
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

2-24-2020 11:00 AM 

Synchrophasor Based Islanding & Open phase fault Protection in Synchrophasor Based Islanding & Open phase fault Protection in 

Distribution Systems Distribution Systems 

Mansour Jalali, The University of Western Ontario 

Supervisor: Tarlochan Sidhu, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Electrical and Computer Engineering 

© Mansour Jalali 2020 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Power and Energy Commons, and the Systems and Communications Commons 

Recommended Citation Recommended Citation 
Jalali, Mansour, "Synchrophasor Based Islanding & Open phase fault Protection in Distribution Systems" 
(2020). Electronic Thesis and Dissertation Repository. 6947. 
https://ir.lib.uwo.ca/etd/6947 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6947&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/274?utm_source=ir.lib.uwo.ca%2Fetd%2F6947&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=ir.lib.uwo.ca%2Fetd%2F6947&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6947?utm_source=ir.lib.uwo.ca%2Fetd%2F6947&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


 

ii 

 

Abstract 

With the rapid growth of renewable energy resources, energy efficiency initiatives, electric 

vehicles, energy storage, etc., distribution systems are becoming more complex such that 

conventional protection, control, and measurement infrastructure – typically concentrated 

at the main substation, with little to no access to information along the feeder – cannot 

maintain the reliability of the system without some sort of additional protection, control 

and measurement functionalities. As an example, a dedicated communication channel for 

carrying the transfer trip signal from the substation to the Point of Common Coupling 

(PCC) to prevent islanding operation of alternative resources, has been a requirement for 

many utilities. In the transformation of the distribution system from a simple radial system 

to a bidirectional energy flow network, integration of many intelligent devices and 

applications will also be required. Thus, this situation calls for investment in 

communication infrastructure, and augmentation of protection, control, and measurement 

functionalities. 

The value of power system communication technologies such as synchrophasor 

measurement technology – which includes the Phasor Measurement Unit (measuring and 

providing voltage and current phasors in the real time via communication), communication 

infrastructure, and Phasor Data Concentrator (PDC) – is being recognized through large-

scale deployments around the world. However, these implementations are predominantly 

limited to some monitoring-type applications and are being realized primarily in 

transmission systems and bulk power systems (≥100 kV), where performance requirements 

are much more stringent compared to distribution systems. 

So contrary to transmission systems, the current status of synchrophasor measurement 

technology can be utilized to its full extent in distribution systems, as shown in current 

research for anti-islanding and open-phase faults in the distribution feeder protection 

application, where the number of PMUs and performance required is somewhat lower than 

the bulk of power energy. Thus, the opportunity to invest in the implementation of 

synchronized measurement technology in distribution system is timely as it can be 

coordinated with other investments in feeder modernization, distributed generation (DG) 
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integration, and infrastructure enhancements that are underway, including “smart grid” 

initiatives. 

In the first use case of this research, the behavior of the major DG types during islanding 

is studied through accurate transient modeling of utility type distribution systems using 

PSCAD-EMTDC and MATLAB. The study proposes augmentation of PMU-based 

solutions to the current passive islanding protection elements, such as voltage and 

frequency, and improving the non-detection zone of the passive elements by adapting their 

settings based on normal loading conditions at closest known instant prior to the fault or 

islanding occurrence. The solution proposes a system architecture that requires one PMU 

at each PCC bus and in the main substation. The communication aspect is based on the IEC 

6850-90-5 report, where the PMU can subscribe directly to the data stream of the remote 

PMUs such that the need for PDCs in this application is eliminated, yielding better 

performance. 

In the second use case, an open-phase fault – a major concern for distribution utilities from 

safety of public and equipment perspective – has been studied. Clearing the open-phase 

fault without identifying the type of fault could result in an attempt by the recloser to 

reenergize the downed wire; conversely, an undetected open-phase fault could initiate 

ferro-resonance, thereby stressing equipment and increasing the risk to public safety, both 

urban and rural. This work discusses comprehensive analysis of symmetrical components 

of various types of open-phase faults in the distribution feeder with the presence of 

distributed generators (DGs) and proposes the use of phasor measurement data located at 

substation and PCC to identify the open-phase fault. The proposed algorithm relies on the 

rate of change of the various current and voltage sequence components. In the study 

conducted, the utility type feeder and substation are modeled in PSCAD-EMTDC, and 

different types of open-phase fault and shunt faults are studied to verify the dependability 

and security of proposed algorithm. 
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Summary For Lay Audience  

Electricity is a form of energy, and in simple terms it is defined as the flow 

of electric charges and charge is a property of matter like mass, volume, etc. We produce 

electricity, from the conversion of other sources of energy, like coal, natural gas, oil, 

nuclear power, and other natural sources such as Wind and Solar. The system which 

produces, transfers, and distributes electricity in the cities and rural area is called an 

electrical grid. The sections of the grid distribute electricity to the consumers is called a 

distribution system. Distribution systems, historically, only distributed electricity and did 

not participate in the production. However, with the global warming effect and desire of 

the society to use a clean carbon free electricity many renewable sources including solar; 

wind, hydro power, and geothermal are integrated into the distribution systems. Thus, 

distribution systems now and in the future will have to integrate more resources which add 

significant complexity and challenges for utilities and asset managers in terms of protection 

of electrical assets, safety, and quality of power delivered to the consumers. The focus of 

this work has been on protection of the distribution systems for two specific incidents open 

phase or broken conductor and islanding operation. These two undesirable situations can 

cause serious risks and damages to the distribution system. This research proposes new 

methodology to deal with these types of problems and encourages utilities and regulators 

to invest in the grid’s communication technology infrastructure more real time system data 

to become readily available. This information can then be utilized for diagnostics and 

detection of failures and thereby, lower the risk of safety to the public to the system’s 

equipment.             
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Chapter 1  

1 Introduction 

In this chapter the needs for the modernization of power systems are briefly reviewed. 

Specific challenges in the forefront of this modernization in distribution systems is 

discussed. The research, objective, motivation and structure of this work is presented. 

1.1  Power System and Technological Modernization   

Electrical power system networks are one of the largest man-made systems in the world. 

A typical system represents a sizable capital investment that consists of generators, power 

transformers, substations, overhead lines, along with underground cable, control, 

measuring, and protection infrastructure. The power system asset oversees the production, 

transmission, and distribution of the electricity to consumers as per their demand. The 

electricity must be produced and delivered reliably within the applicable constraints of 

security. A typical electrical network is shown in Figure 1.1 where generation, 

transmission, and distribution are well segregated.  The past couple of decades have seen 

a rapid advancement in policies, technology, and standards focused on modernizing the 

power system network. The most important advancement, however, may well be how the 

power industry’s is thinking has evolved. Today holistic views of the desired goal of grid 

modernization and how to achieve them are taking a hold. The need to modernize the power 

grid arises from multiple factors including economic, political, environmental and 

technical such as aging infrastructure, integration of multiple DER (Distributed Energy 

Resources), other new technologies, security concern and more influence of the end 

consumer to the local legislation. In the past power industry investment has favorited the 

generation and transmission sectors because of their criticality and large amounts of power 

being transferred. Therefore, it can be observed among many utilities that the generation 

and transmission systems respectively are much better instrumented for monitoring and 

control compared to the distribution systems however, the smart grid concept and grid 

modernization includes the entire grid including distribution system. Utilities and policy 

makers are recognizing that the distribution system is less prepared for this task and 

therefore, now is largely focusing on modernization of distribution systems [1].  
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Traditionally, distribution systems were a simple interface between the end users and rest 

of the grid with one-way power flow outward system architecture. 

 

Figure 1.1. Typical Structure of Electrical Network 

Distribution feeders were not interconnected and despite this simplistic blueprint yet today 

this system is facing the following challenges: 

1) Need to develop a communication infrastructure   

2) Need for the integration of many DERs 

3) Need for greater visibility and monitoring of the feeders  
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4) Need for more automation processes  

5) Need for reliable protection and control  

6) Need for the renovation of aging infrastructure   

Many research studies in the area of communication technology, integration, and 

application should be completed in order to prepare for the transformation of distribution 

systems successfully. In fact, this work is motivated to contribute to the required study for 

the advancement of distribution systems and the integration of communication technology 

in distribution system protection applications using synchrophasor measurement data.     

1.2 Synchrophasor Measurement Technology    

Among the many advancements in communication technology used in power systems, 

synchrophasor measurement technology specifically can be noted for being at the forefront 

of focus within industries where technology and new standards and applications came 

together to respond to the needs of those industries. Since the North American blackout of 

August 2003, phasor measurement technology development has been in high demand by 

utilities and the US government. The US government supported the North American 

Synchro-Phasor Initiative (NASPI) that was established to coordinate the research effort in 

this area in order to improve power system reliability and visibility throughout the grid by 

fostering the greater use and capability of synchrophasor technology. The synchrophasor 

measurement uses digital processing of current and voltage waveforms, synchronized to a 

universal time source GPS (Global Positioning System), to record system conditions at 

high speeds and provide real-time situational awareness of the electrical grid as shown in 

Figure 1.2. PMUs (Phasor Measurement Unit) that are installed in the application interested 

nodes works as a sensor to measure and capture data which can then be reported in real 

time by as many as 60 measurements per second, which is typically 100 times faster than 

SCADA (Supervisory Control and Data Acquisition). This real-time monitoring can detect 

and record events that SCADA misses, enabling much better visibility into the grid 

conditions for control as well as protection purposes. 
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Figure 1.2. Conceptual Synchrophasor Measurement System Architecture  

With the publication of various sections of IEC61850 standard starting from 2011 and 

onward the specification of utilities type protection applications based on communication 

technology have been formalized and the journey of transformation of the conventional 

application and prospective of new solutions have been the focus of many researchers and 

application specialists around the globe. Furthermore, the integration of synchrophasor 

data to substation automation domain and possibility of PMU using fast peer-to-peer 

communication services to transfer the data provides more possibility to utilize the PMU 

data in protection and time critical applications [2]. Background and the state of the art 

regarding the phasor measurement technology is provided in chapter 3 of this work. 

1.3 Phasor Measurement in Distribution System 

Traditionally, PMU data is used in transmission applications and it must be noted that the 

measurable results have been published by NASPI in implementing this technology in 

transmission grid [3]. As highlighted earlier in this chapter with the shift of focus of power 

industry and utilities to the concept of smart and modern distribution system the use of 
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synchrophasor data in this sector have been studied and investigated. Distribution systems 

are installed in a much smaller geographical area compared to the transmission systems 

thus, smaller angle differences between the voltage phasors measured by PMUs and much 

rapid system impedance changes could be expected [4]. In this regard the U.S. Department 

of Energy’s Advanced Research Project Agency funded a US$4 million project to build 

one of the most precise synchrophasor instruments ever made, with 100 times the 

resolution of traditional transmission‐type PMU’s. The µPMU is ideal for research projects 

that need ultra‐precise synchrophasor measurements for investigating stability and 

impedance questions on distribution grids and microgrids. The current work however 

proposes the use of synchrophasor data in protection scheme, the open phase fault detection 

and islanding detection. Further information about background of synchrophasor 

technology and accuracy required for this work is provided in chapter 3, 4 and 5 of this 

work 

1.4 Protection Philosophy  

Some of the constant challenges that electrical networks face are component failure, 

operation error, and extreme weather conditions such as lightning, wind, and storms. These 

events directly or indirectly can cause an interruption of the production, transmission, or 

delivery of electricity in part or entirely. A failure often causes an abnormal operational 

condition, such as very high short circuit current, extreme high voltage, or abnormal 

frequency. The impact of these events goes beyond the failed components and can damage 

other healthy equipment within the network while also posing a safety risk to the personal 

and public. Therefore, in order to protect the equipment, utility personnel, the general 

public, and to safeguard the capital invested in the electrical network, utilities deploy 

protection relays. These devices work to identify the abnormal condition, faulty equipment, 

and remove it from service as quickly as possible while the balance of the network remains 

in service as much as possible. Protection relays conventionally rely on local measurement, 

however, with the significant advancement that has occurred in communication technology 

over the past decade, they are starting to receive information from remote devices via 

communication. Thus, communication technology became an essential part of protection 

functionality. Utilizing measurement data from a synchrophasor in real time for a 
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protection functionality has started. This is a journey, which will transform the landscape 

and allow for protection devices to respond to more complex abnormal situations and shift 

their focus from traditionally protecting network components alone to protecting the 

network status and operation.  

The following properties are defining the different aspects of the protection system 

performance. 

1) Selectivity: The concept of protection selectivity refers to the capability of the protection 

scheme to detect faults on a power system and initiate the opening of switchgear in order 

to isolate only the faulty part of the system. Good selectivity will maximize service 

continuity and minimize system outages. The protection must thus be discriminative. 

2) Sensitivity: Sensitivity refers to the minimum operating level (current, voltage, power, 

etc.) of protective devices. A relay designed to operate sensitively will be able to detect a 

fault with a very low value. For example, a sensitive ground fault relay can detect a very 

small ground fault current. 

3) Reliability (Security and Dependability): Security and dependability must be evaluated 

when assessing the reliability of a protection scheme. Dependability refers to the ability of 

a protection scheme to operate and isolate a fault condition when it is required. Security 

refers to the ability of the protection system not to operate during any tolerable conditions 

such as overloading, switching actions, recoverable power swings and faults on other parts 

of the power system, etc. Failure to operate (loss of dependability) can be extremely 

damaging and disruptive. False tripping or over-tripping (loss of security) can result in 

multiple contingencies, unnecessarily disconnecting the healthy power apparatus out of 

service, and possibly cascading into a widespread blackout. The protection scheme should 

offer secure and sensitive operation. It should be secure from false operation, not causing 

de-energization of circuits due to load unbalances, inrush currents, cold load pickup, 

harmonics, and other transient or steady-state conditions not normally harmful to system 

components. The equipment in the protection scheme should exhibit enough sensitivity to 

be able to detect all recognized fault conditions. 

4) Speed: The function of protection is to isolate faults from the rest of the power system in 

a very short time. The time in which the fault should be isolated it is an important property 

of the protection system that is considered for power system stability, relay coordination, 

and minimization of the damage. 
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More faults occur on the distribution system than in either the transmission system or in the 

generating facilities.  Distribution systems are widespread and have a relatively high degree of 

exposure to the environment.  Improvements in distribution circuit performance can be achieved 

by design and by minimizing the number and extent of faults with overcurrent protection systems. 

Knowledge of the characteristics, i.e., magnitude, duration, and waveform, of distribution faults is 

essential when applying protection.  Fault current calculation methods are fundamental tools for 

the protection designer.  Protection applications require computation of three-phase, line-to-

ground, and line-to-line short-circuit currents that are possible within the area of operation of the 

device.  

1.5 Thesis Motivation  

This research has focused on the utilization of synchrophasor measurement data in 

distribution system protection and control application. The research has been developed 

around two use cases, namely, islanding and open-phase faults. The motivation behind 

these selections is briefly described here: 

a) Why Synchrophasor? Since the blackout of August 2003 in North America, there 

has been much focus on synchrophasor measurement application by utilities, power 

system regulators, manufacturers, and researchers. IEEE synchrophasor standards 

C37.118-1 and C37.118-2 are being updated by specifying the communication 

requirements and dynamic performance of the synchrophasor measurement unit 

(PMU). IEC 61850 is a standard that facilitates the implementation of 

communication technology in protection, control, and measurement in power 

system application, and integrates the synchrophasor data stream into its data model 

and communication services. This integration provides the possibility to use the 

functional and communication infrastructure of substation automation systems to 

support and reduce the cost of PMU based applications, especially in a smaller area 

such as a distribution system. 

b) The rapid growth of alternative sources of energy in distribution systems is 

changing the historical role of distribution system as being only a distributor of 

energy to also being the provider of local generation and manager of small 

independent grids. This new reality requires modernization of the distribution 
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system, which most likely will be a very capital-intensive transformation because 

of its massive size, simplicity of its current core design, and lack of communication 

infrastructure. With the integration of more alternative resources, many real-time 

electrical measurements along the feeder will be required for the system to be up to 

speed for reliable operation.  

Installation of synchrophasor units in the distribution system can serve many new 

and old challenges that this system is encountering and requires much more 

research in this area.  

c) In distribution systems, many overhead lines are built right along roads, streets, and 

alleys. Because of equipment aging, and more recently extreme weather condition, 

and car accidents involving the distribution overhead pole, the phase conductor(s) 

can break and hit the ground creating a hazardous situation for the public. The high 

impedance ground fault created by this event cannot be detected by any ground 

fault protection element selectively and hence, the protection in the substation may 

operate well after its time delay. The uncleared open phase conductor, if the created 

ground fault is insignificant, can evolve into ferro-resonance which is another 

added risk to the public and equipment. For many years, utilities and protection 

manufacturers have worked to develop methods for tripping these hazardous 

ground faults as quickly as possible. The method proposed in this work describes a 

new way to identify the open phase conductor selectively with and without DG 

using the synchrophasor measurement data. 

Two use cases in this research are being investigated in a distribution system and with use 

of synchrophasor data: Islanding detection use case and open phase fault use case. 

1.6 Research Objectives  

The objective of this research is to investigate the application of synchrophasor 

measurement data in distribution systems to address some of the challenges related to 

distribution system protection and control. The research work is divided into three stages: 
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Stage I – Islanding Detection Scheme: The first objective of the research is to provide a 

synchrophasor-based islanding detection scheme that can improve the current anti-

islanding protection scheme practiced by utilities. In this stage, an Electro-Magnetics 

Transient (EMT)-based model has been developed for a utility type system, and major 

types of distribution generators have been studied as individual and aggregated machines 

using PSCAD/EMTDC, supported through an extensive MATLAB simulation study to 

formulate and validate the proposed solution. 

 

Stage II – Open-phase fault detection: The scope was to develop a solution that can 

selectively identify an open-phase and falling conductor fault in a primary distribution 

system based on the minimum data required from different locations. Customized models 

in PSCAD/EMTDC have been developed to study this fault and formulate, examine, and 

validate the proposed solution.  

 

1.7 Methodology 

With these motivations, exhaustive research work was conducted to investigate the 

application of synchrophasor measurement in distribution systems, including islanding 

detection and open-phase faults. A few alternative models based on utility field data were 

used to develop a reliable EMT-based model in PSCAD-EMTDC to validate the solution. 

MATLAB was used for mathematical calculations, result validation or circuit analysis - 

e.g., load flow for EMT model.   

 

1.8 Thesis Outline  

In the first chapter, an introduction to the research objectives, the thesis outline is presented 

along with the importance and motivation of research in the area of distribution systems, 

phasor measurement systems, and the need for more research work in the specific 

application that has been targeted in this work.  
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In Chapter 2, fundamentals of the distribution feeder related to this work are studied. The 

integration of distributed energy resources (DER), including the history of different types 

of distributed generation (DG), is reviewed and discussed. The modeling aspect of the DGs 

is studied. The history of IEEE 1547 in DG operation requirement and unintentional 

islanding is reviewed. 

In Chapter 3, fundamentals of synchrophasor phasor measurement, history, phasor and 

frequency estimation, standard application, system architecture, performance, and state-of-

the-art technology is studied and reviewed. The use of alternative communication standard 

IEC61850 and its advantage to the conventional C37.118 communication is proposed and 

reviewed. The cost-effective system architecture adequate for the studied applications is 

proposed.   

In Chapter 4, background of unintentional islanding operation in distribution feeder with 

integrated DG is reviewed and major islanding detection is categorically reviewed. A new 

proposed solution is formulated. EMT modeling of utility-based distribution system is 

described in PSCAD/EMTDC. A new solution with mathematical formulation is proposed. 

EMT modeling in PSCAD/EMTDC is presented. The number of cases studied, and the 

simulation results obtained, are presented and discussed in this chapter. 

In Chapter 5, the background of open-phase faults, single-phase, double-phase with and 

without ground in power system distribution feeder is studied. Existing detection methods 

are reviewed.  The new solution with the mathematical formulation is proposed, and EMT 

modeling in PSCAD/EMTDC is presented. The number of cases studied, and the 

simulation results obtained, are also discussed in this chapter. 

In Chapter 6, the conclusion and summary are provided, and further research topics are 

suggested. The reference document list is provided, and appendices contain additional 

model parameterization to enable reproduction of this work and further simulation. 

1.9 Summary 

A brief introduction to the research and its importance to the area of power system 

protection is provided in this chapter. The challenges and need to modernize the power 
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system and distribution systems is reviewed. The application of phasor measurement 

technology and the driver behind the need for the implementation of this technology in 

transmission and distribution is reviewed and discussed. The fundamental characteristics 

of distribution power system protection are described. The research objectives and a 

detailed outline of the organization of the thesis is presented. The research motivation to 

focus on phasor measurement applications in distribution systems is discussed. The 

specific use cases that have been studied in this work is also introduced. And the 

fundamentals of distribution feeder structure, plus an introduction to the Distributed 

Energy Resources (DER) and thire EMTP modeling, will be discussed in the next chapter. 
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Chapter 2  

 Introduction to Distribution Systems 

Historically, electrical distribution networks have been the consumer interfaces with the 

power plants and transmission systems where electricity, which is normally produced far 

away from the center of load, is being transferred, delivered, and consumed. Although 

interruption in the distribution services or failure in the distribution equipment directly 

affects the end user, and the reliability and quality of the service, compared to the other 

sector of energy distribution system it has been less technologically advanced. However, 

in recent years with the rapid growth of alternative energy resources and the necessity for 

the integration of many new devices such as Distributed Generations (DG), microgrids, 

electric vehicles, etc., the distribution system is transforming to be at the forefront of the 

renovation of electrical grids. It is very important to note that because of the massive 

infrastructure of distribution systems, it is very capital and labor intensive [5], and 

therefore, simplification and cost awareness have to be considered as chief characteristics 

that will be demanded from researchers and solution providers. In this chapter, the 

background of distribution system, with focus on the North American grid and some of the 

challenges it is facing relevant to the current work, is presented.  

2.1 Primary Feeder Structure  

From a structural point of view, the distribution system can be considered a connection of 

substation, primary, and secondary feeders. The topology and configuration of the system 

can vary depending on the location where the distribution system is serving its customer; 

as an example, downtown core, urban, rural, industrial, or a commercial area. The major 

voltage classes used in the primary network are typically in the following range 4-5 KV; 

7-8 KV;15-27.6 KV; and 35-44 KV. The most prevalent voltages in Ontario are 4.16, 13.8, 

27.6 and 44 KV. Figure 2.1 shows typical voltage ranges for a vertically integrated 

electrical power system. The secondary network voltage range at which electricity is 

delivered to the meter is in the range of 120-600 V. 
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Figure 2.1. Conventional Vertical Power Grid Infrastructure [6] 

The most common primary feeder configuration used by north American utilities is the 

four-wire three-phase power multi-grounded neutral system. There are other types of 

feeder configurations as well but generally, radial characteristics are very common between 

primaries and secondaries. A distribution primary feeder can come in a variety of shapes 

and forms, depending on the geometry of the area that a feeder is covering. For example, 

the shape of the area and the layout of the streets will heavily impact the number and size 

of the branches and overall form of the feeder. Figure 2.2 shows an arbitrary overhead line 

primary feeder with a number of single-phase and three-phase laterals taped off from the 

main circuit. As shown in this circuit here, the radial distribution feeder is normally 

provided with the possibility to be connected to one or more adjacent feeders through the 

open tie. This will improve the reliability of the circuit to be able to supply whole or part 

of feeder load by closing the tie with the adjacent feeders. The distribution feeder can be 

subjected to accommodate an integration with the DER(s) at one or more Point of Common 

Coupling (PCC) which will be determined by utilities along the main circuits. The 
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integration of DGs imposes a new set of functionalities that should be provided by both the 

utility and DG owner to maintain the safe operation of the feeder with the new 

generation(s).  

 

 

 

Figure 2.2. Typical Two Primary Radial Feeders with Open Loop  

2.2 Under Ground Network 

Often, in locations, such as urban area or downtown cores, underground networks are 

replacing the overhead lines. Under Ground (UG) feeders normally daisy-chain all the 

distribution transformers that are feeding secondary networks; these transformers are 

known as a network transformer that are intended to supply the secondary network. The 

secondary of underground UG network in the urban areas are interconnected. The 

transformer, primary switch, and, network protector is in the underground vault across the 

streets. Figure 2.3 illustrates the simplified one-line diagram of three UG feeders with their 
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connection to the secondary grid. The network protector provides the following 

functionality: 

a. It prevents back feeding of the primary circuit by secondary grid during a primary 

fault by tripping the circuit. Network protector is equipped with reverse power 

protection element.  

b. It trips the circuit and disconnects from the secondary grid when primary feeder is 

deenergized. 

c. It closes the circuit automatically when the primary feeder is energized. 

 

Figure 2.3. Underground Distribution Network (Courtesy of Toronto Hydro)  

The schematic of a network vault with two network transformers is presented in Figure 2.4. 

The primary switch is used to connect the transformer to the primary feeder as well as 

provides the ground at the location of the vault for the primary circuit. The meters are also 

located at the secondary of the network transformer. 



16 

 

 

 

 

 

Figure 2.4. Network Vault One-line Diagram (Courtesy of Toronto Hydro) 

2.3 Feeder Protection in Distribution Network 

The objective of protection for generation, transmission, and distribution systems are 

similar. The main requirement of reliable system protection is that all points in the system 

fall within one or more protected zones, so that there are no blind spots  in the overall 

protected system as shown in  Figure 2.5 In distribution system  several natural zones that 

require a dedicated protection can be identified.  

a. Transformers,  

b. Buses,  

c. Lines/feeders (transmission, subtransmission, distribution),  

d. Utilization equipment (motors, static loads, etc.),  

e. Capacitor and/or reactor banks 

f. DER 

 

Protection with a boundary defined by measuring devices such as current transformers is 

referred to as closed-zone Protection. Differential relaying is a typical example of closed-
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zone protection that can detect a fault within the protected zone with high selectivity and 

security. Protective relays with the protected zone defined by their “reach” are referred to 

as an open zone. The open zone is not bonded by the measuring devices and operates when 

the measured quantity exceeds the pre-set threshold. Correct operation of open-zone 

protection heavily relies on the protective element setting. Performance of an open-zone 

protection scheme is usually a trade-off between security and dependability.    
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Figure 2.5. Typical Protection Zone in Distribution Network   

 

Reach in protection literatures refers to the locus of the most remote prospective fault 

locations for which a specific protective device is capable to detect and clear. All points 

electrically inside this frontier are considered to be within the zone of that protection 

device. Typical example of protective devices with the clear reach are Distance and over 

current relays. Distance relay can provide directional impedance measurement based on 

the current and voltage of the network at the relay location. The reach in this relay relatively 

stable and immune to the system condition. Overcurrent relay reach however, is a highly 
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variable and the ability of the relay to detect the fault within its reach will expand and 

contract with variations in fault types and system conditions. 

Table 2-1 presents the result of IEEE Power System Relay committee (PSRC) survey for 

the practices on distribution system feeder protection. The results of the survey show by 

far the over current relay phase and ground are the main protection schemes implemented 

in distribution primary feeders.  

Table 2-1. IEEE Survey Results for Protection Schemes in Distribution Systems [7] 

 

Type of Protection 

Number of 

utilities 

responded 

 

Percentage 

implemented  

Circuit recloser (79) 31 73% 

Phase overcurrent (50,51) 42 100% 

Ground overcurrent (50N,51N) 41 97% 

Negative sequence over current 

(46) 

4 5% 

High impedance Detection device 

(Broken conductor)  

2 0.05% 

Distance (21) 4 5% 

Directional over current (67, 67N)  1 0.02% 

 

Figure 2.6 presents the most common protection schemes that have been used in 

distribution feeders across the North American grid.  The circuit recloser (79) that is 

frequently used is another over current based protection that is capable to clear the fault in 

its downstream location and is utilized to isolate the transient fault and reenergize the 

circuit without the permanent outage. The circuit recloser can provide a very fast or a slow 

response to the fault. The number of closing attempts and fast or slow tripping can be 

programmed. It is common practice for utilities to use the circuit recloser in the fuse saving 

or fuse blown schemes which are intended to save or blown the fuse respectively during 

the transient faults.  It can be noted that the high impedance ground fault protection which 

is used to detect the broken conductor when it comes in touch with the ground is used less 
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than 0.05 % among the utilities that responded to survey.  The feeders with integrated DER 

are often equipped with protection transfer trip when the main is lost in order to prevent 

the DER to supply the feeder consumers when the feeder circuit breaker is open. 

 

 

Figure 2.6. Typical Feeder Protection in Distribution Network 

Figure 2.7 shows a typical interface protection requirement for the DER owner. The anti- 

islanding protection as shown here often is a point to point transfer trip (block 3) plus the 

frequency and voltage protection elements (27, 59, and 81) that are installed at the PCC. 

The anti- islanding protection can be further equipped with frequency rate of change (81R) 

and loss of synchronism or out of step (78) protection elements.  
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Figure 2.7. Utility Type Anti-Islanding Protection [8]   

2.4 Conventional Distribution System Properties  

Some of the important design characteristic of the existing primary distribution system that 

is a focus of this work and is common among different types of networks (overhead and 

underground) and feeder configurations can be summarized as follows: 

a. The feeder is designed based on one-way load flow. 

b. Measuring devices are mainly installed at the substation and often no sensors are 

available along the feeder.  

c. For the main primary circuit, the main protection is mainly over current element(s) 

located at the substation, and alongside of the main circuit there may be other over 

current elements, such as recloser, especially for overhead type feeder, that 

provides sectionalized protection. 



21 

 

 

 

d. In the overhead circuit, the laterals tapped off from the main circuit through the 

fuses to protect laterals selectively, as shown in Figure 2.2. 

e. The simplicity of the design is the main property of the existing system that ties to 

the fact that distribution system, because of its size, is a very capital-intensive 

business.  

f. The anti- islanding protection that is shown in Figure 2.7 often is a point to point 

transfer trip.  

g. Often, no dedicated protection for an open phase fault is implemented. 

Considering the status quo and backbone of electrical distribution system as some of the 

properties summarized above, with the direction that has been taken by utilities and 

government for production of clean energy, distribution grids with minimum hardware 

preparation, is at the forefront of transformation to a new and smart gird. Integration of 

rapid growth of DER, new solutions such as Microgrids, and energy storage etc. to support 

reliability of system [9], [10] [11] from one side and advancement of communication 

technology has provided an opportunity to many researchers and solution providers  to 

work towards addressing many of distribution system issue as a whole and facilitate the 

transformation [12]. In the current work, the use of phasor measurement unit is proposed 

to provide an advanced solution for addressing legacy issues, such as open phase fault, and 

looking into the detection of DER operation in an unintended islanding operation. 

2.5 Distributed Energy Resources 

Distributed Energy Resources (DERs) are small scale electricity-producing resources that 

contrary to the centralized conventional plant are distributed and directly connected to a 

local distribution system. NERC (North American Electric Reliability Corporation) 

considers any resource on the distribution system that produces electricity and is not 

otherwise included in the formal NERC definition of the Bulk Electric System (BES) as 

DER. BES from NERC’s point of view includes all Transmission Elements operated at 100 

kV or higher and Real Power and Reactive Power resources connected at 100 kV or higher 

[13].Therefore, DER includes the following [14]: 
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Distributed Generation (DG): Any single or multiple generating units at a single location 

owned and/or operated by the distribution utility a merchant entity. This includes Solar and 

Wind Turbine generation. 

Behind the Meter Generation (BTMG): A generating unit or multiple generating units 

at a single location (regardless of ownership), of any nameplate size, on the customer's side 

of the retail meter that serve all or part of the customer's retail load with electric energy. 

 Energy Storage Facility (ES): An energy storage device or multiple devices at a single 

location (regardless of ownership), on either the utility side or the customer’s side of the 

retail meter. This may include various technologies, including electric vehicle (EV) 

charging stations. 

Microgrid (MG): An aggregation of multiple DER types behind the customer meter at a 

single point of interconnection that has the capability to island.  

Cogeneration: Production of electricity from steam, heat, or other forms of energy 

produced as a byproduct of another process. 

Figure 2.8 presents major DER categories that have been integrated into the distribution 

system so far. Among the different type of DERs, the renewable devices, such as wind and 

solar, are the most frequently installed and integrated into the distribution system. In the 

current study, wind and solar DGs are considered in the modeling wherever DER presence 

has been required. 
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Figure 2.8. DER Category Conventional and Non-conventional 

2.5.1 Renewable DER Frequency and Voltage Control 

Renewable DGs even in the same category as an example Wind Turbines it may have 

different features as a result of their constructions. The prime mover is a mechanism that 

produces energy and determines if the DG is dispatchable, i.e., if the production of 

electricity can be scheduled as per the utility’s needs. The grid interface; however, have a 

direct impact on how the voltage and reactive power could be controlled (for example, 

generator versus inverter). IEEE PES [15] recognizes a few types of wind turbine 

configurations, which will be reviewed briefly in this subsection and are differentiated 

based on their network interfaces.  

2.5.2 Induction Machine Type 1 and 2  

Figure 2.9 presents the block diagram of the wind turbine type 1. The grid interface in this 

type of system is an induction generator with squirrel cage rotor. During the operation, this 

machine will be connected directly to the grid. The speed of this machine is almost fixed 

and is around the frequency of the grid. In contrary to any synchronous machine, induction 

machine used in type 1 does not have an independent excitation system and therefore, is 

not capable of producing energy without presence of the grid. An independent source of 

voltage will be required to provide the reactive power needed to generate and maintain the 
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magnetizing field of this machine. This is also the reason why capacitor banks are often 

required to support the economical operation of this type of machine. From islanding 

operation perspective, type 1 machine cannot support the unintentional islanding and 

supply the load alone. The type 1 belongs to the early generation of wind turbine; the size 

of this machine is in the range of 10 to 100 KW, and lack of speed regulation makes this 

type of machine undesirable with today’s available technology. 

 

 

Figure 2.9. Induction Wind Turbine Type 1 

Figure 2.10 presents the result of different fault type for wind turbine machine type 1 

developed in PSCAD EMTDC. Prior to the short circuit instance at t= 4 sec machines were 

supplying 1 per unit load. The time of the fault is an arbitrary one and the asymmetrical 

current is not maximized based on the moment of the fault. The generator is shorted at the 

collector prior to the point of common coupling transformer. It can be observed that the 

type 1 machines are able to contribute a significant fault current to the grid depending on 

the time of the short circuit. The contribution of the initial cycle of the fault (asymmetrical 

current) can be as high as seven times the rated current and more. As the fault persists, the 

contribution decreases in magnitude. By its nature, an induction machines consumes 

reactive power both in the generating and motoring operation. The reactive power 

consumption increases significantly as the output power increases.  
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Figure 2.10. Induction Wind Turbine Type 1 Short Circuit Profile 

In the type 2 wind turbine, shown in Figure 2.11, the induction generator used is a wound 

rotor. There are no major differences between type 1 and type 2 turbines. They both have 

almost fixed speed control. Type 2 has a better possibility for speed regulation by adding 

resistance to the rotor circuit, and the real power curve can be “stretched” to the higher slip 

and higher speed ranges. That is to say that the turbine will have to spin faster to create the 

same output power, for an added rotor resistance. 
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Figure 2.11. Induction Wind Turbine Type 2 

The short circuit characteristics of a wind turbine type 2 is similar to a type 1. When the 

external rotor resistance is not added to the rotor or shorted, the short circuit current is not 

different with the squirrel-cage induction generator. Figure 2.12 shows the short circuit 

simulation carried out in PSCAD EMTDC for the type 2 wind turbine for different types 

of fault. The simulation is carried out with one external rotor resistance. The external 

resistance in the rotor circuit will affect the value of the short circuit contribution 

negatively. Prior to the short circuit instance at t=4 sec the machine is suppling a rating 

value. The moment of short circuit is arbitrary and asymmetrical current is not maximize 

based on the instance of the short circuit. It can be noted in this simulation that the type 2 

machine can contribute significantly to the short circuit in the grid 4 to 5 per unit in the 

initial cycle. 
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Figure 2.12. Induction Wind Turbine Type 2 Short Circuit Profile 

Type 1 and type 2 are often equipped with a smooth starter where the induction machine 

is supplied with variable frequency and reduced voltage and to run the machine until bring 

the machine up to the rating voltage and speed.  

Figure 2.13 shows a simple simulation of induction machine start up in PSCAD. The 

recorded graphs are active power, reactive power, speed, and generator terminal voltage. 

At the start, the voltage and frequency are gradually increased, and the machine absorbs 

active and reactive power. When speed and voltage reach the value of network, the smooth 

starter is bypassed, and the wind turbine is directly connected to the grid. From this moment 

onward, as shown in this simulation, the induction machine generates real power (P) when 

the turbine shaft rotates faster than the grid frequency.  

WT Turbine Type 2 Short Circuit Profile
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Figure 2.13. Induction Wind Turbine Smooth Start up  

2.5.3 Induction Machine Type 3 (DFIG) 

Variable-speed generator drives enable the wind turbine control system to adapt the 

rotational speed of the rotor to the instantaneous wind speed over a relatively wide range. 

The electrical system has a fixed frequency though. A generator drive connecting a 

variable-speed mechanical system to a fixed frequency electrical system must, therefore, 
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contain some kind of a slip or decoupling mechanism between the two systems. In variable-

speed wind turbine Doubly Fed Induction Generator (DFIG), the rotor circuit is fed from a 

converter with variable frequency, as shown in Figure 2.14. 

 

Figure 2.14. Induction Wind Turbine Type 3 

Thus, the angular velocity of stator rotary field can be written as follows: 

r

r
mech

s

s

pp


=



         (2.1) 

𝑠 =
𝑛𝑠− 𝑛𝑟

𝑛𝑠
 , 

Where ps and pr denote the number of stator and rotor poles respectively, s  is the power 

system frequency which is equal to the sum of the angular velocity of mechanical rotation 

(mech), and rotor current frequency (r). Depending on the direction of the supply 

frequency, this machine can operate in over or under synchronous speed and has much 

more flexibility to work over a wider range of wind speeds. For the simplification of power 

and torque equations, assuming  Ps = Pr = 1, then the following can be stated from the 

basic asynchronous machine model: 

ωm = (1 − S)ωs  

Pmech = 3|ir|
2(

1−s

2
) Rr        (2.2) 
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Tmech = 3|ir
′ |2(

1−s

s
) 

Rr
′

ωm
=3Ψm|ir

′ |       (2.3) 

Where Ψ𝑚  stator core magnetizing flux and prim indicates reflection of current and rotor 

value to the stator side. 

 Ψm = Lmim =
Vs

ωs
 

Unlike type 1 and type 2 wind turbine machines, type 3 can provide reactive power to 

participate in voltage regulation and when is connected to the grid. Figure 2.15 shows a 

simulation that was carried out with the normal loading condition at t around 1.4 seconds; 

the grid voltage is reduced by 6%, and thus, instantly the wind turbine in the absorbing 

reactive power condition of  (-0.4 PU) is changed to generating plus 0.4 PU to compensate 

for loss of reactive power and reduction of voltage.  

 

Figure 2.15. Wind Turbine Type 3 Reactive Power Regulation  
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Similar to what is presented for the earlier wind turbine in this chapter, Figure 2.16 shows 

the short circuit simulation for the type 3 machine carried out in PSCAD EMTDS. The 

short circuit contribution for three-phase fault is shown to have the shortest decay time 

with the peak current around 4 per unit. The phase to-phase -to-ground fault gives about 

the same short circuit magnitude as the three-phase faults, but the decay time is longer. The 

single line-to-ground fault produces the lowest peak current of about 5 per unit and it also 

decays longer than the three-phase fault. From the short circuit waveforms, it can be 

recognized that the symmetrical component analysis for the unbalanced short circuit is not 

producing the same result as a conventional machine.  

 

Figure 2.16. Wind Turbine Type 3 Short Circuit Profile  
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The complete active power, reactive power, and frequency control of DFIG for this work 

is developed and customized in “dq” control using PSCAD. The overview of the PSCAD 

model is reported in the Appendix C. 

Figure 2.17 shows a type 4 full-fledged back-to-back inverter-based machine. The grid 

interface can be an induction or synchronous generator. This type of wind turbine is most 

frequently implemented around the world. Type 4 can provide an independent active and 

reactive power control loop and therefore, it can participate effectively in the grid feeder 

voltage regulation. This type of configuration offers a great deal of flexibility in operation 

  

Figure 2.17. Typical Wind Turbine Type 4 

since there is no direct connection between the generator and the grid. The turbine is 

allowed to rotate at its optimal aerodynamic speed, and the power output can still be 

adjusted to the grid frequency. The dq control model customized for this study and its 

parametrization is reported in the Wind Turbine Model Type 4. 

Similar to type 3 this machine is capable of providing reactive power to participate in 

voltage regulation when it is connected to the grid. Figure 2.18 shows the simulation that 

was carried out with the normal loading condition at t around 3 seconds. The grid voltage 

is reduced by 10%, thus, instantly the wind turbine in the absorbing reactive power 

condition of (-0.1 PU) is changed to generating plus 0.3 PU to compensate for the loss of 

reactive power and the reduction of voltage.  
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Figure 2.18. Wind Turbine Type 4 Reactive Power Contribution  

Figure 2.19 presents the short circuit contribution of wind turbine type 4 for a different 

type of fault. It can be noted that a short circuit current even for a three-phase fault is 

limited to the rated current or a little above the machine rated current. The type 4 machine, 

depending on the design of inverter it can support some 10% to 20%. The generator in this 

type of machine is not connected directly to the grid therefore, during the fault in the grid 

the generator can still be running with the connection to the machine side converter and 

power will be delivered by the grid side converter with reduced amount of voltage and 

current. 
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Figure 2.19. Wind Turbine Type 4 Short Circuit Profile  

2.5.4 Photo Voltaic  

In distribution systems, because of the limitation of renewal capacity that can be integrated 

into the primary feeder, the connection of solar farms is the most prevalent compared to 

other types of DER. Figure 2.20 presents a conceptual block diagram of a utility grade solar 

farm.  At the DC side, the number of PV panels are normally in series and parallel to make 

up for the current and power that is required to be connected to the DC/AC grid-connected 

type of inverter.  The AC voltage in the output of inverter will then be raised to the collector 

voltage level which is often in the range of distribution class voltage and may integrate 

more similar units to the main substation and common point of coupling (PCC) through 

another transformer or directly. 

Wind Turbine Type 4 Short Circuit Profile
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Figure 2.20. Typical Solar Farm Block Diagram 

For the purpose of this work and study of unintended islanding, an integrated model of the 

PV solar in PSCAD presented in Figure 2.21 is considered.  

 

Figure 2.21. Grid Connected PV Model  

The amount of power that can be taken from a solar cell depends on the operating point of 

I_V cure which is maximum at the keen point of this curve as shown in the model. MPPT 

(Maximum Power Point Tracking) is a power electronic DC-DC converter implemented to 
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ensure that the PV cell operated at maximum power point. Figure 2.22 presents the short 

circuit contribution of PV array for a different type of fault. The contribution of the short 

circuit current even for the three-phase fault is limited and in the instance of the fault is 

very close to the load. However, the short circuit current if the fault persisted in the next 

cycles could reach to 2 PU to 3 PU. The PV similar to type 3 and 4 wind turbines can 

supply the grid with reactive power.  

 

Figure 2.22. Grid Connected Solar Farm Short Circuit Profile  

2.5.5 DER Model Developed for Islanding Application  

Three EMT models including wind turbine type 3, type 4, and PV, are developed and 

customized for studying the islanding application in this work. The islanding application 

Grid Connected PV short Circuit Profile
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background and state-of-the-art solutions will be discussed in chapter four. In this 

section, the overview and principle of the models used for DER modeling are presented. 

The models developed for DER are based on the space phasor on αβ, and dq frames. A 

three-phase positive rotation system can be shown as a single space phasor (t)f
→ .  

  Fa(t) = fmaxcos(ωt + Ɵ0) 

 Fb(t) = fmaxcos (ωt + Ɵ0 −
2π

3
)       (2.4) 

 Fc(t) = fmaxcos (ωt + Ɵ0 +
2π

3
) 

 (t)F
→ =

2

3
[ej0fa(t) + ej

2π

3 fb(t) + ej
4π

3 fc(t)]       (2.5)  

Where Ɵ0, is the arbitrary initial angle of the three-phase system with the time origin. 

 Knowing,   

  Ej0 + ej
2π

3 + ej
4π

3 = 0  

 Cos θ =
1

2
(ejθ + e−jθ) 

Therefore, 

(t)f
→ = (fmaxe

jθ0)ejωt  

Figure 2.23 presents the space phasor representation of a 3 phase AC system in the  

αβ and dq  frame.    

 (t)F
→ = fα + jfβ = (fd + jfq)e

−jωt=(fd + jfq)e
jρt 
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Figure 2.23. Representation of Space Phasor in dq  Frame 

While 𝛼𝛽 frame is static and is not rotating, 𝑑𝑞 frame is locked with the rotation of space 

phasor (𝑡)𝑓
→   and therefore, the component in these frames is similar to the DC type 

quantity. In (2.6) and (2.7), the 𝑑𝑞 quantities from three phase “abc” and vice versa are 

calculated respectively. These calculations are known as the Park’s transformation. 

 [
𝑓𝑑
𝑓𝑞
0

] =
2

3

[
 
 
 
 cos 𝜃     cos (𝜃 −
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3
)       cos (𝜃 +
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sin 𝜃 sin (𝜃 −
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) sin (𝜃 +
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]   (2.6) 

 [

𝑓𝑎
𝑓𝑏
𝑓𝑐

] = [

cos 𝜃 sin 𝜃 1
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2𝜋

3
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2𝜋

3
) 1

    cos (𝜃 +
2𝜋

3
)   sin (𝜃 +

2𝜋

3
) 1

] [
𝑓𝑑
𝑓𝑞
0

]     (2.7) 

The angle Ɵ(t) in the above transformation is estimated based on the angular velocity of 

the grid by Phase Locked Loop (PLL) function. The function block diagram of PLL is 

shown in Figure 2.24. Voltage Controlled Oscillator (VCO) in this diagram works as a 

resettable integrator between 0 and 360 degrees. It will reset the value of Ɵ(t) when it 

reaches 360 degree. In  Figure 2.23, if PLL forces 𝑓𝑞 to zero at any given time, the “d” 

axis in the “dq” frame will be in the same position of  f(t) and therefore, the “dq” frame 
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will be locked to the space phasor rotation which generally represents the desired frequency 

that should be measured.      

 

Figure 2.24. Phase Looked Loop Block Diagram  

Figure 2.25 shows the conceptual control block diagram of grid-imposed Voltage Source 

Converter (VSC) illustrating the basic concept of the control of power models. The DC 

source (VDC) in the case of type 3 and type 4 wind turbines is a simplified representation 

of machine side convertor and in the case of a solar farm, represents a PV panel. The control 

based on the 𝑑𝑞 frame is decoupled, i.e., there is a separate control loop for active and 

reactive power. The estimation of grid frequency is an essential part of the conversion of 

three phase AC system to the “dq0” stationary axis rotating with the angular frequency of 

the grid source voltage Ɵ(t).  In addition to “dq0“conversion, Ɵ(t) is used to adjust the 

frequency of the grid side converter output. In simple terms, for the type 3 type 4 wind 

turbines, and the PV solar farm, if there are no provisions for the islanding operation where 

DER can supply the load in an islanded feeder, for the grid-imposed voltage source 

converter without presence of an active source, the islanding mode cannot be sustained.  
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Figure 2.25. Real and Reactive- Power Control of Grid Imposed VSC 

Figure 2.26 shows the simulations carried out for the generic PLL grid used for this study. 

The first graph Ɵ(t) in degrees is the output of VCO, and the second graph is a derivative 

of the first graph (
𝑑𝜃(𝑡)

𝑑𝑡
) without any limitation on the output value. The grid frequency at 

𝑡 = 1.5 𝑠𝑒𝑐 changes gradually to 58 Hz and at  𝑡 = 1.6 𝑠𝑒𝑐, the frequency is restored to its 

original value of 60 Hz. The simulation is carried out for the grid side PLL used for type 4 

machine.    

The information related to the actual EMT models for DER used in this study are presented 

in the Appendix C and Appendix D. 
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Figure 2.26. Phase Looked Loop Simulation   

2.6 Regulatory Requirements for DERs  

Since the publication of IEEE 1547 “DER interconnection standard” in 2003, this standard 

has gone through a major rework and revision which in a way reflects the state-of-the-art 

in DER technology. Figure 2.27 presents the revision history of IEEE 1547 with highlights 

of the major changes in the DER power network support.   

The contributions of DER in the regulation of voltage, reactive power; frequency, and 

network inertia are the major changes that can been seen from the earlier version of the 

standard. In the early generations of DERs, they were mostly unable to support islanding 

operation since there was no capacity to generate var and to regulate the voltage and 

frequency without an additional control circuit that supports this operation. With DER 

getting the functionality that can support grid operation, IEEE 1547 scope has changed 

from focusing only on a distribution network to covering both distribution and bulk energy 

systems. 
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Figure 2.27. IEEE 1547 Grid Support Function History [Courtesy of IEEE 1547 WG] 

In this regard, the standard has defined DER categories (Cat A, B) for the voltage 

capabilities based on reactive power generation as a percentage of the power capacity of 

DER for individual as well as aggregated units. The performance of the DER for an 

abnormal operating condition have also been categorized (cat I, II, III), where Cat III is 

specifically indented for bulk power systems.  

DER Islanding in IEEE 1547-2018 standard  

Following are the main highlights related to islanding in the latest version of the standard 

and have taken into consideration the following: 

• An island condition is defined as an operation in which a portion of an Area 

Electrical Power System (EPS) is energized solely by one or more DER alone and 

utility source is disconnected. 

• AN unintentional island is one that is not planned and the DER must detect, trip, 

and clear within 2 seconds –same as IEEE 1547-2003.  Area EPS Operator 

(utility) can extend this to 5 seconds.   
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• Intentional island: one that is planned such that DER can carry a specific load 

(e.g., microgrid, emergency/standby power supply). 1547-2018 now addresses 

intentional islands.  

2.7 Summary  

A brief review of the conventional role of a distribution system as a power system interface 

to the load center is discussed. It was shown that because of distribution system size, which 

makes it a very capital- and labor-intensive business, and simplified functionality, which 

was expected from this redial system, the technological disadvantage of the distribution 

system infrastructure in comparison to the other sector of power systems was ignored by 

utilities and system owners. Communication technology typically has not been part of the 

solutions and research that have been offered. It is also discussed that distribution system 

became the forefront of the green energy and smart grid initiative around the globe which 

is transforming this system to be more technologically advanced, and hence, requires more 

research and solutions similar to this work. 

In this chapter, a background of distribution systems from a structural point of view is 

studied with focus on the North American network. The voltage class, primary feeder 

topology, distribution in urban and rural areas, and underground network in the city core 

is discussed. A background and fundamental and main characteristic of feeder protection 

in distribution systems more specifically related to the islanding and open phase fault which 

is a focus of this work is reviewed and the summary of conventional distribution system 

properties is developed. 

A brief introduction to DER and their classification, as applicable to the distribution 

system, is reviewed. The schematics and control model of the main type of DER that is 

used in this work is studied. The short circuit contribution of different DER is model and 

simulated. The contribution of DER into voltage and reactive power generation is verified 

and studied.  The summary of changes in IEEE standard for DER integration are outlined. 

The generic control concept based on the space phasor and “dq” frame is studied. The 

control frequency for the grid-imposed voltage source converter and Phase locked loop 

(PLL) functionality is studied and the generic PLL model developed for this study is 
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presented. The detailed EMT models DERs used in this work are presented in Appendix 

D. In the next chapter, synchronized phasor measurement technique, signal processing, 

phasor and frequency estimation, possible applications, and optimized system architecture 

for the use cases studied in this work are presented.  
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Chapter 3  

 Phasor Measurements 

With the many advancements in communication, hardware processors, and information 

technology in the industry, these technologies are finding their way into power system 

applications. Although reliability and performance remain the leading requirement for 

power system applications for any new technology, in recent years, it can be observed that 

the phasor measurement system has become a technique of choice for electric power 

system utilities. The phasor measurement is a hardware of choice for this work which is 

discussed in this chapter.   

3.1 Fundamental of Synchrophasor Measurement 

The idea of computing synchronized measurement of the power system network in 

different remote locations has been around even before the technology was able to support 

it. Understanding the behavior of interconnected electrical grids with the objective of 

controlling and protecting such a network created the need for simultaneous measurement 

of voltage and current with the common time references to meaningfully compare both 

magnitude and phase angle of the measurements. Figure 3.1 shows a simple structure of 

synchrophasor network consisting of Phasor Measurement Units (PMUs) and Phasor Data 

Concentrator (PDC). 

 

Figure 3.1. Phase Angle Reference in Interconnected Grid 
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The minimum structure that is required for preparing the synchrophasor data for specific 

applications consist of the following: 

Phasor Measurement Unit (PMU): PMUs is a function or logical device that provides 

synchrophasor and system frequency estimates, as well as other optional information such 

as calculated megawatts (MW) and megavars (MVAR), sampled measurements, and 

Boolean status words. The PMU can provide synchrophasor estimates from one or more 

voltage or current waveforms [16]. The PMU can be realized as a stand-alone physical 

device or as part of a multifunctional device, such as a protective relay, DFR, or meter. The 

number of PMUs and locations where the PMU measures the electrical signal can vary 

depending on the application requirement.  

The introduction of PMU, which nowadays is heavily standardized in the industry, goes 

back to the mid-1980s [17]. Since then, with the advancement in hardware computation 

power, communication media, and availability of GPS around the globe (see Figure 3.2), 

it became possible to use PMU as a standalone device or as a low-cost integrated function 

in protection and control of Intelligent Electronic Devices (IEDs) by utilities in many 

control, supervisory, and backup protection applications.  

 

Figure 3.2. PMU History Time Line [18] 

Time reference: The samples obtained by the PMU must be synchronized to a common 

timing reference, so the angles of the phasors computed at different locations will be 

comparable. As such, the electrical phasor which represents the analogue waveform of 

current or voltage at different locations of the power system are synchronized by means of 

Global Positioning System (GPS) to the Universal Time Clock (UTC) through 

communication.  
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Synchronized clocks, providing precise timestamps for events, and data acquisition 

applications on electric power systems. One way to provide precise time values is to use a 

dedicated GPS receiver for every single device. But this is a costly solution. Alternatively, 

time distribution mechanisms via dedicated buses or, for newer IEDs using Ethernet 

connectivity can be implemented in practice. Each time synchronization method has its 

own advantages and disadvantages and not all of them are optimal for use in substation 

applications. Table 3-1 below, the most common time synchronization methods available 

in the industry are compared for typical accuracy, data indication capability, dedicated 

cabling requirements, cost effective implementation, and scalability. The methods are 

briefly described here:  

IRG-B- Inter Range Instrumentation Group time codes, also known as IRIG time codes, 

are standard formats for transmitting time information. The original code formats were 

described in IRIG document 104-60, and later revised several times over the years, with 

the latest version being the IRIG Standard 200-04. IRIG codes B (IRIG-B time-codes) is 

the industry standard for distributing synchronized time signals to IEDs. For time code 

transmission, IRIG-B requires an external time source, such as a GPS receiver and a 

dedicated twisted pair, coaxial cable or - fiber links.  Therefore, this is not a low-cost 

solution for time synchronization.  

Pulse-Per-Second (1PPS): The 1 Pulse –per-Second waveform, which is a digital-bit 

transmitted every second, with a pulse width of 10 milliseconds. A one pulse per second 

(1PPS) signal provides better accuracy than the 100 ns (on-time mark), but does not provide 

any indication of the date or time of day. 1 PPS is sent to every IED over separate lines and 

is typically used in a substation application in conjunction with other synchronization 

methods, such as IRIG-B. Because of this limitation, and the fact that the hardware 

requirements and performance are similar to those for an unmodulated IRIG-B code, IRIG-

B has generally supplanted 1 PPS for substation use. 

Network Time Protocol (NTP): NTP represents a software mechanism for transferring 

the time between computers using a communication network, such as the Internet, and is 

defined in RFC-1305. It generally provides moderate accuracy (1-10ms) depending on how 

the NTP clients and server are interconnected and also on the performance of the 
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communication software. NTP is very robust, widely deployed throughout the Internet, and 

well tested over the years and is generally regarded as state of the art in distributed time 

synchronization protocols for unreliable networks. It can reduce synchronization offsets to 

a few milliseconds over the public Internet and sub-millisecond levels over local area 

networks. For best accuracy, the logical connection between the clients and servers should 

be as short as possible. 

IEEE 1588 V2: The IEEE 1588 Standard defines the Precision Time Protocol (PTP) for 

packet-based networked systems. The time synchronization of IEEE 1588 protocol is 

achieved by send message between master and slave docks. The clocks in the network are 

divided into master and slave. Version 1 of the protocol was initially released in 2002 and 

in 2008, was revised as Version 2. The first version does not support transparent clocks or 

industry profiles and has larger packets that generate more traffic than the second version. 

These two versions are not compatible. [19]  

Table 3-1. Accuracy for Time Synchronization Methods [20] 

Method 

Typical 

Accuracy 

in 

substation 

with given 

method 

Provides 

date and 

time of day 

indication 

Dedicated 

cabling not 

required 

Fulfills IEEE 

C37.118 

Synchrophasor 

Data 

requirements 

IRIG-B 100 µs x   

1PPS 1µs   x 

Built in 

GPS 

1µs x  x 

NTP 1-10 ms x x  

IEEE 1588  1µs x x x 
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Phasor Data Concentrator (PDC): The phasor measurements are real time measurements 

streamed by PMUs to the other devices, conventionally to the PDC, that work as a node in 

a communication network where synchrophasor data from a few PMUs or other PDCs is 

correlated and fed out as a single stream to the higher level PDCs and/or applications. The 

PDC correlates synchrophasor data using a time tag to create a system wide measurement 

set. 

Communication Media: The Synchrophasor measurement system requires a 

communication media where PMU, GPS, and PDC data steam from different location can 

be exchanged or send to the higher-level application hierarchy devices. The performance 

of communication media from reliability, speed and security has at most impact on the 

application functionality. 

GPS Timing: The Global Positioning System (GPS) is a space-based, radio-navigation 

system that enables extremely accurate positioning, navigation and timing. Originally 

designed as a 24-satellite constellation, GPS is currently comprised of 31 satellites (Oct 

2018). The system is owned and operated by the U.S. Government as a national 

resource.  The U.S. Department of Defense (DoD) is the "steward" of GPS and responsible 

for operating the system in accordance with the IS-GPS-200H system specification and, by 

U.S. law, the Standard Positioning Service (SPS) and Precise Positioning System (PPS) 

Performance Standards. The PMUs are required to be synchronized tot eh GPS timing so 

any data analysis and comparison between measurement of PMUs in different location will 

be possible.   

3.2 Formal Phasor Definition 

In short, the synchrophasor representation of the time domain signal x(t) in equation (3.1) 

is the value X in (3.3), where φ is the instantaneous phase angle relative to a cosine function 

at the nominal system frequency synchronized to UTC. 

𝐱(𝐭) = 𝐗𝐦(𝐭) 𝐜𝐨𝐬(𝛚𝐭 + ∅)           (3.1) 

http://www.gps.gov/technical/ps/2008-SPS-performance-standard.pdf
http://www.gps.gov/technical/ps/2007-PPS-performance-standard.pdf


50 

 

 

 

Equation (3.1) can be written also as (3.2) in the exponential format. 

𝐱(t) = Re{(Xm(t))ej(ωt+∅)} = Re[{ej(ωt)}Xmej∅]     (3.2) 

The term ej(ωt) will be suppressed knowing that ω is the frequency of the power system 

and therefore, the sinusoidal is commonly shown as the phasor equation of:  

X = (
Xm

√2
) eJ∅ = (

Xm

√2
) [Cos∅ + Jsin∅]       (3.3) 

Under this definition, φ is the offset from a cosine function at the nominal system frequency 

synchronized to UTC. A cosine has a maximum at t = 0, so the synchrophasor angle is 0 

degrees when the maximum of x(t) occurs at the UTC second rollover (1 PPS time signal), 

and –90 degrees when the positive zero crossing occurs at the UTC second rollover (sine 

waveform). Figure 3.3 shows the phase angle/UTC time relationship. 

 

 

Figure 3.3. Convention for Synchrophasor Representation  

 

In the real world, however, the power system frequency will vary in time, and the current 

and voltage are not an ideal sinusoidal waveform. Therefore, a more comprehensive 

transformation from a pure sinusoidal signal to phasor representation, as the one discussed 
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earlier from frequency, amplitude, and waveform point of view will be discussed in this 

chapter briefly.  

3.2.1 Phasor Representation of Non-Sinusoidal Waveform 

In power systems, the current and voltage often have other frequency components, and in 

order to represent them in the phasor form, it is necessary to extract the single frequency 

component (fundamental frequency component) from the measured signal. The Fourier 

Transformation or filter is conventionally used to extract the main frequency component 

from the corrupted sinusoidal signal.  

Fourier transformation is used to break the measured signal into an alternate representation 

characterized by summation of series sine and cosine. Equation (3.4) illustrates how  an 

arbitrary signal or measurement f(t) can be split into sine and cosine components using 

Fourier transformation [21]:  

f(t) =
a0

2
+ ∑ [(ak cos (

2πkt

T
) + bk sin (

2πkt

T
))∞

k=1 ]     (3.4) 

where ak and bk  are constant given by  

ak =
2

T
∫ f(t)

+
T

2

−
T

2

cos (
2πkt

T
) dt, K = 0,1,2, , …      (3.5)  

bk =
2

T
∫ f(t)

+
T

2

−
T

2

sin (
2πkt

T
) dt, K = 0,1,2, , …      (3.6) 

Figure 3.4 illustrates the same concept where the squared waveform signal with variable 

frequency is transformed into Fourier components. The main components with 

fundamental frequency in this transformation, i.e., the red color signal will be considered 

if representation of such a signal into the phasor form is required.       
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Figure 3.4. Fourier Transformation of Squared Waveform   

3.2.2 Off Nominal Frequency 

In synchrophasor application the current and voltage of power system must be represented 

in the real time with the consideration of frequency variation.  (3.7) and (3.8) in which the 

corresponding phasor will rotate at the uniform rate of Δf, i.e., is illustrating the difference 

between the actual and nominal frequency . 

x(t) = Xm(t) cos(ωt + ∅) = Xm(t) cos(2π(f0 + ∆f )t + ∅)       (3.7) 

x(t) = Re{(Xm(t))ej(ωt+∅)} = Re[{ej(ωt)}Xmej∅]     (3.8) 

 

This  concept is illustrated in Figure 3.5 where the analogue waveform  has been shown  in 

real time at intervals {0, T0, 2T0, 3T0,..,nT0, …}, where T0= 1/ f0 (the nominal power 

system period) and the sequence corresponding phasor of these measurement  are  {X0, 

X1, X2, X3, … Xn, …}. 
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Figure 3.5. Waveform with Positive Δf >0 (f > f0)    

If the phasor magnitude is constant, the phase angles of the sequence of phasors {X0, X1, 

X2, X3, … Xn, …} will change at a constant angular velocity proportional to 2πΔf/T0. 

Assuming these values are reported in real time, the phase angle will increase continuously 

until it reaches 180 degrees where these would wrap around to –180 degrees, and continue 

to increase, as shown in Figure 3.6. It should be noted that in synchrophasors, the angles 

commonly reported are from –180 degrees to +180 degrees rather than 0 to 360 degrees. 

 

Figure 3.6. Off Nominal Power Frequency Sampling  
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3.3 Signal Processing  

Figure 3.7 shows a simplified functional block diagram of a typical PMU. Before the 

phasor to be computed, the analog signal must go through the conversion. In the numerical 

process, the analogue signal is measured though several sampled values per cycle of the 

original signal. This part of PMU functionality is like any IED or digital fault recorder 

device where the analog signal must be measured based on sequential samples over the 

time.  

 

Figure 3.7. Typical PMU Configuration  

The phasor of the main frequency component is estimated by use of Discrete Fourier 

Transform (DFT) or Fast Fourier Transform (FFT).  

The DFT is the equivalent of the continuous Fourier transform for signals known by only 

N instants separated by sample time of ∆T.  If f(t) is an arbitrary analog (continuous) input 

signal which is the source of the data and f[0], f[2], …,f[N-1] are the N samples. The 

Fourier transform of signal f(t) can be written as follows:      

F(jω) = ∫ f(t)e−jωtdt
∞

−∞
         (3.9) 

If we regard each sample as an impulse having area f[k] which is f(k)*∆T, then,  (3.9) can 

exist only at the sample points: 

 F(jω) = f[0]e−j0 + f[1]e−jω∆T + ⋯+ f[N − 1]e−jω(N−1)∆T  

F(jω) = ∑ f[K]e−jωK∆TN−1
K=0         (3.10) 
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For fundamental frequency and its harmonic (including the DC components (𝝎=0) of the 

original signal), 

 Ω = 0,
2π

NT
, 2 

2π

NT
… , (N − 1)

2π

NT
 

  F(n) = ∑ f[K]e−j
2π

N
nKN−1

K=0     (n = 0 ∶ N − 1)  

In principle, (3.10) can be used for any 𝝎 with only N samples. Sampling data from the 

input signal is the start of the process to estimate the phasor. Over the years, several 

considerations and techniques have been developed to digitalize the analog signal for 

precise representation, which is described briefly in this section.  

3.3.1 Nyquist Frequency and Anti-Aliasing Filter 

An analog signal is acquired by PMU or any IED through the Analog to Digital conversion 

where the analog signal sample is taken based on a sampling rate. The aliasing concept is 

totally dependent on this sampling rate. If the sampling rate is not sufficient, aliasing 

problems occur during the reconstruction of the sampled signal while converting the digital 

signal into the analog signal. According to Nyquist’s sampling theorem, the sampling rate 

must be at least twice the bandwidth of the analog signal at the beginning of the sampling 

procedure to be able to reconstruct the sampled signal. In other words, if the analog signal 

is a periodic signal, at least two points must be sampled in one period. Figure 3.8 shows 

the impact of the sampling rate in capturing the information of the input signal. As shown, 

the sample rate must be greater than or equal to two times of highest frequency component 

in the input signal. The limit where the maximum frequency component in a sampled data 

system can accurately be handled is known as the Nyquist limit.   
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Figure 3.8. Impact of Signal Sampling Rate On A/D Conversion  

In the actual devices the high frequency components of the input signal that are not within 

the Nyquist limit will be cut off during the signal processing by anti-aliasing filter. 

3.4 Phasor and Frequency Estimation 

As presented earlier, phasor “V” is a representation of sine waves whose amplitude (A), 

phase (φ), and angular frequency (𝝎) is time variable. 

 V(t) = A. cos(ω t + φ) = A. Re{ej(ωt+φ)}      (3.11) 

 𝑉 = 𝐴∡ φ 

In power systems, however, amplitude (A), phase (φ), and angular frequency (𝝎) are time-

based variables. Therefore, the phasors for power systems should be estimated in time-

based processed signals, such as voltage and current, which will be estimated for a window 

in a time-based manner and the estimation will be updated, as shown in Figure 3.9.  
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Figure 3.9. Phasor Estimation Windows  

A few numbers of techniques have been developed over the years related to real time 

phasor estimation. The short and long windows for phasor estimation are the main 

categories that are known in this area. The short windows algorithm, such as Miki and 

Mikano, Mann and Morrison, Rockefeller and Urden, and long windows algorithm, such 

as DFT, LES, can be noted.  

3.4.1 Short Windows Phasor Estimation 

Short windows-based estimation has a fast-transient response and fewer computations; 

however, when the input signal contains harmonics, DC, and noise, it tends to impact the 

performance of the short windows-based estimation. Figure 3.10 illustrates Miki and 

Mikano short-window phasor data windows with two samples. 
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Figure 3.10. Phasor Estimation 

At time t= 0 and t= -1, the following can be formulated:   

 V0 = Vpcos(∅)         (3.12) 

 V−1 = Vpcos(−ω∆T + ∅) 

 V−1 = Vp{cos(ω∆T) cos (∅) − sin(ω∆T) sin (∅)} 

  Vp sin(∅) =
[V−1 −V0 cos(ω∆T)]

sin(ω∆T)
       (3.13) 

From equation (3.12) and (3.13), real and imaginary parts of the phasor can be calculated, 

and accordingly, their magnitude and angle : 

 Vp = √V0
2 + [

V−1−V0cos(−ω∆T)

sin(−ω∆T)
]2        (3.14) 

 ∅ = tan−1 sin(ω∆T)

𝑉0
         (3.15) 

3.4.2 Long Windows Phasor Estimation 

For the long window-based estimation using DFT, the phasor can be formulated based on 

sample data measured from the input signal for any sampled value using (3.17) or 

fundamental frequency using (3.19) which is of prime interest in phasor measurement.  
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 Xk =
2

N
∑ X[n]e

j2π

N
kn                                           k = 0, . . , N − 1N−1

n=0    (3.16) 

 X[n] = ∑ Xke
j2π

N
kn                                               n = 0, . . , N − 1N−1

n=0  

Ak = Xk = √Re(Xk)
2 + Im(Xk)

2                          k = 0, . . , N − 1       (3.17) 

 Φk = tan−1(Xk) 

And phasor for fundamental frequency can be simplified as follows:  

X1 =
2

N
∑ Xne

j2π

N
n                                                                 k = 0, . . , N − 1N−1

n=0   (3.18)

X1 =
1

N
∑ Xn cos (

2π

N
n) + j

1

N
∑ Xnsin (

2π

N
n)N−1

0       n = 0, . . , N − 1N−1
n=0  

A1 = √{
1

N
∑ Xn cos (

2π

N
n)}N−1

n=0

2
+ {j

1

N
∑ Xn sin (

2π

N
n)}N−1

n=0

2
      n = 0, . . , N − 1   (3.19) 

 ∅1 = tan−1(∑ Xn cos (
2π

N
n) + j∑ Xn sin (

2π

N
n)N−1

0 )              n = 0, . . , N − 1N−1
n=0  

In recent years, much research has been done to improve phasor estimation and how the 

estimation should be updated for the real time application. The windows of data acquisition 

must move forward with the objective of using phasor-based measurement for transient 

study, fast power system phenomenon, such as protection. In [22], the authors propose an 

improved DFT to immunize the accuracy of DFT phasor estimation from the presence of 

DC component (short circuits scenarios). In [23], a dynamic current phasor measurement 

is presented to deal with the noise in current signals. In [24],  a method to estimate the 

phasor for off-frequency based on Taylor series is proposed. In [25], [26], and [27] more 

studies have been done to present phasor estimation for protection and time critical 

application. 

3.5 Frequency Estimation  

The PMU is required to measure instantaneous voltage, current, and estimate phase angle 

frequency and rate of change of frequency of voltage & current signals. One of the main 
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reasons behind the estimation of frequency is the fact that if the frequency is not known, 

the phasor estimation itself is not accurate. 

LES-based Frequency Estimation: The Least Square Frequency Estimation technique is 

an accurate when the deviation of the frequency is small from the rated frequency; 

however, it is sensitive to harmonic components.  

Zero Crossing: This method monitors timing between the wave from zero crossing in the 

negative and positive half wave in order to estimate the frequency of the phasor in the 

predetermined time interval. 

3.6 Communication and Reporting the Data 

PMUs are capable of reporting phasor data from nominal and off-nominal frequency by 

providing single-phase and multi-phase data at multiples and submultiples of rated 

frequency, which must be supported by the PMU. The rate will be selected by user, and 

higher and lower rate will also be permitted depending on the need of the application.  

Table 3-2 presents the reporting rate that is identified by the standard [28] that must be 

supported by the PMU. The rate will be selected by the user, and higher and lower rates 

will also be permitted depending on the need of the application. 

Table 3-2. PMU Reporting Rates  

System Frequency 50 Hz 60Hz 

Reporting rates (Fs—Frame per second) 10 25 50 10 12 15 20 30 60 

The essence of synchrophasor measurements is to gather PMU information from different 

nodes in the power system that are far from each other and to be able compare the 

information. Figure 3.11 presents the conventional communication system architecture for 

wide area application. IEEE C37.118.2 standard specifies a method that a synchronized 

phasor measurement data between PMU and PDC with any suitable protocol for real-time 

communication can be used. It also defines the message types, contents, and data formats, 

as well as communication options and requirements. 
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Figure 3.11. Conventional Phasor Measurement Communication Architecture [29] 

 

All message frames start with a 2-byte SYNC word followed by a 2-byte FRAMESIZE 

word, a 2-byte IDCODE, a time stamp consisting of a 4-byte Second-Of-Century (SOC), 

and 4-byte FRACSEC, which includes a 24-bit FRACSEC integer and an 8-bit Time 

Quality flag. All frames are transmitted exactly as described with no delimiters. Figure 

3.12 illustrates this frame transmission order. The SYNC word is transmitted first and 

CHECK word last. 

 

Figure 3.12. Communication Example C37.118-2 Frame 

For time critical applications, time delay and device performance are important.  

Table 3-3 presents the typical range of time delay in processing and communication that 

can be expected for typical PMU based applications. 
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Table 3-3. Typical Delay Range for PMU Application [28] 

Cause of delay Typical range of 

delay 

Sampling window (delay of ½ windows)  17 ms to 100 ms 

Measuring filtering  8 ms to 100 ms 

PMU processing 0.02ms to 30 ms 

PDC processing and alignment  2 ms to2 sec 

Serializing output 0.05 ms to 20 ms 

Communication system I/O 0.05 ms to 30 ms 

Communication distance  3.4  
μs

km
 to 6 

μs

km
 

Communication system buffering and error 

correction 

0.05 ms to 8 sec 

Application input  0.05 ms to 5 ms 

In line with hardware advancements that have been made in the last couple of decades in 

terms of how the PMU and PDC perform, the communication media, such as LAN (Local 

Area Network), Ethernet-based communication with speed of 1.00GB/sec or faster, have 

replaced serial type communication in utilities-based applications. In this regard 

compliance of Phasor measurement data with IEC IEC61850-90-5 standard created the 

possibility of using time critical communication services, such as GOOSE message 

(General Object-Oriented Substation Event) and Sample Value (SV), that is defined by this 

standard series and managed IEC Technical Committee 57 (TC57) to be available for time 

critical application such as protection in substation . IEC/TR 61850-90-5 [30] provides a 

way of exchanging synchrophasor data between PMUs, PDCs WAMPAC (Wide Area 

Monitoring, Protection, and Control), and between control center applications. The data, 
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to the extent covered in IEEE C37.118-2005, is transported in a way that is compliant with 

the concepts of IEC 61850. However, given the primary scope and use cases, this document 

also provides routable profiles for IEC 61850-8-1 GOOSE [31] and IEC 61850-9-2 SV 

[32] packets which can be used to transfer synchrophasor data using GOOSE (General 

Object-Oriented Substation Event) message over WAN (Wide Area Network). To 

summarize the rule and  relation of IEC and IEEE standard in the context  of synchrophasor 

measurement and application IEEE C37.118.1 remains the global standard for defining the 

measurement technology for synchrophasor while IEEE C37.118.2 is the IEEE protocol to 

address current system requirements enabling IEC TR 61850-90-5  to be the basis for a 

more scalable, and secure, protocol to meet application requirements. 

Figure 3.13 shows the synchrophasor communication architecture based on IEC61850-90-

5. As shown here, the communication relation between PMUs and PDC is based on 

publishing and subscribing relationship over the Wide Area Network. The first advantage 

of being able to use time critical communication services of IEC61850, such as SV or 

GOOSE, is the availability of PMU data streams in the entire network when it is published, 

with no requirement for intermediate devices. This design especially benefits the 

performance and elimination of PDC for small applications which is proposed by the 

current research. 

 

Figure 3.13. Synchrophasor IEC61850-90-5 Based System Architecture 
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In Appendix B more information related to the peer to peer communication services in 

IEC61850 standard is described. 

3.7 PMU Applications in Distribution Systems 

Historically, synchrophasor measurements were implemented in bulk power applications 

in transmission system with conventional generation. In recent years, and shortly after 

August 2003 North American blackout [33] and some more in Europe [34], more attention 

and research work was drawn to the field of Wide-Area Measurement System (WAMS) 

with the objective of serving and improving monitoring, protection, and control of power 

networks [35]. Primarily, PMU is used for power system state estimation [36]; however, a 

lot of research is still expected for the large-scale systems and accurate estimation. Most 

research has been focused in the area of time critical applications, such as protection. [37]. 

Use of synchrophasor measurement in some of the distribution applications, which is the 

focus of this work is gradually getting more attention from researchers and technology 

providers 

Conventionally, the distribution systems were assumed to be simple and posed little need 

to be observed with granularity in space and time. The measuring sensors implemented in 

the feeder almost uniquely were limited to the substation location only. Most of the control 

and protection applications have been developed based on the accessibility of 

measurements only back at the substation. However, with the transformation of the energy 

sector and rapid growth in deployment of distributed energy resources, bi-directional 

electricity flows, and new devices, such as electric vehicles, there is a growing interest and 

requirement for observation tools along the feeder for significantly impacted distribution 

feeders. Therefore, PMU, as an integrated function in IED, can play an important role in 

redefining many distribution management system functionalities which were based on 

limited data. In the current work, islanding, and open phase fault in the distribution 

overhead line are targeted and developed. 

3.7.1  Micro-PMU Development  

PMUs specifically designed for use in distribution systems are sometimes referred to as D-

PMUs, or as micro-PMUs (μPMUs) [38]. It should be noted that the term μPMU is not a 
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trademark and is originated by Advanced Research Projects Agency-Energy (ARPA-E) led 

by the University of California Berkeley and funded by the US Department of Energy. The 

μPMU is a generic term used for extremely high precision power disturbance recorder 

adapted for making voltage phase angle or synchrophasor measurements, capable of 

storing, analyzing and communicating data live. The resolution of this device is roughly 

100 times more than the IEEE PMU and the phase angle accuracy is 0.01 degrees versus 1 

degree. The motivation for developing such a device can be summarize as follows: 

1) In distribution systems, because of the direct interface to loads, there are many 

more branches, short lines, and a high density of electronics have a more 

elevated noise-to-signal ratio compared to the transmission system. Thus, 

higher resolution measurement will be useful in distribution systems.   

2) To determine the small power flow in distribution systems, more precise angle 

measurement will be required. 

3) Unlike the transmission grid, where reactance value (X) is dominated the 

impedance, in distribution feeders resistance (R) value is significant and in 

some parts even the parallel capacitance due to underground cables cannot be 

neglected, therefore, a more complex representation of the impedance will be 

required to have a visibility over the network.  

4) Generally, the change of voltage angle along the distribution system is small 

thus, being able to measure tenth of degree can support some applications.           

Not all the applications in distribution system required the high-performance PMU 

application. In this work islanding and open phase is studied in chapter 4 and chapter 5.  

The proposed islanding method has considered the limitation of IEEE PMU. While the 

proposed open phase is not requiring the voltage or current phase angle measurement the 

minimum requirement phase angle measurement for islanding for the stable measurement 

is considered to be one degree. Table 3-4 presents some application class for distribution 

PMU with the high accuracy and resolution.    

Table 3-4.  Expected Data Requirement for μPMU Application [39] 

Application Measurement 

quantity  

Time resolution  Accuracy Note 
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Voltage 

Magnitude 

profile 

Voltage 

magnitude  

1 sec 0.5 % Voltage phase 

angle useful for 

understanding 

tap changes   

Real time load 

awareness  

Current 

magnitude  

1 cycle  0.5 %  

Outgas 

management  

Voltage and 

current 

magnitude 

1 sec 1%  

State 

estimation 

Voltage phasor Time 

synchronization 

is critical  

Very high 

accuracy 

required 

0.00001 

PU 

 

Micro-grid 

islanding  

Voltage phase 

angle  

1 cycle 0.01 

degree 

 

Model 

validation 

Voltage and 

current phasor 

Time 

synchronization 

is critical 

0.5 %  

 

The availability of PMU data with the higher resolution can potentially increase the 

sensitivity of the proposed solutions however, the amount of data that must be transferred 

cannot be handled by the current available market devices and communication 

infrastructure. The islanding application in this work is intended to be used by utilities as 

backup for the local islanding protection scheme and to replace the transfer trip. Therefor 

this application is not intended for Microgrid or small size DG applications (2MW and 

above) and as such the high-resolution PMU will not provide its full benefit.     

3.8 Summary  

The fundamentals of synchronized phasor measurement system architecture were 

presented in this chapter. The functionality of phasor measurement unit (PMU), data 
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concentrator, and GPS were discussed, and the history of the early PMU and advancement 

of phasor measurement technology was presented. It was shown that along with IEEE 

C37.118 restructuring in recent years, the technology as well as the standard, are more 

prepared to support the real time application of control and protection.  

The flow of analogue signal and its process in PMU hardware was also studied in this 

chapter. Various phasor and frequency estimation techniques were looked. The 

communication aspect of synchronized phasor measurement unit and phasor data 

concentrator was studied. The new communication standard of IEC61850-90-5 and the 

possibility of the integration of the synchrophasor data stream with the substation 

automation data was presented. The implication of using of IEC61850-90-5 and GOOSE 

messages in peer to peer communication between the PMUs and the elimination of PDC, 

especially in the distribution systems, was discussed.  Measurement was discussed in this 

chapter as well. The motivation behind the call for use of synchrophasor data (by this work) 

in the distribution protection application using substation automation infrastructure was 

presented.     

The development of μPMU with high accuracy and high resolution was reviewed, along 

with the difficulty of measurement in distribution systems and the accuracy required for 

them. The possible conceptual application of high performance synchrophasor is reviewed. 

In the next chapter, the islanding detection use case for distribution feeder, including the 

background, critical review of the state of the art, issue formulation, development of a 

solution, and modeling and test system will be discussed.     
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Chapter 4  

 Adaptive Islanding Scheme 

In this chapter, the proposed islanding detection method for distribution system is 

presented. 

4.1 Introduction  

Utilities’ main concern behind islanding operations in the distribution network is safety 

and the lack of adequate infrastructure that can monitor and control the operation of DGs 

within the islands in a reliable manner. Thus, in the current stage of distribution 

modernization, it is broadly taken for granted that the island is an unregulated power system 

that has behaves unpredictably. Voltage and frequency in the islanded area can 

significantly deviate from the acceptable range since utilities have no means to curb the 

power mismatch between the DG production capacity and the load(s) connected to the 

island.   

One of the most commonly used passive islanding methods consists of detection of under-

, over-, and rate of frequency variations. The primary concerns and limitations of the local 

passive detection methods are that these methods cause an operating region where, in that 

specific region, islanding conditions cannot be found or detected in a timely manner. This 

region is known as the Non-Detection Zone (NDZ). Similar NDZ regions can be identified 

among many passive detection techniques which have been the topic of much research. 

There is no single passive method that can be effective in all scenarios and the Power 

Systems Community is undecided on what type of islanding detection should be used. For 

example, IEEE standards 1547-2003 and 929-2000 specify the performance characteristics 

of the islanding detection methods with detailed test circuits that can be used to validate 

the method considered. Issues related to the passive islanding techniques can be 

summarized as follows: 

 

1) The Non-Detection Zone is a major concern in deploying a passive scheme; there 

is no single passive method which can work in all scenarios. Hence, evaluation of 

the NDZ region and the probability of island occurrence need to be verified.  
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2) Broadly speaking, the performance of passive islanding methods shows a 

dependency on the type of DG installed in the distribution network. Therefore, 

dependability and the security of an island detection scheme may vary from one 

application to another. 

 

3) Most of the work in this area has been conducted around low DG penetration or 

single DG island detection cases, while higher DG penetration cases can further 

enlarge the NDZ and affect the security and dependability of the schemes. 

4.2 Islanding 

Prior to reviewing islanding detection techniques and their significance, it is appropriate to 

define the term islanding. Islanding is a generic term used to describe a scenario in which 

a section of a transmission, or distribution network (which contains DG) is separated from 

the rest of the grid. This separation is often caused by the action of the protective relays to 

clear and isolate the electrical fault. Subsequent to this separation, the DG restarts or 

continues to power the loads trapped within the island [40]. Figure 4.1 illustrates a typical 

North American distribution feeder with a few DGs, a step-down substation with several 

outgoing distribution feeders, and one of the outgoing distribution feeders shown in detail. 

 

Figure 4.1. Typical Primary Distribution Feeder Topology in North America 
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An islanding situation occurs, for instance, when recloser C opens while DG1 is still 

feeding the load and an island is created as a result of the recloser operation. The utility's 

main concern behind the islanding operation in the distribution network is safety and the 

lack of adequate infrastructure which can monitor and control the operation of DGs within 

the islands in a reliable manner. Thus, in the current stage of distribution modernization, it 

is broadly taken for granted that the island is an unregulated power system. Its behavior is 

unpredictable and voltage and frequency in the islanded area can significantly deviate from 

the acceptable range, since utilities have no means to curb the power mismatch between 

DG production capacity and load connected to the island. The main concern for such an 

operation among utilities can be listed as follows [41]: 

 

1) The quality of power fed to an islanding portion of feeder may be lower compared 

to when the power is supplied by the utility. The range of voltage and frequency in 

the islanded portion of the feeder is a main concern since the supply utility is no 

longer controlling the voltage and frequency delivered to their customers and any 

excursion from expected boundaries of voltage and frequency can cause 

considerable damage to customers’ equipment within the island.  

2) An islanding operation may also create a hazard for line-workers or the public by 

causing a line to remain energized that may have been assumed to be disconnected 

from all energy sources.  

3) The likelihood of the islanded portion not being in phase with the network voltage 

and phases, at the instant when the islanded portion is reconnected through 

reclosing or an automation, is a real concern. This can damage the generating 

equipment and DGs in the island. Ultimately, such an attempt of restoration may 

fail.  

4) Islanding may interfere with the manual or automatic restoration of feeder or cause 

issues for neighboring customers and can complicate loop operation of feeders. 
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4.3 Review of Current Islanding Detection Techniques  

As depicted in Figure 4.2, islanding detection techniques developed so far can be 

fundamentally split into two categories according to their working principles. The first type 

consists of communication-based schemes and the second type consists of non- 

communication-based schemes, which also is known as a local based scheme. 

 

Figure 4.2. Classification of Islanding Detection Scheme [42] 

The PMU based islanding proposed by this work is a hybrid solution which does not fit in 

one category since it uses combination of techniques, as follows: 

• The measurement in this solution is a passive type and active power and 

frequency are monitored. 

• The measurement process relies on the local PCCs and remote communication 

therefore communication is an important part of this solution.       
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4.4 Communication Based Schemes   

Communication based schemes rely on telecommunication data transfer in order to detect 

the islanding and trip DGs when islands are formed. The performance of these methods is 

generally independent of the type of distributed generators integrated into the feeder.  

4.4.1 Transfer Trip 

The transfer trip scheme is very simple in concept and is considered a utility preferred 

choice for simple feeder topology and a large farm. This method requires all circuit 

breakers and reclosers (which can island the DG) to be monitored and linked to the central 

unit, as shown in Figure 4.3. When disconnection (CB open status) is detected, the central 

algorithm determines the islanded area and sends a trip signal to the appropriate DG to shut 

down the unintended island. Issues related to this method are reported in a few papers  [41], 

[43], [44]  and  can  be summarized as follows: 

1) The method requires an extensive communication network in the distribution 

system. Traditionally, such an infrastructure does not exist and therefore, the cost 

factor needs to be considered. 

2) The method is based on feeder topology and determining the islanded area by 

monitoring all the switching points, which can get very complicated, especially if 

loop operation along with neighboring feeders is permitted. On the other hand, 

flexible operation of the feeder, which will most likely be a future requirement of 

the smart grid and advanced distribution network, will be very hard to achieve with 

this method. 
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Figure 4.3. Transfer Trip Concept [45]     

4.4.2 PLC Signaling 

As presented in Figure 4.4, the signal generator located at the utility substation is 

continuously broadcasting a patterned signal to the signal detectors of all distributed 

generators. When islanding occurs, the signal will no longer be available to DGs and 

subsequently, a local trip will be issued to shut down the generator.  

   

Figure 4.4. Power Line Signal Islanding  



74 

 

 

 

Issues related to this method are reported in various literature and can be summarized as 

follows: 

1) Cost is the major concern here, as the Power Line signal must be transmitted in all 

three phases in order to detect single phase islanding.  

2) The transmitted signal must be re-attenuated along the way if the distances from 

the station to the DG or Point of Common Coupling (PCC), are longer than 15 Km 

[46]. 

3) The reliability of this method, with the presence of inter-circuit harmonic pollution, 

is another concern which is solicited in different research work. 

4.5 Local Detection 

Local refers to the DG and PCC side, and local detection schemes detect the occurrence of 

islanding based on frequency, power, and current signals available from the DG. As shown 

earlier in Figure 4.2, the local detection group is further split into two sub-groups. One is 

known as a passive detection method, which arrives at decisions based on electrical signals 

measurements (V, I, F, etc.). The second group is known as the active detection method. 

These methods inject an electrical signal into the supply system and detect islanding 

conditions based on system responses measured locally at the PCC.   

4.5.1 Passive Detection Methods 

The passive method detects islanding based on monitoring the current, voltage, or other 

properties of the electrical signal such as frequency, harmonic, etc. available on the DG 

side.  One of the most commonly used passive islanding methods consists of under-, over- 

and rate of alteration of frequency-based detection. The primary concern and limitation 

with the local passive detection methods is that these methods cause an operating region 

where, in that region, an islanding condition cannot be found or cannot be detected in a 

timely manner. This region is known as the Non-Detection Zone (NDZ). As an example, 

Figure 4.5 shows the area where if the power mismatch between an arbitrary synchronous 

type DG and the load is not greater than a certain value, the frequency-based islanding 

scheme will not work. 
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Figure 4.5. None Detection Zone Based Daily Profile Variation 

The generation profile of the DG varies during the day and in many operational instances, 

the islanding scheme will not work. Besides frequency, other power quantities can also be 

used to help detect island situations such as: 

1) Voltage based detection  

2) Power factor (P/Q)  

3) Change of active power 

4) Change of reactive power 

5) Change of total harmonic distortion (THD) 

6) Built in inverter-based islanding techniques  

Reference [47] proposes the use of reactive power rate of change to detect the islanding. 

The method can be useful for relatively when a large amount of DG is integrated to grid 

and issue of NDZ has not much of importance. In recent years many hybrid methods based 

on combination of the passive techniques mostly integrated into the inverter-based devices 

are developed. [48] proposes monitoring of voltage and current magnitude together with 

current and voltage THD at PCC. 

Among the above-mentioned schemes, the voltage-based detection method is most 

commonly used in the industry. The relay operates on the principle of reactive power 

mismatch in an island. Excessive reactive power will drive up the system voltage and 

deficit reactive power will result in voltage decline. By determining the change or rate of 

change of the voltage at the DG terminal, it is possible to detect islanding conditions that 

cannot be detected by frequency-based relays. 
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4.6 Active Detection Method  

Active detection schemes rely on injecting disturbances into the supply system to detect 

the islanding situation. The mainstream active methods studied in the industry can be listed 

as follows: 

a) Impedance measurement 

b) Impedance measurement at specific frequency 

c) Frequency ship mode 

d) Frequency bias or AFD  

e) Sandia frequency and voltage shift 

f) Current injection methods 

Many technical problems need to be solved before one can use them with confidence. Some 

of the issues related to active methods are reported in various literature [40], [46], and are 

as follows: 

1) One of the main problems of the active methods is the interference of disturbances 

introduced by multiple DGs.  Not much research has been conducted on such issues. 

2) The type of active islanding detection method which can be deployed is very much 

dependent on the type of DG installed in the network. The design of a universal 

active method solution which can cover a range of installations is very difficult if 

not impossible. Therefore, this scheme generally has low adaptability. 

3) Generally active methods can have a negative impact on the grid power quality 

compare to the passive methods.  

4.7 Grid Tied Inverter Anti-Islanding Consideration     

With the many advancements in the design and manufacturing of the grid tied inverters, 

state of the art technology today comes with anti-islanding, Low Voltage Ride Through 

(LVRT), and Maximum Power Point Tracking (MPPT) embedded functionalities. Some of 

the techniques that are used to develop anti-islanding are public information. As an 

example, [49] suggests that islanding can be detected, if the inverter output voltage or 

inverter output frequency is driven outside of the normal range. In [50], frequency profile 

of non-islanding events is identified as an oscillating event in nature, whereas islanding 



77 

 

 

 

event frequency profile is monotonically increasing or decreasing. This particular property 

is used to develop anti-islanding protection scheme. In [51], the rate of frequency is used 

to detect the islanding event. It should be noted that inverters are part of the DER system 

and they are mainly the property of the market participants (DER owner), The focus of this 

work, however, is to provide the utility based solution that can be used as main or back up 

protection in order to assure that utility costumer and assets will be protected by the system 

owned and maintained by them. 

4.8 Proposed Islanding Detection Method 

The proposed method in this paper relies on measuring the active power (P), reactive power 

(Q), bus voltages (Vrms), voltage phase angle (phi), and frequency measurement from any 

Point of Common Coupling (PCC) where distributed generation is installed along the 

feeder and station bus which is supplying the feeder from the grid, as shown in Figure 4.6. 

The PMU functions as a standalone device or as a function incorporated in the protection 

or control Intelligent Electronic Devices (IED). The PMU will be used to provide a data 

stream of above-mentioned values that will serve to calculate a required setting sensitivity 

for the 81, 59, and 27 protection elements and the voltage phase angle rate of change to 

detect an islanding event. The measurement and calculation are performed prior to the 

islanding event and the IED’s protection setting can be adapted to the new setting if it is 

required. 
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Figure 4.6. Conceptual PMU Based Islanding Detection Architecture 

The islanding event is modeled as a small power perturbation where the primary feeder 

losses the grid supply and the feeders are then supplied power by the DGs. 

 

Table 4-1. Parameter and Unit for Power Mismatch Scenarios 

Symbol Quantity UNIT [SI] 

D 

 

Damping constant expressed as 

percentage change in load for 

one percent change in frequency 

PU 

typical value 1-2% 

f Power system frequency PU (Hz) 

∆fss steady state frequency deviation PU (Hz) 

H machine Inertia constant sec 

PDG DG active power PU (MW) 
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PGrid Grid active power PU (MW) 

QDG DG reactive power PU (MVar)) 

QGRID Grid reactive power PU (MVar) 

T Electrical torque PU (MW/rpm) 

Tm Mechanical torque Pu (MW/rpm) 

tss Settling time sec 

w Angular velocity PU (rpm) 

S Laplace operator  

 

The proposed method uses continuous measurement of active and reactive power at the 

substation (supply by grid) and the distributed generation (supply by DGs) prior to the 

islanding event to determine the power mismatch between the load of the feeder and 

generation located at the feeder. Based on this information, the sensitivity of the 

aforementioned protection elements that detect the islanding will be adapted accordingly. 

If we consider the power loss as a part of the feeder load change, the following can be 

stated at the instance of islanding event, 𝐏𝐆𝐫𝐢𝐝 = 𝟎 considering the generator response to 

speed change equation (4.1) as follows:   

∆Tm − ∆Te =
1

2HS
ω                  (4.1) 

PDG = PLoad − PGrid           (4.2) 

PDG = ∆PLoad − ∆PGrid        (4.3)

PDG = PDG0 + ∆PDG = (ω0 + Δω)(T0 + ∆T)     (4.4) 

∆PDG ≈ (ω0 ∆T + Δω)(T0 + ∆T)       (4.5)

∆PmDG − ∆PDG = ω0(ΔTm − ∆Te) + ω(ΔTm0 − ∆Te0)    (4.6) 

In the steady state, ω0 = 1 pu , Tm = Te, and in the absence of speed governor ∆𝐏𝐦𝐃𝐆 = 

𝟎 and it is assumed that the feeder load is constant during the islanding event  ∆𝐏𝐋𝐨𝐚𝐝 = 𝟎. 
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Therefore, the system response to load change ( 𝐏𝐆𝐫𝐢𝐝 = 𝟎 ) is determined by the machine 

inertia constant. 

∆PmDG − ∆PDG = ∆PLoad − ∆PGrid         (4.7) 

−∆PDG = (∆PLoad − ∆PGrid) + DΔω        (4.8) 

For the load step load change equal to equal to −ΔPGrid and from (4.1)  and  (4.8) 

-(-ΔPGrid) = (
1

2HS+D
)Δω          (4.9) 

∆𝜔ss =
ΔPGrid

D
,  τ =

2H

D
         (4.10) 

 
df

dt
≈≥  0.632

∆fss

τ
           (4.11) 

From (4.10) and (4.11), the final frequency deviation and time of the transient and the 

transient change during the islanding event can be estimated. For a group of DGs, the same 

can be concluded, except that H must represent the total feeder inertia. For the inverter-

based type DGs, such as type 3, type 4, and PV, where no inertia is connected to the grid, 

the voltage and reactive power mismatch must be taken into consideration. Similarly, for 

reactive power, following can be stated:   

QGrid + QDG1 + QDG2 + ⋯+ QDGn + QLoad = 0     (4.12)

∆P = 0          (4.13) 

∑ QDGi
n
i=1 + QLoad = ∆Q         (4.14) 

Δ VPcc ≅ f(∆Q)         (4.15) 

For completely balanced islanding, where prior to the islanding event no power mismatch 

is measured, the sensitive change of voltage angle differences with some security measures 

are considered. The phase angle differences are used to shrink the NDZ where the 

sensitivity of the 27, 59, and 81 elements are not adequate to detect the separation of the 

primary feeder when there is no power mismatch.  
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∆φ

∆t
=

∆(∡Vpcc−∡VGrid)  

∆t
            (4.16)

∆P ≈ 0, 

 ∆Q ≈ 0          (4.17)  

In addition to the initial static conditions, mentioned in (4.10) and (4.11), to enable the 

phase angle supervision, the dynamic conditions of such a supervision must also be taken 

into consideration. It is important to note that any electrical fault, load, or capacitor bank 

switching may trigger a sensitive phase angle supervision; therefore, at the instance of 

islanding detection, the feeder must be mostly free of any switching and changes. 

∆I2

∆t
≅ 0           (4.18) 

Where I2 is the negative sequence component for both grid and DGs. 

4.9 Test System 

Figure 4.7 presents the simplified one-line diagram of the utility type distribution feeder 

with a nominal voltage of 27.6 kV which has been used for this case study. The feeder and 

115 kV upstream substation are modeled using PSCAD EMTC. The primary feeder and all 

the laterals are modeled as an overhead line pi model. In the primary feeder, two locations 

were examined as Point of Common Couplings (PCCs) with the connection of different 

type of DGs that are most relevant to this study. The complex time domain model of 

PSCAD EMTC is used for type 3 DG, type 4 DG, and conventional machine with a 

modified Hydro governor. The parameterizations of each case are reported with the 

calculation results of each case study. The detailed one-line diagram of the system with the 

its equipment data is reported in the Appendix A. 
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Figure 4.7. Simplified One Line Diagram of System Under Study 

4.10 Simulation Scenarios 

Although the islanding condition is defined independent of the type of installed DGs in the 

feeder, the responses and the behavior of the different types of DG vary after the islanding 

event. Hence, in this work, to examine the performance and generalize the concept of the 

proposed approach, many cases, with the most relevant DGs, are considered to verify the 

performance of the proposed islanding detection technique. It should be noted that 

distribution systems are not interconnected networks therefore; utility feeder is the full-

scale system for this work to be considered for testing. This has been the motivation behind 

developing the model for   27.6 KV 50 MW utility type feeder.  The cases that have been 

studied are the following: 

a) Scenario 1:  In this scenario, a constant speed type DG and generator, which 

includes conventional synchronous machine, wind turbine type 1, and wind turbine 

type 2, are studied.  These units are connected to the grid directly without inverter 
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interface and they add to the inertia of the system. It should also be noted that a 

mixed generation (inverter based and synchronous machines) is considered in this 

category. Inverter-based machines will follow the synchronous machine frequency 

response during the islanding. Three cases in this scenario is reported.  

b) Scenario 2:  In this scenario, the variable speed (inverter based) DGs are being 

studied. These units are connected to the grid through the inverter, wind turbine as 

follow: 

a) Wind turbine type 3: case 1 and case 2  

b) Wind turbine type 4: case 1 and case 2  

c) PV solar:  case 1 and case 2 

c) Scenario 3:  In this scenario, the effectiveness of proposed solutions in non-

detection zone where the power mismatch is almost zero is considered.    

4.10.1 Scenario 1-Case 1-3 (Synchronous machine) 

In this scenario, the connected DGs are aggregated at one point and generators are 

participating in the total generation inertia mass. Three cases are simulated with the 

parameters shown in Table 4-2: 

Table 4-2. Parameter for Conventional Machine 

No Symbol Description Unit 

1 SDG Installed DG Power 30 MVA 

2 H Total Inertia 5.83 sec 

3 D Load damping constant 1.126% 

4  Mechanical loss 0.001 PU 

Figure 4-8 presents the results of three cases where islanding is performed with the 

different active power mismatch at t=40 sec. It is assumed that for any given simulation 

that the generator cannot deliver more power than what it is already providing. The 

governor gate valve is set to the maximum of its opening to limit the reaction of frequency 

load compensation. The plot presents DG frequency (fDG), DG active power (PDG), grid 

active power (PGRID), DG reactive, power (QDG), and grid reactive power (QGrid). 

Feeder load is the same for all the three cases simulated while contribution of DGs in 

supplying active and reactive power are different.     
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Figure 4.8. Islanding Scenario of Synchronous Machine 

Table 4-3 presents the on-line estimation of ∆𝐟𝐬𝐬 and 𝛕 based on (4.11) and power mismatch 

measured during the simulation. The frequency rate of change 
𝐝𝐟𝐆

𝐝𝐭
 can be directly calculated 

from the value estimated for each simulation and linearization of the change during the 

interval of one time constant.  

𝐝𝐟𝐆

𝐝𝐭
 ≅ 

𝟎.𝟔𝟑𝟐 ∆𝐟𝐆𝐬𝐬 

𝛕
          (4.19) 

where the ∆fGss is a steady state value of frequency deviation. It should be noted that online 

estimation is only valid prior to the islanding event. If the D value is known or estimated 

correctly, online estimation will generate an accurate result that can serve to set the 

frequency element(s) of islanding detection system. Table 4-3 shows the results of the 

frequency deviation and time constant of the frequency settlement for the cases that have 
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been simulated based on the concept of the active power mismatch presented earlier. The 

ratio of   
dfG

dt
  estimated based on the power mismatch prior to the islanding and can be 

compared with the actual average values of 
dfG

dt
 measured. The results in all the cases shows 

that estimation value is more conservative than the actual rate of the change and protection 

frequency element which adapted to this estimation, can trip for such a rate of the change 

in all the cases. 

Table 4-3. Frequency Rate of Change Estimation 

Case Symbol Estimated Actual Error  

 

2 

∆𝑓𝑠𝑠 -5.34 Hz -5.28 Hz 1.1% 

τ 22.20 sec 23.4 s 5.4% 

𝑑𝑓

𝑑𝑡
 

-0.15 Hz/s -0.14 Hz/s 6.6% 

 

3 

 

∆𝑓𝑠𝑠 -8.74 Hz -8.64 Hz 1.1% 

τ 22.20 Sec 23.4 sec 5.4% 

𝑑𝑓

𝑑𝑡
 

-0.248 Hz/s -0.233 Hz/s 6.04% 

 

4 

 

∆𝑓𝐺 -22.8 Hz -23.01 Hz 1.03% 

τ 22.2 sec 23.4 sec 5.4% 

𝑑𝑓

𝑑𝑡
 

-0.331 Hz/s -0.317 Hz/s  4.04% 

In any protection adaptive setting, the setting should be changed only within the predefined 

limitation that has to be set up based on the actual application data.       

4.10.2 Scenario 2 – (WT type3) 

Figure 4.9 and Figure 4.10 present the results of simulations of two islanding cases  (case1 

and case 2) of a group of 10 type 3 wind turbines connected to the feeder at one location. 

Table 4-4 presents the data of machine sued in these cases.  

Table 4-4.  Wind Turbine Type 3 Model Data 

Parameter   Description  Value 

S [MVA] Apparent power   2.5 

Pt [MW] Turbine power  2 

H [sec] Inertia  3 
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For the purpose of simulation, it was assumed that pitch control was at its optimal position 

and remained unmoved after the initial model activation, that maximum power was 

obtained from the wind, and that the wind speed remained constant during the simulations. 

Prior to the islanding instant at t =2 sec, the load active power is totally compensated by 

the wind turbine and the contribution of the grid for the active load is almost zero. This 

should have created a most favorable situation to sustain the islanding operation by wind 

turbine. In case 1, the wind turbines are in under-excitation mode and are consuming   

reactive power while in case 2 the wind turbine is in over-excitation mode and is generating 

the reactive power.  

 

Figure 4.9. Wind Turbine Type 3 Islanding Event with Balance of Power Case 1  
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Figure 4.10. Wind Turbine Type 3 Islanding Event with Balance of Power Case 2 

The simulation results show that with the loss of a self-regulated power frequency source 

(grid), the phase locked loop control that controls the DG frequency by following the grid 

frequency becomes unstable and enters to a self-excited and unstable loop resulting in a 

major deviation from the grid frequency. The study also reveals that even a zero-power 
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mismatch can lead to significant power frequency deviation (∆𝑓). A greater power 

mismatch than the balance of power also cannot be sustained by a type 3 machine and the  

island will be detected  up by voltage and frequency elements at PCC or by the machine’s 

internal protection. 

4.10.3 Scenario 2 -Case 2 (WT type 4) 

Among the variable speed wind turbine, the type 4 wind turbine, also known as a full back-

to-back inverter, is used as a representative for this type of machine in this work. The 

simplified one-line diagram of this model is presented earlier in Figure 2.17. Figure 4.11 

shows the actual one-line diagram of the machine and grid source inverter used for this 

study.  Generally, the DC link in this type of machine plays an important role between the 

machine and the grid source converter in understanding the dynamic of type 4. In this 

model, we have used both an aggregated model where the group of machines is shown with 

one model and the output of a single machine is linearly matched with the number of units 

involved in the study, as well as an individual model that is used to study the dynamics 

between the individual machines in one site. 

 

Figure 4.11. Type 4 Wind Turbine Model Block Diagram 

Among that many cases which have been studied, the following two cases in Figure 4.12 

and Figure 4.13 serving as the representative cases. Table 4-5 shows machine data for the 

type 4 wind turbine used in this study.  
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Table 4-5.  Wind Turbine Type 4 Model Data 

Parameter Description  Value 

S [MVA] Apparent power   2.5 

Pt [MW] Turbine power  2 

H [sec] Inertia  2 

For the purposes of simulation, it was assumed that pitch control was at its optimal position 

and remained unmoved after initial model activation, that maximum power was obtained 

from the wind, and that the wind speed remained constant during the simulations. Figure 

4.12 and Figure 4.13 present the results of the simulations for a group of 10 type 4 wind 

turbines connected to the feeder at one location. The islanding occurs at t= 2 sec. The power 

mismatch in both cases is very small and wind turbines were able to sustain the load after 

islanding provided that the Phase Locked Loop (PLL) was designed for islanding 

operation. The simulation results show that with the loss of a self-regulated power 

frequency source (grid), the phase locked loop control that controls the DG frequency by 

following the grid frequency becomes unstable and enters into a self-excited and unstable 

loop resulting in a major deviation from the grid frequency. The study also reveals that 

even a small or no  power mismatch can lead to significant power frequency deviations 

(∆𝑓). A greater power mismatches cannot be sustained by a type 4 machine and island it 

will be picked up by voltage and frequency elements at PCC or by the machine’s internal 

protection. In case 1, the wind turbines were in under-excitation mode, while in case 2 they 

are in over-excitation mode. In both cases, the active power mismatch is near zero. The 

deviation from the rating frequency is very large and in a few cycles after the instant of 

islanding takes place.    
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Figure 4.12. Wind Turbine Type 4 Islanding Case 1 
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Figure 4.13. Type 4 Islanding Case 2 

4.10.4  Scenario 2-Case3 (PV solar) 

The solar farm has been modeled with the number of parallel and series PV arrays. The 

results of 2 simulated cases with different reactive power mismatches are presented in 

Figure 4.14. and Figure 4.15. For both cases, it was assumed that the temperature of the 

cells and sun radiation remained constant. The islanding event occurs at t=5 sec. The results 

show that PV generation does not provide any frequency response to the islanding active 

power mismatch. The frequency collapses even for a small power mismatch. The cases are 
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very similar with very small differences in power mismatches prior to the islanding event. 

When solar PV is not prepared for the islanding operation as discussed earlier, in the case 

of wind turbine Type 3 and Type 4, the PLL does not sense any independent frequency 

after unintentional islanding, and frequency becomes unstable. 

 

Figure 4.14. PV Islanding Scenario Case1 
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Figure 4.15. PV Islanding Scenario Case 2 

4.10.5 Scenario 3- (Balance of power) 

Balance power islanding refers to scenarios where nearly no power mismatches are 

measured prior to the islanding detection, as shown in Figure 4.16. The DG is supplying 

all the load of the feeder and islanding event, which in this case occurs at t=4 sec. For all 

three simulations, it occurs smoothly with no significant impact on the frequency and 

power of the load. As described earlier, the angle of voltage supervision between the PCC 

and substation is used to detect the separation of the feeder from the grid. 
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 ∆φ = ∡VGrid − ∡VPCC 

This supervision can shrink the NDZ which commonly exists for all passive islanding 

detection methods. The high sensitivity of this function is the essence of utilizing this 

supervision in NDZ. Cases 1 to 3 are highly balanced scenarios where the voltage angles 

differences 2 seconds after the islanding events, change by a very small value.  

 

Figure 4.16. Islanding Simulation with Balance of Power 

The simulation results are shown in Table 4-6.  The power mismatch is expressed as a 

percentage of feeder real time load. The negative value of power mismatch means that the 

DG, in addition to supplying the feeder load, is also exporting small amount of power to 
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the grid. With the setting of 2 degrees for the voltage angle supervision between PCC and 

substation, the time required to detect the islanding for each case are shown. The results of 

this study show that NDZ area, with the given supervision setting, can be reduced to 

maximum 1.5% (case 2) of the feeder load. The islanding for case 3, is detected after 2 

seconds which does not meet the IEEE 1547 requirement. The phase angle supervision, 

like any other sensitive function in the field of protection, may provide good dependability; 

however, it always lacks good security performance. The reliable scheme, however, is a 

right balance of two properties dependability and security. Therefore,  (4.22) and (4.23) are 

the security condition that must be  considered to activate the supervision function to ensure 

that during the transient (fault, switching, etc.)  where the phase angle can change this 

function is disabled.   The following can be formulated as the sensitivity limit in terms of 

frequency for the proposed solution and the cases studied:  

∆φ = ∡VGrid − ∡VPCC = 2°        (4.20)

∆f =
2

360
= 2.78 mHz         (4.21)  

dv2DG

dt
≅ 0           (4.22)

dI2DG

dt
 ≅ 0               (4.23) 

Table 4-6. Balance of Power Case Study Results 

Case PDG 

(MW) 

PGrid 

(MW) 

QGrid 

(Mvar) 

∆∅set 

(degree) 

Detection 

time 

∆P%

=
PGrid

PDG + PDG 
 

1 13.56  -0.38 8.5  2 1.0 sec -2.8%  

2 13.38  -0.21 8.5  2 1.50 sec -1.5% 

3 13.27  -0.19 8.5  2  2.2 sec -1.4% 

It is important to highlight that the sensitive islanding detection solution proposed in this 

section relies on IEEE PMU with a 1-degree phase angle resolution. Thus, if we assume  

𝜇PMU or high resolution PMU is used, the limit, proposed in (4.20) and (4.21) can 
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theoretically be reduced. For example, considering 0.01° phase angle resolution and 

hypotheses of selecting 0.5 degree as angle supervisions setting, the results of the previous 

cases will change to what is shown in  

Table 4-7. The more sensitive phase angle measurement and threshold theoretically can 

improve the sensitivity bottom line. As an example, case 3 which was not detectable in 

previous evaluation within 2 seconds (IEEE 1547 requirement) now it can be detected 

within 1.363 seconds.    

Table 4-7. Balance of Power Case Study Results with 𝝁PMU 

Case PDG 

(MW) 

PGrid 

(MW) 

QGrid 

(Mvar) 

∆∅set 

(degree) 

Detection 

time 

∆P%

=
PGrid

PDG + PDG 
 

1 13.56  -0.38 8.5  0.5 0.426 sec -2.8%  

2 13.38  -0.21 8.5  0.5 0.750 sec -1.5% 

3 13.27  -0.19 8.5  0.5 1.363 sec -1.4% 

With lower and more sensitive setting for phase angle measurement, supervision to 

maintain the security of the proposed solution will be much harder to maintain if it is not 

impossible. It should be noted that (4.20) and (4.21) are not the only precondition for the 

activation  of phase angle supervision. This condition should be maintained during the 

entire islanding detection process.  Figure 4.17 shows the impact of the transient three-

phase short circuit on the voltage phase angle measurement at the adjacent feeder at t= 30 

sec. As suggested in (4.22) and (4.23) and shown here, negative sequence component of 

the DG current and voltage can be used to inhibit the phase islanding detection based on 

voltage phase angle. Therefore, it must point out that the sensitive islanding detection 

method cannot be reliably used without a period of stabilizing where no fault and switching 

operation in the feeder is detected. Furthermore, this condition must be present during the 

entire islanding detection process.   The phase angle supervisions setting, it may differ from 

on feeder to another depend the load minimum feeder and DG size.   
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Figure 4.17. Adjacent Feeder Fault  

4.11 Conceptual Implementation Consideration 

The major studies using PMU so far have been focused on the wide area of the power 

transmission network and bulk energy power system. Although the proposed solution 

focuses on islanding in a distribution network, the same principle can be applied in any 

network by taking advantage of the PMU data stream phasor measurements that make sets 

of current and voltage phasors available on a real time basis at any PCC. The availability 

of PMU functionality in mainstream IEDs from protection and control manufacturers does 

not impose any significant additional cost except for the communication medium. The main 

goal of the system is to estimate a more sensitive setting for the conventional anti-islanding 

protection as described in various simulations. The base settings must remain unchanged 
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when a more sensitive set of settings cannot be calculated. The communication system 

architecture for the proposed solution is illustrated in Figure 4.6. The utilization of PDC, 

particularly for the size of suggested application, using IEC61850-90-5 where the PMUs 

can directly use the data stream from each other with GOOSE PDU can be eliminated. This 

can further improve the time performance of the proposed solution. This paper presented 

some comprehensive islanding scenarios with their relevant analysis of active and reactive 

power mismatches and a smooth balance power islanding in the distribution type feeder. 

The EMT-based detailed modeling using PSCAD of PV, type 4, and synchronous machine 

is used to study the transient of this phenomenon in an actual utility type feeder, load, and 

network.  

It is important to note that the proposed solution works in conjunction with passive local 

islanding detection, i.e., protection elements such as 81 and 27 located at PCC (local anti-

islanding elements). The proposed solution will adapt the setting of frequency elements 

from a base setting, considered to be the utility standard setting, to the more sensitive one 

based on the power measured during the operation. The power measurement will only be 

considered if it has been measured during a no-fault situation. For this reason, the moving 

average of the power mismatch between the grid and summation of all the DGs within a 

selected time interval must be measured and continuously updated until the fault is 

detected. During the fault, the moving average must not be updated and if this fault results 

in an islanding event, then the last moving average of the power mismatch must be used 

for this solution. 

The PMU communication protocol is based either on IEEE C37.118-2 or IEC61850-90-5 

standards that support binary data transfer, which means that the transfer trip based on 

substation trip beaker status can be directly transferred to the PCCs. This feature can always 

be used as a backup for the solution provided here, which is intended to be response-based 

solution and not event-based solution (transfer trip).  
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4.12 Summary  

In this chapter, the first use case for detecting unintentional islanding operation in 

distribution systems with DER using the synchrophasor data was studied.  

The issue related to the islanding operation was discussed, and the state-of-the-art detection 

methods were critically reviewed. Then, an adaptive detection solution was proposed to 

augment the exiting anti islanding protection scheme. The solution was formulated and 

presented. The concept of the proposed solution is based on measuring the power mismatch 

between the grid and DG in non-critical time and prepare the setting or response in real 

time.  

The provision of the solution for zero power mismatch and non-detection zone was 

analyzed and proposed. The proposed method was further developed to include a feeder 

with multiple integrated PCCs. 

The mathematical formulation was developed and presented. The test system was 

developed by detailed modeling of the utility type distribution feeder and the complex 

modeling of aggerated DG type 3, type 4, and PV in EMT using PSCAD/EMTDC software. 

The test scenario to examine the reliability of the proposed solution was developed with 

emphasis on dependability and security. From the many simulations that were carried out, 

selected representative cases were reported and analyzed.  

The conceptual implementation for the proposed solution with consideration of the marked 

available hardware and software was also proposed. 

The next chapter will study the second use case using the synchrophasor data to detect the 

open phase fault in the distribution feeder. 
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Chapter 5  

 Open Phase Fault Detection 

In this chapter, the summary of research and analysis leading to the proposal of selective 

detection of the open phase fault as well as the results of EMT modeling and simulation 

are presented.   

5.1 Introduction  

With the prospect of integration of many Distributed Energy Resources (DERs) into the 

electrical grid, especially in the distribution network, coupled with the concept of smart 

grid, there is a necessity for more investment in communication infrastructure to operate 

such a system while maintaining the safety and reliability of the grid. Even though the use 

of Intelligent Electronic Devices (IEDs) enhances the reliability of protection and control 

by improving dependability, i.e., the ability to detect the fault, security, and differentiate a 

normal situation from the fault.  

A typical distribution network has many miles of overhead lines, still protected by fuses. 

The protection relays are installed in the substation and their algorithm and performance 

relies mainly on local measurements. In this chapter, in line with the distribution network 

transformation and requirement of grid modernization for communication infrastructure, 

open phase fault detection method based on phasor measurement data from the substation 

and every Point of Common Coupling (PCC) in the feeder (where the DER is connected to 

the distribution feeder) is presented.  

The open-phase or broken conductor fault is a challenging fault for utilities to detect, as 

there is no dedicated protection element to identify this fault. Open phase fault often 

coincides with a broken and downed conductor to earth, which is a public safety risk. If 

this event develops into a ground fault, (a high impedance fault with a very low current), it 

becomes hard to detect. Most importantly, for the distribution feeder with an auto-recloser, 

without identifying this type of fault as an open phase, and therefore, blocking the recloser 

attempts, the feeder may get reenergized and intensify the risk of electrification to the 

public.  
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The undetected open phase during a light load condition can cause ferro resonance and an 

increase in transient voltage in the feeder. Figure 5.1 presents a conceptual architecture of 

proposed solution which shows a set of three-phase current and voltage phasor data from 

a feeder breaker at a substation and point of common couplings (PCC1 and PCC2) obtained 

from PMU 1 to PMU3 (Phasor Measurement Unit), respectively. 

Grid
V, I

V, I

PCC1

V ,I

PCC2

Substation 

Primary 

Feeder

 

Figure 5.1. Conceptual System Architecture of the Proposed Solution 

The data from the PMUs can be processed in Phasor Data Concentrator (PDC) as shown 

here, assuming a conventional C37.118 communication is used. Here, the PMU data stream 

needs to be aligned in the PDC before being used by application.  

5.2 Review of Open Phase Detection Techniques  

Detecting and clearing the open phase fault in the distribution network has not been the 

subject of much research in recent years. In this section, the most relevant research to this 

work is reviewed. In [52], the open phase fault and fallen conductor are recognized as a 

major public safety issue and a problem for cases of open phase conductor, and when a 

downed wire is addressed by adding a mechanical accessory to the line pole. The 

applicability, however, may be limited. In [53], a good conceptual idea is published with 

the suggestion to use the voltage phasor data in the modern substation environment to catch 

the open phase before touching the ground. Use of current phasor data, especially when 
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there is no other voltage source in the feeder, is essential for any algorithm development. 

In [54], [55], and [56], the impact of open phase fault in distribution and sub-transmission 

network, Temporary Over Voltage (TOV) and possibility of resonance circuit in resonantly 

grounding system is verified. The open phase fault can be very detrimental to the health of 

the equipment. In [57], the vulnerability of a Negative Sequence Pilot Protection (NSPP) 

scheme for a very long transmission line is verified and a compensation method based on 

the open phase symmetrical component analysis is introduced.  In [58], it is proposed that 

the zero-sequence voltage be measured by electric field sensors alongside of feeder. The 

criteria for detection are relying on the fact that unbalanced voltage after the fault will be 

much higher than the normal unbalanced operation of the feeder. This model has been 

verified in the field; however, open phase detection in the presence of DG will not have 

the same signature, and therefore, a decision-making algorithm may not apply to a feeder 

with DG. In [59], the focus is on detecting the high impedance fault in distribution feeder 

caused by a broken or downed conductor. The characteristic of this fault with consideration 

to the harmonic content and the current waveform is verified. In [60], the rule-based fault 

detection method, including the open phase fault, is compared with the Artificial Neural 

Network (ANN). In [61] and, [62], the use of computer-based modeling of open phase and 

fault analysis has been reported. 

5.3 Open Phase Fault Signature  

5.3.1 Single Open Phase Fault without Ground  

Figure 5.2 shows the open phase fault in phase “a” between the P (bus side) and Q (line 

side). The voltage and current relationship can be summarized as follows:  

 Va
PQ

= Va
P − Va

Q
≠ 0   

Vb
PQ

= Vb
P − Vb

Q
= 0   

 Vc
PQ

= Vc
P − Vc

Q
= 0 

Ia = 0, Ib ≠ 0, Ic ≠ 0   
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Where  Va
PQ

, Ib, and Ic,represent the voltage across the P and Q and phase currents 

respectively. 

P Q

a

b

c

Ia

Ib

Ic

 

Figure 5.2.  Open Phase Fault in Phase “a” at P-Q 

The symmetrical component of the above circuit and group equation can be summarized 

as follows:  

 V1
PQ

= 1/3(Va
PQ

+ aVb
PQ

+ a2Vc
PQ

)        (5.1) 

V2
PQ

= 1/3(Va
PQ

+ a2Vb
PQ

+ aVc
PQ

)        (5.2) 

 V0
PQ

= 1/3(Va
PQ

+ Vb
PQ

+ Vc
PQ

) 

Therefore,  

V1
PQ

= V2
PQ

= V0
PQ

=
1

3Va
PQ        (5.3) 

Similarly, the symmetrical component of the current can be summarized as:  

  Ia = 0, Ib ≠ 0, Ic ≠ 0 

 I1 = 1
3⁄ [Ia + aIb + a2Ic] = 1

3⁄ (aIb + a2Ic) 

 I2 = 1
3⁄ [Ia + a2Ib + aIc] = 1

3⁄ (a2Ib + aIc) 

 I0 = 1
3⁄ [Ia + Ib + Ic] = 1

3⁄ (Ib + Ic) 

 (1 + a + a2) = 0 

I1 = I2 + I0           (5.4) 

Considering (5.1) to (5.4) , the equivalent circuit for the open phase fault is shown in 
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Figure 5.3. 

Z1
Z2 Z0

P1 P2 P0

Q1 Q2 Q0

 

Figure 5.3.  Symmetrical Component Circuit of Open Phase Fault  

5.3.2 Single Open Phase Fault with Ground  

Similar to the analysis described in the previous section, the open phase with the downed 

wire on the “Q” side of the circuit, as shown in Figure 5.4, is considered. In order to 

generalize the case for the ground fault, it has been assumed that the system is not radial, 

and a ground fault can be supplied by either side of the line. The P side is where the phase 

is opened, and Q is the side where the phase wire is down, and the ground fault occurs. 

Ia
 Q

=Ifg  
P Q

a

b

c

Rfg

 Ia P  

Ib P  

Ic P  

Ib
 Q

 

Ic
 Q

 

 

Figure 5.4. Open Phase Fault with Downed Wire 

The following can be stated for voltage and current in P and Q side. 
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 Ia = 0 

 Ia = Ia1 + Ia2 + Ia0 = 0 

 Vb
PQ

= Vb
P − Vb

Q
= 0 

 Vc
PQ

= Vc
P − Vc

Q
= 0 

The following symmetrical component can be stated for P and Q  

 Vb
P = a2Va1

P + aVa2
P + Va0

P  

 Vb
Q

= a2Va1
Q

+ aVa2
Q

+ Va0
Q

 

 Vc
P = aVa1

P + a2Va2
P + Va0

P  

 Vc
Q

= aVa1
Q

+ a2Va2
Q

+ Va0
Q

 

 Vb
PQ

= Vb
P − Vb

Q
= a2(Va1

P − Va1
Q

) + a(Va2
P − Va2

Q
) + (Va0

P − Va0
Q

) = 0   (5.5) 

 Vc
PQ

= Vc
P − Vc

Q
= a(Va1

P − Va1
Q

) + a2(Va2
P − Va2

Q
) + (Va0

P − Va0
Q

) = 0  (5.6) 

We know that 

 a2 + a + 1 = 0         (5.7) 

Therefore, from (5.17), (5.6) and (5.7), the following can be concluded: 

 (Va1
P − Va1

Q
) = (Va2

P − Va2
Q

) = (Va0
P − Va0

Q
)      (5.8) 

Eq. (5.8) can be also developed for the healthy phases “b” and “c”: 

 Ib
PQ

= Ib
P − Ib

Q
= 0 

 Ic
PQ

= Ic
P − Ic

Q
= 0 

 Ib
PQ

= Ib
P − Ib

Q
= a2(Ia1

P − Ia1
Q

) + a(Ia2
P − Ia2

Q
) + (Ia0

P − Ia0
Q

) = 0   (5.9) 
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Ic
PQ

= Ic
P − Ic

Q
= a(Ia1

P − Ia1
Q

) + a2(Ia2
P − Ia2

Q
) + (Ia0

P − Ia0
Q

) = 0   (5.10) 

Eq. (5.11) similar to (5.16) can be extracted from (5.9) and (5.10). 

 (Ia1
P − Ia1

Q
) = (Ia2

P − Ia2
Q

) = (Ia0
P − Ia0

Q
)=

1

3
Ifg      (5.11) 

Based on (4.20) and (5.11), the equivalent circuit of the single open phase fault with a 

downed wire to ground in the interconnected network (source in both side of the fault) is 

shown in Figure 5.5. The zero-sequence component of current caused by the ground fault 

at Q is shown by use of an ideal 1:1 ratio interpose transformer connecting the sequence 

component circuits together. The ground fault resistance (Rfg) in real cases most likely will 

be a high impedance. Eq. (5.11) is representing the ground fault zero sequence component. 

1/1

1/1

1/1

~ 

Ig0

3Rfg

~ 
Z1

 P  

Z2
 P  

Z0
 P  

Z1
 Q

 

Z2
 Q

 

Z0
 Q

 

I1
 P  

I0
 P  

I2
 P  

I0
 Q

 

I2
 Q

 

I1
 Q

 

I1
 P  

I2
 P  

I0
 P  

Q1P1

Q2

Q0

P2

P0

V0
 P  

V2
 P  

V1
 P  V1

 Q
 

V2
 Q

 

V0
 Q

 

I1
 P+I1

 Q
 

I2
 P+I2

 Q
 

I0
 P+I0

 Q
 

 

Figure 5.5. Symmetrical Component Circuit of Open Phase with Ground 
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The circuit can be simplified further if we consider the radial system presented in Figure 

5.2. Such cases can frequently occur in the distribution feeder and thus, it is worthwhile 

that the summary of the analysis is presented as an equivalent circuit with the ground fault 

at the source side (bus side), as shown in Figure 5.6.  

P1

P2

Q1

Q2

1/1

1/1

1/1

~ 

P0 Q0

I1

I2

I0

Ig

Ig

3Rfg

V2
 P  

V1
 P  

V0
 P  

V2
 Q

 

V0
 Q

 

V1
 Q

 

Z2
 P  

Z1
 P  

Z0
 P  Z0

 Q
 

Z2
 Q

 

Z1
 Q

 

Ig

Ig

I1
 P  

I2
 P  

I0
 P  

I1
 Q

 

I2
 Q

 

I0
 Q

 

 

Figure 5.6. Open Phase Fault with Ground at the Source Side  

A similar relationship between current and voltage can be developed for an open phase and 

the downed wire at “Q” side (load side) of the circuit. In this case, the 1/1 ratio interpose 

transformer, which is used to represent the zero-sequence current caused by the ground 

fault, must be moved to the load side (Q side) of the circuit. 
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5.3.3 Double Open Phase Fault with No Ground  

Figure 5.7 shows the open phase fault circuit for two phases - b and c. The current and 

voltage equation can be written as follows: 

P Q

a

b

c

Ia

Ib

Ic

 

Figure 5.7. Symmetrical Component Circuit of Double Open Phase Fault   

Updating (5.1), (5.3), (5.4)  and (5.11) from single open phase to double open phase, the 

following can be stated for voltage, current, and sequence components: 

  V𝑎
PQ

= V𝑎
P − V𝑎

Q
= 0 

 Vb
PQ

= Vb
P − Vb

Q
≠ 0          (5.12) 

 Vc
PQ

= Vc
P − Vc

Q
≠ 0 

 V1
PQ

= 1/3(Va
PQ

+ aVb
PQ

+ a2Vc
PQ

) = 1/3(aVb
PQ

+ a2Vc
PQ

)    (5.13) 

V2
PQ

= 1/3(Va
PQ

+ a2Vb
PQ

+ aVc
PQ

) = 1/3(a2Vb
PQ

+ aVc
PQ

)    (5.14) 

 V0
PQ

= 1/3(Va
PQ

+ Vb
PQ

+ Vc
PQ

) = 1/3(Vb
PQ

+ Vc
PQ

)     (5.15) 

Adding both sides of    (5.13),    (5.14), and    

 (5.15), we get:  

 V1
PQ

+ V2
PQ

+ V0
PQ

=
1

3
 (1 + a + a2)(Vb

PQ
+ Vb

PQ
) 

We know (1 + a + a2) = 0 thus, (5.16) can be concluded. 

V1
PQ

+ V2
PQ

+ V0
PQ

=0         (5.16) 
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Eq. (5.17) shows the similar relation between the current sequence components presented 

on (5.16) for the fault of broken wire in two phases. 

Ia
PQ

≠ 0 , Ib
PQ

= 0, Ic
PQ

= 0  

 I1
PQ

= 1/3(Ia
PQ

+ aIb
PQ

+ a2Ic
PQ

) =
1

3
I𝑎
PQ

  

 I2
PQ

= 1/3(Ia
PQ

+ a2Ib
PQ

+ aIc
PQ

) =
1

3
I𝑎
PQ

  

 I0
PQ

= 1/3(Ia
PQ

+ Ib
PQ

+ Ic
PQ

) =
1

3
I𝑎
PQ

 

I1
PQ

= I2
PQ

= I0
PQ

=         (5.17) 

Eq. (5.16) and (5.17) shows that the sequence component circuit of double open phase are 

in series as shown in Figure 5.8. 

Z1

~ 

Z0Z2

P1 P2 P0

Q2 Q0Q1
 

Figure 5.8. Double open phase fault equivalent circuit   

The double open phase fault with downed wire(s) most likely will extend to a phase-to-

phase short circuit fault, which will be detected with the conventional protection scheme.   
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5.4 Proposed Open Phase Fault Detection Criteria 

As shown in the previous section, the symmetrical component analysis of an open phase 

fault around faulty point provides a set of discriminative criteria to detect an open phase 

incident. However, these criteria are not applicable to any distribution feeder where the 

current and voltage along the feeder are different from the measurement available to 

protection and control devices, located at substation and point of common coupling. The 

proposed solution detects an open phase by analyzing the dynamic characteristics of the 

current sequence components of power sources during the fault transition. It depends on 

the number of PCCs where DGs are connected to the distribution feeder the proposed 

solution considering the use of PMU in substation and PCCs. For conventional feeders 

where no DGs are integrated in the feeder, one point of measurement at substation without 

PMU will be enough. The available data in substation and PCC partially contains the open 

phase signature. To overcome this issue, the average rate of changes of the current 

component in the phasor data, which shows significant similarity with the open phase fault 

characteristics measured at the fault location, is considered. Therefore, (5.4) is developed 

based on the information of the location of the fault and can be restated for other measuring 

points, such as substation or PCC, where PMUs are located as a group of inequality 

equations which must be considered all together.  

(∆I𝑖 = I𝑖
af − I𝑖

bf) , 𝑖 = 0,1,2 

 
∆I1

∆t
< 0   , (

∆I2

∆t
) > 0, (

∆I0

∆t
) > 0        (5.18) 

(
∆I1

∆t
) . (

∆I2

∆t
+

∆I0

∆t
) < 0   

Max (I1, I2, I0) << Isc ∆V1 ≃  0   

Where  I𝑖
af and I𝑖

bf represents the sequence current component before and after the fault. 

The inequality of the short circuit and (∆V1 ≃  0 ) shows that the open phase fault is not 

generating any short circuit current that can be  compared with any type of the parallel 

faults and therefore the positive voltage at the PCC and the substation almost remain intact. 

It also should be noted the inequality (5.18) has no threshold to control the sensitivity of 
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the detection logic thus, in order to immunize the detection logic against fuse failure or 

feeder unbalance, zero and negative sequence components must be greater than user 

defined threshold (Min set1, Min set2 or  Min set3  ) in order to activate the detection 

logic.  

 
∆I1

∆t
≥ Min set1  ,   

∆I2

∆t
≥ Min set2  , 

∆I0

∆t
≥ Min set3    (5.19) 

Not all the three thresholds in (5.19) is required to control the sensitivity of the open phase 

fault detection logic. The voltage at the substation and PCC will have no significant change 

for an open phase fault contrary to a parallel type of fault in the feeder. Thus, ∆V1 ≃  0  is 

added to the above-mentioned conditions. When there is more than one source in the 

feeder, the inequality equations of (5.19)  must be considered for the sources that feeding 

the load behind the fault point. In the following section, this concept will be developed 

adequately. In this regard, an arbitrary distribution feeder with DG is shown in Figure 5.9. 

 

Figure 5.9. Typical Distribution Feeder with DG  
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 In order to formulate the detection criterion for the open phase fault, two locations of the 

faults at point 1 (fault1) and at point 2 (fault 2) is considered that represent an open fault 

between the two sources and a fault on the same side of the sources, respectively. The 

location of the fault, with respect to the power sources, is required to develop different set 

of conditions that must be recognized at the early stage of the fault detection process. It 

must be noted that the proposed  criteria (5.18) and (5.19) are current based and therefore, 

in order for this algorithm to work, the open phase fault should expose minimum load of 

the feeder to the fault. This means a minimum load required to go through the fault point 

which can be as low as 2% of the feeder load. The sensitivity detection will be determined 

by greater value of (5.19) or the minimum required load being exposed to open phase fault. 

Table 5-1, the rate of change of the current symmetrical components for different type of 

faults and switching operations is compared with the proposed solution for the open phase 

fault. The “↑” sign represents the positive rate of the change and the ↓ sign shoes the 

negative rate of the change. The results of many simulations shows that dependability 

criteria introduced in (5.18) and  (5.19) presents a unique characteristic which can be 

discriminated  with the open phase fault from all other type of the faults. The representative 

simulation for each fault or operation is shown in Appendix E.  

Table 5-1. Current Rate of Change for Parallel Faults 

No. Fault or switching type ∆I1

∆t
 

∆I2

∆t
 

∆I0

∆t
 

∆V1

∆t
 

Figure No. 

1 Three phase fault ↑ NA NA - Figure E2 

2 Two phase fault ↑ ↑ NA - Figure E4 

3 Two phase to ground ↑ ↑ ↑ - Figure E6 

4 Ground fault ↑ ↑ ↑ - Figure E8   

5 Energizing unbalance 

load 

↑ ↑↓ ↑↓ NA Figure E9 
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6 De-energizing 

unbalance load 

↓ ↑↓ ↑↓ NA Figure E12 

The case 6 of in the above table “de-energizing the unbalance load” in some cases when 

the load of the feeder is balanced can leave the same signature as the open phase fault 

formulated in (5.18). The constrained introduced in (5.19) must be used to desensitized  the 

proposed open phase algorithm against the unbalanced load  that could occur in normal 

operation.  This case will be further discussed in the sensitivity section in this chapter.  

Table 5-2 presents the variables and their units which is used to analyze cases with more 

power sources.  

Table 5-2. Variable Used for Case Study 

Symbol DESCRIPTION UNIT [SI]  

ViG i=1,2,0 Substation voltage  KV (rms) 

ViDG i=1,2,0 PCC voltage KV (rms) 

IiG i=1,2,0 Substation current  KA (rms) 

IiDG i=1,2,0 PCC current        KA (rms) 

PG Active power station  MW (ave) 

PDG Active power PCC  MW (ave) 

QG Reactive power station  MVar (ave)  

QDG Reactive power PCC  MVar (ave) 

I0 Zero sequence current 

ground fault   

KA  

Rfg Grong fault resistance Ω 
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5.5 Single Open Phase Fault Between Two Sources  

The single open phase fault at point 1 in Figure 5.9 is considered. This fault is located 

between the two sources of DG and the distribution grid. Therefore, in the instance of an 

open phase fault, active power for the two sources changes in direction at the station and 

at the PCC. It is assumed that if load distribution fault  PDG ↑ increases to compensate for 

the portion of the load which is no longer being supplied from the grid PGrid ↓ decreases. 

For simplicity, it is assumed that losses are part of the load, and redistribution of the open 

phase load after the fault does not cause a significant change in the losses. If the grid and 

DG supply  K% , (1 − K)% of the load, respectively, and “N” represents the portion of the 

load in the open phase (phase “b” in this case), which will be discontinued from the grid 

after the fault. The index Zero (0) in the equations represents the power before the fault, 

and  ∆Px represents the change in power after the fault. 

0 < K <1, and,  N ≤ K 

 PDG0 + PGrid0 = Pload0 = PlA0 + PlB0 + PlC0      (5.20) 

Pload0 ≈ Pload  

PGrid0 = K Pload = K(PlA + PlB + KPlC)      (5.21)  

 PDG0 = (1 − K)Pload = (1 − K)((PlA + PlB + KPlC)     (5.22)  

PGrid = K Pload = KPlA + (K − N)PlB + KPlC=K(PlA+PlB+PlC) − N𝑃𝑙𝐵    

 PDG = (1 − K)Pload = (1 − K)(PlA + PlB + PlC) + NPlB 

 ∆PGrid = PGrid0 − PGrid = −NKPlB  

 ∆PDG=PDG0 − PDG = NPlB  

∆PGrid

∆PDG
≤ −1          (5.23)  

When the grid is supplying the load behind the open phase, (5.19) is considered as follows:     
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(
∆I1G

∆t
) . (

∆I2G

∆t
+

∆I0G

∆t
) < 0   

5.5.1 Fault in a Feeder with More Than Two Sources 

The open phase detection criteria can be extended for the feeder with more than two sources 

of energy. Psource1  and Psource2 represent the group of generation, including the grid, 

located on the both sides of the fault 

Psource1 = PGrid + ∑ DGi
m
i=1   

Psource2 = ∑ DGi
z
i=m   

Psource10
+ Psource20 = Pload0 = PlA0 + PlB0 + PlC0  

Psource10
= K Pload = K(PlA + PlB + KPlC)      (5.24)  

Psource20
= (1 − K)Pload = (1 − K)((PlA + PlB + KPlC)     (5.25)  

∆Psource1 = Psource10
− Psource1 = −NKPlB  

∆Psource2 = ∆Psource20
− ∆Psource2 = NPlB  

∆Psource1

∆Psource2
≤ −1           (5.26) 

(
∑∆I1Source1

∆t
) . (

∑∆I2Source1

∆t
+

∑∆I0Source1

∆t
) < 0  

5.5.2 Open Phase Fault with the Ground Fault 

As mentioned earlier in this chapter, when an overhead electric power distribution 

circuit conductor breaks—for example, when a car strikes a pole, or a splice or clamp 

fails—the energized conductor falls to the ground. The resulting high-impedance 

ground fault and its impact on the open phase fault is shown in Figure 5.4 and Figure 5.5 

and the following can be concluded: 

▪ High impedance ground fault caused by broken conductor and downed wire, i.e., from 

an overhead tower to the ground, takes some time (in the order of seconds). This 
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sequence is recognizable by PMU measurement. Therefore, the signature of an open 

phase fault, which is the backbone of the proposed algorithm, remains intact, and an 

open phase fault prior to becoming a ground fault can be identified. This is also a very 

desirable response to prevent any public hazards caused by energized wires at the 

ground level. 

▪ High impedance ground fault constitutes a very small portion of the current fault which 

most likely is not a measurable at the station level but, nonetheless, the positive rate of 

change can be measured, if the ground fault occurs after the open phase in the sequence 

described previously. From (5.10), (5.11), and (5.19), the ground fault current can be 

calculated. It is assumed that at 𝑡1, the open phase fault occurs and at 𝑡2, the ground 

wire touching ground occurs, and I0 is a high impedance ground fault. 

Ia1 − Ia′1 =  Ia2 − Ia′2 = Ia0 − Ia′0 = I0       

[(∆IxG)t2 − (∆IxG)t1] > 0     (x=0,1,2)     (5.27) 

[(∆IxDG)t2 − (∆IxDG)t1] > 0    (x=0,1,2)     (5.28)  

The above equations, developed for the point in time that an open phase fault occurs, are 

valid when the ground fault is at the grid or DG side, respectively. Similar to what was 

described for the open phase fault criteria, the PMUs measuring devices are at the 

substation and PCCs. Hence, the above equation cannot be directly verified since the 

location of the fault also unknown. However, for the high impedance ground fault which 

is expected to be less than 50 A on the primary, reduces the unbalance of the system caused 

by interruption of one phase load and thus, the following behavior can be measured by 

PMUs at the instant the high impedance ground fault develops from an open phase fault. 

[
 
 
 
 (

∆I1G

∆t
) > 0

(
∆I2G

∆t
) < 0

(
∆I0G

∆t
) < 0]

 
 
 
 

          (5.29)  

Similar inequality equations can be verified by grid side PMU, if the high impedance 

ground fault is supplied from the grid.  
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5.6 Open Phase Fault at the Same Side of the Sources  

In this section, an open phase fault recognition criterion at point 2 in Figure 5.9 is 

considered. This fault is located on the same side of the two sources of DG and distribution 

grid. In the instance of a fault, active power for the two sources changes in the same 

direction at the station and at the PCC. In contrary to the previous case, for a fault on the 

same side of the sources, in the instant the fault occurs, active power for the two sources 

changes in the same direction at the station and at the DG.  Both PDG ↓ and  PGrid ↓  

decrease due to the loss of portion of the load in phase “b”. For simplicity, we have assumed 

that the losses are part of the load. The grid and DG supply  K% , (1 − K)% of the load in 

all three phases (PlA,  PlB, PlC), and “N” is representing the portion of the load in phase “b” 

which is deenergized after fault occurs. The index Zero (0) in the equations represents the 

power before the fault and  ∆𝑃𝑥 represents the change of power due to the fault.    

0 < K <1, and,  N ≤ K 

 PDG + PGrid = Pload = PlA + PlB + PlC      (5.30) 

PGrid0 = K Pload = K(PlA + PlB + KPlC)      (5.31)  

PDG0 = (1 − K)Pload = (1 − K)((PlA + PlB + KPlC)      (5.32)  

PGrid = K Pload = K(PlA+PlB+PlC − NPlB)    

 PDG = (1 − K)Pload = (1 − K)((PlA + PlB + KPlC − NPlB) 

 ∆PGrid = PGrid0 − PGrid = −NKKPlB  

 ∆PDG=PDG0 − PDG = −N(1 − K)PlB  

0 ≤
∆PGrid

∆PDG
≅

K

1−K
          (5.33)  

In this case, both grid and DG are supplying the load behind the open phase and therefore, 

the inequality equations (5.18) can be considered for both power sources. 
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(
∆I1G

∆t
) . (

∆I2G

∆t
+

∆I0G

∆t
) < 0  

(
∆I1DG

∆t
) . (

∆I2DG

∆t
+

∆I0DG

∆t
) < 0  

5.6.1 Fault in a Feeder with More Than Two Sources    

The open phase detection criteria in this case can also be extended to the feeder with more 

than two sources of energy. Psource1  and Psource2 represent the group of generation sources, 

including the grid that is integrated to the feeder.     

Psource1 = PGrid + ∑ DGi
m
i=1   

Psource2 = ∑ DGi
z
i=m   

Psource10
+ Psource20 = Pload0 = PlA0 + PlB0 + PlC0  

Psource10
= K Pload = K(PlA + PlB + KPlC)        

Psource20
= (1 − K)Pload = (1 − K)((PlA + PlB + KPlC)       

∆Psource1 = Psource10
− Psource1 = −KNKPlB  

∆Psource2 = ∆Psource20
− ∆Psource2 = −(1 + K))NPlB  

0 ≤
∆Psource1

∆Psource2
≅

K

1−K
          (5.34) 

(
∑∆I1Source1

∆t
) . (

∑∆I2Source1

∆t
+

∑∆I0Source1

∆t
) < 0  

(
∑∆I1Source2

∆t
) . (

∑∆I2Source2

∆t
+

∑∆I0Source2

∆t
) < 0  

5.6.2 Open Phase Fault with Ground 

The ground fault impact on the open phase fault between the two sources is verified in  

5.5.2. The only notable difference with the current case is a ground fault will be supplied 
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by both sources rather than one of them, therefore     (5.27) and are 

to be updated as follows: 

[(∆IxG)t2 − (∆IxG)t1] + [(∆IxDG)t2 − (∆IxDG)t1] > 0     (x=0,1,2) (5.35) 

However, as discussed in 5.5.2, the high impedance ground fault reduces the load 

unbalance of the system caused by interruption of one phase and thus, the following 

behavior can be measured by PMUs at the instant of a high impedance ground fault 

develops from an open phase fault. 

[
 
 
 
 (

∆I1G

∆t
) > 0

(
∆I2G

∆t
) < 0

(
∆I0G

∆t
) < 0]

 
 
 
 

          (5.36)  

[
 
 
 
 (

∆I1DG

∆t
) > 0

(
∆I2DG

∆t
) < 0

(
∆I0DG

∆t
) < 0]

 
 
 
 

          (5.37)  

5.7 Test System 

The base of this case study relies on 27.6 KV grounded utility distribution feeder with 

integrated wind machine type 4. Figure 5.9 shows the simplified one-line diagram of the 

feeder modeled using PSCAD/EMTDC Electromagnetic Transient-based software. The 

feeder contains single- and three- phase laterals and therefore, will have some degree of 

voltage and current imbalances. The detailed feeder is presented in Appendix A. 

5.8 Test Scenarios 

The two representative scenarios of a single open phase fault with the following cases are 

studied: 

1) Scenario 1: fault located between the DG and the grid (point 1)  

a. Case 1: Single open phase fault with no ground  
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b. Case 2: single open phase with downed wire (high impedance ground)  

2) Scenario 2: fault between the same side of DG and grid (point 2)  

a. Case 1: single open phase with no ground  

b. Case 2: single open phase with the downed wire (high impedance ground)  

c. Case 3: single open phase with the solid ground fault  

3) Scenario 3: Sensitivity & security limitation   

5.8.1 Scenario 1 Case 1  

The single open phase fault without ground is simulated at point 1, and at t=2.5, second 

(phase “b” is opened) of the feeder is shown in Figure 5.9. The results of simulation are 

shown in Figure 5.10 and Figure 5.11. In Figure 5.10, active power, reactive power, and 

magnitude of symmetrical component voltage of DG and grid are shown. In Figure 5.11, 

the magnitude of the symmetrical component currents is shown. It is assumed that the 

measurement is performed by two PMUs located at the PCC and the substation. In Figure 

5.10, the opposite rate of change in power of the two sources reveals that the fault is located 

between the DG and the grid. Since after the fault, PGrid ↓  decreases PDG ↑  increases, and 

the direction of power flow is from the grid to the faulty point, the following equations will 

identify the fault:  

∆PGrid

∆PDG
=

−2.20

1.5
= −1.46 ≤ −1   

The above result reveals that the fault is between the two sources and is being fed by the 

grid. 

 (
∆I1G

∆t
) < 0   

∆I0G

∆t
> 0 

(
∆I1G

∆t
) . (

∆I2G

∆t
+

∆I0G

∆t
) < 0  

The validity of the above inequality reveals that the fault is an open phase fed by the grid.  
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∆V1G= ∆V1DG ≃  0    

The rate of positive sequence voltage change shows that no parallel fault is detected 

during the simulation. 

 

Figure 5.10. Open Phase Fault Scenario 1-Case 1-Power & Voltage  
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Figure 5.11. Open Phase Fault Scenario 1-Case 1-Current  
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5.8.2 Scenario 1 Case 2  

The single open phase fault with ground is simulated at point 1 and at t=2.5 second (phase 

“b” is opened) of the feeder, as shown earlier in Figure 5.9. The fault extended to an open 

phase fault with high impedance ground at t=4 sec at the grid side of the open phase. The 

results of simulation are shown in Figure 5.12 and Figure 5.13. In Figure 5.12 active power, 

reactive power, and magnitude of symmetrical component voltage of DG and grid are 

shown. In Figure 5.13, the magnitude of the symmetrical component currents is shown. It 

is assumed that the measurement is performed by two PMUs located at the PCC and the 

substation. For the time between 2.5 ≤ t ≤ 3, is very similar to sequence that has shown 

in the previous case (scenario 1- case 1).  

∆PGrid

∆PDG
≤ −1    

The above result shows that the fault is between the two sources and is fed by the grid. 

 (
∆I1G

∆t
) < 0 

 (
∆I2G

∆t
) > 0 

 
∆I0G

∆t
> 0 

(
∆I1G

∆t
) . (

∆I2G

∆t
+

∆I0G

∆t
) < 0  

The validity of the above inequality reveals that the fault is an open phase type and confirms 

that it is being fed by the grid. At t = 3.00 sec, the high impedance ground fault with a 

resistance of 200 ohms has been added to the circuit. The changes in the signature of the 

open phase fault with high impedance ground fault is negligible, as expected. 

∆V1G= ∆V1DG ≃  0   

The rate of change of positive sequence impedance shows that no parallel fault is detected. 
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Figure 5.12. Open Phase Fault Scenario 1-Case 2  
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Figure 5.13. Open Phase Fault Scenario 1-Case 2   
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5.8.3 Scenario 2 Case 1  

The single open phase fault without ground is simulated at point 2 and at t=2.5 second 

(phase “b” is opened) of the feeder shown earlier in Figure 5.9. The open phase is located 

on the same side of both sources. The result of this simulation is shown in  Figure 5.14 and 

Figure 5.15. In contrary to the previous simulation, for the fault on the same side of the 

sources, at the instant of the fault, active power for the two sources changes in the same 

direction at the station and DG. Both PDG ↓ and  PGrid ↓  decrease due to the loss of portion 

of the load in the phase “b”.  

∆PGrid

∆PDG
> 0    

The above result shows that the fault is between the two sources and is fed by the grid. 

 (
∆I1G

∆t
) < 0     (

∆I1DG

∆t
) < 0 

 (
∆I2G

∆t
) > 0     (

∆I2DG

∆t
) > 0 

 (
∆I0G

∆t
) > 0      (

∆I0DG

∆t
) > 0 

(
∆I1G

∆t
) . (

∆I2G

∆t
+

∆I0G

∆t
) < 0   (

∆I1DG

∆t
) . (

∆I2DG

∆t
+

∆I0DG

∆t
) < 0  

The validity of above inequality reveals the that fault is open phase and confirms that it is 

being fed by grid.  

∆V1G= ∆V1DG ≃  0    

The rate of change of the voltage shows that during the simulation no parallel fault is 

detected. 
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Figure 5.14. Single Open Phase Fault (phase b)- Current    
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Figure 5.15.  Single Open Phase Fault (phase b)- Current    
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5.8.4 Scenario 2 Case 2  

The single open phase fault without ground is simulated at point 2 at  𝑡 = 2.5 second (phase 

“b” is opened) of the feeder, shown in Figure 5.9. The ground fault with resistance of 200 

ohm on the source side is added to the simulation at t = 3.00 sec. The ground fault current 

measured at the fault is 36 A, which represents the high impedance ground fault (typically 

less than 50 A) and is caused by a fallen wire. The simulation results are shown in Figure 

5.16 and Figure 5.17. The power for the two sources changes in the same direction at the 

station and at the DG.  Both PDG ↓ and  PGrid ↓  decrease due to the loss of portion of the 

load in the phase “b”. The power, voltage, and current measured at PCC and substation and 

for the time between the open phase and ground fault (2.5 ≤ 𝑡 ≤ 4) shows an open phase 

fault signature similar to scenario 2 case 1. (5.19) can be considered for both sources in 

this simulation:  

∆PGrid

∆PDG
=

−0.75

−1.22
= 0.61    

(
∆I1G

∆t
) = −0.03 KA    (

∆I1DG

∆t
) = −0.03 KA 

 (
∆I2G

∆t
) = 0.007 KA   (

∆I2DG

∆t
) = 0.05 KA 

 (
∆I0G

∆t
) = 0.003   (

∆I0DG

∆t
) = 0.007 KA 

(
∆I1G

∆t
) . (

∆I2G

∆t
+

∆I0G

∆t
) < 0  (

∆I1DG

∆t
) . (

∆I2DG

∆t
+

∆I0DG

∆t
) < 0 

The validity of the above inequality shows that the fault is open phase and confirms that it 

is being fed by the grid.  

∆V1G= ∆V1DG ≃  0    

The rate of change of the positive sequence voltage shows that there is no parallel fault in 

the circuit.  After the high impedance ground fault is added to the system, the voltage 

remains the same, and small changes or perturbations that are observed in the current 

component does not change the inequality criteria of open phase. 
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Figure 5.16. Single Open Phase Fault (phase b)- Current    
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Figure 5.17. Single Open Phase Fault (phase b)- Current    
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5.8.5 Scenario 2 Case 3 

The single open phase fault is simulated at point 2 and at  t = 2.5 second (phase “b” is 

opened) of the feeder, as shown earlier in Figure 5.9. The solid ground fault is added to the 

circuit at  t = 4.0 sec. The purpose of this simulation is to compare the open phase fault 

with the solid or low impedance ground fault with the high impedance ground fault. It is 

interesting to note that one of the major discriminations between the open phase fault and 

any parallel fault is the rate of change 
dIG1

dt
  or 

dIDG1

dt
  which is negative opposite to any other 

fault. Figure 5.18 and Figure 5.19 show the results of this simulation. The detection of a 

solid ground fault is not an issue for the conventional protection system. After t = 3.0 sec, 

the signature of the open phase fault is totally dissolved by the ground fault protection 

signature. 

The sudden increase in rate of change in all the three-current components I1, I2, I0 make 

the fault easily detectable by any simple or conventional over current protection element. 

However, it should be noted that the extension of the open phase fault is not a solid ground 

fault. The concern about the open phase conductor and its consequences is a high 

impedance ground fault which is not reliably detected by conventional protection system.  

It is interesting to note that one of the major discriminations between the proposed solution 

and parallel fault is at the instance of the open phase fault the rate 
dIG1

dt
  for both grid DG 

are negative. While this is opposite to any parallel fault characteristics. 
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Figure 5.18. Single Open Phase Fault with Solid Ground 
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Figure 5.19. Single Open Phase Fault with Solid Ground 
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5.8.6 Scenario 3 Sensitivity Limitation 

The solution presented in this chapter is a current based solution, therefore, in order to 

detect the open phase fault, the fault should interrupt a minimum amount of the load in the 

faulty phase. In Figure 5.20, the single open phase fault without ground is simulated at the 

end feeder in point 2 at “t=2.5” second (phase “b” is opened). The minimum load that is 

required for the proposed algorithm to detect the open phase is determined by sensitivity 

analysis and is about 4% of total supplied load at instant of open phase incident. This means 

that for the solution to work, minimum 4% of the three phase load should be exposed to 

open phase circuit to leave the signature that is described in (5.18). It important to note that 

for an ideal balanced feeder with the balanced load, the sensitivity is limited to the ability 

of measuring the current reliably considering the error of the measurement. However, 

generally, if prior to the occurrence of an open phase, there is a unbalance load in the circuit 

in the worst case scenario, the open phase fault will be detectable if the open phase fault 

disturbs the load which is, at minimum, slightly greater than the current feeder unbalance 

load. In the current example, the load unbalance is about 2-3 %.  

The sensitivity of the proposed solution is not the same among the phases when the feeder 

supplies an unbalance load. The phase with the highest load represents the least sensitive 

phase. Figure 5.21. shows the open phase simulated at t=3 sec on the phase with the largest 

load. The feeder supplies around 15 MVA (1 PU) and phase “C” carries about 5.2 MVA, 

1.3% above the average load per phase and has the highest load. The negative sequence 

component (I2) prior to the open phase incident created by an unbalanced load is around 

3.2%. The plotted results show that the open phase in phase C can be detected only if the 

open phase fault  generates more negative sequence current than the unbalance load (3.2%) 

to leave the detachable signature described in (5.18). 
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Figure 5.20. Single Open Phase at the End of Feeder with 4% Load 
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Figure 5.21. Single Open Phase at the End of Feeder with 4% Load 

In regard to security of the proposed solution as previously shown in Table 5-1 if a single-

phase load connected directly to the primary feeder is switched off by the consumer, not 

by fault, fuse blown, or feeder operator, this can be seen erroneously as an open phase fault 

by the proposed sensitive open phase detection algorithm. Figure 5.22 shows that the 

single-phase load (0.02 PU) is turned off in the completely balanced three-phase system 

and the dynamic of this switching can be seen by this solution as an open phase. The minim  

threshold provision in (5.18) is considered to desensitize the algorithm based on the largest 

single phase load installed at the primary feeder. For example, if the largest single-phase 

load is 0.02PU installed in the primary 

∆I1 = 0.078 PU 

∆I2 = 0.013 PU 

∆I0 = 0.013 PU 

∆I1 =
∆𝐼1

∆𝑡
< 0 

∆I2 =
∆𝐼2

∆𝑡
< 0 

∆I0 =
∆𝐼0

∆𝑡
< 0 

∆I0 =
∆𝐼0

∆𝑡
> 0 

∆I2 =
∆𝐼2

∆𝑡
> 0 
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The Iset1min must be set at least 3%. 

∆I1

∆t
≥ Iset1min ≥  0.03   

Therefore, the actual sensitivity of the solution is equal to the greater value of the maximum 

expected unbalance load and the largest installed single-phase load on the primary circuit 

(one load not a group of loads). With the consideration of the cases discussed in this section 

the proposed solution can protect 90% to 95% of the feeder-load against the open phase 

fault if we assume the unbalanced load and the largest installed single-phase load on the 

primary circuit are somewhat less than 5% to 10% of the feeder rating. 

 

 

Figure 5.22. Single Open Phase at the End of Feeder with 4% Load 

∆I1 =
∆𝐼1

∆𝑡
< 0 

∆I2 =
∆𝐼2

∆𝑡
> 0 

∆I0 =
∆𝐼0

∆𝑡
> 0 
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5.9 Conceptual Implementation  

The prime PMU application so far has been on the wide area of the power transmission 

network and bulk energy power system. Although the proposed solution focuses on the 

open phase fault detection in a distribution network, the same principal can be applied in 

any network by taking advantage of PMU data stream phasor measurement which makes 

sets of current and voltage phasors available on a real time basis. The PMU data in the 

distribution network can serve many applications, such as islanding and fault locations as 

well as open phase detection scheme. Therefore, capital investment for such a multipurpose 

device is much easier to justify. The PMU function, as part of integrated IED, is available 

at negligible additional cost from mainstream IED manufacturers. The communication 

system architecture for the proposed solution is illustrated in Figure 5.1. The utilization of 

PDC, particularly for the number of PMUs used in this application, is not essential. Instead, 

using IEC61850-90-5 standard complaint PMUs, where PMUs connected at the PCC or 

substation can directly exchange their data in a peer to peer communication relationship by 

using GOOSE in PDU, can improve the time performance of the application. The main 

time-consuming tasks in the proposed solution are as follows: 

1. PMU response to stream the phasor data  

2. Communication time delay  

3. Open Phase Detection (OPD) logic task   

The communication time delay depends on the type of media and can vary from 5-30 ms.  

PMU real time performance can take around 10-20 ms, and OPDs logic around 10-20 ms, 

considering 3 to 5 sample windows for decision making process. The time performance 

limitation must be taken into consideration when this application is used to block the fast 

auto-recloser scheme.  This chapter presented a novel open phase detection scheme in the 

distribution feeder with DGs. The application is based on PMU data that are available in 

substation and PCCs. The solution is examined based on analysis carried on 

PSCAD/EMDC modeling and calculations.     

The open conductor with the ground is modeled as a two-step event which starts with the 

breaking the conductor and a time delay for it to develop into a ground fault on the bus 
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side. Detection of open phase fault should be done prior to development of this fault into a 

ground fault. Symmetrical component characteristics are used as the chief property of the 

open phase identifier. Rate of change, both in amplitude and in angle of both current and 

voltage symmetrical components, proved to be reliable metrics to identify the target fault 

in a complex feeder with multiple power sources.  

5.10 Summary  

In this chapter, the second use case to detect the open phase fault using the synchrophasor 

data was studied. The vulnerability of distribution systems in an open phase fault and a 

critical review of the reach conducted in this area was presented in this chapter. The 

problem is formulated by analyzing the single- and two-phase open phase fault, with and 

without high impedance ground using symmetrical component analysis technique and 

EMT model development. Based on the fault signature, specific measurable criteria were 

developed to identify open phase fault by PMUs located at the substation and point of 

common coupling. The algorithm was further developed for a feeder with the multiple 

integrated DGs. The high impedance ground fault recognition and impact were added to 

the existing criteria. Although, it is shown that the high impedance fault impact is 

predictable following the open phase fault, the open phase fault signature is still 

recognizable with and without the ground fault. 

The test system was developed using PSCAD/EMTDC software and a utility type 

distribution feeder with the actual parameters was modeled using this software. The test 

scenario to examine the reliability of the proposed solution was developed with emphasis 

on dependability and security. From the many simulations that were carried out, select 

representative results were analyzed and reported. The conceptual implementation for the 

proposed solution considering the market available hardware and software was proposed. 

The next chapter will summarize the work, present the major conclusion of this work, and 

provide suggestions for future research work. 
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Chapter 6  

 Summary   

The communication technology to create a new generation of protection relays that works 

not only by sensing an abnormal condition based on local measurements, but also by 

receiving information from remote devices, is becoming more and more possible. NASPI 

(North American Synchro Phasor Initiative), which is funded by U.S. Department of 

Energy, has been focusing on bulk power energy and the wide area network. However, the 

deployment in this area so far, has been limited to some non-time critical monitoring 

applications. In this initiative, not much attention has been given to distribution systems.  

The topology of a typical distribution feeder is very similar to wide area networks but at a 

much smaller scale, as it contains many connections and branches. However, no 

infrastructure is available to provide information from these nodes and branches that can 

be utilized for protection and control system. For many years, the simplicity of the 

distribution system as a radial system and a network which is designed to be an interface 

to the consumers only permitted that utilities operate this system as it is with little need for 

communication and measuring technologies.  

With the technological changes that are coming, the distribution system is at the forefront 

of smart grid initiatives, DG integration, peak demand management, and the microgrid. 

These are transforming the distribution network from simple radial systems to the more 

complex bidirectional flow systems which must manage and protect the local generation 

and the independent, smaller local grids. In this research, the use of synchrophasor data for 

the protection of the distribution network has been investigated and it has been shown that 

the investment in this application, coordinated with other aforementioned initiatives, is 

underway in the distribution system.  

The synchrophasor data can serve many protection and control applications with the same 

structure, some of which are recommended as future research objectives in this work. This 

work investigates two protection use cases and shows that more work and research in this 

area can prepare the distribution system with its transformation to a grid with local 

generations.      
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The integration of synchrophasor data to the substation automation infrastructure promoted 

by IEC61850-90-5, further provides an opportunity for the distribution system to make this 

into an integrated part of the substation automation application and makes the overall 

application more economically effective.  

6.1 Summary and Conclusion  

In Chapter 1, an introduction to power system structure and the need to modernize the 

power grid due to multiple factors, such as economic, political, environmental and 

technical, including aging infrastructure, integration of multiple DER (Distributed Energy 

Resources), other new technologies, security concern and more influence of the end 

consumer to the local legislation. It is discussed that despite the past power industry 

investment history which has favorited generation and transmission the need for shift of 

focus to distribution systems modernization. The synchrophasor technology, its 

advancement and the prospective of its role is discussed. The objectives of the research 

were presented. Chapter One also included an introduction to synchrophasor measurement, 

PMU, and μPMU  power system protection relevant to the area of this research. 

In Chapter 2, the fundamentals of the distribution system feeder structure relevant to this 

research was presented. The Principle of protection in distribution and feeder protection 

specifics were reviewed. Challenges related to the integration of DG and DG characteristics 

were also verified. Wind turbine type 1 to 4 and PV solar DG short circuit and reactive 

power production capability were studied. The changes in the regulatory standard, such as 

IEEE 1547 related to DG integration and islanding, were reviewed and summarized.  

In Chapter 3, the fundamentals of synchrophasor measurement, data communication, 

performance, signal processing, application, and system architecture were presented. The 

IEC61850 compliant system appropriate for the current research in the area of protection 

application was discussed. The concept of  μPMU and high PMU data resolution for 

distribution systems is reviewed. The accuracy required for some of distribution 

application is reviewed. 

 In Chapter 4, the proposed research solution for islanding detection based on phasor 

measurement data was presented. The mathematical formulation for the detection 
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algorithm was provided. The test model was developed in PSCAD-EMTDC and MATLAB 

based on actual utility feeder data. The mathematical formulation is validated by numerous 

simulations on a real-world test model. The concept is generalized by developing separate 

models for the mainstream DERs and concept is tested with real world scale utility feeder.  

In Chapter 5, the research-based proposed solution for open phase fault detection with and 

without a downed wire (ground fault) based on synchrophasor data was presented and 

discussed. The mathematical formulation for the detection algorithm was also described. 

The computer-based test model was developed in PSCAD-EMTDS and MATLAB based 

on utility data.  The algorithm was validated with numerous simulations representing many 

actual cases. 

6.2 Contribution of this Work  

The following are the major contributions of this work in the subject area of this study 

and distribution systems:  

1. This study has provided a theoretical justification that synchrophasor 

measurement devices can be successfully utilized to address some of the existing 

and new challenges faced by distribution systems in relatively smaller 

applications, such as distribution feeders, where a smaller number of PMUs are 

used in comparison to typically wide area applications, as demonstrated in the 

use cases in this work. The integration of PMU data using IEC61850-90-5 

communication standard with substation automation system can be addressed. 

The proposed system architecture as demonstrated in this study can be utilized 

for many applications which will maximize the return of investment on phasor 

measurement technology in utilities’ network. 

2. The proposed solution for the first use case - the islanding detection - has 

contributed to this subject with the following specific innovative features: 

a. The proposed solution relies on the existing protection infrastructure at 

substations and points of common coupling. 
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b. The proposed solution uses the adaptive protection scheme when 

adaptation is done in non-critical time during feeder normal operation.  

c. The proposed solution addresses the weakness of the passive detection 

schemes, particularly, the non-detection zone, by introducing sensitivity-

based constrained detection of islanding, when applicable.  

d. The proposed solution is not depending on the type of DG integrated into 

the feeder. 

e. The proposed solution does not rely on the static angle of voltage 

differences between the PCC and DGs which can be small depending on 

the location and size of DGs. It is based on monitoring the change of this 

angle when islanding occurs, and the maximum sensitivity solution is 

defined based on the IEEE compliance PMU with one degree available in 

the marketplace. 

f. The proposed solution if used for a sizeable DG integration in term of 

power size 2.00 MW and above does not require the use of high-

performance PMU. 

3. The proposed solution for the second use case, detecting the open phase fault is 

a major contribution to this subject since the selective detection of this fault is 

nonexistent. The proposed solution relies on the waveform properties of the open 

phase fault to recognize it, and within that framework uses an algorithm based on 

the available and measurable data in substations and PCCs. The accuracy of the 

measured quantity is not as important as the changes in the quantity. The voltage 

phase angle is not used in proposed algorithm. Therefore, in contrast to many 

protection schemes, the proposed solution is immune to inaccuracies in 

measurement and is not relying on phase angle measurement.  

At the time of publication of this work, two journal papers summarizing the two use cases 

studied for open phase and islanding detection are under review by the IEEE Power System 

Access. 
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6.3 Recommendation for Future Research Work  

Some of the potential areas for further research are identified below: 

1) There is potential to use synchrophasor data to provide real time visibility and state 

estimation for the distribution network. [63] 

2) There is potential to use synchrophasor data to design the PMU-based adaptive over 

current protection system for distribution system with DG system [64]. 

3)  There is potential to identify and optimize the number and location of PMU sensors 

to serve control and protection applications of a distribution network. 

4) There is potential to develop a cost-constrained optimal load flow real time 

operational program based on distribution voltage profile measurements and 

communicated by PMUs. 

5) There is potential to investigate upgrading and optimizing the Distribution 

Management System with the use of synchrophasor data. 

6) There is potential for fault location application using synchrophasor data both in 

primary feeder and in the secondary underground network [65]. 
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Appendix A: Network Model Information 

Figure A1 shows the distribution system one-line diagram which is used for Anti-Islanding 

and open phase study test system. For the open phase study, the location of DGs and AR 

is changed as per cases requirement as per what is described in chapter 5 

 

Figure A1. One-line Diagram of Modeled Distribution Feeder 

Table A1 is presents the type of conductor which is used in the model with thire electrical 

characteristics.  

Table A1. Conductor Type and Data Used in the Model
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Table A2 presents the length of the conductor used in the model.  

Table A2. Conductor Length Used in the Model 

PSCAD Label Phase 
From 
Node 

To 
Node 

Conductor 
Type 

Length 
(km) 

L1 ABC 1 2 556AL427 0.1142 

L2 ABC 2 3 556AL427 0.1337 

L3 ABC 3 4 556AL427 0.1998 

L4 ABC 4 5 556AL427 1.2202 

L5 ABC 5 7 556AL427 1.1214 

L6 ABC 8 9 40ASR427 1.5665 

L7 ABC 9 10 40ASR427 0.0192 

L8 ABC 10 11 U20AL1428 0.1144 

L9 ABC 9 13 40ASR427 0.0294 

L10 ABC 14 15 U20AL1428 0.239 

L11 ABC 9 16 40ASR427 0.1327 

L12 ABC 17 18 U20AL1428 0.1077 

L13 ABC 16 19 40ASR427 0.4252 

L14 ABC 19 20 40ASR427 0.4185 

L15 ABC 20 21 40ASR427 5.6039 

L16 ABC 21 22 336AL427 0.1406 

L17 ABC 23 24 336AL427 0.856 

L18 ABC 25 26 336AL427 0.1068 

L19 ABC 26 27 336AL427 0.3571 

L20 C 27 28 10ASR427 0.059 

L21 C 29 30 10ASR427 0.1475 

L22 ABC 27 31 336AL427 0.0814 

L23 B 31 32 10ASR427 0.058 

L24 B 33 34 10ASR427 0.14 

L25 ABC 31 35 336AL427 0.0771 

L26 C 35 36 10ASR427 0.0493 

L27 C 37 38 10ASR427 0.1429 

L28 ABC 35 39 40ASR427 0.0986 

L29 ABC 40 41 40ASR427 0.1201 

L30 ABC 41 42 40ASR427 0.35 

L31 C 43 44 10ASR427 0.3132 

L32 C 44 45 10ASR427 0.4135 

L33 ABC 35 46 336AL427 0.0805 

L34 A 46 47 10ASR427 0.0567 

L35 A 48 49 10ASR427 0.1242 

L36 ABC 46 50 336AL427 0.0772 

L37 A 50 51 10ASR427 0.0524 

L38 A 52 53 10ASR427 0.1176 

L39 ABC 50 54 336AL427 0.0755 

L40 A 54 55 10ASR427 0.0474 

L41 A 56 57 10ASR427 0.2411 

L42 A 57 58 10ASR427 0.1486 
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L43 ABC 54 59 336AL427 0.0749 

L44 A 59 60 10ASR427 0.0224 

L45 A 61 62 10ASR427 0.1693 

L46 ABC 59 63 336AL427 0.1622 

L47 ABC 63 64 10ASR427 0.7655 

L48 B 65 66 10ASR427 0.2213 

L49 ABC 64 67 10ASR427 1.452 

L50 ABC 68 69 10ASR427 0.3347 

L51 ABC 67 70 10ASR427 1.1306 

L52 ABC 71 72 10ASR427 0.6802 

L53 B 72 73 10ASR427 0.0229 

L54 B 74 75 10ASR427 0.107 

L55 B 75 76 10ASR427 0.2811 

L56 A 72 77 30ASR427 0.0259 

L57 A 78 79 30ASR427 1.194 

L58 ABC 72 80 10ASR427 0.145 

L59 ABC 80 81 10ASR427 0.3988 

L60 C 81 82 10ASR427 0.0346 

L61 C 83 84 10ASR427 0.1773 

L62 C 84 85 10ASR427 0.118 

L63 ABC 81 86 10ASR427 0.2321 

L64 A 87 88 10ASR427 0.2086 

L65 A 88 89 10ASR427 0.091 

L66 ABC 86 90 10ASR427 0.5296 

L67 C 91 92 30ASR427 3.3797 

L68 ABC 21 93 40ASR427 6.4518 

L69 ABC 93 94 40ASR427 0.3972 

L70 ABC 95 96 40ASR427 0.9648 

L71 ABC 97 98 40ASR427 0.6654 

L72 ABC 98 99 10ASR427 0.3629 

L73 ABC 100 101 10ASR427 2.7921 

L74 ABC 98 104 40ASR427 0.9303 

L75 C 104 105 10ASR427 0.0273 

L76 C 106 107 10ASR427 0.8709 

L77 ABC 104 108 40ASR427 0.0305 

L78 C 108 109 10ASR427 0.0363 

L79 C 110 111 10ASR427 0.9992 

L80 ABC 108 112 40ASR427 0.2213 

L81 ABC 112 113 40ASR427 0.2939 

L82 ABC 114 115 40ASR427 0.4083 

L83 ABC 116 117 40ASR427 0.2026 

L84 ABC 117 118 40ASR427 0.9115 

L85 ABC 119 120 40ASR427 0.3926 

L86 ABC 120 121 336AL427 0.6663 

L87 ABC 122 123 336AL427 0.1252 

L88 ABC 123 124 336AL427 0.3863 

L89 ABC 124 125 40ASR427 0.3102 

L90 C 126 127 40ASR427 0.5507 
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L91 ABC 124 128 336AL427 0.5321 

L92 ABC 129 130 336AL427 3.1889 

L93 ABC 130 131 336AL427 0.4304 

L94 ABC 131 132 336AL427 0.1002 

L95 A 132 133 10ASR427 0.0479 

L96 A 134 135 10ASR427 0.0599 

L97 A 135 136 10ASR427 0.1086 

L98 ABC 132 137 336AL427 0.2634 

L99 ABC 137 138 10ASR427 0.0488 

L100 ABC 139 140 10ASR427 0.1686 

L101 ABC 140 141 10ASR427 0.1573 

L102 ABC 137 142 336AL427 0.0495 

L103 ABC 143 144 336AL427 0.237 

L104 C 144 145 10ASR427 0.0387 

L105 C 146 147 10ASR427 0.3133 

L106 C 147 148 10ASR427 0.1727 

L107 B 144 149 10ASR427 0.0579 

L108 B 150 151 10ASR427 0.5248 

L109 B 151 152 10ASR427 0.2227 

L110 B 152 153 10ASR427 0.0869 

L111 ABC 144 154 336AL427 0.3137 

L112 ABC 154 155 10ASR427 0.3412 

L113 C 156 157 10ASR427 1.0307 

L114 ABC 154 158 336AL427 0.1389 

L115 A 158 159 10ASR427 0.0747 

L116 A 160 161 10ASR427 0.3018 

L117 A 161 162 10ASR427 0.1781 

L118 ABC 158 163 336AL427 0.147 

L119 C 163 164 10ASR427 0.0815 

L120 C 165 166 10ASR427 0.3683 

L121 C 166 167 10ASR427 0.1981 

L122 ABC 163 168 336AL427 0.2334 

L123 A 168 169 10ASR427 0.0728 

L124 A 170 171 10ASR427 0.1993 

L125 ABC 168 172 336AL427 0.2485 

L126 B 172 173 10ASR427 0.0506 

L127 B 174 175 10ASR427 0.2067 

L128 ABC 172 176 336AL427 0.1787 

L129 B 176 177 10ASR427 0.0314 

L130 B 178 179 10ASR427 0.1254 

L131 ABC 176 180 336AL427 0.2469 

L132 A 180 181 10ASR427 0.0583 

L133 A 182 183 10ASR427 0.1569 

L134 ABC 180 184 336AL427 0.0717 

L135 A 184 185 10ASR427 0.0364 

L136 A 186 187 10ASR427 0.1284 

L137 ABC 184 188 336AL427 0.1187 

L138 B 189 190 10ASR427 0.1111 



154 

 

 

 

L139 B 190 191 10ASR427 0.0674 

L140 ABC 188 192 336AL427 0.1595 

L141 C 193 194 10ASR427 0.0698 

      

L142 ABC 192 195 336AL427 1.2174 

L143 ABC 195 196 30ASR427 0.0585 

L144 ABC 197 198 30ASR427 1.7426 

L145 ABC 195 199 30ASR427 0.1552 

L146 ABC 200 201 30ASR427 0.4701 

L147 AB 201 202 30ASR427 0.2865 

L148 C 201 203 30ASR427 0.1988 

L149 ABC 195 204 336AL427 0.7638 

L150 ABC 204 205 336AL427 0.6184 

L151 ABC 205 206 10ASR427 0.078 

L152 ABC 207 208 10ASR427 0.3467 

L153 A 208 209 10ASR427 0.2129 

L154 ABC 208 210 10ASR427 0.0552 

L155 A 211 212 10ASR427 0.2583 

L156 AC 210 213 10ASR427 1.0601 

L157 ABC 205 214 336AL427 0.1752 

L158 B 215 216 10ASR427 0.2127 

L159 ABC 214 217 336AL427 0.0945 

L160 B 218 219 10ASR427 0.2007 

L161 ABC 217 220 336AL427 0.0945 

L162 B 221 222 10ASR427 0.2496 

L163 ABC 220 223 336AL427 0.8372 

L164 ABC 223 224 10ASR427 0.0646 

L165 ABC 225 226 10ASR427 0.2907 

L166 B 226 227 10ASR427 0.1214 

L167 ABC 223 228 336AL427 0.1568 

L168 B 229 230 10ASR427 0.1338 

L169 ABC 228 231 336AL427 0.2139 

L170 AC 232 233 10ASR427 0.123 

L171 ABC 231 234 336AL427 0.164 

L172 B 235 236 10ASR427 0.1835 

L173 ABC 234 237 336AL427 0.4795 

Table A3 presents the installed load in the feeder. 

Table A3. Distribution Feeder Installed Load 

PSCA
D 

Label 

Fro
m 

Nod
e 

To 
Nod

e 
Type 

Balance
d / 

Unbalan
ced 

Phas
e 

Connecte
d kVA (A) 

pf (A) 
Connec
ted kVA 

(B) 
pf (B) 

Connec
ted kVA 

(C) 
pf (C) 

DL1 11 12 Distributed U ABC 150 0.919 150 0.8977 150 0.917 

DL2 14 15 Distributed U ABC 300 0.919 217.49 0.8977 343.45 0.917 

DL3 17 18 Distributed B ABC 150 0.913 150 0.9126 150 0.913 

DL4 26 27 Distributed U ABC 765 0.919 835 0.8977 285 0.917 



155 

 

 

 

DL5 29 30 Distributed U C 0 0 0 0 50 0.917 

DL6 33 34 Distributed U B 0 0 50 0.8977 0 0 

DL7 37 38 Distributed U C 0 0 0 0 0 0 

DL8 41 42 Distributed U ABC 167 0.919 192 0.8977 142 0.917 

DL9 44 45 Distributed U C 0 0 0 0 510 0.917 

DL10 48 49 Distributed U A 50 0.919 0 0 0 0 

DL11 52 53 Distributed U A 50 0.919 0 0 0 0 

DL12 57 58 Distributed U A 100 0.919 0 0 0 0 

DL13 61 62 Distributed U A 100 0.919 0 0 0 0 

DL14 65 66 Distributed U B 0 0 125 0.8977 0 0 

DL15 68 69 Distributed U BC 0 0 50 0.8977 120 0.917 

DL16 75 76 Distributed U B 0 0 250 0.8977 0 0 

DL17 78 79 Distributed U A 45 0.919 0 0 0 0 

SL18     Spot                 

DL19 84 85 Distributed U C 0 0 0 0 225 0.917 

DL20 88 89 Distributed U A 100 0.919 0 0 0 0 

DL21 86 90 Distributed U ABC 330   70   20   

DL22 91 92 Distributed U C 0 0 0 0 215 0.917 

SL23 103   Spot U ABC 1114 0.919 1186 0.8977 1195 0.917 

DL24 106 107 Distributed U C 0 0 0 0 120 0.917 

DL25 110 111 Distributed U C 0 0 0 0 120 0.917 

DL26 108 112 Distributed U ABC 175 0.919 340 0.8977 155 0.917 

DL27 117 118 Distributed U ABC 25 0.919 25 0.8977 25 0.917 

DL28 123 124 Distributed U ABC 60 0.919 360 0.8977 135 0.917 

DL29 126 127 Distributed U C 0 0 0 0 45 0.917 

DL30 130 131 Distributed U ABC 175 0.919 200 0.8977 185 0.917 

DL31 135 136 Distributed U A 125 0.919 0 0 0 0 

DL32 140 141 Distributed U ABC 150 0.919 50 0.8977 100 0.917 

DL33 147 148 Distributed U C 0 0 0 0 275 0.917 

DL34 151 152 Distributed U B 0 0 350 0.8977 0 0 

DL35 152 153 Distributed U B 0 0 250 0.8977 0 0 

DL36 156 157 Distributed U C 0 0 0 0 375 0.917 

DL37 161 162 Distributed U A 250 0.919 0 0 0 0 

DL38 166 167 Distributed U C 0 0 0 0 100 0.917 

DL39 170 171 Distributed U A 100 0.919 0 0 0 0 

DL40 174 175 Distributed U B 0 0 225 0.8977 0 0 

DL41 178 179 Distributed U B 0 0 50 0.8977 0 0 

DL42 182 183 Distributed U A 150 0.919 0 0 0 0 

DL43 186 187 Distributed U A 50 0.919 0 0 0 0 

DL44 190 191 Distributed U B 0 0 175 0.8977 0 0 

DL45 193 194 Distributed U C 0 0 0 0 100 0.917 

DL46 197 198 Distributed B ABC 50 0.919 50 0.9126 50 0.913 

DL47 200 201 Distributed U ABC 185 0.919 175 0.8977 185 0.917 

DL48 201 202 Distributed U AB 10 0.919 10 0.8977 0 0 

DL49 201 203 Distributed U C 0 0 0 0 75 0.917 

DL50 195 204 Distributed U ABC 320 0.919 295 0.897 260 0.917 

DL51 207 208 Distributed B ABC 25 0.919 25 0.9126 25 0.913 

DL52 208 209 Distributed U A 362 0.919 0 0 0 0 
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DL53 208 210 Distributed U ABC 0 0 125 0.8977 0 0 

DL54 211 212 Distributed U A 25 0.919 0 0 0 0 

DL55 210 213 Distributed U AC 0 0 0 0 325 0.917 

DL56 215 216 Distributed U B 0 0 100 0.8977 0 0 

DL57 218 219 Distributed U B 0 0 150 0.8977 0 0 

DL58 221 222 Distributed U B 0 0 25 89.77 0 0 

DL59 225 226 Distributed B ABC 25 0.919 25 0.9127 25 0.913 

DL60 226 227 Distributed U B 0 0 275 0.8977 0 0 

DL61 229 230 Distributed U B 0 0 50 0.8977 0 0 

DL62 232 233 Distributed U AC 0 0 0 0 275 0.917 

DL63 235 236 Distributed U B 0 0 100 0.8977 0 0 

DL64 234 237 Distributed U ABC 275 0.919 160 0.8977 150 0.917 

Table A4 presents the transformer data in the feeder. 

Table A4. Transformer Data 

From 
Node 

To 
Node 

Phase 
Type 

MVA 
Rating 

Primary 
kV 

Secondary 
kV 

Z1 
(%) X1/R1 

Z0 
(%) X0/R0 Configuration 

94 95 3-ph 25 27.6 27.6 3.6 22 3.6 22 Yg/Yg 

102 103 3-ph 3.6 27.6 8.32 5.92 10 5.92 10 D/Yg 

- - 3-ph 25/33/42 110 28.4 7.035 18.63     YD 

- - 3-ph 25/33/42 110 28.4 6.889 18.54     YD 

- - 3-ph 25/33/42 115.5 28.4 8.665 28.87     DY 

- - 3-ph 25/33/42 110 28.4 6.734 26.6     YD 

Table A5 presents the transformer tap changer data of the feeder.   

Table A5. Transformer Tap Changer Data 

General Tap changer 1 Tap changer 2 

From 
Node 

To 
Node 

Phase 
Type 

Phase 
Shift 

Max 
Buck 
(%) 

Max 
Boost 
(%) 

No. of 
taps 

Max 
kV 

Min 
kV 

No. 
of 
taps 

94 95 3-ph YNyn0 5 15 16 - - - 

102 103 3-ph Dyn1 - - - - - - 

- - 3-ph   - - - 2.84 -2.84 16 

- - 3-ph   - - - 2.84 -2.84 16 

- - 3-ph   - - - 5.68 -5.68 32 

- - 3-ph   - - - 2.84 -2.84 16 
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Appendix B: IEC61850 Communication Service Interface 

Figure B1 shows the Abstract Communication Service Interface (ACSI) defined in 

IEC61850 standard. Thee time critical communication service in IEC61850 comprises a 

peer-to-peer (publisher-subscriber) model or GOOSE (General Object-Oriented Substation 

Event) used for time-critical purposes, such as fast and reliable transmission of data 

between protection IEDs, from one IED to many remote IEDs and periodic sampled value 

services for transmissions. The peer-to-peer communication is a multicast type of 

communication and uses the only first two layers of the communication and bypass the 

others. 

 

 

Figure B1. Abstract Communication Services Interface in IEC61850 (Courtesy of ABB 

Substation Automation) 

This communication should be fast, and, for this reason, it cannot pass through all the seven 

layers of the OSI communication model. In addition to the periodical data transfer from 

the publisher to the subscriber for the GSE service, the GOOSE message will be sent 
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instantly upon the occurrence of any changes in the value or state of GOOSE dataset 

members. In order to increase the reliability of GOOSE message in comparison to client-

server type communication model, the GOOSE message is repeated after each trigger of 

transmission from the minimum time interval (Tmin). This could be as fast as 2 ms after 

the original event and can be increased up to Tmax (order of seconds), which will be set 

by the user in the GOOSE control block. The current status of the GOOSE data will be 

transmitted continuously every Tmax. This feature could be utilized to define an action for 

subscriber for supervising the connectivity of the GOOSE message if no message is 

detected by the subscriber  after the Tmax interval.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



159 

 

 

 

 

Appendix C: Wind Turbine Model Type 3 

 

 

Figure C1.  Wind Turbine Model Type 3 Used in this Study 
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Figure C2.  Machine Side Converter Control “dq” Value Transformation 
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Appendix D: Wind Turbine Model Type 4 

 

Figure D1. Wind Turbine Model Type 4 Used in this Study 
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Figure D2. Converters, DC link, Grid, and Machine Side Control I/O 

 

Figure D3.  Grid Side control, Identification of Current and Voltage Component 
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Figure D4. Grid side Control, Calculation of Id, and Iq Current 

 

 

Figure D5. Grid side, Decoupled Control 
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Figure D6. Grid Side, Transformation of Grid Side Voltage  
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Appendix E: Open Phase fault Additional Simulations 

Additional simulation in this section covers the different types of fault, switching 

operation, and double open phase fault. The list simulation and thire results are shown in 

Table E1. The different types of fault and switching operation simulation serves to 

demonstrate how the proposed algorithm for the open phase fault can be discriminated 

from any parallel faults and switching operation. The plus sign means that the ratio is 

greater than zero. Thus, the quantity of the current component in the table increases after 

the instance of the fault while the negative sign represents a decrease in the quantity after 

the fault. The double sign represents the intensity of increase or decrease compared to the 

single sign.  

Table E1. Rate of the Change of Current Symmetrical Components 

No. Fault or switching type ∆I1

∆t
 

∆I2

∆t
 

∆I0

∆t
 

∆V1

∆t
 

Figure No. 

1 Three phase fault ++ NA NA - Figure E1  

2 Two phase fault ++ ++ NA - Figure E3 

3 Two phase to ground ++ + + - Figure E5 

4 Ground fault ++ ++ ++ - Figure E8 

5 Energizing unbalance 

load 

+ + + NA Figure E9 

6 De-energizing 

unbalance load 

- - - NA Figure E12 
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Figure E1. Three phase Fault (ABCG) Power and Voltage  
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Figure E2. Three Phase Fault (ABC) Current  
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Figure E3. Two Phase Fault (BC) Power and Voltage  
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Figure E4. Two Phase Fault (BC) Current  
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Figure E5. Two Phase to Ground Fault (BCG) Power and Voltage  
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Figure E6. Two Phase to Ground fault (BCG) Current  
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Figure E7. Ground Fault (BG) Power and Voltage  
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Figure E8. Ground Fault (BG) Current  
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Figure E9. Energizing Unbalance Load Power and Voltage  
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Figure E10. Energizing Unbalance Load Current  
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Figure E11. De-energizing Unbalance Load Power and Voltage  
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Figure E12. De-energizing Unbalance Load Current  
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Figure E13 and Figure E14 presents the double open phase fault at the point where both 

sources of DG and grid are feeding the fault on  the opposite side. The first open phase 

occurs at t=2.5 second and the second open phase occurs at 3.5 s. Figure E15 and Figure 

E16, however, show the open phase fault at point 2 where the fault is on the same side of 

substation and DG. The current sequence component rate of the change at t=2.5 second 

and t=3.5 sec, respectively, and for both simulations represent the signature of the open 

phase, which is discussed in chapter 5, where sequence positive current decreases while 

negative and zero components are increasing. 

 

Figure E13. Two Open Phase Fault (BC) Power and Voltage (point 2) 
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Figure E14. Two Open Phase Fault (BC) Current (point 2) 
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Figure E15. Two Open Phase Fault (BC) Power and Voltage (point 1) 



181 

 

 

 

 

 

Figure E16. Two Open Phase Fault (BC) Current (point 1) 



182 

 

 

 

Curriculum Vitae 

 

Name:   Mansour Jalali  

 

Post-secondary  Iran University of Science and Technology-IUST 

Education and  Tehran, Iran  

Degrees:  Bachelor’s in Electrical Engineering - Power     

Thesis Title: Designing the variable frequency drive for the 

induction motors    

1985-1989  

 

University of Waterloo  

Waterloo, Ontario, Canada 

Master of Applied Science in Electrical & Computer Engineering  

Thesis Title: Contribution of DFIG type wind turbine in primary 

Frequency regulation  

2008-2011  

 

 

University of Western Ontario 

London, Ontario, Canada 

Ph.D. in Electrical and Computer Engineering  

Thesis Title: 

2012-2019 

 

Related Work  Principal Engineer Kinectrics (Ex Ontario Hydro Research)    

Experience   RTDS LAB, EMT Modeling, System Study 

2011-Present  

 

ABB Inc. Substation Automation 

Last position- Chief Engineer  

1995-2010    

 

 

 

Recent Publications: 
 

M. Jalali, S. Cress, A. Zamani, Over current protection for underground Distribution 

system- Chapter for EPRI Bronze Book-2016   

 

M. Jalali, NERC PRC-005 Best Practices for Compliance, CEATI International -2019 

 

M. Jalali, Guide for IEC61850 Application, CEATI International -2019 

   


	Synchrophasor Based Islanding & Open phase fault Protection in Distribution Systems
	Recommended Citation

	MansourJalali Desertation_Final_April26

