure 4.4, which contains small portions of fused glands).  

Although, for detecting most of the subtypes, the system yielded generally good 

performance and differentiation capability for each of the subtypes, there are certain 

subtypes that are more confounding than others. We found that the desmoplastic G3 and 

small fused gland G4 were confounding to each other (see the bar charts of desmoplastic 
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G3 and small fused G4 in Figure 4.2). Poorly formed G4 and large cribriform G4 are 

confounding to each other (see the bar charts of poorly formed G4 and large cribriform 

G4 in Figure 4.2). Systems may be specifically developed for differentiating those 

confounding subtypes from each other (e.g. developing a system for classifying 

desmoplastic G3 vs. small fused G4).  

It is important to consider the results at the per-patient level, in addition to the 

overall AUC across all ROIs. This is because 1) the system performance at the patient 

level may more directly reflect the potential for application to studies correlating subtype 

presence and amount with outcome; 2) overall AUC results do not fully reflect the system 

performance at the patient level for subtype detection (i.e. to find the presence of any 

amount of the subtype for the patient). The systems performed better for subtypes having 

ROIs across larger numbers of patients. For example, for the sparse and intermediate G3, 

they have higher specificity and better agreement of manual estimated tumour size and 

system predicted tumour sizes than the other subtypes (Figure 4.3). However, their AUCs 

were not the highest (Table 4.2). They have relatively larger sample sizes of ROI across 

more patients (Table 4.1 and Figure 4.3). Also, we found that the system yielded higher 

specificity for the G3 subtypes than for the G4 subtypes (Figure 4.3) although some of 

the G4 subtypes (i.e. poorly formed G4 and small fused G4) have higher AUCs than the 

G3 subtypes (Table 4.2). However, better agreement of tumour size estimation was found 

for the true positives of those G4 subtypes (Figure 4.3), which have relatively large 

cancer areas. 

At the patient level, for the purpose of subtype detection (i.e. to find the presence 

of any amount of the subtype for the patient), for all the subtypes, we found (Figure 4.3) 
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that 1) the systems’ sensitivities were 100%, 2) the systems’ sensitivities were higher 

than their specificities, 3) the systems’ false positives were smaller than their true 

positives, especially for the G4 subtypes. This suggests that the systems are overly 

sensitive for most of the subtypes, and small positive regions are less likely to be true 

positives, compared to large positive regions. Therefore, it may be helpful in future work 

to consider post-processing the system outputs by thresholding based on the reported 

tumour size for some subtypes (e.g. cribriform G4, poorly formed G4, and small fused 

G4).  Future work on performance improvements at the patient level should focus 

primarily on the G4 subtypes, with a larger sample size at both of the ROI and patient 

level. 

Our results should be interpreted in the context of several limitations. First, since 

we used annotations determined by consensus of two pathologists, inter-observer 

variability was not taken into consideration. Also, all of our tissues were processed and 

stained in a single laboratory; although the samples were acquired over several years and 

we observed substantial staining variability due to different batches of stain and other 

factors. Thus, validation using samples from multiple laboratories with annotations by 

different observers is essential to translation of this tool to use in medical research. 

Second, although there is evidence that using transfer learning can train a deep network 

more efficiently (i.e. using smaller sample sizes) [21], some subtypes with small samples 

may not be fully representative of the variability seen in the wider population, potentially 

explaining the inferior results we observed for some subtypes. Using data augmentation 

and/or a larger sample size may mitigate this issue. Third, our results of system 

performance at the patient level should be interpreted with limitations of using small 
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sample sizes for most of the subtypes. Fourth, we only used one type of deep learning 

method; there are many deep learning methods are available that demonstrate good 

performance in different image identification tasks. Further exploration using those 

methods may improve the system performance.  

To the best of our knowledge, this work represents the first validation of a 

machine learning based system for PCa subtype grading on whole-mount surgical 

pathology specimens where validation was conducted throughout all of the relevant 

tissues on each entire slide, such that ROIs from the same WSI were never used for both 

training and testing in any fold. The system achieved AUCs higher than 0.8 for subtypes 

of desmoplastic G3, small fused G4, poorly formed G4, and benign intervening; AUCs 

higher than 0.7 for subtypes of sparse G3, intermediate G3, and large cribriform G4.  

In conclusion, we demonstrated that transfer learning by fine-tuning AlexNet can 

classify G3 and G4 PCa into eight subtypes on WSIs of H&E stained RP tissue sections 

based on the Gleason grading system, validated against pathologist annotations using 

leave-one-WSI-out CV. We found that the systems generally yield promising 

performance for potential clinical use/studies for detecting most of the subtypes upon 

further technical improvement and validation on large data set. The subtype of packed G3 

was challenging to detect due to the varied nature of its spatial patterns. The intermediate 

G3 subtype was confounding to other subtypes of G3, which may because they share 

many gland features and were differentiated by the proportion of stroma tissue only. 

However, the system yielded higher specificity for detection at the patient level for the 

G3 subtypes than for the G4 subtypes. Our future work includes developing and 

validating 1) systems for differentiating mutually confounding subtypes (e.g. packed G3 
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vs. intermediate G3), 2) an algorithm to combine multiple binary systems into a 

multiclass system for the subtype grading, and 3) a post-processing method for the 

subtypes to improve system specificity at the patient level. 
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Chapter 5 

5 Conclusions and future directions 

5.1 Contributions 

This thesis addresses the unmet need for automatic PCa detection, grading, and 

subtype grading on H&E stained WSIs of whole-mount RP tissue sections via 

technological advancements and validation experiments. Methods were developed for 

processing WSIs of whole-mount RP sections for automatic tissue component 

segmentation, and tissue region classification. Validation was conducted on 286 expert 

annotated whole-mount WSIs from 68 patients, which cover all clinically relevant grade 

groups, using CV with data grouped on a per-patient basis. A subset of patients were used 

for subtype grading. Comparisons between conventional machine learning based 

approaches and deep learning based approaches were performed. Also, comparisons 

using different inputs between raw images and different TCMs were performed. In 

addition, a system for automatic PCa subtype grading was first proposed and validated. 

Thus, this thesis contributes to a better understanding of how machine learning 

approaches work and the utility of each method for PCa detection, grading and subtype 

grading. The accomplishment of the objectives (Chapter 1 section 1.3) and answering the 

research questions (Chapter 1 section 1.3) led to the following advancements in 

technology and knowledge. 

5.1.1 Advances in knowledge and technology arising from this thesis 

A tissue component segmentation algorithm was proposed to segment 3-class 

tissue components (i.e. nuclei, lumen, stroma/other) from H&E stained histology 
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images efficiently, to compensate for staining variability for accurate and robust 

PCa detection and grading on whole-mount WSIs of RP sections. 

Chapter 2 presented a tissue component segmentation method to segment the 

tissue image into nuclei, lumen, and stroma/other to allow for efficient feature extraction 

for accurate and efficient classification of cancer vs. non-cancer (Chapter 2) and high- vs. 

low-grade (Chapter 3) cancer image samples across different WSIs from different 

patients. Staining variability negatively affects classification results by creating 

inconsistency in the extracted features [1]. Previously work [2-4] used normalization 

algorithms to reduce the staining variation. These methods used selected images for 

calibration, or normalized images to each other. The biggest limitation of these methods 

is that they were dependent on the pre-selected target images for calibration, or images 

used in the experiment for normalization. Some methods were proposed [5, 6] to segment 

tissue components from the tissue images with or without normalization using machine 

learning based approaches. Similarly, these methods were dependent on the image 

samples used for training. This dependency leads to the limitations in the generalization 

capability of the proposed systems and therefore in the capability for clinical translation. 

To create a consistent feature set that is robust to staining variability, we proposed a 

segmentation method for fast and accurate tissue component segmentation to generate the 

3-class TCM. This allows our machine learning systems to use features extracted from 

those computed 3-class TCMs to achieve the highest AUCs of 0.96 for PCa detection 

(Chapter 2) and 0.89 for PCa grading (Chapter 3). It also allows us to use transfer 

learning using 3-class TCMs as input to achieve AUCs of 0.98 for PCa detection 

(Chapter 2) and 0.93 for PCa grading (Chapter 3). The key component in this 
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segmentation method is the proposed adaptive thresholding algorithm, which yields fast 

and accurate nuclei segmentation despite large staining variability. This algorithm is 

independent of other images and fast in computation. Therefore, this thesis contributes to 

tissue component segmentation on H&E-stained whole-mount WSIs by providing a novel 

algorithm for fast and accurate nuclei segmentation that can compensate for staining 

variability. 

A machine learning pipeline using conventional machine learning 

approaches demonstrated the feasibility and efficiency of using machine learning to 

analyze whole-mount WSIs for PCa detection and grading for clinical translation. 

Chapters 2 and 3 presented a machine learning pipeline for automatic PCa 

detection and grading on WSIs of whole-mount RP sections. PCa detection and grading 

on WSIs of whole-mount RP sections provide valuable information for post-surgery 

patient care, which can be life-saving by advising adjuvant therapy for appropriate 

patients. Also, annotating and grading each individual tumour on whole-mount RP 

sections can potentially support clinical studies for better patient stratification post-RP. 

Manual annotation is time consuming and infeasible in the standard clinical workflow 

and requires a substantial amount of extra effort from pathologists. Therefore, there is an 

unmet need for a system that can automatically annotate and grade each tumour on 

whole-mount WSIs of RP sections. Previous work primarily presented methods using 

pre-selected ROIs [7], which has limitations in scalability and generalization capability to 

be applied to whole-mount WSIs due to the substantially large amount of data from the 

whole-mount WSIs and the heterogeneity of PCa tissues. Two studies [6, 8] presented 

methods for PCa detection using whole-mount WSIs but are limited in the ability to 
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detect high-grade cancer tissue, which is of high prognostic value. No study was found 

for PCa grading using all cancerous tissue that includes all clinically relevant grade 

groups from whole-mount RP sections. Our proposed pipeline demonstrated state-of-the-

art performance for both PCa detection and grading with 25 minutes/whole-mount WSI. 

Our systems were validated on 286 WSIs from 68 patients with data grouped on a per-

patient basis. This was the first study for PCa detection and grading using all tissues from 

whole-mount WSIs, which covers all clinically relevant grade groups. Therefore, this 

thesis contributes to the technological advancement in automatic PCa detection and 

grading on whole-mount WSIs using machine learning by developing and validating a 

machine learning pipeline yielding state-of-the-art performance with practical 

processing time.   

A deep learning pipeline was presented for PCa detection, grading and 

subtype grading using transfer learning with pre-trained AlexNet, which yields 

superior performance, compared to the conventional machine learning approaches. 

The deep learning pipeline also allowed comparisons among different machine 

learning methods and comparisons among the uses of different TCMs as inputs in 

the context of our research objectives (Chapter 1 section 1.3). 

Chapters 2, 3 and 4 presented a transfer learning approach by fine-tuning pre-

trained AlexNet for automatic PCa detection, grading and subtype grading on WSIs of 

whole-mount RP sections. The purpose is similar to that discussed above. In addition, 

subtypes of cribriform G4 and intraductal carcinoma were found to have independent 

prognostic value in a few studies [9-12], thus further studies/trials on this topic may 

support reporting those parameters in the clinical routine and discovering new biomarkers 
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for patient care. Previous work has demonstrated excellent performance using deep 

learning approaches to analyze digital histopathology images for PCa detection on TMAs 

and WSIs of biopsies [13-16]. One study used a deep learning approach for PCa grading 

on TMAs and reported an overall accuracy of 77.8%. Our work was the first study using 

deep learning detecting and grading PCa on whole-mount WSIs. Also, our study 

demonstrated the first automatic system for PCa subtype grading beyond the Gleason 

grading system. In previous work, most studies [13, 15, 16] used raw image samples as 

system input with minimal pre-processing. One study [14] used nuclei maps as input and 

demonstrated superior performance in comparison to using raw image as input. We used 

raw images, 3-class TCMs, nuclei maps, and lumen maps as system inputs and found that 

3-class TCMs yielded the best overall performance and the second best performance for 

identifying high-grade cancer for both PCa detection and grading. Therefore, this thesis 

demonstrated a technological advancement in automated systems for PCa detection, 

grading and subtype grading on WSIs of whole-mount RP sections using deep learning. 

5.1.2 Answers to central research questions: 

1. Can features extracted from TCMs provide the major information for PCa detection 

and grading on whole-mount RP sections? 

For PCa detection, using first- and second-order statistical features extracted from 

the 3-class TCMs, all the three classifiers (i.e. a Fisher linear discriminant classifier, a 

logistic linear classifier, and SVM) achieved AUCs ≥ 0.92 with highest AUC of 0.96 

using SVM (Chapter 2). For grading, all classifiers achieved AUCs ≥ 0.82 with highest 

AUC of 0.89 using Fisher classifier (Chapter 3). These results demonstrated state-of-the-

art performance in comparison to the studies using first- and second- order statistical 
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features extracting directly from the raw images without object segmentations [7]. Also, 

our results outperformed the results in the previous study [5] using a subset of our data 

set with features extracted from 9-class TCMs. Although the comparisons were made 

with some limitations (e.g. each study used different validation methods and data sets), 

generally our results, which were validated on the largest data set with data grouped on a 

per-patient basis, demonstrated that the 3-class TCMs provided major information for 

using the first- and second- order statistical features for PCa detection and grading. 

In addition, transfer learning fine-tuned with 3-class TCMs achieved the best 

performance with AUCs of 0.98 and 0.92 for PCa detection (Chapter 2) and grading 

(Chapter 3). In comparison, transfer learning using raw images yielded AUCs of 0.98 and 

0.92 for PCa detection and grading, respectively. The almost identical (difference is at the 

third decimal) performance using raw images as input suggested that 3-class TCMs 

provided equivalent information to the raw images for PCa detection and grading using 

pre-trained AlexNet. Although we only used one type of classifier for the direct 

comparison in our study, the reported results demonstrated state-of-the-art performance 

in comparison to the literature in which a few other deep learning approaches were used 

with raw images as inputs [13, 15, 16]. Therefore, features extracted from the 3-class 

TCMs can provide major cues for PCa detection and grading. 

2. Can 3-class TCMs compensate for staining variability for robust PCa detection and 

grading on whole-mount RP specimens? 

Staining variability is a big issue, which negatively affects the performance using 

computational methods to analyze histopathology images [1]. Therefore, previous studies 
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used features extracted directly from the raw images after image normalization or 

calibration, or features extracted at the object-level after image segmentation to resolve 

this issue. However, previous methods’ normalization and calibration approaches render 

them specific to the data set at hand, limiting their potential for generalization. Also, the 

validations were not grouped on a per-patient basis in most studies, such that image 

samples stained differently might be used for system training or normalization to overfit 

the data. Thus, the generalization capability of those methods is difficult to evaluate. In 

our study, large staining variability among WSIs from different patients was observed 

qualitatively (Chapter 2). Despite the staining variability, our systems yielded state-of-

the-art performance for PCa detection and grading using the resulting 3-class TCMs 

(Chapters 2 and 3). The validations were conducted using data grouped on a per-patient 

basis such that the systems were validated against the staining variability between the 

WSIs from different patients. The computation of the 3-class TCMs is independent of 

other images. Thus, the thesis suggested that the 3-class TCMs can compensate for the 

staining variability for robust PCa detection and grading. 

3. What is the most important information on the histology tissue that can be used for 

PCa detection and grading? 

Chapters 2 and 3 compared using TCMs to using raw images as input for PCa 

detection and grading. Chapter 2 demonstrated that 3-class TCMs provided the major 

information for PCa detection, and Chapter 3 extended that knowledge to PCa grading. 

One previous work [14] found that a nuclei seed map (i.e. maps reflecting nuclei location 

information only) is essential for PCa detection by demonstrating that systems using 

nuclei seed maps yielded the best performance comparing to using raw image as input. 
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Our work compared the performance using raw images, 3-class TCMs, nuclei maps, and 

lumen maps for both PCa detection and grading. We found that, for both PCa detection 

and grading, using 3-class TCMs yielded the best performance followed closely by using 

raw images and nuclei maps, and using nuclei maps yielded the best performance for 

identifying G5 involved tissue (i.e. G5, G4+5, G5+4). Thus, this thesis advances the 

knowledge that nuclei maps encode the primary information of 3-class TCMs for PCa 

detection and grading and are essential for identifying G5 involved tissue.  

4. How do deep learning based approaches perform for PCa detection and grading? 

Although previous studies [13-16] demonstrated excellent performance using 

deep learning methods to approach those problems, direct comparisons to those using 

conventional machine learning methods is difficult since the data sets and validation 

methods were different between different studies. A few studies [14, 15] provided more 

direct comparisons between methods for PCa detection and grading. However, the 

comparisons were purely conducted at the overall performance level using relatively 

small sample sizes which were not close to the scale that literature reported for achieving 

good performance [17, 18]. Our studies performed direct comparisons between the deep 

learning and conventional machine learning methods using the 3-class TCMs for both 

PCa detection and grading at the overall performance level and the level for each tissue 

type (Chapters 2 and 3). We found that pre-trained AlexNet outperformed conventional 

machine learning based approaches for both PCa detection (AUC of 0.98 vs. 0.96) and 

grading (AUC of 0.92 vs. 0.89) in overall performance. Similar performance was 

achieved for tissue types having small (i.e. sample size smaller than 1000) or medium 

sample sizes (i.e. sample size larger than 1000 and smaller than 4000). Pre-trained 
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AlexNet outperformed conventional machine learning methods for the tissue types 

having large sample sizes (i.e. sample size ≥ 4000). Therefore, pre-trained AlexNet 

yielded better performance than the conventional machine learning methods for our 

problems when using 3-class TCMs as inputs. 

 In addition, comparison between AlexNet fine-tuned by raw images and 

AlexNet fine-tuned by 3-class TCMs in the training sample size test (Chapter 2) and in 

the performance at the tissue type level (Chapters 2 and 3) demonstrated that although 

raw images provide more information to the system, AlexNet fine-tuned with raw images 

is more sensitive to training sample size than with the 3-class TCMs. Reducing the 

complexity of the input image (i.e. using 3-class TCMs) may yield more robust 

performance to sample size. Thus, this thesis advances knowledge that system 

performance is sensitive to sample size using pre-trained AlexNet and using high-level 

features as input can reduce this sensitivity.  

5. What is the feasibility of detecting the subtypes of G3 and G4 PCa using a deep 

learning approach? 

Chapter 4 validated a deep learning approach for detecting each of eight G3 and 

G4 PCa subtypes on whole-mount WSIs using leave-one-WSI-out cross-validation. There 

is no previous work on this topic. The cumulative results computed across all ROIs 

measured the system’s capability for identifying each subtype from the others. The FPR 

breakdown for each subtype further quantifies the system’s capability for differentiating 

each subtype from each of the other subtypes. In general, the results are promising for 

subtype detection, as our overall cumulative AUCs are larger than or equal to 0.7 for 
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seven of the eight subtypes and the AUCs are larger than or equal to 0.8 for four of the 

eight subtypes. For most of the eight experiments, the most FPRs for each subtype were 

close to 20%. This demonstrated that the system is capable of differentiating each 

subtype from each of the other subtype most of the time. However, some subtypes are 

harder to detect (e.g. intermediate, packed G3) and this might be because they are 

confounding to most of the G3 subtypes, and packed G3 was also confounding to some 

G4 subtypes. These speculations were supported by the relatively higher FPRs among 

those confounding subtypes (e.g. for detecting packed G3, FPRs ≥ 40% for sparse G3, 

intermediate G3, large cribriform G4, small fused G4 and poorly formed G4). 

The performance of using this method for clinical research needs to be further 

validated on multi-centre studies with a large data set. For subtypes of sparse and 

intermediate G3, the system performance at the patient level is better than the other 

subtypes. The performance evaluation at the patient level (Chapter 4) provided a more 

direct evaluation which reflects the system application for potential clinical studies. We 

found that the cumulative AUCs did not reflect the systems’ capability of detecting the 

presence of any amount of the subtype at the patient level. The system showed the best 

performance for sparse and intermediate G3 at the patient level. Although the system 

yielded high AUCs for the G4 subtypes, the specificities were much lower than those for 

the G3 subtypes. We found that the subtypes of sparse and intermediate G3 have large 

sample sizes of ROIs across more patients while, for the G4 subtypes, generally most 

ROIs were concentrated in a few patients. Therefore, further studies with larger sample 

size at the ROI and patient levels are needed to further evaluate the feasibility of the 

system at the patient level for clinical research translation. Thus, this thesis advances the 
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knowledge of the feasibility and challenges of using machine learning to detect PCa 

subtypes beyond Gleason grade. 

5.2 Limitations 

The content of this thesis should be interpreted in the context of several 

limitations of our studies. All tissues used in our studies were processed in the same 

clinical pathology laboratory using manual staining. Since tissue processing conditions 

and protocols vary from centre to centre, our studies were limited by not taking the 

variability from multiple centres into account. We would expect this to affect the methods 

using raw images more than those using TCMs, the computation of which is adaptive and 

calibration-free. Second, the cancerous annotations were done by one physician and 

verified by one of two pathologists in Chapters 2 and 3. Although two pathologists 

reviewed the cases used in Chapter 4, we used annotations from their consensus. These 

aspects of our studies limit the variability of the observers’ contours. Third, there are 

many classifiers for deep learning and conventional machine learning approaches. Our 

results and conclusions are limited to the classifiers we used in our studies. Fourth, the 

adaptive thresholding algorithm was performed at the WSI level, which makes the 

computed threshold a global threshold for each WSI. Our informal experiments (not 

reported here) suggested that adaptive thresholding on sub-regions of each WSI did not 

improve performance. However, adapting our method to do if needed is straightforward. 

Finally, it must be acknowledged that all CV studies may be subject to positive bias in 

their results; therefore, validation using an external data set is required to support clinical 

translation of this tool. 
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5.3 Applications and future directions 

5.3.1 Discovering biomarkers beyond Gleason grading system for 
clinical patient care 

Although the Gleason grading system has shown its prognostic value, is widely 

accepted and used clinically, there may be morphological patterns or pattern groups 

beyond the Gleason grading system, which are better associated with prognostic 

outcome. The Gleason grading system was revised multiple times since first proposed 

due to new discoveries in clinical practice and studies/trials [19]. In the 2014 ISUP 

consensus meeting [20], the Gleason grading system was updated. Some pathological 

patterns were reassigned into different Gleason grades, and the newly developed grade 

group system was presented, which showed better correlation to prognostic outcomes 

than the old grade group system [20]. Also, some pathology patterns were recommended 

to be reported independently such as small cell carcinoma, which has an unique 

appearance with poorer prognostic outcome than poorly differentiated tumours. In 

addition, some subtypes (i.e. cribriform G4 and intraductal carcinoma) were found to 

have independent prognostic value in recent studies [11, 12]. Therefore, revisions to the 

existing pathology reporting may be continued with new findings to further revise the 

Gleason grading/grade group systems, or even to be extended beyond the existing system 

by proposing new systems.  

Because prostate tissue is heterogeneous, there are many patterns beyond Gleason 

grade [21]. Some patterns may be independently prognostic or different combinations of 

patterns may be prognostic. Methods developed in this thesis demonstrated the capability 

of differentiating morphological patterns of histopathology prostate tissues based on the 
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Gleason grading system (Chapters 2 and 3) and beyond the Gleason grading system 

(Chapter 4). Our methods have the potential to be used to identify different 

morphological patterns and relate those to clinical outcomes directly, to evaluate the need 

for reporting those parameters in routine pathological reports. This may be achieved by 

using an unsupervised machine learning approach [22, 23], which is a machine learning 

approach using unlabeled samples to classify those samples into groups, with patient 

outcome as an endpoint. In Chapter 2, 156 features were calculated from TCMs. 

Although there may be some redundancy in those features, they are expected to provide 

the capability of differentiating patterns beyond Gleason grade. In addition, there are 

many other features [e.g. scale-invariant feature transform (SIFT) feature set [24]] that 

can be calculated for differentiating image patterns. Thus, those features could be used 

with unsupervised machine learning to identify prognostic patterns beyond Gleason 

grades. Because superior performance using deep learning was found in this thesis, and 

raw images can be used as input, fine-tuning a deep network with raw images can 

potentially be used to identify patterns using information beyond the 3-class TCMs via 

combining this with unsupervised machine learning.  

5.3.2 Translational applications for other disease/tissue types 

The machine learning pipeline developed in this thesis has the potential to be 

adapted to detect other diseases on WSIs of whole-mount sections. Our work focused on 

PCa detection and grading while other studies focused on cancer detection/grading on 

histopathology images of other organ tissues such as breast [25], oropharyngeal [26], 

colorectal [27], and brain [28] tissue. Since our methods rely on identifying 

morphological patterns of H&E stained tissue samples, which are typically used for other 
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organs [29], our pipeline is transferable to be applied for detecting and grading diseases 

in other organs. This translation may be beneficial due to the advantages of being capable 

of processing whole-mount WSIs, efficiency in terms of processing time, and robustness 

to staining variability, which were demonstrated in our studies.  

The segmentation method presented in this thesis may be extended to be applied 

to other H&E-stained tissues to support quantitative histomorphometry [29] or analyzing 

tumour morphology and its most invasive elements. Many studies [29] have proposed 

methods for nuclei segmentation from different perspectives (e.g. using different 

methods, on different tissue, or for different application purposes). Our algorithm for 

nuclei segmentation relies on the phenomenon that generally the nuclei and other tissue 

components have different amounts of hematoxylin stain. This phenomenon applies to 

many other organ tissues such as breast, colorectal, and brain tissues. Therefore, our 

algorithm has the potential to segment nuclei for other organ tissues, with the advantages 

of being robust to staining variability, amenability to be implementation on WSIs of large 

tissue sections, and efficiency in terms of computation. 

5.3.3 Remaining gaps in knowledge toward clinical translation and 
future directions 

Although there is an unmet need for  using computational tools to support more 

efficient and easier routine clinical pathology reporting as previously discussed (Chapter 

1 section 1.3) and there are numerous publications [29] on developing computer assisted 

systems for pathology reporting, there are still gaps to translate those tools into routine 

clinical practice. One of the major knowledge gaps toward translational application is the 

capability of conducting comprehensive validation studies. Since most studies used pre-
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selected ROIs, validations using all tissue samples with a large data set is required to 

fully validate the system performance. Although the systems proposed in this thesis were 

validated on all tissue of WSIs of whole-mount RP sections, we did not validate on data 

sets from different centres and did not take inter-observer variability into consideration. 

Nir et al. [15] have approached those questions using pre-selected samples. Multi-centre 

studies taking all those factors into consideration using a large data set without tissue 

preselection, which covers enough variability in staining, tissue patterns, observers and 

artifacts, will support clinical translation.  

In addition, the error metrics used in this thesis and other studies may not 

appropriately evaluate the efficacy of automated systems in routine clinical application. 

We may envision that the role of those systems is assisting pathologists to examine the 

tissue to generate pathology reports. Although good performance (e.g. high AUC, low 

error rate, high recall etc.) was reported in this thesis, those error metrics may not reflect 

efficacy in clinical practice. Relating those error metrics to clinical performance of those 

systems is essential. For example, a system reporting very high error rate of 40% with 

100% recall may be practical since pathologists may only need to examine system-

labeled positives. This may be approached by large-scale user studies. For example, since 

a system may yield different performances by choosing different operating points on the 

ROC curve, a proper threshold may be chosen for specific clinical use through user 

studies.    
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Supplementary material for Chapter 3 

Appendix A: 14 selected features for cancer vs. non-cancer classification. GLCM: grey 

level co-occurrence matrix. GLRLM: grey level run length matrix. IDM: inverse 

difference moment. IMC: information measure of correlation. 1, 2, 3, 4: one of the 4 

directional offsets used for calculating the matrix. 
 

Mean gradient value 

GLCM IDM-2 

GLCM IDM-3 

GLRLM short run emphasis-3 

GLRLM short run low gray level emphasis-1 

GLRLM short run low gray level emphasis-3 

GLRLM short run low gray level emphasis-4 

GLCM entropy-2 

GLCM correlation-1 

GLCM cluster shade-3 

GLCM IMC2-1 

GLCM IMC2-2 

GLCM energy-1 

GLCM energy-2 
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Appendix B: selected features for high- vs. low-grade cancer classification. GLCM: 

grey level co-occurrence matrix. GLRLM: grey level run length matrix. IDM: inverse 

difference moment. IMC: information measure of correlation. 1, 2, 3, 4: one of the 4 

directional offsets used for calculating the matrix. 

Gray level bimodality coefficient GLCM difference entropy-1 

GLCM correlation-1 GLCM IMC1-3 

GLCM correlation-2 GLCM IMC2-1 

GLCM correlation-4 GLCM IMC2-4 

GLCM variance-1 GLCM IDM-2 

GLCM sum average-3 GLCM IDM-3 

GLRLM short run emphasis-2 GLCM IDM-4 

Proportion of stroma GLRLM run length nonuniformity-1 

Gray level variance GLRLM run percentage-4 

Gray level uniformity GLRLM short run high gray level emphasis-2 

GLCM entropy-3 GLRLM long run low gray level emphasis-1 

GLCM variance-3 GLRLM long run low gray level emphasis-2 

GLCM variance-4 Gray level entropy 

GLCM sum average-1 GLCM cluster prominence-3 

GLCM sum average-4 GLCM sum average-2 

GLCM sum entropy-1 GLCM difference entropy-2 

GLCM sum entropy -3 GLCM difference entropy-3 

GLCM sum entropy -4 GLRLM long run emphasis-2 

GLCM sum variance-1 GLRLM gray level nonuniformity-3 

GLCM sum variance-3 GLRLM low gray level run emphasis-2 

GLCM sum variance-4  
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