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Abstract 

The formation of carbon-heteroatom bonds is pivotal in obtaining structural frameworks present 

in a variety of important natural products and bioactive molecules. In that regard, Lewis-acid 

promoted cycloadditions of strained carbocycles have proven to be powerful tools for the 

construction of heterocyclic frameworks. The Pagenkopf group was the first to discover the 

cycloaddition of donor-acceptor (DA) cyclopropanes with nitriles. Since the strain energy of 

cyclobutane is comparable to that of cyclopropane, our group has sought to extend to the 

comparatively unexplored homologous cyclobutane scaffold. Disclosed here is the first [4+2] 

cycloaddition of nitriles with DA cyclobutanes via Lewis-acid activation. This work describes 

the synthesis of tetrahydropyridine derivatives in moderate to good yields. A variety of 

electronically diverse cyclobutanes engaged in [4+2] cycloaddition with both aliphatic and 

aromatic nitriles. Reduction of the cycloadduct affords substituted piperidine exclusively as the 

cis-2,6-diastereomer in excellent yield, and the cycloadduct also undergoes clean 

dealkoxycarbonylation.  
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Summary for Lay Audience 

The formation of chemical bonds is pivotal in obtaining key structural frameworks present in a 

variety of important natural products and bioactive molecules. Strain-activated carbon ring 

systems have proven to be powerful building blocks in the field of synthetic organic chemistry. 

These compounds are strain-activated because they possess chemical bond angles that deviate 

from the favorable 109.5° tetrahedron bond angle. In this thesis, we use small strain-activated 

carbocycles that are endowed with chemical groups, that is, donor and acceptor groups, to further 

enhance their chemical reactivity. The donor and acceptor groups are attached adjacent to one 

another, and they hence facilitate bond cleavage between them to give a ring opened 

intermediate. This ring-opened form can subsequently go through a plethora of interesting 

reactions. These small strained-activated molecules have received rising research interest 

because of their ability to easily react with various partners to give new compounds or structural 

frameworks not easily synthesized. The current work investigated new compounds obtained from 

the reaction of these strain-activated carbocycles. The chemistry disclosed herein is a flexible 

method for the synthesis of valuable nitrogen-containing structures, such as tetrahydropyridines. 

Mechanistic insights are provided, and the synthetic potential of products was demonstrated. We 

expect that this chemistry can prove to be a useful tool in applications such as target-oriented 

synthesis of natural products and pharmaceutically important molecules. 
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Chapter 1. The Chemistry of Cyclopropanes and Cyclobutanes 

This chapter discusses the structural characteristics and reactivity of small strain-activated 

carbocycles. Their presence in natural products and in important synthetic molecules will be 

illustrated. The works on DA cyclopropanes will be mentioned. The preceding reports and the 

seminal works in DA cyclobutane cycloaddition chemistry will be discussed. Additionally, the 

reactions of DA cyclobutanes and the reactions of our alkoxy-activated DA cyclobutanes will be 

reviewed. 
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1.1 Introduction 

1.1.1 Introduction to Cyclopropanes and Cyclobutanes 

In the field of synthetic organic chemistry, there are several useful building blocks for 

achieving specific molecular frameworks or compounds. Small ring systems have established 

prominence in synthetic chemistry due to their ability to construct highly functionalized molecules. 

Three- and four-membered rings (cyclopropanes and cyclobutanes) are small rings that have 

significant angle strain resulting from the distortion of the sp3 hybridized carbon bond, normally 

having a favorable tetrahedral bond angle of 109.5°. As a result of bond angle distortion, the 

chemical reactivity of such compounds is often enhanced, leading to ring cleavage products. In 

contrast, cyclopentanes and cyclohexanes have substantially less angle strain and do not undergo 

the same type of transformations of their more strained counterparts.  

 

1.1.2 Small Carbocycles in Natural Products and Important Synthetic Molecules 

Although cyclopropanes and cyclobutanes are the most strained carbocycles, they still 

occur in complex natural products including steroids, terpenoids, and alkaloids.1 Naturally 

occurring or synthesized cyclopropanes and/or cyclobutanes with simple functionalities are 

endowed with a broad spectrum of biological properties.2 Even the introduction of a cyclopropane 

and/or a cyclobutane moiety has demonstrated an improved overall biological potency, including 

antibiotic, antiviral, antitumor, and neurochemical activities. 
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Figure 1: Cyclopropane antibiotic CC 1065 and its synthetic analog, adozelesin. 

CC 1065 is a highly potent antibiotic isolated from Streptomyces zelensis that contains a 

reactive cyclopropane ring (Figure 1). This structural moiety is responsible for cleaving DNA by 

readily reacting with amino acids, nucleosides, and nucleotides under physiological conditions.3 

Thus, covalent adducts are formed with DNA to break DNA strands. The synthetic analog, 

adozelesin, is also a potent antitumor agent. Compounds containing cyclopropyl units were also 

shown to alkylate the N-3 atom of adenine in DNA.4 

 

Figure 2: Synthetic antiviral agents containing cyclopropyl and cyclobutyl groups. 

Synthetically modified nucleosides have been known to inhibit the replication of viruses. 

Penciclovir had emerged as a potent and selective anti-herpes virus agent.5 The cyclopropyl analog 
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was synthesized with the expectation of improved anti-retroviral activity, but it was devoid of any 

activity (X1). Interestingly, the cyclobutyl analog, SQ 32,829, exhibited potent antiviral activity 

and thus received considerable attention (Figure 2).6 

 

Figure 3: Anticancer natural product salinosporamide A and its synthetic analog, 

salinosporamide. X3. 

Salinosporamide A is a natural proteasome inhibitor isolated from the marine bacteria, 

Salinispora tropica and Salinispora arenicola. It is currently in phase III clinical trials being 

studied as a potential anticancer agent (Marizomib).7 The synthetic analog, salinosporamide X3, 

is a promising drug candidate for the treatment of multiple myeloma and mantle cell lymphoma 

(Figure 3).8 

There is a rare class of structurally unique natural products that incorporates both 

cyclopropane and cyclobutane units (Figure 4). A small sesquiterpenoid (X2) isolated from the 

Formosan Soft Coral Clavularia inflata var. luzoniana represents the first example of natural 

products distinguished by a tightly fused skeleton between a cyclopropane and a cyclobutane.9 In 

2015, a new class of immunosuppressive agents also featuring an unprecedented carbon skeleton 

was isolated from Phyllanthus hainanensis. Amongst others in the family, phainanoid A exhibits 

exceptionally potent immunosuppressive activities.10 
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Figure 4: The structures of natural products with both cyclopropane and cyclobutane moieties. 
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1.2 The Chemistry of Cyclopropanes and Cyclobutanes 

1.2.1 Structural Characteristics of Cyclopropanes and Cyclobutanes 

The exploitation of strained ring systems as key building blocks for the construction of 

highly functionalized molecules has gained appreciable attention in organic synthesis.11 The 

reactivity of cyclopropanes and cyclobutanes can be attributed to their bond angle and torsional 

strain. The strain of these ring systems is characterized by three types of individual strain: 1) 

transannular strain, that is, van der Waals interactions between atoms across the ring,12 2) torsional 

strain due to eclipsing conformations between neighboring atoms, and 3) angle strain owing to 

distorted bond angles from the ideal.13 Because the strain energy of cyclobutane (26.3 kcal/mol) 

is comparable to that of cyclopropane (27.5 kcal/mol), it is plausible to expect similar reactivity 

profiles from them (Figure 5a).14 

 

Figure 5: a) Ring strain energies of carbocycles, b) conformational distortions of cyclobutanes. 
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The ideal bond angle of 109.5° is distorted to 60° for cyclopropanes and cyclopropanes 

exist as a planar equatorial triangle. The cyclobutane ring system has bond angles that are less 

drastically smaller and less distorted from the stable 109.5° bond angle of the tetrahedral geometry. 

Cyclobutane adopts a puckered conformation with a C–C–C bond angle of 88°. This puckered 

conformation decreases torsional strain, but it also results in a smaller C–C–C bond angle, which 

in turn increases the angle strain. Nonetheless, this conformation is more favorable than the 

constrained planar cyclobutane, which has a bond angle of 90°. Cyclobutanes have bond angles of 

88° because the planar cyclobutane would have the methylene groups in an eclipsed position, 

which results in highly unfavorable torsional strain, as indicated by the x-axis representing the 

strain energy (E) of the depicted conformation (Figure 5b). Sterics is not always an influential factor 

in torsional strain as demonstrated by an unsubstituted cyclobutane for example as the hydrogens 

play no steric role in torsional strain. All torsional strain includes a stereoelectronic component 

called hyperconjugation.15 Staggered conformations are stabilized because a filled sigma bonding 

orbital donates into an unfilled antibonding orbital. However, eclipsed conformations lose this 

stabilization which results in torsional strain. As a result, these highly strained molecules are more 

easily cleaved compared with larger ring systems because cyclopropanes and cyclobutanes have 

significantly larger strain energy. 

 

1.2.2 Classical Preparations of Cyclopropanes—Cyclopropanation 

 Cyclopropanes have played an important role as a versatile functional handle in synthetic 

chemistry. Since the first synthesis of the cyclopropane ring by August Freund in 1882,16 much 

attention has been given to the cyclopropane subunit and many methods for the synthesis of 

cyclopropanes have been developed.  
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1.2.2.1 Simmons–Smith Reaction 

The classical cyclopropanation reaction reported by Simmons and Smith treats simple 

alkenes with a mixture of methylene iodide and zinc–copper couple to give cyclopropanes.17 Later, 

Furukawa developed a faster and stereospecific modification of the Simmons–Smith reaction by 

replacing the zinc–copper couple with diethyl zinc, Et2Zn.18 In the presence of allylic 

alcohols/ethers, the organozinc species stereoselectively adds to the double bond on the syn face 

of the alcohol group, due to the chelating effect of the oxygen atom to the organozinc reagent.19 

Interestingly, excess carbenoid can reverse the directing effect of alcohols.20 The reaction is 

proposed to proceed through a “butterfly-type” transition state that delivers a methylene group 

from IZnCH2I to the double bond (Scheme 1).  

 

Scheme 1: Proposed scheme of Simmons–Smith cyclopropanation via a "butterfly" transition 

state. 

 

1.2.2.2 Diazo Compounds 

 The lack of functionalities on cyclopropanes prepared through the Simmons–Smith 

constrains subsequent synthetic manipulations. Transition metal catalyzed cyclopropanation with 

α-diazoester can be adopted to retain functional handles on the resulting cyclopropane. The 

reaction involves the cyclopropanation of election-rich alkenes via carbenoids formed from 

electron-deficient diazo compounds.21 The products formed from diazoesters include activated 

acceptor cyclopropanes and donor-acceptor cyclopropanes, the latter of which will be discussed 
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later in this thesis. The ester group provides an advantageous functional handle suitable for 

additional synthetic modifications. The catalytic cycle proceeds through a Fischer-type 

(electrophilic) metal carbene formed from diazo species (Scheme 2). The reactions are catalyzed 

typically by dirhodium tetraacetate, or by some more remarkable chiral derivatives.22 

 

Scheme 2: Cyclopropanation using metal carbenes. 

 

1.2.2.3 Michael-Initiated Ring Closure 

 Another strategy for generating cyclopropanes is through Michael-initiated ring closure 

(MIRC) reactions.23 MIRC reactions involve a conjugate addition to an electrophilic alkene to 

produce an enolate that subsequently undergoes an intramolecular ring closure.21 These reactions 

also can be stereoselective when the ring closure (C) occurs faster than the rotation about the single 

bond in the first intermediate (B) (Scheme 3a). Alternatively, generation of a configurationally 

stable tetrahedral intermediate after the first addition may also give a stereospecific product. The 

process of MIRC can originate from the reaction between two types of substrates/reactants. The 

formation of cyclopropanes involves: 1) the nucleophilic addition to electrophilic substrates 

containing a leaving group or 2) the addition of a nucleophile bearing a leaving group to 

electrophilic substrates (Scheme 3b). 
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Scheme 3: a) Stereospecific MIRC reaction and b) types of substrates and reagents for MIRC 

reactions. 

The most effective reagents for methylene transfer are heteroatom-derived ylides. The 

synthetic potential of such reaction was realized by Corey when he reported the use of sulfur ylides, 

methylenedimethylsulfoxonium reagents, for cyclopropanations in the 1960s.24 Later, an optically 

enriched oxosulfonium was developed by Johnson to stereoselectively cyclopropanate chalcones 

(Scheme 4).25 

 

Scheme 4: Sulfur ylide reagents and the first asymmetric cyclopropanation through chiral ylides. 
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1.2.3 Reactions with Cyclopropanes 

 Cyclopropane derivatives can undergo various transformations under the influence of 

diverse chemical reagents, including electrophiles, nucleophiles, radicals, and/or physical forces 

such as heat and light. The cyclopropane ring has reactivity that resembles the C=C carbon double 

bond. As a result, the unique reactivity and properties of cyclopropanes has been exploited as a 

versatile tool in organic synthesis. 

 

1.2.3.1 Vinylcyclopropane Rearrangements 

 Implementation of an adjacent π-system can greatly alter the chemical properties of 

cyclopropanes. Vinylcyclopropanes undergo a unimolecular rearrangement into cyclopentene 

rings upon heating. In 1959, Neureiter reported the first thermo vinylcyclopropane–cyclopentene 

rearrangement (Scheme 5).26 The ring expansion event has been suggested to have either an orbital 

symmetry-controlled pericyclic mechanism and/or a diradical two-step mechanism. 

 

Scheme 5: Mechanism of vinylcyclopropane–cyclopentene rearrangement. 

 The vinylcyclopropane–cyclopentene rearrangement has been very useful because 

vinylcyclopropanes are readily available and the resulting cyclopentene products are abundant in 

natural products. In 1975, Corey employed vinylcyclopropanes in the total synthesis of 11-

deoxyprostaglandin E2 (Scheme 6).27 The key bicyclic cyclopentane intermediate was formed from 
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the thermolysis of vinylcyclopropane. The rearrangement and its heteroatom variants have 

flourished and continue to see usage in natural product synthesis to this day.28 

 

Scheme 6: Total synthesis of 11-deoxyprostaglandin E2 via vinylcyclopropane rearrangement. 

 

1.2.3.2 Electrophilic/Nucleophilic Additions 

 Since the cyclopropane ring behaves like a C=C double bond, treatment with an appropriate 

electrophile would result in the addition of the electrophile with simultaneous fission of the ring. 

Electrophilic addition typically follows Markovnikov’s rule for substituted cyclopropanes, i.e., the 

electrophile (H+) adds to the carbon to generate the more stable carbocation. For example, the 

addition of SbF6–HSO3F to 1,1,2-trimethylcyclopropane gave the 2,3-dimethyl-2-butyl cation 

(Scheme 7). Conversely, nucleophilic cleavage of cyclopropane is only viable when the 

cyclopropane is bearing an electron-withdrawing substituent, which resembles the classical 

Michael addition.29 

 

Scheme 7: Electrophilic addition and nucleophilic addition of cyclopropanes. 
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1.2.3.3 Oxidative/Reductive Ring Fissions 

 There are simple two methods for the cleavage of cyclopropane: 1) oxidative fission and 

2) reductive fission. Both methods involve the breakage of a C–C bond of the cyclopropane, 

followed by the formation of two bonds of higher oxidation state for the former and lower 

oxidation state for the latter. Oxidative cleavage is influenced by steric and electronic effects of 

substitution on the ring. The properties of the oxidizing agents can also facilitate regio- and 

stereoselective opening of the cyclopropane. For example, Scott reported the oxidation of the 

cyclopropane in [5.3.1]propellane with lead tetraacetate to give the corresponding diacetate 

(Scheme 8).30  

 

Scheme 8: Oxidative cleavage of cyclopropane. 

Reductive cleavage of cyclopropanes occurs at the least substituted bond via catalytic 

hydrogenation for the general synthesis of gem-dimethyl groups. For example, in a key step to 

synthesize β-himachalene, Pt–Rh catalyzed hydrogenation of the cyclopropane in the tricyclic 

molecule affords the gem-dimethyl groups (Scheme 9).31 

 

Scheme 9: Reductive ring fission of cyclopropane via hydrogenation. 
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1.2.4 Synthetic Methods for the Construction of Cyclobutanes 

 The earliest account of the synthesis of cyclobutanes dates back to 1880s when Perkin 

described the condensation of diethyl malonate with 1,3-dibromopropane, and when Markovnikov 

and Krestikow reported the homocondensation of ethyl 3-chloropropionate (Scheme 10).32 

Although nearly 140 years has elapsed, the synthesis of cyclobutanes has only emerged as versatile 

building blocks in synthetic chemistry within the last four decades.  

 

Scheme 10: Early reports of the preparation of cyclobutanes. 

1.2.4.1 Photochemical [2+2] Cycloadditions 

 [2+2] Photocycloaddition reactions include both dimerization of alkene and reaction 

between two different alkenes, and the latter is surely more useful. Enones and alkenes have been 

the most prominent substrates for [2+2] cycloaddition and they have demonstrated incredible 

synthetic value for the construction of complex molecular frameworks. The regioselectivity of the 

cycloaddition depends on the substituents on the alkene and the conjugated α,β-unsaturated 

carbonyl, where at least two constitutional isomers (head-head or head-tail) may be formed 

(Scheme 11). The head-head (HH) isomer occurs when the enone carbonyl and alkene substitution 

of highest priority are proximal and the head-tail (HT) isomer occurs when the enone carbonyl and 

alkene substitution of highest priority are distal. The HH-isomer is favored when the alkene has 

an electron-withdrawing group. On the other hand, the HT-isomer becomes favored when the 

alkene has an electron donating group.33 The mechanism involves a step-wise radical process, but 

stereoselective and variants have also emerged. Additionally, the use cyclic enones prevents 

competitive cis-trans isomerization. 
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Scheme 11: Effect of electronics on regioselectivity of [2+2] photocycloaddition. 

 Photochemical [2+2] cycloaddition has been a valuable tool for the construction of 

multicyclic molecules. Nicolaou and co-workers reported an exquisite transannular [2+2] 

photocycloaddition of a macrocyclic intermediate towards the total synthesis of bielschowskysin 

(Scheme 12).34 

 

Scheme 12: Photocycloaddition of macrocyclic precursor to bielschowskysin. 

 

1.2.4.2 Cyclobutanes from Cyclopropanes 

 Cyclopropanes can also be useful intermediates to synthesize cyclobutanes. The placement 

of a donor group on the C-1 position of the cyclopropane ring increases its proclivity for 

cyclobutane formation. The rearrangement usually involves the migration of more substituted 

carbon. Recent advances in this rearrangement chemistry include the Au(I)-catalyzed ring-

expansion of cyclopropanols (Scheme 13). Toste and co-workers showed that alkynyl 

cyclopropanols can undergo ring expansion upon treatment with catalytic Au(I).35 The mechanism 

is proposed to involve a 1,2-alkyl shift. 
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Scheme 13: Au(I)-catalyzed ring expansion of cyclopropanes. 

 Barluenga and co-workers demonstrated that a Cu(I) catalyst was able to form carbenoid 

species through a cascade process between simple and vinyldiazo systems (Scheme 14). The 

substrates undergo a cyclopropanation of the activated alkene to form the cyclopropyl 

intermediate, which subsequently leads to the formation of the cyclobutene via ring enlargement.36 

 

Scheme 14: Diazo compounds toward carbenoids for the synthesis of cyclobutanes. 

 

1.2.4.3 1,4-Ring Closure 

 Another method to form cyclobutanes is through a ring closure event. Cyclobutylboronates 

are synthetically facile intermediates because a myriad of synthetic transformations can take 

advantage of the reactive C–B bond. A novel catalytic protocol was recently developed for 

stereoselectively accessing cyclobutylboronates. Ito and co-workers reported a Cu(I)-catalyzed 

reaction of (Z)- and (E)- homoallylic sulfonates to afford 1,2-disubstituted cyclobutanes (Scheme 

15).37 Only aryl- and silyl-substituted alkenes engage in borocupration.  
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Scheme 15: Cu(I)-catalyzed 1,4-ring closure. 

 

1.2.5 Reactions of Cyclobutanes 

 Cyclobutanes derivatives are excellent substrates used for the synthesis of both acyclic and 

cyclic systems, including carbocyclic and heterocyclic compounds. It is because of this wide range 

of applicability that cyclobutanes experienced rising development in the recent decades.  

1.2.5.1 Cyclobutane Ring Expansion 

 Ring expansion from 4-membered carbocycles to larger ring systems or heterocycles has 

proved to be an invaluable tool for synthetic chemistry. Among the various methods, the use of 

diazomethane was key in the total synthesis of important molecules. Ring expansions tend to favor 

to the electron-rich α-carbon and disfavor the α-carbon with electron-withdrawing groups. 

Furthermore, effects as a result steric hinderance and ring strain also influence the approach of the 

diazomethane. Stille and Grubbs realized a practical method to transform cyclobutane in the 

presence of ethyl diazoacetate and BF3ꞏOEt2, en route to completing the synthesis of (±)-Δ9 (12)-

capnellene (Scheme 16).38  

 

Scheme 16: Cyclobutane ring expansion towards capnellene. 
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1.2.5.2 Ring Opening Reactions 

 Just like cyclopropanes, ring opening of cyclobutanes is also feasible. The substitutions 

on the ring are the major influences in facilitating ring fission and can sometimes contribute to 

maintaining the stereochemistry during nucleophilic addition. For example, in the total synthesis 

of gibberellic acid, Yamada and co-workers treated the tetracyclic precursor with ozone to 

convert the exocyclic alkene to the carbonyl. 39 The cyclobutanone subsequently underwent a 

nucleophilic opening, affording the tricyclic keto-ester (Scheme 17).  

 

Scheme 17: Cyclobutane ring opening towards to total synthesis of gibberillic A3 

Besides, cyclobutyl 1,5-diene can also undergo Cope rearrangement. This reaction 

becomes an oxy-Cope rearrangement when a hydroxyl- group is available at the C-3 position, 

which allows milder reaction condition. Barnier and co-workers reported that the cis relationships 

between the vinyl groups of the cyclobutane was essential to the oxy-Cope rearrangement. For the 

trans-isomer, a retro-ene opening afforded the ketone (Scheme 18).40  
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Scheme 18: Influence of stereochemistry on the behavior of 1,2-dialkenylcyclobutanols: oxy-

Cope versus retro-ene rearrangements  
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1.3 Chemistry of Activated Cyclopropanes and Cyclobutanes 

Donor-acceptor cyclopropanes (DACP) have been extensively studied and utilized as 

versatile building blocks for the construction of diverse heterocycles, carbocycles, and 

functionalized ring-opened compounds. This field continues to flourish to this day. 41 

 

1.3.1 Modes of Activation 

 As mentioned before, cyclopropanes are very high in energy because of their inherent ring 

strain (115 kJ/mol). Nonetheless, the C–C bonds of the cyclopropane ring can still remain intact 

in various situations. In order to facilitate bond cleavage, an activating group can be installed. An 

example is the use of an electron-donating group, such as an aryl or alkoxy group, to activate the 

cyclopropane and stabilize the incipient carbocation. Conversely, the addition of an electron-

withdrawing group, such as a carbonyl or nitro group, increases the electrophilicity of the 

cyclopropane. Interestingly, with vicinally attached donor and acceptor groups, the reactivity of 

cyclopropane is further enhanced by polarizing the C–C bond between the donor and acceptor 

groups through a “push-pull” mechanism. The subsequent zwitterionic intermediate as a result of 

heterolytic cleavage is rationalized because the donor stabilizes the positive charge and the 

acceptor group stabilizes the negative charge (Figure 6). This zwitterionic structure is the basis of 

much of the research in DA cyclobutane chemistry since it provides the parent substrate with the 

proclivity to proceed through several fascinating reactions.  
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Figure 6: Modes of reactivity with DA cyclopropane. 

 

1.3.2 Chemistry of DA Cyclopropanes 

In 2003, Pagenkopf and co-workers for the first time reported a successful formal [3+2] 

cycloaddition of glucal-derived DA cyclopropanes with nitriles. Through TMSOTf activation, 

various nitriles participated in the cycloaddition to afford 1-pyrrolines in good to excellent yields 

(Scheme 19).42 All the cycloadducts were obtained exclusively as one diastereomeric product. 

 

Scheme 19: TMSOTf-promoted [3+2] cycloaddition of DA cyclopropanes and nitriles. 

 In 2010, Trushkov and co-workers reported a similar [3+2] cycloaddition reaction utilizing 

less electron-rich aryl donors but with geminally attached methyl ester groups. They found that 

using super-stoichiometric SnCl4 promoted efficient cyclizations in good to excellent yield. 

However, only alkyl nitriles were investigated for this cycloaddition reaction (Scheme 20).43 Under 
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the same conditions, Trushkov explored the details of the reaction pathway using enantiopure DA 

cyclopropanes.44 They found that the reaction with acetonitrile resulted in a racemic mixture of 1-

pyrroline cycloadduct, suggesting that the reaction pathway proceeds through an achiral 

zwitterionic intermediate. Later in 2011, Srinivasan and co-workers extended this methodology to 

more reactive DA cyclopropanes (Scheme 20).45 Stoichiometric SnCl4 promoted the [3+2] 

cycloaddition to give 1-pyrrolines as single cis-diastereomers in good yields. The cycloaddition 

demonstrated a broad substitution scope, including alkyl and aryl nitriles.  

 

 

Scheme 20: SnCl4-promoted [3+2] cycloaddition of DA cyclopropanes and nitriles. 

 More recently, Wang and co-workers reported an expeditious TfOH-catalyzed [3+2] 

cycloaddition between DA cyclopropanes and nitriles (Scheme 21).46 They demonstrated that the 

scope of tolerated substituents in both cyclopropanes and nitriles was broad. Reactions were 

complete within 5 minutes and the cycloadducts were obtained in excellent yields. 

 

Scheme 21: TfOH-catalyzed [3+2] cycloaddition of DA cyclopropanes with nitriles. 
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1.3.3 Similar Cycloaddition Reactions to Afford Heterocyclic Frameworks 

 Related cycloadditions of nitriles with strain-activated carbocycles have been recently 

developed as well. In 2015, an efficient chemoselective [3+2] cycloaddition of nitriles and donor-

acceptor oxiranes, derived from the epoxidation of alkylidene malonates, was reported by Zhong 

and co-workers.47 Structurally diverse 2,5-dihydrooxazoles were prepared under mild conditions 

in the presence of TfOH with up to excellent yields (Scheme 22). 

 

Scheme 22: TfOH-catalyzed [3+2] cycloaddition donor-acceptor oxiranes and nitriles. 

In 2016, Werz and co-workers reported an elegant TiCl4 catalyzed [3+3] cycloaddition 

between donor-acceptor cyclopropanes and in situ generated nitrile imines. Activated by a catalytic 

amount of TiCl4, tetrahydropyridazine derivatives were obtained in good to excellent yields 

(Scheme 23).48 

 

Scheme 23: TiCl4-catalyzed [3+3] cycloaddition of DA cyclopropanes and nitrile imines. 

The Banerjee group was the first to report a DA cyclopropane-based preparation of 

tetrahydropyridines from the ring-expansion of azidocyclopentanes (Scheme 24).49 The 

azidocyclopentane precursor was derived from a diastereoselective [3+2] cycloaddition between 

DA cyclopropanes and vinyl azides. Subsequent thermal chemoselective ring-expansion in xylene 

afforded the formal [3+3] cycloadduct in good to excellent yield. 
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Scheme 24: Lewis acid catalyzed [3+2] cycloaddition/thermal ring expansion of DA 

cyclopropanes and vinyl azides. 

 

1.3.4 Seminal Works in DA Cyclobutane Chemistry 

The reactivity of cyclobutanes, complemented by their inherent ring strain, can be further 

enhanced by incorporating activating substituents. Analogously to the DA cyclopropanes, 

vicinally substituted electron-donating and electron-accepting groups polarizes the C–C bond 

through a push-pull mechanism to result in a 1,4-zwitterionic intermediate (Figure 7). As we have 

seen, this mode of activation has been studied and developed extensively for donor-acceptor (DA) 

cyclopropanes.41,50 DA cyclobutanes have only recently been applied in ring-opening and 

cycloaddition manipulations, both of which have been useful in natural product synthesis.51,52,53 

 

Figure 7: Possible reaction routes of DA cyclobutanes. 
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Although the use of DA cyclobutanes have been reported in the literature for several 

decades, it was only until 1991 that Saigo reported their application in cycloaddition reactions.54 

Saigo proposed that, similar to their cyclopropane counterparts, an amino-activated cyclobutane 

ester can undergo a Lewis acid-mediated ring-opening reaction to form a 1,4-zwitterionic 

intermediate. These intermediates can subsequently undergo annulations with various 

dipolarophiles. Saigo reported that the synthesis of tetrahydropyrans occurred via the annulation 

of the amino-activated cyclobutane esters with aldehydes or ketones when treated with 

stoichiometric TiCl4 (Scheme 25). The reaction displayed modest yields and low 

diastereoselectivity to afford a mixture of hemiacetals. 

 

Scheme 25: [4+2] Cycloaddition of amino-activated DA cyclobutane esters with carbonyls. 

 Annulations of such kind remained unreported until 1997 when Suzuki disclosed a related 

cycloaddition with alkoxy-based donor cyclobutanes.55 Suzuki and co-workers disclosed a [4+2] 

cycloaddition reaction between highly reactive DA cyclobutanes and 2-oxazoline without the need 

for a Lewis acid (Scheme 26).  

 

Scheme 26: [4+2] Cycloaddition of highly activated DA cyclobutanes with 2-oxazolines. 

This kind of reactivity remained largely neglected until 2008 when contributions were 

kick-started by Matsuo et al. who developed a Lewis acid-promoted [4+2] cycloaddition of 
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alkoxycyclobutones and carbonyl compounds.56 Matsuo’s reaction was the first example of 

cyclobutanones undergoing intermolecular annulation with dipolarophiles (Scheme 27).  

 

Scheme 27: The [4+2] cycloaddition of 3-alkoxycyclobutanones with carbonyl compounds. 

Thereafter, a handful of contributions were made independently by the research groups of 

Johnson, and of Christie and Pritchard.57 Johnson and co-workers disclosed a Lewis acid-catalyzed 

[4+2] cycloaddition of cyclobutanes and aldehydes to provide disubstituted tetrahydropyrans 

(Scheme 28).58 This cycloaddition was highly diastereoselective for the cis-2,6-diastereomer with 

aryl aldehydes, however the diastereoselectivity dropped to 77:23 in the case of cinnamaldehyde. 

The more reactive and bulky Lewis acid MADNTf2 was able to extend the reaction scope to 

aliphatic aldehydes.  

 

 

Scheme 28: The [4+2] cycloaddition of carbon-activated cyclobutanes with aldehydes. 

 Christie and Pritchard reported a similar Sc(OTf)3 catalyzed cycloaddition reaction with a 

cobalt-alkyne complex as the electron-donor that readily proceeds via a Nicholas-type reaction 

(Scheme 28).59 Aryl aldehydes provided tetrahydropyran products as single diastereomers in good 
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to excellent yields. However, the diastereoselectivity drops to only 20%–23% dr when aliphatic 

aldehydes were used. 

 

1.3.5 Preparation of DA Cyclobutanes 

 Work in the preparation of alkoxy-activated cyclobutanes has been limited in the literature. 

In 1986, Roberts reported the preparation of alkoxy-activated cyclobutanes from enol ethers and 

methylidene malonates in good yields via a [2+2] annulation using stoichiometric amounts of 

ZnBr2 (Scheme 29).60  

 

Scheme 29: Robert's synthesis of alkoxy-activated DA-cyclobutanes. 

Although this procedure makes use of readily available enol ethers, it could not be extended 

beyond utilizing tert-butyl methylidene malonates. In 2009, Pagenkopf and co-workers reported a 

modified preparation of alkoxy-activated cyclobutanes, which gave access to the more reactive 

methyl- or ethyl-substituted AACDs.61 This was accomplished by using weaker Lewis acids such 

as Yb(OTf)3 in catalytic amounts (10 mol %). Roberts’ use of stoichiometric ZnBr2 was found to 

be too harsh for the more reactive diester examples. It was later realized that Zn(OTf)2 more 

effectively catalyzed the [2+2] cycloaddition to provide the DA cyclobutane in higher yields.  

 Under the optimized reaction conditions, various cyclic and acyclic enol ethers underwent 

cycloadditions with a variety of reactive alkylidene malonates. The AACDs were generated in 

good to excellent yields as single diastereomers (Table 1). From the results of seminal reports on 

DA cyclobutanes alongside our experience with alkoxy-activated cyclopropanes, we sought to 

explore the reactivity of alkoxy-activated cyclobutane 1,1-dicarboxylates (AACDs).  
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Table 1: The modified synthesis of AACDs. 
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1.4 The Chemistry of Cyclobutanes 

Ever since the seminal reports by Johnson, and Christie and Pritchard, the literature has 

flourished with a multitude of interesting works exploring several variants of DA cyclobutanes 

undergoing cycloaddition reactions with various dipolarophiles. There have been many advances 

in reaction tuning for stereoselectivity and regioselectivity, and for maximizing yields. Moreover, 

application of such reactions has been seen in the total synthesis of natural products.52,53 

 

1.4.1 Cycloadditions of DA Cyclobutanes 

Tang and co-workers reported the first enantioselective variant of the [4+3] cycloaddition 

reaction between DA cyclobutanes and nitrones.62 They developed a series of side arm modified 

bisoxazolines (SaBOX) that improved both the reactivity and the enantioselectivity of formal 

[3+2] cycloaddition of DA cyclopropanes.63 A sterically hindered chiral SaBOX/Cu(II) complex 

catalyzed the cycloaddition to give a broad range of multifunctionalized 1,2-oxazepanes (Scheme 

30). 

 

Scheme 30: Enantioselective [4+3] cycloaddition of DA cyclobutanes with nitrones.  
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 Tang and co-workers adapted their sterically hindered chiral Cu(II)/SaBOX catalysis 

protocol for the construction of cyclohexa-fused indolines (Scheme 31). The synthetic method 

achieved excellent enantioselectivity with broad substrate scope and enabled the formal total 

synthesis of (±)-akuammicine.52 

 

Scheme 31: Synthesis of (±)-akuammicine via [4+2] cycloaddition of DA cyclobutane. 

 Recently, the Tang group developed a highly regio-, diastereo- and diastereoselective 

Cu(II)/BOX-catalyzed multicomponent reaction between indoles, 2,3-dihydropyran and 

methylene malonates (Scheme 32).64 Highly enantioenriched tetracyclic indolines were obtained 

using a modified protocol stemming from our seminal work on the preparation of AACDs. The 

AACDs are generated in situ and subsequently undergo [4+2] cycloaddition with the indole. 

 

Scheme 32: The three-component formal [2+2+2] cycloaddition reaction between indoles, 2,3-

dihydropyran, and methylene malonates via in situ generated DA cyclobutane. 
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A facile preparation of amino-activated DA cyclobutane has been realized by Waser and 

co-workers via an Fe(III)-catalyzed [2+2] cycloaddition of enimides and alkylidene malonates.65 

Waser and co-workers have also shown that these amino-activated DA cyclobutanes were viable 

substrates for [4+2] cycloaddition chemistry.66 Cycloaddition reactions were catalyzed by 

Sc(OTf)3 or FeCl3·Al2O3 between aldehydes and amino-activated cyclobutanes (Scheme 33). When 

thymine- or fluorouracil-substituted cyclobutanes were employed as donor groups, Hf(OTf)4 was 

required to the afford the cycloadduct. They also disclosed that the [4+2] cycloaddition proceeded 

between silyl enol ethers and less substituted cyclobutanes in the presence of SnCl4 as a catalyst.  

 

Scheme 33: The [4+2] cycloaddition of amino-activated cyclobutane 1,1-dicarboxylates. 

 The Werz group reported that in the presence of catalytic MgI2, DA cyclopropanes and DA 

cyclobutanes undergo [3+2] and [4+2] cycloadditions, respectively, with formaldimines generated 

from triazinanes (Scheme 34).67 The influence of MgI2 was important for the decomposition of the 

triazinane. The protocol allowed for the preparation of a variety of pyrrolidines and piperdines 

with tolerance of a broad range of functional groups. 
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Scheme 34: The formal [4+2] cycloaddition of DA cyclobutanes with formylimine surrogates. 

 The first intramolecular variant of the cycloaddition of DA cyclobutanes was disclosed by 

France and co-workers (Scheme 35).68 They developed a diastereoselective Sc(OTf)3 catalyzed 

approach to azepino[1,2-a]indole in high yield and high diastereoselectivities. The reaction 

presumably proceeded through a Lewis acid-catalyzed [2+2] cycloaddition between alkenes and 

N-indolyl alkylidene β-amide esters to form a putative DA cyclobutane intermediate, which 

subsequently underwent an intramolecular ring-opening cyclization. 

 

Scheme 35: Synthesis of azepino[1,2-α]indoles via Sc(OTf)3-catalyzed [5+2] cycloaddition of 

DA cyclobutane intermediates. 

 

1.4.2 Cycloadditions of Alkoxy-Activated Cyclobutanes 

Fortuitously, the Yb(OTf)3 Lewis acid used for the catalytic preparation of AACDs (Table 

1) was found to also catalyze their subsequent [4+2] cycloaddition with aldehydes.61 A broad 

reaction scope was demonstrated with various aldehydes, including aryl, heteroaryl, vinyl, and 

alkynyl substitutions (Scheme 36). Tetrahydropyrans were obtained in good to excellent yields as 

single diastereomers. However, aliphatic aldehydes only modestly engaged in the cycloaddition. 
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Scheme 36: The [4+2] cycloaddition of AACDs with aldehydes. 

Upon confirming the usefulness of the cycloaddition chemistry with AACDs, the 

Pagenkopf group became interested in exploring their versatility with other possible 

dipolarophiles. We sought to investigate the reactivity of imines after having seen their successful 

utilization in cycloadditions with DA cyclopropanes.50 Yb(OTf)3 catalyzed the reaction of AACDs 

in the presence of imines generated in situ to afford piperidine products (Scheme 37).61 Aryl ether 

activated cyclobutanes also underwent cycloadditions under similar conditions to exclusively 

afford trans-2,6-piperidines. 

 

Scheme 37: The [4+2] cycloaddition of AACDs with imines. 

 Nitrones, acting as 1,3-dipoles, have shown success as excellent dipolarophiles in the 

cycloaddition of DA cyclopropanes.69 We quickly found that nitrones also underwent a 

cycloaddition with DA cyclobutanes in the presence of Yb(OTf)3 (Scheme 38).70 At lower 

temperatures, diastereomeric mixtures were obtained containing the kinetically preferred trans-

diastereomer. Interestingly, when the reaction was performed at room temperature, the cis-

diastereomer was formed exclusively as the thermodynamic product. 
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Scheme 38: The [4+3] cycloaddition of AACDs with nitrones. 

Our group also became interested in studying terminal alkynes as reactive cycloaddition 

partners, since efficient [3+2] cycloadditions between terminal alkynes and DA cyclopropanes 

have been reported.71 We disclosed a stoichiometric BF3·OEt2-promoted reaction between AACDs 

and terminal alkynes, but the expected [4+2] cycloadduct was obtained only when 4-silyloxy 

phenylacetylene was used and the yield was also low (Scheme 39).72 Instead of the desired 

cycloadduct, 2,3-dihydrooxepines were obtained via an addition/rearrangement sequence when 

electron-neutral or electron-rich phenylacetylenes were used. 

 

Scheme 39: BF3·OEt2-promoted reactions of AACDs with terminal alkynes. 

 Another dipolarophile we sought to explore were nitroso compounds. The nitroso group 

have demonstrated versatility in several synthetic transformations.73 We were the first to report the 

application of nitrosoarenes in cycloaddition chemistry with DA cyclobutanes. Yb(OTf)3 

effectively catalyzed the [4+2] cycloaddition of AACDs with nitrosoarenes with the 

regioselectivity favoring the aminal over the acetal (Scheme 40),74 in which the overall success 

depended on the use of electron-poor to electron-neutral nitrosoarenes. MgI2 emerged as the best 

catalyst to extend the scope to encompass electron-rich nitrosoarenes, albeit giving the acetal only 

in low yields.75 Interestingly, when the reaction was treated with more MgI2 or left to stir for longer 
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periods of time, the pyrrolidine was formed via a MgI2 promoted deoxygenation of the acetal. 

 

Scheme 40: The Yb(OTf)3-catalyzed [4+2] cycloaddition and MgI2 promoted cycloaddition of 

AACDs with nitrosoarenes. 
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1.5 Project Rationale 

Inspired by the successful cycloaddition reactions of DA cyclobutanes and a diverse array 

of dipolarophiles, between DA cyclopropanes and nitriles, and related cycloaddition reactions, we 

became interested in evaluating the reactivity of DA cyclobutanes with nitriles. Successfully 

obtaining diverse heterocyclic scaffolds would allow access to a library of biologically important 

structural frameworks. If we can establish efficient methodologies, we can then apply them in the 

total synthesis of complex natural products and pharmaceutically relevant compounds.  

With respect to cyclobutanes, Matsuo and co-workers recently employed aryl-substituted 

cyclobutanones, structurally distinct from the DA cyclopropanes and DA cyclobutanes, with 

exocyclic electron-withdrawing functionalities in a cycloaddition reaction (Scheme 41).76 In this 

report, they disclosed a TMSOTf-promoted formal [4+2] cycloaddition between 3-

phenylcyclobutanones and nitriles. Various nitriles including alkyl and aromatic nitriles reacted to 

afford dihydropyridones, albeit in moderate yields. 

 

Scheme 41: TMSOTf-promoted [4+2] cycloaddition of cyclobutanones and nitriles. 

It is worth noting that the initial focus of this project aims to investigate the reactivity of a 

particular class of DA cyclobutanes, that is, the aryl-activated DA cyclobutanes. We wanted to at 

this stage explore the less activated variant of DA cyclobutanes and their ability to engage in 

cycloaddition. The focus on aryl-activated DA cyclobutanes was rationalized not only by their 

amenability to undergo ring-opening but to also have the ability to persist as reactive intermediates 

in the reaction media. In addition, aryl groups are more tunable because of the capability to vary 

electronics by adjusting substitutions on the arene. Indeed, alkoxy-activated cyclobutanes are of 
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higher reactivity, but interception by the desired nucleophile before decomposition and/or side-

reactions poses some difficulty in method development. Moreover, there is less versatility in 

varying electronics of an alkoxy group. Nonetheless, having already shown so much promise in 

cycloaddition chemistry, the more activated, alkoxy-substituted cyclobutane will also be explored 

in detail in the future. As such, we sought to commence the study by investigate the reactivity 

profiles of aryl-activated DA cyclobutanes with nitriles under Lewis acid treatment. 
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Chapter 2. The Cycloaddition Between Donor-Acceptor Cyclobutanes and Nitriles 

In the recent decade, several contributions have been disclosed to explore the utility of DA 

cyclobutanes as reactive partners in cycloaddition. This thesis seeks to expand contributions 

further by utilizing aryl-activated DA cyclobutanes and nitriles as reactive partners. Investigation 

between these two partners will be discussed. 
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2.1 Introduction 

2.1.1 Nitriles as Reactive Cycloaddition Partners 

Although nitriles have been utilized in a variety of transformations, their application as 

reactive partners in cycloaddition reactions has been limited. Owing to their chemical stability as 

reflected by their bond energy (854 kJ/mol), they are typically less reactive than alkynes (835 

kJ/mol).77 In fact, a previous study from 1950 reported that thermal [4+2] cycloaddition between 

dienes and unactivated nitriles gave miniscule amounts of pyridine derivative after reaction at an 

extraordinarily high temperature of 600 °C.78 Nevertheless, a handful of works have been disclosed 

to demonstrate an enhanced practicality for various nitrile cycloaddition reactions at relatively 

milder conditions. 

 

2.1.2 Access to Tetrahydropyridines 

Nitrogen-containing heterocycles are significant structural motifs of various important 

natural products and pharmaceutically active compounds.79 The tetrahydropyridine ring is of 

synthetic interest as these motifs are present in many bioactive natural products. Alkaloids 

possessing the tetrahydropyridine ring include solacongestidine and 2-methyl-6-pentadecyl-

2,3,4,5-tetrahydropyridine, which exhibit antifungal properties,80 ealaenis C and pyracyclumine 

H, which display antileukemic activities,81 and daphnezomine N, which displays antilymphoma 

properties (Figure 8).82 Novel and efficient development of the tetrahydropyridine scaffold is 

motivated by the promising bioactivities of these natural products. 
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Figure 8: Tetrahydropyridine natural products. 
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2.2 Results and Discussion 

 Nitriles have been demonstrated to be effective reaction partners in a variety of 

transformations. The nitrile as a functional group has received considerable attention in the 

cycloadditions of DA cyclopropane. However, they have not yet seen comparable involvement in 

[4+2] cycloadditions with aryl-activated DA cyclobutanes. 

 

2.2.1 The [4+2] Cycloaddition between DA Cyclobutanes and Nitriles 

In order to explore the [4+2] cycloaddition reaction of DA cyclobutanes and nitriles, the 

reaction between cyclobutane 1a and acetonitrile was chosen as a model reaction to screen the 

Lewis acids and to optimize the reaction conditions for the cycloaddition to give the 

tetrahydropyridine 3a. To start, the reaction was conducted with 1 equiv of cyclobutane 1a and 5 

equiv of acetonitrile 2a in DCM at room temperature. Neither Sc(OTf)3 nor Yb(OTf)3 was an 

effective catalyst, despite their excellent success in catalyzing cycloadditions between DA 

cyclobutanes and aldehydes.58,83 Several other Lewis acids such as Pr(OTf)3, Mg(OTf)2, MgI2, 

BF3ꞏOEt2, were all ineffective (entry 21–24), even at elevated temperatures. TMSOTf and TfOH 

were also ineffective, despite success in promoting a similar nitrile cycloaddition with DA 

cyclopropanes.42,46 After all these initial experiments, we eventually found that super-

stoichiometric SnCl4 best promoted the [4+2] cycloaddition reaction between the aryl-activated 

cyclobutane dicarboxylate and acetonitrile to give the tetrahydropyridine cycloadduct 3a at room 

temperature in 39% yield (entry 25) (Table 2).  

Lowering the amount of SnCl4 from 2.1 to 1.5 equiv did not show an adverse effect (entry 

25–27). However, further lowering the loading to 0.5 equiv led to unsatisfactory yields (entry 28). 

The yields varied only slightly when studying the effect of solvent polarity of aprotic solvents 
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(entry 29–31). In all, DCE was the best solvent that gave 44% yield when used along with 1.5 

equiv SnCl4 at room temperature (entry 31). Lower temperatures decreased the yield (entry 32), 

whereas elevated temperatures to 55 °C improved the yield modestly to 52% (entry 33). Further 

increasing the temperature above 55 °C led to inferior yields (entry 34–35), and it was found that 

the carbocyclic side-product (4a) became favored. The yield increased significantly to 78% when 

acetonitrile was used as a solvent (entry 36). This entry demonstrated that sufficient SnCl4 

remained to promote the cycloaddition regardless of the formation of the known SnCl4 adduct with 

acetonitrile, i.e., SnCl4·(MeCN)2.
84 Therefore, the optimal reaction conditions for the [4+2] 

cycloaddition were identified as 1.5 equiv of SnCl4 in DCE at 55 °C. 

Table 2: Catalyst screening for the [4+2] cycloaddition of DA cyclobutanes and nitriles. 

 

Entry Lewis acid (equiv) Solvent Temp.  Time (h) Yield (%)a 

1 Pr(OTf)3 (5 mol%) DCM rt 48 nrb 

2 Pr(OTf)3 (5 mol%) DCM 55 °C 24 nr 

3 Yb(OTf)3 (5 mol%) DCM rt 17 nr 

4 Yb(OTf)3 (5 mol%) DCM 55 °C 15 trace 

5 Sc(OTf)3 (5 mol%) DCM rt 24 nr 

6 Sc(OTf)3 (5 mol%) DCM 55 °C 28 16% 

7 Mg(OTf)2 (10 mol%) DCM rt 2 nr 

8 Mg(OTf)2 (10 mol%) DCM 55 °C 12 nr 

9 Mg(ClO4)2 (10 mol%) DCM rt 2 nr 

10 Mg(ClO4)2 (10 mol%) DCM 55 °C 12 nr 

11 MgBr2 (50 mol%) DCM rt 2 nr 

12 MgBr2 (50 mol%) DCM 55 °C 12 nr 
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13 MgI2 (50 mol%) DCM rt 2 nr 

14 MgI2 (50 mol%) DCM 55 °C 12 decc 

15 Sn(Oct)2 (5 mol%) DCM rt 6 nr 

16 Sn(Oct)2 (5 mol%) DCM 55 °C 4 nr 

17 Sn(Oct)2 (1.5 equiv) DCM rt 6 nr 

18 Sn(Oct)2 (1.5 equiv) DCM 55 °C 4 nr 

19 BF3ꞏOEt2 (10 mol%) DCM rt 3 nr 

20 BF3ꞏOEt2 (10 mol%) DCM 55 °C 16 nr 

21 TfOH (10 mol%) DCM rt 2 nr 

22 TfOH (10 mol%) DCM 55 °C 2 nr 

23 TMSOTf (10 mol%) DCM 0 °C → rt 18 traced 

24 TMSOTf (1.1 equiv) DCM 0 °C → rt 18 18% 

25 SnCl4 (2.1 equiv) DCM rt 3 44% 

26 SnCl4 (1.5 equiv) DCM rt 3 43% 

27 SnCl4 (1.1 equiv) DCM rt 24 39% 

28 SnCl4 (0.5 equiv) DCM rt 3 26% 

29 SnCl4 (1.5 equiv) MeNO2 rt 3 36% 

30 SnCl4 (1.5 equiv) Toluene rt 3 37% 

31 SnCl4 (1.5 equiv) DCE rt 3 44% 

32 SnCl4 (1.5 equiv) DCE 0 °C 3 33% 

33 SnCl4 (1.5 equiv) DCE 55 °C 3 52% 

34 SnCl4 (1.5 equiv) DCE 70 °C 3 37% 

35 SnCl4 (1.5 equiv) DCE 85 °C 3 38% 

36 SnCl4 (1.5 equiv) MeCN 55 °C 2 78% a 

Typical reaction conditions: The reaction was conducted with 1a (0.4 mmol), 2a (2.0 mmol), 

Lewis acid (x equiv), and solvent (3 mL). a Isolated yield of 3a. b No reaction. c Decomposition. d 

Trace amounts of 3a formed. e Acetontrile as solvent (0.1 M cyclobutane, 192 equiv of 

acetonitrile). 
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Under the optimal conditions, the substitution scope of the nitriles was investigated and the 

results are summarized in Table 3. The [4+2] cycloaddition was successful with a broad scope of 

nitriles. For all the subsequent nitriles, 3 equivalents were used. Various saturated and branched 

alkyl nitriles engaged to give cycloadducts in moderate to good yield (3a–e). It is known that 

increasing the size of the esters from methyl to ethyl on the cyclobutane decreases reactivity and 

helps reduce the decomposition of the cyclobutane.61,83 The effect of varying the ester groups was 

previously investigated and substantiated by our work on the [4+2] cycloaddition of aldehydes and 

imines with DA cyclobutanes. Indeed, it was also observed that the size of ester groups plays a 

considerable role in managing reactivity and in reducing decomposition of the DA cyclobutane. 

The cycloaddition of acetonitrile with the diethyl ester 1a-Et allowed the reaction to proceed more 

smoothly to give 3a-Et in 70% yield whereas 1a-Me only allowed 52% yield. Furthermore, by 

running the reaction in acetonitrile as the solvent, the yield improved to 91% (3a-Et). Substrates 

bearing diethyl esters generally showed higher yields when compared with dimethyl esters because 

of an attenuated coordination effect on SnCl4 Lewis acid. In conjunction to the hard activation 

strength of SnCl4, reducing the reactivity away from the more reactive dimethyl esters mitigated 

side reactions. It seems the intricate nature of this reaction requires a delicate balance between the 

electronics of the donor and acceptor groups, in addition to the coordination strength with the 

diester chain as a function of ester chain length. 

Intriguingly, unprotected hydroxypropionitrile successfully proceeded through the 

cycloaddition reaction even though the hydroxy group has a propensity to coordinate Sn (3f). 

Another fascinating result was observed when the reaction was performed in the presence of 3-

methoxyacrylonitrile where an aldehyde functional group was installed on the cycloadduct. The 

resulting vinylogous formamide (3g), a rather rare functional group, was formed exclusively as the 
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(Z)-isomer. Instead of isolating the [4+2] cycloadduct, a hydrolysis of the cycloadduct occurred 

during work-up where the oxonium ion was formed as an intermediate similar to that of the 

hydrolysis of acetals. The formation of a vinylogous formamide was also observed under similar 

conditions in our previous analogous work on the cycloaddition of DA cyclopropanes and 

nitriles.42 Moreover, the isolation of the (Z)-isomer was likely avoiding the allylic strain from the 

neighboring ester groups and perhaps some favorable hydrogen bonding between the amine and 

the aldehyde as well. The interaction, as evident by nOe studies, demonstrated a close through-

space relationship between the aldehydic and vinylic hydrogens which confirms the (Z) 

stereochemistry of the vinylogous formamide. An additional result to mention is the 1H NMR peak 

comparisons of the vinylogous formamide to that of the parent compound, N-methyl formamide 

for example. The N-H peak for N-methyl formamide resides around 7.4 ppm whereas the N-H 

peak of the vinylogous analog in this example (3g) is observed at 11.6 ppm. More than 4 ppm 

difference between the compounds can be explained by the enhanced deshielding effect provided 

by vinylogous group to the formamide nitrogen.   
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Table 3: The substituent scope of nitriles and their reaction with DA cyclobutanes. 

 

 

Cycloaddition of model cyclobutanes 1a-Me and 1a-Et with nitriles. aAcetonitrile used as solvent 

(0.1 M). General procedure: To a solution of cyclobutane (1.0 equiv, 0.4 mmol) and nitrile (3.0 

equiv, 1.2 mmol) in dichloroethane (DCE) at 55 °C was added dropwise SnCl4 (1.5 equiv, 0.6 

mmol) in 2 mL DCE. 
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Electronically diverse aromatic nitriles (3h–q) were well tolerated, providing the 

cycloadduct in moderate to good yields. More strongly electron-donating groups such as para-

methoxy (3h) are the most efficient reactive partners. On the other hand, a decline in yield was 

observed as more electron-withdrawing nitriles were evaluated, such as para-trifluoromethyl (3l). 

In addition, the cycloaddition reaction with aryl halides (3m–o) were successful in moderate 

yields. Alkynyl nitriles also underwent effective cycloaddition when supported with sufficient 

electronic donation, such as an anisole group (3p). 2-Thienyl nitriles also effectively engaged in 

the cycloaddition reaction (3q). The electronic trends observed with these aryl nitriles were 

consistent with a Ritter-type reaction mechanism.85 

Next, the structural versatility of the cyclobutane was investigated (Table 4). To further 

evaluate the generality of the reaction, we selected acetonitrile (2a) and benzonitrile (2j) as the 

model alkyl and aryl nitriles, respectively, to explore various cyclobutanes (1b–d). Contrary to the 

electronic trend in the scope of the aryl nitrile, an inverse effect was observed when the aryl group 

of the cyclobutane was varied. The more electron-poor groups provided greater yields than the 

more electron-rich groups. Particularly, the para-bromo group afforded the cycloadducts with 

acetonitrile and benzonitrile in 71% and 82% yield, respectively (3r-Et, 3s-Et). These adducts, 

alongside the aryl halide adducts 3m–o, would prove to be useful for a plethora of synthetic 

transformations, such as the many cross-coupling reactions that utilizes aryl halide substrates.  
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Table 4: Scope of cycloaddition with cyclobutanes with acetonitrile and benzonitrile. 

 

 

The cycloaddition seems to be hampered when the arene group of the cyclobutane carries 

electron-rich substituents. Particularly, increasing the donating strength on the arene group of the 

cyclobutane led to poor yields with acetonitrile and resulted in decomposition in the reaction with 

benzonitrile, and a considerable amount of the carbocyclic side product (4a) was formed. It appears 

that the side reaction pathway becomes significantly more competitive when the arene can strongly 

stabilize the benzylic carbocation, for instance when it carries a para-methoxy group (3v). As a 

result, application of donor-substituted aryl cyclobutanes for this work’s [4+2] cycloaddition 

reaction is limited in this regard.  

It is unclear whether the nitrile attack occurs via an SN2 mechanism or via a putative 

zwitterionic intermediate, although the latter seems more likely. The postulated mechanism 

outlined in Scheme 42 illustrates the assumption that the cyclobutane exists as the zwitterionic 
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intermediate. Upon ring-opening to afford the zwitterionic intermediate, like a Ritter reaction, the 

nucleophilic nitrile attacks the benzylic carbocation to form a Ritter-type nitrilium intermediate. 

The rationale for the involvement of the nucleophilic component of this mechanism is 

substantiated by the mechanistic studies provided by our similar work on the [4+2] cycloaddition 

of DA cyclobutanes and aldehydes.83 Our report showed that the pathway had a complete 

preference for electron-rich aldehyde, ruling out any involvement of an electrophilic component. 

Thus, the resulting nitrilium ion is subsequently intercepted by an intramolecular attack of the 

enolate to afford the tetrahydropyridine cycloadduct. This pathway is similar to the one proposed 

by Matsuo for the reaction between cyclobutanones and aldehydes or ketones where the 

cyclobutanone undergoes ring-opening to form a zwitterionic intermediate, followed by annulation 

to afford tetrahydropyrans.56 Trushkov also proposed a similar mechanism for the analogous DA 

cyclopropane cycloaddition with nitriles.44 

Unlike the proposed achiral zwitterionic intermediate pathways, an SN2-like mechanism 

through a tight ion-pair was suggested for the [3+2] cycloaddition reaction between cyclopropane 

1,1-diesters with aldehydes by Johnson and co-workers.86 Through this tight-ion pair interaction, 

the stereochemical information is retained to make the cycloaddition stereoselective. It thought of 

as a form of a pseudo-SN2 reaction where there is a continuum between the SN2 and the SN1 

reaction mechanisms. However, when a complete ring-opening event occurs, all stereochemical 

information of the cycloalkane is lost as the achiral cationic intermediate proceeds through the 

cycloaddition. 
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Scheme 42: Proposed mechanism of the [4+2] cycloaddition of DA cyclobutanes and nitriles. 

It worth noting that the studied [4+2] cycloaddition was found to be unfeasible with some 

nitrile partners for various reasons. A list of the failed nitriles and their results are summarized in 

Table 5. The reaction of acrylonitrile provided an inseparable complex mixture (entry 1). The 

presumed [4+2] cycloadduct formed in situ might have behaved as a potent Michael acceptor 

resulting in various side-reactions, isomerizations, and/or decomposition during reaction work-up 

or purification. The bulky pivalonitrile was unsuccessful (entry 2). Pivalonitrile has shown success 

in Ritter reactions,87 but in the present work, it is believed that the nitrilium intermediate from the 

preceding nucleophilic attack is “stuck” and is unable to undergo the subsequent cyclization event 

as a result of steric hinderance. As demonstrated from the reaction scope, the cycloaddition became 

inefficient with electron-withdrawing groups on the nitrile. The cycloaddition was completely 

suppressed in the presence of strongly electron-deficient nitriles (entry 4–5), such as para-

nitrobenzonitrile, and increasing temperature and/or reaction time only pushed the reaction to 

completion for solely the side product. It can be thus inferred that the stabilization of the nitrilium 

intermediate is key to the success of the cycloaddition reaction. The reaction of bromopropionitrile, 

cinnamonitrile, furonitrile, trimethylsilyl cyanide only resulted in decomposition (entry 3, 6–8). 
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Aminobenzonitrile, cyanoacetanilide, and cyanopyridines were incompatible reactive 

partners presumably because SnCl4 has a stronger preference to coordinate to the existing basic 

nitrogen lone pairs (entry 9–13). As a result, Lewis acid activation of the geminal diesters was 

terminated and only starting material was recovered. The SnCl4 equivalents were increased to 4.5 

to see if the reaction would still occur whilst the nitriles were tin-coordinated but the results were 

unfruitful. Interestingly, the reaction of 2-cyanopyridine led to a dark brown tar (entry 10). The 

effect of an adjacent nitrile group and lone pair coordination of 2-cyanopyridine might have caused 

some form of C–H bond activation for the nitrile to undergo several subsequent reactions, leading 

to the overall decomposition of the reaction mixture. 

Table 5: Failed nitrile examples. 

Entry Nitrile Result 

1 Acrylonitrile Complex mixture 

2 Pivalonitrile Complex mixture 

3 3-Bromopropionitrile Decomposition 

4 4-Nitrobenzonitrile Side-product 

5 1,4-Dicyanobenzene Side-product 

6 Cinnamonitrile Decomposition 

7 2-Furonitrile Decomposition 

8 Trimethylsilyl cyanide Decomposition 

9 4-Aminobenzonitrile No reaction 

10 4'-Cyanoacetanilide No reaction 

11 2-Cyanopyridine Decomposition 

12 3-Cyanopyridine No reaction 

13 4-Cyanopyridine No reaction 
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2.2.2 Investigating the Side Reaction of DA Cyclobutanes 

Due to the presence of several electrophilic and nucleophilic centres, isomerizations and/or 

recombinations can occur with one another. These events have been well documented with several 

DA cyclopropanes.88 It has been reported that SnCl4 and other strongly activating Lewis acids 

were able to induce the lactonization of DA cyclopropanes.89 In the presented work, we report a 

different phenomenon occurring for the low yielding and failed reactions. Scheme 43 depicts the 

rationale for the formation of the observed carbocyclic side-product where the DA cyclobutane 

was the sole reactant. The formation of the carbocycle starts with the zwitterionic intermediate 

whereby it subsequently undergoes E1cB fragmentation into styrene and methylene malonate. The 

methylene malonate can then undergo the [4+2] cycloaddition with another zwitterionic molecule 

to form the 6-membered carbocyclic framework. For the intended reactions that had moderate to 

good yields, little to trace amounts of this side-product was formed. However, for the examples 

with low yields, the side-product was obtained in greater amounts or exclusively. Therefore, the 

ability of the dipolarophiles to quickly trap the zwitterionic intermediate is important in preventing 

the cyclobutane fragmentation event and the subsequent formation of the undesired side-product 

(4a). 
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Scheme 43: Proposed mechanism for the formation of the carbocycle side-product. 

Analogously, we previously investigated this tandem fragmentation/recombination 

phenomenon extensively with cross-over experiments using DA cyclopropanes in the presence of 

Yb(OTf)3 catalyst.90 The report discloses a tandem ring-opening, elimination, and cycloaddition 

of DA cyclopropanes with nitrosoarenes. In this report, the nitrone, rather than the methylidene 

malonate, reacts with another equivalent of activated cyclopropane to give tetrahydro-1,2-oxazine 

products instead of the expected isoxazolidine cycloadducts. What is happening here is different 

from the isomerization and cyclodimerization products reported by Tomilov’s group,88 and 

others,91 and our 6-membered carbocycle can prove to be a useful intermediate in target-oriented 

synthesis.  
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2.2.3 The Synthetic Potential of the Tetrahydropyridine Cycloadduct 

To expand the synthetic potential of the [4+2] cycloadducts, we sought to examine the 

amenability of the tetrahydropyridine core through classic transformations. We found that the 

cycloadduct was cleanly transformed to the vinylogous carbamate in excellent yield via a Krapcho 

dealkoxycarbonylation (Scheme 44) using LiI in wet DMSO.92 However, this synthetic route is 

limited to only dimethyl esters and the reaction failed to proceed for the cycloadducts from diethyl 

esters. Nonetheless, the product of these transformations has functional appendages that can be 

subjected to additional synthetic manipulations.  

 

Scheme 44: Krapcho dealkoxycarbonylation of the tetrahydropyridine cycloadduct. 

Furthermore, a substituted piperidine derivative was readily accessed in excellent yield by 

reduction with NaBH4 in MeOH (Scheme 45). The transformation generated a new stereogenic 

centre, and the product was obtained in a diastereoselective manner. The cis-2,6-diastereomer was 

formed exclusively as the geometry was elucidated using 2D-NMR nOe studies. This 

stereochemical outcome aligns with the work by Johnson and co-workers where they report the 

diastereoselective formation of the cis-2,6-diastereomer of tetrahydropyrans via [4+2] 

cycloaddition between DA cyclobutanes and aryl aldehydes.58 

  

Scheme 45: Diastereoselective reduction of the tetrahydropyridine cycloadduct. 
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2.2.4 Preliminary Studies of the Nitrile Cycloaddition of Alkoxy-Activated DA Cyclobutanes 

 Having demonstrated that the DA cyclobutanes bearing aryl-based carbon donors 

effectively undergo a formal [4+2] cycloaddition reaction with nitriles, we wanted to explore the 

nitrile cycloaddition chemistry with our AACDs. In the past, we have shown that imines undergo 

cycloaddition chemistry with AACDs to afford piperidines (Scheme 37). The formation of the 

bicyclic piperidine was observed only when the reaction was conducted at low temperatures, but 

the yield was low. The formation and isolation of hemi-aminal groups brings some difficulty due 

to their inherent instability, and as a result, conversion to the elimination product was favored 

when warmed to room temperature (Scheme 46). 

 

Scheme 46: The [4+2] cycloaddition and elimination between DA cyclobutanes and imines. 

 The analogous hemi-iminal may be obtained from AACDs and nitriles using similar 

reaction conditions, although the stability of the desired cycloadduct may prove to be problematic. 

The elimination product is expected to be isolated at least, which seems to also be the favorable 

product due to the extension of conjugation.  

Preliminary experiments were conducted to investigate to propensity of the nitrile group to 

undergo cycloaddition with AACDs using alkyl- (MeCN) and phenyl-substituted (PhCN). Results 

are summarized in Table 6. Several Lewis acid screening experiments were conducted at -78 °C; 

however, no change in TLC was observed. Upon slowly warming the reaction mixtures, only 

decomposition of the cyclobutane was observed (entry 1–14). It appears that the nitrile lacks 

sufficient nucleophilicity in order to proceed through the cycloaddition manifold. Any 
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incorporation of the nitrile was absent. A change in procedure was then devised as was inspired 

from our work on BF3·OEt2-promoted reaction between AACDs and alkynes (Scheme 12). The 

previous protocol by the Pagenkopf group involved the addition of all reaction components 

together and immediately placing the flask into a pre-heated oil bath and heating to DCE reflux 

temperature (entry 15–17). However, this was not helpful for the current reaction. 

Table 6: Preliminary reaction condition screening for the reaction between AACDs and nitriles. 

 

Entry Lewis acid (equiv) R Solvent.  Temp.  Result 

1 Yb(OTf)3 (10 mol%) Me MeCN rt dec 

2 Yb(OTf)3 (10 mol%) Me MeCN -40 °C dec 

3 Yb(OTf)3 (10 mol%) Me DCM -78 °C → rt dec 

4 La(OTf)3 (10 mol%) Me DCM -78 °C  dec 

5 Zn(OTf)2 (10 mol%) Me DCM -78 °C → rt dec 

6 ZnBr2 (10 mol%) Me DCM -78 °C → rt nr 

7 Yb(OTf)3 (10 mol%) Ph DCM/MeNO2 -78 °C dec 

8 La(OTf)3 (10 mol%) Ph DCM/MeNO2 -78 °C dec 

9 Zn(OTf)2 (10 mol%) Ph DCM -78 → 0 °C dec 

10 ZnBr2 (10 mol%) Ph DCM -78 °C → rt dec 

11 AgOTf (10 mol%) Ph DCM 0 °C → rt dec 

12 Cu(OTf)2 Ph DCM 0 °C dec 

13 [Cu(OTf)]2·C6H6 Ph DCM 0 °C dec 
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14 TMSOTf (1.1 equiv.) Ph DCM 0 °C dec 

15 Yb(OTf)3 (10 mol%) Ph DCE reflux dec 

16 BF3·OEt2 (10 mol%) Ph DCE reflux dec 

17 BF3·OEt2 (1.1 equiv.) Ph DCE reflux dec 

Typical reaction conditions: Reactions were run in the indicated solvent at 0.4 mmol scale with 

MeCN or PhCN (10 equiv.). DCM = dichloromethane. DCE = dichloroethane. MeNO2 = 

nitromethane. MeCN = acetonitrile. PhCN = benzonitrile. dec = decomposition. nr = no reaction. 
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Chapter 3. Conclusion 

 In conclusion, we have disclosed the first [4+2] cycloaddition between DA cyclobutanes 

and nitriles via a SnCl4-promoted strategy for the synthesis of structurally diverse 

tetrahydropyridines. The reaction tolerates a variety of electronically diverse cyclobutanes and 

both aliphatic and aromatic nitriles. However, the reaction falls short when strongly electron-

donating groups are on the cyclobutane, or when the nitriles carry basic nitrogen substitutions, 

inherently incompatible with SnCl4. We have also further demonstrated the synthetic amenability 

of the cycloadduct to additional synthetic transformations. For example, reduction with NaBH4 

gave exclusively cis-2,6-piperidine and the Krapcho dealkoxycarbonylation gave the vinylogous 

carbamate, both in excellent yields. 
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Chapter 4. Future Work 

 The formal [4+2] cycloaddition reaction is postulated to proceed through an achiral 

zwitterionic intermediate. As a result, the products are obtained as a racemic mixture. Previously, 

a work studied enantio-pure DA cyclopropanes in the presence of Lewis acid which revealed the 

degradation of enantiopurity towards a racemic mixture over time.86 Studies on an asymmetric 

variant of the cycloaddition reaction by controlling the achiral environment to achieve an 

enantiomerically pure product would be an intriguing venture for this reaction and for others to 

follow. 

 With regard to the cycloaddition reaction occurring with other types of DA cyclobutanes, 

the work on investigating the reactivity of AACDs with nitriles is an ongoing effort. Although the 

preliminary results were unfruitful, more judicious method development to tune nitrile 

nucleophilicity while maintaining the integrity of the reactive AACDs is crucial for the success of 

the cycloaddition event. Additional experiments are underway, particularly investigating the use 

of para-methoxybenzonitrile as an activated nitrile reactive partner.  

Moreover, we sought to investigate other dipolarophiles. Allyl silanes have been brought 

to light as an excellent dipolarophile for a formal [4+2] cycloaddition, as well as an effective 

reagent for the allylic alkylation of cyclobutanes. Work on the chemoselective reaction between 

cycloaddition and allylation of the cyclobutane is underway. 

 

 

  



60 | P a g e  
 

Chapter 5. Experimental Section 

5.1 General Experimental Details 

All reactions were performed under argon atmosphere unless otherwise indicated. Flasks 

were oven- or flame-dried and cooled in a desiccator prior to use. Solvents and reagents were 

purified by standard methods.93 All chemicals were of reagent quality and used as obtained from 

commercial sources unless otherwise noted. The progress of reactions was monitored by thin layer 

chromatography (TLC) using SilicaPlate Aluminum Backed TLC 200 μm. The plates were 

visualized by UV light (254 nm) and by staining with ceric ammonium molybdate (CAM). Flash 

column chromatography was performed with Silica Flash P60 60Å silica gel from SiliCycle® 

according to the Still method.94 

1H NMR and 13C NMR spectroscopic data were obtained on either 400 or 600 MHz 

spectrometers (Bruker 400, Inova 400, and Inova 600). All spectra were obtained in deuterated 

chloroform and were referenced to the residual chloroform at δ = 7.26 ppm for the 1H spectra and 

the centre peak of the triplet at δ = 77.0 ppm for the 13C spectra. The coupling constant ‘J’ is in 

Hz. The peak multiplicities are given in the following abbreviations: s = singlet, d = doublet, t = 

triplet, dd = doublet of doublets, dt = doublet of triplet, m = multiplet. High resolution mass spectra 

(HRMS) were obtained on a Thermo Scientific DFS spectrometer at an ionizing voltage of 70 eV. 

Infrared Spectra (IR) were acquired using a Bruker FTIR spectrometer ALPHA II.  
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5.2 Preparation and Characterization of Compounds 

Preparation of aryl-activated cyclobutane−1,1-dicarboxylates 

 

A 2-neck round bottom flask was affixed with a reflux condenser and was equipped with 

a magnetic stir bar. To a solution of (1,3-dibromopropyl)benzene95 (1.0 equiv), malonate (1.0 

equiv), and anhydrous dioxane was added sodium hydride (1.1 equiv) in 3 portions over 

approximately 10 min at rt. The reaction was heated at reflux for 1 h, cooled to rt, and additional 

sodium hydride (1.1 equiv) was added. The reaction was then heated at reflux for an addition 12 

h before being cooled to rt. The resulting heterogeneous mixture was filtered through celite, and 

the filter cake was washed with Et2O. The organic solution was washed with water, dried over 

MgSO4 and concentrated in vacuo. The crude cyclobutane was purified by flash column 

chromatography (2.5%–5.0% EtOAc/hexanes).  

The p-bromo96 and tolyl97 cyclobutanes (shown below) were prepared according to the 

general procedure, and the precursors were made according literature procedures.  
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General SnCl4-Promoted Cycloaddition Procedure: 

 

To a solution of cyclobutane (1.0 equiv, 0.4 mmol) and nitrile (3.0 equiv, 1.2 mmol) in 

1,2-dichloroethane (DCE) at 55 °C was added dropwise a solution of SnCl4 (1.5 equiv, 0.6 

mmol, 156 mg) in DCE (2 mL). After 3 h or full consumption of cyclobutane (monitored by 

TLC), the reaction mixture was poured into an aqueous saturated NaHCO3 solution, and 

extracted with DCM (3×15 mL). The combined organic layers were washed with water, dried 

with MgSO4, and the solvent was removed under reduced pressure. The crude product was 

purified by flash column chromatography (EtOAc/hexanes) to give the corresponding product. 

 

General SnCl4-Promoted Cycloaddition Procedure with MeCN Solvent: 

 

To an acetonitrile solution of the cyclobutane (1.0 equiv, 0.4 mmol, 0.1 mmol/mL) at 55 °C was 

added neat SnCl4 (1.5 equiv, 0.6 mmol, 70 μL) dropwise. After 2 h (monitored by TLC) the 

reaction was cooled to room temperature and acetonitrile was removed under reduced pressure. 

The crude reaction mixture was dissolved in dichloromethane (DCM), poured into a saturated 

aqueous NaHCO3 solution, and extracted with DCM (3×15 mL). The combined organic layers 

were washed with water, dried with MgSO4, and the solvent was removed under reduced 

pressure. The crude product was purified by flash column chromatography (EtOAc/hexanes) to 

give the corresponding product. 
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Characterization Data Summaries for New Compounds: 

 

Dimethyl 2-methyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3a-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(60 mg, 52%). Rf = 0.29 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.37–

7.28 (m, 2H), 7.26–7.16 (m, 3H), 4.68 (ddq, J = 9.8, 4.4, 2.1 Hz, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 

2.44 (ddd, J = 13.4, 6.3, 3.3 Hz, 1H), 2.31 (ddd, J = 13.4, 11.7, 3.3 Hz, 1H), 2.23 (d, J = 2.2 Hz, 

3H), 2.03 (dddd, J = 14.1, 6.4, 5.5, 3.3 Hz, 1H), 1.45 (dddd, J = 14.0, 11.7, 9.1, 3.4 Hz, 1H). 13C 

NMR (101 MHz, Chloroform-d) δ 170.05, 169.67, 160.11, 143.84, 128.46, 126.83, 126.68, 

61.76, 59.43, 53.07, 53.05, 27.50, 27.35, 25.81. IR, v (cm−1): 3027, 2953, 2861, 1727, 1657, 

1602, 1434, 1251, 1166. HRMS m/z 289.1321 (calcd. for C16H19NO4, 289.1314). 

 

 

Diethyl 2-methyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3a-Et). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(88 mg, 70%). Rf = 0.35 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.36–

7.29 (m, 2H), 7.26–7.17 (m, 3H), 4.68 (m, 1H), 4.33–4.24 (m, 4H), 2.43 (dddd, J = 13.3, 6.4, 

3.4, 1.0 Hz, 1H), 2.31 (dddd, J = 13.1, 11.5, 3.2, 1.1 Hz, 1H), 2.25 (m, 3H), 2.07–1.98 (m, 1H), 

1.51–1.40 (m, 1H), 1.33 (t, J = 7.2 Hz, 3H), 1.32 (t, J = 7.2 Hz, 3H). 13C NMR (101 MHz, 

Chloroform-d) δ 169.53, 169.17, 160.48, 143.96, 128.40, 126.76, 126.69, 62.11, 61.98, 61.76, 
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59.57, 41.90, 27.42, 27.37, 25.84, 13.99, 13.96. IR, v (cm−1): 2938, 1723, 1656, 1448, 1250. 

HRMS m/z 317.1628 (calcd. for C18H23NO4, 317.1627).  

 

 

Dimethyl 6-phenyl-2-propyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3b-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(56 mg, 44%). Rf = 0.55 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.35–

7.29 (m, 2H), 7.26–7.18 (m, 3H), 4.72 (ddt, J = 7.6, 5.1, 2.2 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 

2.52–2.27 (m, 4H), 2.04 (dddd, J = 14.0, 6.4, 5.6, 3.3 Hz, 1H), 1.79–1.64 (m, 2H), 1.40 (dddd, J 

= 14.0, 11.6, 9.0, 3.4 Hz, 1H), 0.95 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 

170.20, 169.87, 162.68, 144.18, 128.35, 126.65, 126.58, 61.24, 59.66, 53.00, 52.93, 39.79, 27.68, 

20.01, 13.94. IR, v (cm−1): 2954, 1727, 1657, 1434, 1250, 1165. HRMS m/z 317.1624 (calcd. for 

C18H23NO4, 317.1627). 

 

 

Dimethyl 2-pentyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3c-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(53 mg, 39%). Rf = 0.50 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.34–

7.31 (m, 2H), 7.25–7.20 (m, 3H), 4.72 (ddd, J = 10.8, 5.3, 2.1 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 3H), 

2.50 (dddd, J = 15.9, 10.1, 5.9, 1.7 Hz, 1H), 2.44–2.33 (m, 2H), 2.31 (ddd, J = 13.2, 11.6, 3.2 Hz, 
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1H), 2.04 (dddd, J = 13.9, 6.4, 5.6, 3.2 Hz, 1H), 1.75–1.63 (m, 2H), 1.41 (dddd, J = 14.0, 12.0, 

8.9, 3.3 Hz, 1H), 1.36–1.27 (m, 4H), 0.92–0.86 (m, 3H). 13C NMR (101 MHz, Chloroform-d) δ 

170.16, 169.85, 162.90, 144.14, 128.31, 126.61, 126.57, 61.19, 59.65, 52.97, 52.91, 37.82, 31.71, 

27.67, 27.62, 26.42, 22.53, 14.08. IR, v (cm−1): 2953, 1728, 1657, 1433, 1248, 1166. HRMS m/z 

345.1932 (calcd. for C20H27NO4, 345.1940).  

 

 

Dimethyl 2-isopropyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3d-Me). 

The title compound was prepared according to the general procedure to afford a pale- 

yellow oil (61 mg, 48%). Rf = 0.57 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) 

δ 7.35–7.30 (m, 2H), 7.24–7.19 (m, 3H), 4.74 (dd, J = 8.7, 5.4 Hz, 1H), 3.82 (s, 3H), 3.80 (s, 

3H), 2.78 (h, J = 6.7 Hz, 1H), 2.40 (ddd, J = 13.3, 6.7, 3.2 Hz, 1H), 2.31 (ddd, J = 13.4, 11.4, 3.2 

Hz, 1H), 2.04 (dddd, J = 13.8, 6.7, 5.5, 3.2 Hz, 1H), 1.40 (dddd, J = 14.3, 11.7, 8.7, 3.3 Hz, 1H), 

1.27 (d, J = 6.6 Hz, 3H), 1.14 (d, J = 6.6 Hz, 3H). 13C NMR (151 MHz, Chloroform-d) δ 170.11, 

169.94, 168.26, 144.29, 128.34, 126.60, 126.57, 60.89, 59.90, 52.96, 52.87, 35.88, 27.93, 27.81, 

22.42, 22.36. IR, v (cm−1): 2953, 1727, 1656, 1434, 1250. HRMS m/z 317.1625 (calcd. for 

C18H23NO4, 317.1627). 

 

 

Diethyl 2-isopropyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3d-Et). 
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The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(78 mg, 57%). Rf = 0.64 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.34–7.19 

(m, 5H), 4.76 (dd, J = 8.6, 5.4 Hz, 1H), 4.33–4.22 (m, 4H), 2.84 (hept, J = 6.7 Hz, 1H), 2.40 

(ddd, J = 13.4, 6.7, 3.5 Hz, 1H), 2.31 (ddd, J = 13.4, 11.1, 3.2 Hz, 1H), 2.05 (dddd, J = 13.9, 6.7, 

5.5, 3.2 Hz, 1H), 1.46–1.37 (m, 1H), 1.36–1.24 (m, 12H). 13C NMR (101 MHz, Chloroform-d) δ 

169.61, 169.46, 168.59, 144.34, 128.25, 126.55, 126.51, 62.05, 61.87, 60.87, 59.99, 35.69, 27.98, 

27.68, 22.45, 22.42, 13.96, 13.94. IR, v (cm−1): 2978, 2934, 2871, 1725, 1656, 1448, 1367, 1241, 

1175, 1022, 753, 699. HRMS m/z 345.1936 (calcd. for C20H27NO4, 345.1940).  

 

 

Dimethyl 2-isobutyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3e-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(77 mg, 58%). Rf = 0.60 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.35–

7.30 (m, 2H), 7.25–7.21 (m, 3H), 4.71 (ddt, J = 8.6, 5.6, 3.0 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 

2.44 (ddd, J = 13.4, 6.2, 3.3 Hz, 1H), 2.40–2.25 (m, 4H), 2.05 (dtd, J = 14.6, 5.9, 3.3 Hz, 1H), 

1.43 (dddd, J = 15.1, 12.3, 9.2, 3.3 Hz, 1H), 0.96 (d, J = 6.4 Hz, 3H), 0.93 (d, J = 6.4 Hz, 3H). 

13C NMR (151 MHz, Chloroform-d) δ 170.22, 169.85, 161.41, 144.35, 128.36, 126.65, 61.44, 

59.81, 52.92, 52.81, 46.25, 27.98, 27.67, 25.01, 22.84, 22.23. IR, v (cm−1): 2954, 1727, 1657, 

1434, 1250, 1165. HRMS m/z 331.1778 (calcd. for C19H25NO4, 331.1784). 
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Diethyl 2-isobutyl-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3e-Et). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(106 mg, 74%). Rf = 0.68 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.35–

7.21 (m, 5H), 4.72 (app ddd, J = 9.4, 5.4, 2.6 Hz, 1H), 4.32–4.22 (m, 4H), 2.47–2.37 (m, 2H), 

2.36–2.28 (m, 3H), 2.05 (dddd, J = 13.9, 5.9, 5.9, 3.3 Hz, 1H), 1.49–1.39 (m, 1H), 1.32 (t, J = 

7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H), 0.96 (d, J = 13.4 Hz, 3H) 0.95 (d, J = 13.4 Hz, 3H). 13C 

NMR (101 MHz, Chloroform-d) δ 169.76, 169.43, 161.74, 144.46, 128.32, 126.68, 126.61, 

62.00, 61.87, 61.50, 59.89, 46.27, 27.89, 27.77, 24.89, 22.90, 22.31, 14.02, 13.98. IR, v (cm−1): 

2985, 2867, 1725, 1657, 1449, 1366, 1257, 1162, 1094, 1023, 751, 699. HRMS m/z 359.2093 

(calcd. for C21H29NO4, 359.2097).  

 

 

Dimethyl 2-(2-hydroxyethyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3f-Me). 

The title compound was prepared according to the general procedure to afford a yellow oil (43 

mg, 34%). Rf = 0.27 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.34 (app t, J 

= 7.3 Hz, 2H), 7.30–7.25 (m, 3H), 4.25 (dd, J = 7.7, 5.2 Hz, 1H), 3.73 (s, 3H), 3.71 (s, 3H), 

3.51–3.43 (m, 2H), 3.37 (t, J = 7.4 Hz, 1H), 2.57–2.48 (m, 2H), 2.07 (dddd, J = 11.8, 9.2, 6.7, 

3.9 Hz, 1H), 1.91–1.80 (m, 2H), 1.70–1.64 (m, 1H). 13C NMR (151 MHz, Chloroform-d) δ 

169.65, 169.64, 140.90, 128.69, 128.12, 126.49, 117.77, 82.51, 63.22, 52.52, 52.48, 51.34, 35.59, 
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25.24, 18.95. IR, v (cm−1): 2954, 2251, 1729, 1435, 1097. HRMS m/z 319.1420 (calcd. for 

C17H21NO5, 319.1415).  

 

 

(Z)-Dimethyl 2-(2-oxoethylidene)-6-phenylpiperidine-3,3-dicarboxylate (3g-Me). 

The title compound was prepared according to the general procedure to afford a yellow solid (45 

mg, 35%), mp 134–135 °C. Rf = 0.19 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-

d) δ 11.56 (s, 1H), 9.08 (d, J = 2.6 Hz, 1H), 7.41–7.27 (m, 5H), 5.16 (d, J = 2.6 Hz, 1H), 4.61 

(ddd, J = 9.1, 5.6, 1.7 Hz, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 2.51 (ddd, J = 13.8, 6.7, 3.3 Hz, 1H), 

2.43 (ddd, J = 13.9, 11.1, 3.2 Hz, 1H), 2.21–2.12 (m, 1H), 1.67 (dddd, J = 14.4, 11.8, 8.9, 3.4 Hz, 

1H). 13C NMR (151 MHz, Chloroform-d) δ 186.77, 169.15, 169.00, 158.22, 142.01, 128.92, 

128.04, 126.08, 96.10, 58.78, 56.11, 53.49, 28.35, 26.97. IR, v (cm−1): 2952, 2850, 2200, 1729, 

1619, 1573, 1257. HRMS m/z 317.1263 (calcd. for C17H19NO5, 317.1263).  

 

 

Dimethyl 2-(4-methoxyphenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3h-

Me). 

The title compound was prepared according to the general procedure to afford an off-white syrup 

(96 mg, 63%). Rf = 0.30 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.75–

7.67 (m, 2H), 7.39–7.34 (m, 2H), 7.33–7.29 (m, 2H), 7.28–7.24 (m, 1H), 6.91–6.84 (m, 2H), 
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4.97 (dd, J = 8.7, 5.9 Hz, 1H), 3.81 (s, 3H), 3.75 (s, 3H), 3.63 (s, 3H), 2.57 (ddd, J = 13.2, 6.5, 

3.8 Hz, 1H), 2.47 (ddd, J = 13.2, 11.2, 3.5 Hz, 1H), 2.21–2.13 (m, 1H), 1.60–1.53 (m, 1H). 13C 

NMR (101 MHz, Chloroform-d) δ 170.41, 170.31, 160.42, 160.30, 144.18, 132.09, 129.24, 

128.47, 126.77, 126.74, 113.15, 61.92, 59.02, 55.23, 52.98, 52.92, 29.49, 27.55. IR, v (cm−1): 

2953, 1728, 1604, 1433, 1250. HRMS m/z 381.1576 (calcd. for C22H23NO5, 381.1576).  

 

 

Diethyl 2-(4-methoxyphenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3h-Et). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(106 mg, 74%). Rf = 0.59 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.74–

7.65 (m, 2H), 7.35–7.22 (m, 5H), 6.86–6.81 (m, 2H), 4.94 (dd, J = 8.7, 6.0 Hz, 1H), 4.22 (app 

qd, J = 7.1, 2.4 Hz, 2H), 4.16–4.04 (m, 2H), 3.81 (s, 3H), 2.54 (ddd, J = 13.2, 6.5, 3.8 Hz, 1H), 

2.44 (ddd, J = 13.1, 11.1, 3.5 Hz, 1H), 2.15 (dddd, J = 14.0, 6.3, 6.3, 3.6 Hz, 1H), 1.56 (dddd, J = 

14.3, 11.2, 8.7, 3.8 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H). 13C NMR (101 

MHz, Chloroform-d) δ 169.85, 169.79, 160.82, 160.39, 144.29, 132.33, 129.45, 128.41, 126.77, 

126.71, 113.01, 61.99, 61.97, 61.94, 59.15, 55.24, 29.37, 27.62, 13.88, 13.68. IR, v (cm−1): 2980, 

2937, 2906, 1726, 1605, 1512, 1246, 1174, 1028, 837, 730, 699. HRMS m/z 409.1887 (calcd. for 

C24H27NO5, 409.1889).  
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Dimethyl 6-phenyl-2-(p-tolyl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3i-Me). 

The title compound was prepared according to the general procedure to afford a white solid (83 

mg, 57%), mp 85–88 °C. Rf = 0.38 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) 

δ 7.63–7.57 (m, 2H), 7.36–7.31 (m, 2H), 7.29–7.21 (m, 3H), 7.17–7.08 (m, 2H), 4.94 (dd, J = 

8.8, 6.0 Hz, 1H), 3.74 (s, 3H), 3.62 (s, 3H), 2.58–2.41 (m, 2H), 2.34 (s, 3H), 2.15 (dddd, J = 

14.1, 6.2, 6.2, 3.6 Hz, 1H), 1.60–1.50 (m, 1H). 13C NMR (101 MHz, Chloroform-d) δ 170.34, 

170.28, 160.99, 144.12, 139.26, 136.65, 128.57, 128.48, 127.60, 126.78, 126.75, 62.01, 59.07, 

52.97, 52.90, 29.50, 27.57, 21.25. IR, v (cm−1): 2953, 2921, 1740, 1631, 1428, 1242. HRMS m/z 

365.1619 (calcd. for C22H23NO4, 365.1627).  

 

 

Dimethyl 2,6-diphenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3j-Me). 

The title compound was prepared according to the general procedure to afford a white solid (68 

mg, 49%), mp 79–81 °C. Rf = 0.53 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) 

δ 7.72–7.66 (m, 2H), 7.36–7.31 (m, 5H), 7.29–7.26 (m, 2H), 7.26–7.23 (m, 1H), 4.95 (dd, J = 

8.8, 6.0 Hz, 1H), 3.74 (s, 3H), 3.60 (s, 3H), 2.55 (ddd, J = 13.3, 6.4, 3.9 Hz, 1H), 2.48 (ddd, J = 

13.2, 11.3, 3.7 Hz, 1H), 2.16 (dddd, J = 14.2, 6.3, 6.3, 3.6 Hz, 1H), 1.60–1.55 (m, 1H). 13C NMR 

(101 MHz, Chloroform-d) δ 170.22, 170.19, 161.38, 143.97, 139.42, 129.23, 128.52, 127.88, 

127.68, 126.84, 126.75, 62.15, 59.29, 53.00, 52.90, 29.33, 27.55. IR, v (cm−1): 2955, 1747, 1625, 

1435, 1250. HRMS m/z 351.1461 (calcd. for C21H21NO4, 351.1471).  
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Diethyl 2,6-diphenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3j-Et). 

The title compound was prepared according to the general procedure to afford a white solid (114 

mg, 75%). mp 98–100 °C. Rf = 0.37 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) 

δ 7.77–7.67 (m, 2H), 7.36–7.21 (m, 8H), 4.95 (dd, J = 8.8, 6.0 Hz, 1H), 4.21 (qd, J = 7.2, 1.5 Hz, 

2H), 4.15–3.99 (m, 2H), 2.60–2.41 (m, 2H), 2.17 (dddd, J = 12.4, 6.2, 6.2, 3.7 Hz, 1H), 1.63–

1.54 (m, 1H), 1.18 (t, J = 7.1 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, 

Chloroform-d) δ 169.71, 169.63, 144.08, 139.61, 129.16, 128.48, 127.93, 127.78, 127.77, 

126.81, 126.78, 62.19, 62.07, 61.99, 59.40, 29.24, 27.64, 13.85, 13.58. IR, v (cm−1): 2980, 1724, 

1632, 1452, 1242. HRMS m/z 379.1779 (calcd. for C23H25NO4, 379.1784).  

 

 

Dimethyl 2-(4-(methoxycarbonyl)phenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-

dicarboxylate (3k-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow 

syrup (62 mg, 38%). Rf = 0.42 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 

8.04–7.97 (m, 2H), 7.81–7.73 (m, 2H), 7.40–7.26 (m, 5H), 4.97 (dd, J = 8.9, 6.0 Hz, 1H), 3.92 

(s, 3H), 3.75 (s, 3H), 3.60 (s, 3H), 2.57 (ddd, J = 13.3, 6.3, 3.9 Hz, 1H), 2.48 (ddd, J = 13.3, 11.3, 

3.6 Hz, 1H), 2.18 (dddd, J = 14.2, 6.2, 6.2, 3.6 Hz, 1H), 1.65–1.56 (m, 1H). 13C NMR (101 

MHz, Chloroform-d) δ 169.96, 169.90, 166.76, 160.82, 143.58, 143.50, 130.57, 129.17, 128.60, 
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127.80, 127.00, 126.69, 62.44, 59.25, 53.13, 53.02, 52.17, 29.27, 27.48. IR, v (cm−1): 2952, 

2921, 2852, 1722, 1454, 1435, 1274, 1107. HRMS m/z 409.1527 (calcd. for C23H23NO6, 

409.1525). 

 

 

Dimethyl 6-phenyl-2-(4-(trifluoromethyl)phenyl)-5,6-dihydropyridine-3,3(4H)-

dicarboxylate (3l-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(30 mg, 18%). Rf = 0.50 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.83 (d, J 

= 7.8 Hz, 2H), 7.59 (d, J = 8.3 Hz, 2H), 7.38–7.33 (m, 2H), 7.27–7.25 (m, 3H), 4.97 (dd, J = 9.0, 

6.0 Hz, 1H), 3.77 (s, 3H), 3.61 (s, 3H), 2.58 (ddd, J = 13.2, 6.2, 3.6 Hz, 1H), 2.48 (ddd, J = 13.2, 

11.6, 3.4 Hz, 1H), 2.19 (dddd, J = 14.3, 6.2, 6.2, 3.2 Hz, 1H), 1.61–1.57 (m, 1H). 13C NMR (151 

MHz, Chloroform-d) δ 169.91, 169.89, 160.31, 143.51, 142.65, 128.62, 128.20, 127.03, 126.67, 

124.85, 124.82, 120.68, 62.47, 59.24, 53.17, 53.05, 29.31, 27.46. IR, v (cm−1): 2953, 2926, 2856, 

1729, 1633, 1451, 1326, 1245, 1165, 1122, 1067. HRMS m/z 419.1340 (calcd. for C22H20F3NO4, 

419.1344).  

 

 

Dimethyl 2-(4-chlorophenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3m-

Me). 
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The title compound was prepared according to the general procedure to afford a clear colorless 

syrup (48 mg, 31%). Rf = 0.44 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 

7.71–7.66 (m, 2H), 7.38–7.30 (m, 4H), 7.28–7.24 (m, , 3H), 4.95 (dd, J = 8.9, 6.0 Hz, 1H), 3.76 

(s, 3H), 3.63 (s, 3H), 2.57 (ddd, J = 13.2, 6.4, 3.6 Hz, 1H), 2.47 (ddd, J = 13.2, 11.5, 3.5 Hz, 1H), 

2.17 (dddd, J = 14.1, 6.2, 6.2, 3.5 Hz, 1H), 1.57 (dddd, J = 14.7, 11.5, 8.9, 3.6 Hz, 1H). 13C 

NMR (151 MHz, Chloroform-d) δ 170.03, 170.00, 160.17, 143.68, 137.76, 135.35, 129.16, 

128.54, 128.03, 126.92, 126.65, 62.23, 59.11, 53.09, 53.00, 29.31, 27.44. IR, v (cm−1): 2952, 

2871, 1727, 1631, 1433, 1241. HRMS m/z 385.1074 (calcd. for C21H20ClNO4, 385.1081).  

 

 

Dimethyl 2-(4-bromophenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3n-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow 

syrup (74 mg, 43%). Rf = 0.39 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 

7.61–7.56 (m, 2H), 7.47–7.43 (m, 2H), 7.35–7.31 (m, 2H), 7.27–7.23 (m, 3H), 4.92 (dd, J = 8.9, 

6.0 Hz, 1H), 3.76 (s, 3H), 3.63 (s, 3H), 2.54 (ddd, J = 13.2, 6.3, 3.6 Hz, 1H), 2.44 (ddd, J = 13.2, 

11.5, 3.5 Hz, 1H), 2.15–2.12 (m, 1H), 1.57–1.50 (m, 2H). 13C NMR (151 MHz, Chloroform-d) 

170.05, 170.02, 160.27, 143.69, 138.25, 131.04, 129.45, 128.58, 126.95, 126.68, 123.83, 62.28, 

59.09, 53.12, 53.04, 29.36, 27.47. IR, v (cm−1): 2952, 1727, 1630, 1433, 1250. HRMS m/z 

429.0580 (calcd. for C21H20BrNO4, 429.0576). 
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Diethyl 2-(4-bromophenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3n-Et). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(118 mg, 65%). Rf = 0.40 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.62 (d, 

J = 8.4 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 7.34 (app t, J = 7.8 Hz, 2H), 7.24 (d, J = 3.5 Hz, 2H), 

4.94 (dd, J = 8.9, 6.0 Hz, 1H), 4.30–4.17 (m, 2H), 4.16–4.02 (m, 2H), 2.55 (ddd, J = 13.4, 6.4, 

4.0 Hz, 1H), 2.44 (ddd, J = 13.0, 11.4, 3.5 Hz, 1H), 2.16 (dddd, J = 12.9, 6.1, 6.1, 3.6 Hz, 1H), 

1.57 (dddd, J = 15.2, 13.1, 8.9, 3.7 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 1.07 (t, J = 7.2 Hz, 3H). 13C 

NMR (101 MHz, Chloroform-d) δ 169.49, 143.75, 138.38, 130.91, 129.68, 128.53, 126.92, 

126.70, 123.74, 62.31, 62.21, 62.15, 59.22, 41.94, 29.26, 27.54, 13.88, 13.66. IR, v (cm−1): 2981, 

2936, 2872, 1725, 1631, 1449, 1225, 1174, 1084, 1023, 700. HRMS m/z 457.0876 (calcd. for 

C23H24BrNO4, 457.0889).  

 

 

Dimethyl 2-(4-iodophenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3o-Me). 

The title compound was prepared according to the general procedure to afford a pale-yellow 

syrup (105 mg, 55%). Rf = 0.67 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 

7.72–7.63 (m, 2H), 7.49–7.44 (m, 2H), 7.37–7.31 (m, 2H), 7.28–7.26 (m, 1H), 7.25 (d, J = 6.2 

Hz, 2H), 4.94 (dd, J = 8.9, 5.9 Hz, 1H), 3.76 (s, 3H), 3.63 (s, 3H), 2.56 (ddd, J = 13.2, 6.3, 3.7 

Hz, 1H), 2.46 (ddd, J = 13.2, 11.4, 3.5 Hz, 1H), 2.16 (dtd, J = 14.1, 6.2, 3.6 Hz, 1H), 1.55 (dddd, 
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J = 14.1, 11.4, 8.9, 3.7 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 170.00, 169.96, 160.40, 

143.64, 138.79, 136.98, 129.50, 128.54, 126.92, 126.65, 95.92, 62.24, 59.00, 53.10, 53.03, 29.34, 

27.44. IR, v (cm−1): 3027, 2951, 2868, 1727, 1433, 1244, 1167. HRMS m/z 477.0435 (calcd. for 

C21H20INO4, 477.0437). 

 

 

Dimethyl 2-(3-bromophenyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3*). 

The title compound was prepared according to the general procedure to afford an inseparable 

mixture with the tetraester side-product. HRMS m/z 429.0571 (calcd. for C21H20BrNO4, 

429.0576).  

 

(2R,6R)-Dimethyl 2-(3-bromophenyl)-6-phenylpiperidine-3,3-dicarboxylate (3**). 

The title compound was prepared following the literature protocol,98 to afford a clear colorless 

oil. Rf = 0.71 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.46–7.39 (m, 4H), 

7.29–7.19 (m, 5H), 4.38 (s, 1H), 3.87 (dd, J = 9.0, 5.7 Hz, 1H), 3.60 (s, 3H), 3.57 (s, 3H), 2.58 

(dt, J = 13.5, 3.5 Hz, 1H), 2.24–2.14 (m, 1H), 2.05 (s, 1H), 1.91–1.80 (m, 2H). 13C NMR (101 

MHz, Chloroform-d) δ 171.60, 169.93, 143.19, 140.53, 131.49, 128.45, 128.44, 127.60, 127.44, 

121.03, 114.28, 66.28, 61.51, 58.96, 52.83, 52.24, 51.59, 41.92, 33.78, 30.63. IR, v (cm−1): 3345, 

3030, 2950, 2854, 1723, 1457, 1434, 1258, 1236, 1010, 729, 700. HRMS m/z 431.0744 (calcd. 

for C21H22BrNO4, 431.0732).  
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Dimethyl 2-((4-methoxyphenyl)ethynyl)-6-phenyl-5,6-dihydropyridine-3,3(4H)-

dicarboxylate (3p-Me). 

The title compound was prepared according to the general procedure to afford a yellow oil (97 

mg, 60%). Rf = 0.27 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.48–7.43 

(m, 2H), 7.34 (app t, J = 7.7 Hz, 2H), 7.26–7.23 (m, 3H), 6.87–6.83 (m, 2H), 4.90–4.84 (m, 1H), 

3.87 (s, 3H), 3.86 (s, 3H), 3.82 (s, 3H), 2.52 (ddd, J = 9.8, 5.2, 2.4 Hz, 1H), 2.44–2.38 (m, 1H), 

2.14–2.06 (m, 1H), 1.59–1.51 (m, 1H). 13C NMR (151 MHz, Chloroform-d) δ 169.30, 169.09, 

160.53, 147.99, 143.15, 133.97, 128.51, 127.02, 126.81, 114.05, 113.65, 90.06, 86.40, 62.81, 

60.52, 55.31, 53.30, 53.26, 27.22, 27.01. IR, v (cm−1): 3027, 2953, 2842, 2212, 1731, 1599, 

1509, 1434, 1249, 1170, 732, 700. HRMS m/z 405.1566 (calcd. for C24H23NO5, 405.1576).  

 

 

Dimethyl 6-phenyl-2-(thiophen-2-yl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3q-Me). 

The title compound was prepared according to the general procedure to afford a lime-yellow oil 

(85 mg, 60%). Rf = 0.47 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.36–

7.33 (m, 2H), 7.31–7.24 (m, 5H), 7.00 (dd, J = 5.1, 3.8 Hz, 1H), 5.01 (dd, J = 8.2, 5.6 Hz, 1H), 

3.76 (s, 3H), 3.74 (s, 3H), 2.58 (ddd, J = 13.2, 7.1, 3.1 Hz, 1H), 2.42 (ddd, J = 13.2, 11.1, 3.1 Hz, 
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1H), 2.15 (dddd, J = 14.0, 7.0, 5.6, 3.1 Hz, 1H), 1.56 (dddd, J = 14.2, 11.2, 8.2, 3.1 Hz, 1H). 13C 

NMR (151 MHz, Chloroform-d) δ 170.16, 169.54, 154.80, 145.47, 143.65, 128.41, 128.28, 

127.29, 127.08, 126.76, 126.70, 61.36, 58.43, 53.12, 29.16, 27.39. IR, v (cm−1): 2953, 1728, 

1614, 1431. HRMS m/z 357.1032 (calcd. for C19H19NO4S, 357.1035).  

 

Diethyl 6-phenyl-2-(thiophen-2-yl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3q-Et). 

The title compound was prepared according to the general procedure to afford a pale-yellow oil 

(128 mg, 83%). Rf = 0.67 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.38–

7.24 (m, 7H), 6.99 (app dd, J = 5.1, 3.8 Hz, 1H), 5.01 (dd, J = 8.0, 5.6 Hz, 1H), 4.30–4.12 (m, 

4H), 2.56 (ddd, J = 13.2, 7.3, 3.1 Hz, 1H), 2.41 (ddd, J = 13.4, 10.9, 3.1 Hz, 1H), 2.14 (dddd, J = 

13.8, 7.1, 5.6, 3.0 Hz, 1H), 1.60 (dddd, J = 8.0, 6.6, 2.6 Hz, 1H), 1.20 (t, J = 7.1 Hz, 3H), 1.16 (t, 

J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 169.58, 169.03, 155.45, 143.70, 128.38, 

128.12, 127.51, 127.10, 126.77, 126.75, 62.20, 62.15, 61.41, 58.68, 29.69, 28.92, 27.47, 13.86, 

13.76. IR, v (cm−1): 2979, 2958, 2906, 1726, 1614, 1448, 1240, 1173, 1094, 1021, 857, 700. 

HRMS m/z 385.1344 (calcd. for C21H23NO4S, 385.1348).  

 

 

Dimethyl 6-(4-bromophenyl)-2-methyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3r-Me). 

The title compound was prepared according to the general procedure to afford a yellow solid (94 

mg, 64%), mp 88–91 °C. Rf = 0.22 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) 
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δ 7.48–7.42 (m, 2H), 7.11–7.04 (m, 2H), 4.66–4.60 (m, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 2.42 

(ddd, J = 13.4, 6.2, 3.3 Hz, 1H), 2.31 (ddd, J = 13.4, 11.8, 3.3 Hz, 1H), 2.22 (d, J = 2.2 Hz, 3H), 

2.01 (dddd, J = 14.0, 6.2, 5.5, 3.3 Hz, 1H), 1.38 (dddd, J = 14.0, 11.8, 9.2, 3.3 Hz, 1H). 13C 

NMR (151 MHz, Chloroform-d) δ 169.88, 169.55, 160.67, 142.91, 131.52, 128.44, 120.66, 

61.09, 59.36, 53.11, 53.09, 27.44, 27.23, 25.81. IR, v (cm−1): 2960, 2925, 1724, 1645, 1436, 

1249. HRMS m/z 367.0423 (calcd. for C16H18BrNO4, 367.0419). 

 

 

Diethyl 6-(4-bromophenyl)-2-methyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3r-Et). 

The title compound was prepared according to the general procedure to afford a yellow oil (112 

mg, 71%). Rf = 0.43 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.48–7.36 

(m, 2H), 7.09–7.04 (m, 2H), 4.64–4.58 (m, 1H), 4.29–4.22 (m, 4H), 2.38 (ddd, J = 13.4, 6.2, 3.3 

Hz, 1H), 2.30–2.25 (m, 1H), 2.21 (d, J = 2.1 Hz, 3H), 1.99 (dddd, J = 14.7, 6.0, 6.0, 3.3 Hz, 1H), 

1.40 (dddd, J = 13.8, 12.0, 8.9, 3.2 Hz, 1H), 1.32 (t, J = 7.3 Hz, 3H), 1.31 (t, J = 7.3 Hz, 3H). 13C 

NMR (151 MHz, Chloroform-d) δ 169.39, 169.06, 161.10, 143.04, 131.50, 128.47, 120.62, 

62.20, 62.08, 61.12, 59.53, 27.33, 27.32, 25.87, 14.01, 13.97. IR, v (cm−1): 2980, 1723, 1656, 

1247, 1175. HRMS m/z 395.0730 (calcd. for C18H22BrNO4, 395.0732).  

 

 

Dimethyl 6-(4-bromophenyl)-2-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3s-Me). 
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The title compound was prepared according to the general procedure to afford a white solid (117 

mg, 68%), mp 111–112 °C. Rf = 0.35 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-

d) 7.70–7.65 (m, 2H), 7.50–7.44 (m, 2H), 7.39–7.31 (m, 3H), 7.19–7.14 (m, 2H), 4.89 (dd, J = 

9.1, 6.0 Hz, 1H), 3.74 (s, 3H), 3.59 (s, 3H), 2.53 (ddd, J = 13.2, 6.1, 4.1 Hz, 1H), 2.48 (ddd, J = 

13.2, 11.3, 3.7 Hz, 1H), 2.18–2.13 (m, 1H), 1.53–1.45 (m, 1H). 13C NMR (151 MHz, 

Chloroform-d) δ 170.11, 170.02, 161.89, 143.02, 139.24, 131.60, 129.37, 128.50, 127.93, 

127.64, 120.70, 61.52, 59.23, 53.05, 52.93, 29.31, 27.41. IR, v (cm−1): 2955, 1754, 1720, 1618, 

1445, 1250. HRMS m/z 429.0579 (calcd. for C21H20BrNO4, 429.0576).  

 

 

Diethyl 6-(4-bromophenyl)-2-phenyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3s-Et). 

The title compound was prepared according to the general procedure to afford a yellow oil (150 

mg, 82%). Rf = 0.48 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.72–7.67 

(m, 2H), 7.48–7.43 (m, 2H), 7.36–7.29 (m, 3H), 7.19–7.15 (m, 2H), 4.89 (dd, J = 9.1, 6.0 Hz, 

1H), 4.25–4.16 (m, 2H), 4.13–3.99 (m, 2H), 2.53 (ddd, J = 13.2, 6.1, 4.1 Hz, 1H), 2.47 (ddd, J = 

13.2, 11.3, 3.7 Hz, 1H), 2.15 (dddd, J = 14.1, 6.1, 6.1, 3.7 Hz, 1H), 1.51 (dddd, J = 14.1, 11.3, 

9.1, 4.1 Hz, 1H), 1.30–1.21 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H), 1.01 (t, J = 7.1 Hz, 3H). 13C NMR 

(151 MHz, Chloroform-d) δ 169.60, 169.47, 162.40, 143.15, 139.45, 131.54, 129.27, 128.52, 

127.87, 127.81, 120.64, 62.12, 62.03, 61.56, 59.34, 29.23, 27.50, 13.85, 13.55. IR, v (cm−1): 

2980, 1723, 1632, 1474, 1239, 1174. HRMS m/z 457.0879 (calcd. for C23H24BrNO4, 457.0889).  
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Dimethyl 2-phenyl-6-(p-tolyl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3t-Me). 

The title compound was prepared according to the general procedure to afford a white solid (55 

mg, 43%), mp 131–134 °C. Rf = 0.49 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-

d) δ 7.72–7.67 (m, 2H), 7.36–7.30 (m, 3H), 7.19–7.13 (m, 4H), 4.92 (dd, J = 8.7, 6.0 Hz, 1H), 

3.73 (s, 3H), 3.60 (s, 3H), 2.54 (ddd, J = 13.2, 6.6, 3.8 Hz, 1H), 2.47 (ddd, J = 13.2, 11.1, 3.6 Hz, 

1H), 2.33 (s, 3H), 2.14 (dddd, J = 14.1, 6.3, 6.3, 3.6 Hz, 1H), 1.59–1.52 (m, 1H). 13C NMR (151 

MHz, Chloroform-d) δ 170.23, 170.22, 161.06, 141.02, 139.45, 136.38, 129.16, 127.84, 127.69, 

126.64, 61.85, 59.24, 52.94, 52.86, 29.29, 27.53, 21.06. IR, v (cm−1): 2951, 2922, 1730, 1434, 

1250. HRMS m/z 365.1626 (calcd. for C22H23NO4, 365.1627).  

 

 

 

Diethyl 2-phenyl-6-(p-tolyl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3t-Et). 

The title compound was prepared according to the general procedure to afford an inseparable 

mixture with the tetraester side-product. HRMS m/z 393.1952 (calcd. for C24H27NO4, 393.1940).  
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(2R,6R)-diethyl 2-phenyl-6-(p-tolyl)piperidine-3,3-dicarboxylate (3t-Et*). 

The title compound was prepared following a literature protocol,98 to afford a clear colorless oil. 

Rf = 0.78 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.48 (d, J = 6.7 Hz, 2H), 

7.32–7.20 (m, 5H), 7.14 (d, J = 7.5 Hz, 2H), 4.40 (s, 1H), 4.19–3.98 (m, 4H), 3.90 (dd, J = 10.8, 

4.1 Hz, 1H), 2.64–2.56 (m, 1H), 2.33 (s, 3H), 2.23 (ddd, J = 13.0, 13.0, 5.3 Hz, 2H), 1.94–1.84 

(m, 2H), 1.12 (t, J = 7.2 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, Chloroform-d) δ 

171.42, 169.70, 141.31, 140.84, 136.88, 129.05, 128.62, 127.29, 126.59, 66.35, 61.80, 61.03, 

60.44, 58.89, 33.92, 30.57, 21.07, 13.83, 13.77. IR, v (cm−1): 2980, 2936, 1723, 1446, 1253, 

1226. HRMS m/z 395.2104 (calcd. for C24H29NO4, 395.2097).  

 

 

Dimethyl 2-methyl-6-(p-tolyl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3u-Me). 

The title compound was prepared according to the general procedure to afford a white solid (47 

mg, 44%), mp 84–87 °C. Rf = 0.36 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) 

δ 7.14 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 8.0 Hz, 2H), 4.65 (app ddd, J = 8.2, 5.5, 2.1 Hz, 1H), 3.82 

(s, 3H), 3.82 (s, 3H), 2.43 (ddd, J = 13.3, 6.4, 3.3 Hz, 1H), 2.33–2.27 (m, 4H), 2.21 (d, J = 2.2 

Hz, 3H), 2.00 (dddd, J = 14.6, 5.9, 5.9, 3.1 Hz, 1H), 1.44 (dddd, J = 14.7, 12.0, 8.9, 3.3 Hz, 1H). 

13C NMR (151 MHz, Chloroform-d) δ 170.08, 169.71, 159.79, 140.89, 136.35, 129.11, 126.57, 

61.47, 59.43, 53.04, 53.01, 27.47, 27.32, 25.79, 21.05. IR, v (cm−1): 2923, 1721, 1649, 1439, 

1252. HRMS m/z 303.1475 (calcd. for C17H21NO4, 303.1471).  
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Diethyl 2-methyl-6-(p-tolyl)-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3u-Et). 

The title compound was prepared according to the general procedure to afford an off-white solid 

(49 mg, 37%), mp 60 °C. Rf = 0.37 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) 

δ 7.13 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.1 Hz, 2H), 4.63 (app ddd, J = 8.2, 5.5, 2.3 Hz, 1H), 

4.30–4.22 (m, 4H), 2.39 (ddd, J = 13.3, 6.5, 3.3 Hz, 1H), 2.30 (s, 3H), 2.27 (ddd, J = 13.3, 11.6, 

3.3 Hz, 1H), 2.21 (d, J = 2.1 Hz, 3H), 1.98 (dddd, J = 14.1, 6.5, 5.6, 3.3 Hz, 1H), 1.43 (dddd, J = 

13.9, 11.7, 8.9, 3.3 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.31 (t, J = 7.1 Hz, 3H). 13C NMR (151 

MHz, Chloroform-d) δ 169.57, 169.22, 160.24, 140.99, 136.31, 129.07, 126.60, 62.09, 61.97, 

61.49, 59.59, 27.40, 27.34, 25.83, 21.05, 14.00, 13.97. IR, v (cm−1): 2935, 1741, 1716, 1659, 

1241. HRMS m/z 331.1794 (calcd. for C19H25NO4, 331.1784).  

 

 

Dimethyl 6-(4-methoxyphenyl)-2-methyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3v-

Me). 

The title compound was prepared according to the general procedure to afford a clear yellow oil 

(27 mg, 21%). Rf = 0.18 (30% EtOAc/hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.12 (d, J 

= 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 4.63 (ddq, J = 9.0, 3.4, 2.0 Hz, 1H), 3.82 (s, 6H), 3.79 (s, 

3H), 2.42 (ddd, J = 13.4, 6.4, 3.4 Hz, 1H), 2.30 (ddd, J = 13.3, 11.5, 3.2 Hz, 1H), 2.21 (d, J = 2.0 

Hz, 3H), 1.99 (dddd, J = 14.8, 5.9, 5.9, 3.2 Hz, 1H), 1.43 (dddd, J = 14.5, 11.9, 8.9, 3.4 Hz, 1H). 
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13C NMR (101 MHz, Chloroform-d) δ 169.95, 169.67, 158.56, 127.77, 113.89, 61.09, 59.45, 

55.28, 53.11, 53.08, 29.69, 27.37, 27.32, 25.71. IR, v (cm−1): 3000, 2953, 2838, 1727, 1656, 

1610, 1511, 1435, 1242, 1173, 1033, 811. HRMS m/z 319.1418 (calcd. for C17H21NO5, 

319.1420). 

 

 

Diethyl 6-(4-methoxyphenyl)-2-methyl-5,6-dihydropyridine-3,3(4H)-dicarboxylate (3v-Et). 

The title compound was prepared according to the general procedure to afford a clear yellow oil 

(37 mg, 27%). Rf = 0.30 (30% EtOAc/hexanes). 1H NMR (600 MHz, Chloroform-d) δ 7.14–

7.10 (m, 2H), 6.88–6.85 (m, 2H), 4.64 (app ddq, J = 9.9, 4.4, 2.2 Hz, 1H), 4.32–4.25 (m, 4H), 

3.79 (s, 3H), 2.41 (ddd, J = 13.3, 6.5, 3.3 Hz, 1H), 2.29 (ddd, J = 13.3, 11.6, 3.3 Hz, 1H), 2.23 (d, 

J = 2.0 Hz, 3H), 1.99 (dddd, J = 14.0, 6.4, 5.5, 3.2 Hz, 1H), 1.44 (dddd, J = 14.5, 11.9, 8.9, 3.3 

Hz, 1H), 1.32 (app td, J = 7.1, 2.6 Hz, 6H). 13C NMR (151 MHz, Chloroform-d) δ 169.53, 

169.21, 158.50, 127.77, 113.84, 62.11, 61.99, 61.16, 59.58, 55.27, 27.44, 27.32, 25.81, 14.01, 

13.97. IR, v (cm−1): 2980, 2936, 2837, 1723, 1656, 1611, 1511, 1445, 1367, 1242, 1174, 1033. 

HRMS m/z 347.1730 (calcd. for C19H25NO5, 347.1733). 

 

 

Tetramethyl 4-phenylcyclohexane-1,1,3,3-tetracarboxylate (4a-Me). 
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The title compound was prepared according to the general procedure without the nitrile to afford 

a white solid. mp 99–101 °C. Rf = 0.34 (30% EtOAc/hexanes). 1H NMR (600 MHz, 

Chloroform-d) δ 7.30–7.23 (m, 3H), 7.21–7.17 (m, 1H), 3.77 (s, 3H), 3.73 (s, 3H), 3.62 (s, 3H), 

3.41 (s, 3H), 3.36 (dd, J = 8.8, 4.3 Hz, 1H), 2.99 (d, J = 15.1 Hz, 1H), 2.86 (d, J = 15.1 Hz, 1H), 

2.38 (ddd, J = 13.7, 7.6, 3.8 Hz, 1H), 2.33–2.26 (m, 1H), 2.06 (dddd, J = 14.0, 8.0, 4.2, 4.2 Hz, 

1H), 1.93 (ddd, J = 13.6, 9.2, 4.0 Hz, 1H). 13C NMR (151 MHz, Chloroform-d) δ 171.73, 

171.69, 171.56, 170.22, 141.50, 129.13, 127.84, 126.86, 57.12, 52.95, 52.85, 52.77, 52.46, 51.93, 

45.90, 34.47, 28.60, 25.87. HRMS m/z 392.1508 (calcd. for C20H24O8, 392.1471).  

 

 

Methyl 2,6-diphenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (5). 

The title compound was prepared as follows: LiI (0.32 mmol was added to a solution of the 

tetrahydropyridine 3h (0.15 mmol) in DMSO. The reaction was brought to reflux for 2 h and 

then cooled to rt. At the end of the reaction, as judged by NMR aliquots, the mixture was diluted 

in diethyl ether and hexanes, washed with brine, water, then brine again. The organic layer was 

dried with MgSO4 and then concentrated under reduced pressure to afford the vinylogous 

carbamate (7a) as a white solid, (85%, 49 mg). mp 149–152 °C. Rf = 0.43 (30% 

EtOAc/Hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.38–7.27 (m, 10H), 4.49 (ddd, J = 8.4, 

3.6, 2.5 Hz, 1H), 4.29 (s, 1H), 3.45 (s, 3H), 2.59–2.55 (m, 2H), 2.17–2.11 (m, 1H), 1.95 (dddd, J 

= 12.9, 8.0, 8.0, 6.6 Hz, 1H). 13C NMR (101 MHz, Chloroform-d) δ 168.64, 154.31, 143.08, 

139.70, 128.73, 128.37, 128.02, 127.80, 127.71, 126.35, 94.20, 56.14, 50.38, 30.01, 22.00. IR, v 
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(cm−1): 3311, 2923, 2852, 1732, 1628, 1510, 1433, 1356, 1174. HRMS m/z 293.1412 (calcd. for 

C19H19NO2, 293.1416).  

 

 

(2R,6R)-Diethyl 2,6-diphenylpiperidine-3,3-dicarboxylate (6). 

The title compound was prepared following the literature protocol as follows:98 NaBH4 (0.32 

mmol) was added to a solution of the tetrahydropyridine (3h) (0.15 mmol) in methanol (2 mL) at 

0 °C. The reaction was allowed to stir at rt for 1.5 h. At the end of the reaction as judged by TLC 

analysis, the solvent was evaporated and the residue was taken up in diethyl ether and saturated 

aqueous NaHCO3. The organic layer was separated and the aqueous layer was extracted with 

diethyl ether (3× 15 mL). The combined organic extracts were dried with MgSO4, filtered and 

concentrated under reduced pressure to afford the piperidine (6a) as a white solid (88%, 50 mg), 

mp 90–91 °C. Rf = 0.62 (30% EtOAc/Hexanes). 1H NMR (400 MHz, Chloroform-d) δ 7.50–

7.46 (m, 2H), 7.44–7.40 (m, 2H), 7.35–7.30 (m, 2H), 7.28–7.18 (m, 4H), 4.41 (s, 1H), 4.22–3.96 

(m, 4H), 3.94 (dd, J = 10.4, 4.4 Hz, 1H), 2.61 (ddd, J = 13.4, 3.4, 3.4 Hz, 1H), 2.24 (ddd, J = 

13.4, 11.5, 5.4 Hz, 1H), 2.17 (s, 1H), 1.98–1.84 (m, 2H), 1.12 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.1 

Hz, 3H). 13C NMR (151 MHz, Chloroform-d) δ 171.38, 169.69, 144.25, 140.81, 128.64, 128.40, 

127.33, 127.31, 126.68, 66.34, 62.11, 61.05, 60.46, 58.87, 33.90, 30.89, 30.60, 13.83, 13.77. IR, 

v (cm−1): 2980, 2936, 1723, 1446, 1253, 1226. HRMS m/z 381.1925 (calcd. for C23H27NO4, 

381.1940). 
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Appendix I. NMR Spectral Data for New Compounds for Chapter 2 
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