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Abstract 

Hair cortisol content (HCC) is a novel biomarker that uniquely captures retrospective 

systemic cortisol exposure. This thesis aimed to assess how different hair growth rates effect 

HCC timelines in Cushing’s and Addison’s patients, investigate the relationship between 

HCC and age, puberty, sex and BMI in healthy children and adolescents, and assess novel 

methods to improve cortisol extraction and recovery. Retrospective HCC timelines derived 

from a 0.75 cm/month growth rate best matched 50% of patients’ medical records rather than 

the historically assumed 1 cm/month. HCC correlated positively with age (p<0.0001), 

puberty status (p<0.001), and BMI (p<0.01) in males and females 7-17 years old. Nitrogen 

evaporation resulted in greater cortisol recovery than air evaporation (p=0.0003), and hair 

digestion using NaOH resulted in more rapid extraction of cortisol. These results provide 

incremental improvements to previous methods and assumptions for HCC analysis and 

elucidate normal HCC changes in children and adolescents. 
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Summary for Lay Audience 

Cortisol, the main glucocorticoid hormone in humans, is part of the normal stress response 

and has historically been assessed in serum, saliva, and urine. Long-term assessment from 

these acute measures requires repeated collection over time which is both invasive and 

costly. Cortisol in scalp hair has been growing in popularity as a less invasive, longer-term 

correlate of cortisol exposure. We retrospectively evaluated whether cortisol levels in hair 

correlated to reported symptomatology in the medical records of Cushing’s or Addison’s 

patients over months to years. Historical hair cortisol timelines generated by segmental hair 

analysis of these patients reflected reported changes in clinical states. In another study, we 

collected hair samples from a healthy cohort of 250 children and adolescents to assess hair 

cortisol changes with age, puberty status, BMI and sex. Hair cortisol increased with age, 

puberty status and BMI, but did not differ between sexes or correlate with age-adjusted BMI. 

In an effort to develop a high-throughput protocol for hair cortisol analysis we tried two 

methods of hair digestion. We assessed sodium hydroxide or enzymatic hair digestion to 

decrease extraction time and improve method reproducibility compared to the standard 

method which requires mincing with scissors and a 16-hour methanol extraction. We were 

unable to assay cortisol from the enzyme digests but were able to recover cortisol using 

sodium hydroxide digestion. When comparing two evaporation methods, we found that 

nitrogen evaporation provides a better environment for hair cortisol recovery.  
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Chapter 1  

1 Introduction 

The discovery of the corticosteroids was one of the seminal events in understanding the 

biology of the endocrine system and physiological responses to stress. Although 

corticosteroid biology has been studied for some time, many questions remain, notably as 

to the impact of stress on corticosteroids and how altering stressors may alter 

corticosteroid production. The use of corticosteroid concentrations in hair as biomarkers 

of stress has now been established for a number of conditions, but questions remain as to 

fundamental issues such as the ontogeny of corticosteroid deposition in hair. 

1.1 Cortisol 

1.1.1 Regulation and Major Physiological Effects  

Cortisol is regulated by the hypothalamic-pituitary-adrenal (HPA) axis (Fig. 1). The 

function of this system is to facilitate adequate response to various physiological stressors 

and restore systemic homeostasis in order to protect the body from overshooting the 

stress response[1]. In an acute stress paradigm, cortisol ensures sufficient energy levels 

and blunts inflammation to overcome the stressor[1]. It does this by increasing blood 

glucose via the mobilization of energy stores and the inhibition of additional storage, 

causes vasoconstriction and diversion of blood to muscles, and modulates immune cells 

and inflammatory gene expression[1]. Chronically elevated cortisol, however, results in 

impaired glucose and fat metabolism, inhibits bone formation, and negatively impacts 

health resulting in poor outcomes[2–4]. These symptoms are typical of Cushing’s, a 

disease resulting from too much cortisol[5]. In response to stress, hypothalamic 

paraventricular cells secrete corticotropin-releasing hormone (CRH) into the hypophyseal 

portal system. Anterior pituitary corticotrophs respond to CRH by releasing 

adrenocorticotropic hormone (ACTH) into systemic circulation. This hormone is derived 

from the cleavage of pro-opiomelanocortin (POMC), which also produces a-melanocyte 

stimulating hormone (a-MSH) [6,7].  
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Cortisol is produced in the adrenal glands, which are found sitting above each kidney. 

The adrenal glands are composed of an outer cortex and an inner medulla. Within the 

cortex, zona fasciculata cells are stimulated by ACTH to produce and release cortisol. 

Cortisol is regulated in a typical negative feedback manner whereby cortisol travels back 

to both the hypothalamus and pituitary, subsequently inhibiting secretion of CRH and 

ACTH, respectively (Fig. 1). One symptom of adrenal insufficiency, a disease of too 

little cortisol, is darkening of the skin[8,9] which is caused by a lack of negative feedback 

and continued cleavage of POMC to generate ACTH and a-MSH. The a-MSH 

stimulates melanocytes in the skin. In healthy individuals, systemic cortisol secretion 

follows a circadian secretion pattern with lowest levels found late at night and peak levels 

found early in the morning[10,11]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hypothalamus

Anterior 
Pituitary

Adrenal Cortex

CORTISOL

CRH 

ACTH 

Physical or 
Psychological 

Stress 

Figure 1: Activation and Negative feedback of the Hypothalamic-Pituitary-

Adrenal (HPA) Axis. ACTH, Adrenocorticotropic Hormone; CRH, 
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1.1.2 Cortisol Biosynthesis 

Beginning with cholesterol, steroid hormone synthesis, or steroidogenesis, results in the 

production of numerous steroid hormones. Cholesterol can be sourced from either de 

novo synthesis in the endoplasmic reticulum or from circulating cholesterol[12,13]. Cells 

with steroidogenic capacity uptake low-density lipoproteins (LDL) via receptor-mediated 

endocytosis after binding the LDL receptor, or high-density lipoprotein (HDL) upon 

binding of scavenger receptor B1 (SRB1)[13–15]. Enzymes within the endosome cleave 

cholesterol esters from these lipoproteins resulting in the export of cholesterol into the 

cytoplasmic compartment[12,13].  

Cytoplasmic cholesterol is trafficked towards the outer mitochondrial membrane (OMM) 

(Fig. 2) or stored in lipid droplets associated with the outer OMM [14]. During maximal 

steroidogenesis, steroidogenic acute regulatory protein (StAR) facilitates cholesterol 

influx from the OMM to the inner mitochondrial membrane (IMM)[13,14,16]. 

Cholesterol is converted to pregnenolone by side-chain cleavage enzyme, P450scc, found 

associated with the IMM (Fig. 2)[13,14]. In the adrenal zona fasciculata, P450c17 

converts pregnenolone to 17OH-pregenenolone. Pregnenolone and 17OH-pregnenolone 

are metabolized by 3β-hydroxysteroid dehydrogenase type 2 (3βHSD2) to progesterone 

and 17OH-progesterone, respectively. Progesterone can be metabolized to aldosterone 

via a multi-step pathway or, alternatively, to 17OH-progesterone by P450c17. The 17OH-

progesterone pool from either of these two reactions is then hydroxylated by P450c21 to 

11-Deoxycortisol, and finally by P450c11β to complete the biosynthesis of cortisol (Fig. 

2). The majority of cortisol synthesis occurs in the adrenal gland, with several other 

tissues including the liver, CNS, adipose and skin[17,18] having the capacity for extra-

adrenal cortisol steroidogenesis. Cortisol that is released into circulation can interact with 

the glucocorticoid receptor (GR) that is found ubiquitously throughout the body.  
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Figure 2: Mitochondrial Intracellular Cholesterol Trafficking and Cortisol 

Steroidogenesis of a Cortisol Producing Cell. StAR, Steroidogenic Acute Regulatory 

Protein. Adapted from [14,15] 

1.1.3 Cortisol Transport, Metabolism, and Excretion 

Most cortisol (90-95%) is transported in the blood bound to corticosteroid-binding 

globulin, while the remainder travels as free cortisol[19,20]. Free cortisol diffuses 

through the cell membrane and binds to the cytoplasmic GR. The cortisol-GR complex is 

translocated into the nucleus where it binds to hormone response elements to regulate 

target gene transcription[21,22]. Interestingly, cortisol binds the mineralocorticoid 

receptor (MR) with such high affinity, that low cortisol levels will maximally activate the 

MR while minimally activating the GR[23,24]. As a protective mechanism to minimize 

off-target activation of the MR, mineralocorticoid-responsive tissues such as the kidneys 

express 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which oxidizes cortisol 

to inactive cortisone[14,18,25,26]. Muted expression of 11β-HSD2 leads to apparent 

mineralocorticoid excess, a syndrome that mimics excess mineralocorticoids leading to 

symptoms such as hypertension and hypokalemia[26]. On the other hand, 11β-

hydroxysteroid dehydrogenase type 1 (11β-HSD1) increases intracellular cortisol levels 

by reducing cortisone to cortisol[18,26,27]. Activation by 11β-HSD1 is important in 

adipocyte differentiation and expression is elevated in obese individuals[18]. 
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The half-life of cortisol is about 60 – 80 minutes[11,26]. Metabolism of cortisol prior to 

excretion primarily occurs in the liver and kidneys, with a small fraction being excreted 

in the urine without prior metabolism[26,27]. Cortisol and cortisone are reduced in a 

multistep pathway to produce reduced metabolites that can be glucuronidated or sulfated, 

and eventually excreted[26]. 

1.2 Changes in the HPA axis 

Physiological changes in HPA reactivity are a consequence of signals that inform the 

body of the time of day[28,29] or season[30,31], the current developmental stage of 

life[32–34], or other environmental signals[35] that require the so-called sympathetic 

(“fight-or-flight”) system. The appropriate HPA response is both situational- and time-

dependent, involving complex regulatory biology with intricate control to avoid negative 

outcomes from too much or too little cortisol production. This dynamic system can 

become dysregulated by psychological experiences or pathophysiological changes to 

developmental signals, or the development of lesions within the HPA axis.  

1.2.1 Pathological changes in HPA function 

Aberrations in how the body responds to any of these signals may arise from the way in 

which an individual’s brain perceives environmental stressors with memories of past 

experiences or the nature of current circumstances[1,36]. These types of stress-induced 

changes, at least in part, might be responsible for propagating symptoms of PTSD, 

depression and anxiety[37,38]. Though mostly beyond the scope of the current thesis, 

mental health is briefly discussed in chapter 2. Cellular changes at any level of the HPA 

axis might also be responsible for aberrant stress response signaling; the two most 

common forms of HPA dysregulation are Adrenal Insufficiency (AI) and Cushing’s 

Syndrome (CS)[5,8,39]. 

1.2.1.1 Hypocortisolemia 

Adrenal insufficiency is a potentially life-threatening condition wherein the adrenal 

glands fail to produce enough cortisol[8,40,41]. The precise subclass of AI can be 
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determined based upon where the abnormality occurs within HPA axis. Primary AI 

results from a loss of function at the level of the adrenal glands; secondary AI occurs at 

the level of the pituitary gland; and tertiary AI originates at the level of the hypothalamus 

(Fig. 3)[42].  

 

Figure 3: Classification of AI. A) Primary; B) Secondary and C) Tertiary AI. Adapted 

from [42] 

Addison’s disease is the most common form of primary AI and is caused by 

autoantibody-induced destruction of the cortisol-producing cells in the adrenal 

glands[8,43]. Addison’s disease has a prevalence of about 1 in 10,000[8] and occurs most 

frequently in women above the age of 30[42]. Autoantibodies are found against several 

steroidogenic enzymes within the adrenal glands; anti-21-hydroxylase antibodies being 

the most common[44]. Congenital adrenal hyperplasia (CAH), an autosomal recessive 

condition, is another form of primary AI, where genetic mutations in one or more of the 

cortisol biosynthetic enzymes result in the inability to produce adrenal hormones[45,46]. 

Notably, mutations in the CYP21A2, HSD3B2, CYP11B1, CYP17A1 or STAR genes 

A)

  

B) C)
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can have profound effects on an individual’s ability to produce adrenal hormones. 

Reduced activity of the 21-hydroxylase (P450c21) enzyme resulting from mutations in 

CYP21A1 account for 95% of all CAH cases[40,46]. Combined, the prevalence of CAH 

is about 1 in 15,000[46].  

Primary AI might also arise from medications that inhibit steroidogenesis or infections 

within the adrenal glands[42,43]. Drug-induced AI can result from direct inhibition of 

steroidogenesis, and the induction or inhibition of cortisol metabolizing enzymes[43]. 

The antifungal ketoconazole inhibits various steroidogenic enzymes and is commonly 

used to treat hypercortisolism[39,42,43]. Barbiturates, phenytoin, and rifampin induce 

P450-enzymes resulting in lower systemic of exposure to cortisol[47,48]. Infectious 

adrenalitis is the most common form of primary AI in developing nations resulting from 

tuberculous, HIV-related cytomegaloviral, or syphilis infections[42].  

Secondary and tertiary AI can occur due to hypothalamic or pituitary tumors, or 

alternatively from surgery and radiotherapy used to eliminate these tumors[42]. 

Administration of high-dose exogenous glucocorticoids is the most common cause of 

tertiary AI[41,43]. Long-term administration of exogenous glucocorticoids suppresses the 

HPA axis by inhibiting the release of CRH and ACTH from the hypothalamus and the 

anterior pituitary gland, respectively[41].  

Diagnosis of AI is frequently delayed because many of the symptoms are non-

specific[41]. Initial symptoms typically include fatigue, loss of appetite, nausea, weight 

loss, and muscle or joint pain[40,42,49]. More specific signs of AI involve skin 

hyperpigmentation from enhanced activation of skin melanocortin 1 receptors (MC1R) 

by high ACTH levels, salt cravings, and orthostatic hypotension due to mineralocorticoid 

deficiency[9,43]. In the case of primary AI, symptoms become apparent when 90% of 

adrenocortical tissue has already been lost[42]. Low cortisol levels are a clear indicator of 

AI, but typically hyponatremia and hyperkalemia are identified before more specific 

cortisol investigations are warranted.  

Primary treatment revolves around glucocorticoid replacement therapy, typically in the 

form of hydrocortisone administered at doses sufficient to mimic the overall cortisol 
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exposure that might be expected in a healthy individual[43,50]. Most of the 

hydrocortisone is given in the morning to replicate the circadian secretion of cortisol with 

increased doses suggested during minor illness to facilitate appropriate physiological 

response to the stress[43]. Mineralocorticoid replacement with fludrocortisone is 

indicated to help control body weight and blood pressure[40,51]. Therapeutic drug 

monitoring is important in these patients to prevent side effects from excess 

glucocorticoid exposure.  

1.2.1.2 Hypercortisolemia 

Inappropriately high exposure to glucocorticoids result in many signs and symptoms that 

are typical of CS[52]n. Like AI, the classification of CS is dependent upon the primary 

cause of hypercortisolism (Fig. 4). 

 

Figure 4: Classification of Cushing’s Syndrome (CS). 

The most common cause of CS is exogenous administration of glucocorticoids, known as 

iatrogenic CS[52]. Glucocorticoids are prescribed for many common inflammatory 

conditions including skin conditions like psoriasis[53], as well as life-threatening 

indications such as immunosuppression after organ transplantation[54] or in severe 

autoimmune diseases like systemic lupus erythematosus, lupus nephritis[55], or ANCA-

associated vasculitis[56]. Dosage reduction of exogenous steroids is indicated in less 

severe indications. Glucocorticoids still remain important in the standard of care in many 

life-threatening indications because their benefits outweigh the associated side effects.  

Cushing's 
Syndrome (CS)

Endogenous:
Overproduction of cortisol

Cushing's Disease (CD):
Pituitary Tumor, ~70% of endogenous CS

Adrenal Tumor, ~15% of endogenous CS

Other: Ectopic ACTH secretion, Hypothalamic 
~15% of endogeouns CS

Exogenous (Iatrogenic):
Administration of exogenous glucocorticoids
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Endogenous CS occurs less frequently, with the highest estimates indicating a prevalence 

of approximately 10,000 cases in the Unites States[57]. ACTH-dependent CS is the most 

common form of endogenous CS[39,52]. Cushing’s Disease (CD) is a subset of ACTH-

dependent CS caused by ACTH secreting micro- or macroadenoma in the pituitary that 

do not adequately respond to negative feedback signals from circulating 

cortisol[47,52,58]. Adrenal neoplasms and hyperplasia of steroid-producing cells account 

for the next most common form of endogenous CS. This is known as ACTH-independent 

CS since the adrenal tissue continues to produce cortisol in the absence of signaling from 

the pituitary; ACTH levels are low-to-normal in these patients[47]. Ectopic ACTH-

secreting tumors, such as those found in non-small cell lung cancer, secrete ACTH and 

result in excess cortisol production by the adrenal gland[59].   

Patients with overt CS have a characteristic Cushingoid phenotype; on the other hand, it 

is often difficult to diagnose patients with mild-to-moderate CS because of the 

overlapping signs and symptoms with other conditions[47,52]. Signs that best 

discriminate CS include easy bruising, facial plethora, proximal muscle weakness, striae 

(reddish purple stretch marks), dorsocervical and supraclavicular fat, facial fullness, and 

obesity[39,52]. Women commonly have menstrual abnormalities including amenorrhea, 

grow facial hair (hirsutism), are balding, and have acne[47,52]. Many of the clinical 

findings overlap with obesity and metabolic disorders and include hypertension, 

cardiovascular disorders, hypokalemia, polycystic ovarian syndrome, and diabetes 

mellitus[40]. Symptoms include depression, fatigue, irritability, and decreased 

concentration, libido and memory[39,52]. CS in children is most apparent by weight gain, 

with decreasing growth velocity, short stature, and delayed or pseudo precocious 

puberty[39,60]. 

The primary goal in these patients is to eliminate the signs and symptoms of CS and treat 

comorbidities by normalizing cortisol levels or blocking its action at the receptor 

level[39,61]. Surgical resection of the pituitary adenoma or adrenalectomy is indicated as 

first line therapy in CS and often restores normal HPA control. However, in about 20-

30% of patients, surgery might not be possible due to the location of the tumor, risks 

associated with repeated surgery or other underlying conditions[39,61]. In this group of 
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patients, the goal is to minimize the effects of excess cortisol. Second-line therapy in 

eligible patients is radiotherapy to target the lesioned tissue, or medicinal intervention to 

lower cortisol levels or inhibit GR binding in target tissues[39]. Although not approved in 

many countries for the CS, the cortisol synthesis inhibitor ketoconazole is often used to 

lower cortisol production in these patients but is associated with a risk of 

hepatotoxicity[52,61,62]. Ketoconazole inhibits CYP17A1, CYP11A1, CYP11B1, and 

CYP11B2[61]. Mifepristone is a GR antagonist that is approved to reduce blood glucose 

in these patients, but side effects are frequent because systemic cortisol levels remain 

elevated[39,58,61]. Mifepristone has off-target affinity for the progesterone receptor 

leading to endometrial thickening in women and is also used for medical 

abortions[39,58]. Other therapies include somatostatin analogues[58,63] and dopamine 

receptor agonists[39,58]. 

1.2.2 HPA changes during adolescence 

Significant research has gone into the development of the HPA axis during the peri- and 

post-natal period, much of which is influenced by the mother’s surroundings and 

exposure to stress. The ontological changes in HPA function during this period are 

extremely important as they set the trajectory for the individuals’ life, but further 

discussion is beyond the scope of this thesis. After the neonatal period, the next major 

period of change occurs around puberty[64].  

The maturation of the hypothalamic-pituitary-gonadal (HPG) system is an important 

milestone that allows an organism to reproduce. The hormones produced during this 

process: estrogens, testosterone and dehydroepiandrosterone sulfate (DHEA-S), interact 

with the HPA axis at many levels[7,64]. Steroidogenic enzymes compete for the basic 

cholesterol precursors, but also interact via known and unknown mechanisms at the level 

of the hypothalamus, pituitary, and adrenal glands[7]. Most literature on the topic derives 

from animal models with a paucity of data in humans. Some studies have shown that 

young males have high levels of cortisol which decreases before rising again at puberty to 

reach the levels seen in adults[65–67]. Sexually dimorphic differences in cortisol vary 

based upon the time of day samples were taken, the matrix assayed, and the 
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developmental stage of the individuals being studied. Increased basal HPA activity with 

age and puberty are fairly consistent, especially in females[32,68].  

1.3 Measurement of Cortisol 

Diagnostic evaluation of cortisol has classically used sampling of the serum, saliva, or 

urine. The preferred assessment depends upon the clinical suspicion of high or low 

cortisol and the subset (i.e. primary, secondary or tertiary) of the disease in question. 

Specific tests are useful for diagnosing CS, while others are more helpful for AI; cortisol 

is frequently assessed in combination with ACTH. Circadian secretion of cortisol is an 

important aspect of cortisol assessments, since the time of day significantly impacts the 

anticipated reference range. 

1.3.1 Cortisol Assessments for AI Diagnosis 

Exploring the suspicion of AI can be pursued by measurement of a morning serum 

cortisol concentration. Healthy individuals have high morning cortisol concentrations of 

about 150 to 550 nmol/L (10 - 20 mcg/dL)[69,70]. An individual with morning cortisol 

below 100 nmol/L (~3 mcg/dL) is likely to have AI[69]. If morning cortisol is low, this 

would predict even lower levels later in the day, or a disruption in the normal circadian 

rhythm. ACTH levels might help with a more conclusive diagnosis. If cortisol is low and 

ACTH levels are very high, then primary AI is likely (Fig. 3). If both cortisol and ACTH 

are low, then secondary or tertiary AI should be considered (Fig. 3). Follow-up tests are 

indicated after an abnormal morning cortisol measurement.   

The ACTH stimulation test uses synthetic ACTH in order to investigate the likelihood of 

primary AI. In the morning, healthy individuals respond to an ACTH test by producing 

more cortisol than later in the day, whereas the amount of cortisol produced by AI 

patients does not differ throughout the day. Normally serum cortisol rises to 

approximately 500 - 550 nmol/L (18 - 20 mcg/dL) within 30 minutes of a high-dose (250 

mcg) IV ACTH stimulation test[71]. If ACTH challenge results in normal response, it is 

probable that the individual does not have primary AI.  
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Corticotrophin releasing hormone stimulation tests can be helpful when trying to 

differentiate between secondary and tertiary AI. Synthetic CRH (ACTHREL; 1 mcg/kg 

or 100 mcg total IV) is injected and blood samples are drawn at intervals for up to 2 

hours to assess ACTH levels. In healthy individuals, ACTH and cortisol concentrations 

increase by 400% and 250% within the first hour, respectively[72]. A robust and 

prolonged ACTH secretion profile is seen in tertiary AI as a result of the novel signal to 

release ACTH[73]. On the other hand, there is little ACTH response in patients with 

secondary AI[73].  

Additional tests such as the metyrapone test, and the insulin-induced hypoglycemia test 

might also be used by specialists to determine the severity of AI. The metyrapone test 

assesses partial ACTH deficiency by inhibiting 11𝛽-hydroxylase, the final biosynthetic 

step in cortisol synthesis leading to lower cortisol and increased CRH and ACTH[74]. 

Low blood glucose is induced in the insulin-induced hypoglycemia test to test if the 

individual has a normal cortisol response at intervals following insulin 

administration[74]. In patients with sufficient evidence of primary AI, assessment of 

serum antibodies against the steroidogenic enzymes P450scc, 17α-hydroxylase and 21-

hydroxylase might elucidate the cause of their AI[9]. 

1.3.2 Cortisol Assessments for CS Diagnosis 

Guidelines recommend assessing cortisol in patients with signs and symptoms of CS. 

Generally, no single test can be used alone to accurately diagnose CS[75]. Initial testing 

can include urinary free cortisol (UFC; at least two tests), late-night salivary cortisol (two 

measurements), 1-mg overnight dexamethasone suppression test (DST), and the longer 

low-dose DST (2 mg/d for 48 h)[47,75].  

Urinary cortisol collected over 24 hours has been a mainstay of CS diagnosis for many 

years[75,76]. UFC represents the integral of cortisol exposure for an entire day by 

quantifying free cortisol (i.e. active, not bound to plasma proteins) that is excreted by the 

kidney[76]. Assessing urinary free cortisol alone results in relatively high false negative 

rates[75]. In most cases, the false negative rate is driven by individuals with mild or 

moderate CS and not overt CS. Specific normal values differ between labs, but generally, 
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the UFC upper limit of normal (ULN) is approximately 138 nmol/24 hours (50 μg/24 

hr)[77]. Limitations of UFC include the requirement of collecting urine for 24 hours, the 

exclusion of individuals with kidney problems, alteration by hydration status, low 

sensitivity, and inability to capture changes in the circadian rhythm[78].  

Measuring late-night salivary cortisol (LNSC) is an important tool used to distinguish 

between individuals with elevated cortisol due to overlapping conditions or CS[28]. 

Obese and depressed individuals have preserved circadian cortisol secretion, but those 

with CS do not[75]. Salivary cortisol is preferred by many patients because it is non-

invasive and can be collected at home.  

The 1 mg DST involves the administration of 1 mg of dexamethasone between 11 PM 

and midnight followed by the measurement of serum cortisol at 8 AM the next 

morning[47]. In healthy individuals the administration of a supraphysiological 

glucocorticoids suppresses the output of CRH, ACTH, and cortisol. Suppressed morning 

serum cortisol with a cut-off below 1.8 mcg/dL (50 nmol/L) provides 100% sensitivity 

and 91% specificity for discerning CS[79]. The two-day, low-dose DST requires 

dexamethasone to be dosed every six hours for two days, with a total dose of 4 mg 

(2mg/day). Normal response to this prolonged dosing schedule is to have decreased UFC, 

serum cortisol, and ACTH[75].  

For patients with abnormal initial results, follow-up tests such as the 8 mg high-dose 

dexamethasone test can be used to discern a diagnosis of Cushing’s disease versus non-

pituitary causes of CS such as adrenal or ectopic ACTH tumors[75]. There is also a 

subset of CS patients with a cyclical disease, which means that they undergo periods of 

excess cortisol production followed by normal cortisol secretion[80,81]. Cyclical CS 

(CCS) is difficult to diagnose using acute plasma or saliva samples because the patient 

might be experiencing a period of normal cortisol secretion. Experienced 

endocrinologists might implement more advanced testing in their diagnosis.  
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1.3.3 Cortisol in Hair 

Over the past decade, there has been growing interest into the utility of assessing human 

scalp hair as a matrix for quantifying exposure to cortisol. Hair cortisol represents a much 

larger time window than the assessments discussed above, with segments of hair 

representing a month or more in historical cortisol exposure.  

1.3.3.1 Hair Physiology 

Mammalian hair functions as a protective layer from the cold and ultraviolet radiation, 

thermoregulator, sensory organ that provides tactile information, and as an outward 

display involved in social and sexual communication[82]. Hair is found almost 

ubiquitously on the body expect for parts of the external genitalia, sole of the foot, palm 

of the hand, and the buccal surface of the lips[82]. Terminal hair is the thick and 

pigmented, androgen-dependent hair found in the pubic region, axilla, scalp, beard, and 

chest[82,83]. Vellus hair is the thin, lightly colored hair that protrudes from the skin prior 

to puberty and is more noticeable on regions of the body not typically covered in darker 

hair (i.e. forehead, eyelids, or the ear lobe)[82,83]. 

Hair is a derivative of the epidermis that is principally composed of fully keratinized 

epithelial cells[82]. The visible hair shaft protrudes externally from the skin, growing 

outwards from a hidden follicle[82–84]. The hair shaft is composed of a thin outer 

cuticle, a larger cortex, and a smaller central medulla[82–84]. Microfibrils, composed of 

densely packed filament proteins, comprise approximately 65-95% of the matrix, with the 

remainder including 1-9% lipids, 3-5% water, and <1% trace elements[84,85]. Alpha-

keratin and keratin-associated proteins are the major protein constituents of the matrix 

and have abundant cysteine residues that form crosslinks to maintain structural rigidity 

and hydrophobicity of the hair structure[82,85]. Hair color is determined by the amount 

of melanin pigment in hair[83,85,86]. Melanin, a blackish-brown pigment found in the 

hair, skin, and eyes, is produced by melanocytes[82]. 

 The hair follicle is an important structure responsible for maintaining and replenishing 

hair. It is found near the junction of the epidermis and dermis and is principally 
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composed of the inner and outer root sheath and the dermal papilla[82,85]. Structures 

closely associated with the follicle include sweat and sebaceous glands, the arrector pili 

muscle, and the stem cell bulge that controls the rate of hair growth and re-growth (Fig. 

5)[82,83]. The dermal papilla is highly vascularized by arterioles that originate in the 

subcutaneous fat[82]. Nutrients are provided by the vasculature allow for rapid 

keratinocyte proliferation and hair growth. Endogenous and exogenous compounds 

within systemic circulation also enter the follicular microenvironment through this 

vasculature[82,83,85,86].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The hair follicle and its associated structures. Adapted from [69] 
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Hair follicles grow in a cyclical pattern that is divided into three phases: 1) Growth or 

Anagen phase; 2) Transitional or Catagen phase; and 3) Resting or Telogen 

phase[82,83,87,88]. Genetic and environmental factors determine the length of each of 

these phases. Anagen is the active growth phase[82,83] whereby bulge progenitor cells 

proliferate into the skin, differentiate into the various parts of the follicle, and drive 

proliferation and differentiation of keratinocytes[89]. The length of this phase determines 

how long an individual’s hair might grow and can last between 2 and 7 years[82–84]. 

Cell proliferation rapidly decreases in the catagen phase followed by regression of the 

follicle for several weeks. Follicular resting occurs during telogen phase and upon 

completion the hair will fall out. Approximately 10-15% of hairs are in telogen at any 

moment[82,83]. This cycle repeats for an individual’s lifetime unless interrupted by age, 

androgen, or disorder-related hair loss[17,90].  

1.3.3.2 Integration and stability of compounds in hair 

Compounds, such as cortisol, can be incorporated into hair from the blood, sweat, sebum, 

and from external environmental contamination[85,86,91]. Passive diffusion of 

compounds from the vasculature into dividing cells of the follicle is the principal 

mechanism thought to account for the incorporation of compounds into hair[83,92]. By 

this mechanism, the concentration of a compound that is added to a growing hair is 

proportional to the plasma concentration at that time[83,92]. In a similar paradigm, 

diffusion of compounds into the follicular microenvironment might precede excretion 

into sweat and sebum that coats the growing hair[83].  

The physiochemical properties of a compound and the rate of metabolism determine the 

extent to which it is incorporated into hair. Generally, small, lipophilic molecules have 

the greatest capacity to diffuse into the lipophilic structure of hair[85,86,93]. Cortisol’s 

low molecular weight (362 Daltons) and lipophilic structure permits passive diffusion 

through the cell membrane to bind the GR[21]. Similarly, these properties allow cortisol 

to readily diffuse into hair as demonstrated by the quantification of tritium-labelled 

cortisol in the hair of non-human primates after intravenous injection[94]. Lastly, as 

documented in hair analysis for drugs of abuse such as cocaine, passive exposure in the 
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environment might account for an additional deposition into hair[83,85]; hydrocortisone 

preparations used for scalp psoriasis might contribute to hair cortisol, for example. 

1.3.3.3 Hair Cortisol 

Serum and salivary cortisol are valuable for capturing aberrations in cortisol reactivity at 

specific points in time such as assessing changes in circadian secretion or response to 

stimulation or suppression tests. Salivary cortisol has the benefit of being less invasive 

and representative of free cortisol. Both measures, however, are less suitable for 

assessing questions associated with adrenal steroid production and exposure over time. 

Repeated collection might overcome this shortcoming, but this becomes expensive, time-

consuming, and highly invasive in the case of serum cortisol[92].  

Twenty-four-hour UFC extends the window of analysis to one day by capturing free 

cortisol that is excreted by the kidney[76]. This medium-term analysis window is useful 

for determining the overall exposure, or area under the curve for 24 hours (AUC24hr) but 

does not capture circadian secretion patterns. Urinary cortisol is not reliable in 

populations with kidney problems, differs by hydration status, and might not reflect tissue 

cortisol since the kidney is a major site of metabolism and clearance. Collection of urine 

over a day or longer is cumbersome such that assessing longer-term exposure with this 

method is suboptimal. 

The act of drawing blood for serum samples must also be considered when assaying 

cortisol because doctor visits result in elevated blood pressure, transient increase in serum 

cortisol, and psychological stress[92,95]. This effect is particularly pronounced in 

children and adolescents who have an innate fear of needles with the result being 

inaccurate measures of basal cortisol levels[95]. Additionally, the infrastructure required 

for these specimens includes needles, vials, urine containers, transportation, qualified 

individuals to draw blood, and refrigerators or freezers for storage[92]. Access to 

appropriate infrastructure might be limited in some regions of the world, or following 

disasters, making it difficult to investigate population-based questions or explore HPA 

changes in times of unrest[96,97].  
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Hair cortisol may be used to address some of these shortcomings. Hair is easy to collect, 

is stable at room temperature, represents a time window of a month or longer, is non-

invasive, and can be collected over a larger period of time[92,98]. A small hair sample 

with approximately 100-150 hairs can be collected using a pair of scissors. Hair is 

collected from the posterior vertex of the scalp because of the smallest interindividual 

variability in growth rate and cortisol concentration[99]. After sampling, hair can be 

stored in a dry, dark area for many weeks at room temperature. Uniquely, hair cortisol 

captures retrospective cortisol data over months by integrating the sum of cortisol 

exposure including production and the metabolism of cortisol[81,98]. Hair cortisol might 

also be more representative of tissue cortisol exposure than a plasma sample because the 

cortisol in hair navigated through the small follicular capillary beds and diffused into the 

hair microenvironment. Hair cortisol concentration correlates with repeated saliva 

assessments, indicating coherence with more standard measures[100]. Importantly, as 

reviewed in Chapter 2, hair cortisol has been used to capture changes in cortisol exposure 

in diabetes, cardiovascular disorder, CS and AI, psychological disorders (depression, 

PTSD, and anxiety), as well as the effect of natural disasters and trauma.  

1.3.3.3.1 Knowledge Gaps in the Biology of Hair Cortisol 

Empirical, well-designed studies to address methodology, reliability, and under-studied 

populations are needed to validate hair cortisol as a useful biomarker of HPA function. 

Methodological differences between labs has led to substantial variability in absolute hair 

cortisol values stemming from the particular methods being employed[101]. Cortisol 

extraction methods include pulverizing or cutting hair into small pieces followed 

extraction in an organic solvent for up to 24 hours and then cortisol quantification by 

immunoassay or liquid chromatography–mass spectrometry[102]. Extraction 

temperature, choice of organic solvent, procedure used to mince the hair, number of 

extractions, and method used to quantify cortisol are all variables that affect the absolute 

cortisol measurement. Methodological improvements borrowed from hair toxicology 

such as enzymatic degradation or hydrolysis of hair might reduce variability and increase 

the reliability of hair cortisol as a result of complete extraction[84]. Inexplicably, these 
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methods have not been explored in published analysis of hair cortisol and represent a 

potentially large step towards standardization in the field of hair cortisol research. 

Arguably, one of the most important applications of hair cortisol is for the more rapid 

diagnosis of difficult to diagnose diseases including CCS. Patients with CCS present with 

periods of normal cortisol secretion making it difficult to capture elevated cortisol with 

single saliva or serum measurements[59,81,103]. Patients with suspected CCS might 

benefit from having their hair cortisol assessed because it allows the physician a window 

into historical cortisol levels. Without the use of hair cortisol, physicians have to rely on 

repeated sampling procedures for weeks to months to reach a conclusive diagnosis. 

Several studies have shown the utility in this paradigm using 1 cm/month hair growth rate 

to construct retrospective hair cortisol timelines[81,98]. Hair growth of 1 cm per month is 

the average cited in the literature[104], but there is substantial hair growth rate variability 

that is driven largely by ethnicity, nutritional status and seasonality[87,104,105]. 

Generating unique hair timelines is important because it is impossible to know an 

individual’s hair growth rate a priori. No prior studies have considered variability in hair 

growth rates when constructing hair cortisol timelines for individual patients. 

Hair cortisol has historically been assessed in adult patients with an emphasis on studying 

the underlying etiology or response to disease[98]. Fewer studies have assessed the utility 

of hair cortisol in younger populations, healthy populations, and in individuals from 

various ethnic backgrounds. Hair cortisol studies in children have typically looked at 

early life trauma or psychosocial stressors, indicating elevations in those exposed to 

stressors compared to a small number of controls[106]. There is currently less known 

about normal changes in hair cortisol as children age through to adulthood. Some small 

studies have looked at changes in hair cortisol with age but many of these have reported 

conflicting results[65,107]. Hair cortisol might elucidate the total exposure to cortisol on 

a background of HPG axis-interactions and provide context to the differences that have 

been observed in studies measuring cortisol in the serum or saliva. There have been no 

studies to date that have measured hair cortisol in a large cohort of healthy children and 

adolescents in order to assess the relationship between puberty and hair cortisol exposure.  
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1.4 Thesis Overview and Hypotheses 

1.4.1 Chapter 2: Objective 

In Chapter 2, we review methodological aspects of hair cortisol measurement, including 

some of the current limitations and differences amongst labs conducting hair cortisol 

analysis, and describe current knowledge on the clinical utility of measuring cortisol in 

hair.  

1.4.2 Chapter 3: Objective & Hypothesis 

1. To explore the utility of relating hair cortisol concentrations to past cortisol-

related symptomatology in CS and AI patients by constructing several timelines 

of cortisol exposure. 

2. To determine to what extent the commonly assumed hair growth rate of 1 cm per 

month results in retrospective hair cortisol-based timelines adequately reflect 

individual patient histories.  

In chapter 3, we hypothesized that hair cortisol timelines could be generated to accurately 

reflect CS and AI patient medical histories, and that the clinical timelines could be 

improved upon by generating timelines that vary from the assumed 1 cm/month growth 

rate.  

1.4.3 Chapter 4: Objective & Hypothesis 

1. To investigate the relationship between hair cortisol and age, puberty, sex and 

BMI in healthy children and adolescents. 

In chapter 4, we hypothesized that hair cortisol could be measured in children and 

adolescents in order to establish reference ranges as they relate to normal development. 

Specifically, that hair cortisol would correlate with age and puberty status, not differ 

between males and female, and would increase with BMI. 
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1.4.4 Chapter 5: Objective & Hypothesis 

1. To compare hair cortisol recovery from the extraction solvent by utilizing room 

air or nitrogen gas evaporation. 

2. To investigate if novel hair cortisol extraction methods, including enzymatic 

digestion and basic digestion, could be used to improve reproducibility and 

decrease variability in hair cortisol analysis in a pilot study. 

In chapter 5, we hypothesized that cortisol recovery for hair would not differ when using 

nitrogen gas or room air for evaporation and that enzymatic or basic digestion of hair 

would enhance cortisol recovery compared to the standard mincing method. 
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Chapter 2  

2 Hair cortisol analysis: An update on methodological 

considerations and clinical applications 

This section has been published:  

Hair cortisol analysis: An update on methodological considerations and clinical 

applications 

Michael J.E. Greff, Jeffrey M. Levine, Awatif M. Abuzgaiaa, Abdelbaset A. Elzagallaai, 

Michael J. Rieder, Stan H.M. van Uum. Hair cortisol analysis: An update on 

methodological considerations and clinical applications 

Clinical Biochemistry. 63:1-9, 2019. 

2.1 Introduction 

Cortisol, the prominent human glucocorticoid hormone, is secreted from the adrenal 

cortex and plays an important role in normal physiology and disease. Cortisol supports 

the maintenance of homeostasis by increasing gluconeogenesis, proteolysis and lipolysis 

to increase glucose levels, as well as modulating immunity and inflammation [1–3]. 

Endogenous cortisol is regulated by the hypothalamic-pituitary- adrenal (HPA) axis and 

influenced by both stress and blood glucose levels.  

Cortisol is released in a circadian pattern, peaking in the morning followed by a decline 

throughout the day to a low in the evening. Alcohol consumption, nicotine, food, glucose 

levels, exercise, blood oxygen levels, and acute injury have been shown to alter cortisol 

secretion [4]. Adrenal insufficiency (AI) and Cushing syndrome (CS) are a result of 

insufficient secretion or overproduction of cortisol, respectively. Given the ubiquitous 

activity of cortisol, effective measurement is critical for facilitating clinical diagnosis and 

treatment [5]. 
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Circadian cortisol pulsatility makes it difficult to measure long-term cortisol secretion by 

means of traditional bodily fluid matrices such as saliva, urine, and blood. Since the first 

report of cortisol measurement in hair in 2004 [6], there has been increasing interest in 

potential clinical applications. In general, deposition of compounds and their metabolites 

in hair during growth allows for retrospective quantification and subsequent application 

of analyses. Thus, the extraction and analysis of these compounds in hair provide an 

insightful, non-invasive tool for a multitude of research and clinical diagnostic purposes. 

In this paper we will review methodological aspects of hair cortisol measurement and 

describe current knowledge on clinical applications.  

2.2 Methodology and technical aspects of analysis 

2.2.1 Incorporation of cortisol into hair  

Incorporation of free cortisol into hair is thought to occur via diffusion from follicular 

capillaries into the medulla of the hair shaft during growth [7]. Recently, a radiolabelling 

study was undertaken in rhesus monkeys [8]. After pulse injection of tritium-labeled 

cortisol into the circulation, the investigators found radiolabelled cortisol and cortisone in 

hair samples 14 days post-injection [8]. This mechanism is based upon the lipophilicity of 

cortisol's steroid structure, meaning that cortisol may be deposited into all layers of the 

hair shaft. As a result, the cortisol that is deposited into growing hair is proportional to 

the quantity of cortisol in circulation at any given point in time. Cortisol may also be 

deposited onto the hair shaft via sweat and sebaceous glandular secretions [8,9] as well as 

exogenous sources. The additional contribution of these sources of cortisol may be 

mitigated by washing of the hair prior to mincing or grinding with subsequent extraction 

of cortisol deposited into the medulla [7]. It has been suggested that the hair follicle itself 

may also produce its own cortisol by means of a local HPA-like pathway [10]. Dermal 

interconversion of active cortisol and inactive cortisone by the 11β-hydroxysteroid 

dehydrogenase enzymes may affect the ratio of these moieties as they enter the hair shaft 

[11]. However, it is unclear whether the contributions from these sources have any 

clinical significance [7]. 
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2.2.2 Hair Growth 

Hair growth occurs in three phases: growth (anagen), cessation (catagen), and rest 

(telogen) [11]. Historically hair cortisol research has relied on the generally accepted 

assumption that hair growth occurs at a fairly constant rate of approximately 1 cm per 

month, with some individualistic and ethnic variability [12–15]. This growth rate has al- 

lowed for the assessment of average cortisol levels over time. 

As hair cortisol research has advanced it has become apparent that this growth rate is not 

nearly as constant as previously thought. In a study of ethnic hair growth rates 

Loussouarn et al. (2001) found that individuals of African descent have a slower growth 

rate (256 ± 44 μm per day) than Caucasians (396 ± 55 μm per day) [12]. While 

comparing hair growth parameters in 24 human ethnic groups Loussouarn et al. (2005, 

2016) confirmed again that individuals of African descent have slower hair growth than 

Caucasians, and further reported that individuals with an Asian background have hair that 

grows faster than both African and Caucasian hair [16,17]. Average hair growth rate and 

percentage of hair in telogen phase varies among different head regions (i.e., vertex, 

temporal and occipital) and between genders [12,16]. Similarly, due to the variability of 

hair growth rates in different regions of the body, hair segments collected from differing 

regions may not represent equivalent time periods [17]. 

A recent twin-study by Rietschel et al. (2017) found a hair cortisol concentration (HCC) 

heritability of 72% with no significant genetic or phenotypic correlation between HCC 

and three psychological variables [18]. These variations in hair growth parameters may 

affect the accuracy of chronological segmentation of hair samples as a result of 

overlapping estimation of cortisol levels from different time periods, ultimately adding 

variability to standardization of normal HCC values. The problem of hair growth 

variability becomes compounded with longer hair samples. Future hair cortisol research 

should consider both ethic and genetic variation in hair growth patterns during study 

design. 
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2.2.3 Sampling, storage, and segmentation 

Sauve et al. found that the relative variability in hair cortisol, as determined by the 

coefficient of variation (CV), was high (30.5%) when hair was sampled from different 

regions of the head compared to samples taken from the posterior vertex (CV, 15.3%) 

[13]. Standardization between laboratories may be accomplished by collecting hair from 

the posterior vertex of the head, even when exact hair sampling procedures vary slightly 

between laboratories (Fig. 6). 

 

 

 

 

 

 

 

 

 

 

 

Hair samples are generally considered stable and capable of being stored at room 

temperature for extended periods of time [7]. Hair cortisol levels have been measured in 

archeological adult human specimens from the Nasca Region of Peru (1–1000 CE) [19]. 

Recent work has shown that HCC decreases with exposure to ultraviolet radiation, 
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6. Extraction: Shaking at 200 rpm in 
methanol for 16 hours
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8. Reconstitution in PBS 9. Quantification (e.g.  ELISA) 10. Analysis

Figure 6: Standard method for the quantification of hair cortisol concentrations. 
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meaning that samples should be stored away from UV exposure to allow analysis of 

samples in the distant future [20]. 

Although there is some degradation of hair cortisol, analysis is generally only limited by 

the length of the hair in a sample. Quantification of temporally unique periods of cortisol 

exposure can be achieved by carefully segmenting hair into sections representing time 

periods of interest. For example, average cortisol exposure for a 1- or 2- month interval 

of time can be measured in segments 1- or 2-cm in length, respectively. When working 

within specific ethic groups for which more specific hair growth rates are known, the 

length of sample may be adjusted accordingly. Alternatively, in clinical patients for 

which dates of past interventions such as surgery or initiation of medications are known, 

hair cortisol can be plotted against multiple timelines to assess the appropriate hair 

growth for an individual without a priori knowledge of their hair growth rate. 

2.2.4 Weighing and washing 

Segments of hair are placed into glass vials and weighed to allow for the determination of 

hair cortisol per a given mass of hair. A washing step is regularly included to remove 

contributions of sweat and sebaceous secretions that may be deposited on the surface of 

hair. Sweat and sebum contains cortisol that may contaminate measurements and washing 

normalizes any individual differences in hygiene [7]. Exogenous cortisol may also be 

deposited onto the outer surface of the hair from the use of topical steroids for skin 

conditions such as psoriasis. Two to three washes with isopropanol for 3 min at room 

temperature followed by air drying is common practice. 

2.2.5 Mincing versus grinding 

Efficient cortisol extraction requires a large surface area for the interaction of the hair 

medulla and the extraction solvent. The hair extraction surface has been increased by 

manually mincing the hair, blending the hair, and grinding or pulverizing the hair by 

means of milling. Particle size reduction has classically been accomplished by mincing 

the hair into ‘small pieces’ using surgical scissors. Mincing of the sample with scissors is 

far from being standardized as the size of the minced pieces is determined by how 
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meticulous the technician is in the cutting process. This may potentially lead to variations 

in the amounts of cortisol extracted. However, intra-laboratory validation of hair cortisol 

measurement has been shown to have high correlation between results when using the 

mincing method (r2: 0.9692) [21]. Alternatively, blenders or mills with zirconium oxide 

beads and liquid nitrogen cooling (cryomilling) can produce hair particles of ~5 μm in 

size. 

Although grinding can theoretically improve cortisol dissolution and extraction, direct 

methodological comparison studies are lacking. A 2015 study by Slominski et al. 

concluded that the mincing of hair was optimal. It was hypothesized that grinding of hair 

and use of a ball mill sets up researchers for increased possibility for loss of sample while 

also potentially contributing to the degradation of hair proteins or steroids contained 

therein [22]. It can also be proposed that the grinding of hair samples may greatly 

increase the possibility for sample carryover. Chemical degradation from heat produced 

during milling may also occur [22], however, cryomilling might be able to abrogate this 

effect. In another study, results from both ball milling and mincing had a high correlation 

(r2: 0.947–0.978) indicating that the effect of particle size reduction during cortisol 

dissolution may not be as important as consistency with the method employed [21]. 

A minor methodological note is that when these mechanical techniques are employed 

rather than mincing with scissors, samples are often ground following the washing step 

but prior to weighing the sample to be analyzed. This is to account for loss of sample. 

2.2.6 Extraction, evaporation and reconstitution  

Cortisol is extracted from minced or ground hair using organic solvents (e.g., methanol, 

acetone). Typically, cortisol is extracted from 10 mg of hair by adding 1 to 2 ml of 

methanol to the glass vial in which the hair was washed and weighed. Shaking of the 

sample on a rocker overnight in methanol at ambient temperature or at 52 °C is the most 

common method for extracting cortisol from hair. However, data has suggested that a 

single methanol extraction method may only yield 40–60% with an average of 46% of 

absolute HCC [22]. A 4-step method that employs alternating methanol and acetone for 

15 h at 52 °C and 5 min at room temperature, respectively, repeated twice, has yielded an 
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estimated 98–100% of hair cortisol [22]. Although the effect of extraction efficiency on 

the clinical utility of the technique is not certain, it can be argued that following a 

consistent protocol still results in useful comparisons between subjects and controls. 

After extraction is complete, the supernatant is transferred to a disposable glass culture 

tube and then evaporated under nitrogen and heat until completely dry. The nitrogen 

atmosphere is used to reduce degradation of cortisol due to oxidation through exposure to 

air. Other groups have effectively employed air drying of the extracts at 4 °C but this 

method takes longer to achieve complete dryness. It is important to note that air drying of 

cortisol extracts for LC-MS/MS procedures do not lead to loss of signal or 

immunoreactivity, and thus nitrogen may not be required. However, no data is available 

to compare between the efficiency of both methods, something which should be assessed 

in future research. Samples can then be sealed frozen until measurement until analysis. 

Finally, sample residues are re-suspended in 150–250 μL of phosphate buffered saline 

(PBS, pH 8.0) and vortexed until completely dissolved. 

2.2.7 Measurement of cortisol, ELISA versus LC-MS/MS 

Competitive solid-phase enzyme-linked immunosorbent assay (ELISA, also 

luminescence immunoassay, LIA, and radio immunoassay, RIA) or liquid 

chromatography-mass spectroscopy (LC-MS/MS) have both been used to measure the 

concentration of cortisol in hair extracts [21]. The commercially available and commonly 

used ELISA kits are designed for measurement of cortisol in saliva rather than hair 

extracts. The reported analytical sensitivities of these kits range between 0.09 and 1.0 

ng/ml with variable cross-reactivity to endogenous and exogenous steroids [21]. 

The use of ELISA has the advantage of low cost, not requiring the use of sophisticated 

equipment, and analytical capacity for multiple samples in parallel. Results obtained by 

four of the commonly used commercially available ELISA kits were found to have a 

strong correlation with the more specific LC-MS/MS method (r2 ranges from 0.88 to 

0.97). Work by Slominski et al. reported a correlation of rs = 0.972 (p < .0001) between 

LC-MS/MS and ELISA with pooled samples [22]. 
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However, the agreement between the two methods in terms of absolute values is very 

low. Russell et al. reported that at low ranges (50–100 ng/ml) ELISA results are 2–3 

times higher than the values of LC-MS/MS results, which can be even greater at high 

values. For this reason, the authors called for use of a correction factor when using 

immunoassays to calculate LC-MS/MS equivalents and this should be determined for 

every ELISA kit manufacturer [21]. This work by Russell et al. was completed in 2014, 

as hair cortisol research analysis has evolved, more research is needed to determine if 

these differences have transformed. 

ELISA methods result in higher absolute values compared to LC-MS/ MS likely due to 

the latter being more specific [21]. In one study, measurements using the two detection 

methods of pooled hair samples were highly correlated, yet measurement of individual 

samples showed a low correlation [22]. The authors hypothesized that the amount of 

protein in extracts may affect the stability of cortisol. Other groups have been able to 

enhance the detection of cortisol in hair extracts by adding bovine serum albumin (BSA) 

to the extraction cocktail in order to replicate the matrix for which the assays were 

developed [23]. 

ELISA assays are known for having cross-reactivity with other steroids such as cortisone 

and progesterone. This has the potential to inflate the reported cortisol measurements. 

However, as discussed by Slominski et al. this effect is likely minimal [22]. This study 

compared ELISA with LC-MS and found that while LC-MS was highly specific, in the 

opinion of the authors, this method under reported true cortisol levels. LC-MS results in 

their study were 12% lower than those reported by ELISA. They also looked at the 

cortisone and progesterone levels and concluded that the lower cortisol levels detected by 

LC-MS could not be accounted for as a result of cross reactivity of the ELISA test alone. 

Cross-reactivity of the ELISA test should have only inflated cortisol levels by < 1% [22]. 

Quantitative hair analysis is known to be more difficult than other matrices due to the 

solid, heterogeneous solid composition of hair, and insufficient amounts of reference 

material [24]. In order to ensure quality control in hair analysis, further work should be 

done to formulate standard practices with regards to sampling, preparation, extraction, 



 

 

39 

reconstitution, and calibration. Calibration and validation between laboratories can be 

accomplished using the same quality control spiked hair samples. Methods to facilitate 

heterogeneity and more reproducible results between laboratories should be explored as 

recommended by the Society of Hair Testing [25]. 

2.2.8 Comparison of hair as a matrix to traditional matrices and 

methods 

Circulating cortisol is routinely assessed in saliva, serum and urine, each representative of 

acute or short-term (i.e. 24 h) cortisol levels. Finger nail clippings have also been 

proposed as a matrix for tracking cumulative cortisol exposure [26,27], yet no correlation 

was found between hair and nail cortisol [26]. Importantly, none of these matrices 

provide information that is representative of the extended period of time that hair is 

capable of providing. The utility of nail cortisol may be limited by multi-factorial 

fluctuations in nail growth rates including environmental effects across seasons and 

climate [28]. Research on nail growth rates has not kept pace with the rate of which nail 

biomarkers have been used in epidemiological studies [29]. 

Forensic hair toxicology has been widely utilized in the study of drugs of abuse, 

pharmaceuticals, and doping agents as well as dietary habits, nutrient levels and exposure 

to pollutants and toxins [30]. Synthetic glucocorticoids, closely related in structure to 

cortisol, have also been assayed in hair samples [31–33]. It appears that compounds 

cannot be assayed in hair if they are metabolized too rapidly to be incorporated into the 

growing hair, are physiochemically hydrophilic and thus poorly diffusible and/or, are 

larger than 800 Da [34]. Cortisol and its metabolites are consistently in circulation, are 

sufficiently hydrophobic and small in size to be incorporated into the hair. Hair uniquely 

provides the opportunity to assess a long-term biomarker of cortisol exposure. 

Traditionally serum, saliva, and urine have been used for the measurement of cortisol to 

assist with clinical diagnosis. Table 1 compares the traditional forms of cortisol 

measurement with that of hair. Use of these acute and short-term cortisol biomarkers are 

currently the standard for screening of endocrinological disorders [5]. Hair cortisol levels 
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appear to be fairly stable over time. Stalder et al. demonstrated strong intra-individual 

stability of HCC in two clinical studies where hair was first sampled after 1-year, and 

secondly at 2-month intervals [35]. The results from these time points help to 

demonstrate the utility of this technique in clinical applications and the estimation of 

cortisol secretion over long periods of time [35]. 
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2.2.9 Limitations of hair cortisol analysis 

Recent research by the Rotterdam group has shown that natural sunlight and artificial UV 

radiation can reduce HCC by up to 32% and 50% respectively [20]. Conflicting reports 

exist regarding the effect, if any, of chemical treatment of hair with dyes and shampoos 

on HCC [36,37]. A recent study found no association with either frequency of hair 

washing or hair dying, and cortisol content. The authors noted that the results may be 

limited due to not differentiating between the types of hair, and that any true effects may 

have been negated [37]. Similarly, the authors noted that their study only examined the 

most proximal scalp hair segment. More distally located hair segments may have a more 

prolonged exposure to the offending agents. Different dyes may have opposing effects 

resulting in either increases or decreases in cortisol content [36,37]. It is therefore 

important to consider that the effect of these environmental factors may be greater with 

increasing distance from the scalp. 

Cortisol concentrations are influenced by the frequency of sweating on the scalp and the 

frequency with which hair is washed. These opposing effects indicate that personal 

hygiene is a factor worth taking note of when employing this technique [38]. Medications 

and natural health products that may affect cortisol concentrations are important variables 

that modulate HCC. 

Cultural differences must also be taken into consideration when sampling hair for 

analysis. Certain cultures practice the act of shielding their skin and hair from the sun, 

which may result in reduced exposure to UV radiation. Researchers must also be 

cognizant of cultural practices with regards to the importance of hair for beauty and 

religious reasons [39]. Hair collection may be frowned upon because of these norms and 

beliefs [39]. As a result of these culturally based beliefs, hair cortisol data in specific 

regions of the world, or in specific populations may be lacking or limited to small sample 

sizes. Developing a positive association with hair sampling within these populations may 

lead to psychological acceptance of hair sampling, and thus allowing for hair cortisol 

analysis to be implemented in a more diverse population. 
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2.3 Applications of hair cortisol in animals 

The utility of hair cortisol has been investigated in a number of animal models with a 

particular emphasis on behavioral and neurocognitive outcomes from various stressors in 

wild animals. Importantly, labs with the capacity to measure hair cortisol in human 

samples, can easily modify their methodology to quantify cortisol in samples from other 

species. Initial investigation of hair cortisol testing was undertaken in wild male hyrax 

[40] followed by using hair to capture stress from housing relocation in Rhesus monkeys 

[41]. Subsequently, hair cortisol was measured in domestic cats and dogs [42], dairy 

cattle [43], and several species of wild animals [44–47]. More recently, hair cortisol 

analysis has been utilized to assess stress in the laboratory in nonhuman primates [17] 

and rodents (corticosterone) [48,49]. Hair testing in these animals could prove to be 

invaluable within the developmental and neuroscience realms by providing a long-term & 

non-invasive measure of stress. 

2.4 Clinical applications of hair cortisol measurement 

Assessment of cortisol in hair has recently gained attention as a viable biomarker for 

diagnosis, prognosis and management of clinical conditions. Studies have focused on 

Cushing syndrome, the classic example of increased cortisol production, as well as other 

conditions associated with increased cortisol secretion including severe stress, 

depression, cardiovascular disease, recent myocardial infraction, Diabetes Mellitus (DM), 

obesity, and severe chronic pain [50–54]. Cortisol secretion is decreased or absent in 

Addison's disease, and has also been reported to be decreased in other conditions 

including chronic pelvic pain, endometriosis, post-traumatic stress disorder (PTSD) and 

panic disorder [55–58]. 

2.4.1 Cushing syndrome 

Cushing Syndrome (CS) is characterized by signs and symptoms of exposure to excess 

glucocorticoids for an extended period of time. For patients with clinical suspicion of CS, 

the first step is to exclude exogenous causes, usually iatrogenic due to treatment with 
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dexamethasone, prednisone, or other glucocorticoids [59]. The next step is to evaluate if 

there is indeed endogenous cortisol overproduction. In clinical practice, three tests are 

currently used for diagnosing CS, these are urine free cortisol (UFC; at least two 

measurements), late-night salivary cortisol (two measurements), and the 1mg overnight 

dexamethasone suppression test (DST) [59–62]. Typically, two concordantly positive 

tests from two methods are required to diagnose CS. Our group was the first to 

demonstrate elevated hair cortisol in CS as compared to healthy controls [63]. Since then, 

several groups have analyzed the performance of the measurement of cortisol in the most 

proximal hair segment. Using the upper limit of normal for healthy non-obese individuals 

as cut-off, two HCC cut-off values have been suggested for the diagnosis of CS: Firstly 

an upper limit of 75.9 ng/g with 86% sensitivity and specificity of 98% (lean individuals) 

to 93% (individuals with abdominal obesity) [64] (Fig. 7), and secondly, a lower cut-off 

of 31.1 ng/g with 93% sensitivity and 90% specificity [5]. Hodes et al. found higher hair 

cortisol values in 36 CS patients than in 6 controls, with mean hair cortisol of 266 ± 

738.4 and 38.9 ± 25.3 pmol/g in each group, respectively (P = .003) [65]. Overall, these 

results appear to be comparable to commonly used tests. 

A unique aspect of hair cortisol measurement is its ability to provide retrospective 

information about systemic cortisol exposure over months or even years. Several case 

descriptions show that multiple HCC measurements along the hair shaft provide insight 

into the timeline of CS development as well as documenting response to treatment [5,63]. 

Recognizably, this technique has greater utility in patients with longer hair growth as the 

longer the hair, the more information about past cortisol exposure can be extracted. 

Absolute values of observed peaks and troughs of HCC in more temporally distant hair 

segments may be lower than more recent time periods due to the washout discussed 

above. However, the shape of the curve provides a picture of variable steroidogenesis that 

can be very useful when used in combination with a patient's clinical history. Clinicians 

should take washout of cortisol into consideration when making any conclusions about 

past cortisol levels. 
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The assessment of cortisol production over time may be particularly useful for evaluation 

of cyclical CS (CCS). Cyclical CS is a rare condition characterized by recurrent episodes 

of hypercortisolemia interspersed by episodes of normal or decreased cortisol production 

[66]. The observed cyclicity can be either regular or irregular in nature, ranging from 

days to years, making a diagnosis of CCS especially difficult [64]. HCC is able map this 

fluctuation in cortisol levels over time. A diagnosis of true cyclicity of CS requires 

evidence of at least 3 peaks and 2 troughs in cortisol levels over time [66]. Fig. 8 

demonstrates the cyclical nature of a patient measured in our lab, with a subsequent 

diagnosis of CCS. Depending on the nature of a patient's condition it may take months to 

observe these findings with typical laboratory assessments. In fact, a recent study has 

shown that CS patients have normal cortisol secretion for large periods of time, with one 

patient having normal late-night salivary cortisol levels in 33/34 samples [67]. HCC has 

Figure 7: Hair cortisol levels in patients with CS and healthy overweight and obese 

controls and individuals with abdominal obesity.  The dotted line represents the upper 

limit of normal hair cortisol levels (75.9 pg/mg hair). The gray symbols represent the 

individuals with abdominal obesity. The dotted line represents the upper limit of 

normal hair cortisol levels (75.9 pg/mg hair). The gray symbols represent the 

individuals with cortisol levels below the upper limit of normal (in case of confirmed 

CS) or above the upper limit of normal (no CS). The nature of the CS is indicated by 

the different symbols used for the patients. From [64]. 
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the potential to eliminate weeks to months of daily measurements, allowing for earlier 

diagnosis and treatment. 

 

 

Figure 8: Hair cortisol analysis of a patient with cyclical Cushing's syndrome with 

overlapping proposed CS diagnosis cut-off values. 

2.4.2 Adrenal Insufficiency 

Adrenal Insufficiency (AI) is a syndrome resulting from an inadequate ability to produce 

sufficient cortisol levels. In primary adrenal insufficiency (Addison's Disease) a lack of 

steroid hormone production is caused by the inability of the adrenal glands themselves to 

produce enough hormone as a result of genetic factors, hyperplasia or cancer, or 

autoimmune destruction of the steroid-secreting cells [58]. In secondary and tertiary 

adrenal insufficiency, reduced steroidogenesis is the result of a lack of signal from the 

pituitary or hypothalamus to the adrenal cortex to produce more hormone [68]. Adrenal 

Insufficiency is usually diagnosed by insufficient cortisol response in a short 

corticotropin stimulation test (250μg) as the gold standard, or if this isn't possible with 

low morning serum cortisol and ACTH measurements [69]. 
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For patients with sufficiently long hair, segmental analysis of cortisol production over 

time provides a unique record of the natural development of auto-immune adrenal 

insufficiency [70]. Fig. 9 shows the development of AI over a period of more than two 

years, with the patient gradually progressing from mild chronic AI symptoms toward 

adrenal crisis, necessitating admission to intensive care. Based on this pattern, hair 

cortisol measurement may also help in diagnosing AI in patients who have already been 

started on glucocorticoid treatment, which jeopardizes the ability of saliva and serum 

cortisol measurements 

 

Figure 9: Hair cortisol concentration in a patient with adrenal insufficiency over time. 

Reprinted from Ibrahim, C. & S. van Uum. Hair analysis of cortisol levels in adrenal 

insufficiency, Fig. 1. Canadian Medical Association Journal 2014; 186: 1244. © 

Canadian Medical Association 2014. This work is protected by copyright and the making 

of this copy was with the permission of the Canadian Medical Association Journal. 

(www.cmaj.ca) and Access Copyright. Any alteration of its content or further copying in 

any form whatsoever is strictly prohibited unless otherwise permitted by law.  
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2.4.3 Hair cortisol and cardiovascular disease 

High exposure to glucocorticoids is linked to an increase in risk factors for cardiovascular 

events [75]. Observation of patients with hypercortisolism has shown that obesity, 

dyslipidemia, glucose intolerance and hypertension can be caused by prolonged exposure 

to corticosteroids [75]. However, a study on cortisol in serum, salivary, and urine could 

not show a direct relationship between cortisol levels and cardiovascular diseases [76]. 

On the other hand, a study using hair cortisol found an association between HCC and 

cardiovascular events and risk factors [77]. This group found that patients within the 

highest quartile of HCC had an almost 3-fold greater risk of having had a cardiovascular 

event in the past, as well as being associated with DM [77]. Further, HCC was found to 

be higher in patients who suffered recent myocardial infarctions than in patients admitted 

to the hospital for other reasons [53]. It is important to realize that in this study, the HCC 

represented cortisol exposure in the two months before the heart attack occurred, 

suggesting that the higher systemic cortisol levels may have contributed to the 

development of heart attacks. It is also known that increased cortisol levels are associated 

with metabolic syndrome indicating a relationship between HCC and cardiometabolic 

status. 

2.4.4 Hair cortisol analysis as a biomarker of chronic and acute 

stress 

Stress is considered to be a very subjective internal state with many contributing factors, 

and as such has been difficult to objectively quantify. Measurement of long-term stress 

has primarily used questionnaires and other self-reporting tools. While often useful, these 

are limited by their subjective nature and recall bias. This is especially true when working 

with groups such as children who may be unable to adequately articulate perceived stress 

to caregivers and researchers [78]. Cortisol has become an important biological correlate 

of stress. In contrast to questionnaires, the measurement of cortisol in hair results in an 

objective biomarker to quantify stress. 

Hair cortisol analysis is now at the forefront of research addressing the effects of both 

acute and chronic stress. Endogenous cortisol levels are influenced by a broad range of 
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psychiatric disorders [79]. Stress has been collectively recognized as a premorbid feature 

associated with several risk factors for numerous chronic disorders [80]. The effect of 

chronic maternal stress on early child development is one area where hair cortisol can be 

particularly useful to quantify intrauterine exposure to stress hormones, a factor which is 

known the effect later development [54]. Hair cortisol has been used as an objective 

biomarker in studies investigating medical internship [81], the effect of natural disasters 

[82], and war [83]. Description of all studies on hair cortisol and stress is beyond the 

scope of this paper. For a more detailed review of stress-related and basic determinants of 

hair cortisol we refer to the excellent paper by Stalder et al. [4]. 

2.4.5 Mental health 

Cortisol plays a role in psychopathology, especially in anxiety and mood disorders. It has 

also been found that patients with major depression take longer to return to baseline 

cortisol levels after exposure to stressors [84,85]. However, patients with major 

depression and coronary artery disease (CAD) did not have significantly (p = .162) 

different HCC levels after rehabilitation period compared to healthy controls [86]. These 

findings are limited by CAD comorbidity, which is known to increase cortisol levels. In 

addition, HCC was found to be significantly higher in depressed patients with no major 

comorbidity compared to healthy controls [87]. Wei et al. measured HCC in 22 first-

episodic and 13 recurrent female patients with depression as well as 30 health controls. 

Only HCC in first-episodic patients was significantly higher compared to healthy controls 

and cortisol levels did not correlate with Hamilton depression scale or Hamilton anxiety 

scale scores [88]. In conclusion, altered HPA axis activity in mood disorders can result in 

increase in chronic levels of cortisol that can be detected through hair cortisol analysis. 

Hair cortisol levels do not seem to elevate in patients with bipolar disorders. However, 

differences have been found in patients experiencing their first episode of depression or 

mania when older than 30 years, an effect that was not detected by saliva cortisol 

measurement [64,89]. In this study, the patient population was heterogeneous with other 

psychiatric co-morbidities, including panic disorders, which might affect cortisol levels to 

different directions resulting in disguising the true correlation between HCC and each 

disorder. 
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Patients with generalized anxiety disorder (GAD) were found to have significantly lower 

HCC than healthy controls indicating that hypocortisolaemia may be a characteristic of 

this group of patients [62]. Salivary cortisol analysis did not show this difference, which 

was attributed to acute increase in cortisol levels due to sampling procedure. This clearly 

demonstrates the advantage of measuring hair cortisol over salivary cortisol. 

Many studies assessing acute cortisol levels have not found any correlation between 

cortisol and PTSD, yet new studies assessing HCC have shown interesting correlations. 

Luo et al., measured HCC in adolescent females exposed to an earthquake and found that 

subjects with PTSD had significantly lower HCC than the non-PTSD group 2-, 4-, and 6-

months following the earthquake, indicating a blunting of the stress response in PTSD 

[90]. Another study found that HCC was decreased in both traumatized PTSD and non-

PTSD individuals compared to non-traumatized controls [91]. On the other hand, one 

study found that individuals with PTSD had higher levels of HCC compared to 

traumatized-non-PTSD control subjects [92]. These different finding indicate that there 

may be differential effects on HCC based on the type and frequency of trauma. Similarly, 

HCC has been used to quantify the psychoneuroendocrinological impacts of war [93] as 

well as the impact of humanitarian intervention in refugees [83]. 

2.5 Post-mortem applications 

The utility of hair cortisol analysis extends beyond the use in living populations. One of 

the major benefits of hair as a biological matrix is that it extends the window of cortisol 

detection much beyond biological fluids. This technique can be invaluable to 

anthropological and archeological samples for which no other samples are available [19]. 

Another potentially useful application would also be in the diagnosis of death by adrenal 

crisis for which samples were not collected in temporal proximity to the death. In-depth 

examination of post-mortem hair toxicology is beyond the scope of the current 

discussion. 
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2.6 Discussion and future directions 

Hair cortisol analysis provides a perceptive tool permitting the quantification of cortisol 

levels over time. Work is still needed to optimize and standardize extraction and 

quantification of cortisol content because of the protocol variations that exist across the 

globe. Research has shown that complete extraction may not be achieved until the 

contents of 4 sequential extractions are pooled [22]. 

The unique capability to capture cortisol exposure in hair lends itself to many potential 

research opportunities assessing an array of factors that influence the HPA axis in 

properly controlled studies. However, the same multiplicity of factors that influence the 

HPA axis also potentially limits the usefulness of this tool. It may be hard to control for 

all other factors influencing HCC, thus it may be advisable to use this technique in 

combination with additional assays before drawing any conclusions. 

Future research should test the accuracy of ELISA techniques compared with the use of 

mass spectrometry. Immunoassays provide a relatively easy and inexpensive option for 

analysis, however this is an indirect measurement based on binding of the assay, whereas 

MS directly measures the molecule of interest. Prior research comparing the use of 

ELISA and MS has highlighted the contrasting differences in both sensitivity and 

specificity. Techniques need to be developed to better detect hair cortisol using MS to 

more easily allow for the detection of hair cortisol without the cross reactivity associated 

with ELISA. 

There is little information regarding hair cortisol values in certain populations such as 

children, where reference ranges are currently nonexistent. Reference ranges for children 

and adolescents undergoing puberty still need to be determined, as we know that during 

this time endogenous cortisol levels rise from those seen in children to that of adults. 

More work needs to be done to understand this change as it relates to HCC so that it may 

be used for interpretation of individual results. 

Additional research should address the time from the formation of the hair shaft in the 

follicle to the eruption of the hair shaft from the skin, which relates individual hair 
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growth rates. There is conflicting research on whether this process ranges from a few 

days up to 2 weeks [94,95]. What kind of clinical effect this may have is yet to be 

determined. 

2.7  Conclusion 

Hair cortisol analysis is a tool that allows insights for both clinical diagnostic purposes 

and scientific research, as well as having the potential to play an invaluable role in 

personalized and preventative medicine. Further studies are required to explore the 

potential for its use in wider settings.  
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Chapter 3  

3 Retrospective hair cortisol analysis in the clinical setting  
This chapter explores utility of hair cortisol in capturing long-term cortisol exposure in 

patients with Cushing’s Disease and Addison’s Disease by retrospectively depicting 

cortisol levels over several months or even years. The aim of this study was to determine 

to what extent the commonly assumed hair growth rate of 1 cm/month results in 

retrospective hair cortisol-based timelines adequately reflect individual patient history-

based fluctuations in cortisol exposure that result from disease states and medical 

interventions. Postulated hair cortisol timelines reflect the clinical status of patients with 

cortisol-associated symptomatology. The growth rate timeline for the 4 patients were 1, 

0.75, 0.75 and 1 cm/month. Historical hair timelines generated by segmental hair analysis 

of patients with cortisol-related symptoms reflect reported changes in clinical states. 

Variations in hair growth rate may need to be used to determine the best historical record 

of cortisol secretion. Clinicians should keep this in mind when using hair cortisol as an s 

additional tool to diagnosed conditions with abnormal cortisol secretion. 

This section has been submitted to Experimental and Clinical Endocrinology & 

Diabetes: 

Retrospective Hair Cortisol Analysis in the Clinical Setting 

Jeffrey M. Levine; Michael J. Rieder, MD, PhD; Abdelbaset A. Elzagallaai MSc, PhD 

and Stan H. M. van Uum, MD, PhD 

3.1 Introduction 
Secretion of cortisol, the predominant glucocorticoid in humans, is dynamically regulated 

by the hypothalamic-pituitary-adrenal (HPA) axis. Various physiological and 

psychological stressors can initiate the secretion of corticotrophin releasing hormone 

(CRH) from the hypothalamus. This induces the anterior pituitary gland to release 

adrenocorticotropic hormone (ACTH) that travels to the adrenal cortex to release cortisol. 

Under physiological conditions cortisol is released in a circadian pattern with the highest 
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systemic concentration occurring upon waking[1]. Cortisol rises following stressful 

experiences and increases blood-glucose levels via proteolysis, lipolysis, and 

gluconeogenesis to match the increased energy demands and restore systemic 

homeostasis[2]. It is also an important modulator of immunity and electrolyte balance[3]. 

Due to its ubiquitous activity, chronic exposure resulting from prolonged stress, or one of 

many pathologies, can have negative consequences[2].  

Cushing Syndrome (CS) is the result of prolonged exposure to high levels of cortisol or 

other glucocorticoids. Symptoms of CS include hypertension, weight gain, osteoporosis, 

diabetes mellitus, depression and mood changes, easy bruising, fat redistribution and 

purple striae[4–7]. Endogenous CS is due to elevated cortisol secretion from the adrenal 

glands, and is caused by an adrenal adenoma or by excess production of ACTH, either from 

a pituitary adenoma or from an ectopic tumor[5,8]. Cyclical Cushing Syndrome (CCS), 

once believed to be a rare condition, is characterized by cycles of variable steroidogenesis 

with episodes of hyper secretion of cortisol interspersed by periods of lower cortisol 

production [7]. The frequency of these cycles can vary, ranging from days to months[6].  

Adrenal insufficiency (AI) is characterized by low secretion of cortisol and most 

commonly results from autoimmune destruction of the adrenal cortex. It may also be 

caused by cancer, infections, medications, and genetic factors that influence 

steroidogenesis or adrenal response to ACTH[9], or by insufficient pituitary ACTH 

secretion. In the case of primary AI, sometimes referred to as Addison’s disease, the 

symptoms of AI begin to appear when about 90% of the adrenal cortex has been destroyed. 

They may include weight loss, hyperpigmentation, low blood pressure, abdominal pain, 

weakness, anorexia, nausea, vomiting, and salt craving[9].  

In clinical practice, suspicion for cortisol overproduction is assessed by 24-h urinary free 

cortisol excretion, late night salivary cortisol, and the 1-mg overnight dexamethasone 

suppression test[6]. Typically, two of these tests need to be abnormal to diagnose 

Cushing’s[10]. Salivary and serum cortisol are considered to be acute measures as they are 

reflective of cortisol concentrations at a single point-in-time[3,8]. Patients with CCS are 

known to frequently have salivary or serum levels in the normal range [4,9,11], making 
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salivary and serum cortisol measurements suboptimal for accurately capturing cortisol 

abnormalities in these individuals. Ambiguity in diagnosing variable cortisol production 

can also be caused by other factors such as obesity and diabetes, use of exogenous 

glucocorticoids, and states such as renal failure, adrenal masses, and pregnancy, meaning 

that careful selection of screening tests and repeated testing is usually required [12]. 

Over the last decade, human hair has emerged as a novel biological matrix for the 

retrospective analysis of long-term cortisol exposure[3,8,13]. Because scalp hair grows at 

an average of about 1 cm every month[14], retrospective timelines of cortisol exposure can 

be generated by cutting hair into segments to detect the fluctuation of cortisol over time 

which can then be compared to reports of clinical symptoms [4]. Hair samples are easily 

collected from the posterior vertex region of a patient’s scalp, can be stored at room 

temperature[3], and the window of detection is generally only limited by the length of the 

hair sample. Measuring multiple hair segments provides an insight into the past variation 

in systemic cortisol exposure[3,5]. Based on this unique feature, hair cortisol concentration 

(HCC) also has the potential to aid in a more rapid diagnosis of CCS as it allows 

retrospective analysis over months to years[5,7]. Analysis of blood, saliva, or urine, in 

contrast, would need to be done prospectively over such a time period, and would require 

frequent sampling in order to detect cortisol variability[4,6]. Further, segmentation of hair 

to detect the fluctuations of cortisol over time can be compared to the chronology of the 

patient’s clinical symptomatology to paint a picture of historical changes in cortisol 

exposure that can assist clinicians with diagnosis[5]. These timelines, however, may vary 

depending on an individual patient’s hair growth rate and may vary with factors such as 

diet, age, stress, disease states, and seasonality[14]. Hair growth variation in adults aged 

18-35 was found to be large between ethnicities, with individuals of recent African descent 

having the slowest, and those of recent Asian descent having the fastest hair growth 

rates[15]. Any hair growth rate that differs from the 1 cm/month assumption becomes more 

compounded as one travels more distal along a hair sample, representing periods further 

back in time. 

The aim of this study is to explore the use of hair cortisol in relation to past cortisol-

related symptomatology by constructing several timelines of cortisol exposure. 
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Specifically, we aimed to apply various hair growth rates in an attempt to optimize 

retrospective timelines of cortisol exposure to adequately reflect individual patient 

medical histories. 

3.2 Methods 

3.2.1 Patients 

We collected data from patients who attended our tertiary Endocrinology referral clinic at 

St. Joseph’s Hospital, London, Ontario, Canada between September 2015 and May 2018, 

and who had a hair sample collected as part of their clinician’s diagnostic assessment. The 

study was approved by the Western Research Ethics Board, with a waiver of informed 

consent due to the retrospective design of the study. Approval for this study can be found 

in Appendix B. All information collected from the patient charts was considered germane 

to their condition, and included factors such as demographics, prior cortisol assessment 

results, medications, surgeries and reported symptomatology. We carefully extracted very 

detailed information on the time course of patients’ symptoms. 

3.2.2 Hair Collection & Analysis 

The primary physician cut a lock of approximately 150 strands of hair as close to the scalp 

as possible from the posterior vertex of the scalp. The scalp end of each hair sample was 

clearly labelled and taped to a piece of paper with scotch tape. Hair samples were then 

placed in a sealed envelope labelled with the collection date and sent to the Drug Safety 

Laboratory at Robarts Research Institution (London, Canada) for analysis. Hair samples 

were segmented into 1- or 2-cm sections in order to generate a retrospective timeline 

reflective of monthly or bi-monthly hair cortisol exposure. The hair was then prepared as 

previously described[3]. In brief, the hair was weighed and washed twice with 3mL of 

isopropyl alcohol, then allowed to airdry for a minimum of 5 hours. Samples were minced 

into 1 mm pieces in 2mL of methanol using surgical scissors and left to extract on an 

incubator shaker for 16 hours at 50 °C. The next day, the methanol extraction solvent was 

transferred into glass test tubes and evaporated under a stream of nitrogen and heat. 

Subsequently, the sample residues were dissolved in PBS and the cortisol was quantified 

using a commercially available ELISA Kit for salivary cortisol (Alpco Diagnostics®, 
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Windham, NH) as per the manufacturer’s directions with the reagents provided. Cross-

reactivity of other steroids with the kit’s antibodies was reported as follows: Prednisolone 

(13.6%), Corticosterone (7.6%), Deoxycorticosterone (7.2%), Progesterone (7.2%), 

Cortisone (6.2%), Deoxycortisol (5.6%), Prednisone (5.6%), Dexamethasone (1.6%). 

Intraassay variation was below 5% and the interassay variation below 8%, as reported by 

the supplier. 

3.2.3 Hair Cortisol Timelines 

Retrospective timelines were created based upon the length of hair samples provided. For 

each patient we created three unique timelines to assess for variation in individual hair 

growth rates. Each patient’s hair timeline is presented with segmental HCC based on 

three postulated growth rates; a growth rate of 1 cm/month, a slower hair growth rate of 

0.75 cm/month, and a more rapid hair growth rate of 1.25 cm/month. These rates were 

chosen to include 3 SD (0.06 cm/ month)[14] above and below the average hair growth 

rate of 1 cm per month found in the literature[14]. Each month was considered 30 days 

for any calculations. Reported symptoms and interventions were then overlaid on top of 

the graph. Exact dates were used to produce the graphs, however the dates were removed 

from publication to protect the identity of patients. The best-fitting retrospective timeline 

was determined by 4 independent reviewers who were given the 3 timelines for each 

patient in addition to the clinical description. The hair growth rate that best matched the 

particular patient’s history and was chosen for publication required majority (3/4) 

agreement. 

3.3 Results 
Hair cortisol levels were determined in 4 female patients with symptoms of cortisol-related 

pathology. We included three patients with Cushing syndrome and one patient with AI. We 

provide great detail on the history of each individual patient to allow best correlation with 

hair cortisol results. 
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3.3.1 Detailed Individual Clinical Courses and Hair Cortisol 
Timelines 

Patient A, a 25-year-old woman with CS, was referred to our clinic in August 2016. Her 

symptoms started around October 2014, with the inability to cope with stress being the 

most prominent. Oral contraceptives were prescribed for acne control in April 2015 but 

were discontinued shortly after because there was no improvement in the patient’s 

symptoms. In addition to worsening facial and back acne, and hirsutism on the neck and 

face, she reported a 11.5 kg weight gain over the 3 months beginning around May. In the 

period around December 2015, she visited her family physician and reported proximal 

myopathy making climbing stairs difficult, amenorrhea, unexplained bruising, new striae 

on her axilla and hips, blurred vision, anxiety requiring the use of clonazepam, and 

polyuria. She had not previously had diabetes mellitus or hypertension. In February 2016, 

laboratory testing found an elevated plasma cortisol of 1,165 (upper limit of normal [ULN] 

720) nmol/L, and ACTH of 26.8 (ULN14) pmol/L. A urinary cortisol measurement was 

severely elevated at 3474 (ULN 275) nmol/24hr in the first week of March 2016. The MRI 

scan of the sella showed a cystic pituitary lesion with a maximum diameter of 1.3 cm in 

mid-July 2016. She was referred to our clinic and physical examination in mid-August 

2016 was remarkable for prominent Cushingoid features including moon face, cystic acne, 

facial plethora, dorso-cervical and supraclavicular fat depositions, purple striae on her 

thighs and axilla, widespread bruising and proximal myopathy. Her blood pressure was 

131/81 mmHg and she weighed 53.9 kg. Spine X-rays demonstrated micro fractures 

consistent with osteoporosis, without a previous history of fractures. Petrosal vein 

sampling, undertaken in mid-September 2016 because of the cystic nature of the pituitary 

mass, confirmed the pituitary as the primary source of the hypersecretion of ACTH. She 

underwent endoscopic pituitary macroadenoma resection in mid-November 2016. 

Subsequently, she was prescribed hydrocortisone at a dose of 30 mg q.am, tapering to 10 

mg over several months. From January to March 2017, her Cushingoid symptoms 

improved, she lost 7 kg, her menses restarted, and her lab values normalized (AM cortisol 

188 nmol/L, ACTH 4.6 pmol/L).  
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The hair cortisol timeline of patient A is presented in Fig. 10. Her reported symptoms 

correlate best with hair timelines based upon a growth rate of 1 cm/month (Fig. 10B), but 

not with the other growth rates (Fig. 10 A, C). An irregular peak in her hair cortisol timeline 

appears at about 22 to 27 cm from the scalp (Fig. 10B). Using 1 cm/month, this region 

lines up with the weight gain that was reported in May 2015. Initial and worsening 

Cushingoid features were reported throughout 2015 and 2016; this is the period of time 

with elevated hair cortisol values in the range of 600 ng/g (Fig. 10B), and this graph shows 

a decrease in hair cortisol following successful adenoma resection. Fig. 10A, based on a 

growth rate of 0.75 cm/ month, shows elevated cortisol prior to any symptoms, and a 

decrease in hair cortisol before, and not after surgery. Fig. 10C, reflecting a growth rate of 

1.25 cm/month, depicts symptoms appearing prior to any increase in hair cortisol, while 

Fig. 10A shows elevated cortisol prior to any symptoms. Initial and worsening Cushingoid 

features were reported throughout 2015 and 2016; this is the period of time with highly 

elevated hair cortisol values in the range of 600 ng/g (Fig. 10B). It would be expected that 

hair cortisol would drop off following resection, and this is what is seen the best in the 1 

cm/month graph. Hair cortisol drops significantly after resection in the chosen graph but 

does not appear to match Fig. 10A or Fig. 10C.  
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Figure 10: Patient A Hair Cortisol Timelines utilizing A) 0.75, B) 1, or C) 1.25 cm/month growth rate. 
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Patient B, a 34-year-old woman, was diagnosed with premature ovarian insufficiency and 

infertility in June 2015. At the first visit to our clinic in June 2016, she did not report any 

symptoms of AI, her sitting blood pressure was 110/76 mmHg and her weight was 72.6 kg 

with a BMI of 22.6 kg/m2. in September 2017 she was referred back to our clinic because 

of new noticeable hyperpigmentation of the skin. In early October 2017 she reported a 

significant decrease in appetite, loss of approximately 5 kg in 3 weeks, nausea and 

worsening of her skin hyperpigmentation. At this time, her standing BP was 78/62 mmHg 

and her weight 70.2 kg, with unmeasurable AM cortisol of <3 (reference range 130-540) 

nmol/L and an ACTH of 325 (ULN 14) pmol/L. She was found to be positive for adrenal 

antibodies confirming a diagnosis of autoimmune AI.  

Fig. 11 shows her hair cortisol timelines. The graphs suggest that for this patient a 

growth rate of 0.75 cm per month (Fig. 11A) provided the best retrospective time for her 

clinical symptoms. The timeline constructed using 0.75 cm/month provided the best 

representation for this patient’s clinical course because she was not demonstrating any AI 

symptoms at her visit in June 2016 which appeared to occur around the time of a peak in 

hair cortisol at 12-13 cm from the scalp (Fig. 11A). The other growth rates would put this 

visit at times of decreased hair cortisol troughs, suggesting decreased cortisol secretion. 
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Figure 11: Patient B Hair Cortisol Timelines utilizing A) 0.75, B) 1, or C) 1.25 cm/month growth rate. 
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Patient C is a 26-year-old woman was first seen at our clinic at the end of June 2016 

when she was 24 weeks pregnant. She described symptoms suggestive of undiagnosed 

hypercortisolism during her previous pregnancy about 2 years earlier. Her symptoms 

recurred during the current pregnancy, and included weight gain, worsening diabetes 

mellitus and hypertension prompting investigation into the cause of these symptoms. 

Physical examination revealed Cushingoid features including a round flush face, 

hirsutism on the neck, cheeks and lips, prominent striae on her forearms and axilla, thin 

skin and dorso-cervical and supraclavicular fat pads. Biochemical investigations showed 

elevated late-night saliva cortisol and increased urinary cortisol of 1141 (ULN < 275) 

nmol/24hr with an undetectable ACTH of < 0.3 (1.6 - 14) pmol/L. MRI scan of the 

abdomen showed a left adrenal mass with a maximum diameter of 4 cm. She was started 

on metyrapone at 25 weeks’ gestation to lower her cortisol and clinically responded well. 

The baby was delivered by caesarean section at the beginning of September 2016 (35 

weeks’ gestation). Post-delivery she was switched to ketoconazole. Her Cushingoid 

features had improved by the final week of September 2016, and 30 days after the 

delivery of her baby, her Cushing symptoms had significantly improved. In the middle of 

November 2016, she underwent a left adrenalectomy. Post-operatively she was started on 

hydrocortisone 120 mg daily for 2 days, and then 60 mg for 2 days which was tapered to 

a maintenance dose of 40 mg and tapered towards discontinuation in February 2017. In 

the third week of January 2017 she appeared to have improved facial filling and no new 

facial hair. Subsequently, there was a rise in ACTH with sequential measurements over 

the following weeks and months being 1.0, 1.4, 3.7, 9.1 pmol/L and AM cortisol 

production increasing from < 28 to 62 nmol/L indicating return of endogenous pituitary-

mediated cortisol production. This time period corresponds with weight loss of 

approximately 35 kg, restored menses, improvement in external Cushingoid features and 

resolution of her diabetes and hypertension. Her cortisol and ATCH were subsequently 

found to be normal by repeated measurements in June and August 2017.  

Her hair cortisol timeline in Fig. 12 shows a continual increase in HCC throughout the 

2nd and 3rd trimester, peaking around the time of her child’s birth and then dropping 

sharply from 16 ng/g to approximately 4 ng/g post-delivery with the addition of 200 mg 

of Ketoconazole t.i.d. The timing of these peaks and troughs suggest that the most 
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appropriate timeline for this patient is based upon a hair growth rate of 0.75 cm/month. 

Between October and her surgery in November, the proposed hair timeline indicates 

increasing cortisol levels which abruptly plunged following her surgery corresponding to 

the trough in her HCC in January 2017 and her AM cortisol levels (Fig. 12). 

Subsequently, we see a rise in her HCC levels corresponding to an increase in her ACTH 

and AM cortisol production which indicates the return of endogenous pituitary feedback 

cortisol production. 
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Figure 12: Patient C Hair Cortisol Timelines utilizing A) 0.75, B) 1, or C) 1.25 cm/month growth rate. 
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Patient D is a 25-year-old woman who gave birth to a healthy baby in September 2016. 

She was seen in the outpatient clinic at the end of January 2017 because of a full face and 

abnormal weight gain. Biochemical testing demonstrated excess 24-hr urinary cortisol of 

691 (ULN 275) nmol/24hr. A 8 mg dexamethasone suppression test was abnormal with a 

cortisol of 572 (reference ≤ 50) nmol/L and a spontaneous ACTH value of 29.6 (ULN < 

14) pmol/L indicating ACTH-dependent Cushing syndrome. Her AM cortisol results 

were 752 and 1115 (Ref range 135-527) nmol/L and ACTH of 25.7 and 49.7 (ULN < 14) 

pmol/L in late February and early March 2017, respectively. MRI scan of the sella 

demonstrated a 3 mm pituitary adenoma and inferior petrosal vein sampling confirmed 

the pituitary as the source of the excess ACTH secretion. At the end of March 2017, shad 

had been started on ketoconazole 200 mg t.i.d. leading to an improvement in strength, 

facial swelling and hirsutism, loss of 5 kg and her first reported menses since before 

pregnancy occurred in the middle of April 2017. In June 2017 she underwent successful 

resection of her pituitary adenoma She was discharged on hydrocortisone was 30 mg 

q.a.m. & 10 mg q.p.m. followed by a dose decrease to 20 mg q.a.m., 15 mg q.a.m, and 

finally 10 mg q.a.m. Upon examination in August 2017, she had reduced facial swelling, 

substantial weight loss, improved mood and less proximal myopathy. Her overall 

Cushing symptoms continued to gradually improve. In May 2018, she reported having 

regular periods and feeling excellent with a weight loss of 18 kg and demonstrated no 

residual Cushingoid features.  

The hair cortisol timelines for various postulated growth rates are presented in Fig. 13. 

The hair growth rate of 1cm/ month was thought to best match with the detailed course of 

her symptoms (Fig. 13B). Reduction in hair cortisol is seen following birth of her child in 

September 2016. Her symptomatic period overlaps with highly elevated hair cortisol of 

over 1000 ng/g. Ketoconazole therapy induces a clear decrease in hair cortisol. The 

timing of the other two graphs do not show a reduction in hair cortisol corresponding to 

the start of ketoconazole (Fig. 13A, C). The 1 cm/month timeline shows a sharp decline 

in hair cortisol following resection, while Fig. 13A shows decreasing cortisol before 

resection. Improvements in symptoms appear to correlate well with continually 

decreasing hair cortisol until hair cortisol reaches about 100 ng/g and the patient is 

asymptomatic (Fig. 13B).  
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Figure 13: Patient D Hair Cortisol Timelines utilizing A) 0.75, B) 1, or C) 1.25 cm/month growth rate. 
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3.4 Discussion 
The current study investigated retrospective hair cortisol levels over several months to 

years in three patients with CS and one patient with AI and determined the hair growth 

rates best fitting with the individualized time course of the clinical symptoms. Our 

findings suggest that the commonly presumed hair growth rate of 1 cm per month did not 

always best match with the known clinical time course in each patient. This suggests 

there is a need to utilize various hypothetical hair growth rates when attempting to 

construct individual timelines representing historical cortisol secretion in each unique 

patient. 

Prior studies have accepted 1 cm per month hair growth rate as the basis for their 

timelines[7,16,17]. It has always been known that there is variation in growth rates 

dependent upon seasonality, ethnicity, age and other factors[14]. Yet it has become 

evident that there is more variability between individuals than previously thought. For 

example, individuals from recent African descent have been shown to have slower hair 

growth on average of 0.75 cm/ month, and women of Asian ancestry can have hair 

growth rates approaching 1.5 cm/month with an average of 1.25 cm/ month[18]. This 

variability becomes more problematic with longer hair samples as any variation from 1 

cm/month compounds over time. Because it is not possible to know an individual’s hair 

growth rate a priori with absolute certainty, we created three timelines for each 

individual based upon hypothesized hair growth rates of 0.75, 1, and 1.25 cm/month. This 

technique was by another group when trying to quantify Cyclosporine A (CsA) in liver 

transplant patients[19]. By utilizing this method, they were able to detect CsA in hair 

segments corresponding to times of intake, whereas hair segments without 

immunosuppressant therapy were negative. In the present study, the most suitable 

timelines we determined were 0.75 cm/month for patients B and C, while for the 

remaining patients a timeline generated based on a growth rate of 1 cm/month appears to 

provide the best fit. This method gives clinicians the ability to more accurately represent 

the timeline in a given patient.  

Previous work has reported an upper limit of hair cortisol in healthy individuals to 

be 75.9 pg/mg hair, with a sensitivity for distinguishing between healthy individuals and 
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those with CS of 86% [20]. A recent study in Spanish adults indicates an average hair 

cortisol of 127.91 pg/mg[21]. Three of the patients presented in this study had confirmed 

diagnosis of CS. Patient A had a peak hair cortisol value of 700 ng/g, patient C (who was 

pregnant when she was diagnosed with adrenal Cushing) had a peaked at 17 ng/g, and 

patient D peaked at 1400 ng/g hair. Both patient A and patient D did report cessation of 

CS symptoms corresponding to hair cortisol approaching 100 ng/g hair and were 

considered in remission around the same time. Future research should assess how disease 

and physiological changes such as pregnancy act as covariates that effect cortisol 

exposure. 

Patient B was diagnosed with adrenal insufficiency. Her course suggests that autoimmune 

AI may present in a cyclical fashion rather than the more commonly presumed linear 

fashion. Waxing and waning of clinical manifestations is well documented in rheumatic 

autoimmune diseases including systemic lupus erythematosus[22], rheumatoid 

arthritis[22], psoriasis[23], and other autoimmune diseases such as Graves’ 

disease[24,25] and Hashimoto’s thyroiditis[25]. The honeymoon phase in type 1 Diabetes 

Mellitus, another a relapsing–remitting condition, is proposed to be another example of 

cyclic tug-of-war between immune regulation and inflammation[26]. These cycles of 

worsening and cessation of symptoms are thought to be induced by environmental factors 

and stress. Thus, in this patient’s hair timeline the peaks and troughs may be attributed to 

the ebb and flow of autoimmune insult on the cortisol producing cells within the adrenal 

cortex. Future studies need to evaluate additional autoimmune AI patients to determine if 

this is a common phenomenon.  

Patient C had CS, yet her hair cortisol values similar to Patient B who was diagnosed 

with autoimmune AI. Interestingly, patient C, who had the lowest hair cortisol levels, was 

the only one with ACTH-independent CS, indicating that there may be a difference in the 

availability of cortisol to be deposited in the hair of these patients or that the hair follicle 

may be responsible for part of the cortisol incorporated in hair[27]. She was also 

pregnant. Cortisol is known to increase in the second and third trimester of pregnancy in 

response to an increased production of corticosteroid binding globulin[28]. During 

pregnancy, plasma cortisol has been shown to be 2- to 3-fold greater in pregnant women 
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compared to controls[29,30] and 5-fold greater at delivery than during the first 

trimester[31], followed by a sharp drop-off postpartum[28]. This increase in cortisol 

during the third trimester has been demonstrated in HCC as well[16,21]. Reports of CS 

and pregnancy are sparse, with approximately 200 cases in the literature[32]. Two 

pregnant patients (C & D) with CS are presented here. To our knowledge this is the first 

report of hair cortisol being used to track cortisol exposure in a pregnant patient with 

concomitant CS. The hair cortisol timeline of Patient C appears to capture a 5-fold 

increase in in hair cortisol from pre-conception to birth in addition to a return to these 

elevated hair cortisol levels associated with her CS state. Subsequent reduction of hair 

cortisol appears to occur around the time that her adrenal mass was removed. Patient D 

did not have long enough hair to detail hair cortisol exposure prior to the birth of her 

child, yet there was a decrease in hair cortisol around the time of birth. 

Although there was large variation in the absolute values of hair cortisol between 

patients, the best representative timelines matched reported worsening or improvement of 

symptoms, as well as the effect of surgery and initiation of medications affecting cortisol 

secretion. Further, as hydrocortisone is the pharmacological form of cortisol, treatment 

with hydrocortisone will be reflected in hair cortisol measurement. It is known that hair 

cortisol is not highly correlated with serum, saliva, or urinary cortisol values as hair 

cortisol represents a much larger time period of exposure and is less prone to capturing 

acute fluctuations in systemic cortisol. Retrospective hair timelines assume that hair 

growth rate is fairly stable, and not affected by (variation in) the underlying disease or 

external factors such as seasonality. Elevated cortisol is known to reduce turnover of the 

hair follicle[33], yet very high hair cortisol in patient A did not seem to effect the rate of 

hair growth in this patient. True hair growth rates may be different from the postulated 

values, limiting the utility of hair cortisol as a technique in isolation from additional 

laboratory diagnostics. In the future, clinicians may be able to use a test-retest method by 

collecting a hair sample and then measuring the hair growth in that spot over a given 

period of time in between clinic visits to get a better idea of true hair growth. In addition, 

the retrospective nature of this study is inherently problematic since patient reports of 

symptoms are subjective and biased, and the only information available is that which is 

recorded in patient medical records. Future study design should take into consideration 
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the inherent variability of growth rates and subjective recall by examining hair cortisol 

and clinical symptoms in a prospective manner.  

In conclusion, retrospective hair cortisol timelines reflect historical fluctuations in 

cortisol exposure as a result of disease states, medical interventions, and variable 

steroidogenesis. By analyzing three different hair growth rates and selecting the best 

match, we were able to improve the relation between retrospective cortisol levels and the 

patient history. Considering variable hair growth rates provides clinicians a modification 

to this powerful diagnostic tool to more accurately represent an individual patient’s hair 

timeline. We propose that hair cortisol be implemented in clinical practice for assisting in 

earlier recognition of patients suffering from pathological states with cortisol variability. 
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Chapter 4  

4 Hair cortisol in a sample of children and adolescents: 
age, BMI, puberty, and sex 

This study investigates the relationship between levels of cortisol in hair and sex, pubertal 

development, age, and BMI in healthy children and adolescents. Hair cortisol levels were 

examined in 250 normally developing subjects from 7 to 17 years of age. Subjects 

provided a hair sample at a hospital emergency department visit. Pubertal stage was 

assessed with a self-questionnaire that included Tanner stage sketches. Subjects were 

grouped according to their general status of pubertal development (early-puberty: Tanner 

stage I & II; mid- to post-puberty: Tanner stage III - VI). Hair cortisol increased with age, 

pubertal development and BMI but there were no sex differences. Changes in 

hypothalamic–pituitary–adrenal (HPA) axis function that occur during puberty may have 

implications for immediate and long-term adolescent health. 

4.1 Introduction 

The hypothalamic-pituitary-adrenal (HPA) axis mediates the secretion of corticosteroids, 

including cortisol, from the adrenal cortex. This axis is responsible for controlling the 

body’s response to deviations from homeostasis, making the secretion of cortisol 

essential for activation of the normal stress response[1]. Cortisol is vital for energy 

metabolism, electrolyte balance[2], modulating the immune system, and interacting with 

the central nervous system to effect cognition and memory[3]. Perturbations in normal 

cortisol secretion, whether hypo- or hyper-secretion, can lead to poor outcomes[4–6]. In 

particular, changes in cortisol secretion during development can have long-lasting 

implications for cognition, psychopathology, and physical and emotional development in 

children and adolescents. Other than perinatal development, the period of time in 

development marked by the most drastic physiological changes is puberty, with a number 

of these changes being steroid-dependent [7]. This period of time during adolescence is 

critical for undergoing striking changes in physical and emotional growth that can last 

with the individual for many years[8].  
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Sex differences in the reactivity of the HPA axis and the resulting stress response largely 

arise during puberty[8,9]. There is a complex interplay between the HPA axis and the 

hypothalamic-pituitary–gonadal (HPG) system. Glucocorticoids and the sex hormones 

estrogen and testosterone, products of the HPG axis, interact at the receptor level as well 

as the hypothalamic and pituitary levels[9]. The gold standard for assessing puberty is 

physician assessment using the Tanner scale, which defines pubertal maturation into 5 

stages (I-V) based upon external sexual characteristics including breast, genitals and 

pubic hair.  

Cortisol is routinely measured in clinical practice in serum, saliva and 24-h urine[1,10]. 

Salivary and serum cortisol are considered to be acute measures as they are reflective of 

cortisol concentrations at a single point-in-time[1,10,11]. These assays require repeated 

samples, limiting their utility for determining long-term cortisol exposure[11,12]. 

Similarly, urinary cortisol collected from 24-hr urine samples is labor intensive and is not 

feasible in renal patients. These standard sampling techniques are suboptimal for a young 

population who may be fearful of needles, or clinics in general[13]. A number of studies 

have assessed cortisol levels during puberty with varying conclusions[14–

16]. Differences between males and females have generally varied based upon the matrix 

assayed, the time of day samples were taken, and the stage of development[9,16].Yet 

increases in basal HPA activity with age and puberty are consistent, especially in 

females[16].  

Measuring hormones in human hair provides a practical and non-invasive alternative to 

the collection of blood samples, and eliminates the variability that is captured from 

circadian fluctuations in salivary, serum, or urinary assessments[10]. The non-invasive 

nature of hair sampling may be particularly important in paediatric populations, where 

serum cortisol may be elevated as a result of the stress associated with venipuncture 

sampling procedures[17]. Most hair cortisol studies have looked at adults[12,18,19] or 

young children[13,20–22]. Fewer studies have measured hair cortisol in adolescents[23–

26]. These studies have generally found an increase in hair cortisol with age, with 3 

assessing puberty status[19,25,27]. 
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This study investigates the relationship between cortisol in hair and age, puberty, sex and 

BMI in children and adolescents. The goal of this work is to add to the literature by 

determining normal changes in hair cortisol values in paediatric and adolescent 

individuals. Hair cortisol may prove to be important for capturing long-term cortisol 

exposure in children and adolescents, a population in which recurrent venipuncture is 

problematic because of this population’s innate fear of needles. In the future this 

information can be used as a comparison for assessing perturbations in cortisol exposure 

that may be caused by disease states, or modern social stressors such as technology and 

social media that may be impacting the health of this population.  

4.2 Methods 

4.2.1 Sample Selection 

The recruitment process involved screening all patients attending the Paediatric 

Emergency Department, Children’s Hospital of Southwestern Ontario, London, Ontario, 

Canada. Electronic medical records were reviewed for complete medical history 

including recent hospital visits, medical diagnoses, and list of medications being used. 

All potential participants and their substitute decision makers (if under the age of 14) 

were asked about any past and current physical or emotional problems including recent 

stressors, sickness, as well as any diagnosed mental or physical issues, and any 

medications being taken. Exclusion criteria included use of glucocorticoids, both 

systemic and topical, or medication known to alter glucocorticoid metabolism, a history 

of serious health problems, diseases, or psychiatric illnesses, abnormal stress (e.g. moves, 

school, parental divorce), vaccinations within the last 2 months, severe trauma in the last 

2 months, and infection (e.g. cold, flu) within the last 2 months. Once deemed eligible, 

participants were given an information letter and request for consent. A total of 250 (130 

boys, 120 girls) seven to 17-year-olds were included in the study. All subjects and a 

substitute decision maker provided written informed consent. This study was approved by 

Western University Research Ethics Board. The approval for this study can be found in 

Appendix C. 
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4.2.2 Measures 

4.2.2.1 Pubertal stage 

Morphological pubertal stage was assessed using validated schematic drawings of 

secondary sex characteristics associated with the five Tanner stages of pubertal 

development [28]. The self-questionnaire (Fig. 14) was validated for assessing sexual 

maturation in children by comparing the questionnaire to physician assessment and blood 

hormone levels[28]. At the study visit, the objective of the questionnaire was explained to 

the parent and subject was then shown a sample of the figures. They were given the 

option of completing the questionnaire individually or together. It was explained that 

when choosing the image that looked most like them, to not include the practice of pubic 

hair shaving. Similar ratings have been widely used and demonstrated good reliability. 

Subjects were then classified as Tanner stage I–V; males were staged based upon genitals 

and pubic hair, and females were staged based upon breast and pubic hair. 

Figure 14: Tanner Self-Questionnaire.  
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4.2.2.2 Body Mass Index (BMI) 

Height and weight were measured at the subjects’ hospital visit. Height was measured in 

centimeters (cm) using a standard stadiometer, and weight was measured in kilograms 

(kg) using a digital scale. The same height meter and weighing scales were used 

throughout the study. Body mass index (BMI), a standard index of a person’s weight in 

relation to height, was determined for each subject by dividing the weight (kg) by the 

square of the height (m2). 

4.2.2.3 Hair Sampling 

Subjects provided a hair sample about the thickness of a pencil eraser (~100 hairs) which 

was collected from the posterior vertex of the scalp as close to the scalp as possible. The 

sample was then taped to a hair collection form and secured by placing it in an envelope 

labelled with the patient's study ID. Samples were transported to the laboratory and 

stored at room temperature until analysis. 

4.2.2.4 Cortisol Measurement 

Hair samples were prepared and cortisol was analyzed using a modified commercial 

salivary cortisol competitive ELISA (Alpco Diagnostics®, Windham, NH) as previously 

described[29]. Briefly, the 2 cm of hair proximal to the scalp was weighed to 10 mg, then 

washed twice with isopropyl alcohol. The hair was minced using surgical scissors in 

methanol and the cortisol was extracted for 16 hours on an incubator shaker with heat. 

The supernatant was evaporated under nitrogenous conditions, leaving a cortisol residue 

that was reconstituted in PBS. Cortisol was quantified according to the manufacturer’s 

instructions using a micro-well plate reader at a wavelength of 450 nm. Cross-reactivity 

of other steroids with the kit’s antibodies was reported as follows: Prednisolone (13.6%), 

Corticosterone (7.6%), Deoxycorticosterone (7.2%), Progesterone (7.2%), Cortisone 

(6.2%), Deoxycortisol (5.6%), Prednisone (5.6%), Dexamethasone (1.6%). Intraassay 

variation was below 5% and the interassay variation below 10%. Assay results were 

converted to ng of cortisol per g of dry hair (ng/g). 
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4.2.3 Statistical Analysis 

Statistical analyses were performed using SAS University (SAS Studio 3.8, SAS 9.4M6) 

and R (version 3.5.3, 2019-03-11). Hair cortisol was log10-transformed to achieve 

normality and equalize variance. Variance was assessed by Levene’s test for 

homogeneity. Continuous data was analyzed by analysis of variance (ANOVA) followed 

by Tukey post-hoc for significant results. Standard deviation (SD) scores (z-scores) for 

BMI were calculated based on the WHO growth reference 5-19 2007 using the WHO 

2007 R macro package[30]. Differences between groups were assessed using Student’s t-

tests. Relationships between hair cortisol and age, and hair cortisol and BMI were 

analyzed by linear regression. 

4.3 Results 

4.3.1 Characteristics of Participants 

Subjects ranged from 7 to 17 years old. At total of 120 females (48%) and 130 males 

(52%) were included. The general characteristics of study participants are found in Table 

2. There were no significant sex differences in mean age, BMI or Tanner stage. 

 Pooled Sample 
(N=250) 

Male  
(n=130) 

Female 
(n=120) 

 

Age (years ± SD) 11.98 ± 0.19 11.76 ± 0.28 12.2 ± .27 p = 0.25 

BMI (kg/m2 ± SD) 20.65 ± 4.83 20.72 ± 5.26 20.57 ± 4.34 p = 0.80 

BMI z-score ± SD 0.61 ± 1.44 0.71 ± 1.53 0.50 ± 1.34 p = 0.25 

Tanner Stage ± SD 

Breast/ Genitals 

Pubic hair 

 

2.72 ± 1.30 

2.53 ± 1.45 

 

2.82 ± 1.27 

2.49 ± 1.55 

 

2.63 ±  1.32 

2.58 ± 1.33 

 

p = 0.25 

p = 0.10 

Table 2: Characteristics of Study Participants 

The majority of participants (78%) were of Caucasian background, followed by Hispanic 

or Latino (5.2%), Asian (4.4%), and Middle Eastern (3.6%). The ethnicities of all 

participants can be found in Table 3. 
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Ethnicity Frequency Percent 

Caucasian 195 78.00 

Hispanic or Latino 13 5.20 

Asian 11 4.40 

Middle Eastern 9 3.60 

Unknown 6 2.40 

Aboriginal 4 1.60 

African American 4 1.60 

Ethnicity Frequency Percent 

African 
American/Caucasian 

2 0.80 

Asian/Caucasian 2 0.80 

Caucasian/Latino 2 0.80 

Aboriginal/Hispanic 1 0.40 

Middle 
Eastern/Caucasian 

1 0.40 

Table 3: Ethnicity of Study Participants

The reason for each participant’s hospital emergency visit, coded according to the 

Medical Dictionary for Regulatory Activities patient friendly terms (MedDRA, v22.0), 

are provided in Table 4. If the reason was listed only once, it was included in the ‘Other’ 

category. The full listing is available in Appendix E. 
 

Reason Frequency Percent 
Abdominal 
discomfort 

26 10.40 

Ankle injury 17 6.80 

Head injury 15 6.00 
Laceration 15 6.00 

Wrist injury 15 6.00 

Finger injury 13 5.20 

Headache 10 4.00 

Elbow injury 8 3.20 

Wrist fracture 8 3.20 

Arm injury 7 2.80 

Shoulder injury 7 2.80 
Clavicle fracture 6 2.40 

Knee injury 6 2.40 

Leg injury 6 2.40 

Sore throat 6 2.40 

Syncope 6 2.40 
Chest pain 5 2.00 

Reason Frequency Percent 
Cough 5 2.00 

Hand injury 5 2.00 

Urinary tract 
infection 

5 2.00 

Fever 4 1.60 

Neck pain 4 1.60 

Nose injury 4 1.60 

Vomiting 4 1.60 

Anaphylactic 
reaction 

2 0.80 

Constipation 2 0.80 

Earache 2 0.80 
Skin rash 2 0.80 

Toe injury 2 0.80 

Other 32 12.8 

Unknown 1 0.40 

Table 4: Reason for Hospital Visit 

(abbreviated)
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Status of pubertal development (Tanner stage I-V) was assessed for all participants. 

Based upon pubic hair development, 50.8% of participants were in pre- to early-puberty 

(Tanner stage I & II) and 49.2% were in the later stages of puberty (III-V, Table 5). 

Based upon breast or genital development, 44.8% were in pre to early puberty and 55.2% 

were in stages III-V (Table 5). There was good agreement with both measures. 

 

 

 

 

 

 

 

 

 

 

Participants were grouped based on standardized BMI scores according to the WHO 2007 

definitions: Obesity: > + 2SD (equivalent to BMI 30 kg/m2 at 19 years), Overweight: > + 

1SD (equivalent to BMI 25 kg/m2 at 19 years), > -2 SD Normal < + 1 SD and, 

Underweight < - 2SD[30]. The frequency for reported BMI subgroups are found in Table 

6. 

 

Tanner 
Stage 

Pubic Hair by Sex Genital/Breast by Sex 

 
F M Total F M Total 

1 39 
15.60 
41.05 
32.50 

56 
22.40 
58.95 
43.08 

95 
38.00 

 
 

34 
13.60 
60.71 
28.33 

22 
8.80 

39.29 
16.92 

56 
22.40 

2 17 
6.80 
53.13 
14.17 

15 
6.00 
46.88 
11.54 

32 
12.80 

 
 

20 
8.00 

35.71 
16.67 

36 
14.40 
64.29 
27.69 

56 
22.40 

 

3 28 
11.20 
59.57 
23.33 

19 
7.60 
40.43 
14.62 

47 
18.80 

 
 

35 
14.00 
51.47 
29.17 

33 
13.20 
48.53 
25.38 

68 
27.20 

 
 

4 28 
11.20 
59.57 
23.33 

19 
7.60 
40.43 
14.62 

47 
18.80 

 
 

19 
7.60 

46.34 
15.83 

22 
8.80 

53.66 
16.92 

41 
16.40 

 

5 8 
3.20 
27.59 
6.67 

21 
8.40 
72.41 
16.15 

29 
11.60 

 
 

12 
4.80 

41.38 
10.00 

17 
6.80 

58.62 
13.08 

29 
11.60 

Total 120 
48.00 

130 
52.00 

250 
100.0 

120 
48.00 

130 
52.00 

250 
100.00 

 

Frequency 
Percent  
Row Pct  
Col Pct 

Table 5: Puberty Status by Sex 
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Growth Frequency Percent 

Normal 143 57.20 

Overweight 
Obese 

63 

37 

25.20 

14.80 

Underweight 7 2.80 

Table 6: BMI Growth Groupings Based on WHO 2007 z-score Cut-Off. 

4.3.2 Hair Cortisol 

Hair cortisol concentrations were 250.56 ± 314.07 ng/g (mean ± SD), ranging from 4.47-

2703.64 ng/g. After log-transformation, the mean (± SD) hair cortisol was 2.17 (±0.65) 

ng/g. Sex did not influence hair cortisol (p = 0.29). 

4.3.2.1 Hair Cortisol in Relation to Age 

Regression analysis showed a positive linear relationship between hair cortisol 

concentration and age (β = 0.29, p<.0001, Fig. 15). This relationship remained in both 

the male (β = 0.32, p < 0.0005) and female (β = 0.25, p < 0.01) subgroups. 

Wednesday, April 17, 2019 02:19:39 PM 5

Model: MODEL1
Dependent Variable: logHCC
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0.0791Adj R-Square
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0.2224MSE

248Error DF
2Parameters
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Fit Plot for logHCC

Dotted lines represent limits of 95% prediction intervals based on linear regression; (β = 0.29, 

p<.0001). 

Figure 15: The relationship between log-transformed Hair Cortisol (ng/g) and Age (years). 
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4.3.2.2 Hair Cortisol in Relation Pubertal Status 

There was a significant difference between hair cortisol concentration in early and late 

puberty groups as determined by 2-way ANOVA (F(3,246) = 4.29, p = 0.006) for genital or 

breast development. A Tukey post-hoc test revealed that hair cortisol was significantly 

lower (p < 0.001) in the early puberty group (Tanner stage I & II, 2.05 ± 0.54 ng/g) 

compared to the late puberty group (Tanner stage III-V, 2.26 ± 0.42 ng/g) as assessed by 

genital or breast Tanner stage (Fig. 16a). There was no main sex or interaction effect. 

There was a significant difference between hair cortisol concentration in early and late 

puberty groups as determined by 2-way ANOVA (F(3,246) = 5.00, p = 0.002) for pubic hair 

development. A Tukey post-hoc test revealed that hair cortisol was significantly lower (p 

< 0.001) in the early puberty group (2.06 ± 0.55 ng/g) compared to the late puberty group 

(2.28 ± 0.38 ng/g) as assessed by pubic hair Tanner stage (Fig. 16b). There was no main 

sex or interaction effect. There was a positive correlation between both measures of 

puberty and hair cortisol (not shown, p< 0.001). 
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Figure 16: Boxplots comparing mean hair cortisol by early or late stage of puberty assessed by a) breast 

or genital Tanner stage and b) Pubic Hair Tanner stage. * p < 0.001, Tukey. 
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4.3.2.3 Hair Cortisol in Relation BMI 

Regression analysis showed a positive linear relationship between hair cortisol 

concentration and BMI (β = 0.16, p = 0.01, Fig. 17). This correlation remained in male (β 

=0.20, p < 0.05), but not the female (p = 0.20) subgroup. Hair cortisol did not regress 

with BMI adjusted for age (β = 0.038, p=0.55).  

 

There was no significant difference between thin, normal, overweight, or obese groups as 

determined by one-way ANOVA (F(3,246) = 1.92, p = 0.13) for BMI cut-offs (Fig. 18). 
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Figure 17: The association between log-transformed Hair Cortisol (ng/g) and BMI (cm/kg2); 
Dotted lines represent limits of 95% prediction intervals; (β = 0.16, p=0.01). 
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4.4 Discussion 
This study assessed hair cortisol as a function of age, sex, BMI and puberty status in a 

large sample of healthy children and adolescents. Each participant was screened to 

exclude those with known diagnoses, recent stressors or any medication use. Hair cortisol 

increased positively with age. A number of studies found no significant association 

between hair cortisol and age, though they had small sample sizes, and limited age 

ranges[31]. The positive correlation is in agreement with a previous study of 128 children 

aged 4-14[25] and a study of 245 3-16 year-olds[27], both of which assessed hair cortisol 

over a wider age range of children and adolescents compared to the studies that found no 

relationship. On the other hand, two studies found that hair cortisol decreased with age in 

children below 9 years of age[19,22]. This may indicate a quadratic relationship between 

hair cortisol and age, with high levels at very young ages declining within the first 7-8 

years of life, followed by increasing cortisol levels into adulthood[19]. In a subset 

analysis of the 7 to 9-year-olds in our cohort, however, the positive relationship 

remained. Variability in hair cortisol decreased with age in the current study. Decreasing 

variance from infancy has been previously reported in hair cortisol [22] as well as serum 

cortisol measurements up until the age of 17, when variance begins to increase once 

again[32]. 
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Figure 18: Boxplot for BMI subgroups according to WHO 2007; p = 0.13 
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Hair cortisol did not differ between male and female participants. This finding is similar 

to many studies which found no significant difference between sexes[19,20,22,25,33,34]. 

While other studies found higher cortisol in males than in females[35,36]. These studies, 

however, were in younger children and thus it may be true that boys have higher cortisol 

levels during early childhood. It was hypothesized that differences would arise during 

puberty because adolescence is a sensitive period in the development of both the HPA 

and HPG axes[8,9]. Similar to White et al.[27], puberty status was associated with 

increased hair cortisol, with those in later stages of puberty having higher cortisol than 

those in early puberty. Noppe et al. [25] showed no difference from pre to post-puberty, 

though that study had only 26 children (20%) in later stages of puberty thus limiting the 

ability to draw conclusions on the effect of puberty.  

Body mass index ranged from very thin to obese according to the WHO 2007 reference 

data[30]. There was a positive relationship between hair cortisol and BMI which did not 

remain when calculating BMI-for-age z-scores. A positive relationship with BMI in 

children has previously been shown[35,37]. This positive correlation remained in 

previous studies assessing standard deviation scores for BMI[27,38–40], while, similar to 

our study, two other groups did not find a correlation between BMI z-score and hair 

cortisol[25,41]. Obesity in children has been associated with increased hair 

cortisol[38,42], though in the current study, hair cortisol did not differ between obese, 

overweight, normal and underweight groups. None of these studies used the WHO 

reference data for comparison. Waist circumference, as a measure of body composition, 

may provide a more consistent relationship with hair cortisol[31,37]. 

A number of limitations of the present study must be discussed. Recruitment from the 

emergency department at Children’s Hospital of Western Ontario was chosen because it 

services a large area of Southwestern Ontario with a diverse multicultural background. 

However, the results indicate that the vast majority of participants were Caucasian 

limiting the generalizability of our results to other ethnicities. Hair cortisol concentrations 

in the present investigation are quite high compared to previous studies, but similar to 

studies using the same methods and even the same ELISA kit[22,43–45]. Immunoassay 

measurement of cortisol overestimates cortisol[43,46], and most studies are moving 
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towards the use of liquid chromatography mass spectrometry to increase the specificity of 

measurements[46–48]. Hair cortisol is decreased with UV exposure[49]. The majority of 

samples were taken during the winter months meaning that most participants would not 

have been exposed to UV as a result of cold weather as well as low winter UV index in 

Ontario. This could be one contributory factor to the high cortisol levels. Recruitment in 

the emergency setting also leads to sampling bias for active children who are prone to 

physical injury. Intensive aerobic exercise activates the HPA axis leading to increased 

hair cortisol levels[50].  

This study was well powered with a wide age range, including approximately equal 

numbers of individuals in pre- and post-puberty. Our sample was large enough to have 

about 20 individuals for each year of age, with approximately equal distribution between 

males and females. The wide geographical sampling area, drawing from London, Ontario 

and many of the surrounding regions in Southwestern Ontario indicates a potentially 

representative sample of the general healthy population within our target age range. 

Because recruitment occurred in the hospital, thorough screening by electronic medical 

record and questioning at the time of recruitment was utilized to exclude those exposed to 

recent stressors, and those with medication use or any diagnosed medical conditions.  

This study showed an increase in hair cortisol with age, BMI and puberty status in a large 

population of relatively healthy children and adolescents. Hair cortisol has the potential 

to assess cortisol exposure in a non-invasive manner. This has important implications for 

assessing cortisol exposure during an important and stressful period of human 

development. Hair cortisol may be a useful tool for future research to delve into the 

cornucopia of stressors facing adolescents today, including the way technology is 

impacting physical and mental health. Future studies need to address the use of 

immunoassays for cortisol measurement because of the tendency to overestimate cortisol 

levels in hair. 
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Chapter 5  

5 Hair Cortisol Methods Update 

5.1 Introduction 
The keratinized structure of hair and the relatively predictable growth rate [1] allows for 

the retrospective determination of exposure to endogenous and exogenous compounds. 

Hair as a matrix, is composed of 65-95% protein, 1-9% lipids, 3-5% water, and <1% 

trace elements [2]. The surface of hair is hydrophobic, and the color is determined the 

melanin pigment[2]. Compounds in the blood diffuse from capillaries within the dermal 

papilla of the hair follicle into dividing cells and are subsequently deposited in the hair 

shaft as it grows[3,4]. The use of hair to measure exposure to exogenous compounds, 

especially in the case of drugs of abuse, has been used for many years[2,5]. Notably, the 

development of hair assays for exposure to cocaine[3,6–9], amphetamines[7,10], 

opiates[7,8,11], and cannabinoids[6,8] in human hair.  

Analysis of exogenous corticosteroids in hair [12] sparked the first interest in measuring 

the endogenous corticosteroid, cortisol[13]. Since this time, hair cortisol analysis has 

rapidly gained in popularity, with the number of newly published manuscripts increasing 

every month. Studies have looked at hair cortisol values in healthy controls[14,15] and a 

number of diseased populations from those with Cushing’s disease[16,17], cardiovascular 

disease[18,19] and mental health[20–22].  

The standard methods for hair cortisol analysis involves weighing hair samples, followed 

by washing the samples with isopropanol to remove cortisol that may have been 

deposited on the outside of the hair from sweat, sebaceous secretions or from 

handling[23]. Following this washing step, samples are allowed to air dry before the 

cortisol is extracted. A prerequisite to maximal cortisol extraction is increasing the 

surface area of the hair’s keratin structure. To date, this has been achieved by using ball 

mills to grind or pulverize the hair, blending the hair, or most commonly by mincing the 

hair with surgical scissors[23]. Pulverizing the hair with ball mills suffers from the high 

expense of the machinery as well as high sample loss[24] and carryover between 
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samples[23]. Other groups have used blender-like ball mills which are less costly[25], but 

still suffer from the potential for sample loss during the transfer of the fine powdered dust 

from the blender to the tube which the sample will be extracted in. Mincing hair with 

surgical scissors to pieces smaller than 1 – 2 mm has been the most common method for 

increasing hair surface area[23]. The benefits of this method are that the mincing can be 

done directly in the methanol without the need for transfer into another vial, it is highly 

cost efficient, and there is no chance for carryover. This method, however, is time 

consuming and may lead to variability depending on the skill or care taken by the 

technician. Cortisol is then usually extracted in methanol or acetone at room temperature 

or in heat from 15 – 24 hours[23].  

Following the extraction of cortisol, the supernatant (i.e. solvent and cortisol) is 

transferred to a clean test tube and evaporated under a steady stream of nitrogen while 

being heated until dry[23]. The use of nitrogen way hypothesized to prevent the oxidation 

and degradation of cortisol, however it is known that drying cortisol extracts for LC-

MS/MS does not cause signal loss[23]. One study found no significant difference 

between the nitrogen versus room air extraction on hair cortisol concentration[25]. 

Finally, the dried samples are typically analyzed by ELISA or LC-MS/MS[23]. 

Hair color, determined by melanin content, may also effect hair cortisol content[26,27]. 

The effect of hair pigmentation on hair cortisol may arise during the incorporation phase, 

or alternatively may be an artefact of the stronger binding of cortisol to the melanin in 

hair. Some groups have assumed that cortisol incorporation is independent of melanin, 

though it is possible that cortisol can bind melanin via weak interactions[26]. 

Solubilization of hair has the possibility of freeing all compounds in the hair from the 

pigment and keratin, thus eliminating one source of variability. This may be particularly 

important for hair cortisol as it has been estimated that a single methanol extraction only 

yields about 46.1% of absolute cortisol from hair[24]. The time required for digestion and 

extraction is also considerably less[2,6]. 

Reduction in potential sample loss, variability, and extraction time, may be achieved by 

alternative methods for hair particle size reduction. Enzymatic, basic, and acidic 



 

 

103 

hydrolysis of hair has been used in the determination of drugs of abuse and other 

compounds in hair[6,9,28]. Hydrochloric acid, sulfuric acid, nitric acid, perchloric acid, 

and sodium hydroxide solutions have all been employed to dissolve hair samples[2]. The 

concentrations of acid or base used in these methods range from 0.1M to pure acid or 

base, as reviewed elsewhere[2]. Yet for some reason, these methods have not been 

developed for extracting cortisol from hair. 

Faster, more reliable and efficient extraction of hair cortisol is desirable for the 

development high throughput analysis to reduce technician time and cost and increase 

confidence in analytical results. The aim of the current study is to compare various 

extraction and evaporation methods to optimize hair cortisol analysis for future use.  

5.2 Methods 
A sample of hair was taken from participants as part of a larger study assessing hair 

cortisol levels in healthy children and adolescents. Participants were recruited from the 

Paediatric Emergency Department, Children’s Hospital of Southwestern Ontario, 

London, Ontario, Canada. This study was approved by the Western Research Ethics 

Board. All participants gave assent and, a substitute decision maker provided written 

informed consent if under the age of 14, and those 14 – 17 provided informed consent. 

Participants were screened for current or past emotional or psychiatric problems, any 

abnormal medical diagnoses or conditions, medication use, recent abnormal stressors, 

vaccination, or infections. Screened subjects were excluded for any past medical history 

of smoking, psychiatric illnesses, cardiovascular diseases, autoimmune diseases or 

medication use. 

5.2.1 Nitrogen vs. Air Evaporation 

A 20 mg sample of hair was cut from the posterior vertex of the head as close to the scalp 

as possible. The hair was washed twice with a 3 mL of isopropanol and allowed to fully 

dry in air. For this part of the study, the typical mincing method using surgical scissors 

was used to increase the surface area of the hair. Four (4) mL of methanol was added to 

the hair which was then minced into small pieces less than 1 mm in size. The vials were 

then placed on an incubator shaker at 52 °C for 16 hours. The supernatant was then split 
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into two separate test tubes, each with 2 of the 4 mL of supernatant. One of these test 

tubes was dried with nitrogen and the other with air, both at a temperature of 50°C until 

completely dry. The entire process is highlighted in Fig. 19.  

 

Figure 19: Protocol for nitrogen versus air evaporation. 

5.2.2 Enzymatic Digestion 

For enzymatic digestion, 10 mg of Proteinase K enzyme (Sigma, P8044), 100 mg of 1,4-

Dithiothreitol (DTT, Cleland’s reagent; Roche 10708984001) and 1 mL of Tris HCl 

buffer (pH 8.0) was added to 10 mg of hair. The digestion was undertaken for 60 min at 

37.5°C on a shaker to ensure continuous mixing. The hair digest was centrifuged for 

10 min at 2380g and the hair pellet was discarded. Two (2) mL of dichloromethane was 

added, the mixture was vortexed for 10 seconds, and the organic layer was transferred 

into a fresh glass tube. This was repeated once more. The dichloromethane was 

evaporated under a gentle stream of nitrogen gas at 50°C.  

methanol

1. Weighing 2. Washing: 2x 6mL 
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5.2.3 Sodium Hydroxide Digestion 

5.2.3.1 Spike-Recovery and Dilution 

For basic digestion, spike-recovery and dilution was assessed (Fig. 20). Hydrocortisone 

(Sigma, H4001) was diluted in PBS at pH 8.0 by serial dilution. In order to assess 

linearity of dilution, 3 concentrations (1, 10, 100 ng/mL) of hydrocortisone were added to 

individual test tubes (Fig. 20). To minimize the volume of PBS added to the assay, 25μL 

of each hydrocortisone solution was added to the test tubes to achieve a final 

concentration of 1, 10, and 100 ng/mL in 250μL of PBS for the ELISA (Table 7).  

 

 

 

 

 

 

 

 

Table 7: Cortisol solutions spiked into samples for recovery and expected recovery in 

250μL of PBS. Solutions made by serial dilution of hydrocortisone.  

Dilution 
(ng/mL) 

Volume 
(μL) 

Expected Recovered Mass 
(ng) 

Expected Final Concentration in 250μL of 
PBS (ng/mL) 

10 
100 

1000 

25 
25 
25 

0.25 
2.5 
25 

1 
10 

100 

 
Figure 20: Cortisol spike-recovery dilution assay protocol. Comparing 3 concentrations of 
NaOH to methanol extraction, each with 3 spiked concentrations of cortisol. 
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Three sodium hydroxide (NaOH) and 3 hydrochloric acid (HCl) solutions of 1M, 3M and 

6 M concentration were made using NaOH pellets or 12M stock HCl in deionized water, 

respectively. One (1) mL of each of the 3 NaOH solutions was added to each test tube 

(Fig. 20) and incubated at 60°C and 100 RPM for either 10 min (3M & 6M) or 30 min 

(1M, Fig. 20). The length of incubation time was determined by digesting 5 hair samples 

each at 1M, 3M, or 6M, until visually disintegrated. 

To neutralize the NaOH, 1 mL of 1M, 3M, or 6M HCl was added to each sample, and 

then centrifuged for 10 min at 2380g. The hair and salt pellet was discarded. To the 

supernatant, 2 mL of dichloromethane was added and vortexed for 10 seconds, and the 

organic layer was transferred to a fresh test tube. This was repeated twice. The 

dichloromethane was then evaporated under a steady stream of nitrogen and the residue 

was frozen until analysis. The NaOH extracts were compared to the standard methanol 

method (Fig. 20).  

Percent recovery was calculated as the ELISA result from each extract divided by the 

ELISA result for the standard dilutions plated directly multiplied by 100. Relative percent 

recovery, defined as the recovery compared to the standard methanol method, was 

calculated as the ELISA result from each extract divided by the ELISA result for the 

methanol extraction multiplied by 100.  

5.2.3.2 Recovery from Hair 

To assess the hypothesis that NaOH digestion of hair frees a larger percentage of absolute 

cortisol in hair compared to methanolic extraction, NaOH digestion was undertaken on 

27 hair samples. Each 10 mg sample received 1 mL of 6 M NaOH as described above. 

The results of this digestion were then compared to the standard methanolic extraction of 

hair cortisol. Relative recovery was calculated by dividing the ELISA result from the 

NaOH digestion by the ELISA result from the standard method and multiplying by 100. 
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5.2.4 Reconstitution and Quantification of Cortisol 

Dried residue from the above-mentioned evaporations was reconstituted with 250 μL 

PBS at pH 8.0 and vortexed for 10 seconds. Cortisol concentration was measured using a 

modified salivary cortisol ELISA (Alpco Diagnostics®, Windham, NH) as per the 

manufacturer’s instructions. Samples were plated in duplicate and the average of the two 

was taken as the result. Any result outside of the standard curve was re-run and diluted if 

required. Hair cortisol was log transformed to achieve normality for statistical tests. Intra- 

and inter-assay CV was 7% and 9%.  

5.3 Results 
Log hair cortisol concentrations after evaporation with nitrogen gas versus air were 2.41 

and 2.37 ng/g, respectively (p=0.0003, Fig. 21) 
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Cortisol measurement was not possible from the proteinase K hair digests because DTT 

blocked ELISA readout. To confirm this, DTT was added to a hydrocortisone standard 

and measured via ELISA.  

Standard curves were generated to assess the linearity of dilution and recovery of cortisol 

from standard dilutions of 1, 10, and 100 ng/mL (Fig. 22). 

Percent recovery and relative percent recovery are presented in Table 8.  

Table 8: Recovery of hydrocortisone standards from methanolic and NaOH extractions. 
Recovery represents recovered cortisol in ng/mL divided by standard dilutions, and 
relative percent recovery equals recovered cortisol from NaOH extraction divided by 
recovered cortisol from methanol extraction. 

Standard Dilution 
(ng/mL) 

Methanol 1M NaOH 3M NaOH 6M NaOH 

% 
Recovery 

1 123.5 211.6 149.6 257.7 
10 98.4 15.5 159.3 29.7 

100 103.4 7.4 44.7 25.4 

% 
Relative 

Recovery 

1 
 

171.4 121.2 208.7 

10 
 

15.8 162.0 30.2 
100 
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Figure 22: Standard curves generated from 1, 10, 100 ng/mL dilutions and corresponding 
recovery curves from methanol and NaOH extractions. 
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The mean ±  SD log hair cortisol was lower in the NaOH digestion group (1.91 ±  0.28 

ng/g) compared to the standard methanol extraction group (2.21 ±  0.29 ng/g, p < 

0.0001). The average cortisol recovery from the NaOH group compared to the standard 

extraction was 63.3%. 

5.4 Discussion 

Nitrogen gas is commonly used in the evaporation of solvents because of its inert 

properties. Though nitrogen evaporation in cortisol analysis is not consistent across 

protocols. For example, in non-hair cortisol LC-MS protocols, air drying is sometimes 

employed without loss of signal. In the present study, nitrogen dried samples had higher 

cortisol measurements compared to those dried with air. Curiously, room air is composed 

of about 78% nitrogen yet there was still a difference between the two evaporation 

conditions. This is in contrast to a previous study which did not find a difference between 

the two evaporation conditions[25]. That study had a small sample size (12 pairs) while 

we ran more than double the samples. To remove any sources of variability, we 

conducted a single extraction on a sample of 20 mg and then equally separated the extract 

into two vials before evaporating under either nitrogen or room air. It is therefore 

suggested to continue using nitrogen for drying hair cortisol samples. 

A prerequisite to assaying cortisol in a solid matrix is to free the analyte of interest out of 

the sample and into solution. This may be achieved by disintegrating the hair before 

extraction or extracting the compound directly from solid hair. The typical method of 

mincing or pulverizing the hair may lead to sample loss and incomplete extraction, is 

laborious and time consuming, and can the equipment required for grinding can be 

expensive. We explored the possibility of digesting hair with the use of proteinase K to 

digest the hair, and also using a basic milieu to break down the hair structure.  

Proteinase K, a serine protease, rapidly digests hair with the addition of a thiol compound 

such as DTT which acts as a disulfide reduction agent. The addition of DTT increases 

enzyme activity 10-fold[29], leading to complete hair digestion within an hour[6]. 

However, even after centrifugation of the hair extracts, the presence of DTT prevented 



 

 

110 

ELISA readout. This was confirmed by adding DTT to a hydrocortisone sample and 

running an ELISA. Testing of alternative agents, further purification within the protocol, 

or the quantification of cortisol with LC/MS which does not rely on assay binding, could 

lead to positive results in the future.  

In a pilot study, we tested three concentrations of sodium hydroxide in a cortisol spike-

recovery assay compared to the standard methanol extraction method. The methanol 

extract had very similar ELISA results compared to the standard dilutions plated directly. 

Whereas the NaOH extracts had lower recoveries with the 3M NaOH having the highest 

recovery, followed by 6M and 1M. There are two possible causes for the signal loss: 1) 

The basic strong basic environment leads to cortisol breakdown, or 2) complete recovery 

requires additional volume of dichloromethane to allow for maximal cortisol dissolution 

from the extract. Unexpectedly, the 1M NaOH extraction resulted in the lowest recovery. 

This may be due to the longer 30-minute digestion required to dissolve the hair at this 

concentration compared the 10 minutes required for 3M or 6M NaOH.  

Previous studies have shown a single methanolic extraction yields approximately 46% of 

absolute cortisol from hair[24]. This suggests a method for completely disintegrating hair 

could, in theory, release all of the cortisol in hair and result in a better method for hair 

cortisol quantification. We found an average recovery of 63.3% in hair samples digested 

by 6M NaOH compared to the standard methanol extraction method. Based on the spike-

recovery assay, we would have expected between 24-30% recovery. This may suggest 

that the NaOH digestion released a larger fraction of total cortisol from the hair, and the 

decreased cortisol measured from the NaOH method may be a result of the basic 

environment. In order to validate and optimize this method, lower concentrations of 

NaOH should be used to reduce the potential for cortisol degradation.  

The use of hair cortisol as a measure of retrospective cortisol exposure is currently 

limited by inter-laboratory variability, cost, and laborious extraction protocols. 

Development of automated digestion methods with the use of an enzyme or basic 

digestion has the potential to reduce variability as well as the length of time required for 

analysis. The current results suggest that nitrogen evaporation is required for optimal hair 
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cortisol measurement. The NaOH digestion and extraction method discussed may hold 

promise as an inexpensive and rapid hair cortisol method. Further studies need to be done 

to optimize this protocol before it can be wide-spread application for high-throughput 

hair cortisol analysis. 
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Chapter 6  

6 General Discussion 
This thesis aimed to explore hair cortisol as a biomarker of cortisol exposure by 

addressing previous gaps in hair cortisol literature: 1) the failure of current hair growth 

rate assumptions to apply to individual patients, 2) a lack of available normative data in 

children and adolescents, and 3) inefficiencies in the standard methods used for hair 

cortisol extraction and recovery. This chapter presents an overview of the current 

findings in the context of the available hair cortisol literature. Additionally, relevant 

implications of these findings, and strengths and limitations of this research are 

examined. Finally, recommendations for future research are discussed. 

6.1 Summary of Findings 
The main contribution of this thesis to the existing literature is the incremental 

improvement to previous methods and assumptions for hair cortisol analysis, and the 

determination of normal changes in hair cortisol in a large sample of children and 

adolescents.  

In chapter 3 it was hypothesized that hair cortisol timelines could be generated to 

accurately reflect CS and AI patient medical histories, and that the clinical timelines 

could be improved upon by generating timelines with different hair growth rates than the 

commonly assumed rate of 1 cm/month. This hypothesis was supported in two of the four 

patients examined. Prior rationale for using 1cm/month is based on the average hair 

growth rate in the literature. Using this number is baseless for individualized timelines 

because each patient’s hair growth may substantially differ from 1 cm/month. The most 

accurate hair cortisol timeline for 50% (2/4) of the patients in our sample was generated 

using a slower growth rate of 0.75 cm/month, while the remaining two patients were 

sufficiently represented by a 1 cm/month growth rate.  

In Chapter 4 it was hypothesized that hair cortisol reference values could be generated as 

they relate to normal adolescent development. Specifically, it was hypothesized that hair 

cortisol would correlate with age and puberty status, not differ between males and 
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females, and would increase with BMI. This study found that hair cortisol correlated 

positively with age and puberty status confirming the hypothesis relating to age and 

puberty. Hair cortisol did not differ between males and females in this study suggesting 

no sexual dimorphism in hair cortisol values. Hair cortisol increased with BMI, but this 

relationship did not remain when correcting for age-adjusted BMI. 

In chapter 5, we explored the hypothesis that nitrogen gas evaporation would not lead to 

greater cortisol recovery from hair than room air evaporation. A second hypothesis was 

that enzymatic or basic digestion of hair would enhance cortisol recovery compared to 

the standard mincing method. Evaporation of methanolic hair cortisol extracts resulted in 

greater cortisol recovery than evaporation using room air resulting in rejection of the first 

hypothesis. This was surprising considering that air is comprised of approximately 78% 

nitrogen and a small published study found no difference between the two methods[1]. 

Enzymatic degradation of hair was a time-efficient method to reduce hair particle size, 

but cortisol quantification was not possible from these samples. This might be due to the 

ELISA binding inhibition from the DTT reagent used to enhance the digestion rate. Basic 

digestion also efficiently reduced hair particle size. Cortisol recovery was lower from the 

basic extracts compared to those from the standard methanolic extracts indicating that the 

second hypothesis should be rejected.  

6.2 Implication of Findings 

In the context of clinical applications, a review of applicable literature indicates 

increasing utilization of hair cortisol analysis. These publications have shown that 

retrospective timelines can be generated from patient hair samples that correlate with 

patient medical records in CS and AI, however, individualization of hair growth rates is 

absent in these studies[2,3]. Retrospective timelines can be viewed as an important 

adjunct to current cortisol diagnostics which can only be prospectively collected and 

represent short windows of analysis.  

Individualized hair cortisol timelines have important implications for clinicians. In the 

context of cyclical CS, for example, a clinician might produce an individualized hair 



 

 

116 

timeline that best correlates to a patient’s previously reported symptoms. If the symptoms 

align with the peaks or troughs in hair cortisol, then the clinician can be more confident 

in a potential diagnosis of cyclical CS. Otherwise, the clinician would have to collect 

many blood or urine samples to prospectively determine if there are variable cycles of 

steroidogenesis, leading to delayed diagnosis while the patient remains untreated, leading 

to worsening symptoms and comorbities. Naturally, a positive corollary between 

symptoms and hair cortisol would require a follow-up confirmatory test, as with all other 

available CS diagnostic tests. The flexibility of being able to use multiple hair growth 

rates might allow hair cortisol analysis to be implemented in a broader patient population 

since the 1 cm per month might not fit every patient.  

There are scarce prior publications that have assessed hair cortisol in healthy, young, or 

ethnic populations. The major contribution of chapter 4 in this thesis, was to show that 

hair cortisol increases with age and puberty status in a large population of healthy young 

individuals. Within the context of young populations, prior hair cortisol studies have 

addressed hair cortisol changes with a focus on psychosocial issues[4]. The studies that 

have focused on healthy children and adolescents have been small and included a narrow 

age range when compared to the current thesis. Studies in healthy children using serum or 

salivary cortisol have resulted in mixed results, likely because of the variable sampling 

times, and the possibility that sampling itself might alter HPA secretion[5–7]. The results 

from our large cohort of healthy children might be used for future studies as a 

comparator, with the knowledge that findings of increased cortisol in hair might be due to 

maturation rather than some other factor being studied. Several groups have attempted to 

link hair cortisol trajectories with events such as natural disasters or humanitarian 

crises[8]. In this particular case, hair can be useful because of scarce availability of 

infrastructure. Knowledge that hair cortisol increases with age might be useful as a 

comparison in longitudinal studies where hair cortisol trajectories are found to have a 

negative slope, become flattened, or have a higher rate of increase than presented in the 

present discussion.   

Lastly, the totality of hair cortisol research has relied on nitrogenous evaporation of 

solvent-based hair cortisol extracts. Agreement between labs utilizing hair cortisol has 
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been weak on an absolute basis, and studies using multiple extractions or alternative 

solvents have yielded different results[9]. Nitrogen has been used in the evaporation 

process because it is believed that oxygen in room air would result in oxidization and 

lower cortisol measurements. We showed that nitrogen did result in higher cortisol 

measurements than extracts that were dried with room air. These results indicate that 

nitrogen should be used to achieve the greatest recovery of hair cortisol.  

In chapter 5, we conducted a small methodological pilot study with the goal of increasing 

the rate and completeness of hair digestion using proteinase K or basic sodium hydroxide 

solutions. Proteinase K rapidly digested hair samples but we were unable to measure 

cortisol in these samples. Various concentrations of sodium hydroxide resulted in rapid 

hair digestion and recovery of cortisol. Although highly variable, this might be a 

promising method for future experimentation. Optimization of this protocol would be a 

great contribution to the field of hair cortisol research. Digestion of hair would be highly 

beneficial because it would standardize the extraction procedure, reduce the required 

laboratory technician labor, and be more cost-efficient than other available methods.  

Previously implemented methods for reducing hair sample particle size to improve 

extraction efficiency have included mincing with surgical scissors, ball mills or blenders. 

Mincing with scissors is laborious for the technician and is associated with inherent 

variability stemming from quality control, typically based on visual inspection of pieces 

hair. This method has most frequently been used, but it is time-consuming and inadequate 

for a standardized lab procedure. Ball mills have been associated with degradation of 

cortisol and carryover between samples[10]. In hair analysis of drugs of abuse and in 

toxicological analysis, hair size is commonly reduced via digestion with enzymes or 

acidic and basic solutions[11]. Application of these methods would significantly reduce 

the time required for analysis, allowing for high-throughput analysis, reduce variability 

from technician mincing, and dissociate all compounds from hair regardless of melanin 

content.  
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6.3 Strengths and Limitations 

This research has a number of strengths and limitations that must be considered. Chapter 

3 was a unique study because it is the first to assess hair cortisol in pregnant women with 

concomitant CS. Clinical timelines were highly detailed because of the access to in-depth 

medical histories from the treating physician, including many laboratory analyses to 

corroborate our findings. This study was the first of its kinds to try to implement a 

method that captures unique patient hair growth rates. 

In spite of the strengths of this study, recognition of the limitations of this study is key for 

future applications. As with all retrospective studies, data is limited by the information 

that recorded patient medical charts. For the proposed adjunct diagnostic purposes, hair 

was seemingly sufficient to capture many of the reported symptomatic periods and 

medical interventions. Retrospective hair timelines assume that hair growth rate is stable, 

which is likely not the case because several factors influence growth rates. This study 

assessed hair samples that retrospectively represent many months, but we did not account 

for washout effects that might have significantly reduced cortisol values more distal to 

the patients’ scalps. Additionally, there was large interpatient hair cortisol variability 

which we cannot account for. Finally, the nature of this study design represents a post 

hoc analysis based upon subjectively matching symptoms to hair cortisol measurements; 

we tried to objectify the selection of the correct timeline by utilizing an independent 

review committee. 

Chapter 4 represents the largest study of hair cortisol ever conducted in a healthy sample 

of children and adolescents. This has typically been a group that has not been studied. We 

included a wide age range to capture pre-, peri- and post-puberty which facilitated the 

assessment of hair cortisol changes with puberty. Participants were heavily screened by 

reviewing electronic medical records in addition to in-person questionnaires to select for 

those without concomitant illnesses or medication use that might influence cortisol levels.  

Participants were recruited from the emergency room, which typically selects for unwell 

children. The emergency population can be divided into chronically unwell patients, and 
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acutely sick patients; the latter was targeted for recruitment. Acutely sick patients 

consisted of patients with the common cold or influenza, for example, or musculoskeletal 

injuries. A large proportion of the participants that were enrolled had musculoskeletal 

injuries, possibly representing a selection bias for highly active children. It is known that 

strenuous exercise increases hair cortisol levels. Psychosocial factors such as family 

dynamics and socio-economic status reflect changes in children’s cortisol levels, however 

these were not assessed. The target population was healthy children meaning that the 

number of participants with abnormal BMI was small, reducing the confidence in 

findings associated with BMI. Measuring other hormones in hair associated with pubertal 

changes, such as testosterone and DHEA-S, would have been informative to confirm 

puberty status. This was discussed prior to the completion of the trial; however, such 

analysis would have required a larger hair sample and not been feasible because of the 

concern from participants of potential bald spots from large samples. Finally, the majority 

of participants in this study were Caucasian so it is unclear if these results are applicable 

to children of other ethnicities.  

Chapter 5 represents the early stages of a potentially large contribution to the field of hair 

cortisol research, for many reasons, as previously discussed. The comparison between 

nitrogenous and air evaporation included a larger number of samples than was analyzed 

in a previous study that compared the two methods. Dividing the methanol extracts into 

two parts from a single extraction likely decreased variability compared to the prior study 

that did two separate extractions for comparison. Both the enzymatic and basic digestions 

methods were highly effective in reducing hair particle size for extraction and would be 

expected to completely liberate trapped hair cortisol, compared to mincing, and 

regardless of melanin content.  

This was a pilot study to assess the futility of utilizing hair digestion to recover cortisol. 

Unfortunately, it was not possible to measure the cortisol from the enzymatically digested 

samples using ELISA. Basic hair digests were highly variable for hair cortisol and were 

unexpectedly lower than methanolic extraction suggesting that the strong basic solution 

might have caused cortisol degradation. 
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One of the major limitations throughout this thesis was the use of ELISA to quantify hair 

cortisol. Prior studies have shown that the correlation between ELISA and LCMS is high, 

but the absolute values differ substantially between the two methods. Typically, values 

from ELISA are greater than LCMS, possibly due to a lack of specificity to cortisol.  

6.4 Future Directions 

Future studies aiming to utilize hair cortisol timelines in clinical patients should be 

prospectively conducted. For example, hair samples could be collected periodically while 

concomitantly recording patient symptoms from a patient diary. In such as study, there 

would be increased confidence that a segment of hair is representative of the 

symptomatic period of interest. Alternatively, hair growth rates could be determined for 

an individual patient prior to study initiation instead of generating multiple timelines.  

Additional studies in children might aim to include a larger proportion of children from 

different ethnic backgrounds. Many biomarker levels vary with genetic background 

meaning that cortisol exposure might differ from largely Caucasian population studied 

here. Importantly, future studies might include stress or socioeconomic questionnaires 

because of the known effect of these types of stressors on children. As such, some of the 

variability seen in this study might be explained by background stressors.  

The hair digestions methods presented in this thesis represent a proof-of-concept of the 

possibility of recovering cortisol from hair that has been digested. As this was a small 

pilot trial, future studies will have to optimize and validate these methods. Experimenting 

with different concentrations of sodium hydroxide, digestion times, or alternative 

digestion solvents might improve cortisol recovery. Future research might also apply 

more sophisticated quantification methods such as LCMS for the determination of 

absolute cortisol values as a way to reduce variability from non-specific binding 

associated with immunoassays. 
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6.5 Conclusion 

This research was the first of its kind to address unique hair growth rates for the 

production of clinical hair cortisol timelines as a potential add-on diagnostic tool for 

clinicians. The major finding was that hair timelines generated from different growth 

rates best match individual patients. In the largest study of its kind, hair cortisol was 

found to increase with age and puberty and not differ between sexes in healthy children 

and adolescents. Finally, novel methods for improved hair cortisol extraction were 

investigated in an important proof-of-concept of a more rapid, reliable, and high-

throughput method of hair cortisol measurement. 
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