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Abstract 

The pre- and post-combustion carbon dioxide capture has drawn much attention in the past 

few decades owing to the increasing concentration of CO2 in the atmosphere. Among all 

the potential solid adsorbents for CO2 capture, metal-organic frameworks (MOFs) are a 

promising class of materials due to their large surface areas, high tunability and their high 

selectivity for gas adsorption applications. It has been widely demonstrated that the 

application of high external pressure in gigapascal level can substantially tune the structure, 

pore size and opening of porous material. Consequently, the structural, as well as gas 

adsorption properties of these materials, can be modified and optimized. In this thesis, we 

focused on the high-pressure studies of 6 types of MOFs with various topologies, structures 

and properties. In situ vibrational spectroscopies and are synchrotron X-ray diffraction 

used as preliminary methods for characterizing the structural and gas adsorption properties 

of MOFs under high pressure. In PbSDB and CdSDB, strongly contrasting guest-host 

interactions in terms of the pressure-regulated CO2 adsorption sites have been observed. 

SIFSIX-3-Zn features ultra-micro pore and one-dimensional channel was then studied. The 

framework fluorine and hydrogen atoms were found to play important roles in interacting 

with CO2 under high pressure, and ultimately formed a new CO2 binding site. ZIF-8 and 

UiO-66 are two noble MOFs that possess enormous cages and are anticipated to have great 

potential in accommodating CO2 under high pressure. However, it was severely limited by 

the phase change of the free CO2 at 0.6 GPa under room temperature. With the aid of 

temperature (i.e., 30-100 °C), the CO2 storage capacity in ZIF-8 and UiO-66 was 

significantly improved. ZnAtzOx(H2O) is constructed by zinc-3-amino-1,2,4-triazolate 

sheets that are linked into the third dimension by oxalate pillars, creating ultra-micro pores 

with different sizes along three directions. The high pressure studies on the framework 

itself, CO2 loaded, D2O loaded, as well as CO2-D2O co-loaded ZnAtzOx(H2O) have shown 

excellent structural stability of the framework and better CO2-framework affinity under 

high pressure even in the presence of water (i.e., D2O). Overall, it is hoped that the 

information our study provides is insightful for designing and modifying MOFs and porous 

material for CO2 adsorption, and provides guidance for optimizing the CO2 capture and 

storage conditions. 
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Summary for Lay Audience 

Metal-organic frameworks (MOFs), are a class of crystalline materials constructed by bridging 

metal-containing units with organic linkers to create open rigid frameworks with permanent 

porosity. Due to their high thermal stability, enormous surface area, finely tunable chemical 

functionality, MOFs are believed to have great potential in CO2 capture and storage. Compared 

to the conventional CO2 absorption methods, using MOFs as solid adsorbent has the 

advantages of being less corrosiveness and more energy efficient. It is well known that 

temperature, pressure and volume are three basic macroscopic parameters to describe a 

thermodynamic system. Among these parameters, pressure spans over 60 orders of magnitude 

in the universe, from 10-32 in intergalactic space to 1032 Pascal in the center of neutron star. 

Under such a broad range of pressure, materials could exhibit various structures as well as 

novel properties, especially under high pressure. When applying pressure to materials, the 

general effect is to reduce the volume and thus shorten then inter-/intra-molecular distances. 

As a result, lots of interesting phenomena and novel materials can be generated under high 

pressure, including phase transitions, chemical reaction, novel bondings and new properties. 

Previous studies have demonstrated a wide variety of pressure behavior of MOFs, including 

unusual elastic responses, phase transitions, chemical reactions and high-pressure guest 

insertion. In terms of CO2 storage, it has been reported that high pressure can efficiently tune 

the channel size and shape, pore volume and surface area in MOFs. Consequently, these 

pressure-induced modifications on the framework will affect the adsorption capacity, 

selectivity, and thus better adsorption performance. In this thesis, our studies on six MOFs 

featuring distinctive structures and topologies are performed under high pressure and other 

conditions (i.e. the presence of water, high temperature). All these MOFs have shown 

extraordinary stability and a well-enhanced CO2 adsorption performance under high pressure. 

The structural changes, enhanced guest-host interactions, as well as improved CO2 adsorption 

capacity are characterized by vibration spectroscopy, which allows the understanding of local 

structures, chemical bonding, and thus the nature of guest-host interactions. It is anticipated 

that our findings would inspire the design of new MOF structures to address practical 

applications in the future.   
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Chapter 1 

1 Introduction 

1.1 Metal-Organic Frameworks 

For a little over two decades, the study of the family of materials known as metal-organic 

frameworks (MOFs) has rapidly expanded. First having been termed in 2005,1 the phrase 

MOF now refers to tens of thousands of crystalline materials made up of metal ions or 

clusters, which are bridged together using organic linkers.2-3 One of the most commonly 

explored applications for MOFs is gas adsorption,2-6 due to the high surface areas and gas 

loading capacities that are attainable. This makes MOFs promising candidates for gas 

purification, separation, storage and catalysis applications. Other applications for MOFs 

include optics, drug delivery and chemical detection, etc.7 

The key distinguishing feature between MOFs and other porous solids, such as zeolites and 

activated carbon, is their degree of tunability and flexibility. Using different combinations 

of metal centers and linkers allows for MOFs to be altered to adsorb specific molecules 

with an ideal interaction strength. Isoreticular MOFs, possessing the same underlying 

topology, can be synthesized and functionalized using different organic linkers, as was first 

done with the MOF-5 family,8-9 two examples of MOF-5 and UiO-6610 are illustrated in 

Figure 1.1. The size and volume of the unit cell, and the porosity and density of the material 

are all key elements in gas adsorption that can be fine-tuned in MOF development through 

changes to the reactants and chemical conditions. Similarly, by replacing the metal ions 

comprising the nodes of MOF structures, an isostructural series of MOFs can have their 

adsorption properties tuned even further. This strategy was employed to great effect in the 

HKUST-111-15 and M-MOF-7416-17 series of MOFs. Many MOFs are also renowned for 

their high surface areas, with materials such as NU-11018 and DUT-6019 having Brunauer-

Emmett-Teller surface areas of 7000 m2·g-1 or greater. 
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Figure 1.1 Isoreticular expansion of (a) MOF-5,9 and (b) UiO-66.10 Each panel shows 

the ligands of the frameworks, and a scaled comparison of the smallest, medium, and 

largest structures of the MOF skeleton. 

Though the exact quantity of known MOF structures is a question without a perfect answer, 

it numbers in at least the tens of thousands,20 though only a handful are currently available 

commercially. HKUST-1 (named for the Hong Kong University of Science and 

Technology),21 MIL-53 (named as the Matériaux de l′Institut Lavoisier)22 and ZIF-8 (a 

zeolitic imidazolate framework)23 are among the first MOFs to become widely available, 

all of which are known for their adsorption of hydrogen and other gases. In addition to 

commercially available MOFs, there are currently an array of techniques of varying 

complexity which can be used to synthesize such structures, including solvothermal, 
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microwave-assisted, electrochemical and mechanochemical.24-27 There is ongoing research 

in MOF design and in understanding the factors which control gas adsorption performance, 

which is expected to lead to an increase in practical and commercially available MOFs in 

the coming years. 

Much of the recent research into MOFs has focused on exploring their viability as 

adsorbents for various greenhouse gases, primarily carbon dioxide.4, 28 This could lead to 

the usage of MOFs as a part of carbon capture and storage (CCS) technologies, and assist 

in the stabilization of atmospheric CO2 concentrations.29-31 Over half of anthropogenic CO2 

is contained within flue gases emitted from immobile point sources,30, 32 which includes 

sources involved in energy production, heating and other industrial activities.  Post-

combustion CO2 capture is the most widely explored CCS strategy, and would involve the 

extraction of CO2 gas directly from such flue gas streams. Upon isolation of the CO2 or 

other greenhouse gases from the stream, these gases could then be transported and 

sequestered into a long-term storage location.33-34 

The primary advantage of a CCS strategy is the ability to implement the technology on 

existing combustion sources without the need for costly new facilities or extensive 

modifications. The challenges lie in being able to isolate CO2 or other gases from flue gas 

at low concentrations, minimizing the energy usage of the separation and regeneration 

process, and accounting for the presence of impurities such as SO2, NOx or water which 

can interfere with the materials used.28 The design of advanced materials is therefore 

essential to implementing CCS on a wide scale. 

CCS technology has been approached from multiple angles: cryogenic distillation, 

membrane purification, absorption using liquids, and adsorption using solids.33 The most 

success thus far has been achieved using chemisorbent alkanolamine aqueous solutions, 

such as monoethanol amine, which act as the current benchmark for CCS materials.35-36 

However, drawbacks relating to equipment corrosion, high energy consumption and 

solvent loss37-39 have pushed research into other materials, including traditional sorbents 

such as zeolites and activated carbons, as well as the previously discussed MOFs. 
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Given the high porosity and surface area of MOFs, they represent less hazardous and more 

energy efficient solid adsorbent materials for post-combustion CCS. The high tunability of 

MOFs means that their properties can be easily adjusted to promote energy efficient CO2 

adsorption at flue gas concentrations. This would eventually lead to the design of MOFs 

that are robust enough to withstand the continued use in CCS. For example, Mg-MOF-7440 

and HKUST-141 are well-studied MOFs that have already demonstrated high CO2 uptake 

capacities and strong host-guest interactions with CO2. Such strong interactions between 

CO2 and these frameworks are due to the presence of open metal sites within the structure. 

These sites produce a strong adsorptive interaction selectively promoting the adsorption of 

polar molecules such as CO2. Besides open metal sites, other aspects of a given MOF, such 

as pore dimensions and the functional groups, also have strong effects on the adsorption 

behavior of the material. Table 1.1 highlights the physical proprieties, CO2 adsorption sites 

and performance of some popular MOFs. 

The ideal solid sorbent material would possess high CO2 uptake, strong selectivity against 

N2 and other gases, low regeneration energy requirements and high mechanical, chemical 

and thermal stability. The wide variety of MOF structures in existence necessitates the 

detailed study of individual frameworks and their performance in these areas. This will 

promote the rational understanding of these frameworks and their adsorption behaviors, 

and lead to more efficient and more well-designed MOFs in the future.
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Table 1.1 A summary of physical properties and CO2 adsorption properties of selected metal-organic frameworks 

 

Compound 
 

Metal 
 

Linkers 
Coordination 

types 
Space 

group 
Adsorption 

sites 

Pore 

geometry 

or sizes 

BET 

(m2/g) 

CO2 

capacity 

(wt%) 

Press

ure 

(bar) 

Temp 

(K) 

 

Ref 

NU-100 Cu LH6
a Cu-O Fm3̅m Open metal 

site 
13 Å, 15 Å, 

27 Åh 
6143 69.8 40 298 42 

MOF-177 Zn BTBb  Zn-O P63 Phenyl rings 10.6-12.7 

Å 
5400 3.6 1 298 40 

Mg-MOF-74 Mg DOBDCc Mg-O R3̅ 
Open metal 

site 
11 Åh 1174 27.5 1 298 43 

Co-MOF-74 Co DOBDC Co-O R3̅ 
Open metal 

site 
11 Åh 957 24.9 1 298 43 

Ni-MOF-74 Ni DOBDC Ni-O R3̅ 
Open metal 

site 
11 Åh 936 23.9 1 298 43 

Zn-MOF-74 Zn DOBDC Zn-O R3̅ 
Open metal 

site 
11 Åh 774 19.8 1 296 43 

 

MIL-53(Al) 

 

 

Al 
 

BDCd 

 

 

Al-O 

 

 

C2/c (lt), 

Imcm (ht) 

 

Bridging -

OH 

7.6×19.5 Å 

(lt) 

12.8×16.7 

Å (ht) 

 

1300 
 

10.6 
 

1 
 

298 
 

44 

NH2-MIL-

53(Al) 

Al NH2-BDC Al-O C2/c (lt), 

Imcm (ht) 

Amines 7.5 Å(lt)  

12 Å(ht) 

960 12 1 298 44 

MIL-53(Cr) Cr BDC 

 

Cr-O C2/c (lt), 

Imcm (ht) 

Bridging-OH 7.85 Å(lt) 

13.04 Å(ht) 

1500 8.5 1 304 45 

MIL-101(Cr) Cr BDC Cr-O Fd3̅m 
Open metal 

site 
29-34 Å 2674 4.2 1 319 46 
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Table 1.1 Continued 

 

Compound 
 

Metal 
 

Linkers 
Coordination 

types 
Space 

group 
Adsorption 

sites 

Pore 

geometry 

or sizes 

BET 

(m2/g) 

CO2 

capacity 

(wt%) 

Press

ure 

(bar) 

Temp 

(K) 

 

Ref 

MIL-47 V BDC 

 

V-O 

 

Pnam Framework 

O or H 
10.5 × 11.0 

Å 
600 8.1 1 298 43 

ZIF-8 Zn 2mIMe Zn-N I4̅3m Imidazole 

rings 
11.6 Åh 1700 4.3 1 298 43 

UiO-66 Zr BDC Zr-O Fm3̅m Bridging-OH 8 Å, 11 Åh 1340 24.3 18 303 47 

SIFSIX-3-Zn Zn SiF6
2-, 

pyrazine 
Zn-F, Zn-N P4/mmm Si-F 3.84 Å 250 11.5 1 298 48 

HKUST-1 Cu BTCf Cu-O Fm3̅m 
Open metal 

site 
10 Å 14 Åh 1400 19.8 1 293 49 

ZnAtzOx(H2O) Zn 3-ATg, 

oxalate 
Zn-O, Zn-N P21/c Amines 3.5 × 4.0 Å 308 20.7 1.1 293 50 

a LH6 = 1,3,5-tris[(1,3-carboxylic acid-5-(4-(ethynyl)phenyl))ethynyl]-Benzene 

b BTB = benzene-1,3,5-tribenzoate 

c DOBDC = 2,5-dioxido-1,4-benzenedicarboxylate 

d BDC = 1,4-benzenedicarboxylate 

e 2mIM = 2-methylimidazole 

f BTC = 1,3,5-benzenetricarboxylate 

g 3-AT = 3-amino-1,2,4-triazolate 

h cage diameter
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1.2 High-pressure Sciences 

1.2.1 High-pressure phenomena 

It is well-established that the equilibrium of a thermodynamic system is controlled by 

pressure, temperature and volume. Of all these variables, pressure spans around 50 orders 

of magnitude, with the lowest measurable pressure being 10-26 GPa in the intergalactic 

voids and the highest calculatable pressure being 1025 GPa in the center of a neutron star.51-

52 Such a vast scale of pressure opens up an unexplored expanse bearing huge potential for 

discovery. When pressure is applied to materials, the immediate response is to shorten the 

inter-molecular and intra-molecular distances, which further induces a contraction of the 

total volume and an increase in internal energy,53 as described by Equation 1.1.54 

𝑃 =  −
𝜕𝐸

𝜕𝑉
                                                       Equation 1.1 

As a result, due to the tendency of a system to recover its free energy minimum, a series of 

unusual behaviors and novel phenomena of the materials become accessible, including 

phase transformations, ionization, condensation, polymerization, amorphization, 

dissociation, and in the most extreme cases, atomization and metallization,55-56 as 

illustrated in Figure 1.2, representative examples of each high-pressure phenomena are 

highlighted.55 
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Figure 1.2 Examples of various high-pressure phenomena.55 

1.2.2 Chemistry at high pressure 

It is well-known that most chemical reactions involve the participation of electronically 

excited states.57 With the assist of high pressure, the gap between the ground and excited 

states could be significantly reduced and thus facilitates these reactions to take place.58-59 

Assuming other factors remain constant, the relation between equilibrium constant K of a 

chemical reaction and pressure is of a positive correlation, as described by Equation 1.2,57 

where ΔV0 is the difference of the molar volumes in the standard state between the products 

and the reactants. 

(
𝜕𝑅𝑇𝑙𝑛𝐾

𝜕𝑃
)

𝑇
=  −∆𝑉0                                         Equation 1.2 

Moreover, pressure can also work as a physical means to activate chemical reactions in a 

way that could not otherwise be achievable through conventional chemical pathways.58, 60-

62 This is, for instance, the case for the laboratory-grown diamonds, where high pressure 
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and high temperature are required (i.e. 5 GPa and 1500 °C) to transform the layer structured 

graphite to the isotropic 3D structured diamond. Furthermore, high-pressure has been 

demonstrated as a promising tool for tuning the pore shape and size, cage opening, internal 

surface area, as well as local geometry in porous materials,19, 63-104 which could further lead 

to considerable improvements in structural and adsorptive performances for various 

applications, such as caffeine encapsulation,105 guest inclusion,106-114 pressure sensor,64-65 

CO2
115-118 or gas storage,119 and energy absorber.70, 120 The details will be discussed in the 

following sessions. 

1.2.3 High pressure studies on MOFs 

As one of the prerequisites for utilizing MOFs for CO2 capture and adsorption, the 

frameworks must be chemically and mechanically stable to retain its framework structure 

and porosity, in order to meet the application standards. When applying external pressure 

to MOFs, even marginal modifications on the structural features could potentially result in 

significant impacts on their performance for CO2 adsorption. Compared to intensive studies 

on structural and adsorption performance of MOFs under low temperatures or near ambient 

pressure,5 there are still so many aspects in MOFs under high pressure in the gigapascal 

level yet to explore. Therefore, it is of particular interest to fully unveil the pressure 

responses and adsorption properties of MOFs, as well as the connection between structure 

and performance. Since high pressure studies on MOFs started to emerge in 2009, 

researches have examined the behavior of a number of MOFs under pressure. These high-

pressure phenomena can be roughly divided into the following four categories. 

1.2.3.1 Phase transitions  

In the past decade, researchers have found that some MOFs exhibit phase transformation 

upon applying high external pressure. The most common phase transitions observed under 

high pressures is the crystalline to amorphous transformation. Researches have shown that 

the conditions for amorphization in different MOFs may vary, depending on framework 

flexibility,22, 68, 78, 84, 115-116, 120 pressurization methods,71, 111 presence of the guest molecules 

and so forth.74, 111 It has been widely accepted that the pressure transmitting medium (PTM) 

plays an important role in regulating the phase transitions, where the same MOF could have 
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completely opposite responses to external pressures with and without the presence of PTM. 

For example, by loading different PTMs to α-Mg3-(HCOO)6, the framework has shown 

strongly contrasting structural behaviors and stabilities in each compression-

decompression cycle.69 The activated α-Mg3-(HCOO)6 is found to undergo an irreversible 

crystalline-to-crystalline phase transition above 2 GPa, whereas the DMF and benzene 

loaded frameworks show no obvious signs of amorphization, with pressure-induced 

modifications on these two systems being completely reversible.69 This similar PTM-

regulated phase transition is also observed in other MOFs as well, such as ZIF-8,111 MIL-

47(V),78 Co2(4,4'-bipyridine)3(NO3)4,
76 Sc2BDC3

112 (as shown in Figure 1.3) and, etc.  

 

Figure 1.3 (a) Pressure-regulated methanol insertion in Sc2BDC3. (b) Unit cell volume 

of Sc2BDC3 in methanol (blue squares) and Fluorinert (red squares) as a function of 

pressure. 112 

1.2.3.2  Unusual pressure responses 

Besides the phase transformations, MOFs also exhibit a wide range of mechanical 

behaviors in response to external pressures.19, 85, 94, 99-100, 104 In the past few years, intensive 

researches and efforts have been put into developing and customizing characterization 

systems that allow the measurements of mechanical properties in MOFs, such as bulk 

modulus,66, 120 Young’s moduli and stiffness,70 crystal morphology as a function of 

pressure,66, 70, 120 through high-pressure crystallography,63, 65, 87, 111, 121-123 

nanoindentation,63, 71, 124 and in situ SEM nano-compression,66, 70, 120 respectively. Recent 

studies on mechanical properties of MOFs have shown that some frameworks with special 

topologies are substantially more flexible than others because the combination of flexibility 
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and rigidity allows the component to rotate or reorient more easily at the flexible sites upon 

compression.125 

One of the most intriguing mechanical responses of MOFs is negative linear 

compressibility (NLC), in which the material expands along one direction when 

compressed uniformly. It is considered “unusual” because our intuition is that materials 

should shrink evenly throughout the entire structure when hydrostatic pressure is 

applied.126 The NLC is favored by frameworks with the special “wine rack” or honeycomb-

like topology, including Ag3[Co(CN)]6 (silver(I) hexacyanocobaltate(III)),81 

[NH4][M(HCOO)3] (M = Mn2+, Fe2+, Ni2+),127-129 Zn[Au(CN)2]2,
80 and MIL-53,22, 68, 84, 100 

etc. Such peculiar structural arrangements allow the frameworks to expand along a certain 

direction while contract along the other two in response to added pressure, as demonstrated 

in Figure 1.4.  

 

Figure 1.4 (a) Compression mechanism in Ag3[Co(CN)6],81 the framework expands 

along c axis in response to an increase in pressure. (b) Evolution of unit cell 

parameters during hydrostatic compression of zinc dicyanoaurate80: a (red), c (blue), 

single-crystal X-ray diffraction (filled markers), powder X-ray diffraction (open 

markers), ambient phase (circles) and high-pressure phase (squares). 
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Two prototype examples of the NLC in MOFs are MIL-53 family and zinc alkyl gate (ZAG) 

family.64, 68 In these MOFs, MIL-53(Al) and its derivative NH2-MIL-53(Al) exhibit an 

expansion along b axis accompanied by a shrinkage in both a axis and the unit cell volume, 

up to 2 GPa and 3 GPa respectively.100 Likewise, for the isoreticular ZAG-4 and ZAG-6, 

the frameworks expand in b direction while contracting along a and c axes are observed in 

the pressure regions of 0-3 GPa and 0-6.9 GPa.64-65 Although these observations are similar, 

the mechanisms of their negative linear compressibility are somehow much different. 

Serra-Crespo et al. vividly described the root of the NLC in the MIL-53 family as a 

combination of the M(OH) chains acting as hinges while the rigid BDC ligands (i.e. 1,4-

benzenedicarboxylate) acting as struts.68 The relation between variables in the a and b 

lattice parameters is imposed by the stiffness of these BDC linkers in this wine-rack 

framework: when a decreases, b increases.68 Whereas in ZAG-4 and ZAG-6, the coiling of 

the alkyl chains at high pressures is responsible for the expansion and contraction along 

different directions, as shown in Figure 1.5.64 The NLC phenomenon in MOFs might 

potentially lead to a variety of applications, such as the development of artificial muscles, 

and amplification of piezoelectric response for sensors.64, 125-126 
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Figure 1.5 The structure of ZAG-4 (left) and ZAG-6 (center) at ambient conditions 

and 6.9 GPa (right), viewed along the c axis, showing the wine rack framework. The 

bottom panel shows the uncoiled and coiled chains at ambient conditions and higher 

pressure, respectively.64 

1.2.3.3  Chemical reactions 

Besides the pressure-induced phase transitions, recent researches have shown that chemical 

reactions could be achieved in some MOFs when high pressure is applied to the framework, 

resulting in bond formations,63, 114, 123 breakage66, 70, 120 and rearrangement.63, 122 The 

pressure-induced chemical reactions are very rarely found in MOFs and yet much desirable 

in the field of material science, with only handful of examples reported up to now. Take 

ZAG-4 and ZAG-6 as the first example, Ortiz et al. illustrated a pressure-induced proton 

jump between the phosphonate group on the ligand and the included water molecule at 

about 3 GPa, leading to negative linear compressibility of the frameworks in the pressure 

range of 2-3 GPa as we discussed above.64-65 
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The second example is erbium-formate MOF ([tmenH2][Er(HCOO)4]2),
63 in which a 

reversible bond rearrangement is observed upon application of high pressure. Upon 

compression to 0.6 GPa, the framework exhibits a first-order phase transition, where the 

chelating formate groups bound to the Er3+ ions convert to bridging µ2-ligands connecting 

neighboring Er3+ ions before and after the phase transition, gives rise to a transformation 

from a 6-connecting net to an 8-connecting net, as illustrated in Figure 1.6a.63 

 

Figure 1.6 (a) Pressure-induced bond rearrangement in [tmenH2][Er(HCOO)4]2 at 

0.6 GPa. Black struts represent Er-(HCOO)-Er links that lie approximately within 

the b c plane; red struts show the new linkages that are formed as the framework 

structure converts from phase I into II. (b) Packing of Co-BTCA as a function of 

pressure using DMF (upper panel) and methanol (lower panel) as PTMs.63, 123 

The third example is a reversible nucleophilic addition in Co-BTCA (BTCA = 

benzotriazolide-5-carboxylato), in which high pressure promotes the coordination of guest 

methanol molecules to the unsaturated Co centers, and further forms the Co-OMeOH bonds, 

as shown in Figure 1.6b.123 This is caused by the sharply reduced Co···OMeOH distance 

under high pressure. The first and second nucleophilic addition reactions are observed at 

0.3 GPa and 2.2 GPa respectively, after which the coordination number of the initially 

unsaturated Co increases from 5 to 6. Consequently, such addition reaction further leads to 

a (super)filling of the framework channels, in which the unit cell volume smoothly 
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increases during compression, reaches a maximum expansion of +3% at 0.9 GPa. The 

similar effects are also observed when substituting MeOH with DMF.123 

The fourth one is a bond breakage in UiO-66, where the collapse of the pores in UiO-66 

forced the breakage of Zr-O bonds between the bridging terephthalates to the Zr6O4(OH)4 

clusters, as probed by IR spectroscopy and confirmed by extended X-ray absorption fine 

structure (EXAFS).70 The mechanical energy adsorbed upon this bond breakage is 

measured to be about 70 times greater than that of MIL-53(M), in which the MIL-53 

framework undergoes a reversible elastic deformation. These observations have shown that 

UiO-66 possesses great potential for adsorption and dissipation of mechanical shock.70, 120 

All four cases of very rare pressure-induced chemical reactions demonstrate how deep the 

field of pressure response of MOFs could go, and how these unanticipated phenomena may 

lead to a variety of applications in different areas: ZAGs and erbium-formate could be used 

as pressure sensors or switches;64-65 UiO-66 may have the potential application as 

mechanical shock absorbent;70 Co-BTCA can be exploited even for catalytic purposes.123 
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Table 1.2 A summary of selected high-pressure studies on metal-organic frameworks 

Materials Characterization 

Methodsa 

Pressure 

rangeb 
Structural changes at HP Ref 

 

MIL-53(Al) 

 

Synchrotron PXRD 

 

6 GPa 
Phase transition: from 0 to 3 GPa  

NLC: at above 6 GPa 

 

68 

MIL-53(Cr) in situ PXRD 400 MPa Phase transition at 55 MPa (lp to np) 84 

 

NH2-MIL-53(Al) 

 

Synchrotron PXRD 

 

11 GPa 
Phase transition: 0 up to 2 GPa (lp to np); 

Amorphization: 2 to 11 GPa. 

 

68 

CB-MOF 

(Co2(4,4′-bpy)3(NO3)4·xH2O) 

In-situ Raman, ADXRD 11 GPa Isostructural phase transition: 6 GPa 76 

MIL-47(V) PXRD, Raman 
340.1 

MPa 
Pore closed at 137 MPa 78 

[TPrA][Cd(dca)3] PXRD, EPRc, Raman, IR 6 GPa Phase transition: 0.3 to 0.4 GPa  86 

DMAMnF PXRD, IR and Raman 20 GPa 
Phase transition at 3.4 GPa-6 GPa;  

Amorphization: beyond 7 GPa 
89 

AceMn 

([CH3C(NH2)2][Mn(HCOO)3]) 

 

Raman  

 

10.3 GPa 
Phase transitions: 0.7 and 1.4 GPa; 

above 5.3 GPa 

95 

ZIF-4 Synchrotron PXRD 6.5 GPa Amorphization: 5.01-6.5 GPa;  

Pore closure: 0.075 GPa 

94 

MOF-5 
ab initio, Bader charge 

analysis 
4 GPa Amorphization: 3.2 GPa 92 
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Table 1.2 Continued 

Materials Characterization 

Methodsa 

Pressure 

rangeb 

Structural changes at HP Ref 

ZAG-4, ZAG-6 SC-XRD, Quantum 

chemical calculations 

7.32, 10 GPa NLC: 2.81 and 3 GPa 64 

Ag3[Co(CN)]6 High-pressure NPD 7.65 GPa Phase transition: 0.19 GPa 

Linear expansion: up to 7.65 GPa 

81 

Zn[Au(CN)2]2 SC-XRD, Raman  14.2 GPa NLC in pressure range of 0-2.2 GPa 80 

 

ZIF-8 

 

Synchrotron PXRD 

 

1.2 GPa 

Activated framework: Amorphization 

started at 0.34 GPa 

Guest loaded: gate-opening at various 

pressures (discuss later) 

 
 

74 

UiO-66 IR, EXAFS, XANES 1.9 GPa Zr-O(COO) bond breakage at 0.8 GPa 70 

CdSDB, PbSDB Synchrotron PXRD, IR 

and Raman 

10, 13 GPa Amorphization:  3.44 GPa (CdSDB) 

2.97 GPa (PbSDB); reversible up to 13 

GPa 

116 

MIL-68(In) GCMCd, IR and Raman 9.3 GPa Irreversible for the activated framework; 

reversible for DMF loaded framework 

115 

 

α-Mg3(HCOO)6 

 

IR and Raman 

 

12.55 GPa 

Activated framework: phase transition 

at above 2 GPa 

DMF/benzene loaded: no structural 

transition 

 

69 

NiAsp-Ie 

([Ni(L–Asp)(H2O)2]·H2O-I) 

in situ PXRD 6.07 GPa Phase transition between 0.58 GPa and 

1.26 GPa 

72 
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Table 1.2 Continued 

Materials Characterization 

Methodsa 

Pressure 

rangeb 
Structural changes at HP Ref 

Co2Bdc2Dabco·4DMF·H2O Synchrotron SCXRD, 

Synchrotron PXRD 

3.5 GPa Single crystals change color from blue 

to purple at 0.7 GPa 

96 

EtAMn 

(CH3CH2NH3
+, EtA+) 

IR and Raman 7.1 GPa Two phase transitions at 3.7-4.0 GPa, 

and 5.6-6.0 GPa 

97 

MHyMn 

([CH3NH2NH2][Mn(HCOO)3]) 

SC XRD, pyroelectric 

measurements, Raman and 

IR 

8.2 GPa Phase transition between 4.8 and 5.5 GPa 98 

Lithium ʟ-tartrate Synchrotron PXRD 5.5 GPa NLC at around 2.0 GPa 99 

ImMg 

([HIm][Mg(HCOO)3], HIm+ = 

imidazolium cation) 

Single Crystal XRD, 

pyroelectric measurements, 

Raman and IR 

11.4 GPa Two phase transitions at about 3 and 7 

GPa, structural is well preserved up to 

11.4 GPa 

98 

 

a All studies were carried out at room temperature unless stated otherwise. 

b The pressure ranges from ambient pressure to the given value. 

c electron paramagnetic resonance 

d Grand canonical Monte Carlo



19 
 

 

Table 1.2 summarized the recent researches on the structural behaviors of MOFs at high 

pressures. Overall, the above three pressure effects of MOFs discussed in 1.2.3.1-1.2.3.3 

conclude the three outcomes that MOFs could have in response to compression: (1) When 

applying high external pressure to flexible or soft porous frameworks, the local structure 

of the frameworks are likely to maintain, accompanied by the decrease of the internal free 

volume and densification of the material, for instance, ZIF-4 and ZIF-8;67, 74, 83 (2) in less 

compressible frameworks, pressure may induce more substantial structural changes that 

give rise to phase transformations, as in MIL-53;22, 68, 84, 100 (3) in more rigid frameworks, 

application of external pressure may cause bond breakage at the rigid site in the structure,66, 

70 as in UiO-66.70 The pressure responses of MOFs that fall into the first two categories 

may or may not be reversible upon releasing the pressure, however, the bond breakage in 

the third case is generally expected to be irreversible. 

1.2.3.4  High pressure guest storage  

In the high pressure field, the guest adsorption and storage under high pressure is one of 

the research areas that has drawn much attention in the past decade.12, 73, 82, 106, 108, 113-117, 119, 

121, 123, 130-131 In these studies, MOFs or porous molecular frameworks are usually loaded 

with small solvent molecules, such as DMF,123 methanol,113 ethanol,111, 113 H2O,113 

allowing the diffusion of these guest molecules into the pores of the frameworks. The 

correlations between the flexibility of the frameworks and the adsorption of guests within 

their pores have been investigated and observed through various characterization methods 

including powder116 and single crystal X-ray diffraction,106, 111, 114, 121, 123 vibrational 

spectroscopy,115-117 BET,66, 70 GCMC,94, 121 and other calculation and simulation 

techniques.92, 119 In many cases, the high-pressure guest insertion goes hand in hand with 

phase transitions of the framework, where the beginning or the completion of the guest 

insertion often triggers substantial structural changes and potentially forms a new 

crystalline phase.108, 111-114, 123 As illustrated in Table 1.3, there are a plenty of guest-

responsive MOFs reported so far, including a few very fascinating phenomena: gating 

effects in layered or interdigitated frameworks50, 73, 94, 111; breathing effects in wine-rack 

topology MOFs such as the MIL-5368 and ZAG families64; continuous unit cell expansion 

upon adsorbing solvent molecules in Co-BTCA123 and MIL-88132, so forth. 



20 
 

 

The most representative framework is ZIF-8, which incorporates most of the major high-

pressure effects and shows surprising potential in industrial applications as a physical 

adsorbent for CO2. As we mentioned in the previous section, the initial high-pressure study 

on ZIF-8 showed that without guest molecules, the framework undergoes an irreversible 

amorphization upon a minor compression to 0.34 GPa.67, 74 Later on, Hu et al. confirmed 

that the chemical connectivity of the framework remains intact after this amorphization,67 

although the pore volume and surface area have been compromised.66 Continuous study 

demonstrated that pressure can force the hydrostatic pressure medium to enter the cage of 

ZIF-8, resulting in an increasing volume of both the cage and the unit cell. More guest 

molecules could be inserted into the cage upon further compression until the single-crystal-

to-single-crystal phase transition is achieved at 1.47 GPa.111 In the high-pressure phase of 

ZIF-8, the framework exhibits larger free pore volume and BET surface area compared to 

that of the ambient pressure phase.111 Later that year, this group of researchers unveiled the 

mechanism behind such improvement of the accessible pore volume, as shown in Figure 

1.7a,111 the formation of this high-pressure phase is driven by the rotation of imidazole 

rings on the 6-member ring (6MR) and 4-member ring (4MR) apertures on the framework, 

which frees up extra space in the cages.111 Such phenomenon is also known as gate opening 

effect, and has been further confirmed by many studies using various methods, including 

in situ inelastic neutron scattering (INS),79 single crystal X-ray diffraction (SCXRD),82, 111, 

121 grand canonical Monte Carlo simulations (GCMC),121 as well as computational 

modelling.79, 82, 119 Such gating effect is further proved to be attainable using other mediums 

at various pressures, depending on the size of the guest molecules,113 as illustrated in Figure 

1.7b. Till now, ZIF-8 has been examined on a wide range of small guest molecules, mostly 

gases (i.e. N2, CO2, CH4, H2O), to investigate its performance for gas storage and 

separation under a variety of conditions. For example, Hu et al. have demonstrated that 

fluid state CO2 can be inserted into the cages of ZIF-8 at the pressure as low as 0.47 GPa, 

enhanced CO2-framework interactions and therefore better adsorption properties are 

achieved upon elevating the pressure. Similar gating effects that involve the reorientation 

and rotation of the ligands also widely exist in other MOFs, such as ZnAtzOx(H2O), ZIF-

65,94, 121 ZIF-90,121 Co(BDP)·2DEF,133 [Cu(dhbc)2(4,4′-bipy)]134 and so on. These effects 
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can be stimulated by various factors, whereas the most commonly observed ones are 

temperature and pressure.  

 

 

Figure 1.7 (a) Pressure-induced gate opening effect in ZIF-8, leading to increased N2 

uptake. (b) Pressure-dependent changes of the normalized unit cell volume of ZIF-8 

in water (W), methanol (M), ethanol (E), and silicone oil PTM (O), highlighting the 

volume increase at 0.6, 1.4, and 2.3 GPa in water, methanol and ethanol, 

respectively.82, 113 

All these studies above have shown a promising future of utilizing high pressure as an 

efficient approach to modify the pore volume, size, shape, increase the accessible surface 

area of MOFs, therefore better adsorption properties for the target guest molecules, such 

as CH4, CO2, C2H4, H2O, O2, etc. It is hoped that these pressure-tuned structures could 

bring new insight into developing new frameworks in the future, which could potentially 

be beneficial in the field of the pre- and post-combustion CO2 captures.34, 38, 41  
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Table 1.3 Summary of selected high-pressure studies on guest-loaded metal-organic frameworks 

 

Materials 
Guest 

molecules 

Pressure 

range 

(GPa)a 

Characterization 

Methodsb 

 

Pressure effects at HP 
Ref 

 

Co-BTCA 

 

DMF 

 

3.6 

 

HP SC-XRD, 

PXRD, HP PXRD 

Pressure-induced nonoxidative 

nucleophilic addition at 2.2 GPa 

123 

 

MeOH 

 

2.2 
Pressure-induced nonoxidative 

nucleophilic addition at 0.4 GPa 

123 

 

MIL-47(V) 

 

H2O 

 

3 
 

Synchrotron PXRD 

Reversible replacement of the TPA by 

H2O at 1 GPa 

114 

 

MeOH 

 

3 
Irreversible replacement of the TPA by 

MeOH at 0.3 GPa 

114 

 

 

Sc2BDC3 

 

MeOH 

 

2.3 
HP SC-XRD, 

GCMC 

Total no. of MeOH molecules per unit cell 

increased to a maximum of 42 at 1.6 GPa  

112 

 

Hydrocarbon 

molecules 

 

 

0.8 

Gas adsorption 

isotherms, 

HP SC-XRD,   
DFT  

‘Oversized’ C5-C8 alkane molecules can 

be squeezed into small-pore Sc2BDC3 at 

0.8 GPa,  

108 

 

Cu-BTC 

MeOH, 

EtOH and 

water 

mixture 

(MEW) 

 

5 

 

Synchrotron HP  

SC-XRD 

Unit cell volume and Cu-O bond contract 

at 0-3.9 GPa;  

high pressure squeezes the solvent out at 

0.39-5.0 GPa 

 

109 

[NH4][Fe(HCOO)3] 

(AFeF) 

Ne 10 HP NPDc, Synchrotron 

HP SC-XRD 

Closed pore of AFeF becomes accessible 

for neon at 1.48 GPa; NexAFeF maintains 

structural stability up to 6.8 GPa 

128 
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Table 1.3 Continued 

 

Materials 
Guest 

molecules 

Pressure 

range 

(GPa)a 

Characterization 

Methodsb 

 

Pressure effects at HP 
Ref 

 

 

 

 

 

 

ZIF-8 

 

 

 

 

 

MeOH and 

EtOH 

mixture 

1.47 Synchrotron SC-XRD 

Synchrotron PXRD 

Gate opening effect observed at 1.47 GPa 111 

MeOH 4.0 Gate opening effect 1.4 GPa 113 

 

EtOH 

 

3.6 

 

Synchrotron PXRD 

Synchrotron PXRD 

Intermediate phase at 0.3 GPa;  

1st HP phase at 0.6-1.5 GPa;  

2nd HP phase at 2.3-3.6 GPa 

113 

H2O 2.2 Volume contraction up to 2.2 GPa 113 

CH4 1.4 HP SC-XRD Gate opening effect at 0.7 GPa 119 

N2 3.25 HP SC-XRD Gate opening effect at 1.33 GPa 119 

CO2 2.65 HP IR Pressure-enhanced CO2 storage 117 

MIL-68(In) CO2 10 GCMC, HP-IR, Raman 
Hexagonal pores adsorb CO2 at 0.35 GPa; 

triangular pores adsorb CO2 at 1.5 GPa 
115 

CdSDB CO2 4.66 Synchrotron PXRD,  

HP IR and Raman  

Pressure-enhanced CO2 storage 116 

PbSDB CO2 4.28 New CO2 site: 0.29 GPa 116 

a The pressure ranges from ambient pressure to the given value. 

b All studies were done at room temperature unless stated otherwise. 

c Neutron powder diffraction  
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1.3 Outline and motivations 

1.3.1 The objectives of this thesis 

Using solid porous materials for CO2 captures features many advantages over the currently 

used aqueous amine alternatives, including energy consumption and equipment damage. 

As a class of porous materials with tunable structures and functionalities, MOFs are well-

suited as potential CO2 absorbents. Moreover, the application of high pressure on MOFs 

can induce structural modifications on MOFs, and therefore facilitate the CO2-framework 

interactions. Hence, it is beneficial to investigate the properties of different MOF materials 

and their interactions with CO2 as well as other gases under high external pressure. 

This thesis will focus on using PXRD and vibrational spectroscopy to examine the high-

pressure responses and gas adsorption proprieties of previously reported frameworks. It 

has brought to our attention that the V-shaped SDB linker in SDB-based MOFs provides a 

“π-pocket”, which interestingly interacts with the adsorbed CO2 molecules.  In Chapter 3, 

our objective is to comparatively study the structural responses to external compression, 

and unveil the possible the guest-host interactions between CO2 and the different PbSDB 

and CdSDB frameworks.  

SIFSIX-3-Zn, a reported ultra-microporous framework, is known to have unusually high 

adsorption selectivity for CO2 over gases such as H2, N2 and CH4, although the lack of 

open metal site. In Chapter 4, our goal is to understand the CO2 adsorption mechanism in 

SIFSIX-3-Zn at high pressure, and whether pressure would play an important role in 

enhancing the CO2-framework interactions.  

It has been reported that the fluid CO2 undergoes a phase change to solid at around 0.6 GPa 

and room temperature,135 which severely shortens our scope in exploring the CO2 

adsorption in MOFs under higher pressures, as solid CO2 is immobile, and it requires CO2 

to be in a fluid state for effective diffusion under pressure. Therefore, in Chapter 5, we aim 

at investigating whether more CO2 molecules could be inserted into the cages of ZIF-8 and 

UiO-66 by simultaneously applying both high pressure and temperature. The hypothesis is 
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that high pressure could facilitate further CO2 insertion once the solid CO2 is turned into 

fluid by high temperature. 

The poor stability of most MOFs in the presence of water has always been a major 

restriction on their applications in post-combustion CO2 capture, as the gas sources are 

constantly saturated with water vapor (i.e. 5-7% by volume in flue gas).136 As an ultra-

microporous framework, ZnAtzOx50 not only exhibits strong CO2 adsorption sites, but also 

shows outstanding water durability. In Chapter 6, we are interested in examining the CO2 

and water co-adsorption in ZnAtzOx, aiming at understanding how CO2 and water interact 

with the framework; to spot the potential guest-guest interactions, and ultimately disclose 

the impact that water has on CO2 adsorption in ZnAtzOx under high pressures.  

It is hoped that our work could provide guidance to understand the structural properties of 

MOFs and how they relate to the better CO2 adsorption performance at high pressures. This 

information would also bring new insight into the design and development of desirable 

frameworks or porous materials for CO2 capture. 

1.3.2 The selections of MOFs  

Previous studies have discovered many MOFs that possess excellent properties for CO2 

adsorption under near ambient conditions. Among all these promising candidates, we 

selected the most representative MOFs to the best of our knowledge, taking both material 

properties and experiential difficulties into account. The following are the principles that 

we consider when choosing MOFs for this thesis. 

Firstly, all objects should have a reasonable CO2 uptake under near ambient conditions. 

The prerequisites for MOFs to adsorb CO2 mainly rely on their structure properties (i.e. 

channel sizes) and ligand functionalities (i.e. -NH2, carboxylate, phenyl group, etc.).41 We 

are expecting high pressure to work as a facilitator in terms of improving CO2 adsorption 

performance in MOFs, however, it is unlikely to tune a MOF that initially does not adsorb 

CO2 at all, to one of the promising candidates for CO2 storage using high pressure. 

Secondly, the objects require high CO2/N2 selectivity. In all projects of this thesis, the CO2 

loading or sample preparation was operated under N2 abundant environments (i.e. 
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cryogenic loading, N2 filled glovebox). If N2 could rapidly replace the adsorbed CO2 

molecules in the pores, then it would create major difficulties in performing the 

experiments. For example, as the MOF with the lowest CO2/N2 selectivity among our 

projects,137-142 UiO-66 features the selectivity of 16/1 in the ternary mixture.142 

Furthermore, the objects should not be extremely sensitive to water. In Chapter 3 and 

Chapter 5, the cryogenic loading method was used to condense CO2 to the sample chamber 

of DAC, in which the exposure of the MOFs to the open air is inevitable. Therefore, it is 

important for the object MOFs to remain physically and chemically stable under the 

humidity level of the atmosphere, in order to be examined under our experimental 

conditions. Besides, from the industrial application point of view, water vapor widely exists 

with the content of 5-7% by volume.136 Since the complete removal of water from the gas 

sources is not practical (i.e. pre- and post-combustion), it is critical for MOFs have 

relatively good water durability. In principle, we would avoid choosing MOFs such as 

MOF-74,143 Cu-BTC,144 MOF-5,145 and MIL-53,146 which instantly adsorb water 

molecules from the air and cause major structural changes.  

Lastly, it is of our interest to investigate a wide variety of MOFs that possess completely 

different structures and topologies, and not just limited by a certain type of framework. 

From MOF with SOD cages147 to MOF features 1D channels,139 we are aiming to see how 

high-pressure would affect these frameworks similarly and differently, in regard to their 

structural and guest adsorptions properties. 
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Chapter 2 

2 Experimental 

2.1 Material preparation 

Crystalline MOFs can be synthesized through numerous methods,1 including solvothermal, 

microwave-assisted,2 electrochemical,3 and mechanochemical routes.4 Among all these 

methods, solvothermal synthesis is the most extensively used methods because of its 

advantages, including: (1) high purity of the final product; (2) energy efficient as it requires 

low temperature; (3) an eco-friendly process because of closed system conditions; (4) 

crystal size and morphology of the product can be easily controlled by modifying the 

conditions.5 

The solvothermal method is analogous to the hydrothermal method, where the organic 

solvents are being used in the procedure instead of water. During solvothermal synthesis, 

the reaction takes place in a closed vessel under self-generated pressure and a temperature 

above the normal boiling point of the solvent. Such high pressure and temperature 

conditions efficiently increase the solubility of the solid reactant in the solvent and 

accelerate the reactions between solid species. 

In this thesis, all samples are synthesized solvothermally base on literature reported 

method.6-11 A typical solvothermal synthesis of MOFs is performed as follows: The solid 

reagents and solvent are measured accurately using an analytical balance and graduated 

cylinders, the mixture is added to a Teflon inlet and mixed by a magnetic stirrer. This inlet 

then sealed in a stainless-steel autoclave and heated in a lab oven to the designated 

temperature for a fixed period of time, as shown in Figure 2.1. The final products are 

collected through filtration or centrifugation depending on the morphology. The purity and 

crystallinity of the materials are then checked and confirmed by powder X-ray diffraction 

(PXRD). In most cases, the as-prepared samples contain solvent molecules in their cages 

or channels. For these MOFs to exhibit permanent porosity, these solvent molecules are 
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typically removed with the assist of heat under dynamic vacuum. This process is known as 

“activation”. Depending on the affinity of the solvent molecules to the framework, as well 

as the thermal stability of the material, the activation conditions for different MOFs may 

vary. Table 2.1 highlights the synthesize and activation conditions for MOFs that are 

studied in this thesis. The materials used in Chapter 3 (i.e. PbSDB and CdSDB) were 

synthesized and provided by Dr. Shoushun Chen (Prof. Yining Huang’s group, the 

Department of Chemistry). 

 

Figure 2.1 Photos of the lab oven and the autoclave for synthesis. 
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Table 2.1 Solvothermal conditions for synthesizing MOF materials studied in this thesis. 

Compound Agent name and Quantity Temp 

 (°C) 

Reaction 

times (h) 

Post treatment Activation 

conditions 

CdSDB 
Cd(NO3)2·4H2O (1 mmol) 

4,4’-sulfonyldibenzoic acid (4,4’-SDB) (1 mmol) 

Ethanol (15 mL) 

180 48 
Separated by filtration and 

washed with distilled 

water 

200 °C 

12 hrs 

PbSDB 
Pb(NO3)2 (0.5 mmol) 

4,4’-SDB (1 mmol) 

DMF and methanol mixture (10 mL, v/v=1:1) 

160 48 
Separated by filtration and 

washed with distilled 

water 

180 °C 

12 hrs 

SIFSIX-3-Zn 
ZnSiF6·H2O (3 mmol, in 10 mL methanol) 

Pyrazine (6 mmol, in 10 mL methanol) 

Room 

temp 

72 Separated by filtration and 

washed with methanol 

50-100 °C 

24 hrs 

ZIF-8 
Zn(OAc)2·2H2O (0.5 mmol) 

2-methylimidazole (5 mmol) 

H2O (2.0 mL) 

120 24 
Separated by filtration and 

washed with distilled 

water 

150-200 °C 

24 hrs 

UiO-66 

Zirconium chloride (ZrCl4, 0.25 mmol) 

1,4-benzenedicarboxylate (H2BDC, 0.25 mmol) 

DMF (300 mmol) 

120 24 
Collected by 

centrifugation and washed 

with distilled water 

150 °C 

24 hrs 

ZnAtzOx(H2O) 

3-amino-1,2,4-triazole (5 mmol) 

Oxalic acid (1 mmol) 

Zinc carbonate basic (Zn5(CO3)2(OH)6, 1 mmol) 

H2O and butanol mixture (6 mL, v/v=1:1) 

180 48 
Separated by filtration and 

washed with distilled 

water 

150 °C 

12 hrs 
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2.2 High pressure apparatus 

2.2.1 Diamond anvil cells (DAC) 

The available techniques to achieve ultrahigh-pressures have been developed and modified 

in the past 60 years.12 Many advanced devices that are capable of generating high static 

pressures are designed, such as diamond anvil cells (DAC) and large-volume apparatuses. 

The large-volume apparatuses could be further divided into simple squeezer, piston-

cylinder, belt apparatus, and multi-anvil devices.13-14 Among all these high-pressure 

apparatuses, DAC is considered the state-of-art because it has one significant advantage 

over all the other devices: Diamond. Diamond is not only the hardest known material, but 

also exhibits excellent properties, such as high thermal conductivity, which adds the 

temperature factor to the equation; and being an electrical insulator, which enables the in-

situ measurements of material electroconductivity under high pressure. Most importantly, 

diamonds are highly transparent to most ranges of electromagnetic radiation, from infrared 

all the way to hard X-ray, providing opportunities for a wide variety of in-situ 

characterizations, including vibrational spectroscopies, ultraviolet-visible spectroscopy, 

neutron scattering, and X-ray diffraction, etc.,15 which could not otherwise be available 

through the other high-pressure apparatuses. 

The principle of the DAC setup is straightforward:16 a pair of opposing single-crystal 

diamond anvils with the same culet size are equipped in a cell. These diamonds are 

specially cut in a way that provides them an extremely small circular facet, which could 

range from 50 to 700 μm. Such a small contact area results in extremely high pressures 

with only modest force applied. A piece of pre-indented gasket with a hole drilled in the 

center is compressed between the diamond anvils, the purpose of which is to produce an 

encapsulated chamber that secures the sample and the pressure transmitting medium in 

place. The typical gaskets are made of stainless steel, while other materials such as rhenium 

and tungsten, may be required when dealing with higher pressures. The diameter of the 

sample chamber is normally a half to one-third of the diamond culet, to provide sufficient 

mechanical support for the diamond tips under high pressure. The diamonds are mounted 

on two supporting tungsten carbide seats, which are aligned and fixed onto the piston and 
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cylinder sides of the cell. The applied pressure is adjustable by tightening or loosening the 

screws that are embedded in the pistons, as shown in Figure 2.2.17 The range of pressure 

that a DAC could generate is determined by the size of the diamond facets.  

 

Figure 2.2 A picture of a DAC and the configuration of enlarged diamond anvils.17 

Typically, diamonds are classified into two types based on the level and type of their 

chemical impurities. The major difference between these two types of diamonds is the level 

of their nitrogen impurity content. Nitrogen impurities take up more than 0.1% in type I 

diamonds, whereas type II contains a wide range of impurities at the parts per million level. 

Despite that type II diamonds are more expensive, the application of these diamonds is 

necessary for some spectroscopic measurements, such as infrared and ultraviolet. This is 

because type II diamonds do not show adsorption bands from nitrogen impurities in these 

spectral regions. In terms of Raman studies, both type I and II diamonds exhibit a strong 

first-order Raman line at 1334 cm-1, therefore, type I diamonds are usually sufficient, as 

the nitrogen impurities are not a concern. 

2.2.2 Pressure calibration 

In terms of determining the local pressure in the DAC sample chamber, the most commonly 

used technique is the fluorescence method.18 The predecessor of this approach can be 

traced back to 1968 when the shift of an optical absorption band in nickel 

dimethylglyoxime was used to calibrate pressure.19 It was later replaced by ruby due to the 
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more insensitive fluorescence signal.20-21 The ruby fluorescence method for pressure 

measurements has grown its popularity since then because of its speed and ease of 

application, the pressures can be determined within a fraction of minute. 

The chemical composition of the ruby is Cr3+ doped α-Al2O3, in which a chromium ion 

replaces an occasional aluminum atom. The ruby material that is suitable for pressure 

calibration contains approximately 3000 to 5500 ppm Cr3+ to achieve the satisfactory 

fluorescence intensity. These ruby calibrants are typically in the shape of grains or chips 

with the size in the magnitude of 10 µm. When excited by a laser, Cr3+ ions emit two 

luminescent peaks R1 and R2, both are narrow and exhibit a pronounced red-shift with 

increasing pressure, as shown in Figure 2.3.17 The relation between the local hydrostatic 

pressure and the frequency shift of ruby R-line emission is described in Equation 2.1,20 

𝑃 =
1904

𝐵
[(1 +

∆𝜆

694.24
)

𝐵

− 1] 

Equation 2.1 

 

where P is the local pressure in GPa, Δλ is the wavelength shift of R1 peak in nm, B=7.665 

under quasi-hydrostatic conditions, and B=5 for non-hydrostatic conditions. This method 

features a precision of ±0.05 GPa and can maintain its accuracy up to 80 GPa.20  
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Figure 2.3 Ruby R1 and R2 luminescence measured at 1.5 GPa (red) and 2.1 GPa 

(blue) under room temperature.17 

2.2.3 Pressure transmitting medium 

Hydrostatic pressure is a thermodynamic parameter, where no pressure gradient is present 

at any given point of the sample during compression. The experimental results obtained 

under such conditions are believed to be a better representation of material properties and 

are more comparable to the theoretical results, as the unevenly distributed pressure under 

non-hydrostatic environment may induce distorted observations throughout the sample. 

Therefore, in most cases, the hydrostatic conditions are required for high pressure 

experiments. To produce hydrostatic environments in DAC, the simplest way is to 

introduce a compressible fluid to the sample chamber, namely, pressure transmitting 

medium (PTM). For porous materials specifically, the pressure transmitting mediums can 

be further classified into two types, penetrating PTM and non-penetrating PTM. The 

molecular size of the penetrating PTMs is typically smaller than the pore size of the host 

materials, thus can migrate into the pores and support the framework from the inside at 

high pressures, while providing hydrostatic conditions in the sample chamber. 



51 
 

 

A well-suited PTM should accommodate several requirements, including low thermal 

conductivity, low shear strength, and the ability to maintain the hydrostatic conditions to 

pressure as high as possible. The highest pressure for the most commonly used PTMs to 

maintain hydrostatic conditions are illustrated in Table 2.2. Accordingly, the selection of 

PTM is determined by the highest pressure in the experiment, as well as the chemical and 

physical sensitivity of the material to the PTM. In this thesis, no PTM was used for SIFSIX-

3-Zn and ZnAtzOx(H2O) to rule out the possible host-guest interactions from other sources. 

In Chapter 3 and Chapter 5, where the cryogenic CO2 loading was performed, the fluid 

CO2 works as penetrating PTM up to 0.6 GPa. For the synchrotron PXRD measurements, 

fine-ground CdSDB and PbSDB were loaded along with neon using the gas loading system 

at GSECARS of APS (Advanced Photon Source). 

Table 2.2 The most commonly used PTMs and the highest pressure for them to 

maintain hydrostatic conditions under room temperature.22-23 

Pressure Transmitting Medium Pmax for Hydrostatic Conditions 

Neon 50 GPa 

Argon 10 GPa 

Helium 40 GPa 

Methanol 7 GPa 

4:1 Methanol-ethanol 10.5 GPa 

16:3:1 Methanol–ethanol–water  14.4 GPa 

Silicone oil 20 GPa 

2.2.4 Gas loading 

In this thesis, two types of gas loading method were used to load CO2 and other guests (i.e. 

D2O) to the framework: cryogenic loading and Schlenk line loading. To carry out cryogenic 

loading, the objects must not be water sensitive. Figure 2.4 shows the general procedure of 

the cryogenic CO2 loading. Firstly, a few grains of ruby and the sample is loaded to the 

sample chamber, leaving certain space to the CO2. The piston part of the diamond anvil 
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cell is secured on the seat and immersed in the liquid nitrogen bath to cool down. When 

the temperature is lower than the boiling point of CO2 (i.e. -78.5 °C), the CO2 gas is 

introduced to the sample chamber. The condensed CO2 can be observed on the surface of 

the gasket and sample after a few seconds through a microscope. Finally, the cell is closed 

instantly and applied with a minimum pressure of around 0.3 GPa to trap CO2 in the 

chamber.  

The other way of gas loading is to use the Schlenk line. After the sample is fully activated 

under the dynamic vacuum, the CO2 cylinder is then connected to the line. The loading 

pressure can be monitored by the pressure gauge equipped on the vacuum line. Since the 

volume of the vacuum line tubing is known, the sample tubes are standardized, therefore, 

the amount of CO2 loaded to the framework can be calculated based on the pressure change 

indicated by the pressure gauge and the volume of the system. 

The cryogenic loading is capable of sealing extra CO2 in the sample chamber, which is 

necessary for investigating the relationship between pressure and the CO2 capacity of a 

MOF. Whereas using the Schlenk line, a better control over the quantity of the loaded CO2 

can be achieved. In the multi-guest experiments, this is the only method available to realize 

the co-loading with a precise loading ratio (e.g. 1:1 CO2 to D2O molar ratio). The entire 

loading process of this method is in closed systems (i.e. vacuum and N2 fill glovebox), The 

purity and quality of the loaded sample are therefore guaranteed. 
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Figure 2.4 The procedures of the cryogenic CO2 loading. 

2.3 In situ high-pressure characterizations 

2.3.1 Vibrational spectroscopy 

Vibrational spectroscopy is a characterization method for non-destructive measurement of 

the vibrational energy in a compound. In a chemical sample, each chemical bond has a 

unique vibrational energy, when the molecule interacts with the light, the energy 

transferred from the electromagnetic field of the light to the molecule at the vibrational 

levels can be recorded by vibrational spectroscopy. Such information allows the 

understanding of the short-range structures, chemical bonding and inter- and intra-

molecular interactions, as well as the physical and chemical configurations of the material. 

Particularly, vibrational spectroscopy is a powerful technique to monitor the pressure 

effects on chemical bonding and local structures as well as host-guest interactions in high-

pressure studies of guest-loaded MOFs, which are investigated in this thesis. 

Two of the most common vibrational spectroscopies are infrared (IR) and Raman 

spectroscopy, which in many circumstances may provide complementary information, as 
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they follow different selection rules. In IR spectroscopy, an infrared lamp is used to provide 

electromagnetic radiation between the wavelengths of 700 nm to 1 mm. When a material 

is exposed to electromagnetic radiation at the right frequency (i.e. when hν = ΔE, as shown 

in Figure 2.4), the molecule absorbs the radiation at that frequency and vibrates. For a 

vibrational mode to be IR active, such vibration must induce changes in molecular dipole 

moment during the vibration. The selection for IR spectroscopy is demonstrated in 

Equation 2.2, where δμ is the variation of the dipolar moment, δq is the variation of the 

normal coordinates. 

𝛿µ

𝛿𝑞
 ≠ 0 

Equation 2.2 

Complementary to IR spectroscopy, Raman spectroscopy is another vibrational technique 

that could be used to characterize the chemical bonding and the molecular structures. In 

Raman spectroscopy, when a laser beam irradiates on a material, a portion of the photons 

will be scattered into different directions. The scattered light can be divided into two types, 

Rayleigh scattering and Raman scattering. The majority of photons undergo an elastic 

scattering process, also known as Rayleigh scattering, where the scattered photons maintain 

the same energy (i.e. frequency and wavelength) as the incident photons. Whereas a small 

fraction of the photons get inelastically scattered and have a different frequency from the 

incident beam, known as Raman scattering. As demonstrated in Figure 2.5, the Raman 

scattering is further classified into two types, stokes and anti-stokes scatterings. When the 

molecule relaxes from the virtual state, if the emitted photons have lower energy than the 

incident photons, it is Stokes scattering and the material absorbs energy. Contrarily, anti-

Stokes scattering happens when a molecule that was initially at its excited state gets further 

stimulated to the virtual state, then comes back to its ground state, the outcome of which is 

the molecule loses energy. Given that most molecules are initially in their ground state, 

Stokes scattering is significantly stronger than anti-Stokes scattering, therefore, Raman 

spectroscopy mainly measures the Stokes scattering. 
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The Raman effect is triggered by the interaction between the electron cloud of a molecule 

and the external electric field of a single wavelength laser. Such interaction can create an 

induced dipole moment within the molecule based on its polarizability. Therefore, the 

criteria for a vibration to be Raman active is that the polarizability of the molecule must 

change when it vibrates. The selection rule for Raman scattering is illustrated in Equation 

2.3, where δα is the variation of polarizability, δq is the variation of the normal coordinates. 

𝛿𝛼

𝛿𝑞
 ≠ 0 

    Equation 2.3 

Raman spectroscopy can also be applied to detect the lattice vibrations of crystalline solid-

state materials, which are originated from the translational and rotational modes of the ionic 

or molecular crystals.24 These modes are usually found at low frequencies (i.e. in the region 

of 400-10 cm-1) and may provide preliminary information on changes in crystal structures 

and predict possible phase transitions.  

 

Figure 2.5 Illustration of IR absorption, Rayleigh scattering and Raman scattering 

process. 
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2.3.2 In situ FTIR spectroscopy system 

To carry out in situ IR measurements for high pressure studies, a highly customized IR 

micro-spectroscopy system was assembled in the lab, the schematic diagram of the system 

is shown in Figure 2.6. A commercially available Fourier transform infrared (FTIR) 

spectrometer (Model Vertex 80v) and a Globar IR light source constituted the main 

components of the micro-IR system, which are purchased from Bruker Optics Inc. The 

sample stage is designed for holding the DAC in place with excellent reproducibility of its 

vertical and horizontal positions between measurements. A collimated IR beam is directed 

into a relay box through a KBr window on the spectrometer, it is then focused onto the 

sample in the DAC using an iris optics and 15× reflective objective lens. The beam size is 

set to match the size of the sample (i.e. ~150 µm) by a series of iris apertures. By using 

another identical reflective objective as a condenser, the transmitted IR beam is collected 

and directed to a wide-band or mid-band mercury cadmium telluride (MCT) detector that 

records signals in the spectral ranges of 400 to 12000 cm-1 and 600 to 12000 cm-1, 

respectively. The system is operated under a near vacuum condition of pressure less than 

5 mbar to avoid interference from ambient CO2 and H2O. For calibration purposes, a 

background spectrum of the diamonds and KBr is collected before each sample 

measurement. All the IR spectra in this thesis were collected with a resolution of 4 cm-1 

and 512 scans to ensure the best quality of the data. 
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Figure 2.6 The schematic diagram of the IR micro-spectroscopy system.25 

2.3.3 In situ micro-Raman spectroscopy system 

Similar to the IR system, the Raman micro-spectroscopy system is also customized and 

built in our lab for all room-temperature Raman measurements. The schematic of this 

system is illustrated in Figure 2.7. The laser beam is focused on the sample in the DAC, 

which is placed on the sample stage and well-aligned with the aid of the microscope. The 

beam size of the laser is adjusted to < 5 μm and focused on the sample by a 20× objective. 

The Raman signals are detected with backscattering geometry by the same objective lens. 

A pair of notch filters are used to block the Rayleigh lines. Solid-state lasers with different 

wavelengths of 532 nm and 635 nm were used depending on the properties of the samples 

(i.e. signal to background ratio). Similarly, the choice of the grating is also sample specific, 

both 1200 lines/mm and 300 lines/mm are used in this thesis to obtain the optimal signals. 

The spectrum is collected by a CCD detector (charge-coupled device), which is cooled 

down to the operating temperature of -120 °C by liquid nitrogen. A WinSpec software is 

installed on the computer to control the collection of the spectrum, the accumulation time 
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is adjusted to achieve the best resolution. Prior to all measurements, the calibration of the 

system is carried out using the standard neon lines with a resolution of ± 1 cm-1. 

 

Figure 2.7 The schematic diagram of the Raman micro-spectroscopy system.17 

2.3.4 Synchrotron X-ray diffraction 

X-ray diffraction (XRD) is one of the most important non-destructive tools to analyze a 

wide range of matter, including powders and crystals. When irradiating X-ray to a 

crystalline material, the crystalline structure causes the incident X-rays to diffract into 

many specific directions, by analyzing the angles and intensities of the diffracted beams, 

the structural information of the material such as chemical bonding, atom positions, as well 

as crystal structures, can be obtained. The principle of XRD is described by Bragg’s law, 

as shown in Equation 2.4, where λ is the wavelength of the X-ray beam, θ is the scattering 

angle, dhkl is the spacing of the lattice planes with the Miller indices h, k, l. 

 

nλ=2dhklsinθ                                                 Equation 2.4 
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XRD is an effective technique for determining the atomic and molecular structure of 

crystalline material. However, given the small sample size and the limited opening angle 

of the DACs, intense X-ray beams with high energy and small beam size are necessary for 

in situ high pressure XRD measurements, which is only accessible by synchrotron radiation 

(SR). Typically, the brightness of the X-ray beam from SR is 104 to 1012 times greater than 

that of the conventional X-ray source produced in labs. Furthermore, the highly collimated 

SR beam with a tiny opening angle results in a small beam size in the magnitude of tens of 

microns, which makes the measurements of a small amount of sample possible. Besides, 

the high tunability of the SR allows the researchers to optimize the wavelength of the X-

ray beam and acquire the most satisfactory data. Hence, owing to its high brilliance, finely 

tunable wavelength and beam size,26 synchrotron X-ray diffraction is so far the most 

desirable method to investigate the structural behaviors of crystalline materials under high 

pressure. 

The PXRD data in Chapter 3 were at beam-line 16BM at Advanced Photon Source (APS), 

Argonne National Laboratory (ANL). The initial XRD patterns were recorded as Debye-

Scherrer rings by a 2D MARCCD detector, then integrated by the Fit2D program into 1D 

powder patterns. Figure 2.8 shows the 2D image and the converted 1D diffraction pattern 

of the calibrant CeO2 as an example. The cell parameters were further refined using 

UnitCell software. The setup of the beam-line 16BM is shown in Figure 2.9.  

 

Figure 2.8 2D Debye-Scherrer ring and converted 1D patterns of CeO2 were collected 

at Sector 16 BM, APS (λ = 0.3396 Å). 
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Figure 2.9 The experimental setup of sector 16BM at APS, ANL. The detector, sample 

stage and X-ray beam are labeled in the figure as 1, 2 and 3, respectively. 
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Chapter 3 

3 Elucidation of the Structural Origins and Contrasting 

Guest-host Interactions in CO2 Adsorbed CdSDB and 

PbSDB MOFs at High Pressures 

3.1 Introduction 

Metal-organic frameworks (MOFs) are an emerging class of crystalline materials 

constructed by bridging metal-containing units with organic linkers to create open 

frameworks with permanent porosity.1 Due to the high thermal stability, enormous surface 

area and finely tuneable chemical functionality, MOFs have wide applications in gas 

separation,2 catalysis,3 drug delivery,4 chemical sensors,5 and especially gas storage.6-8 

Recently, the SDB (SDB = 4,4′-sulfonyldibenzoate) based MOFs have attracted much 

attention because of their high CO2 selectivity over other gas molecules. Moreover, the 

SDB based MOFs are also known to have relatively large pores and to be stable to 

humidity,9, 10 which making the MOFs in SDB family excellent candidates for CO2 storage 

applications. For instance, PbSDB was the first reported porous SDB-based MOF,11 

compared to many other Pb-based MOFs that are nonporous.12 Later on, several SDB-

based MOFs with different metal centres have been reported (e.g., Ni, Ca, Zn, Pb, Sr and 

Na). Among these SDB-based MOFs, CdSDB has been shown to have an excellent CO2/N2 

selectivity compared to the other MOFs in SDB family.9 In particular, the CO2 adsorption 

mechanisms of PbSDB and CdSDB frameworks have just been investigated recently using 

solid state nuclear magnetic resonance (SSNMR) spectroscopy at ambient pressure and 

low temperatures.13  

Even though PbSDB, and CdSDB are built from the same V-shape organic ligand (SDB), 

however, different metal centres result in different coordination environments, thus 

featuring different topologies, shapes of channels, and pore sizes. In the PbSDB framework, 

the Pb ion is seven-coordinated to oxygen atoms, one of which is from a sulfonyl group 

while the others are from six different SDB2- anions (Figure 3.1a).11 Such coordination 

results in the formation of linear channels (Figure 3.1b) with an average size of 7.4 Å × 7.5 

Å in PbSDB framework. In contrast, the Cd metal centre in CdSDB framework is six-
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coordinated by bonding to five carboxylate oxygens and one sulfonyl oxygen, forming a 

quasi-isotropic octahedron (Figure 3.1c). This coordination leads to the formation of a one-

dimensional sinusoidal chain in a three-dimensional framework with relatively larger pore 

size of 8.8 Å × 8.5 Å (Figure 3.1c and d). At ambient conditions, PbSDB crystalizes into 

an orthorhombic lattice (space group Pnma, a = 5.9527(3) Å, b = 13.0441(6) Å, c = 

19.5781(10) Å),14 whereas the CdSDB belongs to a monoclinic space group of C2/c space 

group with the unit cell parameters a = 13.3382(4) Å, b = 21.4986(7) Å, c = 10.1527(6) Å 

and β = 90°.9  

The differences in the structure and topology of these SDB based MOFs can be correlated 

to their corresponding CO2 adsorption behaviours. Moreover, external conditions that 

induce structural variations may substantially influence the guest-host interactions, leading 

to a totally different CO2 adsorption capacity. For instance, application of high external 

pressure has been demonstrated to be one of the most promising techniques in terms of 

improving the CO2 storage capacities in MOFs.15-18 In particular, the MOF may respond to 

extreme external constraint by significantly changing the framework topology,15, 18-28 the 

pore size,29, 30 the pore shape, and thus the adsorption properties.31-36 Furthermore, we have 

demonstrated that the CO2 storage capacity can be substantially enhanced at high pressures 

as a result of pressure-regulated CO2 insertion into the framework for several MOFs. For 

instance, using in situ FTIR spectroscopy, Hu et al. demonstrated that CO2 storage capacity 

in the ZIF-8 frameworks is significantly improved at high loading pressures.16 More 

interestingly, we found high external pressure can preferentially tune the CO2 adsorption 

behaviour in MOFs with heterogeneous topology such as in MIL-68 and α-

Mg3(HCOO)6.
17,18 Despite the extensive investigations of SDB based MOFs at near 

ambient conditions, the high-pressure structures and CO2 adsorption behaviour have 

remained unknown. Given the large porosity and excellent potential of CO2 adsorption of 

PbSDB and CdSDB, it would be of fundamental interest to examine the structural 

responses to external compression and corresponding guest-host interactions between CO2 

and the different framework environment comparatively.
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Figure 3.1 (a) Local coordination environment of Pb in PbSDB. (b) Polyhedral view of the 3D microporous framework 

of PbSDB along the a-axis, showing the linear channels. (c) Local coordination environment of Cd in CdSDB. (d) 

Polyhedral view of the structure of activated CdSDB along c axis, showing the 1D sinusoidal chain.
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In this work, using in situ Raman and FTIR spectroscopy as well as synchrotron powder 

X-ray diffraction (XRD), we first investigated the structural stabilities and possible phase 

transitions of activated PdSDB and CdSDB frameworks at high pressures, followed by a 

comparative examination of the guest-host interactions in CO2 loaded PbSDB and CdSDB 

frameworks. We discovered strongly contrasting pressure-induced modifications in 

structures and crystallinity, and especially prominent differences in CO2 adsorption 

behaviour in two different, but related SDB frameworks, which can be correlated with their 

different structural and topology origins. We observed pressure-regulated CO2 populations 

between different sites for the first time. Our findings greatly enhanced the understanding 

of guest-host interactions of CO2 loaded framework by elucidating the structural origins 

and thus fundamentally contribute to the development of CO2 storage applications in SDB 

based and other MOFs. 

3.2 Experimental 

The PbSDB and CdSDB were synthesized under solvothermal conditions using Teflon 

lined stainless steel Parr autoclaves according to the literature.9, 12 The starting materials of 

PbNO3, Cd(NO3)2 · 4H2O (98%), LiNO3, 4,4'-sulfonyldibenzoic acid (4,4’-SDB), ethanol 

(95%) were purchased from Sigma-Aldrich and used as is without further purification.  For 

synthesis of PbSDB, 0.5 mmol Pb(NO3)2 and 1 mmol 4,4'-sulfonyldibenzoic acid were 

placed in a Teflon-lined stainless-steel autoclave with 10 mL of mixed solvent of DMF (N, 

N-dimethylformamide) and methanol (v/v = 1: 1) in the presence of LiNO3. The mixture 

was heated to 433 K for 4 hours and kept at this temperature for 2 days. The reaction system 

was cooled slowly to room temperature over another two days. For the synthesis of CdSDB, 

a mixture of 1 mmol Cd(NO3)2·4H2O (0.310 g) and 1 mmol 4,4'-SDB (0.296 g) was 

dissolved in 12 mL ethanol and stirred for 2 hours to achieve homogeneity. The resultant 

solution was heated at 453 K for 4 days. For both systems, colourless needle-shaped 

crystals were recovered, washed thoroughly with MeOH three times, and dried in air at 

room temperature. Disordered solvent molecules are found to be present within the 

channels of as made PbSDB and CdSDB frameworks after synthesis, which can be readily 

removed upon activation by heating to 453 K and 473 K in vacuum, respectively. 

Remarkably, none of the activated PbSDB or CdSDB frameworks reabsorb water when 
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exposed to air. The identities and phase purities of the samples were confirmed using 

powder X-ray diffraction (XRD).  

Two sets of symmetric diamond anvil cells (DAC) were used to achieve a static high 

pressure in the lab. For Raman and synchrotron XRD measurements, a DAC equipped with 

two type-Ι diamonds with a 600 µm culet size was being used, while a pair of type-ΙΙ 

diamonds with the same culet size was used for IR measurements. All the gaskets used in 

high-pressure experiments were made of stainless steel, and were pre-indented to ~50 µm 

thick. The sample chambers were 200-210 µm in diameter. A few ruby chips were loaded 

into the sample chamber as the pressure calibrant. The pressure inside the sample chamber 

was then measured according to the well-established ruby fluorescent method. In high-

pressure studies of empty frameworks, the pure samples were loaded into the DAC without 

any fluid pressure-transmitting medium (PTM) for Raman and IR measurements to rule 

out the possible guest-host interactions. In order to obtain unsaturated IR spectra, the 

samples were packed with solid KBr for IR measurements. For Synchrotron XRD 

experiments, the neon gas was used as a penetrating PTM, loaded by the gas loading system 

at the GSECARS beamline of Advanced Photon Source (APS) at Argonne National 

Laboratory (ANL). 

To study the CO2 adsorption in MOFs under high pressure, the activated PbSDB or CdSDB 

samples and a few ruby chips were firstly loaded into the sample chamber of the DAC, 

then the piston side of the DAC was cooled down in a cryogenic bath of liquid nitrogen. 

An electronic thermometer was used to monitor the temperature of the DAC piston. When 

the temperature was below the melting point of dry ice (< -78.5 °C), gaseous CO2 was then 

introduced into the sample chamber, extra dry ice powder was used to completely fill the 

piston. Then, the DAC was sealed with a minimal possible pressure (~ 0.5 GPa). After the 

DAC was warmed up to room temperature, the internal pressure was measured by the ruby 

fluorescence. 

The Raman measurements were carried out with a customized Raman micro-spectroscopy 

system. Two types of lasers with different wavelengths of 532 and 781 nm were used as 

the excitation sources. The lasers were focused to < 5 μm on the sample by a 20× Mitutoyo 
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objective. The scattered light was dispersed using an imaging spectrograph equipped with 

an 1800 lines/mm grating achieving a 0.1 cm-1 resolution. The system was calibrated by 

neon lines with an uncertainty of ± 1 cm-1.  

A customized IR micro-spectroscopy system was used for IR measurements. A commercial 

Fourier transform infrared (FTIR) spectrometer from Bruker Optics Inc. equipped with a 

Globar IR light source constituted the main component of the micro-IR system, which was 

operated under a vacuum of <5 mbar such that absorption by H2O and CO2 was efficiently 

removed. The size of the IR beam was set to be identical to the entire sample size (e.g., 

~150 μm) by a series of iris apertures. The transmitted IR beam was collected using another 

identical reflective objective as the condenser and was directed to a mid-band mercury 

cadmium telluride (MCT) detector equipped with a ZnSe window that allows 

measurements in the spectral range of 400-12000 cm-1. All measurements were undertaken 

in transmission mode with a resolution of 4 cm-1 and 512 scans were applied for each 

spectrum measurement achieving an excellent signal-to-noise ratio. To collect the 

absorbance, the absorption of diamond anvils with KBr was used as background for each 

sample. 

The PXRD patterns were collected by the synchrotron facilities at beamline Sector-20ID 

and 16BM (for PbSDB and CdSDB, respectively) of APS at ANL. The incident X-ray 

wavelength is 0.4769 Å at Sector 20 ID with a beam size of 5 μm (H) x 5 μm (V) focused 

at the centre of the sample. The diffraction data for PbSDB were collected by a MARCCD 

detector with an exposure time from 30 s to 90 s depending on the data qualities, the 2D 

Debye-Scherrer diffraction patterns were then integrated into 1D patterns by Dioptas030 

program for further analysis. The in situ high pressure XRD measurements for CdSDB 

were carried out at Sector 16 BM, APS. The diffraction data were collected using an 

exposure time of 600 s and recorded on a MAR345 detector. The integrations were done 

using Fit2D program. 
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3.3 Results and discussion 

3.3.1 Structural stability of activated frameworks 

Upon activation of CdSDB and PbSDB, we characterized both frameworks at ambient 

conditions using Raman spectroscopy and mid-IR absorption spectroscopy with the 

corresponding spectra depicted in Fig 3.2 as the starting point. Our results are in excellent 

agreement with those reported by Plonka et al.10 In the Raman spectrum, specifically, 

Raman modes below 400 cm-1 can be assigned as lattice vibrations, indicating a high degree 

of crystallinity, consistent with XRD measurements. The metal-ligand stretching mode 

which is expected at around 300-400 cm-1,37 is observed in the Raman spectrum at 357 cm-

1, but beyond the mid-IR range in our measurement. Above 500 cm-1, all the Raman and 

IR active modes are associated with the internal vibrations of SDB ligands with detailed 

assignments provided in Table 3.1. Among these vibrations, of particular interests are the 

sulfonyl stretching vibrations (ν(OSO)) at around 1300 cm-1 and the symmetric and 

asymmetric carbonyl stretching mode at ~ 1400 cm-1 (νs(OCO)) and ~ 1600 cm-1 

(νas(OCO)), respectively, as the metal-ligand interactions under compression maybe 

sensitively reflected by these modes. In addition, the ring in-plane (1000-1200 cm-1) and 

out-of-plane (500-900 cm-1) bending modes may provide fingerprint response of SDB 

ligands to external compression. 
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Figure 3.2 IR (bottom) and Raman (top) spectra of activated PbSDB at ambient pressure in the spectral region of 100-1800 cm-

1. 
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Table 3.1 Assignment of the characteristic IR mode of PbSDB and CdSBD. 

Upon compression of PbSDB to less than 1 GPa, most of the lattice modes diminished with 

only the Pb-O stretching mode at 357 cm-1 observable, but significantly broadened (Fig 

3.3a). This observation suggests that the framework undergoes a structural transition to a 

highly disordered or amorphous phase. Upon further compression to higher pressures (e.g., 

13.44 GPa), the Pb-O stretching mode becomes extremely broad, which is indicative of the 

total amorphization. The corresponding mid-IR spectra of the framework show a similar 

trend of pressure-induced structural disorder as characterized by the continuous broadening 

of most of the IR modes, especially the OSO and OCO stretching modes (Fig 3.3b). Upon 

decompression, the backward structural changes were observed. However, the Raman 

spectrum of the recovered material does not completely resemble the one collected before 

compression. In particular, other than the broadened primary lattice modes, all other modes 

are substantially suppressed, indicating pressure-induced irreversible modifications of the 

crystallinity of the framework. The IR spectrum of the recovered material (Fig 3.3b), 

however, is consistent with that collected before compression, indicating the framework 

structures, especially the major bonding connectivity, are intact upon compression despite 

the change in crystallinity. 

 

IR modes 

Frequencies (cm-1) 

PbSDB CdSDB 

Ring out-of-plane bending 560-900 540-890 

Ring in-plane bending 990-1190 995-1200 

ν(OSO) 1298 and 1321 1293 and 1332 

νs(COO) 1375 1369 and 1401 

νas(COO) 1547 and 1595 1567, 1598 and 1616 

ν(C-H) 3040, 3064 and 3093 3042, 3058 and 3072 
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Figure 3.3 Raman (a) and IR (b) spectra of PbSDB at selected pressures upon compression and recovery.  
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To confirm the pressure-induced crystal and structural change in the PbSDB framework, 

we performed in situ synchrotron powder X-ray diffraction measurements with 

representative patterns depicted in Fig 3.6a. As can be seen, the PbSDB at ambient 

conditions exhibits excellent crystallinity characterized by sharp reflections which can be 

perfectly indexed with Pnma structure. Upon compression, all reflections become 

broadened with decreasing intensity indicating the reduced crystallinity of the material. At 

6.03 GPa, only an extremely broad reflection at 4.12° was observed, indicating the total 

amorphization of the materials. These observations are consistent with the Raman and IR 

measurements. Upon decompression, the reverse transformation from amorphous to 

crystalline material was observed. However, the recovered material exhibited broadened 

reflections compared to the pattern of the uncompressed sample, indicating irreversible 

pressure modification of crystallinity of the framework, again consistent with the Raman 

results. 

We further comparatively studied the structural stability of the CdSDB framework using 

IR absorption spectroscopy (Fig 3.4) and synchrotron powder XRD measurement (Fig 3.5). 

The high fluorescent background of the activated CdSDB sample prohibited us from 

collecting the Raman spectra. Nonetheless, we observed similar pressure effect on the 

CdSDB framework, i.e., pressure-induced structural disordering and ultimate 

amorphization at high pressures. Interestingly, the total amorphization pressure for CdSDB 

framework as indicated by the diffraction profile is substantially higher than that for 

PbSDB, which is estimated as close to 12.5 GPa. Furthermore, the diffraction pattern for 

recovered material shows excellent crystallinity almost comparable to the starting 

materials. These observations suggest that both PbSDB and CdSDB frameworks are 

chemically stable upon external compression, but CdSDB is more resilient to structural 

deformation induced by pressure. This difference can be understood from their structural 

origins which will be discussed next.  
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Table 3.2 Unit cell parameters and volume of PbSDB and CdSBD on compression. 

Pressure (GPa) a (Å) b (Å) c (Å) V (Å3) 

PbSDB 

0 5.9527 13.0441 19.5721 1520.2 

0.24 5.8946 13.1258 19.3952 1500.6 

0.87 5.7983 13.1094 19.0436 1447.5 

1.80 5.7982 12.9451 17.2935 1292.3 

2.97 5.6615 13.1276 16.5630 1231.0 

CdSDB 

0 13.3382 21.4986 10.1527 2900.2 

0.97 13.0978 21.1392 10.2475 2820.7     

1.42 13.0259 21.1031 10.2430 2798.2 

2.26 12.9631 21.0214 10.0915 2734.9 

3.34 12.8751 20.9434 10.0985 2704.6 
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Figure 3.4 Selected IR spectra of activated CdSDB on compression up to the highest 

pressure of 13.03 GPa and on decompression to ambient pressure. 
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Figure 3.5 Synchrotron XRD spectra of CdSDB upon compression from ambient to 

12.49 GPa (a) and recovery (b) in the 2θ region of 3.5-13°. (c) Refined unit cell 

parameters. 
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Figure 3.6 (a) Synchrotron powder X-ray diffraction patterns of PbSDB upon compression from ambient to 9.15 GPa and 

recovery in the 2θ region of 3.5-12°. (b) The refined unit cell parameters of PbSDB framework) as a function of pressure (a: 

black squares; b: black circles; and c: blue triangles). (c) The refined unit cell volume of PbSDB as a function of pressure upon 

compression. 
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3.3.2 Guest-host interactions in CO2 loaded CdSDB framework 

CdSDB has been reported to have a relatively large surface area (i.e., 100 m2/g) and 

moderate porosities, giving an excellent CO2 adsorption capacity (4.25 wt% at 273 K and 

1 atm) under near ambient conditions. We have previously demonstrated that external 

pressure can substantially enhance the CO2 intake in MOFs such as ZIF-8. Therefore, it’s 

of particular interest to examine and compare the CO2 storage capacity of CdSDB at high 

pressures as well. Fig. 5 shows the typical IR spectra of CdSDB framework loaded with 

CO2 at different pressures in the spectral region of 3500-3800 cm-1. Due to the very intense 

absorption of CO2 fundamental modes causing spectra saturation, we used this region that 

correspond to the combination modes (e.g. ν3 + 2ν2 and ν3 + ν1, observed at around 3600 

and 3710 cm-1, respectively at 0.50 GPa) to follow the behaviour of the CO2 as these peaks 

provide the best resolved and most characteristic features about guest-host interactions 

between CO2 and the framework. The splitting of both modes at 0.63 GPa (Fig 3.7a) 

indicates the insertion of CO2 into the pores of the CdSDB framework resulting in two 

different types of CO2 in the system. The lower frequency modes (3582 and 3690 cm-1) 

can be assigned as the CO2 inside the CdSDB channels while the higher frequency modes 

(3603 and 3712 cm-1) are due to the CO2 outside the framework as the pressure medium 

based on the comparison with the observed frequencies of pure CO2 at similar pressures 

for these modes (Fig 3.7c).17, 38 Further compression to 0.87 GPa resulted in more 

prominent separation of CO2 in two different environments due to the solid CO2 formed 

from liquid-to-solid phase transition residing outside the framework. Continues 

compression to 2.48 GPa results in no other changes in the adsorption profile with nearly 

constant relative intensities of the respective mode associated with CO2 inside and outside 

framework indicating there is no CO2 migration in between the two environments as a 

result of compression. Careful examination of the pressure dependence of the low 

frequency component of ν3 + 2ν2, however, suggest a redshift of the component till 1.5 GPa 

above which normal blue shift was observed (Fig. 5c). The redshift is indicative of 

weakening of the C-O bond in CO2, as a result of enhanced guest-host interaction due to 

compression reaching to the strongest at 1.5 GPa.  
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Figure 3.7 IR spectra of CdSDB loaded with CO2 upon (a) compression from 0.50 to 4.66 GPa and (b) decompression to 0.61 

GPa in the spectral region of 3500-3800 cm-1. (c) Pressure dependence of ν3+2ν2 and ν3+ν1 modes of loaded CO2 in CdSDB. 
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The most interesting observation is the appearance of a new IR mode as a shoulder for the 

ν3 + ν1 mode of CO2 inside the framework when compressed to 3.45 GPa (Fig 3.7a). The 

additional IR absorption suggests the formation of an additional non-equivalent CO2 

adsorption site within the framework due to compression. This new CO2 adsorption site 

remains prominent upon further compression to pressures near 5 GPa. Upon 

decompression, the new CO2 adsorption remains observable down to 2.5 GPa (Fig 3.7b), 

below which the IR profile in this region suggests that CO2 mainly resides on a single 

adsorption site in the low-pressure region. These observations suggest that high external 

pressure is responsible for creating and maintaining the new adsorption site, which is 

highly dependent on the framework structures that are affected by pressures. Overall, the 

pressure-tuned guest-host interactions between CO2 and the CdSDB framework are 

completely reversible with respect to compression and decompression, resulting in neither 

permanent binding of CO2 into the framework nor structural change of the framework. 

3.3.3 Guest-host interactions in CO2 loaded PbSDB framework 

We also investigated the CO2 storage capacity and guest-host interaction in the PbSDB 

system. Fig 3.8 shows the IR spectra of CO2 loaded PbSDB framework in the combination 

mode region and the pressure dependence of the two characteristic composition modes. 

Compared to the IR spectrum of pure liquid CO2 collected at 0.33 GPa, interestingly, the 

adsorbed CO2 at similar loading pressure (e.g., 0.29 GPa) exhibited a distinctively different 

IR profile in both the band shape and particularly the frequencies that are substantially red-

shifted from 3598 and 3704 cm-1 to 3581 and 3690 cm-1 for ν3 + 2ν2 and ν3 + ν1, respectively. 

Moreover, the dominant singlet IR band for adsorbed CO2 with the extremely low IR 

intensity associated with CO2 outside the framework suggests that the CO2 intake at PbSDB 

is much more efficient than CdSDB even at low pressures, indicating significantly stronger 

guest-host interactions in the PbSDB framework than in the CdSDB system. With 

increasing pressure to 0.59 GPa, the ν3 + ν1 mode exhibits an obvious splitting leading to 

the observation of a higher frequency component at 3694 cm-1. The splitting of this mode 

is most likely associated the formation of a new, non-equivalent CO2 adsorption site of the 

PbSDB framework, similar to the observation of CdSDB framework at 3.45 GPa, although 

the formation pressure is much lower here. With further compression, strikingly, the 
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intensity of the new higher-frequency component of ν3 + ν1 mode develops rapidly and 

becomes the dominant mode above 1.68 GPa. At 4.28 GPa, the original low-frequency 

component of ν3 + ν1 mode is completely depleted with only a single sharp symmetrical IR 

mode observed at 3705 cm-1. This low frequency indicates that all the adsorbed CO2 is 

confined in PbSDB framework via the strong guest-host interactions as the ν3 + ν1 peak of 

pure CO2 at similar pressure (e.g., 4.18 GPa) appears at a much higher frequency of 3732 

cm-1.  

On decompression, the ν3 + ν1 mode of CO2 adsorbed in the framework maintains a single 

sharp symmetrical peak until 2 GPa (Fig 3.8b). Starting from 1.68 GPa, the original low-

frequency component is resolved, and the intensity is recovered with further 

decompression. The intensity switch-over between the two components leading to the low 

frequency component being the dominant mode occurs at 0.91 GPa, a pressure similar to 

that during compression. Below 0.44 GPa, only the original low-frequency component is 

observable, indicating the CO2 mainly resides on a single adsorption site in the PbSDB 

framework. All these observations suggest that pressure regulated formation and new CO2 

adsorption site is completely reversible. 
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Figure 3.8 IR spectra PbSDB loaded with CO2 upon (a) compression from 0.24 to 4.28 GPa in comparison with that of pure CO2 

at representative pressures and (b) decompression to ambient pressure in the spectral region of 3500-3800 cm-1. (c) The pressure 

dependence of the ν3 + ν1 mode of CO2 loaded with PbSDB (red circles and triangles), and that of pure CO2 (black squares). 
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Table 3.3 Frequencies and pressure dependence (dν/dP) of CO2 combination modes 

observed in CdSDB and PbSDB frameworks in comparison with reference values as 

pure CO2. 

Mode CdSDB PbSDB Pure CO2 

 Frequencya 

(cm-1) 

dν/dP  

(cm-1 ∙ 

GPa-1) 

Frequencya 

(cm-1) 

dν/dP  

(cm-1 ∙ 

GPa-1) 

Frequencya 

(cm-1) 

dν/dP  

(cm-1 ∙ 

GPa-1) 

ν3+ 2ν2 

3584 1.96 3581 1.22 3603 3.67 

3589b 0.66 

3599 3.57 

ν3+ ν1 

3692 b 1.43 3687 -0.79 3712 6.38 

3694 3.44 

3705 6.26 3694 2.79 

a. Unless otherwise mentioned, observed and measured at the first point on 

compression to a pressure close to the pure CO2 liquid-to-solid phase transition 

(i.e., ~ 0.5 GPa). 

b. Extrapolated to 0.5 GPa based on linear fit. 

Interestingly, careful examination of the pressure dependence on the two components of 

the ν3 + ν1 mode reveals that the low frequency component undergoes a redshift while the 

high frequency component shifts to blue (Fig 3.8c and Table 3.3). Again, this observation 

is in strong contrast to the CO2 loaded CdSDB systems and thus the mechanism of pressure 

regulated adsorption sites could be different in the two systems. First of all, the formation 

of a new adsorption site at high pressure for CdSDB system is likely the result of removal 

of degeneracy of equivalent adsorption sites (see following discussion). However, this 

formation mechanism can be ruled out for the CO2 loaded PbSDB system in that two 

components undergo opposite pressure-induced frequency shift, indicating that the two 

sites are distinctively non-equivalent at the beginning. Moreover, the relative intensity of 

the two components of the ν3 + ν1 mode remains constant upon compression, indicating the 

binding strength of two sites in PbSDB is independent of compression. In contrast, the 

intensity variation of the two components of the ν3 + ν1 mode in the CO2 loaded PbSDB 
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system suggests the CO2 is migrating from one site to another under the influence of 

external compression. The depletion of the low frequency component suggests that CO2 

adsorbed on this site is becoming more unstable with weakened C=O bond (as the ν3 + ν1 

mode exhibits a redshift) such that the new adsorption site associated with the higher-

frequency component is the preferred site at high pressures. 

3.3.4 Structural origins of the contrasting compression stabilities of 
activated frameworks  

The Raman, IR and XRD measurements collectively show that although the chemical 

structures of both frameworks are highly stable upon external compression, the crystallinity 

of PbSDB is sensitive to compression whereas the pressure modification of the crystallinity 

of CdSDB completely reversible. These contrasting behaviours can be understood from the 

starting crystal structure and framework topology of each framework. First of all, the Cd 

metal centre is six coordinated with oxygen atoms from SDB ligand forming a [CdO6] 

octahedron in the CdSDB framework at ambient pressure. Although the six oxygens are 

non-equivalent (two equivalent with 4 non-equivalent, see Fig 3.1c), the geometry of the 

octahedron can be considered quasi-isotropic topology with respect to Cd metal centre. As 

a result, external compression on the framework especially on the CdO6 octahedron may 

induce isotropic responses including bond shortening and crystal lattice contraction.  A 

strong evidence of isotropic compression is the smooth evolution of the unit cell parameters 

with almost identical contraction rate of cell parameters a, b and c (Fig 3.5 and Table 3.2). 

Moreover, such isotropic topology is also consistent with resilience to external 

compression which leads to amorphization but only at very high pressures, as well as the 

complete reversibility of pressure modification of the crystallinity.  

In contrast, Pb in the PbSDB framework is coordinated with seven oxygens that are in four 

symmetry non-equivalent groups (two O1, two O3, two O4 and one O5, see Fig 3.1a), 

resulting in the formation of an axially truncated nine-faced polyhedron where the axis is 

defined by the Pb-O5 bond. This seven-coordinated, highly non-symmetrical bonding 

geometry may respond to isotropic compression in a highly non-isotopically way. Indeed, 

the XRD analysis suggests that not only the contraction rate of the three cell parameters 

are drastically different, but b axis exhibit a peculiar non-monotonic compression 
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behaviour with pressure (Fig 3.6b and Table 3.2), although the overall unit cell volume 

exhibits a normal pressure-induced contraction (Fig 3.4 and Table 3.2). As a result, the 

[PbO7] polyhedron is less resilient to external compression that may easily induce 

structural distortion of the PbO7 leading to a facile spontaneous amorphization at relatively 

lower pressures. Such distortion associated with anisotropic responses to external 

compression may be permanent leading to the irreversible pressure modification of the 

crystal structures. More importantly, such anisotropic topology of PbSDB framework may 

profoundly influence the CO2 adsorption and guest-host interactions which will be 

discussed next. 

3.3.5 Structural origins of the contrasting pressure-tuned CO2 
adsorption sites 

The CO2 adsorption study and guest-host interactions for both CdSDB and PbSDB 

frameworks at near ambient conditions have been extensively reported.9, 12, 13 However, the 

number of CO2 adsorption sites and the nature of guest-host interactions may be 

substantially different than at high pressures and can be tuned by external compression 

efficiently. In particular, low-temperature 13C SSNMR spectroscopic study on CO2 loaded 

CdSDB suggests that CO2 occupies two non-equivalent sites in the CdSDB framework.13 

In addition, single X-ray diffraction on CO2 loaded CdSDB framework confirmed that the 

two non-equivalent adsorption sites (labeled as C1A and C1B) are constituted by two 

different π-pockets from the phenyl-rings of the SDB ligands (Fig 3.9a and 3.9b).13 As 

demonstrated by both SSNMR and single crystal XRD studies, the nature of the interaction 

between CO2 molecules and both MOF frameworks is that the quadrupole moment of CO2 

interacts with the π-electrons of the two phenyl rings.13 The prerequisite for π-pocket is 

that the two phenyl rings in the π-pocket must face to each other, which is met for the first 

adsorption site in both MOFs (labeled with C1A in Fig 3.9a and 3.9c). In CdSDB, the two 

rings from two different linkers are also facing each other, and thus form the second CO2 

adsorption site (labeled C1B in Fig 3.9b). In contrast, the single crystal XRD result for 

PbSDB at ambient pressure has shown that the phenyl rings from two different linkers are 

almost perpendicular to each other, so that only one effective CO2 adsorption site can be 

formed (Fig 3.9c).  
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Based on the above structural analysis, CdSDB is expected to exhibit two distinctive 

adsorption sites spectroscopically. At low loading pressures (e.g., < 2.5 GPa) in this 

experiment, however, only one CO2 adsorption site was observed as evidenced by the 

single peak of both ν3 + 2ν2 and ν3 + ν1 combination modes. This can be interpreted as 

although the two adsorption sites are crystallographically non-equivalent, the 

corresponding vibrational frequencies are near degenerate due to the small difference 

between these two sites. Upon further compression, however, due to the different extent of 

the guest-host interaction associated with non-equivalent environment of the SDB 

framework, the degeneracy of the vibrational frequency is removed, resulting in the 

observation of a higher frequency component associated with the second adsorption site. 

No further intensity change between the two components suggests the guest-host 

interactions between the two adsorption sites are equally favoured, consistent with the 

isotropic compression behaviour of the CdSDB framework discussed above. 
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Figure 3.9 Schematics of CO2 adsorption sites in CdSDB at ambient pressure and low 

temperature (a) and (b), and at high pressures (b), and in PbSDB at ambient pressure 

(c) and high pressures (d). The green balls represent CO2 molecules inside the pores 

of CdSDB and PbSDB, with the oxygen atoms omitted. The green and blue brackets 

are showing two different types of π-pockets in the channels. The dash lines symbolize 

the interactions between CO2 and the specific adsorption sites of the frameworks.  

In contrast, single crystal X-ray diffraction on CO2 loaded PbSDB frame shows that only 

one CO2 adsorption site is possible given the orientations of the SDB ligands in the cavity. 

This single adsorption site is similarly constituted by a π-pocket from the phenyl rings of 

the same SDB linker that is 3.550 Å away from the CO2 centre (Fig 3.9c). The observation 

of the single component of the ν3 + ν1 mode at low loading pressures (e.g., 0.29 GPa) is 
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consistent with that only one π-pocket is favourable at low pressures. At high pressures, 

the clear splitting of the ν3 + ν1 mode strongly suggests the formation of a new CO2 

adsorption site. Therefore, it is necessary that the phenyl rings involving two SDB linkers 

undergo a pressure-induced change in their orientations. The fact that the original 

adsorption site (C1A) remains upon compression indicates that the π-pocket involving the 

two phenyl rings from the same SDB linker is affected very little by the pressure.  Thus, it 

is highly likely that pressure changes the orientation of the phenyl rings in two adjacent 

SDB linkers substantially (as illustrated in Fig 3.9c), creating a second π-pocket. As 

indicated in Fig 3.9d, the rotation along the axis collinear with the C-S and C-COO bonds 

can change the phenyl orientation. Such rotation results in that the two phenyl rings from 

the two SDB linkers face to each other, effectively creating a new CO2 adsorption site (C1B, 

Fig 3.9d). The pressure-induced ring rotations and pore opening have been reported in ZIF-

8 system.29, 30 

Then the remaining questions is that why the guest-host interactions between CO2 and the 

two frameworks are drastically different in that the two adsorption sites in CdSDB is 

equally favoured at high pressure, whereas the population of CO2 favours the newly formed 

adsorption site in PbSDB at high pressures. This again, can be addressed from the 

anisotropic topology of the PbSDB framework. The XRD analysis shows that c-axis is 

substantially more compressible than the other two, whereas b-axis in extremely resistant 

to compression (Fig 3.6 and Table 3.2). These non-isotropic compression rates necessarily 

reduce the distances between the two adjacent SDB ligands while elongating the distance 

between the phenyl rings of the same ligand (Fig 3.9d). As a result, the interaction between 

the CO2 and the π-pocket of PbSDB formed by the phenyl rings from the same SDB ligand 

(depicted as green brackets in Fig 3.9c) is becoming less efficient as a result of compression. 

At very high pressures (e.g., 4.28 GPa), the structural distortion is so prominent such that 

the initial π-pocket (green brackets) for Pb is nearly completely inaccessible. In contrast, 

the π-pocket formed by the phenyl rings from adjacent SDB ligands (blue bracket in Fig 

3.9d) becomes the only adsorption site (C1B), while the conservation of the total CO2 

adsorbed in the framework is maintained. In the case of CdSDB, the framework undergoes 

an isotropic compression, where the a, b and c axes show similar contraction rates upon 

elevating pressure (See Fig 3.5c and Table 3.2). Therefore, the two different types of π-
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pockets in CdSDB remain equally favoured for CO2 at high pressures. Pressure-induced 

formation of new CO2 adsorption sites and the regulation of guest-host interactions 

between different sites observed in the PbSDB system is unique and unprecedented for any 

previously studied MOF under high pressures, and thus is of fundamental importance in 

applications of CO2 storage in MOFs. Finally, in the future, it would be desirable to conduct 

in situ synchrotron-based single crystal diffraction measurements of CO2 loaded SDB 

frameworks as a function of pressure to gain in-depth understanding of the structure-

property relationships and detailed mechanism of guest-host interactions. 

3.4 Conclusions 

In summary, using Raman spectroscopy, FTIR spectroscopy, synchrotron powder X-ray 

diffractions, we comparatively investigated the structural stabilities and CO2 adsorption 

behaviours of CdSDB and PbSDB MOFs at high pressures up to 13 GPa in situ. Both 

activated CdSDB and PbSDB frameworks undergo a structural modification to amorphous 

state but with chemical structures intact. Upon decompression, the structural changes for 

CdSDB are completely reversible while PbSDB exhibited a reduced crystallinity. The 

different compression behaviour can be understood from the structural origins pertaining 

the near isotropic CdSDB coordination vs non-isotropic PbSDB coordination, as strongly 

corroborated by the pressure dependences of the unit cell parameters of respective 

frameworks.  Although CdSDB is known to possess two CO2 adsorption sites at ambient 

pressure, only one spectroscopically degenerate site is observed at low pressures in the CO2 

loaded CdSDB system while the degeneracy is removed at high pressures leading to the 

observation of the second adsorption site. In contrast, PbSDB has only one CO2 adsorption 

site at ambient pressure but exhibits a new adsorption site upon compression. This newly 

formed adsorption site is structurally and thermodynamically favoured as evidenced by the 

CO2 population growth with pressure, which becomes the only populated site at high 

pressures. The formation of the new CO2 adsorption site in PbSDB can be understood from 

pressure-induced structural change associated with symmetry breaking via phenyl-ring 

rotation. The pressure-tuned CO2 population variations between the two sites can be 

attributed to the contrasting, non-isotropic response of the unit cell parameters which leads 

to the change of the critical distances for the formation and destruction of CO2 adsorption 
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sites in the framework. This study demonstrates that pressure can effectively and 

contrastingly tune the structures and CO2 adsorption performance of CdSDB and PbSDB 

MOFs and provide useful insight into the understanding of structural origins for guest-host 

interactions which are critical for CO2 storage applications. 
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Chapter 4 

4 Discovering the Structural Evolutions of SIFSIX-3-Zn and 

CO2-Framework Interactions under Extreme Pressure by 

In situ Vibrational Spectroscopy 

4.1 Introduction 

Hybrid ultramicroporous materials (HUMs) are a growing class of metal-organic 

frameworks (MOFs) investigated for their gas adsorption applications. These materials are 

made up of metal ions or clusters acting as nodes, which are made into three-dimensional 

frameworks through a combination of organic and inorganic linkers. SIFSIX materials are 

a typical example of this kind of framework.1 SiF6
2- pillars give the materials their name, 

connecting two-dimensional metal-organic sheets into a porous three-dimensional 

structure. New combinations of organic and inorganic linkers with different sizes and 

functionalities have been used to generate structures with particularly unusual and effective 

gas adsorption properties. Previously investigated HUM materials include SIFSIX 

materials,2-3 TIFSIX and SNIFSIX materials,4-5 MOOFOUR and CROFOUR materials6, 

NbOFFIVE materials7 and AlFFIVE materials.8 SIFSIX materials are among the most 

widely studied; numerous SIFSIX frameworks exist consisting of different metal center 

and organic-linker combinations. These materials are of particular interest due to their 

highly selective CO2 adsorption behaviour.3-5 For instance, at 1 bar of pressure, the 

selectivity for CO2 was calculated to be 1818 against N2, 231 against CH4, and over 1800 

against H2.
2 These calculated selectivities, particularly the selectivity against N2 

adsorption, are extremely high compared to Mg-MOF-74,9 which has a selectivity of 800 

against N2, and Zeolite 13X,10 which has a selectivity of 420 against N2.



97 
 

 
 

 

Figure 4.1 (a) View of the 3D ultra-microporous framework of SIFSIX-3-Zn along the b-axis, showing the linear 1D channels. 

(b) View of the coordination environment of Zn in SIFSIX-3-Zn. (c) The framework structure of CO2 loaded SIFSIX-3-Zn at 

110 K and ambient pressure, highlighting the CO2 adsorption site in the channel.11
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The highly selective CO2 adsorption behavior of SIFSIX-3-Zn is believed to be associated 

with the crystal structure (Figure 4.1a). The SIFSIX-3-Zn crystalizes into the tetragonal 

lattice with a space group of P4/mmm. The CO2 occupies one-dimensional channels 

running along the length of the framework’s c-axis. These channels measure 3.84 Å across 

diagonally (Figure 4.1a), similar in size to the 3.30 Å kinetic diameter of CO2.
12 Fluorine 

atoms extend from the corners into these channels out from the SiF6
2- pillars. The channels 

are connected by small windows measuring 2 Å diagonally, along the a and b-axes. 

Computational studies and Raman spectroscopy studies suggest the narrow channels 

promote strong interactions between the electronegative fluorine atoms in the channel and 

the electropositive carbon atom on the CO2 molecule.13-16 The CO2 molecule is oriented 

along the direction of the channel, allowing for stronger carbon-fluorine interactions. This 

orientation allows for a single CO2 molecule to occupy each unit cell. This maximum CO2 

uptake remains unchanged at pressures as high as 25.0 atm and temperatures as high as 338 

K.14  

All these CO2 adsorption properties of SIFSIX-3-Zn including high selectivity towards 

CO2 and the strong CO2-framework interaction can be correlated to the unique framework 

structure and topology. Furthermore, external conditions such as low temperature and high 

pressure can effectively alter the structure of MOFs, which further leads to significant 

changes in CO2 adsorption behaviors. In particular, it has been demonstrated that by 

applying high external pressure to MOFs, the physical and chemical properties of the 

frameworks including pore size17-19 and shape, topology20-29, as well as guest-host 

interactions. For instance, our previous works suggest that high pressure not only can 

substantially improve the CO2 storage capacity of ZIF-8,30 but also generate new CO2 

binding sites in SDB-based MOFs.31 Our other studies on MOFs with heterogeneous 

topologies showed that high pressure could potentially tune the CO2 adsorption prosperities 

in MIL-68(In)30 and α-Mg3(COO)6.
20 Although SIFSIX-3-Zn has been intensively studied 

at near ambient conditions, the structural stability of the framework as well as gas 

adsorption properties under high external pressure remain unknown. Given the distinctive 

ultra microporous structure of SIFSIX-3-Zn framework and its excellent CO2 adsorption 

behaviors, exploring how its structure responses to high external pressure and 
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understanding the guest-host interaction between CO2 and the framework would be of 

particular interest. 

In this study, the physical and chemical stability of SIFSIX-3-Zn material under high 

pressure was first examined by in situ mid-IR and Raman spectroscopy, which provides 

direct information on chemical bonding, local structure, and thus the nature of guest-host 

interactions. We further demonstrate a substantially enhanced structural stability of 

SIFSIX-3-Zn framework with CO2 loaded in the channels, and closer proximity of the 

framework to the CO2 molecules at high pressures. Our findings provide a full picture of 

CO2-framework interactions under high pressure by illuminating the structural origins and 

thus bring new insights into the development of CO2 storage applications in SIFSIX series 

MOFs as well as other ultra microporous materials. 

4.2 Experimental 

SIFSIX-3-Zn was synthesized solvothermally using previously published procedures32 as 

follows: a 10 mL solution of pyrazine (6 mmol, Alfa Aesar, 98%) was prepared and 

diffused into a 10 mL solution of hexafluorosilicate hydrate (3 mmol, Sigma-Aldrich, 99%) 

in methanol. The mixture was let stand at room temperature for 3 days, after which yellow 

crystals were harvested by decanting the excess methanol and dried in a conventional lab 

oven at 90 for 3 to 5 hours. As described in the literature, the as-made SIFSIX-3-Zn 

materials were washed with DMF and solvent exchanged in methanol for 3 days prior to 

activation and CO2 loading, the stock methanol was replaced each day. The identity and 

purity of the final products were tested and confirmed by Powder X-ray diffraction. For 

sample activation as well as CO2 gas loading, a Schlenk line was used. The bottom of an 

L-shaped glass tube was firstly filled with sample, a piece of glass wool was then placed 

at the neck of the glass tube to secure the sample in place. The samples were desolvated 

under a dynamic vacuum at 70-80 °C for 24 hours, followed by introducing a known 

amount of CO2 onto the vacuum line. Meanwhile, the bottom of the L-shaped tube was 

immersed in liquid nitrogen to condense CO2. The glass tube was then flame sealed off 

from the vacuum line for further operation.  
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To achieve in-situ high pressure conditions, two diamond anvil cells equipped with type I 

and type II diamonds with a culet size of 600 µm were used for Raman and IR 

measurements respectively. The sample chambers with approx. 60-70 µm in thickness and 

30-40 µm and 250 µm in diameter were prepared on pre-intended stainless-steel gaskets 

for Raman and IR measurements. The glass tubes with activated and CO2 loaded samples 

sealed inside were opened in a Nitrogen-filled MBraun LAB Master 130 glovebox with O2 

content below 5 ppm and H2O content below 1 ppm. Both activated samples and CO2 

loaded samples were loaded into the DACs without any pressure transmitting medium or 

KBr to eliminate possible guest-host interactions that might be induced by mediums, and 

also to ensure that all our results from different characterization methods are comparable. 

A few ruby chips were pre-loaded to the sample chambers for pressure calibrations.33 

Owing to the ultra-micro pores of the framework, the strong attraction of the frame to CO2, 

as well as the high CO2 to N2 adsorption selectivity of this material, the CO2 molecules 

remained in the pores during this process. Highly customized IR and Raman micro-

spectroscopy systems dedicated to in-situ high pressure experiments were used in this 

study, with details described in our previous publications.34  

4.3 Results and discussion 

4.3.1 Structural stability of SIFSIX-3-Zn material 

Raman and mid-IR spectra of SIFSIX-3-Zn at ambient conditions are depicted in Figure 

4.2. In the mid-IR range (400 cm-1-4000 cm-1), most of the absorption bands are associated 

with the internal vibrations of the organic ligand, which in this case, the vibrations of the 

pyrazine ring. The bands from 1020 cm-1 to 1130 cm-1 and from 1120 cm-1 to 1200 cm-1, 

as well as the strong peak located at 1438 cm -1 could be assigned ring stretching. The C-

H vibrations including C-H out-of-plane bending, C-H in-plane bending and C-H 

stretching, are observed as single peaks at 844 cm-1, 1438 cm-1 and a set of bands in the 

frequency range of 2800 cm-1 to 3160 cm-1, respectively.35 All these bands above are 

associated with vibrations of pyrazine ligands and can potentially provide useful 

information on modification on the rings under external pressure. The bands at 608 cm-1 

and 787 cm-1 are assigned to Si-F stretching.36 In the local structure of SIFSIX-3-Zn, the 

SiF6
2- clusters play the role of ‘pillar’, connecting layers of pyrazine sheets into the 3D 
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framework. With two of the Fluorine atoms coordinately bonded to Zn atom, the 

vibrational modes of SiF6
2- may reflect the connectivity of the metal-ligand chemical 

bonding, and even the decomposition of the framework under pressure. Similarly, all the 

bands at above 400 cm-1 in the Raman spectrum are derived from the vibrations of pyrazine 

rings and SiF6
2- pillars, with the detailed assignment provided in Table 4.1. In Raman 

spectra, the unreacted ligand ZnSiF6 displays a single band for the Si-F stretching36, 

whereas in SIFSIX-3-Zn framework, the Si-F stretching mode exhibits a doublet at 669 

and 694 cm-1. These two peaks are assigned to the Si-F bonds with the F atoms coordinated 

to Zn (labeled as νSi-F(-Zn) in below), and the equatorial Si-F bonds (labeled as νSi-F in below), 

respectively (Table 4.1).  
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Figure 4.2 IR (top) and Raman (bottom) spectra of activated SIFSIX-3-Zn at ambient 

pressure in the frequency region of 100-3400 cm-1, the break from 1800 to 2500 cm-1 

is to omit the IR absorption of diamond. 
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Table 4.1 IR and Raman bands assignments of activated SIFSIX-3-Zn. 

IR Frequencya 

(cm-1) 

Assignment Raman Frequencyb 

(cm-1) 

Assignment 

608, 647 Si-F bending 173, 225 Lattice modes 

787 Si-F stretching 669 Si-F stretching 

844 C-H out-of-plane 

bending 

694 Si-F(-Zn) 

stretching 

1022, 1068, 1105, 

1127, 1438 

Ring stretching 1021, 1259, 1518, 

1615 

Ring stretching 

1151 C-H in-plane bending 1035 Ring bending 

2600-3200 C-H stretching 2800-3250 C-H stretching 

a. Observed and measured at the first point on compression to a lowest possible 

pressure (i.e., 0.11 GPa). 

b. Observed and measured under ambient conditions. 

Upon initial compression to 0.85 GPa, a slight loss of intensity on the lattice modes (Figure 

4.3a) and SiF6
2- stretching mode on mid-IR (Figure 4.4), indicating a mild degree of 

reduction in crystallinity. Further compression to 1.96 GPa, results in a significant band 

broadening and merging in the lattice region, as well as the SiF6
2- stretching region on IR 

spectrum under the similar pressure of 2.05 GPa. In particular, the C-H stretching mode on 

both Raman (at 2.88 GPa) and IR (at 2.65 GPa) exhibits a substantial flattening along with 

a striking blue-shift (Figure 4.3b). Upon decompression, the spectra of the recovered 

sample do not resemble that of the initial one in the lattice region (Figure 4.3a) and the C-

H stretching (Figure 4.4), indicating that the pressure-induced structural change is 

permanent, and is mostly associated with the disordering of the pyrazine rings. 

Nonetheless, most of the Raman modes still exist upon recovery, suggesting that the 

chemical connectivity of the framework survived from compression up to 5.64 GPa without 

breaking down completely. 
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Figure 4.3 Selected Raman spectra of activated SIFSIX-3-Zn upon compression and decompression in the spectral region of 50-

1200 cm-1 (a) and 1400-3400cm-1.
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Figure 4.4 Selected mid-IR spectra of activated SIFSIX-3-Zn collected in the pressure 

range from ambient to 5.96 GPa. 
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The pressure dependence (dν/dP, cm-1/GPa) of selected Raman and IR modes was studied 

by plotting the vibrational frequencies as a function of pressure. In this work, the pressure 

dependences of ring stretching and C-H in-plane bending modes of pyrazine ring, as well 

as two of the Si-F stretching modes of the SiF6
2- pillars were monitored (Figure 4.5a and 

Table 4.2). A discontinuity was observed at around 2 GPa on the curves. In the pressure 

range from ambient to 2 GPa, the ring stretching mode exhibit a relatively large pressure 

coefficient on both Raman and IR, whereas the Si-F(-Zn) undergoes a minor blueshift, 

suggesting that the pyrazine is more sensitive to pressure, while the SiF6
2- pillars are rigid. 

At 2 GPa and above, the pressure coefficient of ring stretching mode increases while that 

of the C-H bending mode decreases dramatically. Moreover, the sharply decreased pressure 

dependence of the Si-F(-Zn) stretching mode suggests that the SiF6
2- pillars are more rigid 

under higher pressures. Whereas the equatorial fluorine atoms on the SiF6
2- pillars extend 

from the corners into the channels, and therefore not much affected by external pressure 

(Figure 4.1b). Consequently, the pressure dependence of this Si-F stretching mode remains 

extremely small (0.42 cm-1/GPa) and unchanged in the entire compression region, 

indicating that the pores of the SIFSIX-3-Zn remain intact up to about 6 GPa. 
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Figure 4.5 Pressure dependence (dν/dP) of selected Raman modes of empty SIFSIX-

3-Zn (a) and CO2 loaded SIFSIX-3-Zn (b). 
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Table 4.2 Pressure dependences [dν/dP (cm-1∙GPa-1)] of selected Raman bands of 

empty SIFSIX-3-Zn and CO2 loaded SIFSIX-3-Zn on compression. 

Empty SIFSIX-3-Zn 

Raman Modes Frequencya (cm-1) dν/dP (cm-1∙GPa-1) 

0.24-1.96 GPa 2.88-5.67 GPa 

ν(Si-F) 658 0.42 

ν(Si-F-Zn) 694 3.20 0.58 

ν(ring) 1013 2.56 4.67 

δ(ring) 1039 7.21 2.14 

CO2 loaded SIFSIX-3-Zn 

Raman Modes Frequencya (cm-1) dν/dP (cm-1·GPa-1) 

0.32-1.37 GPa 1.79-5.17 GPa 

ν(Si-F) 656 -3.06 2.10 

ν(Si-F-Zn) 695 1.49 

ν(ring) 1015 1.72 

δ(ring) 1041 3.32 

a. Observed and measured at the first point on compression to a lowest possible 

pressure (i.e., ~ 0.3 GPa). 
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4.3.2 Guest-host interactions of CO2 loaded SIFSIX-3-Zn framework  
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Figure 4.6 Raman spectra of activated SIFSIX-3-Zn (red), CO2 loaded SIFSIX-3-Zn 

(black), and free CO2 under ambient pressure (blue). 

Raman spectra of the empty, CO2 loaded SIFSIX-3-Zn, as well as the free CO2 gas, are 

depicted in Figure 4.6. The CO2 symmetric stretching mode ν1 at 1284 cm-1 and 1388 cm-

1 on Raman spectrum and the CO2 asymmetric stretching mode ν3 at 2341 cm-1 as well as 

the CO2 combination modes ν3 + 2ν2 and ν3 + ν1 at 3592 cm-1 and 3696 cm-1 in mid-IR 

spectrum are observed as expected. The intensity of the Si-F stretching mode (at 665 cm-

1) on Raman spectrum increased significantly after the CO2 was loaded into the sample, 

similarly, a saturation of the Si-F stretching band on IR spectrum was also observed, both 

observations suggest a strong interaction between CO2 molecules and the equatorial 

fluorine atoms on the SiF6
2- pillar. Other major changes in the IR spectra (Figure 4.7) such 

as the splitting of the C-H bending and stretching modes may indicate rotations of the 

pyrazine ring induced by CO2 molecules (Figure 4.8).  
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Figure 4.7 IR spectra of activated SIFSIX-3-Zn (red), CO2 loaded SIFSIX-3-Zn 

(black), and free CO2 under 0.33 GPa (blue). The inlet shows the spectral region of 

3500 cm-1 to 3800 cm-1, highlighting the CO2 combination modes ν3+2ν2 and ν3+ν1 in 

the samples.
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Figure 4.8 The 22.9 ° tilting of the pyrazine rings in the CO2 loaded framework is depicted as viewed along different directions, 

in contrast with the parallel rings of the as-made framework (A) (B). Adjacent pyrazine rings are tilted in opposing directions 

(C). The slanting brings the framework protons closer to the guest CO2 molecule, enhancing guest-framework interactions.4, 11
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Raman spectra of CO2 loaded SIFSIX-3-Zn were collected as a function of pressure from 

near ambient pressure to 5.17 GPa (Figure 4.9). Unfortunately, the CO2 symmetric 

stretching mode at 1284 cm-1 and 1388 cm-1 in the Raman spectrum was blocked by intense 

scattering of the diamond at around 1340 cm-1, nonetheless, the other modes still provide 

characteristic information on the changes of the framework under external high pressure 

with CO2 being in the channels. Upon compression all the way to 5.17 GPa, all the changes 

in the Raman spectra are gradual, suggesting that there is no phase transition under this 

pressure region. It is worth noting that the intensity of the Si-F stretching mode increases 

steadily during compression, indicating an enhanced interaction between CO2 and the 

equatorial fluorine atoms. The Si-F(-Zn), however, only shows a slight loss of intensity 

with a minor degree of band broadening. Additionally, the broadening of the lattice modes 

(0-300 cm-1) was initially observed at 3.28 GPa, which are then further flattened upon 

compression. These observations suggest a marginal structural disorder of the SIFSIX-3-

Zn framework. Upon releasing the pressure, all the pressure-induced changes on Raman 

and IR spectra were observed in a reverse sequence. The Raman spectrum of the recovered 

sample has shown similar profiles as the ambient one (Figure 4.9), indicating the structural 

modifications on CO2 loaded SIFSIX-3-Zn induced by high external pressure are mostly 

reversible. 
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Figure 4.9 Selected Raman spectra of CO2 loaded SIFSIX-3-Zn upon compression 

and recovery in the pressure range from ambient to 5.17 GPa.  

The pressure dependences of selected vibrational modes of CO2 loaded SIFSIX-3-Zn were 

further examined (Figure 4.5b and Table 4.2). The pressure coefficients of these modes are 

relatively small, compared to that of the empty framework, indicating that the structure is 

generally under less stress with the CO2 being in the channels. Interestingly, the Si-F 

stretching mode has shown a soft behavior (dν/dP = -3.06 cm-1/GPa) at below 2 GPa, which 

typically suggests the weakening of the Si-F bond. As reported by previous studies, CO2 

molecules in the SIFSIX-3-Zn interact strongly with Fluorine atoms on the SiF6
2- pillars 

even under ambient pressure.32 Hence, such large pressure dependence (-3.06 cm-1/GPa) 

of the Si-F stretching mode most likely originates from the enhanced carbon-fluorine 

attraction upon compression, which weakens the Si-F bonding. The strongest interaction 
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CO2-framework interaction was achieved at 1.37 GPa, where the frequency of Si-F(-Zn) 

stretching mode reaches the lowest. When the pressure is above 2 GPa, the Si-F(-Zn) 

stretching mode exhibited a regular pressure-induced blue shift same as all the other Raman 

modes, attributed to the bond stiffening at higher pressures. 

Apparently, the structural stability of the SIFSIX-3-Zn framework has been much 

improved when loaded with CO2. On Raman spectra, the empty SIFSIX-3-Zn framework 

started to disorder at a very low pressure of 1.33 GPa, while the decrease of crystallinity 

of the material was initially present at 3.28 GPa in CO2 loaded framework. Moreover, the 

empty framework exhibits a possible phase transition to a less ordered structure at 1.96 

GPa, whereas the CO2 loaded SIFSIX-3-Zn experiences no phase change upon 

compression. Furthermore, the recovered empty SIFSIX-3-Zn no longer resemble the 

profile of the initial spectra of both IR and Raman (Figure 4.3 and 4.4), suggesting an 

irreversible structural amorphization of the framework. In contrast, the CO2 loaded 

framework exhibit excellent reversibility in the similar pressure range from ambient to 5 

GPa, as both IR and Raman spectra of the recovered sample show little observable 

difference compared to the initial ones (Figure 4.9 and 4.10).   

The mid-IR spectra show a clear profile of pyrazine ring stretching modes (Figure 4.10), 

CO2 asymmetric stretching mode ν3 (Figure 4.11 c and d), as well as the CO2 combination 

modes (Figure 4.11a and b). The spectra empty SIFSIX-3-Zn framework and pure CO2 at 

similar pressures are included in the same figure as a comparison. Upon compression, the 

splitting of the CO2 combination mode ν3 + 2ν2 was observed (at 3582 and 3592 cm-1) 

under a moderate pressure of 0.28 GPa. At this point, it is apparent that there are two 

possible CO2 binding sites in the channels of SIFSIX-3-Zn at high pressures. 

Since the fundamental modes are naturally more intense than combination modes, the 

changes on fundamental mode ν3 induced by O=C=O bond distortion are more apparent 

than that of ν3 + ν1. As shown in Figure 4.11c, the ν3 mode features a major band at 2341 

cm-1 as expected, with an observable shoulder at a higher frequency, indicating the second 

binding site. Upon elevating the pressure, more CO2 goes to this site, evidenced by a change 

in the relative intensity between the ν3 + 2ν2 doublet, and an enhanced shoulder at ν3. At 
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very high pressure of 3.30 GPa, the high-frequency component and the low-frequency 

component of the ν3 mode are merging in to a much broader band, yet still characterizes as 

two peaks, indicating that the physical/chemical environments of adsorbed CO2 molecules 

at site 1 and 2 are very similar, resulting in singlet at ν3 + 2ν2 mode.  
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Figure 4.10 Selected mid-IR spectra of activated SIFSIX-3-Zn collected in the 

pressure range from ambient to 4.08 GPa. 
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Figure 4.11 IR spectra of ν3+2ν2, ν3+ν1 (a) and ν3 (c) modes of adsorbed CO2 in 

SIFSIX-3-Zn on compression from 0.33 to 4.08 GPa and decompression (b)(d) to 0.11 

GPa in the frequency region of 2200-2500 cm-1 and 3500-3800 cm-1. IR spectra of pure 

CO2 at 0.33 GPa and 3.39 GPa are plotted in (a) as comparisons. 
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4.3.3 Structural origins of the pressure effect on tuning CO2 binding 
sites in SIFSIX-3-Zn material 

Our previous single-crystal XRD analysis on CO2 loaded SIFSIX-3-Zn under ambient 

pressure and 110 K has shown that the CO2 molecules feature 2 symmetry-equivalent 

positions, instead of being adsorbed in the center of the channel (Figure 4.12a and c). The 

orientation of the adsorbed CO2 molecules is found to be parallel to the framework 

channels. Structurally, by including CO2 molecules in the channels, the space group of the 

framework structure changes from P4/mmm to I4/mcm. With the presence of CO2, the 

framework is slightly contracted compared to the previously reported structure of the 

empty SIFSIX-3-Zn at 100 K. This contraction can be attributed to a shrinking of the Zn-

F-Si and Zn-N bonds by 0.015 Å and 0.018 Å along the c-axis and the a-axis, respectively, 

as well as a contraction of the pyrazine ring diameter by 0.015 Å. The Si-F equatorial 

bonds, however, are observed to be elongated from 1.657 Å to 1.669 Å (Figure 4.8c). This 

elongation results in the weakening of the Si-F bond, which is due to the enhanced dipolar 

interaction between the fluorine atoms with the adsorbed CO2 molecule in the channel. 

Furthermore, the pyrazine rings are found to be tilted and formed an angle of 22.9° with 

respect to the c-axis, whereas the adjacent pyrazine rings within the same unit cell are 

reported to be coplanar to each other in the empty SIFSIX-3-Zn framework at 293 K 

(Figure 4.8a). This rotation of the pyrazine rings brings the framework protons closer to 

the adsorbed CO2 molecule in the channel. These overall modifications on SIFSIX-3-Zn 

framework upon loading CO2 to the channels lead to a stronger CO2-framework interaction.
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Figure 4.12 Schematics of CO2 adsorption sites in SIFSIX-3-Zn at (a)(c) ambient 

pressure; (b)(d) high pressures, along two facets of the channels, respectively. Green 

dots correspond to site 1 observed under ambient pressure and 110 K, red dots 

represent site 2 formed under high pressure. The dash lines are showing the 

interactions between CO2 and the specific components of the framework. Red arrows 

in (b) indicate the rotation direction of the pyrazine rings, the black arrows in (b) and 

(d) are showing the elongation of the Si-F bond at high pressures.11
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Upon applying high external pressure to the CO2 loaded SIFSIX-3-Zn framework, most of 

the above changes at 110 K and ambient pressure further enhanced. The pyrazine rings 

continue tilting into the channels up to 2.65 GPa, consistent with an extremely large 

pressure coefficient of the C-H bending mode (11.70 cm-1/GPa-1), which then dramatically 

dropped to 5.63 cm-1/GPa-1 (Figure 4.13a). Interestingly, the higher frequency component 

of the CO2 ν3 + 2ν2 doublet is observed to be red-shifting consistently from ambient 

pressure and disappears at the same pressure of 2.65 GPa (Figure 4.13b), indicating further 

weakening of the the O=C=O bonds, which is owing to the enhanced dipolar interaction 

between CO2 carbon and fluorine atoms on the pillars. This discontinuity of the pressure 

dependence of the CO2 ν3 + 2ν2 doublet at 3 GPa suggests the closest affinity between 

framework and site 2 CO2, after which both ν3 + 2ν2 and ν3 + ν1 display blueshifts, 

corresponding to pressure-induced C=O bond stiffening.  

From all these observations above, the new CO2 binding site induced by high pressure 

likely adopts V-shaped CO2 molecules, with the carbons attracted to the F atoms on the 

pillar while the O atoms pulled by H atoms on the pyrazine rings (Figure 4.12b and d). At 

ambient pressure and 110 K, O=C=O bond angle of adsorbed CO2 is measured to be 178.1°. 

Such CO2 molecule distortion induced by strong guest-host interaction has been previously 

observed in other MOFs as well.37 At high pressures, the formation of site 2 involves 

further tilting of the pyrazine rings to a higher degree with respect to the c-axis (Figure 

4.12b), a further elongation of the Si-F bonds toward the center of the channel. All these 

structural changes bring the functional groups closer to CO2, which gives rise to stronger 

interactions at high pressures, resulting in a larger torsion angle of the CO2 molecule at site 

2. Moreover, site 1 and site 2 co-exist in the channels in the entire pressure region from 

ambient to 4.08 GPa, suggests that the high-pressure has induced non-isotropic responses 

of the framework, which leads two distinct environments for CO2 adsorption. 
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Figure 4.13 IR frequencies of δ(ring) and δ(C-H) modes of CO2 loaded SIFSIX-3-Zn 

(a) as a function of pressure; (b) IR frequencies of νs(O=C=O), ν3+2ν2 and ν3+ν1 of 

adsorbed CO2 in SIFSIX-3-Zn as a function of pressure. The pressure coefficients are 

labeled on each line. 

4.4 Conclusions 

Overall, combined results from in situ high pressure mid-IR and Raman experiments 

provide a full picture of the evolution of the crystallinity, framework structure, as well as 

the behavior of CO2 within the SIFSIX-3-Zn channels under external pressure. The empty 

SIFSIX-3-Zn shows flexibility along Zn-pyrazine sheets, while it is rigid along SiF6
2- 

pillars. A crystalline-to-crystalline phase transition is predicted at 2 GPa. Though the empty 

SIFSIX-3-Zn undergoes a partially irreversible compression, the pores remain intact along 

the process. In contrast, the compression of CO2 loaded SIFSIX-3-Zn is found to be 

completely recoverable. The adsorbed CO2 features 2 nonequivalent binding sites in the 

channels under high pressures. The structural origins of the formation of the new binding 

site are unveiled, the driving force for forming the second is the enhanced interaction 
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between fluorine SiF6
2- pillars and the CO2 carbon, as well as the proximity of pyrazine 

carbons to the CO2 oxygen under high pressure. Our study has also demonstrated that high 

pressure facilitates the rotation of the pyrazine rings and the elongation of the Si-F bonds, 

and thus regulates the distortion of the CO2 molecules. Finally, this work demonstrates that 

pressure can effectively tune the structural properties and CO2 adsorption performance of 

SIFSIX-3-Zn and fundamentally contribute to the understanding of structural origins for 

CO2-framework interactions in the SIFSIX series MOFs as well as ultra-microporous 

materials which are critical for their CO2 storage applications. 
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Chapter 5 

5 Monitoring the Synergetic Effect of High Pressure and 

Temperature on Enhancing CO2 Adsorptive Capacity of 

ZIF-8 and UiO-66 by In-Situ FTIR Spectroscopy 

5.1 Introduction 

The sharply rising concentration of atmospheric carbon dioxide is one of the major 

concerns with respect to the global warming effect. Currently, the most commonly used 

method for CO2 capture is chemical absorption by alkanolamine aqueous solutions. 

However, these solution-based chemical absorbents carry many main drawbacks such as 

low energy efficiency and huge loss during solvent evaporation and degradation. 

Alternatively, solid physisorbent materials including activated carbons, zeolites and ZIFs 

(zeolitic imidazolate frameworks), as well as MOFs (metal-organic frameworks), which 

have lower heat capacities and require lower regeneration energy, have attracted an 

increasing amount of research. Among these solid adsorption materials, the most promising 

candidates are ZIFs and MOFs due to their extremely high surface area and porosity, 

relatively large pore size, high chemical and structure stability, as well as high tunability.1-

4 All these properties give ZIFs and MOFs great potential to achieve optimal CO2 capture 

and storage performance. In the large ZIF family, ZIF-8 [Zn(MeIm)2, MeIm = 2-

methylimidazolate] is one of the few noble ZIFs whose structural properties and gas 

adsorption performance (i.e. CH4, N2, H2O and CO2) have been intensively studied in the 

past decade, both under ambient conditions, low temperatures as well as high external 

pressures by experimental and computational methods.5-10 For industrial applications, the 

exposure of the sorbents to harsh environments, such as heat, pressure, and strong basic or 

acidic chemical conditions, are inevitable.11 Therefore, materials with long-term structural 

and chemical stability are requisite. As the charge of the metal center in a MOF plays an 

important role in increasing the stability of the framework, zirconium(IV)-based MOFs in 

general, exhibit excellent stability.12 For the same reason, we have also chosen for this 

study is UiO-66 [Zr6O4(OH)4(BDC)6, BDC = benzene-1,4-dicarboxylate], which has 

shown high stability under humidity, can also sustain temperatures higher than 375 °C.13-
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15 The adsorption of CO2 and other gases (CH4, H2, etc.) in UiO-66(Zr) has been 

extensively explored,16-19 and the material is commercially available. 

The local structure of ZIF-8 is constructed by tetrahedrally connecting a zinc metal center 

to four individual methylimidazolate ligands, as illustrated in Figure 5.1. It possesses a 

sodalite (SOD) topology with a cage diameter of 11.6 Å and a cage aperture of 3.4 Å, 

formed by 4 membered rings and 6 membered rings.3 UiO-66 is built from octahedral 

Zr6O4(OH)4 metal clusters and 12 terephthalate bridging units, coordinated through the 

carboxylate groups on the linkers (Figure 5.1c-f).13 Each Zr(IV) is connected to four other 

Zr(IV) by bridging µ3-O or µ3-OH groups, to form a Zr6-octahedron with a Zr···Zr distance 

of 3.513 Å. The assembled UiO-66 features three distinct types of Zr-O bonds: the Zr-

O(COO
-
), the Zr-Oµ

3
-O and Zr-Oµ

3
-OH. Consequently, such unique connection between the 

Zr6O4(OH)4(BDC)6 clusters and the bridging terephthalate ligands give rise to the 

formation of two micropores of cages in the 3D framework of UiO-66: the larger octahedral 

cavities are 11 Å in diamter, and the smaller tetrahedral cavities are 8 Å in diamater.20 

A significant amount of research effort has been paid to modifying and optimizing the CO2 

adsorption performance in ZIF-8 through chemical and post-synthetic methods. For 

instance, by the inclusion of the ionic liquid into the cages, the CO2/CH4 and CO2/N2 

separation performances of ZIF-8 has been greatly enhanced. Similarly, base on the 

skeleton of UiO-66, a series of MOFs that possess the same topologies but different 

functionalities and pore sizes have been synthesized (i.e. UiO-68, UiO-66-NH2). The 

isoretular synthesized UiO-66-NH2 shows a superior CO2 adsorption performance in both 

adsorption capacity and selectivity compared to that of the pristine UiO-66, which is owing 

to the strong interaction between CO2 and the NH2 functional group. Moreover, by 

incorporating graphene oxide (GO) to the framework, researches found that the CO2 

capacity and CO2/N2 selectivity of UiO-66 and UiO-66-NH2 can be further improved. 

Besides all these synthetic and post-synthetic ways to improve the performance of MOFs, 

high pressure has been previously proven to be another promising method to efficiently 

modify the structural properties of MOFs. Previous studies have demonstrated that high 

pressure can tune the channel size and shape, accessible pore volume and surface area in 

MOFs. Consequently, these pressure-induced modifications on the framework will affect 
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the adsorption capacity, selectivity, and access to the binding sites, which eventually leads 

to better adsorption performance. Hu et al have demonstrated pressure-enhanced CO2 

storage in ZIF-8. Stronger CO2-framework interactions regulated by pressure are probed 

using FTIR spectroscopy. However, all our previous high pressure studies were carried out 

at room temperature, where CO2 solidified at a moderate pressure of 0.6-0.7 GPa. This 

phase change of CO2 severely limits the further insertion of CO2 into the cavities of MOFs 

since the solid CO2 is less dynamic and immobile. Meanwhile, numerous of studies have 

illustrated that introducing small guest molecules to ZIF-8 framework (i.e. H2O, methanol, 

CH4, and CO2) as PTMs can not only enhance the stability of the framework substantially 

to ~4 GPa, but also induce a unit cell expansion under various pressures.21-24 Base on these 

observations, it is expected that introducing CO2 molecules to ZIF-8 may also expand the 

unit cell volume and further improve the CO2 adsorptive capacity, if fluid phase CO2 could 

be achieved by elevating the temperature under higher pressures (i.e. above 0.6 GPa).  

Contrary to the large number of high pressure studies on ZIF-8, our knowledge on the guest 

adsorption behaviors of UiO-66 under high pressure, on the other hand, is very limited. 

Despite the intensive investigations on the sorption and separation performance of various 

gas in UiO-66 and its analogs at near ambient conditions,12, 16-20 so far, only the mechanical 

properties of UiO-66 under high pressure have been reported.25-26 Thus, understanding the 

CO2 adsorption behaviors of UiO-66 and the corresponding CO2-framework interactions 

under high pressure is an important step toward discovering its best CO2 storage conditions. 

Herein, based on the CO2 phase diagram, we predict that by heating up the DAC system 

and liquidizing CO2 under pressures higher than 0.7 GPa, more CO2 would be forced into 

the framework. Considering the outstanding CO2 adsorption performances of ZIF-8 and 

UiO-66 under ambient conditions, high structural and thermal stability, it is believed that 

the application of high pressure and high temperature could further bring their CO2 storage 

efficiencies to a whole new level. It is also of our fundamental interest to comparatively 

study the similarities and differences in the CO2 adsorption behaviors of ZIF-8 and UiO-

66 under high pressure and high temperature conditions, and understand how the 

topological features in MOFs affect their adsorption properties. 
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Figure 5.1 (a) Framework topology of ZIF-8 viewing along a axis. (b) Structure of the 

sodalite (SOD) cage in ZIF-8. (c) Framework topology of UiO-66 viewing along c axis. 

(d) The coordination environment of the Zr6O4(OH)4(O2C)12 clusters. The octahedral 

cage (e) and the tetrahedral cage (f) in the UiO-66 structure. These images have been 

reproduced from previously reported structures. 19, 27
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5.2 Experimental 

ZIF-8 and UiO-66 were synthesized solvothermally following the literature reported 

method.19, 27 The identity and purity were checked using PXRD. To carry out in-situ high 

pressure experiments, a diamond anvil cell equipped with a pair of 600 µm type II 

diamonds was used for all IR measurements in this work. The sample chamber was 

prepared on a stainless-steel gasket, with 60-80 µm in thickness and 300 µm in diameter. 

A few ruby chips were pre-loaded to the sample chamber for pressure calibration. For 

sample loading, in order to load ZIF-8 along with extra CO2 outside the framework, the 

sample chamber was firstly half-filled with activated ZIF-8. The piston side of the DAC 

was then immersed in a liquid nitrogen bath to cool down. During this process, the sample 

chamber was cover up with a plastic film to avoid moisture condensing on the sample. 

When the temperature of the gasket was below the melting point of dry ice (i.e. <-78.5 °C), 

the plastic film was removed, and the CO2 gas was introduced into the sample chamber. 

Upon closing the DAC, an initial pressure of approximately 0.3 GPa was applied to secure 

the gaseous/liquid CO2 in the sample chamber for further measurements. 

The FTIR spectroscopy is highly customized for in-situ measurements under high pressure, 

with the details described in Chapter 2. In this work, to conduct in-situ high-pressure and 

high-temperature conditions simultaneously, the regular DAC stage for room temperature 

measurements is replaced by a custom-designed heating stage, which is composed of an 

aluminum stand, a heating holder, and a glass wool board for heat isolation. By placing the 

DAC onto this stage, a moderate temperature (up to ~500 °C) could be achieved by 

powering up the resistance heating holder. A temperature controller (omega iSeries) is 

equipped to control the temperature of the DAC precisely. The temperature is measured by 

attaching a thermocouple to the back of the piston diamond. The accuracy of the heating 

system is tested and recorded (as shown in Appendix), which has shown that the system is 

having a precision of ±2.3 K in the temperature range from 50-80 °C, ±5.0 K from 80 to 

200 °C. In addition, the melting temperatures of solid CO2 we observed are based on the 

substantial shape and frequency changes of the CO2 combination modes on the IR spectra, 

melting temperatures in our works at various pressures are in good consistency with the 

CO2 phase diagram reported by Giordano et al.28  
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5.3 Result and discussion 

5.3.1 Characterization of CO2 adsorption properties of ZIF-8 under 
high temperature and high-pressure conditions 

The IR spectra of activated ZIF-8 and CO2 loaded ZIF-8 are shown in Figure 5.2, the peak 

assignments are labeled below each band. The intense CO2 fundamental modes ν1 (O=C=O 

bending) and ν3 (O=C=O asymmetric stretching) in the IR spectra of CO2 loaded ZIF-8 

suggest a successful gas loading. At 1.02 GPa and room temperature, CO2 combination 

modes each exhibit two components, indicating that the CO2 molecules in the sample 

chamber have two distinct environments. As discussed previously, the sharp high-

frequency components of each mode are assigned to the free CO2 in the sample chamber 

but outside the ZIF-8 framework, which undergoes a gaseous/liquid to solid phase change 

at about 0.6 GPa. The CO2 molecules adsorbed in ZIF-8, on the other hand, are located at 

specific CO2 binding sites in the cages and correspond to the low-frequency components 

of the doublets. The significantly enhanced C=N stretching mode at ~1600 cm-1 as well as 

the ring stretching mode between 1400 cm-1 and 1500 cm-1 indicating a stronger CO2-

framework interaction at high pressure (see Figure 5.2).29-30
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Figure 5.2 Mid-IR spectra of activated ZIF-8 at ambient pressure (black) and CO2 loaded ZIF-8 at 1.02 GPa (red). The inset 

shows the comparison between the activated (bottom) and CO2 loaded ZIF-8 (top) in the spectral region of the CO2 combination 

modes. 
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After the cryogenic CO2 loading, the FTIR spectra of CO2 loaded ZIF-8 were collected as 

a function of temperature at fixed pressures. In all high pressure and high temperature 

measurements, CO2 combination modes (i.e. ν3 + 2ν2 and ν3 + ν1, observed at around 3600 

and 3710 cm-1 respectively) in FTIR spectra are used to follow the behavior of adsorbed 

CO2 in MOFs, the host-guest interaction between CO2 and the framework, as well as the 

phase change of the CO2 outside framework. The selected FTIR spectra of CO2 

combination modes collected under 0.83 GPa and at various temperatures are depicted in 

Figure 5.3a. At 36 °C, both the high-frequency components of ν3 + 2ν2 and ν3 + ν1 bands 

become less intense while the low-frequency components become broader, suggesting that 

the solid CO2 residing outside the framework starts to melt into liquid/gaseous phase at this 

temperature and pressure with part of it already adsorbed into the cages. Upon further 

heating, at the temperature of 40 °C, it is apparent that all solid CO2 that was initially 

outside the ZIF-8 framework is liquefied, as the high-frequency and low-frequency 

components of both CO2 combination modes merged into a singlet. After cooling the DAC 

system down to room temperature, the higher frequency component of both ν3 + 2ν2 and ν3 

+ ν1 bands reappear, but become significantly weaker, suggesting that more CO2 is 

adsorbed in ZIF-8 cages compared to those before heating, in spite that part of the extra 

CO2 transits from liquid phase back to solid phase at the temperatures of 36 °C and below. 

The quantity of each CO2 species is determined by peak deconvolution and integration. 

The ν3 + ν1 bands in CO2 loaded ZIF-8 under 0.83 GPa and at various temperatures were 

deconvoluted and integrated (see Figure 5.4), with the normalized peak areas listed in Table 

5.1. After initial CO2 loading, the peak area of the low-frequency component of ν3 + ν1 was 

0.55, it then slightly increased to 0.62 upon heating to 36 °C. At 40 °C, the peak area 

reached a maximum of 0.78, whereas the rest was attributed to the fluid CO2 outside the 

framework (Figure 5.4). The peak area of the adsorbed CO2 decreased to 0.62 upon cooling 

down to room temperature. Based on these numbers, we estimated the amount of CO2 

adsorbed in the framework is increased by 11.9% compared to that before heating. 
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Figure 5.3 Selected mid-IR spectra of CO2 combination modes under various 

temperatures in ZIF-8 at 0.83 GPa (a) and 1.35 GPa (b).

To optimize the synergetic effect of high pressure and high temperature on enhancing CO2 

capacity, a few high-temperature cycles with fixed pressures are also performed. Improved 

CO2 capacities in ZIF-8 is found when the pressure is at 1.35 GPa. Upon heating up the 

sample to 44 °C, the melting of solid CO2 was also observed (Figure 5.3b).  At 48 °C and 

above, all extra CO2 was melted by heating and diffused into the cages of ZIF-8. Upon 

cooling the sample down to room temperature, both ν3 + 2ν2 and ν3 + ν1 modes remain as 

single peaks, suggesting that these extra CO2 molecules stay in the framework permanently 

upon cooling the sample down to RT. 

The amount of adsorbed CO2 in ZIF-8 is increased by 84.5% upon heat treatment at 1.35 

GPa (Table 5.2). Such a substantial difference in capacity improvement between two runs 

is intriguing and is thought to be closely related to the framework structure under different 

pressures and temperatures. Indeed, Hobday et al. established a correlation between the 

pressure and the rotation angle (θ) of the imidazole rings, until the aperture reaches its 

maximum opening. Such rotation further gives rise to the maximum unit cell volume and 
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solvent-accessible volume, as illustrated in Figure 5.6.9, 24 In our case, it is believed that the 

pressure-induced gate opening of ZIF-8 is not complete at 0.83 GPa, where the rotation of 

the imidazole rings has not yet reached the maximum of 90°. Therefore, the pressure as 

low as 0.83 GPa is not sufficient to maximize the CO2 storage potential in ZIF-8. Whereas 

at 1.35 GPa, such “gate-opening” is complete, resulting in a significant increase in CO2 

adsorption. After peak deconvolution, an additional CO2 site is discovered at a higher 

frequency (Figure 5.5 c-f), which could be assigned to the CO2 molecules adsorbed in the 

channels surrounding the central pore. These channels are otherwise blocked by imidazole 

linkers and not accessible at the ambient pressure, which explains why this new site is not 

found under 0.83 GPa (Figure 5.4 a-f).21 

Different from that has been observed above, heating up the DAC system under a much 

higher pressure of 2.61 GPa, however, has led to a decrease in adsorption capacity. As 

shown in Figure 5.7, at the highest temperature of 100 °C, the solid free CO2 residing 

outside the frame remains solid and unadsorbed, consistent with the phase diagram that the 

free CO2 should be solid under such conditions. Moreover, by comparing the series of 

spectra, there is less CO2 adsorbed in the framework during the heating and cooling cycle, 

evidenced by the gradually flatten and weakened low-frequency component of CO2 

combination modes. These observations suggest that the ZIF-8 framework collapsed, and 

the porosity of the framework might have been partially damaged by exposing the ZIF-8 

to harsher conditions (i.e. 2.61 GPa and 100 °C). 
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Figure 5.4 (a)-(f) Deconvolution of CO2 ν3+ν1 mode on the FTIR spectra of CO2 loaded ZIF-8 at 0.83 GPa and various 

temperatures. In all figures, the black solid line represents the actual spectrum, the red solid line is the fitted spectrum. The blue 

dash lines represent different species of CO2.
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Figure 5.5 (a)-(f) Deconvolution of CO2 ν3+ν1 mode on the FTIR spectra of CO2 loaded 

ZIF-8 at 1.35 GPa and various temperatures. In all figures, the black solid line 

represents the actual spectrum, the red solid line is the fitted spectrum. The blue dash 

lines represent different species of CO2. In figure (c)-(f), the main peak at lower 

frequency could be assigned as CO2 molecules adsorbed in the central cage, whereas 

the higher frequency peak is thought to be attributed to the CO2 adsorbed in the 

channels surrounding the central cage.21
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Table 5.1 Normalized peak area of CO2 ν3 + ν1 mode at 0.83 GPa and various temperatures in CO2 loaded ZIF-8. 

Temperature RT 34 °C 36 °C 40 °C 38 °C RT (cooled) 

ν3+ν1 
Peak area of adsorbed CO2 0.55 0.56 0.62 0.78 0.79 0.62 

Peak area of CO2 outside framework 0.45 0.44 0.38 0.22 0.21 0.38 

 

Table 5.2 Normalized peak area of CO2 ν3 + ν1 mode at 1.35 GPa and various temperatures in CO2 loaded ZIF-8. 

Temperature RT 44 °C 48 °C 50 °C 52 °C RT (cooled) 

ν3+ν1 
Peak area of adsorbed CO2 0.54 0.58 1.00 1.00 1.00 1.00 

Peak area of CO2 outside framework 0.46 0.42 - - - - 
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Figure 5.6 Structure of ambient phase ZIF-8 (a) and high-pressure phase ZIF-8 (b), 

the imidazole linkers rotated by 30° under high pressure compared to the ambient 

phase structure. The 4 MR window in ZIF-8 structure, showing the opening angle (θ) 

of 68° in ambient phase (c) and 89° in high pressure phase. These ambient pressure 

(AP) and high pressure (HP) structure images of ZIF-8 are reproduced from 

literature.21 
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Figure 5.7 Selected mid-IR spectra of CO2 combination modes in CO2 loaded ZIF-8 

at 2.61 GPa and various temperatures. 

5.3.2 The pressure behavior of activated UiO-66 framework 

The structural stability and reversibility in response to mechanical pressure are critical to 

their applications. The first high pressure study on mechanical properties of UiO-66 was 

reported by Su et al. In their study, UiO-66 nanocrystals were compressed by a hydraulic 

piston pelletizer, its morphology and structural properties were then investigated using 

SEM, FTIR and XANES after the pressure was released. However, reports have shown 

that the morphology of material may substantially affect its pressure behaviors.31-32 Besides, 

the compression method used in Su’s study is only able to detect the irreversible changes 

induced by high pressures, there are still potentially reversible changes under high 

pressures that are yet to explore. Therefore, we performed in situ high pressure FTIR study 
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on activated UiO-66 to investigate the structural properties prior to high pressure and high 

temperature studies on CO2 adsorption. In the FTIR spectrum of the activated UiO-66 

(Figure 5.8), most of the bands in the spectral region (i.e. 600-4000 cm-1) are attributed to 

the internal vibrations of the BDC ligands in the framework, whereas the Zr-O asymmetric 

stretching vibration is expected at 546 cm-1 and therefore cannot be detected.33 The broad 

band at 659 cm-1 corresponds to the vibration of the Zr6O4(OH)4 hexanuclear cluster.33 The 

peaks in the 700-900 cm-1 spectral region can be assigned as the out-of-plane C-H bending 

of the terephthalate, while the bands at around 1000-1200 cm-1 are associated with the in-

plane C-H bending. In the higher frequency region, the symmetric and asymmetric 

stretching modes of the terephthalic carboxylate group can be found at around 1400 cm-1 

and 1500-1630 cm-1, respectively. The band at around 3100 cm-1 is attributed to the 

aromatic C-H stretching. At the highest frequency, a very weak peak observed at 3673 cm-

1 is assigned to the O-H stretching mode of the µ3-OH groups (Figure 5.8).34 Such 

assignment is confirmed by a deuterium-exchange experiment, in which the D-exchanged 

UiO-66 no longer exhibits the O-H stretching mode at this frequency (Figure 5.8 inlet).
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Figure 5.8 Mid-IR spectra of activated (blue) and deuterium-exchanged (black) UiO-66 at ambient pressure, in comparison with 

CO2 loaded UiO-66 at 0.62 GPa (red). The inset shows the spectral region of 3400-3850 cm-1, highlighting the CO2 ν3+2ν2 and 

ν3+ν1 combination modes in CO2 loaded UiO-66. The disappearance of the O-H mode in the deuterium-exchanged UiO-66 (blue) 

confirmed the assignment of this mode.
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Upon a slight compression to 0.64 GPa, the band at 1587 cm-1 exhibits a significant 

intensity decrease, while a shoulder band at 1561 cm-1 emerges (Figure 5.9a and inlet). 

These observations are typical signs for the transition of the coordination mode of the 

carboxylate group from the syn-syn bridging to a monodentate mode,35 as previously 

reported in Su’s study,25 which indicates that the Zr-O(COO
-
) coordination bonds between 

Zr(IV) metal centers and terephthalic carboxylate groups are partially broken. Such bond 

breakage was first demonstrated by Su et al,25 in their work, after compressed UiO-66 

nanocrystals to 0.8 GPa, a similar syn-syn bridging to monodentate coordination mode 

transition was also observed using FTIR and confirmed by extended X-ray absorption fine 

structure (EXAFS).25 The difference in the threshold pressure for the Zr-O(COO
-
) bond 

breakage between their work and this work could be associated with the size and 

morphology of the sample, where bulk samples were synthesized and used in this study 

instead of nanocrystals. This size-dependent pressure-induced amorphization has been 

found in a wide range of materials, such as TiO2, Y2O3 and PbTe.31-32 Nanoparticles are 

usually predicted to have a higher transition pressure than their bulk counterparts of the 

same composition. Aside from what Su et al. previously reported, our spectra have shown 

a decreasing intensity of the other sharp band at 1510 cm-1 in the carboxylate asymmetric 

stretching region, this peak is then completely flattened at the pressure of 5.19 GPa (Figure 

5.9a and inlet), suggesting the disorder of the monodentate coordinated Zr-O(COO
-
) bond at 

higher pressures. On decompression, the bond at 1510 cm-1 gradually remerges, 

accompanied by the recovery of other bands such as the C-H in-plane and out-of-plane 

bending modes, whereas the peak at 1587 cm-1 disappeared permanently as anticipated, 

corresponding to the irreversibility of the Zr-O(COO
-
) bond breakage. 

Pressure dependence of vibration modes, defined as vibrational frequencies as a function 

of pressure, is an important parameter to appraise the sensitivity of a vibrational mode in 

response to external pressure, and gain better understandings of pressure effect on 

structures and host-guest interactions. The pressure coefficients of selected IR modes of 

UiO-66 were calculated by linear regression and illustrated in Figure 5.9b. Most IR modes 

have shown a blueshift in the entire pressure region, this is owing to the reduced bond 

length induced by high pressure. Among all these modes, the C-H stretching mode at 3064 
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cm-1 exhibits the greatest pressure coefficient of 7.04 cm-1/GPa, whereas the blueshifts of 

other modes are less than 3.2 cm-1/GPa in magnitude. It is worth noting that the Zr6O4(OH)4 

cluster vibration display a degree of redshift with -3.36 cm-1/GPa in magnitude, which is 

consistent with the weakening of the Zr-O(COO
-
) under high pressures,25 before the breakage 

of the bond occurs. The pressure range for such redshift (i.e. 0.09 to 1.30 GPa) also 

coincides with that for the Zr-O(COO
-
) bond breakage. In fact, the pressure dependence of 

all IR modes has shown discontinuities in between 1.30 to 1.79 GPa, it is believed that this 

bond breakage has led to a substantial structural transition.
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Figure 5.9 (a) Selected FTIR spectra of empty UiO-66 at high pressures. (b) Pressure dependence of selected IR modes. The inlet 

in (a) shows the zoomed spectral region of the νas(O=C-O) mode under selected pressures.
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5.3.3 The structural behavior of CO2 loaded UiO-66 and the host-
guest interactions at high pressures 

The CO2 loaded UiO-66, however, undergoes a completely different structural evolution 

compared to that of the empty UiO-66. The FTIR spectra of CO2 loaded UiO-66 were 

collected as a function of pressure from ambient to 6.13 GPa at room temperature. At the 

initial pressure of 0.62 GPa (Figure 5.8), the intense CO2 ν3 (O=C=O asymmetric stretching) 

mode at 2340 cm-1 and the relatively weaker CO2 combination bands (ν3+2ν2 and ν3+ν1) at 

3600 and 3800 cm-1 confirmed the existence of CO2 in the sample chamber.36 It has been 

previously reported and well-established that the CO2 combination modes can be used to 

monitor the insertion of CO2 into the pores of porous materials, CO2 behaviors, as well as 

the host-guest interactions.5, 37 Given that the ν3 mode of CO2 is extremely saturated under 

our loading conditions, the well-resolved combination mode (ν3+ν1) is chosen for further 

analysis. In the spectral region from 3500 to 3800 cm-1 (Figure 5.10a), ν3+ν1 mode exhibits 

two components, which typically suggests the co-existence of two different types of CO2 

molecules. Base on the high pressure phase diagram of CO2, as well as our previous studies, 

the sharper band at 3603 cm-1 and 3712 cm-1 are attributed to the CO2 residing outside the 

framework as solid.28, 38-39 Whereas the less intense shoulder band at around 3700 cm-1 on 

the lower frequency end are assigned to the adsorbed CO2. Upon elevating the pressure, a 

pressure-induced blueshift is observed for ν3+ν1 doublet, indicating that the O=C=O bond 

becomes stiffen under pressure. At 0.92 GPa and higher, the O-H stretching mode displays 

different components, suggesting the OH groups are under multiple different environments. 

Interestingly, the O-H stretching mode exhibits a moderate redshift, which is typically a 

result of bond weakening. Such softening behavior is most often associated with enhanced 

intermolecular interactions, in this case, the interaction between CO2 molecules and the µ3-

OH groups. Indeed, by carrying out neutron powder diffraction (NPD) measurements and 

DFT calculations, Chevreau et al.16 proved that the CO2 molecules located in the 

tetrahedral cage are orientated with one oxygen atom facing the -OH functional group on 

the Zr6O4(OH)4 cluster, while the other oxygen atom pointing into the cage. The CO2-OH 

distance was determined to be 2.40(2) Å, which allows the coulombic interaction between 
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the electronegative oxygen atom of the CO2 molecule and the electropositive hydrogen 

atom from the µ3-OH group.16  

On the pressure dependence graph (Figure 5.10b), a mild redshift with the coefficient of -

2.17 cm-1/GPa was observed in the pressure region of 0.62-4 GPa, followed by a blueshift 

under higher pressures (i.e. 4-6.13 GPa), indicating that the external pressure promotes the 

affinity between CO2 and µ3-OH group during compression up to 4 GPa, nevertheless, such 

interaction becomes repulsive at higher pressures, results in the O-H bond stiffening. In 

terms of the guest molecules, the pressure coefficient of the ν3+ν1 doublets for the pure 

solid CO2 and adsorbed CO2 are 6.9 and 4.1 cm-1·GPa-1, respectively. In principle, the 

observed pressure dependence (dν/dP) of the adsorbed CO2 has contributions from two 

opposite effects: strong CO2-framework interactions would cause redshift of the mode, 

whereas the pressure-induced shortening of the bond length would lead to blueshift. 

Therefore, a smaller pressure coefficient corresponds to a stronger interaction between the 

adsorbed CO2 and the framework. Moreover, according to previous work of in ZIF-8, the 

pressure coefficient of the same combination mode for the adsorbed CO2 is 5.26 cm-1/GPa,5 

compared to 4.1 cm-1/GPa for UiO-66, meaning that CO2 interacts with UiO-66 framework 

more intensively than it with ZIF-8 under high pressures, which is attributed to the naturally 

stronger O=C=O···H-O interaction in UiO-66, compared to the π-π stacking interaction 

between CO2 and the imidazole ring in ZIF-8.
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Figure 5.10 (a) FTIR spectra of ν3+2ν2 and ν3+ν1 modes of CO2 in UiO-66 upon compression and decompression in the spectral 

region of 3550-3800 cm-1. (b) Pressure dependence of ν3+ν1 mode of adsorbed CO2 in ZIF-8. (c) Zoomed in spectral region of 

1450-1700 cm-1, showing that the Zr-O(COO
-
) bonds in CO2 loaded UiO-66 remain intact under pressure up to 6.13 GPa.  The 

spectrum of activated UiO-66 under 5.19 GPa is plotted in the figure as a comparison.
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Being the guest molecules, CO2, in turn, affects the structural stability of both UiO-66 and 

ZIF-8. The structural reversibility of UiO-66 at high pressures is believed to be highly 

guest-dependent, similar to that has been reported for ZIF-8. As we discussed previously, 

the compression on empty UiO-66 framework led to a permanent Zr-O(COO
-
) bond breakage 

at around 1 GPa, the pore volume and BET surface dropped rapidly from 0.54 cm3·g-1 and 

1050 m2·g-1 before compression, to 0.05 cm3·g-1 and 130 m2·g-1 after the compression of 

1.5 GPa reported by Su et al.25 Whereas the CO2 loaded UiO-66 survived the highest 

compression pressure of 6.13 GPa, with the framework structure and porosity remain intact 

(Figure 5.10a). No sign of coordination mode transition from syn-syn bridging to 

monodentate of the carboxylate group has been observed (Figure 5.10c), suggesting that 

there is no breakage of the Zr-O(COO
-
) bonds in the entire pressure region. In the case of 

ZIF-8, the empty framework underwent an irreversible amorphization starting from 0.34 

GPa,40 the pore volume of which decreased sharply from 0.66 before compression to 0.24 

after the compression to 1.1 GPa,41 though there is no bond breakage involved in this 

process. In contrast, the compression on guest-loaded ZIF-8 is proved to be completely 

reversible by many studies with the usage of various guest molecules, the highest reported 

pressure for the framework to maintain its properties is 4.0 GPa in the MeOH loaded ZIF-

8. Overall, the excellent structural stability of the CO2 loaded UiO-66 and ZIF-8 fulfilled 

the fundamental requirements for the further investigation of CO2 adsorptions in these two 

frameworks under high temperature and high-pressure conditions. 

5.3.4 Characterization of CO2 adsorption properties of UiO-66 under 
high temperature and high-pressure conditions 

In the high pressure and high temperature work on UiO-66, CO2 combination mode (ν3 + 

ν1) at around 3710 cm-1 in the FTIR spectra is again used to follow the behavior of adsorbed 

CO2 and the MOF framework. The FTIR spectra of CO2 loaded UiO-66 were collected as 

a function of temperature at 1.32 GPa (Figure 5.11a). Similar to what we observed 

previously in ZIF-8, upon heating up the sample, the peaks correspond to solid CO2 (i.e. 

3605 cm-1 for ν3+2ν2, and 3714 cm-1 for ν3+ν1) started to broaden along with a loss in 

intensity, indicating that the crystalline CO2 (phase I, space group Pa3) gradually become 

fluid with increasing temperature. At 47 °C, all solid CO2 transitioned into fluid CO2, as 
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evidenced by the disappearance of the high frequency components of ν3+2ν2 and ν3+ν1 

modes. Upon cooling, these two bands reappeared at 40 °C, indicating that the solid CO2 

completed the recrystallization process at 35 °C, as the peak intensities were no longer 

increasing. When the system is completely cooled down to the room temperature, there is 

an observable intensity decrease of the solid CO2 peaks compared to that of the initial 

temperature.  
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Figure 5.11 Selected mid-IR spectra of CO2 combination modes under various 

temperatures and 1.32 GPa (a), 1.82 GPa (b) in UiO-66. The inlet in (b) depicted the 

zoomed spectral region of the CO2 ν3+ν1 mode before heating (black) and after cooling 

(red). 

In the high temperature cycle on CO2 loaded UiO-66 at 1.32 GPa, the ν3 + ν1 bands at 

selected temperatures were deconvoluted and integrated (See Figure 5.12a-c), with the 

normalized peak areas listed in Table 5.3. After the initial gas loading, the normalized peak 

area for the solid and adsorbed CO2 are 0.47 and 0.53, respectively. At the highest 

temperature of 47 °C, the peak area of the adsorbed CO2 increased to 0.65 while the 

quantity of free CO2 molecules reduced, suggesting that with the aid of high pressure, a 
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substantial amount of CO2 was diffused and inserted into the cages of the UiO-66 

framework after being liquefied. Upon cooling down to room temperature, the amount of 

adsorbed CO2 in UiO-66 is increased by 16.4% compared to that before heating. 

To understand what role pressure plays in this synergetic effect on enhancing CO2 capacity 

of UiO-66, another high-temperature cycle with the DAC fixed at a higher pressure is also 

carried out. The FTIR spectra of CO2 loaded UiO-66 were collected as a function of 

temperature at 1.82 GPa (Figure 5.11b). Upon elevating the temperature, the initial sign 

for CO2 melting is observed at 78 °C, where the solid CO2 components of both ν3+2ν2 and 

ν3+ν1 modes became much weaker and broader. At 80 °C, the intensity of the high-

frequency component of ν3+ν1 mode further decreased and red-shifted, indicates that the 

solid CO2 is partially liquefied (Figure 5.11b). Upon cooling down to room temperature, 

the intensity of the adsorbed CO2 component appears to increase, compared to that of the 

initial sample (Figure 5.11b inlet), suggesting that the CO2 capacity of UiO-66 has been 

improved in the run. Due to the amount of the CO2 loaded to the sample in the run, 

unfortunately, the high-frequency component of ν3+ν1 mode is saturated under most 

temperatures, which makes deconvolution of the peaks difficult and less accurate.  

Table 5.3 Normalized peak area of CO2 ν3 + ν1 and ν3+2ν2 modes at 1.32 GPa and 

selected temperatures in CO2 loaded UiO-66. 

Temperature RT 47 °C RT (cooled) 

ν3+ν1 
Peak area of adsorbed CO2 0.53 0.65 0.62 

Peak area of CO2 outside framework 0.47 0.35 0.38 
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Figure 5.12 Deconvolution of CO2 ν3 + ν1 mode on the FTIR spectra of CO2 loaded UiO-66 at 1.32 GPa (a)-(c) and CO2 ν3 + 2ν2 

mode at 1.82 GPa (d)-(f) and selected temperatures. In all figures, the black solid line represents the actual spectrum, the red 

solid line is the fitted spectrum. The blue dash lines represent different species of CO2, and the pink dash line corresponds to O-

H stretching mode. 
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5.3.5 The structural origins of contrasting CO2 adsorption properties 
in ZIF-8 and UiO-66 under high temperature and high-pressure 
conditions 

It becomes apparent that the improvement on CO2 adsorption capacity in ZIF-8 is 

significantly greater than that of UiO-66 under similar pressures, the root of which can be 

tracked down to the inherent structural properties of these two frameworks. In ZIF-8, upon 

melting the extra CO2, high pressure not only promotes further CO2 insertion into the cages, 

most importantly, it triggers the gate-opening effect of the ZIF-8 framework, which 

involves the rotation and reorientation of the imidazole rings on the 4-membered window 

on the central pore of ZIF-8 framework.9 This rotation results in an increase in the size of 

the 6-membered aperture, and an expansion of the free pore volume from 2497 Å3 at 

ambient conditions to 2710 Å3 at high pressure,24 thus acquires the ability to accommodate 

more small guest molecules. It has been illustrated by many other studies that this gate 

opening effect could be achieved using a few different small molecules such as H2O, 

methanol, ethanol, CH4, O2, N2,
24 and the mixture of MeOH and EtOH, at pressures of 2.2 

GPa, 0.3 GPa, 0.6 GPa, 1.4 GPa, 2.0 GPa, 3.25 GPa22 and 1.47 GPa, respectively.15 For 

instance, using the methanol and ethanol mixture as PTM, the total number of methanol 

molecules increased from 12 per unit cell at ambient pressure, to 41 per unit cell at 1.47 

GPa.21 In our case, the gate opening effect of ZIF-8 induced by CO2 takes place at around 

1.35 GPa, meanwhile, heating up the sample under this pressure results in the melting of 

the extra solid CO2 into liquid. By such synergetic effect of high pressure and high 

temperature, more CO2 molecules get adsorbed into the cages of ZIF-8. The similar heat 

and pressure-induced CO2 insertion has also been observed in an auxetic small-pore zeolite 

but with the requirements of higher pressure (above 1.5 GPa) and higher temperature (over 

110 °C).42 In contrast, the principle behind the capacity improvement in UiO-66 is 

straightforward: without any gating effect that allows the cage size to increase, high 

pressure simply plays the role of forcing more fluid CO2 into the framework to further fill 

the pores. Moreover, the µ3-OH group sits in all four corners of the tetrahedral cage, with 

the H atom pointing into the cage.16 These µ3-OH groups form strong O-H···O=C=O 

interaction once exposing to CO2, which may block the window and prevent the entrance 

of more CO2 at higher pressures. 
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5.4 Conclusions 

In summary, using FTIR spectroscopy, our work confirmed that the structural stability of 

UiO-66 at high pressure is highly guest-dependent, the empty framework displays a 

permanent Zr(IV)-OCOO bond breakage at very low pressures, whereas the CO2 loaded 

UiO-66 framework is found to be completely reversible up to 6 GPa, with the chemical 

connectivity and porosity remain intact. A stronger host-guest interplay between CO2 and 

the µ3-OH group is observed under high pressures. More importantly, we demonstrate that 

by applying heating the sample at a fixed pressure, the CO2 storage capacities of both ZIF-

8 and UiO-66 are further improved at modest pressures. In ZIF-8, such improvement is 

more striking at 1.35 GPa due to the pressure-induced gate opening effect of the framework. 

Whereas in UiO-66, the improvement on the CO2 capacity is less dramatic due to the lack 

of such gating effect. In this study, high-temperature and high-pressure display a synergetic 

effect in facilitating the CO2 adsorption in ZIF-8 and UiO-66: heating liquefies the extra 

CO2 outside the framework, while high pressure promotes the diffusion of the fluid CO2 

into the frameworks. However, our work of applying the heat to the sample under 2.61 GPa 

results in loss of the framework porosity in ZIF-8 gradually. Therefore, the optimum 

conditions for CO2 storage in ZIF-8 is only under moderate pressure and temperature. It is 

hoped that our work will encourage studies on further modifying the storage conditions for 

CO2 in other MOFs and porous materials. 
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Chapter 6 

6 Understanding Carbon Dioxide and Water Adsorptions 

within the Ultramicroporous ZnAtzOx Framework and the 

Guest-Host Interactions under High External Pressures 

6.1 Introduction 

The tailoring of metal-organic frameworks (MOFs) to increase gas adsorption affinities is 

key for practical applications. The usage of open metal sites is one popular technique for 

accomplishing this,1-2 as well as the addition of amine groups to the linkers.3-5 These 

additions can be especially impactful within ultra-microporous structures, where subtle 

changes to the linkers can strongly impact the porosity and guest-host interactions that 

occur within a given MOF.6 While the structural dynamics MOFs are known for7-9 are not 

generally expected within these ultra-microporous materials, there are known examples of 

“gate-opening” creating new adsorption sites within such materials. A series of zinc-

aminotriazolate-oxalate (ZnAtzOx) structures reported by Banerjee et al. is a key example 

of this phenomenon.3, 6, 10  

These ZnAtzOx frameworks contain ultra-micropores, amine-functionalized ligands and 

in some cases a gate-opening mechanism that can increase the CO2 uptake of the structure. 

Due to this set of features, a comprehensive understanding of their absorption behavior is 

warranted. The framework exhibiting a gate-opening mechanism, ZnAtzOx(H2O), is of 

particular interest due to the observed 42% increase in CO2 uptake with respect to the 

earlier ZnAtzOx frameworks (i.e. ZnAtzOx(MeOH) and ZnAtzOx(EtOH)). This increased 

uptake is marked by a dramatic adsorbed CO2 at a P/P0 of 0.2 at 273 K (where P0 is the 

saturation pressure), with the adsorption isotherm curve being characteristic of a gate-

opening mechanism.10 The effect of this gate-opening increases the maximum occupancy 

of the unit cell from 1.3 to 2.25 CO2 molecules. The ZnAtzOx(H2O) framework is best 

described as an assembly of zinc-3-amino-1,2,4-triazolate layers that are pillared into a 

three-dimensional structure by oxalate linkers, with channels running along the a-axis, b-

axis, and [0 1 1] axis. This creates ultra-micropores within the framework 4 Å across, as 

shown in Figure 6.1.  
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Figure 6.1 Framework topology of ZnAtzOx(H2O) viewing along b axis (a). Different 

channels from the perspective that lies along a-axis (b) b-axis (c).10 In all figures, 

atoms are colored as: Zn-yellow, C-grey, N-blue, O-red, respectively. Hydrogen 

atoms are omitted for clarity. 

The ZnAtzOx(H2O) framework was synthesized solvothermally within water, rather than 

the previous framework synthesized within methanol, causing subtle differences in the 

buckling and pillaring of the Zn2Atz2 layers within the structure, which ultimately leads to 

the gate opening effect.3, 6 Besides, such special usage of water as solvent makes 

ZnAtzOx(H2O) particularly stable in water vapor or moisture, which is an important trait 

towards industrial applications. As one of the major applications, MOFs could potentially 

be used as physical adsorbents for post-combustion capture, in which the gas sources 

always contain saturated water (5-7% in volume). However, many MOFs that possess 

excellent CO2 adsorption properties suffer from their poor structural and chemical stability 

under humid environments. Thus, with the combination of the amine-functionalized layers 

and swiveling oxalate pillars for efficient CO2 adsorption, as well as the remarkable water 

durability, further research should be put into fully unveil the CO2 adsorption behavior and 

the mechanism of the host-guest interactions in ZnAtzOx under moist conditions. 

High pressure is well known for its abilities in tuning the structural properties of porous 

materials, and access to their physical and chemical performances. In spite of the 
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previously reported intriguing high-pressure phenomena that involve the mechanical and 

chemical properties of empty MOFs in response to pressure,11-13 the pressure effects on 

improving the gas storage in MOFs are thought to be more beneficial to practical 

applications. In the field of gas adsorption in MOFs, high pressure is found to play an 

important role in modifying the pore or channel sizes,14-16 channel shape and opening, 

surface area and framework geometry.17-20 As a result, high pressure has great potential in 

improving the adsorption properties through enhancing the guest-host interactions. For 

instance, ZIF-8 exhibits a pressure-induced crystalline-to-crystalline phase transition when 

loaded with pressure-transmitting mediums. This pressure response gives rise to unit cell 

volume expansion and further guest inclusion with the aids of pressure, such phenomenon 

is also known as “gate opening effect”. Moreover, our previous works on diverse MOFs 

have demonstrated that the application of high pressure could substantially enhance the 

CO2 storage capacity in these MOFs under room temperature, the origins of which are 

revealed by analyzing the structural evolutions and the guest-host interactions that were 

probed by vibrational spectroscopies.21-23 Therefore, it is of great interest to investigate the 

high-pressure properties of the ZnAtzOx(H2O) framework itself, as well as its 

performances for single and multicomponent (i.e. CO2 and water) adsorption at high 

pressure. Herein, we performed the in situ high pressure examinations on ZnAtzOx(H2O), 

CO2-loaded and water-loaded ZnAtzOx(H2O) frameworks via Fourier Transformation 

Inferred spectroscopy. These new findings in our work will enhance the understanding of 

how the ZnAtzOx(H2O) framework interacts with CO2 and water within its channels, as 

well as the interplay between these two species of guests under high pressure. 

6.2 Experimental 

ZnAtzOx(H2O) is synthesized solvothemally according to the previously published 

method10 as described: 0.42 grams of 3-amino-1,2,4-triazole (5 mmol Sigma-Aldrich, ≥ 

95%), 0.09 grams of oxalic acid and 0.12 grams of zinc carbonate basic (Zn5(CO3)2(OH)6) 

were added to a 3 mL H2O and 3 mL butanol solvent mixture in a glass vial. The mixture 

was set to stir for 30 mins using a magnetic stirrer under room temperature. The glass vial 

was then placed in a 23 mL Teflon-lined autoclave to heat up to 180 °C, colorless crystals 

were yielded after 2 days. The crystals were washed with distilled water, collected using 
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vacuum filtration, and dried at 90 °C for 3 hours, after which the identity and purity of the 

crystals were confirmed by PXRD with Co Kα radiation. 

A Schlenk line was used for sample activation, CO2 loading, D2O loading, as well as CO2 

and D2O co-loading. A typical CO2 and D2O co-loading is as follows: the sample was 

firstly activated under a dynamic vacuum line at 150 °C for 12 hours, followed by 

introducing a calculated amount of CO2 onto the vacuum line. After CO2 was loaded, a 

known amount of D2O was injected to the bottom of the L-shape tube. The bottom part of 

the tube was then flame sealed off from the vacuum line. Prior to sample loading, the sealed 

tube was heated at 90 °C for 2 hours to distribute D2O evenly through the sample. The 

sample tube was immersed in liquid N2 before the sample was transferred to the DAC, 

ensuring both guests adsorbed in the pore during sample loading. 

To create in-situ high pressure, a diamond anvil cell constructed by a pair of opposing type 

II diamonds with a culet size of 600 µm were used for FTIR experiments. A highly 

customized IR micro-spectroscopy system designed for in-situ high pressure 

measurements was used in this study, with the details stated in Chapter 2. The sample 

chambers were prepared on pre-intended stainless-steel gaskets with an approximate 

thickness of 60-70 µm. The typical diameter of these sample chambers was about one third 

to a half of the diamond culet size. To rule out any interference from the air, the glass tubes 

that contain activated or pre-loaded samples (i.e. with CO2, D2O, and both CO2 and D2O) 

were opened in a Nitrogen-filled MBraun LAB Master 130 glovebox with O2 content 

below 10 ppm and H2O content below 0.3 ppm. All batches of samples were packed in the 

DAC along with KBr to keep the IR signals in the dynamic range of the detector, and to 

ensure that all the results from different high-pressure cycles are comparable. A few ruby 

chips were loaded to the sample chambers for pressure calibrations.24  

6.3 Results and discussion 

6.3.1 IR spectra of activated and guest-loaded ZnAtzOx(H2O) 
frameworks 

The IR spectra of activated, CO2 loaded, D2O loaded, and CO2 and D2O co-loaded 

ZnAtzOx(H2O), as depicted in Figure 6.2. In the mid-IR region, all the absorption bands 
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are attributed to the internal vibrations of the organic ligands on the framework, as the 

vibrations of the metal-ligand bonding (i.e. Zn-N and Zn-O) are expected in the far-IR 

region. By comparing the framework structure with the corresponding spectra, we are able 

to assign all the major bands on the spectra, with the assigned modes labeled on the graph 

and listed in Table 6.1. On the spectrum of the empty ZnAtzOx framework, the bands at 

3476 and 3347 cm-1 are attributed to N-H asymmetric stretch of the amino group on the 1-

2-4-amino-triazole ligand, whereas the N-H bending modes are local at 1663 and l626 cm-

1.25 The triplet at 1107, 1060 and 1017 cm-1 are associated with the triazole ring vibration.25 

In terms of oxalate units, the O=C-O asymmetric and symmetric stretching modes are 

observed as doublets at 1549 and 1517 cm-1, 1294 and 1319 cm-1, respectively.26 This could 

be due to the local coordination environment, where the 4 oxygen atoms on the oxalate are 

not completely structurally equivalent although they are all bonded to the metal center Zn. 

Base on the measured bond length,6, 10 it is believed that the peaks at 1549 cm-1 and 1319 

cm-1 are associated with the stretch of the short C-O(-Zn)  bond, while the peaks at 1517 

cm-1 and 1292 cm-1 corresponds to the longer C-O(-Zn) bond. The intense single band at 

1226 cm-1 is believed to be originated from C-O(-Zn) stretching.   

D2O is used to replace H2O in the in situ high pressure experiments on water loaded 

ZnAtzOx(H2O), as well as CO2 and water co-loaded ZnAtzOx(H2O), to avoid overlapping 

with the NH2 asymmetric stretching modes within the similar spectral region. After gas 

loadings, as shown in Figure 6.2, the peak found at 2336 cm-1 is attributed to the 

asymmetric stretching mode of CO2, whereas the broad bands observed in the spectral 

region from 2360 to 2620 cm-1 are attributed to D-O-D asymmetric stretch. In addition, it 

is apparent that after D2O was introduced to the framework, the N-H asymmetric stretching 

mode that was initially located at 3476 and 3347 cm-1 became much weaker and shifted to 

a lower frequency, resulted in a weak peak at 3128 cm-1 and a broad band from 3200 to 

3470 cm-1. Meanwhile, the N-H bending mode exhibits only one band at 1660 cm-1 instead 

of a set of doublets. All these observations are the characteristics of the N-D vibrations.27 

Indeed, it has been previously observed and proven by solid-state NMR experiments that 

the -NH2 group on the ZnAtzOx framework undergoes an instant deuterium exchange with 

the guest D2O molecules. 
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Figure 6.2 FTIR spectra of activated ZnAtzOx (H2O) at initial pressures (red) CO2 loaded ZnAtzOx(H2O) (blue), D2O loaded 

ZnAtzOx(H2O) (black), as well as CO2 and D2O co-loaded ZnAtzOx(H2O) (purple). The inset shows the comparison between 

the activated (bottom) and CO2 loaded framework (top) in the spectral region of the νas(O=C-O) mode. The new peak observed 

upon CO2 loading is highlighted by the asterisk.   
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Table 6.1 IR mode assignments of ZnAtzOx(H2O) framework vibrations in all four loading conditions. 

Peak Assignment 

Frequency (cm-1) 

Empty ZnAtzOxa CO2 Loaded ZnAtzOxb D2O Loaded ZnAtzOxc 
CO2 and D2O Co-

loaded ZnAtzOxd 

O=C-O bending 750, 798 753, 761, 795 755, 797 759, 795 

C-N stretch 1017, 1060, 1107 1011, 1068, 1105 1023, 1077, 1098 1011, 1072, 1096 

C-O sym stretch 1226 1212, 1219 1227 1214, 1228 

O=C-O sym stretch 1294, 1319 1296, 1314 1290, 1317 1291, 1315 

O=C-O asym stretch 1517, 1549 1498, 1518, 1548 1517, 1561 1511, 1564 

N-H bending 1626, 1665 1626, 1666 - - 

N-D bending - - 1660 1668 

N-H stretch 3378, 3476, 3610 3245, 3345, 3458 - - 

N-D stretch - - 3129, 3380 - 

a. Observed at the lowest possible loading pressure (i.e. 0.27 GPa) and room temperature. 

b. Observed and measured at 0.63 GPa and room temperature. 

c. Observed and measured at 0.38 GPa and room temperature. 

d. Observed and measured in the 1:1 CO2 to D2O ratio loading at 0.47 GPa and room temperature. 
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6.3.2 Structural responses of activated ZnAtzOx(H2O) at high 
pressures 

In-situ high-pressure IR spectra of activated ZnAtzOx(H2O) were collected under high 

pressure up to 3 GPa to examine the pressure responses of the framework, as shown in 

Figure 6.3. During compression, all IR modes exhibit different degrees of band-merging 

and broadening, which are typical signs for structural disordering at elevated pressures. 

The most striking changes are found at the N-H stretch modes (3350-3500 cm-1), where a 

significant band broadening and enhancing is observed, likely due to a hydrogen bond 

formation related to the NH2 group. At the highest pressure of 3.13 GPa, the spectrum 

shows a much flattened and broadened profile, indicating a decrease in crystallinity at high 

pressure. Upon decompression, all the frequency shifts and peak broadening of the IR 

modes disappear, suggesting that pressure-induced modifications on the ZnAtzOx(H2O) 

framework structure, as well as the formation of the hydrogen bonds, are completely 

reversible.  
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Figure 6.3 FTIR spectra of activated ZnAtzOx(H2O) at high pressures (a)(b), and pressure dependence (dν/dP, cm-1/GPa) of 

selected IR modes (c)(d). Dash lines in (c) and (d) represent the pressure points where possible isostructural changes take place 

upon compression, although lack of phase changes. 
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Table 6.2 Pressure dependence (dν/dP, cm-1/GPa) of IR modes of activated ZnAtzOx(H2O) framework on compression. 

Modes Frequency (cm-1) 
Pressure region 

0-1.35 GPa 1.35-3.13 GPa 

O=C-O bending 798 -0.05 -1.49 

C-N stretch 1060 3.67 4.97 

C-O sym stretch 1226 -0.76 1.53 

O=C-O sym stretch 1319 -0.89 1.34 

O=C-O asym stretch 

1517 3.58 

1549 3.23 2.10 

N-H bending 
1626 2.80 3.59 

1665 8.78 1.54 

N-H stretch 

 0.27-0.84 GPa 0.84-1.65 GPa 1.65-3.13 GPa 

3378 -8.23 -22.58 -2.36 

3476 -7.60 -27.15 -8.46 
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The pressure dependence of selected IR modes of ZnAtzOx is depicted in Figure 6.3, with 

the pressure coefficients listed in Table 6.2. The pressure dependences of most IR modes 

of the framework exhibit a blueshift upon compression, which is typically associated with 

a pressure-induced bond stiffening. The most intriguing observation is the pressure 

dependences of the N-H stretching mode, where a substantial red-shift is observed upon 

initial compression to 0.84 GPa. This is due to the N-H bond softening induced by a 

stronger inter-molecular interaction. In the local structure of ZnAtzOx(H2O) reported by 

literature,10 the amino groups (-NH2) on each Zn-amino-triazole layer are orientated toward 

the channel along a-axis (Figure 6.4). This unique orientation brings the -NH2 groups very 

close to the oxalate units, and thus creates possibilities for forming hydrogen bonds. The 

atomic distance between H1 from the amino group and O1 from the adjacent oxalic ligand 

within the same pore is measured to be 2.965 Å (Figure 6.4), the corresponding N-H···O 

bond angle is 130.25° (labeled as site 1). Another possible site is the interaction between 

the second H from the same amino group (labeled on the graph as H2), and O2 from the 

adjacent oxalic ligand located on the opposite side of the pore (labeled as site 2). At this 

site, the atomic distance and bond angle are measured to be 2.561 Å and 122.60°, 

respectively. Both site 1 and 2 meet the criteria for hydrogen bond forming,28 site 1 features 

a longer distance but a small bonding angle (i.e. closer to 180), whereas site 2 obsesses a 

shorter distance while a wider bonding angle. Apparently, the formation and enhancement 

of the hydrogen bond are greatly facilitated upon increasing the external pressure and thus 

shortening the distance between the O donor and H acceptor. In particular, the pressure 

coefficients of the N-H stretching modes increase rapidly from 8.23 to 22.58 cm-1·GPa-1 in 

the pressure range of 1-2 GPa, suggesting that the formation of hydrogen bond takes place 

in this pressure region. Beyond 2 GPa, pressure coefficients drop dramatically yet exhibit 

redshift, indicating that high pressure continually enhances the N-H···C-O hydrogen 

bonding in higher pressure region up to 3.13 GPa. Consequently, the pressure dependences 

of O=C-O asymmetric bending and symmetric stretching modes, as well as the C-O 

symmetric stretching mode also experienced moderate red-shifts in the lower pressure 

region (i.e. below 1.35 GPa), as this intense van der Waals N-H···O-C interactions would 

weaken the C-O bonding.  
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Figure 6.4 Two possible sites for hydrogen bond formation at high pressures within 

the pore of ZnAtzOx(H2O).10 

Furthermore, the IR results also demonstrated that the activated ZnAtzOx(H2O) framework 

exhibits high structural stability up to 3.13 GPa, which is comparable to α-Mg3(HCOO)6 

and significantly better than other previously reposted MOFs under high pressure such as 

ZIF-4, ZIF-8 and UiO-66.  Mao et al have illustrated that the activated α-Mg3(HCOO)6 

framework remains crystalline up to 4 GPa.  In contrast, compressing the activated ZIF-8 

framework resulted in an irreversible crystalline-to-amorphous phase transition upon initial 

compression to 0.34 GPa. Similarly, UiO-66 exhibits a permanent bond breakage between 

the Zr metal center and the oxygen from the bridging carboxylate group at 0.8 GPa.29 These 

observations suggest that the structural stability of a MOF framework may closely correlate 

to its porosity and the connectivity between the metal center and organic ligands. The BET 

surface area of ZnAtzOx(H2O) is 308 m2·g-1,10 which is slightly higher than 297 m2·g-1 of 
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α-Mg3(HCOO)6,
30 yet much smaller than that of ZIF-8 and UiO-66 (i.e. 1851 m2·g-1 and 

1580 m2·g-1, respectively). Therefore, it could be understood that the structural stability of 

ZnAtzOx is slightly lower than that of α-Mg3(HCOO)6, and much higher than that of ZIF-

8 and UiO-66. Moreover, the high compressibility of ZnAtzOx(H2O) can be attributed to 

its special mix-ligand geometry. This high structural stability induced by connecting metal 

centers to multicomponent from the ligands is also previously found in SDB series MOF, 

where the metal center Pb, Ca and Cd in their respective frameworks are bonded to both 

carboxylic oxygens and sulfonyl oxygens on the SDB (1,4-benzenedicarboxylate) ligands. 

These SDB MOFs are found to be structurally stable up to 10 GPa.31-33 These unique 

geometries of metal centers coordinating to bi-functional groups or multiple types of 

ligands further help stabilize the crystallinity of the framework. 
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6.3.3 Guest-host interactions in CO2 loaded ZnAtzOx(H2O) 
framework at high pressures 
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Figure 6.5 Zoomed IR spectral region for the C-N stretching (a) and C-O stretching 

(b) modes of CO2 loaded ZnAtzOx(H2O) (top) and activated ZnAtzOx(H2O) (bottom). 

(c) IR spectra of ν3+ν1 combination mode of adsorbed CO2 in ZnAtzOx(H2O) upon 

compression and decompression in the spectral region of 3600-3800 cm-1, two 

symmetry independent CO2 sites are labeled on the spectra as site A and B, the 

spectrum of pure CO2 at 0.33 GPa is depicted as a comparison. 

IR spectra of CO2 loaded ZnAtzOx(H2O) were collected as a function of pressure from 

near ambient pressure to 3.13 GPa (Appendix Figure B1). On the spectral region of the 

CO2 combination mode (Figure 6.5c), the CO2 ν3+ν1 combination mode exhibits a sharp 

and intense peak at 3692 cm-1 with a shoulder-like peak at 3685 cm-1, whereas the free CO2 

only features a signal peak at this mode, which is expected at 3702 cm-1 under the similar 

pressure (i.e. 0.58 GPa)23 Therefore, it is clear that there are two CO2 binding sites in the 

framework, where most CO2 molecules reside in the major site (label as site A) while only 

a minor amount of CO2 sits in the other site (labeled as site B). At the initial pressure of 

0.58 GPa, site B is observed at a lower frequency, corresponding to weaker O=C=O bond 

strength compared to that of site A. Such bond weakening is induced by strong 
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intermolecularCO2-framework interaction. Therefore, CO2 molecules at site B are believed 

to interact with the ZnAtzOx(H2O) framework more closely.  

Moreover, the O=C-O asymmetric stretch is observed to be a set of triplets instead of the 

doublet for the empty framework (Figure 6.2 inset). A similar change is found in the O=C-

O symmetric stretching as well, where an enhancement of the shoulder-liked peak at 1296 

cm-1 is observed (Appendix Figure A1). These modifications on carboxylate group related 

vibrations suggest a CO2-induced structural disorder of the oxalate units, which further 

establishes a third non-equivalent C-O bond with a unique bond length. Indeed, a striking 

gate opening effect in ZnAtzOx(H2O) regulated by CO2 loading pressure was reported 

previously, where the oxalate groups swivel when the external CO2 pressure goes higher 

than 200 mbar under 273K.10 Their study showed that without the gate-opening effect, the 

adsorption isotherm at 303 K only represents the capacity at one CO2 binding site.10 By 

lowing the temperature, the gate opening effect could be achieved, which not only 

drastically increases the accessible pore volume, but also opens up a secondary CO2 

binding site. The requirement for this gating effect to occur is the special symmetrical 

structure of the oxalate groups in ZnAtzOx(H2O) (Figure 6.6), which allows the oxalate 

units to rotate. Consistently, our IR results suggest that the rotation of the oxalate groups 

started at the initial pressure of 0.58 GPa, evidenced by the formation of the third symmetry 

independent C-O bond. 
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Figure 6.6 Local geometry of zinc-oxalate unit in ZnAtzOx(H2O), in comparison to 

other MOFs in the same series (i.e. ZnAtzOx(MeOH), ZnAtzOx(EtOH), 

ZnAtzOx(PrOH)). It is believed that the symmetrical Zn-O bonds within 

ZnAtzOx(H2O) are related to the gating effect with the presence of CO2, as the oxalate 

units are easier to rotate.10 
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Figure 6.7 The locations of CO2 binding sites A' and B' in ZnAtzOx(MeOH), the 

distance between CO2 and the functional groups are as labeled. The atoms that are 

not involved in the CO2-framework interactions in this pore are simplified as sticks 

for clarity.3 

It has been reported that the ZnAtzOx(MeOH) framework features two independent CO2 

sites in its channels, herein labeled as site A' and site B' (Figure 6.7). Site A' sits between 

oxalate units along b axis and only interacts with the closest amine through H-bond. 

Whereas site B' is adjacent to the free amino group and is thought to interact with NH2 

either through N-H···O hydrogen bond or via an interaction between the N lone pair and 

the C atom of CO2, which make site B' interaction generally stronger than site A'.3 Although 

ZnAtzOx(H2O) exhibits slightly different crystal structure from ZnAtzOx(MeOH), the 

nature behind the guest-host interactions between CO2 and framework are believed to 

resemble. On the framework vibration region of the spectra, a significant red-shift is 

observed at the -NH2 asymmetric stretching region upon introducing CO2 to the framework 

(Figure 6.2), which is attributed to an interaction-induced N-H bond weakening. Moreover, 
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the interaction between CO2 and oxalate units has also been observed and discussed. 

Therefore, we suggest that the CO2 binding sites in ZnAtzOx(H2O) at 0.58 GPa are located 

in similar positions as those in ZnAtzOH(MeOH), although the exact distance between 

CO2 and the functional groups may slightly differ. Base on the strength of interactions at 

each site, we could relate site A and B in ZnAtzOx(H2O) to site A' and B' respectively in 

ZnAtzOx(MeOH).  

Upon elevating the pressure, the most intriguing observation is the change in the intensity 

ratio of the CO2 ν3+ν1 doublet, indicating that most CO2 molecules that were originally 

adsorbed at site A at lower pressures gradually show similar profile as site B CO2 molecules 

until the pressure reached 1.56 GPa. At this pressure, all adsorbed CO2 molecules exhibit 

the same types of interactions with the ZnAtzOx(H2O) framework, as the doublet merged 

to a single peak. At above 1.56 GPa, these interactions resemble that of site B at ambient 

condition. In addition, on the pressure dependence curves (Figure 6.8a), the lower 

frequency component (site A) redshifts until it completely vanishes at 1.56 GPa, suggesting 

a stronger interaction between site A CO2 and the framework upon compression. 

On the framework, the N-H stretching mode at 3458 cm-1 has shown a substantial red-shift 

with a coefficient of 8.39 cm-1·GPa-1 in the entire compression range (Figure 6.8a), 

suggesting enhanced CO2-amino interaction through hydrogen bonding. Meanwhile, the 

O=C-O asymmetric modes exhibit minor degrees of blue shift, the middle triplet at 1518 

cm-1 features the highest dependence to pressure, implying that this new C-O(-Zn) bonds 

are more sensitive to pressure, which is consistent with the swiveling of the oxalate units 

in the gating effect. In addition, the C-N stretch mode observed an intense shoulder at 1100 

cm-1, with the intensity of which gradually increasing throughout the entire compression 

process. This observation suggests a possible pressure-induced interaction between N lone 

pair electrons with the electrophilic carbon atom of CO2.
3 A similar enhanced shoulder 

peak is also seen in the C-O stretching region, indicating a stronger interaction between 

CO2 and the oxalate unit at high pressure. The comparison between CO2 loaded and empty 

ZnAtzOx(H2O) under similar pressures in the spectral region of C-N stretching and C-O 

stretching is depicted in Figure 6.5a and 6.5b.  
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Upon decompression, as can be seen at CO2 combination mode ν3+ν1, site A starts to appear 

at 0.69 GPa and gradually grows stronger with decreasing pressure. Nonetheless, there are 

still more CO2 molecules residing at site B upon releasing the pressure, compared to that 

of the initial pressure. For framework (Appendix Figure A1), the major changes observed 

under high pressure are not completely recovered. All these observations suggest that the 

high pressure-induced structural modifications on the CO2 loaded ZnAtzOx(H2O) are 

permanent. Such pressure-modified structure is believed to have a stronger affinity with 

CO2 and is likely capable of storing additional CO2 molecules. 
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Figure 6.8 Pressure dependences (dν/dP, cm-1/GPa) of IR modes of CO2 loaded 

ZnAtzOx(H2O) in the pressure range from 0.63 GPa to 4.78 GPa. (a) Framework 

vibrations. (b) Pressure dependence of CO2 combination mode ν3+ν1. Pure CO2 from 

previous work is depicted as comparisons. 
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6.3.4 Guest-host interactions in D2O-loaded ZnAtzOx(H2O) 
framework at high pressures 

At the initial pressure of 0.38 GPa, two broad bands are observed at around 2450 cm-1 and 

2565 cm-1 in the spectral region of νas(D-O), whereas the IR spectrum of pure D2O exhibits 

a single band at 2480 cm-1.34 The splitting of this band upon D2O loading suggests that 

there are 2 independent types of D2O molecules adsorbed in the framework. These 2 types 

of D2O correspond 2 non-equivalent D2O sites in the channel, which is consistent with 

previously reported Single Crystal XRD data on as-made ZnAtzOx(H2O) framework. Base 

on the resolved oxygen positions (Figure 6.9), the distance between H2O oxygen atom and 

amine hydrogen is 2.28 Å and the oxygen is 3.25 Å away from the C-H carbon at site I 

(2.65 Å from C-H hydrogen). At site II, H2O hydrogen is located 3.13 Å away from the 

amine hydrogen and is 3.51 Å from C-H carbon (2.58 Å from C-H hydrogen). While the 

structural environments at both sites are similar, site I shows slightly higher proximity to 

the groups of interest on the ZnAtzOx(H2O) framework and therefore more likely to 

correspond to the band observed at a lower frequency in the D-O asymmetric stretching 

region. 

IR spectra of CO2 loaded ZnAtzOx(H2O) were collected as a function of pressure from 

near ambient pressure to 6.05 GPa. Upon compression, the intensity of the band 

corresponds to site I gradually enhanced, while the band assigned to site II becomes much 

weaker. With the total amount of adsorbed D2O remain constant, it is apparent that more 

D2O molecules are migrating to site I upon elevating pressure, as site I features closer 

affinity to the framework than site II. Moreover, both these bands show a substantial red-

shift during compression up to 3.29 GPa, after which these bands only exhibit blue-shifting 

all the way to the highest pressure of 6.05 GPa (Figure 6.10d and Table 6.3). These above 

observations implicate that the interaction between adsorbed D2O achieved the maximum 

at 3.29 GPa. Additionally, the enhanced broad band observed in the N-D stretching region 

(3100-3500 cm-1) implies a stronger hydrogen bonding through D-O···H-D upon 

compression. In contrast, there are no major modifications on either O=C-O asymmetric 

stretching or C-O stretching modes (Figure 6.10a and Table 6.3), meaning that the gating 

effect has not occurred throughout the entire high-pressure cycle. Therefore, it is apparent 
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that this effect is not only driven by external conditions (i.e. CO2 loading pressure, 

temperature, external high pressure, etc.), but also guest molecule specific. 

During decompression, the population of D2O at site 1 starts to reduce (Figure 6.10b), as 

more D2O molecules migrate back to site B with decreasing pressure. Upon recovery, the 

spectrum of the recovered sample shows identical profile as that of the initial spectrum, 

suggesting that the compression on both the framework structure and the adsorbed D2O 

molecules are completely reversible up to 6 GPa. Overall, D2O loaded ZnAtzOx(H2O) 

framework has shown remarkable structural stability under high pressure, whereas many 

MOFs could not survive from being exposed to water vapor, let alone if being compressed 

with loaded water to the gigapascal level. For instance, MOFs that are built up from 

carboxylate containing ligands such as MOF-5, MOF-74 and HKUST-1 exhibit different 

degrees of water sensitivities.35 In these cases, water molecules would essentially displace 

the ligands and further lead to framework structure failure. The fact that the D2O loaded 

ZnAtzOx(H2O) could remain its crystallinity, chemical connectivity, and most importantly, 

the porosity for adsorption and storage, provides the foundation for us to carry out further 

investigations on how CO2 molecules interact with the framework under high pressure with 

the presence of water. 
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Figure 6.9 (a) The locations of oxygen atoms from water molecules in as-made ZnAtzOx(H2O) viewing along b-axis. A and B are 

two non-equivalent H2O sites reported by literature, the two possible oxygen locations in each pore are symmetry equivalent. 

(b) The distances between the oxygen atoms and the groups of interest (i.e. NH2 and oxalate) at each site.10
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Figure 6.10 FTIR spectra of D2O loaded ZnAtzOx(H2O) collected at room 

temperature and high pressure in the region from 1100-1800 cm-1 (a) and 3000-3600 

cm-1 (b). Pressure dependence (dν/dP, cm-1/GPa) of selected framework vibrations (c) 

and D2O vibrations (d). 
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Table 6.3 Pressure dependence (dν/dP, cm-1/GPa) of IR modes of D2O loaded 

ZnAtzOx(H2O) from 0.38 GPa to 6.05 GPa. 

Modes Frequency (cm-1) 
Pressure region 

0.38-2.06 GPa 2.06-6.05 GPa 

O=C-O bending 797 -0.44 

O=C-O asym 

stretch 

1517 1.74 4.99 

1561 0.08 2.24 

N-D bending 1660 2.10 0.52 

D-O-D stretch 

 0.38-3.29 GPa 3.29-6.05 GPa 

2451 -3.51 1.35 

2548 -3.45 0.51 

D-O-D bending 1183 0.14 
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6.3.5 Properties of CO2 and D2O co-adsorption in ZnAtzOx(H2O) at 
high pressures 

The in situ IR experiments were performed on CO2 and D2O loaded ZnAtzOx(H2O) with 

two different CO2 to D2O molar ratios to investigate how the loading level affects their 

adsorption behaviors in the framework under high pressure. IR spectra of CO2 and D2O co-

loaded ZnAtzOx(H2O) (1:9 molar ratio) were collected as a function of pressure from near 

ambient pressure to 8.20 GPa (Appendix Figure A2). After initial sample loading, the 

appearance of CO2 ν3 mode at 2337 and 2350 cm-1 (labeled as CO2 site C1 and C2) and 

D2O asymmetric stretching mode at 2450 cm-1, 2542 cm-1 and 2590 cm-1 (labeled as D2O 

site D1, D2 and D3) confirm a successful guest loading (Figure 6.11). Upon slight 

compressions to 0.83 GPa and 1.36 GPa, the relative intensity between two CO2 bands is 

switching, meaning that the occupancy of each site is being regulated by the external 

pressure. Furthermore, it is intriguing to see the third peak at a lower frequency of 2325 

cm-1 in the same region (Figure 6.11), which indicates the formation of a new non-

equivalent CO2 site (marked as site C3). Indeed, this additional CO2 site was also detected 

by SSNMR, when CO2 was co-loaded to the ZnAtzOx(H2O) framework along with D2O 

under low temperature. Upon further compression, the amount of CO2 adsorbed at site C1 

gets further reduced, whereas site C2 and site C3 peaks become more intense. At a higher 

pressure of 2.41 GPa, site C1 is no longer observable. In terms of the adsorbed D2O, it is 

worth noting that with the presence of CO2 molecules, D2O also displays an additional 

binding site at 2590 cm-1 upon initial loading (labeled as D3), compared to the D2O loaded 

framework. The formation of the additional adsorption site for both CO2 and D2O is likely 

due to the guest-guest interaction through C=O···D-O hydrogen bonding. Upon 

compression, the pressure-regulated occupancy changes among three sites are also 

observed for D2O, with a larger amount of D2O adsorbed at site D1 while less at site D2 

and D3 accordingly. 

The reversibility of the system is examined during decompression (Figure 6.11b), the 

weakening of CO2 site C3 is initially observed at 3.84 GPa, it further disappears from the 

spectrum at 1.11 GPa, indicates that this third CO2 site only exists under pressure that is 

higher than 1 GPa under this loading conditions. This is usually associated with the nature 
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of these frameworks being highly reversible upon increasing and releasing the pressure.23 

At 0.51 GPa, the peak for site 1 starts to appear on the spectrum. Under the same pressure, 

the intensity of D2O site D2 and site D3 begin increasing and resolve a clear profile, 

meaning that the D2O populations at these two sites start to rise.  
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Figure 6.11 Selected FTIR spectra of CO2 and D2O co-adsorbed ZnAtzOx(H2O) on 

compression (a) and decompression (b) for the 1:9 CO2 to D2O molar ratio loading. 
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Figure 6.12 Pressure dependence (dν/dP, cm-1/GPa) of CO2 (black) and D2O (red) 

vibrations in 1:9 CO2 to D2O molar ratio loading (a), and 1:1 CO2 to D2O molar ratio 

loading (b). 
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Table 6.4 Comparison of CO2 and D2O vibration frequencies in CO2 and D2O co-loaded ZnAtzOx(H2O) before and after 

compression for two loadings with different CO2 to D2O molar ratios. 

 Frequency (cm-1) 

CO2 asym D2O asym 

Conditions 1:9 CO2 to D2O molar ratioa 

Binding sites Site 1 Site 2 Site 3 Site 1 Site 2 Site 3 

Initial pressurea - 2337 2350 2450 2542 2590 

Recovereda - 2337 2350 2441 2537 2588 

Conditions 1:1 CO2 to D2O molar ratiob 

Initial pressureb 2337 2349 2324 2449 2551 2593 

Recoveredb 2336 2347 - 2445 2554 - 

a. Frequencies observed and measured in the 1:9 CO2 to D2O ratio loading, at the lowest possible loading pressure (i.e. 0.31 GPa) and 

room temperature. 

b. Frequencies observed and measured in the 1:1 CO2 to D2O ratio loading, at the lowest possible loading pressure (i.e. 0.47 GPa) and 

room temperature. 
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Pressure dependences for all D2O adsorption modes exhibit notable red-shift at modest 

pressures (Figure 6.12a). A turning point is shown on the curves at 3 GPa, after which the 

modes start blue shifting, indicating the strongest D2O-framework affinity is obtained at 3 

GPa, which is similar to what we have observed in D2O-loaded framework. For CO2 

adsorptions, all three sites exhibit very small pressure dependence, indicating that the CO2-

framework interaction at each site is not much affected by D2O at high pressures. After 

releasing the pressure, both CO2 site 1 and site 2 are recovered and observed at the same 

frequencies as before compression (Table 6.4). In contrast, site C2 became the more 

populated site upon recovery, whereas only a small amount of CO2 is adsorbed at site C1 

(Figure 6.11b). Given that the CO2-framework interactions at site C2 are less intense, it is 

apparent that the D2O molecules have a major influence on the amount of CO2 to a less 

favorable and less confined position within the channels under high pressure.  

Upon recovery, it appears that more D2O molecules are residing in site D1 (Figure 6.11b). 

Since D2O molecules adsorbed at site D1 feature the closest proximity with the framework, 

it becomes apparent that pressure has improved the D2O adsorption by transporting more 

D2O molecules to this favorable location. Moreover, all three sites are observed at a lower 

frequency compared to that of the initial spectrum (Table 6.4), suggesting that the 

interactions at each site are permanently enhanced under high pressure. Overall, the 

presence of a minor amount of CO2 molecules enhanced the D2O adsorption in the 

framework. 
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Table 6.5 Pressure dependence (dν/dP, cm-1/GPa) of CO2 and D2O vibrations in 

ZnAtzOx(H2O) for two loadings with different CO2 to D2O molar ratios. 

Binding sites 

1:9 ratio 1:1 ratio 

Frequencya 

(cm-1) 

Pressure region 

(GPa) 
Frequencya 

(cm-1)  

Pressure region 

0-3.48 3.48-8.20  0-2.59  2.59-8.34  

Site 1 (CO2) 2337 0.87 - 2337 1.01 - 

Site 2 (CO2) 2350 -0.09 2349 -2.15 0.56 

Site 3 (CO2) 2325b 0.09 2324 0.69 -0.03 

Site 1 (D2O) 2450 -2.74 1.90 2449 -1.42 3.77 

Site 2 (D2O) 2542 -2.83 0.55 2551 0.84 

Site 3 (D2O) 2590 -3.92 0.76 2593 -9.81 - 

a. Unless otherwise motioned, the frequencies of all modes are observed and measured at 

room temperature, and 0.31 GPa and 0.47 GPa for 1:9 ratio loading and 1:1 ratio loading 

(i.e. CO2 to D2O), respectively. 

b. In the 1:9 CO2 to D2O ratio loading, CO2 site 3 was not observed until compressed to 

0.83 GPa. 
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Figure 6.13 Selected FTIR spectra of CO2 and D2O co-adsorbed ZnAtzOx(H2O) on 

compression (a) and decompression (b) for the 1:1 CO2 to D2O molar ratio loading. 

The in situ high pressure IR study was then carried on CO2 and D2O co-loaded 

ZnAtzOx(H2O) with a 1:1 molar ratio (Figure 6.13 and Appendix Figure A3). In this run, 

all three D2O sites are observed at a higher frequency upon initial loading, which 

corresponds to weaker interactions with the framework at each site (Table 6.5). The similar 

occupancy changes among three D2O sites is also observed. However, site D2 exhibits a 

blueshift throughout the entire compression region, compared to the modest redshift in the 

previous run. Therefore, the pressure is inducing the stiffening of the D-O bond at site D2, 

instead of promoting the D2O-framework interactions. Moreover, site D2 is observed at a 

higher frequency upon releasing the pressure (Figure 6.13), indicating that these D2O 

molecules adsorb to a position in the channels with weaker interactions with the framework. 

At site D1, the redshift is less substantial in the lower pressure region (below 2 GPa), and 

a more intense blueshift at higher pressures. These observations suggest that D2O 

molecules in general exhibit less affinity to the framework at high pressures in this loading. 
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In contrast, high pressure shows a positive impact on improving CO2 adsorption, in 

comparison to the previous loading. First of all, due to the higher loading level of CO2, site 

3 is observed upon initial loading (Figure 6.13a). Both site C2 and C3 are found at slightly 

lower frequencies compared to the previous trial (Table 6.5), suggesting stronger 

interactions with the framework at these sites. Secondly, CO2 site C2 features a notable 

redshift in the lower pressure region, compared to the little pressure dependence of the 

same site in the first loading (Figure 6.12b). Furthermore, both site C1 and site C2 are 

recovered at a low frequency upon releasing the pressure (Table 6.4), suggesting 

permanently enhanced interactions between CO2 and the framework at both sites. 

Overall, the above two runs established that the ZnAtzOx(H2O) framework performed 

differently with different CO2 to D2O loading ratios under high pressure. Due to the 

overlapping between CO2 sites and D2O sites, it is believed that the CO2 and D2O 

adsorptions within the framework are of a competitive nature. Inevitably, the presence of 

D2O does have negative effects on CO2 storage under high pressure when the content of 

D2O is dominant. However, upon increasing the CO2 content to 50% in the second trial, 

the negative impact of D2O on CO2 adsorption is found to be less significant and improves 

the CO2-framework affinity upon compression and recovery. CO2 develops stronger 

interactions with the system at both site C1 and C2 after releasing the pressure, compared 

to that of the initial sample. Such enhanced interactions could be correlated with the guest-

guest interaction between CO2 and D2O through hydrogen bonding.36  

6.4 Conclusion 

In summary, our study has demonstrated excellent reversibility and structural stability of 

ZnAtzOx(H2O) framework under all 4 conditions (i.e. empty, CO2 loaded, D2O loaded, 

and CO2 D2O co-loaded frameworks) up to 8 GPa, with chemical connectivity, local 

structure, as well as the porosity of the framework, remain intact. In the empty 

ZnAtzOx(H2O) framework, a reversible pressure-induced and enhanced hydrogen bond 

are observed in the pressure range from 1 to 3 GPa. The investigation on CO2 loaded 

ZnAtzOx(H2O) under high pressure has shown that the gating effect that requires high CO2 

loading pressure and low temperature can also be achieved by high external pressure, 

which further leads to great potential in capturing more CO2. In the D2O loaded 
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ZnAtzOx(H2O), it is of great significance that the framework exhibits prominent stability 

in the presence of water at high pressures. Moreover, the D2O molecules are found to 

interact with the framework more closely under high pressure, where the best CO2-

framework affinity is obtained at 3 GPa. Furthermore, when CO2 and D2O are co-existing 

in the ZnAtzOx(H2O) framework, both D2O and CO2 developed a third binding site at a 

modest pressure (i.e.~0.5 GPa). For D2O, the interactions at all three binding sites are 

enhanced at higher pressures in the presence of CO2. The pressure dependence analysis has 

proven that the framework features the closest proximity to both CO2 and D2O at around 

2-3 GPa depending on the molar ratio between these two components. Overall, its 

remarkable mechanical and adsorption properties for CO2 and water make ZnAtzOx(H2O) 

a promising candidate for CO2 capture in moisture environments under high pressure. 

6.5 References 

1. Gedrich, K.; Senkovska, I.; Klein, N.; Stoeck, U.; Henschel, A.; Lohe, M. R.; 

Baburin, I. A.; Mueller, U.; Kaskel, S., A highly porous metal-organic framework with 

open nickel sites. Angew Chem Int Ed Engl 2010, 49 (45), 8489-92. 

2. Caskey, S. R. W.-F., A. G.; Matzger, A. J., Dramatic tuning of carbon dioxide 

uptake via metal substitution in a coordination polymer with cylindrical pores. J Am Chem 

Soc 2008, 130 (33), 10870-10871. 

3. Vaidhyanathan, R. I., S. S.; Shimizu, G. K. H.; Boyd, P. G.; Alavi, S.; Woo, T. K., 

Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized 

Nanoporous Solid. Science 2010, 330 (6004), 650-653. 

4. Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S., Tuning the adsorption 

properties of UiO-66 via ligand functionalization. Langmuir 2012, 28 (44), 15606-13. 

5. Bae, Y.-S.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q., Enhancement of CO2/N2 

selectivity in a metal-organic framework by cavity modification. J Mater Chem 2009, 19 

(15), 2131. 



192 
 

 
 

6. Vaidhyanathan, R.; Iremonger, S. S.; Dawson, K. W.; Shimizu, G. K., An amine-

functionalized metal-organic framework for preferential CO2 adsorption at low pressures. 

Chem Comm 2009,  (35), 5230-5232. 

7. Zhao, P.; Lampronti, G. I.; Lloyd, G. O.; Wharmby, M. T.; Facq, S.; Cheetham, A. 

K.; Redfern, S. A., Phase Transitions in Zeolitic Imidazolate Framework 7: The Importance 

of Framework Flexibility and Guest-Induced Instability. Chem Mater 2014, 26 (5), 1767-

1769. 

8. Cheng, Y.; Kajiro, H.; Noguchi, H.; Kondo, A.; Ohba, T.; Hattori, Y.; Kaneko, K.; 

Kanoh, H., Tuning of gate opening of an elastic layered structure MOF in CO2 sorption 

with a trace of alcohol molecules. Langmuir 2011, 27 (11), 6905-9. 

9. Ethiraj, J. B., F.; Vitillo, J. G.; Lomachenko, K. A.; Lamberti, C.; Reinsch, H.; 

Lillerud, K. P., Solvent‐Driven Gate Opening in MOF‐76‐Ce: Effect on CO2 Adsorption. 

ChemSusChem 2016, 9 (7), 713-719. 

10. Banerjee, A.; Nandi, S.; Nasa, P.; Vaidhyanathan, R., Enhancing the carbon capture 

capacities of a rigid ultra-microporous MOF through gate-opening at low CO2 pressures 

assisted by swiveling oxalate pillars. Chem Commun (Camb) 2016, 52 (9), 1851-4. 

11. Hobday, C. L.; Marshall, R. J.; Murphie, C. F.; Sotelo, J.; Richards, T.; Allan, D. 

R.; Duren, T.; Coudert, F. X.; Forgan, R. S.; Morrison, C. A.; Moggach, S. A.; Bennett, T. 

D., A Computational and Experimental Approach Linking Disorder, High-Pressure 

Behavior, and Mechanical Properties in UiO Frameworks. Angew Chem Int Ed Engl 2016, 

55 (7), 2401-5. 

12. Gagnon, K. J.; Beavers, C. M.; Clearfield, A., MOFs under pressure: the reversible 

compression of a single crystal. J Am Chem Soc 2013, 135 (4), 1252-5. 

13. Zhou, M.; Wang, K.; Men, Z.; Sun, C.; Li, Z.; Liu, B.; Zou, G.; Zou, B., Pressure-

induced isostructural phase transition of a metal-organic framework Co2(4,4′-

bpy)3(NO3)4·xH2O. CrystEngComm 2014, 16 (20), 4084-4087. 



193 
 

 
 

14. Moggach, S. A.; Bennett, T. D.; Cheetham, A. K., The effect of pressure on ZIF-8: 

increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. 

Angew Chem Int Ed Engl 2009, 48 (38), 7087-9. 

15. Fairen-Jimenez, D.; Moggach, S. A.; Wharmby, M. T.; Wright, P. A.; Parsons, S.; 

Duren, T., Opening the gate: framework flexibility in ZIF-8 explored by experiments and 

simulations. J Am Chem Soc 2011, 133 (23), 8900-2. 

16. Hobday, C. L.; Bennett, T. D.; Fairen-Jimenez, D.; Graham, A. J.; Morrison, C. A.; 
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Chapter 7 

7 Summary and future work 

7.1 Summary 

As a class of porous materials with tunable structures and functionalities, MOFs are well-

suited as potential CO2 absorbents. In this work, in situ high pressure FTIR and Raman, as 

well as synchrotron XRD experiments were carried out to investigate the structural stability 

and CO2 adsorption performance of different MOFs with distinctive topologies and 

structures. The activated CdSDB, PbSDB, SIFSIX-3-Zn, UiO-66 and ZnAtzOx(H2O) 

frameworks exhibit different pressure stabilities, whereas all of them were much improved 

when loaded with CO2. Moreover, application of high pressure substantially improved the 

CO2 adsorption performances in all the MOFs through different mechanisms: for instance, 

additional CO2 binding sites were found in PbSDB, SIFSIX-3-Zn, and ZnAtzOx at high 

pressures; an increased CO2 adsorption capacity was found in ZIF-8 and UiO-66 by the 

synergetic effect of high pressure and high temperature. Overall, our work has shown that 

pressure plays an important role in facilitating CO2 adsorption. 

Chapter 3 demonstrates that pressure can effectively tune the structures and CO2 adsorption 

performance of CdSDB and PbSDB. A fully reversible structural amorphization up to 13 

GPa is observed in both CdSDB and PbSDB. Upon CO2 loading, both frameworks show 

enhanced CO2-framework interactions; PbSDB exhibits a new CO2 adsorption site upon 

compression, which is structurally and thermodynamically favored at higher pressures, as 

the CO2 population at this new site increases with pressure. The formation of this site 

originates from the pressure-induced structural changes on the PbSDB framework, in 

which the rotation phenyl-ring creates a second “π-pocket” in the channel to accommodate 

CO2 molecules. 

Chapter 4 illustrates the pressure-enhanced CO2-framework interactions in SIFSIX-3-Zn. 

A new CO2 binding site that exhibits closer affinity with the framework is found under 

high pressures. The formation of this new site is due to the rotation of the pyrazine rings 
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and the elongation of the Si-F bonds. Moreover, it is shown that CO2 plays an important 

role in improving the structural stability of the framework under high pressures.  

It has been reported that gaseous/fluid CO2 undergoes a phase change to solid at around 

0.6 GPa and room temperature, which severely shortens our scope in exploring the CO2 

adsorption in MOFs under higher pressures, as solid CO2 is immobile, and it requires CO2 

to be in a fluid state for effective diffusion under pressure. In Chapter 5, by simultaneously 

applying high temperature and pressure to the selected MOF systems, we have 

demonstrated that high pressure (i.e. above 0.6 GPa) could further facilitate CO2 insertion 

into the cages of ZIF-8 and UiO-66 with the assist of high temperature, as characterized 

using FTIR spectroscopy. The gate opening effect in ZIF-8 was found to be responsible for 

the dramatic improvement in its CO2 adsorption capacity.  

In Chapter 6, the structure evolution of the activated ZnAtzOx(H2O) framework in 

response to high pressure, the high pressure effect on both CO2 and D2O adsorptions, as 

well as the CO2 and D2O co-adsorption were investigated. The framework has shown 

remarkable structural stability in the presence of water at high pressures. Moreover, a new 

binding site is observed for both CO2 and D2O in CO2-D2O co-adsorbed framework, a 

competitive relationship between CO2 and water adsorption under high pressure is 

established. The CO2-framework interactions are enhanced when the amount of CO2 is 

dominant. 

It is hoped that our work could provide guidance to understand the structure-property 

relations of MOFs and how they affect the CO2 adsorption performance at high pressures. 

This information would also bring new insight into the design and development of desirable 

frameworks or porous materials for CO2 capture. 

7.2 Suggestions for future work 

From this work, we gained a general knowledge of pressure effects on different MOFs and 

their CO2 adsorption performance at high pressures. Further studies should help answer 

some remaining questions. 
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In Chapter 4, the in-situ synchrotron single crystal XRD data of CO2 loaded SIFSIX-3-Zn 

was collected at APS and is currently under process. If these results could be successfully 

solved, it would help fully unveil the structural behaviors of the framework and track the 

location of the CO2 molecules at high pressures, which is complementary to our vibration 

spectroscopy results. 

In Chapter 5, a significantly improved CO2 capacity in ZIF-8 and UiO-66 is induced by 

the synergetic effect of high pressure and high temperature, probed by in situ FTIR. 

However, the exact location of these adsorbed CO2 molecules remains unknown. If high-

pressure and high-temperature single crystal XRD experiments could be carried out, not 

only the exact number and binding sites of CO2 molecules can be pinpointed, it could also 

monitor the structural evolution of these frameworks at high pressures. Moreover, not just 

limited to ZIF-8 and UiO-66 that we worked on, other MOFs with promising CO2 

adsorption properties are also of great interest to investigate using the high-pressure and 

high-temperature single crystal XRD method. For instance, NH2-UiO-66, a UiO-66 analog 

with the -NH2 functionality that enhances the CO2 selectivity and guest-host interactions 

could be a good object. Furthermore, MOFs that feature gate opening effect could be 

another direction that we could look into in the future, such as MIL-47, Sc2BDC3, ZIF-90, 

etc. 

For Chapter 6, since it is difficult to use single crystal XRD to solve the location of the 

hydrogen or deuterium atoms in water, it would be particular interesting and helpful if 

computational simulations could be performed to investigate the structural changes, as well 

as the CO2 and water co-adsorption in ZnAtzOx(H2O), which could help further confirm 

the conclusion we drew from the FTIR data. Such method could also be incorporated into 

our further studies on multi-component adsorption in MOFs under high pressures. The 

combination of vibration spectroscopy study and the computational simulations would 

provide us a full picture of the evolution of the structure responses, the behavior of the 

guest molecules, as well as the guest-host interactions at high pressures. 



199 
 

 
 

Appendix A Supporting Results of ZnAtzOx(H2O) 
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Figure A 1 FTIR spectra of activated ZnAtzOx (H2O) at high pressures.
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Table A 1 Pressure dependence (dν/dP, cm-1/GPa) of framework vibrations in CO2 and D2O co-loaded ZnAtzOx(H2O) for two 

loadings with different CO2 to D2O molar ratios. 

  Modes 

1:9 ratioa 1:1 ratiob 

Frequency 

(cm-1) 

Pressure region 
Frequency 

(cm-1) 

Pressure region 

0.31-2.41 GPa 2.41-8.20 GPa 0.47-2.03 GPa 2.03-8.34 GPa 

O=C-O bending 
757 2.00 0.01 759 2.45 0.95 

798 -0.59 0.16 795 -0.46 -0.09 

C-N stretch 
1011 3.65 1.49 

1011 3.56 1.66 

1072 2.56 1.71 

1071 3.16 1.84 1096 7.06 3.72 

C-O sym stretch 1226 0.68 2.13 1228 1.09 2.03 

O=C-O sym stretch 1318 2.14 1.50 
1291 3.84 2.77 

1315 2.10 1.52 

O=C-O asym stretch 

1520 2.56 2.96 1511 2.26 2.32 

1567 -1.61 1.69 1564 -1.67 1.71 

N-D bending 1660 3.81 1.39 1668 0.59 0.86 

a. Frequencies and pressure dependences measured in the 1:9 CO2 to D2O ratio loading.  

b. Frequencies and pressure dependences measured in the 1:1 CO2 to D2O ratio loading.
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Figure A 2 (a) Selected IR spectra of CO2 and D2O co-loaded ZnAtzOx(H2O) upon compression and decompression in the 

pressure range from 0.31 GPa to 8.20 GPa in the 1:9 CO2 to D2O ratio loading. (b) Pressure dependence of selected framework 

vibrations of ZnAtzOx(H2O) on compression. 
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Figure A 3 (a) Selected IR spectra of CO2 and D2O co-loaded ZnAtzOx(H2O) upon compression and decompression in the 

pressure range from 0.47 GPa to 8.34 GPa in the 1:1 CO2 to D2O ratio loading. (b) Pressure dependence of selected framework 

vibrations of ZnAtzOx(H2O) on compression. 
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