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Abstract

In homotopical algebra, the theory of derivators provides a convenient abstract setting for
computing with homotopy limits and colimits. In enriched homotopy theory, the analogues
of homotopy (co)limits are weighted homotopy (co)limits. In this thesis, we develop a theory
of derivators and, more generally, prederivators enriched over a monoidal derivator E. In
parallel to the unenriched case, these E-prederivators provide a framework for studying the
constructions of enriched homotopy theory, in particular weighted homotopy (co)limits.

As a precursor to E-(pre)derivators, we study E-categories, which are categories enriched
over a bicategory Prof(E) associated to E. We prove a number of fundamental results about
E-categories, which parallel classical results for enriched categories. In particular, we prove
an E-category Yoneda lemma, and study representable maps of E-categories.

In any E-category, we define notions of weighted homotopy limits and colimits. We define
E-derivators to be E-categories with a number of further properties; in particular, they
admit all weighted homotopy (co)limits. We show that the closed E-modules studied by
Groth, Ponto and Shulman give rise to associated E-derivators, so that the theory of E-
(pre)derivators captures these examples. However, by working in the more general context
of E-prederivators, we can study weighted homotopy (co)limits in other settings, in particular
in settings where not all weighted homotopy (co)limits exist.

Using the E-category Yoneda lemma, we prove a representability theorem for E-prederivators.
We show that we can use this result to deduce representability theorems for closed E-modules
from representability results for their underlying categories.

Keywords: Enriched derivators, homotopy theory, enriched categories, weighted homotopy
limits and colimits
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Summary for Lay Audience

Modern homotopy theory has its origins in geometry, in particular in the study of homo-
topical properties of geometric objects. For familiar shapes, these are properties that are
unaffected by continuous deformations, such as stretching or shrinking. For example, the
number of connected components of a shape is a homotopical property, while properties like
length, curvature and dimension are not.

A number of technical difficulties arise in studying the homotopy theory of shapes, and a
large amount of abstract machinery has been developed to overcome these difficulties. This
abstraction has led to widespread applications for homotopy theoretic methods throughout
modern mathematics.

Homotopy colimits are important homotopy theoretic constructions. Classically, these pro-
vide a means of gluing shapes together to make new shapes with prescribed properties. In
practice, working with homotopy colimits is technical, and requires that we keep track of
large amounts information. Derivators provide an elegant framework for packaging this in-
formation, allowing us to carry out computations which might be intractable or impossible
with other methods.

In a number of settings, homotopical information is available intrinsically in the form of
an enrichment. In this context, the analogues of homotopy colimits are called weighted
homotopy colimits. In this thesis, we define and study enriched derivators, which provide
a framework for computing with weighted homotopy colimits and other constructions from
enriched homotopy theory.
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Chapter 1

Introduction

Derivators

The theory of derivators is one of several current approaches to homological and homotopi-
cal algebra. Derivators were introduced independently in [19] and [17], along with similar
theories developed in [25] and [8]. To motivate their definition, we begin by recalling a well-
known deficiency of another approach to homotopical algebra, the theory of triangulated
categories.

Triangulated categories are a prominent and important axiomatisation of stable homotopy
theory. See [30, 35] for a comprehensive introduction. Given any stable model category or
stable quasicategory, its homotopy category is naturally triangulated. In general, information
is lost when we pass to the homotopy category; however, in many situations, enough is
retained that the original homotopy theory can be studied, and computations can be made,
using only the underlying triangulated homotopy category. For example, if T is a triangulated
category, we may study homotopy cofibre sequences in T. In particular, any morphism in T

has a homotopy cofibre. However, this construction cannot be made into a functor of the
form T[1] → T, where T[1] is the category of arrows in T. When T = Ho(M) is the homotopy
category of a stable model category, this problem reflects the fact that the homotopy cofibre
construction in a model category induces a functor Ho(M[1]) → Ho(M), rather than an
functor Ho(M)[1] → Ho(M).

This problem can be addressed by considering the derivator associated to M, rather than
only the homotopy category. Introductions to derivators can be found in [11, 12, 14, 15],
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2

and the first chapter of [4]. The essential idea is to consider a family of categories, one
for each small category A, rather than a single category. In the case of a model category
M, this corresponds to keeping track of the family of homotopy categories Ho(MA), for
every A ∈ Cat, rather than the single homotopy category Ho(M), where these homotopy
categories are formed with respect to pointwise weak equivalences. (Note that, in general,
it is not obvious that these homotopy categories are locally small. See [2] for a proof.)
Moreover, for any functor u : A → B, we keep track of the (derived) pullback functor
u∗ : Ho(MB) → Ho(MA). It is possible to show that this functor has both adjoints. Using
these, we can study homotopy limits and colimits in M and, in particular, if M is pointed
we can recover the homotopy cofibre functor Ho(M[1])→ Ho(M).

We now discuss derivators in more detail. We can break the definition into two steps. First,
a prederivator (see Definition 2.1.1) is a 2-functor D : Catop → CAT. We denote its
values as follows:

A B 7−→ D(A) D(B)

u

v v∗

u∗

κ κ∗

Given a functor u : A → B, we call the functor u∗ : D(B) → D(A) the pullback functor
along u. If u∗ has a left adjoint u! : D(A) → D(B), we call this functor the homotopy
left Kan extension along u. Dually, if u∗ has a right adjoint u∗ : D(A)→ D(B), we call
this functor the homotopy right Kan extension along u. In the case of the unique map
p : A → [0] to the terminal category, we call the right and left homotopy Kan extensions
homotopy limits and homotopy colimits respectively. Derivators are prederivators
that satisfy four additional axioms, which we recall in Definition 2.1.16. In particular, if D
is a derivator, one axiom, Der 3, implies that any functor u : A→ B admits both a left and
right homotopy Kan extension in D. Another axiom, Der 4, gives a formula for calculating
homotopy Kan extensions.

We have already alluded to the fact that any model category M gives rise to a derivator
Ho(M), whose value at A ∈ Cat is the homotopy category Ho(MA). This is the main
theorem of [2]. Similarly, given any complete and cocomplete quasicategory Q, we can form
a derivator Ho(Q), whose value at A ∈ Cat is Ho(QNA), where NA denotes the nerve of
A, and Ho(QNA) denotes the homotopy category of the quasicategory QNA. See [33] for
a proof that this defines a derivator. Thus, the passage from either a model category or a
(co)complete quasicategory to its homotopy category factors through an associated derivator.
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We have seen that the derivator associated to a stable model category retains more informa-
tion than the triangulated homotopy category. However, derivators do not retain all of the
homotopical information that is available in model categories or quasicategories. See [43,
Section 2.5] for a discussion of what information is lost. Thus, derivators cannot be thought
of as a replacement for model categories or quasicategories. However, in certain settings,
there are advantages to working with derivators rather than these other models of homotopy
theory, where carrying around all of the available information can result in technical difficul-
ties. For example, working in a derivator rather than a model category does away with the
need to manage fibrant and cofibrant replacements and zigzags of weak equivalences. At the
derivator level, we only have access to information that is homotopically meaningful, and
homotopy invariant.

Derivators retain enough information to define homotopy Kan extensions, in particular ho-
motopy limits and colimits, using universal properties, and provide enough tools to carry out
elegant formal computations. Since these universal properties characterise homotopy limits
and colimits in other models of homotopy theory, results we prove in derivators must hold,
in particular, in model categories and quasicategories. Thus, derivators provide a convenient
abstract setting in which we can manage homotopy coherence and compute with homotopy
Kan extensions. This also carries over to morphisms of derivators: to prove, for example,
that a given left Quillen functor commutes with a particular homotopy limit, it suffices to
show this for the associated derivator map. This perspective on derivators is developed and
exemplified in [13, 14, 16].

Actions of derivators

In this thesis, we study enrichment of prederivators and derivators, and develop formal
methods for studying the constructions of enriched category theory (see [27]) in homotopical
settings. In particular, just as derivators are a tool for studying homotopy limits and col-
imits, enriched derivators provide a setting for studying weighted homotopy limits and
colimits, which are the enriched analogue.

There are a number of approaches to enriched homotopy theory. Simplicial enrichments, in
particular, are well-studied and fundamentally important. Simplicial model categories were
introduced in [37], and, for any model category, constructions of simplicial mapping spaces
were defined and studied in [7]. See [21] for a textbook treatment. Weighted homotopy
limits and colimits in simplicial model categories are studied in [9]. For a survey of other
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approaches to enrichment in homotopy theory, and a unified treatment of weighted homotopy
limits and colimits, see [39].

The properties of derivators that make them convenient for studying other aspects of ho-
motopy theory also make them an elegant setting for studying enrichment. For example,
managing cofibrant and fibrant replacement in a model category can vastly complicate proofs
that are relatively straightforward on the derivator level. This is an important advantage
when it comes to studying enrichment, since we often want to verify lists of coherence con-
ditions, and this can become difficult or impossible if we have to keep track of cofibrant and
fibrant replacements. We give the following relevant example. In [23] it was conjectured
that, for any monoidal model category M, its homotopy category Ho(M) is naturally a cen-
tral algebra over the homotopy category of simplicial sets Ho(sSet). All of this, except for
the centrality condition, was shown using model categorical methods in [23]. However, the
final coherence condition was only successfully checked in [3], using the associated derivator
Ho(M).

We will now outline some relevant previous work on enrichment in derivators. A monoidal
derivator E is a derivator equipped with a tensor product ⊗ : E×E→ E that is coherently
unital and associative, and which, in an appropriate sense, preserves homotopy colimits
in both variables. Note that, for any category A, the tensor product induces a monoidal
structure on the category E(A). Monoidal derivators are studied in [3, 13]; we recall the
definition in Section 3.3. Given any monoidal model category M, its associated derivator
Ho(M) is monoidal.

Given a monoidal derivator E, an action of E on a derivator D is a coherently associative
and unital map ⊗ : E × D → D, which preserves homotopy colimits in both variables.
See Definition 3.4.1. We call a derivator D an E-module if it is equipped with an E-
action. A fundamentally important result, proved in [3], is that any derivator D has a
unique Ho(sSet)-module structure. This theorem is conceptually important, but it also
has practical implications for calculating homotopy colimits. See [36, Section 7] for such
an application; using the Ho(sSet)-action, homotopy colimits in an arbitrary derivator can
be computed from homotopy colimits in Ho(sSet). This is true in general: computations
involving homotopy colimits in an E-module can be reduced to computations in E. This
approach is used to characterise stable derivators in [16].

Derivator two-variable adjunctions are studied in [13]. We recall the definition in Sec-
tion 3.2. An E-module D is called a closed E-module if the E-action ⊗ : E × D → D is



5

part of a two-variable adjunction. For example, if M is a monoidal model category and N is
an M-enriched model category, then the derivator Ho(N) is a closed Ho(M)-module. As a
part of the structure, a closed E-module is equipped with two additional maps:

mapD(−,−) : Dop ×D→ E

C : D× Eop → D

Using the first of these maps, closed E-modules have a notion of mapping objects, which take
values in E. For this reason, closed E-modules are called E-enriched derivators in [15, 16];
however, we will reserve this terminology for a different, though related, concept. Given a
closed E-module D, the map ⊗ : E × D → D can be used to define weighted homotopy
colimits in D, and C: D × Eop → D can be used to define weighted homotopy limits.
Examples of weighted homotopy colimits include the pullback functors in D, and ordinary
left Kan extensions. In [15, 16], computations with weighted homotopy colimits are reduced
to computations in E with the corresponding weights.

Enriched prederivators and derivators

In this work, we establish an alternative approach to enrichment in derivators, which incor-
porates the closed E-modules of [15, 16], as well as a number of other examples. In particular,
our framework allows us to study enrichment of general prederivators, rather than being re-
stricted to derivators. Moreover, using this approach, we can formulate local definitions of
weighted homotopy limits and colimits, which agree with the global definitions in [15, 16]
when all weighted homotopy (co)limits exist. This allows us to study weighted homotopy
(co)limits in a broader range of settings, including in situations where only certain weighted
homotopy (co)limits exist.

We develop the theory of enriched derivators in a series of steps, starting with the concept
of E-categories. We may then add extra structure to obtain E-prederivators and, finally,
E-derivators. We will now outline this process.

Any monoidal derivator E gives rise to an associated bicategory, which we denote by Prof(E)
and call the bicategory of profunctors in E. This bicategory is defined in [13], and
we recall its definition in Remark 3.5.3. See [32] for basic bicategorical definitions. An E-
category A is defined, in Definition 4.1.1, to be a category enriched over the bicategory
Prof(E). In particular, this includes the following data:
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• For each small category A, a (large) set of objects A0(A).

• For any two objects X ∈ A0(A) and Y ∈ A0(B), an object m̃apA(X, Y ) ∈ E(Aop ×B).

In addition, A is equipped with notions of composition and units, subject to natural
axioms that express associativity and unitality of composition. In this way, the definition of
E-categories is analogous to the familiar definition of enriched categories in [27]; in fact, for
any category A, an E-category A gives rise to an E([0])-category A(A), which we describe
in Remark 4.1.4 and Remark 4.3.9.

Our development of the basic theory of E-categories mirrors the classical development of
enriched category theory. For example, given an E-category A, a category A and an object
X ∈ A0(A), the mapping objects induce a representable E-category morphism

m̃apA(X,−) : A→ EAop

where EAop is an E-category associated to the shifted prederivator EAop of Example 2.1.6.
This E-category is described in Theorem 4.1.10; note, in particular, that for any category B,
the set EAop

0 (B) is the set of objects in the category E(Aop × B).

Representable maps play a vital role in the theory of E-categories, and in our study of
E-prederivators and E-derivators. In part, this is a consequence of Theorem 4.2.1, the E-
category Yoneda lemma:

Theorem. Let A be an E-category, let A be a category, and let X ∈ A0(A). Let F : A→ EAop

be an E-category map. We have a natural bijection:

E-Cat(A,EAop)(m̃apA(X,−), F ) ∼= E(Aop × A)(hA, FX)

Here E-Cat(A,EAop) is the hom-category in the 2-category of E-categories, which is defined
in Lemma 4.1.5. The object hA ∈ E(Aop × A) is called the identity profunctor; we recall
its definition in Definition 3.5.1. It is the unit object in a monoidal structure on E(Aop×A),
which we describe in Section 3.5.

We define E-prederivators in Definition 5.1.1. An E-category A is called an E-prederivator
if, among other conditions, it is equipped with a notion of pullback along functors. In
particular, given a functor u : A → B and an object X ∈ A0(B), we have an object
u∗X ∈ A0(A). We show, in Theorem 5.1.10, that any E-prederivator A gives rise to a
prederivator A, which we call the prederivator induced by A.
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In Definition 5.3.1, we define weighted homotopy limits and colimits in E-categories. Given
an E-category A, categories A and B, and objects X ∈ A0(A) and W ∈ E(Aop × B), the
homotopy colimit of X weighted by W , if it exists, is an object W ⊗AX ∈ A0(B). This
object must represent the E-category map below:

A EAop
EBopm̃apA(X,−) m̃ap

EAop (W,−)

Thus, for any category C and any Z ∈ A0(C), the weighted homotopy colimit is equipped
with isomorphisms

m̃apA(W ⊗A X,Z) ∼= m̃apEAop (W, m̃apA(X,Z))

in E(Bop × C), which are E-natural in Z (see Definition 4.1.3). This is a local definition
for the weighted homotopy colimit; if, given an object X ∈ A0(A), the weighted homotopy
colimit of X exist for all possible weights, then we can obtain a global characterisation in the
manner of [15, 16]. Specifically, the weighted homotopy colimits assemble into an E-category
map −⊗A X, which forms part of the following E-category adjunction (see Section 4.2):

EAop
A

− ⊗AX

m̃apA(X,−)

⊥

In Definition 5.3.6, we define E-derivators. These are E-prederivators that, in particular,
admit all weighted homotopy limits and colimits. We show, in Theorem 5.3.10, that if A is
an E-derivator, the induced prederivator A is a derivator.

In Theorem 5.3.7, we show that any closed E-moduleD gives rise to an E-derivatorD. In this
way, the theory of closed E-modules is encompassed by the theory of E-prederivators and E-
derivators. However, in general, E-prederivators need not admit all weighted homotopy limits
and colimits: for instance, in Example 5.3.9, we discuss the prederivator of compact objects
in a triangulated derivator, which we show admits certain, but not all, Ho(Spt)-weighted
homotopy colimits. In this way, working with E-prederivators gives us the flexibility to study
natural examples of enriched homotopy theories that are not captured by closed E-modules.
Moreover, even if an E-prederivator A does not admit all weighted homotopy (co)limits, if it
admits enough, we can still manipulate these as in [15, 16]. In particular, we can carry out
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computations with weighted homotopy (co)limits by doing computations with the weights
in E.

Working in the 2-category of E-prederivators has other advantages. For example, the E-
category Yoneda lemma of Theorem 4.2.1 is extremely useful. We give an application of the
Yoneda lemma in Theorem 5.2.6, in which we prove the following representability theorem
for E-prederivator maps:

Theorem. Let A be an E-prederivator. An E-category morphism F : A→ E is representable
if and only if the E([0])-functor

F : A([0])→ E([0])

is representable as an E([0])-functor.

The E([0])-functor F : A([0]) → E([0]) that appears in this theorem is defined in Re-
mark 4.1.4. In this way, even if we are only interested in studying concepts that can be
phrased on the level of unenriched derivators, it can be beneficial to work in the 2-category
of Ho(sSet)-prederivators, particularly since derivators associated to model categories and
quasicategories are naturally Ho(sSet)-enriched.

Organisation

In Chapter 2, we survey the elementary theory of prederivators and derivators. Most of
the content of this section can be found in [11, 12, 13]. We recall the basic definitions and
a number of important examples in Section 2.1. In Section 2.2, we discuss preservation of
homotopy Kan extensions and study adjunctions between derivators. In Section 2.3, we recall
some simple aspects of the theory of two-variable derivator maps. Finally, in Section 2.4, we
recall the definitions of pointed and triangulated derivators. We also recall some important
results from the theory of triangulated categories, which we use in Chapter 3 and Chapter 5
to study enriched triangulated derivators.

In Chapter 3, we discuss actions of monoidal derivators. First, in Section 3.1, we recall the
definitions of ends and coends in a derivator; these play an essential role in the theory of
derivator two-variable adjunctions, which we recall in Section 3.2. In Section 3.3 and Sec-
tion 3.4, we recall the definitions of monoidal derivators and their actions. Much of the
material in these first sections can be found in [13]; beyond this point, unless otherwise spec-
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ified, the results are new. In Section 3.5 and Section 3.6, we collect a number of coherence
results for structure arising from the action of a monoidal derivator. These results provide
important ingredients for the development of E-categories and E-prederivators in Chapter 4
and Chapter 5. We also use them, in Section 3.7, to study cotensors in closed E-modules. In
particular, in Proposition 3.7.5, we prove that a left adjoint between closed E-modules pre-
serves tensors if and only if its right adjoint preserves cotensors. In Section 3.8, we use this
result to prove Theorem 3.8.3, a representability theorem for triangulated closed modules
over triangulated monoidal derivators.

In Chapter 4, we introduce E-categories. In Section 4.1 we develop their basic theory and
give a number of examples; in particular, in Theorem 4.1.10, we prove that any closed E-
module gives rise to an associated E-category. We prove the E-category Yoneda lemma,
Theorem 4.2.1, in Section 4.2, and use this to study E-category adjunctions. In Section 4.3,
we study monoidal morphisms, and prove, in Proposition 4.3.4, that we may transfer enrich-
ment along monoidal adjunctions.

In Chapter 5, we introduce E-prederivators and E-derivators. We study E-prederivators in
Section 5.1, which we introduce in Definition 5.1.1. In Section 5.2, we define the 2-category
of E-prederivators, and prove Theorem 5.2.6, a representability theorem for E-prederivator
maps. In Section 5.3, we define weighted homotopy limits and colimits in an E-category, and
give the definition of E-derivators in Definition 5.3.6. In Theorem 5.3.7, we show that the
E-category associated to a closed E-module is an E-derivator. Finally, in Theorem 5.3.10, we
show that any E-derivator induces a derivator.

Notation. We will use the following notation throughout:

• We will write [n] = {0 → 1 → · · · → n} for the ordinal number n + 1 regarded as a
category. In particular, [0] is the terminal category.

• We will denote small categories with upright font. For example, A,B, ... ∈ Cat.

• Given categories A and B, we will denote the symmetry isomorphism for the product
by σ : A× B

∼=−→ B× A.

• Given categories A and B, we will write pA : A × B → B for the canonical projection
onto B. We will also write pA : B× A→ B.

More generally, we will write pA for any map projecting away the category A. For
example, we also write pA : A→ [0] for the canonical map to the terminal category.
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• When we have multiple copies of the same category appearing in a product, for example
A in the product A×A, we will write A = A1 = A2 to keep track of the maps σ and pA.
In this example, the two projections are pA1 : A1 ×A2 → A2 and pA2 : A1 ×A2 → A1.



Chapter 2

Derivators

In this chapter we recall the elementary theory that we will need in later chapters. We begin,
in Section 2.1, with the definition of the 2-category Der of derivators. This section includes
a number of important definitions and basic results; in particular, we introduce homotopy
Kan extensions and homotopy exact squares. In Section 2.2, we discuss preservation of
homotopy Kan extensions and study adjunctions in Der. In Section 2.3, we look at some
aspects of the theory of two-variable maps; we will return to this in Chapter 3 once we have
recalled the theory of ends and coends. Finally, in Section 2.4, we briefly discuss pointed and
triangulated derivators; in later chapters, these will provide important examples of enriched
derivators. In this section we also recall some basic results about triangulated categories,
which play a significant role in the theory of triangulated derivators. Much of the material
in this chapter can be found in [11]. There are also useful introductions to basic derivator
theory in [12], [13, Section 2] and [4, Chapter 1].

2.1 Prederivators and derivators

This section contains the definitions and basic elements of the theory of derivators. Most of
the material in the section can be found in [11, Chapter 1,2]. We begin with the definition of
prederivators, and develop the language that we require to state the additional axioms that
define derivators. These are defined towards the middle of the section, in Definition 2.1.16.
We also introduce a number of examples, some of which we will revisit repeatedly.

We will denote the 2-category of small categories by Cat, and the 2-category of large cate-

11
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gories by CAT. We take the same size conventions as [31].

Definition 2.1.1. A prederivator is a 2-functor D : Catop → CAT. We denote its values
as follows:

A B 7−→ D(A) D(B)

u

v v∗

u∗

κ κ∗

Definition 2.1.2. Let D1 and D2 be prederivators. We call a pseudonatural transfor-
mation F : D1 → D2 a morphism of prederivators. Explicitly, this consists of functors
F : D1(A)→ D2(A) for any category A, and natural isomorphisms

D1(B) D2(B)

D1(A) D2(A)

F

u∗
γ

∼=
u∗

F

for any functor u : A→ B. This data must satisfy the following equalities:

1. For any category A, we have:

D1(A) D2(A)

= idF

D1(A) D2(A)

F

id∗A
γ

∼=
id∗A

F

2. For any composable maps A u−−→ B v−−→ C, we have:



13

D1(C) D2(C)

D1(C) D2(C)

D1(B) D2(B) =

D1(A) D2(A)

D1(A) D2(A)

F

v∗
γ

∼=
v∗

F

(v◦u)∗ (v◦u)∗γ

∼=F

u∗
γ

∼=
u∗

F

F

3. For any natural transformation κ : u⇒ v, we have:

D1(B) D2(B) D1(B) D2(B)

=

D1(A) D2(A) D1(A) D2(A)

F

u∗v∗
γ

∼=
u∗

F

v∗
γ

∼=
v∗ u∗

F F

κ∗ κ∗

Definition 2.1.3. Given prederivator maps F,G : D1 → D2, a modification θ : F ⇒ G

consists of natural transformations

D1(A) D2(A)

F

G

θ

such that, for any functor u : A→ B, we have:

D1(B) D2(B) D1(B) D2(B)

=

D1(A) D2(A) D1(A) D2(A)

F

u∗

G

γ

∼=
u∗

F

u∗
γ

∼=
u∗

G

F

G

θ

θ
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Prederivators, morphisms and modifications form a 2-category PDer. Given prederivators
D1 and D2, we write Hom(D1,D2) for the category of morphisms from D1 to D2.

Example 2.1.4. Given any (large) category C, we can form its represented prederivator:

y(C) : Catop → CAT

A 7→ CA

We may also form the constant prederivator:

c(C) : Catop → CAT

A 7→ C

In analogy with representable prederivators, for any prederivator D, we call D([0]) the
underlying category of D, and for any u : A → B, we call u∗ : D(B) → D(A) the
restriction or pullback functor along u.

Example 2.1.5. Given any model category M, we can form a prederivator

Ho(M) : Catop → CAT

A 7→ Ho(MA)

where the homotopy category Ho(MA) is formed with respect to the pointwise weak equiv-
alences in MA. Note that MA may not carry a model structure in general; the fact that
the localisation can still be formed without moving to a larger universe follows from [2].
Moreover, given model categories M and N, and a left Quillen functor F : M → N, the
derived functors induce a prederivator map LF : Ho(M) → Ho(N). Similarly, any right
Quillen functor G : N→M, induces a prederivator map RG : Ho(N)→ Ho(M).

Similarly, given a quasicategory Q, we have a prederivator

Ho(Q) : Catop → CAT

A 7→ Ho(QNA)

where NA is the nerve of A, and Ho(QNA) is the homotopy category of the quasicategory
QNA.

Example 2.1.6. For any prederivator D and any category J, we can form the shifted
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prederivator:

DJ : Catop → CAT

A 7→ D(J× A)

Moreover, any functor u : J→ K induces a prederivator map u∗ : DK → DJ, with component
at A given by

(u× A)∗ : D(K× A)→ D(J× A),

and any natural transformation κ : u⇒ v induces modification ω∗ : u∗ ⇒ v∗. These organise
into a 2-functor:

Catop ×PDer→ PDer

(J,D) 7→ DJ

Remark 2.1.7. Given a prederivator map F : D1 → D2, and a functor u : J → K, the
structure isomorphisms of F induce a modification:

DK
1 DK

2

DJ
1 DJ

2

F

u∗ γ

∼=
u∗

F

Moreover, given θ : F ⇒ G, the modification condition lifts to an equality:

DK
1 DK

2 DK
1 DK

2

=

DJ
1 DJ

2 DJ
1 DJ

2

F

u∗

G

γ

∼=
u∗

F

u∗
γ

∼= u∗

G

F

G

θ

θ

Often it will be convenient to state and prove results at the level of shifted prederivators.
For example, rather than prove a result about the component F : D1(A) → D2(A) of a
prederivator map F , it may be more convenient to work with the shifted map F : DA

1 → DA
2

in PDer.
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Definition 2.1.8. Given any prederivator D, we may define its opposite prederivator:

Dop : Catop → CAT

A 7→ D(Aop)op

Example 2.1.9. For any category C, we have a canonical isomorphism y(C)op ∼= y(Cop),
induced by the isomorphisms (CAop)op ∼= (Cop)A. Similarly, for any model category M, we
have Ho(M)op ∼= Ho(Mop).

Example 2.1.10. For any prederivator D and any category J, we have (DJ)op = (Dop)Jop .

Definition 2.1.11. Let D be a prederivator, and let A be a category. Suppose we have a
map f : a→ b in A, classified by a natural transformation

[0] A.

a

b

f

Applying D to this diagram, we obtain

D([0]) D(A).

a∗

b∗

f∗

For any object X ∈ D(A), write Xa for a∗X, and write Xf : Xa → Xb for the component of
f ∗ at X. These assignments define a functor:

diaA(X) : A→ D([0])

a 7→ Xa

We call this the underlying diagram of X. This construction induces a functor
diaA : D(A) → D([0])A. Similarly, the underlying diagram functors of the shifted pred-
erivators DJ induce partial underlying diagram functors diaJ

A : D(J× A)→ D(J)A for
any J.

Definition 2.1.12. Let D be a prederivator, and let u : A→ B be a functor. If the pullback
functor u∗ : D(B) → D(A) has a left adjoint u! : D(A) → D(B), we call this map the left
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(homotopy) Kan extension along u. If u∗ admits a right adjoint u∗ : D(A)→ D(B), we
call this the right (homotopy) Kan extension along u.

In particular, in the case of the unique map p : A → [0], we call these the (homotopy)
colimit and (homotopy) limit, and denote them by:

hocolim := p! : D(A)→ D([0])

holim := p∗ : D(A)→ D([0])

Example 2.1.13. Given a category C, homotopy Kan extensions in the representable pred-
erivator y(C) are exactly Kan extensions. IfM is a model category, homotopy Kan extensions
in Ho(M) recover the familiar homotopy Kan extensions.

Definition 2.1.14. Let D be a prederivator, and suppose we have a natural transformation:

A B

J K

u

v κ w

z

Suppose that each of the functors above admits left and right homotopy Kan extensions in
D. Then the square above induces canonical maps:

D(J) D(A) D(B)

κ! :=

D(J) D(K) D(B)

v!

ε

u∗

v∗ κ∗ w∗

z∗

η

w!
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D(B)

D(A) D(B)

κ∗ :=

D(J) D(K)

D(J)

u∗ η

u∗

v∗ κ∗ w∗

z∗

ε
z∗

These two transformations are mates of the natural transformation κ∗ in the sense of [28,
Section 2]. An introduction to mates can be found in [14, Appendix A]. It follows that κ!

and κ∗ are conjugate, as in [34, Chapter IV.7]. In particular, κ! is an isomorphism if and
only if κ∗ is. If this is the case, we say the square κ is D-exact.

Remark 2.1.15. Given a commutative square, we can apply the constructions of Defini-
tion 2.1.14 to the identity transformation, taking the convention that the transformation
goes from the top composite the bottom. Note that, even in this case, the direction of the
2-cell is important. For example, we have a commutative square:

A B

[0] [0]

u

p id p

For any prederivator D admitting the relevant homotopy colimits we get a canonical map:

D(B)

D([0])

D(A)

u∗

p!

p!
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On the other hand, considering the identity as a map in the opposite direction

A [0]

B [0]

p

u id

p

and taking a prederivator D admitting homotopy limits, we get a canonical map:

D(B)

D([0])

D(A)

u∗

p∗

p∗

For this reason, even if the 2-cell in a square is the identity, we will indicate its direction
when we discuss D-exact squares.

We now give the definition of derivator. Following [11], we list four derivator axioms Der
1-4. Other sources, for example [42], add a fifth derivator axiom, Der 5, which we recall in
Definition 2.1.18. We will call prederivators that satisfy all five axioms strong derivators.

Definition 2.1.16. A prederivator D is a derivator if it satisfies the following axioms:

Der 1 D preserves coproducts. That is, the canonical map

D(
∐
i

Ai)→
∏
i

D(Ai)

is an equivalence. In particular, D(∅) ' [0].

Der 2 A map f : X → Y in D(A) is an isomorphism if and only if fa : Xa → Ya is an
isomorphism in D([0]), for every a ∈ A.

Der 3 Any functor u : A→ B admits both a left and right Kan extension in D.

Der 4 For any functor u : A→ B and any b ∈ B, the squares below are D-exact:
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A ↓ b A b ↓ A A

[0] B [0] B

pr

p u

pr

p u

b b

Thus, for any X ∈ D(A), we have canonical isomorphisms hocolim(pr∗X) ∼= (u!X)b
and (u∗X)b ∼= holim(pr∗X).

We denote the full sub-2-category of PDer on derivators by Der. A prederivator map
between derivators will often be called a derivator map.

In Definition 2.1.16, the axioms Der 1 and Der 2 give conditions on the values of a pred-
erivator that make them behave like the homotopy categories of diagram categories. We call
a prederivator a semiderivator if it satisfies these two axioms.

The axiom Der 3 is a completeness condition. Der 4 allows us to calculate the underlying
diagram of a homotopy Kan extension entirely in terms of homotopy limits and colimits.
A semiderivator D is called a left derivator if it satisfies the parts of Der 3 and Der 4
that deal with left Kan extensions. Right derivators are defined dually. Note that this
terminology agrees with the terminology of [16], but reverses the terminology of [3].

Remark 2.1.17. A square

A B

J K

u

v κ w

z

is called homotopy exact if it is D-exact for every derivator D. By definition, every
comma square of the form given in Der 4 is homotopy exact. A complete characterisation
of homotopy exact squares appears in [14, Section 3].

Definition 2.1.18. A prederivator D is called strong if it satisfies the following axiom:

Der 5 For each category A, the partial underlying diagram functor

diaA
[1] : D(A× [1])→ D(A)[1]

is full and essentially surjective.
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This axiom gives an important connection between the maps in a category D(A) and the
objects in D(A× [1]). It is analogous to the triangulated category axioms (TR1 and TR3
in [35]) that allow us to extend a map in a triangulated category to a distinguished triangle,
and to extend a commutative square to a map of distinguished triangles.

Example 2.1.19. A prederivator D is a (strong) derivator if and only if Dop is.

Example 2.1.20. A representable prederivator y(C) is a derivator if and only if C is com-
plete and cocomplete. In this case, Der 4 says that Kan extensions in C are computed
pointwise. Any representable prederivator is strong, since all underlying diagram functors
are equivalences.

The constant prederivator c(C) is not a derivator for any C 6= [0], since in this case Der 1
fails.

Example 2.1.21 (Cisinski). For any model category M, the prederivator Ho(M) is a strong
derivator. For a general model category, the proof is technical; this is the main result of [2].
For a simpler proof in the case of combinatorial model categories, see [11, Section 1.3].

Example 2.1.22. Let Q be a quasicategory. The prederivator Ho(Q) is strong. If Q is
complete and cocomplete, then Ho(Q) is a derivator. See [14, 33] for proofs of this fact.

Example 2.1.23. For any (strong) derivator D and any category A, the shifted prederivator
DA is a (strong) derivator. See [11, Section 1.3] for a proof.

Shifted derivators are extremely useful when proving general theorems about categories that
arise as the values of derivators: if a statement holds for the underlying category of every
derivator D, then for any category A the statement must also be true for D(A), since this is
the underlying category of DA. The following remark gives a simple example:

Remark 2.1.24. If D is a derivator, Der 1 implies that homotopy products and coproducts
coincide with products and coproducts inD([0]). ByDer 3, then, D([0]) admits all products
and coproducts. Using Example 2.1.23, it follows thatD(A) has all products and coproducts,
for any category A.

The following lemma is a simple but important consequence of Der 2:

Lemma 2.1.25. Suppose we have prederivators D1 and D2, and a modification

D1 D2.

F

G

θ
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If D2 satisfies Der 2, then θ is an isomorphism if and only if the component on underlying
categories is an isomorphism.

Proof. For any category A, and any X ∈ D1(A) consider the component θX : FX → GX

in D2(A). By Der 2, this is an isomorphism if and only if, for every a ∈ A, the map
(θX)a : (FX)a → (GX)a is an isomorphism in D2([0]). But the modification condition for θ
implies that the diagram below commutes:

(FX)a F (Xa)

(GX)a G(Xa)

∼=
γ

(θX)a θXa

∼=
γ

Thus, θ is an isomorphism if and only if θx is an isomorphism for every x ∈ D1([0]).

2.2 Cocontinuous maps and adjunctions

We begin this section with a discussion of the interaction between derivator maps and homo-
topy Kan extensions, proving some simple results that we will need in Chapter 3 and Chap-
ter 4. Other results along similar lines can be found in [12]. In the second half of the chapter
we recall the basic theory of adjunctions from [11, Section 2]. This will form a basis for the
discussion of two-variable adjunctions in Chapter 3.

Definition 2.2.1. Suppose we have derivators D1 and D2, and a morphism F : D1 → D2.
For any functor u : A→ B we have a canonical transformation:

D1(A) D1(B) D2(B)

D1(A) D2(A) D2(B)

u!

η

F

u∗
γ−1

∼=
u∗

F

ε

u!

We say F preserves the left homotopy Kan extension along u if this map is an
isomorphism. If F preserves all left homotopy Kan extensions, we say F is cocontinuous.
We denote the full subcategory of Hom(D1,D2) on the cocontinuous maps by Hom!(D1,D2).



23

Dually, we can define continuous maps; denote the category of these by Hom∗(D1,D2).

We record the following fact, whose proof can be found in [11, Section 2]:

Lemma 2.2.2. A derivator map F : D1 → D2 is cocontinuous if and only if it preserves
homotopy colimits.

The following lemma and its dual can be found in [12, Section 3]:

Lemma 2.2.3. Let F,G : D1 → D2 be derivator maps, and let θ : F ⇒ G be a modification.
Then, for any functor u : A→ B and any X ∈ D1(A), the diagram below commutes, where
the vertical arrows are the canonical maps of Definition 2.2.1:

u!FX u!GX

Fu!X Gu!X

u!(θX)

θu!X

Proof. The commutativity of this diagram for any X ∈ D1(A) expresses the equality of the
two pasting diagrams below:

D1(A) D1(B) D2(B)

D1(A) D2(A) D2(B)

u!

η

G

u∗

γ−1

∼=
u∗

G

F

ε

u!
θ

D1(A) D1(B) D2(B)

D1(A) D2(A) D2(B)

u!

η
F

G

u∗
γ−1

∼=

u∗

F

ε

u!

θ

This follows immediately from the modification condition for θ.
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Lemma 2.2.4. Suppose we have a derivator map F : D1 → D2 and a natural transforma-
tion:

A B

J K

u

v κ w

z

Consider the natural transformation κ! : v! ◦ u∗ ⇒ z∗ ◦ w! of Definition 2.1.14. For any
X ∈ D1(B), the diagram below commutes, where the vertical maps are induced by the canon-
ical map in Definition 2.2.1, and the structure isomorphisms of F :

v!u
∗FX z∗w!FX

Fv!u
∗X Fz∗w!X

(κ!)FX

F (κ!)X

Proof. The commutative diagram above expresses the equality of certain pasting diagrams.
Using the triangle equality to cancel instances of units and counits, we can reduce these to
the following:

D1(J)

D1(B) D1(K) D2(K) D2(J)

D1(B) D2(B) D2(A) D2(J)

F

w!

z∗

η

F

w∗ w∗

z∗

γ−1

∼=
κ∗ v∗

F u∗

ε

v!

γ−1

∼=
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D1(B) D1(K) D1(J) D2(J)

D1(B) D1(A) D2(A) D2(J)

D2(B)

w!

η

z∗

w∗ v∗

F

κ∗ γ−1

∼=
v∗

F

u∗ F

ε

v!

u∗

γ−1

∼=

That these two diagrams are equal follows easily from the coherence conditions for the
derivator map F , as in Definition 2.1.2.

Definition 2.2.5. An adjunction between derivators is an adjunction in the 2-category
Der, in the sense of [28, Section 2].

We will make regular use of the following lemma, which characterises derivator left adjoints:

Lemma 2.2.6. A derivator map F : D1 → D2 is a left adjoint if and only if it is cocontinuous
and each component functor F : D1(A) → D2(A) has a right adjoint G : D2(A) → D1(A).
Moreover, a derivator map is an equivalence if and only if it is a pointwise equivalence.

Proof. A proof of this lemma can be found in [11, Section 2]. We give a brief outline. Suppose
F : D1 → D2 is a derivator map such that each component functor F : D1(A) → D2(A)
has a right adjoint G : D2(A) → D1(A). Given u : A → B, consider the following pasting
diagram:

D1(A) D1(B) D2(B)

D1(A) D2(A) D2(B)

γ−1

∼=

u∗

F

G

F

G

η

u∗

ε

If these maps are isomorphisms for every u : A→ B, then these form the structure isomor-
phisms for a derivator map G : D2 → D1, which is then right adjoint to F .

This transformation is conjugate to the canonical map in Definition 2.2.1. Thus, this is an
isomorphism if and only if F is cocontinuous. Moreover, it is clearly an isomorphism when
F is a pointwise equivalence, since in that case it is the pasting of three isomorphisms.
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Remark 2.2.7. A derivator left adjoint F : D1 → D2 is an equivalence if and only if
the underlying functor F : D1([0]) → D2([0]) is an equivalence. This follows by applying
Lemma 2.1.25 to the unit and counit of the adjunction.

Example 2.2.8. Let M and N be model categories, and F : M → N be a left Quillen
functor, with right adjoint G : N→M. Then the derived functors induce an adjunction:

Ho(M) Ho(N)

LF

RG

⊥

By Remark 2.2.7, a left Quillen functor F : M→ N induces an equivalence on derivators if
and only if it is a Quillen equivalence.

We record one more fact, whose proof is in [11, Section 2]:

Lemma 2.2.9. Let D be a derivator, and let u : A → B be a functor. Then the derivator
map u∗ : DB → DA is continuous and cocontinuous.

Combining Lemma 2.2.6 and Lemma 2.2.9, for any functor u : A → B and any derivator
D, the map u∗ : DB → DA admits both a left adjoint u! : DA → DB and a right adjoint
u∗ : DA → DB in Der.

Remark 2.2.10. Given a derivator D and a functor u : A → B, we can lift the canonical
transformations of Definition 2.2.1 to a modification:

DA
1 DB

1 DB
2

DA
1 DA

2 DB
2

u!

η

F

u∗
γ−1

∼=
u∗

F

ε

u!

The map F is cocontinuous if and only if each of these modifications is an isomorphism.

Definition 2.2.11. Given prederivatorsD1 andD2, we can form a prederivatorHom(D1,D2)
as follows:

Hom(D1,D2) : Catop → CAT

A 7→ Hom(D1,D
A
2 )

(u : A→ B) 7→ (u∗ ◦ − : Hom(D1,D
B
2 )→ Hom(D1,D

A
2 ))
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Similarly, if D1 and D2 are derivators, we have a prederivator:

Hom!(D1,D2) : Catop → CAT

A 7→ Hom!(D1,D
A
2 )

(u : A→ B) 7→ (u∗ ◦ − : Hom!(D1,D
B
2 )→ Hom!(D1,D

A
2 ))

This is well-defined by Lemma 2.2.9.

Remark 2.2.12. If D2 is a derivator, then so is Hom(D1,D2). Given a functor u : A→ B,
the Kan extensions along u inHom(D1,D2) are given by postcomposition with u! : DA → DB

and u∗ : DA → DB. On the other hand, Hom!(D1,D2) is a left derivator, but not a derivator
in general. See [3, Section 5].

We end this section with an important theorem, describing the universal property of the
derivator of spaces, which appears in [3].

Theorem 2.2.13 (Cisinski). For any left derivator D, the map

Hom!(Ho(sSet),D)→ D([0]),

given by evaluation at the point ∆0 ∈ Ho(sSet), is an equivalence.

2.3 Two-variable maps

In this section, we review some aspects of two-variable derivator maps, primarily follow-
ing [13]. These have a more complicated theory than single-variable maps, resulting in part
from their external variants, which we discuss at the beginning of this section, and in part
from the cancelling variants, which we will discuss in Chapter 3.

Given derivators D1 and D2, the product D1 × D2 is formed pointwise: for any A ∈ Cat,
we have

(D1 ×D2)(A) = D1(A)×D2(A).

Suppose we have a derivator map ⊗ : D1 ×D2 → D3. For each category A, this map has a
component functor of the form

⊗ : D1(A)×D2(A)→ D3(A).
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From this, we can construct an external version of ⊗ as follows:

⊗̃ : D1(A)×D2(B)→ D3(A× B)

(X, Y ) 7→ p∗BX ⊗ p∗AY

For a fixed object X ∈ D1(A) or Y ∈ D2(B), the external product induces derivator maps:

X ⊗̃ − : D2 → DA
3

− ⊗̃ Y : D1 → DB
3

Note that our notation for the external two-variable map differs from that in [13].

Remark 2.3.1. The external product lifts to a derivator map:

⊗̃ : DA
1 ×DB

2
p∗B×p∗A−−−−−→ DA×B

1 ×DA×B
2

⊗−−→ DA×B
3

Given functors u : A→ C and v : B→ D, the structure isomorphism of ⊗ induces a natural
isomorphism:

DC
1 ×DD

2 DC×D
3

DA
1 ×DB

2 DA×B
3

⊗̃

u∗×v∗ γ

∼=
(u×v)∗

⊗̃

Definition 2.3.2. A two-variable map ⊗ is called cocontinuous if, for every X ∈ D1(A)
and Y ∈ D2(B), the maps

X ⊗̃ − : D2 → DA
3

− ⊗̃ Y : D1 → DB
3

are cocontinuous. Let Hom!(D1,D2;D3) denote the full subcategory of Hom(D1 ×D2,D3)
on the cocontinuous maps.

Remark 2.3.3. Given a two-variable map ⊗ : D1 ×D2 → D3, its opposite is a map

⊗op : Dop
1 ×D

op
2 → D

op
3 .
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For any X ∈ D1(A) we have an isomorphism

X ⊗̃op − ∼= (X ⊗̃ −)op : Dop
2 → (Dop

3 )Aop
.

So ⊗ is cocontinuous if and only if ⊗op is continuous in the obvious sense.

Remark 2.3.4. As in Remark 2.2.10, we may lift the isomorphisms associated to a cocon-
tinuous two-variable map ⊗ : D1×D2 → D3 to modifications. Given any functor u : A→ B,
and any category J, we have a canonical map

DJ
1 ×DA

2 DJ
1 ×DB

2 DJ×B
3

DJ
1 ×DA

2 DJ×A
3 DJ×B

3

DJ
1×u!

η

⊗̃

DJ
1×u

∗ γ−1

∼=
(J×u)∗

⊗̃

ε

(J×u)!

and a similar map where the Kan extension is in the first variable. The two-variable map ⊗
is cocontinuous if and only if each of these modifications is an isomorphism.

Lemma 2.3.5. There is an equivalence of categories

Hom(D1 ×D2,D3) ' Hom(D1,Hom(D2,D3))

which restricts to an equivalence:

Hom!(D1,D2;D3) ' Hom!(D1,Hom!(D2,D3))

Proof. See [3, Section 5] for a complete proof. For convenience, we record the maps in both
directions.

Given a map ⊗ ∈ Hom(D1 × D2,D3), the corresponding map in Hom(D1,Hom(D2,D3))
has components:

D1(A) Hom(D2,D
A
3 )

X X ⊗̃ −

For the inverse, suppose we have a map ϕ ∈ Hom(D1,Hom(D2,D3)). For any X ∈ D1(A),
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ϕ gives us a map ϕ(X) : D2 → DA
3 . The morphism corresponding to ϕ in Hom(D1×D2,D3)

has components given by

D1(A)×D2(A) D3(A× A) D3(A)

(X, Y ) ϕ(X)(Y ) δ∗(ϕ(X)(Y ))

δ∗

where δ : A→ A× A is the diagonal map.

Lemma 2.3.5 carries over to the following statement about two-variable maps. For a proof,
see [13, Theorem 3.11].

Remark 2.3.6. Let D1, D2 and D3 be prederivators. Consider the 2-functor below:

D1 × D2 : Catop ×Catop CAT

(A,B) D1(A)×D2(B)

We may also form the following composite, where the first map takes a pair of categories A
and B to their product A× B:

D3 ◦ × : Catop ×Catop Catop CAT× D3

The maps of Lemma 2.3.5 induce an equivalence of categories

Hom(D1 ×D2,D3) ' Psnat(D1 × D2,D3 ◦ ×),

where the second category has objects given by the pseudonatural transformations from
D1 × D2 to D3 ◦ ×, and maps given by modifications.

Explicitly, a prederivator map ⊗ : D1 ×D2 → D3 corresponds to a pseudonatural transfor-
mation with component at (A,B) given as follows:

D1(A)×D2(B) D3(A× B)

(X, Y ) X ⊗̃ Y
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For any derivator D, we can apply Theorem 2.2.13 and Lemma 2.3.5 to the left derivator
Hom!(D,D), to get an equivalence:

Hom!(D,D) ' Hom!(Ho(sSet),Hom!(D,D)) ' Hom!(Ho(sSet),D;D)

Under this equivalence, id ∈ Hom!(D,D) gives us a canonical cocontinuous map:

⊗ : Ho(sSet)×D→ D

This is the essentially unique cocontinuous map such that

∆0 ⊗̃ − ∼= id : D→ D.

For the derivatorHo(M) associated to a model categoryM, this map agrees with the familiar
action of sSet on M, constructed, for example, in [23, Chapter 5]. We will discuss actions
of derivators in detail in Chapter 3.

2.4 Pointed and triangulated derivators

In this section we include a brief overview of pointed, stable and triangulated derivators, most
of which can be found in [11, Section 3,4]. These are the derivator analogues of pointed and
stable model categories, and a number of the concepts that are important in that setting can
also be developed in derivators, for example a theory of homotopy fibres and cofibres. Note
that, in contrast to [11], we do not assume stable derivators are strong. Thus, the definition
of stable derivator in [11] is what we call a triangulated derivator in Definition 2.4.6. To
study triangulated derivators, we will use a number of results from the theory of triangulated
categories, which we recall at the end of this section. Using these, we will be able to prove
representability theorems for enriched triangulated derivators in Chapter 3 and Chapter 5.

Definition 2.4.1. We say a derivator D is pointed if the underlying category has a zero
object 0 ∈ D([0]).

If D is a pointed derivator, note that p∗A0 ∈ D(A) is a zero object, for any category A.

Example 2.4.2. Let M be a model category. Then the derivator Ho(M) is pointed if
and only if the unique map from the initial object in M to the terminal object is a weak
equivalence. In particular, if M is a pointed model category then Ho(M) is pointed.
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We have an analogue of Theorem 2.2.13 for pointed derivators:

Theorem 2.4.3 (Cisinski). For any pointed derivator D, the map

Hom!(Ho(sSet∗),D)→ D([0])

given by evaluation at S0 ∈ Ho(sSet∗) is an equivalence.

For any pointed derivator D, this universal property induces a canonical cocontinuous map

∧ : Ho(sSet∗)×D→ D.

This is the essentially unique cocontinuous map such that

S0 ∧̃ − ∼= id : D→ D.

See [3] for a complete proof of this fact.

Definition 2.4.4. For any pointed derivator D, the action of Ho(sSet∗) on D induces the
suspension map:

Σ := S1 ∧̃ − : D→ D

We call a pointed derivator D stable if this map is an equivalence.

Given a pointed derivator, it is possible to define suspension in elementary terms, without
appealing to the action of Ho(sSet∗). See [11] for this approach. See [16] for a number of
equivalent characterisations of stability.

Example 2.4.5. Given a pointed model category M, the derivator Ho(M) is stable if and
only if M is a stable model category.

Definition 2.4.6. Let D be a stable derivator. If in addition D is strong, we call D a
triangulated derivator.

The following theorem is the motivation for the term triangulated derivator. Der 5 is
essential in its proof.

Theorem 2.4.7 (Groth, Maltsiniotis). Let D be a triangulated derivator. Then, for any
category A, the category D(A) has a canonical triangulated structure, and for any u : A→ B,
the functor u∗ : D(B)→ D(A) is canonically exact.
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Moreover, suppose D1 and D2 are triangulated derivators, and let F : D1 → D2 be a derivator
map that preserves initial objects and homotopy pushouts. Then, for each category A, the
functor F : D1(A)→ D2(A) has a canonical exact structure. The same is true if F preserves
terminal objects and homotopy pullbacks.

See [11] for a proof of this theorem, and for the definition of homotopy pushouts, which
are called cocartesian squares in [11]. We will not recall the definition here: for our
purposes, it suffices to note that all cocontinuous derivator maps preserve initial objects and
homotopy pushouts.

We now recall some concepts from the theory of triangulated categories, which we will use
to study triangulated derivators. See [30, 35] for more details. There is also a useful survey
in the first section of [40].

Definition 2.4.8. Let T be a triangulated category that admits all coproducts. An object
x ∈ T is called compact if the functor it represents

T(x,−) : T → Ab

preserves coproducts.

A triangulated category T is called compactly generated if it admits all coproducts and
there is a set C of objects in T with the following properties:

1. Every object x ∈ C is compact.

2. If y ∈ T has the property that T(x, y) = 0 for every x ∈ C, then y = 0.

We call C a set of compact generators for T.

Compactly generated triangulated categories are historically important and well-studied.
However, the following generalisation, introduced in [29], retains several important properties
of compactly generated triangulated categories, and admits many more examples:

Definition 2.4.9. A triangulated category T is called perfectly generated if it admits all
coproducts and there is a set P of objects in T with the following properties:

1. Let fi : yi → zi be a family of maps in T. Suppose that, for every x ∈ P and every fi,
the map

T(x, fi) : T(x, yi)→ T(x, zi)
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is surjective. Then, for every object x ∈ P , the map

T(x,
∐
fi) : T(x,

∐
yi)→ T(x,

∐
zi)

is surjective.

2. If y ∈ T has the property that T(x, y) = 0 for every x ∈ P , then y = 0.

We call P a set of perfect generators for T.

We will now record some important properties of perfectly generated triangulated categories.
First, we recall two more definitions:

Definition 2.4.10. Let T be a triangulated category. A functor F : Top → Ab is called a
cohomological functor if it takes any distinguished triangle in T to an exact sequence in
Ab.

Definition 2.4.11. Let T be a triangulated category that admits all coproducts. We say
that T satisfies Brown representability if any cohomological functor F : Top → Ab that
preserves products (that is, takes coproducts in T to products in Ab) is representable.

Versions of the following theorem have been proven in a number of settings. The version we
give below is proved in [29]:

Theorem 2.4.12. Perfectly generated triangulated categories satisfy Brown representability.

The following is a useful property of triangulated categories that satisfy Brown representabil-
ity. A simple proof can be found in [35, Chapter 8].

Lemma 2.4.13. Let T and S be triangulated categories, and suppose T satisfies Brown
representability. An exact functor F : T → S has a right adjoint if and only if it preserves
coproducts.

We will now apply these theorems to triangulated derivators. A proof of the following lemma
can be found in [22, Section 3]:

Lemma 2.4.14. Let D be a triangulated derivator. Suppose G is a set of compact (resp.
perfect) generators for D([0]). Then, for any category A, the set

GA = {a!x | a ∈ A, x ∈ G}
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is a compact (resp. perfect) generating set for D(A).

By Theorem 2.4.12 and Lemma 2.4.14, the following lemma applies to any triangulated
derivator D1 whose underlying category is perfectly generated:

Proposition 2.4.15. Let D1 and D2 be triangulated derivators, and suppose D1(A) satisfies
Brown representability, for any category A. Then a derivator map F : D1 → D2 has a right
adjoint if and only if it is cocontinuous.

Proof. Let A be a category. If F : D1 → D2 is cocontinuous then the component functor
F : D1(A)→ D2(A) preserves coproducts, and, by Theorem 2.4.7, is exact. Thus, the result
follows by Lemma 2.2.6 and Lemma 2.4.13.

We conclude this section with an analogue of Theorem 2.2.13 for stable derivators:

Theorem 2.4.16 (Heller). For any stable derivator D, the map

Hom!(Ho(Spt),D)→ D([0])

given by evaluation at the sphere spectrum S ∈ Ho(Spt) is an equivalence.

For derivators satisfying a stronger analogue of Der 5, this theorem is essentially proved
in [20]; see [42, Section 9], however, for a proof that the derivator constructed in [20] is
equivalent to Ho(Spt). See [6] for a similar proof that does not use Der 5.

Using this universal property, for any stable derivator D we obtain a canonical cocontinuous
map

∧ : Ho(Spt)×D→ D,

essentially unique such that
S ∧̃ − ∼= id : D→ D.

For the derivator Ho(M) associated to a stable model category M, this map recovers the
action constructed in [38].



Chapter 3

Actions of Monoidal Derivators

In this chapter we discuss the theory of modules over monoidal derivators. Closed modules
play a particularly important role in Chapter 4 and Chapter 5, and in this chapter we
give a number of examples. Moreover, we show that, given a closed module D over a
symmetric monoidal derivator, the shifted derivators DA and the opposite derivator Dop

are also closed modules. In this way, we build a collection of examples, which, as we will
show in Chapter 5, induce important examples of enriched derivators. In addition, we prove
a number of results in this chapter that will contribute to our development of the theory
in Chapter 4 and Chapter 5.

In order to study monoidal derivators and their actions, we recall the theory of ends and co-
ends in Section 3.1, and use this to discuss derivator two-variable adjunctions in Section 3.2.
In Section 3.3 and Section 3.4, we recall the definition of monoidal derivators and their ac-
tions. Up to this point, much of this material can be found in [13], although our presentation
differs in a number of ways. Section 3.5 and Section 3.6 contain an in-depth discussion of the
structure arising from the action of a monoidal derivator. The results we prove in these sec-
tions form the groundwork for a number of the results in Chapter 4 and Chapter 5. We also
use the results of these sections in Section 3.7, which, given a closed E-module D, discusses
the action on the opposite derivator Dop. Finally, in Section 3.8, we prove a representability
theorem for triangulated closed modules over triangulated monoidal derivators.

36
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3.1 Ends and coends

In this section, we recall from [13, Section 5] the definition of (homotopy) ends and coends
in a derivator, and prove a number of simple results that we will need in the later sections
of Chapter 3 and in Chapter 4. The definition of ends and coends that we give here goes via
the twisted arrow category. See [13, Appendix A] for a discussion of equivalent definitions.

Given a category A, recall that the twisted arrow category tw(A) is the category of
elements of the hom-functor hom : Aop × A → Set. Explicitly, objects of tw(A) are arrows
f : a→ b in A, and an arrow from f : a→ b to g : c→ d is a commutative square:

a c

b d

f

h

g

k

We have a canonical map (s,t) : tw(A)→ Aop×A. Taking the opposite of this map, we get:

(top, sop) : tw(A)op (s,t)op

−−−−−→ A× Aop ∼= Aop × A

Definition 3.1.1. For any derivator D and any category A, the (homotopy) coend over
A is the composite ∫ A

: DAop×A (top, sop)∗−−−−−−−→ Dtw(A)op p!−−→ D.

We will denote the right adjoint of this map by

∂A : D p∗−−→ Dtw(A)op (top, sop)∗−−−−−−−→ DAop×A.

Dually, the (homotopy) end over A is the composite
∫

A
: DAop×A (s,t)∗−−−−→ Dtw(A) p∗−−→ D

and its left adjoint will be denoted

∂A : D p∗−−→ Dtw(A) (s,t)!−−−−→ DAop×A.

If D = y(C) is a represented derivator, these constructions recover the usual end and coend.
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Definition 3.1.2. Let F : D1 → D2 be a derivator map, and let A be a category. We say
F preserves ∂A if the canonical pasting

D1 D
tw(A)
1 DAop×A

1

D2 D
tw(A)
2 DAop×A

2

p∗

F
γ

∼=
F

(s,t)!

F

p∗ (s,t)!

is an isomorphism, where the second square is the modification of Remark 2.2.10. Note that
this is the case if and only if F preserves the left Kan extension along (s,t). Similarly, we
can define functors that preserve ends, coends and ∂A.

Remark 3.1.3. Let F,G : D1 → D2 be derivator maps, and let θ : F ⇒ G be a modifica-
tion. Using Lemma 2.2.3, it follows immediately that θ respects the constructions of Defi-
nition 3.1.1. For example, given any category A and X ∈ D1(Aop × A), the diagram below
commutes, where the vertical arrows are the canonical maps, as in Definition 3.1.2:

∫ A FX
∫ AGX

F
∫ AX G

∫ AX

∫ A
θX

θ∫ A
X

Definition 3.1.4. Suppose we have a functor u : A→ B. This induces a functor on twisted
arrow categories tw(u) : tw(A)→ tw(B) that makes the diagram below commute:

tw(A) tw(B)

Aop × A Bop × B

tw(u)

(s,t) (s,t)

uop×u

Using this commutative diagram, each of the constructions of Definition 3.1.1 can be ex-
tended to act on the functor u. Since we use them repeatedly, we will describe ∂u and

∫ u
explicitly:
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Definition 3.1.5. For any functor u : A → B, and any derivator D, we have the following
modifications:

Dtw(B) DBop×B

∂u := D

Dtw(A) DAop×A

tw(u)∗

(s,t)!

(uop×u)∗

p∗

p∗

(s,t)!

DBop×B Dtw(B)op

∫ u := D

DA×Aop
Dtw(A)op

(top, sop)∗

(uop×u)∗ (tw(u)op)∗

p!

(top, sop)∗
p!

The non-identity modifications in these pastings are obtained as in Definition 2.1.14 and
Remark 2.1.15. The transformations ∂u and

∫
u are dual; that is, they can be obtained from

these by moving to the opposite derivator Dop.

Given any category C and X ∈ D(C), rather than use a subscript as for most modifications,
we will denote the component of ∂u at X by ∂uX. We will denote the others similarly.

Note that
∫
u is dual to

∫ u, and is a mate of ∂u under the adjunctions ∂A a
∫

A and ∂B a
∫

B.
Using this, the following lemmas have analogues for each of the constructions of Defini-
tion 3.1.1. Rather than record each version explicitly, we state each in the case that we will
use most frequently in subsequent sections.

Lemma 3.1.6. Let D be a derivator, and let D ⇓ Der denote the category whose objects are
arrows F : D→ D′ in Der and whose morphisms from F to F ′ are given by modifications:

D′

D

D′′

G

F

F ′
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Then we have a functor ∂− : Catop → D ⇓ Der, taking categories A to ∂A and functors u
to ∂u.

Proof. It is easy to check that forming the twisted arrow category preserves identities and
composition. The result then follows by the functoriality of mates, as in [28, Section 2].

Lemma 3.1.7. Suppose we have a natural transformation:

A B

u

v

κ

For any derivator D, any category C, and any X ∈ D(C) we have a commutative square:

∂AX (uop × u)∗∂BX

(vop × v)∗∂BX (uop × v)∗∂BX

∂uX

∂vX (uop×κ)∗∂BX

(κop×v)∗∂BX

Proof. Given the natural transformation κ, we can form a functor tw(u, v) : tw(A)→ tw(B)
given by:

tw(A) tw(B)

a u(a)

u(b)

b v(b)

f

u(f)

κb

This makes the diagram below commute:

tw(A) tw(B)

Aop × A Bop × B

tw(u,v)

(s,t) (s,t)

uop×v
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Moreover, we have natural transformations tw(u, κ) : tw(u) ⇒ tw(u, v) and tw(κ, v) :
tw(v)⇒ tw(u, v), which satisfy the following equalities:

tw(A) tw(B) tw(A) tw(B)

=

Aop × A Bop × B Aop × A Bop × B

tw(u)

(s,t)
tw(u,v)

(s,t)

tw(u)

(s,t) (s,t)

uop×v

uop×u

uop×v

tw(u,κ)

uop×κ

tw(A) tw(B) tw(A) tw(B)

=

Aop × A Bop × B Aop × A Bop × B

tw(v)

(s,t)
tw(u,v)

(s,t)

tw(v)

(s,t) (s,t)

uop×v

vop×v

uop×v

tw(κ,v)

κop×v

These squares give rise to modifications, as in Definition 2.1.14. Pasting these to the modi-
fication

Dtw(B) Dtw(B)

D = D

Dtw(A) Dtw(A)

tw(u,v)∗tw(u)∗ tw(v)∗ tw(u,v)∗

p∗

p∗

p∗

p∗

tw(u,κ)∗ tw(κ,v)∗

gives the following equality:
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DBop×B DBop×B

D = D

DAop×A DAop×A

(uop×v)∗(uop×u)∗ (vop×v)∗ (uop×v)∗

∂B

∂A

∂B

∂A

(uop×κ)∗ (κop×v)∗
∂u ∂v

This is precisely the equality we require.

Lemma 3.1.8. For any category A and any derivator D, there is a canonical isomorphism:

DAop×A

D

DA×Aop

∼=σ∗

∫ A

∼=

∫ Aop

Proof. We have an isomorphism tw(Aop)
∼=−→ tw(A) that makes the diagram below commute:

tw(Aop) tw(A)

A× Aop Aop × A

∼=

(s,t) (s,t)

σ

∼=

This induces the required isomorphism:

DAop×A Dtw(A)op

D

DA×Aop
Dtw(Aop)op

(top, sop)∗

∼=σ∗ ∼=

p!

(top, sop)∗
p!

∼=

Lemma 3.1.9 (Fubini Theorem for Derivators). For any categories A and B, and any
derivator D, there are canonical isomorphisms:
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DAop×A×Bop×B

D(A×B)op×(A×B) D

DBop×B×Aop×A

∫ A ∫ B

∼= ∫ A×B

∼= ∫ B ∫ A

∼=

∼=

Proof. We have an isomorphism tw(A × B)
∼=−→ tw(A) × tw(B), which makes the diagram

below commute:

tw(A× B) tw(A)× tw(B)

(A× B)op × (A× B) Aop × A× Bop × B

∼=

(s,t) (s,t)×(s,t)

∼=

As in the proof of Lemma 3.1.8, this induces the desired isomorphisms.

Notation 3.1.10. In light of Lemma 3.1.8 and Lemma 3.1.9, we will suppress instances
of the symmetry isomorphism σ∗ : D(A × B)

∼=−→ D(B × A) from our notation as much as
possible. This will be convenient when there are multiple parameters indexing a shifted
derivator: for example, we may write

∫ A : DA×B×Aop → DB without ambiguity.

On the other hand, if multiple copies of the same category appear in the index of a shifted
derivator, we will often use different subscripts to denote the same category. For example, if
we denote A = A1 = A2 = A3 then the notation

∫ A1,3 : DAop
1 ×A2×A3 → DA2 is unambiguous.

Remark 3.1.11. Using the pasting properties of mates, it is easy to show that any derivator
map F : D1 → D2 respects the isomorphism in Lemma 3.1.9. That is, given any object
X ∈ D1(Aop × A× Bop × B), the diagram below commutes:
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∫ A ∫ B FX
∫ A×B FX

∫ A F
∫ BX

F
∫ A ∫ BX F

∫ A×BX

∼=

∼=

The vertical maps are the canonical morphisms, as in Definition 3.1.2.

The following lemma is technical, but the isomorphism it provides is extremely important
in the theory of monoidal derivators. In particular, it induces the unit isomorphisms in the
bicategory of Remark 3.5.3 associated to any monoidal derivator.

Proposition 3.1.12. For any derivator D, and any category A = Ai, we have an isomor-
phism:

DA1×Aop
2 ×A3

DA1 DA3

∫ A1,2∂A2,3

∼=

Proof. We must show that the composite

DA (A×p)∗−−−−→ DA×tw(A) (A×(s, t))!−−−−−−→ DA×Aop×A ((top, sop)×A)∗−−−−−−−−→ Dtw(Aop)op×A (p×A)!−−−−→ DA

is isomorphic to the identity.

This isomorphism is constructed in the proof of [13, Lemma B.1]. We will give an outline of
the proof.

Define the category PA to be the following pullback. In [13, Lemma B.1], this square is
shown to be homotopy exact:
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PA A× tw(A)

tw(Aop)op × A A× Aop × A

y

mA

nA
id

A×(s,t)

(top,sop)×A

The category PA has objects given by pairs of composable maps a g−−→ b
f−−→ c in A, with

a morphism from a1
g1−−→ b1

f1−−→ c1 to a2
g2−−→ b2

f2−−→ c2 consisting of a commutative
diagram:

a1 a2

b1 b2

c1 c2

α

g1 g2

f1 f2

β

γ

The functor mA takes a g−−→ b
f−−→ c to the pair (a, b f−−→ c), and nA takes a g−−→ b

f−−→ c to
(a g−−→ b, c). There is a natural transformation

PA A× tw(A) A

tw(Aop)op × A

A A

mA

nA

A×p

ϑA

p×A

with component at the object a g−−→ b
f−−→ c given by a f◦g−−−→ c. In [13, Lemma B.1], this

square is also shown to be homotopy exact, so we obtain a canonical isomorphism:
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DA DA×tw(A) DA×Aop×A Dtw(Aop)op×A DA

DPA

(A×p)∗

m∗

(A×(s, t))!

∼=

((top, sop)×A)∗ (p×A)!

∼=

n!

Remark 3.1.13. Given any category A = Ai, the pasting diagrams below are equal, for any
derivator D:

DAop
1 ×A2×Aop

3 ×A4

DAop
1 ×A2 DAop

3 ×A2 D

∫ A1,4∂A3,4 ∫ A3,2
∼=

DAop
3 ×A2

DAop
1 ×A2×Aop

3 ×A4

DAop
1 ×A2 DAop

1 ×A4 D

∫ A3,2

∼=∫ A3,2

∫ A1,4

∂A3,4

∫ A1,4

∼=

This is shown in the proof of [13, Lemma B.5]. Dually, the pasting diagrams below are also
equal:

DAop
1 ×A2×Aop

3 ×A4

D DAop
1 ×A2 DAop

3 ×A2

∫ A1,4

∂A1,2

∂A3,4

∼=
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DAop
1 ×A2

DAop
1 ×A2×Aop

3 ×A4

D DAop
3 ×A4 DAop

3 ×A2

∂A3,4

∼=
∫ A1,4

∂A1,2

∂A3,4

∂A1,2

∼=

Remark 3.1.14. Let F : D1 → D2 be a derivator map. Using Lemma 2.2.4, it follows that
F respects the isomorphism of Proposition 3.1.12. That is, for any category A = Ai, and
any X ∈ D1(A1), the diagram below commutes, where the horizontal maps are the canonical
morphisms of Definition 3.1.2:

∫ A1,2 ∂A2,3FX
∫ A1,2 F∂A2,3X F

∫ A1,2 ∂A2,3X

FX∼= ∼=

3.2 Two-variable adjunctions

In this section, we recall the definition and some basic properties of two-variable adjunctions
between derivators, which were introduced and studied in [13]. Our presentation differs
slightly from [13]. In particular, we begin with Theorem 3.2.2, which collects all of the struc-
ture present in a derivator two-variable adjunction, and then point out that this structure is
uniquely determined by far less. This inverts the approach of [13], but has the advantage of
fixing notation from the outset.

Before we give the derivator analogue, we recall the definition of a two-variable left adjoint
between categories. Given categories C1, C2 and C3, a functor ⊗ : C1 × C2 → C3 is called a
two-variable left adjoint if, for each x ∈ C1 and each y ∈ C2, the functors x⊗− : C2 → C3

and −⊗ y : C1 → C3 have right adjoints. Equivalently, there are functors

B : Cop
2 × C3 → C1

C : C3 × Cop
1 → C2

and natural isomorphisms:

C1(x, y B z) ∼= C3(x⊗ y, z) ∼= C2(y, z C x)
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We now give the derivator analogue. Note that the following is not the definition given
in [13], but is equivalent to it by [13, Lemma 8.8].

Definition 3.2.1. We call a derivator map ⊗ : D1×D2 → D3 a two-variable left adjoint
if, for any categories A and B, and any X ∈ D1(A) and Y ∈ D2(B), the derivator maps

X ⊗̃ − : D2 → DA
3

− ⊗̃ Y : D1 → DB
3

have right adjoints.

The following theorem highlights the importance of Proposition 3.1.12. We will use this
theorem repeatedly, especially in subsequent sections of Chapter 3.

Theorem 3.2.2. Suppose we have a cocontinuous two-variable map

⊗ : D1 ×D2 → D3

and two continuous derivator maps

B: Dop
2 ×D3 → D1

C: D3 ×D
op
1 → D2.

The following are equivalent:

1. For any X ∈ D1(A), the map X ⊗̃ − : D2 → DA
3 has a right adjoint given by

DA
3

− C̃ X−−−−−→ DA×Aop

2

∫
Aop−−−−→ D2

and for any Y ∈ D2(B), the map − ⊗̃ Y : D1 → DB
3 has a right adjoint given by

DB
3

Y B̃ −−−−−−→ DBop×B
1

∫
B−−−→ D1.

2. For any X ∈ D1(A), the map − C̃ X : D3 → DAop
2 has a left adjoint given by

DAop

2
X ⊗̃ −−−−−−→ DA×Aop

3

∫ Aop

−−−−→ D3
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and for any Z ∈ D3(C), the map Z C̃op − : D1 → (Dop
2 )Cop has a right adjoint given

by

(Dop
2 )Cop − B̃ Z−−−−−→ DCop×C

1

∫
C−−−→ D1.

3. For any Y ∈ D2(B), the map Y B̃ − : D3 → DBop
1 has a left adjoint given by

DBop

1
− ⊗̃ Y−−−−−→ DBop×B

2

∫ B

−−−→ D3

and for any Z ∈ D3(C), the map − B̃op Z : D2 → (Dop
1 )Cop has a right adjoint given

by

(Dop
1 )Cop Z C̃ −−−−−−→ DC×Cop

2

∫
Cop−−−−→ D2.

Proof. Given maps ⊗, B and C as in the statement of the theorem, consider the maps below:

Cop: Dop
3 ×D1 → D

op
2

⊗op : Dop
1 ×D

op
2 → D

op
3

B: Dop
2 ×D3 → D1

By Remark 2.3.3, Cop is cocontinuous and ⊗op is continuous, so this triple satisfies the
hypotheses of the theorem. Condition (2) for the triple (⊗,B,C) is exactly condition (1) for
the new triple (Cop,⊗op,B), (3) for (⊗,B,C) is (2), and (1) for (⊗,B,C) is (3). Thus, to
prove the theorem, it suffices to prove that (1) implies (2).

So, suppose we have maps (⊗,B,C) as in the statement of the theorem, that satisfy condition
(1). Given X ∈ D(A), consider the map

DAop

2
X ⊗̃ −−−−−−→ DA×Aop

3

∫ Aop

−−−−→ D3.

By (1), this has a right adjoint given by the composite

D3
∂

Aop
2,3

−−−−→ D
A2×Aop

3
3

− C̃ X−−−−−→ D
A2×Aop

3 ×Aop
1

2

∫
Aop

1,2−−−−→ D
Aop

3
2 ,

where A = A1 = A2 = A3 as in Notation 3.1.10. Since C is continuous, − C̃ X commutes
with ∂Aop , so the composite above is isomorphic to:

D3
− C̃ X−−−−−→ D

Aop
1

2
∂

Aop
2,3

−−−−→ D
Aop

1 ×A2×Aop
3

2

∫
Aop

1,2−−−−→ D
Aop

3
2



50

By Proposition 3.1.12, this composite is isomorphic to − C̃ X.

Let Z ∈ D3(C), and consider the map Z C̃op − : D1 → (Dop
2 )Cop . The component of this

map at A is the opposite of the component of Z C̃ − : Dop
1 → DC

2 at Aop:

Z C̃ − : D1(A)op → D2(C× Aop)

Given X ∈ D1(A) and Y ∈ D2(C× Aop), we have a string of natural isomorphisms:

D2(C× Aop)(Y, Z C̃ X) ∼= D3(C)(
∫

AopX ⊗̃ Y, Z)
∼= D3(C× A× Aop)(X ⊗̃ Y, ∂Aop

Z)
∼= D1(A)(X,

∫
C×AopY B̃ ∂Aop

Z)

The first follows from the description of the left adjoint to − C̃ X which we have just proved;
the second is by definition of ∂Aop ; the third follows from the description of the right adjoint
to − ⊗̃ Y .

SinceB is continuous, Y B̃ − commutes with ∂Aop . Applying the Fubini theorem of Lemma 3.1.9
to the end

∫
C×Aop , we can use Proposition 3.1.12 to cancel

∫
Aop with ∂Aop . This leaves us

with the desired description of the right adjoint to Z C̃op −:

(Dop
2 )Cop − B̃ Z−−−−−→ DCop×C

1

∫
C−−−→ D1

The theorem below is a consequence of the results in [13, Section 9]:

Theorem 3.2.3. A map ⊗ : D1 ×D2 → D3 is a two-variable left adjoint if and only if we
can construct derivator maps

B:Dop
2 ×D3 → D1

C:D3 ×D
op
1 → D2

such that ⊗, C and B satisfy the equivalent conditions of Theorem 3.2.2.

In light of Theorem 3.2.3, we will call a triple of derivator maps as in Theorem 3.2.2 a
two-variable adjunction. We denote them by (⊗,B,C) : D1 ×D2 → D3.

It follows that Theorem 3.2.2 gives a complete description of the various adjunctions that
arise from a 2-variable adjunction. We will use these descriptions repeatedly, especially
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in Section 3.4 and Section 3.7.

Remark 3.2.4. Given a two-variable adjunction (⊗,B,C) : D1 × D2 → D3, the proof
of Theorem 3.2.2 implies that (Cop,⊗op,B) : Dop

3 ×D1 → D
op
2 and (Bop,C,⊗op) : D2×Dop

3 →
D

op
1 are also two-variable adjunctions. These are the cycled two-variable adjunctions of [13,

Section 9].

We finish this section with the definition of the cancelling variant of a two-variable derivator
map:

Definition 3.2.5. Given a two-variable map ⊗ : D1 ×D2 → D3, categories A and B, and
objects X ∈ D1(Aop) and Y ∈ D2(B), we will use the following notation for the cancelling
tensor product that appears in Theorem 3.2.2:

X ⊗A − : DA
2

X ⊗̃ −−−−−−→ DAop×A
3

∫ A

−−−→ D3

−⊗B Y : DBop

1
− ⊗̃ Y−−−−−→ DBop×B

2

∫ B

−−−→ D3

Together these maps induce a derivator map:

⊗A : DAop

1 ×DA
2 → D3

Suppose we have a functor u : A → B. Pasting the isomorphism from Remark 2.3.1 to the
map

∫ u of Definition 3.1.5 gives the following canonical modification:

DBop
1 ×DB

2 DBop
1 ×DB

2 DBop×B
3

D3 := D3

DAop
1 ×DA

2 DAop
1 ×DA

2 DAop×A
3

(uop)∗×u∗

⊗B
⊗̃

(uop)∗×u∗

∫ B

(uop×u)∗

⊗A

⊗u

⊗̃

∫ A

∫ u
∼=

3.3 Monoidal derivators

In this brief section we recall the definition of monoidal derivators, which can be found
in [10, 13]. The definition is a direct analogue of the familiar definition of monoidal category.
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Definition 3.3.1. Let E be a prederivator. We say E is a monoidal prederivator if it
is equipped with a product ⊗ : E × E → E, and a unit object 1 ∈ E([0]), together with
isomorphisms:

E E

−⊗̃1

1⊗̃−

ρ∼=

λ∼=

E× E× E E× E

E× E E

E×⊗

⊗×E ⊗

⊗

∼=
α

These must satisfy the familiar coherence conditions, as in [10] and [27, Chapter 1.1]. We
say that E is a symmetric monoidal prederivator if, in addition, we have a natural
isomorphism

E× E E× E

E

σ
∼=

⊗ ⊗

∼=
τ

where σ is the canonical twist. This map must also satisfy coherence conditions, as in [10]
and [27, Chapter 1.4].

Remark 3.3.2. To give a monoidal structure on a prederivator E is equivalent to giving
a factorisation of the 2-functor E : Catop → CAT through the 2-category of monoidal
categories. Similarly, a symmetric monoidal structure on E corresponds to a factorisation
through the 2-category of symmetric monoidal categories. See [10] for details.

Definition 3.3.3. Let E be a derivator, equipped with the structure of a monoidal prederiva-
tor. We say that E is a monoidal derivator if the product ⊗ : E× E→ E is cocontinuous.
If, in addition, the product is a two-variable left adjoint, we call E a closed monoidal
derivator.

If the underlying monoidal structure is symmetric, then we call E a symmetric monoidal
derivator.
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Example 3.3.4. If E is a monoidal derivator, then so is the shifted derivator EA, for any
category A. The product ⊗ : EA × EA → EA is given by the shifted product on E. See [13,
Example 3.24].

Example 3.3.5. For any monoidal model category M, the associated derivator Ho(M) is a
closed monoidal derivator. See [13, Example 3.23] and [3, Proposition 6.1]. In particular, the
derivator of spaces Ho(sSet) is monoidal, as is the derivator of spectra Ho(Spt). Note that
the monoidal structure on Ho(Spt) can be constructed directly from the monoidal structure
on Ho(sSet), without going via a monoidal model category of spectra. See [20, Section 10]
for this approach.

3.4 Closed actions of monoidal derivators

In this section we recall the definition of modules over a monoidal derivator E, and give
several examples. These are studied in [10, 13, 16]. Closed E-modules — that is, those
for which the E-action is a two-variable left adjoint — are of particular importance to us.
These provide archetypal examples of E-prederivators, and we will revisit them repeatedly
in Chapter 4 and Chapter 5. We recall the definition in Definition 3.4.7.

Definition 3.4.1. Let E be a monoidal derivator. A (left) action of E on a derivator D is
given by a cocontinuous map ⊗ : E×D→ D, together with isomorphisms:

D D

1⊗̃−

λ∼=

E× E×D E×D

E×D D

E×⊗

⊗×D ⊗

⊗

∼=
α

These must satisfy coherence conditions, as in [10] and [24, Section 1], which are analogous
to those satisfied by a monoidal product. If D is equipped with an E-action, we call D an
E-module.

Example 3.4.2. Any symmetric monoidal derivator E is a left (and right) module over
itself.

Definition 3.4.3. Let D1 and D2 be E-modules. A derivator map F : D1 → D2 is called
an E-module morphism, or is said to preserve tensors, if it is equipped with an isomor-
phism:
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E×D1 E×D2

D1 D2

E×F

⊗ ⊗

F

ϕ

∼=

This isomorphism must satisfy the following coherence conditions, as in [10]:

1. For any category A, and any X ∈ D1(A) and Y, Z ∈ E(A), the diagram below must
commute:

(Z ⊗ Y )⊗ FX Z ⊗ (Y ⊗ FX)

Z ⊗ F (Y ⊗X)

F ((Z ⊗ Y )⊗X) F (Z ⊗ (Y ⊗X))

ϕ

α

Z⊗ϕ

ϕ

F (α)

2. For any X ∈ D1(A), the diagram below must commute:

1⊗̃F (X) F (1⊗̃X)

FX
λ

ϕ

F (λ)

Definition 3.4.4. Let F,G : D1 → D2 be E-module morphisms. A modification β : F ⇒ G

is called an E-module modification, or is said to respect tensors, if the diagram below
commutes, for any category A, and any X ∈ D1(A) and Y ∈ E(A):

Y ⊗ F (X) Y ⊗G(X)

F (Y ⊗X) G(Y ⊗X)

Y⊗βX

ϕ ϕ

βY⊗X

Definition 3.4.5. Given two E-modules D1 and D2, let HomE(D1,D2) denote the category
whose objects are E-module maps from D1 to D2, and whose morphisms are E-module
modifications. Similarly, let HomE

! (D1,D2) denote the full subcategory of HomE(D1,D2) on
the cocontinuous E-module maps.
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Example 3.4.6. Using the universal property of Ho(sSet) described in Theorem 2.2.13, we
can see that any derivator D has a unique module structure over Ho(sSet). The action

⊗ : Ho(sSet)×D→ D

is the map described at the end of Section 2.3; that is, it is the essentially unique cocontinuous
map such that

∆0 ⊗̃ − ∼= id : D→ D.

The coherent structure isomorphisms can be constructed using the universal property. By
similar arguments, any cocontinuous derivator map F : D1 → D2 is a Ho(sSet)-module
morphism.

Similarly, for any stable derivator D, the map

∧ : Ho(Spt)×D→ D

described at the end of Section 2.4 is a unique Ho(Spt)-action on D, and any cocontinuous
map between stable derivators is a Ho(Spt)-module map.

Definition 3.4.7. An E-module D is called a closed E-module if the action ⊗ : E×D→ D

is a two-variable left adjoint. In this case, we will denote the associated maps given by
Theorem 3.2.3 as follows:

mapD(−,−) : Dop ×D→ E

C : D× Eop → D

We refer to ⊗ as the tensor product and C as the cotensor product on D. We will call
mapD(−,−) the mapping space or mapping object morphism for D.

Example 3.4.8. Any closed symmetric monoidal derivator E is a closed module over itself.
In this case, the cotensor product can be given in terms of the mapping space:

C: E× Eop Eop × E E
σ
∼=

mapE(−,−)

To verify this description of C, we can apply Theorem 3.2.2 and check that the composite
above has the desired properties. This is immediate once we observe that, for any category
A and any X ∈ E(A), the symmetry isomorphism τ and the isomorphism of Lemma 3.1.8
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induce an isomorphism between the cancelling products

X ⊗Aop − : EAop → E

−⊗A X : EAop → E

of Definition 3.2.5. This isomorphism is discussed in greater detail in Lemma 3.5.7.

Example 3.4.9. Let D be a triangulated derivator. Since D is stable, it has a unique
Ho(Spt)-module structure, by Example 3.4.6. Using the explicit construction of the action
in [3, 6, 20], we can check that, for any category A and any X ∈ Ho(SptA), the map

X ∧̃ − : D→ DA

has a right adjoint. On the other hand, for any category B and any Y ∈ D(B), since Ho(Spt)
is compactly generated, Proposition 2.4.15 implies that the cocontinuous map

− ∧̃ Y : Ho(Spt)→ DB

has a right adjoint. Thus, any triangulated derivator D has a unique closed Ho(Spt)-module
structure. See [5, Appendix A.3] and [15, Section 4.4] for more details.

Example 3.4.10. Let M be a monoidal model category and let N be an M-enriched model
category. See [18] for a discussion of enriched model categories. By [13, Example 3.23], the
derivator Ho(N) is a closed Ho(M)-module. See also [15, Examples 4.75].

Example 3.4.11. For any model category M, by Example 3.4.6, the derivator Ho(M) is a
Ho(sSet)-module. It follows from [3, Section 6] that this action is closed. Mapping spaces
can be constructed using cosimplicial frames, as in [23, Chapter 5].

Example 3.4.12. Given any E-module D, and any category A, the shifted derivator DA

has an E-module structure given by

⊗ : E×DA p∗×DA
−−−−−→ EA ×DA ⊗−−→ DA,

where ⊗ : EA×DA → DA is the action on D shifted by A. Note that, in terms of the original
action on D, this map is simply the external tensor product

⊗̃ : E×DA → DA.

The maps α and λ are inherited from D.
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Moreover, if D is a closed E-module, then so is DA, by [13, Example 8.15]. The associated
maps from Theorem 3.2.3 are given by

mapDA(−,−) : (Dop)Aop ×DA m̃apD(−,−)−−−−−−−−→ EAop×A
∫

A−−−→ E

C : DA × Eop DA×p∗−−−−−→ DA × (Eop)A C−−→ DA,

where C: DA × (Eop)A → DA is the shifted map associated to D. To see this directly, apply
Theorem 3.2.2 to these three maps.

Lemma 3.4.13. Let D be an E-module and let u : A→ B be a functor. Then the derivator
map

u∗ : DB → DA

has a canonical E-module morphism structure. Moreover, for any natural transformation
κ : u⇒ v, the modification κ∗ : u∗ ⇒ v∗ is an E-module modification.

Proof. Using the description from Example 3.4.12 of the E-action on the shifted derivator
as an external tensor product, we require an isomorphism:

E×DB E×DA

DB DA

E×u∗

⊗̃ ⊗̃

u∗

ϕ

∼=

We take the isomorphism of Remark 2.3.1 to be this structure isomorphism. The coherence
conditions of Definition 3.4.3 follow from the fact that the structure isomorphisms α and λ
for the E-module structure on D are modifications.

Given a natural transformation κ : u ⇒ v, we need to check that κ∗ : u∗ ⇒ v∗ satis-
fies Definition 3.4.4. This follows from Axiom 3 of Definition 2.1.2, for the prederivator map
⊗ : E×D→ D.
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3.5 The cancelling tensor product

In this section, building on work in [13], we revisit the cancelling tensor product of Defi-
nition 3.2.5, associated to any E-module. In Proposition 3.5.2, we recall that this product
is associative and unital, with coherence induced by the original action. In particular, for
any monoidal derivator E, we obtain a bicategory Prof(E), which plays a vital role as the
enriching bicategory in Chapter 4 and Chapter 5. For basic bicategory definitions see [32].
We conclude this section by showing that cocontinuous E-module maps and E-module mod-
ifications respect the cancelling tensor. The results in this section, in particular the list
of commutative diagrams that we collect here, will be used as we develop the theory of
E-categories in Chapter 4.

Definition 3.5.1. Let E be a monoidal derivator. For any category A, consider the map

∂A : E([0])→ E(Aop × A)

of Definition 3.1.1. Denote the image of 1 ∈ E([0]) under this map by hA ∈ E(Aop × A).
In [15], this object is called the Yoneda bimodule or the identity profunctor. Similarly,
given a functor u : A → B, consider the modification ∂u of Definition 3.1.5. Denote the
component of this map at 1 by

hu : hA → (uop × u)∗hB

in E(Aop × A).

Proposition 3.5.2. Let E be a monoidal derivator. For any categories A and B and any
object X ∈ E(Aop × B), the unit isomorphisms λ and ρ of Definition 3.3.1 induce isomor-
phisms:

λ : hB ⊗B X
∼=−−−→ X

ρ : X ⊗A hA
∼=−−−→ X

Similarly, given additional categories C and D, and Y ∈ E(Bop × C) and Z ∈ E(Cop × D),
the associativity isomorphism α induces an isomorphism

α : (Z ⊗C Y )⊗B X
∼=−−−→ Z ⊗C (Y ⊗B X)

in E(Aop × D). More generally, there are analogous isomorphisms α and λ for any given
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E-module D.

These satisfy the following coherence conditions:

1. Given categories A, B, C, D and E, and objects X ∈ D(Aop × B), Y ∈ E(Bop × C),
Z ∈ E(Cop ×D) and W ∈ E(Dop × E), the diagram below commutes:

((W ⊗D Z)⊗C Y )⊗B X (W ⊗D (Z ⊗C Y ))⊗B X

(W ⊗D Z)⊗C (Y ⊗B X) W ⊗D ((Z ⊗C Y )⊗B X)

W ⊗D (Z ⊗C (Y ⊗B X))

α

α ⊗BX

α

α W⊗D α

2. Given X ∈ D(Aop × B) and Y ∈ E(Bop × C), the diagram below commutes:

(Y ⊗B hB)⊗B X Y ⊗B (hB ⊗B X)

Y ⊗B X
ρ ⊗BX

α

Y⊗B λ

Proof. This is proved in [13, Theorem 5.9] in the case of D = E, and the proof in the general
case carries over unchanged. We recall the construction of the maps α, λ and ρ.

Given X ∈ D(Aop × B), the map λ : hB ⊗B X
∼=−−→ X is the component at X of the

modification below:

DB1×Bop
2 ×B3

DB1 DB3

DB1

∫ B12

1⊗̃−

∂B23 1⊗̃−

∂B23

λ

∼=

∼=

∼=
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Here we have B = B1 = B2 = B3, as in Notation 3.1.10, and the unlabelled isomorphisms
come from the cocontinuity of ⊗ and Proposition 3.1.12. For X ∈ E(Aop × B), the isomor-
phism ρ is obtained similarly.

For X ∈ D(Aop × B), Y ∈ E(Bop × C) and Z ∈ E(Cop × D), the associativity isomorphism
from (Z ⊗C Y )⊗BX =

∫ B(
∫ C(Z⊗̃Y )⊗̃X) to (Z ⊗C Y )⊗BX =

∫ C Z⊗̃
∫ B(Y ⊗̃X) is given by

the following composite:

∫ B(
∫ C(Z⊗̃Y )⊗̃X)

∫ B ∫ C(Z⊗̃Y )⊗̃X
∫ C ∫ B(Z⊗̃Y )⊗̃X

∫ C ∫ B Z⊗̃(Y ⊗̃X)

∫ C Z⊗̃
∫ B(Y ⊗̃X)

∼= ∼=

∫ C ∫ B
α

∼=

The unlabelled isomorphisms follow by the cocontinuity of ⊗ and Lemma 3.1.9. Note that,
just as λ and ρ are modifications, the map α above is the component of a modification
between certain derivator maps.

Remark 3.5.3. Proposition 3.5.2 can be rephrased as follows, which is how it appears in [13,
Theorem 5.9]. For any monoidal derivator E, the following data forms a bicategory Prof(E):

• The objects of Prof(E) are small categories.

• Given categories A and B, the hom-category from A to B is E(Bop × A).

• Composition is given by the cancelling product:

⊗B : E(Bop × A)× E(Cop × B)→ E(Cop × A)

• For any category A, the identity on A is given by

hA ∈ E(Aop × A).

We call Prof(E) the bicategory of profunctors associated to E. This is the terminology
of [13]; it is called the bicategory of bimodules in [15].
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Notation 3.5.4. From this point onwards, we will take the convention that the cancelling
tensor cancels the outside variables, as in Remark 3.5.3:

⊗B : E(Bop × C)× E(Aop × B)→ E(Aop × C)

Example 3.5.5. Given any monoidal derivator E and any category A = Ai, Proposition 3.5.2
implies that the shifted derivator EAop×A is monoidal, with unit given by hA ∈ E(Aop × A),
and tensor given by the cancelling tensor product:

⊗A1,4 : EAop
1 ×A2 × EAop

3 ×A4 → EAop
3 ×A2

If E is closed monoidal then so is EAop×A. In this case, Theorem 3.2.2 provides a description
of the required adjoints. Note, however, that if E is symmetric monoidal it does not follow
that EAop×A is symmetric; see Lemma 3.5.7 for a description of the structure induced on
shifted derivators by the symmetry isomorphism from E.

Remark 3.5.6. In addition to the commutative diagrams of Proposition 3.5.2, for any E-
module D, any categories A, B and C, and any objects X ∈ D(Aop×B) and Y ∈ E(Bop×C),
the diagram below commutes:

(hC ⊗C Y )⊗B X hC ⊗C (Y ⊗B X)

Y ⊗B X
λ ⊗BX

α

λ

In the case of D = E, in light of Remark 3.5.3, this is a special case of the coherence theorem
for bicategories, as in [32]. In general, the commutativity of this diagram follows from the
commutative diagrams in Proposition 3.5.2. The proof of this is essentially the same as the
proof for monoidal categories in [26].

Lemma 3.5.7. Let E be a symmetric monoidal derivator. For any categories A, B and C,
and any X ∈ E(B×Aop) and Y ∈ E(C×Bop), the symmetry isomorphism of Definition 3.3.1
induces a map

τ : σ∗Y ⊗B σ
∗X

∼=−−−→ σ∗(X ⊗Bop Y )

that satisfies the following coherence conditions:

1. Given categories A, B, C and D, and objects X ∈ E(B × Aop), Y ∈ E(C × Bop) and
Z ∈ E(D× Cop), the diagram below commutes:
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(σ∗Z ⊗C σ
∗Y )⊗B σ

∗X σ∗Z ⊗C (σ∗Y ⊗B σ
∗X)

σ∗(Y ⊗Cop Z)⊗B σ
∗X σ∗Z ⊗C σ

∗(X ⊗Bop Y )

σ∗(X ⊗Bop (Y ⊗Cop Z)) σ∗((X ⊗Bop Y )⊗Cop Z)

τ ⊗Bσ
∗X

α

σ∗Z⊗C τ

τ τ

σ∗(α)

2. Given X ∈ E(B× Aop), the diagram below commutes

σ∗X ⊗A hA σ∗X ⊗A σ
∗hAop

σ∗X σ∗(hAop ⊗Aop X)

∼=

ρ τ

σ∗(λ)

where the isomorphism along the top is induced by the canonical isomorphism

hA
∼=−−→ σ∗hAop ,

an instance of Lemma 3.1.8 for ∂A.

3. Given X ∈ E(B× Aop), the diagram below commutes:

hB ⊗B σ
∗X σ∗hBop ⊗B σ

∗X

σ∗X σ∗(X ⊗Bop hBop)

∼=

λ τ

σ∗(ρ)

Proof. For any categories J and K, the symmetry isomorphism τ induces an isomorphism:

EJ × EK EJ×K

EK × EJ EK×J

⊗̃

σ σ∗

⊗̃

τ
∼=
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Taking K = Jop, we get an induced map on the cancelling tensor products, using the iso-
morphism of Lemma 3.1.8:

EJ × EJop
EJ × EJop

EJ×Jop

E := E

EJop × EJ EJop × EJ EJop×J

σ

⊗Jop
⊗̃

σ

∫ Jop

σ∗

⊗J

∼=
τ

⊗̃

∫ J

∼=∼=
τ

The map we require can be obtained as a shifted version of this modification. The coher-
ence conditions follow from the coherence conditions on the original symmetry isomorphism
τ : ⊗ ◦ σ ⇒ ⊗.

Remark 3.5.8. If E is a symmetric monoidal derivator, then Lemma 3.5.7 endows the maps
σ∗ with the structure of an isomorphism between the bicategory Prof(E) and its opposite
Prof(E)op; that is, the bicategory with the same objects, and with hom-category from A to
B given by E(Aop × B). See [32] for basic bicategorical definitions.

Explicitly, this map takes each small category A ∈ Prof(E) to its opposite Aop ∈ Prof(E)op,
and the action on hom-categories is given by:

σ∗ : E(Bop × A)
∼=−−→ E(A× Bop)

We will now turn our attention to the interaction of E-module maps and E-module modifi-
cations with the cancelling tensors.

Lemma 3.5.9. Let D1 and D2 be E-modules, and let F : D1 → D2 be a cocontinuous E-
module morphism. Then for any categories A, B and C, and any X ∈ D1(Aop × B) and
Y ∈ E(Bop × C), the isomorphism ϕ of Definition 3.4.3 induces an isomorphism

ϕ : Y ⊗B FX
∼=−−−→ F (Y ⊗B X)

in D2(Aop×C). These satisfy the following coherence conditions, which are exact analogues
of those in Definition 3.4.3:

1. For any categories A, B, C and D, and any X ∈ D1(Aop × B), Y ∈ E(Bop × C) and
Z ∈ E(Cop ×D), the diagram below commutes:
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(Z ⊗C Y )⊗B FX Z ⊗C (Y ⊗B FX)

Z ⊗C F (Y ⊗B X)

F ((Z ⊗C Y )⊗B X) F (Z ⊗C (Y ⊗B X))

ϕ

α

Z⊗C ϕ

ϕ

F (α)

2. For any X ∈ D1(Aop × B), the diagram below commutes:

hB ⊗B F (X) F (hB ⊗B X)

FX
λ

ϕ

F (λ)

Proof. Given X ∈ D1(Aop×B) and Y ∈ E(Bop×C), the map ϕ : Y ⊗B FX
∼=−→ F (Y ⊗B X)

is given by the composite

∫ B
(Y ⊗̃FX)

∫ B
ϕ

−−−−−−→
∫ B

F (Y ⊗̃X)
∼=−−−−→ F

∫ B
(Y ⊗̃X),

where the first map is induced by the structure isomorphism of Definition 3.4.3, and the
second follows by the cocontinuity of F .

To see that the diagrams commute, we can rewrite ϕ as above, and α and λ as in the proof
of Proposition 3.5.2. Using Remark 3.1.3 and Remark 3.1.11, the first diagram reduces to∫ B ∫ C applied to the diagram below, in D2(Bop × B× Cop × C× Aop ×D):

(Z⊗̃Y )⊗̃FX Z⊗̃(Y ⊗̃FX)

Z⊗̃F (Y ⊗̃X)

F ((Z⊗̃Y )⊗̃X) F (Z⊗̃(Y ⊗̃X))

ϕ

α

Z⊗̃ϕ

ϕ

F (α)

This commutes by the first axiom of Definition 3.4.3. Similarly, using Remark 3.1.14, the
second diagram reduces to the second axiom of Definition 3.4.3.
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Lemma 3.5.10. Let F,G : D1 → D2 be cocontinuous E-module maps, and let β : F ⇒ G be
an E-module modification. Then for any categories A, B and C, and any X ∈ D1(Aop × B)
and Y ∈ E(Bop × C), the diagram below commutes:

Y ⊗B F (X) Y ⊗B G(X)

F (Y ⊗B X) G(Y ⊗B X)

Y ⊗B βX

ϕ ϕ

βY⊗BX

Proof. Let X ∈ D1(Aop × B) and Y ∈ E(Bop × C). The diagram we want to commute may
be rewritten as follows, using the definition of ϕ from the proof of Lemma 3.5.9:

∫ B(Y ⊗̃FX)
∫ B(Y ⊗̃GX)

∫ B F (Y ⊗̃X)
∫ BG(Y ⊗̃X)

F
∫ B(Y ⊗̃X) G

∫ B(Y ⊗̃X)

∫ B(Y ⊗̃βX)

∫ B
ϕ

∫ B
ϕ

∼=

∫ B
β
Y ⊗̃X

∼=

β∫ B
(Y ⊗̃X)

The square at the top commutes by (the external version) of the E-module modification
condition of Definition 3.4.4. The second square commutes by Remark 3.1.3.

Remark 3.5.11. In this section, we have proved a number of coherence results for the
cancelling tensor product, resulting from the analogous coherence for the internal or external
tensor product. On the other hand, suppose we have an E-module D, categories A and B,
and X ∈ D(A) and Y ∈ E(B). Using the isomorphism Y ⊗B ∂BX ∼= Y ⊗̃ X, coherence
results for the cancelling tensor product also imply the analogous results for the external
product, and, using Remark 2.3.6, the internal product.
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3.6 The maps ⊗u and hu

In this section, we investigate the action of ∂ and
∫
on morphisms. Specifically, given a

functor u : A → B, we revisit the maps ∂u and
∫ u of Definition 3.1.5, and the associated

maps hu of Definition 3.5.1 and ⊗u of Definition 3.2.5. We conclude this section with a
lemma describing the coherence between the maps hu and ⊗u in any E-module. We will
need this result, and others in this section, frequently in Chapter 5. In particular, we use
the results in this section in the proof of Theorem 5.1.14, showing that any closed E-module
induces an E-prederivator.

Consider the commutative diagram of Definition 3.1.4:

tw(A) Aop × A Aop × B

tw(B) Bop × B

(s,t)

tw(u)

Aop×u

uop×B

(s,t)

(3.1)

By [13, Lemma 5.4], for any derivator D, the commutative diagram (3.1) induces an isomor-
phism:

DAop×B DBop×B Dtw(B)op

DAop×B DAop×A Dtw(A)op
D

(uop×B)!

η

(top, sop)∗

(uop×B)∗

p!

(tw(u)op)∗

(Aop×u)∗ (top, sop)∗ p!

Here the unlabelled 2-cell is the canonical modification of Remark 2.1.15. Thus, for any
X ∈ D(Aop × B), we have a canonical isomorphism:

∫ A(Aop × u)∗X
∫ B(uop × B)!X

∼= (3.2)

Note that, if we paste the counit
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DBop×B

DAop×B DBop×B

(uop×B)∗ ε

(uop×B)!

onto the diagram above, then we obtain the modification
∫ u of Definition 3.1.5. Thus, for

any Y ∈ D(Bop × B), we may factor
∫ u Y as follows:

∫ u Y :
∫ A(Aop × u)∗(uop × B)∗Y

∫ B(uop × B)!(uop × B)∗Y
∫ B Y

∼=
∫ B

ε
(3.3)

Similarly, the commutative diagram (3.1) induces an isomorphism

Dtw(B) DBop×B

D

Dtw(A) DAop×A DAop×B

tw(u)∗

(s,t)!

(uop×B)∗

p∗

p∗

(s,t)! (Aop×u)!

where the nonidentity 2-cell is the canonical modification of Definition 2.1.14. The compo-
nent of this map at Z ∈ D([0]) gives a canonical isomorphism:

(Aop × u)!∂AZ
∼=−−−→ (uop × B)∗∂BZ (3.4)

As above, if we paste the unit

DAop×A DAop×B

DAop×A

(Aop×u)!

η

(Aop×u)∗

onto this diagram, then we obtain ∂u of Definition 3.1.5. Thus, for any Z ∈ D([0]), we may
factor ∂uZ as follows:

∂uZ : ∂AZ (Aop × u)∗(Aop × u)!∂AZ (Aop × u)∗(uop × B)∗∂BZ
η ∼=
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Finally, suppose D is an E-module, and consider the map

EBop ×DB

D

EAop ×DA

(uop)∗×u∗

⊗B

⊗A

⊗u

of Definition 3.2.5. For any objects X ∈ D(B) and Y ∈ E(Aop), the isomorphism (3.2) above
induces a canonical isomorphism Y ⊗A u

∗X
∼=−−→ (uop)!Y ⊗B X as follows:

∫ A(Y ⊗̃ u∗X)
∫ A(Aop × u)∗(Y ⊗̃ X)

∫ B(uop × B)!(Y ⊗̃ X)

∫ B((uop)!Y ⊗̃ X)

∼= ∼=

∼= (3.5)

The first isomorphism in this composite is the structure isomorphism for Y ⊗̃ −, the second
is an instance of (3.2), and the final isomorphism follows by the cocontinuity of ⊗. Using
this isomorphism (3.5) and our description of

∫ u in (3.3), for any X ∈ D(B) and Z ∈ E(Bop),
we can factor Z ⊗u X as follows:

Z ⊗u X : (uop)∗Z ⊗A u
∗X (uop)!(uop)∗Z ⊗B X Z ⊗B X

∼= ε ⊗BX (3.6)

Remark 3.6.1. Let u : A→ B be a functor. For any closed E-moduleD, and anyX ∈ D(B),
the canonical isomorphism

EAop
EBop

D
−⊗Au

∗X

(uop)!

∼= −⊗BX

of (3.5) is conjugate to the isomorphism

EAop
EBop

D
m̃apD(u∗X,−)

(uop)∗

∼=
γ m̃apD(X,−)
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induced by the structure isomorphism for mapD(−,−). This appears in the proof of [13,
Theorem 9.1], but it can also be checked directly. Using this fact and the description of ⊗u
in (3.6), for any category C, and any Y ∈ D(C), the diagram below commutes:

(uop × C)∗m̃apD(X, Y )⊗A u
∗X m̃apD(u∗X, Y )⊗A u

∗X

m̃apD(X, Y )⊗B X Y

γ ⊗Au
∗X

m̃apD(X,Y )⊗uX ε

ε

Remark 3.6.2. Let u : A → B be a functor, and let F : D1 → D2 be a derivator map.
Using Lemma 2.2.4, it follows that F respects

∫ u and ∂u. For example, in the case of ∂u,
this means that the diagram below commutes, for any X ∈ D1([0]):

∂AFX F∂AX

(uop × u)∗∂BFX (uop × u)∗F∂BX F (uop × u)∗∂BX

∂uFX F∂uX

∼=

Similarly, suppose we have E-modules D1 and D2, and a cocontinuous E-module morphism
F : D1 → D2. For any categories A, B, C and D, any functor u : A → B, and objects
X ∈ D1(Cop × B) and Y ∈ E(Bop ×D), the diagram below commutes:

(uop ×D)∗Y ⊗A (Cop × u)∗FX (uop ×D)∗Y ⊗A F (Cop × u)∗X

F ((uop ×D)∗Y ⊗A (Cop × u)∗X)

Y ⊗B FX F (Y ⊗B X)

Y⊗uFX

∼=

ϕ

F (Y⊗uX)

ϕ

The map ϕ is the canonical isomorphism of Lemma 3.5.9.

Example 3.6.3. Let D be a closed E-module and let X ∈ D(A). Using Proposition 3.5.2,
the derivator map − ⊗A X : EAop → D is an E-module map. Applying Remark 3.6.2, for
any functor v : B→ C, and any objects Y ∈ E(Aop×C) and Z ∈ E(Cop×D), we obtain the
following commutative diagram:
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((vop ×D)∗Z ⊗B (Aop × v)∗Y )⊗A X (vop ×D)∗Z ⊗B ((Aop × v)∗Y ⊗A X)

(vop ×D)∗Z ⊗B v
∗(Y ⊗A X)

(Z ⊗C Y )⊗A X Z ⊗C (Y ⊗A X)

(Z⊗vY )⊗AX

α

∼=

Z⊗v(Y⊗AX)

α

Suppose we have a functor u : A → B. The following lemma shows that the isomorphisms
of Proposition 3.1.12 respect the canonical morphism

∫ A1,2 ∂A2,3 ⇒
∫ B1,2 ∂B2,3 induced by u.

We use this to prove Lemma 3.6.5, which expresses the coherence between hu and ⊗u in an
E-module.

Proposition 3.6.4. For any derivator D, and any category A = Ai, consider the isomor-
phism

DA1×Aop
2 ×A3

DA1 DA3

∫ A1,2∂A2,3

∼=

of Proposition 3.1.12. Given a functor u : A→ B, the pasting diagram
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DB1 DB1×Bop
2 ×B3 DB3

DB×Bop×A

DB×Aop×A

DA1 DA1×Aop
2 ×A3 DA3

∂A
u∗

∂B2,3

(B×uop×u)∗

(B×Bop×u)∗

∼=

∫ B1,2

u∗

∼=
γ−1

(u×uop×A)∗

∫ B

(u×Aop×A)∗∼=
γ−1

∂A2,3

∼=

∫ A1,2

∂u

∫ u

reduces to idu∗.

Proof. Expanding the maps ∂u and
∫ u using Definition 3.1.5, the large rectangle in the

pasting diagram above reduces to the following:

DB DB×tw(B) DB×Bop×B Dtw(Bop)op×B DB

DB×tw(B) Dtw(Bop)op×B

DA×Aop×A DA

DA DA×tw(A) DA×Aop×A Dtw(Aop)op×A DA

u∗

(B×p)∗ (B×(s,t))!

(B×(s,t))∗
(u×uop×u)∗

((top, sop)×B)∗ (p×B)!

u∗(p×B)∗

(u×tw(u))∗ (tw(uop)op×u)∗(A×(s,t))∗ (p×A)∗

(A×p)∗ (A×(s,t))! ((top, sop)×A)∗ (p×A)!

η η

ε ε

Recall the construction of the isomorphisms
∫ A1,2 ∂A2,3

∼= id and
∫ B1,2 ∂B2,3

∼= id described
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in Proposition 3.1.12, in particular the pullbacks PA and PB. The functor u : A→ B induces
a map Pu : PA → PB making the diagram below commute:

PA A× tw(A)

PB B× tw(B)

tw(Aop)op × A

tw(Bop)op × B B× Bop × B

nA

mA

Pu
u×tw(u)

y

mB

nB B×(s,t)

tw(uop)op×u
(top,sop)×B

(3.7)

Explicitly, this functor takes an object a g−−→ b
f−−→ c in PA to u(a) u(g)−−−→ u(b) u(f)−−−−→ u(c)

in PB. If we paste the isomorphisms

(nA)! ◦ (mA)∗ ∼= ((top, sop)× A)∗ ◦ (A× (s, t))!

(nB)! ◦ (mB)∗ ∼= ((top, sop)× B)∗ ◦ (B× (s, t))!

onto the top and bottom of the pasting diagram above, then the commutative diagram (3.7)
allows us to simplify and obtain the following:

DB DB×tw(B) DPB Dtw(Bop)op×B DB

DPB Dtw(Bop)op×B

Dtw(Aop)op×A DA

DA DA×tw(A) DPA Dtw(Aop)op×A DA

u∗

(B×p)∗

(u×tw(u))∗

(mB)∗ (nB)! (p×B)!

u∗
(p×B)∗

(Pu)∗

(tw(uop)op×u)∗

(nB)∗

(nA)∗
(p×A)∗

(A×p)∗ (mA)∗ (nA)! (p×A)!

η
η

ε

ε



73

We may now paste the remaining isomorphisms onto the top and bottom of this rectangle.
The resultant pasting diagram reduces easily to the identity, using the fact that the two
pasting diagrams below are equal:

PA A× tw(A) A PA

tw(Aop)op × A PB B× tw(B) B

A A tw(Bop)op × B

B B B

mA

nA

A×p

ϑA

Pu

p×A

mB

nB

B×p

ϑB

u p×B

To see this, note that the component of the first at the object a g−−→ b
f−−→ c in PA is u(f ◦g),

and the component of the second is u(f) ◦ u(g).

Lemma 3.6.5. Let D be an E-module, let u : A→ B be a functor, and let X ∈ D(B). The
diagram below commutes:

hA ⊗A u
∗X (uop × u)∗hB ⊗A u

∗X

(Bop × u)∗hB ⊗B X

u∗X u∗(hB ⊗B X)

λ

hu⊗Au
∗X

(Bop×u)∗hB⊗uX

∼=

u∗(λ)

Proof. To see that this diagram commutes, use the definition of λ in Proposition 3.5.2, and
the definitions of hu and ⊗u, to rewrite the diagram in terms of ∂u and

∫ u. Using cocontinuity
and pseudonaturality of ⊗, we can then pull the instances of ∂u,

∫ u and u∗ out of the tensor
product. From here, the commutativity follows immediately from Proposition 3.6.4.
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3.7 Cotensors in closed E-modules

In this section, we consider cotensors in a closed E-module D. If E is symmetric monoidal, we
show that these are part of a closed E-action on the opposite derivator Dop. The main result
of this section is Proposition 3.7.5, which proves a derivator analogue of the well-known fact
that a left adjoint preserves tensors if and only if its right adjoint preserves cotensors. In
particular, this result implies that, for anyX ∈ D(A), the morphism m̃apD(X,−) : D→ EAop

preserves cotensors. This is the content of Example 3.7.7. Throughout this section, let E be
a symmetric monoidal derivator.

Example 3.7.1. If D is a closed E-module, then Dop is a (right) E-module via the map

Cop: Dop × E→ Dop.

See [16, Section 4]. The structure isomorphisms are induced, using the adjunctions of Theo-
rem 3.2.2, by the coherent isomorphisms for the cancelling tensor of Proposition 3.5.2. Using
the symmetry isomorphism for E, this right E-module structure induces a left E-module struc-
ture. The E-module structure is closed, with the required adjoints given by Theorem 3.2.2.

Remark 3.7.2. Let D be a closed E-module, let A be a category, and let X ∈ D(A). Using
the descriptions of the various adjoints in Theorem 3.2.2, we have an isomorphism

m̃apDop(X,−) ∼= m̃apD(−, X) : Dop → EA.

Definition 3.7.3. Let D1 and D2 be closed E-modules. We say that a derivator map
G : D1 → D2 preserves cotensors if its opposite Gop : Dop

1 → D
op
2 is an E-module map

for the E-module structures of Example 3.7.1. Similarly, a modification between cotensor-
preserving maps is said to respect cotensors if its opposite respects tensors.

Example 3.7.4. Let D be a closed E-module and let u : A→ B be a functor. Consider the
derivator map u∗ : DB → DA. The opposite of this map is equal to

(uop)∗ : (Dop)Bop → (Dop)Aop
.

By Lemma 3.4.13, this is an E-module map. Thus, u∗ : DB → DA preserves cotensors as
well as tensors.

Proposition 3.7.5. Let D1 and D2 be closed E-modules, and suppose we have an adjunction:
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D1 D2

F

R

⊥

Then F preserves tensors if and only if R preserves cotensors.

Proof. If the left adjoint F preserves tensors, we will show that the right adjoint R preserves
cotensors. Once we prove this, applying the result to the opposite adjunction

(D2)op (D1)op

Rop

F op

⊥

proves the reverse implication as well.

Suppose F preserves tensors. Taking the opposite of the structure isomorphism in Defini-
tion 3.4.3, we require a coherent isomorphism:

D2 × Eop D1 × Eop

D2 D1

R×Eop

C C

R

∼=

Using Lemma 2.3.5, to give the desired isomorphism, we may equivalently provide isomor-
phisms

D2 D1

DBop
2 DBop

1

R

− C̃ X − C̃ X

R

∼=

for each category B, and each X ∈ E(B), such that these isomorphisms organise into a
modification in X. Take these to be conjugate to the isomorphism between left adjoints:
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D2 D1

DBop
2 DBop

1

F

X⊗Bop−
∼=

ϕ−1

F

X⊗Bop−

This isomorphism is defined in Lemma 3.5.9. The description of the left adjoints follows
from Theorem 3.2.2.

Let u : A→ B be a functor. To see that the isomorphisms above form a modification in X,
we need the pasting diagrams below to be equal:

DAop
2 DAop

1

D2 DBop
2 DBop

1

D1

R

R

− C̃ u∗X

− C̃ X

(uop)∗

R

(uop)∗
∼=

− C̃ X

∼=

∼=

DAop
2 DAop

1

D2 DBop
1

D1

R

R

− C̃ u∗X

(uop)∗

− C̃ u∗X

− C̃ X

∼=

∼=

We can check this equality by taking mates under the adjunctions F (X⊗Bop−) a R(−) C̃ X

and u∗X ⊗Aop F (−) a R(− C̃ u∗X).

Using the definition of the isomorphism R(− C̃ X) ∼= R(−) C̃ X above, and the fact that

DAop
2

D2 DBop
2

− C̃ u∗X

− C̃ X

(uop)∗∼=

is conjugate to the canonical isomorphism
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DAop
2

D2 DBop
2

u∗X⊗Aop−

X⊗Bop−

(uop)!
∼=

the equality follows by the commutative diagram in Remark 3.6.2 for F .

The coherence conditions for R follow from the coherence conditions for F , once again using
conjugacy.

Lemma 3.7.6. Suppose we have closed E-modules D1 and D2, and a pair of adjunctions

D1 D2

F1

R1

⊥ D1 D2

F2

R2

⊥

such that the left adjoints F1 and F2 preserve tensors. Then a modification θ : F1 ⇒ F2

respects tensors if and only if its conjugate ϑ : R2 ⇒ R1 respects cotensors.

Proof. Let θ : F1 ⇒ F2 be a modification. Suppose θ respects tensors. We will show that its
conjugate ϑ : R2 ⇒ R1 respects cotensors. As in the proof of Proposition 3.7.5, the converse
follows from this result by taking opposites.

Let A be a category and let X ∈ E(A). We need to show that the pasting diagrams below
are equal:

D2 DAop
2 D2 DAop

2

D1 DAop
1 D1 DAop

1

− C̃ X

R1R2
∼= R1

− C̃ X

R2

∼=
R2 R1

− C̃ X − C̃ X

ϑ ϑ

Taking conjugates, and using the definition of the isomorphisms Ri(− C̃ X) ∼= Ri(−) C̃ X

from the proof of Proposition 3.7.5, these pasting diagrams are equal if and only if the pasting
diagrams below are equal:
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D2 DAop
2 D2 DAop

2

D1 DAop
1 D1 DAop

1

X⊗Aop−

F1F2
∼=
ϕ

F1

X⊗Aop−

F2

∼=
ϕ F2 F1

X⊗Aop− X⊗Aop−

θ θ

Since θ respects tensors, these two pasting diagrams are equal by Lemma 3.5.10.

Example 3.7.7. Let D be a closed E-module, and let X ∈ D(A). The derivator map
−⊗A X : EAop → D preserves tensors. To see this, note that the external component of the
structure isomorphism from Definition 3.4.3 has the form (W ⊗̃Z)⊗AX

∼=−−→ W ⊗̃(Z⊗AX),
for any Z ∈ E(Aop × B) and W ∈ E(C). This is given by the composite below:

∫ A(W ⊗̃Z)⊗̃X
∫ AW ⊗̃(Z⊗̃X) W ⊗̃

∫ A(Z⊗̃X)
∫ A

α ∼=

The second isomorphism in the composite above comes from the cocontinuity of ⊗. The
internal component of this map can be recovered using Remark 2.3.6. By Proposition 3.7.5,
it follows that

m̃apD(X,−) : D→ EAop

preserves cotensors.

Example 3.7.8. Let D be a closed E-module and let u : A → B be a functor. By
Lemma 3.4.13 and Example 3.7.4, the map u∗ : DB → DA preserves both tensors and
cotensors. Thus, by Proposition 3.7.5, its left adjoint u! : DA → DB preserves tensors, and
its right adjoint u∗ : DA → DB preserves cotensors.

3.8 A representability theorem for triangulated E-modules

We begin this section with a characterisation of cocontinuous E-module maps from EAop to
a closed E-module D; using the results of Section 3.5, it is easy to see that any such map is
isomorphic to −⊗A X : EAop → D, for some object X ∈ D(A). When E is triangulated, we
can combine this observation with Proposition 3.7.5, to prove a representability theorem for
triangulated closed E-modules. This is Theorem 3.8.3, the final result of this chapter.

Proposition 3.8.1. Let D be an E-module and let A be a category. The functor

HomE
! (EAop

,D)→ D(A),
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given by evaluation at hA ∈ E(Aop × A), is an equivalence.

Proof. We claim that the functor

D(A) HomE
! (EAop

,D)

X −⊗A X

is an inverse equivalence for evaluation at hA. To see this, we must show that both composites
are naturally isomorphic to the identity.

Suppose we have an object X ∈ D(A). The isomorphisms

λ : hA ⊗A X
∼=−−−→ X

of Proposition 3.5.2 are natural in X, so these provide one of the required isomorphisms.

For the other isomorphism, let F : EAop → D be a cocontinuous E-module map. For any
category B and any Z ∈ E(Aop × B), consider the isomorphism

Z ⊗A FhA
ϕ−−−→ F (Z ⊗A hA) F (ρ)−−−−→ FZ,

where ϕ is the map of Lemma 3.5.9, and ρ is the map of Proposition 3.5.2. This is a
modification in Z; we must check that it respects tensors. It suffices to check this on the
external product, but this follows from the first commutative diagram of Lemma 3.5.9, using
Remark 3.5.11. Thus, we have an isomorphism

−⊗A FhA F
∼=

in HomE
! (EAop

,D). Finally, we need to show that this isomorphism is natural in F . That
is, given cocontinuous E-module maps F,G : EAop → D and an E-module modification
β : F ⇒ G, we need the diagram below to commute, for any Z ∈ E(Aop × B):

Z ⊗A FhA F (Z ⊗A hA) FZ

Z ⊗A GhA G(Z ⊗A hA) GZ

ϕ

Z⊗AβhA

F (ρ)

βZ

ϕ G(ρ)
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This commutes by Lemma 3.5.10.

Definition 3.8.2. Let D be a closed E-module, and let A be a category. We say a derivator
map F : Dop → EA is representable if there is an object X ∈ D(A) and an isomorphism:

F ∼= m̃apD(−, X) : Dop → EA

There is also a dual concept for maps of the form F : D→ EAop .

Theorem 3.8.3. Let E be a symmetric monoidal derivator, let D be a closed E-module, and
let A be a category. Suppose that E and D are triangulated, and that, for any category C,
the triangulated category D(C) satisfies Brown representability. Then a derivator map

F : Dop → EA

is representable if and only if it is continuous and preserves cotensors.

Proof. Note that a continuous, cotensor-preserving map from Dop to EA takes homotopy
colimits in D to homotopy limits in EA, and tensors in D to cotensors in EA. For the forward
implication, let X ∈ D(A), and consider the derivator map

m̃apD(−, X) : Dop → EA.

This map is continuous, and it preserves cotensors by Remark 3.7.2 and Example 3.7.7.

On the other hand, suppose we have a continuous, cotensor-preserving map F : Dop → EA.
By Proposition 2.4.15 (applied to F op), this map must have a left adjoint G : EA → Dop. By
Proposition 3.7.5, G preserves tensors. Thus, by Proposition 3.8.1, we have an isomorphism

G ∼= GhA CA − : EA → Dop.

Here CA is the cancelling version of the E-action on Dop from Example 3.7.1. But we
know that the right adjoint of this map is m̃apD(−, GhA) : Dop → EA. Thus, this map
m̃apD(−, GhA) must be isomorphic to F .

Note that, by Theorem 2.4.12 and Lemma 2.4.14, the previous theorem applies to any
triangulated derivator D whose underlying category is perfectly generated.

In particular, applying this theorem with E = Ho(Spt), we get the following special case:
given a triangulated derivatorD whose underlying category is perfectly generated, a derivator
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map
F : Dop → Ho(Spt)

is representable if and only if it is continuous.



Chapter 4

E-Categories

In this chapter, we study E-categories, a precursor to the E-prederivators and E-derivators
of Chapter 5. In Section 4.1 we develop the basic theory and give a number of examples; in
particular, in Theorem 4.1.10, we prove that any closed E-module gives rise to an associated
E-category. In Section 4.2, we prove a Yoneda lemma for E-categories, and use this to study
E-category adjunctions. The Yoneda lemma is extremely useful, and we use it repeatedly as
we develop the theory of E-prederivators in Chapter 5. We end this chapter with Section 4.3,
in which we study monoidal morphisms, and prove that enrichment can be transferred along
a monoidal adjunction.

Throughout the rest of the thesis, unless otherwise specified, E will denote a closed symmetric
monoidal derivator.

4.1 Basic definitions

In this section, we define E-categories, and develop the basic theory that we will need in
subsequent sections. Many of the results in this section are formally similar to the develop-
ment of basic enriched category theory in [27]. Note, in fact, that an E-category in the sense
of Definition 4.1.1 is a Prof(E)-category in the sense of [41]; that is, a category enriched over
the bicategory Prof(E) of Remark 3.5.3. However, a number of fundamental constructions,
such as the mapping space E-morphisms of Proposition 4.1.11, are not definable over a gen-
eral enriching bicategory. Thus, the majority of the results in this section do not follow from
any general results that we know of in the bicategorical literature, so we include a complete
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account of the theory, starting from the definition.

Definition 4.1.1. An E-category A consists of the following data:

• For each small category A, a (large) set of objects A0(A).

• For any two objects X ∈ A0(A) and Y ∈ A0(B), an object m̃apA(X, Y ) ∈ E(Aop ×B).

• For any three objects X ∈ A0(A), Y ∈ A0(B) and Z ∈ A0(C), a map

◦ : m̃apA(Y, Z)⊗B m̃apA(X, Y )→ m̃apA(X,Z)

in E(Aop × C), which we call composition.

• For every object X ∈ A0(A), a map

j : hA → m̃apA(X,X)

in E(Aop × A), which we call the unit.

These must satisfy the following coherence conditions:

1. For any X ∈ A0(A), Y ∈ A0(B), Z ∈ A0(C) and W ∈ A0(D), the diagram below
commutes:

m̃apA(Z,W )⊗C (m̃apA(Y, Z)⊗B m̃apA(X, Y ))

(m̃apA(Z,W )⊗C m̃apA(Y, Z))⊗B m̃apA(X, Y )

m̃apA(Z,W )⊗C m̃apA(X,Z) m̃apA(Y,W )⊗B m̃apA(X, Y )

m̃apA(X,W )

α

m̃apA(Z,W )⊗C ◦

◦ ⊗Bm̃apA(X,Y )

◦

◦

2. For any X ∈ A0(A) and Y ∈ A0(B), the diagram below commutes:
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hB ⊗B m̃apA(X, Y ) m̃apA(Y, Y )⊗B m̃apA(X, Y )

m̃apA(X, Y )

j⊗Bm̃apA(X,Y )

λ ◦

3. For any X ∈ A0(A) and Y ∈ A0(B), the diagram below commutes:

m̃apA(X, Y )⊗A hA m̃apA(X, Y )⊗A m̃apA(X,X)

m̃apA(X, Y )

m̃apA(X,Y )⊗Aj

ρ ◦

Here the maps α, λ and ρ are those of Proposition 3.5.2.

Definition 4.1.2. Let A and B be E-categories. An E-morphism F : A → B consists of
the following data:

• For any category A, and any X ∈ A0(A), an object FX ∈ B0(A).

• For any objects X ∈ A0(A) and Y ∈ A0(B), a map

F : m̃apA(X, Y )→ m̃apB(FX,FY )

in E(Aop × B).

These must satisfy the following coherence conditions:

1. For any X ∈ A0(A), Y ∈ A0(B) and Z ∈ A0(C), the diagram below commutes:

m̃apA(Y, Z)⊗B m̃apA(X, Y ) m̃apA(X,Z)

m̃apB(FY, FZ)⊗B m̃apB(FX,FY ) m̃apB(FX,FZ)

◦

F⊗BF F

◦

2. For any X ∈ A0(A), the diagram below commutes:
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m̃apA(X,X)

hA

m̃apB(FX,FX)

F

j

j

Definition 4.1.3. Let F,G : A → B be E-morphisms. An E-natural transformation
β : F ⇒ G consists of maps

βX : hA → m̃apB(FX,GX)

in E(Aop × A), for every category A, and every X ∈ A0(A). These must make the diagram
below commute, for any X ∈ A0(A) and Y ∈ A0(B):

hB ⊗B m̃apA(X, Y ) m̃apB(FY,GY )⊗B m̃apB(FX,FY )

m̃apA(X, Y ) m̃apB(FX,GY )

m̃apA(X, Y )⊗A hA m̃apB(GX,GY )⊗A m̃apB(FX,GX)

βY ⊗BF

◦λ−1

ρ−1

G ⊗AβX

◦

The following construction can be carried out for categories enriched over any bicategory
(see [41, Section 2]):

Remark 4.1.4. Let A be an E-category, and let A be a category. It is immediate from
Definition 4.1.1 that the set of objects A0(A) are the objects of an E(Aop × A)-enriched
category, where E(Aop × A) is equipped with the monoidal structure induced by Exam-
ple 3.5.5. Given objects X, Y ∈ A0(A), the mapping object between them is given by
m̃apA(X, Y ) ∈ E(Aop × A), and units and composition are inherited from the E-category
structure. We will denote this E(Aop × A)-enriched category by A(A).

Denote the underlying category of this E(Aop × A)-enriched category by A(A). To avoid
confusion with the established meaning of the underlying category of a prederivator, we will
call A(A) the category induced by A at A.
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Explicitly, A(A) is defined as follows: objects are given by the set A0(A), and, for any
X, Y ∈ A0(A), we have

A(A)(X, Y ) = E(Aop × A)(hA, m̃apA(X, Y )).

For any object X ∈ A0(A), the identity map is given by the unit

j : hA → m̃apA(X,X)

in E(Aop × A)(hA, m̃apA(X,X)). Given objects X, Y, Z ∈ A0(A) and maps

f : hA → m̃apA(X, Y )

g : hA → m̃apA(Y, Z)

their composite is given by the following:

hA hA ⊗A hA m̃apA(Y, Z)⊗A m̃apA(X, Y ) m̃apA(X,Z)∼= g ⊗Af ◦

The unnamed isomorphism is λ−1 = ρ−1 : hA → hA ⊗A hA.

Similarly, any E-morphism F : A → B induces an E(Aop × A)-functor F : A(A) → B(A).
The underlying functor of this E(Aop × A)-functor is called the functor induced by F at
A. It takes any object X ∈ A(A) to FX ∈ B(A), and given a map

f : hA → m̃apA(X, Y )

in A(A), its image is given by

hA m̃apA(X, Y ) m̃apB(FX,FY ).f F

Suppose we have E-morphisms F,G : A → B. Any E-natural transformation β : F ⇒ G

induces an E(Aop × A)-natural transformation

A(A) B(A).

F

G

β
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For any X ∈ A(A), the component

βX : hA → m̃apB(FX,GX)

may be thought of as a map in B(A). It follows immediately from the E-naturality condition
that these form a natural transformation between the functors induced by F and G, which
we call the natural transformation induced by β at A.

Lemma 4.1.5. E-Categories, E-morphisms and E-natural transformations form a 2-category
E-Cat. Moreover, any category A induces a 2-functor:

E-Cat→ CAT

A 7→ A(A)

Proof. We need to define composition for E-morphisms and E-natural transformations. First,
suppose we have E-morphsims F : A → B and G : B → C. The composite G ◦ F takes an
object X ∈ A0(A) to GFX ∈ C0(A), and the action on mapping spaces is simply given by

m̃apA(X, Y ) m̃apB(FX,FY ) m̃apC(GFX,GFY )F G

for any X ∈ A0(A) and Y ∈ A0(B).

Given E-natural transformations α : F ⇒ G and β : G ⇒ H, their vertical composite
β ·α : F ⇒ H has component at X ∈ A0(A) given by the composite βX ◦αX in B(A). Note
that an E-natural transformation is an isomorphism if and only if each of its components is
an isomorphism.

Given E-morphisms F,H : A → B and G,K : B → C, suppose we have E-natural transfor-
mations α : F ⇒ H and β : G ⇒ K. Their horizontal composite β ◦ α has component at
X ∈ A0(A) given by

βHX ◦G(αX) = K(αX) ◦ βFX

in C(A).

It is routine to check that the composite of E-morphisms is an E-morphism, and that the
vertical and horizontal composites above define E-natural transformations. The 2-category
axioms for this data follow from the corresponding facts for the 2-category CAT.

Example 4.1.6. Let A be an E-category. For each category A, suppose we have a set of
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objects B0(A) ⊆ A0(A). The full sub-E-category of A on these objects is the E-category
B defined as follows:

• For each category A, the objects are B0(A).

• For any two objects X ∈ B0(A) and Y ∈ B0(B), the mapping object is m̃apA(X, Y ) ∈
E(Aop × B).

• Units and composition are inherited from A.

The E-category axioms for B follow immediately from the axioms for A. Note that, for any
category A, the induced category B(A) is the full subcategory of A(A) on the objects B0(A).

Definition 4.1.7. Let A be an E-category. We may form the opposite E-category Aop as
follows: for any category A, we define

A
op
0 (A) = A0(Aop),

and, given X ∈ A0(Aop) and Y ∈ A0(Bop), define

m̃apAop(X, Y ) = σ∗m̃apA(Y,X) ∈ E(Aop × B),

where σ : Aop × B
∼=−−→ B× Aop is the canonical isomorphism.

For any X ∈ A0(Aop), the unit is given by the composite below

hA
∼=−−−→ σ∗hAop

σ∗j−−−−→ σ∗m̃apA(X,X)

where the unnamed isomorphism is an instance of Lemma 3.1.8, as in Lemma 3.5.7.

Similarly, given objects X ∈ A0(Aop), Y ∈ A0(Bop) and Z ∈ A0(Cop), composition is as
follows:

σ∗m̃apA(Z, Y )⊗B σ
∗m̃apA(Y,X) σ∗(m̃apA(Y,X)⊗Bop m̃apA(Z, Y ))

σ∗m̃apA(Z,X)

τ

σ∗(◦)

Here τ is the canonical isomorphism of Lemma 3.5.7.
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The E-category axioms for Aop follow easily from the axioms for A, using the coherence
of Lemma 3.5.7.

Remark 4.1.8. For any E-category A, and any category A, we have an isomorphism of
categories

Aop(A) ∼= A(Aop)op.

To see this, note that the objects of both categories are the same by definition. Moreover,
given two objects X, Y ∈ A0(Aop), we have:

Aop(A)(X, Y ) = E(Aop × A)(hA, σ
∗m̃apA(X, Y ))

∼= E(Aop × A)(σ∗hAop , σ∗m̃apA(Y,X))
∼= E(A× Aop)(hAop , m̃apA(Y,X))

= A(Aop)(Y,X)

It is easy to check that this bijection respects identities and composition, using Lemma 3.5.7.

Remark 4.1.9. In the obvious way, we can extend the opposite E-category construction
of Definition 4.1.7 to E-morphisms and E-natural transformations. We obtain a 2-functor on
E-Cat, which preserves the direction of 1-cells but reverses the direction of 2-cells.

Theorem 4.1.10. Let D be a closed E-module, with action:

⊗ : E×D→ D

C : D× Eop → D

mapD(−,−) : Dop ×D→ E

Then there is an associated E-category D such that, for any category A, the induced category
D(A) of Remark 4.1.4 recovers the value at A of the derivator D.

Proof. The E-category D is defined as follows. For any category A, the set D0(A) is the set
of objects of D(A). Given X ∈ D0(A) and Y ∈ D0(B), the mapping object m̃apD(X, Y ) ∈
E(Aop × B) is their image under the functor:

m̃apD(−,−) : D(A)op ×D(B)→ E(Aop × B)

To describe composition and units, let X ∈ D(A), and consider the adjunction
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EAop
D,

− ⊗AX

m̃apD(X,−)

⊥

described in Theorem 3.2.2. Given any X ∈ D(A), the unit

j : hA → m̃apD(X,X)

is adjunct under this adjunction to the canonical isomorphism

λ : hA ⊗A X → X

of Proposition 3.5.2. Similarly, given objects X ∈ D(A), Y ∈ D(B) and Z ∈ D(C), compo-
sition is adjunct to the following:

(m̃apD(Y, Z)⊗B m̃apD(X, Y ))⊗A X m̃apD(Y, Z)⊗B (m̃apD(X, Y )⊗A X)

m̃apD(Y, Z)⊗B Y

Z

α

m̃apD(Y ,Z) ⊗B ε

ε

To see that this data satisfies the axioms of Definition 4.1.1, we can replace each diagram that
we need to commute by its adjunct. The first axiom then follows using the first commutative
diagram of Proposition 3.5.2. The second and third axioms of Definition 4.1.1 follow using
the second commutative diagram in Proposition 3.5.2.

For any category A, we still need to show that the induced category of Remark 4.1.4 recovers
the value of D at A. Given X, Y ∈ D(A), consider the isomorphsims:

D(A)(X, Y ) ∼= D(A)(hA ⊗A X, Y )
∼= E(Aop × A)(hA, m̃apD(X, Y ))

Given a map f : X → Y in D(A), write f̃ : hA → m̃apD(X, Y ) for the corresponding map
in E(Aop × A). Thus, f̃ is the unique map making the diagram below commute:
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hA ⊗A X X

m̃apD(X, Y )⊗A X Y

λ

f̃⊗AX f

ε

We claim that the description of identity and composition in Remark 4.1.4 corresponds to
identity and composition in D(A) under these bijections.

By definition, given any X ∈ D(A), we have ĩdX = j : hA → m̃apD(X,X). This shows
that the bijection respects identities. To see that it respects composition, suppose we have
composable maps X f−−→ Y

g−−→ Z in D(A). Using the definition of composition from
Remark 4.1.4, we need the diagram below to commute:

hA hA ⊗A hA m̃apD(Y, Z)⊗A m̃apD(X, Y )

m̃apD(X,Z)

ρ−1

(̃g◦f)

g̃⊗Af̃

◦

Taking the adjunct under the adjunction − ⊗A X a m̃apD(X,−), and using the definition
of composition in D given above, we can see that this commutes.

By Example 3.4.12, for any category J and any closed E-module D, the shifted derivator DJ

is a closed E-module. Thus, by Theorem 4.1.10, DJ gives rise to an associated E-category.
In particular, by Example 3.4.8, this is the case for EJ. More generally, we will prove
in Section 4.3 that, for any E-category A and any category J, we may form a shifted E-
category AJ.

Proposition 4.1.11. Let A be an E-category, let A be a category, and let X ∈ A0(A). The
mapping objects in A induce an E-morphism:

m̃apA(X,−) : A→ EAop

Proof. Let X ∈ A0(A). On objects, the E-morphism

m̃apA(X,−) : A→ EAop

takes Y ∈ A0(B) to m̃apA(X, Y ) ∈ E(Aop × B). Given a further object Z ∈ A0(C), we need
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a map
m̃apA(X,−) : m̃apA(Y, Z)→ m̃apEAop (m̃apA(X, Y ), m̃apA(X,Z))

in E(Bop × C). Consider the adjunction below:

EBop
EAop

− ⊗Bm̃apA(X,Y )

m̃ap
EAop (m̃apA(X,Y ),−)

⊥

Under this adjunction, take the structure map to be adjunct to composition:

◦ : m̃apA(Y, Z)⊗B m̃apA(X, Y )→ m̃apA(X,Z)

To prove that this satisfies the axioms of Definition 4.1.2, replace the diagrams that we
need to commute by their adjuncts, and use the description of units and composition in
EAop from Theorem 4.1.10. The second axiom of Definition 4.1.2 for m̃apA(X,−) corre-
sponds precisely to the second axiom of Definition 4.1.1 for A. Similarly, the first axiom
of Definition 4.1.2 corresponds to the first of Definition 4.1.1.

Definition 4.1.12. Let F : A→ EAop be an E-morphism. We say that F is representable
if there is an object X ∈ A0(A) and an E-natural isomorphism:

F ∼= m̃apA(X,−) : A→ EAop

Let A be an E-category, let A and B be categories, and let X ∈ A0(A). As in Remark 4.1.4,
consider the functor

m̃apA(X,−) : A(B)→ E(Aop × B)

induced by the E-morphism m̃apA(X,−). Given any map f : hB → m̃apA(Y, Z) in A(B),
write

m̃apA(X, f) : m̃apA(X, Y )→ m̃apA(X,Z)

for its image in E(Aop × B). Using the description of m̃apA(X,−) from Proposition 4.1.11,
this is the composite below:
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m̃apA(X, Y ) hB ⊗B m̃apA(X, Y ) m̃apA(Y, Z)⊗B m̃apA(X, Y )

m̃apA(X,Z)

λ−1 f⊗Bm̃apA(X,Y )

◦

Given any object Y ∈ A0(B) = A
op
0 (Bop), we will write

m̃apA(−, Y ) := m̃apAop(Y,−) : Aop → EB.

As above, any map g : hA → m̃apA(X,Z) in A(A) induces a map

m̃apA(g, Y ) : m̃apA(Z, Y )→ m̃apA(X, Y )

in E(Aop × B). Explicitly, this is the following composite:

m̃apA(Z, Y ) m̃apA(Z, Y )⊗A hA m̃apA(Z, Y )⊗A m̃apA(X,Z)

m̃apA(X, Y )

ρ−1 m̃apA(Z,Y )⊗Ag

◦

Remark 4.1.13. Let A be an E-category, let A be a category, and let f : hA → m̃apA(X, Y )
be a map in A(A). The unit axioms for A imply that the diagram below commutes:

hA m̃apA(X,X)

m̃apA(Y, Y ) m̃apA(X, Y )

j

j
f

m̃apA(X,f)

m̃apA(f,Y )

So, precomposing with j, we can recover the map f from m̃apA(X, f) or m̃apA(f, Y ).

Remark 4.1.14. Suppose D is the E-category associated to a closed E-module D, and let
X ∈ D(A) and Y ∈ D(B). Then, for any category C, the functors

m̃apD(X,−) : D(C)→ E(Aop × C)

m̃apD(−, Y ) : D(C)op → E(Cop × B),

induced by the E-morphisms m̃apD(X,−) and m̃apD(−, Y ), recover the component functors
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of the original derivator maps:

m̃apD(X,−) : D→ EAop

m̃apD(−, Y ) : Dop → EB

Using the descriptions above of m̃apA(X,−) and m̃apA(−, Y ), we can give a useful charac-
terisation of E-naturality:

Lemma 4.1.15. Let A and B be E-categories, and let F,G : A → B be E-morphisms.
Suppose we have a collection of maps

βX : hA → m̃apB(FX,GX),

for every category A, and every X ∈ A0(A). These maps form an E-natural transformation
β : F ⇒ G if and only if the diagram below commutes, for any X ∈ A0(A) and Y ∈ A0(B):

m̃apA(X, Y ) m̃apB(FX,FY )

m̃apB(GX,GY ) m̃apB(FX,GY )

F

G m̃apB(FX,βY )

m̃apB(βX ,GY )

Proof. The diagram in Definition 4.1.3 expressing E-naturality is the same as this diagram,
once we expand m̃apB(FX, βY ) and m̃apB(βX , GY ).

Using this characterisation, we can now prove the following two lemmas:

Lemma 4.1.16. Let A be an E-category, let A be a category, and let f : hA → m̃apA(X, Y )
be a map in A(A). Then the maps

m̃apA(f, Z) : m̃apA(Y, Z)→ m̃apA(X,Z)

are E-natural in Z ∈ A0(B).

Proof. Fix a map f : hA → m̃apA(X, Y ) in A(A). By Lemma 4.1.15, we need the diagram
below to commute, for any Z ∈ A0(B) and W ∈ A0(C):



95

m̃apA(Z,W )

m̃apEAop (m̃apA(Y, Z), m̃apA(Y,W ))

m̃apEAop (m̃apA(X,Z), m̃apA(X,W ))

m̃apEAop (m̃apA(Y, Z), m̃apA(X,W ))

m̃apA(Y ,−)

m̃apA(X,−)

m̃ap
EAop (m̃apA(Y,Z),m̃apA(f,W ))

m̃ap
EAop (m̃apA(f ,Z),m̃apA(X,W ))

Under the adjunction

E(Bop × C) E(Aop × C)

− ⊗Bm̃apA(Y ,Z)

m̃ap
EAop (m̃apA(Y ,Z),−)

⊥

this reduces to the square:

m̃apA(Z,W )⊗B m̃apA(Y, Z) m̃apA(Y,W )

m̃apA(Z,W )⊗B m̃apA(X,Z) m̃apA(X,W )

◦

m̃apA(Z,W )⊗Bm̃apA(f,Z) m̃apA(f,W )

◦

Using the descriptions of m̃apA(f, Z) and m̃apA(f,W ) given above, we can see that this
diagram commutes.

Remark 4.1.17. For any E-category A, and any category A, the assignment

y : A(A)op −→ E-Cat(A,EAop)

X 7→ m̃apA(X,−)

is functorial. Two E-natural transformations are equal if and only if their components are
equal, so the functoriality of y follows by the functoriality of the map

m̃apA(−,W ) : A(A)op → E(Aop × B),

for any category B and any W ∈ A0(B).
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Lemma 4.1.18. Let F : A→ B be an E-morphism. The maps

F : m̃apA(X, Y )→ m̃apB(FX,FY )

are E-natural in both X ∈ A0(A) and Y ∈ A0(B).

Proof. Fix X ∈ A0(A). We will prove that the maps

F : m̃apA(X, Y )→ m̃apB(FX,FY )

are E-natural in Y ∈ A0(B); E-naturality in the first variable is dual. Given Y ∈ A0(B) and
Z ∈ A0(C), we need the diagram below to commute:

m̃apA(Y, Z)

m̃apEAop (m̃apA(X, Y ), m̃apA(X,Z))

m̃apB(FY, FZ)

m̃apEAop (m̃apB(FX,FY ), m̃apB(FX,FZ))

m̃apEAop (m̃apA(X, Y ), m̃apB(FX,FZ))

m̃apA(X,−)

F

m̃ap
EAop (m̃apA(X,Y ),F )m̃apB(FX,−)

m̃ap
EAop (F ,m̃apB(FX,FZ))

Under the adjunction

E(Bop × C) E(Aop × C)

− ⊗Bm̃apA(X,Y )

m̃ap
EAop (m̃apA(X,Y ),−)

⊥

this corresponds exactly to the first axiom of Definition 4.1.2 for the E-morphism F .

We end this section by proving that cocontinuous E-module maps, and E-module modifica-
tions between them, induce E-morphisms and E-natural transformations, using the coherence
results at the end of Section 3.5.



97

Proposition 4.1.19. Let D1 and D2 be closed E-modules. Then any cocontinuous E-module
map F : D1 → D2 induces an E-morphism

F : D1 → D2

on the associated E-categories of Theorem 4.1.10. Moreover, for any category A, the functor
F : D1(A) → D2(A) induced by this E-morphism is the component at A of the original
derivator map.

Proof. The E-morphism F : D1 → D2 takes any object X ∈ D1(A) to its image under the
derivator map, FX ∈ D2(A). Let X ∈ D1(A) and Y ∈ D1(B), and consider the adjunction

EAop
D2.

− ⊗AFX

m̃apD2 (FX,−)

⊥

Under this adjunction, define the structure map

F : m̃apD1(X, Y )→ m̃apD2(FX,FY )

to be adjunct to the composite below:

m̃apD1(X, Y )⊗A FX
ϕ−−→ F (m̃apD1(X, Y )⊗A X) F (ε)−−−−→ FY

Here the map ϕ is the canonical isomorphism of Lemma 3.5.9.

To prove that this satisfies the axioms of Definition 4.1.2, we replace the diagrams that
need to commute by their adjuncts. Using the description of units and composition in D2,
from Theorem 4.1.10, the first axiom of Definition 4.1.2 follows from the first commuta-
tive diagram of Lemma 3.5.9, and the second axiom follows from the second commutative
diagram.

To see that the functor of Remark 4.1.4 recovers the original functor F : D1(A) → D2(A),
suppose we have a map f : X → Y in D1(A). Using Theorem 4.1.10, we need to check
that its image under the prederivator map F is adjunct to the composite below (up to the
isomorphism λ : hA ⊗A FX

∼=−→ FX):
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hA m̃apD1(X,X) m̃apD1(X, Y ) m̃apD2(FX,FY )j m̃apD1 (X,f) F

This is immediate, using the definition of the unit in D2, from Theorem 4.1.10, and the
second commutative diagram of Lemma 3.5.9.

Lemma 4.1.20. Let F,G : D1 → D2 be cocontinuous E-module maps between closed E-
modules. Then any E-module modification

D1 D2

F

G

β

induces an E-natural transformation between the associated E-morphisms of Proposition 4.1.19.

Proof. Suppose we have categories A and B, and objects X ∈ D1(A) and Y ∈ D1(B). We
need to check that the diagram of Lemma 4.1.15 commutes; equivalently, we may consider
its adjunct under the adjunction below:

EAop
D2

− ⊗AFX

m̃apD2 (FX,−)

⊥

That diagram commutes, using the description of F and G from Proposition 4.1.19, and the
fact that β respects the cancelling tensor product, as in Lemma 3.5.10.

Remark 4.1.21. Suppose F : D1 → D2 is a continuous map between closed E-modules.
If F preserves cotensors then the dual of Proposition 4.1.19 implies that F induces an E-
category map F : D1 → D2. Given a map F that is both continuous and cocontinuous,
and preserves tensors and cotensors, there are two potentially distinct enrichments on F .
Without coherence between the isomorphisms that express the preservation of tensors and
cotensors, these two induced enrichments need not agree.

4.2 The Yoneda lemma and adjunctions for E-categories

We begin this section with Theorem 4.2.1, an E-category analogue of the Yoneda lemma. As
is the case in other settings, this result is extremely useful, and we will use it repeatedly in
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our discussion of enriched derivators in Chapter 5. We also use it immediately to prove The-
orem 4.2.5, which gives a convenient characterisation of adjunctions in the 2-category E-Cat,
reminiscent of the familiar result for enriched categories in [27, Chapter 1]. We finish this
section with Proposition 4.2.7, showing that an adjunction between closed E-modules whose
left adjoint preserves tensors induces an E-category adjunction. This result is important for
the proof, in Chapter 5, that closed E-modules induce enriched derivators.

Theorem 4.2.1 (Yoneda lemma for E-categories). Let A be an E-category, let A be a cat-
egory, and let X ∈ A0(A). Let F : A → EAop be an E-morphism. Then we have a natural
bijection:

E-Cat(A,EAop)(m̃apA(X,−), F ) ∼= E(Aop × A)(hA, FX)

Proof. Let β : m̃apA(X,−)⇒ F be an E-natural transformation. This determines a map in
E(Aop × A) as follows:

hA m̃apA(X,X) FX
j βX

On the other hand, given f : hA → FX in E(Aop×A), we can construct the following family
of maps, one for each Y ∈ A0(B):

m̃apA(X, Y ) m̃apEAop (FX,FY ) m̃apEAop (hA, FY )

FY

F m̃ap
EAop (f ,FY )

∼= %

Here the isomorphism % : m̃apEAop (hA,−)
∼=−→ id is conjugate to the inverse of the unit

isomorphism ρ−1 : id
∼=−→ − ⊗A hA. Thus, for any Z ∈ E(Aop × B), the diagram below

commutes:

m̃apEAop (hA, Z)⊗A hA

Z

m̃apEAop (hA, Z)

ε

ρ

%

(4.1)



100

We claim that this map % is E-natural in Z ∈ EAop(B), in which case the composite above is
E-natural in Y ∈ A0(B), by Lemma 4.1.16 and Lemma 4.1.18.

To see this, let Z ∈ E(Aop×B) andW ∈ E(Aop×C). By Lemma 4.1.15, we need the diagram
below to commute:

m̃apEAop (Z,W ) m̃apEAop (m̃apEAop (hA, Z), m̃apEAop (hA,W ))

m̃apEAop (m̃apEAop (hA, Z),W )

m̃ap
EAop (hA,−)

m̃ap
EAop (%,W )

m̃ap
EAop (m̃ap

EAop (hA,Z),%)

Taking adjuncts under the adjunction

EBop
EAop

,

−⊗Bm̃ap
EAop (hA,Z)

m̃ap
EAop (m̃ap

EAop (hA,Z),−)

⊥

this corresponds to the square below, using the description of m̃apEAop (hA,−) given in Propo-
sition 4.1.11:

m̃apEAop (Z,W )⊗B m̃apEAop (hA, Z) m̃apEAop (hA,W )

m̃apEAop (Z,W )⊗B Z W

◦

m̃ap
EAop (Z,W )⊗B% %

ε

We can expand the vertical arrows in this diagram using the equation % = ε◦ρ−1 from (4.1).
Using the description of composition in EAop from Theorem 4.1.10, we can then see that this
diagram commutes.

Thus, we have well-defined functions in both directions. We will now show that they are
mutually inverse.

First, suppose we have a map f : hA → FX in E(Aop × A). We need to show that the
diagram below commutes:
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hA m̃apA(X,X) m̃apEAop (FX,FX) m̃apEAop (hA, FX)

FX

j

f

F m̃ap
EAop (f ,FX)

%

Using Remark 4.1.13, this diagram is equal to the diagram below:

hA m̃apEAop (hA, FX)

FX

f̃

f

%
(4.2)

Here f̃ is the map corresponding to f : hA → FX, as in the proof of Theorem 4.1.10. That
is, f̃ makes the diagram below commute:

hA ⊗A hA hA

m̃apD(hA, FX)⊗A hA FX

λ

f̃⊗AhA f

ε

Using this commutative diagram, and (4.1), it is easy to see that (4.2) commutes, using the
fact that λ = ρ : hA ⊗ hA → hA.

On the other hand, suppose we have an E-natural transformation β : m̃apA(X,−) ⇒ F .
Given any Y ∈ A0(B), we need the diagram below to commute:

m̃apA(X, Y ) m̃apEAop (FX,FY ) m̃apEAop (m̃apA(X,X), FY )

m̃apEAop (hA, FY )

FY

F

βY

m̃ap
EAop (βX ,FY )

m̃ap
EAop (j,FY )

%

This diagram commutes, using Lemma 4.1.15 for β, the definition of the structure map
m̃apA(X,−) from Proposition 4.1.11, the commutative diagram (4.1), and the third axiom
of Definition 4.1.1 for A.
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Thus, these functions form a bijection

E-Cat(A,EAop)(m̃apA(X,−), F ) ∼= E(Aop × A)(hA, FX).

We still need to check that the bijection is natural in both X and F ; note that both sides
are indeed functorial in X and F , by Remark 4.1.17.

It is easy to check that this bijection is natural in F . On the other hand, suppose we have a
map f : X → Y inA(A). Naturality in the first variable amounts to the commutativity of the
diagram below, for any F ∈ E-Cat(A,EAop), and any E-natural map β : m̃apA(X,−)⇒ F :

hA m̃apA(X,X) FX

m̃apA(Y, Y ) m̃apA(X, Y ) FY

j

j

βX

F (f)

m̃apA(f,Y ) βY

This diagram commutes, using Remark 4.1.13, and the naturality of the induced natural
transformation β.

Remark 4.2.2. Let A be an E-category and let A be a category. Let X ∈ A0(A), let
F : A→ EAop be an E-morphism, and suppose we have a map f : hA → FX in E(Aop ×A).
Consider the E-natural map β : m̃apA(X,−) ⇒ F determined by Theorem 4.2.1. The
component of β at Y ∈ A0(B), given in Theorem 4.2.1, can also be described as follows:

m̃apA(X, Y ) m̃apA(X, Y )⊗A hA m̃apEAop (FX,FY )⊗A FX

FY

ρ−1 F⊗Af

ε

Corollary 4.2.3. For any E-category A and any category A, the functor

y : A(A)op → E-Cat(A,EAop)

of Remark 4.1.17 is fully faithful.

Proof. This map is faithful by Remark 4.1.13. To see that it is full, suppose we have objects
X, Y ∈ A0(A), and an E-natural transformation

β : m̃apA(Y,−)⇒ m̃apA(X,−).
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Consider the corresponding map f : hA → m̃apA(X, Y ) determined by Theorem 4.2.1:

f : hA
j−−→ m̃apA(Y, Y ) βY−−−→ m̃apA(X, Y )

We may think of this as a map f : X → Y in A(A). Using Remark 4.2.2 and Proposi-
tion 4.1.11, the component of β at Z ∈ A0(B) is the following composite:

m̃apA(Y, Z) m̃apA(Y, Z)⊗A hA m̃apA(Y, Z)⊗A m̃apA(X, Y )

m̃apA(X,Z)

ρ−1 m̃apA(Y ,Z)⊗Af

◦

But this is exactly m̃apA(f, Z). Thus, we have:

β = m̃apA(f,−) : m̃apA(Y,−)⇒ m̃apA(X,−)

Definition 4.2.4. An E-category adjunction is an adjunction in the 2-category E-Cat, in
the sense of [28]. Thus, an E-category adjunction consists of E-categories A and B, a left
adjoint E-morphism F : A → B and a E-morphism right adjoint G : B → A, together with
the counit E-natural transformation ε : F ◦G⇒ idB and the unit E-natural transformation
η : idA ⇒ G ◦ F . These must satisfy the triangle identities (G ◦ ε) · (η ◦ G) = idG and
(ε ◦ F ) · (F ◦ η) = idF .

Theorem 4.2.5. The data of an adjunction in E-Cat is equivalent to the following: a pair
of E-morphisms F : A→ B and G : B→ A, and a family of isomorphisms

m̃apB(FX, Y ) ∼= m̃apA(X,GY )

E-natural in both X ∈ A0(A) and Y ∈ B0(B).

Proof. Let F : A → B and G : B → A be E-morphisms, and suppose we have a family of
maps as below, for each category A and each X ∈ A0(A):

ηX : hA → m̃apA(X,GFX)

By Theorem 4.2.1, each map ηX determines an E-natural transformation:
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B EAop

A

m̃apB(FX,−)

G m̃apA(X,−)

ΩX,−

Using Remark 4.2.2, the component of this map at Y ∈ B0(B) is given by the composite

ΩX,Y : m̃apB(FX, Y ) m̃apA(GFX,GY ) m̃apA(X,GY ).G m̃apA(ηX ,GY )

We claim that the family ηX : hA → m̃apA(X,GFX) is E-natural in X ∈ A0(A) if and only
if these maps ΩX,Y are E-natural in X.

First, suppose η : idA ⇒ G◦F is E-natural. Using Lemma 4.1.18 for G, and the description of
horizontal composition for E-natural transformations in Lemma 4.1.5, it follows immediately
that ΩX,Y is E-natural in X.

Conversely, suppose that for any category B, and any Y ∈ B0(B), the map

Bop

Aop EB

m̃apB(−,Y )

m̃apA(−,GY )

F op

Ω−,Y

is E-natural. The commutative diagram of Lemma 4.1.15 that expresses this E-naturality
corresponds by adjointness to the following commutative diagram, for any X ∈ A0(A) and
Z ∈ A0(C):

m̃apB(FZ, Y )⊗C m̃apA(X,Z) m̃apB(FZ, Y )⊗C m̃apB(FX,FZ)

m̃apB(FX, Y )

m̃apA(GFZ,GY )⊗C m̃apA(X,Z)

m̃apA(GFX,GY )

m̃apA(Z,GY )⊗C m̃apA(X,Z) m̃apA(X,GY )

G⊗Cm̃apA(X,Z)

m̃apB(FZ,Y )⊗CF

◦

G

m̃apA(ηZ ,GY )⊗Cm̃apA(X,Z)

m̃apA(ηX ,GY )

◦
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In particular, take X ∈ A0(A), Z ∈ A0(C) and Y = FZ ∈ B0(C). Precomposing with the
composite

m̃apA(X,Z) hC ⊗C m̃apA(X,Z) m̃apB(FZ, FZ)⊗A m̃apA(X,Z)λ−1 j⊗Cm̃apA(X,Z)

this commutative diagram reduces to the following:

m̃apA(X,Z) m̃apB(FX,FZ) m̃apA(GFX,GFZ)

m̃apA(X,GFZ)

F

m̃apA(X,ηZ)

G

m̃apA(ηX ,GFZ)

But this is the diagram of Lemma 4.1.15, expressing the E-naturality of η.

So the maps ηX are E-natural in X if and only if the maps ΩX,Y are E-natural in X. Dually,
a family of maps

εY : hB → m̃apB(FGY, Y )

corresponds to maps, E-natural in X ∈ A0(A):

ΛX,Y : m̃apA(X,GY ) m̃apB(FX,FGY ) m̃apB(FX, Y )F m̃apB(FX,εY )

These maps ΛX,Y are E-natural in Y if and only if the maps εY are E-natural in Y .

Given this data, the equations ΛX,Y ◦ΩX,Y = id and ΩX,Y ◦ ΛX,Y = id are equivalent to the
triangle identities for ε and η.

Theorem 4.2.6. Let G : B → A be an E-morphism. Suppose that, for every category
A and any object X ∈ A0(A), there is an object FX ∈ B0(A) representing the composite
E-morphism below:

B A EAopG m̃apA(X,−)

Then there is a unique way to extend F to an E-morphism F : A→ B, such that F gives a
left adjoint to G : B→ A.
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Proof. On objects, the E-morphism F : A → B takes X ∈ A0(A) to the given object
FX ∈ B0(A). For any two objects X ∈ A0(A) and Z ∈ A0(C), we require the structure map

F : m̃apA(X,Z)→ m̃apB(FX,FZ)

in E(Aop × C).

By assumption, for any X ∈ A0(A), we have an isomorphism

ΩX,Y : m̃apB(FX, Y )
∼=−→ m̃apA(X,GY ),

E-natural in Y ∈ B0(B). By Theorem 4.2.1, this map is given by the composite

ΩX,Y : m̃apB(FX, Y ) m̃apA(GFX,GY ) m̃apA(X,GY ),G m̃apA(ηX ,GY )

for a map ηX : X → GFX, as in the proof of Theorem 4.2.5. Using these maps, we define
the structure map as follows, for X ∈ A0(A) and Z ∈ A0(C):

F : m̃apA(X,Z) m̃apA(X,GFZ) m̃apA(FX,FZ)m̃apA(X,ηZ) Ω−1
X,FZ

Note that this definition is necessary to make the diagram below commute:

m̃apA(X,Z) m̃apB(FX,FZ) m̃apA(GFX,GFZ)

m̃apA(X,GFZ)

F

m̃apA(X,ηZ)

G

m̃apA(ηX ,GFZ) (4.3)

If we show that F is indeed an E-morphism, then this diagram will express E-naturality for
the maps ηX : X → GFX. Thus, once we verify the axioms of Definition 4.1.2, it will follow
that F is the unique left adjoint to G.

To verify the first axiom, note that the commutativity of the diagram (4.3) above implies
that the diagram below commutes, for any X ∈ A0(A), Z ∈ A0(C) and Y ∈ B0(B):
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m̃apA(X,Z)

m̃apEB(m̃apA(Z,GY ), m̃apA(X,GY ))

m̃apB(FX,FZ)

m̃apEB(m̃apB(FZ, Y ), m̃apB(FX, Y ))

m̃apEB(m̃apB(FZ, Y ), m̃apA(X,GY ))

m̃apA(−,GY )

F

m̃ap
EB (ΩZ,Y ,m̃apA(X,GY ))m̃apB(−,Y )

m̃ap
EB (m̃apB(FZ,Y ),ΩX,Y )

(4.4)

If we knew that F was an E-morphism, this diagram would express the E-naturality of the
maps ΩX,Y in X. The commutativity of this diagram follows by the same argument as in
the proof of Theorem 4.2.5. It follows from the commutativity of the diagram (4.4) and the
E-naturality of m̃apA(−, ηZ), as in Lemma 4.1.16, that the composite

F : m̃apA(X,Z) m̃apA(X,GFZ) m̃apA(FX,FZ)m̃apA(X,ηZ) Ω−1
X,FZ

also satisfies the would-be E-naturality condition in X. That is, the diagram below com-
mutes, for X ∈ A0(A), Z ∈ A0(C) and W ∈ A0(D):

m̃apA(X,Z)

m̃apED(m̃apA(Z,W ), m̃apA(X,W ))

m̃apB(FX,FZ)

m̃apED(m̃apB(FZ, FW ), m̃apB(FX,FW ))

m̃apED(m̃apA(Z,W ), m̃apB(FX,FW ))

m̃apA(−,W )

F

m̃ap
ED (m̃apA(Z,W ),F )m̃apB(−,FW )

m̃ap
ED (F ,m̃apB(FX,FW ))
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Taking adjuncts, this diagram reduces to the first axiom of Definition 4.1.2 for F . Essentially,
this is the proof of Lemma 4.1.18 in reverse.

The second axiom of Definition 4.1.2 for F follows easily from Remark 4.1.13 and the corre-
sponding axiom for G.

Suppose we have a adjunction

D1 D2

F

R

⊥

between closed E-modules. By Proposition 3.7.5, F preserves tensors if and only if R pre-
serves cotensors. If this is the case, then, by Proposition 4.1.19, F and R both induce
E-morphisms on the associated E-categories. We will now show that these E-morphisms
form an adjunction:

Proposition 4.2.7. Let D1 and D2 be closed E-modules, and suppose we have an adjunction:

D1 D2

F

R

⊥

If F preserves tensors, then the induced E-morphisms form an E-category adjunction.

Proof. Let A be a category and let X ∈ D1(A). Consider the isomorphism

EAop
D1

D2

−⊗AFX

−⊗AX

ϕ
∼= F

of Lemma 3.5.9. The conjugate of this map gives an isomorphism between the right adjoints:
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EAop
D1

D2
m̃apD2 (FX,−)

m̃apD1 (X,−)

∼=
Ω

R

By Lemma 3.7.6, and the dual of Lemma 4.1.20, this isomorphism induces an E-natural
isomorphism between the induced E-category maps. Thus, we obtain an isomorphism

ΩX,Y : m̃apD2(FX, Y )
∼=−→ m̃apD1(X,RY ),

E-natural in Y ∈ D2(B). By Theorem 4.2.6, there is a unique way to define an E-morphism
structure on F , such that F is a left adjoint to R. Specifically, forX ∈ D1(A) and Z ∈ D1(C),
we have:

F : m̃apD1(X,Z) m̃apD1(X,RFZ) m̃apD2(FX,FZ)
m̃apD1 (X,ηZ) Ω−1

X,FZ

Here the map ηZ : Z → RFZ is obtained using Theorem 4.2.1, but it is easy to check that
this is the unit of the unenriched adjunction. It follows that this composite is adjunct to

m̃apD1(X, Y )⊗A FX
ϕ−−→ F (m̃apD1(X, Y )⊗A X) F (ε)−−−−→ FY

under the adjunction − ⊗A FX a m̃apD2(FX,−). Thus, the E-morphism structure on F

induced by Theorem 4.2.6 is the original structure of Proposition 4.1.19.

4.3 Transferring enrichments

In this section we study monoidal morphisms, starting with Lemma 4.3.2. This is an analogue
of Lemma 3.5.9, for monoidal maps rather than module maps. In Proposition 4.3.4, we use
this result to show that we can transfer enrichment along a monoidal adjunction. This
construction has a number of applications, but in particular, we use it to define shifted
E-categories in Example 4.3.8.

Definition 4.3.1. Let E1 and E2 be monoidal derivators. A derivator map F : E1 → E2 is
called a monoidal morphism if it is equipped with an isomorphism

ξ : F1
∼=−−→ 1
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in E2([0]), and an isomorphism:

E1 × E1 E2 × E2

E1 E2

F×F

⊗ ⊗

F

χ

∼=

These isomorphisms must satisfy familiar coherence conditions, which precisely mirror the
axioms for monoidal functors, as in [1].

Lemma 4.3.2. Let F : E1 → E2 be a cocontinuous monoidal morphism. For any cate-
gories A, B and C, and any X ∈ E1(Aop × B) and Y ∈ E1(Bop × C), the isomorphism χ

of Definition 4.3.1 induces an isomorphism

χ : F (Y ⊗B X)
∼=−−−→ FY ⊗B FX

in E2(Aop × C). Similarly, the isomorphism ξ induces an isomorphism

ξ : FhA
∼=−−−→ hA

in E2(Aop × A), for any category A.

These satisfy the following coherence conditions:

1. Given categories A, B, C and D, and objects X ∈ E1(Aop × B), Y ∈ E1(Bop × C) and
Z ∈ E1(Cop ×D), the diagram below commutes:

F ((Z ⊗C Y )⊗B X) F (Z ⊗C (Y ⊗B X))

F (Z ⊗C Y )⊗B FX FZ ⊗C F (Y ⊗B X)

(FZ ⊗C FY )⊗B FX FZ ⊗C (FY ⊗B FX)

χ

F (α)

χ

χ ⊗B FX FZ ⊗C χ

α

2. Given X ∈ E(Aop × B), the diagram below commutes:
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F (X ⊗A hA) FX ⊗A FhA

FX FX ⊗A hA

χ

F (ρ) FX⊗A ξ

ρ

3. Given X ∈ E(Aop × B), the diagram below commutes:

F (hB ⊗B X) FhB ⊗B FX

FX hB ⊗B FX

χ

F (λ) ξ ⊗BFX

λ

Proof. Let X ∈ E1(Aop×B) and Y ∈ E1(Bop×C). The map χ : F (Y ⊗BX)
∼=−−→ FY ⊗BFX

is given by the composite

F
∫ B

(Y ⊗̃X)
∼=−−−−→

∫ B
F (Y ⊗̃X)

∫ B
χ

−−−−−−→
∫ B

(FY ⊗̃FX),

where the first isomorphism is induced by the cocontinuity of F .

For any category A, the isomorphism ξ : FhA
∼=−−→ hA is given by the composite

F∂A1
∼=−−−→ ∂AF1

∂Aξ−−−−→ ∂A1

where the first isomorphism follows from the cocontinuity of F .

Each diagram in the statement corresponds to an axiom for the monoidal morphism F ,
as in Definition 4.3.1. The commutativity of each diagram can be reduced easily to the
corresponding axiom, using essentially the same arguments as in the proof of Lemma 3.5.9.

Remark 4.3.3. Let F : E1 → E2 be a cocontinuous monoidal morphism. Then F induces a
bicategory map

Prof(F ) : Prof(E1)→ Prof(E2)

between the bicategories of Remark 3.5.3. Explicitly, the map is the identity on objects, and,
given categories A and B, the map on hom-categories is F : E1(Bop × A) → E2(Bop × A).
The structure isomorphisms are χ and ξ of Lemma 4.3.2.
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Proposition 4.3.4. Let E1 and E2 be closed symmetric monoidal derivators, and suppose
we have an adjunction

E1 E2

F

R

⊥

such that the left adjoint F : E1 → E2 is monoidal. Let A be an E2-category. Then we can
construct an E1-category with the same objects as A, and, for X ∈ A0(A) and Y ∈ A0(B),
with mapping objects given by

R m̃apA(X, Y ) ∈ E1(Aop × B).

Proof. Units and composition for the E1-enrichment are defined as follows. Given any
X ∈ A0(A), the unit

j : hA → R m̃apA(X,X)

is adjunct to the composite

FhA hA m̃apA(X,X),ξ j

where ξ is the isomorphism of Lemma 4.3.2, and j is the unit for the E2-enrichment on A.
Similarly, given X ∈ A0(A), Y ∈ A0(B) and Z ∈ A0(C), composition is adjunct to the
following, where χ is the isomorphism of Lemma 4.3.2:

F (R m̃apA(Y, Z)⊗B R m̃apA(X, Y )) FR m̃apA(Y, Z)⊗B FR m̃apA(X, Y )

m̃apA(Y, Z)⊗B m̃apA(X, Y )

m̃apA(X,Z)

χ

ε ⊗B ε

◦

Using adjointness, and the commutative diagrams of Lemma 4.3.2, the E1-category axioms
of Definition 4.1.1 reduce easily to the corresponding E2-category axioms for A.

Given a monoidal left adjoint F : E1 → E2 as in Proposition 4.3.4, and an E2-category A,
we will continue to denote the associated E1-category by A. This is partially justified by the
following:
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Remark 4.3.5. Let F : E1 → E2 be a monoidal left adjoint, and let A be an E2-category.
Then for any category A, the induced category A(A), calculated with respect to the in-
duced E1-enrichment of Proposition 4.3.4, agrees with that calculated using the original
E2-enrichment. To see this, suppose we have X, Y ∈ A0(A), and consider the isomorphisms:

E2(Aop × A)(hA, m̃apA(X, Y )) ∼= E2(Aop × A)(FhA, m̃apA(X, Y ))
∼= E1(Aop × A)(hA, R m̃apA(X, Y ))

It is easy to see that these isomorphisms preserve composition and units, using Lemma 4.3.2.

Proposition 4.3.6. Let E be a monoidal derivator. Then for any category J, the map

∂J : E→ EJop×J

is a monoidal morphism, where EJop×J is considered with the monoidal structure of Exam-
ple 3.5.5.

Proof. The structure isomorphisms for ∂J are as follows. Define

ξ = id : ∂J1→ hJ

in E(Jop × J), and define χ to be the composite below:

E× E EJop
1 ×J2 × E EJop

1 ×J2 × EJop
3 ×J4

EJop
1 ×J2×Jop

3 ×J4

E EJop
1 ×J2 EJop

3 ×J2

⊗

∂J1,2×E

⊗̃

E
Jop

1 ×J2×∂J3,4

⊗̃

∫ J1,4

∼=

∂J1,2

∼=

∂J3,4

∼=

Here the first two isomorphisms follow from the cocontinuity of ⊗, as in Remark 2.3.4. The
third is the isomorphism of Proposition 3.1.12. Using Remark 3.1.13, the pasting diagram
above is equal to the one below:



114

E× E E× EJop
3 ×J4 EJop

1 ×J2 × EJop
3 ×J4

EJop
1 ×J2×Jop

3 ×J4

E EJop
3 ×J4 EJop

3 ×J2

⊗

E×∂J3,4

⊗̃

∂J1,2×E
Jop

3 ×J4

⊗̃

∫ J1,4

∼=

∂J3,4

∼=

∂J1,2

∼=

Thus, this diagram gives a second description of χ. Using these descriptions, and the defini-
tions of λ and ρ from Proposition 3.5.2, it is easy to see that the diagrams below commute,
for any X ∈ E(A):

∂J(X ⊗̃ 1) ∂J1,2X ⊗J1,4 ∂J3,41

∂JX ∂J1,2X ⊗J1,4 hJ3,4

χ

∂J(ρ)

ρ

∂J(1 ⊗̃ X) ∂J1,21⊗J1,4 ∂J3,4X

∂JX hJ1,2 ⊗J1,4 ∂J3,4X

χ

∂J(λ)

λ

These express the unit axioms for ∂J. It remains to show that the diagram below commutes,
for any X, Y, Z ∈ E(A):

∂J((Z ⊗ Y )⊗X) ∂J(Z ⊗ (Y ⊗X))

∂J3,2(Z ⊗ Y )⊗J3,6 ∂J5,6X ∂J1,2Z ⊗J1,4 ∂J5,4(Y ⊗B X)

(∂J1,2Z ⊗J1,4 ∂J3,4Y )⊗J3,6 ∂J5,6X ∂J1,2Z ⊗J1,4 (∂J3,4Y ⊗J3,6 ∂J5,6X)

χ

∂J(α)

χ

χ ⊗J3,6 ∂J5,6X ∂J1,2Z ⊗J1,4 χ

α

Note that, using the shifted derivator, we may assume X, Y, Z ∈ E([0]). Using the definition
of α from Proposition 3.5.2, and Remark 3.1.3 and Remark 3.1.14, we can see that this
diagram commutes.

Example 4.3.7. Let A be an E-category. For any category J, we may form an
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EJop×J-category AJ as follows. For any category A, we define

AJ
0(A) = A0(J× A).

Given X ∈ AJ
0(A) and Y ∈ AJ

0(B), define

m̃apAJ(X, Y ) = m̃apA(X, Y ) ∈ E(Jop × J× Aop × B).

Units and composition are inherited from the E-category structure on A, and the coherence
conditions of Definition 4.1.1 carry over immediately. Note that, for any category A, we have
an isomorphism

AJ(A) ∼= A(J× A) (4.5)

between the category induced by the EJop×J-category AJ at A, and the category induced by
the E-category A at J× A.

Example 4.3.8. Let A be an E-category, let J be a category, and consider the
EJop×J-category AJ of Example 4.3.7. By Proposition 4.3.4 and Proposition 4.3.6, we may
transfer the EJop×J-enrichment of AJ along the adjunction

E EJop×J.

∂J

∫
J

⊥

Thus, we obtain the shifted E-category AJ. Explicitly, for any category A, we have
AJ

0(A) = A0(J× A), and, given X ∈ AJ
0(A) and Y ∈ AJ

0(B), we have

m̃apAJ(X, Y ) =
∫

J
m̃apA(X, Y ) ∈ E(Aop × B).

Remark 4.3.9. For any E-category A and any categories J and A, Remark 4.3.5 and the
isomorphism (4.5) give rise to an isomorphism

AJ(A) ∼= A(J× A),

where AJ(A) is the category induced by the E-category AJ at A, and A(J×A) is the category
induced by the E-category A at J × A. Thus, taking A = [0] and using Remark 4.1.4, the
induced category A(J) is canonically E([0])-enriched, as well as E(Jop × J)-enriched.



Chapter 5

Enriched Derivators

In this chapter, we study additional structure and properties that we can ask for in an E-
category. In Section 5.1, we study E-prederivators, which we introduce in Definition 5.1.1.
These are E-categories equipped with a notion of pullback along functors; we show in Theo-
rem 5.1.10 that these pullbacks are part of a prederivator structure on the induced categories
of Remark 4.1.4. In Section 5.2, we show that E-morphisms and E-natural transformations
between E-prederivators induce prederivator maps and modifications. Using this, and the
Yoneda lemma of Theorem 4.2.1, we prove a representability theorem for E-prederivators in
Theorem 5.2.6. Finally, in Section 5.3, we define weighted homotopy limits and colimits in
an E-category, and use these to define E-derivators in Definition 5.3.6. We show, in Theo-
rem 5.3.7, that the E-category associated to a closed E-module is an E-derivator. Finally, in
Theorem 5.3.10, we show that any E-derivator induces a derivator.

5.1 E-Prederivators

In this section, we introduce E-prederivators, which are E-categories endowed with extra
structure. In particular, given a functor u : A → B and an E-prederivator A, we are able
to form a pullback along u in A. These pullbacks form part of a prederivator structure
on the categories induced by A. We record this fact in Theorem 5.1.10. We also show,
in Proposition 5.1.12, that the mapping objects in an E-prederivator induce prederivator
maps. Finally, in Theorem 5.1.14, we show that, given a closed E-module D, the associated
E-category D is an E-prederivator.

116
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Let A be an E-category, and suppose we have a functor u : A → B. For A to be an E-
prederivator, we want A to have a notion of pullback along u. Suppose we have an object
X ∈ A0(B). Using Lemma 3.4.13 and Proposition 4.1.19, we can form the following E-
morphism:

A EBop
EAopm̃apA(X,−) (uop)∗

The pullback ofX along u should be an object u∗X ∈ A0(A) that represents this E-morphism.
Dually, this same object should also represent the E-morphism below:

Aop EB EAm̃apA(−,X) u∗

This motivates the following definition:

Definition 5.1.1. Let A be an E-category. We call A an E-prederivator if we have the
following data:

• For any functor u : A→ B and any X ∈ A0(B), an object u∗X ∈ A0(A).

• For any functors u : A → B and v : C → D, and any X ∈ A0(B) and Y ∈ A0(D), an
isomorphism

γu,v : (uop × v)∗m̃apA(X, Y )
∼=−−−→ m̃apA(u∗X, v∗Y )

in E(Aop × C).

These must satisfy the following axioms:

1. For any category A and any X ∈ A0(A), we have id∗X = X ∈ A0(A). Given an
additional category B, and any Y ∈ A0(B), we have:

γid,id = id : m̃apA(X, Y )→ m̃apA(X, Y )

Moreover, given composable functors A u−−→ B v−−→ C, and X ∈ A0(C) we have
(v ◦ u)∗X = u∗v∗X, and given additional functors D w−−→ E z−−→ F, and Y ∈ A0(F),
the diagram below commutes:
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(uop × w)∗(vop × z)∗m̃apA(X, Y ) (uop × w)∗m̃apA(v∗X, z∗Y )

((v ◦ u)op × (z ◦ w))∗m̃apA(X, Y )

m̃apA(u∗v∗X,w∗z∗Y )

m̃apA((v ◦ u)∗X, (z ◦ w)∗Y )

(uop×w)∗γv,z

γu,w

γv◦u,z◦w

2. For any u : A→ B and X ∈ A0(B), the maps

γu,id : (uop × C)∗m̃apA(X, Y )
∼=−−−→ m̃apA(u∗X, Y )

are E-natural in Y ∈ A0(C). For any v : C→ D and Y ∈ A0(D), the maps

γid,v : (Aop × v)∗m̃apA(X, Y )
∼=−−−→ m̃apA(X, v∗Y )

are E-natural in X ∈ A0(A).

3. For any functor u : A→ B and any X ∈ A0(B), the diagram below commutes:

hA (uop × u)∗hB (uop × u)∗m̃apA(X,X)

m̃apA(u∗X, u∗X)

hu

j

(uop×u)∗j

γu,u

Here hu is the map from Definition 3.5.1.

4. For any categories A, B, C and D, any functor v : B → C, and any X ∈ A0(A),
Y ∈ A0(C) and Z ∈ A0(D), the diagram below commutes:
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(vop ×D)∗m̃apA(Y, Z)⊗B (Aop × v)∗m̃apA(X, Y )

m̃apA(v∗Y, Z)⊗B m̃apA(X, v∗Y )

m̃apA(Y, Z)⊗C m̃apA(X, Y )

m̃apA(X,Z)

γv,id ⊗Bγ
id,v

m̃apA(Y,Z) ⊗v m̃apA(X,Y )

◦

◦

Here ⊗v is the map from Definition 3.2.5.

Remark 5.1.2. In Definition 5.1.1 Axiom 2, the E-naturality conditions amount to the
following:

1. For any categories A, B, C and D, any functor u : A → B, and any X ∈ A0(B),
Y ∈ A0(C) and Z ∈ A0(D), the diagram below commutes:

(uop ×D)∗(m̃apA(Y, Z)⊗C m̃apA(X, Y )) m̃apA(Y, Z)⊗C (uop × C)∗m̃apA(X, Y )

m̃apA(Y, Z)⊗C m̃apA(u∗X, Y )

(uop ×D)∗m̃apA(X,Z) m̃apA(u∗X,Z)

(uop×D)∗(◦)

∼=

m̃apA(Y,Z)⊗C γu,id

◦

γu,id

2. For any categories A, B, C and D, any functor w : C → D, and any X ∈ A0(A),
Y ∈ A0(B) and Z ∈ A0(D), the diagram below commutes:
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(Aop × w)∗(m̃apA(Y, Z)⊗B m̃apA(X, Y )) (Bop × w)∗m̃apA(Y, Z)⊗B m̃apA(X, Y )

m̃apA(Y,w∗Z)⊗B m̃apA(X, Y )

(Aop × w)∗m̃apA(X,Z) m̃apA(X,w∗Z)

(Aop×w)∗(◦)

∼=

γid,w ⊗Bm̃apA(X,Y )

◦

γid,w

This follows, using adjointness, from the E-naturality conditions in the form described
in Lemma 4.1.15.

Example 5.1.3. Let A be an E-prederivator, and let L ⊆ A0(A) be a set of objects in
A0([0]). For any category A, consider the set

B0(A) = {X ∈ A0(A) | a∗X ∈ L ∀a ∈ A}.

Note that B0([0]) = L. As in Example 4.1.6, we may consider the full sub-E-category B on
these objects. We claim that this E-category B is an E-prederivator.

To see this, let u : A → B be a functor and let X ∈ B0(B); we need to give an object
u∗X ∈ B0(A). Consider the object u∗X ∈ A0(A). Using Axiom 1 of Definition 5.1.1, it
follows that this object u∗X is in B0(A). We take this to be the required object. The
structure isomorphisms γ are also inherited from A. The E-prederivator axioms for B follow
from the axioms for A. We call B the maximal sub-E-prederivator on L.

Given an E-prederivator, we want to show that the induced categories of Remark 4.1.4
organise into a prederivator. We begin to give the required structure in the following lemma;
the final statement appears in Theorem 5.1.10.

Lemma 5.1.4. Let A be an E-prederivator and let u : A → B be a functor. Then the
assignment

A0(B) −→ A0(A)

X 7→ u∗X

extends to a functor u∗ : A(B)→ A(A) on the induced categories.
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Proof. Let f : hB → m̃apA(X, Y ) be a map in A(B). For any category C and any object
Z ∈ A0(C), consider the composite below:

m̃apA(u∗Y, Z) (uop × C)∗m̃apA(Y, Z) (uop × C)∗m̃apA(X,Z)

m̃apA(u∗X,Z)

(γu,id)−1 (uop×C)∗m̃apA(f ,Z)

γu,id

By Lemma 4.1.16, this map is E-natural in Z ∈ A0(C). Using Corollary 4.2.3, we define
u∗f : hA → m̃apA(u∗X, u∗Y ) to be the unique map in A(A) representing this E-natural
transformation. That is, u∗f is the unique map that makes the diagram below commute, for
any category C and any Z ∈ A0(C):

(uop × C)∗m̃apA(Y, Z) (uop × C)∗m̃apA(X,Z)

m̃apA(u∗Y, Z) m̃apA(u∗X,Z)

γu,id

(uop×C)∗m̃apA(f ,Z)

γu,id

m̃apA(u∗f ,Z)

(5.1)

Functoriality of this construction follows by the uniqueness, using Remark 4.1.17.

Remark 5.1.5. In the proof of Lemma 5.1.4, to define u∗ : A(B) → A(A) and prove it is
functorial, it suffices to use the Yoneda lemma for the category A(A), rather than the E-
category Yoneda lemma of Theorem 4.2.1. However, Theorem 4.2.1 implies that the diagram
(5.1) commutes, and we will use this repeatedly in the rest of the chapter, which is why we
used the E-category Yoneda lemma rather than the unenriched Yoneda lemma in this proof.

Remark 5.1.6. Suppose we have an E-prederivator A and a functor u : A → B. Given a
map f : hB → m̃apA(X, Y ) in A(B), the map u∗f : hA → m̃apA(u∗X, u∗Y ) of Lemma 5.1.4
can be explicitly described as follows:

hA (uop × u)∗hB (uop × u)∗m̃apA(X, Y ) m̃apA(u∗X, u∗Y )hu (uop×u)∗f γu,u

This follows from Axioms 1 and 3 of Definition 5.1.1, using Remark 4.1.13.

In the proof of Lemma 5.1.4, the action of u∗ : A(B)→ A(A) on maps is defined representably
using the E-natural isomorphisms γu,id. However, the explicit description in Remark 5.1.6,
implies that u∗ can also be defined using the dual isomorphisms γid,u:
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Remark 5.1.7. Let A be an E-prederivator, let u : A → B be a functor, and let
f : hB → m̃apA(X, Y ) be a map in A(B). Then u∗f : hA → m̃apA(u∗X, u∗Y ) makes
the diagram below commute, for any category C and any object Z ∈ A0(C):

(Cop × u)∗m̃apA(Z,X) (Cop × u)∗m̃apA(Z, Y )

m̃apA(Z, u∗X) m̃apA(Z, u∗Y )

γid,u

(Cop×u)∗m̃apA(Z,f)

γid,u

m̃apA(Z,u∗f)

Note that this property characterises u∗f , by Corollary 4.2.3. We can check this equality
using Remark 4.1.13, and the explicit description of u∗f from Remark 5.1.6.

We now give the corresponding results for natural transformations.

Lemma 5.1.8. Let A be an E-prederivator, and let

A B

u

v

κ

be a natural transformation. This induces a canonical natural transformation

A(A) A(B)

u∗

v∗

κ∗

between the functors of Lemma 5.1.4.

Proof. Let X ∈ A0(B). We need to define the component of κ∗ at X. For any category C
and any object Z ∈ A0(C), consider the composite below:

m̃apA(v∗X,Z) (vop × C)∗m̃apA(X,Z) (uop × C)∗m̃apA(X,Z)

m̃apA(u∗X,Z)

(γv,id)−1 (κop×C)∗
m̃apA(X,Z)

γu,id
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This map is E-natural in Z ∈ A0(C), by Lemma 3.4.13 and Lemma 4.1.20. Thus, by Corol-
lary 4.2.3, we may define κ∗X : hA → m̃apA(u∗X, v∗X) to be the unique map in A(A)
representing this E-natural transformation. That is, κ∗X is the unique map that makes the
diagram below commute, for any category C and any Z ∈ A0(C):

(vop × C)∗m̃apA(X,Z) (uop × C)∗m̃apA(X,Z)

m̃apA(v∗X,Z) m̃apA(u∗X,Z)

γv,id

(κop×C)∗
m̃apA(X,Z)

γu,id

m̃apA(κ∗X ,Z)

Suppose we have a map f : hB → m̃apA(X, Y ) in A(B). To check naturality, we need to
show that v∗(f) ◦ κ∗X and κ∗Y ◦ u∗(f) represent the same E-natural transformation. This
follows easily from the definitions of u∗ and v∗ in Lemma 5.1.4.

As in Remark 5.1.7, we also have a dual description of the map κ∗X :

Remark 5.1.9. Let A be an E-prederivator, let u, v : A → B be functors, let κ : u ⇒ v be
a natural transformation, and let X ∈ A0(B). For any category C and any Z ∈ A0(C), the
diagram below commutes:

(Cop × u)∗m̃apA(Z,X) (Cop × v)∗m̃apA(Z,X)

m̃apA(Z, u∗X) m̃apA(Z, v∗X)

γid,u

(Cop×κ)∗
m̃apA(Z,X)

γid,v

m̃apA(Z, κ∗X)

To check this, we can use Remark 4.1.13; the diagram above commutes if and only if the
diagram below commutes:

m̃apA(v∗X, v∗X) (vop × A)∗m̃apA(X, v∗X) (uop × A)∗m̃apA(X, v∗X)

hA m̃apA(u∗X, v∗X)

m̃apA(u∗X, u∗X) (Aop × u)∗m̃apA(u∗X,X) (Aop × v)∗m̃apA(u∗X,X)

(γv,id)−1 (κop×A)∗

γu,idj

j

(γid,u)−1 (Aop×κ)∗

γid,v
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Using Axioms 1 and 3 of Definition 5.1.1, we can reduce the commutativity of this diagram
to the commutativity of the diagram below:

hA (uop × u)∗hB

(vop × v)∗hB (uop × v)∗hB

hu

hv (uop×κ)∗

(κop×v)∗

This diagram commutes by Lemma 3.1.7.

Theorem 5.1.10. Any E-prederivator A induces a prederivator A : Catop → CAT, defined
as follows:

A B 7→ A(A) A(B)

u

v v∗

u∗

κ κ∗

Here u∗ is the functor of Lemma 5.1.4, and κ∗ is the natural transformation of Lemma 5.1.8.

Proof. We need to check that this assignment is 2-functorial. This follows from the corre-
sponding fact for E, using Axiom 1 of Definition 5.1.1. To illustrate how this works, we will
prove that A preserves composition of functors.

Suppose we have composable functors A u−−→ B v−−→ C, and an object X ∈ A0(C). By
definition, we have (v ◦ u)∗X = u∗v∗X. Suppose we have a map f : hC → m̃apA(X, Y )
in A(C). We want to show that (v ◦ u)∗f = u∗v∗f . By definition of the pullback functors
in Lemma 5.1.4, we must show that the diagram below commutes, for any Z ∈ A0(D):
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m̃apA((v ◦ u)∗X,Z) ((v ◦ u)op ×D)∗m̃apA(X,Z)

(uop ×D)∗m̃apA(v∗X,Z) ((v ◦ u)op ×D)∗m̃apA(Y, Z)

m̃apA((v ◦ u)∗Y, Z)

(uop ×D)∗(vop ×D)∗m̃apA(X,Z) (uop ×D)∗m̃apA(v∗Y, Z)

(uop ×D)∗(vop ×D)∗m̃apA(Y, Z)

(γu,id)−1

(γv◦u,id)−1

((v◦u)op×D)∗m̃apA(f ,Z)

(uop×D)∗(γv,id)−1

γv◦u,id

(uop×D)∗(vop×D)∗m̃apA(f ,Z)

γu,id

(uop×D)∗(γv,id)

This commutes by Axiom 2 of Definition 5.1.1.

We will refer to the prederivator A of Theorem 5.1.10 as the prederivator induced by A.

Lemma 5.1.11. Let A be an E-prederivator. The opposite E-category Aop carries a nat-
ural E-prederivator structure, such that the induced prederivator Aop is the opposite of the
prederivator induced by A.

Proof. Let u : A→ B be a functor and let X ∈ A
op
0 (B) = A0(Bop). Define u∗X with respect

to Aop to be (uop)∗X ∈ A0(Aop) with respect to A.

Given functors u : A → B and v : C → D, and X ∈ A0(Bop) and Y ∈ A0(Dop), we define
γu,v with respect to Aop to be the isomorphism

(uop× v)∗σ∗m̃apA(Y,X) = σ∗(v×uop)∗m̃apA(Y,X) σ∗(γvop,uop )−−−−−−−−−→ σ∗m̃apA((vop)∗Y, (uop)∗X)

with respect to A. It is easy to check that this data satisfies Definition 5.1.1, using the
corresponding facts for A, and the respect of σ∗ for hu and ⊗u.

Proposition 5.1.12. Let A be an E-prederivator, let A and B be categories, and let X ∈
A0(A) and Y ∈ A0(B). For any category C, consider the functors

m̃apA(X,−) : A(C)→ E(Aop × C)

m̃apA(−, Y ) : A(C)op → E(Cop × B)
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induced by the representable E-morphisms m̃apA(X,−) and m̃apA(−, Y ). These form the
components of prederivator maps

m̃apA(X,−) : A→ EAop

m̃apA(−, Y ) : Aop → EB

with structure isomorphisms given by the maps γ of Definition 5.1.1.

Proof. Let u : C → D be a functor, and let X ∈ A0(A) and Y ∈ A0(B). The structure
isomorphism for m̃apA(X,−) : A→ EAop has component at Z ∈ A0(D) given by:

γid,u : (Aop × u)∗m̃apA(X,Z)
∼=−−−→ m̃apA(X, u∗Z)

The structure isomorphism for m̃apA(−, Y ) : Aop → EB has component at Z ∈ A0(D) given
by:

γu,id : (uop × B)∗m̃apA(Z, Y )
∼=−−−→ m̃apA(u∗Z, Y )

We will outline a proof for the second map m̃apA(−, Y ). The other is analogous.

First, we need to check that the maps γu,id are natural in Z ∈ A(D)op. That is, for any map
f : hD → m̃apA(Z,W ) in A(D), we need the diagram below to commute:

(uop × B)∗m̃apA(W,Y ) (uop × B)∗m̃apA(Z, Y )

m̃apA(u∗W,Y ) m̃apA(u∗Z, Y )

γu,id

(uop×B)∗m̃apA(f ,Y )

γu,id

m̃apA(u∗f ,Y )

This holds by the commutativity of the diagram (5.1) in Lemma 5.1.4.

We now need to check that γu,id satisfies the axioms of Definition 2.1.2. Axioms 1 and 2
follow immediately from Axiom 1 of Definition 5.1.1. Finally, given a natural transformation
κ, Axiom 3 of Definition 2.1.2 follows from the definition of κ∗ in Lemma 5.1.8.

Remark 5.1.13. Let A be an E-prederivator. The prederivator maps of Proposition 5.1.12
are the external components of a prederivator map

mapA(−,−) : Aop ×A→ E.
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Given a category A and objects X ∈ Aop(A) and Y ∈ A(A), we have

mapA(X, Y ) = δ∗m̃apA(X, Y ) ∈ E(A),

where δ : A→ A× A is the diagonal map, as in Lemma 2.3.5.

Theorem 5.1.14. Let D be a closed E-module. The associated E-category D has a canonical
E-prederivator structure, such that the induced prederivator recovers the original D.

Proof. Let u : A → B be a functor, and let X ∈ D(B). To satisfy Definition 5.1.1, we
require an object u∗X ∈ D(A). We take this object to be the image of X under the functor
u∗ : D(B)→ D(A), coming from the prederivator structure on D.

Given functors u : A → B and v : C → D, and X ∈ D(B) and Y ∈ D(D), the required
isomorphism

γu,v : (uop × v)∗m̃apD(X, Y )
∼=−−−→ m̃apD(u∗X, v∗Y )

is induced by the structure isomorphisms of the prederivator map

mapD(−,−) : Dop ×D→ E,

as in Remark 2.3.1. With these definitions, once we show that we do indeed obtain an
E-prederivator, it is immediate that the induced prederivator must recover the original pred-
erivator. We will now check the axioms of Definition 5.1.1.

Axiom 1 follows immediately from Axioms 1 and 2 of Definition 2.1.2. For Axiom 2, suppose
we have functors u : A → B and v : C → D, and objects X ∈ D(B) and Y ∈ D(D), and
consider the maps below:

γu,id : (uop × E)∗m̃apD(X,Z)
∼=−−−→ m̃apD(u∗X,Z)

γid,v : (Eop × v)∗m̃apD(Z, Y )
∼=−−−→ m̃apD(Z, v∗Y )

We must show that these maps are E-natural in Z ∈ D(E). We will prove this for the
first map γu,id; the proof for γid,v is dual. First, note that γu,id is the component of a
modification in Z. Moreover, by Example 3.7.4 and Example 3.7.7, the source and target
of this modification preserve cotensors. Thus, if we can prove that γu,id respects cotensors,
E-naturality will follow by the dual of Lemma 4.1.20. Therefore, given any objectW ∈ E(C),
we need the diagram below to commute:
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(uop × Cop × E)∗m̃apD(X,Z C̃ W ) (uop × Cop × E)∗m̃apE(W, m̃apD(X,Z))

m̃apE(W, (uop × E)∗m̃apD(X,Z))

m̃apD(u∗X,Z C̃ W ) m̃apE(W, m̃apD(u∗X,Z))

γu,id

∼=

∼=

m̃apE(W, γu,id)

∼=

This diagram commutes; it expresses the fact that the isomorphism

m̃apD(X,Z C̃ W ) ∼= m̃apE(W, m̃apD(X,Z))

of Example 3.7.7 is a modification in X. We will now consider Axiom 3 of Definition 5.1.1.
Given a functor u : A→ B and X ∈ D(B), the diagram in Axiom 3 commutes if and only if
its adjunct diagram below commutes:

hA ⊗A u
∗X (uop × u)∗hB ⊗A u

∗X (uop × u)∗m̃apD(X,X)⊗A u
∗X

m̃apD(u∗X, u∗X)⊗A u
∗X

u∗X

hu⊗Au
∗X

λ

(uop×u)∗j⊗Au
∗X

γu,u⊗Au
∗X

ε

Here we have used the definition of the unit j : hA → m̃apD(u∗X, u∗X), from Theorem 4.1.10,
to simplify the left hand branch of the diagram. Using Lemma 3.6.5 and Remark 3.6.1, this
diagram reduces to the definition of the unit j : hA → m̃apD(X,X), and so it commutes.

Finally, consider Axiom 4 of Definition 5.1.1. Once again, we can show the required diagram
commutes by taking adjuncts, and using the definition of composition in D, from Theo-
rem 4.1.10. The diagram we obtain commutes, using Example 3.6.3 and Remark 3.6.1.

Remark 5.1.15. Let D be a closed E-module, let A and B be categories, and let X ∈ D(A)
and Y ∈ D(B). Then the prederivator maps

m̃apD(X,−) : D→ EAop
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m̃apD(−, Y ) : Dop → EB

of Proposition 5.1.12 recover the original prederivator maps coming from the closed E-module
structure. The same is true for mapD(−,−) : Dop ×D→ E of Remark 5.1.13.

5.2 The 2-category of E-prederivators

In the first half of this section, we show that E-morphisms and E-natural transformations
respect the extra structure on E-prederivators. In light of this, in Definition 5.2.3, we take
these to be the 1-cells and 2-cells in the 2-category of E-prederivators. It follows immediately
that the Yoneda lemma of Theorem 4.2.1 carries over to E-prederivators, and we use this
in the second half of this section to prove Theorem 5.2.6, a representability theorem for
E-morphisms of the form F : A → E. In Corollary 5.2.7, we apply this theorem to the
E-prederivator D associated to a closed E-module D to show that representability for a
derivator map F : D→ E can be deduced from representability theorems for the underlying
category D([0]).

Proposition 5.2.1. Let A and B be E-prederivators, and let F : A→ B be an E-morphism
between the underlying E-categories. For any functor u : A → B and any X ∈ A0(B), we
have a canonical isomorphism:

φu : u∗FX
∼=−−−→ Fu∗X

These are the structure isomorphisms for a prederivator map F : A→ B, with component at
A given by the induced functor F : A(A)→ B(A). Moreover, this is the unique prederivator
map structure on these functors with the property that, for any X ∈ A0(A) and Y ∈ A0(B),
the map

F : m̃apA(X, Y )→ m̃apB(FX,FY )

is a modification in both variables.

Proof. Let u : A → B be a functor and let X ∈ A0(B). For any category C and any object
Z ∈ A0(C), consider the composite below:
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m̃apA(u∗X,Z) (uop × C)∗m̃apA(X,Z) (uop × C)∗m̃apB(FX,FZ)

m̃apB(u∗FX,FZ)

(γu,id)−1 (uop×C)∗F

γu,id

By Lemma 4.1.18 this map is E-natural in Z ∈ A0(C). Thus, by Theorem 4.2.1, this
determines a unique map

φuX : hA → m̃apB(u∗FX,Fu∗X)

in B(A). Using Remark 4.2.2, the map φu is characterised by the fact that, for any category
C and any Z ∈ A0(C), the diagram below commutes:

(uop × C)∗m̃apA(X,Z) (uop × C)∗m̃apB(FX,FZ)

m̃apA(u∗X,Z)

m̃apB(Fu∗X,FZ) m̃apB(u∗FX,FZ)

γu,id

(uop×C)∗F

γu,id

F

m̃apB(φuX ,FZ)

Dually, for any category C and any Z ∈ A0(C), consider the following composite:

m̃apA(Z, u∗X) (Cop × u)∗m̃apA(Z,X) (Cop × u)∗m̃apB(FZ, FX)

m̃apB(FZ, u∗FX)

(γid,u)−1 (Cop×u)∗F

γid,u

This map is E-natural in Z ∈ A0(C), so, by Theorem 4.2.1, it determines a map

ψuX : hA → m̃apB(Fu∗X, u∗FX)

in B(A), which is unique such that the diagram below commutes, for any category C and
any Z ∈ A0(C):
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(Cop × u)∗m̃apA(Z,X) (Cop × u)∗m̃apB(FZ, FX)

m̃apA(Z, u∗X)

m̃apB(FZ, Fu∗X) m̃apB(FZ, u∗FX)

γid,u

(Cop×u)∗F

γid,u

F

m̃apB(FZ, ψuX)

We claim that ψuX is inverse to φuX , and that the isomorphisms φu organise into structure
isomorphisms for F . Note that once these facts are established, the commutative diagrams
above express the fact that

F : m̃apA(X, Y )→ m̃apB(FX,FY )

is a modification in both variables. The uniqueness statement in the theorem follows from
this observation.

We will start by showing that φu satisfies the conditions of Definition 2.1.2. First, we must
show that the maps ψuX are natural in X ∈ A(B). Let f : hB → m̃apA(X, Y ) be a map in
A(B). To show that the naturality condition Fu∗f ◦ φuX = φuY ◦ u∗Ff is satisfied, we may
equivalently show that the diagram below commutes, for any category C and any Z ∈ A0(C):

m̃apA(u∗Y, Z) m̃apB(Fu∗Y, FZ) m̃apB(u∗FY, FZ)

m̃apB(Fu∗X,FZ) m̃apB(u∗FX,FZ)

F

m̃apB(Fu∗f ,FZ)

m̃apB(φuY ,FZ)

m̃apB(u∗Ff ,FZ)

m̃apB(φuX ,FZ)

This diagram commutes, using the definition of φu above, and the commutative diagram
(5.1) that defines u∗.

To verify Axiom 1 of Definition 2.1.2, for any category A and any X ∈ A0(A), we must
show that the unit j : hA → m̃apB(FX,FX) satisfies the defining property of φid

X . This is
immediate once we unravel the definitions.

Similarly, suppose we have composable functors A u−−→ B v−−→ C, and let X ∈ A0(C). To
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verify Axiom 2 of Definition 2.1.2, we must check that φuv∗X ◦ u∗φvX satisfies the defining
property of φv◦uX . That is, we need the diagram below to commute, for any category D and
any Z ∈ A0(D):

((v ◦ u)op ×D)∗m̃apA(X,Z) ((v ◦ u)op ×D)∗m̃apB(FX,FZ)

m̃apA(u∗v∗X,Z) m̃apB(u∗v∗FX,FZ)

m̃apB(Fu∗v∗X,FZ) m̃apB(u∗Fv∗X,FZ)

γv◦u,id

((v◦u)op×D)∗F

γv◦u,id

F

m̃apB(φu
v∗X ,FZ)

m̃apB(u∗φvX ,FZ)

This diagram commutes, using Axiom 1 of Definition 5.1.1, the defining property of φu given
above, and the commutative diagram (5.1).

Finally, suppose we have functors u, v : A → B and a natural transformation κ : u ⇒ v.
To check Axiom 3 of Definition 2.1.2, we must verify the equality F (κ∗X) ◦ φuX = φvX ◦ κ∗FX ,
for any X ∈ A0(B). Equivalently, we may show that the diagram below commutes, for any
category C and any Z ∈ A0(C):

m̃apA(v∗X,Z) m̃apB(Fv∗X,FZ) m̃apB(v∗FX,FZ)

m̃apB(Fu∗X,FZ) m̃apB(u∗FX,FZ)

F

m̃apB(F (κ∗X),FZ)

m̃apB(φvX ,FZ)

m̃apB(κ∗FX ,FZ)

m̃apB(φuX ,FZ)

This diagram commutes, using the definition of φu given above, and the definition of κ∗

from Lemma 5.1.8.

For any functor u : A → B and any X ∈ A0(B), it remains to show that ψuX is inverse to
φuX . To do this, note that we may describe ψuX and φuX explicitly as follows:
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φuX : hA m̃apA(u∗X, u∗X) (uop × A)∗m̃apA(X, u∗X)

(uop × A)∗m̃apB(FX,Fu∗X)

m̃apB(u∗FX,Fu∗X)

j (γu,id)−1

(uop×A)∗F

γu,id

ψuX : hA m̃apA(u∗X, u∗X) (Aop × u)∗m̃apA(u∗X,X)

(Aop × u)∗m̃apB(Fu∗X,FX)

m̃apB(Fu∗X, u∗FX)

j (γid,u)−1

(Aop×u)∗F

γid,u

Using the description of composition in B(A) from Remark 4.1.4, we see that ψuX ◦ φuX = id,
using Axiom 3 of Definition 5.1.1, and Axiom 2 in the form given in Remark 5.1.2. Similarly,
φuX ◦ ψuX = id, using Axiom 4 of Definition 5.1.1. In both cases, we also use the axioms for
F from Definition 4.1.2.

Lemma 5.2.2. Let A and B be E-prederivators, and F,G : A→ B be E-morphisms. Then
any E-natural transformation

A B

F

G

β

induces a modification β : F ⇒ G between the prederivator maps F,G : A → B of Proposi-
tion 5.2.1.

Proof. Suppose we have a functor u : A → B and an object X ∈ A(B). We need to show
that the following diagram in B(A) commutes:

u∗FX u∗GX

Fu∗X Gu∗X

u∗βX

φuX φuX

βu∗X
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Equivalently, we may show that the diagram below commutes, for any category C and any
Z ∈ A0(C):

m̃apA(u∗X,Z) m̃apB(Gu∗X,GZ) m̃apB(Fu∗X,GZ)

m̃apB(u∗GX,GZ) m̃apB(u∗FX,GZ)

G

m̃apB(φuX ,GZ)

m̃apB(βu∗X ,GZ)

m̃apB(φuX ,GZ)

m̃apB(u∗βX ,GZ)

Using the E-naturality of β, in the form given in Lemma 4.1.15, the definition of u∗βX
from Lemma 5.1.4, and the definition of φuX from Proposition 5.2.1, we can see that this
diagram commutes.

In light of Proposition 5.2.1 and Lemma 5.2.2, E-morphisms and E-natural transformations
are the appropriate 1-cells and 2-cells for the 2-category of E-prederivators:

Definition 5.2.3. The 2-category of E-prederivators is the 2-category E-PDer, with
objects given by E-prederivators, 1-cells given by E-morphisms and 2-cells given by E-natural
transformations.

Remark 5.2.4. Let A be an E-category. By Definition 5.2.3, the identity E-morphism idA

induces an equivalence between any two E-prederivator structures on A. Thus, being an E-
prederivator is a property of an E-category, rather than extra structure. See Example 5.3.2
for a related discussion.

With this definition, Theorem 4.2.1 carries over immediately to an E-prederivator version:

Corollary 5.2.5. Let A be an E-prederivator, let A be a category, let X ∈ A0(A), and let
F : A→ EAop be an E-morphism. We have a natural bijection:

E-PDer(A,EAop)(m̃apA(X,−), F ) ∼= E(Aop × A)(hA, FX)

We finish this section with an application of Corollary 5.2.5. The following theorem reduces
the representability of an E-morphism F to the representability of its underlying E([0])-
functor of Remark 4.1.4:
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Theorem 5.2.6. Let A be an E-prederivator. An E-morphism F : A → E is representable
if and only if the E([0])-functor

F : A([0])→ E([0])

is representable as an E([0])-functor.

Proof. Let F : A → E be an E-morphism. If F is represented by an object X ∈ A0([0]),
then the E-natural isomorphism

A E

m̃apA(X,−)

F

∼=

induces an isomorphism between the corresponding E([0])-functors.

On the other hand, suppose the E([0])-functor F : A([0])→ E([0]) is representable. That is,
there is an object X ∈ A0([0]) and an E([0])-natural isomorphism

A([0]) E([0]).

m̃apA(X,−)

F

β ∼=

By the (weak) Yoneda for enriched categories (see [27, Section 1.9]), this map β uniquely
determines a map

f : 1→ FX

in E([0]). But, by Theorem 4.2.1, this map f uniquely determines an E-natural transforma-
tion

A E.

m̃apA(X,−)

F

β̄
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Moreover, the E([0])-natural transformation induced by this E-natural transformation is the
original E([0])-natural transformation β.

The E-natural map β̄ : m̃apA(X,−) ⇒ F is an isomorphism if and only if each component
is an isomorphism; that is, if and only if the induced modification

A E

m̃apA(X,−)

F

is an isomorphism. Since E satisfies Der 2, this is the case if and only if the natural
transformation on underlying categories

A([0]) E([0])

m̃apA(X,−)

F

is an isomorphism, by Lemma 2.1.25. (Note that this step is where we need A be an
E-prederivator, rather than a general E-category.) This natural transformation is an isomor-
phism, since it underlies the original E([0])-natural isomorphism β.

Corollary 5.2.7. Let D be a closed E-module. A derivator map

F : D→ E

is representable in the sense of Definition 3.8.2 if and only if it is continuous and preserves
cotensors, and the induced functor

D([0]) E([0]) SetF E([0])(1,−) (5.2)
is representable.

Proof. As in Theorem 3.8.3, the forward implication is immediate. For the reverse implica-
tion, suppose F : D → E is a continuous, cotensor-preserving map. Note that the cotensor
product on the derivator D induces cotensors on the E([0])-category D([0]), and these are
preserved by the E([0])-functor F : D([0])→ E([0]).
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Consider the (unenriched) composite (5.2). Since F : D([0])→ E([0]) preserves cotensors, it
follows from [27, Theorem 4.85] that the E([0])-functor F : D([0])→ E([0]) is representable
if and only if this unenriched functor (5.2) is representable.

By Proposition 4.1.19, F induces an E-morphism F : D→ E on the associated E-prederivators.
If (5.2) is representable, then Theorem 5.2.6 implies that this E-morphism is representable.
Thus, there is an object X ∈ D([0]), and an E-natural isomorphism

D E.

m̃apD(X,−)

F

∼=

This E-natural transformation induces the desired isomorphism between the induced deriva-
tor maps.

Corollary 5.2.7 allows us to improve slightly on Theorem 3.8.3, in the case of maps of the
form F : Dop → E. Specifically, in the following theorem, we only require that the underlying
categoryD([0]) satisfies Brown representability, rather than asking thatD(C) satisfies Brown
representability, for every category C.

Corollary 5.2.8. Let D be a closed E-module. Suppose that E and D are triangulated, and
that D([0]) satisfies Brown representability. Then a derivator map

F : Dop → E

is representable in the sense of Definition 3.8.2 if and only if it is continuous and preserves
cotensors.

Proof. Suppose F : Dop → E is a continuous, cotensor-preserving map, and consider the
composite below:

D([0])op E([0]) AbF E([0])(1,−)

Since F : D([0])op → E([0]) is an exact map of triangulated categories, this composite is a
cohomological functor. Moreover, it takes coproducts in D([0]) to products in Ab. Thus,
sinceD([0]) satisfies Brown representability, this composite is representable. Thus, the result
follows by Corollary 5.2.7.
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5.3 E-Derivators

In this section, we introduce E-derivators and show that any closed E-module gives rise to
an E-derivator. As a first step, we define E-semiderivators in Definition 5.3.5, followed by E-
derivators in Definition 5.3.6. Just as derivators are, in particular, semiderivators that admit
all homotopy limits and colimits, E-derivators are E-semiderivators that admit all weighted
homotopy limits and colimits. However, in contrast to derivators, there are no further axioms
we need to impose; in particular, we do not need any analogue of Der 4. Nonetheless, in
Theorem 5.3.10, we prove that, for any E-derivator A, the induced prederivator A is a
derivator. On the other hand, in Theorem 5.3.7, we prove that the E-prederivator associated
to any closed E-module is an E-derivator.

We begin this section with the definitions of weighted homotopy limits and colimits. These
are studied in [15, Section 4.5] and [16] in the context of E-modules; if we apply Defi-
nition 5.3.1 in the E-category associated to a closed E-module, we recover these notions.
However, in contrast to closed E-modules, where all weighted homotopy limits and colimits
always exist, in general E-categories we may study particular weighted homotopy limits and
colimits, in settings where all may not exist. In this way, it is preferable to work in the
context of E-categories and E-prederivators, rather than restricting to closed E-modules.

Definition 5.3.1. Let A be an E-category, let A and B be categories, and let X ∈ A0(A)
and W ∈ E(Aop × B). Consider the E-morphism below:

A EAop
EBopm̃apA(X,−) m̃ap

EAop (W,−)

If this map is representable, we call the representing object the homotopy colimit of X
weighted by W , and denote it by W ⊗A X ∈ A0(B). Thus, W ⊗A X is characterised by
isomorphisms

m̃apA(W ⊗A X,Z) ∼= m̃apEAop (W, m̃apA(X,Z)),

E-natural in Z ∈ A0(C).

Dually, given Y ∈ A0(B) and W ∈ E(Aop × B), the homotopy limit of Y weighted by
W , if it exists, is an object Y CB W ∈ A0(A) representing the E-morphism below:

Aop EB EAm̃apA(−,Y ) m̃ap
EB (W,−)
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Let A and B be E-categories and let F : A → B be an E-morphism. Given X ∈ A0(A)
and W ∈ E(Aop × B), suppose that the weighted homotopy colimits W ⊗A X ∈ A0(B) and
W ⊗A FX ∈ B0(B) both exist, and consider the composite below, for any category C, and
any Z ∈ A0(C):

m̃apA(W ⊗A X,Z) m̃apEAop (W, m̃apA(X,Z))

m̃apEAop (W, m̃apB(FX,FZ))

m̃apB(W ⊗A FX,FZ)

∼=
m̃ap

EAop (W ,F )

∼=

By Lemma 4.1.18, this map is E-natural in Z. Thus, using Theorem 4.2.1, it determines a
map

φ : hB → m̃apB(W ⊗A FX,F (W ⊗A X))

in B(B), unique such that the diagram below commutes, for any category C and any object
Z ∈ A0(C):

m̃apEAop (W, m̃apA(X,Z)) m̃apEAop (W, m̃apB(FX,FZ))

m̃apA(W ⊗A X,Z)

m̃apB(F (W ⊗A X), FZ) m̃apB(W ⊗A FX,FZ)

∼=

m̃ap
EAop (W ,F )

∼=

F

m̃apB(φ,FZ)

If this canonical map φ : W ⊗A FX → F (W ⊗A X) is an isomorphism in B(B), then we say
that F preserves the weighted homotopy colimit.

Example 5.3.2. Let A be an E-prederivator and let u : A → B be a functor. For any
X ∈ A0(B), and any Z ∈ A0(C), consider the isomorphism below:

m̃apA(u∗X,Z) ∼= (uop × C)∗m̃apA(X,Z)

∼= (uop × C)∗m̃apEBop (hB, m̃apA(X,Z))

∼= m̃apEBop ((Bop × u)∗hB, m̃apA(X,Z))
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In the composite above, the first and last maps are instances of γu,id for the E-prederivators
A and EBop . The second map is induced by the isomorphism % : m̃apEBop (hB,−)

∼=−→ id. In
the proof of Theorem 4.2.1, this map is shown to be E-natural; thus, the whole composite
above is E-natural in Z ∈ A0(C).

Therefore, in any E-prederivator A and for any u : A → B, the object u∗X ∈ A0(A) is the
homotopy colimit of X ∈ A0(B) weighted by (Bop × u)∗hB ∈ E(Bop ×A). Moreover, given a
second E-prederivator B and an E-morphism F : A→ B, the canonical map

φ : (Bop × u)∗hB ⊗B FX → F ((Bop × u)∗hB ⊗B X)

is the isomorphism φuX of Proposition 5.2.1. Thus, any E-morphism between E-prederivators
preserves weighted homotopy colimits of this form.

Lemma 5.3.3. Let A and B be E-categories, and suppose we have an adjunction:

A B

F

G

⊥

Let X ∈ A0(A), let W ∈ E(Aop×B), and suppose the weighted homotopy colimit W ⊗AX ∈
A0(B) exists. Then F (W ⊗A X) ∈ B0(B) is the homotopy colimit of FX weighted by W . In
particular, F preserves any weighted homotopy colimit that exists in A.

Proof. Given X ∈ A0(A) andW ∈ E(Aop×B), we have the following string of isomorphisms,
E-natural in Z ∈ B0(C):

m̃apB(F (W ⊗A X), Z) ∼= m̃apA(W ⊗A X,GZ)

∼= m̃apEAop (W, m̃apA(X,GZ))

∼= m̃apEAop (W, m̃apB(FX,Z))

Thus, F (W ⊗A X) ∈ B0(B) has the defining property of W ⊗A FX, and it follows that F
preserves the weighted homotopy colimit.

We will now begin to work towards the definition of E-derivator. One property we desire of
an E-derivator is that the prederivator it induces should be a derivator. We observe below
that this is already partway satisfied, for any E-prederivator:
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Proposition 5.3.4. For any E-prederivator A, the induced prederivator A satisfies Der 2.

Proof. Let A be a category, and let f : hA → m̃apA(X, Y ) be a map in A(A). We need to
show that f is an isomorphism if and only if, for every object a ∈ A, the map fa : Xa → Ya

is an isomorphism.

By Corollary 4.2.3, f is an isomorphism if and only if the map

m̃apA(Z, f) : m̃apA(Z,X)→ m̃apA(Z, Y )

is an isomorphism in E(Cop × A), for every category C and every Z ∈ A0(C).

For a fixed Z ∈ A0(C), Der 2 for the derivator ECop implies that this map is an isomorphism
if and only if, for every a ∈ A, the map

(Cop × a)∗m̃apA(Z, f) : (Cop × a)∗m̃apA(Z,X)→ (Cop × a)∗m̃apA(Z, Y )

is an isomorphism in E(Cop).

For a fixed a ∈ A, this map is an isomorphism if and only if

m̃apA(Z, fa) : m̃apA(Z,Xa)→ m̃apA(Z, Ya)

is an isomorphism, using the prederivator map structure for m̃apA(Z,−).

Thus, f is an isomorphism if and only if, for every a ∈ A, every category C, and ev-
ery Z ∈ A0(C), the map m̃apA(Z, fa) : m̃apA(Z,Xa) → m̃apA(Z, Ya) is an isomorphism.
By Corollary 4.2.3, this is true if and only if each map fa : Xa → Ya is an isomorphism in
A([0]).

Definition 5.3.5. Let A be an E-prederivator. We call A an E-semiderivator if the
induced prederivator A is a semiderivator; that is, A satisfies Der 1 and Der 2. Note that,
by Proposition 5.3.4, this is the case if and only if A satisfies Der 1.

Definition 5.3.6. Let A be an E-semiderivator. We say that A is a left E-derivator if A
admits all weighted homotopy colimits. Dually, we say that A is a right E-derivator if A
admits all weighted homotopy limits. We call A an E-derivator if it is both a left and right
E-derivator.

Suppose A is a left E-derivator, let A be a category, and let X ∈ A0(A). For any object
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W ∈ E(Aop × B), we have a family of isomorphisms

m̃apA(W ⊗A X, Y ) ∼= m̃apEAop (W, m̃apA(X, Y )),

E-natural in Y ∈ A0(C). By Theorem 4.2.6, the weighted homotopy colimits organise into
an E-morphism −⊗A X : EAop → A, the left adjoint in an adjunction:

EAop
A

− ⊗AX

m̃apA(X,−)

⊥

Thus, an E-semiderivator A is a left E-derivator if and only if, for any category A and any
X ∈ A0(A), the E-morphism

m̃apA(X,−) : A→ EAop

has a left adjoint. Dually, an E-semiderivator A is a right E-derivator if and only if, for any
category B and any Y ∈ A0(B), the E-morphism

m̃apA(−, Y ) : Aop → EB

has a left adjoint.

Theorem 5.3.7. Let D be a closed E-module. The associated E-prederivator D is an E-
derivator.

Proof. Since D is a derivator, the associated E-prederivator D is an E-semiderivator. We
need to show that D admits all weighted homotopy limits and colimits.

Let A be a category and let X ∈ D(A). By Proposition 4.2.7, the adjunction

EAop
D

− ⊗AX

m̃apD(X,−)

⊥

induces an adjunction between the corresponding E-categories. Thus, D admits all weighted
homotopy colimits. Similarly, D admits all weighted homotopy limits.
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The proof of Theorem 5.3.7 justifies our notation for weighted homotopy limits and colimits:
if D is a closed E-module, given X ∈ D(A) and W ∈ E(Aop × B), the weighted homotopy
colimit W ⊗AX ∈ D(B) is the image of W under the functor −⊗AX : E(Aop×B)→ D(B).

Remark 5.3.8. Let F : D1 → D2 be a cocontinuous E-module map between closed E-
modules. Using the description of weighted homotopy colimits given in the proof of The-
orem 5.3.7, it follows easily that the associated E-morphism F : D1 → D2 preserves all
weighted homotopy colimits.

Example 5.3.9. We will now give an example of an enriched prederivator that admits some,
but not all, weighted homotopy colimits.

Let D be a triangulated derivator. By Example 3.4.9, D is a closed Ho(Spt)-module, and so
we can consider the associated Ho(Spt)-derivator D. Let Dc be the maximal sub-Ho(Spt)-
prederivator of D on the compact objects of D([0]), in the sense of Example 5.1.3. Thus, for
any category A, the set Dc

0(A) consists of the objects X ∈ D(A) such that Xa ∈ D([0]) is
compact for every a ∈ A.

We claim that an object X ∈ D(A) lies in D
c

0(A) if and only if the derivator map

m̃apD(X,−) : D→ Ho(SptAop)

is cocontinuous. By [12, Proposition 7.3] and [36, Theorem 7.13], this map is cocontinuous
if and only if the functor on underlying categories

m̃apD(X,−) : D([0])→ Ho(SptAop)

preserves coproducts. By [18, Lemma 1.34], this functor preserves coproducts if and only if
its left adjoint

− ∧A X : Ho(SptAop)→ D([0])

takes the set of compact generators in Ho(SptAop) to compact objects. By Lemma 2.4.14,
{a!S | a ∈ Aop} is a set of compact generators for Ho(SptAop), where S ∈ Ho(Spt) is
the sphere spectrum. The isomorphism (3.4), applied to the map a : [0] → Aop, gives an
isomorphism

a!S ∼= (Aop × a)∗∂AS = (Aop × a)∗hA,

where, on the right hand side, we think of a as an object of A rather than Aop. Applying
− ∧A X, we have

((Aop × a)∗hA) ∧A X ∼= a∗(hA ∧A X) ∼= Xa.
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This proves our claim.

Using this, suppose we have X ∈ D
c

0(A) andW ∈ Ho(SptAop×B), and consider the composite

D Ho(SptAop) Ho(SptBop).m̃apA(X,−) m̃ap
Ho(SptAop )(W,−)

This composite is represented by W ∧A X ∈ D(B); thus, if the induced derivator map is
cocontinuous, thenW∧AX ∈ D

c

0(B), and it follows that this object is the weighted homotopy
colimit in Dc as well as D. In particular, this is the case if

m̃apHo(SptAop )(W,−) : Ho(SptAop) Ho(SptBop)

is cocontinuous; that is, if (Aop × b)∗W ∈ Ho(SptAop) is compact for each b ∈ B. Thus, Dc

has homotopy colimits weighted by any pointwise compact object W .

However, in general, Dc does not admit all weighted homotopy colimits. This follows from
the following theorem, since the induced prederivator Dc in general does not admit all
coproducts, so in particular it is not a derivator.

Theorem 5.3.10. If A is a left E-derivator, then the induced prederivator A is a left deriva-
tor. Similarly, if A is a right E-derivator, then A is a right derivator, and if A is an
E-derivator, then A is a derivator.

Proof. We will show that, given a left E-derivator A, the induced prederivator A is a left
derivator. The corresponding result for right E-derivators is dual, and the combination of
these two results proves the corresponding result for E-derivators.

Let A be a left E-derivator. By definition, A is a semiderivator, so we need only show that
A admits all homotopy left Kan extensions, and prove the relevant part of Der 4.

We will start by showing that A admits homotopy left Kan extensions. Let u : A → B be
a functor and consider the object (uop × B)∗hB ∈ E(Aop × B). For any object X ∈ A(A),
denote the homotopy colimit of X weighted by this object as follows:

u!X = (uop × B)∗hB ⊗A X ∈ A(B)
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For any category C, and any object Z ∈ A0(C), consider the isomorphisms below:

m̃apA(u!X,Z) = m̃apA((uop × B)∗hB ⊗A X,Z)

∼= m̃apEAop ((uop × B)∗hB, m̃apA(X,Z))

∼= m̃apEBop (hB, (uop × C)∗m̃apA(X,Z))

∼= (uop × C)∗m̃apA(X,Z)

The first isomorphism follows from the definition of the weighted homotopy colimit. The
second is associated to the following adjunction, obtained using Proposition 4.2.7:

EBop
EAop

(uop)∗

(uop)∗

⊥

The final isomorphism % : m̃apEBop (hB,−)
∼=−→ id is shown to be E-natural in the proof

of Theorem 4.2.1. It follows that the entire composite is E-natural in Z ∈ A0(C). Denote
this isomorphism by

$u : (uop × C)∗m̃apA(X,Z)
∼=−−→ m̃apA(u!X,Z).

We will now show that we can extend u! to a functor; the construction is similar to the
definition of u∗ in Lemma 5.1.4. Given a map f : hA → m̃apA(X, Y ) in A(A), we define
u!f : hB → m̃apA(u!X, u!Y ), using Corollary 4.2.3, to be the unique map in A(B) that makes
the diagram below commute, for any Z ∈ A0(C):

(uop × C)∗m̃apA(Y, Z) (uop × C)∗m̃apA(X,Z)

m̃apA(u!Y, Z) m̃apA(u!X,Z)

$u

(uop×C)∗m̃apA(f ,Z)

$u

m̃apA(u!f ,Z)

As in Lemma 5.1.4, it is easy to check that this construction is functorial. It remains to
show that it is indeed a left adjoint to u∗. We will do this directly, by providing the unit
and counit of the adjunction, and showing that they satisfy the triangle identities.
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Let X ∈ A(A). Using Corollary 4.2.3, we define ηX : X → u∗u!X to be the unique map that
makes the diagram below commute, for any category C and any Z ∈ A0(C):

m̃apA(X,Z) (uop × C)∗(uop × C)∗m̃apA(X,Z)

(uop × C)∗m̃apA(u!X,Z)

m̃apA(u∗u!X,Z)
m̃apA(ηX ,Z)

ε
m̃apA(X,Z)

(uop×C)∗$u

γu,id

To see that these maps form a natural transformation, let f : hA → m̃apA(X, Y ) be a map
in A(A). We need to check that we have ηY ◦ f = u∗u!(f) ◦ ηX . Equivalently, for any C and
any Z ∈ A(C), we need to show that this diagram commutes:

m̃apA(u∗u!Y, Z) m̃apA(u∗u!X,Z)

m̃apA(Y, Z) m̃apA(X,Z)

m̃apA(ηY ,Z)

m̃apA(u∗u!(f),Z)

m̃apA(ηX ,Z)

m̃apA(f ,Z)

Using the definitions of u! and η above, and the definition of u∗ in Lemma 5.1.4, the com-
mutativity of this diagram follows from the naturality of ε.

Similarly, for any W ∈ A(B), define εW : u!u
∗W → W to be the unique map that makes the

diagram below commute, for any category C and any Z ∈ A0(C):

m̃apA(W,Z) (uop × C)∗(uop × C)∗m̃apA(W,Z)

(uop × C)∗m̃apA(u∗W,Z)

m̃apA(u!u
∗W,Z)

m̃apA(εW ,Z)

η
m̃apA(W ,Z)

(uop×C)∗γu,id

$u

By a similar argument to the one above, these maps are natural in W ∈ A(B).
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It remains to verify the triangle identities for η and ε. For the first identity, given X ∈ A(A),
we need to check that we have εu!X ◦ u!(ηX) = idu!X . Equivalently, for any C and any
Z ∈ A(C), we need to show that the composite below is equal to the identity:

m̃apA(u!X,Z) m̃apA(u!u
∗u!X,Z) m̃apA(u!X,Z)

m̃apA(εu!X ,Z) m̃apA(u!(ηX),Z)

Using the definitions of u!, ε and η above, and the definition of u∗ in Lemma 5.1.4, this
follows from the triangle identity for the adjunction

E(Bop × C) E(Aop × C).

(uop×C)∗

(uop×C)∗

⊥

The other triangle identity follows similarly.

Thus, the induced prederivator A admits all homotopy left Kan extensions. It remains to
check the relevant part of Der 4. To do this, suppose we have a homotopy exact square:

A B

J K

u

v κ w

z

We will show that the canonical natural transformation

A(J) A(A) A(B)

A(J) A(K) A(B)

v!

ε

u∗

v∗
κ∗

w∗

z∗

η

w!

is an isomorphism. Applying this to the relevant comma square in Definition 2.1.16 gives us
the result.

Thus, for any object Y ∈ A(B), we must show that the composite

v!u
∗Y v!u

∗w∗w!Y v!v
∗z∗w!Y z∗w!Y

v!u
∗(ηY ) v!κ

∗
w!Y εz∗w!Y
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is an isomorphism in A(J). By Corollary 4.2.3, this map is an isomorphism if and only if,
for any category C and any Z ∈ A0(C), the composite

m̃apA(z∗w!Y, Z) m̃apA(v!v
∗z∗w!Y, Z)

m̃apA(v!u
∗w∗w!Y, Z)

m̃apA(v!u
∗Y, Z)

m̃apA(εz∗w!Y ,Z)

m̃apA(v!κ
∗
w!Y

,Z)

m̃apA(v!u
∗(ηY ),Z)

is an isomorphism in E(Jop×C). But, using the definitions of ε and η above, and the definition
of κ∗ in Lemma 5.1.8, this composite is isomorphic to the component at m̃apA(Y, Z) ∈
E(Bop × C) of the natural transformation below:

E(Jop × C) E(Aop × C) E(Bop × C)

E(Jop × C) E(Kop × C) E(Bop × C)

(vop×C)∗

η

(uop×C)∗

(vop×C)∗ (κop×C)∗ (wop×C)∗

(zop×C)∗

ε

(wop×C)∗

Since the square κ is homotopy exact, this natural transformation is an isomorphism. Thus,
the original composite is also an isomorphism.

In light of Theorem 5.3.10, if A is an E-derivator, we will refer to the induced prederivator
A as the induced derivator.

Remark 5.3.11. Let A be a left E-derivator. Given a category A and an object X ∈ A(A),
the E-morphism −⊗A X : EAop → A induces functors

−⊗A X : E(Aop × B)→ A(B)

for any category B.

On the other hand, given an object W ∈ E(Aop×B), the weighted homotopy colimits induce
a functor:

W ⊗A − : A(A)→ A(B)
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Given a map f : hA → m̃apA(X, Y ) in A(A), its image W ⊗A f in A(B) is the unique map
making the diagram below commute, for any category C and any Z ∈ A0(C):

m̃apEAop (W, m̃apA(Y, Z)) m̃apEAop (W, m̃apA(X,Z))

m̃apA(W ⊗A Y, Z) m̃apA(W ⊗A X,Z)

∼=

m̃ap
EAop (W ,m̃apA(f ,Z))

∼=

m̃apA(W⊗Af ,Z)

Together, the functors above induce a two-variable functor:

−⊗A − : E(Aop × B)×A(A)→ A(B)

Let u : A → B be a functor. From the descriptions of u∗ and u! in Example 5.3.2 and
Theorem 5.3.10, we can check that we have natural isomorphisms:

u∗ ∼= (Bop × u)∗hB ⊗B − : A(B)→ A(A)

u! ∼= (uop × B)∗hB ⊗A − : A(A)→ A(B)

Using the isomorphism (Aop × u)!hA ∼= (uop × B)∗hB from Section 3.6, we can also describe
u! as follows:

u! ∼= (Aop × u)!hA ⊗A − : A(A)→ A(B)

In this way, we recover the formulas for E-modules, given in [16] and [15].
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