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Abstract

The origin of embedding problems can be understood as an e�ort to �nd
some minimal datum which describes certain algebraic or geometric objects.
In the algebraic theory of quadratic forms, P�ster forms are studied for a
litany of powerful properties and representations which make them partic-
ularly interesting to study in terms of embeddability. A generalization of
these properties is captured by the study of central simple algebras carrying
involutions, where we may characterize the involution by the existence of par-
ticular elements in the algebra. Extending this idea even further, embeddings
are just �ags in the Grassmannian, meaning that their study is amenable to
tools coming from intersection theory. We show that in each of the preceed-
ing cases, embeddability can be used to obtain new characterizations of some
primary information related to the ambient structure.

Keywords: Quadratic forms, Albert forms, Hermitian forms, algebraic groups,
algebraic varieties, Schubert varieties, algebraic cycles, involution varieties,
descent, central simple algebras, Chow groups.
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Summary for lay audience

In 1908, Wedderburn published his foundational paper �On hypercomplex
numbers�, whose signi�cance can be formalised in a single structure theo-
rem, telling us that in some sense, all algebras look a certain way. It was
later discovered that for the same reason a sum of two squares times another
sum of two squares is still a sum of two squares, these algebras encode some
deep number theoretic properties. Living in between several worlds, from the
algebraic theory of quadratic forms to function �elds and algebraic varieties,
these objects interact intimately with one another.

This thesis explores the interplay between properties of numbers, algebras
and geometric objects. The contributions of this work is threefold. Firstly,
we discover that some classes of quadratic forms determine other, larger
classes. Secondly, we �nd certain elements inside algebras which summarize
important properties of these objects. Lastly, we establish a bridge between
an algebraic and geometric view of algebras by considering combinatorial
descriptions of how objects �lter through space.
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Introduction

The central aim of this thesis is to elucidate an important connection be-
tween quadratic forms, central simple algebras and �ag varieties through the
lens of embeddability. We concern ourselves with these objects only insofar
as they relate to one another. There are several prevailing themes which we
will highlight throughout this work, touching on various aspects from the al-
gebraic theory of quadratic forms to the structure of central simple algebras
with involution and the geometric properties of symplectic Grassmannians.
Throughout this work, we assume K is a �eld of characteristic not 2.

The study of central simple algebras, �nite dimensional associativeK-algebras
with no non-trivial two-sided ideals and center equal to the base �eld K has
been one of the central driving forces in many important areas of mathemat-
ics including algebraic geometry, algebra and number theory. An important
result of Albert [Alb39], demonstrated that a central simple K-algebra A
is of order 2 in the Brauer group if and only if it can be equipped with an
involution (of the �rst kind), i.e. an anti-automorphism of order 2 (�xing
the base �eld). A direct consequence of this result was the ability to relate
geometric properties of a central simple algebra with algebraic properties of
Hermitian and quadratic forms. The simplest form of this relationship can
be understood when considering the �rst example of a non-commutative K-
algebra which does not take the form of a matrix algebra. Introduced by
Hamilton in 1843, the quaternion R-algebra

(
a,b
K

)
is generated by {1, i, j, k}

under the relations

i2 = −a, j2 = −b, ij = k = −ji,

where a = b = 1. We can associate an involution to
(
a,b
K

)
, called the canonical

involution γ :
(
a,b
K

)
−→

(
a,b
K

)
de�ned by

γ(r0 · 1 + r1 · i+ r2 · j + r3 · k) = r0 · 1− r1 · i− r2 · j − r3 · k
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with

(X0 · 1 +X1 · i+X2 · j +X3 · k) · γ(X0 · 1 +X1 · i+X2 · j +X3 · k)

which can also be identi�ed with X2
0 − aX2

1 − bX2
2 + abX2

3 , a homogeneous
polynomial of degree 2. This latter form de�nes a quadratic form, which car-
ries several structural properties encoding information about the associated
algebra (in this case, the quaternion). For instance, the existence of a non-
trivial solution to the norm form X2

0 −aX2
1 − bX2

2 +abX2
3 is equivalent to the

existence of an isomorphism (a, b)K ∼= M2(K). As powerful a result as this
may seem to be, the fact that it works relies deeply on the structure of the
norm form. In fact, quadratic forms with such powerful structural properties
and associations have been studied for many years under the name of P�ster
forms, �rst described in detail by Albrecht P�ster in 1965. P�ster forms have
several important connections ranging from involutions on tensor products of
quaternions and MilnorK-theory [Mil70] to the computation of Chow groups
of quadrics [Kar95]. These properties are so strong that it is oftentimes de-
sirable to understand which quadratic forms can be realized as subspaces or
subforms of P�ster forms. In [HI00], Ho�mann and Izhboldin o�ered a char-
acterizations of embeddability which allowed one to understand what �eld
theoretic conditions are necessary to realize a quadratic form as a subform
of a P�ster form. A particularly interesting case in their investigation was
the Albert form, a quadratic form

q = 〈a, b,−ab,−c,−d, cd〉

associated to the biquaternion K-algebra
(
a,b
K

)
⊗
(
c,d
K

)
whose form theoretic

properties determine whether or not the associated biquaternion K-algebra
can be decomposed into matrix algebras.

The connection betweeen involutions on tensor products of quaternion K-
algebras and P�ster forms goes even deeper as it was conjuctured by Shapiro
[Sha77a] that a totally decomposable involution, i.e. an involution that can
be decomposed as a tensor product of involutions on quaternion algebras act-
ing diagonally, corresponds to an m-fold P�ster form (up to similarity) for
some natural numberm. This conjecture, commonly referred to as the P�ster
Factor Conjecture, was proven by Becher [Bec08] in 2008 using several tech-
niques from valuation theory and Hermitian forms. In particular, Becher's
proof was non-constructive in the sense that he did not demonstrate how ex-
actly speci�c involutions on tensor products of quaternions corresponded to
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speci�c P�ster forms. The advantage of obtaining an explicit correspondence
would lie in our ability to frame decomposability in terms of the coe�cents
and obtain a more rigid understanding of the algebra theoretic structure in
terms of associated P�ster form. In particular, understanding the precise
structure of the P�ster form lends itself naturally to a more precise under-
standing of P�ster involutions [BFPQ03].

From another perspective, the study of Lagrangian involution varieties has
become a focal point of several mathematical disciplines concerned with the
geometric properties of central simple algebras. Remarkably, these vari-
eties have a natural closed embedding into Severi-Brauer varieties which are
amenable to study via three mathematical viewpoints. The �rst treats these
as geometric objects which characterize the solutions to certain equations.
In particular, the points of the Severi-Brauer variety SB(A) are precisely the
reduced ideals of dimension 1 lying inside a given central simple algebra A.
The second viewpoint treats SB(A) algebraically, in terms of the structural
properties of A. The third examines SB(A) cohomologically via the sec-
ond Galois cohomology group of the multiplicative group of a �eld. These
viewpoints have been e�ective in tackling problems concerning Lagrangian
involution varieties and generalized involution varieties.[KMRT98]

For instance, Krashen [Kra10] and McFaddin [McF17] characterized the zero
cycles with coe�cients for involution varieties in small index. More recently,
Junkins, Krashen and Lemire [JKL17] determined torsion in the Chow group
for certain algebraic groups of type An by determining necessary and su�cent
index conditions on a central simple algebra A such that the corresponding
generalized Severi-Brauer variety SBm(A) contains a certain twisted Schubert
variety with points inside the Grassmannian. The motiviation for study-
ing these twisted Schubert varieties arises from the combinatorial nature as
reduced ideals of speci�ed dimension satisfying certain containment condi-
tions. These objects, Schubert varieties, form the building blocks of the Chow
group of the Grassmannians. In particular, the classical notion of �essential
set� originally introduced by W. Fulton [Ful92] and adapted by D. Anderson
[And16] has proved to be fundamental in understanding di�cult properties
concerning Schubert cycles of Lagrangian Grassmannian. Where general-
ized Severi-Brauer varieties are characterized by ideals of a �xed reduced
dimension inside a central simple algebra, involution varieties are de�ned by
isotropic ideals of �xed reduced dimension inside a central simple algebra
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with symplectic involution. The addition of an isotropy condition means
reasoning about isotropic ideals must now also include reasoning about the
structure of totally isotropic spaces of Hermitian and bilinear forms. This
necessitates a natural extension of the techniques introduced by Junkins,
Krashen and Lemire [JKL17] incorporating the theory of forms. Moreover,
these ideas lend themselves particularly well to computing torsion elements in
the Chow group, describing the geometric interactions between subvarieties
in terms of intersection theory [Kar95].

0.1 Summary

The main results of this work lie in the crossroads of several distinct and im-
portant mathematical areas. The applications include an explicit description
of P�ster forms in terms of embeddable Albert forms, a constructive proof of
the P�ster Factor Conjecture in small dimensions and a complete description
of small index involution varieties via computation of its Chow groups.

In Chapter 1 we introduce the theory of symmetric bilinear forms and its
analogue in characteristic 6= 2, the theory of quadratic forms. We review
the central pillars which make the algebraic theory of quadratic forms an
attractive formalism for establishing latter results concerning involutions,
Hermitian forms and Chow groups. We view P�ster forms as central to
all major developments in the theory of quadratic forms. In particular, in
Section 1.3 we consider the problem of determining under what conditions,
if any, a quadratic form q can be embedded into an m-fold P�ster form p.
The main results of this chapter are contained in Section 1.4 where Theorem
1.4.4 is a novel characterization of 4-fold P�ster forms in terms of embedded
Albert forms:

Theorem 1.4.4. Consider an anisotropic Albert form 〈a, b,−ab,−c,−d, cd〉
overK where a, b, c ∈ K ′ ⊂ K, trdegK′K

′(d) = 1. If 〈1〉 ⊥ q is 4-embeddable,
that is, 〈1〉 ⊥ q ⊂ 〈〈x, y, z, w〉〉 for some anisotropic P�ster form 〈〈x, y, z, w〉〉
over K, then

〈〈x, y, z, w〉〉 ∼= 〈〈a, b,−c,−d〉〉 .

In particular, if −1 ∈ (K×)2 we have that

〈〈x, y, z, w〉〉 ∼= 〈〈a, b, c, d〉〉 .

4



In Chapter 2 we introduce the theory of central simple algebras with a par-
ticular emphasis on central simple K-algebras equipped with involution. We
review some of the basic results associated to the structure of such algebras
in relation to the associated involution. Motivated by the characterization of
similitudes in [Sha77a] and [Sha77b], we �nd an explicit basis of generators
for maximally decomposed similitudes. The main result of this chapter is a
constructive proof of the P�ster Factor Conjecture for A = (⊗mi=1Qi,⊗mi=1σi)
with m ≤ 3,

Theorem 2.3.2. Let ⊗ni=1(Qi, σi) be a split K−algebra and assume σ =
⊗ni=1σi is an anisotropic involution. If n ≤ 3, then qσ is a P�ster form.

To our knowledge this is the �rst constructive characterization of P�ster
forms in terms of the algebraic structure induced by the involution. We be-
lieve our result can easily be used in the context of both the structure of
algebras and algebraic programming and demonstrate the �exibility of our
approach by explicitly determining Albert forms inside of a predetermined
4-fold P�ster form.

Chapters 3 and 4 set up the background for discussing Schubert cycles in
a principled manner. Chapter 3 discusses Hermitian forms over arbitrary
�nite dimensional K-algebras and provides a clari�cation of the well-known
reduction theorem in characteristic 6= 2. Chapter 4 introduces algebraic
groups and reviews the classi�cation of split semisimple algebraic groups in
terms of root systems and Dynkin diagrams. In Section 4.3, we review an
alternative characterization of algebraic groups in terms of automorphisms of
central simple algebras which references our earlier results of embeddability
of Albert forms and P�ster elements. We conclude with a short review of
projective homogeneous G-varieties paying special attention to the case of
Grassmannian varieties and �ags which will be the focus of the �nal chapter.

In Chapter 5, we study Schubert cycles of complete �ag varieties correspond-
ing to maximal symplectic grassmannians. In particular, in Section 5.2 we
consider under what structural conditions can Schubert cycles be realized as
closed subvarieties of symplectic Grassmannians. We �nd a new characteri-
zation of these results in a direction which extends the work of [JKL17] from
algebraic groups of type An to algebraic groups of type Cn of small degree.

Theorem 5.3.11. The maximal symplectic Grassmannian variety SG(A, σ)
has a closed subvariety P such that P ⊗K L ' Xλ for a Schubert subvariety
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Xλ if and only if ind(A) | gcd(Eλ) and max(Eλ) ∈ ind(A, σ) where Eλ is the
essential set of the partition λ. Moreover, in this case, A contains a �ag of
isotropic right ideals Ia1 ⊂ · · · ⊂ Iar for Eλ = {a1, . . . , ar} such that for any
�nite extension L/K,

P (L) = {J ⊆ AL : rank(J ∩ (Ia)L) ≥ j for (j, a) ∈ Eλ}.

We conclude our inquiry in Section 5.4, applying the ideas developed in Sec-
tion 5.2 to compute torsion in the Chow group corresponding to the involu-
tion variety of a central simple algebra of degree 4 with symplectic involution.
As we will see, this is simply a twisted form of the Lagrangian Grassmannian
variety. Our main result towards this direction is stated here for brevity.

Theorem 5.4.1. Let (A, σ) be a degree 4 central simple K-algebra equipped
with a symplectic involution σ. Then the torsion of the topological �ltra-
tion corresponding to the maximal symplectic Grassmannian, SG(A, σ) is
determined as follows:

1. If ind(A) = 4, then, |Tors(T∗(SG(A, σ))| = 1,

2. If ind(A) = 2, and σ is anisotropic then, |Tors(T∗(SG(A, σ))| = 2,

3. If ind(A) = 2, and σ is isotropic then, |Tors(T∗(SG(A, σ))| = 1,

4. If ind(A) = 1, then, |Tors(T∗(SG(A, σ))| = 1.

A corollary of this result, Corollary 5.4.1, determines torsion in the corre-
sponding Chow group using deep results relating the topological �ltration
with the Chow group.

6



Chapter 1

Quadratic forms

We brie�y introduce the theory of symmetric bilinear forms over �elds of
characteristic 6= 2 to setup the algebraic theory of quadratic forms which
will be the central object of interest in this chapter. The �rst two sections
review some classical results coming from these theories along with algebraic
techniques necessary to work with them. The last section investigates the re-
lationship between Albert forms and P�ster forms in terms of embeddability
and gives a new result connecting these two notions.

1.1 Symmetric Bilinear forms

Let K be a �eld of characteristic 6= 2. By Kalg we denote an algebraic
closure of the �eld K, and by Ksep a separable closure of K. Let V be a
�nite dimensional vector space over the �eld K. A symmetric bilinear form
on V is a map

b : V × V −→ K

satisfying the following properties for all v1, v2, w1 ∈ V and c, d ∈ K:

• b(v1, w1) = b(w1, v1),

• b(cv1 + dv2, w1) = cb(v1, w1) + db(v2, w1).

We denote a �nite dimensional vector space V equipped with a symmetric
bilinear form b by (V, b) and refer to such a pairing as a (symmetric) bilinear
space. A bilinear form is said to be skew-symmetric if it is linear in each com-
ponent and b(v1, w1) = −b(w1, v1). We say a bilinear form b is non-degenerate
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if b(v, w) = 0 for every w ∈ V implies v = 0. Using this de�nition, what fol-
lows is a classical result in linear algebra which characterizes non-degeneracy
in several di�erent forms:

Proposition 1.1.1. [Lam05, Proposition I.1.2] The following are equivalent:

1. (V, b) is non-degenerate,

2. The map ev: V −→ V ∨ de�ned by

v −→ evv : w −→ b(v, w)

is a K-isomorphism where V ∨ is the dual vector space to V .

3. The matrix (b(ei, ej)) associated to b is invertible with e1, . . . , en forming
a basis of V.

We call a morphism between bilinear spaces preserving the structure of the
associated bilinear forms an isometry. To be precise, an isometry of two
bilinear spaces (V, b1) and (W, b2) is a K-linear isomorphism φ : V −→ W
such that

b1(v1, v2) = b2(φ(v1), φ(v2))

for all v1, v2 ∈ V . In this sense, isometries are transformations preserving
the metrics induced on the space. In the case b1 and b2 are isometric we will
write b1

∼= b2. An immediate consequence of this de�nition is that over the
algebraic closure, dimKalg(V ) = dimKalg(W ) implies (V, b1) ∼=Kalg (W, b2). To
get a sense of why this is the case we �rst consider symmetric bilinear forms
on a 1-dimensional vector space de�ned by

b1(x, y) = cxy, ∀x, y ∈ K,

b2(x, y) = dxy, ∀x, y ∈ K,
for some c, d ∈ K×. For convenience we denote (V, b1) by 〈c〉b1 and observe
that

〈c〉b1 ∼= 〈d〉b2
if and only if d ∈ DK(b1) where DK(b1) = {b1(v, v) ∈ K× | v ∈ V }. Now, if
dimKalg(V ) = dimKalg(W ) then it is easy to see that

〈c〉b1 ∼=Kalg 〈d〉b2 ,

8



since d = c(
√
d√
c
)2 ∈ DKalg(b1) with

√
d√
c
∈ Kalg. By orthogonally decomposing

the space we can proceed inductively.

We say (V, b) is an anisotropic bilinear space if it contains no non-trivial
solutions i.e. b(v, v) = 0 if and only if v = 0. In contrast, a non-zero vector
v ∈ V is isotropic if b(v, v) = 0 in which case we say the symmetric bilinear
form b is isotropic. Extending the idea of isotropy to its limit, we de�ne the
hyperbolic form on a vector space V with subspaceW such that V := W⊕W∨

to be the symmetric bilinear form bH(W ) de�ned by the mapping

bH(W )(v1 + w∗1, v2 + w∗2) = w∗2(v1) + w∗1(v2)

for all v1, v2 ∈ W and w∗1, w
∗
2 ∈ W∨. We consider a subspace W ⊂ V to be

totally isotropic if
b|W = 0.

In other words, W is a totally isotropic subspace of (V, b) if b(w,w) = 0 for
every w ∈ W . We can easily see that a subspace W is totally isotropic if
and only if W ⊂ W⊥. Moreover dimK(W ) ≤ 1

2
dimK(V ), since the non-

degeneracy assumption implies

dimK(W ) + dimK(W⊥) = dimK(V )

with W⊥ = {v ∈ V | b(v, w) = 0 for all w ∈ W }. The notion of a hyperbolic
form coincides with that of isotropy in the following sense: (V, b) is hyperbolic
if and only if there exists a totally isotropic subspace W ⊂ V such that

dimK(W ) =
1

2
dimK(V ).

An important connection between symmetric bilinear forms and symmetric
matrices is that we can interpret the diagonalization of invertible symmetric
matrices through Gram-Schmidt to give us that any non-degenerate sym-
metric bilinear form is diagonalizable. In particular, over an algebraically
closed �eld, an even dimensional (non-degenerate) symmetric bilinear form
is hyperbolic. To state this result correctly, we must �rst de�ne additive and
multiplicative operations on symmetric bilinear forms in the form of orthog-
onal sums and tensor products. Let (V, b1) and (W, b2) be bilinear spaces
with associated symmetric bilinear forms over K. We de�ne the orthogonal
sum of b1 and b2, denoted by b1 ⊥ b2, to be the map

b1 ⊥ b2 : (V ⊕W )× (V ⊕W )→ K

9



de�ned by

(b1 ⊥ b2)((v1, w1), (v2, w2)) = b1(v1, v2) + b2(w1, w2).

for all v1, v2 ∈ V and w1, w2 ∈ W . It is easy to see that b1 ⊥ b2 is indeed
a symmetric bilinear form such that (b1 ⊥ b2)(V,W ) = 0. Alternatively,
we de�ne the Kronecker product or tensor product of b1 and b2, denoted by
b1 ⊗ b2, to be the map

b1 ⊗ b2 : (V ⊗W )× (V ⊗W )→ K

de�ned by

(b1 ⊗ b2)(v1 ⊗ v2, w1 ⊗ w2) = b1(v1, w1) · b2(v2, w2)

for every v1, v2 ∈ V and w1, w2 ∈ W . The following two results are classi-
cal and of monumental importance. They are foundational to the modern
algebraic theory of both symmetric bilinear forms and quadratic forms.

Theorem 1.1.2. (Witt's decomposition theorem) If b is a non-degenerate
symmetric bilinear form on V then there exist subspaces U,W ⊂ V such that

b = b|U ⊥ b|W

with b|U anisotropic and b|W hyperbolic. Moreover, b|U is unique up to isom-
etry.

Proof. See [Lam05, Proposition I.4.1].

Theorem 1.1.3. (Witt's cancellation theorem) Let b0, b1 and b2 be non-
degenerate symmetric bilinear forms over K. If b1 and b2 are anisotropic
then

b1 ⊥ b0
∼= b2 ⊥ b0 =⇒ b1

∼= b2.

Proof. See [Lam05, Proposition I.4.2].

Together, these results make it possible to de�ne a ring structure on the
class of symmetric bilinear forms via their associated Witt ring. We remark
that the isometry classes of nondegenerate symmetric bilinear forms over
K, denoted by Mb(K), form a semi-ring under orthogonal sum and tensor
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product. De�ne the Grothendieck-Witt group of K, denoted with Ŵb(K), by
an equivalence relation ∼ on Mb(K)×Mb(K) such that

(b1, b2) ∼ (d1, d2)

if and only if
b1 ⊥ d2

∼= d1 ⊥ b2

with b1, b2, d1, d2 ∈ Mb(K). To avoid confusion, we denote the equivalence

class of (b1, b2) in Ŵb(K) by b1 − b2. By the classical results stated above, it

can be shown that Ŵb(K) has the structure of a ring with addition de�ned
by

(b1 − b2) + (d1 − d2) = (b1 ⊥ d1)− (b2 ⊥ d2)

and multiplication de�ned by Ŵb(K) by:

(b1 − b2)(d1 − d2) = ((b1 ⊗ d1) ⊥ (b2 ⊗ d2))− ((b1 ⊗ d2) ⊥ (b2 ⊗ d1)).

We conclude this section by giving several useful properties of the Grothendieck-
Witt ring.

Lemma 1.1.4. [EKM08, Proposition I.2.4, Theorem I.4.7]

1. Let b1 and b2 be anisotropic symmetric bilinear forms over K. Then

b1 = b2 ∈ Ŵb(K)⇐⇒ b1
∼= b2.

2. The additive group (Ŵb(K),+) is generated by the classes of 1-dimensional
symmetric bilinear forms subject to the relation

〈a〉+ 〈b〉 = 〈a+ b〉+ 〈ab(a+ b)〉

for all a, b ∈ K× such that a+ b 6= 0.

1.2 Quadratic forms

Let us assume, as before, that all �elds discussed are of characteristic 6= 2.
There is a one-to-one correspondence between symmetric bilinear forms and
quadratic forms over a �eld K given by the map

b −→ qb : V −→ K

where qb(v) = b(v, v) for v ∈ V . We denote (V, q) to be a (n-dimensional)
quadratic space if the following conditions are satis�ed:

11



1. V is an n-dimensional vector space over K,

2. q(av) = a2q(v) for any a ∈ K and v ∈ V ,

3. bq(v, w) = 1
2

(q(v + w)− q(v)− q(w)) is symmetric bilinear.

Remark 1.2.1. Notice that 3. gives us the reverse correspondence from
quadratic forms to symmetric bilinear forms:

bq(v, v) =
1

2
(q(2v)− q(v)− q(v)) = q(v).

Clearly, in the case that char(K) = 2 this correspondence no longer holds.

We say that two quadratic spaces (V, q) and (W, p) are isometric, denoted by
(V, q) ∼= (W, p), if there exists an isomorphism of vector spaces g : V −→ W ,
such that

p(g(v)) = q(v),

for all v ∈ V . To shorten notation, we will refer to the quadratic space (V, q)
by q and denote an isometry (V, q) ∼= (W, p) by q ∼= p. In the same way that
symmetric matrices are diagonalisable by Gram-Schmidt, (non-degenerate)
quadratic forms have a diagonal representation.

Theorem 1.2.2. [Lam05, Criterion I.2.3] Let (V,q) be a quadratic space and
c ∈ K×. Then c ∈ D(q) if and only if (V, q) ∼= (K×v, 〈c〉) ⊥ (V ′, p) where
q(v) = c and (V ′, p) is a quadratic subspace of (V, q).

Let Mq(K) denote the set of all isometry classes of (non-singular) quadratic
forms over K. The binary operations

(V1, q1) ⊥ (V2, q2) = (V1 ⊕ V2, q1 ⊥ q2)

with (q1 ⊥ q2)(v ⊕ w) = q1(v) + q2(w) and

(V1, q1)⊗ (V2, q2) = (V1 ⊗ V2, q1 ⊗ q2)

with (q1⊗ q2)(v⊗w) = q1(v) · q2(w) give Mq(K) the structure of a semi-ring.
In particular, the fact that Mq(K) is a commutative cancellation monoid
(by Theorem 1.1.3) allows us to de�ne a ring structure via the Grothendieck
construction. We call

Ŵq(K) = Groth (Mq(K)) = Mq(K)×Mq(K)/ ∼

12



the Grothendieck-Witt ring, de�ned by the relations

(q1, q2) ∼ (p1, p2) if and only if q1 ⊥ p2
∼= p1 ⊥ q2,

(p1, p2) + (q1, q2) := (p1 ⊥ q1, p2 ⊥ q2),

(p1, p2)× (q1, q2) := (p1 ⊗ q1 ⊥ p2 ⊗ q2, p2 ⊗ q1 ⊥ p1 ⊗ q2).

where we identify Mq(K) ↪→ Ŵq(K) via q 7→ (q, 0).

Example 1.2.3. Below, we give examples of the Grothendieck-Witt ring for
various �elds.

1. Ŵq(C) ∼= Z.

2. Ŵq(R) ∼= Z[C2], where C2 is a cyclic group of order 2.

3. Ŵq(Fp) ∼= Z⊕ Z/2⊕ Z/4, whenever p = 3 mod 4.

4. Ŵq(Fp) ∼= Z⊕ (Z/2)3, whenever p = 1 mod 4.

Consider the ring homomorphism dim : Ŵq(K) −→ Z, given by dim ((q1, q2)) =
dim ((q1, 0)− (q2, 0)) = dim(q1 − q2). Denote the kernel of the dim map by

Îq(K). Although the Grothendieck-Witt ring retains much of the structural
information pertaining to quadratic forms over a particular �eld, we wish
to reduce our consideration to anisotropic quadratic forms only. To do this,
we construct the Witt ring of K by applying the decomposition of Theorem
1.1.2: For any quadratic form q,

q ∼= qan ⊥ mH,

where qan denotes the anisotropic quadratic form andmH, m ∈ Z, denotes an
orthogonal sum of m hyperbolic planes, H := 〈1,−1〉 which can be identi�ed
with X2 − Y 2. To classify the anisotropic quadratic forms it su�ces then to
quotient by the ideal ZH:

Wq(K) ∼= Ŵq(K)/ZH.

The following result demonstrates some useful characterizations of the Witt
ring.
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Theorem 1.2.4. [Lam05, Proposition II.I.4]

1. The elements of Wq(F ) are in one-to-one correspondence with the isom-
etry classes of all anisotropic forms.

2. Two forms q, p represent the same element in Wq(F ) if and only if
qan ∼= pan.

3. If dim(q) = dim(p) then q = p ∈Wq(F ) if and only if q ∼= p.

Example 1.2.5. We present the Witt rings of the �elds discussed in Example
1.2.3.

1. Wq(C) ∼= Z/2.

2. Wq(R) ∼= Z.

3. Wq(Fp) ∼= Z/4, whenever p = 3 mod 4.

4. Wq(Fp) ∼= (Z/2)[F×p /(F
×
p )2], whenever p = 1 mod 4.

We call the image of Îq(K) under the projection map Ŵq(K) −→ Wq(K)
the fundamental ideal of Wq(K) and denote it by Iq(K). By construction,
the fundamental ideal Iq(K) consists of all even dimensional quadratic forms
in Wq(K). In other words, Iq(K) is generated as a K-module by all 1-
fold P�ster forms 〈1,−a〉, denoted by 〈〈a〉〉, with a ∈ K×. Moreover, since
dim(mH) ∈ 2Z for any m ∈ N, we have the Cartesian square

Ŵq(K) dim //

��

Z

mod 2

��
Wq(K)

dim2

// Z/2

,

where dim2 : Wq(K) −→ Z/2 is de�ned by dim2(q) = dim(q) mod 2.

Now that we have the notion of (the �rst) fundamental ideal in terms of
1-fold P�ster forms, it turns out we can naturally extend it by considering
Inq (K) to be the n-th power of the fundamental ideal Iq(K), generated as
a K-module by forms 〈1,−a1〉 ⊗ ... ⊗ 〈1,−an〉 for some a1, · · · , an ∈ K×.
The advantage of this characterization is that it induces a natural �ltration.
The usefulness of such a �ltration relies on an incredibly important classical
result in quadratic forms due to Arason and P�ster.
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Theorem 1.2.6. [Lam05, Hauptsatz X.5.1]

If p ∈ Inq (K) and p is anisotropic, then dim p ≥ 2n.

Indeed, an immediate consequence of the Arason-P�ster hauptsatz, theorem
1.2.6, is that quadratic forms are bounded in some sense by these funda-
mental ideals i.e. ∩∞n=0I

n
q (K) = 0 where we identify I0

q (K) = Wq(K) for
notational convenience. It serves to reason then that a complete classi�ca-
tion of quadratic forms necessitates a rigorous understanding of which forms
are contained in which ideals. Recalling the map dim2 de�ned earlier, we
see immediately that ker(dim2) = Iq(K). Identifying the higher fundamen-
tal ideals in terms of some particular algebraic properties of the associated
quadratic forms turns out to be quite fruitful in the �rst few cases, but
ultimately unsatisfactory. The existence of algebraic realizations to higher
fundamental ideals remains an open question. Alternatively, we might ask
ourselves if fundamental ideals might be described in terms of some cohomo-
logical invariants. Indeed, we might begin by asking if there exists a class of
cohomological invariants (of quadratic forms) {eq∗},

eqr : Irq (K) −→ Hr(GK , µ2) := Hr(Gal(Ksep/K), µ2),

where µ2 are the roots of unity of order 2 with the appropriate characterizing
properties such that

q1 − q2 = 0 ∈ Inq (K), for n > 2r ≥ dim(q1) + dim(q2).

The existence of such invariants would then imply that we can determine
whether two quadratic forms q1, q2 are isometric via the vanishing conditions
on {eqi} for 0 ≤ i ≤ r ∈ N. Remarkably, the {eqi} turn out to appear naturally
as structural characterizations of In(K) in low-dimensions. For n = 0, eq0 is
the rank of a quadratic form i.e. eq0 = dim2 : I0

q (K) = Wq(K) −→ Z/2 =
H0(GK , µ2) and ker(eq0) = I1

q (K). In the case n = 1, we introduce the notion
of discriminant by considering the following map:

det : Ŵq(K) −→ K×/K×2

q1 − q2 7→ det(q1) det(q2)−1.

Although this map is well-de�ned, it turns out to be inadequate for our
purposes. The disadvantage lies in the fact that det(H) = det(〈1,−1〉) = −1,
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which prevents us from factoring through Wq(K). To adjust this, we embed
K×/(K×)2 into a larger group with more �exibility and consider the map

disc : Iq(K) −→ Z/2×K×/(K×)2

(q) 7→ (dim2 q, d±(q)),

where d±(q) = (−1)
1
2

dim(q)(dim(q)−1) det(q) ∈ K×/K×2 and the multiplication
on Z/2×K×/K×2 is de�ned by

(a, b) · (a′, b′) = (a+ a′, (−1)aa
′
bb′).

Direct computation shows that

eq1 = disc : Iq(K) −→ im(e1) = {0} ×K×/K×2 ∼= H1(GK , µ2),

and ker eq1 = I2
q (K). In terms of the dimension dim2 and signed determinant

d±, we can rephrase the result as follows:

q ∈ I2
q (K) if and only if

{
dim2(q) = 0

d±(q) = 1
.

The map, eq2 : I2
q (K) −→ H2(GK , µ2) turns out to be harder to encode

algebraically, we will see in Chapter 2 that H2(GK , µ2) can be identi�ed
with the 2-torsion part of the Brauer group. In trying to determine the
appropriate algebraic realization of eq2, a natural candidate to consider is the
Cli�ord algebra associated to a quadratic space (V, p) given by

C(V ) = C(V, p) = T (V )/(v ⊗ v − p(v)),

where T (V ) is the tensor algebra of V de�ned by

T (V ) = ⊕∞n=0V
⊗n,

where V 0 = K and (v⊗ v− p(v)) is an ideal generated by v⊗ v− p(v) for all
v ∈ V . C(V ) depends on the isometry classes of (V, p) uniquely and carries
with it a natural Z/2-graded algebra structure:

C(V ) = C0(V )⊕ C1(V ),

where C0(V ) = ⊕∞i=0V
⊗2i and C1(V ) = ⊕∞i=0V

⊗2i+1.
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Using classical results in the structure theory of Cli�ord algebras, it can be
shown that {

C(V ) ∈ Br2(K), if V is even-dimensional

C0(V ) ∈ Br2(K), if V is odd-dimensional

where Br(K) denotes the Brauer group (de�ned rigorously in Section 2.1)
and Br2(K) denotes the 2-torsion elements of Br(K). In particular, this
classi�cation can be used to construct a morphism,

c : I2
q (K) −→ Br(K)

de�ned by

q 7→

{
[C(q)], if dim q is even

[C0(q)], if dim q is odd
.

Here we abuse notation and use C(q) to represent C(V, q). It follows quite
easily from this de�nition that

• c(I2
q (K)) ⊆ Br2(K), and

• I3
q (K) ⊂ ker(c)

In fact, c(I2
q (K)) = Br2(K) by a famous result of Merkurjev [Mer81] which

shows (among other things) that

I2
q (K)/I3

q (K) ∼= Br2(K).

1.3 Albert forms and Embeddings

An n-fold P�ster form over K is a quadratic form of type

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 ,

where ai ∈ K×, and we write 〈〈a1, . . . , an〉〉 for short. We say that a quadratic
form q over K is n-embeddable if there exists an anisotropic n-fold P�ster
form φ, such that q ⊆ φ i.e. there exists a quadratic form p over K such
that q ⊥ p ∼= φ. Note that q ⊆ φ is equivalent to the existence of a linear
subspace W ⊆ V such that q = φ|W . The anisotropy of φ assures a non-
trivial embedding, since any isotropic P�ster form is hyperbolic (see [Lam05,
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Theorem X.1.7]) and one can always embed such a quadratic form q into
m ·H, for all m satisfying dim q ≤ m. Indeed, since for any a ∈ K× we have
a = (a+1

2
)2 − (a−1

2
)2 ∈ DK(〈1,−1〉) it follows q = 〈a1, · · · , an〉 ⊂ dim(q)H

which yields the smallest non-speci�ed (hyperbolic) P�ster form containing q.

There are several useful applications of m-embeddability within the theory
of quadratic forms. For example, embeddability can in some sense be under-
stood as a minimal datum for constructing a larger P�ster form. If p is a
2-fold P�ster form such that 〈1, a〉 ⊂ p, then p ∼= 〈〈a, c〉〉 for some c ∈ K×.
Similarly, if q is a 3-fold P�ster form such that 〈1, a, b〉 ⊂ q then q ∼= 〈〈a, b, c〉〉
for some c ∈ K×. This relationship can be generalized in one direction to get
an important class of forms known as P�ster neigbours. A quadratic form σ
over K is called a P�ster neigbour if σ can be embedded into a P�ster form
p (up to multiplication by a scalar multiple) where dimK(p) < 2 dimK σ. In
terms of Milnor K-theory, [HI00, Theorem 5.1] shows that when computing
the transfer kernel of the Milnor K-theory of a function �eld extension the
generators must satisfy certain minimality conditions with respect to the de-
gree. In the theory of motives, an understanding of the embeddability into
an anisotropic P�ster quadric is necessary in order to de�ne the local motivic
cohomology of a point for the isotropic motivic category [Vis19].

Examples 1.3.1.

1. Any anisotropic 3-dimensional quadratic form 〈a, b, ab〉 is 2-embeddable.
Indeed 〈a, b, ab〉 ⊂ 〈1, a, b, ab〉 ∼= 〈〈−a,−b〉〉, where the anisotropy of
〈〈−a,−b〉〉 is assured by the anisotropy of 〈a, b, ab〉.

2. If q is an anisotropic n-fold P�ster form, then q is m-embeddable in
some m-fold P�ster form where m ≥ n.

3. If q is a 2m dimensional quadratic form, then q is m-embeddable if and
only if q is an m-fold P�ster form.

Before we proceed any further it is necessary to de�ne an important class of
�eld extensions called function �elds. By viewing quadratic forms as homoge-
neous polynomials of degree 2, we are naturally led to consider the algebraic
varieties corresponding to quadric surfaces, i.e. integral projective quadrics.
Under mild assumptions on the quadratic form, such as non-degeneracy and
anisotropy, we are induced to studying the class of function �elds which in
the context of quadratic forms, refers to the function �eld of the projective
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quadric associated to the form. The pursuit of a deep understanding of func-
tion �elds has contributed to numerous fundamental results in the theory of
quadratic forms [AP71] and central simple algebras [HHK09]. In particular,
both the Milnor Conjecture [Vo03] and the Bloch-Kato Conjecture [Vo11]
rely on the machinery of function �elds. For a (n+ 1)-dimensional quadratic
form φ = 〈a0, · · · , an〉 over K, the function �eld K[φ] of the quadric as-
sociated to φ is given by solving the polynomial equation with respect to
X0,

K[φ] = K(X1, · · · , Xn)(
√
−(a1X2

1 + · · ·+ anX2
n)/a0)

An important property to notice about the function �elds is that if φ is
anisotropic over K then φ is isotropic over K[φ]. Alternatively, if φ is
isotropic, then the function �eld K[φ] is a transcendental extension of K.
More generally,

Lemma 1.3.2. A function �eld K[φ] is purely transcendental if and only if
the form φ is isotropic over K.

Proof. It is easy to see that isotropy over K[X] implies isotropy over K.
Indeed, assume fi ∈ K[X] are such that φ(f1, . . . , fn) = 0, and we may
assume without loss of generality that X - fi for some i = 1, . . . , n. We can
see in this case that φ(f1(0), . . . , fn(0)) = 0 where fi(0) ∈ K and fj 6= 0
for some j = 1, . . . , n. The reverse direction follows by de�nition, i.e. φ is
isotropic if and only if φ ∼= H ⊥ ψ for some quadratic form ψ over K. In
particular, since the transformation H(X0+X1

2
, X0−X1

2
) = X0X1 is an isometry

G : V −→ V of H can be extended to φ by φ(GX) = X0X1 +ψ(X2, . . . , Xn).
This implies that K[φ] = K[X1, . . . , Xn].

Remark 1.3.3. We can �nd an even smaller �generic� sub�eld K(φ) ⊂
K[φ] with respect to the condition of obtaining isotropy. Observing that
a0X

2
0 + · · · + anX

2
n = 0 and considering the mapping Zi −→ Xi/X0 we see

that the �eld extension,

K(φ) = K(Z1, · · · , Zn) = K(Z1, · · · , Zn−1)(
√
−(a0 + a1Z2

1 + · · ·+ an−1Z2
n−1)/an)

satis�es properties similar to K[φ]. In particular, we have that φ is isotropic
over K(φ).

We will state an important result concerning function �elds which we will
rely on shortly.
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Theorem 1.3.4. [Lam05, Remark X.4.8][EKM08, Theorem 22.5] Suppose
ϕ is a quadratic form over K. If q is an anisotropic P�ster form hyperbolic
over K[ϕ], then abϕ ⊆ q for any a ∈ DK(q) and any b ∈ DK(ϕ).

The problem of embeddability was �rst considered by Ho�mann [Hof95],
where it was shown that if dim q ≤ 2n + 1, then there exists a �eld ex-
tension L/K, such that φ is (n + 1)-embeddable over L. If the �eld ex-
tension is required to be purely transcendental, then Ho�mann and Izh-
boldin [HI00, Theorem 1.1] showed that any anisotropic form q can be em-
bedded after base changing to some purely transcendental extension K(X)
over K (preserving the anisotropy of q). The idea is rather simple; we as-
sume that q1 ⊂ q is a subform maximal with respect to embeddability in
some P�ster form π over K, and we recursively construct higher P�ster
forms containing larger subforms. In particular, if q1 ⊥ q2

∼= q and q1 ⊥
π2
∼= π, then 〈1, π2(Y )− q2(X)〉 ⊗ π is an anisotropic P�ster form contain-

ing a subform of q of dimension strictly bigger than dim q1 over K(X, Y ) =
K(X1, . . . , Xdim q2 , Y1, . . . , Ydimπ2). To see that this is indeed the case, it suf-
�ces to compare the Witt indices of π ⊥ −q and 〈1, q2(X)− π2(Y )〉⊗π ⊥ −q.
We will see a special case of this result in Lemma 1.3.8.

The next natural step is to consider the structure determined by embeddabil-
ity. In other words, if q is n-embeddable (q ⊂ π) with minimal π, to what
extent is π determined by q. This generalizes the notion of a P�ster neigbor
which determines conditions for a (2n + 1)-dimensional quadratic form to
be (n + 1)-embeddable. Note that over a local or global �eld, all (2n + 1)-
dimensional quadratic forms are (n + 1)-embeddable. We study the �rst
non-trivial case of embeddability by studying Albert forms and o�er a new
result connecting P�ster forms with their embedded Albert forms in Theo-
rem 1.4.4. Let us begin by stating a classical result connecting biquaternions
and Albert forms.

Theorem 1.3.5. [Lam05, Theorem III.4.8] Let
(
a,b
K

)
and

(
c,d
K

)
be quaternion

algebras over K, and A =
(
a,b
K

)
⊗
(
c,d
K

)
denote a biquaternion K-algebra. The

following are equivalent:

1. A is a division algebra.

2. q = (〈〈a, b〉〉 ⊥ − 〈〈c, d〉〉)an is anisotropic over K.
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3.
(
a,b
K

)
and

(
c,d
K

)
are division algebras which do not share a common

quadratic splitting �eld.

We call the quadratic form

q = (〈〈a, b〉〉 ⊥ − 〈〈c, d〉〉)an = 〈−a,−b, ab, c, d,−cd〉 ,

with a, b, c, d ∈ K×, an anisotropic Albert form. It follows easily that any
6-dimensional form φ ∈ I2

q (K) is similar to an Albert form [Lam05, Corollary
XII.2.13]. We proceed to show that q cannot be a subform of any anisotropic
3-fold P�ster form.

Lemma 1.3.6. No anisotropic Albert form q is 3-embeddable.

Proof. Assume the contrary. Then the fact that q ⊥ 〈x, y〉 ∈ I3
q (K) implies

det(q ⊥ 〈x, y〉) = 1.

However, since det(q) = −1 we must also have det(〈x, y〉) = −1, the later
being equivalent to requiring 〈x, y〉 ∼= H (see [Lam05, Theorem I.3.2]). We
conclude that any 3-fold P�ster form containing q as a subform must be
isotropic, hence hyperbolic (see [Lam05, Theorem X.1.7]).

Following results established in [Hof95, Main Lemma] we see that there exists
a �eld extension L/K with several nice properties such that a prescribed
Albert form q is 4-embeddable. We abuse notation and denote such a �eld
by K again, since we are mostly interested in understanding the structure of
the P�ster form not its existence.

Remark 1.3.7. The above assumption is necessary since it is not always the
case that there even exists an n-embeddable quadratic form for some n ∈ N
over an arbitrary base �eld K. Indeed, [HI00] refers to Kahn for providing
the following example: Assume cd(K) ≤ 3. Then Imq (K) = 0 for all m ≥ 4,
meaning that there are no non-trivial m-fold P�ster forms to embed into.
Alternatively, we could restrict ourselves to considering �elds K, such that
cd(K) ≥ 3, but this is not a su�cient condition to ensure 4-embeddability
for Albert forms. Consider K(X) := K(X1, . . . , X6); then

q = 〈X1, X2, X3, X4, X5,−X1X2X3X4X5〉 * 〈〈f1(X), f2(X), f3(X), f4(X)〉〉 ,

for any f1(X), · · · , f4(X) ∈ K[X].
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Henceforth, let us assume that the Albert form is 4-embeddable i.e. q ⊂ π,
where π is some anisotropic 4-fold P�ster form over K. Now we would like to
proceed with as much generality as possible, however not much can be said
without one additional assumption: q ⊂ π′, where π′ ⊥ 〈1〉 ∼= π. It turns out
this can be imposed by extending our arguments to a �eld extension L of K,
such that 〈1〉 ⊥ qL ⊂ πL and πL remains anisotropic.

Lemma 1.3.8. [Hof95, Proof of Theorem 1.1.] Assume φ is a codimension
1 subform of an anisotropic quadratic form ψ. If φ ⊂ π, where π is an
anisotropic m-fold P�ster form, then there exists a �eld extension L/K, such
that ψL ⊂ πL.

Proof. By assumption, φ ⊥ φ1
∼= π and φ ⊥ 〈x〉 ∼= ψ for some x ∈ K×.

Consider the function �eld extension L = K[φ1 ⊥ −〈x〉]. Then by base
change to L we see that (φ1)L ⊥ −〈x〉L is isotropic, implying

〈x〉L ⊂ (φ1)L.

It remains to show that πL is anisotropic. Indeed, if we assume that the
P�ster form πL is isotropic, it must also be hyperbolic so by Theorem 1.3.4
we have cd(φ1 ⊥ −〈x〉) ⊂ π for any c ∈ DK(φ1 ⊥ −〈x〉)) and d ∈ DK(π).
In particular, we may choose d = 1, since π is a m-fold P�ster form i.e.
π = 〈1,−a1〉 . . . 〈1,−am〉 for some a1, · · · , am ∈ K. It follows that

c(φ1 ⊥ −〈x〉) ⊥ φ2
∼= π

for some anisotropic quadratic form φ2. Moreover, since P�ster forms are
strongly multiplicative [Lam05, Theorem X.2.8] we have that cπ ∼= π for
any c ∈ DK(φ1) ⊆ DK(π). In particular, π ∼= cπ ∼= cφ1 ⊥ cφ implies
c(φ1 ⊥ −〈x〉) ⊥ φ2

∼= π ∼= cφ1 ⊥ cφ, which by Theorem 1.1.3 lets us
conclude that

−c 〈x〉 ⊥ φ2
∼= cφ.

or alternatively (multiplying by c−1),

−〈x〉 ⊥ c−1φ2
∼= φ.

However, this contradicts the anisotropy of φ ⊥ 〈x〉 ∼= ψ.

Henceforth we make the additional assumption that 〈1〉 ⊥ q is anisotropic.
The above Lemma motivates our assumption that q ⊂ π implies 〈1〉 ⊥ q ⊂
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πL. We de�ne the pure subform φ′ of φ to be a quadratic form over K such
that

〈1〉 ⊥ φ′ ∼= φ.

We proceed by invoking a fundamental result in P�ster forms also known as
the Pure Subform Theorem:

Theorem 1.3.9. [Lam05, Thereom X.1.5] Let ϕ = 〈〈a1, . . . , am〉〉 be an m-
fold P�ster form with −b ∈ DK(ϕ′). Then there exist b2, . . . , bm ∈ K such
that

ϕ ∼= 〈〈b, b2, . . . , bm〉〉 .

The following is a generalization of Theorem 1.3.9:

Theorem 1.3.10. [Lam05, Theorem X.1.10] If τ = 〈〈b1, . . . , br〉〉, r ≥ 0,
ν = 〈〈d1, . . . , ds〉〉, s ≥ 1, and −e1 ∈ DK(τν ′), then there exist e2, . . . , es ∈
K×, such that

〈〈b1, . . . , br, d1, . . . , ds〉〉 ∼= 〈〈b1, . . . , br, e1, . . . , es〉〉 .

Remark 1.3.11. There is a slight di�erence between the Theorems cited
here and those appearing in the text. This di�erence is captured by a pref-
erence for alternative notation. In [Lam05], 〈〈a〉〉 = 〈1, a〉 whereas we use
〈〈a〉〉 := 〈1,−a〉. With this di�erence in mind, the results are equivalent.

Corollary 1.3.12. [Lam05, Corollary X.1.11] Let q be an anisotropic P�ster
form. If q ∼= 〈1,−b,−c, . . .〉 with b, c ∈ K×, then

q ∼= 〈〈b, c, d1, . . . , ds〉〉

for some suitable d1, . . . , ds ∈ K×.

Proof. An immediate consequence of Theorem 1.3.9 is that q ∼= 〈〈b, b1, . . . , bm〉〉
for some b1, . . . , bm ∈ K×. Moreover, since q ∼= 〈1,−b,−c, . . . , 〉 = 〈〈b〉〉 ⊥
〈−c, . . . 〉 we have that

〈〈b〉〉 ⊥ 〈〈b〉〉 〈〈b1, . . . , bm〉〉′ ∼= 〈〈b〉〉 ⊥ 〈−c, . . . 〉

which by Theorem 1.1.3 implies −c ∈ DK(〈〈b〉〉 〈〈b1, . . . , bm〉〉′). By applying
Theorem 1.3.10 we arrive at our desired result.

23



Lemma 1.3.13. Let q = 〈−a,−b, ab, c, d,−cd〉 be an anisotropic Albert form
with a, b, c ∈ K× and π be a 4-fold P�ster form over K. If 〈1〉 ⊥ q ⊂ π, then

π ∼= 〈〈a, b,−c, z〉〉

for some z ∈ K×.

Proof. By assumption, 〈1,−a,−b, ab, c, d,−cd〉 ⊂ π. Theorem 1.3.12 implies
π ∼= 〈〈a, b, u, v〉〉 for suitable u, v ∈ K×. In particular,

〈1,−a,−b, ab, c, d,−cd〉 ⊂ 〈〈a, b, u, v〉〉

can be better understood by decomposing the P�ster form as

〈1,−a,−b, ab〉 ⊥ 〈〈a, b〉〉 〈〈u, v〉〉′ .

where we recall that 〈1〉 ⊥ 〈〈u, v〉〉′ = 〈〈u, v〉〉. By Theorem 1.1.3 we have

〈c, d,−cd〉 ⊂ 〈〈a, b〉〉 〈〈u, v〉〉′ .

Now, Theorem 1.3.10 with c ∈ DK(〈〈a, b〉〉 〈〈u, v〉〉′) combine to imply

〈〈a, b, u, v〉〉 ∼= 〈〈a, b,−c, z〉〉

for suitable z ∈ K×.

Remark 1.3.14. Notice that in the case −1 ∈ (K×)2, it is easy to see that
for a, b, c, d ∈ K×, an Albert form q = 〈a, b, ab, c, d, cd〉 embeds canonically
into the pure part of a 4-fold P�ster form 〈〈a, b, c, d〉〉 for a �eld K of any
characteristic (see [CD17, Corollary 5.5] for characteristic 2 case). However,
whether 〈〈a, b, c, d〉〉 is anisotropic, or whether such a 4-fold P�ster form is
unique remains unclear. We will show in the following section that even in
the case −1 /∈ (K×)2, we still expect to see a unique embedding under certain
additional assumptions which are intuitively motivated at the end.

1.4 Strong Albert forms

Let K ′ be a �eld of characteristic 6= 2. In this section, we proceed to deter-
mine a novel result on the structure of 4-fold P�ster form containing an Albert
subform. Assume a, b, c ∈ K ′ and z ∈ K ′(d), where trdegK′(K

′(d)) = 1. We
make frequent use of the following exact sequence due to Milnor (see [Lam05,
Theorem IX.3.1]).

24



Theorem 1.4.1. Let E = K ′(d) and let i be the functorial map

i : W (K ′) −→ W (E).

Then the following sequence of abelian groups is split exact:

0 −→ W (K ′)
i−→ W (E)

⊕∂π−→ ⊕πW (Eπ) −→ 0,

where the direct sum extends over all monic, irreducible polynomials π ∈
K ′[d] and Eπ is the residue �eld of the �eld completion with respect to π.

Recall the de�nition of the second residue homomorphism ∂π :

∂π : W (K ′) −→ W (Eπ) = W (K ′[d]/π)

q1 ⊥ πq2 7→ q2,

where q1 = 〈a1, . . . , an〉, q2 = 〈b1, . . . , bm〉,

∂π(ai) ≡ 0 mod π,

∂ππ(bj) ≡ bj mod π

for all i, j. The proof of our result relies on two standard theorems in
quadratic form theory:

Theorem 1.4.2. [Lam05, Theorem VII.2.7] Let K ⊂ L be a �eld extension
of odd degree. If a K-quadratic form q is anisotropic over L, then q is
anisotropic over K.

Theorem 1.4.3. [Lam05, Theorem IX.1.3] Let γ be a quadratic form over
K ′, and let p(x) ∈ K ′[x]∩DK′(x)(γ) where x is a transcendental element over
K ′. Then,

1. p(x) is already represented by γ over K ′[x].

2. If e ∈ K ′ is such that p(e) 6= 0, then p(e) ∈ DK′(γ).

Combining the above results, we have discovered the following relationship
between Albert forms and 4-fold P�ster forms:
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Theorem 1.4.4. Consider an anisotropic Albert form q = 〈a, b,−ab,−c,−d, cd〉
over K where a, b, c ∈ K ′ ⊂ K, trdegK′K

′(d) = 1. If 〈1〉 ⊥ q is 4-embeddable,
that is, 〈1〉 ⊥ q ⊂ 〈〈x, y, z, w〉〉 for some anisotropic P�ster form 〈〈x, y, z, w〉〉
over K, then

〈〈x, y, z, w〉〉 ∼= 〈〈a, b,−c,−d〉〉 .

In particular, if −1 ∈ (K×)2 we have that

〈〈x, y, z, w〉〉 ∼= 〈〈a, b, c, d〉〉 .

Proof. By lemma 1.3.13, we see that

〈c, d,−cd〉 ⊂ 〈〈a, b〉〉 〈〈−c, z〉〉′ ,

which reduces down to

d 〈1,−c〉 ⊂ c 〈−a,−b, ab〉 ⊥ −z 〈〈a, b,−c〉〉 .

Now we will proceed to show that the isotropy of

c 〈−a,−b, ab〉 ⊥ −z 〈〈a, b,−c〉〉 ⊥ 〈−d〉

implies z = d. Note that isotropy over E implies isotropy over Eπ for all
monic irreducible π ∈ K ′[d], since 〈1,−1〉 ∼= π 〈1,−1〉.

Using the descent of isotropy and letting π = d, we have by Milnor's exact
sequence that

∂d (c 〈−a,−b, ab〉 ⊥ −z 〈〈a, b,−c〉〉 ⊥ 〈−d〉)

= ∂d(−z 〈〈a, b,−c〉〉) ⊥ 〈−1〉

is isotropic. Now, given 〈〈a, b,−c〉〉 ∈ W (K ′) we must have that z = dz′ with
z′ ∈ K ′[d] for the above equation to be isotropic. We write

z′ = fnd
n + . . .+ f0,

for some n ∈ N and f0, . . . , fn ∈ K ′.

We continue by showing n is odd. Indeed, following Theorem 1.4.3,

〈d〉 ⊂ c 〈−a,−b, ab〉 ⊥ −z 〈〈a, b,−c〉〉
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over K ′(d) implies

d ∈ DK′[d](c 〈−a,−b, ab〉 ⊥ −z 〈〈a, b,−c〉〉),

which means we can represent d = cu−dz′v for some u ∈ DK′[d](〈−a,−b, ab〉),
v ∈ DK′[d](〈〈a, b,−c〉〉).

First note that both deg u, deg v ≡ 0 mod 2, since they are represented by
quadratic forms. We next consider the highest degree terms with respect
to d and recall that, by assumption, all quadratic forms appearing here are
anisotropic over K ′. Since deg dz′v = 1 + deg z′ + deg v and deg cu = deg u,
and deg v ≡ deg u ≡ 0 mod 2, we have that 1 + deg z′ + deg v = deg u if and
only if deg z′ is odd (if u 6= 0) or deg z′ = 0 (if u = 0). This is relevant since
d = cu − dz′v is possible as a representation with u, v ∈ K ′[d] only when
u 6= 0 and degree > 1 terms cancel or u = 0 and z′v = −1 in which case
deg z′ = 0. Let us assume that deg z′ is odd; then z′ has a decomposition

z′ = π1 · · · πm

into its irreducible components π1, . . . , πm ∈ K ′[d]. Moreover, it must be the
case that at least one πi has odd degree, say π1. Then, repeating the above
argument with π = π1 we see by descent of isotropy,

∂π1 (c 〈−a,−b, ab〉 ⊥ −z 〈〈a, b,−c〉〉 ⊥ − 〈d〉)

= dπ2 · · · πn 〈〈a, b,−c〉〉

is isotropic inK ′[d]/π1. However, [K ′[d]/π1 : K ′] is odd implies that 〈〈a, b,−c〉〉
is anisotropic over K ′[d]/π1 by Theorem 1.4.2, which is a contradiction.
Hence deg z cannot be odd and must therefore be 0 i.e. z′ = f0 ∈ K ′.
Now since d = cu− df0v we have by degree and component comparison that
cu = 0 and f0v = −1. In particular, −f0 = v−1 and v ∈ DK′[d](〈〈a, b,−c〉〉)
implies −f0 ∈ DK′[d](〈〈a, b,−c〉〉). Combining the preceeding results we see
that z = dz′ = df0 and 〈〈a, b,−c, z〉〉 ∼= 〈〈a, b,−c,−d〉〉 since 〈〈a, b,−c, z〉〉 =
〈〈a, b,−c〉〉 ⊥ 〈〈a, b,−c〉〉 〈−z〉 = 〈〈a, b,−c〉〉 ⊥ 〈〈a, b,−c〉〉 〈−df0〉 and by
roundness of P�ster forms [EKM08, Corollary 6.2] we have

〈〈a, b,−c〉〉 〈−df0〉 ∼= 〈〈a, b,−c〉〉 〈d〉 .

Putting this all together yields our desired result.
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In light of Lemma 1.3.8, it su�ces to assume q ⊂ 〈〈x, y, z, w〉〉 by base change
to a function �eld extension. However, we will need to be extremely careful
that the algebraic independence of the coe�cients is still respected over the
function �eld (this is not generally the case). In Section 2.3 we will see
an alternative method of understanding embeddings of Albert forms into 4-
fold P�ster forms by establishing a set of elements which are by their very
construction m-embeddable for prescribed m. Moreover, as a consequence of
the above result, we will be able to realize embeddability as a decomposition
of a central simple algebra in terms of quaternion algebras.

Remark 1.4.5. An interesting consequence of Theorem 1.4.4 follows by
using [Mer13, Example 3.7] which, in our interest, de�nes a non-trivial co-
homological invariant of degree 4 central simple algebras. In particular, it
shows that the map sending a biquaternion K-algebra to the appropriate 4-
fold P�ster form describes a unique inclusion of the underlying Albert form
into the pure part of the 4-fold P�ster form. Moreover, if we assume all �elds
considered contain an algebraically closed �eld then Theorem 1.4.4 implies
that whenever the cohomological invariant of a biquaternion algebra is non-
trivial, the embedding of the Albert form into the pure part of an anisotropic
P�ster form is unique.

We conclude observing the following result which arises while considering
the reduced Whitehead group in algebraic K-theory [KMRT98, �17]. In
particular, it allows us to postulate that the condition q ⊂ π is not strong
enough to determine π. Indeed, 〈1〉 ⊥ q ⊂ π might be necessary.

Corollary 1.4.6. [KMRT98, Proposition 17.30] Let p be an Albert form and
consider the change of base map

i : I4
q (K)/I5

q (K) −→ I4
q (K(q))/I5

q (K(q)).

Then,
ker(i) = {π + I5

q (K) | p ⊂ π, 4 fold Pfister}.
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Chapter 2

Associative algebras

In this chapter, we will develop the notion of a central simple algebra (CSA)
which forms the basis of several results in subsequent chapters. For instance,
the basic objects of the Brauer group introduced in Chapter 1 are central
simple algebras while the de�nition of Hermitian forms in Chapter 3 and
the classi�cation of split semisimple algebraic groups fundamentally rely on
central simple algebras in their formulation. In particular, we study the prop-
erties of anti-automorphisms of order 2 on CSAs insofar as they determine the
algebraic structure of the underlying algebra. In the �nal section, we provide
a new constructive proof of the P�ster Factor Conjecture for n ≤ 3, charac-
terizing the precise relationship between involutions and P�ster forms. We
conjecture that this result is limited only by the computational complexity
of determining what we call P�ster elements.

2.1 Central simpleK-algebras, the Brauer group

and quaternions

Let K denote a �eld of characteristic 6= 2. By Kalg we mean an algebraic
closure of the �eld K, and by Ksep a separable closure of K. All K-algebra
are assumed to be �nite-dimensional, unital and associative algebras over K.

A central simple K-algebra A is a K-algebra, such that A has no proper two-
sided ideals and Z(A) = K · 1A, where Z(A) denotes the center of A. The
fundamental Theorem of this section is Wedderburn's Structure Theorem for
central simple K-algebras:
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Theorem 2.1.1. (Wedderburn's Structure Theorem) The following are equiv-
alent:

1. A is a central simple K-algebra.

2. There exists a unique pair (n,D), where n ∈ N and D is a central
division K-algebra, such that

A ∼= Mn(D).

3. There is a K-algebra homomorphism

φ : A⊗K L −→Mm(L), for some m ∈ N

with a �eld extension L of K, called a splitting �eld of A.

4. The canonical map
A⊗ Aop −→ EndK A

a⊗ bop 7→ (x 7→ axb)

is an isomorphism of K-algebras.

We de�ne Aop to be the opposite algebra of A consisting of the same elements
as that of A with multiplication de�ned by

aopbop = (ba)op

for a, b ∈ A. An immediate consequence of conditions 1. and 2. is that both
Kalg and Ksep are splitting �elds of A . Moreover,

dimK A = dimKalg A⊗Kalg = dimKalg Mm(Kalg) = m2;

and m is called the degree of A, denoted by degA.

The relationship between A and D in 2. can also be expressed via the endo-
morphism ring of a (unique) simple left A-module V , in the following way.

A = EndD V, D = EndA V (1)
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and
dimK V = degA degD.

The algebra D occuring in the decomposition 2. of A is called the division
algebra associated to A. We de�ne the index of A to be the degree of the
division algebra D associated to K, i,e.

ind(A) = deg(D).

There are many interesting results in the study of central simple K-algebras
concerning the central division K-algebra D associated to a central simple
K-algebra A. In favor of this perspective, we de�ne the following equiv-
alence relation, known as Brauer equivalence. Let A,B be central simple
K-algebras; then

A ∼ B if and only if Mn1(A) ∼=K Mn2(B)

for some n1, n2 ∈ N. By 1. we may reformulate the Brauer-equivalence
relation above in terms of the simple left A-module V and B-module W in
the following way:

A ∼ B if and only if EndA V ∼= EndBW.

Clearly, if A and B are two Brauer-equivalent central simple K-algebras and
degA = degB, then A ∼= B. More than that, the tensor product endows
central simple K-algebras under Brauer-equivalence with the structure of an
abelian group, called the Brauer group of K and denoted by Br(K).

Proposition 2.1.2. [Pie82, Theorem 13.3]: For a central simple K-algebra
A, the following are equivalent:

1. L is a splitting �eld of A.

2. There exists a central simple K-algebra B Brauer-equivalent to A, such
that B ⊃ L and [L : K] = degB.

If L is a �eld extension of K contained in B such that [L : K] = degB
we say that L is a maximal sub�eld of B. Indeed, if B is a central division
K-algebra such that L is a maximal sub�eld of B then B contains no proper
�eld extension of L. This will be an important point to keep in mind when
we construct a cross-product algebra later which will be the �rst step in
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realizing the Brauer group of K as the second Galois cohomology group
H2(GK , K

sep×), where by GK := Gal(Ksep/K) we mean the absolute Galois
group of the �eld K. In particular, we will need an incredibly powerful
theorem due to Skolem-Noether:

Theorem 2.1.3. (Skolem-Noether) Let A be a central simple K-algebra and
B a simple K-subalgebra. If f, g : B −→ A are K-algebra homomorphisms,
then there exists a ∈ A×, such that

f(b) = Inn(a) ◦ g(b) = ag(b)a−1, for all b ∈ B.

Moreover, every automorphism of A is an inner automorphism.

Now, the general idea is to characterize the Brauer-equivalence classes of A
by the internal structure of a subalgebra which should determine the entire
class up to a condition which depends on an element in H2(GK , K

sep×). To
do this, we make use of a standard fact in central division K-algebras which
states that any central division K-algebra D contains a maximal separable
splitting �eld L. The argument is trivial in the case of �nite �elds and
inductive otherwise. Now, if L is a maximal separable splitting �eld of D,
then Lsep is a Galois splitting �eld of D by the uniqueness of the central
division K-algebra associated to a central simple K-algebra. In view of
this remark, Proposition 2.1.2 implies that any central simple K-algebra A
is Brauer-equivalent to a central simple K-algebra B containing a Galois
splitting �eld L and such that degB = [L : K]. This can be rephrased in
terms of the functorial properties of the Brauer group of K, namely

Br(K) =
⋃
E⊃K Galois Br(E/K), (2)

with Br(E/K) = ker(Br(K) −→ Br(E)) de�ned by sending [A] to [A⊗K E].
Assuming (via Brauer-equivalence) that A contains a maximal Galois split-
ting �eld L, we obtain a set of linearly independent K-algebra homomor-
phisms

{σ : L −→ L ⊂ A | σ ∈ Gal(L/K)},
which can be extended by Skolem-Noether to a set of linearly independent
inner K-automorphisms of A given by elements eσ ∈ A for σ ∈ Gal(L/K)
i.e.

{Inn(eσ) : A −→ A | σ ∈ Gal(L/K)}.
As a consequence, we can derive the following structural conditions:
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Lemma 2.1.4. [Pie82, Lemma 14.1] If A satis�es the conditions above, then

1. {eσ | σ ∈ Gal(L/K)} is an L-basis of A⊗K L.

2. If σ, τ ∈ Gal(L/K), then φ(σ, τ) = Inn(e−1
στ ) ◦ Inn(eσ) ◦ Inn(eτ ) ∈ L×.

3. φ(σ, τ)φ(ρσ, τ)−1φ(ρ, στ)(τ(φ(ρ, σ)))−1 = 1, for all σ, τ, ρ ∈ Gal(L/K).

In terms of cohomology, 3. is equivalent to the 2-cocycle condition for co-
homology groups. Conversely, if A satis�es 1., 2. and 3. then we say A
is a crossed product of L and Gal(L/K) with respect to φ, denoted by
A := (L,Gal(L/K), φ). Moreover, as the following proposition demonstrates,
all K-algebras which can be constructed as crossed product algebras are cen-
tral simple K-algebras containing a maximal Galois splitting �eld.

Proposition 2.1.5. [Pie82, Proposition 14.1] Let L be a Galois extension
of K and assume

φ : Gal(L/K)×Gal(L/K) −→ L×

satis�es the 2-cocycle condition, i.e. φ ∈ H2(Gal(L/K), L×).

If {eσ|σ ∈ Gal(L/K)} is a basis for the K-space

A = ⊗σ∈Gal(L/K)eσL,

then we can de�ne a K-linear multiplication µ : A× A −→ A by

µ(
∑
σ

eσcσ,
∑
τ

eτdτ ) =
∑
σ,τ

eσ,τφ(σ, τ)τ(cσ)dτ ,

where cσ, dσ ∈ L and A is a central simple K-algebra containing L as maximal
splitting Galois extension of K. Moreover,

{eσ|σ ∈ Gal(L/K)}

satis�es 2. of Lemma 2.1.4 with respect to φ.

The above results allow us to relate Br(L/K) and H2(Gal(L/K), L×) modulo
some compatibility conditions.
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Theorem 2.1.6. [Pie82] If L/K is a Galois extension, then the map

αL/K : H2(Gal(L/K), L×) −→ Br(L/K)

φ 7→ [(L,Gal(L/K), φ)]

is an isomorphism.

By viewing the absolute Galois group GalK of the �eld K as a pro�nite group
(see [Ber10, Section I.1.2.4]) we are able to leverage several nice functorial
properties of the latter. In particular, using [Ber10, Theorem III.7.30], we
have that

H2(GK , K
sep×) = lim

−→
E⊃K �nite Galois

H2(Gal(E/K), E×). (3)

This leads to the following powerful characterization of the Brauer group in
terms of Galois cohomology,

Theorem 2.1.7. [Pie82, Theorem 14.6][Ber10, Theorem VIII.20.6] The
map

lim
−→

L⊃K Gal

αL/K : H2(GK , (K
sep)×) −→ Br(K).

is an isomorphism.

Let A be a central simple K-algebra and assume that D is a central division
K-algebra Brauer-equivalent to A. An incredibly useful consequence of this
equivalence is that it allows us to compute the torsion of an element of A
in Br(K) as a divisor of deg(D). In particular, assuming several facts with
respect to the degree of a central simple K-algebra under base change (see
[Pie82, Corollary 14.4]), it is easy to show that if D is of degree pe11 · · · pemm
then D ∼= D1 ⊗ · · · ⊗Dm, with Di pairwise non-isomorphic central division
K-algebras, such that degDi = peii , for 1 ≤ i ≤ m

We conclude this section with a non-trivial example and application of a cen-
tral division K-algebra which is not a matrix algebra. We de�ne a quaternion
K-algebra, denoted by

(
a,b
K

)
, to be the K-algebra on the two generators i, j

subject to the relations

i2 = a, j2 = b, ij = −ji.
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The �rst example of a quaternion algebra
(−1,−1

K

)
was discovered by Hamil-

ton. As it turns out, these algebra have many interesting algebraic connec-
tions with quadratic forms, the most basic of which are illustrated below.

Fact 2.1.8. [Lam05, Proposition III.1.1, Theorem III.2.8, Theorem III.2.11]

1.
(
a,b
K

)
is a central simple K-algebra, for all a, b ∈ K×.

2.
(
a,b
K

) ∼= (ax2,by2K

)
, for all a, b, x, y ∈ K×.

3.
(

1,−1
K

) ∼= (a,1K ) ∼= (a,−aK

) ∼= M2(K), for all a ∈ K×.

4.
(
a,b
K

)
⊗K L ∼=

(
a,b
L

)
.

5.
(
a,b
K

)
⊗K

(
a,c
K

)
∼
(
a,bc
K

)
.

It is important to note that any central simple K-algebra A with degA = 2

is isomorphic to a quaternion K-algebra. Moreover,
(
a,b
K

)⊗2 ∼ 1 ∈ Br(K),
and the fact that the quaternion K-algebras are minimal among elements of
order 2 in Br(K) suggests that they should play an important role in the
characterization of Br2(K), the set of 2-torsion elements in Br(K). This
turns out to be the correct intuition:

Theorem 2.1.9. [Mer81] Let [A] ∈ Br2(K). Then

A ∼ ⊗mi=1

(
ai, bi
K

)
for some m ∈ N and a1, . . . , am, b1, . . . , bm ∈ K×.

In fact, we will see in the next section that this Theorem can be reinterpreted
in terms of involutions of central simple K-algebras.

2.2 Involutions

The aim of this section is to develop central simple K-algebras with involu-
tion as twisted forms of symmetric or skew-symmetric bilinear forms up to a
scalar factor. We refer to [KMRT98] for a thorough treatment of the results
presented in this section.

Let A be a central simple K-algebra. An involution on A is a map σ : A −→
A, such that for all x, y ∈ A×:
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1. σ(x+ y) = σ(x) + σ(y),

2. σ(xy) = σ(y)σ(x),

3. σ2(x) = x.

A central simple K-algebra A equipped with an involution σ is denoted by
(A, σ). The centrality of A implies that σ(K) = K. Moreover, σ|K : K −→
K is either the identity automorphism or a non-trivial automorphism of order
two. If σ|K = idK , then σ is called an involution of the �rst kind. Otherwise,
if σ|K 6= idK , then σ is called an involution of the second kind. It will be
the convention of this thesis that by an involution σ we will always mean an
involution of the �rst kind. We say that two central simple K-algebras with
involution (A, σ), (A′, σ′) are isomorphic if there exists a K-linear homomor-
phism f : A −→ A′, such that f ◦ σ = σ′ ◦ f .

Let V be a �nite dimensional vector space over K. A bilinear form b :
V × V −→ K is called non-singular, if the induced map

b̂ : V −→ V ∨

v 7→ b(v,−)

is an isomorphism of K-vector spaces.

There is a canonical anti-automorphism of EndK V satisfying 1. and 2. as-
sociated to a non-degenerate bilinear form of V de�ned by

b 7→ σb = b̂−1 ◦ (−)t ◦ b̂ : EndK V −→ EndK V.

with σb(f) = b̂−1 ◦ f t ◦ b̂, where f t ∈ EndK V is the transpose of f de�ned by
sending g to g ◦ f . Alternatively, σb can be characterized as the adjoint in-
volution of b satisfying the property: b(v, fw) = b(σb(f)v, w), for all v, w ∈ V .

The correspondence between non-degenerate bilinear forms V over K and
involutions on Mn(K) is given below for completeness

Theorem 2.2.1. [KMRT98, Theorem 0.1] There is a one-to-one correspon-
dence between the set of non-degenerate bilinear forms B over K modulo
multiplication by invertible scalar factor and K-linear anti-automorphisms
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of EndK V . In particular, under this equivalence, non-singular symmetric or
skew-symmetric bilinear forms of V over K correspond to involutions of the
�rst kind on EndK V .

To be more explicit, we may endow V with a basis {e1, . . . , en} over K and
identify EndK V with Mn(K), so that there is a correspondence between
non-degenerate bilinear forms of V over K and elements in GLn(K) given by

b 7→ [b(ei, ej)] = B

b(x, y) = xTMy ←[ [mij] = M.

We say b is symmetric if and only if [b(ei, ej)] = [b(ei, ej)]
T and b is skew-

symmetric if and only if [b(ei, ej)] = −[b(ei, ej)]
T . In particular, we identify

the involution σb on EndK V with the involution σB on Mn(K) given by
σB(M) = B−1M tB for all M ∈Mn(K).

Now, ideally, we would like to classify an involution σ on a central simple K-
algebra using what we know about involutions on Mn(K). The most natural
way to do this is to lift the involution σ on A to an involution σ ⊗K idL on
A⊗KL ∼= Mn(L), where L is a splitting �eld of A, and classify σ based on the
symmetric or skew-symmetric properties of the non-degenerate bilinear form
associated to the lift. The problem with doing this directly lies in the fact
that neither the non-degenerate associated bilinear form b nor the invertible
associated matrix form B are determined uniquely by σ. Moreover, both of
these choices depend on the choice of the splitting �eld L which is clearly
not unique. Therefore, we must identify the symmetric or skew-symmetric
behavior of a non-degenerate bilinear form associated to an involution with
the structural properties of the central simple K-algebra which are invariant
under base change.

In this regard, we de�ne the sets of symmetric and skew-symmetric elements
in a central simple K-algebra A with involution σ as follows:

Sym(A, σ) = {a ∈ A | σ(a) = a} = {a+ σ(a) | a ∈ A}

Skew(A, σ) = {a ∈ A | σ(a) = −a} = {a− σ(a) | a ∈ A}.
Furthermore, given any embedding

A ↪→ A⊗ 1 ⊂ A⊗Ksep ∼= Mn(Ksep).
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we can construct the unique characteristic polynomial char. pol.A,a(X) (in-
dependent to the chosen embedding) of an element a ∈ A viewed as an
element of Mn(Ksep). For more information, we refer to [Pie82, 16.1]. The
characteristic polynomial char. pol.A,a(X) is of the form

char. pol.A,a(X) = Xn−cn−1(a)Xn−1 +cn−2(a)Xn−2−. . .+(−1)nc0(a) (2.1)

where cn−1(a) = TrdA(a) denotes the reduced trace and c0(a) = NrdA(a)
denotes the reduced norm. Moreover, we have the following result.

Lemma 2.2.2. [KMRT98, Lemma 2.3] Let A be a central simple K-algebra
with an involution σ. Then,

tA : A× A −→ K

(x, y) 7→ TrdA(xy)

is a non-singular symmetric bilinear form, such that Sym(A, σ) ⊥ Skew(A, σ) =
A.

In particular, the structure of the characteristic polynomial is determined by
the involution in a peculiar way.

Lemma 2.2.3. [KMRT98, Proposition 2.2.9] Let A be a central simple K-
algebra with involution σ of symplectic type. The minimal polynomial of every
element in Sym(A, σ) is a square. In particular, NrdA(s) is a square in K
for all s ∈ Sym(A, σ).

As a consequence, to �nd invariants of the minimal polynomial in the sym-
plectic case we will have to instead consider the pfa�an characteristic poly-
nomial, Prpσ,s(X) ∈ K[X] de�ned by the property that for every s ∈
Sym(A, σ),

char.polA,s(X) = (Prpσ,s(X))2.

For s ∈ Sym(A, σ) we de�ne the pfa�an trace and pfa�an norm as coe�-
cents,

Prpσ,s(X) := Xm − Trpσ(s)Xm−1 + · · ·+ (−1)mNrpσ(s).

The invariants captured by the characteristic polynomial are instrumental in
determining some key aspects of the algebraic structure determined by an
involution on a central simple K-algebra. We proceed to show that the sets
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Sym(A, σ) and Skew(A, σ) are stable under base change. Indeed, this follows
by the stability of dimension under base change, i.e. dimK Sym(A, σ) =
dimL Sym(A⊗L, σ⊗ idL) and dimK Skew(A, σ) = dimL Skew(A⊗L, σ⊗ idL).
Moreover, assuming L is a splitting �eld of A and identifying (A⊗L, σ⊗ idL)
with (Mn(L), σB) we obtain the following relations:

1. B = BT if and only if the bilinear form b associated to σ ⊗ idL is
symmetric,

2. B = −BT if and only if the bilinear form b associated to σ ⊗ idL is
skew-symmetric.

As a consequence, if M ∈Mn(L), then BT = B implies

σB(M) = M if and only if BM = (BM)T ,

and BT = −B implies

σB(M) = −M if and only if BM = (BM)T .

Rewriting these into a single statement gives

B−1 ◦ Sym(Mn(L), t) =

{
Sym(A, σ), if B = BT

Skew(A, σ), if B = −BT
.

Moreover, in conjunction with the fact that dim Sym(Mn(L), t) = n(n+1)
2

, we
can summarize the results as follows

b is symmetric if and only if dimK Sym(A, σ) =
n(n+ 1)

2

and

b is skew-symmetric if and only if dimK Skew(A, σ) =
n(n+ 1)

2
.

This de�nition is independent of both our choice of splitting �eld L and the
associated bilinear form b. We may thus classify involutions on a central
simple K-algebra A in the following manner:

1. An involution σ is of orthogonal type if for any splitting �eld L there
exists an isomorphism (A⊗ L, σ ⊗ idL) ∼= (EndL(V ), σb) with b a sym-
metric bilinear form.
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2. Alternatively, we say an involution σ is of symmetric type if for any
splitting �eld L there exists an isomorphism (A⊗L, σ⊗idL) ∼= (EndL V, σb)
with b a skew-symmetric bilinear form.

The relationship between involutions on A of orthogonal type and involutions
on A of symplectic type is given in the following classi�cation result.

Proposition 2.2.4. [KMRT98, Proposition 2.7] Let A be a central simple
K-algebra with an involution σ. Then

1. For all u ∈ A× such that σ(u) = ±u, the map Inn(u)◦σ is an involution.

2. For every involution σ1, there exists u ∈ A×, uniquely determined up
to scalar factor such that σ1 = Inn(u) ◦ σ and σ(u) = ±u. Moreover,

Sym(A, σ1) =

{
u Sym(A, σ) = Sym(A, σ)u−1, if σ(u) = u

u Skew(A, σ) = Skew(A, σ)u−1, if σ(u) = −u
,

and

Skew(A, σ1) =

{
u Skew(A, σ) = Skew(A, σ)u−1, if σ(u) = u

u Sym(A, σ) = Sym(A, σ)u−1, if σ(u) = −u
.

3. Assume that σ′ = Inn(u) ◦ σ, where u ∈ A×, such that σ(u) = ±u.
Then σ and σ′ are of the same type if and only if σ(u) = u.

In fact, the preceding proposition can be used to show the following more
general structural result,

Corollary 2.2.5. [KMRT98, Proposition 2.8] Let A be a central simple K-
algebra with involution σ.

1. If degA is odd, then A ∼= MdegA(K) and σ is necessarily of orthogonal
type. In particular, Skew(A, σ) ∩ A× = ∅.

2. If degA is even, then indA = 2k for some k ∈ N and A has involu-
tions of both types. Moreover, Skew(A, σ) ∩ A× 6= ∅ and Sym(A, σ) ∩
(A×\ Skew(A, σ)) 6= ∅.
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In light of Proposition 2.2.4, consider the central simple K-algebra Mn(K)
with involution t denoting the transpose. If σ is an involution on Mn(K) we
have that

σ = Inn(M) ◦ t,
for some M ∈ GLn(K) uniquely determined up to a factor in K× such that
M = ±MT . Since the transpose involution is orthogonal by de�nition, we
have that the involution σ is orthogonal if and only if M = MT and σ is
symplectic if and only if M ∈ Skew(Mn(K), t).

By Corollary 2.2.5, we have thus characterized all involutions which can be
equipped on a central simple K-algebras of odd degree. From this perspec-
tive, it is natural to consider what happens in the case of central simple
K-algebras of even degree. In particular, what are the involutions on the
quaternion K-algebras

(
a,b
K

)
and their tensor products. To start we de�ne an

involution γ on
(
a,b
K

)
by a map sending

r0 · 1 + r1 · i+ r2 · j + r3 · k 7→ r0 · 1− (r1 · i+ r2 · j + r3 · k).

It follows that γ is a symplectic involution on K, that is, Sym(
(
a,b
K

)
, γ) = 1.

Moreover and perhaps more interestingly, this involution has several charac-
teristic properties which de�ne a structure on the central simple K-algebra
in terms of coe�cients of the characteristic polynomial Equation 2.1.

Proposition 2.2.6. For γ de�ned as above, the following hold:

1. Trd(a,bK )(x) = γ(x) + x, for all x ∈
(
a,b
K

)×
.

2. Nrd(a,bK )(x) = γ(x)x, for all x ∈
(
a,b
K

)×
,

3. If σ is an involution on a central simple K-algebra A, such that

σ(x) + x ∈ K, and σ(x)x ∈ K, for all x ∈ K,

then A is a quaternion algebra.

The involution γ on
(
a,b
K

)×
is called the (canonical) sympletic involution on(

a,b
K

)
. It is easy to see that every orthogonal involution σ on

(
a,b
K

)×
is of the

form σ = Inn(u)◦γ, where u ∈ Skew(
(
a,b
K

)×
, γ)\K is uniquely determined up

to a scalar factor in K×. To generalize the above toward the tensor product
of quaternion K-algebras with involutions, we have the following:
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Proposition 2.2.7. [KMRT98, Proposition 2.23] Let (Ai, σi) be central sim-
ple K-algebras with involutions σi, 1 ≤ i ≤ n. Then (⊗ni=1Ai,⊗ni=1σi) is a
central simple K-algebra with involution. Moreover, ⊗ni=1σi is of symplectic
type if and only if an odd number of involutions σi are of symplectic type.

Thus we have de�ned a correspondence between involutions on Mn(K) and
symmetric/skew-symmetric bilinear forms. As a consequence we were able
to characterize the symmetry conditions of the associated bilinear form as
a structural property of a central simple K-algebra with involution. In ad-
dition, this classi�cation made it possible to obtain results which have im-
plications toward both the structure of the central simple K-algebra and all
other possible involutions on it. However, due to the scope of this work,
we have made no comment on the existence of such involutions nor on how
these involutions compare via Brauer-equivalence. In order to remedy this,
we will state several results which are based on a natural generalization of
the results established thus far. The �rst of these is due to Albert [Alb39] in
his seminal work Structure of Algebras which developed much of the modern
structure theory of central simple K-algebras we have today.

Albert provided a simple criterion to determine whether or not a central
simple K-algebra carries an involution. We will state his result without
proof.

Theorem 2.2.8. [Alb39, Theorem 10.19] Let A be a central simple K-
algebra. Then

A has an involution σ if and only if [A] ∈ Br2(K).

In particular, if A has an involution σ, then any central simple K-algebra B
such that A ∼ B has an induced involution denoted by σB.

In particular, if (A, σ) is a central simple algebra equipped with an involution
of the �rst kind, then ind(A) = 2n. Since A carries an involution we can
see that the order of A in the Brauer group is either 1 if ind(A) = 1 or
2 if ind(A) > 1. Moreover, given that Aind(A) = 1 ∈ Br(F ), any prime
dividing ind(A) must also divide the order of A in Br(K) (which we denote
by by ord(A)). Succinctly, this can be summarized as ord(A) = 2 implies
ind(A) = 2n. In fact, algebras which carry an involution have a particular
representation in the Brauer group. This follows from a result of [Mer81]
connecting Milnor K-theory, Galois cohomology and quadratic form theory
together. We rephrase the result using our established notation,
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Theorem 2.2.9. [Mer81, Theorem 2.2] Let A be a central simple K-algebra
with involution σ. Then

A ∼ ⊗mi=1

(
ai, bi
K

)
,

for some m ∈ N and a1, . . . , am, b1, . . . , bm ∈ K×.
We can rephrase the above results in terms of Hermitian forms as follows. Let
A be a central simple K-algebra with an involution σ and D is a central di-
vision K-algebra such that A ∼ D with induced involution σD. A Hermitian
form on D (with respect to an involution σD) is a bi-additive map

h : V × V −→ D,

such that,

1. h(av, bw) = σD(a) · h(v, w) · b, for all a, b ∈ D and v, w ∈ V ,

2. h(v, w) = σD(h(w, v)), for all v, w ∈ V .
If 2. is replaced by h(v, w) = −σD(h(w, v)), for all v, w ∈ V , we say that h
is skew-hermitian. Similar to the case of non-degenerate bilinear forms,

D = K and σD = σ |D .

We de�ne a hermitian form to be non-degenerate by the condition that
h(v, w) = 0 for all w ∈ V implies v = 0 ∈ V . As was to be expected, the
existence of a non-singular hermitian or skew-hermitian form on D implies
the existence of an involution σh on A:

Proposition 2.2.10. [KMRT98, Proposition 4.1] For every non-singular
hermitian or skew-hermitian form h on M , there exists a unique involution
σh on A = EndD V , such that σh|K = σ|K, and

h(x, f(y)) = h(σh(f)(x), y), for all x, y ∈ V.

If D = K, Hermitian forms can be realized as quadratic forms. We conclude
this section with the following generalization of the correspondence given at
the beginning of the section.

Theorem 2.2.11. [KMRT98, Theorem 4.2] If σ is an involution on D, the
map h 7→ σh de�nes a one-to-one correspondence between non-singular her-
mitian and skew-hermitian forms on V up to a factor in K× and involutions
on A = EndD V . In particular, the involutions σh on A and σ on D are of the
same type if h is hermitian and of the opposite type if h is skew-hermitian.
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2.3 P�ster elements

In this section we outline a new approach to realizing the connection between
involutions on central simpleK-algebras and quadratic forms. All forms used
henceforth are assumed to be non-degenerate. We begin by stating a powerful
representation Theorem for quadratic forms.

Theorem 2.3.1. [Lam05, Theorem IX.2.8] For any quadratic form ϕ and
any anisotropic form γ over K, the following are equivalent:

1. ϕ(f1(X1, . . . , Xn), . . . , fn(X1, . . . , Xn)) = γ(X1, . . . , Xn) for some f1, . . . , fn ∈
K(X1, . . . , Xn).

2. ϕ is a subform of γ over K.

3. DL(ϕ) ⊆ DL(γ) for any �eld extension L/K.

In particular, if ϕ(X1, . . . , Xn) ∈ DK(X1,...,Xn)(γ) then dimK(ϕ) ≤ dimK(γ).

This characterization gives us a means of identifying P�ster forms in terms
of the values they can assume over a transcendental extension. We say that
two quadratic forms p and q over K are similar if p ∼= cq for some c ∈ K×.
By [Lam05, Theorem X.2.8] we see that for an anisotropic quadratic form q
and transcendental �eld extension K(X) = K(X1, · · · , X2n),

q(X)q ∼=K(X) q if and only if q is similar to a P�ster form. (2.2)

Assume ⊗ni=1(Qi, σi) is a split K-algebra with orthogonal involution σ =
⊗ni=1σi adjoint to a n−fold P�ster form qσ. Since ⊗ni=1Qi

∼= M2n(K) are
isomorphic as K-algebras with involution we see by Equation 2.2 that there
must exist θ ∈ ⊗ni=1Qi, satisfying

bqσ(θv, θw) = qσ(X)bqσ(v, w)

for all v, w ∈ K2n . Moreover, given that σ is adjoint to bqσ , we see that

bqσ((σ(θ)θ)v, w) = bqσ(qσ(X)v, w)

and non-degeneracy of bqσ implies σ(θ)θ = qσ(X). In order to determine
θ ∈ ⊗ni=1Qi explicitly, we introduce some notation.
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LetQm =

(
am, bm
K

)
denote the quaternionK−algebra such that {1, im, jm, km}

generate Qm as a K-algebra subject to the relations

i2m = am, j
2
m = bm, k

2
m = −ambm

imjm = −jmim, imkm = −kmim, jmkm = −kmjm
Assuming that ⊗mi=1σi is an orthogonal involution we can, without loss of
generality, further suppose that for p = 1, . . . ,m the σp are also orthogonal
involutions de�ned by

σp(ip) = −ip, σp(jp) = jp, σp(kp) = kp.

Now that we have de�ned the appropriate notation, we focus our attention
on constructing θm ∈ ⊗mi=1(Qi, σi) such that σ(θ)θ = qσ(X) for σ = ⊗mi=1σi.
In some sense, θm can be understood as an element which structures the
norm form of ⊗mi=1(Qi, σi). Note that the tensor structure between elements
of di�erent quaternion algebras will be implied, i.e.

i1i2j3 := (i1 ⊗ 1⊗ 1)(1⊗ i2 ⊗ 1)(1⊗ 1⊗ j3) = i1 ⊗ i2 ⊗ j3

with the involution σ = ⊗3
i=1σi acting diagonally.

Theorem 2.3.2. Let ⊗ni=1(Qi, σi) be a split K−algebra and assume σ =
⊗ni=1σi is an anisotropic involution. If n ≤ 3, then qσ is a P�ster form.

Proof. We proceed in a case-by-case basis:

1. Let K(X) = K(X1, X2) and θ1 = X1 + i1X2. Then, since (σ(θ1)θ1)
= X2

1 − a1X
2
1 , we have that bqσ(θ1v, θ1w) = (X2

1 − a1X
2
2 )bqσ(v, w) for

all v, w ∈ V ⊗K K(X). Hence qθ1(X1, X2) = X2
1 − a1X

2
2 ∈ K(X) is

a similarity factor for qσK(X)
which implies qθ1 = 〈1,−a1〉 ⊂ qσ (see

[Lam05] Ch IX. Corollary 2.10). Since dim(qσ) = 2 we have

〈〈a1〉〉 = 〈1,−a1〉 ∼= qσ.

2. Let K(X) = K(X1, · · · , X4) and θ2 = X1 + i1X2 + j1i2X3 + k1i2X4.
Then. since σ(θ2)θ2 = X2

1 − a1X
2
2 − b1a2X

2
3 + a1b1a2X

2
4 , we see that

bqσ(θ2v, θ2w) = (X2
1 − a1X

2
2 − b1a2X

2
3 + a1b1a2X

2
4 )bqσ(v, w)

45



for all v, w ∈ VK(X). By the same reasoning as in the previous case and
vice-versa. However, if Q1 is split this means that 〈1,−a1,−b1, a1b1〉
is hyperbolic meaning that b1 ∈ 〈〈a1〉〉. We conclude that qθ2 =
〈〈a1, b1a2〉〉 ∼= qσ. Moreover, if either Q1 or Q2 is split we must have the
other is split as well since, by assumption, Q1 ⊗Q2 is split., It follows
that b1 ∈ 〈〈a1〉〉 implies that

〈〈a1, a2〉〉 ∼= qσ

3. Let K(X) = K(X1, · · · , X8) and θ3 = X1 + i1X2 + j1(i2X3 + j2i3X4 +
k2i3X5) + k1(i3X6 + i2j3X7 + i2k3X8). As in the preceeding cases,
computing σ(θ3)θ3, we conclude that

qσ ∼= 〈〈a1〉〉 ⊥ −b1b2a3 〈〈a2〉〉 ⊥ a1b1a2b3 〈〈a3〉〉 ⊥ −b1a2 〈〈a1a2a3〉〉 .

It may seem surprising at �rst, but qσ is, in fact, a P�ster form. To see
this we can simply compute the dimension, discriminant and Cli�ord
invariants of qσ i.e.

dim(qσ) = 1, (.qσ) = 1, w(qσ) = Q1 ⊗Q2 ⊗Q3 = 1.

See Appendix A for a more detailed calculation of the Cli�ord invariant.

Remark 2.3.3. Although we veri�ed the algebraic invariants necessary for a
quadratic form to be a P�ster form, this was redundant as the characteriza-
tion of P�ster form described in Equation 2.2 implies that the involution norm
σ(θm)θm describes a P�ster form form ≤ 3. Moreover, we did not need to ex-
plicitly assume anisotropy in the cases we have discussed thus far, as qθm(X)
being a similarity factor for an isotropic form (qσ)K(X) = (qan)K(X) ⊥ rH im-
plies that qθm(X) is a similarity factor for (qan)K(X). Indeed, if qσ is isotropic
then dim(qan) < dim(qσ) but given that qθm(X) is a similarity factor for qan
this means dim(qθm(X)) < dim(qan) which is a contradiction unless qan ∼= q
or qσ is hyperbolic. Using Theorem 2.3.1 and considering the dimensions of
qθm for m = 1, 2, 3 we can use these facts to reduce to the case that either

1. q is hyperbolic.

2. qan ∼= qσ ∼= qθm .
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This is just the restatement that isotropic strongly multiplicative forms are
hyperbolic (see [Lam05, Theorem X.2.9]).

A particularly important work towards this direction was carried out by
Shapiro in [Sha77a] through his analysis of determining quadratic forms by
means of studying its similarity factors. In the language of [Sha77a], the
claim that θm is a P�ster element is equivalent to the claim that (V, qσ) is
a P�ster form given that qσm is admissible in Sim(V ). A key distinction
between our work and that of [Sha77a] and [Sha77b] is that our approach de-
termines both the space of similarities along with the associated P�ster form
both completely and constructively using only properties of the involution.
In contrast, [Sha77a] argues by induction on a small set of similarity factors
to induce additional structure on the quadratic form.

One motivation in studying similarity factors is their relationship to quater-
nion algebras equipped with involutions, a connection which forms the basis
of the P�ster factor conjecture [Sha77b]. A proof of the P�ster Factor Con-
jecture was �rst given by Becher,

Theorem 2.3.4. [Bec08] Let n ∈ N and let (A, σ) be a K-algebra with in-
volution such that deg(A) = 2n. There exist K-quaternion algebras with in-
volution (Qi, σi) such that (A, σ) ∼= ⊗ni=1(Qi, σi) if and only if, for every �eld
extension L/K, the L-algebra with involution (A, σ)L is either anisotropic or
hyperbolic.

Remark 2.3.5. In the course of the proof, Becher o�ered several analogous
characterizations of his result. However, none of the characterizations ad-
dressed the explicit structure of the P�ster form associated to the involution
in terms of the involutions on quaternion K-algebras.

2.4 An example: P�ster elements and embed-

dability

In this section, we give an example of using P�ster elements to determine em-
beddability from a computational point of view. In other words, what forms
lend themselves to embed into m-fold P�ster forms naturally and what forms
impose conditions on the coe�cents of the underlying algebra. We brie�y

47



consider the example of Albert forms once more.

We proceed to show that elements which belong to a tensor product of m
split quaternion K-algebras satisfying

bqσ((σ(θ)θ)v, w) = bqσ(qσ(X)v, w)

where qσ is assumed to be anisotropic are m-embeddable. Firstly, we observe
that if (Qi, σi) ∼= (M2(K), σqi) with qi = 〈〈ai〉〉, ai ∈ K× then⊗mi=1(M2(K), σi) ∼=
(M2m(K), σq) where q = 〈〈a1, . . . , am〉〉. We denote (X1, . . . , X2m) by X and
suppose there exists θ ∈ ⊗mi=1M2(K(X)) satisfying

σ(θ)θ = p(X) ∈ K(X)×,

where p(X) is a homogeneous polynomial of degree 2. Then it follows by
Theorem 2.3.1 that p ⊆ q = 〈〈a1, . . . , am〉〉 , i.e. p is m-embeddable. As a
consequence of this reformulation, we are better able to understand the nec-
essary conditions which allow us to embed a quadratic form p into an m-fold
P�ster form q. Indeed, to demonstrate the advantage of our approach, we
revisit the problem of embeddability for Albert forms in Section 1.3.

Following the notation introduced in the previous section, letQm =

(
am, bm
K

)
be the quaternion K-algebra generated by {1, im, jm, km} with the asso-
ciated orthogonal involution σm : Qm −→ Qm de�ned by the mapping
σm(im) = −im. We would like to explicitly construct the element in ⊗3

i=1Qi

corresponding to the Albert form. Consider the element

α := j1(i2X3 + j2i3X4 + k2i3X5) + k1(i3X6 + i2j3X7 + i2k3X8) ∈ ⊗3
i=1Qi

and let σ denote the associated orthogonal involution ⊗3
i=1σi on ⊗3

i=1Qi. By
the construction of α, we have

σ(α)α = −b1a2X
2
3−b1b2a3X

2
4 +b1a2b2a3X

2
5 +a1b1a3X

2
6 +a1b1a2b3X

2
7−a1b1a2a3b3X

2
8

Assume ⊗3
i=1Qi

∼= M23(K) (this is equivalent to the condition that σ be
adjoint to a symmetric bilinear form), if σ is an anisotropic involution then
it follows from Theorem 2.3.1 that

qα := 〈−b1a2,−b1b2a3,−b1a2b2a3〉 ⊥ 〈a1b1a3, a1b1a2b3,−a1b1a2a3b3〉 ⊆ qσ.
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Note that, despite the fact that it seems universal, we know by Lemma
1.3.6 that it will ultimately fail. In particular, since dim(qα) = 6 and
det(qα) = −a1 we have that by [Lam05, Corollary XII.2.13] qα is an Al-
bert form if and only if det(qα) = −1, i.e. a1 = 1. However, a1 = 1 implies
(Q1, σ1) ∼= (M2(K),H), which means that qσ is isotropic hence hyperbolic,
since by [Lam05, Theorem X.1.7], isotropic P�ster forms are (necessarily)
hyperbolic.

To demonstrate the usefulness of our approach, we repeat the above argu-
ments with a slight modi�cation. In what follows, we highlight the �exibility
inherent in the constructibility of P�ster elements along with their power to
reveal deeper structure. Let us choose

α := j1j4(i2X3 + j2i3X4 + k2i3X5) + k1(i3X6 + i2j3X7 + i2k3X8) ∈ ⊗3
i=1Qi

then σ(α)α is equivalent to

−b1a2b4X
2
3−b1b2a3b4X

2
4 +b1a2b2a3b4X

2
5 +a1b1a3X

2
6 +a1b1a2b3X

2
7−a1b1a2a3b3X

2
8

and qα is given by

〈−b1a2b4,−b1b2a3b4,−b1a2b2a3b4〉 ⊥ 〈a1b1a3, a1b1a2b3,−a1b1a2a3b3〉 ⊆ qσ.

In similar fashion as before, it follows that, dim(qα) = 6 and det(qα) = −a1b4.
Therefore, by choosing b4 = a1(K×)2 we have qα is an Albert form that is 4-
embeddable in qσ if and only if qσ is anisotropic. The condition that b4 lie in
the same square class as a1 is one of many di�erent conditions imposed by our
choice of α. The precise choice of α makes arguing in general di�cult given
the intractability of the associated computation. In particular, we conjecture
the following:

Conjecture 2.4.1. Consider (A, σ) = ⊗ni=1(Qi, σi) where (Qi, σi) is a quater-
nion Q-algebra equipped with orthogonal involution σi. The computational
complexity of determining all P�ster elements θm ∈ A is Θ(2p(n)) where p(n)
is a polynomial function of n.
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Chapter 3

Hermitian forms

In this section, we will clarify some ambiguity in the literature over the
reduction theorem for ε-Hermitian forms over rings in the case that the base
ring contains 1

2
. The topics covered here are largely background material and

the reader is encouraged to consult with either [Knu91] or [Sch85] for a more
detailed exposition.

3.1 Sesquilinear forms

Let A be a associative unital ring such that 2 ∈ A×. An involution on A
is a map σ : A −→ A such that σ is an anti-automorphism of order 2, i.e.
σ(x + y) = σ(x) + σ(y), σ(xy) = σ(y)σ(x), σ(σ(x)) = x and σ(1) = 1 for
all x, y ∈ A. Note that the de�nition given here coincides with that of an
involution on a central simple K-algebra given in Section 2.2, where the last
condition ensures trivial action over a base �eld by K-linearity. We will retain
prior conventions and denote a ring A carrying an involution σ by (A, σ).

Example 3.1.1. We give some examples of rings carrying an involution.

1. Let K be a �eld of characteristic 6= 2. The central simple K-algebra
Mn(K) equipped with the transpose involution is a ring with involution.
Moreover, any central simple K-algebra equipped with an involution is
a ring with involution.

2. Consider A× Aop equipped with a map

ε : A× Aop −→ A× Aop
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de�ned by sending (x, yop) 7→ (y, xop). We call (A×Aop, ε) the hyperbolic
ring of A, denoted by H(A).

3. Observe the matrix ring M2(A) equipped with a map σ : M2(A) −→
M2(A) de�ned by

σ :

(
a b
c d

)
7→
(
d −b
−c a

)
.

It is easy to see that (M2(A), σ) is a ring with involution. In particular,
observe that σ(x)x = det(x)I2, for all x ∈ M2(A). It turns out that σ
is the only linear map on M2(A), such that σ(1) = 1 and σ(x)x ∈ A
[KMRT98, Exercise I.5.2].

We begin by considering a right A-module M, denoted byMA. A sesquilinear
form on MA is a bi-additive map

s : M ×M −→ A

such that s(xa, yb) = σ(a)s(x, y)b for all x, y ∈ M and a, b ∈ A. Alterna-
tively, we may also say that (M, s) is a sesquilinear form on (A, σ). Let us
proceed by de�ning a duality forMA with respect to σ which will allow us to
de�ne a correspondence akin to that between bilinear and quadratic forms
in previous chapters.

We start by considering the dual module of M , denoted by M∗, which we
identify with the right A-module (M∨)A = HomA(MA, A) de�ned by the
action

(fa)(m) := σ(a)f(m),

for a ∈ A,m ∈ M . Notice that, without the existence of an involution σ we
would have to restrict ourselves to only considering the natural left A-module
structure on M∨ with action given by (af)(x) := af(x). Using the module
structure induced by the involution we will be able to de�ne a duality giving
us a correspondence between Hermitian forms and sesequilinear forms. Now,
taking the dual module of M = M∗ once again, we obtain the double dual
M∗∗ and a natural transformation canM : M −→ M∗∗ de�ned by sending
m 7→ m∗∗ with m∗∗(f) := σ(f(m)) for all f ∈M∗.
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Lemma 3.1.2. [Knu91, Proposition I.3.1.2] If MA is a �nitely generated
projective (right) A-module, then

canM : M −→M∗∗

is an isomorphism.

Proof. We reduce to the case where M = A. Recall that by construction,
M∗∗ ∼= (M∨)∨ (see [Knu91, Lemma I.2.1.1]). By projectivity of M we may
assume that M ⊕ N ∼= Ak for some k ∈ N. Since HomA(−, A) preserves
direct sums i.e. HomA(MA ⊕ NA, A) ∼= HomA(MA, A) ⊕ HomA(NA, A) we
have that canAk is an isomorphism if and only if canM and canN are both
K-isomorphisms. Following this line of reasoning we show canAk is an iso-
morphism by reducing to the case of showing canA is an isomorphism which
follows trivially by construction.

Let (M, s) be a sesquilinear form on (A, σ). We de�ne the left adjoint
of (M, s) to be the A-linear homomorphism sl : M −→ M∗ de�ned by
sl(x)(y) := s(x, y) for all x, y ∈ M . Similarly, we de�ne the right adjoint
of (M, s) to be the A-linear homomorphism sr : M −→ M∗ de�ned by
sr(x)(y) = s(x, y)∗ := σ(s(y, x)) for all x, y ∈ M . In particular, A-linear ho-
momorphisms naturally induce sesquilinear forms. Indeed, given an A-linear
homomorphism h : M −→M∗, we de�ne a map

sh : M ×M −→ A

by setting sh(x, y) := h(x)(y) for all x, y ∈ M . It is then easy to check
that h induces a sesquilinear form (M, sh) on (A, σ). We denote the set of
sesquilinear forms on (A, σ) by SesqA(M) and observe that the left (or right)
adjoints induce a correspondence

SesqA(M)←→ HomA(M,M∗).

Moreover, this correspondence can be understood as an isomorphism of Z(A)-
modules where Z(A) denotes the center of A carrying a natural left action on
both SesqA(M) and HomA(M,M∗). For ε = ±1, we say that a sesquilinear
form s ∈ SesqA(M) is ε-Hermitian if sr = εsl, i.e.

s(x, y) = εs(x, y)∗ = εσ(s(y, x)) for all x, y ∈M.
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An equivalent formulation in terms of corresponding elements over HomA(M,M∗)
is obtained by �rst considering the adjoint s∗ of a sesquilinear form s. We
know that (s∗)l(x)(y) = s∗(x, y) = σ(s(y, x)) by construction and recall-
ing that m∗∗(f) := σ(f(m)) we get σ(s(y, x)) = x∗∗sl(y). Now, x∗∗sl(y) =
(sl)

∗(x∗∗)(y) since φ∗(f) = fφ whenever φ ∈ HomA(M,M∗) and f ∈ M∗∗.
By de�nition of canM we can rewrite the latter term (sl)

∗(x∗∗)(y) as (sl)
∗canM .

Combining the above relations we obtain (s∗)l = (sl)
∗canM and by extend-

ing the earlier de�nition of ε-Hermitian forms to the adjoint we have that an
element h ∈ HomA(M,M∗) is called ε-Hermitian if h = εh∗canM .

Now let us consider the Z(A)-module homomorphisms Sε : SesqA(M) −→
SesqA(M) given by

Sε(s) = s+ εs∗.

Firstly, we notice that since 2 ∈ A× we have ker(S−ε) = im(Sε). Indeed, it is
easy to see that im(Sε) ⊂ ker(S−ε) and the reverse containment is a conse-
quence of the fact that s = 1

2
s+ε1

2
s∗ for any ε-Hermitian form s ∈ SesqA(M).

We remark that ker(S−ε) = im(Sε) ∼= SesqA(M)/ ker(Sε) and note that ele-
ments of im(Sε) are generally referred to as even ε-Hermitian forms. However,
in our considerations ε-Hermitian forms and even ε-Hermitian forms are one
and the same, so we will use the terms interchangably.

To de�ne ε-Hermitian forms in terms of HomA(M,M∗) we �rst observe a
Z(A)-module homomorphisms Sε : HomA(M,M∗) −→ HomA(M,M∗) given
by

Sε(h) = h+ εh∗canM .

and notice that ker(S−ε) = im(Sε). To see this, observe that im(Sε) ⊂
ker(S−ε) since (h + εh∗canM)− ε((h + εh∗canM)∗canM is equivalent to (h−
(h∗canM)∗canM) + ε(h∗canM −h∗canM), which is precisely the additive iden-
tity given that (h∗canM)∗canM) = can∗Mh

∗∗canM = can∗McanM∗h = h. The
reverse equality follows similarly to the previous case, h = 1

2
h + 1

2
h =

1
2
h+ 1

2
εh∗canM , since h ∈ ker(S−ε) is equivalent to h = εh∗canM .

Let Proj(A) denote the category of �nitely generated projective right A-
modules and Sesqε(M) the set of ε-Hermitian sesquilinear forms overM . We
call a pair (M, s) with M ∈ Proj(A) and s ∈ Sesqε(M) an ε-Hermitian mod-
ule. Furthermore, we say that a sesquilinear form s is non-degenerate if sl and
sr are A-module isomorphisms. Combining these notions, we write hermε(A)

53



to denote the category whose objects are non-degenerate ε-Hermitian mod-
ules and whose morphisms consist of A-module homomorphisms f : M −→
N such that s2(f(x), f(y)) = s1(x, y) for all x, y ∈M with (M, s1), (N, s2) ∈
Ob(hermε(A)). Similarly to the case of quadratic forms, we refer to the mor-
phisms in the category hermε(A) as isometries.

Remark 3.1.3. We now make an extended but crucial remark regarding
unitary or (ε,Λ)-quadratic forms. First introduced by Bak in [Bak81] as a
quotient of SesqA(M), its theoretical contribution was meant to generalize
most of the preceding arguments to characteristic 2. In keeping with this
generality, both [Knu91] and [Sch85] develop important results regarding
transfer and reduction in terms of these unitary forms. Since our consid-
erations are limited to characteristic 6= 2, we wish to avoid the unnecessary
addition of technicalities and notation. However, to reference results from the
aforementioned authors it will be necessary to at the very least demonstrate
the equivalence of de�nitions in our setting. For a projective left A-module
M and ε = ±1 we de�ne

Sesq−ε(M) := {f ∈ Hom(M,M∗) | f + εf ∗canM = 0}.

Sesq−ε(M) := {f − εf ∗canM | f ∈ Hom(M,M∗)}.

A unitary (ε,ΛM)−module is an element of Hom(M,M∗)/ΛM , where M is
a projective left A-module and ΛM satis�es

1. ΛM is an additive subgroup of Hom(M,M∗) such that

Sesq−ε(M) ⊂ ΛM ⊂ Sesq−ε(M).

2. f ∗ΛNf ⊂ ΛM for all f ∈ Hom(M,N) where N is a projective left
A-module.

We can see that by de�nition, any (ε,Λ)-unitary form [h] ∈ Hom(M,M∗)/ΛM

is uniquely determined by its even ε-Hermitian form representation, h +
εh∗canM . From our considerations regarding Sε, we see there is a one-to-one
correspondence between even ε-Hermitian forms and elements of

Hom(M,M∗)/ ker(Sε) = Hom(M,M∗)/ Sesq−ε .
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In particular, the isometries (morphisms) of even ε-Hermitian forms and uni-
tary forms coincide as well (see [Knu91, Remark I.5.3.3] and [Sch85, Lemma
7.3.6]). As a consequence, we note that the theory of unitary forms coin-
cides completely with that of even ε-Hermitian forms in our context [Sch85,
Remark 7.3.4]. This concludes our remark.

Just like in the case of bilinear forms, we have a natural addition operation
in hermε(A) given by taking orthogonal sums. To be precise, we de�ne the
orthogonal sum of two ε-Hermitian spaces (M, s1) and (N, s2) as

(M, s1) ⊥ (N, s2) := (M ⊕N, s1 ⊕ s2),

where (s1 ⊕ s2)(m1 ⊕ n1,m2 ⊕ n2) = s1(m1,m2) + s2(n1, n2) for m1,m2 ∈M
and n1, n2 ∈ N . Additionally, for P ∈ Proj(A) we have the notion of a
hyperbolic ε-Hermitian space Hε(P ) given by:

Hε := (P ⊕ P ∗,Hε),

where Hε(p1 ⊕ q∗1, p2 ⊕ q∗2) = q∗1(p2) + εσ(q∗2(p1)) for all p1, p2 ∈ P and
q∗1, q

∗
2 ∈ P ∗. Any ε-Hermitian space isometric to Hε for some P ∈ Proj(A)

is called ε-hyperbolic. This naming scheme is appropriate as it turns out
that ε-hyperbolic forms share much in common with their counterpart in the
classical theory of quadratic forms over �elds. That is to say, over a split-
ting �eld, such as the algebraic closure, the ε-Hermitian forms associated to
an orthogonal involution are precisely the hyperbolic forms in the theory of
quadratic forms.

Lemma 3.1.4. Properties of ε-hyperbolic forms,

1. If (M, s) is a ε-hyperbolic Hermitian space then, (M,λs) is also an
ε-hyperbolic Hermitian space for any λ ∈ Z(A)×.

2. For P,Q ∈ Proj(A), Hε(P ⊕Q) = Hε(P )⊕Hε(Q).

Proof. These results follow immediately by applying the de�nition of Hε(P ).

We have seen that the structure of nonsingular ε-Hermitian modules behaves
well in terms of hyperbolicity and orthogonal sum. This extends to decom-
position in the following sense: Let (M, s) ∈ Ob(hermε(A)). If M = P ⊕ Q
and s(P,Q) = 0, then (M, s) ∼= (P, s |P⊕P )⊕ (Q, s |Q⊕Q). In this case we say
that (P, s |P⊕P ) is a subspace of (M, s).

55



3.2 Reduction and equivalence

We begin by restating the reduction criterion demonstrated in [Knu91, The-
orem II.4.6.1] making use of the fact that 2 ∈ A× to express the result in
terms of the category of ε-Hermitian spaces.

Theorem 3.2.1 (Reduction criterion). Let A be a �nite dimensional K-
algebra with involution σ and denote by rad(A) the radical of A. The canon-
ical reduction functor

F : hermε(A) −→ hermε(A/ rad(A))

has the following properties:

1. F is essentially surjective and preserves orthogonal sums.

2. Any isometry in hermε(A/ rad(A)) can be lifted to an isometry in hermε(A).

Proof. The proof follows [Knu91, Theorem II.4.6.1] and [Sch85, Theorem
7.4.4] with the following modi�cations. We reduce the general case of invari-
ant ideals to that of the radical, which is in fact invariant by [Knu91, II.4.6]
(it is easy to see σ(rad(A)) = rad(A)). Furthermore, completeness in the I-
adic topology (see [Knu91, �II.4.5]) follows trivially since all ideals contained
in the radical are nilpotent in a �nite dimensional algebra by Nakayama's
Lemma. Finally, following Remark 3.1.3, we can view unitary (ε,Λ)-unitary
spaces as ε-Hermitian spaces and arrive at our result.

The reduction criterion allows us to transfer arguments concerning the struc-
ture of ε-Hermitian forms over �nite dimensional algebras to division alge-
bras. Firstly, we observe it is not necessarily that case that a �nite dimen-
sional K-algebra A is semisimple. However, semisimplicity is guaranteed once
we quotient out the radical i.e.

A/rad(A) ∼= A1 × · · · × An,

for some n ∈ N and �nite-dimensional simple algebras A1, . . . , An. Since
our algebra A carries an involution σ and rad(A) is invariant under such an
involution, we would like to have a decomposition which is also invariant
under σ. By [Knu91, I.I.2.8] such a decomposition exists and is structured
as follows:

A/rad(A) ∼= A1 · · · × An ×H(B1)× · · · ×H(Bm),
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where Ai are �nite dimensional simple Z(Ai)
×-algebras, such that σ(Ai) = Ai

and H(Bi) is the hyperbolic ring of a simple �nite dimensional Z(Bi)
×-

algebra Bi invariant under σ. What we have e�ectively shown by the ar-
guments above is that every ε-Hermitian A/ rad(A)-module decomposes as a
product of ε-Hermitian Ai modules where Ai can be realized as a �nite dimen-
sional central simple Z(A×i )-algebra. A more detailed explanation following
this line of reasoning is given in [Knu91, Example II.5.2.5 and Proposition
II.5.2.6].

We can now trace the ideas leading up to this point as follows (see [Knu91,
�II.6.6]). We wish to study ε-Hermitian forms over arbitrary rings A carry-
ing an involution σ. To focus our considerations we restricted our rings by
requiring that A is a �nite dimensional K-algebra such that 2 ∈ A×. As a
consequence of these restrictions we observed a reduction functor F with the
property that isometries of �nitely generated A/rad(A) modules carrying an
ε-Hermitian form with respect to σ can be lifted to hermε(A). Moreover,
by the decomposition of semisimple modules respecting the involution σ, we
can reduce our considerations even further to hermε(Ai), where Ai is a �-
nite dimensional simple Z(A×i )-algebra with involution σ. By Wedderburn's
Theorem such algebras are isomorphic to Ml(D) for some l ∈ N and D is
a Z(A×i )-division algebra carrying an involution σ′. We may describe D in
terms of an endomorphism EndAi(M) where M is a simple Ai-module. This
alternative form is useful as we are able to apply techniques from Morita
theory to reduce our considerations even further down from hermε(Ai) to
hermε(D).

Let P be a faithfully projective right A-module. Recall that P is faithfully
projective if P is �nitely generated as an A-module and P ⊗AN = 0 implies
N = 0 for any N ∈ Proj(A). We wish to de�ne an equivalence of categories
between hermε(A) and hermε(EndA(P )). The �rst necessary step to take in
this direction is to de�ne an involution on EndA(P ) induced by the involution
on A. In this regard, let us assume (P, s) ∈ hermε(A) and consider the (left)
adjoint sl. We de�ne an involution s0 on EndA(P ) by the mapping:

f 7→ s−1
l f ∗sl.

Furthermore, we may de�ne the ε-Hermitian form

s′0 : P × P −→ EndA(P )
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where s′0(x, y) is the map (x⊗A sl(y)) : p 7→ x · sl(y)(p) (see [Knu91, I.9.2]).
Then we may state Morita equivalence for Hermitian modules as follows,

Theorem 3.2.2. [Knu91, Theorem I.9.3.5] Let (P, b) be a ε0-Hermitian mod-
ule over (A, σ) and B = EndA(P ) with ε0 ± 1. If P is faithfully projective,
then the functor

F : hermε(A) −→ hermεε0(EndA(P ))

de�nes an equivalence of categories given by

F : (M, s) 7→ (M ⊗A P, s′0s).

An important Corollary of this result applies to central simple k-algebras.
Let A be a central simple K-algebra with involution σ, by Wedderburn's
theorem, we have A ∼= Mn(D) for some n ∈ N and central division k-algebra
D. Since every projective module P over A is faithfully projective we obtain
the following as a consequence,

Corollary 3.2.3. Let (A, σ) be a central simple K-algebra with involution.
If A ∼= Mn(D), then D has an involution τ such that

F : hermε(A) −→ hermεε0(D)

is an equivalence of categories for some ε0 = ±1. In particular, hyperbolic
spaces of A correspond to hyperbolic spaces of D.

We conclude this chapter by stating and proving the following result which
parallels [Sch85, Corollary II.7.11.4] and [Knu91, Proposition II.7.1.1] in de-
scribing all ε-Hermitian forms of equal rank as twisted forms of the same
element over the algebraic closure.

Proposition 3.2.4. Let A be a �nite dimensional K-algebra with involution
σ. If (M,h1), (N, h2) ∈ hermε(A) such that rankA(M) = rankA(N), then
(M ⊗Kalg, h1) ∼= (N ⊗Kalg, h2) as A⊗Kalg-modules.

Proof. We start by observing that by the Reduction criterion Theorem 3.2.1
it su�ces to consider the case where rad(A) = 0. In particular, we may
without loss of generality, assume that

A ∼= A1 × · · · × An
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where Ai are �nite dimensional simple Z(A×i )-algebras such that σ(Ai) = Ai.
Furthermore, since every ε-Hermitian module over a direct product decom-
poses as a direct product of ε-Hermitian modules, we may once again reduce
our considerations to considering A such that (A⊗L, σ⊗ idL) ∼= (Mn(L), τ),
where L is a separable Galois extension of Z(A×i ). Consider the faithfully
projective right Mn(L)-module (Ln, n 〈1〉) ∈ hermε(Mn(L)), where n 〈1〉 =
〈1, ..., 1〉. Using the Double Centralizer Theorem (see [KMRT98, Theorem
I.1.5]), we see that EndMn(L)(L

n) ∼= L and by Morita equivalence we see

F : hermε(Mn(L)) −→ hermε(L)

is an equivalence of algebras. Now since the theory of 1-hermitian spaces
coincides with that of symmetric bilinear forms over Kalg and the theory of
−1-Hermitian spaces coincides with that of alternating forms, in each case
we may leverage our understanding of the latter to show:

(M ⊗Kalg, h1) ∼= (N ⊗Kalg, h2).

In other words, since any two symmetric bilinear forms (or skew-symmetric
bilinear forms) of equal dimension are isometric it su�ces to let L = Kalg.
In this case we see that by equivalence of categories F (M,h1) ∼= F (N, h2) if
and only if rankA(M) = rankA(N).
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Chapter 4

Algebraic groups

In this chapter we give a brief overview of algebraic groups and introduce only
the notions necessary for our later use. There are several classic resources for
the study of algebraic groups. For a more detailed investigation, the reader
is encouraged to visit any of [Bor91], [Hum75] or [KMRT98].

4.1 Preliminaries

An a�ne algebraic group over a �eld K is an a�ne variety G over K, with
a group structure such that the maps,

µ : G×G −→ G,

µ(g, h) = gh

and

ι : G −→ G,

ι(g) = g−1,

are morphisms between algebraic varieties corresponding to multiplication
and inversion respectively.

Examples 4.1.1. Examples of a�ne algebraic groups.

1. The additive group Ga = SpecK[X] is a 1-dimensional, irreducible,
a�ne algebraic group.
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2. The multiplicative group Gm = SpecK[X,X−1] is a 1-dimensional,
irreducible, a�ne algebraic group.

3. The general linear group GLn = SpecK[X11, . . . , Xnn, D] with D =
det(Xij) is a n

2-dimensional a�ne algebraic group.

The last example is of particular importance since it follows by [Hum75,
Theorem 8.6] that G is an a�ne algebraic group over K if and only if G is
a closed subgroup of GLn for some n ∈ N. We will sometimes refer to a�ne
varieties which can be realized as subgroups of GLn for some n ∈ N as linear
algebraic groups. For example, the subgroups SLn (matrices of determinant
1), Un (upper triangular matrices), Dn (diagonal matrices) of GLn are all
examples of a�ne (linear) algebraic groups.

Consider the a�ne algebraic groupsG,G′. A map ϕ : G −→ G′ is a morphism
of algebraic groups if it is both a group homomorphism and a morphism of
a�ne varieties. As a consequence of this de�nition, it is easy to see that
ker(ϕ) and Im(ϕ) are closed subgroups of G and G′ respectively and

dim(G) = dim(ker(ϕ)) + dim(Im(ϕ)).

We say an a�ne algebraic group G over K is connected if it is irreducible
as an algebraic variety over K. In other words, if G = G1 ∪ · · · ∪ Gn is a
decomposition of G into its irreducible components (as a algebraic variety)
and 1 ∈ G1 where 1 is the identity component of G then we say that G1 is the
connected component of G denoted by G0. In other words, G is connected if
and only if G = G0.

Example 4.1.2. Below we present some classical examples of con-
nected algebraic groups.

1. The additive and multiplicative groups Ga and Gm are both connected
algebraic groups.

2. The orthogonal group On is a linear algebraic group with O0
n = SOn.

3. The general linear group GLn is a connected algebraic group, i.e GLn =
GL0

n.
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Note that the linear algebraic group On corresponds to the group of all
isometry classes of the quadratic form n 〈1〉. Indeed,

On(K) = {M ∈ GLn(K) | MInM
T = In}.

A non-trivial, connected, algebraic group G is called simple if it contains
no non-trivial connected normal closed subgroups over Kalg. Analogously,
we say that a non-trivial connected algebraic group G is semisimple if G
contains no non-trivial connected normal solvable subgroups over Kalg. As
a consequence, a direct product of simple algebraic groups is by de�nition
semisimple.

Examples 4.1.3. Below we present examples of simple and semisimple al-
gebraic groups

1. The group SLn is a simple algebraic group.

2. The group SOn is a simple algebraic group.

3. The group PGL2 is a semisimple algebraic group.

The maximal connected, normal, solvable subgroup of an algebraic group G
is called the radical of G and is denoted by R(G). It follows from this de�-
nition that a connected linear algebraic group G is semisimple if R(G) = 1.
For instance, SLn is semisimple since R(SLn) = 1. Similarly, we call the
maximal connected, normal, unipotent subgroup of an algebraic group G the
unipotent radical, denoted by Ru(G), and say that an algebraic group G is
reductive if Ru(G) = 1. For example, GLn is a reductive group. It follows
from the preceeding de�nitions that for any algebraic group G, G/R(G) is
semisimple and G/Ru(G) is reductive. In particular, since Ru(G) ⊆ R(G)
we have that every semisimple group is automatically reductive.

An a�ne algebraic group T over K which decomposes as a direct product of
copies of Gm over the algebraic closure is called a torus i.e.

TKalg
∼= (Gm)n

for some n ∈ N. We say that a torus is split if T ∼= (Gm)n for some n ∈ N
over the base �eld K. Along the same lines, we declare a reductive algebraic
group G as split if G contains a split torus which is maximal with respect to
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inclusion among tori in G. It turns out that tori play a central role in the
structure and classi�cation of algebraic groups. In this direction, we de�ne
the rank of an algebraic group in terms of the dimension of the split torus
i.e. rank(G) = n if and only if T ⊂ GKalg where T is a split maximal torus
such that T ∼= (Gm)n. This is well-de�ned as all maximal tori are conjugate
by [Bor91, Theorem III.10.6]. We now proceed to set-up the machinery
necessary for the classi�cation of certain types of algebraic groups.

4.2 Root systems

In this section we present the classi�cation of all split semisimple a�ne alge-
braic groups. See [Bor91, �24.A], [KMRT98, �25] or [Hum75, �35] for a more
in depth discussion of the classi�cation.

Let V be a vector space over R equipped with the (non-degenerate) symmet-
ric bilinear form (·, ·) given by the Euclidean inner product. For any given
non-zero vector v ∈ V , we de�ne the re�ection sv : V −→ V to be the linear
transformation on V given by

sv(w) = w − 2
(v, w)

(w,w)
w.

A �nite subset φ ⊂ V of non-zero vectors is called a root system if the
following axioms are satis�ed:

1. φ spans V as an R-vector space;

2. If α ∈ φ, then Rα ∩ φ = {±α};

3. If α, β ∈ φ, then sα(β) ∈ φ;

4. If α, β ∈ φ, then 2 (α,β)
(β,β)

∈ Z.

We de�ne the rank of the root system φ to be the dimension of the associated
vector space V over R. Along these lines, we say that {α1, · · · , αn} ⊆ φ is a
basis of the root system φ if {α1, · · · , αn} is a basis of V over R and for any
α ∈ φ we have that

α =
n∑
i=1

riαi
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where ri are all integer coe�cients of the same sign. A root is called positive
if all coe�cents in terms of the basis of the root system are positive integers.
Alternatively, a root is negative if all coe�cents are negative. We de�ne the
Weyl group of φ, denoted by W (φ), to be the subgroup of GL(V ) generated
by all re�ections sα for α ∈ φ. It follows from the de�nition of a root system
that the Weyl group W (φ) must be �nite, since φ is �nite, and that W (φ)
must permute the roots of φ, as it is generated by re�ections along roots
α ∈ φ.

Fix a basis Π ⊂ φ of the root system φ. We de�ne the Dynkin diagram to be
a directed graph with vertices indexed by elements of Π and the number of
edges between two vertices αi, αj ∈ Π given by 4

(αi,αj)

(αj ,αj)

(αj ,αi)

(αi,αi)
. That is to say,

the number of edges nαiαj , is determined by the angle between αi and αj.
We choose the edges in the Dynkin diagrams of Theorem 4.2.1 to represent
the order of sαsβ in the Weyl group, whenever an edge joins two simple
(indecomposable elements) roots α and β. Although there may, in general,
be multiple di�erent choices of basis Π ⊂ φ, it turns out that the Dynkin
diagram of φ does not depend on the choice of basis. Moreover, it preserves
the structure of the root system associated to an algebraic group G, so that
we can recover the Weyl group W (φ) of φ from its Dynkin diagram. To see
this let mij = 2, 3, 4, 6 correspond to the number of edges joining roots αi
and αj i.e. 0, 1, 2, 3 then,

{sα1 , . . . , sαn| (sαi)
2 = 1, (αiαj)

mij = 1}.

We say that a root system φ of V is called irreducible if there does not
exist a partition φ1, φ2 ⊂ φ such that φ1 ∩ φ2 = ∅ and (α1, α2) = 0 for all
α1 ∈ φ1 and α2 ∈ φ2. In fact, the irreducibility of a root system φ is precisely
equivalent to the connectedness of the associated Dynkin diagram of φ. The
formal language we have thus far established puts us in a position to state
the main result of this section that all Dynkin diagrams of irreducible root
systems can be classi�ed into one of 9 types,

Theorem 4.2.1. [Hum75, Appendix. Root Systems] Dynkin diagrams can be
classi�ed into four classical types An(n ≥ 1), Bn(n ≥ 2), Cn(n ≥ 2), Dn(n ≥
3) and �ve exceptional types, E6, E7, E8, F4 and G2 where the subscript de-
notes the rank of root systems:

(An)
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(Bn)

(Cn)

(Dn)

(G2)

(F4)

(E6)

(E7)

(E8)

So how do we get a root system out of a split a�ne algebraic group? We
use the character group of the torus. Without loss of generality, choose a
split maximal torus T ⊂ G (note that all maximal tori are conjugate so this
choice is well-de�ned) and denote by T ∗ := Hom(T,Gm) the character group
of T . Note that since T is a split maximal torus, we have that

T ∗ ∼= Zn

where n = rank(T ). We will show that by combining the Lie algebra asso-
ciated to G and a particular representation of G, it is possible to exhibit a
root system φ ⊂ T ∗ which will allow us to classify G (up to isomorphism) by
the Dynkin diagram associated to the root system φ. Firstly, consider the
adjoint representation

Ad : G −→ GL(Lie(G))
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where Lie(G) is the Lie algebra associated to G over K. We say that a
character α ∈ T ∗ is called a weight of the adjoint representation with a
weight subspace Lα, given by

Lα(K) := {l ∈ Lie(G) | Ad(t)l = α(t)l for all t ∈ T (K)}.

It follows we can use the weight subspaces (see [KMRT98, �22]) to decompose
Lie(G) i.e.

Lie(G) = ⊕αLα,

where we sum over all non-zero weights α. This latter fact gives us the
representation to determine the root system of G.

Theorem 4.2.2. [KMRT98, Theorem VI.25.1] Let G be a split semisimple
algebraic group and let T ⊂ G be a split maximal torus. The set of non-zero
weights α of the decomposition Lie(G) = ⊕αLα is a root system in T ∗.

We brie�y recall the context of the previous sections. Let G be a split
semisimple algebraic group and T ⊂ G be a split maximal torus. We de�ne
the root system φ(G) = {0 6= α ∈ T ∗} consisting of non-zero weights α com-
ing from the representation of Lie(G) = ⊕αLα. We proceed by associating
two lattices associated to φ(G) in order to setup our next classi�cation result.
We de�ne Λr to be a root lattice of φ if

Λr := spanZ(α1, . . . , αn),

where αi are the roots of φ. Alternatively, we call Λw the weight lattice of φ
whenever

Λw := {t ∈ T | α∨(t) ∈ Z for all α ∈ φ},

where α∨ : T −→ R is de�ned by α∨(t) = 2 (t,α)
(α,α)

. We say that G is simply
connected if T ∗ = Λw and G is adjoint if T ∗ = Λr. In particular, notice that
Λr ⊆ T ∗ ⊆ Λw.

We conclude this section with the classi�cation of split simple a�ne algebraic
groups of classical type over a �eld K,

Theorem 4.2.3. Let G be a split simple a�ne algebraic group of classical
type. Then we may classify G according to its type as follows,
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(An): If G is simply connected, then

G = SLn+1(K),

otherwise, G = SLn+1/µk where k divides n+ 1.

(Bn): If G is simply connected, then

G = Spin2n+1(K).

If G is adjoint, then

G = SO2n+1(K).

(Cn): If G is simply connected, then

G = Sp2n(K),

otherwise if G is adjoint, then

G = PGSp2n(K).

(Dn): In this case, n = 2m. If G is simply connected, then

G = Spin2n(K).

If G is adjoint, then

G = PGSO2n(K).

Alternatively, in the case G is neither simply connected nor adjoint we
have G = O2n(K) or G = Spin±2n(K).

(Dn): In this case, n = 2m+ 1. If G is simply connected, then

G = Spin2n.

If G is adjoint, then

G = PGSO2n(K).

Alternatively, in the case G is neither simply connected nor adjoint
then G = O2n(K).
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4.3 Multipliers of similitudes

In this section we summarize a classical result of Weil [W60] which shows
that there is a deep connection between algebras with involution and clas-
sical groups of adjoint type. In particular, we will see how the notions of
embeddability in P�ster forms and strong P�ster elements relate to those of
similitudes. For a more detailed discussion of these results see [KMRT98,
Chapter III] or [Sha77a].

We begin by introducing some preliminary de�nitions which will allow us to
state this connection more precisely. Let (A, σ) denote a central simple K-
algebra equipped with involution σ. Recall that by Skolem-Noether, we know
that every automorphism of A is an inner automorphism, in other words

Aut(A, σ) = {Inn(a) : A −→ A | σ(a)a ∈ K×}.

To see why this equality holds, observe that a map f : (A, σ) −→ (A, σ) is
an automorphism if

f ◦ σ = σ ◦ f.
Since f is an inner automorphism, this de�nition is equivalent to

aσ(−)a−1 = σ(a)−1σ(−)σ(a),

where f = Inn(a) = a(−)a−1, implying the desired equivalence. We denote
the group of similitudes of (A, σ) by Sim(A, σ) where

Sim(A, σ) := {a ∈ A× | σ(a)a ∈ K×}.

Associated to the involution σ we de�ne themultiplier map µ : Sim(A, σ) −→
A× by µ(a) = σ(a)a.

Remark 4.3.1. Recall the construction of strong P�ster elements θm in
Section 2.4 and Section 2.3.2. We see that by necessity θm ∈ Sim(A, σ) when
A = ⊗mi=1Qi. Moreover, by the computation of maximal admissible subspaces
in [Sha77a] we have an upper bound on the decomposition of elements coming
from Sim(A, σ) determined by the degree ofA, wheneverA is a tensor product
of quaternion K-algebras. Alternatively, the elements of Sim(A, σ) which are
maximal in terms of the number of elements they decompose into are precisely
the strong P�ster elements whenever A is a tensor product of quaternion K-
algebras.
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Example 4.3.2. Let (A, σ) = (EndK(V ), σq) where dimK(V ) = n. Then
the following hold:

1. Iso(A, σ) := {a ∈ A∗ | σ(a)a = 1} can be identi�ed with O(q) where

O(q) := {M ∈Mn(K) | q(Mv) = q(v) for every v ∈ V },

2. Sim(A, σ) can be identi�ed with GO(q) where

GO(q) := {M ∈Mn(K) | q(Mv) = cq(v) for every v ∈ V }

with c ∈ K×.

Considering the group of isometries in terms of µ, it is easy to see that

Iso(A, σ) = ker(µ).

This induces the following exact sequences

1 −→ Iso(A, σ) ↪→ Sim(A, σ)
µ−→ K× −→ 1,

1 −→ K× ↪→ Sim(A, σ)
Inn−→ Aut(A, σ) −→ 1

and an isomorphism Sim(A, σ)/K× ∼= Aut(A, σ) where we denote the quo-
tient Sim(A, σ)/K× by PSim(A, σ) and say that PSim(A, σ) is the group of
projective similitudes of (A, σ).

Example 4.3.3. Consider a, b ∈ K× such that (a, b) is a quaternion K-
algebra equipped with an involution σ.

1. If σ is orthogonal, such that σ(i) = −i, with i2 = −a, then

Sim(A, σ) = K(i)× ∪K(i) · v

for any v with the property that v ∈ (a, b)× and iv = −vi.

2. If σ is symplectic i.e. σ is the cannonical involution, then

Sim(A, σ) = (a, b)×.
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Recall that for a ∈ A,

char. pol.A,a(X) = Xn − cn−1(a)Xn−1 + cn−2(a)Xn−2 − . . .+ (−1)nc0(a),

where cn−1(a) = TrdA(a) denotes the reduced trace and c0(a) = NrdA(a)
denotes the reduced norm. Then for any a ∈ A, σ(a)a = k ∈ K× implies
that NrdA(σ(a)a) = NrdA(σ(a)) NrdA(a) = NrdA(k) which can be reduced
to

NrdA(a)2 = k2n

since NrdA(a) = NrdA(σ(a)) and NrdA(k) = k2n for every k ∈ K×. We
classify similitudes into two groups: proper and improper similitudes. We
say a similitudes a ∈ Sim(A, σ) is proper if NrdA(a) = kn and improper if
NrdA(a) = −kn. Along these lines, we denote the group of proper similitudes
is by PSim+(A, σ) while we denote the group of improper similitudes by
PSim−(A, σ). We have now established all the necessary terminology to
state the celebrated result of Weil.

Theorem 4.3.4. [W60] If G is an adjoint absolutely simple a�ne algebraic
group of classic type over a �eld K, then there exists a central simple K-
algebra A equipped with an involution σ such that

G ∼= Sim(A, σ)0,

where Sim(A, σ)0 is the connected component of Sim(A, σ) and can be iden-
ti�ed with the set of proper similitudes, PSim+(A, σ).

We conclude this section by classifying all absolutely simple a�ne algebraic
groups of classical type over K motivated by the result of Weil,

Theorem 4.3.5. [KMRT98, �26] Let G be an absolutely simple a�ne (lin-
ear) algebraic group over K. The following hold:

1. If G is simply connected, then

1An: G = SL1(A), where A is a central simple algebra of degree n+ 1.

2An: G = SU(A, σ), where A is a central simple algebra of degree n+ 1
over L and L/K is a quadratic �eld extension with unitary invo-
lution σ such that σ|K = idK.

Bn: G = Spin2n+1(q), where q is a quadratic form over K.
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Cn: G = Iso(A, σ), where A is a central simple algebra of degree 2n
and σ is a symplectic involution.

Dn: G = Spin2n(A, σ), where A is a central simple algebra of degree
2n and σ is an orthogonal involution.

2. If G is adjoint, then

1An: G = PGL1(A), where A is a central simple algebra of degree n+1.
2An: G = PSim(A, σ), where A is a central simple algebra of degree

n+ 1 over L and L/K is a quadratic �eld extension with unitary
involution σ such that σ|K = idK.

Bn: G = SO2n+1(q), where q is a quadratic form over K.

Cn: G = PSim(A, σ), where A is a central simple algebra of degree 2n
and σ is a symplectic involution.

Dn: G = PSim+(A, σ), where A is a central simple algebra of degree
2n and σ is an orthogonal involution.

4.4 Projective homogeneous varieties

Let G be a split algebraic group over a �eld K with a split maximal torus
T ⊂ G. We say X is a homogeneous G-variety if X is a variety over K such
that there is a G-action φ : G×X −→ X on X de�ned by (g, x) 7→ g ·x with
the following properties:

1. g · (h · x) = (gh) · x for all g, h ∈ GKalg , x ∈ XKalg , and

2. For every x, y ∈ XKalg there exists g ∈ GKalg such that g · x = y.

Note that the �rst condition is precisely the de�nition of a group action and
the second condition is the de�nition of a transitive group action. If G is a
smooth algebraic group, we then say a homogeneous G-variety is implicitly
projective. In fact, as we will see, there is a correspondence between pro-
jective homogeneous G-varieties and quotients of G. In order to state this
correspondence appropriately it is necessary to de�ne two important classes
of subgroups of G.

We say a a subgroup H of G is Borel if H is a connected, solvable and closed
subgroup of G which is maximal with respect to these properties. Further,
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we say a subgroup P ⊂ G is parabolic if G/P is projective. It turns out
that if G is smooth, then for any Borel subgroup H ⊂ G, G/H is projective,
which implies that P is parabolic if and only if it contains a Borel subgroup
(see [Hum75, Theorem 29.3]). For example, if G = GL(V ) for some K-vector
space V then it can be easily con�rmed from the above characterization that
the set of upper triangular matrices in G is a Borel subgroup.

Now consider the root system φ(G, T ) of G with a basis of non-decomposable
(simple) positive roots Π ⊂ φ(G, T ). For any subset Θ ⊂ Π we de�ne the
parabolic subgroup PΘ to be the group generated by a Borel subgroup B ⊃ T
and the set of re�ections sα for α ∈ Θ, in particular any parabolic subgroup
is of this form by [Hum75, Theorem 29.3]. We have the following well-known
correspondence:

Theorem 4.4.1. [Bor91, § 24.A] Let G be a smooth split a�ne algebraic
group with a split maximal torus T and root system φ(G, T ). Then X is a
homogeneous G-variety if and only if X ∼= G/PΘ, where Θ ⊂ Π and Π is a
basis of positive roots of φ(G, T ).

We can restate the above result by saying that all projective homogeneous
G-varieties can be classi�ed by subsets Θ ⊂ φ(G, T ) consisting of vertices
in the corresponding Dynkin diagram of G. This allows us to de�ne several
useful varieties which we encounter in practice as quotients of G with respect
to subsets of simple positive roots.

We conclude this section by introducing another way of understanding both
Borel and parabolic subgroups of G is in terms of their actions on �ags of
vector spaces. Consider an n-dimensional K-vector space V and a sequence
of subspaces

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V

with dimK(Vm) = m for allm present in the �ag. If the sequence of subspaces
is full, i.e. each Vi for i = 1, . . . ,m is realized in the sequence, we say the
�ag is complete, in all other cases we refer to the �ag as partial. By �xing
a basis, say {e1, . . . , en} ⊂ V , it is easy to see that the Borel subgroup of
upper triangular matrices can be realized as the stabilizer of the full �ag,

0 ⊂ span(e1) ⊂ span(e1, e2) ⊂ · · · ⊂ span(e1, . . . , en) = V.

In this sense, we say that GLn /Un is the complete �ag variety where Un
is the set of upper triangular matrices. The parabolic subgroups enter this
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picture when we extend our considerations to partial �ag varieties. Indeed,
the stabilizer of any partial �ag must contain the upper triangular matrices,
a Borel subgroup, which is precisely the de�nition of a parabolic subgroup.
For example, we de�ne the Grassmannian variety, denoted by Gr(m,n+ 1),
to be the variety of all m-dimensional linear subspaces of a n+1-dimensional
K-vector space V . It is not too hard to see that the Grassmannian variety
is a homogeneous G-variety, with Gr(m,n + 1) ∼= G/PΘm where G is a split
algebraic group of type An and Θm := {α1, . . . , αm−1, αm+1, . . . , αn}. In
particular,

Gr(1, n+ 1) ∼= Gr(n, n+ 1) ∼= Pn,

since all (n+ 1)-dimensional and 1-dimensional subspaces of V can be iden-
ti�ed with the n-dimensional projective space.

Remark 4.4.2. The connection between projective homogeneous G-varieties
and groups of similitudes is much deeper than what we have covered here. For
example, in [McF19], it was shown that for a second generalized involution
variety X of a degree 4 central simple algebra A equipped with a symplectic
involution σ, the group ofK1-zero-cycles of X is determined by µ(Sim(A, σ)).

We conclude by giving a description of the maximal symplectic Grassman-
nian in terms of an algebraic group G and a parabolic subgroup P . Let G be
a split semisimple group of classical type Cn, that is to say, let G = Sp2n(K).
It is not hard to see that for a skew-symmetric bilinear form on a vector
space of dimension 2n, Sp(V ) acts transitively on the space of n-dimensional
totally isotropic subspaces of V . The parabolic subgroup Pθ which stabilizes
a �xed n-dimensional totally isotropic subspace can be described is given by
the set of simple roots {α1, . . . , an−1} with the last root omitted.

For a more general overview of the connection between Grassmannians, or-
thogonal Grassmannians and symplectic Grassmannians see [BL00, �3].
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Chapter 5

Schubert cycles

In this chapter, we de�ne the notion of an involution variety and use it as
a proxy for studying the algebraic structure of isotropic ideals contained in
central simple K-algebras with involution. We use the language of Schubert
cycles to prove a lifting criteria which allows us to realize twisted forms of
Schubert varieties by some nice combinatorial description. Working in the
language of algebraic groups covered earlier, we compute the torsion Chow
group for classical groups of type Cn corresponding to Lagrangian Grass-
mannians associated to central simple K-algebras of degree 4 with symplec-
tic involution. To our understanding, this is not treated anywhere in the
existing literature. We refer the reader to [Kra10] for more background on
involution varieties, [BL00] for a review of Schubert cycles and [EKM08] for
an exposition on Chow groups of quadrics.

5.1 Involution varieties

Let (A, σ) be an algebra with involution (of the �rst kind) over a �eld K
with char(K) 6= 2. We de�ne the reduced dimension of a (right) ideal I ⊂ A
by

rdim(I) := dimK(I)/ deg(A).

For each (right) ideal I ⊂ A, we de�ne its orthogonal ideal I⊥, by

I⊥ = {x ∈ A | σ(x)y = 0 for y ∈ I}.

We say that a right ideal I is isotropic if I ⊆ I⊥. We observe that since
rdim(I) + rdim(I⊥) = deg(A), we can bound the reduced dimension of an
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isotropic ideal by 1
2

deg(A). Moreover, we can make use of this bound to
de�ne the notion of index for algebras with involution. In this regard, we
de�ne the index of (A, σ) by

ind(A, σ) = {rdim(I) | I ⊆ I⊥}.

Note that, since we know ind(A) | rdim(I) and (A, σ) ∼= (EndD(V ), σh) for
some symmetric or skew-symmetric hermitian space (V, h) over D, we see
that ind(A, σ) = {n ind(A) | 0 ≤ n ≤ w(h)}, where w(h) denotes the Witt
index of (V, h). This highlights a correspondence between isotropic ideals of
(A, σh) and totally isotropic subspaces of (V, h) (see [KMRT98, Proposition
II.6.2]). For any isotropic ideal I in (A, σ) there exists a totally isotropic
subspace W ⊂ V, such that

I = HomD(V,W ).

We say an isotropic ideal I ∈ A is hyperbolic if and only if

max(ind(A, σ)) =
1

2
deg(A).

In general, hyperbolic ideals encode properties of the involution. We consider
two examples of hyperbolic ideals.

1. Assume (A, σ) is a central simple K-algebra equipped with a symplec-
tic involution. Then every ideal of reduced dimension 1 is isotropic.
Indeed, if rdim(I) = 1 for some I ∈ A then ind(D) = 1 which means
that σ is adjoint to a skew-symmetric bilinear form, containing all lines
through the origin as solutions.

2. Let (A, σ) = (M2(K), σq) where q is a 2-dimensional quadratic form

over K. It follows by the hyperbolicity of q ⊗K K(
√
− det(q)) that

(A, σ)⊗KK(
√
− det(q)) is a central simple K-algebra of degree 2 with

hyperbolic involution.

A result of Bayer-Fluckiger, Shapiro and Tignol [BFST93, Theorem 2.2]
shows that a central simple algebra (A, σ) with orthogonal involution is hy-
perbolic if and only if (A, σ) ∼= (M2(K) ⊗ B, σq ⊗ τ) where (B, τ) is some
central simple algebra with orthogonal involution and q is a hyperbolic plane.
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We are now ready to consider involution varieties, which are determined by
conditions on the reduced dimension of isotropic ideals inside (A, σ), our
de�nitions follows [Kra10, �8]. If X is a variety over K we will abuse no-
tation and denote the covariant functor from the category of commutative
K-algebras to the category of sets given by

R 7→ MorSch(Spec(R), X),

as X, and call X(R) the R-points of X (see [Kra08, �2] for more details).

The (k-th) generalized involution variety is the subvariety of the Grassman-
nian representing a functor of points given by isotropic reduced dimension k
right ideals inside of (A, σ) i.e.

IVk(A, σ)(R) = {I ∈ Gr(n2 − nk,A)(R) | I is a right ideal, σ(I)I = 0}.

Remark 5.1.1. The generalized involution variety is an analogue of the
generalized Severi-Brauer variety of a central simple K-algebra A, SBk(A),
de�ned to be the variety of ideals whose L-points are right ideals in A with
reduced dimension n,

SBk(A)(R) = {I ∈ Gr(n2 − nk,A)(R) | I is a right ideal}.

It is easy to see that in the case k > 1
2

deg(A) we have the set of L-
points of IVk(A, σ)(L) is empty since rdim(I) + rdim(I⊥) = deg(A) and
rdim(I) ≤ rdim(I⊥) implies rdim(I) ≤ 1

2
deg(A) for all isotropic ideals I

of (A, σ). Following [KMRT98, �1.C], we realize SBr(A) as a closed subva-
riety of Gr(rn,A)(K) which we can identify with P(∧rnA). The argument
is identical for IVr(A) by replacing Gr(rn,A)(K) with LG(rn,A)(K) which
has points corresponding to the rn-dimensional subspaces of A that form a
totally isotropic subspace of the hermitian form associated to (A, σ).

The aim of the next section is to understand how isotropic ideals interact
geometrically by studying IVn(A, σ) for n ≤ 1

2
deg(A). As a �rst approach,

our intuition suggests we consider the case that n = 1 and σ is symplectic.
However, it is not hard to see that this is precisely equivalent to studying
the Severi-Brauer variety of A, which are treated extensively in [KMRT98].
Indeed, if we realize an ideal of reduced dimension 1 as a rank 1 vector space
over some division algebra we know that it must be totally isotropic with
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respect to the associated skew-Hermitian form. In other words, the Severi-
Brauer variety associated to A is equivalent to a generalized involution va-
riety, i.e. SB(A) = IV1(A, σ). The central focus of this chapter is directed
toward understanding Schubert cycles of maximal symplectic Grassmannians
i.e. SG(n, 2n) = IVn(A, σ) in the less understood case where n = 1

2
deg(A).

We obtain a lifting property for these cycles and use this as a motivation to
determine the torsion elements in the corresponding Chow group. A brief
overview of current results for the maximal orthogonal Grassmannian case is
given in the Appendix.

In the next section, we attempt to extend the computation of torsion elements
in a Chow group obtained by [JKL17] in type An and those obtained by
[Kar16] in type Bn to the type Cn case corresponding to maximal symplectic
Grassmannians.

5.2 Maximal Symplectic Grassmannians

Let (A, σ) be a central simple K-algebra carrying a symplectic involution
with deg(A) = 2n. For a �eld extension L/K we identify the maximal
symplectic Grassmannian (also known as the Lagrangian involution variety)
SG(A, σ) := IVn(A, σ) where the set of L-points can be identi�ed with

SG(A, σ)(L) = {I ⊂ AL | I = I⊥}

In the case that (A, σ) is split, i.e. (A, σ) = (EndK(V ), σh), the rational
points of SG(A, σ) correspond to the maximal isotropic subspaces of V as
discussed in Section 5.1. It follows that for a non-split central simple K-
algebra (A, σ), the variety SG(A, σ) is a twisted form of the Lagrangian
Grassmannian LG(n, 2n), de�ned by the set of maximal totally isotropic
vector subspaces associated to the quadratic form adjoint to the involution.

The correspondence between isotropic subspaces and isotropic right ideals is
also used to construct a complete isotropic �ag for (A, σ) in the split case,
i.e. when (A, σ) = (EndK(V ), σh), with dimK(V ) = 2n. First, �x a maximal
isotropic subspace Vn ⊂ V (which necessarily has dimension n), and extend
to a complete �ag of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vn such that dimK(Vj) = j.
This �ag then corresponds to a complete �ag of isotropic right ideals of
(EndK(V ), σh) by setting Ij := HomF (V, Vj). We will use this �ag to de�ne
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the Schubert subvarieties of SG(EndK(V ), σh) in terms of isotropic right ide-
als.

Consider a strict partition a = [a1, . . . , an] with n ≥ a1 > a2 > · · · >
an > 0. Such a partition can be represented by an upper shifted Young
diagram with aj boxes in the j-th row, starting at the jth column of an
n × n box. Alternatively, this diagram can be described by a partition λ =
[λ1, λ2, . . . , λn] with aj = λj − j + 1 for j = 1, . . . , bn

2
c and λbn

2
c+1, . . . , λn

determined such that λ is self-dual. In this context, the term self-dual comes
from Lakshmibai and Weyman, and refers to a diagram inside an n× n box
which is symmetric about the north-west to south-east diagonal of the box
[LW90].

Example 5.2.1. Suppose n = 4. The strict partition a = [4, 2, 1, 0], cor-
responds to the upper shifted diagram on the left. We associate to a the
self-dual partition λ = [4, 3, 3, 1], which corresponds to the self-dual diagram
on the right. Note that the upper shifted diagram is obtained from the
self-dual diagram by removing all coloured blocks below the North-West to
South-East diagonal of the box.

a = λ =

These partitions, or their associated Young diagrams (of either upper shifted
or self-dual type), are used to de�ne the Schubert subvarieties of the La-
grangian grassmannian SG(n, 2n). Given a split algebra with symplectic
involution (A, σ) = (EndK(V ), σh) with deg(A) = 2n, we �x a full chain of
isotropic right ideals

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ A such that rdim(Ij) = j

Let λ = [λ1, λ2, . . . , λn] be a self-dual partition with n ≥ λ1 ≥ λ2 ≥ · · · ≥
λn ≥ 0, and let a(λ) = [a1, . . . , an] be the corresponding strict partition.

The Schubert variety Xλ ⊆ SG(EndK(V ), σh) is then de�ned by intersection
conditions with respect to the above isotropic chain:

Xλ = {J ∈ SG(EndK(V ), σh) | rdim(J ∩ In+1−aj) ≥ j for j = 1, . . . , n}
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Using the correspondence between self-dual Young diagrams and upper shifted
Young diagrams, we can also de�ne Xλ in terms of λ itself:

Xλ = {J ∈ SG(EndK(V ), σh) | rdim(J∩In+j−λj) ≥ j for 1 ≤ j ≤ n and λj ≥ j}

Lemma 5.2.2. Let A be a central simple K-algebra of degree n and let 1 ≤
d ≤ n. Given an ideal Ia ⊂ A of reduced dimension a and a �xed integer
1 ≤ r ≤ a, the subset

X(r,a) = {J ∈ SB(d,A) | rdim(J ∩ Ia) ≥ r},

is a closed subscheme of SB(d,A).

Sketch of the Proof. We proceed by expressing X(r,a) as a degeneracy locus
for the scheme SB(d,A). Recall that the kth degeneracy locus of a morphism
φ : E −→ F of vector bundles over a scheme X is

Dk(φ) = {x ∈ X | rank(φ(x)) ≤ k},

where φ(x) : E(x) −→ F (x) is the induced map on �bers over a point x ∈ X.
Now, Dk(X) is a closed subscheme of X as the zero scheme of the induced
morphism Λk+1(φ) : Λk+1(E) −→ Λk+1(F ), denoted by Z(Λk+1(φ)). In other
words,

Dk(φ) = Z(Λk+1).

The scheme structure of Dk(φ) is encoded in this latter description. That is
to say, locally, its ideal is generated by (k + 1)-minors of a matrix for φ. See
[Fu98, Chapter 14, p. 243] for more discussion on degeneracy loci.

Npw, let us consider the tautological sequence of vector bundles for S =
SB(d,A):

0→ I → A⊗OS → Q,
where I is the universal subbundle of S = SB(d,A) and Q is the universal
quotient bundle of S. Over a point J ∈ SB(d,A), the induced sequence of
�bers over J is

0→ J → A→ A/J → 0.

In particular, the right ideal Ia of A induces a morphism of vector bundles
determined by the composite of the inclusion and the quotient morphism

φ : Ia ⊗OS −→ A⊗OS −→ Q.
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On the �ber over a point J ∈ SB(d,A), we have that φ(J) : Ia → A→ A/J.
Note that, im(φ(J)) = (Ia + J)/J ∼= Ia/(J ∩ Ia) so that, in particular,
ker(φ(J)) = J ∩ Ia. It follows that for the morphism φ : Ia ⊗OS −→ Q, we
see that

D(a−r)n(φ) = {J ∈ SB(d,A) | dim(Ia/(J ∩ Ia)) ≤ (a− r)n}

which is equivalent to

D(a−r)n(φ) = {J ∈ SB(d,A) | rdim(J ∩ Ia) ≥ r} = X(r,a).

For an algebra with symplectic involution (A, σ) over a �eld K, and vec-
tor space V such that EndKalg(V ) ∼= AKalg , we say that a closed subvariety
P ⊂ SG(A, σ) is a twisted form of the Schubert variety Xλ if we can de-
�ned an isomorphism of varieties between SG(A, σ) and SG(n, 2n) such that
PKalg is identi�ed with Xλ. Recall, in this context SG(n, 2n) is the variety
of points consisting of totally isotropic subspaces of dimension n in V where
dimKalg(V ) = 2n. Thus, our �rst main goal will be to determine which
twisted forms of Schubert varieties appear in the Lagrangian involution va-
rieties of a given algebra with symplectic involution (A, σ).

To do this, we must �rst determine which of the intersection conditions in
the de�nition of Xλ are essential to determine Xλ uniquely, and which can
be removed without changing the variety itself. We introduce a variation on
Fulton's essential set, de�ned in [Ful92]. For each self-dual partition λ, we
de�ne a set of pairs Eλ := {(j, n + j − λj) | λj > λj+1 and λj ≥ j} with the
convention that λn+1 = 0 for any partition λ.

We note that the �rst condition λj > λj+1 describes the situation that the
right-most box in the jth row of the corresponding Young diagram lies at
the south-eastern edge of a �corner�. The second condition λj ≥ j guarantees
that such a corner lies on or above the north-west to south-east diagonal of
the n × n square. The second coordinate of these pairs records the reduced
rank of the right ideal of the �ag which de�nes the intersection condition.

Example 5.2.3. Suppose n = 4, and consider the self-dual partition λ =
[4, 3, 3, 1]. The corresponding diagram has two corners above or on the diag-
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onal, corresponding to the set Eλ = {(1, 1), (3, 4)}.

λ = 1

4

Let Eλ = {a | (j, a) ∈ Eλ}. Note that for any a ∈ Eλ, there exists a unique
1 ≤ j ≤ d such that (j, a) ∈ Eλ. Using Eλ we can identify a unique subchain
in Eλ, Ia1 ⊂ Ia2 ⊂ · · · ⊂ Iam , ai ∈ Eλ with the property that

Xλ = {J ∈ SG(EndK(V ), σh)(K) | rdim(J ∩ Ia) ≥ j for (j, a) ∈ Eλ}.

This Eλ uniquely de�nes Xλ and is minimal in the sense that if any pairs in
Eλ are changed or removed, the variety de�ned by this new set of conditions
will not be equal to Xλ (see [And16, Corollary 4.2]). Note that the Young
diagram for λ can also be reconstructed from Eλ (keeping in mind that the
diagram must be self-dual).

Proposition 5.2.4. Let Xλ be a Schubert subvariety of SG(EndK(V ), σh)
with dimK(V ) = 2n and let (A, σ) be an algebra with symplectic involution
over K of degree 2n. If ind(A) | gcd(Eλ) and max(Eλ) ∈ ind(A, σ), then
SG(A, σ)(K) contains a closed subvariety over K which is a twisted form of
Xλ.

Proof. Since A has an isotropic right ideal of reduced rank k if and only if
k ∈ ind(A, σ), it follows that if ind(A) | gcd(Eλ) and max(Eλ) ∈ ind(A, σ),
then A contains a partial �ag of isotropic ideals Ia1 ⊂ · · · ⊂ Iar ⊂ A for
Eλ = {a1, . . . , ar} (note that ind(A) | ai implies ai ∈ ind(A, σ)). We may
then de�ne a closed subvariety Pλ ⊆ SG(A, σ)(K) by

Pλ(L) = {J ∈ SG(A, σ)(L) | rdim(J ∩ (Ia ⊗K L)) ≥ j for (j, a) ∈ Eλ},

where L/K is a �eld extension. We will proceed by demonstrating that Pλ(L)
is, in fact, a closed subvariety of SG(A, σ). To do this, we aim to show that
the Schubert cycle

Xλ = {J ∈ SG(A, σ) | rdim(J ∩ Ia) ≥ r, (r, a) ∈ Eλ}

de�nes a closed subvariety in SG(A, σ). In particular, let us begin by consid-
ering the case for generalized Severi-Brauer varieties, since intersecting the
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consequent Schubert cycles with SG(A, σ) will give us the desired claim. Let
λ be a partition �tting in a d × (n − d) box. Assume that ind(A) divides
gcd(Eλ). For any (k, a) ∈ Eλ, there exists an ideal Ia of A de�ned over K
with reduced dimension a. Thus, we may de�ne

Qλ = {J ∈ SB(d,A) | rdim(J ∩ Ia) ≥ r, (r, a) ∈ Eλ} = ∩(r,a)∈EλX(r,a),

where Qλ is realized as a closed subscheme of SB(d,A) via the intersection of
closed subschemes X(r,a) de�ned in Lemma 5.2.2. For a splitting �eld L/K
of A, it is clear that

(Qλ)L = {J ∈ SB(EndK(V ), σh)(K) | rdim(J ∩ Ia) ≥ j for (j, a) ∈ Eλ}.

Indeed, since AL = EndL(V ) for some n-dimensional L-vector space V , and
all ideals of reduced dimension r, take the form HomL(V,W ) for some r-
dimensional subspace W ⊂ V .

Coming back to our case, we have a central simple K-algebra A of degree
2n with a symplectic involution σ and SG(A, σ) is a closed subscheme of
SB(n,A) consisting of the isotropic ideals of SB(n,A) with respect to σ.
Considering an isotropic ideal Ia ∈ A of reduced dimension a,

X(r,a) ∩ SG(A, σ) = {J ∈ SG(A, σ) | rdim(J ∩ Ia) ≥ r},

is a closed subvariety of SG(A, σ). In particular, if we let λ be a self-dual
partition �tting in a n×n box and assume the conditions of Proposition 5.2.4
i.e. ind(A)| gcd(Eλ) and max(Eλ) ∈ ind(A, σ) then for any (r, a) ∈ Eλ, there
exists a reduced dimension a isotropic ideal Ia ∈ A de�ned over K such that

Pλ = {J ∈ SG(A, σ) | rdim(J∩Ia) ≥ r, (r, a) ∈ Eλ} = ∩(r,a)∈Eλ SG(A, σ)∩X(r,a)

and Pλ is a closed subscheme of SG(A, σ). For a splitting �eld L/K of
(A, σ), it is clear that (Pλ)L ∼= Xλ. Indeed, this is follows since (AL, σL) ∼=
(EndL(V ), σh) for some n-dimensional L-vector space V and some hermitian
form h on V associated to σ where all isotropic ideals of reduced dimension
r take the form HomL(V,W ) for some r-dimensional subspace W ⊂ V which
is totally isotropic with respect to h.
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5.3 The singular locus of a Schubert variety

The goal of this section is to prove the converse of Proposition 5.2.4. That
is, we want to show that if SG(A, σ) has a closed subvariety P de�ned
over K which is a twisted form of a Schubert variety Xλ, then we must
have max(Eλ) ∈ ind(A, σ) and ind(A) | gcd(Eλ) (which is equivalent to
Eλ ⊂ ind(A, σ)). More speci�cally, we would like to show that P must be
de�ned via intersection conditions with right ideals of A.

Fixing n, consider a self-dual partition λ = [λ1, . . . , λn] which corresponds
to a singular Schubert variety Xλ ⊂ SG(n, 2n). The singular locus Sing(Xλ)
of Xλ, consists of a union of Schubert subvarieties Xµ ⊂ Xλ such that µ is
a partition obtained from λ obtained by adding either a pair of dual South-
East hooks, or a single self-dual South-East hook, to the Young diagram of
λ. For a more precise version of this statement, we refer the reader to Section
9.3 of [BL00].

Example 5.3.1. Suppose n = 4. For the self-dual partition λ = [3, 2, 1, 0],
Sing(Xλ) consists of two subvarieties Xµ and Xµ′ with µ = [4, 4, 2, 2] and
µ′ = [3, 3, 3, 0].

λ = µ = µ′ =

The set of smooth Schubert varieties consists of thoseXλ for which Sing(Xλ) =
∅. In terms of self-dual Young diagrams, Xλ is smooth if and only if the un-
coloured boxes in the n× n square form a k× k square, for some 0 ≤ k ≤ n.

Example 5.3.2. Suppose n = 3. The smooth Schubert subvarieties of
LG(3, 6) are given by:

[0, 0, 0] = [3, 1, 1] = [3, 3, 2] = [3, 3, 3] =

As it turns out, similar to the case of generalized Severi-Brauer varieties
[JKL17, Theorem 2.8], we want to show that the smooth Schubert subvari-
eties of SG(A, σ) can be de�ned by inclusions. We start by considering the
split case (A, σ) = (EndK(V ), σh) with dimK(V ) = 2n.
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Suppose λ = [nk, kn−k] is the self-dual partition whose corresponding Young
diagram leaves a k×k square un-coloured for some 0 ≤ k ≤ n (i.e. λ consists
of k copies of n followed by n − k copies of k). If k > 0, this diagram has
exactly one corner on or above the North-West to South-East diagonal, with
Eλ = {(k, k)} (for k = 0, we have Xλ = SG(EndK(V ), σh)). Thus, the
smooth variety Xλ with Eλ = {(k, k)} can be de�ned by a single intersection
condition:

Xλ = {J ∈ SG(EndK(V ), σh) | rdim(J ∩ Ik) ≥ k}

= {J ∈ SG(EndK(V ), σh) | Ik ⊆ J}

Using this description, we can classify twisted forms of smooth Schubert
subvarieties of SG(n, 2n).

Proposition 5.3.3. Consider the maximal symplectic Grassmannian SG(A, σ)
with deg(A) = 2n, together with a Galois splitting �eld L/K. For any
1 ≤ k ≤ n, there exists a closed subvariety P ⊂ SG(A, σ) de�ned over
K such that P ⊗K L = Xλ for λ = [nk, kn−k] if and only if k ∈ ind(A, σ).

Proof. Assume P is a closed subvariety of SG(A, σ) such that PL ∼= Xλ, for
a self-dual partition λ = [nk, kn−k] which means that Eλ = {(k, k)}. We
remark that Xλ can also be described as the set of maximal isotropic right
ideals of AL ' EndL(V ) containing the right ideal HomL(V,W ) for some
isotropic vector subspace W ⊆ V with dimL(W ) = k. Now, consider the
right ideal of EndL(V ) de�ned as

I :=
⋂
J∈PL

J

First, notice that P is �xed by Gal(L/K), since the collection of J in the
indexing set above is permuted by the Galois action. By descent it follows
that I = IL for some right ideal I of A. Moreover, using the de�nition of Xλ

we see that Ik ⊆ J implies Ik ⊆ I which for us means rdim(I) ≥ k implies
rdim(I) ≥ k. Similarly, the isotropy of I descends to the isotropy of I since
σ(I ⊗K 1)(I ⊗K 1) ⊂ σ(I)I = 0 where we identify I with I ⊗K 1 ⊂ IL. This
gives rdim(I) ∈ ind(A, σ) and since rdim(I) > k we have k ∈ ind(A, σ).
Indeed, by the de�nition of reduced dimension, all elements of ind(A, σ) are
multiples of ind(A) which means that if I is an isotropic ideal in (A, σ) then
rdim(I) = r ind(A) and k = m ind(A) where r ≥ m. In fact, by applying
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Lemma 5.3.4 (4.) (which we will see shortly) it follows that rdim(I) = k.

To see the reverse direction, if k ∈ ind(A, σ), then we have by Proposition
5.2.4 that SG(A, σ) has a closed subvariety Xλ with λ = [nk, kn−k], Eλ =
{(k, k)}, and Eλ = k.

We de�ne a set Sλ := {(j, a) ∈ Eλ | j < a}. It can be easily shown that a
pair (j, a) is in Sλ if and only if (j + 1, a) ∈ Eµ for some Xµ ⊆ Sing(Xλ). By
this reasoning, we refer to Sλ as the essential singular set of Xλ. As before,
we set Sλ := {a | (j, a) ∈ Sλ}. While Eλ determines all corners of the Young
diagram of λ above or on the North-West to South-East diagonal, Sλ picks
up only the �inside� corners.

Lemma 5.3.4. Let Xλ be a Schubert subvariety of SG(EndK(V ), σh) with
respect to the �ag of isotropic right ideals I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ EndK(V ),
with rdim(Ir) = r. The following are equivalent:

1. λk de�nes an outside corner of the self-dual Young diagram of λ, i.e.
n = λk > λk+1.

2. (k, k) ∈ Eλ.

3. k ∈ Eλ \ Sλ.

4. Ik ⊆ J for all J ∈ Xλ and there exists some J ′ ∈ Xλ, such that
Ik+1 6⊆ J ′.

Proof. (1) ⇐⇒ (2): It follows from the de�nition of Eλ that n = λk > λk+1

if and only if (k, n+ k − λk) = (k, k) ∈ Eλ.
(2) =⇒ (3): It su�ces to show that k /∈ Sλ, which follows immediately from
the de�nition of Sλ, as (j, k) ∈ Sλ implies j < k.
(3) =⇒ (2): If k ∈ Eλ \ Sλ, then (j, k) ∈ Eλ for some 1 ≤ j ≤ k. If j < k,
this contradicts the assumption that k /∈ Sλ. So, we must have j = k and
hence (k, k) ∈ Eλ.
(2) =⇒ (4): If (k, k) ∈ Eλ, then for all J ∈ Xλ we must have rdim(J∩Ik) ≥ k,
hence Ik ⊆ J . Suppose that for all J ∈ Xλ, Ik+1 ⊆ J or, equivalently
rdim(J ∩ Ik+1) ≥ k + 1. This implies λk+1 = n = λk, contradicting the
assumption that λk > λk+1.
(4) =⇒ (1): Suppose rdim(J ∩ Ik) = k for all J ∈ Xλ, but there exists some
J ′ ∈ Xλ such that rdim(J ′ ∩ Ik+1) < k + 1. It follows that λk = n but
λk+1 < n.
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Example 5.3.5. Suppose n = 5 and consider the self-dual partition λ =
[5, 3, 2, 1, 1]. In this case, Eλ = {(1, 1), (2, 4)}, and Sλ = {(2, 4)}. Further-
more, Sing(Xλ) ⊃ Xµ with µ = [5, 4, 4, 3, 1].

λ = 1
4

µ = 1

4

We obtain the following corollary to Proposition 5.3.3,

Corollary 5.3.6. Let λ be a self-dual partition, L/K a �eld extension and k
be the unique element in Eλ \Sλ. If SG(A, σ) has a closed subvariety P such
that P ⊗K L ' Xλ, then k ∈ ind(A, σ). Moreover, there exists an isotropic
right ideal Ik ⊂ A such that for any J ∈ P (L), (Ik ⊗K L) ⊆ J .

Proof. This is a straight-forward application of Lemma 5.3.4 to the proof of
Proposition 5.3.3.

In order to provide the full converse to Proposition 5.2.4 for an arbitrary
Schubert variety Xλ, it remains to show that if SG(A, σ)(K) contains an K-
form P of Xλ, then ind(A) | gcd(Sλ) and max(Sλ) ∈ ind(A, σ). To do this,
we construct closed subvarieties of P which are de�ned over K and to which
we can apply Corollary 5.3.6. These subvarieties will be obtained from the
structure of Sing(Xλ). We rely on the fact for a K-variety X, the singular
locus of XKalg de�nes a Zariski-closed subset Z of X. By equipping Z with
the reduced induced scheme structure, we may view Z as a subvariety of
X de�ned over K. In particular, if SG(A, σ)(K) has a closed subvariety P
de�ned over K such that P (L) ' Xλ for a splitting �eld L/K of A, then P
has a closed subvariety Z ⊂ P de�ned over K such that Z(L) ' Sing(Xλ).

5.3.1 An iterative process

In general, the singular locus of a Schubert variety may have many irreducible
components, none of which are required to be smooth. We deal with this by
recursively considering �the singular locus of a component of the singular lo-
cus� until we achieve subvarietes of P which are K-forms of smooth Schubert
varieties.
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Consider the variety P de�ned over K with the property that P ⊗K L ' Xλ,
we repeat the subvariety construction to achieve a closed subvariety Z ⊂ P
de�ned over K with Z ⊗K L ' Xµ, provided that µ can be obtained from
λ by adding a �nite number of hooks. We have the following lemma which
provides a combinatorial description of some particular partitions which can
be formed by adding hooks to a given partition λ. In essence, it describes the
e�ect of adding self-dual hooks on the Young diagram in terms of the essential
set. This will be key in proving Theorem 5.3.11 which is a new result de-
scribing the existence of twisted Schubert varieties in terms of combinatorial
information pertaining to the essential set and the index.

Lemma 5.3.7. Consider a partition λ = [λ1, . . . , λn] and suppose λj corre-
sponds to an inside corner. That is, (j, a) ∈ Eλ with j < a.

1. If a < n− a, adding a− j hooks (or pairs of self-dual hooks) to λ will
result in a partition µ = [µ1, . . . , µn] such that

µi =


n if i ≤ a

λi if n− a ≥ i > a

a if i > n− a

2. If a ≥ n− a, adding a− j hooks (or pairs of self-dual hooks) to λ will
result in a partition µ = [µ1, . . . , µn] such that

µi =

{
n if i ≤ a

a if i > a

3. In both cases, a ∈ Eµ \ Sµ.

Proof. The basic idea is that we begin adding a hook to j with a correspond-
ing dual hook, if necessary, to ensure the partition is self-dual. Repeating
this procedure inductively on the new partition λ will yield the desired results.

To be more explicit, in the �rst case, we observe that (j, a) ∈ Eλ if and only
if λj = n − a + j. It is easy to see that adding a − j hooks to the corner
(j, λj) implies that the resulting partition µj has the following relationship
with λj:

µj = λj + a− j = n
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which gives that µi = n for all i ≤ a. By duality, (i, k) ∈ Eλ with i ≤ a
and n − a + 1 ≤ k ≤ n implies that (k, i) ∈ Eλ with with i ≤ a and
n − a + 1 ≤ k ≤ n. In diagramatic terms, this establishes both a top right
a × a box and a bottom left a × a box. Now, since (i, k) /∈ Eλ for i > a
and n − a + 1 ≤ k ≤ n we have again by duality (k, i) /∈ Eλ for i > a and
n− a+ 1 ≤ k ≤ n which gives us that the last a rows of µ are precisely a.

The proof of 2. follows similarly to 1. Indeed, the �rst a rows are n as before
and since there are less than a rows remaining we have that the n− a rows
must be determined by duality.

Example 5.3.8. Consider n = 5 and λ = [4, 3, 2, 1, 0]. The diagram of λ
has 2 inside corners with Eλ = {(1, 2), (2, 4)} and Sλ = {2, 4}.

λ = 2
4

• For (1, 2), we have a = 2 < 5 − 2, so applying part 1 of Lemma 5.3.7,
we obtain the partition µ = [5, 5, 2, 2, 2] after adding a pair of self-dual
hooks.

• For (2, 4), we have a = 4 ≥ 5 − 4, so applying part 2 of Lemma 5.3.7
may be applied to obtain the partition α = [5, 5, 5, 5, 4] after adding 2
pairs of self-dual hooks.

µ =
2

α =

4

Note that Xµ and Xα are both smooth.

5.3.2 Galois action on the singular locus

We desire a stronger claim than the existence of an K-form of Sing(Xλ). In
particular, we would like to say that for any Schubert variety Xµ ⊆ Sing(Xλ),
if P is a twisted form of Xλ de�ned over F , then P has a closed subvariety
Z ⊂ P , also de�ned over F , such that Z is a twisted form of Xµ. More
precisely, we have:
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Lemma 5.3.9. Let K/F be a Galois splitting �eld for A, and suppose that
we have a subvariety P of SG(A, σ), such that PL = Xλ. If Xµ ⊂ Sing(Xλ) is
an irreducible component of the singular locus of Xλ, de�ned by the addition
of a hook to the Young diagram for λ, then there exists a subvariety Z ⊂ P
such that ZL = Xµ.

Proof. By the geometric description of the irreducible components of the
singular set, it is automatic that the Galois action, which acts via elements
of PSp(VL) cannot nontrivially permute the components of the singular set.
Hence, considered as points on the Hilbert scheme of SG(A, σ), these irre-
ducible components are �xed by the Galois action, and hence correspond to
K-rational subvarieties Z ⊂ P as claimed.

Proposition 5.3.10. Let λ and µ be partitions de�ning Schubert subvarieties
of SG(n, 2n) such that µ is obtained from λ by adding �nitely many self-dual
hooks. For a central simple K-algebra A of degree n, if SG(A, σ) contains a
closed subvariety P de�ned over K such that PKalg ' Xλ, then P contains a
closed subvariety Z de�ned over K such that ZKalg ' Xµ.

Proof. If µ is obtained from λ by adding �nitely many hooks, we may form
a sequence α1, . . . , αk such that λ = α1, µ = αk and for each 2 ≤ i ≤ k, αi
is obtained from αi−1 by adding precisely one hook or pair of dual hooks.
It follows from the de�nition of the singular locus that for each 2 ≤ i ≤ k,
Xαi ∈ Sing(Xαi−1

). Under the assumption that SG(A, σ) contains a twisted
form of Xα1 over K, the above argument implies that SG(A, σ) must also
contain a twisted form of Xα2 over K. By induction on i, we obtain the result
that SG(A, σ) must �nally contain a twisted form of Xαk = Xµ de�ned over
K.

This process yields the desired converse to Proposition 5.2.4.

Theorem 5.3.11. The maximal symplectic Grassmannian SG(A, σ) has a
closed subvariety P such that P ⊗K L ' Xλ for a Schubert subvariety Xλ

if and only if ind(A) | gcd(Eλ) and max(Eλ) ∈ ind(A, σ). Moreover, in
this case, A contains a �ag of isotropic right ideals Ia1 ⊂ · · · ⊂ Iar for
Eλ = {a1, . . . , ar} such that for any �nite extension L/K,

P (L) = {J ⊆ AL : rank(J ∩ (Ia)L) ≥ j for (j, a) ∈ Eλ}
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Proof. If Xλ is smooth, then the result follows immediately from Proposi-
tion 5.3.3. Suppose Sλ 6= ∅ and that Sing(Xλ) = Xµ1 ∪ · · · ∪Xµk . Suppose
(j, a) ∈ Sλ for some j < a. Using the replacement process described in
Lemma 5.3.7 together with Proposition 5.3.10, P has a closed subvariety Z
de�ned over K such that ZKalg ' Xµ where µ is obtained from λ by adding
hooks implying a ∈ Eµ \ Sµ where λa is an insider corner of λ. Applying
Corollary 5.3.6 we must have a ∈ ind(A, σ). In particular, this gives that
ind(A) | gcd(Sλ) (by 5.3.6 it follows that ind(A) | gcd(Eλ)). Now, recall
that outside corners are unique if they exist. Indeed, suppose (j, n) ∈ Eλ is
an outside corner i.e. λj = n, then (j, n− n + j) = (j, j) ∈ Eλ. Similarly, if
(k, λk) is an inside corner then λk < n and k > j so ak = (n−λk)+k > k > j.
Combining these facts we see that inside corners must be strictly bigger than
outside corners which gives us that max(Eλ) ≤ max(Sλ) ∈ ind(A, σ).

Now, suppose ind(A) | gcd(Eλ) and max(Eλ) ∈ ind(A, σ). This is equivalent
to the claim that A contains a �ag of isotropic right ideals Ia1 ⊂ · · · ⊂ Iar
with Eλ = {a1, . . . , ar}. For a splitting �eld L/K of A, �x a full �ag of
isotropic right ideals I1

′ ⊂ I2
′ ⊂ · · · ⊂ In

′ such that Iaj ⊗K L = Iaj
′ for all

aj ∈ Eλ. Let Xλ be the Schubert subvariety of SG(n, 2n) de�ned by λ with
respect to this �ag.

Denote by Pλ the closed K-subvariety of LG(A, σ). Recall that Pλ is a
closed subvariety bya the arguments provided in the proof of Proposition
5.2.4). Now, for any �eld extension L/K,

Pλ(L) := {J ⊆ AL : rank(J ∩ (Ia)L) ≥ j for (j, a) ∈ Eλ}

If P is a twisted form of Xλ de�ned over K, the goal is to show that P = Pλ.
Let L/K be an arbitrary �nite �eld extension and let J ∈ P (L). After
extending to a splitting �eld L′/L, we �nd that for any (j, a) ∈ Eλ, we have

rank(J ∩ (Ia)L) = rank((J ∩ (Ia)L)L′) = rank(JL′ ∩ (Ia)L′) ≥ j

since IL′ ∈ P ′L(L′) = Xλ(L
′). So P (L) ⊆ Pλ(L). We have that i : P ↪→ Pλ

is an inclusion of K-varieties since iL : P (L) ↪→ Pλ(L) for all �nite �eld
extensions L/K. If L′/K is a splitting �eld for P , then iL′ induces the
identity map. So coker(i)L′ = coker(iL′) = 0. Thus, coker(i) is a form of the
zero variety and so coker(i) = 0. It follows that P = Pλ as required.
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5.4 Bounds for torsion in the topological �ltra-

tion

The remainder of this chapter is dedicated to computing properties of the
torsion Chow group corresponding to maximal symplectic Grassmannians of
degree 4 algebras with symplectic involution. For details and deeper results
on the Chow group please see [EKM08, Chapter X] We begin by consider
a smooth projective variety X over K, a �eld of characteristic 0. Consider
the Grothendieck group, the abelianization of a commutative monoid (see
Grothendieck-Witt group de�ned in Chapter 1),

K0(X) = 〈[OV ] | V ⊆ X closed subvariety〉.

We de�ne a topological �ltration on K0(X) by setting

K0(X)(i) := 〈[OV ] | codim(V ) ≥ i〉 and then T i(X) := K0(X)(i)/K0(X)(i+1)

where OV is the sheaf of K-algebras mapping to the be the ring of regular
functions on an open set. In particular, we will avoid explicitly de�ning the
Chow group by observing the following identi�cations in the case that X is
a projective quadric (see [Kar91, �3.1, Corollary 4.4 and Corollary 4.5]):

T 1(X) ∼= CH1(X),

T 2(X) ∼= CH2(X).

The product in K0(X) induces a graded ring structure on T ∗(X), and tak-
ing the class of a subvariety W ⊂ X to the corresponding coherent sheaf
OW induces a natural surjection of graded rings CHd(X) → Td(X) which
becomes an isomorphism when tensored with Z[ 1

(d−1)!
] (see [SGA6, Corollary

1 � Theorem 2.12 in Appendix (RRR) and Example 0 of Chapter 2, �4])

We denote by X the variety X over the algebraic closure of K. For the case
X = LG(n, 2n), a Z basis of Ti(LG(n, 2n)) is given by

{Σλ : |λ| = Σn
i=1λi, n ≥ λ1 ≥ · · · ≥ λn ≥ 0}

where λ = [λ1, . . . , λn] is a partition of |λ| =
∑n

j=1 λj and Σλ = [OV ] for
V = Xλ (see [KT02, �2])
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The remainder of this section is devoted to proving the main result of this
Chapter, the computation of torsion elements in the Chow group of a maxi-
mal symplectic Grassmannian for a central simple K-algebra of deg(A) = 4
equipped with a symplectic involution. We �rst make some general remarks
on the key ideas used in our proof.

Recall that X = SG(A, σ) = IV2(A, σ). To compute |Tors(T ∗(X))| with
deg(A) = 4 and ind(A) | 4 we sketch the basic ideas here, for a more detailed
exposition on the background refer to Appendix C. First, we observe that A
decomposes as:

(A, σ) ∼= (Q1 ⊗Q2, σ),

where Q1, Q2 are quaternion algebras. By [Lou78, Theorem B], a symplectic
involution σ on a central simple algebra of degree 4 �xes both Q1 and Q2.
Thus we may decompose σ into a diagonal action given by τ⊗γ where τ is an
orthogonal involution on Q1 (resp Q2) and γ is the canonical involution on
Q2 (resp Q1). We shift our attention slightly and consider the pfa�an norm
associated to the symplectic involutions Nrpσ given by Nrpσ(a) = σ(a)a for
all a ∈ Sym(A, σ). By [KMRT98, Proposition 16.8] it follows that Nrpσ is,
in fact, an Albert quadric. If (A, σ) ∼= (Q1, τ) ⊗K (Q2, γ) then we have an
explicit description of the Albert quadric (see [KMRT98, Example 16.15])
given by,

Nrpσ
∼= NrdQ1(v)(Nrd′Q1

⊥ −Nrd′Q2
)

where Nrd′Q denotes the pure part of the norm form NrdQ. In either case,
using [KMRT98, Proposition 15.20] we are able to realize the set-theoretic
isomorphism of Nrpσ and a codimension 1 subform sσ as an isomorphism
of varieties using [Kra10, Proposition 8.10] and [McF19, Remark 3.5, The-
orem 4.1]. In particular, we can summarize these results as saying that,
geometrically speaking, IV2(A, σ)(R) is a hyperplane of SB2(A)(R) given by
{TrdA = 0} and there is an isomorphism of varieties representing the func-
tors of points corresponding to ideals of reduced dimension 2 and isotropic
ideals of reduced dimension 2:

SB2(A, σ) ∼= XNrpσ ,

SG(A, σ) ∼= Xsσ ,

where Xq denotes a projective quadric associated to some quadratic form q.
We proceed to compute |Tors(T ∗(Xsσ))|. The main idea is to use the some
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key ideas from [Kar91], especially Theorem 3.8 and Corollary 4.5, which can
be restated for our purposes as:

|Tors(T ∗(Xsσ))| = 2s(sσ),

for q /∈ I2(K) and s(q) is given by C0(q) ∼= M2s(q)(D), with C0(q) denoting
the even Cli�ord algebra corresponding to q andD the central simple division
algebra Brauer-equivalent to C0(q).

Theorem 5.4.1. Let (A, σ) be a degree 4 central simple K-algebra equipped
with a symplectic involution σ. Then the torsion of the topological �ltration
corresponding to the maximal symplectic Grassmannian, SG(A, σ) is deter-
mined as follows:

1. If ind(A) = 4 then |Tors(T∗(SG(A, σ))| = 1

2. If ind(A) = 2 and σ is anisotropic then |Tors(T∗(SG(A, σ))| = 2

3. If ind(A) = 2 and σ is isotropic then |Tors(T∗(SG(A, σ))| = 1

4. If ind(A) = 1 then |Tors(T∗(SG(A, σ))| = 1

Proof.

1. Assume ind(A) = 4. Note �rstly that sσ is a 5-dimensional anisotropic
subform of Nrpσ, or, in other words

Nrpσ ∼= 〈d〉 ⊥ sσ

for some d ∈ K×. Moreover, d±(Nrpσ) = 1 implies d = −d±(sσ). We
observe the following well-known result (see [Lam05, V.3.13]) for all
odd-dimensional quadratic forms q:

[C0(q)] = [C(q ⊥ −d±(q))].

In particular,

[C0(sσ)] = [C(sσ ⊥ −d±(sσ))] = [C(Nrpσ)] = [A].

where the last equality follows due to the fact that Nrpσ is the Albert
form of A by [KMRT98, Proposition 16.8]. Since dim(C0(sσ)) = 2n−1

where n = dim(sσ) we conclude that C0(sσ) ∼= A, whence s(sσ) = 0
and |Tors(T ∗(Xsσ))| = 1.
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2. Assume ind(A) = 2. We can assume without loss of generality that
(Q1, τ) ∼= (M2(K), adq). By the remarks preceding [KLST95, Proposi-
tion 3.5] we know that

Nrpσ ∼= 〈1,−1〉 ⊥
〈
−h1h

−1
2

〉
NrdQ2

∼= 〈1〉 ⊥ sσ

where h : V −→ K is a Hermitian form over Q2 corresponding to σ and
h(ei, ei) = hi form an orthogonal basis {e1, e2} of V . The key insight
we will need to proceed is that h is isotropic/hyperbolic if and only
if qh is isotropic/hyperbolic (see [Sch85, Theorem 10.1.7]), where qh is
the trace form of h given by

qh ∼= 〈h1〉NrdQ2 ⊥ 〈h2〉NrdQ2 .

Applying this to

sσ ∼= 〈−1〉 ⊥
〈
−h1h

−1
2

〉
NrdQ2 ,

we have that sσ is isotropic if and only if either NrdQ2 is hyperbolic or
−h1h

−1
2 ∈ DK(NrdQ2). This can be rephrased as sσ is isotropic if and

only if qh is hyperbolic if and only if σ is hyperbolic.

Assume σ is anisotropic, then sσ is anisotropic. Moreover, since

[C0(sσ)] = [M2(F )⊗Q2] = [Q2]

implies C0(sσ) ∼= M2(Q2), we have that s(sσ) = 1. By a direct appli-
cation of [Kar91, Theorem 3.8] we see that

Tors(T∗(Xsσ)) = Z/2.

In particular Tors(T2(Xsσ)) = Z/2. If, on the other hand, we assume
σ is hyperbolic ( since deg(A) = 4 we know that σ can only be either
anisotropic or hyperbolic in our case), then sσ is isotropic, i.e.

sσ ∼= 〈1,−1〉 ⊥ qσ

with dim(qσ) = 3. It follows easily that

|Tors(T∗(Xsσ))| = 1.
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3. Lastly assume ind(A) = 1, the hyperbolicity of σ implies sσ is isotropic
and so we can conclude by the same reasoning as above that

|Tors(T∗(Xsσ))| = 1

Using the fact that T i(X) ∼= CHi(X) for i = 0, 1, 2, 3 (see [Kar91, �3.1]), we
have the following corollary:

Corollary 5.4.2. Let (A, σ) be a degree 4 central simple K-algebra equipped
with a symplectic involution σ. Then the torsion of the Chow group corre-
sponding to the maximal symplectic Grassmannian, SG(A, σ) is determined
as follows:

1. If ind(A) = 4 then |Tors(CH∗(SG(A, σ))| = 1

2. If ind(A) = 2 and σ is anisotropic then |Tors(CH∗(SG(A, σ))| = 2

3. If ind(A) = 2 and σ is isotropic then |Tors(CH∗(SG(A, σ))| = 1

4. If ind(A) = 1 then |Tors(CH∗(SG(A, σ))| = 1

In particular, if a non-trivial torsion element exists, then it must be in
CH2(SG(A, σ)).

Proof. We know that CHd(X) ∼= T d(X) for d = 0, 1, 2, 3 by the remarks
following [Kar91, �3.1, Theorem 4.5]. The result then follows directly from
Theorem 5.4.1. In particular, keeping the notation introduced in the proof
of Theorem 5.4.1, we know by [EKM08, Lemma 70.2] that CHi(Xsσ) ∼=
CHi−1(Xqσ) for all i > 0. We can see that, in the case ind(A) = 2 equipped
with an anisotropic involution σ implies that torsion must occur in the second
graded component of the Chow group. Alternatively, this follows directly by
[Kar91, Theorem 4.5].

This concludes our investigation into embeddability through various di�erent
disciplines, approaches and techniques.
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Appendix A

Computations of P�ster elements

In this chapter we give a computational veri�cation that the quadratic form

qθ3
∼= 〈〈a1〉〉 ⊥ −b1b2a3 〈〈a2〉〉 ⊥ a1b1a2b3 〈〈a3〉〉 ⊥ −b1a2 〈〈a1a2a3〉〉 ,

is in fact similar to a 3-fold P�ster form. It su�ces to check that c(qθ3) = 1
by [Lam05, Theorem X.5.6]. For simplicity, we will use the Hasse invariant,

s : W (K) −→ Br2(K)

de�ned by s(〈a1, . . . , an〉) :=
∏

i<j

(ai,aj
K

)
. The Cli�ord invariant and Hasse

invariant are related by [Lam05, Proposition V.3.20] as follows:

c(q) = s(q) ·
(
−1, det(q)

K

)
,

whenever dim(q) = 7, 8 mod 8. To show that qθ3 is a P�ster form we need
to show that c(qθ3) = 1 ∈ Br2(K) by [Lam05, Theorem V.6.11]. Once we

compute s(qθ3) = 1 we are done since det(q) = 1 implies
(
−1,det(q)

K

)
= 1 ∈

Br2(K) which means in our case, computing c(q) is equivalent to computing
s(q). We begin by expanding qθ3 ,

qθ3 := 〈1,−a1,−b1b2a3, b1a2b2a3, a1b1a2b3,−a1b1a2a3b3,−b1a2, a1b1a3〉 .

Then

s(qθ3) =

(
1, 1

K

)
⊗
(
−a1,−a1

K

)
⊗
(
−b1b2a3, a1b1b2a3

K

)
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⊗
(
b1a2b2a3, a1a2

K

)
⊗
(
a1b1a2b3, b1b3

K

)
⊗
(
−a1b1a2a3b3,−a1a2a3

K

)
⊗
(
−b1a2, a1b1a3

K

)
.

The argument now boils down to the fact that the tensor product of all the
expanded terms will reduce to(

a1, b1

K

)(
a2, b2

K

)(
a3, b3

K

)
which is trivial in the Brauer group by the assumption of Theorem 2.3.2 that
⊗3
i=1(Qi, σi) is split. To arrive at this decomposition it su�ces to take the

product of the above terms and reduce the result using the following rules
(see Fact 2.1.8): (

a, b

K

)(
a, b

K

)
= 1 ∈ Br2(K),(

1, c

K

)
=

(
−c, c
K

)
= 1 ∈ Br2(K),(

a, b

K

)(
a,−b
K

)
=

(
a,−1

K

)
∈ Br2(K).

The diligent reader will see that we arrive at our desired result using this
simple, albeit lengthy line of reasoning. To verify this claim, we simply
expand the computation of all quaternions which have coe�cents that are
composites of other terms using the properties of quaternions to reduce s(qθ3
to 1.

1. (
−b1b2a3, a1b1b2a3

K

)
=

(−b1,a1
K

) (−b1,b1
K

) (−b1,b2
K

) (−b1,a3
K

) (
b2,a1
K

) (
b2,b1
K

) (
b2,b2
K

)
(
b2,a3
K

) (
a3,a1
K

) (
a3,b1
K

) (
a3,b2
K

) (
a3,a3
K

)
∈ Br2(K)

2. (
b1a2b2a3, a1a2

K

)
=

(
b1,a1
K

) (
a2,a1
K

) (
b2,a1
K

) (
a3,a1
K

) (
b1,a2
K

) (
a2,a2
K

) (
b2,a2
K

) (
a3,a2
K

)
∈ Br2(K)

3. (
a1b1a2b3, b1b3

K

)
=

(
a1,b1
K

) (
a1,b3
K

) (
b1,b1
K

) (
b1,b3
K

) (
a2,b1
K

) (
a2,b3
K

) (
b3,b1
K

) (
b3,b3
K

)
∈ Br2(K)
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4. (
−a1b1a2a3b3,−a1a2a3

K

)
=

(−a1,−a1
K

) (−a1,a2
K

) (−a1,a3
K

) (
b1,−a1
K

) (
b1,a2
K

) (
b1,a3
K

) (
a2,−a1
K

)
(
a2,a2
K

) (
a2,a3
K

) (
a3,−a1
K

) (
a3,a2
K

) (
a3,a3
K

) (
b3,−a1
K

)(
b3,a2
K

) (
b3,a3
K

)
∈ Br2(K).

5. (
−b1a2, a1b1a3

K

)
=

(−b1,a1
K

) (−b1,b1
K

) (−b1,a3
K

) (
a2,a1
K

) (
a2,b1
K

) (
a2,a3
K

)
∈ Br2(K).
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Appendix B

Maximal Orthogonal

Grassmannians

Let (A, σ) be an algebra with orthogonal involution over a �eldK, char(K) 6=
2. We de�ne the orthogonal Grassmannian of (A, σ), denoted using OG(A, σ),
by

OG(A, σ)(L) = {I ⊂ AL | I = I⊥}.
Note that OG(A, σ) is a speci�cation of IVn(A, σ) with the implicit assump-
tion that σ is orthogonal. We proceed by considering the case where A is
split and deg(A) = 2n. In this instance, we have that (A, σ) ∼= (Mn(K), σbq)
where (Kn, q) is aK−vector space equipped with a quadratic form q (induced
by the involution σbq) de�ned by q(v) := bq(v, v) for v ∈ Kn.

Lemma B.0.1. There is a one-to-one correspondence between isotropic ide-
als of (EndK(V ), σbq) and totally isotropic K−vector subspaces of (V, q) given
by,

W ⊂ V −→ HomK(V,W )

Proof. It su�ces to show that HomK(V,W )⊥ = HomK(V,W⊥). To see that
this is indeed su�cient we observe that if HomK(V,W ) is an isotropic ideal
in EndK(V ) then HomK(V,W ) ⊂ HomK(V,W )⊥ = HomK(V,W⊥) and W ⊂
W⊥, which is precisely the de�nition of a totally isotropic subspace W in V .
The reverse direction follows easily assuming W ⊂ W⊥ ⊂ V and the above
equality. We proceed to show HomK(V,W )⊥ = HomK(V,W⊥). Assume
f ∈ HomK(V,W ) and g ∈ HomK(V,W )⊥. Then we see that

bq(f(u), g(v)) = bq(σ(g)f(u), v) = 0 for u, v ∈ V.
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Since im(f) = W for some f ∈ HomK(V,W ) we have that im(g) ∈ W⊥ and
g ∈ Hom(V,W⊥). If we repeat this line of reasoning with g ∈ HomK(V,W⊥)
we can see that σ(g)(f(u)) = 0 for all u ∈ V which implies σ(g)f = 0 i.e.
g ∈ HomK(V,W )⊥.

In general, it is di�cult to determine the structure of elements in this cor-
respondence explicitly. We consider the simplest non-trivial example. Let

us take isotropic ideals in the split quaternion K−algebra
(x, y
K

)
equipped

with an orthogonal involution σbq . Since dimK(V ) = 2, we see that (V, q)
is isotropic if and only if (V, q) is isometric to the hyperbolic plane i.e.
q ∼= 〈1,−1〉. Alternatively, given that σbq is an orthogonal involution on
a degree 2 algebra, we know that it can be characterized by the generator

ix ∈ Skew
((x, y

K

)
, σbq

)
by the considerations in Section 2.3. Assume, in

this case, that i2x = 1. Then letting I = (1 + ix) denote a right ideal in(x, y
K

)
we obtain σ(I)I = 0 and hence I is isotropic. An important note to

make is that our choice of ix such that i2x = 1 is equivalent to choosing a

particular orthogonal involution on
(x, y
K

)
.

Proposition B.0.2. There is a one-to-one correspondence between isotropic
ideals of (A, σ) and totally isotropic subspaces W ⊂ V, where V is a D-vector
space such that A ∼=K EndD(V ).

Proof. Assume, without loss of generality, that (A, σ) ∼= (EndD(V ), σh)
where h : V −→ D is a Hermitian form. Arguing as above, we have a
correspondence between totally isotropic Hermitian subspaces and isotropic
right ideals:

W ⊂ V ←→ HomD(V,W )

We will use this correspondence to construct a complete isotropic �ag for
(A, σ). This will be necessary in order to introduce Schubert varieties of
twisted �ag varieties, which are a central focus of this section. So what is a
�ag? Loosely, it can be thought of as a �ltration of the space. To see what
this means in our case, let us �rst consider (A, σ)Kalg = (EndKalg(V ), σb)
and observe that Wq(K

alg) = Z/2 (see discussion preceeding Example 1.2.3)
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implies the quadratic form p associated to the symmetric bilinear form b can
be decomposed as follows,

p ∼=

{
mH, if dim(p) = 2m

mH+ < 1 >, if dim(p) = 2m + 1

for some m ∈ N. Note that for symmetric bilinear forms (adjoint to orthog-
onal involutions), the dimension of a totally isotropic subspace W ⊂ V is
not necessarily 1

2
dim(V ). This lies in contrast to skew-symmetric bilinear

forms (adjoint to symplectic involutions) which are always even-dimensional.
It turns out that this subtle di�erence requires special attention.

Consider dim(p) = 2m such that the Witt-index denoting the number of
hyperbolic planes is m i.e. w(V, p) = m and denote the maximal totally
isotropic subspace W ⊂ V (of dimension m) by Vm. Taking any maximal
chain of strictly descending subspaces i.e.

{0} = V0 ⊂ · · · ⊂ Vm

such that dimK(Vn) = n for n = 0, . . . ,m we get precisely the notion of a
complete (totally) isotropic �ag of (EndK(V ), σp). Using the correspondence
between isotropic subspaces and isotropic ideals established earlier, we have
a complete chain of isotropic ideals:

(0) = I0 ⊂ · · · ⊂ In = HomK(V, Vn).

We will make use of this �ag to de�ne the Schubert varieties of IVn(EndK(V ), σp).
Consider a strict partition de�ned by the condition a = [a1, . . . , am] with

n ≥ a1 > a2 > · · · > am > 0.

Such a partition can be represented by an upper shifted Young diagram with
aj boxes in the j-th row, starting at the j-th column of an n × n box. Al-
ternatively, this diagram can be described by a partition λ = [λ1, λ2, . . . , λn]
with λj = aj + j for j = 1, . . . ,m and λm+1, . . . , λn determined such that
the Young diagram for λ is a doubled partition. We use the term doubled
partition to refer to the Young diagram inside an n × (n + 1) box which is
symmetric about the north-west to south-east diagonal of the box shifted to
the right by 1 column (see [Gil18] for more detail).
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Example B.0.3. Suppose n = 4. The strict partition a = [4, 2], corresponds
to the upper shifted diagram on the left. We associate to a the doubled
partition λ = [5, 4, 2, 1], which corresponds to the diagram on the right.
Note that the upper shifted diagram is obtained from the double partition
by removing all coloured blocks on and below the NW to SE diagonal of the
box.

a = λ =

These partitions, or their associated Young diagrams (of either upper shifted
or self-dual type), are used to de�ne the Schubert subvarieties of the maximal
orthogonal Grassmannian OG(n, 2n+ 1).

Given a Kalg−algebra with orthogonal involution (A, σ) = (EndKalg(V ), σh)
such that deg(A) = 2n+ 1, we �x a full chain of isotropic right ideals

I1 ⊂ I2 ⊂ · · · ⊂ In ⊂ A such that rdim(Ij) = j

Let λ = [λ1, λ2, . . . , λn] be a doubled partition with

n ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0,

and let a(λ) = [a1, . . . , am] be the corresponding strict partition.

The Schubert variety Xλ ⊆ OG(EndKalg(V ), σh) is de�ned by intersection
conditions with respect to the above isotropic chain:

Xλ = {J ∈ OG(EndKalg(V ), σh) | rdim(J ∩ In+1−aj) ≥ j for j = 1, . . . ,m}

Using the correspondence between self-dual Young diagrams and upper shifted
Young diagrams, we can also de�ne Xλ in terms of λ itself:

Xλ = {J ∈ OG(EndKalg(V ), σh) | rdim(J∩In+1+j−λj) ≥ j for 1 ≤ j ≤ n and λj ≥ j}

It turns out that the cohomology of Schubert varieties is closely connected
to the Chow ring of the ambient space. Much work has been done in under-
standing this relationship in terms of the underlying quadratic form structure
of the involution. For instance, in the case of maximal orthogonal Grassm-
naninas (which we have concerned ourselves with thus far) [EKM08, Chapter
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XVI] gives a comprehensive treatment of the relationship between Schubert
varieties and Chow groups. Although the computation of the torsion Chow
group in the general case has remained elusive, several signi�cant steps to-
ward this direction have been made. In particular, [Kar16, Corollary 1.6
and Proposition 4.2] give a characterization of the torsion Chow group us-
ing [Kar95, Proposition 2], which is a result describing the torsion in the
topological �ltration in terms of the restriction map.
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Appendix C

Details of theorem 5.4.1

Let us begin by reviewing our assumptions and notation. Let (A, σ) denote
a central simple K-algebra A of degree 4 with a symplectic involution σ.

Lemma C.0.1. [Lou78, Theorem B] A degree 4 central simple K-algebra A
with symplectic involution σ decomposes as

(A, σ) ∼= (Q1 ⊗K Q2, σ1 ⊗K σ2)

where σ1 is an orthogonal involution and σ2 is a symplectic involution.

Proof. Assume ind(A) = 4 since it will be shown shortly that the claim
follows easily otherwise. We will begin by identifying a σ stable Q1 inside
A which by the Double Centralizer Theorem will give us a decomposition
A ∼= Q1 ⊗CA(Q1) where deg(CA(Q1)) = 2 implies that CA(Q1) is a σ-stable
quaternion K-algebra. The involution type of σ1 and σ2 follows by process
of elimination, all other type pairs produce an orthogonal involution.

To construct Q1 it su�ces to de�ne anti-commutative, order 2 elements
i, j ∈ A such that σ(i) = i and σ(j) = j (and σ(ij) = −ij implicitly).
In fact, once we can �nd i ∈ A such that σ(i) = i we can construct j ∈ A
by applying the Skolem-Noether to the inner automorphism K(i) −→ K(i)
de�ned by i 7→ −i. The problem thus reduces to �nding an element i ∈ A
with the desired properties. As it turns out, every s ∈ Sym(A, σ) has order 2.

Let L/K be a Galois splitting �eld of A. We proceed to show that for every
s ∈ Sym(A⊗K L, σL)\K× ∼= Sym(M4(L), σL)\I4 ·K×,

det(s−X · I4) = (X2 − l)2
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for some l ∈ L. By Skolem-Noether, every automorphism is inner which
means σL ◦ (−)t = Inn(u) or, in other words, σL = Inn(u) ◦ (−)t. By Propo-
sition 2.2.4 we have that u ∈ Skew(M4(K), (−)t) and Sym(M4(K), σL) ∼= u ·
Skew(M4(K), (−)t). As a consequence, s = ua where a ∈ Skew(M4(K), (−)t).
Using this decomposition, we have

det(s−X · I4) = det(u) det(a− u−1X),

where both u and a − Xu−1 are alternating matrices. From a classical re-
sult concerning Pfa�ans, the determinant of an alternating matrix can be
represented as a square. Indeed, by choosing a basis such that an alternat-
ing matrix can be written as a direct sum of alternating block matrices, the
claim follows directly. This line of reasoning gives us det(s−X · I4) = f(X)2

where f(X) ∈ L[X]. In particular, f(X) = X2 − l for l ∈ L which follows
by noting that since a − u−1X is alternating, both the degree 3 and degree
1 terms must vanish.

Since L/K is Galois and det(s−X · I4) is stable under Galois action, we see
that l ∈ K[X] (indeed consider the degree 2 term of det(s−X ·I4) = (X2−l)2.
We thus conclude that all s ∈ Sym(A, σ)\K ·1 are of order 2. This concludes
our proof.

A natural generalization of the preceeding argument can be phrased as fol-
lows. For every s ∈ Sym(A, σ)\K, charpolys(X) = (X2 − Trpσ(s)X +
Nrpσ(s))2 where Trpσ(s) = 0 implies Nrpσ(s) = −s2 ∈ K×. We will fo-
cus our argument and only refer to (Q1⊗Q2, σ1⊗ σ2) instead of (A, σ) from
now on. Notice that dimK(Sym(Q1 ⊗ Q2, σ1 ⊗ σ2)) = 6 where (Sym(Q1 ⊗
Q2), Nrpσ1⊗σ2) is a 6 dimensional quadratic space. We �x some notation,

Sym(Q1 ⊗Q2, σ1 ⊗ σ2)◦ = {s ∈ Sym(Q1 ⊗Q2, σ1 ⊗ σ2) | Trpσ1⊗σ2(s) = 0}.

Now, since Nrpσ1⊗σ2 is an Albert form using [KMRT98, Example 16.15] or
directly calculating Nrpσ1⊗σ2 with respect to the basis elements in Sym(Q1⊗
Q2, σ1⊗σ2) (which we will do shortly). Notice that from the proof of Lemma
C.0.1, Nrpσ1⊗σ2(s) = −s2. By decomposing the symmetric elements of Q1⊗
Q2 as the Sym(Q1, σ1) ⊗ Sym(Q2, σ2) and Skew(Q1, σ1) ⊗ Skew(Q2, σ2) we
can see that

Nrpσ1⊗σ2 = NrdQ1(v)(Nrd′Q1
⊥ −Nrd′Q2

).
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In the case where ind(A) = 2 we can reduce the above argument signi�-
cantly and deduce even more about Nrpσ. Indeed, by Wedderburns theorem
ind(A) = 2 and deg(A) = 4 implies that A ∼= M2(K) ⊗ Q. Consider-
ing the 1-Hermitian form (see [KMRT98, Corollary 4.2 (1)]) associated to
(EndQ(V ), σh) ∼= (M2(K)⊗Q), adq⊗σ) where we have that h : V −→ Q is a
Hermitian form and V is a rank 2Q-module. Consider am orthogonalQ-basis
{e1, e2}, by skew symmetry of hσ we have h(el, el) = hl ∈ K. In particular,
by considering the K-vector space V0 given by the K span of {e1, e2} we can
identify h|V0 with a quadratic map q, meaning that A ∼= EndK(V0)⊗Q where
each components is σ invariant by construction.

We will de�ne the action of σ on an element in M2(Q) using what we know

of h. Consider σ(

(
a11 a12

a21 a22

)
) =

(
b11 b12

b21 b22

)
. We will compute the b21

term, the other computations follow similarly. The main idea is to consider
the equality

hσ(σ(

(
a11 a12

a21 a22

)
)e1, e2) = hσ(e1,

(
a11 a12

a21 a22

)
e2)

coming from the de�nition of the involution associated to a Hermitian form.
This evaluates to

hσ(b11e1 + b21e2, e2) = hσ(e1, a12e1 + a22e2)

which can be further reduced to

σ(b21)h2 = h1a12.

In other words, b21 = h−1
2 h1σ(a12). The other coe�cients follow from similar

calculations, giving us

σ(

(
a11 a12

a21 a22

)
) =

(
σ(a11) h−1

2 h1σ(a21)
h−1

2 h1σ(a12) σ(a22)

)
.

Following [KMRT98, Example 16.15], we can describe Nrpσ explicitly by
computing −s2 for the elements which are symmetric with respect to σ de-
�ned above. In particular Nrpσ = 〈1,−1〉 ⊥ h1h

−1
2 NrdQ.

To describe Nrpσ in terms of the isotropy/hyperbolicity of the associated
Hermitian form it su�ces to consider the trace form qh(v) := h(v, v). This
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is a quadratic form which has the property that qh is isotropic/hyperbolic
i� h is isotropic/hyperbolic (see [Sch85, Theorem 10.1.7]). We can explicitly
compute the trace form qh using our construction of h over the rank 2 Q-
module V, doing so would give us that qh ∼= h1NrdQ ⊥ h2NrdQ. This
concludes our remarks on Theorem 5.4.1.

Lemma C.0.2. Consider a central simple K-algebra A of degree 2m equipped
with a symplectic involution σ. If m is odd then

(A, σ) ∼= (Mm(K), adp)⊗ (Q, γ)

for some quadratic form p over K.

Proof. By Wedderburn's theorem, A ∼= Mk(D) where k ∈ N and D is a divi-
sion K-algebra. Since the exponent of D is 2 we must have ind(D) = 2l for
osme l ∈ N. By assumptions on the degree ofA we have that l = 1 and k = m.
Now consider the Hermitian module structure on V a rank m Q-module. Let
{e1, . . . , em} be a Q-basis, by considering the vector space V0 corresponding
to the K-span {e1, . . . , em} we see that h restricted to V0 is a quadratic space.
In particular, since EndK(V0) ∼= Mk(K) and σ(EndK(V0)) = EndK(V0) we
have that

(A, σ) ∼= (Mm(K), adp)⊗ (Q, γ)

for some quadratic form p over K.
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