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Abstract 

Background:  

Acoustic voice analysis requires a resource intensive setup, including a soundproof booth. 

This project evaluates smartphone microphone and recording environment impacts on voice 

sample collection for acoustic voice analysis. A proprietary analysis algorithm is presented 

for validation.  

Methods: 

Microphone and recording environment were evaluated using previously collected voice 

samples presented in four conditions to test two microphones and two recording 

environments. Prospective samples were used to test the proprietary algorithm, whereby 

samples were analyzed using this and Praat.  

Results: 

Microphone and recording environment had small, clinically unimportant impacts on most 

measurements. The proprietary algorithm reliably analyzed sustained vowels, with strong 

correlation to the Praat results. Continuous speech analysis was less reliable.  

Conclusion:  

Smartphone microphones are adequate for voice sample collection. Quiet, non-soundproof 

settings can be used for voice collection. The proprietary algorithm represents a reliable 

method to analyze sustained vowel samples. Some improvements are necessary before 

continuous speech analysis can be considered valid.  
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Lay Summary 

Acoustic voice analysis is a part of a thorough voice examination, which can be used in 

conjunction with aerodynamic measurements, auditory-perceptual analysis, and patient 

reported outcomes. It is a method of objectively quantifying normal and pathologic voices. It 

relies on physical properties of voice and the resultant vocal signal. 

The existing methods of voice sample collection and analysis are often resource intensive, 

creating barriers to access. In the current work, we sought to empirically examine a multi-

phase study evaluating smartphones as an avenue to perform voice sample acquisition and 

on-device acoustic voice analysis. 

In phase one, microphones for voice sample collection and the influence of recording 

environment were evaluated. This showed small, clinically unimportant differences in most 

acoustic measures for both the microphone and the recording environment. These results 

indicate that current barriers to voice signal acquisition can be relaxed upon, without 

degrading the ability to measure microacoustic changes. In conclusion, the results of this 

phase indicate that robust acoustic voice analysis is feasible on current day smartphones with 

samples collected under non-soundproof conditions. 

In phase two, a proprietary application, developed for the purposes of this study, was 

compared against the current standard used for acoustic voice analysis (Praat). The results of 

this study provide data, based on a systematic acquisition methods, which supports future use 

of the current proprietary algorithm. In doing so, the current findings indicate that the present 

smartphone application could be used reliably by patients, healthcare providers, and 

researchers for acoustic voice analysis. 
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Chapter 1  

1 Introduction 

Voice disorders are a common and important clinical concern, affecting more than 10% 

of the population (Martins et al., 2016; Roy et al., 2004). The prevalence of voice 

disorders reportedly approaches 50% in professional voice users (Martins et al., 2016) 

although the frequency and severity of such disorders is undefined. The professional 

voice user group includes occupations where the voice is considered to be of primary 

importance (e.g., teachers, salespeople, etc.), a population that includes 5-10% of the 

general population (Titze, Lemke, & Montequin, 1997). Furthermore, clinical voice 

disorders evolve secondary to both benign and malignant conditions with benign lesions 

forming the substantial majority. Benign conditions include structural changes to the 

tissue of the vocal folds (e.g., vocal fold nodules, cysts, and polyps) which occur as a 

result of hyperfunctional disorders (Hillman, Holmberg, Perkell, Walsh, & Vaughan, 

1989), as well as those for which the etiology is neurological (e.g., spasmodic 

dysphonia). Many of these pathologies may involve treatment with behavioral voice 

therapy, for which acoustic analysis can provide an objective measure of potential 

improvement (Hillenbrand, 2011; Holmberg, Hillman, Hammarberg, Södersten, & Doyle, 

2001; Kono et al., 2016; Stepp, Merchant, Heaton, & Hillman, 2011). As for malignant 

conditions, laryngeal cancers represent the most common malignant lesions of the head 

and neck (Kasper et al., 2011). Importantly, voice changes are often one of the earliest 

signs of primary and recurrent laryngeal tumors (Chu & Kim, 2008). In Canada, the 
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estimated incidence of new laryngeal cancers is 1,150 per year (Canadian Cancer Society, 

2017). Perhaps of equal importance, the treatment of laryngeal cancers pays great 

attention to functional preservation, vocal function being of critical importance.  

Acoustic voice analysis and auditory-perceptual measures are important parts of the 

clinical assessment for diagnostic and/or treatment progress tracking purposes (Behrman, 

2005; Hillenbrand, 2011). Acoustic measures of voice identify vibratory abnormalities. 

This method of analyzing the vocal signal is a non-invasive, objective method to measure 

normal and pathologic voices and document potential abnormality in the vocal signal. 

Because normal voice is characterized by a quasi-periodic signal, several micro-acoustic 

measures have been described, including time-based (e.g., jitter, shimmer, and harmonic-

to-noise ratio) and spectral-based (e.g., cepstral peak prominence, low frequency spectral 

energy : high frequency spectral energy ratio) (Awan & Roy, 2006, 2009). 

The process of gathering signal samples for rigorous acoustic analysis must consider a 

variety of issues specific to signal collection; this includes consideration of the ambient 

noise within the recording environment, microphone calibration, and mouth-to-

microphone distances, as well as other factors (ASHA, 2002; Zraick et al., 2011). 

Further, ideally the acquisition of voice samples may carry the requirements for a trained 

individual for voice sample collection, the need for a soundproof (or sound-treated) booth 

prepared for sample capture, and expensive instrumentation and software to perform the 

analyses. These concerns may, at times, limit the regular use of acoustic voice analysis 

and may often only be used to gather baseline measures.  Clearly, a single baseline 

measure presents substantial limitations in the context of the ability to compare the vocal 

signal clinically in an effort to more comprehensively assess treatment outcomes. 
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Numerous studies identify acoustic measures as robust, objective ways to screen, 

diagnose, and track treatment progress of voice disorders (Awan & Roy, 2006, 2009; 

Behrman, 2005; Hillenbrand, 2011).  

Mobile health (mHealth) is a rapidly growing field with broad applications to patient care 

(Ali, Chew, & Yap, 2016; Steinhubl, Muse, & Topol, 2015). Significant technological 

advances in mobile computing has made the requisite hardware readily available to 

clinicians and researchers, which may then serve to alleviate some of the current barriers 

to voice analysis.  

Voice evaluation involves the comprehensive assessment of vocal capacity that includes 

acoustic analysis, aerodynamic assessments, auditory-perceptual analysis, behavioral, and 

self-reported outcome measures. However, each of these measures may play different 

roles in developing a well-rounded assessment of voice and isolated measures may be 

exploited in some circumstances to provide documentation of voice change. Samples 

collected for acoustic analysis may also be used in the collection of further voice 

information through these other forms of assessment. That is, data obtained from acoustic 

measures of voice may provide the impetus to pursue additional, specific measures of 

vocal function. Acoustic analysis represents an important piece of a comprehensive voice 

assessment. When used in combination with other voice assessment tools, a well-rounded 

evaluation can be accomplished. Objective measures that correlate strongly with 

perceptual scores can be used to quantify findings in dysphonic voices and clinical voice 

disorders.  
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1.1 Clinical Voice Disorders 

Benign voice disorders include a broad range of etiologies; including structural 

pathologies, autoimmune disorders, and neurological conditions, each of which impact 

the voice through different mechanisms (Verdolini, Rosen, & Branski, 2014). Voice 

production depends on ability to generate a steady subglottic pressure, maintain adequate 

glottic closure, and to finely coordinate the structural vibratory properties of the vocal 

fold (e.g., pitch changes). Each of these properties of voice can be impacted by the 

presence of mass changes in the form of benign or malignant lesions. Increased mass of 

the vocal fold(s) by neoplastic lesions can impact the quasi-periodic vibration required 

for voice, as can irregularity or stiffness of the vocal mucosa (Orlikoff & Kraus, 1996; 

Starmer, Tippett, & Webster, 2008).  These changes can impact the differential 

characteristics of the vocal folds themselves which can result in asynchrony of vibration 

of each vocal fold, as well as potentially leading to glottic incompetence due to a mass 

lesion limiting vocal fold contact, or other interruptions to fold adduction. Neoplastic 

processes leading to unilateral changes result in irregularities between the two vocal 

folds, impacting the contact, vibration, and closure of the glottis with resultant changes in 

voice quality (Orlikoff & Kraus, 1996). Patient’s with these changes often experience 

hoarseness, decreased volume, and breathiness, which may be easily detected by the 

listener, including those who are naïve. With changes to the vocal mechanism, increased 

effort may be required to achieve vocal fold adduction in an effort to compensate, a 

volitional change that can lead to muscle strain and odynophonia (i.e., muscle tension 

dysphonia) (Van Houtte, Van Lierde, & Claeys, 2011).  Similar to hyperfunctional 

changes that can be identified, vocal fold hypofunction is a frequent problem in the 
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postoperative larynx (Doyle, 1997). “Hypofunctional” voice disorders describe 

conditions where the voice is “underpowered”, which leads to a weak or insufficient 

voice (Doyle 1997). “Hypofunctional” voices can include compensatory behaviours 

following laryngeal surgery, respiratory conditions, amongst others (Doyle, 1997; Titze, 

1988). The pathophysiology of these conditions is typically from weak glottal 

approximation and low airflow (Doyle, 1997; Titze, 1988).  Appropriate diagnosis of 

hyper- and hypofunctional disorders is important in guiding the approach to voice 

rehabilitation (Doyle, 1997) 

A “hyperfunctional” voice disorder refers to the misuse of the laryngeal musculature in 

the production of voice sounds. These muscle use patterns can lead to structural 

pathologies over time. The repeated trauma to the vocal folds can contribute to the 

development of nodules, polyps, contact ulcers, edema, and vocal fold thickening 

(Hillman et al., 1989). Vocal hyperfunction results in increased muscle tension and 

increases the collision forces of the vocal folds. This creates “strain” in the voice initially, 

but the repetitive trauma created by these vocal habits cause changes to the mucosa and 

vocal fold tissues. The changes can result in changes to vibration, such as an inability to 

synchronously vibrate, or cycle to cycle variability, seen in measures of perturbation.  In 

those instances where hyperfunction results in tissue change that does not resolve with a 

reduction of abnormal voice production behaviors, the developmental sequence over time 

will involve increasing levels of compensation.  Consequently, increasing levels of 

hyperfunction in an attempt to continue voicing will further exacerbate the problem with 

further changes to vocal fold tissue.  
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Early in the development of lesions that result from hyperfunction, many are reversible 

by changing the way voice is produced to decrease the repetitive trauma. Voice therapy 

has been shown to improve and resolve many reactive lesions (Holmberg et al., 2001; 

Stepp et al., 2011; Ylitalo & Hammarberg, 2000). If they persist, they can result in 

irreversible changes that require surgical intervention to reduce mass changes on the 

vocal fold. (Hillman et al., 1989).  

Structure-based voice disorders include the development of benign laryngeal masses 

(e.g., subepithelial cysts), and reactive lesions (e.g., sulcus vocalis), amongst others. 

Changes to the mass or stiffness of the vocal folds can be caused by nodules, polyps, 

scars, or simply the presence of edema (Hirano, 1981a). An important physical property 

of the vocal folds is the entrainment phenomenon, where oscillating or vibrating systems 

will assume the same vibratory period when they interact (Pippard, 2007). This property 

is disrupted by asymmetric mass or stiffness changes to one vocal fold. Asymmetric 

change in one vocal fold will introduce increasing levels of aperiodicity into the vocal 

signal by preventing the two folds to adopt the same vibratory period. The two folds no 

longer have nearly identical properties and thus respond to the subglottic pressure 

differently without assuming the same vibratory period. Increasing levels of aperiodicity 

are a result of increased chaotic vibration at the level of the glottis, which represents a 

noise component in the vocal signal. Vocal signals consist of two components, the 

harmonic component and the noise component (Baken & Orlikoff, 2000). These two 

components are determined by the degree of periodicity in the signal. Once the 

fundamental frequency of the signal is known, changes in vocal fold vibration can be 

detected via microacoustic measures that seek to determine cycle-by-cycle changes in the 
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frequency and amplitude domains; thus, these fine changes in vibration can be quantified 

using measures of perturbation, referred to as jitter and shimmer respectively (Baken & 

Orlikoff, 2000). Additionally, unilateral lesions can prevent complete closure of the 

glottis, which contributes to the turbulent airflow that makes up the aperiodic component 

of the signal. The aperiodic component “contaminates” the vocal signal, decreasing the 

quality of the signal. When compared to the harmonic component, we can calculate a 

measure of vocal quality called harmonic-to-noise ratio.  

Voicing requires complex control of the larynx and neurologic deficits can impair this 

control mechanism (M. Smith & Ramig, 1994). Common neurological conditions of the 

larynx are peripheral nerve injuries, spasmodic dysphonia, amyotrophic lateral sclerosis 

(ALS), and Parkinson disease, amongst others (M. Smith & Ramig, 1994).These 

conditions can lead to issues of hyperfunction, hypofunction, discoordination, and 

instability of the voice (M. Smith & Ramig, 1994).  

There are a broad range of conditions that affect the voice, from primary laryngeal 

disorders to systemic diseases. These disorders impact the function of the vocal 

mechanism in a number of different ways, including hyperfunctioning and 

hypofunctioning, which impacts the treatment paradigms for each disorder. Many of 

these changes to the larynx result in changes to the vocal signal which can be objectively 

evaluated with acoustic assessment. Assessment and diagnosis of these conditions relies 

on a multi-dimensional approach including aerodynamic studies, auditory-perceptual 

analysis, self-reporting, and acoustic analysis.  
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1.2 Current Approaches to Assessment and Diagnosis of Voice 

Disorders 

Currently, patients who present with voice disorders are typically assessed by an 

otolaryngologist and/or speech-language pathologist. This includes a complete history 

and physical examination of the head and neck. Indirect assessments of the larynx are 

possible through flexible nasopharyngoscopy and stroboscopy. These physical exam 

techniques allow visualization of the vocal folds, vocal tract, and assessment of the 

mucosal waveform. Furthermore, patient symptom scores (Voice Handicap Index, Reflux 

Symptom Index, etc.) can provide information regarding the severity of voice-related 

symptoms (Belafsky, Postma, & Koufman, 2002; Jacobson et al., 1997) and the impact 

such changes have on the individual.  

Indirect assessments of vocal function include auditory-perceptual evaluation of voice 

and acoustic analysis. Auditory-perceptual assessment of voice involves a rigorous and 

multi-dimensional evaluation of the voice on a number of perceptual elements (Eadie & 

Doyle, 2005; Zraick et al., 2011). This is usually done through application of 

psychophysical scaling methods (Carterette, 1974; Stevens & Marks, 2017; Toner & 

Emanuel, 1989). Using scaling methods, voices are subjectively assessed by either naïve 

or trained listeners. Important to the validity of auditory-perceptual, and other forms of 

voice analysis, is the selection of the appropriate scaling method (Eadie & Doyle, 2002; 

Schiavetti, Metz, & Sitler, 1981). Work done in the assessment of perceptual phenomena 

has suggested that there are two forms of scaling that can be applied to the data: prothetic 

and metathetic (Stevens & Marks, 2017). These forms of scaling are dictated by the 
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property that is being scaled (Stevens & Marks, 2017). A prothetic scale can be applied to 

data or a perceptual attribute that is additive in nature (e.g., loudness) and cannot be 

subdivided into equal parts. These are best represented with direct magnitude estimates. 

Whereas metathetic scaling represents a qualitative continuum, where the groupings can 

be subdivided into equal subgroupings. These are best represented with equal appearing 

intervals (e.g., visual analog scale). Stevens et al suggest a protocol to determine the 

appropriate scaling method for any particular perceptual attribute (Eadie & Doyle, 2002; 

Stevens & Marks, 2017). Equal appearing interval scales are regularly found in the 

auditory-perceptual literature and the results of these studies need to be evaluated with 

caution (Eadie & Doyle, 2002). 

Acoustic voice analysis can be used to evaluate the vocal signal using established 

normative values and ranges for objective comparison. However, this represents one part 

of a comprehensive assessment of voice, which includes auditory-perceptual assessments, 

self-reporting measures, history, and clinical exam amongst others. Each part contributes 

important data to the diagnosis, monitoring, and documentation of clinical voice 

disorders.  

1.3 Acoustic Voice Analysis 

Acoustic voice analysis is a method to quantify both the normal voice and abnormalities 

of dysphonic voice. These measurements are achieved in a non-invasive manner and can 

be compared against established normative values and ranges. Many measures of acoustic 

analysis rely on assumptions of signal periodicity, where the periodic time intervals are 

extracted from the vocal signal. This process relies on the features of the signal, which is 
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quasi-periodic in nature; meaning that it follows some repeating pattern. The vocal signal 

is a complex waveform that results from the sum of multiple simple sine waves. In a 

perfect system, a sustained sound would produce a perfectly repeated period, but given 

the imperfect mechanics of the larynx, this only approaches periodicity in a normal voice 

(Parsa & Jamieson, 1999).  After determining the normal period of the signal, further 

“microacoustic” measures can be calculated. These calculations estimate cycle-to-cycle 

variability (e.g., jitter, shimmer) and aperiodic noise components (e.g., harmonic-to-noise 

ratio) of the signal (Hillenbrand, 2011; Parsa & Jamieson, 2014; Yumoto, Gould, & Baer, 

1982). This provides a potential opportunity to classify voices as normal or abnormal for 

one or more measures (Boersma, 2002; Eadie & Doyle, 2005; Parsa & Jamieson, 2001; 

Umapathy, Krishnan, Parsa, & Jamieson, 2005).  

Although there has been much research within this field, acoustic measures have not 

always been found to account for the variance that is seen in perceptual judgments of 

voice, particularly in grossly aperiodic voices (Eadie & Doyle, 2005; Eskenazi, Childers, 

& Hicks, 1990; Gelfer, 1993; Kempster, Kistler, & Hillenbrand, 1991; Murry, Singh, & 

Sargent, 1977). By relying on correct determination of the fundamental period of the 

vocal signal for the calculation of perturbation measures, some acoustic measures become 

increasingly unreliable with increasing aperiodicity (Eadie & Doyle, 2005). If the 

fundamental period is incorrectly identified, there is a domino effect on further acoustic 

measures calculated from this (Eadie & Doyle, 2005). Furthermore, acoustic 

measurements do not always correlate with auditory-perceptual assessments, which 

becomes increasingly true with severely dysphonic voices (Rabinov, Kreiman, Gerratt, & 

Bielamowicz, 1995). Measures of perturbation are considered measures of aperiodicity, 
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but unfortunately, they lack reliability in aperiodic signals and some researchers have 

suggested they cannot be reliably used for even slightly aperiodic signals (Bielamowicz, 

Kreiman, Gerratt, Dauer, & Berke, 1996). Ideally, an acoustic measure is able to 

withstand the aperiodicity associated with dysphonic voices (Heman-Ackah et al., 2003). 

Work has been done to account for these issues and a battery of acoustic measures that 

includes time- and spectral-based analyses has been suggested to overcome this (Awan & 

Roy, 2006, 2009).  

 

1.4 Auditory-perceptual Voice Analysis 

Auditory-perceptual evaluation is the most common method of voice assessment and it is 

simple to perform, robust, and inexpensive (Kent, 1996; Oates, 2009). Judgements of 

voice are inherently perceptual in nature, in that judgments are made as to what is 

pleasant to listen to (Eadie & Baylor, 2006; Shrivastav, Sapienza, & Nandur, 2005). With 

the current limitations of acoustic and other forms of objective assessments, such as 

disagreement on the sensitivities of acoustic measurements, auditory-perceptual voice 

analysis is often seen as the gold standard in evaluating voices (Kent, 1996; Oates, 2009). 

Inter-judge variability may be accounted for by what is determined to be normal to one 

listener as opposed to the next (Kreiman, Gerratt, Precoda, & Berke, 1992). That being 

said,  perceptual assessments of voice are more likely to be shared by a wide variety of 

people, including trained and novice listeners: perceived features of voice will be similar 

amongst listeners of different levels of training (Oates, 2009; Wuyts, De Bodt, & Van de 

Heyning, 1999). Furthermore, because voice quality is perceptual in nature, 
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communicating our auditory judgments of voice is often intuitive across groups of 

listeners (Oates, 2009). Work by Kreiman et al showed that people develop their own 

internal reference standards with inherent biases that impact the judgement of future 

voices (Kreiman, Gerratt, Kempster, Erman, & Berke, 1993). These can vary over time 

within an individual and may also be different between two listeners. This points to the 

major critique of auditory-perceptual assessments, namely, the reliability of such 

measures. This has been extensively researched and have been found, with control for 

confounding variables, to be a robust form of voice assessment (Dejonckere, Obbens, de 

Moor, & Wieneke, 1993; Karnell et al., 2007; Oates, 2009; Webb et al., 2004).  

Without accounting for statistical validity or reliability, providing a common language to 

describe voices is a contributing factor to the overall popularity of auditory-perceptual 

voice analysis (Hirano, 1981b; Kent, 1996; Kreiman et al., 1993; Oates, 2009; Oates & 

Russell, 1998; Shrivastav et al., 2005; Webb et al., 2004; Wuyts et al., 1999). Auditory-

perceptual assessments are also an inexpensive manner of evaluating voice. Beyond the 

recording equipment, there are no further cost requirements. Auditory-perceptual 

analyses can identify clinically relevant changes in the voice in an inexpensive, reliable, 

and simple to carry out fashion. For these reasons, this method of voice assessment 

represents the gold standard of voice analysis. A clinically evident voice change that is 

documented through auditory-perceptual assessment scales provides a reliable, 

repeatable, and non-obtrusive measure to compare the voice to in future encounters 

(ASHA, 2002; Kent, 1996; Kreiman et al., 1993). A change to the voice that can be heard 

and evaluated likely represents a clinical entity and auditory-perceptual scales provide a 

means to document these.  
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1.5 Technological Advances and mHealth 

Smartphones, after becoming commonly available over the past decade, now represent a 

focus of many health-related interventions (Ali et al., 2016; Munnings, 2019; Steinhubl et 

al., 2015; Wong & Fung, 2015; Yang, Wang, Yang, Hu, & Xiong, 2018). Applications of 

this type of technology include text message related interventions, smoking cessation and 

other habit-forming applications, along with more sophisticated interventions such as 

using the device camera to assess artery patency (Di Santo et al., 2018; Steinhubl et al., 

2015; Yang et al., 2018). Smartphone microphones have been shown to be useful in the 

recording of voice samples to be analyzed for microacoustic measures of voice (Lee et 

al., 2016; Lin, Hornibrook, & Ormond, 2012; Uloza et al., 2015). Previous studies have 

evaluated either sustained vowels or sentences, but not both, using their own proprietary 

assessments showing smartphone based analyses to be feasible (Fujimura et al., 2019; 

Mat Baki et al., 2013, 2015). A gap in the literature is the lack of comparison against a 

cost-effective alternative (Praat) (Boersma, 2002; Mat Baki et al., 2013, 2015). Mat Baki 

et al performed on-device analysis, but the high initial cost and ongoing subscription fees, 

as well as inability to access this application currently has prohibited others from 

repeating their study (Mat Baki et al., 2013, 2015). Given the feasibility of on-device 

analysis, ubiquitous availability of smartphones, amongst other reasons, smartphone 

collected voice recordings may represent an opportunity to increase access to acoustic 

and auditory-perceptual voice analysis.  

The advantages to mobile analysis are primarily found in the ease of access. Acoustic 

analysis relies on signal acquisition methods, microphone effects, and microphone setup, 

which each play a role in the barriers to access (Doherty & Shipp, 1988; Karnell, 1991; 
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Parsa & Jamieson, 2014; Titze & Winholtz, 1993). Much of the current standardization in 

acoustic analysis is achieved using specific recording setups and sound-controlled 

environments, such as soundproofed booths. With current hardware in smartphones, a 

mobile device and a standardized recording protocol, including microphone-to-mouth 

distances, can lessen many of the obstacles to performing acoustic analysis. Providing 

clear instructions for recording tasks will limit the loss associated with having end-users 

provide the sample collection themselves. Mouth-to-microphone standardization may be 

replaced by biofeedback with sampling loudness and target ranges to achieve. Each of the 

aforementioned barriers are in-place for standardization, some of which can likely be 

relaxed upon without losing validity in the acoustic measures.  

With the wide availability of smartphones, the access can be further maximized by 

enabling patients, clinicians, and researchers to perform analysis more frequently 

between formal scheduled follow up visits, which can be a resource limited factor. In this 

way, voice over time can be assessed by the clinician or researcher. Many of the foreseen 

advantages are associated with the possibility of frequency of testing, which could lead to 

greater within-subject comparisons. Within-subjects comparisons improve our ability to 

detect small, consistent changes by being able to set patient specific normative values. By 

repeating the test regularly, the patient specific known values are determined and changes 

to these can be evaluated for clinical significance through follow up assessment or 

alternative voice assessments (i.e., auditory-perceptual, self-reporting, etc.).  

Acoustic analysis evaluates the vocal signal, including changes on a “microacoustic” 

level, as well as the harmonic and noise components. This requires high quality 

recordings with limited to no ambient noise. This is typically achieved by recording in a 
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soundproof setting, using professional equipment, in a standardized setup. The quality, 

directionality, and positioning of the microphone, which is easily controlled for in a 

standardized setup, may be decreased by using a smartphone microphone and an 

untrained user. This may result in increased background noise identified in the signals, 

compromising the ability to detect small changes in the vocal signal. However, previous 

research has shown smartphone microphones to be of high quality and reliable for these 

purposes (Guidi et al., 2015; Lin et al., 2012; Uloza et al., 2015). These advantages are 

likely to outweigh the effects of decreasing the control of the recording setup.  

Additionally, capturing signals at large in an uncontrolled environment that is not 

controlled for ambient noise will further compromise the background qualities of the 

signal. The variability in ambient noise from one quiet environment to the next is a 

significant consideration, but the absolute difference is limited and if the environment is 

selected with care, the recordings gathered will still be of high enough quality to perform 

reliable acoustic analysis. The control of the standardized nature in which samples are 

collected is lessened by the absence of a trained observer and this may introduce 

variables such as differing mouth-to-microphone distances amongst multiple samples 

collected by prospective users. With clear instruction, this concern can be mitigated, and 

the recordings can be performed without observation with high repeatability and 

reliability.  

Through limiting the restrictions of voice sample capture, the opportunities to collect 

higher numbers of samples for analysis increases. If an increasing number of samples can 

be obtained, this may then open the opportunity for more extensive within-subjects 

analysis, an issue which is constrained under the current barriers to acoustic analyses. 
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Recordings over time offer a chance to evaluate voice change on a granular level as 

patients receive voice therapy, medical, or surgical treatment. This can also be achieved 

through short- and long-term data collection. But with the desire to obtain an increased 

number of samples over time, the environment in which such samples are obtained 

becomes of importance.  Of primary concern is the issue of variations in environmental 

noise during sample acquisition. Based on our evaluation of the current state-of-the-art 

methods, the impacts of ambient noise and necessity of an observer to perform robust 

acoustic analysis are barriers that can be diminished through validation of a mobile voice 

analysis application. With repeated measures through increased access, these analyses 

could be used as a form of biofeedback as they progress through therapy or recover 

following surgical intervention. Furthermore, following treatment for malignant diseases 

of the larynx, analysis may prompt early reassessment, if subclinical change is identified. 

The ability to enhance post-treatment monitoring regardless of underlying etiology holds 

substantial clinical promise.  

 

1.6 Objectives 

This project sought to gather information focused on multiple objectives.  More 

specifically, this project was designed to:  

1. Confirm the iPhone microphone sample capture ability for microacoustic 

measurements in optimized settings; 
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2. Identify the capacity of the iPhone microphone to capture samples in non-optimized 

settings for acoustic analysis; and finally,  

3. Determine the computational abilities of the iPhone for the purpose of immediate, on-

device voice analysis. 
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Chapter 2  

2 Review of the Literature 

There are a number of well-researched and documented acoustic measures reported in the 

literature. For the purpose of this project, we selected five common acoustic measures to 

use, including time- and spectral-based measures. Those measures are fundamental 

frequency, jitter, shimmer, harmonic-to-noise ratio, and cepstral peak prominence. Each 

of these measures will be briefly described in the sections to follow.  

2.1 Fundamental Frequency (F0) 

Vocal pitch has long been agreed to be an important factor when evaluating voice (Baken 

& Orlikoff, 2000; Cooper & Yanagihara, 1971; Murry, 1978). Traditionally, it was 

evaluated according to gross practitioner perception with categorical assessment based on 

whether the listener perceived the speaker’s pitch to be normal for age and gender, too 

high, too low, or erratic in its consistency (Baken & Orlikoff, 2000; Laguaite & Waldrop, 

1964). While this method could identify gross pitch attributes of the voice, it proved to be 

too crude and unstandardized to be a reliable way to evaluate voice, particularly when an 

abnormality existed. Furthermore, it may be influenced by the listener’s personal 

preferences or assessments, as to what is considered ‘too high’ or ‘too low’, or abnormal 

in its consistency. Objective measures of voice were developed to introduce inter-rater 

reliability and determine unbiased normative values (Baken & Orlikoff, 2000).  In doing 

so, data reported in the literature has provided well-established points of reference for 

pitch with consideration of age and gender.  Because pitch is a psychological attribute of 
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voice as well as a physical one, the ability to characterize vocal pitch can be done through 

both subjective perceptual evaluation and objective acoustic assessment.  

Fundamental frequency (F0) is a measure of the vibratory rate at which a waveform is 

repeated per time frame, traditionally measured per second in Hertz (Hz) (Baken & 

Orlikoff, 2000). F0 is the measurable parameter that corresponds to the perceptible 

attribute pitch (Baken & Orlikoff, 2000). As F0 increases, pitch increases, though this is 

not a linear relationship and listeners tend to be more sensitive to changes in the lower 

frequencies than higher frequencies (Baken & Orlikoff, 2000; Stevens & Volkmann, 

1940; Stevens, Volkmann, & Newman, 1937). It is also important to note that despite 

differences in speaker F0 ranges in absolute values, the ability to normalize values 

obtained in order to determine a speaker’s functional range needs to occur (Britto & 

Doyle, 1990). 

F0 can be calculated in a number of ways, many of which have been facilitated and 

optimized in ease by the introduction of computers (Anderson, 1925; Baken & Orlikoff, 

2000; Metfessel, 1928; Parsa & Jamieson, 2014). There are two ways to classify F0 

extraction algorithms: event detection (peak picking, zero crossing) and averaging 

methods that rely on waveform matching approaches (Baken & Orlikoff, 2000; Parsa & 

Jamieson, 1999). Event detections were the earliest methods devised to extract F0 from a 

vocal signal (Anderson, 1925; Metfessel, 1928). These include methods such as peak 

picking and zero crossing by using complicated photographic and light flashing devices 

that relied on the waveform generated from vibrations produced from vocal signals 

(Anderson, 1925; Metfessel, 1928). For example, in one of these devices, called the 

phonodeik, a mirror was used to reflect the vibratory pattern of a wire onto a 



20 

 

photographic film strip (Anderson, 1925). Peak picking relies upon the pattern of waves 

and the resultant peaks per cycle, positive and negative (Baken & Orlikoff, 2000). To 

calculate F0, and the number of peaks in one direction (positive or negative) per second 

are counted (Baken & Orlikoff, 2000). The harmonic peaks of the vocal signal need to be 

counted, and this is easily accomplished using a computer by setting a threshold for 

detection. Once the threshold is breached, the peak is recorded and the wave is converted 

to series of dots indicating a threshold crossing, and the number of times per second is 

then recorded (Baken & Orlikoff, 2000). Another event detection method of calculating 

F0 is zero-crossing. Similarly, this relies on the properties of waves, which cross the zero-

voltage line twice (once up-going, once down-going) per cycle (Baken & Orlikoff, 2000). 

The signal is converted from a waveform to a series of pulses, which is subsequently run 

through a high-pass filter, which only captures peaks above the arbitrary threshold, 

converting the pulses to a series of positive or negative spikes (Baken & Orlikoff, 2000). 

Each of the spikes in one direction are counted in a one second time interval (i.e., time-

based) to calculate the F0 value (Baken & Orlikoff, 2000). 

More recently, averaging methods have been developed to stand up to the presence of 

signal noise and amplitude variations that are often found in pathologic samples (Parsa & 

Jamieson, 2014). That is, as vocal signals become more aperiodic, the likelihood of 

misidentifying a “period” of vibration is increased with a corresponding influence on the 

accuracy of the measure obtained. In an experiment by Parsa and Jamieson (2014), a 

number of these methods were compared in normal and pathologic conditions, and 

waveform matching was found to be the most robust at providing reliable results in the 

setting of jitter, shimmer, and background noise. Waveform matching uses a least-
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squared difference between two adjacent waveforms (Milenkovic, 1987; Titze & Liang, 

1993). This least-squared method is accomplished by marking the absolute low-point of 

one waveform, a second point is placed in an adjacent trough to accommodate the lowest 

mean squared error possible, and this process is repeated until all waveforms have been 

evaluated (Milenkovic, 1987; Parsa & Jamieson, 2014; Titze & Liang, 1993).   

Fundamental frequency, which is perceived as pitch, is an important acoustic measure of 

voice. There are well established normative ranges for gender and age. Determining the 

fundamental period accurately is important for calculation of measures of perturbation, 

which evaluate cycle-to-cycle changes to the fundamental period. Correct determination 

of the fundamental period sets the stage for frequency and amplitude measures, by which 

if the fundamental period is incorrectly determined both jitter and shimmer will not 

produce reliable results. The downstream effects of correct period identification are 

critical for further calculations and waveform matching methods are the most effective at 

doing this in dysphonic voice samples.  

2.2 Frequency and Amplitude Perturbation Measures (Jitter and 

Shimmer) 

Measures of signal perturbation form another well-researched area of voice science with 

the objective of estimating the cycle-to-cycle differences in the fundamental period 

(Hillenbrand 1987). Small differences, or perturbations, between adjacent cycles are 

always present, even when trying to produce a steady sound-state such as that which 

occurs with a sustained vowel (Maryn, Corthals, De Bodt, Van Cauwenberge, & 

Deliyski, 2009). These variations are reflective of the imperfect, quasi-periodic 
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mechanism of voice production (Baken & Orlikoff, 2000). Two common measures 

termed jitter and shimmer, are used to calculate pitch and amplitude variations, 

respectively (Kitajima & Gould, 1976; Koike, 1969; Lieberman, 1963). In a perfectly 

stable production system, jitter and shimmer would equal zero (Baken & Orlikoff, 2000). 

That is, no differences in either the frequency or amplitude domain would exist with a 

pure tone due to the fact that each adjacent vibratory cycle is identical. Consequently, an 

increase in jitter and/or shimmer is a measurable representation of inconsistent vibratory 

patterns (Baken & Orlikoff, 2000). Typically, increases in measures of perturbation are 

associated with worsening overall voice quality, an acoustic phenomenon that is 

perceived as dysphonia (Maryn et al., 2009). 

As noted, frequency perturbation is more commonly known as jitter (Baken & Orlikoff, 

2000) and this measure represents frequency variability of the fundamental period. It a 

measurement of the frequency changes in the periods that are immediately next to each 

other, and in this way is measured irrespective of cycles in non-adjacent vocal sounds, 

which may represent voluntary changes to the frequency (Baken & Orlikoff, 2000; 

Boersma, 2009; Parsa & Jamieson, 2014). Jitter is typically presented as a percentage of 

the fundamental frequency. Higher measured levels of jitter will correspond to increased 

levels of vocal abnormality that is represented in the frequency domain. 

Amplitude perturbation is termed vocal shimmer and this measure quantifies short term 

variability in signal amplitude (Baken & Orlikoff, 2000; Wendahl, 1966). Calculation of 

shimmer is reliant upon the peak amplitude of each adjacent vocal period (Baken & 

Orlikoff, 2000; Horii, 1980). Shimmer can be calculated for two or more adjacent periods 

and the result is typically presented in decibels (dB) (Baken & Orlikoff, 2000). Similar to 
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jitter, increasing variation in the amplitude of a vocal signal will negatively impact 

perceptions of vocal quality and it has been found to be an important contributor to the 

perception of hoarseness (Eskenazi et al., 1990; Wendahl, 1966, 2009). 

Jitter and shimmer are used as one important part of an acoustic assessment of voice. 

Increased values of either have been shown to represent increased disorder in the 

vibratory pattern of voice production at the level of the glottis or vocal folds. In a perfect 

mechanism, there would be no cycle-to-cycle variability. In the same way, as the vocal 

mechanism behaves in a more orderly fashion, which we attribute to normal function, 

measures of perturbation decrease. However, as mentioned above, even when producing 

relatively steady state sounds (e.g., a sustained vowel), there are always variabilities 

between adjacent cycles due to the imperfect mechanics of the larynx. Therefore, these 

measurements have been shown to increase in pathologic voices and a combination of 

these measures can be used as an overall correlate of vocal quality (Werth, Voigt, 

Döllinger, Eysholdt, & Lohscheller, 2010). This capacity allows for these measures to 

serve as a valuable means of monitoring and indexing vocal change over time. 

2.3 Harmonic-to-Noise Ratio (HNR) 

“Hoarseness”, while generically non-descript, is a common symptom of altered voice 

quality, including a perceptual judgment that includes changes to pitch, loudness, and 

quality (Schwartz, Rosenfeld, Dailey, & Cohen, 2009). It is a term to describe a rough or 

noisy voice that is frequently associated with poor voice quality; hoarseness has often 

been used to broadly categorize the presence of dysphonia (Schwartz et al., 2009). 

Harmonics-to-noise ratio (HNR) was developed by Yumoto et al (1982) as a measure to 
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identify pathology based on the detection of hoarseness. It is well established that the 

sound of hoarseness results from the replacement of harmonic energy with noise energy 

(Isshiki, Yanagihara, & Morimoto, 1966; Yanagihara, 1967). Hoarseness signifies an 

increase in the aperiodic nature of the vibrations, as well as serving to quantify associated 

turbulence replacing the quasi-periodic nature of harmonic voice (Baken & Orlikoff, 

2000; Eadie & Doyle, 2005; Isshiki et al., 1966; Yanagihara, 1967). The development of 

this ratio as an acoustic measure of voice seeks to quantify the spectrographic features of 

the voice (i.e., all energy components that comprise the vocal signal) that accompany 

hoarseness (Baken & Orlikoff, 2000; H. Kojima, Gould, & Lambiase, 1979; Hisayoshi 

Kojima, Gould, And, & Isshiki, 1980; Yumoto et al., 1982). 

The theory behind the HNR measure relies on the idea that there are two major 

components to voice: near periodic and aperiodic (Baken & Orlikoff, 2000). The near 

periodic or quasi-periodic component makes up the harmonic aspect of voice, whereas 

aperiodicity contributes random noise into the signal through sound pressure variation 

(Baken & Orlikoff, 2000; Eadie & Doyle, 2005). With increasing hoarseness, the periodic 

signal is subsequently contaminated by this random noise (Baken & Orlikoff, 2000; Kim, 

Kakita, & Hirano, 1982; Hisayoshi Kojima et al., 1980; Yumoto et al., 1982). The degree 

of contamination is expressed as a ratio of the harmonic energy to the noise components 

(Baken & Orlikoff, 2000). This can be calculated by taking the averaged waveform, 

which is the harmonic component, and subtracting it from the non-averaged or absolute 

waveform (Baken & Orlikoff, 2000). This results in the noise component being left over. 

A ratio of the averaged waveform and the noise waveform values results in the harmonic-

to-noise ratio (Baken & Orlikoff, 2000).  
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Increased turbulence at the level of the glottis leads to a diminished harmonics-to-noise 

ratio as the turbulence elevates the noise component in the signal (Ferrand, 2002). From 

an auditory-perceptual perspective, HNR represents a broad measure of voice quality 

(Ferrand, 2002).  Studies evaluating vocal quality have found HNR to be an important 

correlate as an acoustic measure (Eskenazi et al., 1990). The voice is a complex 

waveform, made up of the quasi-periodic and aperiodic components. The quasi-periodic 

nature of the voice allows the subtraction of the averaged waveform, which represents the 

harmonic sound, from the complex signal leaving only the noise component. This 

component is the aperiodic vibration that contributes noise to the signal. Increasing noise 

in the signal decreases the ratio, representing a decrease in overall vocal quality. In this 

way, HNR can be used as a correlate of overall voice quality.  

 

2.4 Cepstral Peak Prominence (CPP) 

An ideal measure of voice is one that is reliable in the context of aperiodicity (Heman-

Ackah et al., 2003). In that context, a measure can evaluate even the most chaotic 

vibratory patterns that are associated with severely disordered voices. Measures of 

perturbation, jitter and shimmer, rely on the accurate detection of the fundamental period, 

which becomes increasingly difficult in severely aperiodic voices (Heman-Ackah et al., 

2003). A powerful additional method of calculating the fundamental frequency was first 

described in 1964 by Noll et al; a measure relying on Fourier analysis of the vocal signal 

(Baken & Orlikoff, 2000; Hillenbrand & Houde, 1996; Noll, 1964). Using these 

concepts, Hillenbrand et al (1994) developed an acoustic measure to predict dysphonia 
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severity, termed cepstral peak prominence (Heman-Ackah et al., 2003; Hillenbrand, 

Cleveland, & Erickson, 1994; Hillenbrand & Houde, 1996). 

Cepstral peak prominence (CPP) is a somewhat newer acoustic measure, one which 

evaluates the vocal signal without relying on identifying the fundamental period (Heman-

Ackah et al., 2003, 2014). A spectrographic representation of the vocal signal is a result 

of a Fourier transform of the vocal signal’s frequency wave (Heman-Ackah et al., 2003). 

This takes the signal from the amplitude (dB) and time (s) domains and produces a 

waveform of the intensity (dB) and the frequency (Hz) (Heman-Ackah et al., 2003).  In 

doing so, the converted signal is a spectral representation, which results in a logarithmic 

representation of the amplitudes, increasing the visibility of small differences in 

amplitude (Heman-Ackah et al., 2003). With respect to voice, the fundamental frequency 

typically represents the largest frequency amplitude, followed by multiples of harmonic 

frequencies achieved in the resonant tract of the upper airway (Heman-Ackah et al., 

2003). A cepstral representation, called a cepstrum, is achieved by performing a second 

Fourier transform; the signal is now presented in a waveform of magnitude (dB) and 

quefrency (ms) (Heman-Ackah et al., 2003; Noll, 1964). “Quefrency” is a term coined by 

Noll to avoid confusion of transforming the signal back into the time domain, where the 

unit of measurements is seconds (Heman-Ackah et al., 2003; Noll, 1964). The Fourier 

transformation of the spectral wave transforms the spectrum from the frequency domain 

to the time domain (Heman-Ackah et al., 2003). It serves to further clarify the harmonic 

components of the voice, whereby the most prominent peak corresponds to the 

fundamental frequency (Heman-Ackah, Michael, & Goding, 2002).  



27 

 

Voice production generates a complex waveform where the most prominent peak of a 

spectral graph represents the fundamental frequency. The subsequent, less prominent, 

peaks represent harmonic frequencies which are typically multiples of the fundamental 

frequency (Heman-Ackah et al., 2003). When converted to the cepstrum, these harmonic 

peaks are referred to as “rhamonic” peaks, which occur at multiples of the fundamental 

period (Heman-Ackah et al., 2003; Noll, 1964, 1967). A linear regression line is then 

calculated to represent the average sound energy through the graphic representation, 

which is used to calculate the cepstral peak prominence (Heman-Ackah et al., 2003). This 

normalizes the variability between amplitude in voice, accounting for variations in the 

volume the sample was captured at by determining the magnitude of the peak against the 

loudness at which it was produced  (Heman-Ackah et al., 2003). The linear regression 

line is calculated from the quefrency to cepstral magnitude together, and the cepstral peak 

prominence is calculated as the amplitude from the peak to the corresponding value on 

the regression line (Heman-Ackah et al., 2002). Evaluating this measure is 

uncomplicated, in that the higher the prominence, the more periodic the voice sample that 

is being analyzed. For this reason, a highly periodic voice will result in a high CPP, 

which indicates highly organized harmonic structure (Heman-Ackah et al., 2003, 2002). 

Similarly, voices with a significant noise component will have poorly organized 

harmonic structures resulting in a flat appearing cepstrum, the peak from the linear 

regression line will be lower accordingly (Heman-Ackah et al., 2002). 

Cepstral peak prominence has been shown to reliably correlate with perceptual measures 

of dysphonia (Awan, Roy, & Dromey, 2009; Heman-Ackah et al., 2003, 2002, 2014). 

CPP holds some of the benefits required of an optimal measure of voice in that it is 
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calculated independent of the fundamental period, which in turn can become increasingly 

unreliable in severely dysphonic voices (Heman-Ackah et al., 2003, 2014; Noll, 1967). 

Furthermore, it is unimpacted by the recording technique and volume (Heman-Ackah et 

al., 2014). That is, it is performed without requiring detection of periodicity, and by using 

a linear regression approach the value is independent to the loudness the sample is 

captured at (Heman-Ackah et al., 2003, 2002). Similar to HNR, CPP evaluates the 

harmonic sound in the vocal signal and compares this to the noise component (Heman-

Ackah et al., 2003, 2002). This work by Hillenbrand has produced a reproducible 

measure for detection of dysphonic voices and a normative range of values has since been 

established (Awan et al., 2009; Heman-Ackah et al., 2003; Hillenbrand et al., 1994; 

Hillenbrand & Houde, 1996). For normal voices, a CPP will be greater than 4.0 (Heman-

Ackah et al., 2014). CPP has been established as an acoustic measure that reliably 

predicts dysphonia severity (Heman-Ackah et al., 2003, 2002, 2014). It does this by 

quantifying the harmonic organization of a voice sample in a way that is not reliant on 

identification of the fundamental period, making it reliable in the setting of increasingly 

aperiodic voices (Heman-Ackah et al., 2003, 2014; Hillenbrand et al., 1994; Hillenbrand 

& Houde, 1996).   

2.5 Smartphone Voice Analysis 

Acoustic voice analysis has long been seen as an important part of a thorough voice 

assessment. Objective measures can be collected as part of a well-rounded approach that 

is complemented by rigorous auditory-perceptual evaluation (Eadie & Doyle, 2005). 

However, barriers exist to collecting adequate voice samples for analysis, including 
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sound-controlled environments, costly set ups, analysis software, and requirement for a 

trained observer to collect the sample (Kisenwether & Sataloff, 2015; Parsa & Jamieson, 

2001; Parsa, Jamieson, & Pretty, 2001; Zraick et al., 2011). With a substantial increase in 

the widespread availability of smartphones, new avenues for data collection and mobile 

analysis are available to potentially alleviate some of these concerns (Burdette, 

Herchline, & Oehler, 2008; Manfredi et al., 2017; Park & Chen, 2007; A. Smith, 2012; 

Steinhubl et al., 2015). Over the past several years, research has been completed to 

indicate the validity of these recordings for assessment and the analyses that can be 

completed on a smartphone (Uloza et al., 2015).  

Much of the research has been directed toward evaluating the quality of smartphone 

voice recordings for the purposes of micro-acoustic analysis (Guidi et al., 2015; Lin et al., 

2012; Uloza et al., 2015). Lin et al evaluated the iPhone for use in recording voice 

samples for acoustic analysis, finding good reliability when compared to a traditional set 

up for some acoustic measures (Lin et al., 2012). Uloza et al specifically evaluated the 

correlation of the results when recorded with a high-quality microphone (AKG 

Perception 220) compared to a smartphone microphone (Samsung Galaxy Note 3); their 

data showed high correlation between the analysis results from both groups, indicating 

reliability in the smartphone captured samples (Uloza et al., 2015). The findings of these 

two studies show that these types of recordings are now of high enough quality that valid 

acoustic analysis can be performed and using these analyses could improve early 

diagnosis of laryngeal diseases (Uloza et al., 2015). This alone may reduce some of the 

barriers to acoustic analysis by providing a low-cost option for recording the voice 

sample and analyzing the data through existing software programs.  
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Beyond the capabilities of voice capture and offline analysis, there have been several 

studies that assessed the ability to perform on-device analysis (Fujimura et al., 2019; Mat 

Baki et al., 2013, 2015; Siau, Goswamy, Jones, & Khwaja, 2017). With significant 

increases in computing power, smartphone devices are now able to carry out analysis 

without first exporting the voice samples (Manfredi et al., 2017). That is, they now have 

the computational abilities to perform the complex mathematics without the use of 

external software programs. The capacity for smartphone voice sample capture and 

analysis could improve access to ongoing, acoustic voice analysis by minimizing the 

steps required to offer acoustic analysis (Manfredi et al., 2017). This advantage is of 

particularly importance for patients who may be distant from their otolaryngology health 

care provider or come from resource constrained areas. By decreasing barriers to access, 

repeated measures (i.e., multiple ongoing recordings and analysis) are a notable benefit, 

leading to increased data points for evaluation in clinical and research settings (Manfredi 

et al., 2017). Furthermore, Manfredi et al went on to test the limits of currently available 

smartphones and their respective microphones (low cost vs. high cost) and found limited 

difference between the two levels of devices (Manfredi et al., 2017).  

Smartphone technology has increased over the past decade and is now frequently an area 

of clinical interest (Burdette et al., 2008; Steinhubl et al., 2015). Within voice science, 

there has been similar interest and much of the groundwork for validation has been 

completed (Fujimura et al., 2019; Lin et al., 2012; Manfredi et al., 2017; Mat Baki et al., 

2015; Uloza et al., 2015). The introduction of new validated tools may lead to wider 

adoption and decrease the aforementioned barriers to acoustic voice analysis.  
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Chapter 3  

3 Materials and Methods 

This study was carried out in two phases. First, the microphones and environments were 

evaluated using pre-recorded samples. Second, the analysis capabilities of the smartphone 

were evaluated using prospectively collected samples. The study procedures will be 

discussed in detail in the following sections.  

3.1 Power Calculation 

A power calculation for analysis was carried out a priori (Appendix B). For comparison 

of means, in a two-level between groups independent variable analysis, 17 persons per 

group was required. A total of 51 samples were collected to achieve this requirement.   

3.2 Volunteer Recruitment 

The study design and rationale were described in detail to volunteers at the 

Otolaryngology – Head and Neck Surgery Clinic at London Health Sciences Centre. A 5-

page study-information package was provided to interested persons to review 

independently prior to agreeing to participate (Appendix A). Informed consent was 

collected from all participants who volunteered to provide a voice sample. The 

demographic data of included participants can be found in Table 1.  
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Table 1 – Participants’ Demographic Data. 

Group Mean Age Age Range Male Female Pathologic 

Yeti AB 40.2 23-81 7 10 1 

iPhone AB 34.9 21-72 12 5 3 

iPhone NAB 46.5 24-74 8 9 5 

Overall 40.5 21-81 27 24 9* 

* Pathologies included: unilateral vocal fold paralysis, hyperfunctional voice disorders, 

lung-related voice pathology, vocal fold neoplasm. 

3.3 Eligibility 

Inclusion criteria included English-speaking persons over the age of 18.  

Exclusion criteria included pediatric patients and non-English speaking persons.  

3.4 Ethics Approval 

This study was approved by the Health Sciences Research Ethics Board at Western 

University on February 28, 2019. The letter of information and consent can be reviewed 

in Appendix A.  
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3.5 Sources of Funding 

This study was supported by the Peter Cheski Innovative Resident Research Fund as well 

as through internal funding from the Department of Otolaryngology – Head and Neck 

Surgery. 

 

3.6 Application Development 

The VOICES application was developed for the proprietary purposes of this study by Dr. 

Benjamin van der Woerd, Min Wu, and Dr. Vijay Parsa. It was developed using XCode 

10.0+ running on MacOS 10.13.6 High Sierra or higher. The programming language was 

Swift 5.0. Analysis algorithm development was completed using MATLAB. Validation 

of the algorithm relied on Praat to generate acoustic analysis values for comparison. 

3.7 Recording Hardware Specifications and Settings 

Two microphones were used for the collection of the audio samples: 1) an iPhone 7 Plus 

Internal Microphone and 2) a Blue Yeti Ultimate USB Microphone. The iPhone 7 plus 

internal microphone is an omnidirectional transducer, quantized at 16 bits per sample,  

and sampling rate of 44,100 Hz. Samples were recorded in mono. The Blue Yeti Ultimate 

USB Microphone records at a sampling rate of 48,000 Hz and quantized at 16 bits per 

sample. The polar patterns for audio capture on the Yeti microphone was set to cardioid 

for each sample, which consisted of a sustained vowel and continuous speech segment. 
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Each sample was transferred to the secure S-Drive at London Health Sciences Centre for 

storage.  

3.8 Pre-recorded Voice Samples 

To evaluate the impact of the microphone and the recording environment on the 

calculation of microacoustic measures, pre-recorded, high-quality samples were used. For 

the vowel analysis, twenty (n=20) sustained vowel (/a/) samples were included. This set 

of samples included normal (n=10) and dysphonic (n=10) voices; the quality of 

dysphonic samples ranged from mild to severe. The sustained vowel sample set included 

male and female voices. The continuous speech samples were based on informal 

perceptual evaluation of the experimenter. The sentence samples were comprised of the 

second sentence of The Rainbow Passage: “The rainbow is a division of white light into 

many beautiful colors.” (Fairbanks, 1960). This set of voices included a series of both 

male (n=12) and female (n=12) voices for analysis. Similar to the vowel samples, 

sentence samples were also judged to range in perceptual quality from those that were 

normal to those that were severely pathologic.  

 

3.9 Mannequin Recording Process 

A standardized process was used to capture samples of the pre-recorded voice recordings 

under varying conditions: Blue Yeti Microphone Soundproof Room (Yeti AB), Blue Yeti 

Microphone Non-Soundproof Room (Yeti NAB), iPhone Microphone Soundproof Room 

(iPhone AB), and iPhone Microphone Non-Soundproof Room (iPhone NAB).  A 
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calibrated mannequin speaker, which is standard practice in telecommunications and 

audiology research, was used to present the pre-recorded vocal signals, as seen in Figure 

1. This was completed at a fixed distance of 15 inches (38.1 cm). The signal volume was 

calibrated to 69 dBA using a sound level meter. This resulted in four identical sets of 

recordings: Yeti AB, Yeti NAB, iPhone AB, and iPhone NAB.  

 

Figure 1. Mannequin speaker and iPhone microphone setup. 

3.10 Part 1: Mannequin Voice Sample Analysis 

The four sets of identical recordings were time-windowed to ensure the same time signal 

was analyzed. Windowing of signals was carried out using a MATLAB script, which 

truncated the recordings to include the same length of each vowel, starting and ending at 

the same time points of each recording for each of the four conditions. These sets of 

recordings were then analyzed individually using a Praat script developed by Sebastiano 

Failla, MSc, from the Voice Production and Perception Laboratory, Western University. 
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This script automated the calculation of fundamental frequency (Hz), jitter (%), shimmer 

(dB), harmonic-to-noise ratio (dB), and smoothed cepstral peak prominence (dB). 

Harmonic-to-noise ratio and cepstral peak prominence were calculated for both the 

sustained vowel and sentence samples, the remainder were only calculated on the 

sustained vowel samples. Results were output to an Excel file for later comparison.  

3.11 Part 1: Mannequin Statistical Analysis 

A repeated measures ANOVA was used to analyze the four sets of identical recordings 

from the pre-recorded signals. We report descriptive statistics, including the mean, 

median, standard deviation and standard error of the mean values. All statistics were 

completed using SPSS version 23.0.0.0.  

3.12 Prospective Voice Sample Collection 

After signing an informed consent, volunteers were enrolled in a convenience pattern to 

one of three recording configurations: Blue Yeti Microphone Soundproof Room (Yeti 

AB), iPhone Microphone Soundproof Room (iPhone AB), or iPhone Microphone Non-

Soundproof Room (iPhone NAB). The recording protocol was explained to them in detail 

and examples of the volume and pitch were shown prior to starting. They were given the 

opportunity to ask questions prior to initiating the recording process. The selected 

microphone was placed 6 inches from the volunteer’s mouth at a 45-degree angle. 

Distance was measured using a small ruler and volunteers were instructed to maintain 

this position throughout the recording process.  
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The recording protocol was a three-task process: sustained vowels, CAPE-V sentences, 

and a free running speech sample. In each task, the participants were to speak at a 

comfortable, conversational pitch and volume.  

For the sustained vowel task, volunteers were asked to say /a/ as in “dot”, /i/ as in “deep”, 

and /u/ as in “boot” for six seconds each. This task was repeated three times.  

The sentences were taken from the Consensus Auditory-Perceptual Evaluation of Voice 

(CAPE-V) for the purposes of testing specific aspects of laryngeal behaviour. Those 

sentences are:  

1. “The blue spot is on the key again”  

a. Includes all vowel sounds in the English language 

2. “How hard did he hit him” 

a. Easy onset with /h/ sound 

3. “We were away a year ago” 

a. All voiced sounds 

4. “We eat eggs every Easter” 

a. Hard glottal attack 

5. “My mama makes lemon jam” 

a. Contains nasal sounds 
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6. “Peter will keep at the peak”  

a. Voiceless plosive sounds 

The third task asked the participant to speak about a hobby or special interest for 20 

seconds of natural speech.  

From each of the sustained vowel samples, a steady portion of sustained /a/ was extracted 

for analysis. The six CAPE-V sentences were extracted together. With this, a sustained 

vowel and standardized continuous speech sample was available for analysis from each 

prospective sample.  

3.13 Part 2: Praat vs. On-device Voice Sample Analysis 

Following the collection of the voice samples, each sample was exported for long-term 

storage. The sustained vowel /a/ segments and CAPE-V segments were extracted from 

each sample. The resultant sustained vowel (n=51) and CAPE-V (n=51) samples were 

analyzed for the collection of seven variables using Praat and the proprietary on-device 

analysis. The previously mentioned script was used to automate the calculation of 

fundamental frequency (Hz), jitter (%), shimmer (dB), harmonic-to-noise ratio (dB), and 

cepstral peak prominence (dB). Fundamental frequency, jitter, and shimmer were 

calculated only for sustained vowel samples. Results were output to an excel file for 

comparison. For the on-device analysis, each of the samples were loaded onto an iPhone 

7 Plus and analysis was completed using our in-house developed algorithm. Each of the 

same variables were calculated and transferred to an excel file for comparison.  
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3.14 Part 2: Praat vs. On-device Statistical Analysis 

All statistical analysis was completed using SPSS. Means were compared between groups 

using paired sample t-tests. Mean, median, standard deviation, and standard error of the 

mean are also reported.  
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Chapter 4  

4 Results 

This study was carried out in two phases. First, we evaluated the impact of the 

microphone of choice on our ability to calculate our chosen microacoustic measures: F0, 

jitter, shimmer, HNR, and CPP. In the assessment of sustained vowel samples, all five 

acoustic measures were used. For the evaluation of the CAPE-V sentences, only HNR 

and CPP were used. To differentiate the HNR and CPP measures for each of the samples, 

they have been labeled as HNR-V, CPP-V, HNR-S, and CPP-S to reflect vowel and 

sentence analyses respectively. At the same time, we evaluated the impact of the 

recording environment on the same measures. Next, we prospectively collected voice 

samples to analyze in the traditional, gold standard method of analysis (Praat), and the 

proprietary, on-device analysis algorithm developed for this project (Boersma, 2002). In 

the following sections, the results of the microphone impact, recording environment 

impact, and comparison of the proprietary algorithm and Praat on sustained vowel and 

continuous speech samples will be discussed.  

4.1 Microphone Impact  

During the first phase, microphone impact was evaluated for the calculation of 

fundamental frequency (F0), jitter, shimmer, HNR-V, CPP-V, HNR-S, and CPP-S. A 

repeated measures ANOVA was used to evaluate the different microphone conditions. A 

statistically significant difference was identified between the two microphones for the 

calculation of shimmer, HNR-V, CPP-V, HNR-S, and CPP-S (see Table 2). Calculation 
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of F0 and jitter were not significantly different when comparing the choice of microphone 

in this study (Table 2). An interaction between the variables, microphone choice and 

recording environment, was present for the measurement of shimmer, HNR-V, CPP-V, 

and CPP-S.  

    Table 2 - Repeated Measures ANOVA Results.  

    Note. *indicates interaction between variables.  

F0 

Microphone: p = .564 

Booth: p = .013 

Jitter  

Microphone: p = .519 

Booth: p = .516 

Shimmer* 

Microphone: p < .001 

Booth: p < .001 

HNR-V* 

Microphone: p < .001 

Booth: p < .001 

CPP-V 

Microphone: p < .001 

Booth: p < .001 

HNR-S 

Microphone: p < .001 

Booth: p = .167 

CPP-S* 

Microphone: p < .001 

Booth: p = .002 
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Mean, median, standard deviation, and standard error of the mean of each measurement 

across the four differing conditions are presented in Tables 3-9. These show a small 

overall difference for F0, jitter, CPP-V, HNR-S, and CPP-S. A more substantial 

difference was found in the calculation of shimmer and HNR-V. Scatter plots of each 

measurement can be found in Figures 2-8. 

 

 Figure 2. F0 scatter plot comparison: Yeti AB: iPhone AB/Yeti NAB/iPhone NAB. 
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 Figure 3. Jitter scatter plot comparison: Yeti AB: iPhone AB/Yeti NAB/iPhone NAB. 

 

Figure 4. Shimmer scatter plot comparison: Yeti AB: iPhone AB/Yeti NAB/iPhone NAB. 
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Figure 5. HNR Vowels scatter plot comparison: Yeti AB: iPhone AB/Yeti NAB/iPhone 

NAB. 
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Figure 6. CPP Vowels scatter plot comparison: Yeti AB: iPhone AB/Yeti NAB/iPhone 

NAB. 
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Figure 7. HNR Sentences scatter plot comparison: Yeti AB: iPhone AB/Yeti 

NAB/iPhone NAB. 
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Figure 8. CPP Sentences scatter plot comparison: Yeti AB: iPhone AB/Yeti NAB/iPhone 

NAB. 

4.2 Recording Environment Impact  

In the same phase, we evaluated the recording environment’s impact on calculation of the 

same seven variables. A repeated measures ANOVA was used. A statistically significant 

difference was identified for the calculation of F0, shimmer, HNR-V, CPP-V, and CPP-S 

(see Table 2). Using this data set, the calculation of jitter and HNR-S were not 

statistically different when comparing the recording environment of a soundproof booth 

to a quiet office (see Table 2).  

Mean, median, standard deviation, and standard error of the mean for each recording 

condition are reported in Tables 3-9. These indicate limited differences with respect to 
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the calculation of F0, jitter, CPP-V, HNR-S, and CPP-S. A larger impact was identified 

for calculation of shimmer and HNR-V. 

Table 3. Mean, median, standard deviation, standard error of the mean for F0 as measured 

across the following four conditions: Yeti AB, iPhone AB, Yeti NAB, and iPhone NAB. 

F0 Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 183.04 175.81 183.84 183.48 

Median 196.43 196.43 204.89 189.27 

Standard 

Deviation 
58.81 65.15 62.52 56.87 

Standard Error 

of the Mean 
13.15 14.57 13.98 12.72 
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Table 4. Mean, median, standard deviation, standard error of the mean for jitter as 

measured across the following four conditions: Yeti AB, iPhone AB, Yeti NAB, and 

iPhone NAB. 

Jitter Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 0.77 0.91 0.90 0.86 

Median 0.40 0.39 0.59 0.60 

Standard 

Deviation 
1.32 1.90 1.37 1.34 

Standard Error 

of the Mean 
0.29 0.43 0.31 0.30 
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Table 5. Mean, median, standard deviation, standard error of the mean for shimmer as 

measured across the following four conditions: Yeti AB, iPhone AB, Yeti NAB, and 

iPhone NAB. 

Shimmer Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 0.39 0.45 0.55 0.80 

Median 0.26 0.28 0.43 0.67 

Standard 

Deviation 
0.47 0.49 0.40 0.43 

Standard Error 

of the Mean 
0.10 0.11 0.09 0.10 
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Table 6. Mean, median, standard deviation, standard error of the mean for HNR Vowel as 

measured across the following four conditions: Yeti AB, iPhone AB, Yeti NAB, and 

iPhone NAB. 

HNR Vowel Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 20.31 19.41 16.50 12.82 

Median 22.00 20.87 18.07 13.21 

Standard 

Deviation 
6.40 6.18 5.47 4.40 

Standard Error 

of the Mean 
1.43 1.38 1.22 0.98 
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Table 7. Mean, median, standard deviation, standard error of the mean for CPP Vowel as 

measured across the following four conditions: Yeti AB, iPhone AB, Yeti NAB, and 

iPhone NAB. 

CPP Vowel Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 16.31 16.47 15.62 15.83 

Median 16.18 16.52 15.77 16.15 

Standard 

Deviation 
4.00 3.99 4.05 4.01 

Standard Error 

of the Mean 
0.89 0.89 0.91 0.90 
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Table 8. Mean, median, standard deviation, standard error of the mean for HNR 

Sentences as measured across the following four conditions: Yeti AB, iPhone AB, Yeti 

NAB, and iPhone NAB. 

HNR 

Sentences 

Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 8.38 7.90 6.55 6.42 

Median 8.06 7.25 6.34 6.23 

Standard 

Deviation 
3.45 3.27 2.65 1.66 

Standard Error 

of the Mean 
0.70 0.67 0.54 0.34 
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Table 9. Mean, median, standard deviation, standard error of the mean for CPP Sentences 

as measured across the following four conditions: Yeti AB, iPhone AB, Yeti NAB, and 

iPhone NAB. 

CPP 

Sentences 

Yeti AB iPhone AB Yeti NAB iPhone NAB 

Mean 7.55 7.23 6.28 6.38 

Median 7.42 7.30 6.36 6.43 

Standard 

Deviation 
1.40 1.55 1.31 1.34 

Standard Error 

of the Mean 
0.29 0.32 0.27 0.27 

 

4.3 Prospective Recordings - Sustained Vowels 

The second phase of the present study evaluated prospectively collected voice samples 

that were analyzed using two methods: 1) via the proprietary algorithm and 2) using 

Praat. Prospectively recorded voice samples yielded a sustained vowel and continuous 

speech sample for analysis. This resulted in two paired data sets (n=51), one set analyzed 

by each algorithm. This data was compared using paired sample t-tests in SPSS.  
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Analysis revealed a statistically significant difference in the calculation of F0, Shimmer, 

HNR-V, and CPP-V. The correlations were strong between each of these measures (see 

Tables 10, 12-14). The differences between the calculated values for jitter were not found 

to be statistically significant. The correlation for jitter was moderate (see Table 11). In 

order to visually evaluate the present data, scatter plots comparing the two groups with 

respect to these five measures are graphically represented in Figures 9-13. 

Table 10. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for F0 as calculated by Praat and Proprietary algorithms. 

F0 Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 142.43 51 50.26 7.04 
0.879 

(p<.001) 
Proprietary 153.25 51 48.97 6.86 

 

Table 11. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for jitter as calculated by Praat and Proprietary algorithms. 

Jitter Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 0.54 51 0.32 0.05 0.355 

(p=.110) Proprietary 0.43 51 0.85 0.12 
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Table 12. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for shimmer as calculated by Praat and Proprietary algorithms. 

Shimmer Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 0.40 51 0.23 0.03 
0.829 

(p<.001) 
Proprietary 0.52 51 0.32 0.04 

 

Table 13. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for HNR vowel as calculated by Praat and Proprietary algorithms. 

HNR Vowel Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 19.11 51 4.27 0.60 
0.964 

(p<.001) 
Proprietary 16.71 51 3.90 0.55 
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Table 14. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for CPP vowel as calculated by Praat and Proprietary algorithms. 

CPP Vowel Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 19.99 51 3.64 0.51 
0.881 

(p<.001) 
Proprietary 23.39 51 3.92 0.55 

 

The mean F0 calculated using Praat was 142.43 Hz, compared to 153.25 Hz when 

calculated with the proprietary application and correlation between the calculations was 

0.879 (p < .001) (see Table 10). This indicates a reliable identification of the fundamental 

period, which is critical for the calculation for both jitter and shimmer, as previously 

discussed. Interestingly, mean jitter calculated in Praat was 0.54 %, compared to 0.43 % 

when calculated with the proprietary application. Here, the correlation between the 

calculations was only moderate at 0.355 (p = .011) (see Table 11). Next, the correlation 

of shimmer was strong, at 0.829 (p < .001) (see Table 12). The mean shimmer calculated 

in Praat was 0.40 dB, compared to 0.52 dB when calculated with the proprietary 

application. Once again there was a strong correlation between the two methods of 

measurement for HNR-V (0.964, p < .001) and CPP-V (0.881, p < .001). The mean 

HNR-V calculated in Praat was 19.11 dB, compared to 16.71 dB when calculated with 

the proprietary application. Finally, the mean CPP-V calculated in Praat was 18.99 dB, 

compared to 23.39 dB when calculated with the proprietary application.  
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Figure 9. F0 scatter plot comparison: Proprietary algorithm vs. Praat. 
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Figure 10. Jitter scatter plot comparison: Proprietary algorithm vs. Praat. 
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Figure 11. Shimmer scatter plot comparison: Proprietary algorithm vs. Praat. 
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Figure 12. HNR Vowel scatter plot comparison: Proprietary algorithm vs. Praat. 
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Figure 13. CPP Vowel scatter plot comparison: Proprietary algorithm vs. Praat. 

 

4.4 Prospective Recordings - Continuous Speech  

In addition to the above sustained vowel analysis, the same two paired data sets of 51 

continuous speech samples were analyzed using Praat and the proprietary developed 

application. These data were evaluated using paired sample t-tests in SPSS.  Because of 
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the nature of continuous speech and the increased complexity of the signal, only HNR-S 

and CPP-S were calculated for these samples.  

In the comparison of means, the differences in CPP-S and HNR-S were found to be 

statistically significant (p < .001) as seen in Tables 15 and 16. In this analysis, the 

differences between the values were substantially larger. The mean CPP-S calculated in 

Praat was 9.197 dB, compared to 16.985 dB when calculated with the proprietary 

application (see Table 16). Similarly, for HNR-V, the mean calculated in Praat was 

12.440 dB, compared to 4.132 dB when calculated with the proprietary application (see 

Table 15).  These differences were reflected in the correlations between the values, which 

was strong for CPP-S (0.632, p < 0.001), and moderate for HNR-S (0.299, p = .033) (see 

Tables 15-16). Scatter plots comparing the two groups with respect to these two measures 

are also visually presented in Figures 14-15.  

Table 15. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for HNR sentences as calculated by Praat and Proprietary algorithms. 

HNR 

Sentences 

Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 12.44 51 1.86 0.26 
0.299 

(p=.033) 
Proprietary 4.13 51 1.92 0.27 
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Table 16. Mean, standard deviation, standard error of the mean, and correlation 

coefficient for CPP sentences as calculated by Praat and Proprietary algorithms. 

CPP 

Sentences 

Mean N St. Dev Std. Error 

Mean 

Correlation 

(p-value) 

Praat 9.20 51 1.20 0.17 
0.632 

(p<.001) 
Proprietary 16.98 51 0.92 0.13 
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Figure 14. HNR Sentences scatter plot comparison: Proprietary algorithm vs. Praat. 



66 

 

 

Figure 15. CPP Sentences scatter plot comparison: Proprietary algorithm vs. Praat. 
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Chapter 5  

5 Discussion and Conclusion 

Voice analysis is an important part of a thorough voice examination.  The comprehensive 

evaluation can include auditory-perceptual analysis, aerodynamic studies, and acoustic 

voice analysis, amongst others. Acoustic analysis can provide objective measurements for 

diagnostic and ongoing monitoring documentation and such data can complement 

auditory-perceptual assessments or prompt further investigations. The existing methods 

of voice sample collection and analysis are often resource intensive, creating barriers to 

access. In the current work, we sought to empirically examine a multi-phase study 

evaluating smartphones as an avenue to perform voice sample acquisition and on-device 

acoustic voice analysis. In the sections to follow, a discussion of the following areas of 

interest will be addressed.  First, the assessment of the microphones and recording 

environments, as completed in phase one will be detailed. Second, we will discuss the 

results of the prospectively collected samples and the validity of the proprietary 

algorithm. Next, limitations of the study will be addressed. Clinical implications of this 

study and future study directions will each be discussed separately.  

5.1 Mannequin Study 

In phase one of this study, microphones for voice sample collection and the influence of 

recording environment were evaluated. Pre-recorded samples were captured under four 

different conditions (i.e., Yeti microphone in a soundproof booth, iPhone microphone in a 

soundproof booth, Yeti microphone in a quiet office, and iPhone microphone in a quiet 
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office) to reflect the two different microphones and recording environments that were 

evaluated. The resultant data revealed that statistically significant impacts from both the 

microphone and the environment do exist on the acoustic measurements, albeit limited. 

The differences in values that were produced were typically of small magnitude, that 

would not represent a clinically important difference in most cases. For example, the 

difference between the mean F0 in the gold standard scenario (Yeti microphone in a 

soundproof room) and the least controlled setting (iPhone microphone in a quiet office) 

revealed a 0.9 Hz difference. Normative ranges for F0 are approximately 120 Hz for men 

and 210 Hz for women, where a half hertz difference would not make an impact on 

clinical decision making. Similarly, small differences were found in the calculation of 

jitter and CPP-V, whereby clinical interpretation would not be affected. By introducing a 

lower quality microphone, many, but not all of the acoustic measures evaluated were 

found to be significantly different. Similarly, by recording in a less controlled 

environment, there were impacts identified specific to the calculation of microacoustic 

measures. That is, the calculation of F0, shimmer, CPP-V, and CPP-S all showed 

statistically significant differences when comparing the recording environments. The 

differences that were identified are consistent as expected, but small in overall effect. The 

magnitude of difference between the soundproof room and the quiet office was modest in 

the calculation of F0, jitter, CPP-V, HNR-S, and CPP-S. Despite the statistically 

significant differences observed, these impacts do not appear to represent a clinically 

important difference in the ability to measure these selected acoustic measures.  

A repeated measures ANOVA indicates statistically significant differences that are 

present consistently between the variables being assessed. However, it does not indicate 
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what the difference between the variables is. That is, whether one variable being assessed 

was higher or lower than the other cannot be verified using an ANOVA. To understand 

the identified results, the mean values were graphed in a scatter plot to evaluate which 

microphone had an effect, what the impact was, and the degree of difference between the 

microphones. Based on evaluation of the means of each group, it was clear that the effect 

of the microphone was limited and largely viewed to be clinically acceptable (Tables 2-

8). However, calculation of shimmer and HNR-V had more significant effects from both 

the microphone and recording environment; therefore, the interpretation of these results 

should be undertaken with caution in a clinical setting. Though formal minimal clinically 

important differences are not known for either measurement in Praat, the normative 

values for each are informative in this context. The normative mean value for HNR is 

11.9 dB (CI 7.0-17.0) (Yumoto et al., 1982). The normative range for shimmer is 

typically greater than 0.350 dB as a pathologic threshold (Praat Documentation, 2003). 

Given the greater mean differences observed in each of these values, the likelihood of a 

false result is elevated. For these reasons these results should be contextualized within the 

conditions the voice sample was collected in.   

5.2 Proprietary Application Analysis 

Phase two of this study evaluated the proprietary application against the current standard 

used for acoustic voice analysis (Praat) (Boersma, 2002). Prospective voice samples were 

collected from volunteers. From these, a sustained vowel and continuous speech sample 

were collected and relevant components of these samples were extracted for analysis.  
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For the vowel analysis, the proprietary algorithm was observed to perform well when 

compared to the data generated using Praat. The correlations of the measures across the 

two platforms ranged from moderate-to-strong (0.355 to 0.964). Jitter results were the 

least correlated measure based on the current results. Looking at the jitter scatter plot 

(Figure 10), one can observe that there are 6 major outliers. Evaluation of the raw data 

reveals the selected fundamental period to be substantially different between the two 

analyses. As an example, one such non-dysphonic female sample had her F0 as measured 

by Praat to be 112.92 Hz, measured as 223.43 Hz by the proprietary algorithm. Closer 

examination of the pitch track reveals this to have been incorrectly selected by Praat (see 

Figure 16). This explains the variability in the jitter, which relies on fundamental period 

calculation to accurately determine. Jitter is a measure of cycle-to-cycle period 

variability. It compares the cycle-to-cycle differences to the observed fundamental 

period. If the fundamental period is incorrectly identified, then its utility as the 

comparator group is negated. The subsequent cycles will inevitably be highly variable, 

and the percentage differences will rise inappropriately leading to high measured jitter.  
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Figure 16. Pitch tracking example; Praat vs. proprietary algorithm. 

When reviewing the sustained vowel analysis, these data provided validation that the 

proprietary algorithm developed for this study can reliably measure our chosen acoustic 

variables. Furthermore, the fundamental frequency was correctly identified in some cases 

that appeared to have been miscalculated by Praat, leading to some of the discrepancies 

in the comparison of means. Importantly, this impacts not only the calculation of the 

mean F0 values that were compared but has downstream impacts on the calculation of 

both jitter and shimmer. Furthermore, this is an indication of the robustness of the 
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algorithm, whereby the accuracy was maintained in noisier samples, even in the context 

of miscalculations by the gold standard (Praat).  

The sustained vowel analysis resulted in highly valid results based on the data in this 

study. However, analysis of continuous speech is a significantly more challenging task. 

More specifically, running speech signals are vastly more complex in the range of 

frequency and amplitude, as well as in the temporal domain (e.g., changes in speech rate, 

pauses, voice breaks between segments, etc.). The comparison of HNR-S and CPP-S 

measures for the continuous speech samples reflects these challenges. HNR-S, when 

calculated by the proprietary algorithm, had a moderate correlation (0.299) when 

compared to the same measure calculated by Praat. As discussed above, this acoustic 

measure is calculated by taking the smoothed waveform to represent the harmonic signal, 

subtracted from the complex overall signal, and the remaining waveform reflects the 

background noise. By not concatenating the continuous speech sample, there are breaks 

that include ambient noise. Ambient noise is the background noise in the samples. 

Specifically, in the context of samples collected outside of a soundproof setting, this 

background noise affects the calculation of microacoustic measures. It contributes noise 

to the signal, which affects the residual waveform when the harmonic signal is removed 

in the calculation of the HNR. Furthermore, the linear regression line for the calculation 

of CPP, which is based on the amplitude of the signal, will be affected by the presence of 

background noise. Ambient noise between voice segments was not accounted for in the 

proprietary analysis, which likely explains the reasons for the significantly different 

values; in this instance, this may reflect an altered estimation of the presence of 

dysphonia.   
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Despite this, in comparison to the HNR evaluation data, CPP performed better and 

demonstrated a strong correlation of 0.632. Once again, however, there was a significant 

discrepancy between the means of the comparator groups. This suggests that although 

this measure was shown to be reliable, it was different from the same measures provided 

using Praat. Thus, method of analysis remains an important area of consideration relative 

to acoustic measures of voice. 

These collective results bring forth an important consideration when evaluating measures 

of acoustic voice analysis.  More specifically, these data verify the importance of setting 

normative values for the analysis conditions (microphone, algorithm, and recording 

environment) (Watts, Awan, & Maryn, 2017). This is always an important consideration 

when comparing acoustic measures collected through different methods, which can have 

a variety of different algorithmic variances that can lead to different results (Watts et al., 

2017). While differences across the analysis methods of the same measure are not to be 

unexpected, these findings stress the continued importance of establishing a normative 

database for both normal and disordered voices with any given system. As further support 

to this suggestion Watts et al (2017) compared two validated methods of calculating CPP 

and showed both resulted in reliable, though different, measurements. Yet most 

importantly, though the two methods are valid, they cannot be directly compared (Watts 

et al., 2017). With respect to this study, the measurement of CPP in continuous speech 

sample held strong correlation to Praat.  

In summary, the present project has validated a new proprietary algorithm for acoustic 

voice analysis of sustained vowels; in some cases, outperforming the gold standard 

method. Furthermore, it has resulted in reliable measurements of CPP-S. This study has 
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highlighted the importance of establishing normative values for each condition of 

acoustic voice analysis, to be used as context for interpreting clinical results. Finally, the 

results of the sentence analysis confirmed the findings that reliable measures of the same 

variable cannot necessarily be compared across different measurement methods.  

5.3 Study Limitations 

It is important to contextualize the results of this study, as well as to recognize the 

limitations of acoustic analysis. As previously stated, acoustic measurements do not 

always correlate with auditory-perceptual assessments. Understanding this phenomenon 

when introducing new methods of measurement requires the clinical context to recognize 

that it is important to correlate the findings not just with previous acoustic methods, but 

also with auditory-perceptual assessments directly.  

Furthermore, the proprietary algorithm used was developed for the unique purposes of 

this study. Although it performed well in the sustained vowel analysis component of the 

work, the correlations were less convincing in analysis of continuous speech. With these 

discrepancies in measurement, there always will be changes to the algorithmic 

approaches moving forward.  These changes will serve to improve the sensitivity and 

specificity of the measurements. Therefore, any changes to the algorithm may result in 

different results if this experiment was to be repeated. However, if measures were to be 

reanalyzed within-system (i.e., the algorithm) we would expect uniform results. 

Additionally, the majority of prospectively collected samples represented non-dysphonic 

voices (n=42). In theory, these are easier to analyze than moderate or severely disordered 
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voices.  Of major concern here is the issue of how a period is extracted, which in turn 

overlays to other microacoustic measures. As such, this may to some extent represent a 

gap in our validation. This concern may then raise support for efforts moving forward 

which seek to improve the algorithm in future studies.  

With respect to the study design, there were three recording subgroups for the assessment 

of the proprietary algorithm (Yeti AB, iPhone AB, iPhone NAB). The design was 

powered to allow for subgroup analyses of the individual groups, but these analyses were 

not completed. All participant samples (n=51) were combined and analyzed under both 

algorithms, before the results were compared with a paired-sample t-test. Though the 

correlation results were excellent when comparing the groups at this level, subgroup 

analyses may have revealed discrepancies that were otherwise not identified for the larger 

group analysis.  

Finally, the comparison of the proprietary analysis in this study was completed with 

correlational statistics. To assess whether a new method of measurement is adequate for 

the purposes of replacing an old one, a limits of agreement analysis (Bland-Altman plot) 

should be performed (Bland & Altman, 1999). When measuring the same feature or 

factor in two different ways, there is bound to be a high level of correlation. Limits of 

agreement analysis is likely to reveal that two different methods do not perfectly agree, 

even in the setting of high correlation coefficients.  For this reason, such analysis would 

appear to be important for determining whether the different measures can be used 

equally without causing errors in clinical judgement. 
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5.4 Clinical Implications 

This study was designed to potentially reduce barriers to access for acoustic voice 

analysis. This was carried out in two phases, each phase structured to address specific 

barriers. First, we evaluated smartphone microphone utility for the purposes of acoustic 

voice analysis. This was done to systematically confirm the results of previous studies 

(Lin et al., 2012; Uloza et al., 2015). In the same phase, we also evaluated the effects of a 

non-soundproof environment on acoustic analysis measurements. With limited effect 

from each of these variables, the current results indicate that voice samples collected in 

quiet, non-soundproof, environments can acceptably be captured using smartphones for 

the purposes of performing acoustic analysis.  

Statistically significant differences were identified on repeated measure ANOVAs, which 

looks for trends of differences between data sets and whether differences lead to a 

consistent effect. This statistical test does not indicate degree or amount of impact the 

variable being assessed had on the outcome, but rather, just that the effect was consistent 

and attributable to the variable rather than a result of random chance. With respect to 

clinical decision making, degree of impact is considerably more important than the 

presence of an impact alone. In the case of the voice measures included in the present 

study, there are no defined minimal clinically important differences (MCID). As a 

threshold for clinical significance, the normative ranges and pathologic limits were used 

as comparators. Accordingly, we looked at whether or not a mean difference identified 

represented a large or small amount of change compared to the normative range. 
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This brings up an important point, namely, that the normative values for any set of 

recording conditions needs to be set individually. This would include consideration of a 

different algorithm, microphone, or recording specifications, such as mouth-to-

microphone distance, amongst others. Thus, these normative values are specific to a 

particular set of conditions and, therefore, any new measures would need to be 

established for any new procedure prior to further comparisons. This is particularly 

important when comparing results of one analysis environment to another as evidenced 

by work by Watts et al. (2017) where they showed that previously validated algorithms 

measuring cepstral peak prominence resulted in different absolute values. With this in 

mind, the normative values or ranges for each may not necessarily be equivalent when 

evaluating new conditions and algorithms, as was done in the present validation of the 

proprietary analysis algorithm. 

Based on our results, the data suggests that voice samples can be collected from patients 

and research participants in a wider variety of settings. More specifically, this lowers the 

resource intensity requirements and can enable sample collection in remote locations 

where a soundproof setting is not available. And, of particular importance, these 

measures may provide reliable and valid indices of voice characteristics in both normal 

and dysphonic speakers.  One setting where this can be directly utilized is in 

otolaryngology practices with a widely distributed patient population. In these settings, 

patients often are required to travel significant distances for (re)assessment, limiting the 

availability of resource intense testing practices. Remote collection of voice samples in a 

reliable manner under standardized collection protocols can limit the necessity of travel 

required for acoustic voice analysis. Additionally, patients may be able to collect a 
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greater number of samples for assessment. These also can be collected in quiet spaces, 

which can include a home environment. This clearly opens the possibility of greater 

within subjects’ analyses moving forward using the present smartphone application.  

In the second phase of this project, a proprietary algorithm was compared to a well-

established and widely used analysis procedure (Praat). This revealed strongly correlated 

assessments for sustained vowel analysis and moderate-to-strongly correlated results for 

continuous speech analysis. With this mobile acoustic voice analysis algorithm 

validation, this study indicates that both remote collection and analysis is feasible.  

Introduction of a mobile acoustic voice analysis application will provide patients, 

practitioners, and researchers with a highly reliable, low-cost method of performing 

acoustic voice analysis. This increases the previously mentioned benefits, by further 

increasing the accessibility to a useful format of objectively assessing voice. 

Furthermore, within-subjects’ assessments could be used as a comparator group to which 

other samples can be evaluated against while receiving treatment. This may in some 

manner provide the opportunity for direct biofeedback measures as a patient receives 

voice therapy. Furthermore, it could potentially indicate changes to the voice following 

surgical management of benign or malignant laryngeal tumors, whereby a change could 

prompt a direct reassessment by an otolaryngologist. During the development of a patient 

tool whereby voice samples would be collected and stored for analysis, significant 

consideration must be given to confidentiality of personal health information. Standards 

exist in the governing of the storage of personal health information (PHIPA, 2004) and 

these would need to be strictly adhered to for the safety of the end users.  
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5.5 Directions for Future Research  

The current study was the first introduction of a new proprietary algorithm to perform 

acoustic voice analysis on a mobile platform. It performed well, but there is room for 

improvement and refinement. Most specifically, improvements in the ability of the 

application to analyze the complex signals of continuous speech is required. Following 

these improvements, validation of the algorithm for use in continuous speech will be 

necessary and ideally, experimental replication within a clinical environment will 

validate the process in the future. 

Additionally, it is important to mention that this study evaluated voice samples gathered 

in non-soundproof environments for voice analysis. A future study should seek to 

systematically evaluate environmental factors to define the limits of ambient noise on 

reliable acoustic assessments. Efforts of this type hold considerable value in confirming 

that voice measure can be accurately obtained and analyzed in a reliable manner. 

 Next, one of the benefits of this format of acoustic voice analysis pertains to within 

subject analyses; a future study should be designed to investigate this further as a means 

of tracking voice over time. As well, this algorithm could be evaluated for specificity 

with respect to specific voice disordered populations. Ultimately, the ability of the 

smartphone system to gather data over time provides the capacity to generate a time 

series of voice measures that can be compared over both short- and longer-term periods.  

This would be beneficial for both those who may await treatment, as well as those who 

are receiving treatment or post-treatment. 
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5.6 Conclusion 

Smartphone based voice analysis has recently become a real possibility with 

improvements in mobile technology (Fujimura et al., 2019; Lin et al., 2012; Mat Baki et 

al., 2013, 2015; Uloza et al., 2015). The utility of these systems has been hypothesized by 

Manfredi et al (2017) but has not yet been fully achieved at present. No widespread 

adoption of a mobile platform has occurred, but with increased availability and validation 

of these tools, there is likely to be new benefits realized. Continued research and 

refinements based on new data will serve to optimize both data acquisition and the 

comprehensive analyses of samples gathered.  

The results of this study confirm the validity of previous findings reported in the 

literature that smartphone voice recordings are adequate for acoustic voice analysis (Lin 

et al., 2012; Uloza et al., 2015). The present study found the impact of a smartphone 

microphone on acoustic voice measures to be limited in magnitude and unlikely to impact 

clinical interpretation. Similarly, it is well-recognized that a soundproof setting is ideal 

for controlling the ambient noise effects relative to the acoustic analysis of voice, 

however, this is not always feasible. Therefore, the results of this study indicate that a 

quiet, non-soundproof setting is adequate for voice sample collection. While care must 

always be taken in gathering samples in a consistent fashion, the ability to provide such 

data on a within-subject basis serves to mitigate this influence. 

Furthermore, the prospectively captured samples were used as part of the validation for 

the proprietary analysis algorithm. The proprietary algorithm in its current state can 

reliably analyze sustained vowel samples on par with Praat. The analysis of continuous 
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speech is more complex with variability in the range of frequency, amplitude, and 

temporal (e.g., rate of speech, pauses, voice breaks, etc.) domains. Reliable mobile 

analysis is possible, based on the present study, but the existing algorithm requires 

modifications before its reliability meets that of existing available options such as Praat.  

In conclusion, the results of this study indicate that robust acoustic voice analysis is 

feasible on current day smartphones with samples collected under non-soundproof 

conditions. These results provide an opportunity to decrease existing obstacles to acoustic 

voice analysis as part of a routine clinical voice assessment. The objectives of using 

mobile technology to perform acoustic analysis aim to increase accessibility and remove 

barriers to use. The results of this study provide data, based on a systematic acquisition 

methods which supports future use of the current proprietary algorithm.  In doing so, the 

current findings indicate that the present smartphone application, as seen in Figure 17, 

could be used reliably by patients, healthcare providers, and researchers for acoustic 

voice analysis.  
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Figure 17. Screen shots showing recording and analysis screens of proprietary mobile 

application. 
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Appendices  

Power Calculation 

For Comparison of Means 

A total sample size (N) of 34 individuals, 17 at each level, is sufficient to detect the 

hypothesized effect (r ²=.25) of a two-level between-groups independent variable 90.4 

percent of the time using a .05 alpha level. 

Technical Summary: 

N=34, f ²=0.3333, lambda=11.3333 

power=.9039, critical F(1,32)=4.1491 

For Correlations 

A total sample size (N) of 34 individuals is sufficient to detect the hypothesized effect (r 

²=.25) of a single predictor variable 90.4 percent of the time using a .05 alpha level. 

Technical Summary: 

N=34, f ²=0.3333, lambda=11.3333 

power=.9039, critical F(1,32)=4.1491 

Appendix A. Power Calculation 
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Information Sheet and Consent Form 

Project title: VOice analysis with Iphones: a low-Cost Experimental Solution (VOICES) 

 

Name of Principal Investigator (Study Doctor) 

Dr. Kevin Fung, MD FRCSC 

Kevin.fung@lhsc.on.ca 

 

Co-Investigators 

Dr. Benjamin van der Woerd 

Dr. Phil Doyle 

Dr. Vijay Parsa 

Min Wu 

 

This application is being developed and study by the above co-investigators. We 

acknowledge the potential of bias. This is an internal validation study and all data will be 

blinded to the analyzer (P.Doyle). This application will not be commercialized, as part of 

the agreement between the five co-investigators.  

 

Statement of Voluntary Participation 

1. Your participation in this study is voluntary.  
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a. You may decide not to be in this study 

b. If you initially decide to be in this study, may change your might at a later 

date and withdraw  

c. You may leave the study at any time without affecting the care that you 

will receive.  

d. We will give you new information that is learned during the study that 

might affect your decision to stay in the study 

2. You may refuse to answer any question you do not wish to answer 

 

Conflict of Interest 

There are no conflicts of interest to declare related to this study. 

 

Introduction 

You are being invited to participate in a research study that aims to validate a 

smartphone-based application to perform acoustic voice analysis. Specifically, this is 

looking at the ability of a smartphone-based application to perform acoustic voice 

analysis and whether this is comparable to currently used systems.   

 

Background/Purpose 

Acoustic analysis of voice is a valuable evaluation method used in the diagnosis 

and surveillance of both benign and malignant voice abnormalities. Typically, acoustic 

evaluation requires a resource intensive set-up, including a soundproof booth and a 

speech language pathologist, to be performed accurately. Given current advances in 
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technology, we feel that a low-resource tool can be developed for smartphones to 

replicate currently available voice analysis options. Once validated, this tool may 

potentially make voice analysis more accessible to patients, clinicians, and researchers. 

 

 

Study Design 

Voice samples will be collected using smartphone application and run through a 

smartphone voice analysis application as well as the current computer-based voice 

analysis software.  We aim to collect 60 voice samples. The primary domains of analysis 

will be focused on how voice sounds by analysing different components of the voice 

signal that can distinguish normal from abnormal voices. Voice samples (current gold 

standard) will be obtained using current assessment standards and will be run through 

both voice analysis application (smartphone app and computer-based voice analysis 

software). Participants will provide one of three types of samples for the study: in a sound 

proof booth with a standard microphone, in a sound proof booth with an iPhone 

microphone, in a non-sound proof room with an iPhone microphone. The results of each 

of these samples will be compared for rate of agreement to assess the new method of 

measurement in ability to accurately capture measures of normal and abnormal voice. 

 

Secondly, samples from the smartphone collected data and professionally 

collected voice samples will be evaluated by blinded speech language pathologists for 

perceptual voice analysis.  Auditory-perceptual methods are well-established in the 
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experimental and clinical literature related to voice disorders. All data will by blinded to 

Dr. P. Doyle, who will be performing the analysis. 

Procedures 

The participant will be seated in a comfortable position. A standardized mouth-to-

microphone distance will be maintained at 6 inches, with the microphone positioned 

directly at a 45-degree angle to the corner of the mouth. Digital audio samples will be 

recorded during three specific vocal tasks: sustained vowels, sentences, and running 

speech.  

Task 1: Sustained Vowels: Three vowels, /a/ (as in “dot”, /i/ (as in “deep”), and 

/u/ (as in “boot”) will be produced at a typical and comfortable pitch and loudness 

level. The vowel sounds are to be produced 3 times each for approximately 6 

seconds.  

Task 2: Sentences: The Consensus Auditory-Perceptual Evaluation of Voice 

(CAPE-V) developed 6 sentences to test various aspects of laryngeal behaviour.  

a) “The blue spot is on the key again.” –includes all vowel sounds in 

the English language 

b) “How hard did he hit him.” –easy onset with /h/ sound 

c) “We were away a year ago.” –all voiced sounds 

d) “We eat eggs every Easter.” –hard glottal attack 

e) “My mama makes lemon jam.” –nasal sounds 

f) “Peter will keep at the peak.” –voiceless plosive sounds 
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Sentences are to be read one at a time as if being spoken in conversation at 

one’s typical pitch and loudness level. As noted, the sentences each emphasize 

different voice characteristics.  

Task 3: Running Speech: The participant provides 20 seconds of natural speech 

by responding to prompting statements (e.g., “Talk about a hobby or special 

interest” or “Talk about what you do/did for work”). 

 

Withdrawal from Study 

A participant may withdraw from the study at any time. If withdrawn from the study, a 

participant can request that their data be withdrawn as well. You have the legal right to 

inform you are leaving the study without explaining your reasons. Signing the consent 

form does not remove your legal rights, the consent form signed means you accept to 

participate in the study as a volunteer.  Foreseeable reasons under which the participant 

may be removed from the study is meeting one or more of the exclusion criteria. This 

would not affect your future treatment.  

 

Risks 

There are no foreseeable risks to being involved in this study. 

 

Benefits 

No direct benefit to the participant is anticipated. Demonstrating smartphone-based 

acoustic voice analysis in both sustained vowels and running speech may provide future 

benefit to patients in time, travel, and convenience.  
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Furthermore, this information will be valuable for otolaryngologists when managing 

future voice patients. Acknowledging the current limitations in obtaining acoustic voice 

analysis samples may have far-reaching effects on screening, diagnostic support, 

evaluation of treatment effects, and assessing treatment progress in future voice patients.  

 

Alternatives to Being in the Study 

An alternative to this study is to not participate and continue on as you do currently. 

 

Confidentiality 

Research data will be stored on a password protected LHSC computer. Personal 

identifiers (Initials, date of birth and hospital number) will be removed prior to data 

analysis. The principal investigator and co-investigators will have access to the data for 

data analysis. In addition to principal investigators, Lawson Research Institute and 

Western’s Health Sciences Research Ethics Board will have access to the information 

collected. All information collected during this study, including personal health 

information, will be kept confidential and will not be shared with anyone outside the 

study unless required by law.  You will not be named in any reports, publications or 

presentations that may come from this study. Instead, a non-related ID number will be 

given to you and will be used on your file. As per Lawson Research Institute 

requirements, study data will be kept for 15 years following study cessation. Application 

data will be stored on the Lawson Research Institute REDcap Server and LHSC S-Drive. 

Temporary storage on the smartphone will be required prior to export to the S-Drive.  
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• Representatives of Western University’s Health Sciences Research Ethics Board 

may contact you or require access to your study-related records to monitor the 

conduct of the research.  

 

• Representatives of Lawson Quality Assurance (QA) Education Program may look 

at study data for QA purposes 

 

Decision to leave the study 

Your participation is voluntary; you are free to withdraw your participation from this study 

at any time. You also have the right to have your data fully removed from our database. 

How the findings will be used: 

The results of the study will be used for scholarly purposes only. The results from the study 

will be presented in educational settings and at professional conferences, and the results 

might be published in a professional journal in the field of surgery. Participant information 

will remain de-identified.  

Costs 

There are no costs associated with this study that you are responsible for. 

 

Compensation 

You will not be given compensation for your participation in this study. 
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Contact information: 

If you have concerns or questions about this study Dr. Benjamin van der Woerd at 

benjamin.vanderwoerd@lhsc.on.ca or the Primary Investigator (PI) Dr. Kevin Fung at 

kevin.fung@lhsc.on.ca. 

 

Questions about the Study 

If you have any questions or concerns regarding your participation in this study, please 

do not hesitate to contact: 

 

If you have any questions about your rights as a research participant or the conduct of this 

study, you may contact The Office of Research Ethics (519) 661-3036, email: 

ethics@uwo.ca. 

 

Principle investigator: 

Dr. Kevin Fung, MD FRCSC 

LHSC, Victoria Campus 

Appendix B. Patient Study Information Package 
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Study Consent Form 

Title of Research Project: 

VOice analysis with Iphones: a low-Cost Experimental Solution (VOICES) 

Consent: 

 

By signing this form, I agree that: 

1)  You have explained this study to me. You have answered all my questions. 

2) You have explained the possible harms and benefits (if any) of this study. 

3) I know what I could do instead participating in this study. I also have the right to 

withdraw my participation from the study at any time. My decision about my 

participation will not affect my health care at London Health Science Centre. 

4) I am free now, and in the future, to ask questions about the study. 

5) I have been told that my information and medical records will be kept private except 

as described to me. 

6) I understand that no information about my participation will be given to anyone or 

be published without first asking my permission.  
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7) I have read and understood pages 1 to 5 of this Information letter/consent form. I 

agree, or consent, to take part in this study. 

 

 

 _________________________________ 

Printed Name: Participant  Participant’s signature & date 

 

 

 _________________________________ 

Printed Name: Person Obtaining Consent  Signature & date, time 

Appendix C. Consent Form 
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