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Abstract 

The phase II randomized study SABR-COMET demonstrated that in cancer patients with 

1-5 oligometastatic lesions, stereotactic ablative radiotherapy (SABR) was associated 

with an improvement in both progression-free survival and overall survival compared to 

standard of care (SoC). SABR, however, is associated with higher costs and treatment-

related toxicity. The objective of this study was to assess the cost-effectiveness of SABR 

versus SoC in patients with oligometastatic disease.  

A time-dependent Markov model with five health states was constructed from the 

Canadian health care system perspective. Utility values and transition probabilities were 

derived from the SABR-COMET trial. Costs were obtained from the published literature. 

A willingness-to-pay threshold of $100,000/quality adjusted life year (QALY) was used. 

SABR was cost-effective in the base case, at an incremental cost-effectiveness ratio of 

$37,157/ QALY gained over a lifetime horizon, as compared to the SoC. Therefore, 

administering SABR is cost-effective for patients with 1-5 oligometastatic lesions 

compared to SoC.  
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Summary for lay audience 

Historically, cancer that has spread beyond its origin, a state known as metastatic disease, 

is treated with medications such as chemotherapy that go throughout the body. 

Radiotherapy, as a form of local treatment, has been traditionally used to palliative 

symptoms. Two major developments have resulted in a paradigm change. First, there is 

an increasing appreciation of the concept of oligometastatic cancer, whereby, patients 

with a limited number of metastases have been observed to have an improved prognosis.  

Secondly, the recent phase II SABR-COMET trial demonstrated that stereotactic ablative 

radiotherapy (SABR) delivering a high dose of radiation precisely, can improve cancer 

control and potential survival for patients with oligometastatic cancers. 

SABR is associated with more treatment-related side effects and requires more health 

resources. It is unknown whether the additional cost is justified by the potential health 

benefit gained from SABR. Therefore, this study aims to assess the cost-effectiveness of 

adding SABR to the standard of care (SoC) in these patients, from the perspective of the 

Canadian health care system.  

We developed a Markov model simulating a cohort of hypothetical patients based on the 

SABR-COMET trial. The model took considerations of survival, cancer progression, 

treatment-related side effects, utilities (indicators of quality of life), and medical care 

costs. The model reported the incremental cost-effectiveness ratio (ICER) of SABR, 

which is defined by the difference in cost divided by the difference in quality-adjusted life 

years (QALYs) comparing the two treatment approaches. 

Our model predicted that SABR+SoC was cost-effective compared to SoC, with an ICER 

of $37,157/QALY. This is below the commonly accepted willingness-to-pay threshold of 

$100,000/QALY, which represents an estimate of what a consumer of health care might 

be willing to pay for the health benefit given other competing demands on that 

consumer's resources. The robustness of our findings was assessed via sensitivity analysis 

(SA) by varying parameters over plausible ranges individually (deterministic one-way 

SA) and simultaneously (probabilistic SA).  Based on extensive testing, we conclude that 

the findings of this model are robust.  
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In conclusion, SABR+SoC is cost-effective compared to SoC for patients with 

oligometastatic cancer from the Canadian health care perspective.  
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Chapter 1  

1 Introduction 

1.1 Role of administrating Stereotactic ablative 
radiotherapy in oligometastatic cancer  

1.1.1 Oligometastasis 

The oligometastatic state was first proposed in 1995, and refers to an intermediate disease 

state, between localized primary tumor and widespread dissemination of cancer, whereby 

cancer has only spread to a limited number of metastatic sites [1]. Generally speaking, 

oligometastases refers to 5 or fewer metastases, and can be further defined as either 

synchronous or metachronous. Synchronous oligometastases indicates that the spread of 

cancer and the primary tumor are diagnosed at the same time, while metachronous 

oligometastases refers to when the metastases occurs after the primary tumor has been 

treated [2]. 

The initial reports on the use of ablative local treatments for oligometastases were 

surgery. Early surgical experiences reported longer disease control and survival benefit 

for metastasectomy in liver for patients with breast cancer, pulmonary metastasectomy in 

patients with various of primary cancer, as well, resection of brain metastasis in patients 

with lung cancer and other various cancer types [3-5]. However, the local therapies such 

as surgery which are more aggressive may result in a higher risk of treatment-related 

toxicities and a decrease in quality of life. In contrast, local treatment with newer 

radiotherapy (RT) technology, such as stereotactic ablative radiotherapy (SABR), has 

been increasingly investigated, given that it is time-saving, technically feasible, 

potentially equally effective, as well as associated with limited adverse events and no 

need for post-operative recovery [6]. 

1.1.2 SABR 

In stage IV cancers, the role of RT has historically been limited to more conservative 

dose fractionations, using conventional RT for the purposes of relieving symptoms and/or 
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preventing cancer-related complications. In contrast, SABR (also known as stereotactic 

body radiotherapy or SBRT), is characterized by the precise delivery of high radiation 

doses within a few fractions [7, 8]. Typically, SABR is delivered in 3 to 8 fractions 

within 1- 2.5 weeks, while conventional RT requires more than 4 to 6 weeks to deliver 

20-30 fractions daily [7]. Reported 1, 2 or 3-year rates of local control with SABR are 

excellent, and for lung targets, are consistently around 90% [9-12]. Besides its 

convenience, SABR is generally well tolerated across body targets. However, given the 

high doses employed, caution needs to be exercised when lesions are in close proximity 

to organs at risk [7, 8]. Examples of serious toxicity include: major bleed, radionecrosis 

in the brain, permanent damage to nerves, and fistulisation along gastrointestinal tracts, 

major vessels, or airways etc. [6, 13]. 

SABR is increasingly being used as a locally curative treatment for various early stage 

cancers, particularly when a patient’s comorbidities may increase surgical risks [9, 10, 

14]. As SABR is well tolerated, convenient and potentially associated with fewer risks 

than surgery, its role in operable early stage cancer patients is an active area of 

investigation. One example of this is for early stage lung cancers [10, 15].   

For oligometastases, the use of SABR is becoming increasingly popular, as patients and 

clinicians alike are embracing locally aggressive treatments that may incur health 

benefits. Reports of SABR for oligometastases have generally been limited to 

observational studies, which describe excellent local control rate as well as survival; 

however, these are highly selected patients [16-18]. Single arm prospective trials have 

provided a higher level of evidence, however, still need to be considered in the context of 

a lack of appropriate controls [19, 20]. Given the lack of randomized data in this context, 

a phase II, randomized controlled trial “SABR-COMET” was launched internationally, 

and has since completed accrual. 

1.1.3 SABR plus standard of care (SoC) for oligometastatic cancer 
treatment 

The SABR-COMET Trial (Clinicaltrials.gov identifier: NCT01446744) is a phase II 

randomized controlled trial. The primary aim of the trial was to evaluate treatment effect 
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of comprehensive treatment (SABR + SoC), as compared to SoC alone in the 

management of oligometastases [21, 22]. SoC referred to a set of cancer interventions 

that were widely used for stage IV metastatic cancer, for example, palliative radiation 

therapy (RT) and systemic therapy, which mainly included chemotherapy according to 

the earlier cancer management protocols, whereby newer agents such as targeted therapy 

or immunotherapy were less commonly used. A total of 99 patients with previously 

definitively treated primary tumors and metachronous oligometastatic disease were 

randomly assigned in a 2:1 ratio to the comprehensive treatment group and standard of 

care group, respectively. Patients were recruited from ten centers across Canada, the 

Netherlands, the United Kingdom, and Australia. The trial cohort consisted various 

cancer types, most commonly, lung, prostate, colorectal, breast cancers, among others. 

The number of metastases were no more than 5 per patient and up to 3 metastases within 

any organ system [21, 22]. Summary of patients’ baseline characteristics are provided in 

Table 1. 

In the 5-year follow up, 34 out of 66 patients (52%) of the SABR group received 

palliative systemic therapy, compared to 19 out of 33 patients (58%) in the SoC group. 

Comprehensive SABR was associated with less further palliative RT use than the SoC 

arm, 13 patients (20%) vs 21 patients, (64%). SABR was associated with an absolute 

increase of 26% (95% CI 10–41) in lesional control, defined as the proportion of 

metastatic lesions that are progression-free as compared to the baseline. The proportion 

of lesional control was 75% (75 of 100 assessable lesions) versus 49% (28 of 57 

assessable lesions) in the SABR versus control group (p=0∙0010). The long-term 

survival, quality of life (QoL) based on Functional Assessment of Cancer Therapy: 

General, Version 4 (FACT-G v. 4) scales [23], and adverse effects were measured every 

3 or 6 months for up to 5 years. The major findings of the trial are summarized in Table 

2. The Kaplan-Meier curves summarizing overall survival and progression-free survival 

are shown in Figure 1.  
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Table 1: Patients’ baseline characteristics of SABR-COMET trial 

Characteristic 
SABR Arm 

(n=66) 
Control Arm 

(n=33) 

Gender, n (%) 
Male 

Female 

 
40 (61) 
26 (39) 

 
19 (58) 
14 (42) 

Age, mean ± SD, years 66.3 ± 11.2 68.0 ± 10.9 

Average number of Metastases, 
mean ± SD 

1.9 ± 1.1 1.9 ± 0.9 

Primary Site, n (%) 
Breast 

Colorectal 
Lung 

Prostate 
Other 

 
13 (20) 
9 (14) 

12 (18) 
14 (21) 
18 (27) 

 
5 (15) 
9 (27) 
6 (18) 
2 (6) 

11 (33) 
Abbreviations: SoC, standard of care; SABR, stereotactic ablative radiotherapy; SD, standard deviation 

Table 2: Summary of effectiveness and safety outcomes from the SABR-COMET 

trial 

Abbreviations: SoC, standard of care; SABR, stereotactic ablative radiotherapy; SD, standard deviation 

† mOS: median overall survival. HR (SABR+SoC vs SoC): 0.57, 95% CI (0.30–1.10); stratified log-rank p=0∙090.  

‡ mPFS: median progression-free survival. HR (SABR+SoC vs SoC): 0.47, 95% CI (0.30–0.76); stratified log-rank 

p=0∙0012. 

¶ HRQoL: health-related quality of life, defined as the overall mean score of Functional Assessment of Cancer 

Therapy: General (FACT-G) at 6th month.  

€ AE: treatment-related adverse events, from grade 1 to 5, are ordered as mild, moderate, severe, life threatening or 

disabling, death-related, according to National Cancer Institute Common Terminology Criteria for Adverse Events 

(NCI-CTC-AE) version 4.  

 SABR+SoC (n=66) SoC (N=33) P value 

Effectiveness    

All-cause mortality n, (%) 24 (36%) 16 (48%)  

mOS, (95%CI), months † 41 (26.0, not reached) 28 (19, 33) 0.09 

mPFS (95%CI), months ‡ 12 (6.9-30.4) 6.0 (3.4-7.1) 0.0012 

HRQoL, mean (SD) ¶ 82.6 (16.6) 82.5 (16.4) 0.99 

Safety    

AE (Grade=5), n (%) € 3 (4.5%) 0 (0%)  

AE (Grade≥2), n (%) € 19 (29%) 3 (9%) 0.026 
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a) 

 
b) 

 
 

Figure 1. a) Kaplan-Meier Curve for overall survival (OS) and b) progression-free 

survival PFS from the SABR-COMET trial  

PFS: HR (SABR+SoC vs SoC): 0.47, 95% CI (0.30–0.76); stratified log-rank p=0∙0012. OS: HR (SABR+SoC vs SoC): 

0.57, 95% CI (0.30–1.10); stratified log-rank p=0∙090. The risk of progression or death in the SABR+SoC arm is 53% 

lower than the risk in the SoC arm at any time points during the follow-up. The immediate risk of death in the SABR+SoC 

arm decreased by 43% compared to the SoC arm. 
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The SABR-COMET trial has demonstrated that adding SABR to the standard of care 

improved median progression-free survival from 6 to 12 months (p=0.0012) and median 

overall survival from 28 to 41months (p =0.090). Since SABR-COMET trial pre-

specified a two-sided level of significance at 0.2 using a randomized phase II screening 

design [22], the change in the median progression-free survival as well as the median 

overall survival are statistically significant (p < 0.2). The early censoring was most likely 

caused by patients’ dropouts as well as more limited follow-up for patients who enrolled 

towards the end of the trial accrual (i.e. some patients may have had only one- or two-

year follow-up at the time of data analysis). SABR was associated with an absolute 

increase of 26% (95% CI 10 to 41) in lesional control (the absence of progression in the 

assessable lesions that presented initially at randomization), without compromising 

quality of life (overall mean FACT-G scores at 6 months were 82.6 versus 82.5 in the 

SABR versus control group, p=0.99). However, there were more grade 2 or higher 

treatment related adverse events in SABR+SoC arm compared to the SoC arm. Despite 

treatment-related death (grade 5 toxicity) occurring in three out of 66 patients (4.5%) 

after SABR versus none in the control group, there was still a survival benefit observed in 

the SABR arm. 

While the SABR-COMET trial suggests that comprehensive SABR is associated with 

increased health benefits, SABR is resource-intensive and associated with increased costs 

due to the complexity of the treatment. Performing SABR is more resource intensive, due 

to additional steps in dosimetry, quality assurance, and pre-treatment preparation. This 

requires additional time from personnel including radiation therapists, physicists, as well 

as resources such as the treatment planning system and the linear accelerator as compared 

to palliative RT. Therefore, in order to determine the optimal intervention from a health 

economic and societal point of view, the costs, patients’ values, adverse effects as well as 

the health benefits all need to be considered in order to determine the value of this 

strategy. Thus, the objective of this thesis is to perform a cost-effectiveness analysis to 

address whether the increased costs associated with SABR are justified by the potential 

effectiveness gained, in the context of the Canadian health care system.  
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1.2 Cost Effectiveness Analysis 

The purpose of a cost-effectiveness analysis (CEA) is to help prioritize different 

healthcare strategies to maximize the health benefits based on limited financial budgets 

and societal resources. This type of analysis promote the value of medical decisions and 

healthcare strategies by informing rational investment on interventions that generate the 

highest health values compared to a set of alternatives [24, 25].   

Trial-based and model-based methods are the two most common methods for cost-

effectiveness analyses [26]. Both methods can be applied to estimate the incremental cost 

effectiveness ratio (ICER) and uncertainties. While a trial-based method typically utilizes 

individual, patient-level costs and health outcomes prospectively collected directly from 

the clinical trial, model based-methods estimate these from existing data from various 

sources. In this context, the uncertainty is measured according to different assumptions, 

and is subject to increased flexibility [27]. In the SABR-COMET clinical trial, costs and 

utility data were not directly collected. Therefore, while a model-based method was 

utilized in this CEA, individual patient data from the SABR-COMET trial, along with 

existing data from the broader literature were utilized to inform the model. Sensitivity 

analyses were performed to capture the potential uncertainties and ensure internal 

validity.   

1.2.1 Quality-adjusted life year and utility 

The quality-adjusted life year (QALY) is a measure of outcome that weighs survival 

according to the health-related quality of life within that time period. The weight, also 

known as value index, ranges from 0 (death) to 1 (perfect health), and is elicited from the 

general population to represent public preference. This is reflected in a term known as a 

utility, which is a preference-based interpretation of quality of life related to a health 

state. [28, 29]. It incorporates not only the length of life, but also the extent to which 

people value their quality of life. Multiplying the utility by length of life, the health 

consequence associated with the intervention can be measured quantitatively and 

qualitatively through QALYs, given by  
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Total QALY = ∑ 𝑞𝑡

𝑇

𝑡=1

,  

𝑞𝑡: QALY gain in year t, 0 ≤ 𝑞𝑡 ≤ 1; T: length of time horizon. 

In a CEA, the quantity of life as a clinical outcome is not sufficient to characterize the 

complex health consequences. Trade-offs are made simultaneously between quality and 

quantity of life, health benefits and adverse effects, as well as cost and health effects to 

determine the optimal intervention. For cancer treatment specifically, extending life 

expectancy as well as improving quality of life are both important. In addition, the 

patients’ values and public values, such as taxpayers and other healthcare recipients, 

should be involved in determining the utility of an intervention. In other words, an 

intervention may benefit a proportion of individuals, but at the cost of the others [30]. 

Therefore, the utility, public preference is generally recommended to inform the optimal 

treatment [30]. QALYs facilitate comparison between an intervention and its alternatives 

by integrating benefits, harms and societal preference into a single scale. 

There are generally three ways to directly measure the utility of an intervention: Time 

Trade-off (TTO), Standard Gamble (SG), and Visual Analog Scale (VAS) [30]. The TTO 

method asks individuals how many years in their currently impaired health state they 

would be willing to “trade off” in order to regain a full health. The more time a 

participant is willing to sacrifice to exchange for full health, the less an impaired health 

states would be valued, and therefore the current health state is associated with a lower 

utility. The SG method asks individuals to choose between the result of remaining 

impaired health state without receiving an intervention and the consequence of taking an 

intervention whereby full health gained at a risk of death. The utility would be 

determined by the maximal risk of death they would accept given their current impaired 

health state, in order to gain a full health. The more severe the impaired health condition 

is, the higher risk participants would be willing to take to avert it and the utility of the 

health state would be lower. TTO and SG methods require special training on 

investigators and therefore are resource intensive.  
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The VAS approach asks participants to rate their health states visually on an illustrated 

scale ranging worst to best. A score between 0 to 100 is obtained base on direct 

measurement from the illustrated scale. However, the scaling bias, whereby the extremes 

(perfect vs. poor health) of conditions are poorly represented in general, is a limitation of 

the method.  

Nevertheless, TTO, SG and VAS have not been commonly used in the context of clinical 

trials. In addition to the practical and methodological concerns raised above, the patient-

based preference derived by these direct measuring methods can be inconsistent with the 

public preference [30]. For instance, patients with chronic illness such as cancer are 

likely to adapt to the impaired health states so that their self-perceived health states 

utilities may be overrated compared to the utility value elicited from the general 

population [30]. Such difference may therefore mask the utility change due to health 

interventions. Furthermore, the public-based preference has been recommended in health 

economic evaluation since it is unlikely to be biased and the investment on a new strategy 

can impact the general public interest [30]. 

Generic preference-based instruments, such as EuroQol (EQ-5D), the Short Form 6D 

(SF-6D), and the Health Utilities Index (HUI) have been widely used to estimate health 

utilities in clinical research. These instruments facilitate the measuring of utilities by 

linking different questionnaires with the generic preference-based score to form a 

standardized scale, and thus are applicable to cancer clinical trials to estimate health 

utilities. Among them, the EQ-5D is the most widely used in cost-effectiveness analysis 

and has been recommended by the National Institute for Health and Care Excellence 

(NICE) in the United Kingdom (UK). The EQ-5D consists of 5 dimensions: mobility, 

self-care, usual activities, pain/discomfort and anxiety/depression. The scores of the five 

dimensions can either be used as a measure for HRQoL or be converted into a utility 

value based on the country-specific value sets. The value sets are generated via TTO or 

VAS approach within valuation studies in different countries. The EQ-5D-3L includes 3 

levels in each dimension: no problems, some problems, and extreme problems. A newer 

version of the instrument, the EQ-5D-5L, consists of 5 levels of perceived problems per 

dimension and therefore the latter improves the sensitivity and reduces the celling effect 
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[31]. The EQ-5D can identify a total of 245 health states and previous work by Dolan et 

al. have estimated the utility score for each health state via TTO methods among UK 

adults [32]. Similarly, HUI and SF-6D assess different dimensions from EQ-5D, for 

which previous work have also elicited the utilities via SG accordingly among adults 

from Canada and the UK, respectively [30]. 

Although the generic preference-based instruments can be easily applied in clinical trials, 

they may not be sensitive enough to capture small but meaningful disease-specific 

changes. Therefore, the condition-specific measures are routinely incorporated in 

measuring the health-related quality of life (HRQoL) associated with a specific condition 

or disease [30]. These commonly used HRQoL instruments have been extensively studied 

and validated in various patients’ population [23]. For instance, the HRQoL of patients 

with oligometastatic cancer in the phase II SABR-COMET trial were measured via the 

Functional Assessment of Cancer Therapy-General (FACT-G) scale, and these can then 

be used to generate health states utilities via mapping/cross-walking as described in the 

next section. 

1.2.2 Mapping algorithms to estimate utilities 

“Mapping”, also called “cross-walking”, refers to a modeling technique whereby scores 

from disease-specific HRQoL instruments are transformed into generic preference-based 

utility values [33]. HRQoL was routinely collected in SABR-COMET trial using the 

functional assessment of cancer therapy-general (FACT-G) scale. FACT-G is a cancer-

specific instrument that consists of 4 domains that assess physical well-being, 

social/family well-being, emotional well-being and functional well-being of patients. 

Each domain includes six or seven statements. Participants are asked to score each item 

with an integer range from 0 (not at all) to 4 (very much), indicating the level of fitness 

between the statement and their conditions [23]. The HRQoL domain scores can 

therefore be obtained by summing up the item scores of each domain. The total score is 

calculated as the sum of domain scores.  

There are several published mapping algorithms that have modeled conversion of FACT-

G scores to EQ-5D values [34-38]. Some methods are based on the total score of the 
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FACT-G, while the others required to incorporate the scores of each domain, with or 

without adjusting for specific cancer type.  

Although mapping algorithms can estimate health states utilities, these are still not truly 

preference-based measures as uncertainties and bias are likely to be introduced.  

Nonetheless, they serve as an estimate, and any parameter uncertainty can be 

characterised via sensitivity analysis within the CEA [39].  

1.2.3 Disutilities 

In addition to health states utilities, it is important to account for potential adverse events 

that are related to an intervention, as they may lower the health states utilities. The 

decrease in utilities can be accounted for via disutilities.  

1.2.4 Cost of cancer care related to SABR-COMET trial 

The cost of cancer management is rapidly increasing, in part due to rising medication 

prices, the higher incidence and prevalence of cancer and the increasing treatments 

prescribed. These and other factors all contribute to the cancer financial burden in Canada 

[40, 41]. The total direct cancer cost of Ontario in 2012 was about 5.4 billion in 2015 

Canadian dollars (CAD), which is 1.8 times higher compared to the total cost of 3.0 

billion (2015 CAD) in 2005. This corresponds to an annual percentage increase of 

approximately 8.6%. Among these cancer related health service costs, the largest 

expenditure increase was due to chemotherapy and RT, with an estimated annual 

percentage increase of 12.7% and 16.6%, respectively [41].  

The total health care costs generally consist of direct costs and indirect costs. Direct costs 

refer to the resources needed for health care service, while indirect costs represent the 

losses in productivity due to illness or death. Direct costs can be further categorized as 

direct medical costs such as hospital care, drug, physician care etc. and direct non-

medical costs which mainly include the out-of-pocket expenses such as transportation, 

social services, housekeeping etc.  

The direct costs of cancer vary across different phases of the disease. The highest costs 

are incurred during the terminal phase, defined by one group as the last 12 months before 
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death [42]. The other 2 phases include, the initial phase, which corresponds to costs 

within the first 6 months of diagnosis, and the continuing care phase, which accounts for 

costs between the initial and terminal phases. Costs during the continuing phase are the 

lowest among the three phases, and this phase mainly consists of cancer surveillance as 

well as the managements for cancer progression or recurrence [43].  

The costs of RT and chemotherapy account for about 7% and 9 % of the total continuing 

care costs, respectively. In contrast, during the terminal phase, RT and chemotherapy 

accounted for around 4% and 2% of the costs, which reflects the increased use of other 

supportive measures [44]. 

SABR delivers higher doses in fewer fractions compared to the palliative RT. Thus, it 

may save on direct non-medical costs related to transportation and decrease the indirect 

costs due to time off from work and sick leave. However, SABR is more resource-

intensive than palliative RT with respect to the technical planning time required for 

dosimetry and quality assurance. Besides, the longer treatment delivering time per lesion 

also results in higher cost in SABR [45]. As an example, total direct medical costs of 

SABR were significantly higher than conventional fractionated radiation therapy (CFRT) 

as in previous studies of stage I inoperable lung cancer patients [46, 47]. 

The direct medical cost for RT is fully funded through individual provinces in Canada. 

The direct medical costs of RT can be estimated by the activity-based costing method 

according to descriptive costing studies. This approach divides the total spending into a 

series of activities-related costs, and the spending on each activity can be estimated 

through multiplying the unit cost of resource by the utilization of resources (i.e. time and 

patient volume). The total course of treatment, rather than the number of fractions, is 

typically employed to estimate RT costs [46].  

1.2.5 Incremental Cost-Effectiveness Ratio 

In order to determine whether a healthcare strategy is cost-effective or not, we employ a 

metric know as incremental cost-effectiveness ratio (ICER), defined as the cost difference 

divided by the effectiveness difference between the two compared strategies.  
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𝐼𝐶𝐸𝑅 =
∆ 𝑐𝑜𝑠𝑡

∆ 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠
=

𝑐𝑜𝑠𝑡(SABR+SoC)  − 𝑐𝑜𝑠𝑡(SoC)

𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(SABR+SoC) − 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑆𝑜𝐶) 
 

In a cost-utility analysis, the effectiveness is commonly measured in QALYs, and 

therefore ICER is the cost per QALY gain. ICER indicates the average incremental cost 

related to one additional unit of health benefit in health care system by shifting from one 

option to its alternatives. In our case, the two options are SoC alone versus SABR+ SoC 

strategy.    

Previous studies have evaluated the cost-effectiveness of SABR versus other standard 

treatments in different clinical settings, such as non-small cell lung cancer (NSCLC), 

melanoma, colon cancer, via model-based methods [48, 49]. For example, one study 

compared SABR to video-assisted thoracic surgery (VATS) wedge resection and 

systemic therapy, as initial treatment for pulmonary oligometastases with mixed types of 

primary tumors, including melanoma, non-small cell lung cancer and colon cancer [48]. 

In this study, SABR resulted in a 0.85 QALY gain at a cost of $467,787 (2015 USD) for 

melanoma, as compare to the VATS wedge resection ($491,359/0.83 QALY) and 

immunotherapy ($ 619,493/0.87 QALY). Therefore, compared with SABR, surgery and 

systemic therapy were not cost-effective with an ICER value of $7,585,316/QALY and 

$3,494,568/QALY, respectively, given a willingness-to-pay threshold of 

$100,000/QALY. However, the cost-effectiveness of SABR relative to the two other 

strategies were inconsistent across different types of cancer. Local treatments, including 

SABR and surgery, were more likely to be cost-effective in cancer, whereas systemic 

therapies required relatively higher costs.  

1.2.6 The willingness-to-pay threshold 

Whether a health strategy is cost-effective or not depends on the maximum amount of 

money that the policy makers are willing to pay to exchange for one additional unit of 

QALY, given the limited financial budget and health care resources, known as the 

willingness-to-pay (WTP) threshold. It serves as a benchmark for the value of healthcare 

interventions and indicates the highest price the society would pay to exchange for one 

more unit of QALY [50]. The widely used WTP thresholds are based on World Health 

Organization (WHO) criteria, which have been inferred from the gross domestic product 
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(GDP) per capita and varies among different countries [51]. The NICE in the UK 

recommended an explicit threshold of £20,000/QALY to £30,000/QALY for examining 

the efficient interventions [52]. In US, there is no explicit threshold, and implicit 

thresholds range from 100,000–150,000 USD/QALY to help guide reasonable decisions 

[50]. Although the value of the threshold is not clearly stated in the Canadian Agency for 

Drugs and Technologies (CADTH) guidelines, currently, a threshold of either $50,000 or 

$100,000 per QALY have been applied, although inconsistently [53].  

The ICER calculated from the CEA is compared with the WTP threshold to determine a 

rank of set of cost-effective interventions that help health care policy-makers to invest 

properly to maximize the health benefit with limit budget or minimize cost for specific 

health-effect [51]. 

In this study, a $100,000 CAD/QALY threshold for cost-effectiveness was employed. If 

the new strategy of interest is associated with a smaller ICER value than the threshold, it 

can be interpreted as the new strategy requires a below-average cost to exchange for one 

additional unit of QALY in the health care system, and therefore it will be considered as 

cost-effective. 

 

1.3 Decision analytical modelling in the economic 
evaluation of health technologies 

Decision analysis is a mathematical framework that serves to evaluate and determine the 

optimal outcome among a group of available options, with the purpose of informing 

decision-making according to various scenarios [24]. In health technology assessment, 

decision analytical models aim at helping decision-makers to understand the association 

between the evaluated health effectiveness and their incremental costs [54]. These models 

consist of variables and structures components that can simulate patterns of disease and 

prognosis based on evidences demonstrated by cohort studies or trials, which make it able 

to answer study questions where no direct evidence is currently available, and therefore, 

inform decisions in various uncertain situations [24].  
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For chronic disease and cancer with recurrent events and time dependent risks, state 

transition models can simplify the model structure by using health states to define the 

clinical process and the subsequent prognosis, rather than exhausting all the treatment 

options and their consequences. State transition models are recommended to solve 

decision problems that can be structured with discrete health states among a closed 

cohort, without need to account for the interactions between individuals. It may either 

simulate the expectancy value of an entire cohort (Markov cohort simulation) or track 

individual patient one at a time (Monte Carlo microsimulation) [55].  

Markov model, also known as cohort state-transition model, relies on a framework of 

discrete, exhaustive and mutually exclusive health states representing the course of 

disease over time. The time horizon is divided into equally fixed intervals, known as 

Markov cycles. Transition probabilities indicate the risk of inter-states transition among 

the cohort within each Markov cycle and, as per Markovian property, are independent of 

the history of previous transitions (including both the transition of previous health states 

and the time spent in the current health state) [55, 56].  

In contrast, Monte Carlo microsimulation (individual-level state transition model) is not 

limited by the Markovian property, as it relies on individual simulation and incorporates 

“tracker variables” to capture individual-level events. Whether or not an individual 

experience a transition is determined by a random number. However, the model is 

computationally intensive.  
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Chapter 2  

2 Objective and research framework 

The aim of this research was to perform a cost-effectiveness analysis to compare SABR 

treatment (SABR+ SoC) versus standard of care (SoC) alone in the treatment of 

oligometastatic cancer. Based on the SABR-COMET trial, this study investigated 

whether adding SABR to the current standard of care provides value from the Canadian 

healthcare system perspective. The main steps of this project are summarized as follow:  

1) Develop a Markov model with several health states and time dependent transition 

probabilities to simulate the disease process of oligometastatic cancer treated by 

each strategy;  

2) Validate the Markov model internally and externally; 

3) Use quality of life data from SABR-COMET trial patients to obtain health state 

utilities through mapping algorithms from the published literature;  

4) Estimate the cost of comprehensive treatment (SABR+ SoC) and SoC alone from 

the payer’s perspective from previous costing studies; 

5) Perform a cost-effectiveness analysis of the base case for a lifetime horizon, to 

inform whether the SABR-associated cost and toxicities are justified by the 

potential health benefit and quality-adjusted life year gained;   

6) Conduct deterministic sensitivity analyses to evaluate the impact of parameter 

uncertainty and its effect on ICER;  

7) Conduct probabilistic sensitivity analyses to evaluate the robustness of the model 

across multiple parameter and distribution uncertainties.  

This study was reported following the Consolidated Health Economic Evaluation 

Reporting Standards (CHEERS) guideline [57].  
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Chapter 3  

3 Methods  

3.1 Markov model and cost-effective analysis 

We constructed a Markov model using TreeAge Pro 2018 to evaluate the cost-

effectiveness of SABR+ SoC vs SoC for oligometastatic cancer patients from the 

Canadian healthcare system perspective. This was defined as up to 5 metastatic lesions 

and a controlled primary tumor, which were modeled as breast, lung, colorectal, prostate, 

and other types of cancer. The model allowed for a hypothetical cohort of patients, whose 

features are similar with those in the “SABR-COMET” trial, which recruited patients 

from centers in Canada, the Netherlands, the UK, and Australia [22]. 

In the model, we defined 5 unique and discrete health states: 1) Pre-progression 2) Post-

progression 3) Death from adverse event 4) Death from cancer and 5) Non-cancer death 

(Figure 2). All patients entered the Markov model by starting in the Pre-progression 

health states, representing immediately after receiving specified treatment such as SABR. 

As the model cycles, they either transit to another health states or remain in the same 

state, determined by the transition probability and the transition direction. Transition 

probabilities were estimated form individual-level patient data in the SABR-COMET trial 

for the five pre-defined health states for each cycle.  
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a. State transition diagram 

 

b. Decision tree 

Figure 2. Decision model for oligometastatic cancer a) State transition diagram b) 

Decision tree  
In the model, we defined 5 unique and discrete health states: 1. Pre-progression 2. Post-progression 3. Death from 

adverse event 4. Death from cancer 5. Non-cancer death. All patients started beginning in the pre-progression health 

states. For pre-progression and post progression health states, as model cycles, a proportion of patients will remain in 

the same states or travel to the next potential states in each cycle based on the transition probability. Once they enter the 

three absorbing health states, modelled as death from cancer, death from adverse event, or non-cancer death, they 

cannot move anymore. The model assumed that dying before cancer progression can only be attributed to the grade 5 

adverse events or other non-cancer reason. The Markov process allows health states-related rewards (costs and 

QALYs) to be accumulated for every circle (every 3 months). A lifetime horizon was adopted, as suggested by the 

Canadian Agency for Drugs and Technologies (CADTH) guidelines [58].   
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Both utilities and costs were discounted at an annual rate of 1.5% in base case scenario, 

according to the guidelines for the economic evaluation from Canadian Agency for Drugs 

and Technologies in Health [58]. Thus, the quarterly discount rate equals to:   

𝑄𝑢𝑎𝑟𝑡𝑒𝑟𝑙𝑦 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 = (1 + 𝑎𝑛𝑛𝑢𝑎𝑙 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑟𝑎𝑡𝑒) 
1
4 − 1. 

Where annual discounting rate =1.5% 

For each cycle, the cost and utility cycle rewards in the model were discounted as:  

𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑣𝑎𝑙𝑢𝑒 =
𝑓𝑢𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒

(1 + 𝑟)𝑡
 

Where r = quarterly discounting rate,  

and t= number of cycles (measured in quarters) 

The willingness to pay threshold of $100,000/ QALY was applied. We used within cycle 

correction to avoid overcounting the cost and utility rewards (model rewards accumulated 

at the beginning of each cycle, while transition occurred at the end of each cycle). The 

cycle rewards after within cycle correction were calculated by averaging the cycle 

rewards (costs and utilities) calculated at the beginning and end of each cycle. The 

assigned rewards in the Markov model are summarized in Table 3. The definitions of the 

Markov rewards are listed in Appendix A. 
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Table 3. Summary of Markov rewards 

All costs were adjusted to 2018 CAD. Within cycle correction were applied. 
Abbreviations: SoC: standard of care; palRT: palliative RT; death cancer: death from cancer; death AE: death form 
adverse events; death non-cancer: death from non-cancer AE: adverse event. 
§continuing care cost: health care received from diagnosis to 12 months before death. It consists of chemotherapy 
cost and base care cost. 
*∆terminal care cost: the difference between terminal care cost (cost for the last year of life) and continuing care 
cost. The cost difference was added to all death-related health states as a one-time cost to account for the increased 
cancer care cost within the last 12 months before death as compared to the continuing care cost. The maximum value 
of ∆terminal care cost was spent by patients survived for no less than 12 months (4 Markov cycles), according to the 
definition of terminal care cost [43]. 
  

Health 
states 

Startup cost 
Cycle cost / 
3month, $ 

Event cost 
Startup 
utility 

Cycle utility Event utility 

SoC       

Pre-
progression 

palRT cost 
+ AE cost 

Continuing 
care cost§ 

0 disutility 
Pre-

progression 
utility 

0 

Post-
progression 

0 
Continuing 
care cost§  

palRT cost 0 
Post-

progression 
utility 

0 

Death from 
cancer 

0 0 
∆terminal 
care cost* 

0 0 0 

Death from 
AE 

0 0 
∆terminal 
care cost* 

0 0 0 

Non-cancer 
death 

0 0 
∆terminal 
care cost* 

0 0 0 

SABR + SoC       

Pre-
progression 

SABR cost 
+ AE cost 

Continuing 
care cost§  

0 disutility 
Pre-

progression 
utility 

0 

Post-
progression 

0 
Continuing 
care cost§  

SABR cost 
+ palRT cost 

0 
Post-

progression 
utility 

0 

Death from 
cancer 

0 0 
∆terminal 
care cost* 

0 0 0 

Death from 
AE 

0 0 
∆terminal 
care cost* 

0 0 0 

Non-cancer 
death 

0 0 
∆terminal 
care cost* 

0 0 0 

Health 
states 

Startup cost 
Cycle cost / 
3month, $ 

Event cost 
Startup 
utility 

Cycle utility Event utility 

SoC       

Pre-
progression 

palRT cost 
+ AE cost 

Continuing 
care cost§ 

0 disutility 
Pre-

progression 
utility 

0 

Post-
progression 

0 
Continuing 
care cost§  

palRT cost 0 
Post-

progression 
utility 

0 

Death from 
cancer 

0 0 
∆terminal 
care cost* 

0 0 0 

Death from 
AE 

0 0 
∆terminal 
care cost* 

0 0 0 

Non-cancer 
death 

0 0 
∆terminal 
care cost* 

0 0 0 

SABR + SoC       

Pre-
progression 

SABR cost 
+ AE cost 

Continuing 
care cost§  

0 disutility 
Pre-

progression 
utility 

0 

Post-
progression 

0 
Continuing 
care cost§  

SABR cost 
+ palRT cost 

0 
Post-

progression 
utility 

0 

Death from 
cancer 

0 0 
∆terminal 
care cost* 

0 0 0 

Death from 
AE 

0 0 
∆terminal 
care cost* 

0 0 0 

Non-cancer 
death 

0 0 
∆terminal 
care cost* 

0 0 0 
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Several key assumptions were made during the construction of the model, including:   

1) Patients in the SABR group who developed progressive disease received 

additional salvage therapy with further SABR and remained in the Post-

progression state; 

2) The resources required for each metastatic lesion treated by SABR are considered 

separate and independent courses of RT;  

3) Once cancer progressed, it cannot return to the pre-progression health state; 

4) Dis-utilities from adverse events are assumed to be independent of the type of 

primary tumor.  

 

3.2 Mapping and estimating the health states utility 

Figure 3 provides an overview of the utilities and disutilities estimating methods. The 

detailed processes were described in the following three sections. 

 

Figure 3. Overview of utilities and disutilities estimating methods 
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We searched Health Economics Research Centre (HERC) Database of Mapping Studies 

[59, 60] to identify the available mapping algorithm from studies by performing basic 

quality checks on the relevance of the patient population, QoL measure instruments, 

target utility measure instruments, and utility elicitation methods. 

We selected studies whose target population shared the most similar patients’ 

characteristics with the SABR-COMET trial. Specifically, we identified studies whereby 

we could convert the available QoL data from the trial, which was measured using the 

FACT-G scale, into health states utilities. We then performed a longitudinal analysis with 

the mapped individual utility data to estimate the pre-progression and post-progression 

utility (mean and 95% confidence interval) using linear mixed model, in which time was 

considered as a continuous variable.   

3.2.1 Databases and literature searching 

Potential available studies were included based on the two following criteria:  

1. Study participants: cancer patients with mixed or single type of primary tumor.  

2. Studies design: studies included the FACT-G scale as a source instrument, regardless 

of the type of target instrument. 

The HERC Database of Mapping Studies (last accessed: 24th April 2019 [59]) was 

utilized, and all references within included studies were also reviewed to identify other 

candidate studies that may have been omitted within HERC.  

3.2.2 Data collection and algorithm selection 

For candidate mapping algorithms, we summarized relevant information to determine the 

appropriateness and relevance for our model. These factors included: the sample size of 

the study, demographics, model performance and FACT-G scores. The optimal study, 

which reported potential mapping algorithms was selected based on its relevance to the 

SABR-COMET patient population to minimize the difference between the mapping study 

and the trial regarding the study population [37].  
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The optimal study recommended several algorithms providing different target 

instrument-based utilities, such as the SF-6D based utility and the EQ-5D based utility. 

The algorithm that generated EQ-5D based utility was preferred because the EQ-5D is 

the more widely available instrument for measuring utility, and is recommended by the 

NICE in England for Health Technology Assessment [33].   

We compared different mapping algorithms developed by the optimal study. In general, 

three regression model were used including the censored least absolute deviations 

(CLAD) approach, which is a median based model accounting for the right censoring, the 

generalized linear models (GLM) and ordinary least squares (OLS). All of them produced 

consistent utility predictions with similar accuracy according to the optimal mapping 

study. However, CLAD model is more complicated than GLM or OLS, and the 

application of median-based model for predicting utility is controversial, as it may not 

accurately reflect the total utility of the population at aggregate level [38]. GLM and OLS 

are both simple, however, GLM relaxes the assumption of OLS, and produced similar 

results as CLAD [37]. Since all of the three models are capable of accurately predicted 

utility predictions according to the mapping study. We finally chose GLM to predict 

health states utilities from FACT-G scores obtained from the SABR-COMET trial.   

The mapping study provided a total of three GLM models. They were different in that 

they predicted the utilities based on various predictors, including the mean FACT-G total 

score alone, the mean FACT-G domain scores or combining FACT-G domain score with 

cancer type and stage as predictor(s). We chose the GLM model regressed utility on 

FACT-G domain score, cancer type and stage as predictor(s) rather than the two other 

GLMs regressed on FACT-G total score, or domain score only. First, the predictions 

using FACT-G domain scores are comparatively more accurate (a smaller RMSE) than 

these derived from total score as shown in the mapping study. Second, in the SABR-

COMET trial, all patients are with stage IV cancer, thus including stage as a predictor 

may improve the accuracy of prediction. Therefore, in our study, utilities were mapped 

from FACT-G domain scores, stage and primary cancer type via the GLM model. 
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3.2.3 Estimating the pre-progression and post-progression utility 

Using the published mapping algorithm, we obtained the individual level utility recorded 

every 3 months for first two years and every 6 months for the last three years over the 

trial follow-up duration. According to the methods provided by Johnson et al. [61], we 

performed longitudinal analyses using mixed effect model to interpret the trend of the 

utility change overtime, before and after progression, and compared the utility trajectory, 

determined by intercept and slope coefficient, between 2 intervention strategies for both 

pre-progression state and post-progression state. We plotted the trend of mean utilities at 

each visit for the 2 intervention groups, and linear relationships were observed between 

utility and time for both pre-progression and post-progression health states as shown in 

Figure 4, suggesting a linear mixed model as below,  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 
0

+ 
1

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 + 
2

𝑡𝑖𝑚𝑒 + 
3

𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠

+ 
4

𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦 ∗ 𝑡𝑖𝑚𝑒 
Eq. (1) 

where time was incorporated as a continuous variable, was constructed for the purpose of 

comparing the utility trajectory over time between the 2 groups, adjusting for progression 

states (pre-progression and post-progression). Progression status was a binary variable 

defining whether the disease progressed (progression status =1) or not (progression 

status=0) after treatment. Strategy referred to the SABR + SoC or SoC. 
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Figure 4. Utilities trend of 2 strategies before and after progression 
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3.2.4 Estimating the disutility 

The disutility associated with the grade 2 or higher (more severe) fatigue, dyspnea and 

pain among non-small cell lung cancer patients were identified from published literature. 

We assumed that these utilities, although calculated for NSCLC patients, would be 

consistent among all patients with oligometastatic cancers, independent of primary 

tumour type.  

The proportion of grade 2 or higher treatment-related adverse effects (AEs) in the SABR-

COMET trial were significantly different among treatment groups. There were 3 out of 

33 in SoC arm versus 19 out of 66 in SABR+ SoC arm, (9% vs. 29%, respectively, p= 

0.026). Therefore, we considered it meaningful to modeling the dis-utility associated with 

grade 2 or higher adverse events. Given that most of the AEs were non-severe and of a 

short duration, the disutilities of AEs could not be reliably ascertained from individual 

patient data. Therefore, relevant disutilities were obtained based on a review of the 

available literature, as well as the Tufts Cost-Effectiveness Analysis Registry [62]. 

Limited by the availability of source data, we did not differentiate the disutility between 

grade 2 and grade 3 AEs (dyspnea, fatigue, pain) and conservative estimations (i.e. worse 

disutility for AEs, favouring SoC) were used whenever assumptions were required. The 

frequency, onset and duration of treatment-related AEs were obtained from the SABR-

COMET trial. Given most patients experienced various AEs for less than 3 months, we 

conservatively assumed that adverse events lasted for 1 cycle (3 months), and that 

QALYs were calculated using the formula as listed: 

∑(𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝐴𝐸 ∗ 𝑑𝑖𝑠𝑢𝑡𝑖𝑙𝑖𝑡𝑦 ∗  𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝐴𝐸) Eq. (2) 

3.3 Deriving Costs 

3.3.1 Total direct cost 

Direct costs were estimated from the Canadian health care system perspective. Indirect 

costs were not included in this study. Cancer-specific total direct medical costs included 

chemotherapy, RT, inpatient hospitalization, same-day surgery, physician services, home 

and community care, diagnostic tests and out-patient prescription drugs, and these were 
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obtained from published research. The costs of outpatient drugs for patient younger than 

65, emergency department visits and ambulatory care were not included. These costs 

were derived from linked cancer registry and administrative data in Ontario using 

standardized costing method reported by de Oliveira et al. [43]. We divided the total 

direct medical cost into three categories, which were RT cost, chemotherapy cost, and 

base care cost (the rest) to model each of the three costs separately, shown in the equation 

(3) below.  

𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑠𝑡 = 𝐵𝑎𝑠𝑒 𝑐𝑎𝑟𝑒 𝑐𝑜𝑠𝑡𝑠 + 𝐶ℎ𝑒𝑚𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦 𝑐𝑜𝑠𝑡𝑠 + 𝑅𝑇 𝑐𝑜𝑠𝑡𝑠  Eq. (3) 

There were several reasons to model these costs separately. First, the main driver of the 

difference in cost between the two strategies is the cost of RT and SABR. SABR cost is 

not captured in the published costing studies, as it is applied to the new indication 

(oligometastases) in this setting. Second, cost of chemotherapy and other conventional 

RT were highly related to the use of SABR. As the SABR-COMET authors predicted that 

SABR was associated with less use of chemotherapy and other palliative RT due to 

delaying cancer progression. Third, cost for different categories of therapy have different 

occurrence and accumulation pattern. RT resulted in one-time cost for each health states, 

while chemotherapy and base care costs are repetitively charged and accumulated in each 

Markov model cycle. Therefore, the three costs were weighted by different proportion of 

users among each type of cancer, between arms (SABR+ SoC vs SoC) and health states 

(pre-progression vs post-progression), adjusted for different rate of cost increase, and 

assigned differently within the model. 

Another reason that cost was modeled as different categories is that the expenditure on 

RT and chemotherapy has increased at different rate over years according to a 

population-based study [41]. This cost increase is associated with the availability of 

expensive new treatments, the application of therapies to more treatment indications, as 

well as the additional expenditure on supporting care due to extended survival over time. 

We use the estimated annual percent cost increase from the published literature to 

account for the potential cost increase when we adjusted the source data, representing a 

lower cost in 2005 [43], to a higher cost in 2012 when SABR-COMET trial was initiated.  
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All costs were adjusted to 2018 CAD using the consumer price index [63]. Although the 

price charged for goods increased overtime, the relative price remained the same. All 

costs were converted to 2018 CAD so that cost data from various sources could be 

standardized. The annual average costs were divided by 4 to obtain average quarterly 

costs, which were modeled and accumulated every cycle. 

3.3.2 Base care costs 

The base care costs were further split into two parts, based on different time-periods, base 

terminal care cost (within last 12 months of life) and base continue care cost (prior to the 

last 12 months of life). Cancer costs were not calculated separately for the last three 

months of life, as previous studies suggested that they do not significantly differ from 

costs in the last 4 to 12 months of life [64]. The base terminal care costs were calculated 

using equation (4). We extracted the annual total direct terminal care cost, terminal phase 

chemotherapy cost of and RT cost from the population-based costing study by de 

Oliveira et al. who reported the detailed terminal care costs for metastatic breast, 

colorectal, lung and prostate and other type of cancers [43]. 

Base terminal care cost  

                      = Total direct terminal care cost – Chemotherapy cost – RT cost 

Eq. (4) 

This study also provided the cancer-specific total direct continuing care cost. However, 

the cancer-specific annual chemotherapy cost and RT cost for continuing care were not 

available in this study. We therefore estimated the base continuing cost using equation 

(5), in which the proportion of chemotherapy cost and proportion of RT cost were 

derived from a separate study [44]. This study was performed by the same research group 

within the same time period, estimating the cancer care cost among the same population, 

and according to which, chemotherapy and RT costs accounts for 9% and 7% of the 

direct continuing care cost for cancer patients survived beyond one year, respectively.   

𝐵𝑎𝑠𝑒 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑛𝑔 𝑐𝑎𝑟𝑒 𝑐𝑜𝑠𝑡 

= 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑛𝑔 𝑐𝑎𝑟𝑒 𝑐𝑜𝑠𝑡 – (𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑐ℎ𝑒𝑚𝑜𝑡ℎ𝑒𝑟𝑎𝑝𝑦 𝑐𝑜𝑠𝑡 

+ 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 𝑜𝑓 𝑅𝑇 𝑐𝑜𝑠𝑡) ∗ 𝑇𝑜𝑡𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑛𝑔 𝑐𝑎𝑟𝑒 𝑐𝑜𝑠𝑡 

Eq. (5) 
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3.3.3 Chemotherapy costs  

In this study, we intend to incorporate and model the chemotherapy costs for stage IV 

metastatic breast, colorectal, lung and prostate and other type of cancers. However, we 

were not able to directly identify the costs from published literature. Based on the 

available data sources we considered the chemotherapy cost during terminal care phase 

(within last 12 months of life), from the population-based costing study by de Oliveira et 

al. mostly resembled the potential cancer-specific chemotherapy cost for our patients 

population [43]. We subsequently identified the proportion of chemotherapy recipients, 

cancer patients who actually received chemotherapy, from a study done by the same 

group using similar approach [64]. These proportions, which were cancer-specific, were 

utilized to derive the cancer-specific average annual costs per chemotherapy recipient 

from the estimated the average annual costs per cancer patients. Finally, we calculated 

the weighted average of the cancer-specific average annual costs per chemotherapy 

recipient by adjusting cancer type according to SABR-COMET trial to reflect the clinical 

scenario for patients with stage IV cancer.   

3.3.4 Radiotherapy costs 

Radiotherapy costs were estimated according to the activity-based costing method used 

by Yong et al. [45]. The unit cost of each activity and the number of units required by 

SABR and palliative RT were identified from published studies [45]. SABR and 

palliative RT costs for treating each of metastases were derived from Ontario intensity-

modulated radiation therapy (IMRT) and 3-dimensional conformal radiotherapy (3D-

CRT) activity-based costing data, respectively.  

The RT costs consist of 3 major resources: process costs, clinical infrastructure costs and 

overhead. The process costs include staff time and consumables. The clinical 

infrastructure costs account for the capital of acquisition, construction and maintenance 

as well as the operating cost. Overhead refers to the costs of supporting infrastructures 

required for maintaining the daily function of the program.  

Table 4 shows the modeled RT delivered within each intervention, during the SABR-

COMET trial follow-up period. The RT cost per metastasis for both SABR+ SoC and 
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SoC strategy were calculated for both before and after progression. They were weighted 

by the number of treated metastasis per RT recipient and the proportion of RT delivered 

among patients. This allowed for estimation of the average cost of RT per patient in the 

SABR-COMET trial. In the SABR group, all patients were treated with upfront SABR to 

all sites of metastases, and they could receive further SABR or palliative RT in the event 

of cancer progression. Meanwhile, in the SoC group, patients were treated with palliative 

RT when necessary, either before or after progression. In the COMET trial, data 

regarding the receipt of palliative RT were missing for over half of patients who received 

this treatment in the SoC strategy. This data was completely collected in the SABR + 

SoC strategy. As we were unable to distinguish the receipt of palliative RT as either 

before progression or post-progression in the SoC strategy, the following two 

assumptions were made to calculate the cost of RT:  

1. We assumed that in the SoC arm, 20% of palliative RT recipients were treated before 

progression, shortly after randomization, while the remaining proportion of palliative RT 

was received after progression. This estimate is based on observed trial data and clinical 

experience. This assumption was subjected to a wide range of range of 0 to 50% in 

sensitivity analysis, to test its impact on the cost-effectiveness of the 2 strategies. In 

contrast, in the SABR+ SoC strategy, SABR was the only form of RT delivered pre-

progression, and in the event of progression, patients were allowed to receive either 

SABR or palliative RT. These data were available from the SABR-COMET trial and 

were modelled accordingly. 

2. The frequency of receiving the post-progression palliative RT was assumed to be 

exponentially distributed over time for both strategies. Palliative RT served to relieve 

symptoms related to cancer progression. Thus, we considered that the highest probability 

of receiving the post-progression palliative RT appeared once cancer progressed, and the 

probability of its use decreased overtime. The timing of receiving post-progression 

palliative RT was only available for 14 patients, of whom nine (64%) patients were 

treated immediately within the 3 months (the first Markov cycle) after cancer 

progression. Based on the available data on timing of palliative RT administration within 

the SABR-COMET trial, the probability of receiving post-progression RT over time can 



 

 

31 

be best described as an exponential distribution, with 𝜆 =1 under the base case scenario. 

As the cumulative distribution function was F(t)=1 − 𝑒−𝜆𝑡 = 1 − 𝑒−𝑡, t= number of 

cycles (3 months) in post-progression health state. This distribution indicated that 63% of 

palliative RT happened within the first Markov cycle of post-progression health state, and 

it matched with the observed pattern in the clinical trial. We tested 𝜆 under a Gamma 

distribution with a standard deviation of 0.1 via probabilistic sensitivity analysis. In this 

way, the cost of post-progression palliative RT can be discounted as: 

Present Value= palliative RT cost * ∑
 [𝐹(𝑡)−𝐹(𝑡−1)]

(1+𝑟)𝑡+𝑛
 10
 𝑡=1  

= palliative RT cost * ∑
𝑒1−𝑡−𝑒−𝑡

(1+𝑟)𝑡+𝑛
 10
𝑡=1  

Eq. (6) 

where n refers to number if cycles varied from 0 to 10. 

Table 4. Summary of RT of two strategies stratified by cancer progression 

 Pre-progression Post-progression 

SABR + SoC SABR SABR / Palliative RT †§ 

SoC Palliative RT‡ Palliative RT§‡ 

Abbreviations: SABR, stereotactic ablative body radiotherapy; SOC, standard of care; RT, radiotherapy 

‡ Assuming 20% of total palliative RT in SoC arm were received before progression, while the rest of 80% were post- 

progression RT.   

† In SABR + SoC arm, patients with progressed disease can be treated with either SABR or palliative RT, if RT is 

needed.   

§ The exponential distribution for post-progression palliative RT delivery in both arms were assumed.  

3.3.5 Cost for managing adverse events 

We also derived the cost of managing adverse events including fatigue, pain and dyspnea. 

The price of drugs were identified from the database “the electronic version of the 

Ontario Drug Benefit Formulary / Comparative Drug Index (Formulary / CDI)” [65]. The 

dispensing fee charged by the pharmacists for filling prescriptions was available at 

Ontario Ministry of Health and Long-Term Care [66]. The cost of managing AE were 

obtained by using information on the types of medication, dosage, duration, unit drug 

price and pharmacy dispensing fee. According to the trial data, the median time of onset 

was at cycle 1 for pain, cycle 3 for dyspnea. AEs were with a median length of 1 cycle, 
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and they were discounted according to the start time. The total cost was discounted for 

the time of AE start at an annual discount rate of 1.5%. There was no treatment for 

fatigue, therefore AE-related costs were calculated primarily from managing dyspnea and 

pain.   

3.4 Deriving transition probabilities and other parameters  

The transition probabilities were derived using the individual-level patient data from the 

SABR-COMET trial. We performed parametric survival analysis with Weibull 

distribution via the SAS LIFEREG procedure to obtain the survival function S(t). The 

Weibull model was chosen in our study for 2 reasons:  

1. The survival function is expressed in a simple form as equation (7), with only three 

parameters including intercept (0), coefficient of intervention (1) and shape (1/𝜎). 

S(t) = exp {−(te−0−1x1)
1
σ}  Eq. (7) 

2. It is the only model that belongs to both the accelerated failure time (AFT) and 

proportional hazard model categories. The hazard ratio (HR) in proportional hazard 

model has been widely used in clinical research and can be interpreted intuitively as the 

immediate relative risk of one group as compared to the other group over time. When we 

transform the model coefficient properly, the relative hazard ratio between two strategies 

can be obtained as HR=𝑒(− β1/ σ) [67]. We use the HR to link the transition probability 

for the same health states between the two comparison groups. In this way, the 

proportional hazard assumption can be tested in sensitivity analysis to see the impact of 

HR on the calculated ICER. The transition probability in a 3-month cycle of each health 

state for SoC strategy was estimated as 

𝑝𝑆𝑜𝐶 =
𝑆(𝑡) − 𝑆(𝑡 + 1)

𝑆(𝑡)
 Eq. (8) 

and the transition probabilities of the same health states for SABR strategy were 

represented by transition probability of SoC strategy and HR: 



 

 

33 

𝑝𝑆𝐴𝐵𝑅 = 1 − 𝑒𝑥𝑝 [𝐻𝑅 ∗ 𝑙𝑛(1 − 𝑝𝑆𝑜𝐶)] Eq. (9) 

The transition probabilities were derived from the 5-year follow-up data in SABR-

COMET trial via Weibull survival analysis. A lifetime horizon was then extrapolated 

based on the 5-year trend of the model, by increasing the number of Markov cycles until 

the whole cohort was absorbed by any of the 3 death-related health states. In our model, 

twenty years (80 cycles) was used to represent lifetime horizon as there was less than 

0.1% cohort alive, by that time. 

3.5 Model validation 

We used R (version 3.5.1) to overlay the model predictions on the Kaplan-Meier curves 

for OS and PFS generated using the individual-level patient data from the SABR-

COMET trial and digitized from the published literatures for internal and external 

validation, respectively. 

3.5.1 Internal validation  

The purpose of internal validation was to confirm if the survival and progression pattern 

of the real cohort in the SABR-COMET trial were well predicted by the Markov model 

simulated cohort. Both the overall survival and the progression-free survival curves 

obtained by the model were visually and numerically compared with the Kaplan-Meier 

curves generated using the individual-level data from the trial.  

3.5.2 External validation 

The purpose of the external validation was to assess if the model simulated survival and 

progression patterns consistent with external data sources of similar patients with 

oligometastatic cancer. We searched literature that reported the long-term survival 

outcomes of SABR-treated oligometastatic lung, prostate, colorectal and breast cancers, 

as these comprised the majority of primary tumour types within SABR-COMET. We 

identified four eligible studies [18, 68-70]. Both overall survival and progression-free 

survival were validated by visually comparing the published survival curves with the 

model output. External validation was only performed for the SABR group, as outcomes 
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on SoC management of oligometastatic cancer patients are not well described in the 

literature. 

As individual-level data were not available from these four studies, we used the 

reconstructing approach developed by Guyot et al. to map the individual-level survival 

data from digitized Kaplan-Meier curves for SABR-arm external validation [71]. The 

methods provided an accurate estimation of Kaplan-Meier data, especially the 

unavailable censoring information, based on the “number of events” and “probability of 

events” at every follow-up visit from the published Kaplan-Meier curves, by assuming a 

constant censoring rate during each interval (censoring is independent of the follow-up or 

non-informative censoring). The Engauge Digitizer software (digitizer.sourceforge.net) 

was used to digitize the Kaplan-Meier curves from the four published studies to extract 

the number of events and numbers at risk across the follow-up intervals. 

3.6 Uncertainties and sensitivity analysis 

Utilities and costs were obtained from various sources, and the majority of “probabilities/ 

proportions” and “other model parameters of interest” were derived from the SABR-

COMET trial. Various sensitivity analyses were performed to evaluate the impact of 

parameter uncertainties as well as robustness of the predicted results. Both deterministic 

sensitivity analyses (DSA) and the probabilistic sensitivity analyses (PSA) were 

performed according to the methods recommended by the International Society for 

Pharmacoeconomics and Outcomes Research (ISPOR) Board [72].  

In DSA, key parameters within the model were varied across plausible ranges, to 

determine their impact on model outputs. In 1-way sensitivity analyses, a single 

parameter is evaluated at a time. The aim in these exercises is to determine thresholds in 

which a parameter may influence the ICER value, beyond the willingness to pay 

threshold. We varied parameters, which were estimated from the individual-level data 

from the trial, such as Weibull parameters and proportions, within the 95% confidence 

intervals (CI) of the estimates. Costs were varied 30% above and below their baseline 

values. Utilities were varied by 0.1 below and above the baseline values to account for 

the potential variation in the mapping procedure.   
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In 2-way DSA, the interaction between the number of metastatic sites (determined the 

cost of SABR strategy) and the HR of PFS (indicated the comparative clinical efficacy of 

SABR versus SoC strategies) were evaluated. We intended to explore the minimal 

comparative clinical efficacy of SABR strategy required to maintain the cost-

effectiveness of SABR when the cost of SABR strategy becomes higher. Although the 

SABR-COMET trial evaluated up to 5 metastases, we extended the upper limit of this 

range to 10 metastases. More generous ranges for selected parameters were used to 

facilitate interpretations of various clinical scenarios, for instance, the result of the 2-way 

SA was intended to generate hypothesis for the now accruing phase III SABR-COMET10 

trial, which compares SABR vs. SoC in patients with 4-10 metastatic lesions 

(NCT03721341).  

In PSA, all parameters within the model were varied simultaneously for multiple 

iterations to generate different ICER values. The baseline values, ranges, and probability 

distributions were assigned to these parameters.  

Several probability distributions were applied in our model. Proportions, utilities and 

disutilities were properly defined with a beta distribution, as these types of parameters 

and beta distribution shared the same domain of 0 to 1. The annul discounting rate were 

defined with a uniform distribution, so that each value within the range of 0 to 0.03 can 

be sampled with an equal likelihood. Gamma distribution is widely used to describe the 

distribution of health care cost due to its flexibility to account for a positively skewed 

distribution from 0 to positive infinity. Therefore, in our model, each type of unit cost 

was defined by gamma distribution. We also used gamma distribution to define the 

distribution of different hazard ratios and relative risk of receiving chemotherapy use 

between two strategies. Normal distribution was used for each estimated Weibull 

parameter. 

We assumed that the distributions of all of the model parameters are independent. Monte-

Carlo simulation was used to randomly sample from the ranges of all selected parameters 

based on their distributions repetitively over a total of 5000 iterations. The ICER value 

was generated for each iteration. The distribution and range of the 5000 ICERs indicated 
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the robustness of our finding by quantifying the likelihood of the draw a conclusion that 

may be susceptible to the uncertainties. Therefore, PSA aimed to determine the 

percentage of iterations in which the SABR strategy would be considered cost-effective 

for WTP thresholds of $50,000/QALY gained and $100,000/QALY gained. 
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Chapter 4  

4 Results  

4.1 Health states utility and disutility  

4.1.1 Mapping algorithms for predicting health utilities  

A total of 7 mapping studies met the inclusion criteria were identified from the HERC 

database and relevant reference [34-38, 73, 74]. The 7 studies provided regression models 

converting the FACT-G scores to the health sates utilities. Of these, we excluded 3 

studies, the first as it elicited utility values directly from patients rather than providing a 

generic preference-based utility [74] and the other 2 studies were excluded as the 

mapping involved only patients of Asian descent, which differ greatly from the race 

demographics of patients in the SABR-COMET trial [36, 73].  

For the remaining 4 studies, 2 were performed by the same research group and provided 

the same mapping algorithm to convert FACT-G to EQ-5D based utilities. The patient 

characteristics, sample size and average FACT-G score of the rest of the 3 eligible studies 

were summarized and compared with the SABR-COMET trial in table 5.  

Ultimately, the mapping study perform by Teckle et al. was the most relevant to patients 

from the SABR-COMET trial, with respect to baseline characteristics including country 

of origin, ECOG performance status, cancer type, sample source, and the FACT-G total 

scores. In addition, the mapping algorithm was internally validated in datasets with large 

samples sizes. The algorithm in this study employed the generalized linear model (GLM 

model 3), which utilizes FACT-G domain scores, primary cancer type and cancer stage as 

predictors of EQ-5D-based health utilities. The regression model is written as 

𝑙𝑜𝑔(𝑈𝑡𝑖𝑙𝑖𝑡𝑦) = 0.013 ∗ 𝑃𝑊𝐵 + 0.007 ∗ 𝐹𝑊𝐵 + 0.008 ∗ 𝐸𝑊𝐵 + 0.019 ∗ 𝐶𝑜𝑙𝑜𝑟𝑒𝑐𝑡𝑎𝑙

− 0.023 ∗ 𝐿𝑢𝑛𝑔 − 0.021 ∗ 𝑠𝑡𝑎𝑔𝑒2 + 0.025 ∗ 𝑠𝑡𝑎𝑔𝑒3 +  0.034 ∗ 𝑠𝑡𝑎𝑔𝑒4

− 0.867 

PWB: physical well-being, FWB: functional well-being, EWB: emotional well-being, 

Colorectal: colorectal cancer patients, Lung: lung cancer patients, Stage: stage of disease; 
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Reference group: breast cancer, cancer stage 1.   

This study developed mapping algorithms to obtain utilities based on EQ-5D and SF-6D 

based utilities. Of these we used the former, as EQ-5D is more widely applied.  

Table 5. Comparison between the included mapping studies and the SABR-COMET 

trial 

 Teckle 
2013 [37] 

Longworth 2014& 
Young 2015 [34, 

38] 

Meregaglia 
2017 [35] 

SABR-COMET trial 
2018 [22] 

Sample size 
Total 

Development 
367 
184 

530 
530 

96 
79 

99 
NA 

Demographic and clinical characteristics 

Country(s) Canada US 19 countries 

Canada (80%), 
Netherlands (5%), 

Scotland (13%), 
Australia (2%) 

ECOG PS score¶ 

PS=0: 35%, 
PS=1: 50%, 
PS=2: 11%, 
PS=3: 3% 

PS=0: 23%, 
PS=1: 48.3%, 
PS=2: 24.7%, 
PS=3: 3.96% 

PS=0-1: 81.2%, 
PS=2: 18.8% 

0-1 

Stage of tumour 

Stage 1: 11%, 
Stage 2: 15%, 
Stage 3: 24%, 
Stage 4: 50% 

Stage III or IV Stage III or IV Stage IV 

Type of cancer 
Breast:38%, 

Colorectal:31%, 
Lung:31% 

11 types of 
cancers 

Lung 

Breast: 18.2%, 
Colorectal: 18.2%, 

Lung: 18.2%, 
Prostate 16.2%, 

Other: 29.3% 

Age, mean (SD), 
years 

58.7 (11.5) 59.01 (11.92) 61.1 (8.7) 66.9 (11.1) 

Gender 33% male 51.7% male 68.7% male 60% male 

Sample source 

consented 
patients from 

Vancouver 
cancer clinic 

1 US respondent 
data set 

2 RCTs A phase II RCT 

Descriptive statistics for FACT-G Total Score 
Mean (SD) 

Median (Range) 
78.87 (15.47) 
81(36, 107) 

77.92 (15.16) 
79 (33, 108) 

64.9 (14.2) 
(18, 95) § 

81 (17.3) 
83 (24,108) ‡ 

¶ good performance status (Eastern Cooperative Oncology Group score. 

‡ The FACT-G score is estimated among each follow-up of each individual.  

§ Only mean, SD, range, rather than median, of the FACT-G total score were reported in this study. 
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4.1.2 Estimating the average health utilities  

The pre-progression and post-progression utilities were estimated using the method 

mentioned in section 3.2.3. According to the result, we cannot reject the null hypothesis 

of 
1
(P=0.999) and 

4
(P=0.44) equal to 0. Therefore, the utilities did not differ 

significantly between the 2 interventions. We then regress the utility on time and adjusted 

for progression status,  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 
0

+ 
1

𝑡𝑖𝑚𝑒 + 𝛽2𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠.  

As follow-up time only had a very small effect on the utility (
1

= - 0.0003, p =0.6). The 

model was simplified to:  

𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = −0.029 𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 + 0.772 

to represent the overall mean health utility of the general patients, regardless of the 

intervention group for pre-progression and post-progression states. 

The mean pre-progression and post-progression utilities calculated from the mapping 

algorithm at each follow-up visit are summarized in Table 6.  

Table 6. Summary of health utilities 

 Before progression After progression Utility 

Mean (p-value) 0.772 (p=0.0001) 0.743 -0.029 (p=0.0001) 

 ∆utility: the mean utility difference due to disease progression. 

                 Analysis performed with linear mixed model 

4.1.3 Adverse events, disutility and disutility-related QALY 
decrease 

The treatment related adverse events (grade≥2 toxicities) in the SABR-COMET trial and 

the estimated disutilities related QALY decrements are summarized in Table 7. The 

disutilities as a result of severe toxicities (grade≥3) related disutilities were identified 

from two previous studies [75, 76]. Both studies elicited the disutility using the standard 

gamble method from the general public, reflecting the societal value placed on the burden 
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of severe symptoms (grade≥ 3 toxicities such as fatigue, pain and dyspnea) and disease 

progression states (progressive or stable) of non-small cell lung cancer.  

Grade 2 or higher toxicities were considered clinically meaningful and the risk was 

significantly higher risk in the SABR group, and therefore was accounted for in the 

model. As a conservative assumption, all of these were assigned the utility decrement that 

was calculated for more severe (grade 3 or higher) toxicities within the source studies. 

This would bias the incremental utility towards null, given the higher incidence of less 

severe toxicities in the SABR group. We observed that, on average, most AEs lasted for 

one follow-up interval within the trial, therefore, we assumed that any disutility would 

last for 1 full cycle (i.e. 3 months) within the model. Among the three types of most 

frequent AEs, fatigue mainly started immediate after randomization, pain mostly 

occurred between 3th and 6th month, dyspnea was more frequently observed at the 9th 

month. The different onsets of the AEs were added in at the appropriate stage of the 

Markov model.     

Table 7. Treatment-related toxicities and QALY decrease (disutility) 

 SABR+ SoC (n=66) SoC (n=33) Disutility* 

Pain 8 (12%) 0 (0%) -0.069 [76] 
Fatigue 4(6%) 3(9%) -0.073 [75] 

Dyspnea 2 (3%) 0 (0%) -0.05 [76] 
QALY -0.0036¶ -0.0017§  

*Disutility associated with grade 3 or higher toxicities identified from published studies. 

§ The disutility associated QALY decrease in SoC group. Fatigue was assumed starting at cycle 0 and last for 1 cycle 

(3 months), estimated as proportion of fatigue*disutility of fatigue*cycle length, cycle length =1/4 year. 

¶ The disutility associated QALY decrease in SABR+ SoC group. Assumptions: Fatigue starts at cycle 0 and last for 1 

cycle (3 months); pain starts at cycle 1 (3rd months) and last for 1 cycle (3 months); dyspnea starts at cycle 3 (9th 

months) and last for 1 cycle (3months). The QALY decrement were estimated based on the risk of each type of AE 

related to both strategies, the disutility related to each type of AE identified from published literature, and the starting 

time and lasting time of these AEs. 

4.2 Cost 

Costs were estimated from the Canadian health system perspective. The average direct 

costs of SABR+ SoC and SoC alone were estimated for oligometastatic cancer patients in 

the SABR-COMET trial. Our model assumed no death-related cost. Adding SABR to the 

SoC resulted in higher initial RT costs, but also resulted in a lower use of subsequent 

palliative RT (21 [64%] out of 33 patients in the SoC vs 13 [20%] out of 66 patients in 
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SABR+ SoC) and chemotherapy (16 [49%] of 33 patients in the SoC vs 20 [30%] of 66 

patients in SABR + SoC group).  

4.2.1 The cost of SABR versus palliative RT 

The average costs of SABR for treating each metastasis was $8,378. In contrast, the 

average cost of palliative RT was $5, 736 in 2018 CAD (table 8).  

Table 8. Summary of RT cost 

 Unit cost*  
(range) [45] 

Units*  Mean (range) 
 Palliative RT [45] SABR [45] 

Consultation    

Radiation oncologist 
197.24 (per course) 

[77]  
1 1 

Nurse 126.91(per course)  1 1 
CT simulation    
Therapist  94.34 (per course)  0.5x2 0.5x2 
CT simulator 288.64(per course) 1 1 
Immobilizer 15.72 (per course) 1 1 
IT: patient management 79.74 (per course) 1 1 
Dosimetry    
Therapist 94.34 (per hour) 0.5 2.5 (1.5, 3.5) 
Planning system 203.28 (per hour) 0.5 2.5 (1.5, 3.5) 
Radiation oncologist     

     Palliative RT 
725.29 (per course) 

[77] 
1  

     SABR 
855.29 (per course) 

[77] 
 1 

IT: patient management 79.74 (per course) 1 1 

Physic quality assurance    

Physicist 131.40 (per hour) 0.15 2 (1, 3) 
Physics associates 96.59 (per hour) - 0.75x2 
Specialized QA equipment 64.02 (per course) - 1 
Planning system 203.28 (per hour) 0.15 2 (1, 3) 
IT: patient management 79.74 (per course) 1 1 
Preparation and delivery and review    
Therapist: Pre-treatment 94.34 (per hour) 3.08 3.08 
Therapist: On the unit 94.34 (per hour) 2.86x0.25x5 2.86x0.5x5 

Linear accelerator 
479.57 (per hour, 

per fraction) 
0.25x5 0.5x5 

Radiation oncologist  
81.89 (per course) 

[77] 
1 2 

Nurse 126.91 (per course) 1 1 
IS: patient management 79.74 (per course) 1 1 
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(continuous from previous page) 
 Unit cost*  

(range) [45] 
Units*  Mean (range) 

 Palliative RT [45] SABR [45] 

    
IS: record or verify [45] 55.03 (per hour) 0.25x5 0.5x5 
Treatment time per fraction  0.25 0.5 
Number of fractions  5 (1, 15) 5 (1, 8) 
Number of review visits   1 2 
Peer review quality assurance 
 

39.19 (per course) 
(27.53, 80.55) [78] 

1 1 

Supporting infrastructure 2,225.99 (per course) 1 1 
TOTAL COST (2018 CAD)  5736.15 8377.57 

Abbreviation: IS, information system; CT, computation topography; SABR, stereotactic ablative body radiotherapy; 

RT, radiotherapy. 

Activity process were adapted from Yong et al. [45]. *Unit costs and units were adapted from Yong et al. [45], 

otherwise clarified varied +/-30% for sensitivity analysis. Physician billings are based on 2018 fee schedule [77]. The 

physician base funding is allocated to each visit per method described by Yong et al. [45].   

Cost is adjusted to 2018 Canadian dollars.  

4.2.2 The chemotherapy costs among two strategies 

We calculated the mean chemotherapy costs by weighing the annual average cost of 

chemotherapy per recipient in the SABR-COMET trial (Table 9) by proportion of 

recipients among each group (48.48% in SABR + SoC and 30.30% in SoC group). The 

mean annual chemotherapy costs for stage IV cancer patients were used to estimate the 

unit cost of chemotherapy for treating oligometastatic cancer. The annual mean cost of 

chemotherapy was $6,307 in the SABR+ SoC group vs $10,091 in the SoC group. 

Table 9. Annual average chemotherapy cost of the SABR-COMET trial 

Cancer type 

Mean cost of 
chemotherapy in 

2005 among 
cancer patients 

Mean cost of 
chemotherapy in 

2012 among 
cancer patients 

Mean cost per 
chemotherapy 

recipient 

Proportion of 
each cancer 

type in SABR-
COMET trial 

Annual mean cost of 
chemotherapy per 
recipient in SABR-

COMET trial 
 (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) 

Breast 4,981† 11,527§ 11,527/0.73=15,750¶ 0.182‡ 

20,813 
Colorectal 5,112† 11,831 § 11,831/0.43=27,826¶ 0.182‡ 

Lung 3,425† 7,927§ 7,927/0.30=26,004¶ 0.182‡ 
Prostate 1,448† 3,350§ 3,350/0.54=6,186¶ 0.162‡ 

Other 4,352† 10,071§ 10,071/0.41=24,450¶ 0.293‡ 
Chemotherapy cost are in 2018 Canadian dollars. 

†Average cost of terminal cancer care (12 months before death) for all cancer patients by de Oliveira et al. [43], 

assumed to reflect the cost of 2005.  

§Adjusted for 7-year cost increase with an annual percentage growth rate of 16.62% [41]. The calculation is 

demonstrated in Table 10. 

¶Average cost of chemotherapy among users: average chemotherapy cost among overall cancer patients weighted by 

proportion of chemotherapy users among all cancer patients in last 12-4 months before death [64]. 

‡Proportion of each cancer type in SABR-COMET trial [22]. 
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As the expenditure of cancer treatment increased over time, and the source cost were 

calculated in 2005 dollars, we adjusted the source cost for a 7-year cost growth to 

estimate the real costs in SABR-COMET which was initiated in 2012.  This was 

performed according to a previous a population-based costing study, in which the Ontario 

patient-level costs of cancer care (chemotherapy, RT etc.) over years (including 2005 and 

2012) were reported [41]. 

4.2.3 The phase dependent base cost 

The annual average base cost of the terminal care (Table 10) versus continuing care 

(Table 11) were $94,769 and $14,510, respectively. The base costs were consistent 

between two strategies and consisted of costs from in-patient hospitalization, same-day 

surgery, physician services, diagnostics tests, out-patient prescription drugs and 

community care. In the Markov model, all patients in the trial have contributed to the 

terminal care base cost while only patients who survived for more than 12 months 

contributed to the continuing care base cost. 

Table 10. Annual average terminal care base cost of the SABR-COMET trial 

 Total RT cost 
Chemotherapy 

cost 

Base cost in 
SABR-

COMET trial 

Proportion of each 
cancer type in 

SABR-COMET trial 

Annual 
average base 
cost terminal 

care 
 (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) 

Breast 90,503†§ 2,372†§ 11,527†§ 76,604¶ 0.182‡ 

94,760 
 

Colorectal 108,924†§ 1,071†§ 11,831†§ 96,022¶ 0.182‡ 
Lung 116,868†§ 4,122†§ 7,927†§ 104,819¶ 0.182‡ 
Prostate 88,238†§ 1,404†§ 3,350†§ 83,485¶ 0.162‡ 
Other 117,863†§ 2,570†§ 10,071†§ 105,223¶ 0.293‡ 
Costs are in 2018 CAD.  

Terminal care: the cancer management within last 12 month before death. 

¶Base cost = total direct cost – (RT cost + chemotherapy cost). 

† account for inflation  

§ adjusted for a 7-year cost increase with an annual percentage growth rate of 8.56%, 12.73% and 16.62% for the total 

cost, RT cost and chemotherapy cost, respectively [41]. 

‡ Proportion of each cancer type in SABR-COMET trial [22]. 

  



 

 

44 

Table 11. Annual average continuing care base cost of the SABR-COMET trial 

 Total RT cost 
Chemotherapy 

cost 

Base cost in 
SABR-

COMET trial 

Proportion of each 
cancer type in SABR-

COMET trial 

Annual 
average base 

cost 
continuing 

care 
 (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) (2018 CAD) 

Breast 18,040†§ 2,085*†§ 2,115*†§ 13,840¶ 0.182‡ 

14,510 
 

Colorectal 23,322†§ 2,696*†§ 2,734*†§ 17,892¶  0.182‡ 
Lung 20,133†§ 2,327*†§ 2,360*†§ 15,446¶ 0.182‡ 
Prostate 16,972†§ 1,962*†§ 1,990*†§ 13,021 0.162‡ 
Other 17,030†§ 1,968*†§ 1,997*†§ 13,066¶ 0.293‡ 
Costs are in 2018 CAD.  

Continuing care: the cancer management between the initial phase (the 6 months after diagnosis) to terminal phase (last 

12 month before death). 

¶Base cost = total direct cost – (RT cost + chemotherapy cost). 

† account for inflation  

§ adjusted for a 7-year cost increase with an annual percentage growth rate of 8.56%, 12.73% and 16.62% for the total 

cost, RT cost and chemotherapy cost, respectively [41]. 

‡ Proportion of each cancer type in SABR-COMET trial [22]. 

*RT cost and chemotherapy cost account for 7% and 9% of total direct cost for continuing care [44]. 

4.2.4 The cost for adverse effect management 

The costs of drugs for managing the treatment related toxicities are summarized in Table 

12. The dispensing fee charged by the pharmacists for filling prescriptions is $8.83 (2014 

CAD), which equals to $9.34 in 2018 CAD.  

Table 12. Cost of adverse effect management 

 Duration Management Unit cost   Total cost 

G2 pain 3 months Acetaminophen 650mg QID x 90 days Apo-Acetaminophen Caplets 
325mg $0.0285  
Dispensing fee $9.34 

29.86 

G3 pain 3 months Additional  
Hydromorphone 2mg Q4H x 90 days 

Dilaudid 2mg Tab $0.1417 
Dispensing fee $ 9.34 

85.86 

G2 
dyspnea 

3 months Salbutamol puffer 2 puff QID x90 days Ventolin HFA 100mcg/Metered 
Dose Inh-200 dose $6.00 
Dispensing fee $ 9.34 

30.94 

G3 
dyspnea 

3 months Additional  
Hydromorphone 0.5mg Q4H x 90 days 
Prednisone 50 mg OD x2wk, 40mg OD 
x2wk,30mg OD x2wk, 20mg OD x2wk, 
10mg OD x2wk, 5mg OD x2wk 

Dilaudid 1mg Tab $0.0959 
Apo-Prednisone 50mg Tab 
$0.1735 
Apo-Prednisone 5mg Tab $0.022 
Dispensing fee $ 9.34 x 2 

53.47 

Fatigue 3 months no pharmacological intervention - 0 
Cost are in 2018 Canadian dollars.  

Abbreviation: G2, Grade 2 toxicities; G3, Grade 3 toxicities.  
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4.3 Base case cost-effectiveness analysis  

4.3.1 Internal and external validation of the Markov model 

We numerically compared the total number of deaths from any cause as well as the 

number of survivals without progression at the 27th month (Table 13) and 24th month 

(Table 14). The two time points were close to the median time of follow-up of 25 months 

in the SABR-COMET trial.  

According to the model output, there were 22 versus 17 deaths in the SABR versus SoC 

strategy. This result matched well with the findings of the trial, in which 21 and 12 deaths 

were observed in the SABR arm and Soc arm, respectively (Table 13). The similar 

progression-free survival was also observed in the comparison of model output and trial 

report. There were 28 and 5 patients remained progression-free survival in the trial after 

27 months of follow-up in the SABR arm and SoC, respectively, while our model 

reported 20 with SABR strategy and 3 with SoC strategy within progression-free survival 

states accordingly. 

Table 13. Comparing number of events between trial and model at the 27th month  

 Death from any cause PFS 

Trial Model Trial Model 

SABR (n=66) 21 22 28 20 

SoC (n=33) 12 17 5 3 

Abbreviation: SABR: stereotactic ablative radiation therapy, SoC: standard of care. PFS: progression-free survival. 

At the 24th month, there were 18 and 11 deaths in SABR arm and SoC arm, respectively, 

which corresponded to the model simulated results showing that 19 and 15 deaths in 

SABR and SoC strategy, respectively (Table 14). The good model fit was also 

demonstrated by comparing the trial reported PFS with modeled PFS. There were 28 and 

6 patients remained progression-free survival in the trial after 27 months of follow-up in 
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the SABR arm and SoC, respectively, while our model reported 22 with SABR strategy 

and 3 with SoC strategy within progression-free survival states accordingly. 

Table 14. Comparing number of events between trial and model at the 24th month 

 Death from any cause PFS 

Trial Model Trial Model 

SABR (n=66) 18 19 28 22 

SoC (n=33) 11 15 6 3 

Abbreviation: SABR: stereotactic ablative radiation therapy, SoC: standard of care. PFS: progression-free survival. 

Internal validation of the model outputs was performed by overlaying the model 

simulated survival curves with Kaplan-Meier curves from SABR-COMET. This is 

depicted in Figure 5. The modeled overall survival and progression-free survival patterns 

fit well with the trial-based survival patterns based on visual comparison, suggesting 

internal validity of our model. 
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Figure 5. Interval validation of the overall survival (OS) and progression-free 

survival (PFS) 
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The results of external validation are presented in Figure 6. Studies used for external 

comparison are summarized in Table 15. A total of 4 studies exploring the effectiveness 

of radical RT on the survival of patients with oligometastatic breast, colorectal, lung and 

prostate cancer were identified [18, 68-70]. From these studies, patients with breast and 

prostate oligometastatic cancers had the best prognosis. Meanwhile, oligometastatic lung 

cancer patients had higher rates of early cancer progression and inferior survival. As our 

hypothetical cohort consisted of a mixed group of primary tumors, predicted progression 

and survival was within the range of these outcomes. 
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Table 15. Summary features of the four studies for external validation 

 Trovo 2018 [70] Filippi 2015 [68] Lara 2018 [18] 
Jereczek-Fossa 

2012 [69] 

Sample size 54 56 66 34 

Population     

Age, years 
median 
(range) 

55 (36, 83) 70 (44, 86) 70.5 (50, 90) 68.3 (57, 82) 

Primary tumor breast colorectal lung prostate 

Performance 
status (ECOG) 

0 or 1 0 or 1 0 or 1 0 or 1 

No. lesions (n, 
n%) 

1 (27, 50%) 
2 (19, 35%) 
3 (6, 11%) 
4 (1, 2%) 
5 (1, 2%) 
mean 1.7 

1 (26, 65%) 
2 (10, 25%) 
3-4 (4, 10%) 

1(52, 79%)  
2 (10, 15%)  

3 (4, 6%) 
4 (0, 0%)  

34 patients and 38 
lesions 

SABR dose 
  

30-36 Gy/3 fx, 85% 
45 Gy/3 fx, 15% 

 
26 Gy/1 fx, 68% 
45 Gy/3 fx, 20% 

 
48–52 Gy /4 fx, 30%  
30–60 Gy/3 fx, 30%   
30–40 Gy/5 fx, 14%   

30–35 Gy/ 4-5 fx, 45% 

 
30 Gy/5 fx, 56% 
33 Gy/3 fx, 35% 
36 gy/3 fx, 9% 

Study design 
Phase II multicentre 

prospective study  
Prospective 

cohort 
Retrospective cohort Prospective cohort 

Duration 2012 Jan-2015 Dec 2004-2014 2019-2015 2007 May-2009 Dec  

Abbreviation: SABR: stereotactic ablative radiation therapy; fx: fractions; ECOG: Eastern Cooperative Oncology 

Group. 
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Figure 6. External validation of the overall survival and progression-free survival 

Studies reported overall survival and progression free survival curves for external validation were identified from 

published literature for the different types of cancer, including breast[70], colorectal[68] and lung [18]. For prostate 

cancer studies, however, overall survival were not commonly reported, and therefore only progression-free survival 

was externally validated [69]. 
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4.3.2 Summary of parameters and uncertainties 

The model parameters and range of uncertainties are summarized in Table 16. In this 

study, model parameters consist of costs, utilities and disutilities, transition probabilities, 

annual discount rate and other parameters that describes the proportion of population or 

events. Listed below are all parameters, except for the transition probabilities, and their 

values under base case scenario, potential ranges, sources and assumed distributions. 

Since our transition probabilities are time dependent, we plotted the cumulative 

probability of every health states over Markov cycles during a lifetime horizon (Figure 

6).  

Table 16. Model parameters and uncertainties 

Variable Value Min Max  Source  Distribution 

Probability/proportion      

   Grade 2 dyspnea in SABR arm 0.030 0.008 0.104 SABR-COMET Beta 

   Grade 3 dyspnea in SABR arm 0.030 0.008 0.104 SABR-COMET Beta 

   Grade 2 pain in SABR arm 0.091 0.042 0.185 SABR-COMET Beta 

   Grade 3 pain in SABR arm 0.061 0.024 0.146 SABR-COMET Beta 

   Grade 2-3 fatigue in SABR arm 0.076 0.033 0.165 SABR-COMET Beta 

   Grade 2-3 fatigue in SOC arm 0.091 0.031 0.236 SABR-COMET Beta 

   Grade 5 death in SABR arm 0.455 0.016 0.125 SABR-COMET Beta 

   Palliative RT receipt in SOC arm 0.636 0.466 0.778 SABR-COMET Beta 

   Palliative RT receipt in SABR arm¶ 0.333 0.206 0.490 SABR-COMET Beta 

   Post-progression SABR receipt in SABR arm¶ 0.205 0.108 0.355 SABR-COMET Beta 

   Pre-progression palliative RT receipt in SOC arm 0.2 0 0.5 Assumed Beta 

   Chemotherapy use in SOC arm 0.485 0.308 0.665 SABR-COMET Beta 

Utility/disutility      

   Pre-progression 0.772 0.672* 0.872* SABR-COMET Beta 

   Progression -0.029 -0.180 [75]* 0* SABR-COMET Beta 

   Dyspnea -0.050 -0.074 -0.026 Doyle [76] Beta 

   Pain -0.069 -0.093 -0.045 Doyle [76] Beta 

   Fatigue -0.073 -0.110 -0.037 Nafees [75] Beta 

Cost      

   SABR (per course) 8,378‡ 5,238‡ 12,384‡ 
Yong [45] 
Mutsaers [78] 

Multi-
parameters 

   Palliative RT (per course) 5,736‡§ 4,421‡§ 9,320‡§ 
Yong [45] 
Mutsaers [78] 

Multi-
parameters 

   Chemotherapy (per year) 20,813‡§ 13,908‡§ 28,363‡§ 
de Oliveira [41, 43] 
Pataky [64] 

Multi-
parameters 

   Base cost continuous care (per year) 14,510‡§ 7,811‡§ 22,902‡§ 
de Oliveira [41, 43, 
44] 

Multi-
parameters 
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(continuous from previous page) 
Variable Value Min Max  Source  Distribution 

   Base cost terminal care (last 12 months) 94,760‡§ 65,000‡§ 125,643‡§ de Oliveira [41, 43] 
Multi-
parameters 

   Managing grade 2 dyspnea 29.86‡ 20.90 38.82 MOHLTC [79, 80] Gamma 

   Additional cost for managing grade 3 dyspnea 86.86‡ 60.10 111.62 MOHLTC [79, 80] Gamma 

   Managing grade 2 pain 30.94‡ 21.66 40.22 MOHLTC [79, 80] Gamma 

   Additional cost for managing grade 3 pain 53.47‡ 37.43 69.52 MOHLTC [79, 80] Gamma 

Other parameters of interest      

   No. pre-progression metastases/pt  2 1 (1.80)* 5 (2.20)* SABR-COMET Gamma 

   No. SABR-treated post-progression metastases/pt 1.75 1 (0.94)* 5 (2.56)* SABR-COMET Gamma 

   RR of chemotherapy use (SABR vs. SOC arm) 0.625 0.376 1.038 SABR-COMET Gamma 

   HR: PFS (reference: SoC) 0.47 0.294† 0.758† SABR-COMET Gamma 

   No. palliative RT-treated metastases /pt 1.9 1 (1.53)* 4 (2.27)*   SABR-COMET Gamma 

   HR: die of cancer progression (reference: SoC) 0.474 0.294† 0.758† SABR-COMET Gamma 

Annual discount rate 0.15 0 0.03  Uniform 

Abbreviations: SABR, stereotactic ablative body radiotherapy; SOC, standard of care; /pt, per patient; RR, relative risk; 

RT, radiotherapy; HR, hazard ratio; PFS, progression-free survival. 

Range are selected based on 95% confidence interval estimate unless otherwise specified. Cost is adjusted to 2018 

Canadian dollars. Source costs were varied by +/- 30%.  

* Wider range selected by authors for deterministic sensitivity analysis to facilitate interpretation of various clinical 

scenario, while 95% confidence interval (presented in parenthesis) were used for probabilistic sensitivity analysis. 

‡Calculated values, summary only. Sensitivity analysis performed at individual parameter levels.  

§Adjusted cancer types based on SABR-COMET trial. 

¶ Proportions were calculated among progressed cancer patients after initial treatment. 

Figure 7 shows the proportion of the cohort distributed across the five health states over 

time, which was determined by the time-dependent transition probabilities. The curves 

that show the cohort percentage in pre-progression state depict the PFS patterns simulated 

by the model. As patients treated with SABR strategy achieved longer median PFS as 

compared to patients in the SoC strategy, the post-progression survival pattern altered 

accordingly, suggesting that the cohort percentage in post-progression state were mainly 

driven by cancer progression. The death due to AE happened in the SABR group as soon 

as the treatment started. Patients received SoC died earlier due to cancer progression and 

non-cancer reasons as compared to patients treated by SABR strategy. There were 67% 

vs 65 % cancer deaths in the SABR vs SoC in our model. The higher proportion of death 

from cancer in the SABR group may have resulted from the observational bias of the 

trial. SABR-COMET trial was open-labeled, and patients in the SABR group might have 

been more intensively followed as compared with patients in the SoC group. Therefore, 

patients who actually died from cancer in the control group (SoC) might more likely to be 

misclassified as death from non-cancer reasons, as compared to the intervention group 



 

 

53 

(SABR). In other words, the death from cancer might more likely to be captured and 

recorded in the SABR group. As we were modelling the clinical trial and extrapolate the 

5-year survival patterns to a lifetime horizon (20 years), the consequence of the 

misclassification was amplified and resulted in a higher proportion of patient death from 

cancer in the SABR group. 
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Figure 7. Markov states probabilities 

4.3.3 Base case cost-effectiveness of SABR  

The cumulative expected health benefit from the Canadian healthcare system’s 

perspective over a lifetime horizon for SABR+ SoC was 2.78 QALY, at a cost of 

$169,693 (2018 CAD), while the cumulative expected health benefit of the SOC was 1.85 

QALY at a cost of $ 135,452 (2018 CAD). Accordingly, the incremental cost-

effectiveness ratio was $37,157/ QALY over a lifetime horizon. This base-case ICER was 

lower than the WTP threshold of $100,000/QALY. This result can be interpreted that 

SABR costs less than average required in health care system to exchange for 1 unit of 

QALY, and therefore the incremental cost can be justified by the health benefit gained. In 

sum, the combination of SABR with current standard of care was considered as cost-

effective from the Canadian health care system perspective under the base-case scenario 

in which all conditions, except for the lifetime horizon, approaches to the clinical trial.  

A cost-effectiveness analysis evaluating the incremental cost per unit additional life year 

(LY) saved was also performed. In base case scenario, SABR strategy saved 3.66 life 

years at a cost of $169,693 (2018 CAD), whereas SoC strategy required $135,452 (2018 

CAD) to save 2.47 life years. Therefore, the calculated ICER which refers to incremental 
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cost per life year saved equals to $28,554/LY within a lifetime horizon. (Appendix E: 

ICER($/LY) of SABR+SoC versus SoC alone over time) 

The ICER within the 5-year trial duration was $24,038/QALY (2018 CAD), which was 

lower than the $37,157/ QALY over a lifetime horizon, suggesting a potential bias 

towards the cost-effectiveness results if we had not extrapolated the model to a lifetime 

horizon. The ICER value over time is plotted in Figure 8.  

 

Figure 8. ICER of SABR+ SoC vs SoC alone over time 

Since the health states utilities are the same for the 2 strategies, and the dis-utilities 

caused by adverse events have a minor effect on the QALYs (SABR+ SoC vs SoC: 

0.0047 vs 0.0017). The incremental health benefit incurred was mainly due to the extend 

survival gained for patients receiving SABR. In addition, the rapid progression and death 

among patients receiving SoC alone resulted in significantly lower calculated QALYs as 

compared to the SABR-treated patients. 

4.4 Sensitivity analysis  

DSA and PSA were performed to characterize and quantify the potential effects of 

parameter uncertainties and assumptions on ICER estimation.  
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4.4.1 One-way deterministic sensitivity analysis 

The parameter values and uncertainties have been summarized in Table 15 previously. 

The tornado diagram integrated the model outputs from multiple one-way DSA. 

Parameters were presented nominally according to their impact on the ICER values. As 

shown in Figure 9, parameters were varied within their range, one at a time while holding 

other parameters constant, and each bar indicates one parameter’s uncertainty and its 

impact on the range of ICER values.  

1-way DSA, determined that the ICER was most sensitive to four factors:  

1. Average number of metastases requiring SABR treatment before progression (ICER: 

$28,066 to $64,429/QALY);  

2. Relative risk of chemotherapy utilization in patients receiving the SABR+ SoC as 

compared to patients receiving SoC alone (ICER: $27,173 to $53,738/QALY); 

3. Hazard ratio of PFS among patients in SABR+ SoC arm as compared to the SoC arm 

during the lifetime (ICER: $31,548 to $53,273/QALY);  

4. Hazard ratio of OS among patients in SABR+SOC arm as compared to the SoC arm 

after having progressed (ICER: $32,802 to $50,014/QALY).  

 

The increased number of metastases treated within SABR can result in higher 

expenditure on SABR strategies. The relatively growing needs of chemotherapy in SABR 

arm also increased the costs within the SABR arm. There were more accumulated costs 

over the lifetime of SABR-treated patients, resulting from improved survival, as 

compared to the patients received SoC alone. Therefore, parameter uncertainties 

including the number of metastases and chemotherapy utilization influenced the cost 

differences between 2 strategies and consequently affected the ICER value.  

On the other hand, the hazard ratio of PFS, which can be interpreted as the immediate 

risk (rate) of developing cancer progression at any time point among patients in SABR+ 
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SoC arm as compared to the SoC arm over lifetime, influenced the ICER via a complex 

effect on progression and survival patterns, as well as costs and utilities. The overall 

effect of HR of PFS is positively correlated to the ICER value. In other words, with a 

higher HR there was a decreasing survival benefit among SABR-treated patients. 

Consequently, SABR was less likely to be cost-effective, since the health benefit gained 

by SABR was less likely to be justified by the incurred cost. The hazard ratio of post-

progression survival is also positively related to the ICER value. As the HR increased, the 

survival benefit of patients receiving SABR+SoC strategy decreased, suggesting SABR 

was less likely to be cost-effective. 

In all DSA performed, all predicted ICERs, even in extreme scenarios, yielded a value 

below the a priori, WTP threshold of $100,000/QALY (Figure 9). 
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4.4.2 Two-way deterministic sensitivity analysis 

We performed specific two-way DSA based on clinical experience on the two factors that 

would have the largest impact on the model: 1) the increasing cost for SABR treatment as 

a result of an increasing number of metastatic sites and 2) the clinical efficacy associated 

with SABR treatment. Although SABR-COMET evaluated up to 5 metastases, we 

extended the testing range to 10 metastases for hypothesis generation. As progression-

free survival may be associated with the number of metastases, we varied the number of 

metastases before progression and the HR of PFS simultaneously, and within their 

uncertainty range to explore their impact on the ICER at WTP thresholds of 

$100,000/QALY. The results are illustrated in Figure 10.  

 

Figure 10. Two-way sensitivity analysis 

The border between the red and blue areas represents the sensitivity threshold in which 

the ICER is equivalent to the WTP. The blue area represents various pairs of values 

where SABR is considered cost-effective, whereas the red area illustrates joint 

distributions of 2 parameter that suggesting the SoC strategy be cost-effective. 
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The two-way sensitivity analysis of number of metastases and HR of PFS revealed that 

SABR is the preferred strategy at a threshold of three metastases across the 95% CI of the 

PFS HR reported in the SABR-COMET trial (0.29-0.76). In patients with four 

metastases, a PFS HR of at least 0.72 is required in order for SABR to be cost-effective. 

Beyond four metastases, a non-linear relationship between increasing number of lesions 

and PFS HR was observed, whereby a 0.05 decrease in HR is required for every 

additional metastasis. Finally, the PFS HR would need to be below 0.46 for 10 metastases 

in order for the SABR strategy to be cost-effective at a WTP threshold of 

$100,000/QALY.  

4.4.3 Probabilistic sensitivity analysis 

The PSA was performed to vary all model inputs simultaneously to evaluate the 

robustness of the parameter and distribution uncertainties on the results. A total of 5000 

Monte Carlo simulations were performed, sampling randomly from all distributions of 

the model inputs in each iteration. The ICER scatter plot in Figure 11 was generate based 

on 5000 iterations. In the majority (97%) of iterations, the ICER values was lower than 

the WTP threshold, distributed within the quadrant I. Therefore SABR+ SoC is 

associated with a health benefit at a higher cost as compared to the SoC alone, and SABR 

is cost-effective most of the time at a WTP threshold of $100,000/QALY. 
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Figure 11. Probabilistic scatter plot of ICER, SABR+ SoC vs. SoC 

A cost-effectiveness acceptability curve, which describes the likelihood of a strategy 

being cost-effective at different WTP thresholds is depicted in Figure 12. When the 

$50,000/QALY threshold is adopted, the SABR+ SoC strategy is considered as cost-

effective in 87% of the iterations, while at a threshold of $100,000/QALY, it is cost-

effective 97% of the time. 
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Figure 12. Cost-effectiveness acceptability curve 
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Chapter 5  

5 Discussion and conclusion 

5.1 Summary of findings 

This analysis of oligometastatic cancer patients was created from individual-patient data 

from the SABR-COMET trial, supplemented by data from the available medical 

literature. It was both internally and externally validated and suggested that SABR+SoC 

is cost-effective from the Canadian healthcare payer perspective, with a base-case ICER 

of $37,157/ QALY. This result can be interpreted that SABR costs less than average 

required in health care system to exchange for 1 unit of QALY, and therefore the 

incremental cost can be justified by the health benefit gained. In sum, the combination of 

SABR with current standard of care was considered as cost-effective from the Canadian 

health care system perspective under the base-case scenario in which all conditions, 

except for the lifetime horizon, approaches to the clinical trial. 

A wide-range of DSA were performed, and the ICER was most impacted by 4 factors: the 

number of SABR-treated metastases before progression (ICER $28,066-64,429/QALY); 

the relative risk of chemotherapy utilization in patients receiving the SABR+ SoC (ICER 

$27,173-53,738/QALY); the hazard ratio of PFS among patients in SABR+ SoC strategy 

as compared to the SoC strategy (ICER $31,548-53,273/QALY); and the hazard ratio of 

OS in post-progression state (SoC strategy as the reference group) (ICER $32,802-

50,014/QALY). Nonetheless, even in these extreme ranges, the ICER remained below a 

WTP of $100,000 QALY gained. Furthermore, PSA was performed, and the finding that 

SABR + SoC was cost-effective remained true for most iterations at the $100,000/QALY 

WTP threshold, suggesting robustness of the model. 

5.2 Internal validity and generalizability 

A modeling-based CEA was used in our study. The transition probabilities were derived 

from individual-level patient data from the RCT that provides high quality evidence. 

However, the utilities, disutilities and costs were not collected in the SABR-COMET trial 

and their values and potential ranges were derived from published literature.  
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One of the main strengths of modeling-based CEA in the decision analysis was that it 

allowed us to extrapolate the 5-year follow-up duration of the trial into a life time horizon 

which is recommend in CEA by a recent guideline [58]. Otherwise, the time horizon bias 

may be introduced when the future ICER no longer equal to the ICER over the 5-year 

duration [81]. Our analysis (Figure 8) demonstrated that using a 5-year horizon resulted 

in a lower ICER value and biased the result towards a direction, suggesting the SABR 

strategy would be more cost-effective within 5 years as compared to a lifetime horizon. 

Because the longer patients survive, the higher costs, associated with inpatient 

hospitalization, same-day surgery, physician services, home and community care, 

diagnostic tests, out-patient prescription drugs and chemotherapies, may incur.   

Another strength of modeling-based CEA in our study was that the costs data from 

populations-based studies represent a payer’s perspective, and therefore we avoided the 

bias introduced by protocol-driven costs which are trial related and can hardly occur in 

the routinely clinical practice [82].      

Nevertheless, there were several concerns related to the model-based method including 

parameter uncertainties, structural uncertainties and methodological uncertainties. Firstly, 

there were lacking perfect knowledge about the true value of model parameters, known as 

parameter uncertainty, as the utilities, disutilities and costs were derived from different 

publications. Parameter uncertainties were addressed by deterministic and probabilistic 

sensitivity analysis in our study. Furthermore, the model structural and methodological 

uncertainties were also exist [83].  

Secondly, modeling and structural uncertainties are related to the framework of the model 

such as the included health states, functional form of transition probabilities and other 

model inputs [83]. We considered this type of uncertainty is of less concern since we 

validated our model internally and externally. The simulated survival and progression 

pattern fitted well with those patterns from the SABR-COMET trial as well as other 

studies with similar populations (result 4.3.1). We fitted the model with a Weibull 

distribution since it has a simple functional form and was widely used, and it provides 

hazard ratio that can be compared with the hazard ratio from the clinical trial. Goodness-
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of-fit, which evaluated how similar the modeled survival curves were with the real 

survival curves from the trial, were examined in a qualitative way through visual 

comparison.    

Thirdly, methodological uncertainties in our study mainly related to the process of 

deriving unit costs and mapping utility. These methodological uncertainties were 

addressed via sensitivity analysis by define parameter ranges which consider to be 

enough to cover the potential variation of the parameters. According to the result of 

sensitivity analysis, the methodological uncertainties didn’t change our result 

qualitatively.   

Generalizability refers to the consistency whereby the cost-effectiveness of SABR 

strategy in other countries, provinces and /or healthcare systems can be inferred from our 

findings. The aim of this study was to inform the health care decision from Canadian 

health care system perspective. We used population-based cost of Ontario to indicate the 

cancer care cost of Canada. In addition, although the SABR-COMET trial was an 

international multi-center trial, the Canadian participants accounted for about 80% of the 

trial cohort, with around 65% of Canadian patients were recruited from one cancer center 

in Ontario [43].  

Cancer care expenditures by government payers may vary across Canada and the world 

due to the diversity of coverage policies, payment of physicians and unit cost on the 

treatment etc. Our estimation of unit cost of SABR via activity-based method ($8,378 in 

2018 CAD), was consistent with the SABR cost of Ontario from previous studies [46, 

47], but lower than the SABR cost in most of other jurisdictions (including the US), 

where costs ranged from $6,521 to $19,603 (2014 US dollars), according to a systematic 

review that summarized the different type of RT cost per treatment [84]. The palliative 

RT cost $5,736 (2018 CAD) per patient, which was similar to other Canadian estimates 

[46, 47], but lower than the reported 3D-CRT costs in US varied from $5,583 to $90,055 

(2014 US dollars), suggesting a highly diversified cost for palliative RT per treatment. 

However, even if the unit cost of SABR increased to $90,055 (2014 US dollars), 

equivalent to $23,830 (2018 CAD), the ICER value would be $40,152/ QALY gained. 
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This is still lower than the willingness-to-pay threshold of $100,000/QALY gained, 

suggesting that administrating SABR would be a cost-effective strategy.   

The relative proportion of patients who received the systemic therapy between the two 

strategies also influenced the generalizability of our findings. SABR as an effective local 

treatment may decrease the receipt of systemic therapy and the number of cycles of 

further systemic therapy were initially considered as secondary outcome in the SABR-

COMET trial. However, this endpoint was not ascertained as patients received treatment 

at other centers, and the receipt of systemic therapy were tested as a binary outcome, 

whereby the proportion of receipt of systemic therapy were not statistically differ 

between strategies. In addition, SABR-COMET trial was conducted in an era where more 

effective therapies, such as targeted therapy and immunotherapy, as compared to 

chemotherapy were not routinely utilized. Therefore, in our study, we only modelled the 

proportion of receipt of chemotherapy. According to our DAS, the higher the proportion 

of SABR-treated patients averted from receiving chemotherapy, the lower cost was 

associated with SABR strategy and the more likely SABR remain cost-effective. This 

may be the same with other types of systemic therapy and should be explored in future 

research. 

5.3 Limitations 

Costs data in this study were identified from the publications. Therefore, direct medical 

cost was the only type of healthcare cost that has been included in this cost-effectives 

analysis. Indirect cost was not incorporated due to the lack of available data. The reported 

outpatient drug costs excluded the spending among individuals age below 65. The cost of 

emergency department visits or other ambulatory care were also excluded. Therefore, the 

base cost in our study may be underestimated from the Canadian health care system 

perspective. However, the higher the base cost the smaller the estimated ICER value 

would be, according to the result of deterministic sensitivity analysis. Therefore, this 

issue did not change our finding qualitatively at a WTP threshold of $100,000/QALY 

gained. 
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Bias may have been introduced in the utility mapping process since the source population 

where mapping algorithm were developed may not fully represent our study population 

(lack of exchangeability). Efforts were made to select mapping model from study of 

which the population most likely to representing the cohort in our research. Furthermore, 

we examined the uncertainty of utility inputs via deterministic and probabilistic 

sensitivity analysis. The result demonstrated that the utility uncertain is unlikely to result 

in qualitative change to our conclusion.  

The heterogeneity is an inherited limitation in this study. The SABR-COMET trial 

included cancer patients with mixed type of primary tumor, and the sample size was 

small in subgroups defined by primary cancer. In this situation, subgroup analyses were 

with limited ability to produce reliable and unbiased model predictions. We assumed that 

the ICER is constant across all of the subpopulations, and therefore used one functional 

form to modeling the whole cohort. However, we value the importance of tailoring the 

cost-effectiveness information to a specific decisions-making setting with limited 

heterogeneity and highly recommend that subgroup analysis to be done in the future 

studies. 

The SABR-COMET trial adopted phase 2 screening design with a pre-specified two-

sided significance level of 0.20. The median overall survival for SABR-treated patients 

were 1.5 times of the SoC recipients with a p=0.090, meeting the pre-specified end point 

to proceed with the phase III trial. Nevertheless, this p-value does not meet the typical 

definition for statistically significance of a two-sided α of 0.05. Therefore, a cost-

effectiveness analysis based on evidences with higher quality such as the on-going phase 

III randomized controlled trial with larger sample size (NCT03721341), would be highly 

recommend once the data is mature. 

Finally, the PSA were performed based on a strong assumption of independent 

distributions for all model petameters [72]. Given that our costs and utilities were derived 

from literature, it was impossible to model dependent probabilities in PSA. Therefore, the 

potential correlation between parameters would be unclear. 
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5.4 Conclusion 

This model-based cost-effectiveness analysis evaluated SABR+ SoC compared to SoC 

alone for oligometastatic cancer patients based on individual-level patient data from 

phase II randomized controlled trial, published costing and utility analysis and published 

mapping studies. Our findings suggest that SABR is highly cost-effective at the 

willingness-to-pay threshold of $100,000/QALY from the Canadian health care system 

perspective for cancer patients with 1-5 oligometastatic lesions compared to the standard 

of care.  
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Appendices 

Appendix A: Glossary of terms and definitions of Markov rewards in the model 

(Summarized in Table 3) 

Base care cost: one of the three components of the total direct medical cost which 

otherwise include radiotherapy cost and chemotherapy cost. 

Base terminal care cost: the base care cost of terminal care phase. 

Base continuing care cost: the base care cost of continuing care phase. 

Continuing care: a phase of health care, which happened between the initial 6 months 

after diagnosis and the last 12 months before death, mainly include surveillance and 

active follow-up treatment for both new primary cancer and recurrent cancer. 

Terminal care: a phase of health care, which refers to the last 12 months before death, 

often characterized by intensive palliative services. 

Terminal care cost: the cost difference between terminal care and cornuting care. In our 

model the variables were assigned to each death-related health states as a one-time event 

cost to capture the incremental cost of patient care within the last year of life. Adding the 

incremental cost to the quarterly accumulated continuing cost obtains the total cost within 

the last 12 months before death of the cohort. 

Palliative RT cost: the average cost of palliative radiotherapy for SABR and SoC 

strategies in pre-progression and post-progression health states. 

SABR cost: the average cost of SABR for SABR strategy in pre-progression and post-

progression health states. 

AE cost: the average cost of managing treatment-related adverse events, for SABR and 

SoC strategies. All available records of treatment-related adverse events, including 

fatigue, pain and dyspnea occurred within pre-progression health state. 



 

 

78 

Disutility: the decrement of health state utility due to the occurrence of treatment-related 

adverse events. 

Pre-progression utility: the mean utility related to each strategy in the pre-progression 

health state. 

Post-progression utility: the mean utility related to each strategy in the post-progression 

health state. 

 

 

Appendix B: National cancer Institute Common Terminology Criteria for Adverse 

Events (NCI-CTC-AE) Scoring version 4.0 

Available at: 

http://ctep.cancer.gov/protocolDevelopment/electronic_applications/ctc.htm#ctc_40  

 

 

Appendix C: Consolidated Health Economic Evaluation Reporting Standards -

CHEERS Checklist 

Available at:  

https://www.ispor.org/heor-resources/good-practices-for-outcomes-

research/article/consolidated-health-economic-evaluation-reporting-standards-(cheers)---

explanation-and-elaboration 
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Appendix D: Construction of transition probabilities 

 
 

SoC strategy: 

p_PFS_1: 

1- (exp (- (_stage * exp (-n_beta_PFS# * arm_1-n_intercept_PFS#)) ^ n_shape_PFS#) -

exp (- (t * exp (-n_beta_PFS# * arm_1 - n_intercept_PFS#)) ^ n_shape_PFS#)) / exp (-

(_stage * exp(-n_beta_PFS# * arm_1 - n_intercept_PFS#)) ^ n_shape_PFS#) 

 

p_pre_to_post_1:  

1 - (exp (- (_stage * exp(- n_beta_Pre_to_Post# * arm_1 -n_intercept_Pre_to_Post#)) ^ 

n_shape_Pre_to_Post#) – exp (- (t * exp (-n_beta_Pre_to_Post# * arm_1 - 

n_intercept_Pre_to_Post#)) ^ n_shape_Pre_to_Post#)) / exp (- (_stage*exp (-

n_beta_Pre_to_Post# * arm_1 - n_intercept_Pre_to_Post#)) ^ n_shape_Pre_to_Post#) 

 

p_die_preprog_AE_1:  

by definition, patient in control arm should not die of SABR AE. But may die of palRT. 

Value equals 0.0025 

 

p_surv_post_1:  

1 - (exp (- (t_post * exp (- n_beta_surv_post# * arm_1 - n_intercept_surv_post#)) ^ 

n_shape_surv_post#) – exp (- (_tunnel*exp (-n_beta_surv_post# * arm_1 - 

n_intercept_surv_post#)) ^ n_shape_surv_post#)) / exp (- (t_post * exp (- 

n_beta_surv_post# * arm_1 - n_intercept_surv_post#)) ^ n_shape_surv_post#) 

 

p_diepostprog_1:  

1 - (exp (- (t_post * exp (- n_beta_diepostprog# * arm_1 - n_intercept_diepostprog#)) ^ 

n_shape_diepostprog#) – exp (- (_tunnel*exp (-n_beta_diepostprog# * arm_1 - 
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n_intercept_diepostprog#)) ^ n_shape_diepostprog#)) / exp (- (t_post * exp (-

n_beta_diepostprog# * arm_1 - n_intercept_diepostprog#)) ^ n_shape_diepostprog#) 

 

p_diepost_AE_1: assuming for post-progression patients who didn’t die from cancer, 

2.5% of them will die from AE in SoC arm (rare case assumption). Value equals 0.025. 

 

 

 

 

 

SABR + SoC strategy: 

p_PFS:  

1 - (1 - exp (n_HR_PFS# * ln (1 - (1 - p_PFS_1)))) - p_SA_death_AE_2 

 

p_pre_to_post:  

if (1 - (1 – exp (n_HR_Pre_to_Post# * ln (1 - (1 - p_Pre_to_Post_1)))) > 1; 1; 1 - (1 – exp 

(n_HR_Pre_to_Post# * ln (1 - (1 - p_Pre_to_Post_1))))) 

 

p_die_preprog_AE:  

(s_p_preprog_dieAE_2) * 66 / (s_p_preprog_dieAE_2 * 66 + 1)  

where s_p_preprog_dieAE_2= 0.045 (Proportion of death 3/66 due to adverse effect in 

SABR arm);  

p_surv_post:  

1 - (1 – exp (n_HR_surv_post# * ln (1 - (1 - p_surv_post_1)))) 

 

p_diepostprog:  

1 - (1 – exp (n_HR_diepostprog# * ln (1 - (1 - p_diepostprog_1)))) 

 

p_diepost_AE:  

assuming for post progression patients who didn’t die from cancer, 2.5% of them will die 

from AE in SABR+SoC arm (rare case assumption).  Value equals 0.025. 

 

 

Notes: “_stage” equals number of model cycles; “_tunnel” accounts for time in relevant 

states; “t_post” equals to “_tunnel-1”; arm_1 = 0.  

Transition probabilities which derived via parametric survival analysis with Weibull 

distribution, were time dependent. Rare cases were directly assigned with small 

probabilities of 2.5%, since, in such case, survival analyses were with limited ability to 

produce valid model prediction.  

# indicate parameters obtained via parametric survival analysis with Weibull distribution 

based on individual-level patient data from SABR-COMET trial 
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Appendix E: ICER($/LY) of SABR+SoC versus SoC alone over time) 
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