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Abstract 

Preterm neonates are at risk for intraventricular hemorrhage (IVH) and 

subsequent post-hemorrhagic hydrocephalus (PHH). A well-accepted 

interventional therapy for PHH is ventricular tap (VT). Permanent treatment, 

ventriculo peritoneal shunt surgery (VPS) is required in the case of some 

neonates under some conditions (weight, immunological status, CSF protein 

level) who receive multiple interventions. The objective of this study was to apply 

a 3D ultrasound system clinically to determine CSF volume within the ventricle, to 

guide the neurosurgeon regarding the amount of CSF should be removed during 

every intervention, which lateral ventricle is better to intervene and to predict the 

possibilities of the requirement of the shunt. After ethics approval and parental 

consent, this 3D US system was used in a clinical study where data of 70 

neonates having IVH were analyzed retrospectively and 22 preterm neonates 

were recruited prospectively. 3D US system was used to measure the ventricle 

volume of the neonates. In addition, we have changed the posture of some 

neonates to find the volume variation in two lateral postures. We found that 3D 

US ventricle volume had a higher correlation (Pearson correlation 0.739) with the 

amount of CSF removed in each tap than other parameters (weight, age, head 

circumference). After changing the posture of the neonates, we did not find any 

significant volume change of two lateral ventricle volumes (P-value was 0.353 in 

case of the right ventricle in two different postures and 0.473 in case of the left 

ventricle in two different postures). We also found more volume change after VT 

in those patients who required VPS than who did not need a VPS (volume 
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change was18.70 ± 10.98 cm3 in shunt treated patients and 7.52 ± 3.35 cm3 in 

patients with no shunt where P- value was 0.0001). Therefore, our study 

suggests that a volumetric measurement of total lateral ventricles by the 3D US 

could be used concurrently with other physical parameters for better 

management of the neonates having PHH.  

 

 

Keywords: Preterm, Intraventricular hemorrhage, Post-hemorrhagic 

hydrocephalus, 3D ultrasound, Ventricular tap, Cerebrospinal fluid, Intracranial 

pressure, Head circumference, Ventriculo peritoneal shunt 
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Summary for Lay Audience 

Babies who are born earlier than the expected time of delivery usually suffer from 

many health hazards. One of the most common hazards is bleeding inside the 

brain. In the human brain, there are fluid-filled spaces called ventricles. This 

bleeding often occurs inside the ventricle and causes dilatation of ventricles by 

the excess amount of fluid that cannot circulate well because of the bleeding. 

This situation is very threatful for babies’ development and may even cause 

death. This condition is diagnosed by a 2D head ultrasound (2D US) and 

monitoring head enlargement. Primary treatment is the removal of excess fluid 

from the ventricles by needle aspiration. 2D US cannot measure how much fluid 

is inside the brain, therefore cannot guide the physician how much fluid should 

be removed safely at one time. Thus, we have developed a new 3D head US 

system where the exact volume measurement of the ventricle is possible. We 

recruited 22 babies who were born earlier than expected, and also, we analyzed 

data of another 70 babies with bleeding in the ventricles for this study. We 

measured the fluid amount in the ventricle using the 3D US system. We also 

changed the position of some of the babies to see if the ventricle volume 

changes with the position of the head, but we did not find significant changes in 

ventricle volume after changing position. But we found a good correlation 

between how much fluid is inside the brain and how much fluid should be 

removed at any time. Moreover, we could identify those babies for whom only 

removing fluid is not enough, treatment by permanent surgery is needed by 

calculating the 3D US volume difference before and after removing the fluid. We 
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are hoping that this research will help the clinicians to manage the babies with 

ventricle bleeding more effectively. 
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 Chapter 1 

 

1. Introduction 

1.1 Overview:  

Premature birth is an unexpected event that leads to the early birth of an infant, 

or sometimes is the result of a medical decision that is unavoidable in some 

conditions to save the life of the mother and the baby. It was reported that 

approximately 11.1% of all live births worldwide are born preterm.1 The World 

Health Organization (WHO) defines premature births as any birth before 37 

completed weeks of gestation. This can be subdivided based on gestational age; 

extremely preterm (<28 weeks), very preterm (28 - <32 weeks) and moderate or 

late preterm (32 - <37 weeks) of gestation. Hypertensive disorder during 

pregnancy is the commonest obstetrical risk factor of premature birth and this 

prematurity is the leading cause of neonatal mortality and the second leading 

cause of mortality in children under 5 years old.2  

Intraventricular hemorrhage (IVH) is the bleeding inside the ventricles, which is 

the most common intracranial hemorrhage in the preterm neonates. According to 

recent reviews,  the rate of IVH is 25% to 30% for very low birth weight infants 

(VLBW <1500 grams) although survival of small premature babies has improved 

due to advances in specialized obstetric and neonatal intensive care in the past 

several decades.3,4   Inflammatory reaction from blood breakdown products and 

blood clots can block the flow of the cerebral spinal fluid (CSF), leading to post-
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hemorrhagic ventricle dilatation (PHVD), which is the abnormal, progressive 

dilatation of the ventricular system due to increased amount of CSF.5 This 

enlargement can compress the surrounding brain and can lead to severe 

neurological disability and even death. The severe form of PHVD is called post-

hemorrhagic hydrocephalus (PHH), which usually affects 25% to 28% IVH 

patients.5 

Approximately 40% of patients with PHVD resolve spontaneously and the other 

60% suffer from rapidly progressing and persistently progressing PHVD and 

require interventions.6 Currently used temporizing interventions are ventricular 

tap (VT), lumbar puncture (LP), ventricular reservoir, ventricular access device 

(VAD), ventriculo subgaleal shunt (VSGS). Once the early phase is over, and the 

infant is older and the proteins in the cerebrospinal fluid are lower an endoscopic 

third ventriculostomy and ventriculoperitoneal shunt (VP) can be done as a 

permanent treatment. The main goal of these treatments is to reduce intracranial 

pressure (ICP) and protect the brain from damage.7 Though much research has 

been done to improve the diagnostic and treatment modalities of IVH patients, 

currently there is no absolute guideline regarding when and how to treat 

neonates with IVH to prevent morbidity and mortality for better neurological 

outcomes. 

 

1.2 Anatomy 

 

1.2.1 Anatomy of the neonatal brain:  
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The human brain is a complex organ, which grows at an amazing rate during 

development. The first sign of the developing nervous system is the formation of 

the neural plate that can be seen as early as 16 days of embryogenesis. By the 

age of 2 years, the brain is about 80% of the adult size. Brain and ventricle 

development during embryogenesis are shown in figure 1.1. 

 

 

Figure 1.1: Development of whole-brain (gray) and ventricle (pink). Image 

adapted from J. Neurosci. 29; 4263-4273 (2009). (open access) 

 

The premature neonatal brain is much different from the mature neonatal brain. 

During the last 10 weeks of pregnancy, the brain volume and surface area 

change dramatically and the cortex becomes more folded.9 Though all the 

primary sulci are present by the age of 20 - 24 gestational weeks (GW), the 
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secondary sulci begin to appear between 30-35 GW, and the tertiary sulci 

develop during GW 36 and extend into the postnatal period.8 Thus, the brains of 

babies who are born prematurely lack mature sulci, which makes the brain 

vulnerable to a range of insults. The brains of premature babies still develop in 

the extrauterine environment, which may result in some adverse outcomes. One 

of the most common insults to the premature brain is IVH. This is mainly caused 

by immature and fragile vasculature of the germinal matrix located between the 

lateral ventricles and caudate, which is highly vascularized and responsible for 

migrating neuronal cells to the cortex during development.9 

 

 

Figure 1.2: The spatiotemporal fetal brain MRI atlas (CRL fetal brain atlas) at six 

representative gestational ages (GA): 22, 25, 28, 31, 34, and 37 weeks. Images 

adapted from Sci Rep. 28; 7(1): 476 (2017). (open access) 
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1.2.2 Ventricular system:  

The human ventricular system is a set of four interconnected cavities inside the 

brain that lies in the core of the forebrain and brain stem. The ventricular cavities 

are derived from an elaboration of the lumen of the cephalic portion of the neural 

tube. Each ventricle is lined with an internal layer of the ependyma and an outer 

layer of delicate connective tissue (pia mater) in which blood vessels invaginate 

to form the choroid plexus.10 The four ventricles are composed of two lateral, one 

third and one-fourth ventricle. The presence of other ventricles is rare but occurs 

in some cases. 

 

1.2.2a Lateral ventricles: 

The lateral ventricles are C shaped cavities, which lie in each cerebral 

hemisphere. Each lateral ventricle is composed of a body centrally with the 

anterior (frontal), inferior (temporal), and posterior (occipital) horns. Each of these 

parts has medial and lateral walls, a roof, a floor, and an anterior wall.11,12 They 

are the largest of the ventricles and extend through all four cerebral cortex lobes 

with the central area of each ventricle being located in the parietal lobe. Each 

lateral ventricle is connected to the third ventricle by channels called 

interventricular foramina or foramen of Monro. 

 

1.2.2b Third ventricle: 

The third ventricle is a narrow, funnel-shaped cavity situated between two thalami 

in the diencephalon. Like other ventricles, the third ventricle has a cavity, an 
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anterior wall, a posterior wall, a floor, a roof, and two lateral walls. It communicates 

with the lateral ventricles via the foramen of Monro superiorly and inferiorly with 

the fourth ventricle through the cerebral aqueduct of Sylvius.11 

 

 

1.2.2c Fourth ventricle: 

The fourth ventricle is a diamond-shaped midline cavity in the brainstem, 

posterior to the pons and medulla oblongata. It is composed of a floor, roof, and 

2 lateral recesses.12 The fourth ventricle is continuous with the cerebral aqueduct 

and the central canal of the spinal cord. CSF exits into the subarachnoid space 

from the fourth ventricle by the paired lateral foramina of Luschka and the single 

midline foramen of Magendie.12 

 

 

 

Figure 1.3:  Drawing of the anatomy of the ventricular system 
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1.2.2d Other CSF filled spaces: 

In some cases, some other CSF filled structures are present. These structures 

normally begin to close in utero but may continue into the first several months of 

postnatal life. These are: 

Cavum septum pellucidum – Located in between the septal laminae. 

Cavum vergae – Located posterior to the anterior columns of fornix and may 

extend to the splenium of the corpus callosum. 

Fifth ventricle – Located in the close proximity to the conus medullaris just like an 

expansion of the caudal portion of the central canal of the spinal cord. Its 

persistence is rare.12 

1.3 Cerebrospinal fluid:  

Cerebrospinal fluid (CSF) is a clear colorless body fluid within the ventricles of 

the brain and the subarachnoid spaces of the cranium and spine.13 CSF is 

produced predominantly by the choroid plexus in the lateral, third, and fourth 

ventricles.  CSF flows from the lateral ventricle to the third ventricle through the 

interventricular foramen called the foramen of Monro. CSF is delivered from the 

third ventricle to the fourth ventricle by a cerebral aqueduct called the Aqueduct 

of Sylvius. CSF then flows into the subarachnoid space through the foramina of 

Luschka (there are two of these) and the foramen of Magendie. Absorption of the 

CSF into the bloodstream takes place in the superior sagittal sinus through 

structures called arachnoid villi. When the CSF pressure is greater than the 

venous pressure, CSF usually flows into the bloodstream. However, the 

arachnoid villi act as "one-way valves", if the CSF pressure is less than the 
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venous pressure, the arachnoid villi do not let blood pass into the ventricular 

system. 

 

Figure 1.4: Flow diagram of the CSF flow pathway 

The secretion of CSF varies in a normal adult individual between 400 to 600 ml 

per day. CSF turns over about 3 to 4 times per day. At any time an average adult 

has about 150 ml CSF with a distribution of 125 ml within subarachnoid spaces 

and 25 ml within the ventricles.13,14 CSF provides hydromechanical protection of 

the brain by acting as a shock absorber and cushioning the brain against the 

skull. It also reduces the effective weight of the brain from its normal 1,500 grams 

to 50 grams. Other functions of CSF are to maintain hemostasis, provide 

nourishment and waste removal.15,16 
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CSF is derived from blood plasma and is largely similar to it, except that CSF is 

nearly protein-free compared with plasma and has some different electrolyte 

levels. A comparison of average serum and CSF is shown in table 1. 

Examination of the cerebrospinal fluid (CSF) may provide critically important 

diagnostic information in several infectious, non-infectious diseases and also 

some neurological and mental condition. CSF analysis includes observing the 

color of the fluid, measuring CSF pressure, and counting and identifying white 

and red blood cells within the fluid; measuring protein and glucose levels, and 

culturing the fluid.17,18 

Table 1.1: Comparison of average serum and cerebrospinal fluid. Chart adapted 

from Wikipedia.  

 

https://en.wikipedia.org/wiki/White_blood_cell
https://en.wikipedia.org/wiki/Red_blood_cell
https://en.wikipedia.org/wiki/Microbiological_culture
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1.4 Intraventricular hemorrhage, post-hemorrhagic ventricle dilatation, and 

hydrocephalus: 

Intraventricular hemorrhage (IVH), bleeding into the ventricles inside the brain is 

a major complication of prematurity with multifactorial etiology.19 Low gestational 

age and low birth weight are considered to be major risk factors for severe IVH.20 

Maternal substance abuse especially cocaine, smoking and any other morbidity 

like gestational hypertension, preeclampsia, kidney disease, heart disease, any 

infectious disease can cause premature delivery. Some additional risk factors for 

developing IVH are having been conceived via fertility treatment (especially in 

vitro fertilization), no use of antenatal steroid or magnesium sulphate when 

necessary, having neonatal early sepsis, acidosis, hypotension, pneumothorax 

(presence of air between the lungs and the chest wall), and treated by high 

fraction of ventilated oxygen in the first day of life.21-23 Most of the very premature 

neonates are affected by IVH within 72 hours of their birth and post-hemorrhagic 

ventricle dilatation (PHVD) occurs soon after the hemorrhage. The origin of 

hemorrhage is considered to be from the germinal matrix where rapid 

angiogenesis happens during the early neonatal period. The angiogenic vessels 

lack pericytes with immature basal lamina where fibronectin is low and have 

astrocyte with deficient in glial fibrillary acidic protein. These are the contributing 

factors for the fragility of the germinal matrix vasculature.24 Fluctuations of 

cerebral blood flow by other stressful stimuli and the inability of the preterm 

neonate to adapt and regulate the body’s cardiovascular system are other 

contributing factors to the developing germinal matrix hemorrhage, which 
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progresses to IVH upon the rupture of the underlying ependyma.24 Following an 

IVH, red blood cells are hemolyzed and hemoglobin is released into the 

ventricular space. Many proinflammatory pathways are induced and potentially 

damaging substances like free iron, free radicals, inflammatory cytokines are 

released.25 Over time, as the blood clots are broken down, the end product of 

hemoglobin breakdown named hemosiderin can become lodged in the 

subarachnoid space and reduce the amount of CSF absorption. As a result, CSF 

accumulates within the ventricular cavity. This is called post hemorrhagic 

ventricle dilatation (PHVD) and when this situation is severe it is called post-

hemorrhagic hydrocephalus (PHH). 

The grades of IVH range from I to IV as first reported by Papile et al,26 and are 

the most commonly used classification of IVH. This grading includes: 

 

Grade I – Mildest form of bleeding where the bleeding is confined to the 

subependymal germinal matrix. Most of these cases resolve spontaneously. 

 

Grade II – Here the hemorrhage extends into the lateral ventricles without 

ventricle dilatation. 

 

Grade III – Here the bleeding leads to distension of the ventricles. 

 

Grade IV – This Grade is defined by bleeding outside the ventricles and is also 

called periventricular hemorrhagic infarction. 
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 Figure 1.5: Drawings showing different grades of IVH 

 

It is reported that 80% of infants with grade IV and 50% with grade III eventually 

develop PHVD or PHH and are considered the major causes of poor later 

neurodevelopmental outcomes including cerebral palsy.27 

 

PHH is also be divided into three categories: 
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Obstructive hydrocephalus – Enlargement of the ventricles is caused by the 

blood clots, which can block the smaller aqueduct between third to fourth 

ventricles. 

 

Non-obstructive or communicative hydrocephalus - If the CSF flow is not 

impaired between the ventricles and the subarachnoid space, the enlargement of 

the ventricles is mainly from lack of reabsorption, which may cause 

‘communicating’ hydrocephalus. This lack of reabsorption is mainly due to 

obliteration of the arachnoid villi by microthrombi with subsequent inflammation 

and fibrosis.28 

  

Complex hydrocephalus – When both communicating and non-communicating 

hydrocephalus persist simultaneously it is called complex hydrocephalus. 

 

All types of hydrocephalic infants require permanent or temporary interventions to 

alleviate the symptoms of raised intracranial pressure and to prevent further 

damage to the brain matter. 

 

1.5 Diagnosis of IVH, PHVD, and current monitoring: 

Premature neonates are always at risk of developing IVH and subsequent PHVD. 

Most of the IVH is diagnosed by the third day of postnatal life.29 Thus, it is now 

routine in most centers to perform a head ultrasound (US) of all premature 

neonates within 1 week of their life. At our center, neonates born at less than 
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1500g are screened during the first week of life as well as the fourth week of life if 

no pathology is present on the first image. If IVH or PHVD is detected on any 

scan, neurological exams are routinely performed to assess for worsening signs 

and symptoms of increased ICP, as well as subsequent head US is required. 

Though IVH may have no initial symptoms, raised intracranial pressure (ICP) due 

to severe IVH may be obvious just by looking at the baby. Because the ventricles 

in the brain are dilated, the pressure is increased. As the skull bones have not 

fused, swelling of the head or bulging of the fontanelles may be visible. This can 

be monitored by regular measurements of head circumference (HC) and 

palpation of the fontanelle. Also, because weakened blood vessels in the brain 

are susceptible to damage from sudden blood pressure changes, abnormal blood 

pressure readings may be found. Additionally, Symptoms of raised intracranial 

pressure like apnea, vomiting, papilledema, altered consciousness, Cushing’s 

triad (increased systolic pressure, widened pulse pressure, bradycardia) are not 

uncommon in case of severe PHH. But these symptoms are not specific to IVH 

because some other conditions like a brain tumor, brain abscess, stroke, 

epilepsy, meningitis, encephalitis can cause these types of symptoms. To confirm 

the diagnosis, physicians rely on imaging of the neonatal brain. 

 

1.6 Imaging modalities of neonatal brain: 

Brain imaging is an important step in the diagnosis and management of various 

neurological conditions for both the adult and neonatal populations. In recent 

decades advancement in various imaging modalities has resulted in improved 
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brain imaging, which is providing a better understanding of brain functional 

activity. Thus, brain imaging has become one of the most preferred non-invasive 

diagnostic methods for both physicians and patients. However, imaging 

premature neonates is not as feasible as imaging the adult population. The main 

obstacles to overcome are: control the temperature outside the incubator, 

immobilization, ventilation for the immature lungs and IV access for antibiotics or 

nutrition. Among various imaging techniques, cranial ultrasound is still the 

preferred method for the neonatal population because of its low cost, minimal 

handling and ability to image the baby inside the incubator. The following are 

short descriptions of different imaging modalities of the neonatal brain. 

 

1.6.1 Computed tomography (CT): 

CT images are produced by combining a series of x-ray projections using a 

computer to form cross-sectional images. The first images of the preterm 

neonatal brain were performed using CT in the late 1970s.26 But a recent 

retrospective study showed that CT was less likely to detect injuries to the deep 

gray nuclei, brainstem and cerebellum, as well as strokes (P<0.001 for each).30 

Furthermore, because of the lack of myelination in the newborn brain, gray/white 

matter contrast on CT is poor.31 Moreover, CT uses ionizing radiation, which can 

cause DNA damage, so, it should be avoided as much as possible in infants 

because of their rapid cell division in many organs and induction of radiation 

dose-related cancer in later life.32 
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Figure 1.6: CT images of intracerebral hemorrhage. Image adapted from BMC 

Neurol 7; 1(2007). (open access) 

1.6.2 Magnetic resonance imaging (MRI): 

MRI is based on the body’s natural magnetic properties and uses a hydrogen 

nucleus (a single proton) to produce detailed images from any part of the body.33 

MRI has high tissue contrast, which is better for differentiating white and grey 

matter along with hemorrhage and allows better structural visualization. The first 

human scan using MRI was performed in late 197034 and the first neonatal brain 

scan was performed shortly after in early 1980.35 Most of MRI imaging of 

neonates require removal of the neonate from the neonatal intensive care unit 

(NICU), transporting the neonate to the radiology department and imaging in a 
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conventional adult-sized scanner.36 The following are some other reasons, which 

make MRI imaging of a neonate challenging.  

(1) It is difficult to maintain the temperature and other facilities outside the 

incubator. 

(2) The small size of the premature neonatal brain requires higher resolution 

to clearly delineate brain structures. 

(3) The neonate’s movement may create unusable images as babies are 

unable to follow instructions to lie still. 

(4) Optimization of the MRI pulse sequences is required as the immature 

brain has higher water content and more unmyelinated white matter 

compared with adults, resulting in different tissue contrast from that of the 

adult brain.37  

Significant efforts have been taken to improve the MRI imaging process of 

neonates and to overcome the obstacles. For the most premature infants, the 

use of an MR compatible incubator can overcome some of the obstacles.36 

Immobilization of the neonate can be achieved using an immobilization blanket, 

but it is not suitable for all the neonates. The use of medical equipment such as 

IVs, ventilation devices, infusion pumps, and resuscitation devices, which are not 

safe to use in the MRI suite, is the largest problem for neonatal MRI scans. 

Overall, MRI for the neonate is expensive because making all medical devices to 

be MRI compatible is not always possible. 
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Figure 1-7: MRI of the brain of a) 26 weeks neonates with grade I IVH b) 27 

weeks neonate with grade III IVH with hydrocephalus and c) 25 weeks neonate 

with grade III IVH with severe hydrocephalus. 

1.6.3 2D cranial ultrasound (2D US): 

Since its clinical introduction in the late 1970’s cranial ultrasound (CUS) has been 

used worldwide for detecting various neonatal conditions including both 

congenital and acquired.38 Cranial US involves exposing the head to high-

frequency sound waves to produce images of the brain. Linear array, higher 

frequency transducers (7–12 MHz) are used for near-field imaging and sector 

transducers are used for a wider far field of view. Neonatal cranial sonography 

represents the first-line imaging modality in neonates due to its portability, lower 

cost, speed, lack of ionizing radiations, no need of sedation and rapid acquisition 

of images at the bedside.39 
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Initially, ultrasound was performed through the temporal bone, which allowed for 

measurement across the anterior horn.40 Later, the anterior fontanelle was used 

as an acoustic window for imaging. Imaging is performed via the anterior 

fontanelle in the coronal and sagittal planes. Mastoid and posterior fontanelle 

approaches are useful in the demonstration of a subtle intraventricular bleed in 

the occipital horn in patients with suspected bleeding in the brain stem and 

adjacent cerebellum. Screening via supplemental fontanel may have some 

added value.41 The acoustic windows of the neonatal brain for the US are shown 

in figure 1.8. 

 

 

Figure 1.8: Drawings showing fontanel of the neonatal brain used as an acoustic 

window for the US 
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In US images, ventricles are anechoic (black) as they contain fluid CSF, whereas 

the choroid plexus, small hemorrhages, and areas of infarction appear 

hyperechoic (white). Moreover, gray matter tends to be hypoechoic and white 

matter tends to be hyperechoic. Also, the normal brain is always nearly 

symmetric.41 Any asymmetry allows for the detection of early changes of 

infarction or focal ischemia. PHVD then appears as an increasing CSF, which 

appears as an increased black area inside the brain. The mixture of blood within 

the CSF makes it hypoechoic and large blood clots appear to be hyperechoic. 2D 

US images of patients with mild, moderate, and severe PHVD can be seen in 

Figure 1.9(a-c). 

 

Figure 1.9: Coronal US images of the patients suffering from a) mild, b) moderate 

and c) severe PHVD 
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In 2D cranial US, mostly used ventricular parameters measured in the coronal 

and sagittal planes are VI = ventricular index, AHW = anterior horn width, 

TOD = thalamo-occipital distance. The ventricular index (VI) is defined as the 

distance between the falx cerebri (midline of brain) and the lateral wall of the 

anterior horn in the coronal plane, anterior horn width (AHW) is defined as the 

diagonal width of the anterior horn measured at its widest point in the coronal 

plane, and thalamo-occipital distance (TOD) is defined as the distance between 

the outermost point of the thalamus at its junction with the choroid plexus and the 

outermost part of the occipital horn in the parasagittal plane.42 Some other 

parameters occasionally are used, such as the frontal horn ratio (FHR), 

hemispheric width (HW), ventricular height (VH), third ventricular width.  

Figure 1.10: US images of different ventricular measurements a) VI, AHW, 3rd 

ventricle b) TOD 
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These parameters have been used for years to define the severity of IVH, but 

these measurements may have some limitations of plane selection that are 

technician dependent, also they have some Intra- and inter-observer variability. 

Between 1980 and 1990 some researchers tried to develop a method to 

minimize the limitations of 2D US images. Brann et al. developed a cylindrical 

coordinate-based method to estimate ventricular volume (VV) from 2D US 

images assuming that the 2D planes were recorded at equal angular spacing, 

and found good agreement in phantom experiments.43 Brann et al. found good 

agreement of VV from 2D US images with the removed fluid during 

interventions.44 In another study, Brann et al. were able to create guidelines 

using images of 48 patients with severe IVH and then used these guidelines 

prospectively to predict the necessity of intervention.45 All of these methods were 

never used clinically because of the long-time needed for segmentation and 

difficulties in reproducing ultrasound planes. 

1.6.4 Introduction of 3D cranial ultrasound (3D US): 

3-dimensional ultrasound (3D US) is a technique where conventional 2D US 

images are converted into a volumetric image. In 1986 the first 3D images of a 

fetus were captured using 3D US technology in Japan. At first 3D US image was 

confined to obstetrical cases, and then expanded to gynecological and cardiac 

imaging. In the late 1990s, 3D US systems became more readily available in the 

clinical research setting. Imaging was accomplished initially using a mechanical 

device to rotate a conventional 2D US transducer to produce the third 
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dimension.46 Other groups generated 3D US images by tracking a 2D US 

transducer during freehand scanning using electromagnetic tracking.47 The use 

of 3D US for scanning the neonatal brain has been reported in several papers.48-

51  Salerno et al. in their single-center study on 30 patients proved that 3D US is 

a diagnostically accurate and efficient imaging tool for evaluation of the neonatal 

brain. They found shorter NICU acquisition time and smaller standard deviation in 

3D US compared to the 2D US.48 Mclean et al. found that 2D US measurements 

(VI and AHW) can be accurately reproduced from 3D US images.51 In another 

separate single centered study with 59 patients Romero et al. could successfully 

differentiate normal as well as IVH, PHH, periventricular leukomalacia cases from 

both 2D and 3D US images.52 

Most of the 3D images were acquired using a motorized device to translate, tilt, 

or rotate a transducer during image acquisition. These captured images were 

recorded by a computer. The computer that recorded the images and controlled 

the motor reconstructed the 3D US image. Although the commercially available 

3D US system (Philip, APEC, Canon) are accurate, their high cost may limit the 

use in clinical practice. More recently, commercially available matrix transducers 

have been used to image the neonatal ventricles.5 

1.7 Treatment of IVH, PHVD, and PHH:  

There is no specific treatment for IVH, except to treat any other symptoms that 

may worsen the condition. Minimally invasive surgery and definitive surgery are 
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the standard management method for neonates with PHVD that do not resolve 

spontaneously. Research is still ongoing to improve treatment modalities. 

1.7.1 Medical treatment and minimally invasive treatment: 

Medical treatment means oral or intravenous administration of drugs that reduce 

the symptoms of a specific disease. Some of the drugs that were used to treat 

PHH are described below.  

1.7.1a Diuretics:  

Acetazolamide and furosemide are the diuretics that can reduce the production 

of CSF. These two drugs have been suggested as non-invasive therapies to 

reduce the production of CSF and as a result, reduce the risk of surgical 

treatment.55 But no trial could prove a decreased risk for the need for a VP shunt 

or death with acetazolamide and furosemide therapy.56,57  Moreover, diuretic 

therapy increases the risk of nephrocalcinosis, biochemical anomalies, motor 

impairment, and disability.58 After comparing the risk and benefits this therapy is 

no longer in use or recommended. 

1.7.1b Fibrinolytic agent:  

The intraventricular administration of the thrombolytic agent streptokinase was 

considered effective in an early, non-randomized study. When intraventricular 

streptokinase was compared with standard treatment modalities of PHVD in a 

study, the numbers of deaths and babies with shunt dependence were almost 
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similar in both groups. Indeed, more of the fibrinolytic treated patients' required 

shunt surgery than those who were not treated by streptokinase.59 Moreover, 

streptokinase carries a high risk of triggering new hemorrhages.55 So, this 

therapy is also not recommended. 

1.7.1c Drainage, irrigation, and fibrinolytic therapy (DRIFT):  

Intraventricular administration of tissue plasminogen activator (tPA) and 72 hours 

drainage via two ventricular catheters (one frontal on the right, and one occipital 

on the left) has been proposed recently by Whitelaw et al.58 But they found that 

DRIFT failed to reduce the need of VP shunt surgery or death in preterm infants 

with PHH when compared with tapping of CSF from hydrocephalic neonates.60 

However, due to the significant risk of meningitis from the indwelling catheters 

and increased risk of secondary hemorrhage, DRIFT therapy failed to prove its 

recommendation.61 

1.7.2 Temporary surgical interventions: 

The most commonly used temporary methods include ventricle tap (VP), lumbar 

puncture (LP), external ventricle drainage (EVD), ventricular access devices 

(VAD), and ventriculosubgaleal shunts. In our center, the ventricle tap is the most 

preferred method for temporary ICP relief. 

1.7.2a Ventricular tap (VP):  



26 
 

 
 

VP in the most commonly used temporary method for relieving ICP created from 

hydrocephalus in most of the institutions especially for those patients with 

extremely low birth weights who might have sensitive skin and require minimal 

handling. VP is the removal of CSF from the lateral ventricle by insertion of the 

needle through the anterior fontanelle. This is an effective method for obstructive 

hydrocephalus. It should be noted that the neonate will experience periods of 

high ICP because of hydrocephalus followed by low ICP immediately following 

the intervention. Thus, the change in pressure must be monitored carefully and 

the risk of infections can be minimized by aseptic precautions. 

 

Figure 1.11: Drawing showing ventricular tap 

1.7.2b Lumbar puncture (LP): 

Lumbar puncture is another method of CSF removal from subarachnoid space 

through a needle inserted into the lumbar spine. Lumbar puncture had previously 
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been shown to improve hydrocephalus in patients who appeared to have 

communicating hydrocephalus (not a full blockage in the flow of CSF).62 This is 

not the recommended method for obstructive hydrocephalus. 

 

Figure 1.12: Drawing showing lumbar puncture 

1.7.2c External Ventricle Drainage (EVD):  

To avoid repeated VT or LP, sometimes EVD is inserted in some cases of 

neonates with progressive PHH, which allows constant removal of CSF and 

control ICP. A catheter is inserted through the fontanelle into one of the lateral 

ventricles and the other end of the catheter is placed within an external, closed 

drainage system where the amount of CSF drainage can be adjusted manually. It 

is reported in one study that 32% of survivors treated by EVD did not require 

permanent VP shunt.63 
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Figure 1.13: Drawing showing external ventricular drainage 

1.7.2d Ventricle Access Devices (VAD) and Reservoirs: 

Like EVD, ventricular access devices (VADs) have a catheter placed into the 

anterior horn of one of the lateral ventricles, but instead of an external container 

constantly collecting CSF at the end, a subcutaneous reservoir is present that 

collects CSF. This reservoir can be aspirated through a needle puncture to 

remove CSF intermittently. The difference between VT and VAD is that it allows 

more controlled removal of CSF. VAD has some drawbacks, such as peri-

operative infection, skin defects, and CSF leaking.64 
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Figure 1.14: Drawing showing ventricular reservoir device  

1.7.2e Ventriculosubgaleal shunt (VSGS): 

VSG was first used for temporarily diverting CSF in a more physiological manner 

for those infants who are less than 1500 g in weight and are not capable of 

tolerating a ventriculoperitoneal (VP) shunt.65 A catheter is inserted to connect 

the lateral ventricles into a large ‘pocket’ made in the subgaleal potential (space 

between epicranial aponeurosis and the periosteum of the skull), which allows 

temporary continuous drainage of CSF until the pocket becomes full of CSF. In 

some cases, VSG can be converted into a VP shunt when the infant gains the 

desired weight. VGS may have a lower risk of infection due to fewer aspirations. 

Despite favorable reports, the procedure has not gained universal acceptance 

probably because the protrusion of the CSF filled pocket from the patient’s head 

does not look good cosmetically.  
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Figure 1.15: Drawing showing ventriculo-subgaleal shunt 

1.7.3 Permanent endoscopic and surgical treatment method: 

1.7.3a Endoscopic Third Ventriculostomy:  

This is an endoscopic approach to make a hole on the floor of the third ventricle 

so that CSF can drain into the basal cistern ( a dilatation of subarachnoid space 

rostral to the basilar pons and ventral and caudal to mammillary bodies) from 

where it can be reabsorbed by the arachnoid granulation.66 Choroid plexus 

cauterization (CPC) is often combined with ETV, which allows a decrease 

production of CSF. The success rate of ETV in obstructive hydrocephalus is 

better than in communicating hydrocephalus.67 It was reported that the initial 

failure rate is higher in ETV than shunt in children, but the relative risk becomes 

progressively lower for ETV after about 3 months.68 This procedure is not 
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suitable for the neonates who are less than 6 months of age and who are 

suffering from communicative hydrocephalus. 

1.7.3b Ventriculo-peritoneal Shunt (VPS):  

The ventriculo-peritoneal (VP) shunt is the definitive surgery for patients with 

PHH. A shunt is a soft, flexible tube-like catheter. The top end of the catheter is 

placed in the ventricle fluid spaces inside the brain and the other end is 

introduced into the abdominal cavity. This tube is attached to a one-way valve 

that allows flow only from the ventricles to the peritoneum. Sometimes a special 

type of shunt can be used, named programmable shunt valve, where the 

pressure setting is adjustable so that the neurosurgeon can program the shunt to 

control how much CSF is draining. Nowadays antibiotic-impregnated shunt 

catheter has been introduced to minimize the risk of infection. Although 

Continuous development of the shunt device has provided significant 

improvement to the outcome of hydrocephalus patients, the main obstacles 

remain infection and obstruction, which require shunt revision surgery. Recently 

some groups of researchers have shown that intraoperative ultrasound guidance 

catheter placement is associated with a significantly lower shunt obstruction 

rate.69 VP shunt complications can differ according to a patient's age and the 

etiology of the hydrocephalus. The incidence of complications following VP shunt 

placement is reported to be around 20 to 40%.70 Though VP shunt can be a 

treatment option for a wide range of patient ages, from premature to very old 

patients, it is not suitable for the neonates who are less than 1500 g of weight. 
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Figure 1.16: Drawing showing ventriculo-peritoneal shunt 

Another type of VP shunt that lacks a valve, called valveless shunt, is also used 

in some institutions. In one study of the adult population, there was no difference 

in the rate of surgical shunt revision or differences in the time interval from 

insertion to first surgical revision between the two shunt modalities. The duration 

of neurosurgical hospitalization was shorter for patients receiving a valveless 

shunt.71 The use in preterm neonates with PHVD requires either the removal or 

conversion to a valve regulated VP-shunt once the infant becomes ambulatory 

enough to sit upright.72 This valveless shunt may allow patients to go home 

earlier but it has more risk of over drainage. 
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1.8 Robarts 3D US imaging system: 

To minimize the cost of 3D imaging and to improve the overall system a new 3D 

US scanner system has been introduced in our lab that can be coupled to any 

clinical 2D US machine with an appropriate conventional transducer used for 

imaging neonatal brains. In addition, a volumetric phantom was developed using 

three-dimensional rapid prototyping technology to mimic a neonatal head with 

both mild and severe ventriculomegaly. This 3D US system was shown to be 

able to measure ventricle volumes accurately through a fontanelle in neonates, 

as well as able to measure simulated ventricles in test phantom accurately.53 

This system was also introduced in the NICU of Victoria Hospital, London, 

Ontario to image premature babies with IVH, and was used to further validate its 

use for measuring VV by comparing volume measurements from 3D US images 

obtained before and after ventricular tap (VT) with the reported volume of 

removed CSF from the tap.54 This 3D US system is now being used clinically to 

monitor IVH neonates and to decide when to tap and how much CSF to draw. 

1.8.1 The 3D US system:  

The 3D US system acquires 2D US images and reconstructs them into a 3D 

image. Different researchers have tried to develop their 3D US imaging systems 

using different techniques.48-51 A new 3D US system has been developed in our 

lab that can be coupled to any clinical 2D US machine with an appropriate 

conventional transducer used for imaging neonatal brains. This system consists 

of a handheld motorized device with a button and a transducer housing that can 
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house a 2D US probe. Although this system can be used with any US machine 

and an appropriate transducer, HDI 5000 (Philips, Bothel WA) US machine and 

C8-5 (Philips, Bothel WA) curved array 5 - 8 MHz broadband transducer was 

used until 2016.11 A new machine (Philip iU 22) was used during the period 2018 

– 2019 with the same transducer. After pressing the button of the motorized 

device, which is connected to a computer via USB, the US probe tilts about its 

front face. While the probe tilts, the 2D US images are acquired into a computer 

and reconstructed into a 3D image. The software was developed in our 

laboratory to control the motor’s movements and to accept the 2D US images to 

reconstruct them into 3D images. A photograph of the motorized device with a 

transducer attached is shown in figure 1.17. 

 

Figure 1.17: Device for 3D US imaging a) with USB cable b) with neonatal 

transducer 
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1.8.2 Image acquisition and image segmentation: 

For image acquisition, the person who performs the scanning locates the anterior 

soft part of the brain first, and then firmly holds onto the device’s hand grip (see 

Fig. 1.17) while the device tilts the transducer on an axis at the probe tip, which is 

against the patient’s head. Images are acquired at 25 frames/second over a scan 

angle of 30-72 degrees with the image acquisition time between 4-14 seconds.  

Typically, for neonatal studies, we used an angular spacing of 0.3 degrees and a 

total scan angle of 65 degrees, for a scan time of 8.7 s. The most commonly 

used depth was 8cm for most of the neonates and 9 cm for relatively older 

babies. Because of the movement of the patients, sometimes both lateral 

ventricles cannot be obtained in the first attempt. Usually, it requires 1-8 attempts 

to acquire both lateral ventricles. This makes the total bedside scan time about 2-

15 minutes. 

After 3D image acquisition, the lateral ventricles are manually segmented by 

trained observers in parallel sagittal slices with 1 mm spacing between adjacent 

slices and verified by a pediatric neurosurgeon. The boundaries of the ventricles 

must be carefully observed in both the sagittal and coronal plane and the lateral 

margins of the contours need to be manually adjusted to ensure the full 

segmentation of the ventricle. Each image required 20 - 45 min to segment a 

ventricle. The process of segmentation is shown in figure 1.18. Sometimes the 

right and left ventricles have to be segmented separately in separate images due 

to their large size. After full segmentation, the software automatically calculates 

the volume of the ventricle. The software has been validated for volume 
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measurements using known volume phantoms and by the interobserver 

correlation of the same images segmented by different observers.11 

Figure 1.18: Process of segmentation a) 3D US cube of the ventricles before 

segmentation, b) the segmented ventricle boundary, c) segmented ventricle after 

full segmentation.  

1.9 Research hypothesis and objectives:  

The overall objective of this thesis is to introduce the 3D US system into the 

clinical practice of the neonates suffering from IVH. Previously this system was 

used only for research purposes. We have successfully used this system to 

monitor IVH babies and to make decisions about the management protocol. For 

example some neurosurgeons are using the 3D US ventricle volume to 

determine when to tap and how much to tap. All the studies described in this 

thesis were conducted using this 3D US system. 

In chapter two, our objective was to determine the amount of CSF that should be 

removed during each VT. We expected to find a better correlation of tap amount 
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with 3D US total lateral ventricular volume than the traditional rule of removing 

CSF using the weight. We used a retrospective dataset to test this hypothesis. In 

this chapter, the findings met our expectations and supported the hypothesis that 

3D US improves the volume determination of ventricular tap in neonates with 

intraventricular hemorrhage. 

In chapter three, we proposed a hypothesis that the volume of two lateral 

ventricles may be affected by the posture of the neonates. We started a new 

experiment using this hypothesis. We changed the posture of the baby and 

scanned two times after 30 mins of changing each posture. This study was never 

done before. We found the change of volume is not significant enough to be 

strong statistically. In this chapter, the findings did not support our hypothesis. 

In chapter four, an overview and summary of the important findings of Chapters 

2-3 and the appendix have been presented. The limitations of the current findings 

and potential solutions for those limitations were also highlighted. Finally, some 

directions for future research are addressed in the end.   

In the appendix, another study was included where we tested the fact that how 

short-term volume change of the total lateral ventricular volume after a VT can 

influence the further management protocol of IVH neonates. We used a 

combined retrospective and prospective data for this experiment. Our hypothesis 

for this chapter was that higher ventricular volume difference after the tap is a 

predictor of the future requirement of VP shunt. The results of this chapter 

supported the hypothesis. 
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Chapter 2 

 

2. Ventricular tap for post-hemorrhagic ventricle dilatation: How much CSF 

should be removed?  

2.1. Introduction: 

Intraventricular hemorrhage (IVH) is the bleeding inside the ventricles, which is 

the most common intracranial hemorrhage in preterm neonates. Recent reviews 

showed that the rates of IVH have remained 25% to 30% for very low birth weight 

infants (VLBW, <1500 grams) although survival of small premature infants has 

improved due to advances in specialized obstetric and neonatal intensive care in 

the past several decades.1,2 Severe degrees of IVH, grades II-IV can lead to 

post-hemorrhagic ventricle dilatation (PHVD), which is the enlargement of 

ventricles by an increased amount of cerebrospinal fluid (CSF). PHVD is related 

to higher mortality and poor neurodevelopmental outcome later in life,3 requiring 

accurate diagnosis and proper treatment when necessary.  

Cranial ultrasound (US) has been shown to be superior to diagnose IVH, PHVD, 

and to evaluate the need for intervention.4 Clinicians base their intervention 

mostly on a combination of clinical signs of elevated intracranial pressure (ICP), 

apnea, bradycardia, a rapid increase in head circumference (HC), and ventricular 

size assessed by 2D US; however, the timing of interventions is subjective.5 

Though the definitive treatment for PHVD is the placement of ventriculoperitoneal 

(VP) shunt to divert CSF from the brain to the peritoneal cavity, there is a general 

agreement that early VP shunt is not an option for small infants whose body 
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weight is less than 2000 gm, and also there is a risk of shunt failure, blockage, 

infections, and skin ulcerations.6 Other temporary methods include ventricular tap 

(VT), lumbar puncture (LP), ventricular reservoir, ventricular access device 

(VAD), ventriculo subgaleal shunt (VSGS), endoscopic third ventriculostomy. The 

main goal of these treatments is to reduce ICP, protect the brain from damage 

and avoid the need for a permanent shunt.7 

Previous works have been performed to compare various treatment methods,6-9 

which are still controversial. Since many cases of PHVD resolve after temporary 

CSF diversion procedures and do not require a shunt,10 the primary treatment 

option in our institution is ventricle tap (VT), which involves the removal of CSF 

by insertion of a needle into the lateral ventricle through anterior fontanelle. 

Traditionally 10 ml/ kg CSF is removed in each VT. But it has been observed that 

this rule is not always followed.  

We aimed to gather all the information of the infants who have undergone at 

least one VT in our institution from 2012 to 2016, with an objective to correlate 

the tap amount with infants’ age, weight, and 3D US volume of the total lateral 

ventricles and to identify the strongest correlation. 

2.2. Methods: 

This study is a retrospective review of physical, neurological parameters and 3D 

US volume charts of premature infants affected by IVH and PHH who were 

intervened by at least one VT. The research protocol was approved by the 

Research Ethics Board at the University of Western Ontario (REB no.100315). 
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2.2.1. Patient selection: 

Premature neonates in the neonatal intensive care unit (NICU) of Victoria 

Hospital, London, Ontario with a positive diagnosis of IVH on an initial clinical 

head ultrasound exam were recruited upon parental informed consent during the 

years between 2012 and 2016. Once enrolled recruited infants underwent serial 

3D ultrasound exams one or two times per week according to the severity of IVH 

until discharge from NICU or transfer to another center. Neonates with congenital 

hydrocephalus and any other congenital anomaly with IVH were excluded. We 

included patients with IVH and comorbidity like meningitis who required 

intervention. Clinicians based their interventions according to some qualitative 

findings of 2D cranial US images and some combination of clinical and 

neurological findings (apnea, bradycardia, increase in HC, pupil condition and 

fontanelle palpation). The clinical care team was not aware of 3D US images and 

volume measurements. 70 premature neonates with IVH were recruited in our 

center between April 2012 to May 2016 by the previous graduate student of our 

lab. Among them, 54 resolved without any intervention and were excluded. Only 

16 patients required ventricular tap, among them 5 patients had insufficient 

information and we could not include those 5 in this study. Finally we have 

identified 11 infants who have had at least one VT, allowing us to analyze the 

data of 42 individual taps from those 11 patients.  

2.2.2. 3D US system: Described in chapter one, section 1.8.1 of this thesis. 

2.2.3. 3D US image acquisition and segmentation: Described in chapter one, 

section 1.8.2 of this thesis 
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2.2.4. Data analysis and statistics: 

We analyzed the data of each patient who had a VT after their birth. The 

variables recorded were gestational age, gestational weight, HC at birth, gender, 

age at IVH diagnosis, 3D US  volumes of each ventricle in every scan, number 

and date of tap for each patient, amount of CSF removed in every tap, age, 

weight at the day of individual tap, HC just before and after tap, 3D US volume 

before and after tap, requirement of shunt placement and neurological outcome. 

Linear regression (R) was performed among selected variables (tap amount, 

weight, age, HC, TVV). A regression of R2 > 0.5 was considered strong and R2 < 

0.5 was considered weak in this study. Bivariate correlation (measure of 

association of relationship between two variables), the coefficient for all linear 

regression and marginal model analyses (multiple assessments of the same 

subject at different time points) were also performed. The software used was 

SPSS v.25 (IBM Corp., Armonk, NY, USA).  

2.3. Results: 

2.3.1. Patients characteristics: 

Ventricular taps were performed in the case of 11 infants among 70 

hydrocephalic neonates during this study period who were treated by VT ranging 

from 1 to 9 times. The demographic and clinical details of the 11 infants are 

shown in table 2.1.  
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Table 2.1: Clinical characteristics of the study population 

 

 

2.3.2. Determining tap amount: 

Decisions of intervention by VT were decided by the clinical team based on the 

measurement of 2D cranial US and other clinical parameters. Moreover, tap 
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amount was also calculated by clinicians by following the traditional rule of 10 

ml/kg and the other clinical status such as, heart rate, respiratory rate, blood 

pressure, oxygenation of the patient at that time to determine how much CSF can 

be removed safely. While analyzing various parameters related to the tap we 

found that this traditional rule was no longer in use and the tap amounts varied 

with a wide range. The differences of the expected tap amount according to the 

clinical rule of 10 mg/kg with the actual tap amount were from -19 ml to +23.15 

ml.  The actual tap amount, expected tap amount, deviations along with weight 

and TVV by the 3D US are listed in table 2.2. Information that was not recorded 

is marked as not determined (N.D.). 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2: Measured variables on the day of tapping 
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2.3.3. Correlations of tap amount with age, weight, head circumference, and 

3D ventricular volumes:  

We used linear regression in Microsoft Excel to find any correlations between the 

actual tap amount with the age, weight, head circumference, and 3D ventricular 

volumes. R2 of tap amount with TVV, HC, weight and age were 0.55, 0.39, 0.33 

and 0.29 respectively shown in figure 3.1 (a-d). The lowest correlation of tap 

amount was with age, HC just before the tap was better correlated with the actual 

tap amount, and the total lateral ventricle volume had the highest correlation with 

tap amount. To compare and confirm the findings of linear regression we 

analyzed the data in the marginal model (Multiple assessments of the same 

subject at different time points). The software used was SPSS v.25 (IBM Corp., 

Armonk, NY, USA). The Pearson correlation of tap amount with TVV, HC, weight, 

and age were 0.739, 0.622, 0.595 and 0.468 respectively, which supports our 

findings of linear regression. In both analyses, our result suggests that ventricle 

volume had the highest correlation with tap amount among the 4 predictors of 

interest. Bivariate correlations among 4 predictors and tap amounts are shown in 

table 2.3. 
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Figure 2.1: Linear regression of tap amount with weight, age, HC, and the total 

lateral ventricle volume before tap. 

 

Table 2.3: Results of Bivariate correlation between tap amount and 4 predictors 

(age, weight, HC and total ventricle volume) 
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**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed) 

 

In addition, table 2.4 shows some coefficient summaries, which show that 

ventricle volume is best at predicting tap amount even when accounting for age, 

weight, and head circumference separately. Age, weight, and HC were not 

significant when included in the model with ventricle volume, which further 

supports the suggestion that ventricle volume is a better predictor of tap amount 

than age, weight, or HC. 
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Table 2.4: Coefficient summaries of 3 linear regression results evaluating 

ventricle volume with each of the other 3 predictors (Wt, age, HC) 

 

 

Overall, there was a significant relation between tap amount and each predictor 

(ventricle volume, age, weight, HC) on their own. But TVV had the highest 

relation among all predictors. 
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Table 2.5: Results in the Marginal model with all 4 predictors (tap amount, 

weight, age, HC, total ventricle volume) 

 

 

2.3.4. Outcomes of VT and requirement of VP shunt and revision shunt: 

Serial tapping was performed on these neonates before the placement of the V-P 

shunt. The average number of taps performed per patient was 4. Among those 

11 patients, 2 patients did not need any shunt placement, the other 9 infants 

received V-P shunt for management of PHVD. Among the 9, 2 infants received a 

revision shunt. No infant died during this study period. The infants were observed 

for developmental and neurological assessments after the placement of shunts. 

2.4. Discussion: 

In our retrospective study, we investigated the potential for 3D US-based 

measurements of ventricular volume (VV) from neonatal brain images to 

characterize the volume of CSF that should be removed in each tap. Currently, it 

is not known how much CSF is safe to drain, and practices vary among 

neurosurgeons and among institutions. However, one study reported that 10 ml 
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of CSF should be removed for each kg weight,12 but minimum and maximum 

limits have not been studied. One recent study has claimed that cerebral 

oxygenation would improve after the removal of less CSF than the standard of 10 

mL/kg.13 Removing a larger amount of CSF can cause transient apnea, 

bradycardia after the intervention,14 but the removal of a too-small amount may 

not improve the clinical status and may lead to excessively repeated 

interventions if the infant does not improve clinically. 

Previously the 3D US measurement of the ventricular volume was validated 

against a test phantom with a known volume and showed that the 3D US 

geometric reconstruction was found to be accurate with an error of < 0.2%.11 This 

system was also used to compare the ventricle volumes of IVH patients 

measured with 3D US and MRI and found high agreement ( R2 = 0.99).3,15 but 

with a systemic bias toward lower VV measured by the 3D US due to issues in 

the visualization of some midline structures that are near the posterior fossa.3 But 

the volume difference of pre tap and post tap VV measured by the 3D US was 

highly correlated with the tap amount. Kishimoto et al. found the Pearson 

correlation coefficient of R2 = 0.92,3 while Brann et al obtained R2 = 0.84.19 2D 

cranial US is still the clinically preferred method to diagnose IVH and to evaluate 

the necessity of intervention, but this method may have few errors, variability and 

cannot be fully relied on to provide accurate volume measurements. Although the 

3D system was proven to be better to predict interventional necessity, it has not 

yet been adopted clinically as a standard care tool.3 
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In this study we compared the amount of CSF removed in each tap with the age 

on that day from conception, weight in grams on the same day, HC measured 

just before tap and the total volume of the lateral ventricles measured by the 3D 

US just before VT. Based on guidelines, the tapped volume should be well 

correlated with neonate weight as this is the well-accepted biomarker to 

determine how much fluid should be removed in each tap. However, in our study, 

the tap amount was better correlated with pre-tap total volumes of the lateral 

ventricles measured by the 3D US. As the clinical team was not aware of the 

volume of the 3D measurements, removal of CSF was done according to the 

weight and another clinical status. However, there is no known parameter in 2D 

US-based measurements depending on which clinician can determine the tap 

amount in each VT; they mainly rely on weight and other neurological and clinical 

parameters. In our study, the weak correlation between tap amount and weight 

suggests that this biomarker might not be sufficient to determine the CSF amount 

that should be removed. 3D US-based volume measurements can be used 

concurrently to avoid frequent taping and to improve the clinical status of the 

infant. 

Some researchers have found improved cerebral hemodynamics and 

oxygenation during CSF removal after 50 % of planned CSF removal that was 10 

mL/kg.13 But it was not reported that cerebral hemodynamics fell after 100% or 

more than 100% of planned CSF removal. However, it was shown that too little 

aspiration (< 10 ml/kg body weight) has no effect on ventricle size or ICP.12 

Moreover, in our retrospective study of 42 VTs, the given amount of CSF removal 
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was tolerated by all the infants and no deterioration of clinical status was 

observed during this period. 

One limitation of the measurement of VV is the time required to segment each 

ventricle (20- 45 mins) and requirements for training to perform this task. If this 

limitation can be overcome with methods such as deep learning, the 3D US-

based measurement of VV might be adopted clinically considering that it might 

be a better tool for the management of PHVD. 

There are wide variations of interventional treatments such as lumbar puncture, 

VT, ventricular reservoirs tapping but we only considered VT in this study, which 

is a limitation of this study. The determination of tap amount by 3D US-based 

measurement of VV should be also validated among the other interventional 

treatments. An additional limitation in our study is the small number of patients (n 

= 11) who required interventions (total VT = 42) and that some information on 

some of the days were not recorded. Also, some manual segmentations were not 

possible when the dilatation of the ventricles was very large and resulted in bad 

3D US images on some interventional days. These cases were excluded from 

our study. In some cases, the fontanelle size was a limiting factor and the 

probable cause of producing bad 3D US images.16,17 The median age of fontanel 

closure is about 13.8 months in the term group and fontanelle size in preterm 

infants do not differ significantly from that of term infants after reaching term 

age.18 But the anterior fontanelle usually shrinks as the neonates get older and 

the posterior acoustic shadow of the edge the frontal bone reduces the image 

quality and increases invisibility of US image. 
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Because of the diversity among various centers and also among neurosurgeons 

regarding the amount of CSF that should be tapped, it has become a high priority 

to investigate a standard guideline for the neurosurgeons. As such, we have tried 

to present a potential clinical use of 3D US-based measurement of total lateral 

ventricular volumes in this regard. However, future larger, multicenter studies are 

required before generating guidelines for tap amount during intervention. 
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Chapter 3 

 

3. Does the head position affect ventricular volume? 

3.1 Introduction: 

Ultrasonographic examination of the neonatal brain has remained the superior 

method of identifying intracranial structural abnormalities. Recently, reports have 

shown that 3D ultrasound imaging can be used to measure the volume of the 

ventricles accurately especially in neonates who have intraventricular 

hemorrhage (IVH) and post-hemorrhagic ventricle dilatation (PHVD).1 

Asymmetries in the volumes of lateral ventricles have been found in a significant 

number of premature neonates, but whether this is normal physiology or is due to 

any other underlying pathology is not clear.2 

Preterm infants have an increased risk of intraventricular hemorrhage, which can 

lead to cerebral palsy, motor problems, cognitive delays. Nursing or care plays 

an important role in neonates who are born prematurely. One of the earliest 

neurodevelopmental interventions in the neonatal intensive care unit (NICU) is 

the positioning of the neonates. It is reported that the prone position has been 

recommended for several decades to result in positive effects on preterm and low 

birth weight neonates.3 One study showed that prone positions in neonates 

significantly reduce stress levels.4 Another study investigated that a physiological 

flexed position is ideal for the neonates who have missed some or the whole part 

of their third trimester in the uterus.5 However, according to the American 
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Pediatric Association, the supine position is best for neonates.6  Karen A. et al 

suggested that positioning of neonatal head in a neutral position ensures optimal 

cerebral venous drainage through internal jugular veins and this position is 

especially important during first 3 days of birth because of the high risk of 

bleeding from germinal matrix during this time.7 But some of the premature 

neonates are frequently nursed in different positions due to their irregular 

breathing and apnea to achieve postural drainage.7,8 Each position has its own 

benefits and drawbacks. Thus, it is important to assess each neonate individually 

to be appropriately positioned according to their status. 

Previously width of the lateral ventricles has been measured to diagnose 

ventricular dilatation and ventricular asymmetry. Due to gravity and soft brain, the 

width of the lateral ventricle may change due to the different head positions.9 In 

this prospective study, we investigated this hypothesis more accurately by 

measuring the volume of each lateral ventricle separately from 3D US images 

acquired from the same patient in two different postures on the same day at two 

different time intervals. We used 30 minutes time interval for this study assuming 

that within this time total CSF volume will not increase or decrease in the 

neonates who have post hemorrhagic ventricle dilatation (PHVD). Moreover, 

sufficient time will allow the CSF to flow within the ventricles and around the 

subarachnoid spaces. Therefore, we studied prospectively the volumes of the 

lateral ventricles using 3D US and calculated the differences of each lateral 

ventricles in relation to the posture of the neonates. As ventricular tap (VT) can 
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be done from any side of the ventricle, it is important to know which ventricle is 

larger in a lateral posture to decide the site of VT. 

3.2 Methods: 

3.2.1 Selection of participants:  

The research protocol was approved by the Research Ethics Board at the 

University of Western Ontario. As a part of a larger study to investigate the 

patients with IVH, this prospective study started in June 2018, in which we 

recruited premature neonates born before 30 weeks of gestation from NICU of 

Victoria hospital following informed consent from their parents. Once enrolled, 

neonates underwent serial 3D US scans until discharge or transfer to another 

center from our NICU. The babies who developed IVH were imaged two to three 

times per week, and those who did not develop IVH were imaged once per week. 

Neonates with any congenital anomaly and any brain abnormalities were 

excluded. Most of the neonates had some other comorbidities like sepsis, 

acidosis and respiratory distress. A total of 24 premature neonates were recruited 

during the period of June 2018 to November 2019. Among them, 22 had different 

grades of IVH and only 2 did not have any IVH. 

3.2.2 Positioning and scanning:  

Because of the comorbidities and clinical instability, we could not change the 

position of the babies in most of the imaging sessions to acquire images in the 

two different postures. In those cases, we noted the posture of the babies during 

the scan. We obtained 15 3D US images from different babies who were turned 
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to their right and 16 US images from different babies who were turned to their 

left. We compared the right and the left ventricles in the two different postures. 

But in these 15 right-sided scans and 16 left-sided scans, we didn’t know how 

long the baby had been turning to that specific lateral position. 

For 6 babies who were relatively stable to handle and were not suffering from 

conditions that could worsen from changing posture, we completed 20 posture 

change 3D US imaging sessions. For these imaging sessions, we first ensured 

from the nurse that the baby was clinically stable. If the baby was stable, we 

moved the baby to the right side and ensured immobilization for at least 30 

minutes and then imaged the baby in that posture. After the 1st scan, we again 

changed the posture of the baby to the left side, waited for 30 minutes, and then 

we imaged the baby for the 2nd time in the left posture.  

 

Figure 3.1: Head positioning during the imaging session. Here the right ventricle 

is in the upper position and the left ventricle is in the lower position. 
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3.2.3 3D US system: 

We used the same 3D US system that is described in chapter one, section 1.8.1 

of this thesis. 

3.2.4 Image segmentation and measurement of volumes: 

Described in chapter one, section 1.8.2 of this thesis. 

3.2.4 Data analysis and statistics: 

For this study, we measured each ventricular volume in each posture separately. 

For the patients who were not included in the posture change experiment, we 

performed a paired two samples for means t-test. For the 20 posture change 

experiments we measured every ventricle in each posture three times and 

averaged them. Two observers measured the volumes of the ventricles being 

blind to the values obtained by the other observer. The intraclass correlation 

coefficient (ICC) was calculated to investigate the inter- and intra-observer 

variability. We also performed a paired t-test to compare the left and right lateral 

ventricle volumes. 

3.3 Results: 

3.3.1 Patients characteristics: 

In this study, we had two sets of patients. 1. Premature neonates with any grade 

of IVH who were imaged without changing their posture. 2. Relatively stable 

premature neonates with or without IVH who were moved to both their right and 
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left sides for 30 minutes. Clinical characteristics of the 1st set of patients are 

shown in table 1 and the 2nd set of patients are shown in Table 2. 

Table 3.1: Clinical characteristics of 1st set of patients (N=18) who did not have 

their posture changed  
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Table 3.2: Clinical characteristics of 2nd set of patients (N=6) who had their 

posture changed for the imaging sessions  

 

 

3.3.2 Observer agreement:  

There was a high ICC between the two observers (ICC 0.98-0.99) and also 

between volume measurements made by a single observer (ICC 0.88-0.98) for 

the lateral ventricles in the two postures. 

 



73 
 

 
 

Table 3.3: Inter and intra-observer agreement. The intraclass correlation 

coefficient of the right ventricle and the left ventricle in both right side down and 

left side down 

 

 

Figure 3.2: Graph showing measurements of ventricular volumes by two 

observers where the x-axis is the scan numbers and the y-axis is the ventricle 

volumes in cm3 
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3.3.3 Comparing the volume of the two lateral ventricles who did not have 

their posture changed: 

We imaged the babies 1-3 times per week according to the severity of IVH 

without changing their posture. We obtained a total of 15 3D US images from the 

neonates with different grades of IVH while the babies were turned to their right 

and another 16 3D US images of the babies who were turned to their left. The 

average volume difference between two lateral ventricles in the right lateral 

posture was 9.1 cm3 and in the left lateral posture was 5.3 cm3. Among 15 right 

lateral images, the right ventricles were larger in 7 scans, left ventricles were 

larger in 4 scans, and almost equal (volume difference ± 2 cm3) ventricles 

volumes in 4 scans. Similarly, among 16 left lateral 3D US images, the left 

ventricles were larger in 8 scans, the right ventricles were larger in 2 scans, and 

in 6 scans both of the ventricles were almost equal (volume difference ± 2 cm3). 

 

Figure 3.3: Plot of the measured two lateral ventricle volumes when the neonate 

was in the right lateral position where the right ventricle was the lower and the left 

ventricle was the upper ventricle. 
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Figure 3.4: Plot of the measured two lateral ventricle volumes when the neonate 

was in the left lateral position where the left ventricle was the lower and the right 

ventricle was the upper ventricle. 

 

The mean of right and left ventricle volumes were 23.81cm3 and 21.61cm3 

respectively when the right ventricle was in the lower position. When the left 

ventricle was in the lower position the mean right ventricle volume was 13.96 cm3 

and the mean left ventricle volume was 14.92 cm3.  

 

Table 3.4:  t-Test: Paired two sample for means in the right lateral position of the 

babies who did not have their posture changed testing the hypothesis that the 

lower ventricle is larger than the upper one in any lateral posture 
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Table 3.5: t-Test: Paired two sample for means in the left lateral position of the 

babies who did not have their posture changed testing the hypothesis that the 

lower ventricle is larger than the upper one in any lateral posture 

 

A difference of 2.2 cm3 in right lateral posture and 1 cm3in left lateral posture was 

found in the two lateral ventricular volumes measured by our 3D US system in 

the two different postures. These differences were not statistically significantly 

different (N=15 in right lateral posture where p = 0.183 and N = 16 in the left 

lateral posture where p = 0.239).  
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3.3.4 Comparing the volume of the two lateral ventricles in neonates with 

changed posture:  

Six relatively stable neonates were imaged a total of 40 times with 20 imaging 

sessions on the right lateral position and 20 imaging sessions on left lateral 

positions. Each baby was imaged between 2 to 4 times. The difference between 

the two scans for one baby was at least one week. Volumes of the two ventricles 

in each posture for the 6 patients are shown in figure 3.5. 

 

Figure 3.5: Box and whisker plot of the right and left ventricle volume of each 

patient in two different postures who had their posture changed. 

Among 20 posture changes of the 6 different subjects, we found that, while the 

right ventricle was lower, the right ventricle was larger in 7 cases, the left 

ventricle was larger in 12 cases, and both were equal in 1 case. While the left 

ventricle was lower, the right ventricle was larger in 3 cases, the left ventricle was 
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larger in 14 cases and both ventricles were equal in 3 cases. Equal volumes 

were considered here when the volume difference of two lateral ventricles was 

less than 0.5 cm3. Figure 3/6 shows coronal images obtained from a grade III IVH 

patient at two different lateral postures. It is apparent in these images that the 

shape of the ventricles changed, but the volume change was not significant 

enough to show the effect of postures on ventricular volume. 

 

Fig 3.6: Coronal image of the same patient on the same day obtained when the 

neonate was imaged 30 min after the right and the left lateral posture. 

 

After positioned for 30 minutes on the right side, the mean right and left 

ventricular volumes were 20.9 cm3 and 32.8 cm3 respectively. However, after 

positioning for 30 minutes on the left side the mean right and left ventricular 

volumes were 21.3 cm3 and 32.7 cm3 respectively.  

Table 3.6: t-Test: paired two samples for means: Ventricles volumes of the 

neonates after positioned 30 minutes on the right side testing the hypothesis that 

the lower ventricle is larger than the upper one  
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Table 3.7: t-Test: paired two samples for means: Ventricles volumes of the 

neonates after positioned 30 minutes on the left side testing the hypothesis that 

the lower ventricle is larger than the upper one 

 

A comparison of the mean ventricles in two postures showed that the mean right 

ventricle volume was 20.92 cm3 when positioned in the right lateral posture and 

21.25 cm3 when positioned in the left lateral posture. The mean left ventricle 

volume was 32.74 cm3 when positioned in the right lateral posture and 32.65 cm3 

when positioned in the left lateral posture.  

Table 3.8: t-Test: paired two samples for means:  Right ventricle volume after 

positioned 30 minutes of two lateral postures comparing the right ventricle 

volume in two postures  
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Table 3.9: t-Test: paired two samples for means:  Left ventricle volume after 

positioned 30 minutes of two lateral postures comparing the left ventricle volume 

in two postures 

 

3.3.5 Patient outcomes:  

Among the 24 patients, 22 had different grades of IVH and 2 did not develop IVH. 

Among IVH patients, 8 required ventricular taps (VT) and another 16 IVH babies 

resolved spontaneously without any intervention. Among the babies who required 

VT, 2 babies required additional external ventricular drainage (EVD) for the 

continuous drainage of CSF. Six babies were finally treated by 

ventriculoperitoneal (VP) shunt but 2 babies presented shunt infection and 

required to be reshunted. 
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3.4 Discussion: 

Our study investigated ventricle volume differences of extremely premature 

infants where IVH is the major cause of adverse short- or long-term outcomes 

characterized as the subsequent need for surgical interventions for PHVD. In this 

study, only 2 recruited premature infants did not develop IVH. 25% of the IVH 

population were the subjects of posture change experiments.  

Although the left ventricle has been described as larger than the right by some 

investigators,10-12 the cause behind this has not been established. It is believed 

that the cause behind this may be the site of germinal matrix or ventricular 

hemorrhage, the amount of hemorrhage, presence of blockage of the pathways 

by the blood clot or the position of the head at the time of imaging.12 Koeda et al. 

suggested that the frontal horn width of the lateral ventricle changes with the 

position of the premature neonates, which may be due to gravity, but these 

changes decrease with the maturation when the brain structure becomes firm.9 

Asymmetry in occipital horn was also observed by Reeder et al.11 But measuring 

only a particular horn cannot represent the whole ventricular system. Total 

volumetric measurement is required to quantify the actual amount of CSF inside 

the ventricle. Postural changes result in a redistribution of CSF within the 

craniospinal space and intracranial pressure is also affected by different head 

and body positions.13 Prolonged lateral head positioning as a common practice in 

neonatal nursing may influence the lateral ventricle volume of low birth weight 

infants with immature brain structures.  Nagdyman et al. found that the mean 

volume of the down-side ventricles of the premature neonates without any IVH 
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was slightly smaller than the mean volume of the up-side ventricles in the case of 

two-third of the study population.14 Koeda et al. found almost no change of 

ventricular size with positioning in 10 healthy term infants.9 In a small report of 

two cases with PHVD by Fawer C-L & Levene MI found that frontal horns of 

down-side ventricle were dilated and the frontal horns of the upper side were 

narrowed. The different findings in the different studies have not yet resolved this 

issue. It is important to know the actual amount of CSF in the lateral ventricles 

and the variation of the volumes of the ventricles in the different head postures in 

case of IVH premature neonates to determine which side of the ventricle should 

be tapped. 

In the 1st part of the study, we imaged premature neonates with different grades 

of IVH by 3D US in a presented head position at that time of imaging. Among the 

18 IVH neonates, 12 neonates resolved without any surgical intervention, 6 

neonates received at least one intervention, 2 neonates were temporarily drained 

by external ventricular drainage (EVD), and 5 neonates were shunted. As a part 

of neonatal nursing care at the NICU, nurses keep changing the position of the 

babies to the right lateral, left lateral, or neutral according to an individual’s 

clinical status. We excluded those scans when babies were positioned in the 

neutral position. Since we did not change the postures of the neonates for these 

babies, we included only those 3D US images when the babies were positioned 

in the right lateral or left lateral positions. We imaged 15 neonates when they had 

been turned to their right and another 16 neonates when they had been turned to 

their left. In the right lateral posture, we found a 2.2 cm3 difference and in the left 
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lateral posture, we found only 1 cm3 difference between two lateral ventricles. 

The difference of two lateral ventricles in any lateral posture was not statistically 

significant to show that the position of the head can affect the volume of lateral 

ventricles. 

In the 2nd part of this study, we examined the difference of the lateral ventricular 

volumes of the same neonate after the 30 minutes positioned on the right lateral 

head position and again after 30 minutes on the left lateral head position. We 

compared each lateral ventricular volume obtained in the two different postures 

and also the two lateral ventricular volumes in each posture. We included both 

premature infants with or without IVH in this study and obtained a total of 40 3D 

US images (20 images after 30 min in the right lateral posture and 20 images 

after 30 min in the left lateral posture). Each baby was imaged two times in a day 

in two different postures. The time interval between the two imaging sessions 

each day was 30 minutes, and the time interval between the end of the two 

imaging sessions and the beginning of another imaging session was a minimum 

of one week. As observed by other investigators,10-12 we observed that the left 

ventricle is larger than the right in most of the cases even after changing the 

posture of the babies irrespective of the presence of IVH. The mean right and left 

ventricle volumes were almost the same in both right lateral and left lateral 

posture after 30 minutes at that posture. 

Since the right and left lateral hemisphere of the brain are separated by falx 

cerebri formed by the invagination of meningeal dura matter,15 there is no 

evidence regarding the movement of brain matter to the dependent hemisphere 
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due to the gravitational force. But because of the presence of the valve-less 

foramina in the ventricular system, CSF can move in any direction within the 

ventricles and the subarachnoid spaces.16 In this study, we tried to investigate 

the direction of CSF flow within the ventricles in the right and left lateral postures. 

As the specific gravity difference between healthy brain (ranges from 1.0318 - 

1.0368 in different lobes )17 and CSF (1.004 - 1.008), 18 is very small, thus it is 

important to investigate whether the CSF within the ventricles will float or sink 

inside the brain in a lateral head position. However, it should be noted that the 

specific gravity of the brain and CSF changes slightly with the alteration of 

components within them due to some pathological conditions. Thus, the relative 

density of different brain components of premature neonates varies according to 

the clinical status of the individual. In this research of 30 minutes of posture 

change, we found that CSF did not move significantly in any direction to cause a 

difference in ventricular volumes. But we observed a small difference in the mean 

volume of the lateral ventricles when the babies were positioned to either the 

lateral side for an undefined period of time though it is not significant statistically. 

There are several limitations to our study. Premature neonates are often 

characterized by high inter-individual variable clinical status. That is why we did 

not change the postures of all of our recruited patients though none of the studies 

reported information regarding the occurrence of side effects of changing 

postures of the neonates. No effect on cerebral hemodynamics was observed 

after head rotation/ changing postures.19,20 However, it was sometimes difficult to 

immobilize the neonate to a particular position for 30 minutes. Because of the 
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small size of the study, we could not provide statistically significant results, 

limiting our ability to provide a definitive conclusion as to the effect of head 

posture on ventricular volume. 

In conclusion, this study demonstrates that 30 minutes of immobilization of the 

head to any lateral side does not have any effect on the volume difference of two 

lateral ventricles. It is possible that 30 min is insufficient to cause a volume 

difference in the two lateral ventricles, although our 3D US system allows 

quantification of small volume differences of the ventricles. Further research is 

recommended in a larger number of preterm infants, focusing on the effect of 

head posture on a lateral side for a longer time. This is clinically significant 

because if the head position influences the volume of the ventricles, then the 

position of the patient while removing CSF might be important and the 

neurosurgeons need to be aware of that effect to decide which side to tap. 
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Chapter 4 

4. Conclusions and future directions 

4.1 Overview and objective of research:  

Since the X-ray and MR imaging are not feasible for the neonatal population 

because of several drawbacks and the US is very good at detecting both fluid 

and blood, clinical 2D US has remained as an undebatable diagnostic tool for 

IVH and PHVD. Keeping that in mind, our aim was to improve the utility of clinical 

US imaging by extending 2D US to 3D US, which has the potential to allow better 

quantification of the fluid volume in each ventricle, be able to differentiate 

neonates with PHVD who will receive interventions only, and who will receive a 

shunt and who will undergo spontaneous resolution without any interventions. 

The overall objective of this thesis was to use our 3D US system clinically to 

follow the neonates with IVH and to investigate better management with greater 

confidence than currently used with the 2D US. Three objectives were focused 

on: 1) comparing the tap amount with infants’ age, weight, HC and 3D US-based 

measured total volume of the lateral ventricles to determine the amount of CSF to 

remove in each tap (Chapter two); 2) quantify the amount of volume variations of 

the two lateral ventricles according to the posture of the neonates with IVH 

(Chapter three); and 3) predict the future requirement of neonatal V-P shunt by 

immediate ventricular volume change after VT measured by 3D US (Appendix 1).  
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4.2 Summary and conclusions: 

In chapter two, we described the most common interventional treatment for IVH, 

ventricular tap (VT) and the current guideline to implement this. We 

retrospectively analyzed various physical parameters on the day of the 

ventricular tap and found that there are some conflicts with the current guideline 

of the ventricular tap. The tap amount was supposed to be better correlated with 

the weight of the neonate on the day of the tap according to the guideline for 

removal of 10 ml/kg CSF.1 But, we found that the total ventricular volume 

measured by the 3D US was better correlated with the actual tap amount than 

the weight of the neonate. That supports our hypothesis 3D US improves the 

volume determination of ventricular tap in neonates with IVH. 

In chapter three, we described our prospective posture change experiments 

where our hypothesis was that cerebral ventricle volume can change with the 

posture of the head and a larger amount of CSF is accumulated in the lowermost 

ventricle while the head position is right-lateral or left lateral for a long time. To 

conduct this study, we selected some relatively stable neonates. At first, we set 

the posture of the baby in such a manner where either the right or left sides of 

the brain remained lower than the other side. Then, we waited 30 minutes and 

we scanned the baby in that posture. After our 1st scan, we changed the posture 

of the same baby to the opposite side where the opposite part of the brain 

remained lower and again waited 30 minutes. After 30 minutes in that posture, 

we scanned the baby a 2nd time. We compared the difference of each ventricle 

in each posture of the same baby on the same day. But at the end of the 30 
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minutes in the right lateral or left lateral posture we did not find any statistically 

significant difference between two lateral ventricles. 

In the appendix, we included another study where we attempted to predict the 

requirement of V-P shunt by the short-term ventricular volume difference of the 

neonates after VT. We hypothesized that higher ventricular volume difference 

after VT may be the risk factor for requiring a future V-P shunt. 

In summary, we tried to improve the current diagnostic and treatment options of 

IVH by using the new 3D US technology. 

4.3 Limitations:  

Although the chapter-specific limitations are presented in the discussion section 

of the respective Chapters, we discuss more general limitations common to 

Chapters 2-3 in this section and also some study-specific limitations. 

4.3.1 General limitations:  

One of the limitations for our 3D US is the requirement of some additional tools 

including a motorized device and a computer or laptop that is needed to be close 

to the US machine at the bedside of the neonates. 

As our maximum scan angle is 70 degrees used for patients with severe PHVD, 

our device cannot capture both of the lateral ventricles in a single 3D image. 

Thus, in some cases, we had to scan each ventricle separately as shown in 

figure 4.1. Moreover, in a small number of extremely severe cases of PHVD, a 

70-degree scan was insufficient to scan even a single lateral ventricle. 
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Figure 4.1: 3D US images of a neonate with PHVD. Here a single scan could not 

cover both lateral ventricles. But each lateral ventricle could be imaged 

separately. a) left lateral ventricle, b) right lateral ventricle   

 

Figure 4.2: 3D US image of a neonate with severe PHVD. Here a single lateral 

ventricle could not fit in one image. 
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Another limitation of our system is the length of time of segmentation and the 

training required to be capable of segmenting correctly. Much training is required 

to raise the level of expertise in segmenting the ventricles with the software 

associated with the 3D US system. Although the level of expertise differs from 

person to person, the training time varies from a few days to a few months. The 

segmentation requires about 15 to 40 minutes to segment only one ventricle. 

Compared to the use of 2D US, this length of time is too long. 

Inter-observer and intra-observer variability are present in segmentations of the 

same ventricles at different times. However, the variability is very small ranging 

from less than 1 to 7 cm3. 

Movement of the babies during scanning and the fontanel size especially for 

older neonates were another limiting factor resulting in bad 3D US images. The 

ventricles were not segmentable in those cases. Our system was designed in 

such a manner that it requires more space than the conventional 2D probe to 

rotate and produce a complete image. We had to discard some images because 

of the movement of neonates and the shadows of the bones that were produced 

in patients who had a small fontanel size 
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Figure 4.3: 3D US images of the neonates with PHVD. Here, ventricles are not 

segmentable due to the movement of the neonate. a) coronal scan with 

movement b) sagittal scan with movement. 

 

4.3.2 Study-specific limitations: 

We did not find some patient information for the retrospective data included in 

chapter two and in the appendix, which is a general limitation in all retrospective 

studies. In chapter three, we changed the posture of the neonates after 30 

minutes. But some babies moved by themselves within the 30 minutes causing 

us not to image those babies at that time. We had to wait another 30 minutes to 

ensure that the baby was still. 
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4.4 Future directions:  

4.4.1 Multi-center study of IVH using 3D US: 

A large multi-center study should be needed to gather a large sample size and to 

obtain a variety of clinical practices in managing PHVD. We are hoping that the 

3D US will be accessible and commercially available to all other tertiary hospitals 

to carry out a multicenter study. 

4.4.2 Image stitching: 

I described that in some cases the whole ventricular system could not be imaged 

in one 3D image. In very few cases a single lateral ventricle was large enough to 

be included in one image. Multiple 3D US images can be used to fully capture 

the ventricles and surrounding brain regions of interest. In such cases, image 

stitching of multiple 3D US images will allow better visualization of both lateral 

ventricles in one 3D US image. We imaged the ventricles only from the anterior 

fontanelle because our system does not allow better visualization of the complete 

ventricle from the posterior fontanelle. However, the stitching of images from the 

anterior fontanelle view and posterior fontanelle view could allow better 

visualization and easier diagnosis. We are hoping to develop an automated 

stitching program based on image-based registration in the future. 

4.4.3 Prediction of CSF amount using head circumference (HC) 

measurement:  

Physicians from many centers rely on mainly 2D US-based measurement and 

HC or other clinical symptoms to predict how much CSF is inside the brain. Even 
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in some developing countries and in remote areas, 2D US is not available for 

imaging of neonates. Moreover, diagnostic and treatment costs are not covered 

by the health care systems of some countries. In those cases, some people 

cannot afford all the diagnostic procedures even if they are available. Thus, we 

are considering the use of HC measurements as a predictor of how much CSF is 

inside the brain. We are planning to record HC, 3D US ventricular volume, age 

and weight of the neonate on the same day and by analyzing these parameters 

we will be able to determine the relationship of HC and the CSF amount on the 

particular age and weight group of the patients.  

4.4.4 Early detection of V-P shunt failure by 3D cranial US:  

For severe post hemorrhagic hydrocephalic (PHH) patients, when they acquire 

desirable weight, permanent insertion of V-P shunt that constantly drains CSF 

from the ventricle to the abdomen is used to prevent further brain damage and to 

alleviate symptoms of increased intracranial pressure (apnea, bradycardia, 

vomiting, increased pressure). Although V-P shunts are widely used, 31% of the 

shunts fail within the first year and the patients require revision surgery.2 

Currently, there is no specific method to prevent shunt failure other than 

preventing infection by improved sterilization. Furthermore, there is no way to 

diagnose shunt failure other than clinical symptoms. 2D cranial US is used to 

follow the babies after shunt insertion but this method cannot provide the 

information that is provided by 3D US imaging. Moreover, it cannot predict future 

shunt failure. Shunt failure only becomes obvious when the clinical symptoms 

appear. Most babies with shunt failure present with signs of raised intracranial 
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pressure, such as irritability, nausea, vomiting and lethargy.3 Headache is the 

early symptoms of shunt failure but that cannot be described by the neonatal 

population. These symptoms are not specific to V-P shunt failure. Thus, research 

should be pursued to find more specific diagnostic tools for V-P shunt failure. 

We are performing 3D US imaging in the neurosurgical and developmental clinics 

of the neonates who have been shunted previously when they usually come for 

developmental follow up to see whether the shunt is working properly. As the 

fontanelle does not close until 18 months of age, our 3D US system can provide 

images of the ventricles when the baby is older. As the fontanel size varies from 

patients to patients, the average time for getting a good image is about 8 months 

of age. This is still enough time to follow the baby to determine whether the shunt 

is working or not. Good working shunts should result in a decreased CSF 

accumulation in the ventricles, so, the ventricle volume will be lower than before 

inserting a shunt. The continual increase in ventricle volume during follow up can 

predict future shunt failure or a sudden severe increase in ventricle volume can 

diagnose acute shunt failure. Additionally, subdural hemorrhage/hematoma and 

slit ventricular syndrome can be diagnosed by the 3D US system, which is 

caused by over-drainage of CSF. Shunt insertion after the appearance of clinical 

symptoms may be one of the risk factors of shunt failure. We are planning to 

compare two groups of shunted infants by 3D US who have been shunted earlier 

and who have been shunted later than the appearance of clinical symptoms 

during their follow up visit. This information will allow us to predict shunt failure. 
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4.4.5 Find cerebral oxygenation during tap using near-infrared 

spectroscopy:  

NIRS measurement can detect cerebral oxygenation using the difference in NIRS 

signal from oxy and deoxy-hemoglobin. One study showed blood breakdown 

products in CSF following IVH can affect the accuracy of the NIRS signal.4 

Another study showed that ventricle tapping improved cerebral blood flow (CBF) 

by 15.6 ± 22%.5 We are planning to measure the cerebral oxygenation 20 

minutes before ventricular tap and up to 20 minutes after ventricular tap by NIRS 

to determine when and after how much CSF removal cerebral oxygenation 

improves during the period of the ventricular tap. 

5.5 Significance and clinical impact of this research: 

Though the death of small premature babies has been reduced due to 

advancement in specialized obstetric and neonatal intensive care in the past 

several decades,6 IVH is still a complex problem to solve globally. Clinical status 

and 2D US measurements are being used to follow these patients, which are not 

considered sufficient enough to let the physician know how much CSF is inside 

the ventricle and give a complete guideline to treat IVH patients. 

This thesis illustrates the importance of 3D US measurements of ventricle 

volumes of the neonates suffering from PHVD and how this volume 

measurement can be used clinically to confirm the best treatment to the 

individual patient. In spite of having some drawbacks, we believe that our 3D US 

measurements of ventricle volume can add confidence to the clinicians regarding 
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follow up of the neonates, deciding when to intervene, the amount of CSF that 

should be aspirated during an intervention, which side is better to intervene and 

possible requirement of a shunt. We are hoping that we will be able to overcome 

all the technical limitations through improvements in our technology in the future. 
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Appendices 

A. Does short term volume change predict the future requirement of V-P 

shunt? 

 

A.1 Introduction:  

Low birth weight preterm babies are at risk of bleeding from the germinal matrix 

of the developing brain, which can lead to intraventricular hemorrhage (IVH) and 

subsequent post-hemorrhagic hydrocephalus (PHH). PHH has been associated 

with significantly impaired long-term neurodevelopmental, cognitive and 

psychomotor delay and risk for cerebral palsy.1 Premature infants whose weight 

<1500 gm at birth have 15%–20% chances to develop IVH.2 Several temporary 

CSF diversion methods including a lumbar puncture (LP), ventricular tap (VT), 

external ventricular drains (EVD) or ventricular reservoir are used in the initial 

treatment of PHH in children born prematurely. Temporary removal of CSF might 

reduce the inflammatory reaction, decrease deposition of extracellular matrix 

proteins, and sometimes can re‐establish normal CSF drainage, which helps to 

provide a better neurological function, decrease in periventricular edema and 

reduction in the need for a permanent shunt.3-5 PHH which cannot be recovered 

through temporary interventions may require treatment with a ventriculoperitoneal 

shunt surgery (VPS). A shunt is sometimes limited to the patients whose weights 

are less than 2 kg and immunologically immature and it can be infected and often 

needs to be replaced or repaired through an operation.6,7 VPS may also cause 



102 
 

 
 

sepsis, respiratory impairment and abdominal complications such as necrotizing 

enterocolitis.8 It has been reported in a study of 36 infants who were shunt‐

operated for PHH, shunt blockage with infection occurred in those who were 

operated on before 35 days of age.9,10 VPS treatment for PHH of premature 

neonates especially those whose gestational age is less than 28 weeks are 

correlated with unfavorable shunt-related surgical outcomes.11 A few reports 

described the characteristics of neonatal IVH progression from acute to chronic 

and the factors related to the requirement of VPS treatment. It was reported that 

the severity of hemorrhage alone does not necessarily predict shunt requirement 

in premature IVH patients.12 Another study with adult intracerebral hemorrhage 

(ICH) identified that hemorrhage in the thalamus and elevated intracranial 

pressure (ICP) more than 25 mm are associated with VPS.13 

The objective of this study was to analyze ventricular taps as a temporary 

interventional method and comparing various parameters related to VT by 3D US 

between two groups of infants with PHVD who did not progress to VPS and those 

who required VPS. By identifying total ventricular volume differences after each 

tap by the 3D US, we aimed to predict the need for the requirement of a shunt 

and to improve the care practices that might either reduce or contribute to the 

early prediction of shunt requirement among neonatal IVH patients.  

A.2 Method: 
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A.2.1 Selection of participants: 

As a part of a larger study to investigate the patients with IVH, which started in 

2012, we continued the study after obtaining approval by the Research Ethics 

Board at the University of Western Ontario. Patients were recruited during two 

time periods. The first group of patients was recruited after reanalyzing data from 

a previously reported prospective, randomized and blinded clinical trial during the 

period April 2012 to May 2016 where shunt analysis was not one of the end 

results of the study. We added a second group of patients recruited from June 

2018 to November 2019 into a prospective study of IVH from the same center 

(NICU, Victoria Hospital, London, Ontario) where the inclusion criteria were the 

same in the two groups. Inclusion criteria for both groups of patients were any 

neonates diagnosed as any grade of IVH by routine clinical 2D cranial US. 

Neonates with a congenital anomaly and any other brain abnormalities were 

excluded. The neonatal population was enrolled with informed parental consent. 

Once enrolled, neonates underwent serial 3D US imaging about 2-3 times per 

week according to the severity of IVH until discharge or transfer to another center 

from our NICU. 

From 2012 to 1016, 70 premature neonates with IVH were recruited, among 

them, 54 resolved without any intervention and 16 required at least one VT. We 

started another recruitment of IVH neonates from 2018 to November 2019 and 

recruited an additional 22 neonates with any grade of IVH.  Among this group, 14 

patients resolved without any interventions and 8 patients required at least one 

VT. In this study, we excluded all the data regarding the patients who resolved 
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spontaneously without any intervention. We studied only patients who required 

ventricular taps and compared all relevant parameters in the two groups of 

patients who required a VP shunt and who did not require a VP shunt. We 

analyzed 61 individual VTs obtained from 19 patients to predict whether a shunt 

would be required in the future. Flow diagram of all the recruited patients during 

two periods and the patients who required VT and VP shunt are shown in figure 

A1. 

 

Figure A1: Flow diagram of recruited patients 
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Our institutional pathway for the management of IVH related PHVD is the initial 

intervention by VT. VT can be performed at the bedside of the patients and does 

not require any other facilities such as the operating room. Thus, it has remained 

the preferred temporary method for PHVD patients in our center. But to avoid 

repeated VT in some of the patients, an external ventricular drain (EVD) is 

needed to be inserted. In case of increasing ventricular volume, accelerating 

head circumference, other clinical signs of raised intracranial pressure, or failing 

gradual reduction of CSF aspiration, insertion of the ventriculoperitoneal shunt 

was considered under some of the conditions of the patients (e.g. weight, clinical 

status, the protein level in CSF). 

A.2.2 3D Us system: 

Described in chapter one, section 1.8.1 of this thesis. 

A.2.3 Segmentation and measurement of ventricular volume:  

Described in chapter one, section 1.8.2 of this thesis.  

A.2.4 Statistical analysis:  

We analyzed 61 individual taps from 19 patients. Among them, 55 taps were from 

those patients who ultimately required VPS surgery and only 6 taps were from 

those patients who did not require a VP shunt and resolved after their initial 

intervention by VT. We compared VT and the ventricular volumes before and 

after tap for both groups. A limitation of our study was low statistical power due to 

a small number of patients and a low number of taps who did not require VP 

shunt. T-test for unequal samples was performed for this study. 
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A.3 Results: 

A.3.1 Patients characteristics:  

Ninety-two IVH patients were recruited and treated in a single institution between 

April 2012 to November 2019. All patients survived until now. 74% of patients 

(n=68) resolved spontaneously without any intervention and 24% (n=24) of the 

patients required one or more VT. Among those patients who required taps, 

58.3% (n=14) were permanently treated with a VP shunt. The demographic 

characteristics of the patients who were involved in this study are listed in Table 

A1. 

Table A.1: Clinical characteristics of study patients 
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A.3.2 Comparison of shunt treated patients and non-shunt treated patients:  

We compared various parameters between the two groups of patients: those who 

were treated with shunts and those who were treated by taps only. We analyzed 

pre-tap total ventricular volume measured by the 3D US, pre-and-post ventricular 

volume difference, the ratio of volume reduction (difference of ventricular volume 

after tap divided by actual tap amount), head circumference (HC) on the day of 

tap, HC difference after tap, days interval between the two taps, mean tap 

amount and compared each parameter for both groups. 

 

A.3.3 Prediction of shunt dependent hydrocephalus (SDHC) with the 

volume reduction after each tap, and the ratio of volume reduction:  

We imaged the neonates using 3D head US just before the removal of CSF. After 

15-20 min after the end of VT, we again imaged the baby a 2nd time. We 

measured the pre-tap and post-tap ventricular volume and calculated the 

difference as shown in Fig. A.2. The average ventricle volume difference (cm3 ± 

S.D) after the tap for the shunt treated patients and for the patients who did not 

require a shunt was 18.70 ± 10.98 cm3 and 7.52 ± 3.35 cm3 respectively. A t-Test 

assuming unequal variances showed that there was a statistical significance 

difference (p=0.0001) between these mean values. Thus, the difference between 

pre- and post-tap volume can be considered as an important predictor for the 

requirement of the shunt.  
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Figure A.2: Box and whisker plot of the total ventricle volume difference after the 

tap in the two groups of patients 

The ratio of volume reduction in patients who required shunts and those patients 

who did not was 0.82 ± 0.36 and 0.45 ± 0.35  respectively as shown in Fig. A.3. A 

t-Test assuming unequal variances showed that there was a statistical 

significance difference (p=0.013) between these mean values.  
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Figure A.3: Box and whisker plot of the ratio of volume reduction in the two 

groups of patients 

 

A.3.4 Prediction of SDHC with the tap amount and days interval between 

two taps:   

Each patient needed an unequal number of taps in the shunt and no shunt 

patient group. Patients who needed a shunt were tapped more times before the 

shunt insertion than the patients who did not need a shunt. The higher frequency 

of tapping did not help to prevent shunt insertion. Moreover, the average tap 

amount was greater in the shunt treated group than the non-shunt treated group. 

The mean tap amount in each tap for the shunt treated population was 23.2 ± 

9.52 ml and the mean tap amount in each tap for non-shunted treated patients 

was 17.5 ± 5.68 ml (p=0.065). 

 

 

Figure A.4: Box and whisker plot of the average tap amount in two groups of 

patients 
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The number of days between taps was greater in those patients who resolved 

without getting a shunt. The average number of days interval was 5.89 ± 4.0 and 

9.33 ± 6.25 for the shunt treated and non-shunt treated patients respectively 

(p=0.11).  

 

Figure A. 5: Box and whisker plot of the average number of days between two 

taps in the two groups of patients 

 

A.3.5 Prediction of SDHC with total ventricular volume measured by the 3D 

US:  

The average total lateral pre-tap ventricular volume measured by the 3D US just 

before taps in the case of shunt treated patients and non-shunted patients were 

109.88 ± 56.18 cm3 and 68.33 ± 28.96 cm3 respectively as showed in Fig. A.6 



111 
 

 
 

(p=0.013). Thus, the total ventricle volume over 100 cm3 is an important predictor 

of shunt requirement in the future. 

 

Figure A.6: Box and whisker plot of the average pre-tap total ventricle volume in 

the two groups of patients. 

A.3.6 Prediction of SDHC with HC and the HC difference after tap:   

The average HC of the shunt and non-shunt group of patients were 32 ± 5.35 cm 

and 32 ± 5.4 cm respectively as showed in figure A.7. The HC was measured on 

the day of the tap before starting the procedure of tap. 
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Figure A.7: Box and whisker plot of pre-tap HC in two groups of patients 

The average HC differences (cm ± S.D) after the ventricular tap of the shunt and 

non-shunt groups of patients were 0.78 ± 0.77 cm and 0.60 ± 0.36 cm 

respectively as shown in Fig. A.7. A t-Test of two-samples assuming unequal 

variances showed that there was no statistically significant difference for both HC 

and the HC difference in two groups. P value for HC in both groups was 0.49 and 

for HC difference after tap was 0.25. This result shows that it is not possible to 

predict shunt dependency by measuring HC. 
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Figure A.8: Box and whisker plot of the differences of HC after a tap in two 

groups of patients. 

A.3.7 The outcome of the patients:  

During the study period, we could recruit a total of 92 IVH neonates. Among them 

only 26% (n= 24) patients received intervention. In this study, data for 19 patients 

who received interventions were analyzed. Among the observed patients, 73.6% 

(n=14) patients needed VP shunt, and the other patients (n=5) resolved after 

receiving one or more VT. Among the 14 shunt treated patients, 5 required 

additional shunt surgery due to infection or blockage of the shunt tube. No 

patients died during the study period. 

A.4 Discussions: 

About 80% of the CSF in the brain is produced by the choroid plexus located 

within the ventricular cavities of the brain and approximately 20% CSF is 

produced by transependymal movement of fluid from the brain parenchyma to 



114 
 

 
 

the ventricular system.25 There may be several reasons to cause an increase in 

the volume of CSF in the ventricles. For example, disruption of the flow of CSF 

from the ventricles to the subarachnoid space, which is called non-

communicating or obstructive hydrocephalus, whereas communicating 

hydrocephalous involves the impaired absorption of CSF from the subarachnoid 

space to the venous circulation.14  In our study, we found that the immediate 

ventricular volume changes after VT were more consistent in the case of non-

shunt treated groups as compared to the shunt treated patients, as shown in Fig 

A.2. After removing an amount of CSF directly from the ventricle, the reduction of 

ventricular volume should be the same as the amount of CSF removed. But we 

found that the mean difference of ventricular volume reduction after each tap was 

more than double (18.70 cm3) in the shunt treated population than the patients 

who did not require shunt (7.52 cm3). After the removal of CSF, the raised 

intracranial pressure in the hydrocephalic brain is suddenly lowered. Because of 

the sudden creation of low pressure inside the lateral ventricles, the surrounding 

areas of the brain may try to compensate. If there is no disruption or limited 

disruption of the flow of CSF from the lateral ventricles to the subarachnoid 

spaces, it may be possible that CSF can backflow from subarachnoid or 3rd or 

4th ventricles to the lateral ventricles to compensate the sudden pressure 

decrease inside the lateral ventricles. This is a possible explanation for the 

reduced volume reduction after VT in the group of patients who did not require a 

shunt. That means that their CSF flow was not completely obstructed. For the 

patients who had VP shunt after having several taps, their volume reduction was 
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greater after VT because they didn’t have any extra CSF coming from any other 

spaces due to obstruction of flow. Similarly, the ratio of volume reduction was 

lower in the non-shunted population than the patients who required a shunt. 

These findings support the presence of communication in flow allowing CSF to 

flow from the ventricles to the subarachnoid space and vice versa. Flow 

communication was better in non-shunted patients compared to the shunted 

group of patients. Therefore, the abnormal accumulation of CSF in the brain can 

gradually recover in those patients who have better circulation and their non-

requirement of the shunt can be predicted by small volume change after VT. 

The development of IVH associated PHH is the cumulative effects of the 

hemorrhage and metabolic products, which readily distribute to the ventricular 

system and/or the subarachnoid space.15-17 Serial tapping of CSF by lumbar 

puncture or ventricular tap (at least 10 mg/kg) is a treatment option used with 

some efficacy.18 However, one review reported that this treatment intervention 

could not effectively reduce the requirement for VPS and also caused an 

increased risk of infection.19 Therefore, the determination of an early predictor of 

VPS through 3D US may help to reduce such types of complications in neonates. 

Taps were needed more frequently in those patients who were shunt dependent 

than non-shunt dependent patients.  

We compared HC on the day of tap and HC differences after VT in the two 

groups of patients, but we did not find any significant differences between the two 

groups of patients. As HC is not only related to the fluid amount inside the brain 

but also related to the age, weight of the neonates, HC and HC difference after 
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tap are not good parameters to predict shunt dependency. In a randomized 

controlled trial, some researchers compared lumbar puncture performed in 

response to ventricular enlargement using the US with lumbar puncture 

performed in response to symptoms and increasing head circumference and 

found no reduction in the need for subsequent shunt insertion.20 

2D US has been used effectively to diagnose IVH and PHVD for years. Although 

the US-based diagnosis of Germinal matrix hemorrhage (GMH) is not completely 

accurate, with a sensitivity of 61% and specificity 78%, the diagnosis of IVH 

shows high sensitivity (91%) and specificity (81%).21 The efficacy of 2D US in 

diagnosing PHVD has not been studied. But 3D US can be used safely to 

diagnose and measure the ventricular volume of premature neonates with PHVD 

that is not possible with 2D US.24  In a study, it was reported that serial lumbar 

punctures were unsuccessful for the prevention of hydrocephalus of preterm 

infants with intraventricular hemorrhage.22 Formation of hydrocephalus after IVH 

and requirement of a shunt after having hydrocephalus cannot be prevented. But 

early detection of ventricle dilatation of the neonates having IVH and the volume 

difference after VT can be measured by the 3D US. Therefore, 3D US can be an 

effective approach to determine the ventricle volume difference in the case of 

serial ventricular taps and help to predict the requirement of VPS early. Future 

studies with a larger population may help to conclude the proposed approach in 

clinical practice.  
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