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Abstract 

In the Stroop task, smaller congruency effects (i.e., the color-naming difference between 

incongruent items, e.g., the word RED in the color blue, and congruent items, e.g., RED in red) 

are found in conditions in which incongruent items are frequent vs. infrequent. Although the 

traditional explanation for these “Proportion-Congruent effects” is that attention to task-

relevant information is more focused in frequently-conflicting conditions (a process involving 

adaptation to conflict frequency), Proportion-Congruent paradigms typically have not 

controlled for the impact of more general learning processes, particularly 1) learning of word-

response contingencies (contingency learning), 2) learning about the predictive nature of the 

stimuli (stimulus informativeness), and 3) learning about response rhythm in the task (temporal 

learning), processes which could produce the Proportion-Congruent effects obtained in most 

situations. The present research examined the possibility that those non-conflict learning 

processes are indeed the whole story in Proportion-Congruent effects. Several different 

approaches were used. First, the proportion of congruent and incongruent items in a list was 

manipulated in a variant of the Stroop task in which no individual stimulus was repeated, 

creating a situation in which neither contingency learning nor stimulus informativeness could 

have influenced task performance. Second, manipulating the proportion of neutral (i.e., 

consonant strings) and incongruent items in a list allowed the creation of a parallel situation in 

the classic color-word Stroop task. A Proportion-Congruent effect and a similar, Proportion-

Neutral effect, emerged in both tasks even though contingency learning and stimulus 

informativeness could have played no role in producing those effects. Further, attempts to 

examine the influence of temporal learning failed to show any evidence of that process 
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contributing to those effects either. The final set of experiments involved a congruency-

proportion manipulation specific to individual words within the same list. Contrary to the idea 

that the Proportion-Congruent effect obtained in this situation results from contingency 

learning, a concurrent working memory load impaired contingency learning in a non-conflict 

color identification task but spared the Proportion-Congruent effect in the Stroop task, favoring 

a conflict-adaptation interpretation of this effect. Overall, these results support the existence of 

a process of adaptation to conflict frequency in the human control system. 

Keywords: conflict adaptation; Stroop; contingency learning; temporal learning; proportion-

congruent effect; proactive control; reactive control; working memory  
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Summary for Lay Audience 

This research was an examination of the processes that individuals use when dealing with 

distraction created by irrelevant but salient events (e.g., the type of situation created when a 

smartphone notification occurs while driving). The more specific focus was on the processes 

that individuals use when they can anticipate that a distracting event will occur. For example, it 

has normally been assumed that individuals can learn to increase attention to the current goal 

in situations in which distracting events are frequent. As a result of using this process of 

adaptation to distraction frequency, distraction becomes less disruptive in those situations than 

in situations in which distracting events are infrequent. Although many theories of how we deal 

with distraction assume that humans can and do use this process, recent research has 

suggested that the crucial experimental finding on which that assumption is based upon (i.e., 

that distraction is less disruptive in frequently distracting vs. infrequently distracting situations) 

actually results from more general learning processes for which the distracting vs. non-

distracting nature of the event is irrelevant, e.g., people simply learn to produce the response 

that is typical for a certain event even when that event contains distracting information. In this 

research, I re-examined this conclusion by creating a series of experimental situations in which 

general learning processes were prevented from occurring, controlled for in the statistical 

analyses, or impaired by reducing the cognitive resources necessary to use them. In all of those 

situations, the crucial finding of reduced distraction in frequently distracting vs. infrequently 

distracting conditions emerged, suggesting that general learning processes are not the whole 

story in producing such findings. Instead, what these results suggest is that, consistent with 
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most theorizing in this research area, humans possess and use the ability to adapt attention so 

as to deal with distraction more effectively when distracting events occur more frequently. 
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Chapter 1: 

General Introduction 

Proportion-Congruent effects: Conflict adaptation at multiple levels of control 

A question of fundamental interest in cognitive psychology concerns what role control 

processes play in goal-oriented behavior. A primary role of these processes is to prevent 

conflict created by task-irrelevant information from disrupting that behavior. Although such 

conflict may produce a processing cost, a control mechanism must exist that resolves that 

conflict and allows for the selection of an appropriate response. For example, in the Stroop 

(1935) task, participants are required to name the ink color of a word which can be congruent 

with the word (e.g., the word RED in the color red col), incongruent with the word (e.g., the 

word BLUE in red), or the word (or letter string) can be color-neutral (e.g., the consonant string 

XXX in red). The typical result is that congruent items produce slightly faster latencies than 

neutral items (i.e., there is some facilitation) and incongruent items produce (much) slower 

latencies than neutral items (i.e., there is (larger) interference).  The color-naming difference 

between incongruent and congruent items is the combination of these two effects and is 

known as the congruency effect (for a review, see MacLeod, 1991). What is worth noting is that 

even if incongruent words cause substantial interference, in most cases participants are able to 

correctly identify the colors that those words are presented in, suggesting that the control 

system eventually resolves the conflict that those words create. 

A question that has received increasing research interest in recent years is whether, in addition 

to resolving conflict, the control system might have other functions that would help to deal 
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with conflict. A popular model in the cognitive control literature, the conflict-monitoring model 

(Botvinick, Braver, Barch, Carter, & Cohen, 2001), provides such an example. Botvinick et al. 

(2001) proposed that humans possess a conflict-monitoring system that monitors for the 

presence of conflict in a stimulus and adapts attention between task-relevant and task-

irrelevant dimensions of the stimulus accordingly. Specifically, when a conflict is detected (e.g., 

in an incongruent item in the Stroop task), a top-down signal is emitted indicating a need for 

more focused attention to task-relevant information (i.e., the color). This signal will not be 

emitted when little or no conflict is detected (e.g., in a congruent item), causing a relaxation of 

attention in that case. What is worth noting, however, is that, according to this theory, this 

mechanism does not just help to resolve the conflict experienced on any given trial, it also 

influences subsequent performance. For example, experiencing conflict on a trial will induce 

focused attention to task-relevant information on subsequent trials as well. With the system 

already prepared for conflict, the interference produced by incongruent task-irrelevant 

information on subsequent trials will be reduced. The implication is that the control system 

might not be limited to the resolution of conflict but may also have the function of adapting to 

conflict – a “conflict adaptation” function. 

In the past few years, the idea of a conflict adaptation mechanism in cognitive control has 

spurred a wealth of research that has attempted to characterize this mechanism (see, e.g., Bugg 

& Crump, 2012). More recently, however, a growing concern has arisen that led some 

researchers, most notably Schmidt (2013b, 2019), to dispute the existence of such a mechanism 

and to propose alternative explanations, explanations in which conflict plays little or no role, for 

the evidence supporting the idea of conflict adaptation. The purpose of the present research 
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was to provide a close examination of the arguments that Schmidt has put forward to make his 

case that conflict adaptation may not be a mechanism that humans use. The specific focus of 

this examination was the Proportion-Congruent (PC) paradigm, a paradigm that has had a 

central role in the debate on the existence of conflict adaptation. Given the widespread use of 

this paradigm in cognitive research (Bugg & Crump, 2012), an exact understanding of the 

processes being engaged in this paradigm is of fundamental importance. An exact 

understanding of the PC paradigm would inform not only the theory of cognitive control 

function but also the applications of that theory in other domains, for example, clinical and 

neuroscientific domains. In the following, I offer a brief overview of the PC paradigm, starting 

from the standard paradigm and following with its more recent variations.  

In this initial section, I review the conflict-based explanations that have been offered for the 

findings typically reported in this paradigm, explanations that maintain that adaptation to 

conflict frequency occurs at multiple levels. In the following section, I review the non-conflict 

explanations of those findings, explanations that, unlike conflict-based explanations, assume no 

role for conflict adaptation. Finally, I introduce the approaches used in the present research to 

examine those non-conflict explanations.  

The standard (list-wide) Proportion-Congruent effect 

One of the most important pieces of evidence that has supported the idea of a conflict 

adaptation function of the control system comes from what is known as the PC paradigm. This 

paradigm, typically implemented in Stroop and Stroop-like tasks (e.g., the picture-word 

interference task: Lupker, 1979), consists of manipulating the frequency of congruent and 
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incongruent items in a list so as to create a Mostly-Congruent (MC) list in which congruent 

items are frequent and incongruent items are infrequent, and a Mostly-Incongruent (MI) list in 

which incongruent items are frequent and congruent items are infrequent. The typical result is 

that the congruency effect (i.e., the color-naming difference between incongruent and 

congruent items) is larger in the MC list than in the MI list, a finding traditionally known as the 

PC effect and more recently referred to as the list-wide PC effect to distinguish it from other 

types of PC effects discovered later (see below; Lindsay & Jacoby, 1994; Logan & Zbrodoff, 1979; 

Logan, Zbrodoff, & Williamson, 1984; Lowe & Mitterer, 1982).  

The list-wide PC effect has traditionally been interpreted as the manifestation of a mechanism 

of adaptation to conflict frequency in the list, an interpretation that is easily accommodated 

within the conflict-monitoring model (Botvinick et al., 2001). According to this interpretation, 

frequent experience of conflict (on incongruent trials) in an MI list would induce tightened 

control, with overall more focused attention to task-relevant information in that list. 

Interference from irrelevant information will thus be minimized, resulting in a small congruency 

effect. In contrast, infrequent experience with conflict in an MC list would induce a relaxation of 

attention in that list, with the result being increased interference from task-irrelevant 

information on the few trials in that list in which that information produces a conflict (i.e., on 

the few incongruent items in that list), and hence, a large congruency effect. 

Note that the conflict-monitoring model is not the only framework that has been used to 

explain the list-wide PC effect in the control literature (e.g., Braver, 2012; Braver, Gray, & 

Burgess, 2007; Kane & Engle, 2003; De Pisapia & Braver, 2006). What is common among these 

explanations, however, is the idea that the frequency of conflict encountered in a list plays an 
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important role in directing attention appropriately between task-relevant and task-irrelevant 

dimensions of the stimuli. For example, Kane and Engle (2003) proposed that an MC list would 

favor goal neglect whereas an MI list would favor goal maintenance. This view is consistent with 

the idea that in an MC list, attention is relaxed because of the many congruent items for which 

a response can be made using task-irrelevant information (e.g., the identity of the word in the 

Stroop task), thus favoring neglect of the task goal (e.g., the color-naming goal). In contrast, in 

an MI list, the presence of many incongruent items requires attention to be more focused on 

task-relevant information (e.g., the ink color of the word), the information that is relevant to 

the task goal. As a result, that goal will be maintained more easily throughout an MI list. In sum, 

a mechanism of attentional adaptation to the frequency of conflict in the list appears to be 

central in most explanations of the list-wide PC effect that have been offered from a control 

perspective.  

The item-specific Proportion-Congruent effect 

In recent years, research in cognitive control has broadened the scope of conflict adaptation 

functions, suggesting that the control system might adjust to conflict at multiple levels. For 

example, Gratton et al. (1992) reported evidence suggesting that attention to task-relevant 

information might be enhanced not only in situations in which conflict is repeatedly 

experienced (such as in a MI list) but also in a more transient fashion, after a single experience 

with conflict. What Gratton et al. found was a larger congruency effect following a congruent 

trial than following an incongruent trial, a pattern that has become known as the congruency 

sequence effect (for a review, see Egner, 2007). (note 1) This phenomenon, along with the list-

wide PC effect, has typically been explained in the context of the conflict-monitoring model 
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(Botvinick et al., 2001; but see, e.g., Mayr, Awh, & Laurey, 2003). According to this explanation, 

experiencing conflict during an incongruent trial would induce more focused attention to the 

task-relevant dimension and, hence, reduce the impact of conflict on the subsequent trial, with 

the result being a small congruency effect on such trials. Conversely, experiencing little or no 

conflict during a congruent trial would induce relaxed attention because there is less reason to 

tighten control. The result would thus be increased interference from the task-irrelevant 

dimension on the subsequent trial, and hence, a large congruency effect on such trials. (note 2) 

More recently, however, a series of results has been reported that the conflict-monitoring 

model (Botvinick et al., 2001) appears unable to explain. The first result in this series is the 

finding, reported by Jacoby, Lindsay, and Hessels (2003), of an item-specific PC effect. Jacoby et 

al. designed a new version of the PC paradigm in which one set of color words (the MC items, 

e.g., GREEN and YELLOW) were presented mainly in their congruent color (e.g., the word 

GREEN appearing more often in green than in yellow) and another set of color words (the MI 

items, e.g., RED and BLUE) were presented mainly in an incongruent color (e.g., the word RED 

appearing more often in blue than in red). Similar to the list-wide PC effect, an item-specific PC 

effect emerged, with MC items eliciting a larger congruency effect than MI items.  

Following Jacoby et al.’s (2003) article, a number of paradigms were developed in which 

congruency proportion was manipulated for a particular context feature, for example, the 

position of the word on the screen (Crump, Gong, & Milliken, 2006; Crump & Milliken, 2009), 

the font that the word is presented in (Bugg et al., 2008), or the ink color of the word itself 

(Bugg & Hutchison, 2013). In those cases as well, a PC effect specific to the particular context 
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feature used for the PC manipulation was typically observed (for a review, see Bugg & Crump, 

2012).  

The reason that the conflict-monitoring model can explain the list-wide PC effect (and the 

congruency sequence effect) but cannot explain item-specific and context-specific PC effects 

has to do with the type of process assumed in that model for adaptation to conflict. In the 

conflict-monitoring model, adaptation to conflict occurs in a preparatory or proactive manner. 

That is, the implementation of a process of focusing vs. relaxing attention to task-relevant 

information based on experience with conflict is applied before any specific item appears. This 

proactive process, therefore, does not depend on any particular feature of the current stimulus. 

For example, a participant who encountered several incongruent items while performing an MI 

list should be more focused on task-relevant information in the current trial regardless of the 

specific stimulus that appears on that trial (e.g., RED in red vs. GREEN in yellow). The situation is 

different in item-specific and context-specific PC paradigms, however. Because in those 

paradigms congruent and incongruent items are equally probable in the list as a whole, 

whatever process produces the PC effect in those situations needs to be a reactive process, i.e., 

a process that is initiated after the item appears and that is based on the MC/MI nature of that 

item (or the context that the item appears in). For example, in Jacoby et al.’s (2003) paradigm, 

there is no way of knowing whether the upcoming stimulus is an MC or an MI item. The 

implementation of a process of relaxed attention (for an MC item) vs. more focused attention 

to task-relevant information (for an MI item) must be applied after the stimulus has appeared, 

in reaction to the nature of that stimulus. 
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Because the original conflict-monitoring model did not implement such an item-specific 

reactive conflict-adaptation process, this model cannot account for item-specific and context-

specific PC effects. Indeed, Blais, Robidoux, Risko, and Besner (2007) failed to simulate the 

item-specific PC effect using Botvinick et al.’s (2001) conflict-monitoring model. On the other 

hand, they did manage to simulate that effect when the conflict-monitoring model was 

modified so that conflict adaptation could occur at the item level, with conflict arising for a 

certain item leading to increased attention to task-relevant information only for that item (as 

opposed to leading to increased attention to task-relevant information in general). As a result, 

in this modified model, associations between specific items and conflict frequency could be 

learned and used to recruit control settings appropriate to those items. For example, the 

recognition of an MC word, e.g., GREEN, would induce a relaxation of attention, resulting in 

large interference when the MC word does conflict with the color. In contrast, the recognition 

of an MI word, e.g., RED, would induce focused attention to the color, resulting in reduced 

interference for that word. Thus, although both the original conflict-monitoring model 

(Botvinick et al., 2001) and the modified version (Blais et al., 2007) implement a conflict 

adaptation mechanism, the level at which this mechanism operates is not the same in the two 

models: The former involves a mechanism based on the list composition that is applied to all 

items indiscriminately whereas the latter involves a more local mechanism that is applied to 

specific items in the list. (note 3) 

The list-wide Proportion-Congruent effect revisited: Dissociating proactive and reactive control 

As noted, the fact that in the item-specific PC effect the conflict adaptation process leading to 

relaxed/focused attention is initiated after the word is recognized makes that process a reactive 
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process, as opposed to the proactive process that supposedly underlies the list-wide PC effect. 

However, recent research has recognized that a list-wide PC effect does not necessarily indicate 

that a proactive control process is the only process being used (Blais et al., 2007; Braver & De 

Pisapia, 2006; Bugg et al., 2008; Bugg, 2014a; Hutchison, 2011; Kane & Engle, 2003). The 

reasoning is that, first, a form of reactive control is likely implemented in list-wide PC paradigms, 

specifically in the MC list. Because that list favors neglect of the color naming goal (i.e., a 

relaxation of attention), that goal would need to reactively be retrieved upon detection of 

conflict when one of the infrequent incongruent items in that list appears, or else a word-

reading error would be committed. Thus, the list-wide PC paradigm likely engages both 

proactive control (i.e., preparatory control that determines the overall focused vs. relaxed state 

of attention applied in MI vs. MC lists) and a form of reactive control exclusively applied in the 

MC list to help retrieve the color naming goal to deal with the unexpected conflict created by 

incongruent items in that list (Braver & De Pisapia, 2006; Kane & Engle, 2003). 

More importantly, however, it is also the case that assuming a proactive process may not be 

necessary at all in order to explain the list-wide PC effect obtained in the typical list-wide 

paradigm. The reason is that, in the typical list-wide PC paradigm, each word being used 

appears more often in its congruent color in MC lists and more often in incongruent colors in 

MI lists. Thus, all items in an MC list are MC items and all items in an MI list are MI items. The 

implication is that a PC effect observed in this situation could be the result of a proactive 

conflict adaptation process leading to focused attention in the MI list and relaxed attention in 

the MC list (potentially combined with a reactive process that would help resolve conflict for 

incongruent items in the MC list) or it could entirely be the result of a reactive conflict 
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adaptation process whereby the appropriate control setting is applied to individual items (e.g., 

focus attention to the color for MI items vs. relax attention for MC items), i.e., the same process 

that produces the item-specific PC effect in item-specific PC paradigms. (note 4) 

In an effort to determine the role of proactive vs. reactive control in the list-wide PC effect, 

Bugg et al. (2008) introduced a new paradigm aimed to dissociate the two processes by 

constructing list-wide PC manipulations in which item-specific (i.e., reactive) conflict adaptation 

could be used for one set of items, referred to as the “context items”, but not for another set of 

items, referred to as the “transfer items” (see also Blais & Bunge, 2010; Bugg, 2014a; Hutchison, 

2011). The transfer items (e.g., the words RED and BLUE and the corresponding colors) were 

50:50 congruent/incongruent and were intermixed in a list with the context items (e.g., the 

words GREEN and YELLOW and the corresponding colors) that were either Mostly Congruent 

(creating an overall MC list) or Mostly Incongruent (creating an overall MI list). The rationale for 

this manipulation was that, while a PC effect obtained on the context items might result from 

item-specific, reactive control (leading to focused attention to color for MI context items in the 

MI list and relaxed attention for MC context items in the MC list), a PC effect on the transfer 

items, items that are identical in the two lists, could only be explained by a mechanism of list-

wide, proactive control based on the frequency of conflict in the list. (note 5) 

Indeed, in addition to a PC effect on the context items (an effect that is compatible with either 

reactive or proactive control), a (smaller) PC effect on the transfer items did emerge in some of 

those studies (Bugg, 2014a; Hutchison, 2011), although not in others (the magnitude of the 

congruency effect on the transfer items was the same in the MC list and the MI list in some 

situations: Blais & Bunge, 2010; Bugg et al., 2008). These results led those researchers to 
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conclude that conflict adaptation may be engaged both reactively and proactively, although the 

latter form of control may only be applied in certain situations (as will be explained later). 

Overall, the idea that conflict adaptation can be used both proactively and reactively is in 

agreement with a recently developed theory of cognitive control, the Dual Mechanisms of 

Control (DMC) framework (Braver, 2012; Braver, Gray, & Burgess, 2007; De Pisapia & Braver, 

2006; see also Gonthier, Braver, & Bugg, 2016). According to this account, proactive and 

reactive control represent distinct modes of control: On the one hand, proactive control (similar 

to Kane and Engle’s (2003) notion of goal maintenance) involves the sustained maintenance of 

task-relevant information and is preferentially engaged in situations that repeatedly reinforce 

task relevance (e.g., in an MI list in the list-wide PC paradigm). On the other hand, reactive 

control would be engaged in at least two types of situations: First, it would be engaged to 

retrieve the task goal upon detection of conflict in situations that rarely reinforce task relevance 

(e.g., when an incongruent item appears in an MC list in the list-wide PC paradigm), situations 

that may lead to neglect of that goal. Because this process is based on the congruency of the 

item but not on the identity of the item (e.g., the word RED vs. the word GREEN), it is a reactive 

process, but not an item-specific process. Second, a reactive control process would also be 

engaged in situations in which contextual information can be used to re-activate previously 

acquired information. These situations would include item-specific PC paradigms in which 

recognition of an item would lead to the recruitment of the appropriate control setting for that 

item, as well as any other situation in which MC or MI items appear, for example, standard list-

wide PC paradigms (in which, as noted, all items are either MC [in the MC list] or MI [in the MI 

list]; e.g., Logan & Zbrodoff, 1979), or context items in more recent list-wide PC paradigms (in 
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which the context items are MC items in the MC list and MI items in the MI list, whereas the 

intermixed transfer items are typically neither MC nor MI items; e.g., Bugg et al., 2008). 

Because this process is based on the MC/MI nature of the items, it is a reactive and item-

specific process. 

Although individuals may vary in the extent to which they have access to proactive control, a 

more effortful and resource-demanding control mode (see, e.g., Burgess & Braver, 2010), all 

individuals appear to have access to both proactive and reactive control, as demonstrated by 

the fact that, for example, the same individuals produce list-wide and item-specific PC effects 

(Gonthier et al., 2016). As the present discussion has indicated, however, these processes, 

according to the DMC account, take a number of forms and appear in different situations.  

Because the characterization of list-wide and item-specific PC effects in terms of proactive and 

reactive control, as presented above, has an important role in the considerations guiding the 

present research (especially the research presented in Chapter 4), a summary of this 

characterization is presented in Table 1. 
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Table 1. 

The Processes Involved in List-Wide and Item-Specific PC Paradigms According to the DMC 

Account 

Process  Description of the process Conditions in which the process is engaged 

Proactive Sustained maintenance of task 

goal 

 

- MI list (list-wide PC paradigm) 

Reactive (non-

item-specific) 

Retrieval of task goal upon 

detection of conflict 

 

- MC list (list-wide PC paradigm) 

Reactive (item-

specific) 

Retrieval of the control setting 

most appropriate for the item 

(relaxed attention for MC items 

vs. more focused attention to 

task-relevant information for 

MI items) 

- All items in standard list-wide PC 

paradigms (i.e., with no distinction 

between context and transfer items; 

e.g., Logan & Zbrodoff, 1979) 

- Context items in list-wide PC 

paradigms (e.g., Bugg et al., 2008) 

- Item-specific PC paradigm 
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Is conflict adaptation actually an illusion? Non-conflict learning can explain Proportion-

Congruent effects 

Despite the popularity of PC paradigms as measures of conflict adaptation processes, in the last 

decade, a growing body of research has cast doubt on conflict adaptation as a valid explanation 

for PC effects (as well as other effects traditionally thought to index conflict-induced control of 

attention, such as the congruency sequence effect: e.g., Schmidt, 2013b, 2019; Schmidt & 

Besner, 2008; Schmidt, Notebaert, & van den Bussche, 2015). The reason for this doubt is the 

realization that PC paradigms typically contain one or more confounds that allow for alternative 

interpretations of PC effects. Crucially, because these confounds are related to general learning 

abilities that are irrelevant to the conflicting vs. non-conflicting nature of the stimuli, the 

alternative explanations they afford are explanations in which conflict adaptation processes are 

essentially unnecessary. In the following sections, I review the challenges that non-conflict 

learning processes pose for control-based interpretations of PC effects, both in traditional 

paradigms and in more recent paradigms in which attempts were made to control for those 

confounds. Prior to discussing those proposed processes, a summary of the processes and the 

situations in PC paradigms in which those processes represent a confound is provided in Table 2. 
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Table 2. 

Non-Conflict Learning Processes in PC paradigms 

Process Description of the process Conditions in which the process is engaged and 

represents a confound 

Contingency 

learning 

Learning and using associations 

between a stimulus dimension 

(e.g., a word) and the response 

frequently made to that 

stimulus dimension 

 

- All items in standard list-wide PC paradigms 

(i.e., with no distinction between context and 

transfer items; e.g., Logan & Zbrodoff, 1979) 

- Context items in list-wide PC paradigms (e.g., 

Bugg et al., 2008) 

- Two-item set item-specific PC paradigm 

(Jacoby et al., 2003) 

Stimulus 

informativeness 

Increasing attention to a 

stimulus dimension (e.g., a 

word) if that stimulus dimension 

allows contingency learning 

 

- List-wide PC paradigms in which the MC list is 

more informative than the MI list (e.g., Bugg, 

2014a – Expts. 1A and 2B) 

- Four-item set item-specific PC paradigm in 

which MC items are more informative than 

MI items (Bugg & Hutchison, 2013 – Expt. 3) 

Temporal 

learning 

Learning and using temporal 

expectancies for response 

emission based on the average 

difficulty of the stimuli in the list 

- All list-wide PC paradigms 



16 
 

Contingency learning 

One of the main confounds contained in PC paradigms is that there typically are associations, or 

contingencies, between a stimulus and a motor response (Lin & MacLeod, 2018; Schmidt, 

Crump, Cheesman, & Besner, 2007; Musen & Squire, 1993). Because the words used in PC 

paradigms tend to appear in some colors more often than in other colors (and, thus, they tend 

to require some responses more often than other responses), it is the case that participants in 

PC paradigms can learn those contingencies. Most importantly, this contingency learning 

process would produce a PC effect without the need to assume conflict adaptation processes 

(Schmidt & Besner, 2008).  

For example, if in an item-specific PC paradigm the MI word GREEN appears more often in 

yellow (an incongruent, but high-contingency [i.e., most probable] color for that word) than in 

green (the congruent, but low-contingency [i.e., less probable] color for that word), participants 

will be able to use the word GREEN to predict a yellow response, thus speeding up responses to 

GREEN presented in yellow (causing them to be fast for an incongruent stimulus) while not 

necessarily affecting responses to GREEN presented in green. The congruency effect for this 

word will thus be somewhat small. Conversely, individuals will use the MC word RED to predict 

the (congruent) red response. Thus, latencies will speed up when the word and color are 

congruent, producing a large congruency effect. Similarly, in the typical list-wide PC paradigm, 

any word in the MC list would most frequently require a congruent response (e.g., the word 

RED would typically require the “red” response as it frequently occurs in the [congruent] red 

color). If participants learn these contingencies, responses to the (high-contingency) congruent 

colors will speed up whereas responses to (low-contingency) incongruent colors will not. As a 
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result, the congruency effect in the MC list will increase. The same is not true for MI lists, a type 

of list in which a contingency learning process would, if anything, lead to a reduction of the 

congruency effect. This reduction would be observed, for example, if the MI list is constructed 

so that each word appears only in two colors, the infrequent congruent color and a frequent 

incongruent color, a situation in which use of contingency learning would speed up responses 

to the incongruent, but high contingency, color but may not affect responses to the congruent, 

but low contingency, color. (Note that, alternatively, the MI list could be constructed so that no 

contingencies can be learned, for example, when four words and four colors are used and each 

word appears equally often in each of the colors, one congruent and three incongruent. In that 

case, the congruency effect would not be modified by any contingency learning process in that 

list, but that effect would still be smaller than the effect in an MC list in which contingency 

learning would inflate the congruency effect). (note 6) 

According to Schmidt (2013b, 2019), assuming that contingency learning, rather than 

adaptation to conflict frequency, is the main factor driving item-specific and list-wide PC effects, 

would have considerable advantages. Concerning the item-specific PC paradigm, first, it would 

explain why the item-specific PC effect is typically driven by both congruent and incongruent 

items rather than being mainly driven by incongruent items, the pattern that a mechanism of 

adaptation to conflict frequency would seem to imply (see Schmidt & Besner, 2008). That is, in 

the item-specific PC effect, the speed-up for congruent items in the MC vs. MI condition is often 

equivalent to the speed-up for incongruent items in the MI vs. MC condition. However, from a 

control perspective, because the congruency effect in the Stroop task is mainly due to 

interference rather than facilitation (MacLeod, 1991), one would expect that the PC 
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manipulation would mainly affect the incongruent items (i.e., more focused attention to MI 

words should create a large speed-up for incongruent items in that condition because word 

interference is minimized) and would only minimally affect the congruent items (i.e., relaxed 

attention to MC words should make congruent items in that condition somewhat faster 

because words would be more easily processed, but not much faster). On the other hand, a 

contingency learning account would have an easier time explaining a symmetric pattern 

because it assumes that the same process (i.e., contingency learning) is applied to both 

congruent and incongruent items. Nonetheless, as Schmidt (2013b) notes, this line of reasoning 

is actually not decisive because more recent versions of the contingency learning account, 

versions which assume that contingency learning effects scale with response time, would also 

predict an asymmetric pattern. 

Another, more critical, advantage of the assumption that contingency learning underlies the 

item-specific PC effect is that it would easily accommodate the results of studies in which item-

specific conflict adaptation and word-response contingency learning processes were dissociated 

(Hazeltine & Mordkoff, 2014; Schmidt, 2013a). For example, Schmidt (2013a) constructed a 

Stroop task in which MC words, e.g., RED, and MI words, e.g., GREEN, could be compared on 

what were “contingency-matched” incongruent trials. For example, blue was a low-contingency 

and equally probable color for RED and GREEN. The existence of a conflict adaptation 

mechanism would imply that because MC words should induce relaxed attention whereas MI 

words should induce focused attention to the color, the MC word RED should produce more 

interference than the MI word GREEN when those words are presented in blue. Performance 

on MC and MI words, however, was equivalent, suggesting that no conflict adaptation process 



19 
 

was in use. In contrast, a robust contingency learning effect that cannot be explained in terms 

of item-specific conflict frequency emerged in the comparison between high-contingency and 

low-contingency items (e.g., the MI word GREEN in the high-contingency color yellow was 

responded to faster than the word GREEN in the low-contingency color blue). Based on these 

results, Schmidt concluded that the item-specific PC effect may be fully explained by a 

contingency learning process (although see Bugg & Hutchison, 2013, reviewed in the next 

section). 

A contingency learning account would also help explain part (although not the totality) of the 

list-wide PC effect. A critical piece of evidence in support of a role of contingency learning in the 

list-wide PC effect comes from the PC paradigm introduced by Bugg et al. (2008; see also Blais 

& Bunge, 2010; Bugg, 2014a; Hutchison, 2011). As noted above, Bugg et al. aimed to dissociate 

proactive and reactive control explanations of the list-wide PC effect by dividing the stimulus 

set into context items (e.g., GREEN and YELLOW and the corresponding colors) for which a 

reactive process of adaptation to item-specific conflict frequency could be used, and transfer 

items (e.g., RED and BLUE and the corresponding colors) for which this process could not be 

used, such that a PC effect for those items would uniquely reflect adaptation to the frequency 

of conflict in the list as a whole. Perhaps unwittingly, however, Bugg et al. also effectively 

controlled for the contingency learning confound that standard list-wide PC paradigms typically 

contain.  

The reason is that, although contingencies could be learned for the context items and learning 

those contingencies would produce a PC effect for those items (e.g., learning that GREEN 

predicts the [congruent] green response in the MC list vs. the [incongruent] yellow response in 
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the MI list would lead to a larger and a smaller congruency effect, respectively), the same 

would not be true for the transfer items because those items were identical in the two lists. 

That is, unlike for context items, it would be impossible for a contingency learning process to 

produce a PC effect for transfer items because it could not differentially modify the magnitude 

of the congruency effect for transfer items in the MC vs. MI list. Consistent with these ideas, in 

the original study reported by Bugg et al. (2008; see also Blais & Bunge, 2010), a PC effect was 

obtained on the (contingency-confounded) context items but not on the (contingency-

unconfounded) transfer items. On the other hand, subsequent studies using a similar paradigm 

(e.g., Bugg, 2014a; Hutchison, 2011) did manage to produce a PC effect for transfer items, 

suggesting, as noted above, that either adaptation to list-wide conflict frequency is real 

(although it does not emerge in all situations) or, importantly for Schmidt’s position, additional 

confounds exist that can produce PC effects, confounds that will be reviewed in the following 

sections. 

Stimulus informativeness 

Certain PC paradigms contain another confound strictly related to contingency learning, a 

confound that Schmidt (2014a; 2019) has termed “stimulus informativeness”. This term refers 

to the degree to which words allow learning of contingencies. For example, in Jacoby et al.’s 

(2003) original item-specific PC paradigm, four words and colors were divided into two 

nonoverlapping sets, each consisting of the combination of two colors and two words. In this 

two-item set design, contingency learning is possible for both MC and MI words because a high-

contingency color exists for both the former and the latter (e.g., the MC word GREEN typically 

occurs in the [congruent] green color while the MI word RED typically occurs in the 
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[incongruent] blue color). Because both MC and MI words allow contingency learning, both 

words are informative (they can be used to predict the color response). The same would not be 

true in other designs, however.  

As an example, in an attempt to dissociate contingency learning from adaptation to item-

specific conflict frequency, Bugg and Hutchison (2013) developed a four-item set design in 

which eight words and colors were divided into two nonoverlapping sets, each consisting of the 

combination of four colors and four words. What this modification affords is that MI words can 

be constructed so that they do not allow contingency learning (e.g., when the MI word appears 

equally often in the four colors, one congruent and three incongruent). Note that MC words 

necessarily allow contingency learning in any design, an inevitable consequence of the fact that 

the congruent color is always the high-contingency color for an MC word. As a result, in this 

design, MC words are informative for participants but MI words are not.  

Based on their results using both a two-item set design and their four-item set design, Bugg and 

Hutchison (2013) argued that only when MI words are uninformative would a process of 

adaptation to item-specific conflict frequency be used. Their crucial experimental manipulation 

(Experiment 3) was as follows. In the initial phase of the experiment, Bugg and Hutchison 

manipulated item-specific conflict frequency using both a two-item set design (in which both 

MC and MI words were informative) in one version of the experiment and a four-item set 

design (in which MC words were informative but MI words were not) in another version of the 

experiment. In both versions of the experiment, MI words produced a smaller congruency 

effect than MC words, i.e., both versions produced an item-specific PC effect. What is 

important is that, in the four-item set design but not in the two-item set design, the MI words 
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also produced reduced interference in a new manipulation introduced in the final block of that 

experiment. In this final block, a new set of colors was used that had not been used before in 

the experiment, and both MI and MC words were presented in those incongruent colors. In the 

final block of the four-item set design, latencies for naming, for example, the incongruent color 

brown (a color used only in the final block of the experiment), were faster if that color 

appeared in an MI word than if it appeared in an MC word. In contrast, in the final block of the 

two-item set design, no differences were observed in naming the new incongruent colors 

appearing in MI and MC words. 

To explain these results, Bugg and Hutchison (2013) suggested that the shorter latencies for 

naming the new incongruent colors in MI words in the final block of the four-item set design 

were due to the fact that, in that version of the experiment, participants had previously learned 

to focus attention to the color when those words were presented. This learning process, 

presumably, occurred as a result of having used a conflict adaptation process in dealing with 

those MI words earlier in the experiment, when item-specific conflict frequency was being 

manipulated. According to Bugg and Hutchison, the reason that this conflict adaptation process 

was engaged was that, in this version of the experiment, contingency learning was not a 

reliable process overall because contingencies could only be learned for half of the words in the 

experiment (i.e., the MC words). The situation was different in the two-item set design, 

however. Here, the failure to observe shorter latencies for naming the new incongruent colors 

in MI words in the final block of this version of the experiment would suggest that participants 

had not previously learned to focus attention to the color when those words were presented. 

The likely reason is that a contingency learning process, not a process of adaptation to item-
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specific conflict frequency, was the process that participants had used when dealing with those 

MI words earlier in the experiment, presumably because contingency learning was a reliable 

option for all of the words (i.e., both MC and MI words) rather than for just a portion of them 

(as was the case in the four-item set design). 

Although Bugg and Hutchison’s (2013) results do seem to provide evidence for a conflict 

adaptation process (at least in a limited set of circumstances), Schmidt (2014a; 2019) has 

offered an alternative account of those results based on the fact that in the four-item set design 

but not in the two-item set design, MC and MI words differed in informativeness. This 

explanation is based on the observation that informative stimuli attract attention (e.g., Jiang & 

Chun, 2001). What is possible, then, is that in the Stroop task, words that allow contingency 

learning receive more attention than do words for which no contingencies can be learned. As a 

result of receiving more attention, the former words, if incongruent with the color, would cause 

larger interference than the latter. The implication is that item-specific conflict adaptation 

would not be the only explanation for why, in the final block of the four-item set design in Bugg 

and Hutchison’s (2013) experiment, MI words produced less interference than MC words when 

naming the new incongruent colors. Specifically, those MI words might have received less 

attention because they were relatively uninformative (i.e., they could not be used to predict the 

response), a mechanism of attention regulation that has nothing to do with conflict itself. 

Notably, however, this mechanism would not differentially impact the amount of attention that 

MC and MI words received in the two-item set design in Bugg and Hutchison’s experiment 

because, in this design, both types of words were informative. Because both MC words and MI 

words, being informative, attracted attention, they would cause similar interference when 
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presented in the new incongruent colors in the final block of Bugg and Hutchison’s 

manipulation, thus explaining the failure to observe any difference between MC and MI words 

in that block. 

A similar argument can be made for any list-wide PC paradigms in which words in the MI list are 

overall less informative than words in the MC list, paradigms in which a PC effect can be 

obtained even when contingency learning is controlled for. As noted, Bugg et al. (2008; see also 

Blais & Bunge, 2010) failed to obtain a PC effect on transfer items in their modified paradigm, 

suggesting that adaptation to list-wide conflict frequency may not exist. However, in follow-up 

work, Bugg (2014a) found that a PC effect on the transfer items (the items that are crucial for 

probing adaptation to list-wide conflict frequency) can be obtained if the nature of the context 

items (the items that, although not crucial for probing adaptation to list-wide conflict frequency, 

determine the congruency proportion of the list) is changed. Specifically, a PC effect for the 

transfer items emerged when the MI list was a list in which no contingencies could be learned 

for the MI context words because those words appeared in four equally probable colors (one 

congruent and three incongruent).  

The situation created by Bugg (2014a) differed from those examined by Bugg et al. (2008) and 

Blais and Bunge (2010) in which the MI list was a list in which contingencies could be learned 

for MI context words because those words did have a more probable (incongruent) color. To 

explain these divergent patterns (a PC effect on the transfer items when MI context words do 

not allow contingency learning vs. no PC effect on the transfer items when MI context words 

allow contingency learning), Bugg (2014a) proposed that adaptation to list-wide conflict 

frequency will have a primary role only in situations in which contingencies cannot be used for 
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most of the trials in the task, e.g., in an MI list that does not allow for contingency learning. In 

these situations, the process being used would be a process of adaptation to list-wide conflict 

frequency, leading to more focused attention to color information. On the other hand, when 

reliable contingencies exist in the MI list (Blais & Bunge, 2010; Bugg et al., 2008), contingency 

learning is the only process being engaged in both MC and MI lists (i.e., no conflict adaptation 

process is engaged in either list). As a result, the transfer items will be unaffected, causing them 

to produce the same size congruency effect in the two lists. 

However, in this case as well, stimulus informativeness can offer an alternative account 

(Schmidt, 2014a, 2019). Because in Bugg’s (2014a) experiments contingencies could be learned 

for at least some items (the context items) in the MC list but not for the same items in the MI 

list, the latter list was, overall, less informative than the former. That is, compared to the MC 

list, the words used in the MI list, overall, were not as reliable in allowing an accurate prediction 

of a specific color response. Because the MI list was relatively uninformative, participants could 

have reduced attention to all words in that list. As a result of receiving less attention, all words 

in that list, including the transfer words, would produce smaller interference, thus resulting in a 

reduced congruency effect. The implication is that the reduced congruency effect observed in 

the MI list for the transfer items could reflect the fact that participants reduced attention to 

words in that list because the words were relatively uninformative rather than because conflict 

was frequently experienced in that list. Notably, this account would also explain why no PC 

effect was obtained for the transfer items when contingencies could be learned for both MC 

and MI context items (Blais & Bunge, 2010; Bugg et al., 2008). The reason is that, in that 

situation, MC and MI lists were matched in stimulus informativeness (i.e., contingency learning 
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could be applied to both MC and MI context words). Because the MC list and the MI list were 

relatively informative, attention would be directed to all words (including the transfer words) in 

both lists. As a result of receiving attention in both lists, the words would produce similar 

interference across lists, resulting in congruency effects of the same size (i.e., there should be 

no PC effect). (note 7) 

Temporal learning 

Up to this point in this discussion, it would appear that a combination of non-conflict learning 

processes can account for all the PC effects reviewed with no necessary involvement of conflict 

adaptation processes. However, at least one study exists in which both contingency learning 

and stimulus informativeness confounds were controlled for and yet a list-wide PC effect 

emerged. In a somewhat more complicated design than the ones reviewed thus far, Hutchison 

(2011) mixed a fixed set of transfer items with a variable set of context items so as to create 

three lists: An (informative) MC list in which all context items were congruent and allowed 

contingency learning, an informative MI list in which all context items were incongruent and 

allowed contingency learning (making contingency learning in that list as reliable as in the MC 

list), and a relatively uninformative MI list in which all context items were incongruent but did 

not allow contingency learning (making contingency learning less reliable overall than in the 

other two lists). Crucially, compared to the MC list, Hutchison found overall smaller congruency 

effects for the transfer items not only in the uninformative MI list but also in the informative MI 

list. Furthermore, the congruency effects for the transfer items were the same size in the 

informative MI list and in the relatively uninformative MI list, suggesting that differences in 

stimulus informativeness across lists played little role in Hutchison’s experiment. 
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To explain Hutchison’s (2011) list-wide PC effect, Schmidt (2013c) proposed that a temporal 

learning process could explain the effect without invoking a process of adaptation to list-wide 

conflict frequency. Central in this explanation is the fact that MC and MI lists inevitably differ in 

response rhythm, as this rhythm is, by necessity, faster when most of the trials elicit a fast 

response (in the MC list, in which most trials are congruent) and slower when most of the trials 

elicit a slow response (in the MI list, in which most trials are incongruent). The reason that 

response rhythm is of potential relevance for the PC effect is that participants in speeded tasks 

are known to use information about their response time to form temporal expectancies for 

response emission for the upcoming trials (Lupker, Brown, & Colombo, 1997; Lupker, Kinoshita, 

Coltheart, & Taylor, 2003).  

Based on these ideas, Schmidt (2013c) proposed the existence of a temporal learning process 

that would produce a list-wide PC effect even in situations in which other confounds typically 

contained in list-wide PC paradigms (i.e., contingency learning and stimulus informativeness) 

are controlled for. According to this account, a faster temporal expectancy would cause the 

difference between easy-to-process stimuli (e.g., congruent items) and hard-to-process stimuli 

(e.g., incongruent items) to increase because easy stimuli, but not hard stimuli, will speed up 

because they can be processed fast enough to meet a fast temporal expectancy. Thus, in the 

case of an MC list (i.e., a situation in which the temporal expectancy is relatively fast), the result 

would be a large congruency effect. Conversely, a slower temporal expectancy would cause the 

difference between easy and hard stimuli to decrease because hard stimuli, in theory, may also 

speed up because they can be processed fast enough to meet the slower temporal expectancy 

in that situation (although in practice, as will be explained in more detail in Chapter 2, hard 
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stimuli appear to be relatively insensitive to temporal expectancies, at least in many situations; 

Kinoshita & Mozer, 2006). As a result, an MI list in which the temporal expectancy is relatively 

slow would produce, if anything, a reduced congruency effect. In sum, a list-wide PC effect 

could be produced by a temporal learning process rather than by adaptation to conflict 

frequency, even in situations in which contingency learning and stimulus informativeness 

confounds are controlled for. (note 8) 

To demonstrate that temporal expectancies could explain PC effects obtained in confound-

minimized situations, Schmidt (2013c) re-analyzed Hutchison’s (2011) data using linear mixed-

effects modeling, a type of analysis that, unlike traditional mean-based ANOVAs, allows the 

evaluation of trial-level predictors. Specifically, in his re-analysis, Schmidt included a trial-level 

predictor functioning as an index of temporal expectancy, the latency on the most recent trial 

(i.e., RT on trial n – 1), in addition to the typical predictors in a PC paradigm (i.e., list type [MC vs. 

MI] and congruency [congruent vs. incongruent]). The reason for using that trial-level predictor 

in the re-analysis was that, because congruent items (i.e., relatively easy stimuli) are more likely 

to benefit from fast temporal expectancies (i.e., following a fast RT) whereas incongruent items 

(i.e., relatively hard stimuli) are more likely to benefit, if anything, from slower temporal 

expectancies (i.e., following a slow RT), the congruency effect on a given trial should be larger 

following faster responses than following slower responses, an interaction effect that Schmidt 

did obtain. What makes this temporal learning interaction compelling is that, by necessity, 

faster responses are more common in an MC list than in an MI list. As a result, the fact that 

congruency effects increase following faster responses would tend to inflate, overall, the 

congruency effect in the MC list and reduce it in the MI list, resulting in a PC effect. 
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Recently, however, Cohen-Shikora, Suh, and Bugg (2018) clearly demonstrated that Schmidt’s 

(2013c) results were likely produced by the nonlinear transformation that he applied to the RT 

data. The reason that transformations of this sort are applied is that they do a decent job of 

accommodating the assumption made by linear mixed-effects models that the dependent 

variable be normally distributed (an assumption that the positively skewed distribution of raw 

RTs typically fails to satisfy). However, nonlinear transformations of the dependent variable 

have the downside of systematically altering the pattern and size of interaction terms, making 

analyses of interactions unreliable overall (Balota, Aschenbrenner, & Yap, 2013). Indeed, 

Cohen-Shikora et al. re-analyzed a number of datasets (including Hutchison’s, 2011) and were 

unable to replicate Schmidt’s (2013c) temporal learning interaction when untransformed, 

rather than transformed, RT data were used in a type of mixed-effects model that tolerates 

deviations from normality in the dependent variable (a generalized linear mixed-effects model: 

Lo & Andrews, 2015). Several additional attempts to evaluate the impact of temporal learning 

by Cohen-Shikora et al. also yielded no convincing evidence that temporal learning contributes 

to the PC effect to any extent. 

On the other hand, another line of research exists that appears to support a potential role of 

temporal learning in producing effects like the list-wide PC effect without suffering from 

limitations in the analyses. This line of research is based on the idea that temporal learning 

should not be specific to interference tasks such as the Stroop task, i.e., tasks where conflict 

from an irrelevant dimension produces interference. Instead, any task in which the proportion 

of easy and hard items is manipulated should produce differences in the magnitude of difficulty 

effects that parallel those observed with congruency effects in the list-wide PC paradigm, i.e., a 
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smaller difficulty effect in a list in which most of the items are hard and a larger difficulty effect 

in a list in which most of the items are easy. Indeed, Schmidt obtained evidence of this 

Proportion-Easy effect in a number of studies where no interfering irrelevant information was 

presented (Schmidt, 2013c; 2014b, 2016). For example, in a letter identification task, Schmidt 

(2013c) found faster identification for high-contrast letters (easy items) than for low-contrast 

letters (hard items). More importantly, however, the size of this difficulty effect was modulated 

by the proportion of easy items in the list, with larger difficulty effects in a list where most of 

the items were easy than in a list in which most of the items were hard, as predicted by 

temporal learning. Although, as noted by Schmidt (2013c), the temporal learning process 

producing the Proportion-Easy effect in this paradigm is not necessarily the same process that 

produces the PC effect in list-wide PC paradigms, it is possible that a temporal learning process 

of that sort does contribute to the emergence of list-wide PC effects.  

The present research 

Taken together, the non-conflict learning confounds noted by Schmidt (2013b, 2019) for PC 

paradigms suggest that the PC effects those paradigms typically produce do not necessarily 

represent humans’ ability to learn “how” to deal with conflict, i.e., engaging the control 

strategy that is best suited for frequently conflicting situations (more focused attention to 

relevant information) vs. infrequently conflicting situations (relaxed attention). Instead, they 

could represent humans’ ability to learn “what” to respond (i.e., selecting the response that is 

most likely for the stimulus as well as adapting to the informativeness of individual stimuli or 

the informativeness of the list as a whole), and/or “when” to respond (i.e., determining the 

point in time at which a response should be emitted). Notably, Schmidt (2013b) also argues that 
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because these abilities, not being tied to conflict, reflect relatively general processes, the 

assumption that PC effects are fully explained by one or a combination of these non-conflict 

processes would constitute a more parsimonious explanation than an explanation that 

concedes a role for conflict adaptation. However, what may be deemed to be the most 

parsimonious explanation is not necessarily the correct one, as adaptation to conflict frequency 

might still be observed when the various non-conflict learning confounds affecting PC 

paradigms are accounted for. In fact, since Schmidt and Besner’s (2008) seminal article, a 

number of researchers have attempted to modify the traditional list-wide and item-specific PC 

paradigms so as to obtain evidence of adaptation to conflict frequency that would not be 

contaminated by non-conflict learning processes (Braem et al., in press). 

In this vein, the research reported here was an attempt to examine whether list-wide and item-

specific PC effects would emerge in situations in which potential non-conflict learning 

confounds were accounted for. While some attempts undertaken in this direction suggest that 

such might be the case, at least in some situations (e.g., Bugg, 2014a; Bugg & Hutchison, 2013; 

Hutchison, 2011), those attempts often failed to consider non-conflict learning confounds in 

their entirety (Schmidt, 2013c, 2014a). The unique contribution of the present research was 

that all of the non-conflict learning confounds indicated by Schmidt (i.e., contingency learning, 

stimulus informativeness, and temporal learning) were taken into account. In addition, rather 

than pursuing this research from a single perspective/paradigm, a range of approaches was 

used with the purpose of gathering converging evidence in support of a conflict adaptation 

function of the control system. Of importance, as noted, this research would not only 

contribute to the theoretical debate concerning the existence of processes of adaptation to 
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conflict frequency (Schmidt et al., 2015) but it would also inform those who apply theories of 

cognitive control in another domains. For example, in neuroscience studies, it is often assumed 

that PC paradigms elicit control adjustments, and, as a result, patterns of brain activity are 

typically interpreted in those terms (e.g., Braver & De Pisapia, 2006; Marini et al., 2016; but see 

Grandjean et al., 2013). Similarly, and perhaps more concerning, researchers who administer PC 

paradigms to aging and clinical populations tend to interpret abnormal results as deficits in 

cognitive control functions (e.g., Abrahamse et al., 2016; Bonnin, Houeto, Gil, & Bouquet, 2010; 

Bugg, 2014b). These interpretations, however, would be inaccurate if it turned out that PC 

paradigms do not actually measure conflict-induced control of attention but, rather, more 

general non-conflict learning processes. Because in the present research the idea that 

adaptation to conflict frequency is engaged in PC paradigms was put to a stringent test, this 

research could either consolidate that idea or suggest a serious reconsideration of it, with 

either outcome having a considerable impact on theories of control functioning and the 

applications of those theories. 

Two lines of research were pursued. The first line of research was an examination of the list-

wide PC effect. Although the list-wide PC effect has had a long tradition of research since it was 

first reported (Logan & Zbrodoff, 1979), a clear demonstration that this effect reflects a process 

of adaptation to list-wide conflict frequency, the process that most control accounts assume to 

explain it (e.g., Botvinick et al., 2001; Braver & De Pisapia, 2006; Kane & Engle, 2003), is still 

lacking. The reason is that, as noted, several non-conflict learning confounds typically exist in 

the list-wide PC paradigm (i.e., contingency learning, stimulus informativeness, and temporal 

learning), which, individually or in combination, could produce a PC effect without the 



33 
 

necessary involvement of adaptation to list-wide conflict frequency. Indeed, to my knowledge, 

no single study currently exists that controls for all the non-conflict learning confounds 

indicated by Schmidt (2013b, 2019) for the list-wide PC effect. The research reported in 

Chapters 2 and 3 was an attempt to address this issue. 

In Chapter 2, the question of whether a list-wide PC effect might still be observed when all non-

conflict learning confounds are controlled for was addressed by using a list-wide PC paradigm in 

the picture-word interference task, a task in which participants are required to name or 

categorize a picture while ignoring a word superimposed on it. This task has been argued to be 

functionally equivalent to the color-word Stroop task (e.g., Lupker, 1979). However, unlike the 

color-word Stroop task in which only a few color targets and word distractors can be used, the 

picture-word interference task affords the opportunity of using many picture targets and word 

distractors. This characteristic of the picture-word interference task was exploited to overcome 

the problem that, in the list-wide PC paradigm in the color-word Stroop task, contingency 

learning is inevitable in the MC list (because at least some words in that list will need to appear 

more often with their congruent color, which will necessarily be the high-contingency color).  

To this end, in two experiments, a situation was created in which no individual picture or word 

was repeated, making it impossible for participants to learn any word-response contingency in 

either the MC list or the MI list (with the additional result that in both lists, the words were also 

completely uninformative based on Schmidt’s (2014b, 2019) definition of stimulus 

informativeness). In addition, to control for temporal learning, the data from those experiments 

were analyzed using a generalized linear mixed-effects model, a model that allows the 
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evaluation of trial-level predictors of temporal expectancies without requiring transformations 

of the RT data, making interaction terms clearly interpretable (Cohen-Shikora et al., 2018).  

To anticipate the results, a list-wide PC effect was obtained in both experiments, with no 

evidence that a temporal learning process contributed to the emergence of this effect. The idea 

that temporal learning could produce a list-wide PC effect in a picture naming task was further 

examined in an additional experiment in which, similar to Schmidt’s (2013c, 2014b, 2016) 

Proportion-Easy experiments, the frequency with which easy-to-name vs. difficult-to-name 

pictures appeared in a list was manipulated but the naming difficulty did not derive from an 

irrelevant stimulus dimension (i.e., there were no word distractors). In this case as well, no 

evidence was found in support of the temporal learning process proposed by Schmidt.  

In Chapter 3, the more traditional color-word Stroop task was used. Here, in order to overcome 

the problem that an MC list would always allow contingency learning without the possibility of 

extending the stimulus set substantially (as only a small number of easily nameable colors 

exists), a different approach was used: manipulating the proportion of neutral and incongruent 

items in a list (e.g.,  Tzelgov, Henik, & Berger, 1992). This approach maintains a conflict 

frequency manipulation (the key aspect of PC paradigms), while also having the advantage of 

potentially avoiding contingency learning and stimulus informativeness confounds because a 

Mostly Neutral list (i.e., a list in which there are more neutral than incongruent items), like a 

Mostly Incongruent list but unlike a Mostly Congruent list, can be constructed so that no 

individual word can be used to predict the color response. Using this characteristic that neutral 

items afford, a list-wide Proportion-Neutral manipulation was created in which contingency 

learning was impossible in both a Mostly Neutral list and a Mostly Incongruent list (again, 



35 
 

making all words in the task uninformative). Even though contingency learning and stimulus 

informativeness were controlled for, a list-wide Proportion-Neutral effect, similar to the list-

wide PC effect in the standard paradigm, was obtained, with a larger interference effect (i.e., 

the latency difference between incongruent and neutral items) in the Mostly Neutral list than in 

the Mostly Incongruent list. Furthermore, an analysis of the data using the procedure employed 

in Chapter 2 confirmed that temporal learning had no impact on this Proportion-Neutral effect. 

Note that the picture-word interference experiments in Chapter 2 and the Stroop experiment in 

Chapter 3 were constructed in a way that allowed not only an examination of whether 

adaptation to conflict frequency exists, but also a determination of the proactive/reactive 

nature of this conflict adaptation process. As noted, control accounts of the list-wide PC effect 

such as the DMC account (e.g., Braver & De Pisapia, 2006; see also Kane & Engle, 2003) propose 

that this effect results from a proactive process of task goal maintenance that is continuously 

engaged in lists in which conflict is frequent (MI lists) and a reactive process of task goal 

retrieval that is occasionally engaged upon detection of conflict in lists in which conflict is 

infrequent (e.g., MC and MN lists). However, as demonstrated by Blais et al. (2007), the list-

wide PC effect in traditional paradigms could also be entirely explained by a single, item-specific 

reactive process whereby the presentation of a frequently conflicting item (i.e., any item 

appearing in traditional MC lists) leads to more focused attention to task-relevant information 

than does the presentation of an infrequently conflicting item (i.e., any item appearing in 

traditional MI lists). The situation was different in the conflict-frequency manipulations 

reported in Chapters 2 and 3, however. The reason is that, in Chapter 2, the use of nonrepeated 

targets and distractors effectively prevented the use of any item-specific process. In Chapter 3, 
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while an item-specific process (specifically, adaptation based on color-specific congruency 

proportion: Bugg & Hutchison, 2013) was possible, this was true for a portion of the items (the 

context items) but not for the other items (the transfer items). The fact that in both Chapters 2 

and 3 a Proportion-Congruent/Proportion-Neutral effect was obtained even in situations in 

which item-specific reactive processes were impossible suggests that, in line with the DMC 

account of the list-wide PC effect, those effects were caused by a combination of proactive 

control (in MI lists) and (non-item-specific) reactive control (in MC and MN lists), rather than by 

a single item-specific reactive mechanism. 

In Chapter 4, the focus of the research shifted to that putative item-specific reactive 

mechanism, a mechanism that, in theory, may underlie the item-specific PC effect (Jacoby et al., 

2003). However, although the number of non-conflict learning confounds individuated in the 

item-specific PC paradigm is lower than in the list-wide paradigm (because, e.g., temporal 

learning would not be a confound in the item-specific paradigm: Schmidt, 2013b, 2014a), most 

researchers now agree that the item-specific PC effect is completely produced by those 

confounds (particularly, contingency learning), at least in Jacoby et al.’s (2003) two-item set 

paradigm in which a high-contingency color exists for both MC and MI items (Atalay & 

Misirlisoy, 2012; Bugg & Hutchison, 2013; Hazeltine & Mordkoff, 2014; Schmidt, 2013a).  

In Chapter 4, this contingency learning interpretation of the item-specific PC effect in the 

original two-item set design was re-examined by having participants perform a Working-

Memory task simultaneously with Stroop and non-conflict versions of a color identification task. 

The rationale for using this dual-task manipulation was that a concurrent working memory load 

is known to interfere with people’s ability to learn contingencies in a non-conflict color 
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identification task (a task in which color-unrelated words, rather than color names, are used: 

Schmidt, De Houwer, & Besner, 2010). If increasing working memory load reduces contingency 

learning in a non-conflict color identification task, it should also reduce the item-specific PC 

effect in the Stroop task if contingency learning is indeed the critical process underlying that 

effect.  

Across three experiments, however, no evidence was found that increasing working memory 

load reduced the item-specific PC effect in the Stroop task even though, replicating previous 

research (Schmidt et al., 2010), working memory load did reduce contingency learning effects in 

the non-conflict color identification task. The implication of these results, also supported (albeit 

only partially) by an individual-differences analysis of participants’ working memory capacity in 

the final experiment, is that the conclusion that contingency learning fully explains the item-

specific PC effect in Jacoby et al.’s (2003) two-item set design is likely incorrect, and a role for 

adaptation to item-specific conflict frequency in this effect should be acknowledged. In fact, the 

argument is made in Chapter 4 that the overall pattern of results is better explained by the 

DMC account, a control account that assumes that the item-specific PC effect results from an 

item-specific reactive control process whereby attention to task-relevant information is 

increased upon presentation of MI items but relaxed upon presentation of MC items (Gonthier 

et al., 2016). (note 9) 

Interim summaries linking Chapters 2 and 3 (Chapter 2.5) and Chapters 3 and 4 (Chapter 3.5) 

follow the relevant chapters. Finally in Chapter 5, all of the findings reported in this dissertation 

are summarized and discussed within the framework of the DMC account (Braver, 2012; Braver 

et al., 2007), an account that, as noted, has proven useful in interpreting list-wide and item-
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specific forms of adaptation to conflict frequency. Furthermore, the case is made that although 

attention control at multiple levels appears to be real, future research would certainly benefit 

from employing paradigms, like the ones reported here, that effectively prevent non-conflict 

learning confounds from contaminating putative measures of conflict-induced attention control.  
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Footnotes 

1. In the literature, the congruency sequence effect is also known as the “conflict 

adaptation” effect. However, in the present discussion, the term “conflict adaptation” 

will be used in a more general sense. Specifically, “conflict adaptation” will be used to 

encompass all forms of conflict-induced adaptive control, including not only adaptation 

to recent conflict (i.e., the congruency sequence effect) but also adaptation to the 

frequency with which conflict occurs either in a list as whole (i.e., the list-wide PC effect) 

or in specific contexts (e.g., the item-specific PC effect). For a similar use of this term, 

see Schmidt (2013b). 

2. It is worth noting that, in theory, the conflict adaptation process underlying the list-wide 

PC effect could be the very same trial-by-trial conflict adaptation process underlying the 

congruency sequence effect. That is, the finding that an MI list elicits a smaller 

congruency effect than an MC list might simply result from the fact that in the former 

list, it is much more common for a given trial to be preceded by an incongruent item (an 

item that induces focused attention and, thus, a smaller congruency effect on the 

subsequent trial) than by an congruent item (an item that induces relaxed attention and, 

thus, would produce a larger congruency effect on the subsequent trial). Thus, the 

overall small and large congruency effects obtained in MI and MC lists, respectively, 

would be the product of many micro-adjustments in attentional control occurring on a 

trial-by-trial fashion, as opposed to being the result of a list-wide process (i.e., focus 

attention in the MI list vs. relax attention in the MC list). Recently, however, 

dissociations between list-wide PC effects and congruency sequence effects have been 
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reported, such that the former are obtained even in situations in which the latter could 

not possibly contribute to producing a PC effect (e.g., Torres-Quesada, Funes, & 

Lupiáñez, 2013; Torres-Quesada, Milliken, Lupiáñez, & Funes, 2014). Thus, although 

sequential modulations of congruency effects likely contribute to the list-wide PC effect 

in most situations, this effect seems separable from the congruency sequence effect and 

may represent a distinct type of conflict adaptation. 

3. It could be argued, however, that the conflict-monitoring component of Botvinick et al.’s 

(2001) model actually does imply a reactive process, although not the item-specific 

reactive process proposed by Blais et al. (2007). This process is the process that allows 

one to detect conflict upon presentation of a conflicting stimulus, a process that is 

functioning even when attention is relaxed. Indeed, as explained in the following section, 

subsequent control accounts do assume a role for reactive control in the list-wide PC 

paradigm, particularly in lists in which conflict is infrequent and a reactive mechanism 

must exist to help to deal with that unexpected conflict. What is important to note at 

this point, however, is that the original conflict-monitoring model did not implement 

any (reactive) process that would allow it to treat MC items/contexts differently than MI 

items/contexts. 

4. The idea that the reactive process producing the item-specific PC effect may explain the 

list-wide PC effect in the list-wide PC paradigm may appear somewhat similar to the 

idea, reviewed in the next sections, that non-conflict learning processes may explain PC 

effects (Schmidt, 2013b, 2019). However, both an account that assumes that reactive, 

item-specific control produces the list-wide PC effect (Blais et al., 2007) and the more 
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traditional account that assumes that proactive, list-wide control produces that effect 

(e.g., Kane & Engle, 2003), are essentially conflict adaptation accounts. Thus, where 

those accounts differ is the level at which that adaptation occurs (the item level vs. the 

list level), not the nature of the cognitive process involved (e.g., a conflict-based process 

vs. a non-conflict-based process, the distinction that is relevant for the non-conflict 

learning accounts of PC effects which will be described subsequently). 

5. Here and in the following, for simplicity, proactive adaptation to list-wide conflict 

frequency will be considered as an explanation for list-wide PC effects obtained in the 

absence of item-specific conflict adaptation processes even though a reactive process of 

retrieving the task goal upon presentation of incongruent items in the MC list likely 

complements the proactive process. 

6. In the typical contingency learning explanation, it is assumed that the contingency 

learning process is merely facilitative (there is a benefit for high-contingency items but 

no cost for low-contingency items), in line with the initial proposal made by Schmidt and 

Besner (2008; see also Schmidt, 2013a). More recently, however, Lin and MacLeod 

(2018) demonstrated that in a non-conflict color identification task (a task in which 

color-unrelated words, rather than color names, are used), both a benefit for high-

contingency items and a cost for low-contingency items are observed when those items 

are compared to a neutral baseline (a word for which no contingencies can be learned). 

Thus, it is certainly possible that in PC paradigms, high-contingency items are responded 

to faster than they would normally be (because there is a benefit from correctly 

predicting the response to those items) but also low-contingency items are responded 
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to slower than they would normally be (because there is a cost for those items due to 

the fact that the [incorrect] predicted response needs to be suppressed in favor of the 

correct one). Note, however, that although the expected pattern of results for PC effects 

would not be identical based on benefit-only vs. benefit-and-cost versions of the 

contingency learning account, both versions would predict a larger congruency effect in 

MC conditions than in MI conditions, i.e., a PC effect. 

7. It is worth noting that the role that Schmidt’s (2014, 2019) notion of stimulus 

informativeness would play in list-wide PC paradigms is similar to the role played by 

color-word correlations in Algom and collaborators’ account of the Stroop effect 

(Dishon-Berkovits & Algom, 2000; Melara & Algom, 2003; Sabri, Melara, & Algom, 2001). 

What those researchers proposed is that, in the Stroop task, attention to the (task-

irrelevant) words is increased when there is a relationship between the words and the 

(task-relevant) colors. That is, when the words in the Stroop task provide information 

about the colors that they appear (or do not appear) in, those words will receive more 

attention than in a situation in which the words and the colors are randomly paired (a 

zero-correlation situation). For the reasons noted above, the words used in an MC list 

are inevitably strongly correlated with colors, whereas in an MI list, the color-word 

correlation will typically be lower if the list does not allow contingency learning. Thus, a 

comparison between an MC list with a strong color-word correlation and an MI list with 

a weaker color-word correlation would create the same concerns as voiced by Schmidt 

(2014b; 2019): Words would receive more attention in the MC list than in that type of 

MI list, however, the reason that attention is withdrawn from the words in the MI list 
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would not necessarily be the frequent experience with conflict in that list (as a control-

based account would maintain) but, alternatively, the fact that the words in that list 

provide relatively little information about the colors that they appear in. 

8. Note that because temporal learning appears to be relatively insensitive to differences 

in difficulty between specific items, this process is not considered as a potential 

explanation for the item-specific PC effect (Schmidt, 2013b, 2014a). 

9. Chapters 2, 3, and 4 were submitted to peer-reviewed journals and, at the time that this 

dissertation was written, they were either accepted for publication (Chapter 2: Spinelli 

et al., 2019) or had received a revise and resubmit invitation following a second round of 

revisions (Chapters 3 and 4). The most recent version of each manuscript was reported 

with no substantial modification.  
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Chapter 2: 

 Adaptation to Conflict Frequency Without Contingency and Temporal Learning: Evidence 

from the Picture-Word Interference Task 

Introduction 

An established fact in cognitive research is that goal-oriented behavior requires some form of 

control for selection of appropriate responses in the face of conflict coming from task irrelevant 

information. What is less established, however, is whether control can be adaptively modulated 

in response to experience with conflict. With such a conflict adaptation mechanism, the 

cognitive control system would, presumably, not just resolve conflict, but also monitor conflict 

and adapt attention to relevant and irrelevant information accordingly (Botvinick, Braver, Barch, 

Carter, & Cohen, 2001).  

Manipulations of conflict frequency in interference tasks such as the Stroop (1935) task 

typically produce a pattern of results that is consistent with a conflict adaptation explanation. In 

the classic (color-word) Stroop task, participants are required to name the ink color of a word 

while ignoring the word itself. A congruency effect typically arises, with faster (and often more 

accurate) responding to congruent items (e.g., the word RED in red color, REDred) than to 

incongruent items (e.g., the word RED in blue color, REDblue) (MacLeod, 1991). Of interest here 

is the fact that the magnitude of this effect varies as a function of experience with conflict.  

Specifically, situations in which the proportion of congruent items is high (i.e., infrequent 

conflict) elicit larger congruency effects than do situations in which the proportion of congruent 

items is low (i.e., frequent conflict) (e.g., Crump, Gong, & Milliken, 2006; Jacoby, Lindsay, & 
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Hessels, 2003; Logan & Zbrodoff, 1979; for a review, see Bugg & Crump, 2012). These 

Proportion-Congruent (PC) effects are readily explained by a conflict adaptation process. When 

conflict is frequent, there is regular demand for the control system to maintain attention 

focused on the relevant dimension. Interference from the irrelevant dimension will thus be 

minimized, resulting in a reduced congruency effect. On the other hand, when conflict is 

infrequent, the benefit of focusing on the color is rarely reinforced. As a result, interference 

from the irrelevant dimension on the few incongruent items that are present results in a large 

congruency effect. 

Recent years, however, have witnessed a growing concern among researchers about the 

validity of conflict adaptation as an explanation for PC effects (Schmidt, 2013b; Schmidt, 

Notebaert, & van den Bussche, 2015). Such concern has its roots in the realization that, in 

speeded tasks, responding might be influenced by learned associations, or contingencies, 

between a stimulus and a motor response (Schmidt, Crump, Cheesman, & Besner, 2007; Musen 

& Squire, 1993), as well as by the formation of temporal expectancies for the emission of a 

response (Schmidt, 2013c). The reason these issues are relevant is that PC manipulations are 

typically confounded with contingency learning biases as well as with temporal learning biases 

(Schmidt, 2013c; Schmidt & Besner, 2008). As such, some combination of these factors when 

applied to the mechanisms involved in interference tasks appears to be able to explain the PC 

effects that are observed in those tasks without needing to posit a role for conflict (Kinoshita, 

Mozer, & Forster, 2011; Levin & Tzelgov, 2016). What is worth noting at this point is that, as will 

be described subsequently, these alternative accounts are essentially “facilitation” accounts.  

That is, their explanations for PC effects are based on the idea that some aspect of processing is 



46 
 

facilitated as a result of participants gaining relevant information about the nature of the task. 

Hence, these accounts offer a radically different view of PC effects than that offered by the 

conflict adaptation account, which is based on an interference-driven mechanism.  

Contingency learning 

Contingency learning involves acquiring knowledge that two events tend to occur together (e.g., 

the presentation of the word RED typically requires the response “green”) and using that 

knowledge to facilitate responding (Beckers, De Houwer, & Matute, 2007). In color-word 

identification tasks in which the words used are not color names, contingency learning is 

presumed to explain why color identification is faster for a frequent word-color pair (= high-

contingency item, e.g., the word BRAG presented in green color 75% of the time) than for an 

infrequent word-color pair (= low-contingency item, e.g., the word BRAG presented in yellow 

color 25% of the time) (Schmidt et al., 2007; see also Musen & Squire, 1993). Essentially, 

according to contingency learning accounts, participants implicitly learn contingencies between 

words and color responses, i.e., that specific words predict specific color responses (e.g., BRAG 

predicts green; Schmidt et al., 2007; see also Forrin & MacLeod, 2017; Lin & MacLeod, 2018), 

allowing them to respond more rapidly when the word appears in its most frequent color.  

The reason this issue is relevant for PC effects is that manipulating the proportion of congruent 

items in the Stroop task typically involves altering the frequency of specific word-color pairs as 

well. For example, PC experiments might involve a Mostly Congruent (MC) list in which the 

word RED appears in its congruent, red color 75% of the time and in the incongruent, blue color 

25% of the time, and a Mostly Incongruent (MI) list in which the word RED appears in the 
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incongruent, blue color 75% of the time and in its congruent, red color 25% of the time. Doing 

so, however, means that REDred is more frequent than REDblue in the MC list, whereas REDblue is 

more frequent than REDred in the MI list. If frequent word-color pairs elicit faster responses, 

participants might thus speed up on REDred in the MC list but not on REDblue in the MI list. 

Crucially, fast responding to the congruent item REDred in the MC list will lead to a relatively 

large congruency effect whereas fast responding to the incongruent item REDblue in the MI list 

will lead to a relatively small congruency effect. In other words, learning of word-color 

contingencies, rather than adaptation to conflict frequency, might be responsible for the 

difference in magnitude of congruency effects that is typically found in PC manipulations in the 

Stroop task (Schmidt & Besner, 2008). 

Importantly, the assumption that contingency learning is the only source of PC effects (Schmidt 

& Besner, 2008) implies that no PC effects should be observed in PC manipulations that control 

for contingency learning operations. In an effort to address this issue, a number of studies have 

been conducted that evaluate PC effects on contingency-controlled stimuli, that is, stimuli 

which are matched in contingency across MC and MI lists (Blais & Bunge, 2010; Bugg, 2014a; 

Bugg & Chanani, 2011; Bugg, Jacoby, & Toth, 2008; Gonthier, Braver, & Bugg, 2016; Hutchison, 

2011). The rationale is that if PC effects are driven by a mechanism of adaptation to list-wide 

conflict frequency, that mechanism should produce a PC effect for all stimuli, including the 

contingency-controlled stimuli. Results from those studies do provide at least partial support 

for this prediction, with PC effects on contingency-controlled stimuli being reported in a 

number of circumstances (Bugg, 2014a; Bugg & Chanani, 2011; Gonthier et al., 2016; Hutchison, 

2011), although not in all circumstances (Blais & Bunge, 2010; Bugg et al., 2008). Therefore, 
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contingency learning by itself does not appear to offer a complete explanation of PC effects, 

allowing proponents of the conflict adaptation account to argue that these contingency-

controlled PC effects, when obtained, likely reflect the action of a mechanism of adaptation to 

conflict frequency (Bugg, 2014a). In contrast, Schmidt (2013c) has contended that those effects 

are better explained by a different, non-conflict learning process – temporal learning.  

Temporal learning 

While contingency learning is about using stimulus information to predict what to respond, 

temporal learning refers to the process of learning when to emit a response. Participants in 

speeded tasks are known to establish something like a time criterion for when to respond (i.e., 

the point in time at which they expect to respond) depending on the characteristics of the 

stimuli. For example, relatively easy stimuli are typically responded to faster when presented in 

a list where all of the stimuli are easy (i.e., a pure list) than when presented intermixed with 

harder items (i.e., a mixed list), suggesting that participants adapt their temporal expectations 

for response emission to the average difficulty experienced in the list (Lupker, Brown, & 

Colombo, 1997; Lupker, Kinoshita, Coltheart, & Taylor, 2003). Recently, Schmidt (2013c) 

extended this idea to explain PC effects in the Stroop task that have been obtained in the 

absence of biases created by contingency learning (Bugg, 2014a; Hutchison, 2011).  

According to Schmidt’s (2013c) temporal learning account, participants will develop a relatively 

fast temporal expectancy in an MC list (because most of the items in the list elicit relatively fast 

responses) and a relatively slower temporal expectancy in an MI list (because most of the items 

in the list elicit relatively slow responses). Participants will then use those temporal 
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expectancies to anticipate when a response should be emitted. Specifically, congruent items, 

but not incongruent items, will speed up in the MC list because they can be processed rapidly 

enough to meet the fast temporal expectancy established for that list. As a result, the 

congruency effect will be relatively large in the MC list. Conversely, in an MI list, participants 

anticipate responding late and, as a result, there will be less pressure on them to elicit fast 

responses to congruent items. This situation would cause slower latencies to congruent items in 

an MI list relative to congruent items in an MC list.  In contrast, according to Schmidt’s account, 

a speed-up could potentially be observed for incongruent items in an MI list because they can 

be processed fast enough to meet the (slower) temporal expectancy established for that list.  

The result would be a relatively small congruency effect. In practice, however, hard-to-process 

stimuli appear to be relatively insensitive to temporal expectancies, at least in some situations 

(Kinoshita & Mozer, 2006; Kinoshita, Mozer, & Forster, 2011), meaning that the slow temporal 

expectancy developed for the MI list may have little impact on incongruent items. In any case, 

the core claim here is that learning of temporal expectancies can inflate the congruency effect 

in the MC list in comparison to the congruency effect in the MI list. Thus, similar to contingency 

learning, temporal learning can explain differences in the magnitude of congruency effects 

across MC and MI lists without invoking any type of conflict adaptation mechanism. 

A critical piece of evidence in support of the temporal learning account of PC effects comes 

from statistical analyses of PC manipulations that take into account the role of temporal 

expectancies that individuals develop on a trial-by-trial basis. The idea for these analyses was 

first proposed by Kinoshita et al. (2011) within the framework of their Adaptation to the 

Statistics in the Environment (ASE) model of optimal response initiation and was then extended 
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by Schmidt (2013a) in his Parallel Episodic Processing (PEP) model of color identification (see 

also Schmidt, De Houwer, & Rothermund, 2016). Although the two models were developed to 

explain different phenomena (relatedness proportion effects in masked priming in the case of 

the ASE model, PC effects in regular Stroop paradigms in the case of the PEP model) and place 

emphasis on different aspects of response emission (adaptation to perceived difficulty in the 

case of the ASE model, rhythmic responding in the case of the PEP model), the models make 

similar assumptions. First, performance on the current trial is influenced by the participant’s 

knowledge of response times on the previous trials (i.e., the trial history), specifically the 

latencies on the most recent trials. Those latencies, especially the latency on the most recent 

trial (RT on trial n – 1), would function as an index of perceived task difficulty (in the ASE model) 

or as an index of the rhythm of responding (in the PEP model) that could be used to form an 

expectancy for response initiation latency on trial n. Thus, RT on trial n – 1 can function as an 

index of temporal expectancy for trial n, with a slower RT on trial n – 1 leading to a slower RT on 

trial n (Kiger & Glass, 1981; Taylor & Lupker, 2001). Second, as noted, easier stimuli are more 

prone to influences from trial history than are harder stimuli (although this pattern is not 

inevitable: Kinoshita & Mozer, 2006; Kinoshita et al., 2011). 

The critical implication of these assumptions is that with easy stimuli strongly affected by RT on 

trial n – 1 (i.e., they will show a large slow-down following a slower RT on trial n – 1) and hard 

stimuli only weakly affected by RT on trial n – 1 (i.e., they will not show a large slow-down 

following a slower RT on trial n – 1), difficulty effects (i.e., the time difference between hard 

and easy stimuli) will decrease as RT on trial n – 1 increases.  
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Evidence for this pattern has been obtained from experimental data that were analyzed using 

linear mixed-effects models. This class of models, unlike traditional means-based ANOVAs, 

allows one to evaluate the impact of RT on trial n – 1, a trial-level continuous predictor, on 

performance on trial n. In several investigations, use of those analyses revealed that difficulty 

effects caused by visible or even subliminal distractors were modulated by trial history, with 

there being smaller effects when the RTs were slower on trial n – 1  (Huber-Huber & Ansorge, 

2017, 2018; Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman, 2016). Most 

importantly for the present discussion, the fact that congruency effects (and difficulty effects in 

general) are modulated by temporal expectancies is relevant for PC manipulations because fast 

RTs inevitably occur more frequently in MC lists than in MI lists. As faster RTs on trial n – 1 

result in larger congruency effects, MC lists will tend to produce larger congruency effects than 

MI lists independent of contingency learning biases or a presumed conflict adaptation 

mechanism.  

Support for the idea that temporal learning is at least partially responsible for PC effects comes 

from Schmidt’s (2013c) re-analysis of the data from Hutchison’s (2011) contingency-controlled 

items using the aforementioned linear mixed-effects model analyses. Those analyses not only 

replicated the finding of a significant PC effect originally reported by Hutchison (2011), they 

also indicated that congruency effects decreased with increasing RT on trial n – 1. Furthermore, 

this decreased congruency effect was accompanied by a reduction (although not an elimination) 

of the value of the beta parameter for the PC effect (i.e., the interaction) in the model, 

suggesting that PC effects and temporal learning effects explain common variance in the data. 

Schmidt interpreted this finding as indicating that temporal learning has the potential of 
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generating PC effects on its own, a point he reinforced by showing that his PEP model, in which 

temporal learning was an implemented mechanism but adaptation to conflict frequency was 

not, could simulate Hutchison’s (2011) results. At the very least, Schmidt’s analysis suggests 

that temporal learning contributes to PC effects in contingency-controlled situations and, 

therefore, its role needs to be considered when analyses of PC manipulations are conducted. 

More recently, however, Cohen-Shikora, Suh, and Bugg (in press) challenged this conclusion. 

They noted that the critical interaction between congruency and RT on trial n – 1 reported by 

Schmidt (2013c) was obtained when the typical positively skewed RT distribution was 

normalized with an inverse transformation (invRT = -1000/RT) in order to accommodate the 

assumption made by linear mixed-effects models that the dependent variable be normally 

distributed. A somewhat neglected downside of this type of analysis procedure is that nonlinear 

transformations of the dependent variable systematically alter the pattern and size of 

interaction terms, casting doubt on the reliability of analyses of interactions (Balota, 

Aschenbrenner, & Yap, 2013).  

A solution to this problem is offered by generalized linear mixed-effects models, models which 

do not assume a normally distributed dependent variable and require, therefore, no RT 

transformation (Lo & Andrews, 2015). Using both inverse-transformed RTs in a linear mixed-

effects model and untransformed (i.e., raw) RTs in a generalized linear mixed-effects model, 

Cohen-Shikora et al. (in press) re-analyzed Hutchison’s (2011) dataset along with two additional 

datasets in which a PC manipulation had been implemented while controlling for contingencies 

(i.e., Bugg, 2014a; Gonthier et al., 2016). They reported that Schmidt’s (2013c) finding that 

congruency effects decrease with increasing RT on trial n – 1 was obtained only with 
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transformed data and not with untransformed data, with the latter data even providing 

evidence for the opposite pattern in some cases (i.e., congruency effects increased, rather than 

decreased, with increasing RT on trial n – 1). Furthermore, in all the datasets, the PC effect 

remained significant when temporal learning indices were included in the analyses, even when 

the value of the beta parameter for that effect was reduced due to the introduction of those 

indices. Finally, attempts to improve indices of temporal learning (e.g., by using mean RT on the 

three most recent trials as a predictor in the analyses) also yielded little evidence for the 

temporal learning account.  

In sum, Cohen-Shikora et al.’s (in press) analyses suggest that previously reported evidence in 

support of the temporal learning explanation of the PC effect (Schmidt, 2013c) might have been 

biased due to the nonlinear transformation applied to RT data. Therefore, it would be advisable 

that research aiming to control for temporal learning avoid this bias by using a more 

appropriate statistical technique, such as generalized linear mixed-effects modelling.  

The present research 

Although conflict adaptation and non-conflict learning mechanisms are not necessarily mutually 

exclusive (Abrahamse, Braem, Notebaert, & Verguts, 2016; Egner, 2014), there has been a 

mounting debate in recent years concerning whether the classic empirical markers of conflict 

adaptation are, in fact, actually produced by non-attentional learning biases (e.g., contingency 

learning, temporal learning), biases that are typically found in manipulations designed to 

investigate what are presumed to be conflict adaptation effects. For some researchers, such 

debate has culminated in the idea that conflict adaptation might be an illusion (Schmidt et al., 
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2015). The fact that conflict adaptation tests are routinely used in clinical settings (e.g., 

Abrahamse et al., 2016; Bonnin, Houeto, Gil, & Bouquet, 2010) hints at the profound 

consequences borne by this idea. Presumed markers of conflict adaptation have been reported 

across the lifespan (e.g., Bugg, 2014a, 2014b) and across a variety of tasks (Bugg & Crump, 

2012), with increasing reports coming from neuroimaging research (e.g., Braver, 2012; Sheth et 

al., 2012; West & Alain, 2000; Wilk, Ezekiel, & Morton, 2012), and these markers have been 

used in a number of diagnostic situations. An exact understanding of what these findings reflect 

is therefore crucial.  

Motivated by these considerations, the present research aimed to re-examine the PC effect 

while at the same time accounting for potential non-conflict learning confounds. Specifically, 

we were interested in providing an answer to the following question: Would evidence for 

adaptation to conflict frequency emerge when non-conflict learning biases are controlled for or 

removed from the design altogether? Some attempts undertaken in this direction suggest that 

the answer might be “yes” (Bugg, 2014a; Bugg & Chanani, 2011; Bugg & Hutchison, 2013; Bugg, 

Jacoby, & Chanani, 2011; Hutchison, 2011; Gonthier et al., 2016). However, much of that 

research failed to consider non-conflict learning biases in their entirety and/or was based on 

experiments that deviate considerably from the original PC paradigm (Schmidt, 2013b, 2014a). 

In addition, very few attempts have been made to control for temporal learning when analyzing 

PC effects (Cohen-Shikora et al., in press; Schmidt, 2013c).  

One primary objective of the present research was to examine adaptation to conflict frequency 

in a situation in which contingency learning could not contribute to the PC effect. According to 

Schmidt (2013a), learning of word-response contingencies is a two-step process: First, on each 
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trial, participants encode information about the word, the color, and the response made into 

episodic memory. Second, any word presented on a subsequent trial will lead to the retrieval of 

past episodes involving that word, with facilitation occurring if the currently presented word 

requires the same response as most of its previous occurrences. Note that repetition appears to 

be an important aspect of this process. Words need to be repeated at least a few times in the 

experiment in order for responses associated with them to be able to influence subsequent 

behavior (Lin & MacLeod, 2018). Because this process is based on learning a predictive 

association between a specific word and a specific response (Schmidt et al., 2007; but see 

Schmidt, Augustinova, & De Houwer, 2018), learning of word-response contingencies would 

thus seem to require repeating words in the relevant colors. In other words, contingency 

learning would be impossible without repeated word distractors.  

Based on these considerations, the present experiments examined whether PC effects emerge 

in a PC manipulation in a Stroop-like task where no contingency learning would be possible due 

to the fact that word distractors were never repeated (for a similar argument applied to a 

context-specific PC manipulation, see King, Korb, & Egner, 2012; see also Schneider, 2015, for a 

similar idea applied to cued task switching). Because only a limited set of words and colors can 

be used in the color-word Stroop task, a variant, the picture-word interference task, was used 

instead (note 1). Experiment 1 involved two picture-word interference tasks in which the 

proportion of congruent trials was manipulated in a list-wide fashion (for a similar manipulation 

in the picture-word interference task, see Bugg & Chanani, 2011). Experiment 1A required 

participants to categorize unrepeated target pictures paired with unrepeated word distractors. 

Participants in Experiment 1B were presented with the same materials but were required to 
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name the pictures instead. To preview the results, regular PC effects were obtained in both 

tasks. 

Another objective of the present experiments was to investigate the role of temporal learning 

in PC manipulations. To accomplish this goal, the data from Experiments 1A and 1B were 

analyzed using RT on trial n – 1 as an index of temporal expectancy in a mixed-effects model 

analysis, similar to those of Schmidt (2013c) and Kinoshita et al. (2011). However, similar to 

Cohen-Shikora et al. (in press), generalized linear mixed-effects models rather than linear 

mixed-effects models were used in these analyses.  The reason is that, as noted, RTs typically 

violate the assumption made by linear mixed-effects models of a normally distributed 

dependent variable, a problem many researchers, including Schmidt (2013c), addressed by 

normalizing RTs with an inverse transformation. However, as shown by Cohen-Shikora et al., 

this solution is inappropriate when the research interest lies in interaction terms, as those 

terms are typically altered by nonlinear transformations of the dependent variable. Generalized 

linear mixed-effects models, on the other hand, provide a better solution in that, making no 

assumption about the distribution of the dependent variable, they require no RT 

transformation and permit a clearer interpretation of interactions (Lo & Andrews, 2015). In 

addition to the analyses reported by Cohen-Shikora et al., the present analyses can thus shed 

further light on the questions of whether evidence for temporal learning will be maintained 

when a more appropriate statistical technique is used and, more crucially, how potential PC 

effects obtained in Experiments 1A and 1B relate to the effects of temporal learning. 

To further strengthen the conclusions from those analyses, Experiment 2 was conducted to 

isolate potential effects of temporal learning from adaptation to conflict frequency in a conflict-
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free picture naming task. As will be discussed below, trial-level analyses of Experiments 1A and 

1B and results from Experiment 2 provide converging evidence that temporal learning does not 

appear to pose a challenge for conflict adaptation interpretations of PC effects, at least with the 

materials and tasks used in the present experiments. 

Experiments 1A & 1B 

If repetitions of word distractors are necessary for learning associations between specific words 

and specific responses, learning of such associations should be impossible when word 

distractors are never repeated. Such a situation should thus allow researchers to examine 

potential effects of adaptation to conflict frequency in the absence of the contingency learning 

confound that is typically found in classic PC manipulations using the color-word Stroop task 

(Melara & Algom, 2003; Schmidt & Besner, 2008). As noted, to this end, a picture-word 

interference task was used. In the picture-word interference task, participants are required to 

identify a picture while ignoring a word superimposed on it. Similar to the color-word Stroop 

task, two types of items were used in the task variant employed in the present set of 

experiments: congruent items, with words specifying the name of the picture itself (e.g., the 

picture of a dog with the word DOG superimposed on it), and incongruent items, with words 

unrelated to the picture (i.e., belonging to a different semantic category than the picture’s), as 

well as not appearing as target pictures in the experiment (e.g., the picture of a dog had the 

unrelated word BED superimposed on it and no picture of a bed appeared in the experiment).  

Using a between-subject PC manipulation, participants were assigned to either an MI or an MC 

list. (note 2) Experiment 1A required participants to identify unrepeated target pictures paired 
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with unrepeated word distractors as members of a semantic category and to respond vocally. 

Participants in Experiment 1B were presented with the same materials but were required to 

name the pictures instead. Note that despite the materials being the same, the word distractors 

used are more relevant to picture naming than they are to categorization. For example, the 

word DOG should help more with naming the picture of a dog than it should help with 

categorizing a dog as an animal. Furthermore, unlike in picture naming, in picture 

categorization not only incongruent words but also congruent words are absent from the 

response set. Indeed, in a picture categorization task, Lupker and Katz (1981) obtained only a 

(nonsignificant) 12-ms difference between conditions that are analogous to the congruent and 

incongruent conditions of the present experiment. In contrast, picture naming was expected to 

elicit a much larger congruency effect because of the relevance of word distractors to the task 

(e.g., Underwood, 1976). Nonetheless, both picture categorization and picture naming were 

used in order to investigate whether the presence of PC effects might depend on the nature of 

the task and the basic magnitude of the congruency effect. 

In response to the suggestions of two reviewers of the initial version of the present paper, we 

examined not only the PC effect but also the congruency sequence effect, i.e., the finding that 

in interference tasks, congruency effects are larger following a congruent trial than following an 

incongruent trial (Gratton, Coles, & Donchin, 1992). Traditionally thought of as a marker of 

conflict adaptation (e.g., Botvinick et al., 2001), this finding, similar to the PC effect, has 

recently received several alternative interpretations (e.g., Hommel, Proctor, & Vu, 2004; Mayr, 

Awh, & Laurey, 2003), including a temporal learning interpretation (Schmidt & Weissman, 

2016). This temporal learning interpretation partially relies on the same interaction that is 
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thought to be responsible for the PC effect (i.e., decreasing congruency effects with higher RT 

on trial n – 1), an interaction that, crucially, Schmidt and Weissman (2016) observed when 

analyzing inverse RTs. As noted, such a situation makes the interpretation of interaction terms 

dubious. As such, our use of a generalized linear mixed model analysis, an analysis which 

permits usage of untransformed RTs, provided a valuable opportunity to assess whether the 

unreliability of the temporal learning interaction reported by Cohen-Shikora et al. (in press) in 

the context of the PC effect also applies in the context of the congruency sequence effect, 

another important marker of conflict adaptation. These additional analyses for Experiments 1A 

and 1B, along with a discussion of the control and the temporal learning account of the 

congruency sequence effect, can be found in the Appendix. 

Method 

Participants 

An a priori power analysis was performed using G*Power 3.1 (Faul, Erdfelder, Buchner, & Lang, 

2009) to calculate the sample size needed to have a power of .80 for obtaining a PC effect. 

Based on the effect size reported by Bugg and Chanani (2011) for a PC effect using contingency-

controlled items in a picture-word interference task, we determined that a minimum sample 

size of 32 participants would be needed. Forty-eight participants took part in Experiment 1A 

(picture categorization) and another 51 took part in Experiment 1B (picture naming). In 

Experiment 1B, 1 participant was removed due to an equipment failure and 2 more were 

removed because of an excessive number of errors and null responses (above 25%), leaving 48 

participants. Participants were all students at the University of Western Ontario aged 18–23 
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years (SD = 1.03) and had normal or corrected-to-normal vision. All were native English 

speakers. Their participation was compensated with course credit. 

Materials 

One hundred and twenty-five line drawings were sourced from the International Picture 

Naming Project (IPNP) database (Szekely et al., 2005). Nineteen pictures from the internet 

matching as closely as possible the style of the IPNP pictures were added to the set, for a total 

of 144 target pictures, 480 x 480 pixels in size. Of these, 36 represented an animal, 36 

represented a human being, 36 represented some type of food, and 36 represented a man-

made object. IPNP norms and pilot testing ensured that there was high agreement among 

English-speaking individuals on the semantic category and name of each picture. One-hundred 

and forty-four English word distractors, different from the modal names of the pictures, were 

also selected. As with the target pictures, 36 denoted an animal, 36 a human being, 36 some 

type of food, and 36 a man-made object. The word distractors were matched in length and 

CELEX frequency (Baayen, Piepenbrock, & van Rijn, 1993) with the pictures’ modal names. Each 

picture was paired with the modal name of the picture (congruent item) and with an unrelated 

word belonging to one of the other three categories (incongruent item), with each of the 

incongruent categories being equally represented across items. For example, among the 36 

pictures of animals, 12 were paired with an unrelated word denoting a person, 12 with an 

unrelated word denoting a food, and 12 with an unrelated word denoting an object. 

Powerpoint software was used to superimpose the word in 32-point Courier New font in the 

center of the picture. A light white glow around words’ letters was added to ensure that the 
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word was clearly visible. A sample of the stimuli used in Experiments 1A and 1B is presented in 

Figure 1.  
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Figure 1. 

Sample Stimuli Used in Experiments 1A and 1B 

 

Note. Represented are congruent items (panel A), and incongruent items (panel B) for each of 

the four categories (ANIMAL, PERSON, FOOD, and OBJECT). In this sample, the pictures of the 

elephant and the shovel come from the International Picture Naming Project (Szekely et al., 

2005) whereas the pictures of the astronaut and bacon were sourced from the internet. 
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Lists were constructed so that for half of the lists, 25% of the items were congruent (MI lists), 

and for the other half, 75% of the items were congruent (MC lists). Specifically, in the MI lists, 

36 pictures were presented with their congruent word, and 108 pictures with their incongruent 

word. Conversely, in the MC lists, 108 pictures were presented with their congruent word, and 

36 pictures with their incongruent word. Each of the semantic categories was equally probable 

among the congruent and among the incongruent items (e.g., in the MC list, 9 of the 36 

incongruent pictures were animals, 9 were human beings, 9 were food items, and 9 were 

objects, etc.). Similarly, each of the three semantic categories of incongruent word distractors 

was equally probable among incongruent items (e.g., in the MC list, 3 of the 9 incongruent 

animal pictures appeared with an unrelated word denoting a person, 3 with an unrelated word 

denoting a food item, and 3 with an unrelated word denoting an object).  

Lists were also counterbalanced so that each picture appeared with its congruent and 

incongruent word distractor in both MI and MC lists. To this end, the pictures were randomly 

divided into four sets, A, B, C, and D. In List 1 of the MC lists, pictures in sets A, B, and C would 

serve as congruent pictures and pictures in set D would serve as incongruent pictures. In List 2 

of the MC lists, pictures in sets A, B, and D would serve as congruent and pictures in set C would 

serve as incongruent, and so on. Construction of the MI lists was done similarly, with List 1 

having pictures in sets A, B, and C serving as incongruent and pictures in set D serving as 

congruent, etc. Pictures in each set included an equal number of pictures of animals, people, 

foods, and objects. Overall, 4 MI and 4 MC lists were constructed. 
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Procedure 

Participants were tested individually in a quiet room, seated approximately 60 cm away from a 

monitor upon which the stimuli were presented. Each trial began with a fixation symbol (“+”) 

displayed for 500 ms in the center of the screen, followed by a picture with a word 

superimposed on it, displayed for 3000 ms or until the participant’s response. Responses were 

recorded with a microphone connected to the testing computer. Participants in Experiment 1A 

were instructed to categorize the picture using one of four semantic categories (ANIMAL, 

PERSON, FOOD, OBJECT) as responses. Care was taken to explain the differences between these 

categories in order to minimize potential ambiguities (e.g., living animals that are typically 

eaten by humans, such as chicken, being classified as food). Participants in Experiment 1B were 

instructed to name the picture instead. In both experiments, participants were told to ignore 

the word superimposed on the picture and to respond as quickly and as accurately as possible. 

Participants were randomly assigned to one of the eight lists in Experiments 1A and 1B. Thus, 

each participant performed only one list for a total of 144 trials.  

Prior to the experiment, participants performed a practice session involving twelve items, 

different from the items in the experiment and mirroring the proportion of congruent items in 

the upcoming list. They received no feedback. Trials were presented in a different random 

order for each participant. DMDX (Forster & Forster, 2003) software was used to present the 

stimuli and collect the data. 
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Results 

In these and the following experiments using vocal responses, response waveforms were 

manually inspected with CheckVocal (Protopapas, 2007) to determine the accuracy of the 

response and the correct placement of timing marks. RTs were defined as the time interval 

between stimulus onset and the beginning of the vocal response. Errors were marked using a 

conservative criterion: Any response that was not the expected response was considered an 

error, no matter how close it was to the expected response (e.g., “people” instead of “person” 

for Experiment 1A, or “cop” instead of “policeman” in Experiment 1B). Prior to the analyses, 

invalid trials due to technical failures and responses faster than 300 ms or slower than the time 

limit (accounting for 0.4% and 2% of the data points in Experiments 1A and 1B, respectively) 

were discarded. For the latency analyses, trials on which an error was made were discarded, as 

were the trials for which an error or a too-fast response (< 300 ms) or a too-slow response (> 

3000 ms) was made on the preceding trial. 

The latencies and the error rates were analyzed using generalized linear mixed-effects modeling 

in R version 3.4.3 (R Development Core Team, 2015), treating subjects and items (i.e., the target 

pictures) as random effects and treating Congruency (congruent vs. incongruent) and List Type 

(MI vs. MC) as within-subject and between-subject fixed effects, respectively (Baayen, 2008; 

Baayen, Davidson, & Bates, 2008). Prior to running the model, R-default treatment contrasts 

were changed to sum-to-zero contrasts (i.e., contr.sum) to help interpret lower-order effects in 

the presence of higher-order interactions (Levy, 2014; Singmann & Kellen, 2018). The model 

was fit by maximum likelihood with the Laplace approximation technique. The lme4 package, 
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version 1.1-15 (Bates, Mächler, Bolker, & Walker, 2015), was used to run the generalized linear 

mixed-effects model and obtain probability values.  

In the latency analyses, a generalized linear mixed-effects model was used instead of a linear 

mixed-effects model because generalized linear models, unlike linear models, do not assume a 

normally distributed dependent variable. Therefore, these models can accommodate the 

typically positively skewed distribution of raw RT data with there being no need to use non-

linear transformations, known to systematically alter interaction terms (Balota et al., 2013). A 

Gamma distribution was used to fit the raw RTs, with an identity link between fixed effects and 

the dependent variable (Lo & Andrews, 2015). Note that convergence tests for generalized 

linear mixed-effects models in the current version of lme4 tend to generate many false 

positives (Bolker, 2018). In the following, we report the data from the BOBYQA optimizer, which 

returned estimates that were equivalent to other optimizers but never issued convergence 

warnings. Unlike the error analyses, latency analyses included RT on trial n – 1 as a fixed effect 

to control for temporal learning (Schmidt, 2013c; Schmidt & Weissman, 2016). Standardized 

(i.e., centered and scaled) RTs on trial n – 1 were used instead of raw RTs in order to avoid 

spurious correlations between the intercept and the slope and to help in evaluating and 

interpreting the model (Bolker, 2018; Kinoshita et al., 2011; Schielzeth, 2010). The statistical 

model for the latency analysis was: RT = glmer(RT ~ congruency * list_type * SprevRT + 

(1|subject) + (1|item), family = Gamma (link = “identity”), control = 

glmerControl(optimizer="bobyqa")). The statistical model for the error rate analysis was: 

Accuracy = glmer(accuracy ~ congruency * list_type + (1|subject) + (1|item), family = binomial, 

control = glmerControl(optimizer="bobyqa")). The mean RTs and error rates based on by-
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subject data for Experiments 1A and 1B are shown in Table 1. Scatterplots visualizing the 

relation between RT on trial n – 1 and the congruency effect on trial n are shown in Figure 2 for 

Experiment 1A and in Figure 3 for Experiment 1B. The data and R scripts used for the analyses 

are publicly available at https://osf.io/jnzgb/.  
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Table 3. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiments 1A 

and 1B 

 RTs  Error rates  

Congruency MC list MI list List effect MC list MI list List effect 

 

Experiment 1A 

      

   Congruent 893 (24) 912 (31) 19 1.4 (.3) 2.1 (.6) .7 

   Incongruent 947 (24) 910 (37) -37 2.7 (.6) 2 (.4) 

 

-.7 

   Congruency Effect 54 -2 -56 1.3 -.1 -1.4 

 

Experiment 1B 

      

   Congruent 764 (26) 797 (21) 33 1.1 (.3) 2 (.9) .9 

   Incongruent 1106 (38) 1041 (22) -65 14 (1.7) 11.2 (.9) 

 

-2.8 

   Congruency Effect 342 244 -98 12.9 9.2 

 

-3.7 
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Figure 2. 

The Impact of RT on Trial n – 1 on Congruency Effects on Trial n in Experiment 1A 

 

Note. The scatterplots represent the relation between RT on trial n – 1 and the congruency 

effect on trial n in the MC list (panel A), and in the MI list (panel B). Individual observations for 

congruent and incongruent trials are marked with triangles and circles, respectively. Regression 

slopes for the congruent condition and for the incongruent condition are marked with solid and 

dashed lines, respectively. 
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Figure 3. 

The Impact of RT on Trial n – 1 on Congruency Effects on Trial n in Experiment 1B 

 

Note. The scatterplots represent the relation between RT on trial n – 1 and the congruency 

effect on trial n in the MC list (panel A) and in the MI list (panel B). Individual observations for 

congruent and incongruent trials are marked with triangles and circles, respectively. Regression 

slopes for the congruent condition and for the incongruent condition are marked with solid and 

dashed lines, respectively.  
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Experiment 1A (picture categorization) 

RT. There were significant main effects of Congruency (congruent faster than incongruent), ß = -

10.68, SE = 2.36, z = -4.53, p < .001, and RT on trial n – 1 (faster responses with lower RT on trial 

n – 1), ß = 23.85, SE = 2.82, z = 8.44, p < .001 (the main effect of List Type was not significant, ß 

= -3.58, SE = 4.56, z = -.78, p = .43). The interaction between Congruency and List Type was 

significant as well, ß = -14.14, SE = 2.54, z = -5.56, p < .001, indicating that a classic PC effect was 

obtained, with a larger effect of Congruency in the MC (54 ms) than in the MI (-2 ms) condition. 

Interestingly, the interaction between Congruency and RT on trial n – 1, indexing temporal 

learning, was not significant, ß = -1.62, SE = 2.61, z = -0.62, p = .54, but the three-way 

interaction between Congruency, List Type, and RT on trial n – 1 was, ß = 6.01, SE = 2.60, z = 

2.31, p = .021. 

To explore the three-way interaction, MC and MI lists were analyzed separately. MC lists 

showed both main effects of Congruency, ß = -24.89, SE = 3.52, z = -7.07, p < .001, and RT on 

trial n – 1, ß = 25.60, SE = 3.99, z = 6.42, p < .001, but no interaction between the two, ß = 4.51, 

SE = 3.75, z = 1.20, p = .23. In MI lists, on the other hand, RT on trial n – 1 was significant, ß = 

22.29, SE = 4.58, z = 4.86, p < .001, but Congruency was not, ß = 3.26, SE = 3.66, z = .89, p = .37. 

Here, the interaction between Congruency and RT on trial n – 1 was significant, ß = -8.08, SE = 

3.91, z = -2.07, p = .039. Note, however, that the pattern of this interaction is the opposite of 

that predicted by temporal learning: As illustrated in Figure 2B, the congruency effect on trial n 

increased, rather than decreased, with higher latencies on trial n – 1. 



72 
 

Error rates. Neither Congruency nor List Type was significant. The interaction between the two 

was marginal, ß = .17, SE = .10, z = 1.78, p = .075, indicating a tendency for the Congruency 

effect to be larger in the MC (1.3%) than in the MI condition (-.1%). 

Experiment 1B (picture naming) 

RT. There were significant main effects of Congruency (congruent faster than incongruent), ß = -

143.71, SE = 2.62, z = -54.80, p < .001, List Type (MI faster than MC), ß = 24.96, SE = 4.39, z = 

5.68, p < .001, and RT on trial n – 1 (faster responses with lower RT on trial n – 1), ß = 22.84, SE 

= 3.04, z = 7.51, p < .001. The only significant interaction was that between Congruency and List 

Type, ß = -23.64, SE = 2.89, z = -8.19, p < .001, indicating that a classic PC effect was obtained, 

with a larger effect of Congruency in the MC (342 ms) than in the MI condition (244 ms). 

Neither the interaction between Congruency and RT on trial n – 1, ß = -3.88, SE = 2.66, z = -1.46, 

p = .14, nor the three-way interaction between Congruency, List Type, and RT on trial n – 1, ß = 

-.18, SE = 3.01, z = -.06, p = .95, was significant.  

Error rates. There was a main effect of Congruency (congruent more accurate than 

incongruent), ß = 1.36, SE = .09, z = 14.71, p < .001. In addition, Congruency interacted with List 

Type, ß = .27, SE = .09, z = 3.00, p = .003, with the congruency effect being larger in the MC 

(13.0%) than in the MI condition (9.1%). 

Discussion 

Both Experiment 1A and Experiment 1B produced clear PC effects in a situation where learning 

of direct associations between words and responses was impossible. Note that, as suggested by 

previous findings (Lupker & Katz, 1981), the basic congruency effect was much smaller in 
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Experiment 1A (picture categorization: 26 ms) than in Experiment 1B (picture naming: 293 ms). 

However, the congruency effect was similarly modulated by conflict frequency across the two 

tasks, with MI lists in Experiment 1B showing a congruency effect reduced by 98 ms compared 

to MC lists, and Experiment 1A showing the elimination of the congruency effect in MI lists.  As 

discussed, a contingency learning account would not be able to explain these effects. 

Temporal learning also does not seem to offer a reasonable explanation for the present findings. 

For temporal learning to account for PC effects, one would need to find that congruency effects 

on trial n get smaller as RT on trial n – 1 increases, indicating that participants use previous 

experience in the task to form and adjust to temporal expectancies for responding in the way 

suggested by Schmidt (2013c). Using generalized linear mixed-effects models to fit raw RTs, 

robust main effects of RT on trial n – 1 were found, with overall slower responses on trial n as 

RT on trial n – 1 increased. These sequence effects are routinely reported in speeded tasks 

(Kinoshita et al., 2011; Taylor & Lupker, 2001). More importantly, no interaction between RT on 

trial n – 1 and the congruency effect on trial n was found in Experiment 1B, whereas a 

complicated pattern emerged in Experiment 1A. Specifically, in Experiment 1A, MI lists (but not 

MC lists) showed an interaction involving the opposite pattern than was expected from the 

temporal learning account: Larger congruency effects on trial n the higher the RT on trial n – 1. 

While the cause of this result is unclear, it should be noted that Cohen-Shikora et al. (in press) 

also reported inconsistent temporal learning patterns across the three datasets that they 

analyzed. (note 3) In general, it is safe to conclude from the overall pattern of results that 

temporal learning could not have produced, or even contributed to the production of, the PC 

effects reported here. 
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In sum, Experiments 1A and 1B showed that PC effects emerge even in the absence of temporal 

learning and word-response contingencies, a finding that challenges the view that mechanisms 

of this sort provide a sufficient account of the PC effects that are reported in the literature such 

that adaptation to conflict frequency may not be a mechanism humans use (Schmidt, 2013b).  

To consolidate the idea that temporal learning has little to do with the PC effect obtained in 

Experiments 1A and 1B, Experiment 2 was conducted to disentangle conflict frequency from 

potential effects of temporal learning. Note that Schmidt’s (2013c) temporal learning account 

assumes that temporal expectancies for responding are altered as a result of any manipulation 

that induces appreciable differences in response rhythm. The type of manipulation which can 

accomplish such an alteration involves changes in the relative frequency of easy and hard 

stimuli, with the nature of the difficulty elicited by those stimuli playing little or no role. Since 

difficulty does not need to derive from conflict from an irrelevant dimension, temporal learning 

should not be specific to the type of task used in Experiments 1A and 1B, i.e., tasks where 

conflict/interference from an irrelevant dimension produces the difficulty effect. That is, 

according to the temporal learning account of PC effects, any task in which the proportion of 

easy and hard items is manipulated should produce differences in the temporal expectancies 

being formed for responses. As a result, the magnitude of difficulty effects should parallel the 

pattern observed for congruency effects in the PC effect: Smaller difficulty effects in lists where 

most of the items are hard and larger difficulty effects in lists where most of the items are easy 

(Schmidt, 2013c, 2014a, 2016). Experiment 2 tested this prediction for the pictures used in 

Experiments 1A and 1B, which were presented without the superimposed words and modified 

in such a way that they were easier or harder to respond to. 
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Experiment 2 

Following Schmidt’s procedure (2013c; Schmidt & Weissman, 2016), in Experiments 1A and 1B 

temporal learning was accounted for in the analyses by using RT on trial n – 1 as an index of 

temporal expectancy, with a lower RT on trial n – 1 indicating a faster temporal expectancy for 

trial n. However, the predicted interaction between congruency and RT on trial n – 1, with 

smaller congruency effects the higher the RT on trial n – 1, was not found. In fact, Experiment 

1A even produced evidence for a reversed interaction in MI lists, with larger congruency effects 

following higher RTs on trial n – 1. These results are in line with recent failures to obtain regular 

temporal learning effects using untransformed RTs (Cohen-Shikora et al., in press), suggesting 

that the nonlinear transformations reported in previously published papers (Huber-Huber & 

Ansorge, 2017, 2018; Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman, 2016) might 

have systematically biased the interaction of interest in the direction predicted by temporal 

learning.  

Statistical quirks aside, however, it must be acknowledged that supporters of temporal learning 

accounts have pointed out that RT on trial n – 1 is likely a noisy approximation of temporal 

expectancies (Kinoshita et al., 2011; Schmidt, 2013c), although several attempts, reported by 

Cohen-Shikora et al. (in press), to use a less noisy index (e.g., mean RT on the three most recent 

trials) also failed to produce consistent evidence for the temporal learning account of the PC 

effect. In fact, one could argue that internally constructed temporal expectancies might deviate 

considerably from the measured response time on one or more of the preceding trials, an 

argument that might find support in the observation that time perception is often prone to 

biases (e.g., Taylor & Lupker, 2006, 2007). The implication is that the analyses performed for 
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Experiments 1A and 1B might not provide the best means of determining whether temporal 

learning is a potential contributor to the PC effect observed in those experiments. 

A better way to deal with this issue might be found in another approach used by Schmidt 

(2013c, 2014a, 2016) in his attempts to demonstrate a potential role for temporal learning in 

the PC effect, an approach that does not require using any index of temporal expectancy in the 

analyses and thus avoids the potential problems associated with the noisiness of such measures. 

Relying on the assumption that temporal learning should operate similarly in interference tasks 

and in tasks in which difficulty does not derive from interference from an irrelevant dimension 

(e.g., perceptual tasks), this approach involves manipulating the proportion of easy items in a 

task of the latter type.  

Indeed, the existence of a temporal learning mechanism of the sort described by Schmidt 

(2013c) implies that any task in which the proportion of easy and hard items is manipulated 

should produce differences in the magnitude of effect sizes in ways that are compatible with 

the changes observed for congruency effects in the PC effect. Specifically, mostly easy (ME) lists 

(i.e., lists in which most of the items are relatively easy to process) will favor development of a 

fast temporal expectancy that can be met by items that allow fast responses (i.e., “easy” items), 

but not by items that are relatively hard to process (i.e., “hard” items). The result is a speed-up 

for only the easy items and, hence, a large difficulty effect. Mostly hard (MH) lists (i.e., lists in 

which most of the items are relatively hard to process), on the other hand, will favor 

development of a slow temporal expectancy. Because participants anticipate responding 

relatively late, there will be no reason for them to speed up responses to easy items in this 

situation, causing them to produce longer latencies. In contrast, as noted, it is possible that 
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latencies for hard items may decrease if they can be processed fast enough to meet the slower 

temporal expectancy, although, as Schmidt (2013c) has argued, those items tend to be 

insensitive to temporal expectancies (see also Kinoshita et al., 2011; Schmidt & Weissman, 

2016). The end result is that learning of temporal expectancies should produce larger difficulty 

effects in ME lists than in MH lists.  

Schmidt did, in fact, obtain evidence of such a Proportion-Easy (PE) effect in a number of 

studies where no irrelevant dimension was used (Schmidt, 2013c, 2014a, 2016). For example, in 

a letter identification task, Schmidt (2014a) found, as would be expected, shorter latencies for 

high-contrast letters (“easy” items) than for low-contrast letters (“hard” items). Most 

importantly, the size of this difficulty effect was modulated by the proportion of easy items in 

the list, with larger difficulty effects in ME lists than in MH lists, similar to the PC effect in the 

Stroop task. Although this finding is not crucial evidence that the mechanism driving PC effects 

in the Stroop task and PE effects in non-conflict tasks is the same, it does suggest that temporal 

learning might play an important role in determining PC effects (Schmidt, 2013c). Specifically, 

this approach provides a proof of principle that a PC-like effect can be obtained even when little 

or no conflict is present in the task, suggesting that the mechanism responsible for this PC-like 

effect might also be operating when conflict is present, e.g., in Stroop paradigms. 

The goal of Experiment 2 was to examine a similar, non-conflict situation with the pictures used 

in Experiments 1A and 1B. Similar to Schmidt’s (2013c, 2014a, 2016) use of high-contrast and 

low-contrast letters, high-resolution and low-resolution pictures were used as easy and hard 

items, respectively, and participants were assigned to a ME list where most of the pictures had 

a high resolution, or to a MH list where most of the pictures had a low resolution. Following 
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Schmidt’s (2013c) temporal learning account, it was hypothesized that easy items would be 

responded to faster in ME than in MH lists, and hard items would be responded to faster (or, at 

least, no more slowly) in MH than in ME lists. As a result, a PE effect would be obtained, with 

ME lists showing a larger difficulty effect than MH lists. 

It is important to note, however, that a different outcome could be expected from an 

alternative temporal learning account, specifically, one derived from the literature on blocking 

effects (Chateau & Lupker, 2003; Lupker et al., 1997, 2003; Kinoshita & Mozer, 2006; Rastle, 

Kinoshita, Lupker, & Coltheart, 2003; Taylor & Lupker, 2001). Blocking effects refer to the 

finding that when relatively easy and relatively hard items are mixed in a block (i.e., a “mixed” 

block, typically with 50% easy and 50% hard stimuli), latencies tend to be more homogeneous 

compared to latencies for easy versus hard items presented by themselves in “pure” blocks (i.e., 

blocks where all of the stimuli are either easy or hard). Specifically, there is a mixing cost for 

easy stimuli (i.e., slower latencies for easy stimuli in mixed blocks than in pure easy blocks) and 

a mixing benefit for hard stimuli (i.e., faster latencies for hard stimuli in mixed blocks than in 

pure hard blocks). Lupker and collaborators interpreted this pattern as evidence that 

participants in speeded tasks establish a time criterion representing the time at which they 

expect, and will attempt, to initiate a response. Importantly, the placement of the time 

criterion is dependent upon the characteristics of the stimuli in the block: The criterion will be 

set early in a pure easy block, late in a pure hard block, and in an intermediate position in a 

mixed block.  

This reasoning can be easily extended to comparisons among mixed lists varying in the 

proportion of easy items. That is, in ME lists, the criterion will be placed relatively early 
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(although not as early as in a pure easy list), whereas in MH lists it will be placed relatively late 

(although not as late as in a pure hard list). As a result, both easy and hard items should be 

responded to faster in ME lists than in MH lists. In other words, under the assumption that 

adjustments of time criterion are similar for easy and hard items, one might expect main effects 

of difficulty (easy faster than hard) and list type (ME faster than MH), but not necessarily their 

interaction, i.e., difficulty effects may be equivalent in ME and MH lists. Of importance, the 

latter pattern (i.e., similar adjustments of the time criterion for easy and hard items) typically 

emerges in word naming tasks but not in (button-press) lexical decision tasks (in which only 

easy items appear to be affected by adjustments of time criterion), even when using the same 

items in the two tasks (Kinoshita & Mozer, 2006). Since the present experiments used naming, 

and blocking effects occur for pictures and words alike (Lupker et al., 2003), the expectation 

would be that the interaction predicted by the temporal learning account would not arise in the 

task investigated in Experiment 2 (i.e., picture naming). 

Method 

Participants 

An a priori power analysis was performed using G*Power 3.1 (Faul et al., 2009) to calculate the 

sample size needed to have a power of .80 for obtaining a PE effect. Based on the effect size 

reported by Schmidt (2013c) for a PE effect in a letter identification task, we determined that a 

minimum of 68 participants would be needed. One hundred and twelve participants took part 

in the experiment. Nineteen participants were removed because of an excessive number of 

errors and null responses (above 25%), leaving 93 participants. They were all students at the 
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University of Western Ontario aged 18–27 years (SD = 1.21) and had normal or corrected-to-

normal vision. All were native English speakers. They received either $10 or course credit for 

their participation. 

Materials 

The materials were derived from those used in Experiments 1A and 1B. The congruent pictures 

with their superimposed word removed functioned as high-resolution, easy items. The 

incongruent pictures with their superimposed word removed were degraded by resizing them 

to a quarter of their size and then inflating them back to their original size with Bulk Resize 

Photos (https://bulkresizephotos.com), thus resulting in a lower-resolution image. Those 

pictures functioned as low-resolution, hard items. Other than high-resolution and low-

resolution pictures replacing the congruent and incongruent pictures, respectively, lists and 

counterbalancing of the items were identical to those in Experiments 1A and 1B, resulting in 

four ME lists and four MH lists. 

Procedure 

The procedure was identical to that in Experiment 1B, with the exception that, of course, 

superimposed words were not mentioned in the instructions, and participants were simply 

required to name the pictures as quickly and as accurately possible. 

Results 

Analyses were performed in the same way as was done for Experiments 1A and 1B with the 

exception that the factor Congruency was replaced with the factor Difficulty (easy vs. hard) and 
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the two levels of the factor List Type were ME and MH instead of MC and MI. In addition, in line 

with previous PE manipulations (Schmidt, 2013c, 2014a, 2016), RT on trial n – 1 was not 

included as a predictor in the latency analysis because there is no need to control for temporal 

learning in this context: Any differences between difficulty effects across the two list types 

should be produced by the learning of temporal expectancies induced by the Difficulty factor 

itself. (note 4) 

Prior to the analyses, invalid trials due to equipment failures and responses faster than 300 ms 

or slower than the time limit, accounting for 3.3% of the data points, were discarded. Since RT 

on trial n – 1 was not used as a predictor in the latency analysis, only trials where an error was 

made on the current trial were discarded. The mean RTs and error rates are presented in Table 

2. The data and R scripts used for the analyses are publicly available at https://osf.io/jnzgb/. 
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Table 4. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 2 

 RTs  Error rates  

Difficulty ME list MH list List effect ME list MH list List effect 

Easy 908 (17) 948 (20) 40 9.1 (.5) 9.6 (.8) .5 

Hard 972 (19) 1013 (18) 41 15 (1.1) 14.8 (.6) 

 

-.2 

Difficulty Effect 64 65 1 5.8 5.1 

 

-.7 
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RT. There were significant main effects of Difficulty (easy faster than hard), ß = -31.74, SE = 2.19, 

z = -14.53, p < .001, and List Type (faster responses in the ME than the MH condition), ß = -

17.29, SE = 3.05, z = -5.67, p < .001. However, Difficulty and List Type did not interact, ß = -.57, 

SE = 1.94, z = -.29, p = .77, reflecting equivalent effects of Congruency in the ME (64 ms) and 

MH lists (65 ms). 

Error rates. The only significant effect was that of Difficulty, ß = .36, SE = .04, z = 9.99, p < .001. 

Discussion 

In the present experiment, the difficulty of pictures, instead of word-picture congruency, was 

manipulated by using high- and low-resolution pictures, similar to the high- and low-contrast 

letters used by Schmidt (2013c, 2014a, 2016). Unlike Schmidt’s results, however, difficulty 

effects were not any larger in lists where most of the trials were easy than in lists where most 

of the trials were hard. In fact, the magnitude of difficulty effects was identical in the two 

conditions, thus failing to replicate the pattern predicted by Schmidt’s temporal learning 

account. Note, however, that the type of list participants were assigned to – ME or MH – did 

have an effect, with overall faster latencies in ME than MH lists. Thus, this pattern seems more 

consistent with the time criterion account (Lupker et al., 1997), according to which ME and MH 

lists should lead to relatively early and late time criteria, respectively, affecting latencies for 

easy and hard items in a similar way, at least in a naming situation. Most importantly, this 

pattern is consistent with the analyses performed for Experiments 1A and 1B in indicating that 

temporal learning may have little or no role in modulating difficulty effects in both interference 

and non-interference tasks. 
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General Discussion 

Do humans adapt to conflict frequency? Recently, some researchers have cast doubt on this 

idea by pointing out that PC effects in the Stroop task might be caused by factors other than 

conflict adaptation, namely, word-response contingency learning and temporal learning 

(Schmidt, 2013b). The present research addressed this question using a picture-word 

interference task where contingencies were eliminated and temporal learning was controlled 

for. Clear, contingency-free PC effects emerged in both picture categorization (Experiment 1A) 

and picture naming (Experiment 1B) tasks, a finding that challenges the view that contingency 

learning is a critical factor driving PC effects in the Stroop task. Similarly, the analysis of the 

impact of trial n – 1 latency challenges the view that temporal learning has an important role in 

producing PC effects. Together, these results clearly demonstrate that it is not the case that PC 

effects are unobservable when those factors are controlled for (Schmidt, 2013b; Schmidt & 

Besner, 2008). 

It must be noted that although the color-word and picture-word interference tasks are thought 

to reflect the same underlying processes (see note 1), one important difference between the 

typical color-word Stroop task used in the literature and the picture-word interference task 

used here is that the former, but not the latter, elicits response interference. That is, in most 

implementations of the color-word Stroop task, incongruent words are also used as responses 

(e.g., the word YELLOW is presented in an experiment in which yellow color targets are also 

used), whereas incongruent word distractors were not responses in either Experiment 1A nor 

Experiment 1B (e.g., BED appeared as a word distractor for the picture of a dog but not as a 

target picture). Using distractors that are not used as responses is known to reduce 
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interference from the irrelevant dimension in both color-word and picture-word interference 

tasks (Lupker & Katz, 1981; Proctor, 1978), suggesting that response interference, among other 

factors, contributes to Stroop and Stroop-like effects (La Heij, 1988). As such, what the results 

of Experiments 1A and 1B provide is evidence for adaptation to conflict frequency even in a 

situation in which conflict was likely less intense than in a typical Stroop task because response 

interference was playing little, if any, role.  

It is also important to acknowledge, however, that recent findings, published as the present 

research was in progress, suggest that learning of contingencies might occur at a more abstract 

level than previously thought. Schmidt et al. (2018) reported two color identification 

experiments in which words belonging to three different semantic categories were used as 

distractors, each category being predictive of one color. Similar to the experiments reported 

here, each individual word was presented only once, thus eliminating individual word-response 

contingencies. A category-based contingency effect was observed, with faster and more 

accurate responses when a category item was presented in the color in which most of the other 

items of that category were presented. Note that although the present experiments were 

designed to eliminate individual word-response contingencies, they allowed for category-based 

contingency learning. For example, words denoting animals were mostly associated with 

pictures of animals in MC lists, whereas they were equally associated with each of the four 

semantic categories in MI lists. Thus, participants in MC lists potentially could have used the 

category of the word distractor to predict the response, leading to a speed-up on high-

contingency congruent items and therefore, an inflated congruency effect in MC lists.  
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An account of this sort, however, seems to be unlikely for a couple of reasons: First, the effects 

reported by Schmidt et al. (2018) (11 ms and a nonsignificant 2 ms in their Experiments 1 and 2, 

respectively) seem too small to offer a convincing alternative interpretation of the present 

findings (note that classic word-response contingency learning effects are on the order of 40-60 

ms: e.g., Lin & MacLeod, 2018; Schmidt et al., 2007). Second, while the possibility of using the 

category of the word distractor to predict the response might be tenable for Experiment 1A, 

where the response was a category name itself, applying this idea to Experiment 1B would 

imply that a rather complicated mechanism was in place: Participants in MC lists would have 

had to have used the congruent word distractor to predict the category of the picture, which 

would then have helped them retrieve the name of the picture (i.e., a name > category > name 

route). However, since congruent word distractors are the names of the pictures, it is unclear 

why following this name > category > name route would be of any benefit for performance. 

Finally, it has long been established that pictures are categorized faster than words are (e.g., 

Lupker & Katz, 1982; Smith & Magee, 1980). Therefore, using the category of word distractors 

to predict the category of the target pictures would be somewhat counterproductive in a 

speeded task. As such, adaptation to conflict frequency seems, at present, a much better 

explanation for the PC effects obtained here. 

The present results from the perspective of Bugg’s (2014a) AATC hypothesis 

When considering the implications of the conclusion that a conflict adaptation strategy is likely 

responsible for the results that we obtained, one thing that is potentially important to note is 

that unlike classic PC manipulations in the Stroop task, Experiments 1A and 1B presented 

participants with a situation where learning of word-response contingencies was not an option 
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at all, as the identity of word distractors could not be used to predict the response. Hence, 

conflict adaptation may have been essentially the only strategy available for dealing with 

conflict.  Such is not the case, however, when engaging in routine activities in everyday life (e.g., 

driving to one’s workplace). Those situations typically involve attending to a task in the face of 

stimuli that, re-occurring in time, become predictive of certain events (e.g., the fuel light on the 

car’s dashboard signaling it is time to re-fuel). It is thus critical to understand how control over 

action is implemented in situations where a contingency learning option is available. 

In response to this concern, Bugg (2014a) proposed the Associations as Antagonists to Top-

Down Control (AATC) hypothesis to explain how the employment of contingency learning and 

conflict adaptation mechanisms is regulated. According to this hypothesis, the availability of 

reliable stimulus–response associations moderates the engagement of top-down mechanisms 

of conflict adaptation. Specifically, no adaptation to conflict frequency would take place if 

contingencies can be used to guide responding most of the time. Conflict adaptation would be, 

in other words, a last resort used by the control system only when learning contingencies – the 

default mode driving control engagement – is not feasible.  

To provide some support for this hypothesis, Bugg (2014a) divided color-word Stroop stimuli 

into two sets, a “context” set and a “transfer” set, and manipulated conflict frequency and 

contingency learning for the context set only (transfer words were contingency-unbiased, 

appearing with congruent and incongruent colors an equal number of times). The transfer 

items were intermixed in the same list with context items which were either mostly congruent 

or mostly incongruent, so that transfer stimuli appeared either in a mostly congruent list (when 

mixed with MC context items) or in a mostly incongruent list (when mixed with MI context 
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items). Crucially, in one version of Bugg’s experiments, both MC and MI context items allowed 

learning of contingencies, making contingency learning a very effective strategy. In contrast, in 

another version of Bugg’s experiments, only MC context items allowed learning of 

contingencies, as MI context items were constructed such that there were no contingencies to 

learn (i.e., each of four words was presented equally often in each of four colors). Thus, 

contingency learning was, overall, not a very useful strategy in this version of her experiments. 

Consistent with the AATC hypothesis, Bugg obtained PC effects for transfer items (i.e., evidence 

for a conflict adaptation strategy being applied when responding to those items) in the second 

version of her experiments, i.e., when learning of contingencies was possible for only a subset 

of the context items (i.e., the context MC items). When learning of contingencies was possible 

for context items in both the MC and the MI list (i.e., when such a strategy was much more 

useful) there was no evidence of adoption of a conflict adaptation strategy for the transfer 

items (for a counterargument, see Schmidt, 2014b).  

Extending the AATC hypothesis to the paradigm used here, the implication for the results of 

Experiments 1A and 1B is straightforward: Adaptation to conflict frequency occurred not in 

spite of contingency learning being impossible, but because it was impossible. That is, 

contingency-controlled PC effects (i.e., clear markers of conflict adaptation) were obtained 

because there were no contingency biases at all, and adaptation to conflict frequency was the 

only remaining good option for maximizing performance in the task.  



89 
 

Implications of the present research for temporal learning accounts 

In addition to examining adaptation to conflict frequency, the present research also sheds some 

light on the mechanism of temporal learning. This general form of learning assumes that 

participants in speeded tasks form temporal expectancies for emission of a response and, most 

critically, in Schmidt’s (2013c) conceptualization, they adjust to those expectancies by speeding 

up on the trials in which they can produce a latency that matches the established expectancy. 

Although some evidence exists in favor of this mechanism (Kinoshita et al., 2011; Schmidt, 

2013c, 2014a, 2016; Schmidt & Weismann, 2016), there is virtually no support for it in the 

present data. That is, the use of generalized linear mixed-effects models, a statistical technique 

that requires no transformation of the dependent variable (Lo & Andrews, 2015), failed to 

produce the predicted reduction of congruency effects with increasing RT on trial n – 1 in 

Experiments 1A and 1B. These results are consistent with those of Cohen-Shikora et al. (in 

press), who failed to obtain regular temporal learning effects using untransformed RTs in 

generalized linear mixed-effects models for a number of datasets, including Hutchison’s (2011), 

the dataset which Schmidt first re-analyzed (with transformed RTs as the dependent variable) 

to make a case for temporal learning.  

Because temporal learning is indexed by an interaction (i.e., that between RT on trial n – 1 and 

congruency on trial n), the present results and Cohen-Shikora et al.’s results raise the suspicion 

that temporal learning interactions reported in previously published papers (Huber-Huber & 

Ansorge, 2017, 2018; Kinoshita et al., 2011; Schmidt, 2013c; Schmidt & Weissman, 2016) were 

created by the use of nonlinear transformations of the dependent variable, an operation that is 

routinely performed in linear mixed-effects modelling. It is important to again note that, 



90 
 

although these transformations do a decent job of accommodating the assumption made by 

linear mixed-effects models that the dependent variable be normally distributed, they affect 

the size and the pattern of interactions (Balota et al., 2013). Generalized linear mixed-effects 

models, requiring no RT transformation, provide researchers with a safer technique to search 

for interactions, a technique that, moving forward, is well worth considering when interactions 

represent the main research interest (e.g., Yang, Chen, Spinelli, & Lupker, 2019). 

Another example of the present data failing to support Schmidt’s (2013c) version of a temporal 

learning account can be found in the results of Experiment 2.  In that experiment, congruent 

and incongruent items were replaced with easy and hard items, items not requiring the filtering 

out of irrelevant information as is required by interference stimuli. The results suggested that 

Schmidt’s version of temporal learning was not at work in this situation (i.e., when vocal 

responding to multiple pictures is required). That is, unlike similar investigations in a button-

press letter identification task utilizing low-contrast (i.e., hard) and high-contrast (i.e., easy) 

letters as stimuli (Schmidt, 2013c, 2014a, 2016), the proportion of easy stimuli in the list did not 

influence the size of the difficulty effect. As the main point of Experiment 2 was to investigate 

the potential contribution of temporal learning to the PC effects found in Experiments 1A and 

1B, the obvious question raised by the results of Experiment 2 is whether it is possible to 

reconcile them with Schmidt’s (2013c, 2014a, 2016) findings that manipulating frequency of 

difficulty does alter the magnitude of difficulty effects.  

One important difference between Experiment 2 and Schmidt’s (2013c, 2014a, 2016) 

experiments is the nature of the identification that is required (naming of multiple pictures vs. 

button-press identification of a limited set of letters). As mentioned above, button-press lexical 
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decision and word naming tend to show different patterns of blocking effects, with naming 

showing equivalent benefits for both easy and hard items in a block containing mainly easy 

items, whereas button-press lexical decision typically produces an asymmetric pattern, with 

large benefits for easy items but not for hard items in a block containing mainly easy items 

(Kinoshita & Mozer, 2006). Extending this idea to proportion-easy manipulations, it is easy to 

see how a vocal-responding situation where easy and hard items are influenced by the 

frequency of difficulty in the same way will result in no proportion-easy effect, whereas a 

manual-responding situation where easy items are influenced by frequency of difficulty, but 

hard items much less so, will likely result in a proportion-easy effect.  

Note that manual and vocal identification do differ in various ways. For example, manual 

responding generally constrains the number of responses available, whereas vocal responding, 

as in the present experiments, allows for multiple responses. Furthermore, a button press 

response requires participants to make a forced choice and commit to it, whereas a vocal 

response involves a gradual accumulation of evidence (e.g., Perea & Carreiras, 2003). As a 

result, participants might develop different subjective error estimates in the two situations. 

That is, their confidence in being able to give the correct response with sufficient time might 

not be the same.  

Indeed, response confidence was the very factor that Kinoshita and Mozer (2006) held 

responsible for the different patterns of blocking effects observed in word naming and lexical 

decision tasks. In those tasks, high-frequency and low-frequency words were used as easy and 

hard items, respectively. Importantly, participants in a word-naming task can be assumed to be 

relatively confident about their response, even for hard items, but such may not be the case for 
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the same hard items in lexical decision, for which a certain degree of uncertainty might remain 

even when a response is made (i.e., you know you will eventually name “glabrous” acceptably, 

but do you know for sure you will correctly classify it as a word or a nonword?).  

The story changes, however, if the low-frequency words that are used, despite being harder 

than the high-frequency words, are familiar enough for participants to confidently classify as 

words. Using these kinds of low-frequency words, Kinoshita and Mozer (2006) obtained the 

pattern usually found in naming: equivalent effects for low- and high-frequency words. 

Kinoshita and Mozer explained these findings in term of their ASE model. Simply put, the ASE 

model predicts that when an item is so hard that participants may never (i.e., even if they had 

no time pressure) be completely confident about their response, participants will not wait extra 

time in pure hard, compared to mixed, blocks, as doing so will not significantly improve 

accuracy. As a result, they will respond before they are entirely confident in pure hard blocks so 

that no mixing benefit will be observed for those stimuli. When, however, hard items can still 

be responded to confidently given more time, it will be worth it to wait the extra time to 

confidently produce an accurate response, which will result in longer latencies in hard blocks 

and, hence, a mixing benefit. 

One could certainly argue that there might be parallels between the two situations examined 

by Kinoshita and Mozer (2006) and the two situations created by the present Experiment 2 

versus Schmidt’s (2013c, 2014a, 2016) experiments, parallels which might explain the 

difference between the data patterns in the latter two situations. Although it seems unlikely 

that participants in Experiment 2 were completely confident about their responses to all low-

resolution pictures, it is important to note that participants were presented with stimuli which 
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often had multiple acceptable responses (in fact, several of the responses marked as errors 

with the conservative criterion adopted here were actually fairly acceptable responses, e.g., 

“tool” instead of “screwdriver”, “swimming” instead of “swimmer”, etc.). In addition, since 

participants were not given feedback, as is typical in naming tasks, they were never informed 

that they were making “errors”. In turn, this inability to know when errors were being made 

might have led them to assume that their responses were likely acceptable and to conclude 

that given enough time, they would confidently respond to both easy items (i.e., high-

resolution pictures) and hard items (i.e., low-resolution pictures). Therefore, the situation in the 

present Experiment 2 would be much more like that in a standard naming task, implying that 

one would expect a speed-up for both easy and hard items in the easy block. 

In contrast, participants in Schmidt’s experiments were regularly given feedback, and were 

presented with stimuli which had only one acceptable response among a limited set of 

responses. Thus, participants in Schmidt’s experiments had a better idea about how well (or 

badly) they were performing. Therefore, it is possible that those participants were, in some 

cases, constantly unsure about the accuracy of their responses to hard items (i.e., low-contrast 

letters). In turn, this situation could have reduced the impact of frequency of difficulty 

selectively for hard items, as predicted by the ASE model, thus producing the pattern of 

blocking effects often found in lexical decision tasks, i.e., the differences in the magnitude of 

the difficulty effects in ME and MH lists that he observed. An examination of the role of 

response modality, size of the response set, and feedback in the high/low contrast letter 

identification paradigm would likely help shed light on the reason why the present results and 

Schmidt’s differ so remarkably. (note 5) 
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Conclusion 

To conclude, the reported data make a good case for the existence of a conflict adaptation 

mechanism in humans. Far from being a mere illusion, such a mechanism might be an 

important resource in coping with tasks that require some degree of distraction suppression. 

While learning about what to respond (contingency learning) and when to do it (temporal 

learning) might be crucial aspects in goal-oriented behavior, learning how to respond (i.e., 

learning the appropriate attentional strategy to achieve the desired goal) is another human 

ability that should be acknowledged. 
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Footnotes 

1. Note that while there has been some debate in the literature as to whether interference 

effects in the picture-word interference task reflect the same underlying cognitive 

processes as interference effects in the color-word Stroop task (Dell’Acqua, Job, 

Peressotti, & Pascali, 2007), abundant support exists for a functional equivalence of the 

two paradigms (Lupker, 1979; Schnur & Martin, 2012; Starreveld & La Heji, 2017; van 

Maanen, van Rijn, & Borst, 2009), suggesting that the picture-word interference task can 

afford substantially larger target, distractor, and response sets than the color-word 

Stroop task without otherwise altering the cognitive processes engaged in the original 

paradigm. 

2. Proportion of congruent items was manipulated between subjects because of the 

limited number of items available. 

3. Following a suggestion of one of the reviewers of an earlier version of this paper, we ran 

an additional analysis in an attempt to determine whether part of what would seem to 

be noise in Experiment 1A might have resulted from response speed varying across 

categories. Such variability could potentially have affected the temporal learning 

process and, consequently, PC effects. Indeed, participants were slower with the animal 

(930 ms), food (927 ms), and object (949 ms) categories than with the person category 

(830 ms), the category that also elicited the smallest overall congruency effect (5 ms vs. 

44 ms, 27 ms, and 30 ms for animal, food, and object categories, respectively). However, 

there was no obvious relationship between the overall category latency (and/or the 

overall congruency effect within a category) and the size of the PC effect (i.e., the RT 
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difference between the congruency effect in the MC list and the congruency effect in 

the MI list) that the category elicited (person: 22 ms; animal: -8 ms; food: 147 ms; object: 

60 ms). Do note, however, that there was, unavoidably, considerable noise in this 

analysis, presumably due to the fact that there were very few observations (9 or less) in 

some of the cells. 

4. The model with RT on trial n – 1 as an additional predictor did not alter the pattern of 

results reported (i.e., there were main effects of Difficulty and List Type but no 

interaction between them). For the interested reader, there was a main effect of RT on 

trial n – 1 (with higher RT on trial n – 1 leading to longer latencies on trial n) but no 

interaction between Difficulty and RT on trial n – 1. None of the other interactions were 

significant either. 

5. It is important to appreciate the fact that the present discussion rests on the assumption 

that a temporal learning mechanism is responsible for the pattern reported by Schmidt 

(2013c, 2014a, 2016) in the letter identification task. However, as recognized by Schmidt 

(2013c), this assumption may not be correct: If low-contrast letters are thought of as 

stimuli creating a relatively high level of perceptual conflict, a mechanism of adaptation 

to the frequency of perceptual conflict could also explain his data (e.g., if participants 

squint their eyes more in the list containing mostly low-contrast letters, the contrast 

effect will be reduced). At the same time, the results from Experiment 2 constrain this 

putative conflict adaptation mechanism in that they suggest that not all forms of 

stimulus degradation (e.g., the resolution of an image) engender a kind of perceptual 

conflict that people can adapt to. 
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Appendix: 

Examining the impact of temporal learning on the congruency sequence effect  

The congruency sequence effect refers to the finding that, in interference tasks, congruency 

effects are larger following a congruent trial than following an incongruent trial (Gratton et al., 

1992). The traditional, control-based account of this effect (Botvinick et al., 2001) holds that 

experiencing conflict during an incongruent trial would lead participants to focus attention to 

the target dimension, thus reducing interference on subsequent trials; conversely, experiencing 

little or no conflict during a congruent trial would lead to relaxed attention, thus increasing 

interference on subsequent trials. Like the control account of the PC effect, this explanation has 

also faced some challenges: For example, in most paradigms, repetitions of stimulus features 

from one trial to the next seem to contribute to the congruency sequence effect (e.g., Hommel 

et al., 2004; Mayr et al., 2003), although a congruency sequence effect is still observed when 

this confound and others are removed (e.g., Schmidt & Weissman, 2014; Weissman, Jiang, & 

Egner, 2014). 

Recently, however, Schmidt and Weissman (2016) proposed that the congruency sequence 

effect observed when potential confounds are accounted for is best interpreted as being the 

result of a temporal learning mechanism rather than the result of a conflict adaptation 

mechanism. This temporal learning explanation is similar to the one proposed for PC effects. 

Following a trial in which a fast response was emitted (typically, a congruent trial), participants 

will develop a relatively fast temporal expectancy which will speed up responding to a 

subsequent item that could be processed rapidly enough to meet that fast temporal expectancy 

(a situation typically occurring on a congruent trial). Because this speed-up will typically benefit 
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congruent items but not incongruent items, the result will be an inflated congruency effect 

following a congruent trial, consistent with the pattern of the congruency sequence effect. 

Conversely, following a trial in which a slow response was emitted (typically, an incongruent 

trial), participants will develop a relatively slow temporal expectancy. This temporal expectancy 

could potentially speed up responding to a subsequent slow item that could be processed fast 

enough to meet that slower temporal expectancy (a situation typically occurring on an 

incongruent trial), although this result may not be observed in practice because, as noted, 

temporal expectancies often have little impact on hard-to-process stimuli (Kinoshita & Mozer, 

2006; Kinoshita et al., 2011). In any case, the point is that following an incongruent stimulus, 

there is a potential speed-up for incongruent items. However, in comparison to what happens 

when the preceding response was fast, there would be no pressure to produce faster responses 

for fast (i.e., congruent) items.  The result would be a congruency effect which should be, if 

anything, relatively small – again, consistent with the pattern of the congruency sequence 

effect. In sum, a temporal learning mechanism of this sort would seem capable of creating a 

pattern of results that mimics the congruency sequence effect with no need to assume a 

conflict adaptation mechanism. 

To support their temporal learning interpretation of the congruency sequence effect, Schmidt 

and Weissman (2016) re-analyzed Schmidt and Weissman’s (2014) data, a confound-minimized 

study of the congruency sequence effect in the prime-probe task, using RT on trial n – 1 as an 

index of temporal expectancy for trial n in a linear mixed-effects model analysis. They reasoned 

that the finding of an interaction between RT on trial n – 1 and congruency on trial n whereby 

congruency effects diminish with higher RT on trial n – 1 would be evidence that a temporal 
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learning mechanism is being used. Indeed, they obtained not only such an interaction but also a 

reduction (although not an elimination) of the value of the beta parameter for the congruency 

sequence effect (i.e., the interaction between congruency on trial n and congruency on trial n – 

1) in the model. Using reasoning similar to that used by Schmidt (2013c) for the PC effect, 

Schmidt and Weissman (2016) interpreted these results as indicating that temporal learning can 

generate a congruency sequence effect on its own, an idea they reinforced by successfully 

simulating the experimental data with an upgraded version of Schmidt’s (2013c) PEP model in 

which temporal learning was an implemented mechanism but trial-to-trial conflict adaptation 

was not. 

However, a fundamental problem with Schmidt and Weissman’s (2016) results is that, similar to 

what was done by Schmidt (2013c) in the context of the PC effect, RTs were inverse-

transformed to accommodate the assumption of a normally distributed dependent variable 

made by linear mixed-effects models. As noted, such a transformation can substantially alter 

the pattern of interactions and thus casts serious doubt on the interpretation of interactions, 

including the critical interaction between RT on trial n – 1 and congruency, the interaction that 

indexes temporal learning. In the following, we present additional analyses of Experiments 1A 

and 1B to examine whether the problems that emerged for the temporal learning explanation 

of the PC effect when a more appropriate analysis is used (i.e., generalized linear mixed-effects 

models with untransformed RTs; Cohen-Shikora et al., in press) also emerge when considering 

the congruency sequence effect. 
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Results 

The analyses were based on the same data as those used for the analyses reported in the main 

text of the article, with the exception that trials for which an error was made on the preceding 

trial were removed from both the latency and the error analyses, as is standard for analyses of 

congruency sequence effects. Furthermore, in order to minimize the impact of feature and 

response repetitions (Hommel et al., 2004), for Experiment 1A (picture categorization) we 

removed the trials in which the category of the picture (and hence, the correct response) on 

trial n matched the category of the picture (and correct response) on trial n – 1 (e.g., the picture 

of a dog preceded by the picture of a cat, with both pictures requiring the response ANIMAL). 

The statistical models were also the same as those used for the analyses reported in the main 

text of the article, with the exception that Congruency on trial n – 1 was included as an 

additional fixed effect. The mean RTs and error rates for by-subject data for these analyses of 

Experiments 1A and 1B are presented in Tables 3 and 4, respectively. 

  



101 
 

Table 5. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for the Congruency-

Sequence-Effect Analysis of Experiment 1A 

 RTs  Error rates  

Congruency MC list MI list List effect MC list MI list List effect 

 

Previous Congruent 

      

   Congruent 920 (25) 931 (36) 11 1.3 (.3) .8 (.8) -.5 

   Incongruent 970 (25) 913 (37) -57 2.7 (.7) 2 (.8) 

 

-.7 

   Congruency Effect 50 -18 -68 1.4 1.2 -.2 

 

Previous Incongruent 

      

   Congruent 923 (24) 935 (32) 12 3.9 (.8) 2.7 (.7) -1.2 

   Incongruent 928 (32) 938 (39) 10 4.3 (1.7) 2.2 (.5) 

 

-2.1 

   Congruency Effect 5 3 -2 .4 -.5 

 

-.9 
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Experiment 1A (picture categorization) 

RT. There was a main effect of RT on trial n – 1 (faster responses with lower RT on trial n – 1), ß 

= 24.01, SE = 3.42, z = 7.01, p < .001, but not Congruency, ß = -3.86, SE = 3.31, z = -1.16, p = .25. 

The interaction between Congruency and List Type, i.e., the PC effect, was significant, ß = -8.73, 

SE = 3.49, z = -2.51, p = .012. Congruency on trial n – 1 marginally interacted with List Type, ß = 

6.75, SE = 3.52, z = 1.92, p = .055, indicating that in MC lists responses tended to be overall 

faster when trial n – 1 was incongruent, a pattern that was reversed in MI lists. Most 

importantly, Congruency on trial n – 1 and Congruency did not interact, ß = -2.63, SE = 3.44, z = 

-.76, p = .47, although there was a marginal three-way interaction between Congruency on trial 

n – 1, Congruency, and List Type, ß = -5.52, SE = 3.30, z = -1.68, p = .094. As in the analysis 

presented in the main text of the article, there was also a three-way interaction between 

Congruency, List Type, and RT on trial n – 1, ß = 7.29, SE = 3.29, z = 2.21, p = .027.  

The three-way interactions were explored by analyzing MC and MI lists separately. In MC lists, 

the main effects of Congruency on trial n – 1 (faster responses when trial n – 1 was 

incongruent), ß = 10.46, SE = 5.08, z = 2.06, p = .040, Congruency (congruent faster than 

incongruent), ß = -11.96, SE = 5.03, z = -2.38, p = .017, and RT on trial n – 1, ß = 24.86, SE = 5.54, 

z = 4.49, p < .001, were all significant. In addition, there was a marginal interaction between 

Congruency on trial n – 1 and Congruency, ß = -9.36, SE = 5.19, z = -1.80, p = .071. This 

interaction indicates a regular congruency sequence effect, with a tendency for the congruency 

effect to be reduced following an incongruent trial (5 ms) compared to the congruency effect 

following a congruent trial (50 ms). Note that this reduction occurred because responses to 

incongruent trials were faster when following another incongruent trial (928 ms) than when 
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following a congruent trial (970 ms), ß = 39.70, SE = 17.71, z = 2.24, p = .025, whereas 

Congruency on trial n – 1 had no impact on congruent trials, ß = 2.15, SE = 10.38, z = .21, p = .84. 

Note that, as in the analysis reported in the main text of the article, Congruency and RT on trial 

n – 1 did not interact, ß = 5.90, SE = 5.49, z = 1.07, p = .28, suggesting that there was no 

temporal learning mechanism being used. 

In MI lists, the only significant effect was RT on trial n – 1, ß = 22.29, SE = 4.58, z = 4.86, p < .001. 

In particular, there was neither an interaction between Congruency on trial n – 1 and 

Congruency, ß = 2.43, SE = 5.48, z = .51, p = .61, nor a numerical tendency for a congruency 

sequence effect. Similar to the analysis reported in the main text of the article, there was a 

tendency for congruency effects to increase with higher RT on trial n – 1, which is the reverse of 

the pattern predicted by the temporal learning account (i.e., decreasing congruency effects 

with higher RT on trial n – 1). However, the interaction between Congruency and RT on trial n – 

1 was not significant in this analysis, ß = -7.17, SE = 5.48, z = -1.31, p = .19. 

Error rates. Both Congruency, ß = .26, SE = .16, z = 1.67, p = .096, and List Type, ß = -.31, SE = .18, 

z = -1.69, p = .091, were marginally significant, with congruent items showing a tendency to 

elicit fewer errors than incongruent items and MC lists showing a tendency to elicit more errors 

than MI lists. Congruency on trial n – 1 was significant, ß = .42, SE = .16, z = 2.64, p = .008, 

indicating that participants were more accurate following a congruent trial (1.6%) than an 

incongruent trial (3.2%). No other effect reached significance. 
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Table 6. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for the Congruency-

Sequence-Effect Analysis of Experiment 1B 

 RTs  Error rates  

Congruency MC list MI list List effect MC list MI list List effect 

 

Previous Congruent 

      

   Congruent 762 (27) 791 (26) 29 1 (.3) 2.6 (2.1) 1.6 

   Incongruent 1111 (40) 1054 (26) -57 15.3 (2.1) 11.4 (1.5) 

 

-3.9 

   Congruency Effect 349 263 -86 14.3 8.8 -5.5 

 

Previous Incongruent 

      

   Congruent 770 (24) 802 (22) 32 1.3 (.5) 2 (.8) .7 

   Incongruent 1083 (42) 1037 (23) -46 8.5 (2) 11 (1.1) 

 

2.5 

   Congruency Effect 313 235 -78 7.2 9 

 

1.8 
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Experiment 1B (picture naming) 

RT. The main effects of Congruency (congruent faster than incongruent), ß = -143.42, SE = 3.44, 

z = -41.74, p < .001, Congruency on trial n – 1 (faster responses following an incongruent trial), 

ß = 15.27, SE = 3.56, z = 4.29, p < .001, List Type (MI faster than MC), ß = 22.68, SE = 7.63, z = 

2.97, p = .003, and RT on trial n – 1 (faster responses with lower RT on trial n – 1), ß = 30.80, SE 

= 4.32, z = 7.13, p < .001, were all significant. Congruency and List Type interacted, ß = -20.67, 

SE = 4.12, z = -5.02, p < .001, indicating a regular PC effect. Congruency also interacted with 

Congruency on trial n – 1, ß = -11.79, SE = 3.62, z = -3.26, p = .001. This interaction indicates a 

regular congruency sequence effect, with a reduced congruency effect following an 

incongruent trial (274 ms) than following a congruent trial (307 ms). Again, the main reason for 

this reduction was that responses to incongruent trials were faster when following another 

incongruent trial (1060 ms) than when following a congruent trial (1083 ms), ß = 54.11, SE = 

11.71, z = 4.62, p < .001. In contrast, Congruency on trial n – 1 had no impact on congruent 

trials, ß = 6.96, SE = 8.32, z = .84, p = .40. 

There was also an interaction between Congruency on trial n – 1 and RT on trial n – 1, ß = 11.89, 

SE = 4.64, z = -2.56, p = .010, with lower RT on trial n – 1 producing a larger speed-up for 

responses on trial n if trial n – 1 was congruent than if it was incongruent, and a marginal 

interaction between Congruency and RT on trial n – 1, ß = -7.44, SE = 3.97, z = -1.87, p = .061, 

with a tendency for congruency effects to increase with higher RT on trial n – 1. The former 

interaction seems consistent with the idea that fast temporal expectancies produced by easy-

to-process stimuli (i.e., congruent) have a larger impact on performance than do slower 

temporal expectancies produced by hard-to-process stimuli (i.e., incongruent; Schmidt & 
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Weissman, 2016). On the other hand, the finding that congruency effects increased with higher 

RT on trial n – 1 reflects, once again, the reverse of the pattern predicted by the temporal 

learning account, according to which higher RT on trial n – 1 should reduce congruency effects. 

Error rates. Congruency (congruent more accurate than incongruent) was the only significant 

effect, ß = 1.28, SE = .11, z = 11.28, p < .001. 

Conclusion 

Similar to what was found for the PC effect, temporal learning does not seem to provide a 

convincing explanation for the congruency sequence effect in the present dataset. According to 

the temporal learning account, a congruency sequence effect should emerge as a consequence 

of a mechanism whereby congruency effects decrease with higher RT on trial n – 1. However, in 

an analysis in which untransformed RTs were used (thus avoiding potential problems associated 

with nonlinear transformations of the dependent variable), we found, if anything, marginal 

evidence for the opposite pattern (i.e., congruency effects increasing with higher RT on trial n – 

1) in Experiment 1B and a numerical tendency in the same direction in the MI list of Experiment 

1A. While this situation suggests that no temporal learning mechanism was being used, a 

regular congruency sequence effect emerged nonetheless.  

It is worth noting that in the present analyses, not only temporal learning was controlled for but 

also feature and response repetitions were either removed (Experiment 1A) or minimal to 

begin with (i.e., there were no response repetitions in Experiment 1B because each trial 

required a different response). Therefore, we are inclined to interpret the congruency sequence 

effect that was obtained as resulting from a trial-to-trial conflict adaptation mechanism 
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(Botvinick et al., 2001), with recent experience with conflict leading to focused attention, 

thereby decreasing interference, and recent experience with little or no conflict leading to 

relaxed attention, thereby increasing interference. This explanation would be consistent with 

the finding that the congruency sequence effect was mainly caused by facilitation for 

incongruent trials following another incongruent trial, a pattern that would reflect reduced 

interference when interference has recently been dealt with. This explanation would also seem 

to accommodate the fact that in the MI list in Experiment 1A, no congruency sequence effect 

was obtained. The high number of incongruent trials produced a complete elimination of the 

congruency effect in that list, suggesting that there was little conflict to adapt to. Indeed, it 

seems reasonable to assume that some amount of conflict is necessary for a trial-to-trial 

conflict adaptation mechanism to be operable. The core claim, in any case, is that not only the 

PC effect but also the congruency sequence effect, another important marker of conflict 

adaptation, emerges when potential confounds are accounted for, and most importantly, 

temporal learning does not seem to offer a convincing alternative to a control-based 

interpretation of this effect.  
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Chapter 2.5: Interim Summary 

The experiments reported in Chapter 2 produced a clear result: Contrary to the idea that PC 

effects are fully explained by non-conflict learning confounds that PC paradigms typically 

contain (Schmidt 2013b, 2019), a list-wide PC effect was observed even in situations in which 

those confounds could not have produced that effect. To create this type of situation, a picture-

word interference task was used in which picture targets and word distractors were never 

repeated, making it impossible for participants to learn word-response contingencies in either 

the MC list or the MI list (and, by implication, making the stimuli in both lists equally 

uninformative as no word in the experiment could be used to predict the response). In both a 

task in which the pictures required a naming response and a task in which the pictures required 

a categorization response, a list-wide PC effect emerged despite the magnitude of the basic 

congruency effect in the two tasks varying considerably (larger in the picture naming task than 

in the picture categorization task). The implication of these results is that adaptation to list-

wide conflict frequency may exist independently from non-conflict learning processes related to 

contingency learning and stimulus informativeness.  

An examination of the potential impact of another non-conflict learning process, temporal 

learning, did not alter these conclusions. First, including an index of temporal expectancies in 

the analyses revealed that, in fact, no temporal learning process of the sort proposed by 

Schmidt (2013c) was engaged in either of the two picture-word interference experiments. 

Evidence in favor of a temporal learning process also failed to emerge in an additional 

experiment in which the difficulty of naming pictures did not derive from the conflict caused by 

distracting information but rather from the perceptual quality of the pictures. According to 
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Schmidt’s temporal learning account, this situation should have produced a larger difficulty 

effect in the list in which easy-to-name pictures were more frequent than in the list in which 

hard-to-name pictures were more frequent. However, difficulty effects were the same size in 

the two lists, although latencies were overall higher in the list with a majority of hard-to-name 

pictures, a result potentially consistent with other temporal learning accounts (accounts that, 

unlike Schmidt’s, do not pose a challenge for control-based interpretations of PC effects: Lupker 

et al., 1997, 2003). In sum, both methods of examining temporal learning provided no evidence 

that a temporal learning process could produce, or even contribute to the production of, the 

obtained PC effects in the picture-word interference tasks. Those results would thus seem to 

make a strong case that non-conflict learning processes are not the whole story in the list-wide 

PC effect, an effect that would instead appear to reflect adaptation to list-wide conflict 

frequency, at least in the situations examined. 

Indeed, because those results were obtained in the context of a picture-word interference task, 

a valid concern that could be raised is whether those results would directly translate back to 

the color-word Stroop task from which the debate concerning the nature of PC effects 

originated. Although picture-word and color-word versions of the Stroop task have been 

demonstrated to be functionally equivalent in a number of studies, the picture-word 

interference task used in Chapter 2 is not easily replicable using colors as targets because 

typical participants can spontaneously name only a limited set of colors. This concern was 

addressed in Chapter 3 by using a different approach in an attempt to replicate the results from 

Chapter 2 in the color-word Stroop task. Rather than preventing participants from learning 

contingencies by removing repetitions from the materials, a design was adopted that allowed a 
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manipulation of conflict frequency using repeated color targets and word distractors but 

without contingency learning and stimulus informativeness confounds. 

As noted in Chapter 1, a typical problem arising when constructing a list-wide PC manipulation 

is that contingency learning is always possible in an MC list as this list will inevitably contain at 

least some words for which the congruent color is the high-contingency color. As a result, this 

list will also typically be relatively informative. Because in the color-word Stroop task, as noted, 

the limited number of nameable colors means that contingency learning and stimulus 

informativeness confounds cannot be eliminated by having nonrepeated stimuli in the 

experiment, negating an impact of these confounds requires a different strategy. The strategy 

used in Chapter 3 to accomplish this goal involved manipulating the proportion of neutral and 

incongruent, as opposed to congruent and incongruent, items – a list-wide Proportion-Neutral 

(PN) paradigm. Notably, as in the standard list-wide PC paradigm, it is still the case in this 

paradigm that conflict is more frequent in one list (the Mostly Incongruent [MI] list in which 

incongruent items are frequent and neutral items are infrequent) than in the other (the Mostly 

Neutral [MN] list in which neutral items are frequent and incongruent items are infrequent). As 

such, use of a process of adaptation to list-wide conflict frequency would imply that Stroop 

interferences effects (i.e., the color-naming difference between incongruent and neutral trials) 

should be larger when conflict is infrequent (in the MN list) than when conflict is frequent (in 

the MI list) because participants’ attention to task-relevant information should be relaxed in the 

former situation and more focused in the latter. That is, a Proportion-Neutral (PN) effect, 

similar to the list-wide PC effect in the standard paradigm, should be obtained. 
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The reason that neutral items are especially useful in this context is that they not only permit 

the manipulation of conflict frequency, as in the standard list-wide PC paradigm, but they also 

permit the complete elimination of word-response contingencies in the task as a whole. In 

Chapter 3, both an MI list (with frequent incongruent items and infrequent neutral items) and 

an MN list (with frequent neutral items and infrequent incongruent items) were constructed in 

which contingency learning was impossible because each word appeared in two or more colors 

equally frequently (as can be the case for MI lists in the standard list-wide PC paradigm but can 

never be the case in an MC list in the standard list-wide PC paradigm). The implication of this 

design, in terms of stimulus informativeness as defined by Schmidt (2014b, 2019), is that no 

word was informative (i.e., no word could be used to predict the color response) in either the 

MI list or the MN list, thus removing the stimulus informativeness confound present in some 

list-wide PC manipulations (Bugg, 2014a). As explained in more detail in Chapter 3, this 

manipulation effectively avoided another non-conflict learning confound that arises in list-wide 

PC paradigms such as Bugg’s, a confound relative to the strength of the correlation between 

colors and words in MC vs. MI lists that is closely associated, although not identical, with that of 

stimulus informativeness (Melara & Algom, 2003; see Chapter 1, footnote 6). 

In addition, the experiment in Chapter 3 was constructed so that the potential impact of 

adaptation to the frequency of conflict relative to a specific stimulus feature (specifically, 

adaptation to color-specific conflict frequency: Bugg & Hutchison, 2013) was dissociated from 

the potential impact of adaptation to the frequency of conflict in the list as a whole. To achieve 

this goal, similar to recent research in the list-wide PC paradigm (Blais & Bunge, 2010; Bugg et 

al., 2008; Bugg, 2014a; Hutchison, 2011), the experiment included both context items for which 
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both list-wide and color-specific conflict adaptation could occur, and transfer items for which 

only list-wide conflict adaptation could occur, making those items crucial for the question of 

whether adaptation to list-wide conflict frequency exists in the Stroop task. 

Finally, note that in Chapter 3 compared to Chapter 2, relatively less importance was given to 

temporal learning as a potential explanation for the list-wide PN effect obtained because both 

the results of Chapter 2 and the recent re-analyses reported by Cohen-Shikora et al. (2018) 

make a strong case that the temporal learning process proposed by Schmidt (2013c) is quite 

unlikely to be a convincing explanation for the list-wide PC effect after all. Nonetheless, an 

analysis of the RT data was conducted using the same technique used in Chapter 2 to control 

for temporal learning (a generalized linear mixed model with an index for temporal 

expectancies included as a predictor). 
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Chapter 3:  

Proactive Control in the Stroop Task: A Conflict frequency Manipulation Free of Item-Specific, 

Contingency Learning, and Color-Word Correlation Confounds 

Introduction 

The list-wide Proportion-Congruent effect: A marker of proactive control? 

A question that has received increasing research interest in the last decade is whether the 

expectation of conflict between task-irrelevant and task-relevant information can induce 

individuals to adjust attention between those sources of information (Schmidt, 2013b). This 

putative conflict adaptation mechanism would bias attention toward task-relevant information 

when conflict is expected, but not when conflict is not expected (Botvinick, Braver, Barch, 

Carter, & Cohen, 2001). A typical example of those situations is represented by manipulations 

of conflict frequency in the Stroop (1935) task. 

In the Stroop task, participants name the ink color of a letter string, typically a color word, 

which can be congruent with the color (e.g., the word RED in red color), incongruent with the 

color (e.g., the word BLUE in red), or neutral (e.g., the consonant string XXX in red). The typical 

result is a congruency effect, with faster and/or more accurate responses to congruent than to 

incongruent items. This effect usually results from interference from incongruent items 

(typically producing much slower latencies than neutral items) combined with some facilitation 

from congruent items (typically producing slightly faster latencies than neutral items) (note, 

however, that the relative magnitudes of interference and facilitation depend on a host of 
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factors, e.g., the nature of the neutral items used: MacLeod, 1991; see also Sabri, Melara, & 

Algom, 2001). 

What is important for the present discussion is that the magnitude of the congruency effect 

varies as a function of conflict frequency, a situation typically examined by using Proportion-

Congruent (PC) manipulations. In the standard (list-wide) PC manipulation, performance in a list 

in which conflict is infrequent (when congruent items are more frequent than incongruent 

items, i.e., a Mostly Congruent [MC] list) is compared with performance in a list in which 

conflict is frequent (when incongruent items are more frequent than congruent items, i.e., a 

Mostly Incongruent [MI] list). The typical result is that the congruency effect is larger in the MC 

list than in the MI list (e.g., Logan & Zbrodoff, 1979). 

This finding, known as the PC effect, has traditionally been interpreted as evidence for the use 

of a process of adaptation to list-wide conflict frequency. According to this explanation, a 

control mechanism exists that monitors conflict and adapts attention accordingly (Botvinick et 

al., 2001). Specifically, a situation in which task-irrelevant information (i.e., the word) is 

frequently conflicting (i.e., an MI list) will cause the emission of a signal indicating a need for 

more focused attention to task-relevant information (i.e., the color). Interference from 

irrelevant information will thus be minimized, producing a small congruency effect. In contrast, 

when conflict from task-irrelevant information is infrequent (i.e., in an MC list), attention will be 

relaxed because there is less reason to increase control. Thus, interference from irrelevant 

information on the rare incongruent items in an MC list will be especially problematic to 

overcome, producing a large congruency effect. 
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According to one of the control models often used to interpret the PC effect, the conflict-

monitoring model (Botvinick et al., 2001), this effect is the result of transient control, the type 

of control that is also observed in trial-to-trial modulations of congruency effects (i.e., reduced 

congruency effects following incongruent than congruent items: Gratton, Coles, & Donchin, 

1992). Because in an MI list, but not in an MC list, conflict often accumulates over the course of 

the experiment, this transient control would typically lead to a tightening of attention to task-

relevant information, resulting in a reduced congruency effect (see also Jiménez & Méndez, 

2013; 2014).  

More recent research, however, has suggested that the PC effect is dissociable from trial-to-

trial control adjustments (e.g., Torres-Quesada, Funes, & Lupiáñez, 2013; Torres-Quesada, 

Milliken, Lupiáñez, & Funes, 2014) and that control, in general, appears to operate at both short 

and longer time scales (e.g., Braver, 2012; Braver, Gray, & Burgess, 2007; De Pisapia & Braver, 

2006; Kane & Engle, 2003; Jiang, Heller, & Egner, 2014). For example, in the Dual-Mechanism of 

Control framework proposed by Braver (2012; Braver et al., 2007), an MI list would favor a 

proactive mode of control that minimizes interference from the word by maintaining the color-

naming goal to the extent possible. An MC list, on the other hand, would favor a more transient, 

reactive mode of control whereby the color-naming goal is often neglected and is only retrieved 

upon presentation of the infrequent incongruent stimuli (De Pisapia & Braver, 2006; see also 

Kane & Engle, 2003). Thus, although the distinction between proactive and reactive control is 

likely blurrier than this explanation suggests (see, e.g., Aben, Verguts, & Van Den Bussche, 

2017), the PC effect (more precisely, the reduced congruency effect in an MI list) would result 

from a proactive form of control, in the sense that this control is applied before any specific 
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item appears (e.g., Bugg, 2014a; Gonthier, Braver, & Bugg, 2016; see also Verguts and 

Notebaert’s, 2008, notion of “nonspecific” conflict adaptation). (note 1) 

In recent years, however, the idea that the PC effect results from the implementation of a 

proactive process in high-conflict situations has received considerable criticism (Blais & Bunge, 

2010; Blais, Robidoux, Risko, & Besner, 2007; Schmidt, 2013b, 2019). This criticism stems from 

the realization that a proactive control process is not necessary for generating a PC effect, as 

this effect could also result from alternative processes that PC paradigms typically allow. These 

processes, described below, include learning to associate items to responses and/or control 

states, and learning to adjust attention based on how informative (rather than how conflicting) 

items in the task are. (note 2) In the present research, we aimed to demonstrate that when all 

of these alternative processes are accounted for, PC effects can still be observed, providing 

evidence for the existence of proactive adaptation to conflict frequency. 

Reactive accounts of the list-wide Proportion-Congruent effect  

The first challenge to an account of the PC effect based on proactive control came from Jacoby, 

Lindsay, and Hessels’s (2003) report of an “item-specific” PC effect. Jacoby et al.  designed a 

new version of the PC paradigm in which half of the words were mainly presented in their 

congruent color (Mostly Congruent [MC] items) and the other half were mainly presented in an 

incongruent color (Mostly Incongruent [MI] items), with all words intermixed in a single list. 

Similar to the list-wide PC effect, an item-specific PC effect emerged, with MC items eliciting a 

larger congruency effect than MI items. 
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Because in Jacoby et al.’s (2003) paradigm congruent and incongruent items were equally 

probable in the list as a whole, the PC effect that they obtained could not have been produced 

by a proactive process based on list-wide conflict frequency (i.e., a process that is applied 

before any specific item appears). Instead, it must have been produced by a reactive process 

that is initiated after an item is presented in response to the nature of that specific item. This 

type of reactive process could take two basic forms. First, it might be a conflict adaptation 

process in which recognition of specific stimuli regulates the recruitment of appropriate control 

processes (e.g., Bugg & Hutchison, 2013; Gonthier et al., 2016). Specifically, the recognition of 

an MI word, e.g., RED, would favor focused attention to the color, producing reduced 

interference. On the other hand, the recognition of an MC word, e.g., GREEN, would favor 

relaxation of attention, a process that would encourage processing of the word, thus producing 

a large interference effect when the MC word does conflict with the color. Alternatively, the 

process producing the item-specific PC effect might be one whereby a contingency is learned 

between a word and the response typically made to that word (Schmidt & Besner, 2008). For 

example, if the MI word RED appears most often in blue, individuals will use that word to 

predict a blue response, with the result being that blue responses will be produced relatively 

rapidly even though the word itself is RED, leading to a reduced congruency effect. Conversely, 

individuals will use the MC word GREEN to predict the (congruent) green response. Hence, 

latencies will speed up for these congruent stimuli, producing an increased congruency effect. 

Whether a conflict adaptation or a contingency learning process is responsible for the item-

specific PC effect (for discussions, see, e.g., Bugg & Hutchison, 2013; Schmidt, 2013b, 2019), the 

question this effect raises is whether either of these reactive strategies might also explain the 
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list-wide PC effect. The reason this question is relevant is that, in the list-wide PC manipulation, 

all items appearing in a MC list are MC items (i.e., all words appear most often in a congruent 

color) and all items appearing in a MI list are MI items (i.e., all words appear most often in one 

or more incongruent colors). Thus, it is possible that the list-wide PC effect is not produced by a 

proactive process dependent on list-wide conflict frequency, but by whatever reactive process 

produces the difference between MC and MI items in the item-specific PC paradigm (for a 

demonstration of this possibility within the framework of the conflict-monitoring model, see, 

e.g., Blais et al., 2007). 

To address this question, Bugg (2014a; see also Blais & Bunge, 2010; Bugg, Jacoby, & Toth, 2008) 

developed a new list-wide PC manipulation which allows for a dissociation of a proactive 

control process from reactive processes. Bugg divided the items into two sets, referred to as 

the “context” set and the “transfer” set, and manipulated congruency proportion for the 

context set only. The transfer items were 50:50 congruent/incongruent and were intermixed in 

a list with either mostly congruent context items (creating an overall MC list) or mostly 

incongruent context items (creating an overall MI list). Note that in this type of manipulation, 

from the participants’ perspective, there is no obvious separation between the two sets of 

stimuli used in the task, nor are the participants informed about their existence. However, using 

context and transfer stimulus sets provides the researcher with a meaningful tool to infer the 

processes normally involved in list-wide PC manipulations. Specifically, the rationale is that 

while a PC effect obtained with the context items might result from any of multiple processes, 

the only possible explanation for a PC effect on the transfer items would be adaptation to list-

wide conflict frequency. 
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Indeed, in addition to the expected PC effect for context items in all situations (which, as just 

noted, is compatible with multiple explanations), a PC effect for transfer items did emerge in 

one of the situations that Bugg (2014a) examined. Specifically, a PC effect with transfer items 

emerged when the MI list was a list in which contingency learning was impossible for the MI 

context items due to the fact that the context words appeared in four equally probable colors 

(one congruent and three incongruent) so that no contingencies for those words could be 

learned. (Note that contingency learning is always possible for MC context items, as the 

congruent color is, unavoidably, also the more probable color). That is, only in this circumstance 

did transfer items show a smaller congruency effect in the MI list than in the associated MC list. 

In contrast, when contingency learning was possible for context items in the MI list (i.e., when 

each of the context words appeared more frequently in one specific incongruent color), no PC 

effect was obtained on the transfer items (i.e., the congruency effects on the transfer items 

were the same size in the MC and MI lists).  

To explain these results, Bugg (2014a) suggested that adaptation to list-wide conflict frequency 

is possible, but its usage “will primarily be evident when one cannot rely on use of [word-

response contingencies] to guide responding on most trials in an effort to achieve task goals 

(i.e., minimization of Stroop interference)” (p. 568). In such situations, e.g., in the MI list that 

did not allow for contingency learning, a conflict adaptation process, that is, a process involving 

an explicit focus of attention on the color, is the process being used. The result is a congruency 

effect for the items in that list (including the transfer items) that is smaller than that in the MC 

list (in which a contingency learning process potentially is being used), producing a PC effect.  

On the other hand, when reliable contingencies exist in the MI list, no conflict adaptation 
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process is engaged in either list.  Rather, contingency learning is the only process being engaged 

in both MC and MI lists.  As a result, the transfer items will be unaffected, causing them to 

produce the same size congruency effect in the two lists. 

The role of stimulus informativeness and color-word correlations 

Bugg’s (2014) results would seem to make a clear case for the existence of a process of 

adaptation to list-wide conflict frequency, at least in certain circumstances. Recently, however, 

Schmidt (2019) has argued that an alternative interpretation for Bugg’s results is possible, one 

that does not involve a role for adaptation to list-wide conflict frequency. According to this 

explanation, the PC effect on transfer items reported by Bugg when the context MI items did 

not have a more probable incongruent color resulted from a process in which attention to task-

relevant and task-irrelevant information is adapted, however, this adaptation is based on what 

he termed “stimulus informativeness” rather than conflict frequency.  

According to Schmidt (2019), this term refers to the degree to which words in a list allow 

learning of word-response contingencies. In an MC list, words would be relatively informative 

because contingencies can be learned for at least some of the words (i.e., the context words). 

Thus, attention to words (including transfer words) would be enhanced in that list. Because 

they are attended, transfer words will produce more interference, leading to a large 

congruency effect. In contrast, because words are relatively uninformative in an MI list if no 

contingencies exist for the context items, attention to words (including transfer words) will be 

reduced. Transfer words will thus produce less interference in this situation, leading to a 

reduced congruency effect. Note that this account would also explain why no PC effect is 
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obtained for transfer items when contingencies can be learned for both MC and MI context 

items. The reason is that context words would be informative in both situations. Thus, attention 

would be directed to (all) words in both MC and MI lists. 

Schmidt’s (2019) stimulus informativeness account echoes an idea proposed previously by 

Algom and collaborators (Dishon-Berkovits & Algom, 2000; Melara & Algom, 2003; Sabri et al., 

2001), that attention to the task-irrelevant dimension is increased when there is a relationship 

between the values on the task-relevant dimension (e.g., the colors) and the values on the task-

irrelevant dimension (e.g., the words). That is, when the words in the Stroop task provide 

information about the colors that they appear in, the word dimension will receive more 

attention than in a situation in which the words and the colors are randomly paired (a zero-

correlation situation). The strength of the relationship between words and colors (a measure of 

stimulus informativeness related to, but distinct from, that of Schmidt) can be expressed as a 

chi-squared based correlation (C), which takes on positive values when the conditional 

probability of congruent stimuli is relatively large, and negative values when the conditional 

probability of incongruent stimuli is relatively large (a value of zero would correspond to no 

correlation; Melara & Algom, 2003).  

As Bugg (2014a) noted, in the situation in which she obtained a PC effect on the transfer items 

(the situation in which contingencies could not be learned for the context words in the MI list), 

words and colors were always more strongly associated in the MC list than in the MI list (the 

absolute value of C was higher for the MC list than for the MI list). In contrast, in the situation in 

which Bugg failed to obtain a PC effect on the transfer items (the situation in which 

contingencies could be learned for the context words in the MI list), the strength of the 
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relationship between words and colors in the two lists was the same (the absolute value of C 

for the MC list was the same as that for the MI list). As such, similar to Schmidt’s (2019) 

stimulus informativeness argument, the hypothesis could be entertained that the real reason 

that Bugg obtained a PC effect in the former situation has to do with the fact that the two lists 

in that situation differed in the strength of the color-word correlation (whereas they did not in 

the situation in which no PC effect on the transfer items was obtained). Specifically, the 

stronger color-word correlation in the MC list would have drawn attention to the word 

dimension to a larger extent than the (weaker) correlation in the MI list. As a result, a larger 

congruency effect would have been obtained in the MC list than in the MI list even if no process 

of adaptation to list-wide conflict frequency was in place.  

In discussing her results, Bugg (2014a) considered this account implausible because 1) in all of 

the situations she examined, the color-word correlation was high (|C| > .76), and 2)in the 

situations in which the strengths of the color-word correlations for the MC list and the MI list 

did differ, they did not differ greatly (the difference between |C| for the MC list and |C| for the 

MI list was less than .1). Thus, the claim that differences in the strength of color-word 

correlations between MC lists and MI lists determined the PC effect obtained in those situations 

would have to be based on the assumption that participants are sensitive to very small 

differences of that sort even in the presence of overall high correlations, an idea that appeared 

unlikely. Even so, the fact remains that Bugg obtained a PC effect on the transfer items when 

list-wide conflict frequency and strength of color-word correlations were confounded, but did 

not obtain one when the strength of those correlations was matched across the MC and MI lists. 

Therefore, in spite of Bugg’s  claim that a PC effect on transfer items was produced by 
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adaptation to list-wide conflict frequency, alternative accounts related to the general 

informativeness of stimuli in the list (either defined as the possibility of learning word-response 

contingencies or as the absolute strength of the color-word correlation) exist that could 

potentially explain that effect. 

The present research 

To address the issues described above that hinder the interpretation of Bugg’s (2014) results, in 

the present research we further modified the paradigm developed by Bugg so that a 

modulation of Stroop interference for transfer items as a result of list-wide conflict frequency 

could be explained by neither reactive processes (e.g., contingency learning) nor adaptation to 

stimulus informativeness and/or the strength of color-word correlations, with the only 

remaining explanation being proactive control.  

We achieved this goal by using a Proportion-Neutral (PN), rather than a Proportion-Congruent, 

manipulation, that is, a paradigm in which the proportion of incongruent and neutral items (e.g., 

XXX, instead of congruent items, which were not used) in the context set is manipulated to 

create Mostly Neutral (MN) and Mostly Incongruent (MI) lists. We then evaluated whether 

interference effects (the color-naming difference between incongruent and neutral items, i.e., 

consonant strings) on transfer items would be affected by the PN manipulation.  

Note that, from the perspective of Botvinick et al.’s (2001) model, this change should be 

uninfluential, as what is critical for proactive control engagement is the frequency of conflict 

elicited by incongruent items, items that are more frequent in the MI list than in the MN list. 

Furthermore, Tzelgov, Henik, and Berger (1992) already demonstrated that, similar to the PC 
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effect obtained in the typical PC paradigm, increasing the proportion of neutral items in a list 

leads to an increase in interference but not in facilitation (i.e., the latency difference between 

neutral and congruent items), a pattern Botvinick et al. (2001) were able to simulate in their 

model.  

The reason that neutral items are especially useful in the present circumstances is that negating 

any impact of stimulus informativeness (Schmidt, 2019) is impossible when the proportion of 

congruent (instead of neutral) and incongruent items is manipulated (i.e., in the standard PC 

paradigm), because, as noted, the MC list (but not necessarily the MI list) inevitably contains 

informative words, i.e., words for which contingencies can be learned. Therefore, contingencies 

can always be learned for context MC words in a design like Bugg’s (2014). In contrast, neutral 

items allowed a manipulation of list-wide conflict frequency in a situation in which, similar to 

Bugg’s experiment that produced the PC effect, contingencies cannot be learned in either the 

MN list (i.e., the list in which conflict is infrequent, similar to the MC list in the standard 

paradigm) or the MI list. In this situation, the words appearing in those lists are equally 

uninformative (in the sense conveyed by Schmidt’s definition of informativeness), thus 

eliminating the stimulus informativeness confound present in Bugg’s experiments. 

In addition, in our experiment, the absolute strength of the color-word correlation was the 

same in the MN list and the MI list. Note that, because congruent items were not used and, for 

the reasons described below, the stimuli were divided into two non-overlapping sets (leaving 

most possible color-word combinations unused), this correlation was inevitably strong (as it 

was in Bugg’s (2014) experiments). Specifically, all that participants could learn was that each 

word appeared in a specific set of colors (even though the colors that the word appeared in 
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were equally probable) but not in other colors. Because words could be used to anticipate the 

colors that they would appear in, this situation might have induced participants in both lists to 

attend to the task-irrelevant dimension considerably more than they would have done in a 

zero-correlation situation, i.e., a situation in which colors and words are paired randomly. As a 

result of receiving attention, incongruent words would elicit much more interference in this 

type of situation than in the zero-correlation situation (Dishon-Berkovits & Algom, 2000; Melara 

& Algom, 2003; Sabri et al., 2001). Note, however, that although the basic Stroop interference 

effect in the present experiment could have been inflated because of the strong word-color 

correlation that we introduced, what was crucial for the present purposes was that this 

correlation had the same strength in the MN list and the MI list (i.e., that C had the same 

absolute value in the two lists). The reason is that what we were interested in was the 

modulation of interference based on list-wide conflict frequency, not the interference effect 

itself. Because words and colors had an equivalent strength of association in the MN list and 

the MI list, attention to the word dimension induced by this correlation could not explain any 

difference in the magnitude of interference across the two lists. 

Although removing contingencies from the design can solve the problems of stimulus 

informativeness and of color-word correlation strength, it does not prevent use of a different 

type of reactive process, i.e., adaptation to color-specific conflict frequency. Bugg and 

Hutchison (2013) showed that in addition to learning associations between words and conflict 

frequency, individuals can also learn associations between colors and conflict frequency, as 

demonstrated by the fact that MC colors (e.g., the color red appearing often with the word RED) 

elicit larger congruency effects than MI colors (e.g., the color green appearing often with 
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incongruent words). To prevent this potential color-specific effect in the transfer items, the 

colors used in the context versus transfer item sets were nonoverlapping.  Of necessity, context 

items appeared only in MN colors in the MN list and only in MI colors in the MI list. In contrast, 

transfer items appeared in a different set of colors and those colors appeared on neutral versus 

incongruent transfer trials equally often in the two lists. Thus, while a PN effect (i.e., larger 

interference in the MN list than in the MI list) on the context items would be compatible with 

either proactive adaptation to list-wide conflict frequency or reactive adaptation to color-

specific conflict frequency, a PN effect on the transfer items would only be compatible with the 

former process (adaptation to list-wide conflict frequency). 

Finally, it is worth mentioning one study in the literature that may cast doubt on the 

effectiveness of a conflict frequency manipulation comparing MN (instead of MC) and MI lists.  

Bugg, McDaniel, Scullin and Braver (2011) examined performance on neutral items in a 

manipulation somewhat similar to ours and did not find any difference between performance 

on those items in an MI list versus an MN list. In Bugg et al.’s experiment, participants 

completed an MN list in addition to an MC list and an MI list. All list types contained a fixed set 

of neutral items (in their case, color-unrelated words, e.g., RABBIT) which functioned as the 

transfer items. That is, in Bugg et al.’s experiment, transfer items only included neutral items 

(as opposed to neutral and incongruent items, as in the present experiment). Bugg et al. 

reasoned that naming the color of those neutral items should be slower when those items 

appear in an MC list than when they appear in either an MN list or an MI list because inhibiting 

the automatic tendency for word reading should be harder in a situation that favors word 

reading (i.e., in MC lists in which reading the word would often result in the correct response) 
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than in situations that do not favor word reading (i.e., in MI and MN lists, lists in which reading 

the word would often result in an incorrect response). Consistent with these hypotheses, 

latencies on the transfer neutral items were slowest in the MC list but there were no 

differences between the MI list and the MN list.  

Although these results do suggest that MI and MN lists may be similar in that they do not 

encourage word reading (unlike MC lists), they do not allow the conclusion that those lists are 

dealt with using exactly the same process(es). Specifically, it is possible that MI and MN lists 

would differ in the processes engaged to deal with Stroop interference (interference that is 

typically caused by incongruent color words: MacLeod, 1991), an aspect that Bugg et al. (2011) 

could not evaluate because their transfer items did not include incongruent items. Thus, 

although an MN list (and an MI list) would not encourage word reading to the same extent that 

an MC list does, an MN list may lead individuals to relax their attention somewhat because 

words in that list rarely cause substantial interference with color naming. The same would not 

be true for an MI list because, in that list, dealing with frequent incongruent items would 

induce more focused attention to the color dimension. Thus, if such a mechanism of adaptation 

to list-wide conflict frequency were used, the latency difference between incongruent and 

neutral items should be reduced in an MI list compared to an MN list. In other words, a PN 

effect, similar to the PC effect in the standard PC paradigm, would have been expected if Bugg 

et al.’s transfer set had contained incongruent items. 

 

 



128 
 

Method 

Participants 

Eighty students at the University of Western Ontario (age 17–29 years) participated for course 

credit or $10. We did not conduct a power analysis to determine this sample size. Instead, we 

determined the sample size based on a pilot experiment conducted in our lab examining a PN 

effect. Because the PN effect in that experiment could have been due to either or both of two 

processes (adaptation to list-wide conflict frequency and/or adaptation to color-specific conflict 

frequency), we decided to double the sample size tested in that experiment (N = 40) for the 

present experiment, an experiment in which the process of adaptation to list-wide conflict 

frequency was isolated (for transfer items). All participants were native English speakers and 

had normal or corrected-to-normal vision. 

Materials 

Six color names (RED, YELLOW, BLACK, BLUE, GREEN, WHITE) and six neutral “words” of 

matching lengths (XXX, ZZZZZZ, KKKKK, QQQQ, JJJJJ, HHHHH) were used as distractors, and six 

colors (red [R: 255; G: 0; B: 0], yellow [R: 255; G: 255; B: 0], black [R: 0; G: 0; B: 0], blue [R: 0; G: 

112; B: 192], green [R: 0; G: 176; B: 80], and white [R: 255; G: 255; B: 255], corresponding to 

“red”, “yellow”, “black”, “blue”, “green” and “white” in the standard DMDX palette) were used 

as targets. For the neutral words, we used consonant strings instead of color-unrelated words 

because it is known that any readable stimulus can create some degree of interference in the 

Stroop task (e.g., Dalrymple-Alford, 1972; Klein, 1964). As a result, color-unrelated words may 

not create the strongest contrast with incongruent words in terms of interference. For example, 
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in Bugg et al.’s (2011) study in which color-unrelated words were used as neutral items, Stroop 

interference (incongruent – neutral) was, if anything, smaller than Stroop facilitation (neutral – 

congruent). In contrast, much larger Stroop interference than facilitation is routinely observed 

when neutral items are consonant strings (MacLeod, 1991). Thus, we reasoned that 

manipulating the frequency of the conflict elicited by incongruent items may be more effective 

in a situation in which the incongruent items are compared to neutral items, items that produce 

little, if any, conflict (i.e., consonant strings), than when the incongruent items are compared to 

neutral items that produce some conflict (i.e., color-unrelated words). (note 3) 

The frequency of word-color combinations is represented in Tables 1 and 2 for the MN and the 

MI list, respectively. The “words” were divided into two sets, one set (RED, YELLOW, BLACK, 

XXX, ZZZZZZ, KKKKK) appeared only in red, yellow, and black whereas the other set (BLUE, 

GREEN, WHITE, QQQQ, JJJJJ, HHHHH) appeared only in blue, green, and white. Each word in 

each set appeared equally often in two of the three colors (for the color words, neither of these 

colors was the congruent one). One set (e.g., the words appearing in red, yellow, and black) 

served as the context set and the other set (e.g., the words appearing in blue, green, and white) 

served as the transfer set. In the MN list, the colors in the context set appeared 84 times with a 

neutral word and 12 times with an incongruent word (the color-specific Proportion of Neutral 

Items [PNI] was thus 87.5%). The reverse mapping was used in the MI list (such that color-

specific PNI = 12.5%).  
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Table 1. 

Template for the Frequency of Color-Word Combinations in the MN List 

  Word 

Set Color RED YELLOW BLACK BLUE GREEN WHITE XXX ZZZZZZ HHHHH QQQQ JJJJJ KKKKK 

Context Red   2 2         14 14       

 
Yellow 2   2       14   14       

  Black 2 2         14 14         

Transfer Blue         8 8         8 8 

 
Green       8   8       8   8 

  White       8 8         8 8   
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Table 2. 

Template for the Frequency of Color-Word Combinations in the MI List 

  Word 

Set Color RED YELLOW BLACK BLUE GREEN WHITE XXX ZZZZZZ HHHHH QQQQ JJJJJ KKKKK 

Context Red   14 14         2 2       

 
Yellow 14   14       2   2       

  Black 14 14         2 2         

Transfer Blue         8 8         8 8 

 
Green       8   8       8   8 

  White       8 8         8 8   
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The colors in the transfer set appeared 48 times with a neutral word and 48 times with an 

incongruent word (color-specific PNI = 50%) in both lists. In both lists, the context set and the 

transfer set were randomly intermixed. Overall, there were 132 neutral items and 60 

incongruent items in the MN list (list-wide PNI = 68.75%), with those numbers reversing in the 

MI list (list-wide PNI = 31.25%), for a total of 192 items in each list. The assignment of the two 

sets to context and transfer items was counterbalanced across participants, as was the order 

with which the MN and MI lists were presented. Finally, for each list, we calculated the 

contingency coefficient measuring the strength of the color-word correlation, C, using Melara 

and Algom’s (2003) formula (with the exception that C was allowed to take on positive values 

when the conditional probability of neutral, rather than congruent, stimuli was relatively large, 

i.e., in the MN list). C was .82 for the MN list and -.82 for the MI list (the absolute strength of 

color-word correlations was thus the same across lists). 

Procedure 

Each trial began with a fixation symbol (“+”) displayed for 250 ms in the center of the screen 

followed by a colored word displayed for 2000 ms or until the participant’s response, which was 

recorded with a microphone connected to the testing computer. Participants were instructed 

to name the color of the word as quickly and as accurately as possible while ignoring the word. 

Stimuli were presented in uppercase Courier New font, pt. 14, against a medium grey 

background (R: 169; G: 169; B: 169). No feedback was provided. There was a self-paced pause 

between the two lists. The order of trials within each list was randomized. Initially, participants 

performed a practice session including 6 neutral and 6 incongruent trials. The experiment was 
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run using DMDX (Forster & Forster, 2003) software. This research was approved by the 

Research Ethics Board of the University of Western Ontario (protocol # 108956). 

Results 

The waveforms of responses were manually inspected with CheckVocal (Protopapas, 2007) to 

determine the accuracy of the response and the correct placement of timing marks. Prior to the 

analyses, invalid trials due to technical failures and responses faster than 300 ms or slower than 

the time limit (accounting for 2.0% of the data points) were discarded. A 2 (Item Type: Neutral 

vs. Incongruent) X 2 (List Type: Mostly neutral vs. Mostly incongruent) ANOVA was conducted 

on both latencies and errors for context items and transfer items separately, paralleling the 

analyses in previous research using this paradigm (Bugg, 2014a; Bugg et al., 2008). The mean 

RTs and error rates are presented in Table 3. The raw data and SPSS script used for the analyses 

are publicly available at https://osf.io/yk57z/. 
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Table 3. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Context and 

Transfer Items 

 RTs  Error rates  

Item type MN list MI list List effect MN list MI list List effect 

 

Context items 

      

   Neutral 724 (13) 742 (12) 18 1.4 (.2) 2.5 (.5) 1.1 

   Incongruent 864 (17) 827 (15) -37 4.9 (.9) 2.8 (.3) 

 

-2.1 

   Interference Effect 140 85 -55 3.5 .3 -3.2 

 

Transfer items 

      

   Neutral 732 (13) 744 (13) 12 1.2 (.2) 1.2 (.3) 0 

   Incongruent 836 (15) 824 (14) -12 3.7 (.5) 3.2 (.4) 

 

-.5 

   Interference Effect 104 80 -24 2.5 2.0 

 

-.5 
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Context items  

A main effect of Item Type was found both in latencies, F(1,79) = 211.79, MSE = 1010378, p 

< .001, 𝜂𝑝
2 = .728, and in error rates, F(1,79) = 15.60, MSE = .030, p < .001, 𝜂𝑝

2 = .165, indicating 

faster and more accurate performance on neutral than on incongruent items. An interaction 

between Item Type and List Type also emerged in the latencies, F(1, 79) = 28.12, MSE = 62129, 

p < .001, 𝜂𝑝
2 = .263, and in the error rates, F(1,79) = 11.58, MSE = 020, p = .001, 𝜂𝑝

2 = .128,  

reflecting larger interference in the MN list (latencies: 140 ms; error rates: 3.5%) than in the MI 

list (latencies: 85 ms; error rates: -.3%). 

Transfer items 

For transfer items, we also found a main effect of Item Type both in latencies, F(1,79) = 277.68, 

MSE = 678593, p < .001, 𝜂𝑝
2 = .779, and in error rates, F(1,79) = 37.19, MSE = .039, p < .001, 𝜂𝑝

2 

= .320, with faster and more accurate performance on neutral than on incongruent items. In 

the latencies, this main effect was qualified by an interaction with List Type, F(1,79) = 14.08, 

MSE = 10683, p < .001, 𝜂𝑝
2 = .151, indicating a larger interference effect in the MN list (104 ms) 

than in the MI list (80 ms) (no interaction was found in the error rates, F < 1). 

Discussion 

A popular control-based explanation for the Proportion-Congruent (PC) effect in the Stroop task 

(i.e., the finding that the congruency effect increases as the proportion of congruent items in 

the list increases) assumes that attention to task-relevant information is proactively (i.e., before 

the appearance of any specific item) increased in a situation in which conflict is frequent (e.g., 

an MI list) compared to a situation in which conflict is infrequent (e.g., an MC list; De Pisapia & 
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Braver, 2006; Kane & Engle, 2003). However, multiple alternative explanations have been 

advanced recently that could explain that effect without invoking this form of proactive control 

(Schmidt, 2013b, 2019). By replacing congruent items with neutral items in the PC paradigm, 

we created a situation in which performance in a list in which conflict was infrequent could be 

compared to that in a list in which conflict was frequent while controlling for information other 

than list-wide conflict frequency, information that individuals might use to modulate word 

interference.  

A Proportion-Neutral (PN) effect, similar to the PC effect, emerged, with more interference in 

the MN list (the list in which conflict was infrequent) than in the MI list (the list in which conflict 

was frequent), for both context and transfer items. For context items interference could have 

been modulated based on either list-wide conflict frequency information or color-specific 

conflict frequency information. Such is not the case for transfer items, items for which the only 

viable mechanism for producing this effect would appear to be a proactive mechanism of 

adaptation to list-wide conflict frequency, as conceived of by, e.g., De Pisapia and Braver (2006; 

see also Kane & Engle, 2003; Gonthier et al., 2016). That is, this effect was obtained in a 

situation in which, similar to that examined by Bugg (2014a), no item-specific conflict frequency 

information and no word-response contingencies existed that could have produced it (see 

Spinelli, Perry, & Lupker, 2019, for a PC effect obtained in a similar situation in the picture-word 

interference task). In addition, unlike the crucial situations examined by Bugg, the present 

situation was one in which no difference existed in the extent to which words were informative 

in the two lists and the strength with which the words were correlated with the colors, 
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differences that, in principle, could also lead to participants adjusting attention in a manner 

compatible with a PC effect (Bugg, 2014a; Schmidt, 2019). 

The present results may seem to contrast with those of Bugg et al. (2011), who found no 

difference between an MN list and an MI list on neutral transfer items, although a difference on 

those items did emerge when the MN and the MI lists were compared with an MC list (slower 

latencies in the MC list than in the other two lists). As noted in the Introduction, however, that 

pattern of results may simply imply that MC lists promote a word-reading process (because 

reading the word would often result in the correct response) that neither MN nor MI lists 

promote (because reading the word would often result in an incorrect response). However, an 

MN list may still induce a relaxation of attention that, while not promoting word reading, would 

make dealing with incongruent items harder in that list than in an MI list. Our finding of a PN 

effect, with larger Stroop interference on the transfer items in the MN list than in the MI list, is 

consistent with this idea. 

Although we obtained a PN effect in the absence of item-specific, contingency learning, and 

stimulus informativeness confounds, another potential confound could have existed in our 

experiment that might explain that effect without invoking a process of adaptation to conflict 

frequency. This additional confound refers to the fact that temporal expectancies for the 

emission of a response are inevitably slower in a list in which most trials elicit a slow response 

(e.g., an MI list) than in a list in which most trials elicit a fast response (e.g., an MN list). 

According to Schmidt’s (2013c) temporal learning account, a faster temporal expectancy would 

cause the difference between easy-to-process stimuli (e.g., neutral items) and hard-to-process 

stimuli (e.g., incongruent items) to increase because easy stimuli, but not hard stimuli, will 
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speed up because they can be processed fast enough to meet that (fast) temporal expectancy. 

In the case of an MN list (i.e., a situation in which the temporal expectancy is relatively fast), 

the result would be a large interference effect. Conversely, a slower temporal expectancy 

would cause the difference between easy and hard stimuli to decrease because hard stimuli 

may also speed up because they can be processed fast enough to meet the (slow) temporal 

expectancy in that situation (although hard stimuli appear to be relatively insensitive to 

temporal expectancies, at least in some situations: Kinoshita & Mozer, 2006). As a result, an MI 

list in which the temporal expectancy is relatively slow would produce, if anything, a reduced 

interference effect. In sum, a PN effect (as well as a PC effect in the standard PC paradigm) 

could be produced by a temporal learning process rather than by a process of adaptation to 

conflict frequency. 

At present, however, there is little convincing evidence in support of a temporal learning 

explanation of PC effects. To demonstrate that temporal expectancies could explain PC effects 

obtained in confound-minimized situations, Schmidt (2013c) re-analyzed the data from one of 

those situations (Hutchison, 2011) using linear mixed-effects modeling, a type of analysis that, 

unlike traditional mean-based ANOVAs, allows the evaluation of trial-level predictors. Indeed, in 

his re-analysis, Schmidt included a trial-level predictor functioning as an index of temporal 

expectancy, the latency on the most recent trial (i.e., RT on trial n – 1), in addition to the typical 

predictors of a PC paradigm (i.e., list type and congruency). Schmidt reasoned that, because 

easy stimuli are more likely to benefit from fast temporal expectancies (i.e., following a fast RT) 

whereas hard stimuli are more likely to benefit, if anything, from slower temporal expectancies 

(i.e., following a slow RT), evidence for a temporal learning process being engaged in the Stroop 
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task should take the form of an interaction between temporal expectancy (RT on trial n – 1) and 

the congruency of the stimulus on trial n. Specifically, the congruency effect on a given trial 

should be larger following faster responses than following slower responses, an effect that he 

did obtain. Because faster responses are, by necessity, more common in an MC list than in an 

MI list, the implication is that this temporal learning interaction would tend to inflate the 

congruency effect in the MC list and reduce it in the MI list, resulting in a PC effect. 

More recently, however, Cohen-Shikora, Suh, and Bugg (2018) clearly demonstrated that 

Schmidt’s (2013c) results were likely biased because of the nonlinear transformation that he 

applied to the RT data. While transformations of this sort do a decent job of accommodating 

the assumption made by linear mixed-effects models that the dependent variable be normally 

distributed (an assumption that raw RTs typically fail to satisfy), they have the downside of 

systematically altering the pattern and size of interaction terms, making analyses of interactions 

unreliable overall (Balota, Aschenbrenner, & Yap, 2013). Indeed, Cohen-Shikora et al. re-

analyzed a number of datasets (including Hutchison’s, 2011) and were unable to replicate 

Schmidt’s (2013c) temporal learning interaction when untransformed, rather than transformed, 

RT data were used in a type of mixed-effects model that tolerates deviations from normality in 

the dependent variable (a generalized linear mixed-effects model: Lo & Andrews, 2015; see also 

Spinelli et al., 2019). Several additional attempts to evaluate the impact of temporal learning by 

Cohen-Shikora et al. also yielded no convincing evidence that temporal learning contributes to 

the PC effect to any extent.  

In sum, although there was no control in the present experiment for a potential temporal 

learning confound (a faster temporal expectancy in the MN list than in the MI list), the extant 
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evidence suggests that this confound does not pose a serious challenge to control-based 

interpretations of PC/PN effects (although see Schmidt, 2017). In fact, when we re-analyzed the 

(raw) RT data of the present experiment using RT on trial n – 1 as an additional predictor in a 

generalized linear mixed-effects model, we found no evidence for the temporal learning 

interaction which, according to Schmidt (2013c), would support a temporal learning 

interpretation of the PN effect that we obtained. On the contrary, we found a reversed 

temporal learning interaction on both context and transfer items, with congruency effects 

increasing, rather than decreasing, following slower responses on the preceding trial. (note 4) 

This reversed pattern, which was occasionally reported in the analyses conducted by Cohen-

Shikora et al. (2018; see also Spinelli et al., 2019), is completely inconsistent with Schmidt’s 

(2013c) temporal learning account and makes a strong case that the PN effects that we 

obtained did not emerge from the temporal learning process that Schmidt hypothesized. (note 

5) 

Overall, the present results challenge the argument that adaptation to list-wide conflict 

frequency is not a process that humans use (Schmidt, 2013b, 2019). Note, however, that the 

evidence supporting the use of this process was obtained when learning contingencies between 

words and responses was not a viable option, the only type of situation, according to Bugg 

(2014a), in which a proactive conflict adaptation process is used. Thus, although the present 

results do indicate that this process exists, they do not argue against the possibility that its 

usage might be restricted to the type of situation under examination here, i.e., one in which an 

alternative, contingency learning process is not available.  
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Footnotes 

1. In the following, for simplicity, we refer to adaptation to list-wide conflict frequency as a 

“proactive process” even though, in a Dual-Mechanism of Control framework (Braver, 

2012; Braver et al., 2007; see also Kane & Engle, 2003), this adaptation would entail the 

engagement of both proactive control (in a frequently conflicting list) and a form of 

reactive control (in an infrequently conflicting list).  

2. It is important to emphasize that all of these competing accounts of the PC effect are, in 

essence, learning accounts (see, e.g., Egner, 2014). For example, the process of 

adaptation to list-wide conflict frequency could be described as the process whereby 

participants learn to focus attention to the task-relevant dimension in a frequently 

conflicting list and learn to relax attention in an infrequently conflicting list. What does 

distinguish these accounts is what is being learned, e.g., associations between words 

and responses (a contingency learning process) vs. associations between contexts and 

control settings (a conflict adaptation process). 

3. We do not think that using color-unrelated words instead of consonant strings as 

neutral words would have dramatically changed the types of processes that participants 

would have used in dealing with the task. However, we do think that detecting an effect 

of adaptation to list-wide conflict frequency is potentially harder in a situation in which 

color-unrelated words are used as neutral words. The reason is that, even in an MN list, 

participants may sometimes feel a need to focus attention to the color dimension to 

avoid inadvertently reading the frequent color-unrelated words, making the process 

used in that type of list not particularly different from the process used in an MI list. As a 
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result, detecting a PN effect in that situation may require a much more sensitive 

protocol (e.g., larger sample size, stronger PN manipulation) than the one used here. 

4. The procedure and statistical software used for this analysis were the same as that used 

in Spinelli et al. (2019). The R script used for the analysis is publicly available at 

https://osf.io/yk57z/. 

5. A reviewer of an earlier version of this manuscript proposed yet another account that 

might explain the list-wide PC effect. This account is that repeated practice with one 

type of stimulus (e.g., the neutral type or the incongruent type) would speed up 

responses to that stimulus type. Thus, incongruent items would elicit faster responses in 

the MI list compared to the MN list because participants receive more practice with 

incongruent items in the MI list, and, conversely, neutral items would elicit faster 

responses in the MN list compared to the MI list because participants receive more 

practice with neutral items in the MN list. The result would be a PN effect. Consistent 

with this explanation, the PN effect that we observed in the present experiment was 

determined by both a speed-up for the incongruent items in the MI list compared to the 

MN list and a speed-up for the neutral items in the MN list compared to the MI list. 

However, the reason that we do not find this explanation particularly compelling is that, 

first, it is not clear why an effect of practice would benefit neutral stimuli, i.e., stimuli 

that produce little or no conflict, to any measurable degree. Furthermore, a speed-up 

for neutral items in situations in which those items are frequently practiced has not 

been reported in manipulations similar to ours. For example, as noted, Bugg et al. (2011) 

found that responses to a fixed set of neutral items were not any faster when those 

https://osf.io/yk57z/
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items appeared in an MN list (i.e., a list in which neutral items were frequently practiced) 

than when they appeared in an MI list (i.e., a list in which neutral items were 

infrequently practiced). Similarly, Tzelgov et al. (1992) parametrically varied the 

proportion of neutral items in a list but latencies to neutral items did not decrease 

overall in lists in which those items were more frequent. Thus, although this practice 

explanation would seem compatible with our results, it does not appear to gain any 

support from the relevant findings in the literature. 
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Chapter 3.5: Interim summary 

Recent research has pointed out several explanations for why a list-wide PC effect might 

emerge in the Stroop task (e.g., Blais et al., 2007; Schmidt, 2013b, 2019), explanations that do 

not require the process of adaptation to list-wide conflict frequency that traditional 

explanations assume (e.g., Botvinick et al., 2001; Kane & Engle, 2003; De Pisapia & Braver, 

2006). In Chapter 3, most (if not all) of the processes that those explanations involve were 

accounted for in a Proportion-Neutral manipulation in the Stroop task. Even so, a list-wide 

Proportion-Neutral effect, similar to the list-wide PC effect, emerged, with larger interference 

in a list in which conflict was overall infrequent than in a list in which conflict was overall 

frequent. These results, combined with the results from the picture-word interference task 

reported in Chapter 2, make a strong case that adaptation to list-wide conflict frequency is 

possible, at least in situations in which contingency learning is not an option. This idea 

converges with the conclusions of a few recent studies examining interference effects in the 

list-wide PC paradigm (Bugg, 2014a; Cohen-Shikora et al., 2018; Hutchison, 2011). 

The story is somewhat different for adaptation to item-specific conflict frequency, however. 

Indeed, it was around the putative form of control in this situation that the debate on the 

processes underlying PC effects originated (Schmidt & Besner, 2008). As noted, Jacoby et al. 

(2003) reported an item-specific PC effect in the color-word Stroop task, with a larger 

congruency effect for color words presented mainly in their congruent color (MC items) than 

for color words presented mainly in another (incongruent) color (MI items) intermixed in the 

same list. As Jacoby et al. noted, this effect might reflect either (or both) of two processes: A 

process (subsequently characterized as an item-specific, reactive control process) whereby the 
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recognition of a certain item would lead to use of the control setting most appropriate for that 

item (focused attention to task-relevant information for MI items vs. relaxed attention for MC 

items) or the more general process of learning word-response contingencies. 

As described in Chapter 1, most researchers now agree that a contingency learning process is 

the main process underlying the item-specific PC effect, at least in Jacoby et al.’s (2003) two-

item set design (Atalay & Misirlisoy, 2012; Bugg & Hutchison, 2013; Hazeltine & Mordkoff, 2014; 

Schmidt, 2013a). Because in this design two words and two colors are combined in both the MC 

set and the MI set, a situation is created in which a high-contingency color exists for both MC 

words and MI words (i.e., a situation in which not only MC words appear more frequently in 

their congruent color but also MI words also appear more frequently in one specific 

incongruent color). According to Bugg and Hutchison (2013), because contingency learning is an 

especially reliable process in this situation, the item-specific PC effect that is typically obtained 

would mainly result from the implementation of that process rather than a process of 

adaptation to item-specific conflict frequency (although such a conflict adaptation process 

might still be implemented in other situations, for example, in a four-item set design in which 

no contingencies for MI words can be learned; but see Schmidt, 2014b, 2019, for problems in 

interpreting results from this design). 

In Chapter 4, the conclusion that there is little or no role for adaptation to item-specific conflict 

frequency in the two-item set design used by Jacoby et al. (2003) was re-examined. A 

contingency learning account of the item-specific PC effect would imply that the characteristics 

displayed by the contingency learning process in situations in which contingency learning is not 

confounded with other factors should replicate in the item-specific PC paradigm as well if the 
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item-specific PC effect were, in fact, a product of contingency learning. One such characteristic 

was documented by Schmidt, De Houwer, and Besner (2010) in a non-conflict color 

identification in which color-unrelated words were used and each word appeared in both a 

high-contingency color (e.g., BRAG appearing more often in green) and in low-contingency 

colors (e.g., BRAG appearing rarely in blue and yellow). Schmidt et al. showed that the 

contingency learning effect (i.e., the latency difference between low-contingency and high-

contingency items) was reduced for participants who performed the non-conflict color 

identification task while carrying a high working-memory load, a result that suggests that 

limited-capacity resources are necessary for learning word-response contingencies. Assuming 

that this limitation on the contingency learning process would be maintained in the Stroop task 

in which color names, rather than color-unrelated words, are used, the implication for a 

contingency learning account of the item-specific PC effect is that this effect should be reduced 

when participants perform the Stroop task while carrying a high working-memory load.  

To test the contingency learning account of the item-specific PC effect, in three experiments, a 

non-conflict color identification task and an item-specific PC Stroop task were combined with a 

concurrent working memory load task imposing either a low or high working memory load. A 

no-load condition in which participants only performed the color identification tasks was also 

included. To anticipate the results, consistent with Schmidt et al. (2010), it was found that 

increasing working memory load in the non-conflict color identification task reduced 

contingency learning, although only when keypress responses and feedback on the accuracy of 

those responses were used, as in Schmidt et al.’s original study. In contrast, although increasing 

working memory load did produce higher latencies overall, it did not alter the item-specific PC 
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effect in the Stroop task. This pattern of results was interpreted in the framework of the Dual-

Mechanism-of-Control (DMC) account (Braver, 2012; Braver et al., 2007), an account that 

appears to explain why reduced working memory resources would not impair the item-specific 

PC effect. Although not as clear-cut as the working memory load manipulation, an individual-

differences analysis of the data in Chapter 4 offered some corroboration for this interpretation. 
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Chapter 4: 

 Working Memory Load Dissociates Contingency Learning and Item-Specific Proportion-

Congruent Effects 

Introduction 

In the Stroop task (Stroop, 1935), participants are instructed to name the ink color of a word 

while ignoring the word itself. The term “congruency effect” refers to the finding that 

responses to congruent items (e.g., the word RED in red color, REDred) are typically faster (and 

often more accurate) than responses to incongruent items (e.g., the word RED in blue color, 

REDblue). Among the numerous investigations of the mechanisms involved in resolving and 

managing interference in this task (for a review, see MacLeod, 1991), manipulating the 

proportion of congruent items is an approach which has gained increasing research interest. 

The typical result of these proportion-congruent manipulations is that situations in which the 

proportion of congruent items is high elicit larger congruency effects than do situations in 

which the proportion of congruent items is low, a finding known as the “proportion-congruent 

effect” (e.g., Crump, Gong, & Milliken, 2006; Jacoby, Lindsay, & Hessels, 2003; Logan & Zbrodoff, 

1979; for a review, see Bugg & Crump, 2012).  

The classic proportion-congruent paradigm involves manipulating the proportion of congruent 

items in a list-wide fashion, allowing performance on a list composed mainly of congruent items 

(a mostly-congruent list) to be compared to performance on a separate list composed mainly of 

incongruent items (a mostly-incongruent list). As noted above, larger congruency effects are 

generally obtained for the mostly-congruent list than for the mostly-incongruent list (e.g., 
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Logan & Zbrodoff, 1979). The traditional explanation that has been offered for these 

proportion-congruent effects posits that attention to the task-relevant (i.e., the ink color) and 

task-irrelevant (i.e., the written word) dimensions is adjusted in response to the frequency of 

conflict from the task-irrelevant dimension (the control account: e.g., Botvinick, Braver, Barch, 

Carter, & Cohen, 2001; Bugg, Jacoby, & Toth, 2008). A situation in which conflict is frequent (i.e., 

a mostly-incongruent list) poses regular demands for the cognitive control system to adapt to 

the situation by directing attention to the relevant dimension. Interference from the irrelevant 

dimension will thus be minimized. On the other hand, a situation in which conflict is infrequent 

(i.e., a mostly-congruent list) biases attention toward the irrelevant dimension. As a result, 

interference from the irrelevant dimension on the few incongruent items will be especially 

problematic, a situation which typically results in a large congruency effect.  

More recently, however, Jacoby et al. (2003) designed a new version of this paradigm that 

poses a challenge to the idea that proportion-congruent effects are due to the implementation 

of a list-wide, expectancy-based strategy as posited by the traditional control account.  What 

Jacoby et al. demonstrated was an item-specific proportion-congruent effect.  In their 

manipulation (the “two-item set” design), two color words (e.g., GREEN and YELLOW) were 

presented mainly in their congruent color (mostly-congruent items, e.g., GREENgreen appearing 

more often than GREENyellow) and two other color words (e.g., RED and BLUE) were presented 

mainly in an incongruent color (mostly-incongruent items, e.g., REDblue appearing more often 

than REDred). The two sets of words were not permitted to cross (e.g., GREEN and YELLOW 

never appeared in either red or blue ink), and the two sets were intermixed such that in the list 

as a whole congruent and incongruent items were equally probable. Similar to the list-wide 
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proportion-congruent effect, an item-specific proportion-congruent effect emerged, with a 

larger congruency effect for the mostly-congruent items than for the mostly-incongruent items.  

Because congruent and incongruent items were equally probable in the list as a whole, it 

appears that whatever strategy was being used that led to the item-specific proportion-

congruent effect could not have been one that was based on the overall congruency proportion 

of the list. Rather, this strategy must have been an item-specific one, based on the congruency 

proportion assigned to each item in the list, that is, a strategy that is initiated in response to the 

nature of the specific item appearing on a given trial. 

The control account of the item-specific proportion-congruent effect 

The presence of an item-specific proportion-congruent effect has led researchers in the area of 

cognitive control to reconsider the original idea that adaptation to conflict frequency, or conflict 

adaptation, is the result of a unitary process, i.e., a single process of conflict-triggered 

adjustment (e.g., Botvinick et al., 2001). Although a more general conflict adaptation account 

could potentially explain both list-wide and item-specific proportion-congruent effects (Bugg & 

Crump, 2012), the two effects are now thought to involve distinct processes of control 

engagement (Gonthier, Braver, & Bugg, 2016). A useful framework for interpreting these 

effects is the Dual Mechanisms of Control (DMC) account (Braver, 2012; Braver, Gray, & 

Burgess, 2007; see also Bugg & Crump, 2012), an account that, although somewhat more 

general, has many commonalities with an earlier account of Stroop interference (Kane & Engle, 

2003).  
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The DMC framework proposes that control is engaged via two operating modes, proactive and 

reactive (roughly equivalent to Kane & Engle’s, 2003, notions of “goal maintenance” and 

“conflict resolution”, respectively). The proactive mode involves effortful, sustained 

maintenance of task-relevant items or goals in working memory (WM). For example, in the 

context of the Stroop task, participants might effortfully maintain the goal of naming colors and 

ignoring words throughout the task. In contrast, the reactive mode relies on the stimuli in the 

environment for re-activation of task-relevant items or goals. The reactive mode can take more 

than one form. A basic form of reactive control is a process whereby the task goal is re-

activated upon detection of a conflict between task-relevant and task-irrelevant dimensions 

(e.g., the color-naming goal is re-activated upon presentation of an incongruent word-color pair; 

Braver, 2012). Reactive control can also take the form of a process that uses information about 

the stimulus to select a specific control strategy for dealing with that stimulus (e.g., focusing 

attention to the color dimension in response to words that typically appear in incongruent 

colors; Bugg, Jacoby, & Chanani, 2011; Bugg & Hutchison, 2013; see also Gonthier et al., 2016), 

a form of reactive control that will be most relevant to our discussion of the item-specific 

proportion-congruent effect. Although successful behavior likely depends on a mixture of 

proactive and reactive control engagement, the two modes are assumed to be partially 

independent, as demonstrated by their distinct neural signatures (e.g., Burgess & Braver, 2010; 

De Pisapia & Braver, 2006; Marini, Demeter, Roberts, Chelazzi, & Woldorff, 2016) and the fact 

that experimental manipulations can bias use of one or the other mode (for a review, see 

Braver, 2012).  
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In fact, list-wide and item-specific proportion-congruent manipulations appear to provide good 

illustrative examples of the sorts of manipulations that would lead to the use of both proactive 

and reactive control strategies, at least in some situations (Gonthier et al., 2016). A list-wide 

proportion-congruent manipulation puts participants in a situation in which different 

expectancies concerning the congruency of upcoming stimuli can be formed, with those 

expectancies favoring reliance on distinct control modes. Specifically, a situation in which 

frequent conflict is expected between the word and the color, such as when the list is mostly 

incongruent, is thought to favor the implementation of a proactive, top-down control strategy 

that minimizes interference from the word by constantly maintaining the color-naming goal. In 

contrast, a situation in which the word and the color are not expected to be conflicting, such as 

when the list is mostly congruent, would appear to favor the use of a reactive, bottom-up 

control strategy whereby the color-naming goal is frequently neglected and is only retrieved 

upon presentation of the infrequent incongruent words (Botvinick et al., 2001). In sum, a list-

wide proportion-congruent manipulation would lead to the engagement of different strategies 

in the two types of lists, with a mostly-incongruent list favoring a proactive strategy consisting 

of maintaining the color-naming goal and a mostly-congruent list favoring a reactive strategy 

consisting of re-activating that goal upon detection of conflict (for a more complete discussion 

of these issues, see Kane & Engle, 2003). 

The situation is a bit different in most item-specific proportion-congruent manipulations.  The 

item-specific proportion-congruent manipulation puts participants in a situation in which they 

can learn associations between words and their congruency and use those associations to 

select the control strategy (e.g., relaxed vs. focused attention onto the color) that would be 
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best to apply to the presented word. Because those associations can only be used after the 

word has been presented, the use of those associations would require a form of reactive 

control.  In this form of reactive control, early processing of specific words would regulate 

recruitment of appropriate control processes (Shedden, Milliken, Watter, & Monteiro, 2013; for 

a computational model of this mechanism, see Blais, Robidoux, Risko, & Besner, 2007). 

Specifically, the recognition of a mostly-incongruent word, e.g., RED, for example, may initiate a 

reactive control process favoring inhibition of word reading, with the result being reduced 

interference for this type of word. On the other hand, the recognition of a mostly-congruent 

word, e.g., GREEN, may initiate a reactive control process leading to relaxed attention, thus 

encouraging word processing in spite of the color-naming goal. The result will be large 

interference in the few instances in which the mostly-congruent word does conflict with the 

color (e.g., the word is GREEN but its color is yellow rather than its usual green color). 

It is worth noting that reliance on this reactive strategy, the strategy thought to underlie the 

item-specific proportion-congruent effect, would not necessarily prevent other strategies from 

being invoked, although such strategies may not be particularly encouraged by the task context. 

In particular, because in a typical item-specific proportion-congruent manipulation congruent 

and incongruent items are equally probable in the list as a whole, a proactive strategy of 

maintaining the task goal should not be encouraged to the same extent as it should be in a 

situation in which incongruent items are very frequent (i.e., a mostly-incongruent list in a list-

wide proportion-congruent manipulation). Nonetheless, at least some individuals in an item-

specific proportion-congruent manipulation might prefer to engage in this sort of proactive 

strategy instead of applying, or while concurrently applying, a reactive strategy of adaptation to 
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item-specific conflict frequency. In other words, it is reasonable to hypothesize that reactive 

control may be the more prominent strategy, but not necessarily the only strategy that 

individuals could employ in an item-specific proportion-congruent manipulation. This reasoning, 

however, does not imply that proactive control could explain the item-specific proportion-

congruent effect because, as noted, this effect must depend on a process initiated in response 

to specific items. If a proactive strategy of maintaining the color-naming goal were used for 

both mostly-congruent and mostly-incongruent items, this strategy would presumably produce 

a reduced congruency effect in the task in general, but would not cause differential congruency 

effects for the two types of items. Thus, although proactive control can be used concurrently 

with reactive control, only reactive control can provide an explanation for the item-specific 

proportion-congruent effect in a DMC framework (Gonthier et al., 2016). 

Although the control account of the item-specific proportion-congruent effect supports a role 

for control processes in this effect, it does not necessarily negate the possibility that non-

control processes may also have an important role in this effect. Indeed, Bugg and colleagues 

(Bugg, 2015; Bugg et al., 2011; Bugg & Hutchison, 2013), for example, have proposed that the 

item-specific proportion-congruent effect reflects the action of a control-based process only 

when this effect is obtained in circumstances that prevent learning of associations between 

task-irrelevant information and responses (i.e., contingency learning, reviewed in the next 

section). When the experimental situation favors learning of contingencies, the item-specific 

proportion-congruent effect has been argued to mainly reflect the action of that (non-control) 

learning process instead.  
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The contingency learning account of the item-specific proportion-congruent effect 

Although control accounts have had good success in explaining data in interference tasks, 

recent years have witnessed a growing concern among researchers about the validity of conflict 

adaptation as an explanation for proportion-congruent effects (Schmidt, 2013b; Schmidt, 

Notebaert, & van den Bussche, 2015). This concern is motivated by the realization that, in 

speeded tasks, responding might be influenced by learning associations, or contingencies, 

between a stimulus and a motor response as opposed to learning associations between a 

particular word and a processing strategy (Schmidt, Crump, Cheesman, & Besner, 2007). In 

color-word identification tasks, contingency learning had been demonstrated by the finding 

that color identification is faster for a frequent word-color pair (= high-contingency item, e.g., 

the word BRAG presented in green color 75% of the time) than for an infrequent word-color 

pair (= low-contingency item, e.g., the word BRAG presented in yellow color 25% of the time). 

This effect, which is found for color words and color-unrelated words alike (Hutchison, 2011; 

Schmidt et al., 2007; see also Musen & Squire, 1993), is thought to reflect the fact that 

participants implicitly learn that specific words predict specific color responses (e.g., BRAG 

predicts green; Schmidt et al., 2007; see also Forrin & MacLeod, 2017; Lin & MacLeod, 2018).  

Contingency learning provides a potential alternative explanation for proportion-congruent 

effects since manipulating the proportion of congruent items in the Stroop task typically 

involves altering the frequency of specific word-color pairs as well. Consider an item-specific 

proportion-congruent manipulation as an example.  If the mostly-incongruent word RED 

appears most often in blue, individuals may learn to associate the word RED with the 
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(incongruent) blue response. Conversely, if the mostly-congruent word GREEN appears most 

often in green, that would allow participants to learn that GREEN predicts the (congruent) 

green response. Crucially, if frequent word-color pairs elicit faster responses, relatively fast 

responding to the high-contingency incongruent item REDblue will lead to a relatively small 

congruency effect for mostly-incongruent items, whereas fast responding to the high-

contingency congruent item GREENgreen will lead to a relatively large congruency effect for 

mostly-congruent items. Similar observations can be made for list-wide proportion-congruent 

manipulations (Schmidt, 2013b). This explanation, known as the contingency learning account 

of proportion-congruent effects, suggests that learning of word-color contingencies, rather 

than adaptation to conflict frequency via control processes, might be responsible for the 

difference in the magnitude of congruency effects that is typically found in proportion-

congruent manipulations in the Stroop task (Schmidt & Besner, 2008). Essentially, the item-

specific proportion-congruent effect would have “everything to do with contingency” (Schmidt 

& Besner, 2008, p. 514). 

Is control involved in the item-specific proportion-congruent effect? 

The control account and the contingency learning account of proportion-congruent effects are 

fundamentally different in that the former invokes an interference-driven mechanism of 

conflict adaptation whereas the latter argues for a facilitative mechanism where conflict plays 

no role in modulating the congruency effect.  Although conflict adaptation and contingency 

learning mechanisms are not necessarily mutually exclusive and could be integrated within a 

common theoretical framework (Abrahamse, Braem, Notebaert, & Verguts, 2016; Egner, 2014), 
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in recent years there has been a debate about whether contingency learning alone may be a 

sufficient explanation for proportion-congruent effects, that is, whether these effects can be 

explained by an account that does not require invoking a mechanism of adaptation to conflict 

frequency at all (e.g., Atalay & Misirlisoy, 2012,2014; Bugg, 2014a; Bugg et al., 2011; Bugg & 

Hutchison, 2013; Hazeltine & Mordkoff, 2014; Hutchison, 2011; Schmidt, 2013a, 2013b, 2013c; 

Schmidt & Besner, 2008; Schmidt et al., 2014). More recently, however, some evidence has 

emerged suggesting that list-wide proportion-congruent effects do persist when controlling for 

both contingency learning (Bugg, 2014a; Bugg & Chanani, 2011; Gonthier et al., 2016; 

Hutchison, 2011; Spinelli, Perry, & Lupker, 2019) and learning of list-wide temporal 

expectancies, another non-conflict learning mechanism thought to contribute to generating list-

wide proportion-congruent effects (Cohen-Shikora, Suh, & Bugg, in press; Spinelli et al., 2019). 

These results support the claim that humans do have access to a proactive mechanism of 

adaptation to list-wide frequency of conflict (for counterarguments, see Schmidt, 2013c, 2014b, 

2017). 

With respect to the item-specific proportion-congruent effect, however, the situation is a bit 

different. To sum up this issue, the fundamental difference between the control-based account 

and a contingency learning account of the item-specific proportion-congruent effect is that the 

former assumes that participants in an item-specific proportion-congruent manipulation 

associate words with control processes (e.g., inhibit word reading upon presentation of the 

mostly-incongruent word RED) while the latter assumes that they associate words with specific 

responses (e.g., predict a blue response upon presentation of the mostly-incongruent word 

RED). While both mechanisms might be used, researchers who have tried to directly dissociate 



158 
 

the two accounts have only found support for contingency learning processes (Hazeltine & 

Mordkoff, 2014; Schmidt, 2013a). For example, Schmidt (2013a) constructed a Stroop task in 

which item-specific conflict frequency and contingency learning were manipulated partially 

independently. Using this design, he was able to compare mostly-congruent words and mostly-

incongruent words on what were “contingency matched” incongruent trials. For example, the 

color blue was a low-contingency and equally probable color for both the mostly-congruent 

word RED and the mostly-incongruent word GREEN. According to the control-based account, 

because mostly-congruent words should induce relaxed attention whereas mostly-incongruent 

words should induce focused attention to the color, the mostly-congruent word RED should 

produce more interference than the mostly-incongruent word GREEN when those words are 

presented in blue. However, this result was not observed.  Instead, performance on mostly-

congruent and mostly-incongruent words was equivalent when those words appeared in the 

critical incongruent colors, suggesting that no conflict adaptation strategy was in use. Based on 

these results, Schmidt (2013a) concluded that contingency learning is the sole source of item-

specific proportion-congruent effects, with conflict adaptation playing no role at all.  

As noted, this conclusion has gained at least some credence even with proponents of control 

accounts (Bugg, 2015; Bugg & Hutchison, 2013; Bugg et al., 2011). Specifically, those 

researchers appear to have conceded that contingency learning, rather than control-based 

processes, does determine the modulations of the congruency effect that are observed in the 

item-specific proportion-congruent manipulation originally employed by Jacoby et al. (2003), 

i.e., the two-item set design. A control-based strategy would be used only in specific 

circumstances, for example, when contingency learning is discouraged by including words being 
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associated with no specific response in the task (e.g., in a four-item set design in which mostly-

incongruent words appear equally frequently in each of four colors, one congruent and three 

incongruent), or when the relevant dimension (i.e., the color), rather than the irrelevant 

dimension (i.e., the word), acts as the potent signal for conflict frequency (Bugg, 2015; Bugg & 

Hutchison, 2013; Bugg et al., 2011). Notably, the situation examined by Jacoby et al. (2003) 

would not be one of those circumstances (although see Hutcheon & Spieler, 2014, for evidence 

in support of a conflict adaptation explanation of the item-specific proportion-congruent effect 

in Jacoby et al.’s two-item set design). 

The present research 

The present research was an attempt to re-examine the conclusion that performance (i.e., the 

item-specific proportion-congruent effect) in Jacoby et al.’s (2003) two-item set design is 

dominated by contingency learning by using a different approach than the ones used thus far. 

As noted above, the process of learning word-response associations is typically examined in a 

color identification task where noncolor words are presented mainly in one specific color (e.g., 

the word SHOP presented more often in blue than in red; Schmidt et al., 2007, 2010). Schmidt 

et al. (2010) had participants perform this non-conflict color identification task while 

maintaining a low (e.g., remember 2 digits) or high (e.g., remember 5 digits) working memory 

(WM) load. Crucially, they only found a significant contingency learning effect for the low-load 

group. For example, in their Experiment 2, Schmidt et al. obtained a 107-ms contingency 

learning effect for participants performing the color identification task with a low WM load. In 

contrast, participants who performed the color identification task with a high WM load were 
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not only overall slower but also showed a smaller and nonsignificant 28-ms contingency 

learning effect. Further, an impact of word-response contingencies was not observed when 

participants were required to carry a high WM load even when those contingencies had been 

successfully learned in an earlier block in which participants were required to carry a low WM 

load (Experiment 3). Based on these results, Schmidt et al. (2010) concluded that, even though 

it might be an implicit process, contingency learning is a resource-dependent process, such that 

limited-capacity resources are necessary for both learning and using contingencies.  

Importantly, because contingency learning is independent from the interference caused by the 

stimuli being used (Levin & Tzelgov, 2016), the process of learning contingencies should have 

the same capacity limitations regardless of whether the stimuli are color or noncolor words. 

Based on the premise that contingency learning is the cause of the item-specific proportion-

congruent effect, particularly in Jacoby et al.’s (2003) two-item set design, what Schmidt et al.’s 

(2010) results imply is that participants performing the Stroop task while carrying no WM load 

(i.e., the standard situation) or a low WM load should show a regular item-specific proportion-

congruent effect, whereas little or no item-specific proportion-congruent effect would be 

expected for participants who perform the Stroop task while carrying a high WM load similar to 

the one Schmidt et al. used. In contrast, finding equivalent item-specific proportion-congruent 

effects in high, low, and no WM load situations would be problematic for the contingency 

learning account.  

Obtaining an item-specific proportion-congruent effect in a high WM load condition would also 

be problematic for theories of cognitive control that assume that successful implementation of 
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any control process is critically dependent on available attentional resources (e.g., Baddeley, 

Chincotta, & Adlam, 2004; Baddeley & Hitch, 1974). These types of accounts, just like the 

contingency learning account, would also seem to predict that increasing WM load should lead 

to no item-specific proportion-congruent effect (i.e., the congruency effect should be the same 

for mostly-congruent and mostly-incongruent items). However, what is also quite possible is 

that a higher WM load would not interfere with use of reactive control processes, i.e., the type 

of processes that would support a mechanism of adaptation to item-specific (as opposed to list-

wide) conflict frequency, as opposed to proactive control processes, i.e., top-down control 

strategies that are based on situational expectancies. 

 As noted, at least in some circumstances, the item-specific proportion-congruent effect has 

been claimed to result from the application of reactive control (Bugg, 2015; Bugg et al., 2011; 

Bugg & Hutchison, 2013), with recognition of a mostly-incongruent word leading to a focus of 

attention onto the task-relevant (color) dimension and recognition of a mostly-congruent word 

leading to a relaxation of attention to that dimension. What is important to note is that there is 

no reason that WM demands would impact this type of reactive control in the same way that 

they would impact proactive control, as the two control processes appear to be dissociable. 

Indeed, in an fMRI memory study, Speer, Jacoby, and Braver (2003) obtained evidence 

consistent with this idea. As shown by the activity dynamics in a distinct set of brain regions, an 

expected low WM load showed an activation pattern consistent with the idea that participants 

were using a proactive strategy of maintaining study items in memory in preparation for the 

upcoming probe. An expected high WM load, in contrast, showed an activation pattern 
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consistent with the use of a reactive strategy, whereby study items were not actively 

maintained and the probe was used as a retrieval cue instead.  

A similar type of conclusion would apply in experiments analyzing individual differences in WM 

resources, typically defined in terms of WM capacity. WM capacity and WM load refer to 

distinct types of individual variation – for the former, inter-individual variation is determined by 

the amount of information an individual is able to maintain in working memory while 

performing a distracting task; for the latter, intra-individual variation is determined by the 

impact of one task on concurrent performance on another task. Both WM capacity and WM 

load, however, limit the amount of WM resources available, thus potentially influencing the 

strategies that individuals would use while performing a task. According to the DMC account 

(and in earlier versions of this type of account, e.g., Kane & Engle, 2003), WM capacity is, in fact, 

an important determinant of the extent to which individuals rely on proactive versus reactive 

modes of control (Braver, 2012). Although all individuals, presumably, have access to proactive 

and reactive control, low WM-capacity individuals, having less available WM resources to use, 

would tend to rely more on reactive control, whereas high WM-capacity individuals, having 

more available WM resources to use, would tend to rely more on proactive control.  

The implications of these DMC-based claims concerning proportion-congruent effects in the 

Stroop task as a function of WM capacity (when there is no WM load) would be as follows. 

Because individuals with fewer WM resources (i.e., low WM-capacity individuals) should tend 

to rely on reactive control, they would show the typical markers of this form of control in 

proportion-congruent manipulations in the Stroop task: Specifically, they would show a 
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disproportionately large congruency effect in the mostly-congruent list in the list-wide 

proportion-congruent manipulation and a robust item-specific proportion-congruent effect in 

the item-specific proportion-congruent manipulation. The reason is that, as noted, reactive 

strategies are involved in both of these situations: In mostly-congruent lists in the list-wide 

manipulation, use of a reactive strategy of retrieving the task goal upon detection of conflict is 

what produces the large congruency effect in that list; in the item-specific manipulation, use of 

a reactive strategy of selecting the appropriate control process upon recognition of specific 

items is what produces the item-specific proportion-congruent effect in general.  

In contrast, because individuals with more WM resources (i.e., high WM-capacity individuals) 

should be more prepared to maintain a proactive strategy, they would be less likely to show 

typical markers of reactive control in list-wide and item-specific proportion-congruent 

manipulations in a Stroop task with no WM load. Specifically, in a list-wide proportion-

congruent manipulation, those individuals may produce a larger congruency effect in the 

mostly-congruent list than in the mostly-incongruent list (resulting in the typical list-wide 

proportion-congruent effect); however, the congruency effect in the mostly-congruent list 

would not be as large as the congruency effect produced by low WM-capacity individuals in the 

same (mostly-congruent) list because, in this situation, high WM-capacity individuals would not 

rely on reactive control as heavily as low WM-capacity individuals do. In addition, use of a 

proactive strategy of maintaining attention focused on task-relevant information in high WM-

capacity individuals would make those individuals less likely to learn associations between 

items and conflict frequency, thus resulting in an attenuated item-specific proportion-

congruent effect overall.  Patterns of results like the ones just described have indeed been 
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observed (Kane & Engle, 2003; Hutchison, 2011), although in error rates more often than in 

latencies (as will be reviewed in introducing Experiments 3A and 3B below). Furthermore, these 

results are in line with findings from neuroimaging research indicating that in a memory task, 

individuals with higher fluid intelligence (a variable highly related to WM capacity: Engle, 

Tuholsky, Laughlin, & Conway, 1999) show greater reliance on proactive control whereas 

individuals with lower fluid intelligence preferentially engage in a reactive strategy instead 

(Burgess & Braver, 2010). 

In general, results from both intra-individual variation in WM resources (obtained by 

manipulating WM load) and inter-individual variation in WM resources (obtained by comparing 

individuals varying in WM capacity) suggest that reactive control is, in fact, relatively easily 

implemented when WM resources are scarce, an idea that is well accommodated within the 

DMC framework (Braver, 2012; Braver et al., 2007). Importantly, what these ideas then imply 

concerning the impact of WM load on an item-specific proportion-congruent manipulation 

would seem to be somewhat different from the predictions made by a contingency learning 

account. Specifically, assuming, as control accounts such as the DMC one do, that the item-

specific proportion-congruent effect is due, in whole or in part, to a reactive control process 

(i.e., adaptation to item-specific conflict frequency), no reduction in the proportion-congruent 

effect should be observed with increasing WM load (regardless of WM capacity). The reason is 

that having fewer available WM resources should make reactive control at least as prominent a 

strategy as it is in normal circumstances (i.e., when WM resources are not taxed by a 

concurrent task), with the result being a good size proportion-congruent effect. In contrast, as 

discussed, the contingency learning account would predict that if available WM resources are 
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low, due to either a large load or a low WM capacity, contingency learning cannot take place, 

leading to a very reduced proportion-congruent effect.  

The present research involved a number of experiments investigating the role of WM load in 

contingency learning and item-specific proportion-congruent effects. Using vocal responses to 

the colors, Experiments 1A and 1B sought to replicate Schmidt et al.’s (2010) findings in the 

non-conflict color identification task and to expand them to the Stroop task using a two-item 

set design, i.e., the design that presumably favors use of contingency learning instead of 

conflict adaptation processes (Bugg, 2014a; Bugg & Hutchison, 2003). To preview, we were not 

able to replicate the original pattern in the non-conflict color identification task (i.e., 

contingency learning effects did not diminish as WM load increased). Therefore, Experiments 

2A and 2B used manual responses to the colors, as in the original article (Schmidt et al., 2010), a 

situation in which we were able to replicate Schmidt et al.’s (2010) findings for the non-conflict 

color identification task. However, we did not find a similar reduction in the item-specific 

proportion-congruent effect in the Stroop task. Finally, Experiments 3A and 3B replicated and 

expanded the previous results using a within-subject design. In addition, WM capacity for 

individuals in the no-load group was measured in Experiments 3A and 3B in order to evaluate 

the idea that lower WM resources are associated with an increased reliance on reactive control, 

as proposed by the DMC account (Braver, 2012; Braver et al., 2007). 

Experiment 1A & 1B (vocal responses) 

Would taxing cognitive resources impair contingency learning in the non-conflict, as well as the 

Stroop, color identification, task? To answer this question, in Experiment 1A participants were 
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presented with contingency-biased noncolor words (e.g., the word SHOP presented 75% and 25% 

of the time in blue and red, respectively), whereas in Experiment 1B participants were 

presented with both mostly-congruent color words (e.g., the word GREEN presented 75% and 

25% of the time in green and yellow, respectively) and mostly-incongruent color words (e.g., 

the word RED presented 75% and 25% of the time in blue and red, respectively) intermixed in 

the same list. In both experiments, a two-item set design was used, i.e., each word appeared in 

two colors only although, overall, four colors and four words were used. As mentioned, this 

design was used by Jacoby et al. (2003) and is supposed to promote learning of word-response 

contingencies as the dominant strategy for performance (Bugg, 2014a; Bugg & Hutchison, 2013). 

In addition, in both experiments, one third of the participants performed the color 

identification task with no memory load (no-load group). The other two-thirds performed both 

the color identification task and a concurrent WM task which required holding in memory two 

digits (the low-load group involving one-third of the participants) or five digits (the high-load 

group involving one-third of the participants), as in Schmidt et al. (2010). 

Colors were responded to vocally, whereas Schmidt et al. (2010) had participants respond to 

colors via button pressing. Note that Schmidt et al. provided no indication that response 

modality should matter in terms of the impact of WM load on contingency learning: As long as 

cognitive resources are properly taxed, one should obtain a reduction in contingency learning 

effects under load. 
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Method 

Participants 

Sixty-one participants took part in Experiment 1A (non-conflict color identification task) and 

another 60 took part in Experiment 1B (Stroop task). These sample sizes were determined 

based on Schmidt et al.’s (2010) Experiment 2, in which 60 participants were tested. In 

Experiment 1A, 1 participant was removed because of an excessive number of errors and null 

responses (above 25%). In both experiments, the final 60 participants were equally distributed 

across the no-, low-, and high-load groups in each experiment (20 participants per group in 

each experiment). Participants were all students at the University of Western Ontario, aged 18–

29 years, and had normal or corrected-to-normal vision. Their participation was compensated 

with course credit or $10. 

Materials 

Four color-unrelated words (SHOP, CULT, BRAG, WIDE) and four color words (RED, BLUE, 

GREEN, YELLOW) were used as carrier words and four colors (red [R: 255; G: 0; B: 0], blue [R: 0; 

G: 112; B: 192], green [R: 0; G: 176; B: 80], and yellow [R: 255; G: 255; B: 0], corresponding to 

“red”, “blue”, “green” and “yellow” in the standard DMDX palette) were used as targets. 

Participants in Experiment 1A only saw color-unrelated words and participants in Experiment 

1B only saw color words. The nature of the word-color combinations used is represented in 

Tables 1 and 2. Both noncolor and color words were divided into two sets, one set (e.g., SHOP 

and CULT for Experiment 1A, RED and BLUE for Experiment 1B) was only presented in red and 
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blue ink colors, the other set (e.g., BRAG and WIDE for Experiment 1A, GREEN and YELLOW for 

Experiment 1B) was only presented in green and yellow ink colors. In Experiment 1A, the 

frequency of word-color combinations was manipulated so that each word was paired with one 

of the colors 75% of the time (thus creating a high-contingency item) and with the other color 

25% of the time (thus creating a low-contingency item). In Experiment 1B, one set of words 

(e.g., RED and BLUE) was paired with the congruent color 75% of the time and with the 

incongruent color 25% of the time (i.e., serving as mostly-congruent items), while the other set 

of words (e.g., GREEN and YELLOW) was paired with the congruent color 25% of the time and 

with the incongruent color 75% of the time (i.e., serving as mostly-incongruent items). 

Assignment of words to the frequent and the infrequent color was counterbalanced across 

participants. Overall, congruent and incongruent items were equally probable in Experiment 1B. 

Both Experiment 1A and Experiment 1B included 192 trials. 
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Table 1. 

Template for the Frequency of Color-Word Combinations in Experiment 1A 

 Word 

Color SHOP CULT BRAG WIDE 

Red 36 12   

Blue 12 36   

Green   36 12 

Yellow   12 36 
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Table 2. 

Template for the Frequency of Color-Word Combinations in Experiment 1B 

 Word 

 Mostly-congruent 

words 

Mostly-incongruent 

words 

Color RED BLUE GREEN YELLOW 

Red 36 12   

Blue 12 36   

Green   12 36 

Yellow   36 12 
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Procedure 

Participants were randomly assigned to the no-load, low-load, or high-load group. Each trial 

began with a fixation symbol (“+”) displayed for 250 ms in the center of the screen followed by 

a 250-ms blank screen. For participants in the low- and high-load groups, this blank screen was 

followed by a set of either two random digits (low-load; e.g., 3   2) or five random digits (high 

load; e.g., 3   2   4   1   7), presented with three spaces between digits for 2000 ms. In the next 

display, a colored word appeared in uppercase Courier New font, pt. 14, displayed for 2000 ms 

or until the participant’s response, which was recorded with a microphone connected to the 

testing computer. Participants were instructed to name the color of the word as quickly and as 

accurately as possible while ignoring the word itself. Following an 800-ms blank screen, another 

set of two digits (for the low-load group) or five digits (for the high-load group) was presented 

flanked by two arrows on each side (e.g., >> 3   2 <<) for 2000 ms or until the participant’s 

response. In this probe set of digits, either a randomly selected digit in the memory set was 

changed to a new random digit or none of the digits were changed. Participants were required 

to press the right shift key if the probe set of digits was identical to the memory set of digits or 

the left shift key if the two sets of digits were different. Trials requiring “same” and “different” 

responses were equally probable, and this manipulation was orthogonal to the manipulations 

involving colored words (e.g., low- and high-contingency items appeared on trials requiring a 

“same” response as often as on trials requiring a “different” response, etc.). 

Participants in the no-load group were only presented with the colored words, which were 

presented right after the fixation symbol. Stimuli were presented against a medium grey 
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background (R: 169; G: 169; B: 169). No feedback was provided. The 192 trials were presented 

in two blocks of 96 trials each with a self-paced pause in the middle. The order of trials within 

each block was randomized. Prior to starting each block, participants performed a practice 

session of 16 trials mirroring the frequency of word-color combinations in that block. The 

experiment was run using DMDX (Forster & Forster, 2003) software. This research was 

approved by the Research Ethics Board of the University of Western Ontario (protocol # 

108956). 

Results 

The waveforms of responses in the color identification task were manually inspected with 

CheckVocal (Protopapas, 2007) to determine the accuracy of the response and the correct 

placement of timing marks. Prior to the analyses, invalid trials due to technical failures and 

responses faster than 300 ms or slower than the time limit on either the color identification 

task or the WM task (accounting for 1.7% and 1.9% of the data points in Experiments 1A and 1B, 

respectively) were discarded. Trials on which participants responded incorrectly on the WM 

task (which accounted for 3.6% and 8.1% of the data points in the low- and high-load groups in 

Experiment 1A, and 4.0% and 9.2% of the data points in the low- and high-load groups in 

Experiment 1B) were discarded as well. (note 1) Latency analyses were conducted only on 

correct responses in the color identification task. (note 2) 

Different analyses were performed for Experiment 1A and Experiment 1B due to the different 

nature of the stimuli (noncolor vs. color words) and design. For Experiment 1A, a 2 

(Contingency: low vs. high, within-subjects) X 3 (WM Load: no vs. low vs. high, between-
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subjects) ANOVA was conducted. For Experiment 1B, the design of the ANOVA was a 2 

(Congruency: congruent vs. incongruent, within-subjects) X 2 (Item Type: mostly congruent vs. 

mostly incongruent, within-subjects) X 3 (WM Load: no vs. low vs. high, between-subjects). 

(note 3) In addition to traditional null hypothesis significance testing analyses, we also 

performed Bayes Factor analyses when a theoretically important null effect was obtained in 

order to quantify the evidence supporting the presence vs. the absence of that effect. These 

analyses were performed in R version 3.5.1 (R Core Team, 2018) using the BayesFactor package, 

version 0.9.12-4.2 (Morey & Rouder, 2018) by comparing the model without the effect of 

interest (interpreted as the null hypothesis H0) and the model with that effect (interpreted as 

the alternative hypothesis H1). The result of this comparison was BF01, with BF01 < 1 suggesting 

evidence in support of H1 (i.e., the presence of the effect), whereas BF01 > 1 suggesting 

evidence in support of H0 (i.e., the absence of the effect) (BF01 = 1 would suggest equal 

evidence for the two hypotheses). Jeffreys’s (1961) classification scheme (as reported in 

adjusted form by Lee & Wagenmakers, 2013) was used to help interpret the size of the Bayes 

Factor. The mean RTs and error rates are presented in Tables 3 and 4 for Experiments 1A and 

1B, respectively. For this and for the following experiments, we report how we determined our 

sample size, all data exclusions (if any), all manipulations, and all measures in the study (see 

above for this information for Experiments 1A and 1B; Simmons, Nelson, & Simonsohn, 2012). 

In addition, the raw data and the SPSS files used for the analyses are publicly available at 

https://osf.io/rtnw2/.  

  

https://osf.io/rtnw2/
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Table 3. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 1A – 

Vocal Non-conflict Color Identification Task 

 

 

 

 

 

 

 

 

 

 

 

 

  

Contingency RTs Error rates 

No load    

   High 589 (16) 1.0 (.3) 

   Low 601 (18) 1.3 (.5) 

  Contingency effect   12 .3 

 

Low load  

  

   High 786 (35) .5 (.2) 

   Low 801 (37) .9 (.3) 

  Contingency effect   15 .4 

 

High load  

  

   High 743 (30) .5 (.1) 

   Low 752 (28) .4 (.2) 

  Contingency effect     9 -.1 
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Table 4. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 1B – 

Vocal Stroop Task 

 RTs  Error rates  

Congruency Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

No load       

   Congruent 626 (17) 665 (23) 39 .1 (.1) .8 (.6) .7 

   Incongruent 751 (25) 715 (18) -36 7.1 (.017) 2.4 (.7) -4.7 

   Congruency Effect 125  50 -75 7 1.6 -5.4 

 

Low load 

      

   Congruent 726 (23) 757 (24) 31 .1 (.1) .2 (.2) .1 

   Incongruent 855 (30) 794 (22) -61 1.1 (.006) .7 (.3) -.4 

   Congruency Effect 129  37 -92 1 .5 -.5 

 

High load 

      

   Congruent 793 (33) 821 (30) 28 0 (0) .5 (.4) .5 

   Incongruent 899 (29) 849 (32) -50 5.3 (1.2) 1.7 (.7) -3.6 

   Congruency Effect 106  28 -78 5.3 1.2 -4.1 
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Experiment 1A (non-conflict color identification task) 

RTs. Both the main effects of Contingency (high-contingency faster than low-contingency), F(1, 

57) = 8.40, MSE = 4802, p = .005, 𝜂𝑝
2 = .128, and of WM Load, F(2, 57) = 13.45, MSE = 432326, p 

< .001, 𝜂𝑝
2= .321, were significant. Post hoc t-tests using the Tukey HSD adjustment for multiple 

comparisons revealed that the no-load group was faster than both the low-load group (p < .001) 

and the high-load group (p = .001), but that the low-load and the high-load groups did not differ 

from one another (p = .487). Importantly, Contingency and WM Load did not interact (F(2, 57) 

= .19, MSE = 98, p = .825, 𝜂𝑝
2 = .007), with equivalent contingency learning effects in the no- (12 

ms), low- (15 ms), and high-load groups (9 ms). The Bayes Factor for the comparison between 

the model with the interaction and the model without it was BF01 = 6.51, meaning that the data 

were 6.51 times more likely to occur under the hypothesis of no interaction than under the 

hypothesis of an interaction. In Jeffreys’s (1961) classification scheme, this value would suggest 

“moderate” evidence for the absence of the interaction. 

Error rates. No effect reached significance (all Fs < 1). 

Experiment 1B (Stroop task) 

RTs. There were main effects of Congruency (congruent faster than incongruent), F(1, 57) = 

99.64, MSE = 374025, p < .001, 𝜂𝑝
2 = .636, and of WM Load, F(2, 57) = 9.94, MSE = 466469, p 

< .001, 𝜂𝑝
2 = .259. Post hoc t-tests using the Tukey HSD adjustment for multiple comparisons 

revealed that the no-load group was faster than both the low-load group (p = .022) and the 

high-load group (p < .001), but that the low-load and the high-load groups did not differ from 
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one another (p = .222). The only significant interaction was that between Congruency and Item 

Type, F(1, 57) = 56.18, MSE = 99133, p < .001, 𝜂𝑝
2 = .496, indicating that a regular item-specific 

proportion-congruent effect was found, with a larger congruency effect for mostly-congruent 

items (120 ms) than for mostly-incongruent items (38 ms). There was no three-way interaction 

between Congruency, Item Type, and WM Load, however, F(2, 57) = .230, MSE = 407, p = .795, 

𝜂𝑝
2 = .008, suggesting that the item-specific proportion-congruent effect was equivalent in all 

load groups. The Bayes Factor, BF01 = 6.29, indicated “moderate” evidence for the absence of 

the three-way interaction. 

Error rates. There were main effects of Congruency (congruent more accurate than 

incongruent), F(1, 57) = 33.39, MSE = .045, p < .001, 𝜂𝑝
2 = .369, Item Type (mostly incongruent 

more accurate than mostly congruent), F(1, 57) = 12.71, MSE = .009, p = .001, 𝜂𝑝
2 = .182, and 

WM Load, F(2, 57) = 6.68, MSE = .009, p = .002, 𝜂𝑝
2 = .190. Post hoc t-tests using the Tukey HSD 

adjustment for multiple comparisons revealed that the low-load group was more accurate than 

the no-load group (p = .002), but did not differ significantly from the high-load group (p = .065). 

The no-load and the high-load groups did not significantly differ from one another either (p 

= .389). An overall item-specific proportion-congruent effect was obtained, as shown by the 

significant interaction between Congruency and Item Type, F(1, 57) = 23.36, MSE = .017, p 

< .001, 𝜂𝑝
2 = .291. However, Congruency also interacted with WM Load, F(2, 57) = 4.82, MSE 

= .007, p = .012, 𝜂𝑝
2 = .145, and the three-way interaction was also significant, F(2, 57) = 4.08, 

MSE = .003, p = .022, 𝜂𝑝
2 = .125. 
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To explore the interactions involving WM Load, three additional ANOVAs were performed 

comparing every pair of load groups. Inspection of two-way interactions between Congruency 

and WM Load revealed smaller congruency effects for the low-load group (0.7%), than for 

either the no-load group (3.3%), F(1, 38) = 9.21, MSE = .012, p = .004, 𝜂𝑝
2 = .195, or the high-load 

group (2.4%), F(1, 38) = 7.56, MSE = .006, p = .009, 𝜂𝑝
2 = .166, whereas the no-load and high-

load groups did not differ from one another, F(1, 38) = .60, MSE = .001, p = .442, 𝜂𝑝
2 = .016. 

Similarly, inspection of the three-way interaction between Congruency, Item Type, and WM 

Load revealed that the Congruency by Item Type interaction for the low-load group differed 

from those for both the no-load, F(1, 38) = 7.08, MSE = .005, p = .011, 𝜂𝑝
2 = .157, and high-load 

groups, F(1, 38) = 6.89, MSE = .003, p = .012, 𝜂𝑝
2 = .153, but no difference was found between 

the no-load and high-load groups, F(1, 38) = .39, MSE = .000, p = .538, 𝜂𝑝
2 = .010. Separate 

analyses for each load group showed that the reason for this was that although significant 

Congruency by Item Type interactions (with larger congruency effects for mostly-congruent 

than mostly-incongruent items) were obtained for both the no-load, F(1, 19) = 10.90, MSE 

= .014, p = .004, 𝜂𝑝
2 = .365, and the high-load group, F(1, 19) = 13.56, MSE = .008, p = .002, 𝜂𝑝

2 

= .416, there was no significant interaction for the low-load group, F(1, 19) = .82, MSE = .000, p 

= . 376, 𝜂𝑝
2 = .041. In general, it appears that the low-load group did behave somewhat 

differently than the no-load and high-load groups. However, the most likely reason for this 

difference is not because there was a nonmonotonic impact of load on error rates but rather 

because of the very low number of errors (less than 1%) committed by participants in the low-

load group.  
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Discussion 

Experiments 1A and 1B were attempts to replicate Schmidt et al.’s (2010) findings from a non-

conflict color identification task and to extend those findings to the Stroop task using vocal 

responses. Surprisingly, however, the non-conflict color identification task (Experiment 1A) 

showed no impact of WM load on the magnitude of contingency effects, thus failing to replicate 

Schmidt et al. in a task requiring vocal responses (as opposed to manual responses as in 

Schmidt’s original article).  Similarly, WM load did not alter the magnitude of item-specific 

proportion-congruent effects in the Stroop task (Experiment 1B) either (note 4). Although this 

pattern of results supports the idea that item-specific proportion-congruent effects in the 

Stroop task and contingency learning effects in the non-conflict color identification task follow 

the same pattern, potentially due to the fact that they are the result of the same process, the 

fact that increasing WM load had no effect on the size of contingency learning effects is 

problematic for the assumption that contingency learning depends on limited-capacity 

resources, an assumption that is a basic premise of the present research (Schmidt et al., 2010). 

In trying to understand the pattern of data in Experiment 1, two observations are in order. First, 

the WM load manipulation was effective: Latencies in the color identification task were faster 

for the no-load group than for the other groups (although this difference was compensated for 

by the drop in error rates for the low-load group in Experiment 1B), and the high-load memory 

task elicited more errors than the low-load memory task did. Given also that the memory task 

was identical to the one Schmidt et al. (2010) used, it would appear that the reason for the 
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discrepancy between the present results and Schmidt et al.’s has little to do with the WM load 

manipulation employed. 

Second, the contingency learning effect in Experiment 1A was small (12 ms in the no-load 

condition) compared to what is typically reported in the literature (e.g., Schmidt et al., 2007, 

reported a 60-ms contingency learning effect with a design similar to the one used here). The 

possibility exists, therefore, that there may be an important difference between using vocal 

versus manual responding in the color identification task. Indeed, Forrin and MacLeod (2017) 

and Spinelli, Perry, and Lupker (under review) recently reported smaller contingency learning 

effects for vocal than for manual responding to the color of color-unrelated words. The 

difference in the magnitude of contingency learning effects for manual versus vocal responding 

might be explained in terms of whether responses to stimuli are undertrained (manual) or 

overtrained (vocal), with stimulus-response associations playing a larger role in the former 

situation than the latter (Schmidt, 2018; see also Spinelli et al., under review). More important 

for the present discussion, however, is that if vocal responding typically elicits small 

contingency learning effects, observing a significant reduction in their size might be challenging 

(for a similar point, see Kinoshita et al., 2018). Insofar as manual responding elicits larger 

baseline contingency learning effects, use of that response modality might not only provide a 

more direct replication of Schmidt et al. (2010) but also be more appropriate for testing the 

idea that WM load impairs the process of learning contingencies, a hypothesis that provides the 

motivation for Experiments 2A and 2B. (note 5) 
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Experiments 2A & 2B (manual responses) 

Experiments 2A and 2B were identical to Experiments 1A and 1B, except that manual 

responding to colors was used in an attempt to increase the size of baseline contingency 

learning effects and thus provide a better opportunity to observe modulations of such effects. 

Another difference was that participants were given feedback on their performance. Feedback 

was given for two reasons: First, to replicate Schmidt et al.’s (2010) original experiment more 

closely; second, because evidence from our lab suggests that feedback can modulate the size of 

contingency learning effects, with larger contingency learning effects when color identification 

is feedback-assisted (Spinelli et al., under review). 

Method 

Participants 

Sixty-three participants took part in Experiment 2A (non-conflict color identification task) and 

another 63 took part in Experiment 2B (Stroop task). In both Experiment 2A and Experiment 2B, 

3 participants were removed because of an excessive number of errors and null responses 

(above 25%), leaving 60 participants equally distributed across the no-, low-, and high-load 

groups in each experiment (20 participants per group in each experiment). All were students at 

the University of Western Ontario, aged 17–21 years, and had normal or corrected-to-normal 

vision. They received course credit for their participation. 

Materials 

The materials were identical to those in Experiments 1A and 1B, respectively. 
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Procedure 

The procedure was the same as in Experiments 1A and 1B, with some minor exceptions. Rather 

than responding vocally, participants performed the color identification task by pressing the “J” 

key for red, the “K” key for blue, the “L” key for green, and the “;” key for yellow using the four 

fingers of their right hand. In addition, they performed the memory task by pressing the “Y” key 

for “same” responses and the “N” key for “different” responses with two fingers of their left 

hand. Similar to Schmidt et al. (2010), no timeout was used for the memory task, although 

participants were encouraged to respond as quickly and as accurately as they could. Finally, 

responses to colors and digits were followed by a feedback message following a 300-ms blank 

screen. The message was displayed for 500 ms in white Courier New, pt. 14, in the center of the 

screen, and read “Correct”, “Incorrect” or “No response” for correct, incorrect, or missed 

responses, respectively. The reason for these changes was to reproduce as closely as possible 

the conditions under which Schmidt et al. obtained their pattern (reduced contingency learning 

effects with increasing WM load). For that same reason, we maintained 16 practice trials as in 

Experiments 1A and 1B even though, in manual responding, 16 practice trials are likely not 

enough for participants to effectively learn color-to-key mappings. The implication would be 

that at least some participants were likely still in the process of learning those mappings in the 

course of the experiment. However, because we failed to replicate Schmidt et al.’s pattern in 

Experiment 1A, we deemed it important that the procedure in Experiment 2A not deviate too 

much from Schmidt et al.’s procedure, one in which there were no practice trials at all.   
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Results 

Prior to the analyses, responses faster than 300 ms on either the color identification task or the 

WM task and responses slower than the time limit on the color identification task (accounting 

for 1.1% and 1.4% of the data points in Experiments 2A and 2B, respectively) were discarded. 

Trials on which participants failed to respond correctly on the WM task (which accounted for 

4.4% and 7.7% of the data points in the low- and high-load groups in Experiment 2A, and 4.0% 

and 7.1% of the data points in the low- and high-load groups in Experiment 2B) were removed 

as well. Latency analyses were conducted only on correct responses in the color identification 

task. Experiments 2A and 2B were analyzed in the same way as Experiments 1A and 1B, 

respectively. The mean RTs and error rates are presented in Tables 5 and 6 for Experiments 2A 

and 2B, respectively. 
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Table 5. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 2A – 

Manual Non-conflict Color Identification Task 

 

 

 

 

 

 

 

 

 

 

 

 

  

Contingency RTs Error rates 

No load    

   High 712 (26) 2.5 (.5) 

   Low 769 (25) 3.6 (.8) 

  Contingency effect  57 1.1 

 

Low load  

  

   High 829 (28) 2.7 (.5) 

   Low 857 (27) 3.6 (.7) 

  Contingency effect  28 .9 

 

High load  

  

   High 843 (29) 3.5 (.6) 

   Low 855 (27) 4.4 (.9) 

  Contingency effect  12 .9 



185 
 

Table 6. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 2B – 

Manual Stroop Task 

 RTs  Error rates  

Congruency Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

No load       

   Congruent 766 (29) 817 (33) 51 .8 (.5) 1.1 (.5) .3 

   Incongruent 940 (41) 885 (36) -55 2.1 (.9) 1.3 (.6) -.8 

   Congruency Effect 174  68 -106 1.3 .2 -1.1 

 

Low load 

      

   Congruent 794 (30) 857 (36) 63 2.1 (.7) 2 (.7) -.1 

   Incongruent 947 (33) 904 (35) -43 7.7 (1.3) 3.6 (.7) -4.1 

   Congruency Effect 153  47 -106 5.6 1.6 

 

-4 

High load       

   Congruent 877 (25) 916 (26) 39 2.8 (.7) 2.7 (1.2) -.1 

   Incongruent 1032 (28) 923 (24) -109 5.8 (1.3) 3 (.5) -2.8 

   Congruency Effect 155    7 -148 3 .3 -2.7 
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Experiment 2A (non-conflict color identification task) 

RTs. Both the main effects of Contingency (high-contingency faster than low-contingency), F(1, 

57) = 41.86, MSE = 31731, p < .001, 𝜂𝑝
2 = .423, and of WM Load, F(2, 57) = 5.164, MSE = 149122, 

p = .009, 𝜂𝑝
2 = .153, were significant. Post hoc t-tests using the Tukey HSD adjustment for 

multiple comparisons revealed that the no-load group was faster than both the low-load group 

(p = .024) and the high-load group (p = .016), whereas the low-load and the high-load groups 

did not differ significantly from one another (p = .987). This time, Contingency and WM Load 

interacted, F = 6.80, MSE = 5157, p = .002, 𝜂𝑝
2 = .193. Follow-up ANOVAs comparing every pair 

of load groups were conducted to explore this interaction. Inspection of Contingency by WM 

Load interactions showed that the contingency learning effect in the no-load group (57 ms) was 

larger than those in the low-load (28 ms), F(1, 38) = 5.33, MSE = 3898, p = .024, 𝜂𝑝
2 = .127, and 

high-load groups (12 ms), F(1, 38) = 15.10, MSE = 10118, p < .001, 𝜂𝑝
2 = .284, whereas the low- 

and high-load groups did not significantly differ from each other, F(1, 38) = 1.62, MSE = 1456, p 

= .211, 𝜂𝑝
2 = .041. Paired t-tests conducted for each load group separately, however, revealed 

significant contingency learning effects for both the no-load group, t(19) = -8.27, p < .001, and 

the low-load group, t(19) = -2.99, p = .008, but not for the high-load group, t(19) = -1.27, p 

= .219. 

Error rates. Only the main effect of Contingency (high-contingency more accurate than low-

contingency) was significant, F(1, 57) = 5.66, MSE = .003, p = .021, 𝜂𝑝
2 = .090. 
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Experiment 2B (Stroop task) 

RTs. There was a significant main effect of Congruency (congruent faster than incongruent), F(1, 

57) = 136.36, MSE = 609659, p < .001, 𝜂𝑝
2 = .705. Latencies also tended to slow down as load 

increased, however the WM Load effect was only marginal, F(2, 57) = 2.52, MSE = 153814, p 

= .089, 𝜂𝑝
2 = .081. The only significant interaction was that between Congruency and Item Type, 

F(1, 57) = 74.61, MSE = 215459, p < .001, 𝜂𝑝
2 = .567, indicating a regular item-specific 

proportion-congruent effect, with larger congruency effects for mostly-congruent items (161 

ms) than for mostly-incongruent items (41 ms). Importantly, there was no three-way 

interaction between Congruency, Item Type, and WM Load, F(2, 57) = 1.01, MSE = 2917, p 

= .371, 𝜂𝑝
2 = .034, suggesting that the item-specific proportion-congruent effect was equivalent 

in the three load groups. The Bayes Factor, BF01 = 5.32, suggested that there was “moderate” 

evidence for the absence of the three-way interaction. 

Error rates. There were main effects of Congruency (congruent more accurate than 

incongruent), F(1, 57) = 16.93, MSE = .024, p < .001, 𝜂𝑝
2 = .229, Item Type (mostly incongruent 

more accurate than mostly congruent), F(1, 57) = 6.76, MSE = .010, p = .012, 𝜂𝑝
2 = .106, and WM 

Load, F(2, 57) = 7.73, MSE = .015, p = .001, 𝜂𝑝
2 = .213. Post hoc t-tests using the Tukey HSD 

adjustment for multiple comparisons revealed that the no-load group was more accurate than 

both the low-load group (p = .002) and the high-load group (p = .006), whereas the low-load 

and high-load groups did not differ significantly from one another (p = .924). Congruency and 

Item Type interacted showing a regular item-specific proportion-congruent effect with a larger 

congruency effect for mostly-congruent items (3.3%) than for mostly-incongruent items (0.7%), 
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F(1, 57) = 9.16, MSE = .010, p = .004, 𝜂𝑝
2 = .138. There was also a tendency for congruency 

effects to be larger overall in the load groups (especially the low-load one), however, the 

Congruency by WM Load interaction did not reach significance, F(2, 57) = 2.89, MSE = .004, p 

= .064, 𝜂𝑝
2 = .092. The three-way interaction between Congruency, Item Type, and WM load was 

not significant, F(2, 57) = .91, MSE = .001, p = .41, 𝜂𝑝
2 = .031, and the Bayes Factor analysis 

revealed that there was, indeed, “moderate” evidence for the absence of this interaction, BF01 

= 3.97. 

Discussion 

Experiments 2A and 2B were an investigation of the impact of WM load on contingency 

learning and item-specific proportion-congruent effects using manual responses (and feedback) 

in both the non-conflict color identification task and the Stroop task. With this modification, the 

baseline contingency learning effect was much larger in Experiment 2A (57 ms) than it was with 

vocal responses to colors in Experiment 1A (12 ms), replicating recent findings that manual 

responding elicits larger contingency learning effects than does vocal responding (Forrin & 

MacLeod, 2017; Spinelli et al., under review). More importantly, this modification returned a 

pattern of results that is consistent with Schmidt et al.’s hypothesis, as the 57-ms contingency 

learning effect in the no-load group was reduced to a nonsignificant 12-ms effect in the high-

load group. Thus, the concurrent WM task not only interfered with overall performance in the 

color identification task, but also impaired participants’ ability to learn stimulus-response 

associations.  
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Importantly, according to the contingency learning account, the pattern found for the non-

conflict color identification task in Experiment 2A should have emerged in the Stroop task in 

Experiment 2B. That is, there should have been a reduction in the item-specific proportion-

congruent effect with increasing WM load. The reason is that, according to this account, it is 

contingency learning that is responsible for the faster latencies that are typically observed for 

mostly-congruent congruent items compared to mostly-incongruent congruent items, and for 

mostly-incongruent incongruent items compared to mostly-congruent incongruent items. If 

WM load impairs contingency learning, the above differences in latencies should be attenuated, 

resulting in smaller item-specific proportion-congruent effects. However, no evidence in 

support of this prediction was found, with equivalent item-specific proportion-congruent 

effects in all load groups. 

As in Experiments 1A and 1B, overall performance worsened with increasing WM load 

(although that pattern was more apparent for the error rates), confirming that the WM load 

manipulation was effective. However, somewhat surprising is the fact that the high-load group, 

the group that showed the smallest contingency learning effect in Experiment 2A, showed the 

numerically largest item-specific proportion-congruent effect (a 155-ms congruency effect for 

mostly-congruent items and a 7-ms congruency effect for mostly-incongruent items) in 

Experiment 2B even though the three-way interaction was not significant. This pattern is, of 

course, exactly the opposite of that predicted by the contingency learning account which 

successfully predicted the reduced contingency learning effect in the high-load condition in 

Experiment 2A.  Because different participants took part in Experiments 2A and 2B, the most 

likely explanation for the results in the high-load group in that experiment is merely random 
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noise. Nonetheless, Experiments 3A and 3B were designed to allow us to re-examine this 

pattern in the high-load groups in a cleaner fashion by having the same participants perform 

both the non-conflict color identification task and the Stroop task. 

Experiments 3A and 3B (manual responses) 

Experiments 3A and 3B essentially replicated Experiments 2A and 2B, the only difference being 

that the same participants were in both experiments (i.e., task was now a within-subject 

manipulation although WM load was still a between-subject manipulation). The main purpose 

of these experiments was to seek confirmation that participants who show reduced 

contingency learning effects with increasing WM load in the non-conflict color identification 

task also show equivalent item-specific proportion-congruent effects across all load conditions 

in the Stroop task. Replicating this pattern would suggest that contingency learning and item-

specific proportion-congruent effects are dissociable phenomena. Specifically, it would suggest 

that contingency learning may not be an important component in the item-specific proportion-

congruent effect, with adaptation to item-specific conflict frequency, a reactive control strategy, 

playing a crucial role instead. Indeed, the finding obtained in both Experiments 1B and 2B that 

WM load had no significant impact on the item-specific proportion-congruent effect in the 

Stroop task is easily accommodated by the DMC account (Braver, 2012; Braver et al., 2007), 

which proposes that reactive control, a strategy that generates a proportion-congruent effect, 

continues to be a useful option when available WM resources are decreased. 

Notably, part of the evidence supporting the DMC account (and accounts that use conceptually 

similar notions, e.g., Kane & Engle, 2003) comes from individual-differences research, i.e., 
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research that investigates variation in WM resources due to differences naturally occurring 

among individuals rather than to variation in WM resources generated by an experimental 

manipulation (Burgess & Braver, 2010; Speer et al., 2003). As mentioned in the Introduction, 

according to this type of account, the availability of WM resources as determined by WM 

capacity should impact performance in a way that is similar to that of a concurrent memory 

load, by altering the relative reliance on reactive and proactive control. Although all individuals 

presumably have access to proactive and reactive modes of control, individual differences do 

appear to exist in terms of the extent to which people rely on those modes, with individuals 

who score higher and individuals who score lower in fluid intelligence and WM capacity eliciting 

patterns of behavior and brain activity that are suggestive of a preference for proactive and 

reactive control, respectively. More importantly for present purposes, evidence consistent with 

such a pattern of results was recently reported by Hutchison (2011) for proportion-congruent 

effects in the Stroop task.  

Hutchison (2011) collected WM-capacity scores for participants performing a Stroop task in 

which list-wide proportion-congruent effects, item-specific proportion-congruent effects, and 

contingency learning effects were examined independently from one another. Of relevance for 

the present research, he found that although both low and high WM-capacity participants did 

show a significant item-specific proportion-congruent effect in latencies, only low WM-capacity 

participants showed this effect in error rates. (For low WM-capacity participants, the 

congruency effect was 10.8% for mostly-congruent items vs. 7.1% for mostly-incongruent items, 

whereas for high WM-capacity participants, the congruency effect was 5.1% for mostly-

congruent items vs. 5.4% for mostly-incongruent items) (note 6). Hutchison interpreted this 
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finding as consistent with the idea that high and low WM-capacity individuals differ in the 

extent to which they rely on proactive and reactive modes of control, with the increased 

reliance on reactive control in low WM-capacity individuals producing a more pronounced 

pattern of proportion-congruent effects. However, although interesting, those results do raise a 

number of questions. 

The first question is, why should a difference between individuals differing in WM capacity 

emerge in error rates, but not in latencies (in a Stroop task with no WM load manipulation)? It 

is important to note that, in the Stroop task, latencies and error rates do not necessarily index 

the same processes. For example, Kane and Engle (2003) interpreted interference errors (i.e., 

incongruent – neutral) as an index of participants’ inability to successfully maintain the task 

goal (see also MacLeod, 1991) and interference in the latencies as an index of conflict 

resolution, a process that occurs only when the task goal has been successfully maintained. 

Error rates appear to be a critical variable in discriminating Stroop performance in low and high 

WM-capacity individuals. Across several experiments employing a list-wide proportion-

congruent manipulation, although Kane and Engle found little group differences in interference 

in the latencies, differences emerged more clearly in interference errors. Specifically, compared 

to high WM-capacity participants, low WM-capacity participants showed disproportionately 

high interference errors when responding to stimuli in a mostly-congruent list. Moreover, those 

interference errors produced by low WM-capacity individuals were mainly fast, word-reading 

responses. According to Kane and Engle, these results reflect a failure of low WM-capacity 

individuals to maintain the task goal in a context that favors goal neglect (i.e., a mostly-

congruent condition in which frequent congruent trials bias attention away from the color-
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naming task), a failure that typically results in a word-reading error rather than an increased 

latency (see also MacLeod, 1991). 

The second question is, how exactly would differences in reliance on proactive versus reactive 

control among low and high WM-capacity individuals explain Hutchison’s (2011) results? Like 

Hutchison, we propose that low and high WM-capacity individuals differ in the extent to which 

they rely on proactive and reactive modes of control. Low WM-capacity individuals would 

mainly rely on the reactive control mode, a mode that uses word-specific conflict frequency to 

determine which strategy is best to implement with those words, and only minimally on the 

proactive control mode, a mode whereby the color-naming goal is maintained over trials and 

one which would prevent inadvertent word reading. As a result, those individuals might be 

especially inclined to focus attention to the color in response to mostly-incongruent words and 

to relax attention in response to mostly-congruent words. Crucially, with the latter words, a 

relaxation of attention would frequently result in neglecting the color-naming goal, especially if 

little effort is being made to proactively maintain that goal. The result is increased word-reading 

errors to the infrequent incongruent words in the mostly-congruent condition. On the other 

hand, high WM-capacity participants may be more likely to engage in a proactive strategy to 

maintain the color-naming goal throughout the task.  

As noted in the Introduction, use of a proactive strategy should presumably attenuate item-

specific proportion congruent effects. The reason is that focusing attention on task-relevant 

information would reduce the impact of conflict, and therefore the impact of the frequency 

with which that conflict arises. In line with this idea, Hutchison, Bugg, Lim, and Olsen (2016) 
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found that using an informative cue before a Stroop trial to prompt proactive control reduced 

or eliminated the item-specific proportion-congruent effect (i.e., there was little difference 

between mostly-congruent and mostly-incongruent items when participants were well 

prepared to deal with conflict on the upcoming trial). On the other hand, the fact that 

Hutchison’s (2011) high WM-capacity individuals showed a regular item-specific proportion-

congruent effect in the latencies suggests that possessing a superior WM capacity (and, 

therefore, being able to engage proactive control) does not make those individuals so prepared 

for conflict that item-specific conflict frequency would have no impact whatsoever in their 

performance. That is, even though those individuals may preferentially engage proactive 

control, they would still have access to reactive control, i.e., they would still be able to learn 

about item-specific conflict frequency and adapt to it. However, it is possible that proactive 

maintenance of the task goal would reduce the impact of this process of adaptation to item-

specific conflict frequency in some way.  

Specifically, proactive control could prevent high WM-capacity individuals from neglecting the 

color-naming goal when dealing with all words, including mostly-congruent words, words for 

which use of reactive control would lead to a relaxation of attention to the color and would 

typically cause a disproportionate number of errors for the incongruent words in that condition. 

In other words, high WM-capacity individuals would be able to use a reactive strategy leading 

them to relax attention with mostly-congruent items and to focus attention to the color with 

mostly-incongruent items (which results in an item-specific proportion-congruent effect in the 

latencies); however, because they are also applying a proactive strategy, they would never let 

their guard down on the color-naming goal even when their attention is relatively relaxed (i.e., 
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when dealing with mostly-congruent items), with the result being that incongruent words 

would produce no more inadvertent word-reading errors when presented in mostly-congruent 

items than in mostly-incongruent items (i.e., no item-specific proportion-congruent effect in the 

errors would emerge). In sum, assuming that 1) both low and high WM-capacity individuals can 

use a reactive strategy of adaptation to item-specific conflict frequency, 2) that proactive 

maintenance of the task goal prevents inadvertent word reading, and 3) that this proactive 

strategy is more readily applied by high WM-capacity individuals, appears to do a decent job of 

explaining why those individuals show an item-specific proportion-congruent effect in the 

latencies (as a result of a reactive strategy) but not in the error rates (as a result of a proactive 

strategy), an effect which is found in both dependent measures in low WM-capacity individuals. 

In any case, although Hutchison’s (2011) finding of an overall more robust item-specific 

proportion-congruent effect for low-WM capacity individuals than for high WM-capacity 

individuals is intriguing, it is important to emphasize that this result comes from a design that is 

rather peculiar in that contingency learning, list-wide proportion congruency, and item-specific 

proportion congruency were all manipulated in a single experiment. Such a situation is rather 

different from those traditionally used to study item-specific proportion-congruent effects. 

Therefore, it will be helpful to know whether a WM-capacity difference in the item-specific 

proportion-congruent effect would emerge in a manipulation that is closer to the original 

paradigm showing an item-specific proportion-congruent effect, that is, one in which congruent 

and incongruent items are equally probable in the list (Jacoby et al., 2003) (which is the type of 

design employed in the present experiments). Thus, another objective of Experiments 3A and 

3B was to determine whether Hutchison’s (2011) WM-capacity differences in the item-specific 
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proportion-congruent effect are indeed the norm by evaluating them in the context of Jacoby 

et al.’s (2003) item-specific proportion-congruent design.  

To address this question, WM capacity was assessed for participants in the no-load group with 

a battery of WM tests administered after Experiments 3A and 3B were completed. It was 

hypothesized that in the no-load condition in the Stroop task (Experiment 3B) individuals with 

lower WM capacity would show a more pronounced pattern of item-specific proportion-

congruent effects than would individuals with higher WM capacity, paralleling the results 

reported by Hutchison (2011). This difference was expected to be more prominent in the error 

rates than in the latencies, as Hutchison also reported, because, as discussed, errors appear to 

index cognitive processes (i.e., goal neglect) which better differentiate low- and high-WM 

capacity individuals performing the Stroop task (Kane & Engle, 2003).  

The pattern of results expected from the DMC account (as just described) does appear to differ 

considerably from the one that would be expected from the contingency learning account. 

Schmidt et al. (2010) have argued that a concurrent WM load interferes with the ability to learn 

word-response contingencies because that ability requires limited-capacity memory resources. 

Although not examined by Schmidt et al., this idea suggests that an individual-differences 

comparison between participants with lower and higher WM resources could be informative. 

Low WM-capacity individuals performing a simple color identification task, similar to 

participants in general performing it with a taxing concurrent task, may not have enough WM 

resources to allocate to the process of learning word-response contingencies. As a result, 

contingency learning should be reduced for those individuals. Crucially, according to this logic, 
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the same should be true of any effect that is allegedly due to the contingency learning process, 

e.g., the item-specific proportion-congruent effect. In other words, this account would predict 

that the item-specific proportion-congruent effect, being based on contingency learning, should 

be smaller for low WM-capacity participants than for high WM-capacity participants. As noted, 

the reviewed data from Hutchison (2011) showed the opposite tendency (i.e., a regular item-

specific proportion-congruent effect in low WM-capacity individuals and a null item-specific 

proportion-congruent effect in high WM-capacity individuals), although only in the error rates.  

In a similar vein, it is also worth noting that there was no evidence in Hutchison’s (2011) data 

that learning of contingencies between color words and responses to colors on incongruent 

trials (e.g., faster responses to the word RED when appearing in its usual (incongruent) black 

color compared to when it appeared in its unusual (incongruent) yellow color) were reduced for 

low WM-capacity individuals. This result, not reported in the original article, was obtained by 

re-analyzing Hutchison’s data from the low- and high-contingency incongruent items using 

contingency (low vs. high) and WM-capacity group (low capacity vs. high capacity) as variables 

in a split-plot ANOVA. The results indicated a main effect of contingency in the RTs, F(1, 84) = 

14.13, MSE = 25814, p < .001, 𝜂𝑝
2 = .144, but not in the error rates, F < 1. Most importantly, 

contingency learning did not interact with WM-capacity in either analysis (both Fs < 1), 

indicating that the contingency learning effects in this experiment were equivalent for low and 

high WM-capacity individuals in both RTs (23 and 26 ms respectively) and error rates (0.6% and 

0.4%, respectively). (note 7) Therefore, Hutchison’s results offer no support for the hypothesis 

that these types of contingency learning effects decrease with decreasing WM resources as 
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indexed by an individual’s WM capacity, as would be expected according to a contingency 

learning account.  

This null result should be taken with caution, however, as it comes from an experiment in which 

vocal responses to colors were used. Vocal responding might have weakened the contingency 

learning effect (which was indeed smaller than generally reported; Forrin & MacLeod, 2017; 

Spinelli et al., under review), making individual differences related to this effect harder to 

observe (as appears to have occurred in the present Experiment 1A). The use of manual 

responses, implemented in Experiment 3A (and 3B), provides a better way of determining if and 

how WM capacity influences the process of learning word-response contingencies.  

Method 

Participants 

Two hundred and thirty-five participants took part in both Experiment 3A (non-conflict color 

identification task) and Experiment 3B (Stroop task). Of these, 127 were assigned to the no-load 

group, 51 were assigned to the low-load group, and 57 were assigned to the high-load group. 

Twenty-seven participants were removed because of an excessive number of errors and null 

responses (above 25%) in either Experiment 3A or Experiment 3B, leaving 208 participants, of 

which 126 were in the no-load group, 43 were in the low-load group, and 39 were in the high-

load group. Many more participants were tested in the no-load group than in the other groups 

because WM-capacity scores were recorded for those participants, and individual-differences 

research requires large sample sizes. Compared to Experiments 1A/1B and 2A/2B, the sample 
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sizes of the low-load and the high-load groups were approximately doubled because there was 

half the number of items per cell in Experiments 3A and 3B (see Materials) and, hence, more 

potential for noise to affect the results. All participants were students at the University of 

Western Ontario, aged 17–31 years and had normal or corrected-to-normal vision. They 

received course credit for their participation. 

Materials 

The materials were identical to those of Experiments 1A and 1B, respectively, except that each 

experiment only included 96 trials (rather than 192). 

Procedure 

Participants completed Experiments 3A and 3B in a single session. Each experiment included a 

single block of 96 trials preceded by 8 practice trials. Half of the participants performed 

Experiment 3A (non-conflict color identification task) first and Experiment 3B (Stroop task) 

second and the other half performed Experiment 3B first and Experiment 3A second. Other 

than this difference, the procedure was the same as in Experiments 2A and 2B. Following these 

experiments, participants in the no-load group completed a battery of complex span tests 

including one block of the Operation Span task, followed by one block of the Symmetry Span 

task, followed by one block of the Rotation Span task (Conway et al., 2005; Kane et al., 2004; 

Redick et al., 2012; Unsworth, Heitz, Schrock, & Engle, 2005). These tests were shortened 

versions of complex span tasks aimed to test different constructs in working memory, so as to 

obtain reliable measures of WM capacity as a whole while minimizing testing duration (Foster 
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et al., 2015). In these complex span tasks, participants were given a sequence of to-be-

remembered items (e.g., a sequence of letters) and had to complete a distractor task (e.g., 

solving a math problem) between the presentations of successive to-be-remembered items in 

the sequence. The sequence of to-be-remembered items varied from two to five items 

(Symmetry Span and Rotation Span tasks) or from three to seven items (Operation Span task). 

Scores are calculated by summing the number of items correctly recalled in the correct order, a 

measure known as the partial score (Turner & Engle, 1989). Participants who completed the 

complex span tasks also completed a questionnaire collecting measures of their 

monolingual/bilingual status and other variables known to influence executive functioning. The 

questionnaire data were irrelevant for the present purposes and were not analyzed. (note 8) 

Results 

Prior to the analyses, responses faster than 300 ms on either the color identification task or the 

WM task and responses slower than the time limit on the color identification task (accounting 

for 0.6% and 1.2% of the data in Experiments 3A and 3B, respectively) were discarded. Trials on 

which participants failed to respond correctly on the WM task (which accounted for 4.0% and 

6.3% of the data in the low- and high-load groups in Experiment 3A, and 4.3% and 6.8% of the 

data in the low- and high-load groups in Experiment 3B) were removed as well. Latency 

analyses were conducted only on correct responses in the color identification task. Experiments 

3A and 3B were analyzed in the same way as Experiments 1A and 1B, respectively, with the 

addition of Order (Experiment 3A first vs. Experiment 3B first) as a factor. To preview the results, 

Order did reveal some effects of practice (e.g., reduced latencies and error rates if the 
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experiment in question was performed second) but did not modify the theoretically important 

interactions in the WM-load analysis in either experiment (i.e., the Contingency by WM Load 

interaction in Experiment 3A and the Congruency by Item Type by WM Load interaction in 

Experiment 3B). Thus, for simplicity, we present the mean RTs and error rates in Tables 7 and 8 

for Experiments 3A and 3B, respectively, without splitting the data by Order. 
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Table 7. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 3A – 

Manual Non-conflict Color Identification Task 

 

 

 

 

 

 

 

 

 

 

 

  

Contingency RTs Error rates 

No load    

   High 665 (7) 2.1 (.2) 

   Low 728 (10) 3.6 (.4) 

  Contingency effect  63 1.5 

 

Low load  

  

  High 783 (18) 2.8 (.4) 

   Low 814 (18) 3.9 (.8) 

  Contingency effect  31 1.1 

 

High load  

  

   High 846 (25) 3 (.4) 

   Low 863 (23) 2.7 (.7) 

  Contingency effect  17 -.3 
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Table 8. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Experiment 3B – 

Manual Stroop Task 

 RTs  Error rates  

Congruency Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item type 

effect 

No load       

   Congruent 699 (10) 771 (14) 72 1.8 (.3) 2.9 (.6) 1.1 

   Incongruent 885 (14) 829 (13) -56 6.1 (.8) 4.1 (.4) -2 

   Congruency Effect 186  58 -128 4.3 1.2 -3.1 

 

Low load 

      

   Congruent 825 (24) 878 (24) 53 2.2 (.5) 3.3 (1) 1.1 

   Incongruent 1012 (26) 948 (21) -64 7.4 (1.4) 4.8 (.7) -2.6 

   Congruency Effect 187  70 -117 5.2 1.5 

 

-3.7 

High load       

   Congruent   869 (26) 920 (28) 51 2.6 (.4) 2.3 (.9) -.3 

   Incongruent 1022 (24) 974 (21) -48 4.8 (1.1) 3.8 (.7) -1 

   Congruency Effect   153  54 -99 2.2 1.5 -.7 
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In addition, similar to Hutchison (2011), an extreme-groups analysis was performed for the no-

load condition participants comparing performance for low and high WM-capacity individuals. 

For this analysis, twenty-eight participants were removed from the no-load group because their 

accuracy on the distractor component of one or more of the complex span tasks was below 

75%. (note 9) For each of the remaining 98 participants, a single composite score was 

computed from the average of the partial scores obtained in each of the three complex span 

tasks. A quartile split was then conducted on this composite score. The first quartile (composed 

of twenty-four participants) was classified as the low WM-capacity group and the last quartile 

(composed of another twenty-four participants) was classified as the high WM-capacity group. 

Again, to preview the results, Order had no impact on the most relevant interactions, i.e., the 

interaction between Contingency and WM Capacity in Experiment 3A and the interaction 

between Congruency, Item Type and WM Capacity in Experiment 3B. Thus, we present the 

mean RTs and error rates for the four quartiles (the first and the last quartiles plus the middle 

two quartiles) in Tables 9 and 10 for Experiments 3A and 3B, respectively, without splitting the 

data by Order. 
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Table 9. 

Mean RTs and Percentage Error Rates (and Corresponding Standard Errors) for Low and High 

WM-Capacity groups in Experiment 3A  – Manual Non-conflict Color Identification Task 

 

 

 

 

 

 

 

 

 

 

 

  

Contingency RTs Error rates 

Low WM capacity    

   High 657 (16) 2.9 (.7) 

   Low 720 (18) 6.3 (.9) 

  Contingency effect  63 3.4 

Medium-low WM capacity   

   High 726 (13) 1.7 (.4) 

   Low 801 (18) 2.5 (.7) 

  Contingency effect  75 .8 

Medium-high WM capacity   

   High 635 (14) 1.6 (.4) 

   Low 696 (20) 1.7 (.6) 

  Contingency effect  61 .1 

High WM capacity   

   High 637 (15) 1.3 (.3) 

   Low 704 (20) 3.4 (.9) 

  Contingency effect  67 2.1 
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Table 10. 

Mean RTs and Error Rates (and Corresponding Standard Errors) for Participants in the Four WM-

Capacity Quartiles in Experiment 3B – Manual Stroop Task 

 RTs  Error rates  

Congruency Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

Mostly-

congruent 

items 

Mostly-

incongruent 

items 

Item 

type 

effect 

Low WM capacity       

   Congruent 702 (25) 761 (32) 59 2.7 (.8) 3.9 (1.1) 1.2 

   Incongruent 918 (35) 844 (30) -74 11.2 (2.4) 5.8 (1.2) -5.4 

   Congruency Effect 216  83 -133 8.5 1.9 -6.6 

Medium-low WM 

capacity 

      

   Congruent 742 (23) 817 (31) 75 1.5 (.6) 1.3 (.8) -.2 

   Incongruent 902 (34) 876 (29) -26 4.8 (1.4) 2.7 (.8) -2.1 

   Congruency Effect 160  59 -101 3.3 1.4 -1.9 

Medium-high WM 

capacity 

      

   Congruent 660 (19) 750 (30) 90 1.1 (.5) 4.2 (2.1) 3.1 

   Incongruent 834 (27) 798 (25) -36 5.7 (1.6) 3.4 (1) -2.3 

   Congruency Effect 174  48 -126 4.6 -.8 -5.4 
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High WM capacity       

   Congruent 666 (21) 721 (27) 55 1.5 (.6) .7 (.5) -.8 

   Incongruent 874 (36) 777 (25) -97 3.5 (1.2) 3.3 (.8) -.2 

   Congruency Effect 208  56 -152 2 2.6 .6 
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In addition to the extreme-groups analysis, a procedure that involves arbitrarily splitting the 

sample and removing half of that sample from the analyses, another analysis was conducted 

using all 98 individuals in the no-load group who maintained an accuracy on the distractor 

component of each of the complex span tasks above the 75% threshold. This analysis was 

conducted using mixed-effects modelling, a type of analysis which permits use of both 

continuous and categorical variables, even in repeated-measures designs (the fixed effects), 

while controlling for variance among the participants and the items being used (the random 

effects; Baayen, 2008; Baayen, Davidson, & Bates, 2008). Specifically, latencies and errors were 

analyzed using generalized linear mixed-effects models (GLMMs) in R version 3.5.1 (R Core 

Team, 2018), treating subjects, colors, and words as random effects. For Experiment 3A, 

Contingency (high vs. low), Order (Experiment 3A first vs. Experiment 3B first), and Span Score 

(the composite score from the complex span tasks, a continuous variable) were entered as fixed 

effects. For Experiment 3B, the fixed effects were Congruency (congruent vs. incongruent), Item 

Type (mostly congruency vs. mostly incongruent), Order (Experiment 3A first vs. Experiment 3B 

first), and Span Score. In other words, in these analyses, rather than comparing low vs. high 

WM-capacity individuals, the full range of WM capacity sampled was analyzed using the 

composite score from the complex span tasks as a continuous index of participants’ WM 

capacity (the higher the score, the higher the WM capacity; for similar analyses in the context 

of Stroop and Stroop-like tasks, see Meier & Kane, 2013, 2015). 

For both experiments, the Span Score was standardized (i.e., centered and scaled) to help 

model estimation (Bolker, 2019). Prior to running the model, R-default treatment contrasts 

were changed to sum-to-zero contrasts (i.e., contr.sum) to help interpret lower-order effects in 
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the presence of higher-order interactions (Levy, 2014; Singmann & Kellen, 2018). The lme4 

package, version 1.1-18-1 (Bates, Mächler, Bolker, & Walker, 2015) was used to run the 

generalized linear mixed-effects model. The model was fit by maximum likelihood with the 

Laplace approximation technique. Model estimation was conducted using the BOBYQA 

optimizer, an optimizer known to generate fewer false-positive convergence failures than other 

optimizers in the current version of lme4, with a maximum number of one million iterations 

(Bolker, 2019). The ggplot2 package, version 3.1.0 (Wickham, 2016), was used to generate 

graphs. 

Finally, note that in the latency analysis, we used a generalized linear mixed-effects model 

(GLMM) instead of a (more commonly used) linear mixed-effects model (LMM) because 

generalized linear models, unlike linear models, do not assume a normally distributed 

dependent variable. Therefore, generalized linear models can accommodate the typically 

positively skewed distribution of RT data with no need to apply nonlinear transformations to 

normalize those data. These transformations, often applied when using linear mixed-effects 

models, have the downside of systematically altering the pattern and size of interaction terms, 

making it difficult to interpret those terms (Balota, Aschenbrenner, & Yap, 2013; Lo & Andrews, 

2015). A Gamma distribution was used to fit the raw RTs, with an identity link between fixed 

effects and the dependent variable (Lo & Andrews, 2015). The R scripts used to perform the 

analyses are available at https://osf.io/rtnw2/. 

 

 

https://osf.io/rtnw2/
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Experiment 3A (non-conflict color identification task) 

WM load analysis 

RTs. There were main effects of Contingency (high-contingency faster than low-contingency), 

F(1, 202) = 49.20, MSE = 109472, p < .001, 𝜂𝑝
2 = .196, Order (overall faster latencies for 

participants who performed Experiment 3A following Experiment 3B than for participants who 

performed Experiment 3A first), F(1, 202) = 9.42, MSE = 206034, p = .002, 𝜂𝑝
2 = .045, and WM 

Load, F(2, 202) = 40.39, MSE = 883268, p < .001, 𝜂𝑝
2 = .286. Post hoc t-tests using the Tukey HSD 

adjustment for multiple comparisons revealed that the no-load group was faster than both the 

low-load group (p < .001) and the high-load group (p < .001), and that the low-load group was 

faster than the high-load group (p = .046). Importantly, Contingency and WM Load interacted, 

F(2, 202) = 9.10, MSE = 20243, p < .001, 𝜂𝑝
2 = .083. Follow-up ANOVAs comparing every pair of 

load groups were conducted to explore this interaction. Inspection of the Contingency by WM 

Load interactions showed that the contingency learning effect for the no-load group (63 ms) 

was larger than those for the low-load group (31 ms), F(1, 165) = 7.97, MSE = 17504, p = .005, 

𝜂𝑝
2 = .046, and the high-load group (17 ms), F(1, 161) = 14.89, MSE = 32173, p < .001, 𝜂𝑝

2 = .085, 

whereas low- and high-load groups did not significantly differ, F(1, 78) = .76, MSE = 1828, p 

= .387, 𝜂𝑝
2 = .010. Paired t-tests conducted for each load group separately, however, revealed 

significant contingency learning effects for both the no-load group, t(125) = -11.07, p < .001, 

and the low-load group, t(42) = -2.93, p = .006, but not for the high-load group, t(38) = -1.53, p 

= .135. There was also a marginal interaction between Contingency and Order, F(1, 202) = 2.98, 

MSE = 6639, p = .086, 𝜂𝑝
2 = .015, indicating a tendency for overall larger contingency learning 



211 
 

effects for participants who did Experiment 3A following Experiment 3B (54 ms) than for 

participants who did Experiment 3A first (42 ms). Likely, this marginal interaction reflects a 

practice effect whereby contingencies are more easily learned when progressing in the 

experiment (e.g., Schmidt & De Houwer, 2016). 

Error rates. The only significant effect was that of Contingency (high-contingency more accurate 

than low-contingency), F(1, 202) = 6.08, MSE = .005, p = .014, 𝜂𝑝
2 = .029. There was also a 

tendency for contingency learning effects to decrease with increasing WM load, although the 

Contingency by WM Load interaction did not reach significance, F(2, 202) = 2.77, MSE = .002, p 

= .065, 𝜂𝑝
2 = .027, and the Bayes Factor indicated no real preference for either the model with 

the interaction or the model without it, BF01 = 1.15. 

WM capacity analysis – extreme-groups ANOVA 

RTs. Contingency (high-contingency faster than low-contingency) was the only significant effect, 

F(1, 44) = 50.36, MSE = 100277, p < .001, 𝜂𝑝
2 = .534. Although individuals with high WM Capacity 

were numerically faster than individuals with low WM Capacity, WM Capacity was not 

statistically significant, F(1, 44) = .52, MSE = 6573, p = .47, 𝜂𝑝
2 = .012. In addition, WM Capacity 

did not interact with Contingency, F(1, 44) = .07, MSE = 131, p = .80, 𝜂𝑝
2 = .001, indicating 

equivalent contingency learning effects for the low (63 ms) and the high (67 ms) WM Capacity 

groups. Bayesian analyses revealed that there was “moderate” evidence for the absence of the 

interaction, BF01 = 3.47. 



212 
 

Error rates. There was a main effect of Contingency (high-contingency more accurate than low-

contingency), F(1, 44) = 18.52, MSE = .018, p < .001, 𝜂𝑝
2 = .296, and WM Capacity (high WM-

capacity group more accurate than low WM-capacity group), F(1, 44) = 7.66, MSE = .012, p 

= .008, 𝜂𝑝
2 = .148. There was no interaction between Contingency and WM Capacity, however, 

F(1, 44) = .84, MSE = .001, p = .37, 𝜂𝑝
2 = .019, indicating that the contingency learning effects for 

the low (3.4%) and high (2.1%) WM Capacity groups were equivalent. In the Bayesian analyses, 

the evidence for the absence of this interaction, however, was only “anecdotal”, BF01 = 2.33. 

WM capacity analysis – full-sample GLMM 

RTs. There were main effects of Contingency (high-contingency faster than low-contingency), ß 

= -31.60, SE = 1.94, z = -16.30, p < .001, Order (participants who performed Experiment 3A 

following Experiment 3B were faster than participants who performed Experiment 3A first), ß = 

-9.11, SE = 3.31, z = -2.77, p = .006, and Span Score (latencies decreased with higher scores), ß = 

-15.08, SE = 3.37, z = -4.48, p < .001. There was also an interaction between Order and Span 

Score, ß = -17.08, SE = 4.14, z = -4.12, p < .001, and a three-way interaction between 

Contingency, Order, and Span Score, ß = 6.82, SE = 1.99, z = 3.47, p < .001. 

To explore these interactions, the data were split by Order and analyzed separately. For 

participants performing Experiment 3A first, there were main effects of both Contingency (high-

contingency faster than low-contingency), ß = -29.02, SE = 2.39, z = -12.13, p < .001, and Span 

Score (latencies decreased with higher scores), ß = -33.59, SE = 3.84, z = -8.75, p < .001, as well 

as a Contingency by Span Score interaction, ß = 5.77, SE = 2.39, z = 2.29, p = .022. This 

interaction indicated that contingency learning effects tended to diminish with higher Span 
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Score and is represented in Figure 1 as a scatterplot of participants’ mean latencies to low- and 

high-contingency items as a function of their Span Score. Here, when moving from the left side 

of the graph (lower span scores) to the right side of the graph (higher span scores), latencies 

diminish overall, and so does the distance between the solid line (high-contingency items) and 

the dashed line (low-contingency items), i.e., the contingency learning effect.  
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Figure 1. 

The Impact of Span Score on the Contingency learning Effect in Latencies for No-Load 

Participants in Experiment 3A who did Experiment 3A First 

 

Note. For each participant, the mean latency for high- and low-contingency items is marked 

with a circle and a triangle, respectively. Regression slopes (with 95% confidence interval bands) 

for high- and low-contingency items are marked with a solid line and a dashed line, respectively. 
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For participants performing Experiment 3A following Experiment 3B, there was the usual effect 

of Contingency, ß = -33.28, SE = 2.67, z = -12.48, p < .001, but not of Span Score, ß = 1.92, SE = 

5.54, z = .35, p = .73. Contingency and Span Score interacted in this case as well, ß = -7.74, SE = 

2.85, z = -2.71, p = .007. However, as represented in Figure 2, the pattern of this interaction was 

the opposite of that found in participants who did Experiment 3A first: Here, the contingency 

learning effect tended to increase with higher Span Score (and Span Score did not reduce 

latencies overall). 
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Figure 2. 

The Impact of Span Score on the Contingency learning Effect in Latencies for No-Load 

Participants in Experiment 3A who did Experiment 3A Following Experiment 3B 

 

Note. For each participant, the mean latency for high- and low-contingency items is marked 

with a circle and a triangle, respectively. Regression slopes (with 95% confidence interval bands) 

for high- and low-contingency items are marked with a solid line and a dashed line, respectively. 
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Errors. The only significant effects were those of Contingency (high-contingency more accurate 

than low-contingency), ß = .29, SE = .06, z = 4.63, p < .001, and Span Score (accuracy increased 

with higher scores), ß = .31, SE = .08, z = 3.77, p < .001. This general pattern is represented in 

Figure 3, with higher error rates for low-contingency than high-contingency items and 

regression lines going down for both items types with higher span scores. There was, however, 

also a marginal three-way interaction between Contingency, Order, and Span Score, ß = -.11, SE 

= .06, z = -1.87, p = .062, indicating a numerical tendency for a pattern similar to that found in 

the latencies: Contingency learning effects tended to decrease with higher scores for 

participants who did Experiment 3A first but they tended to increase with higher scores for 

participants who did Experiment 3A following Experiment 3B. 
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Figure 3. 

The Impact of Span Score on the Contingency learning Effect in Error Rates for No-Load 

Participants in Experiment 3A 

 

Note. For each participant, the mean latency for high- and low-contingency items is marked 

with a circle and a triangle, respectively. Regression slopes (with 95% confidence interval bands) 

for high- and low-contingency items are marked with a solid line and a dashed line, respectively. 
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Experiment 3B (Stroop task) 

WM load analysis 

RTs. There were main effects of Congruency (congruent faster than incongruent), F(1, 202) = 

301.62, MSE = 2222028, p < .001, 𝜂𝑝
2 = .599, Order (overall faster latencies for participants who 

performed Experiment 3B following Experiment 3A than for participants who performed 

Experiment 3B first), F(1, 202) = 7.08, MSE = 445799, p = .008, 𝜂𝑝
2 = .034, and WM Load, F(2, 202) 

= 28.63, MSE = 1802531, p < .001, 𝜂𝑝
2 = .221. Post hoc t-tests using the Tukey HSD adjustment 

for multiple comparisons revealed that the no-load group was faster than both the low-load 

group (p < .001) and the high-load group (p < .001), while the low-load and high-load groups did 

not differ significantly from one another (p = .513). There was an interaction between 

Congruency and Order, F(1, 202) = 7.15, MSE = 52661, p < .001, 𝜂𝑝
2 = .034, indicating that, 

overall, congruency effects were larger for participants who did Experiment 3B following 

Experiment 3A (134 ms) than for participants who did Experiment 3B first (111 ms). This result 

seems to indicate that participants were overall less prepared to deal with conflict in the Stroop 

task after having performed a version of the color identification task in which there was no 

conflict to deal with. More importantly, there was also an interaction between Congruency and 

Item Type, F(1, 202) = 98.41, MSE = 521158, p < .001, 𝜂𝑝
2 = .328, indicating that a regular item-

specific proportion-congruent effect was found, with larger congruency effects for mostly-

congruent items (180 ms) than for mostly-incongruent items (60 ms). Finally, there was again 

no three-way interaction between Congruency, Item Type, and WM Load, F(2, 202) = .63, MSE = 

3327, p = .54, 𝜂𝑝
2 = .006, indicating that the item-specific proportion-congruent effect was 
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equivalent in all load groups. Indeed, Bayesian analyses revealed that there was “strong” 

evidence in favor of the absence of this three-way interaction, BF01 = 13.09. 

Error rates. There were main effects of Congruency (congruent more accurate than 

incongruent), F(1, 202) = 39.76, MSE = .108, p < .001, 𝜂𝑝
2 = .164, and Order (participants who did 

Experiment 3B following Experiment 3A were overall more accurate than those who did 

Experiment 3B first), F(1, 202) = 4.41, MSE = .025, p = .037, 𝜂𝑝
2 = .021. Congruency also 

interacted with Item Type, F(1, 202) = 8.63, MSE = .024, p = .004, 𝜂𝑝
2 = .041, indicating that 

congruency effects were larger for mostly-congruent items (4.1%) than for mostly-incongruent 

items (1.3%). This item-specific proportion-congruent effect was not modulated by WM Load, 

as no three-way interaction was found between Congruency, Item Type, and WM Load, F(2, 202) 

= .923, MSE = .003, p = .40, 𝜂𝑝
2 = .009. Once again, in the Bayesian analyses, there was 

“moderate” evidence in support of the model without the interaction, BF01 = 6.35.  

The item-specific proportion-congruent effect was, however, modulated by Order, i.e., there 

was a three-way interaction between Congruency, Item Type, and Order, F(2, 202) = 5.28, MSE 

= .015, p = .023, 𝜂𝑝
2 = .025. To explore this three-way interaction, two separate ANOVAs were 

conducted for each order. Inspection of the Congruency by Item Type interaction in these 

ANOVAs revealed a regular item-specific proportion-congruent effect for participants who did 

Experiment 3B first (congruency effect for mostly-congruent items: 5.1%; congruency effect for 

mostly-incongruent items: .7%), F(1, 102) = 10.64, MSE = .039, p = .002, 𝜂𝑝
2 = .094. In contrast, 

no significant item-specific proportion-congruent effect was observed for participants who did 

Experiment 3B after Experiment 3A (congruency effect for mostly-congruent items: 3%; 
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congruency effect for mostly-incongruent items: 1.8%), F(1, 100) = .30, MSE = .001, p = .59, 𝜂𝑝
2 

= .003. 

WM capacity analysis – extreme-groups ANOVA 

RTs. There was a main effect of Congruency (congruent faster than incongruent), F(1, 44) = 

179.64, MSE = 940783, p < .001, 𝜂𝑝
2 = .803, and an interaction between Congruency and Item 

Type, F(1, 44) = 39.57, MSE = 238229, p < .001, 𝜂𝑝
2 = .473. The interaction indicated that, as 

usual, there was an item-specific proportion-congruent effect, with a larger congruency effect 

for mostly-congruent items (211 ms) than for mostly-incongruent items (70 ms). Although the 

high WM-capacity group was numerically faster than the low WM-capacity group, WM Capacity 

did not approach statistical significance, F(1, 44) = 1.44, MSE = 89535, p = .237, 𝜂𝑝
2 = .032. In 

addition, WM Capacity did not modulate the pattern of item-specific proportion-congruent 

effects, i.e., there was no three-way interaction between Congruency, Item Type, and WM 

Capacity, F(1, 44) = .33, MSE = 1966, p = .571, 𝜂𝑝
2 = .007. The Bayes Factor, BF01 = 3.19, indicated 

“moderate” evidence for the absence of this three-way interaction. Finally, there was a 

marginal three-way interaction between Congruency, Order, and WM Capacity, F(1, 44) = 3.98, 

MSE = 20840, p = .052, 𝜂𝑝
2 = .083. This interaction indicated a numerical tendency for high WM-

capacity participants to show overall smaller congruency effects than low WM-capacity 

participants, but only for participants who did Experiment 3B following Experiment 3A.  

Error rates. There were main effects of Congruency (congruent more accurate than 

incongruent), F(1, 44) = 21.96, MSE = .069, p < .001, 𝜂𝑝
2 = .333, WM Capacity (high WM-capacity 
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group more accurate than low WM-capacity group), F(1, 44) = 15.56, MSE = .070, p < .001, 𝜂𝑝
2 

= .261, and a marginal effect of Item Type, F(1, 44) = 3.50, MSE = .010, p = .068, 𝜂𝑝
2 = .074, 

indicating a tendency for mostly-incongruent items to be more accurate than mostly-congruent 

items. WM Capacity interacted with Order, F(1, 44) = 5.51, MSE = .025, p = .023, 𝜂𝑝
2 = .111, 

indicating that WM Capacity had a larger impact on error rates for participants who did 

Experiment 3B first (low WM-capacity: 7.2%; high WM-capacity: 2.2%) than for those who did 

Experiment 3B following Experiment 3A (low WM-capacity: 4.2%; high WM-capacity: 2.9%). The 

Congruency by Item Type interaction, with larger congruency effects for mostly-congruent 

items than for mostly-incongruent items, was marginal, F(1, 44) = 3.73, MSE = .012, p = .060, 𝜂𝑝
2 

= .078. Congruency marginally interacted with WM Capacity as well, F(1, 44) = 3.88, MSE = .012, 

p = .055, 𝜂𝑝
2 = .081, indicating that congruency effects tended to be smaller for the high WM-

capacity group. Most importantly, these two-way interactions were qualified by a three-way 

interaction between Congruency, Item Type, and WM Capacity, F(1, 44) = 5.25, MSE = .017, p 

= .027, 𝜂𝑝
2 = .107. 

To explore the three-way interaction, low and high WM-capacity groups were analyzed 

separately. In the low WM-capacity group, there was a main effect of Congruency, F(1, 22) = 

14.80, MSE = .070, p = .001, 𝜂𝑝
2 = .402, and a Congruency by Item Type interaction, F(1, 22) = 

5.42, MSE = .029, p = .030, 𝜂𝑝
2 = .198. This interaction indicated a regular item-specific 

proportion-congruent effect, with a larger congruency effect for mostly-congruent items (8.5%) 

than for mostly-incongruent items (1.9%). In the high WM-capacity group, on the other hand, 

the only significant effect was that of Congruency, F(1, 22) = 7.34, MSE = .012, p = .013, 𝜂𝑝
2 
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= .250, with no evidence of an item-specific proportion-congruent effect, F(1, 22) = .18, MSE 

= .000, p = .674, 𝜂𝑝
2 = .008. Indeed, the congruency effect for mostly-congruent items (2%) was 

slightly smaller than the congruency effect for mostly-incongruent items (2.6%). 

WM capacity analysis – full-sample GLMM 

RTs. There were main effects of Congruency (congruent faster than incongruent), ß = -61.00, SE 

= 1.84, z = -33.18, p < .001, Order (overall faster latencies for participants who did Experiment 

3B following Experiment 3A than for participants who did Experiment 3B first), ß = -42.43, SE = 

3.27, z = -12.97, p < .001, and Span Score (latencies decreased with higher scores), ß = -18.42, 

SE = 2.80, z = -6.58, p < .001. Congruency interacted with Item Type, ß = -29.83, SE = 1.82, z = -

16.41, p < .001, indicating a regular item-specific proportion-congruent effect. Congruency also 

interacted with Span Score, ß = 4.77, SE = 2.11, z = 2.26, p = .024, indicating that, overall, 

congruency effects tended to decrease with higher scores. However, there was no three-way 

interaction between Congruency, Item Type, and Span Score, ß = -1.63, SE = 1.93, z = -.85, p 

= .40, suggesting that the item-specific proportion-congruent effect, overall, did not change 

across the range of scores, a pattern represented in Figure 4. In this scatterplot, the distance 

between the solid line (congruent items in the mostly-congruent condition) and the dotted line 

(incongruent items in the mostly-congruent condition) is larger than the distance between the 

long-dashed line (congruent items in the mostly-incongruent condition) and the dot-dash 

patterned line (incongruent items in the mostly-incongruent condition), indicating an item-

specific proportion-congruent effect. This pattern remains similar when moving from the left 

side of the graph (lower span scores) to the right side of the graph (higher span scores) even if 
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latencies diminish and all lines tend to come together, indicating reduced congruency effects 

with higher scores. 
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Figure 4. 

The Impact of Span Score on the Item-Specific Proportion-Congruent Effect in Latencies for No-

Load Participants in Experiment 3B 

 

Note. For each participant, the mean latency for congruent items in the mostly-congruent 

condition, incongruent items in the mostly congruent condition, congruent items in the mostly-

incongruent condition, and incongruent items in the mostly-incongruent condition, is marked 

with a square, a circle, a triangle, and a rhombus, respectively. Regression slopes (with 95% 

confidence interval bands) for congruent items in the mostly-congruent condition, incongruent 

items in the mostly congruent condition, congruent items in the mostly-incongruent condition, 

and incongruent items in the mostly-incongruent condition, are marked with a solid line, a 

dotted line, a long-dashed line, and a dot-dash patterned line, respectively. 
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On the other hand, the impact of Span Score on overall performance and the item-specific 

proportion-congruent effect was modulated by Order. Specifically, there was an interaction 

between Order and Span Score, ß = -16.32, SE = 2.86, z = -5.71, p < .001, a three-way interaction 

between Congruency, Order, and Span Score, ß = 5.35, SE = 1.77, z = 3.02, p = .003, and a 

marginal four-way interaction between Congruency, Item Type, Order, and Span Score, ß = 3.90, 

SE = 1.99, z = 1.96, p = .050. To explore these interactions, the data were split by Order and 

analyzed separately. For participants performing Experiment 3B first, the only significant effects 

were the main effect of Congruency, ß = -57.84, SE = 2.93, z = -19.78, p < .001, and the 

Congruency by Item Type interaction, ß = -31.57, SE = 3.11, z = -10.16, p < .001, reflecting a 

regular item-specific proportion-congruent effect. There was also a numerical tendency for this 

item-specific proportion-congruent effect to increase with higher Span Score, however, the 

three-way interaction between Congruency, Item Type, and Span Score reflecting this tendency 

did not reach significance, ß = -5.23, SE = 3.14, z = -1.67, p = .096. For participants performing 

Experiment 3B following Experiment 3A, in addition to the main effect of Congruency, ß = -

63.83, SE = 2.65, z = -24.10, p < .001, Span Score also had an effect, ß = -36.14, SE = 4.40, z = -

8.22, p < .001, with higher scores leading to faster latencies overall. There was also an 

interaction between Congruency and Item Type (a regular item-specific proportion-congruent 

effect), ß = -27.60, SE = 2.69, z = -10.27, p < .001, and an interaction between Congruency and 

Span Score, ß = 10.69, SE = 2.66, z = 4.02, p < .001, with the last interaction indicating 

decreasing congruency effects with higher scores. There was, however, no indication that Span 

Score modulated the item-specific proportion-congruent effect, i.e., there was no three-way 

interaction between Congruency, Item Type, and Span Score, ß = 2.27, SE = 2.72, z = .83, p = .40. 
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The absence of a significant three-way interaction between Congruency, Item Type, and Span 

Score in both order versions (Experiment 3B first and Experiment 3B following Experiment 3A) 

suggests that although Order did appear to modulate the direction of the relation between the 

item-specific proportion-congruent effect and Span Score (the item-specific proportion-

congruent effect tended to increase with higher scores for participants who did Experiment 3B 

first whereas it tended to decrease for participants who did Experiment 3B following 

Experiment 3A), there was little evidence in either order version that this relation, in one 

direction or the other, actually existed.  

Errors. There were main effects of Congruency (congruent more accurate than incongruent), ß 

= .47, SE = .06, z = 7.18, p < .001, and Span Score (fewer errors with higher scores), ß = .28, SE 

= .10, z = 2.92, p = .003. There was also an interaction between Congruency and Item Type, ß 

= .27, SE = .06, z = 4.39, p < .001, reflecting a regular item-specific proportion-congruent effect. 

However, this item-specific proportion-congruent effect was not modulated by Span Score, i.e., 

there was no three-way interaction between Congruency, Item Type, and Span Score, ß = -.02, 

SE = .06, z = -.27, p = .79. The relation between Congruency, Item Type, and Span Score is 

represented in the scatterplot in Figure 5. Even though the item-specific proportion-congruent 

effect is more noticeable in the left side of the graph, statistically, there was no evidence that 

this effect was larger for participants scoring lower on the complex span tasks than for those 

scoring higher. 
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Figure 5. 

The Impact of Span Score on the Item-Specific Proportion-Congruent Effect in Error Rates for No-

Load Participants in Experiment 3B 

 

Note. For each participant, the mean latency for congruent items in the mostly-congruent 

condition, incongruent items in the mostly congruent condition, congruent items in the mostly-

incongruent condition, and incongruent items in the mostly-incongruent condition, is marked 

with a square, a circle, a triangle, and a rhombus, respectively. Regression slopes (with 95% 

confidence interval bands) for congruent items in the mostly-congruent condition, incongruent 

items in the mostly congruent condition, congruent items in the mostly-incongruent condition, 

and incongruent items in the mostly-incongruent condition, are marked with a solid line, a 

dotted line, a long-dashed line, and a dot-dash patterned line, respectively. 
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Finally, Span Score interacted with Order, ß = -.21, SE = .10, z = -2.19, p = .029. Splitting the data 

by Order revealed that this interaction emerged because higher span reduced errors in 

participants who did Experiment 3B first, ß = .47, SE = .15, z = 3.19, p = .001, but not in 

participants who did Experiment 3B following Experiment 3A, ß = .07, SE = .12, z = .59, p = .55.   

Discussion 

Using a within-subject design, Experiments 3A and 3B replicated the basic data patterns found 

in Experiments 2A and 2B: Increasing WM load impairs participants’ ability to learn word-

response associations in the non-conflict color identification task, but it does not affect the 

ability of the same participants to produce item-specific proportion-congruent effects in the 

Stroop task. The robustness of the pattern found for Experiments 2A and 2B is thus confirmed. 

The WM-capacity analysis conducted for participants in the no-load condition produced a 

pattern which did not parallel that of the load manipulation.  In the extreme-groups 

comparison, there was no evidence that the process of contingency learning in the non-conflict 

color identification task (Experiment 3A) was any different in low WM-capacity individuals 

compared to high WM-capacity individuals. In contrast, a difference between low and high 

WM-capacity individuals did emerge in item-specific proportion-congruent effects in the Stroop 

task (Experiment 3B). Specifically, in the Stroop task, high WM-capacity participants showed an 

item-specific proportion-congruent effect in their latencies but not in their error rates, whereas 

low WM-capacity participants showed a clear item-specific proportion-congruent effect in both 

dependent measures. This pattern of findings is virtually identical to that reported by Hutchison 

(2011), suggesting that the peculiarities of Hutchison’s experiment (e.g., the non-standard 
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design for examining contingency learning and item-specific proportion-congruent effects, the 

simultaneous list-wide proportion-congruent manipulation) and the response modality he 

employed (i.e., vocal responding to colors) had little or no role in producing his results.  

A more complicated picture emerged in the full-sample analysis, however, an analysis in which 

a continuous measure of WM capacity was used. In this analysis, the order in which the two 

tasks (the non-conflict color identification task and the Stroop task) were completed had an 

important role in modulating the relation between WM capacity and contingency learning in 

the non-conflict color identification task. For participants who completed the non-conflict color 

identification task first, higher WM capacity was associated with smaller contingency learning 

effects. For participants who completed the non-conflict color identification task following the 

Stroop task, the opposite pattern was found, with higher WM capacity leading to larger 

contingency learning effects. In sum, unlike in the extreme-groups analysis, there was some 

evidence in this analysis for a relation between WM capacity and contingency learning effects, 

although this relation does not appear to be as straightforward as the relation between WM 

load and contingency learning appears to be.  

The results from the full-sample analysis of the Stroop task also differed from those from the 

extreme-groups analysis in one important way. Specifically, there was no evidence in the full-

sample analysis that WM capacity modulated item-specific proportion-congruent effects in the 

error rates. In the latencies, there was a tendency for the item-specific proportion-congruent 

effect to increase with higher WM capacity for participants who completed the Stroop task first 

and an opposite tendency for that effect to decrease with higher WM capacity for participants 
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who completed the Stroop task following the non-conflict color identification task. However, 

neither of these tendencies was significant, suggesting that in the latencies as well as in the 

error rates, overall, item-specific proportion-congruent effects did not vary as a function of WM 

capacity. 

In sum, the results of the WM-load analysis of Experiments 3A and 3B, similar to the results of 

Experiments 2A and 2B, clearly indicate that contingency learning may not be the sole process 

underlying the item-specific proportion-congruent effect: Reducing WM resources by means of 

a concurrent WM load reduces the contingency learning effect in the non-conflict color 

identification task but not the item-specific proportion-congruent effect in the Stroop task. In 

contrast, the results of the WM-capacity analyses of Experiments 3A and 3B seem to suggest 

that, overall, inter-individual variability in WM resources may not have an especially strong 

impact on either contingency learning or adaptation to item-specific conflict frequency, 

although additional factors, such as practice effects associated with the order in which tasks 

were performed, may have an important role in these patterns, a point to which we return in 

the General Discussion.  

General Discussion 

The item-specific proportion-congruent effect: Does it have “everything to do with 

contingency”? 

The contingency learning account of proportion-congruent effects has led to the 

reconsideration of a vast amount of evidence once thought to support the existence of a 

mechanism of adaptation to conflict frequency (Schmidt, 2013b). This contingency learning 
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account has been especially compelling in the case of the item-specific proportion-congruent 

effect (Jacoby et al., 2003), as most researchers have now concluded that learning of word-

response contingencies, rather than adaptation to item-specific conflict frequency, is the 

default process governing performance in item-specific proportion-congruent manipulations 

using the two-item set design, i.e., a type of design that allows learning of contingencies for all 

stimuli (Bugg & Hutchison, 2013; Schmidt, 2013a, 2013b; Schmidt & Besner, 2008). The present 

research, however, casts doubt on this conclusion. 

In the present research, non-conflict and Stroop versions of a color identification task were 

combined with a concurrent WM-load task in order to examine whether increasing WM load 

affects the contingency learning effect and the item-specific proportion-congruent effect in the 

same way. According to Schmidt et al. (2010), contingency learning is a resource-dependent 

process, as demonstrated by the fact that a high WM load reduces contingency learning effects 

in a non-conflict color identification task. However, if the process that produces contingency 

learning effects is the same as the process that produces item-specific proportion-congruent 

effects (Schmidt & Besner, 2008), a similar pattern should emerge for item-specific proportion-

congruent effects under load. Specifically, increasing demands on WM should reduce the 

contingency learning effects that are assumed to cause the characteristic pattern of the item-

specific proportion-congruent effect. As a result, item-specific proportion-congruent effects, 

similar to contingency learning effects, should be reduced by increasing WM load. 

The results from our experiments are not consistent with this prediction, however. Using vocal 

responding to colors, Experiments 1A and 1B did yield evidence that contingency learning and 
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item-specific proportion-congruent effects are alike in that they are both unaffected by WM 

load. The more central message from those results, however, is merely that the vocal 

responding procedure fails to replicate Schmidt et al.’s (2010) original finding in the non-conflict 

color identification task, possibly because vocal responding elicits such small baseline 

contingency learning effects (Forrin & MacLeod, 2017; Spinelli et al., under review) that an 

observable further reduction is virtually impossible to achieve.  

Manual responding to colors (plus the addition of feedback on each trial), however, not only 

increased baseline contingency learning effects in the non-conflict color identification task but 

also successfully replicated the finding that increasing WM load reduces the magnitude of such 

effects (Experiments 2A). In contrast, no parallel reduction of item-specific proportion-

congruent effects in the Stroop task was observed (Experiments 2B). Importantly, this pattern 

was obtained even when the same participants were tested in both the non-conflict task and 

the Stroop task (Experiments 3A and 3B). (note 10) 

An aspect of our WM load manipulation that should be noted is that in no case did concurrent 

WM have a strong impact on the basic Stroop congruency effect. Stroop effects have been 

reported to increase when a WM load is concurrently maintained (e.g., Lavie, 2005), potentially 

because maintaining that load impairs individuals’ ability to proactively maintain the task goal 

(Kalanthroff, Avnit, Henik, Davelaar, & Usher, 2015). In the present experiments, however, the 

basic congruency effect, if anything, tended to decrease under higher load. An anonymous 

reviewer on a previous version of this manuscript pointed out that the failure to observe larger 

congruency effects with a concurrent WM load might indicate that our load manipulation was 
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not effective. However, although other load manipulations might have been possible (e.g., an n-

back task; see also footnote 5), the goal that our manipulation was required to achieve was to 

impair contingency learning, i.e., the critical process that supposedly underlies the item-specific 

proportion-congruent effect in the Stroop task (according to the contingency learning account 

of this effect, that is). To the extent that this goal was achieved (as demonstrated by reduced 

contingency learning effects under load in a task, the non-conflict color identification task, in 

which contingency learning was unambiguously the only process being engaged), the fact that 

our load manipulation spared the basic congruency effect in the Stroop task does not appear to 

be at all problematic.  

Indeed, the fact that our load manipulation selectively impaired contingency learning (i.e., and 

not the overall congruency effect) may have its own merits. A load manipulation leading to an 

increased congruency effect would seem to imply that, under a high load, individuals would 

experience higher conflict overall. What would be possible, then, is that individuals would apply 

different strategies when dealing with that high conflict than when dealing with the lower 

conflict experienced in a normal situation (i.e., with no concurrent WM load). For example, an 

item-specific conflict adaptation mechanism may be preferred when dealing with high conflict 

(with a high concurrent WM load) whereas a contingency learning mechanism may be 

preferred when dealing with lower conflict (with low or no load). As a result, whatever result is 

obtained when maintaining a WM load would tell little about the processes involved in the 

item-specific proportion-congruent effect in normal circumstances (i.e., when no WM load is 

maintained). Clearly, this problem does not arise in a load procedure that selectively impairs 

contingency learning such as ours, because the level of Stroop conflict experienced at all load 
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levels would be roughly the same. Thus, in this type of situation, drawing inferences about the 

processes normally involved in the item-specific proportion-congruent effect based on the 

pattern of results obtained with a concurrent WM load appears more justified and 

straightforward. 

In sum, the overall pattern of results that we obtained poses a challenge to the view that 

congruency effects in item-specific proportion-congruent paradigms are the result of a 

contingency learning process. This view would predict that increasing demands on WM should 

impair contingency learning and item-specific proportion-congruent effects in a similar way, a 

pattern the present experiments failed to obtain. Note that the fact that contingency learning 

and item-specific proportion-congruent effects were examined in two different tasks – a non-

conflict color identification task and the Stroop task, respectively – has little relevance for the 

contingency learning account. According to this account, contingency learning is a general 

cognitive process that has nothing to do with conflict (Schmidt et al., 2007; Schmidt & Besner, 

2008) and functions with conflicting and non-conflicting stimuli in the same way (Levin & 

Tzelgov, 2016). As such, one cannot simply attribute the different patterns observed in the non-

conflict and the Stroop task to the nature of the words (noncolor vs. color) that those tasks 

employ. 

A Dual-Mechanisms-of-Control account of the item-specific proportion-congruent effect 

An explanation that better accommodates the present results is one that assumes that a 

process other than contingency learning drives the item-specific proportion-congruent effect in 

the Stroop task. Adaptation to item-specific conflict frequency would be such a process. 
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According to this explanation (Blais et al., 2007; Jacoby et al., 2003; Shedden et al., 2013), 

participants would learn to associate specific words with a specific control setting, with the 

mostly-congruent words leading to relaxed attention (as the irrelevant dimension is typically 

not conflicting) and the mostly-incongruent words leading to focused attention to the relevant 

dimension (as the irrelevant dimension is typically conflicting). Importantly, what the present 

results suggest is that WM load has virtually no impact on participants’ ability to implement this 

type of control strategy. At first blush, a claim of this sort may appear surprising, as one would 

expect that a concurrent WM task diverting attentional resources away from the Stroop task 

should interfere with a strategy that is itself attentional. However, research within the DMC 

framework (Braver, 2012; Braver et al., 2007) suggests that increasing demands on WM may 

only have that sort of effect on proactive control strategies, that is, effortful strategies that 

involve sustained maintenance of task goals. In other situations, increasing WM load may, 

instead, bias individuals to use reactive control strategies, that is, strategies that rely on the 

environment to re-activate task goals (Burgess & Braver, 2010; Speer et al., 2003). As 

adaptation to item-specific conflict frequency would be one example of that type of strategy 

(Gonthier et al., 2016), the claim that WM load does not interfere with its implementation 

would follow. Indeed, from this point of view, diminished WM resources should make item-

specific conflict adaptation an even more convenient option than it is when those resources are 

intact. 

Because the evidence supporting the DMC framework comes not only from studies 

investigating differences in WM resources that are induced experimentally (e.g., by use of a 

concurrent WM load) but also from studies investigating differences in WM resources that 
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occur naturally across individuals (i.e., their WM capacity; Braver, 2012; see also Kane & Engle, 

2003), the WM-capacity analyses of Experiment 3B are potentially relevant in evaluating these 

conclusions. Unfortunately, however, those analyses only offered partial support to the idea 

that adaptation to item-specific conflict frequency in the Stroop task is the dominant strategy 

when WM resources are reduced. This partial support comes from the extreme-groups analysis. 

This analysis, consistent with previous findings (Hutchison, 2011), revealed that while both low 

and high WM-capacity individuals showed an item-specific proportion-congruent effect in 

latencies, high WM-capacity individuals produced no evidence for adaptation to item-specific 

conflict frequency in the error rates, a pattern low WM-capacity individuals clearly showed.  

Errors in the Stroop task are typically interpreted as an index of participants’ inability to 

successfully maintain the task goal (Kane & Engle, 2003; MacLeod, 1991). From the perspective 

of the DMC account, it is reasonable to assume that this inability depends, at least in part, on 

the degree to which individuals rely on proactive control, i.e., the degree to which they 

successfully maintain the color-naming goal throughout the task. As such, what the extreme-

groups analysis of WM capacity would suggest is that, on one hand, both low and high WM-

capacity individuals have access to a reactive strategy to adapt to item-specific conflict 

frequency (as demonstrated by the regular item-specific proportion-congruent effect obtained 

in the latencies). On the other hand, low and high WM-capacity individuals might differ 

considerably in their ability to concurrently implement a proactive strategy of goal maintenance. 

Specifically, because they have insufficient WM resources, low WM-capacity individuals would 

have limited access to this sort of strategy. As a result, they would be biased to use reactive 

control as the main strategy in performing the task. Mainly relying on (reactive) adaptation to 
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item-specific conflict frequency, those individuals might be especially vulnerable to inadvertent 

word reading in a situation that leads to a relaxation of attention, i.e., mostly-congruent words. 

In this situation, and with no proactive strategy being properly implemented to prevent goal 

neglect, relaxing attention would cause them to inadvertently read the word in many cases, 

with the likely result being a word-reading error in some of the infrequent instances in which 

conflict does occur (i.e., the infrequent incongruent words in the mostly-congruent condition). 

The implication is that incongruent words in the mostly-congruent condition would be much 

more problematic than incongruent words in the mostly-incongruent condition, thus resulting 

in an item-specific proportion-congruent effect in the error rates for low WM-capacity 

individuals. 

The same would not be true for high WM-capacity individuals. Being able to engage in 

proactive maintenance of the task goal while concurrently adapting to item-specific conflict 

frequency, those individuals would allow item-specific conflict frequency to influence their 

performance (as shown by the item-specific proportion-congruent effect in the latencies), but 

they would not allow words which elicit a relaxation of attention to cause them to inadvertently 

read the word. The result is that the infrequent incongruent words in the mostly-congruent 

condition would not produce especially high error rates. In particular, those words would not 

produce any more errors than the incongruent words in the mostly-incongruent condition, thus 

resulting in the absence of an item-specific proportion-congruent effect in error rates for high 

WM-capacity individuals. 
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Casting some doubt on this interpretation of the data are the results of the full-sample analysis 

of WM capacity. In this analysis, rather than comparing individuals scoring low and individuals 

scoring high on our complex span tests, we used the score on those tests as a continuous 

measure of individuals’ WM capacity (Meier & Kane, 2013, 2015). Although, similar to what was 

found in the extreme-groups analysis, WM capacity had an impact on performance overall, with 

faster and more accurate responding (as well as reduced congruency effects) associated with 

higher WM capacity, there was no evidence in this analysis that WM capacity had an impact on 

the item-specific proportion-congruent effect in the latencies or, most importantly, the error 

rates. That is, in this analysis, unlike in the extreme-groups analysis, increasing WM capacity did 

reduce errors overall but did not reduce the item-specific proportion-congruent effect. 

A potential explanation for the different pattern of results obtained in the two analyses is that 

individuals located at one (or both) of the ends of the WM-capacity continuum may be 

somewhat “special”. For example, it may be assumed that only individuals with the lowest WM 

capacity are unable to continuously implement proactive control. Possessing this ability is what 

would prevent individuals with higher WM capacity from making word-reading errors even 

when dealing with words (i.e., mostly-congruent words) that induce relaxed attention. However, 

because individuals with very low WM capacity may be considerably poorer at constantly 

maintaining proactive control, they would inadvertently read words more easily in general, but 

especially so when dealing with those mostly-congruent words. Consistent with this idea, 

individuals in the bottom quartile of WM capacity in Experiment 3B (i.e., the low WM-capacity 

individuals in the extreme-groups analysis) were those who committed the most errors (11.2%) 

when responding to incongruent words in the mostly-congruent condition. In comparison, 
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individuals in the two middle quartiles and individuals in the top quartile (i.e., the high WM-

capacity individuals in the extreme-groups analysis) produced less than half that number of 

errors in the same condition (medium-low WM capacity: 4.8%; medium-high WM capacity: 

5.7%; high WM capacity: 3.5%; see Table 10). Thus, it would appear that, compared with 

individuals with the lowest WM capacity, individuals with higher WM capacity are able to 

minimize word-reading errors, even when dealing with mostly-congruent words. With the small 

number of errors committed by those individuals, observing an item-specific proportion-

congruent effect in all cases may not be possible. In fact, analyses conducted separately for 

each of the four quartiles (i.e., the two middle quartiles in addition to the bottom and top 

quartiles analyzed in the extreme-groups analysis) revealed that not only the high WM-capacity 

group but even the medium-low WM-capacity group failed to show a significant item-specific 

proportion-congruent effect in the errors, maintaining a low error rate across all the conditions. 

Indeed, in the present experiments, another situation in which error rates were very low (i.e., 

the no-load group in Experiment 1B, where errors were less than 1% overall), also failed to 

produce an item-specific proportion-congruent effect in the errors. 

In sum, it is possible that the inefficient application of proactive control in individuals in the 

bottom quartile (i.e., the low WM-capacity individuals) created a situation in which word-

reading errors were frequently made when attention was relaxed (i.e., with mostly-congruent 

words), resulting in a clear item-specific proportion-congruent effect in the error rates. 

However, errors quickly descended to the floor in individuals with higher WM-capacity (i.e., the 

individuals in the top three quartiles) because those individuals were more efficient at applying 

proactive control in general, creating a situation in which an item-specific proportion-congruent 
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effects in the error rates was less easily observable. The idea that individuals with the lowest 

WM capacity do not cluster with the rest of the individuals would seem to explain the different 

results obtained in the extreme-groups and the full-sample analyses reported above. Because 

individuals with the lowest WM capacity are distinguished from the other individuals, an impact 

of WM capacity on item-specific proportion-congruent effects in error rates would be easy to 

observe in an analysis in which those low WM-capacity individuals are separated from other 

individuals, as in our extreme-groups analysis. In contrast, a WM-capacity difference would be 

less easily observed in an analysis in which the item-specific proportion-congruent effect is 

assumed to be monotonically related to a continuous measure of WM capacity, as in our full-

sample analysis.  

Overall, given the mixed pattern of results obtained, it would appear incautious to draw strong 

conclusions on the nature of the processes leading to the elimination of the item-specific 

proportion-congruent effect in errors for high WM-capacity individuals. While the present WM-

capacity analyses do show some consistency with the extant literature (Hutchison, 2011; Kane 

& Engle, 2003), they certainly depict a less clear situation than the WM-load analyses do. Part 

of the reason for this lack of clarity might be that Experiment 3B was relatively underpowered 

for a WM-capacity analysis, both in terms of the number of items used and the size of the 

sample tested. Better powered investigations of the relation between WM capacity and 

adaptation to item-specific conflict frequency appear to be required.  
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Contingency learning: The roles of response modality and WM capacity 

Although the focus of the present research was the nature of the item-specific proportion-

congruent effect in the Stroop task, interesting results emerged concerning the contingency 

learning process in the non-conflict color identification task. First, we replicated the finding that 

a concurrent memory load impairs individuals’ ability to learn stimulus-response contingencies 

in this type of task, consistent with the idea that capacity-limited resources may be necessary 

for encoding and retrieving those contingencies (Schmidt et al., 2010). Second, this pattern of 

results occurred when responses to colors were manual (Experiments 2A and 3A) as in Schmidt 

et al.’s (2010) original experiments, but not when they were vocal (Experiment 1A). The likely 

reason for this difference is that, with vocal responses, the contingency learning effect at 

baseline (i.e., in the no-load condition) was so small that a further reduction would be 

especially challenging to obtain. 

A relevant question that this finding raises is what causes reduced contingency learning effects 

in vocal versus manual responding, a pattern of results that has also been observed in other 

recent studies (Forrin & MacLeod, 2017; Spinelli et al., under review). (note 11) This pattern of 

results is actually somewhat surprising based on findings from the Stroop task suggesting that 

vocal responding may favor processing of the word (Melara & Mounts, 1993; Virzi & Egeth, 

1985). If word processing is enhanced because of the use of the vocal response mode, it would 

seem that contingencies between words and responses should be learned more effectively, 

with the likely result being, if anything, larger contingency learning effects in vocal than manual 

responding. Indeed, because it may favor word processing, vocal responding was one of the 
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factors that Bugg et al. (2011) considered influential in biasing use of contingency learning in 

the two-item set design of the item-specific proportion-congruent effect. On the other hand, 

reduced contingency learning effects for vocal responding do seem consistent with a view that 

emphasizes the role of compatibility between relevant stimuli and responses in contingency 

learning, i.e., the degree to which responses map readily onto relevant stimuli (Schmidt, 2018). 

According to this view, although contingencies may be efficiently learned in both vocal and 

manual responding situations, contingency learning will have a smaller impact on performance 

when the requested response is relatively compatible with the stimulus (e.g., a vocal response, 

an overtrained response for a color) than when the requested response is relatively 

incompatible with the stimulus (e.g., a keypress response, an undertrained response for a color). 

Because contingency learning operates at the response stage (Schmidt et al., 2007), this process 

will have a smaller window for influencing behavior when stimuli can be quickly translated into 

compatible (vocal) responses than when they are more slowly translated into incompatible 

(manual) responses. As a result, contingency learning will be reduced in a vocal responding 

situation. 

Unfortunately, the present data are insufficient to allow us to conclude that stimulus-response 

compatibility is the crucial factor in determining the different magnitude of contingency 

learning effects in vocal versus manual responding. The reason is that, in the present research, 

vocal responding (Experiment 1A) and manual responding (Experiments 2A and 3A) differed not 

only in the type of response that was required but also in whether responding was assisted with 

feedback, which was absent with vocal responses but present with keypress responses in these 

experiments. Indeed, a more complicated story emerged when we tried to address this concern 
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in a series of non-conflict color identification tasks requiring vocal versus manual responses 

with or without feedback (Spinelli et al., under review). What we found was that the presence 

of feedback was crucial in order to observe a smaller contingency learning effect for vocal than 

for manual responding. When no feedback was given, contingency learning effects were 

equivalent across response modalities. Specifically, removing feedback reduced contingency 

learning in manual responding to the size of the contingency learning effect in vocal responding 

but had no impact on the (small) contingency learning in vocal responding.  

The interpretation that we offered for those results is that word-response contingency learning 

may be reduced in situations that require allocation of attention away from the word 

dimension. These situations would include those requiring a vocal response (either with or 

without feedback) and those requiring a manual response without feedback. The reason that 

attention to the word dimension may be reduced in vocal responding is that words 

automatically trigger reading, the task they are strongly associated with, which typically 

produces a phonological code (Monsell, Taylor, & Murphy, 2001; Rogers & Monsell, 1995). 

Therefore, to perform the color naming task efficiently, participants in a vocal responding 

situation will typically need to inhibit that automatic reading behavior. As a result, learning of 

contingencies between words and vocal responses will be harder to achieve, resulting in a 

modest contingency learning effect. Attention to the word dimension may also be reduced in 

manual responding without feedback, although for a different reason. This reason is that, in the 

absence of feedback, individuals may need to allocate a certain amount of limited-capacity 

attentional resources to the process of making sure that mappings between colors (i.e., the 

relevant stimulus dimension) and keypress responses are correctly implemented. As a result, 
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fewer attentional resources would be available to learn word-response contingencies, leading 

to a reduced contingency learning effect in this situation. The situation would be different in 

manual responding with feedback because, in the presence of feedback, individuals might find 

it useful to rely on that feedback and relax active monitoring of correct stimulus-response 

mapping implementation. The result would be more attentional resources available for the 

contingency learning process and, hence, a larger contingency learning effect. 

What this interpretation implies for the present results is that the reason for the smaller 

baseline contingency learning effect in Experiment 1A (vocal responding without feedback) 

compared to Experiments 2A and 3A (manual responding with feedback) is that the former 

experiment put participants in a situation in which contingency learning was relatively 

inefficient because vocal responding reduced the attention that was paid to the word 

dimension (in order to help suppress the word reading response). This was not the case for the 

latter experiments, in which attention to the word dimension did not have to be reduced as 

much because 1) there was no strong need to inhibit word reading (unlike with vocal 

responding), and 2) there was no strong need to employ many attentional resources to actively 

monitor the correct implementation of stimulus-response mappings (unlike with manual 

responding without feedback). In other words, because attention was relaxed, word processing 

proceeded relatively normally in Experiments 2A and 3A (in the no-load condition), resulting in 

a large contingency learning effect. Naturally then, obtaining a reduction in this effect by 

imposing a memory load was easier in this situation than in a situation like that in Experiment 

1A in which attention was, to some extent, diverted from the word dimension to begin with. 
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Another interesting result emerging in the present research concerns the relation between 

contingency learning and WM capacity. Based on Schmidt et al.’s (2010) idea that the amount 

of limited-capacity resources available determines the magnitude of contingency learning 

effects, we derived the expectation that low WM-capacity individuals (i.e., individuals with 

fewer WM resources) would produce smaller contingency learning effects than high WM-

capacity individuals (i.e., individuals with more WM resources), thus producing results that 

paralleled the results from the WM-load manipulations. A different expectation, however, 

would be derived based on a control account such as the DMC framework (Braver, 2012; Braver 

et al., 2007), an account that assumes that reactive control is more easily implemented when 

WM resources are scarce. The reason that such an account is relevant to the process of learning 

contingencies in a non-conflict situation is that the notion of reactive control could, in theory, 

encompass not only control over associations between words and control settings (i.e., 

adaptation to item-specific conflict frequency) but also control over associations between 

words and responses in general (Abrahamse et al., 2016; Egner, 2014; Hutchison, 2011). If the 

learning of contingencies is interpreted as a component of a reactive control strategy, one 

would then expect that low WM-capacity individuals’ preference for reactive control would 

result not only in more robust item-specific proportion-congruent effects but also in stronger, 

rather than weaker, contingency learning effects. The reason is that low WM-capacity 

participants may find themselves processing words to a deeper level and may thus be 

advantaged in learning word-response contingencies (Hutchison, 2011). In sum, based on the 

contingency learning account, one would expect larger contingency learning effects in high 

WM-capacity individuals because those individuals would have more limited-capacity resources 
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available to learn contingencies in the task. On the other hand, based on the DMC account, one 

would expect larger contingency learning effects in low WM-capacity individuals because those 

individuals would be more prone to use reactive control, the type of control that would 

underlie learning of contingencies. 

Unfortunately, both the re-analysis of Hutchison’s contingency learning data and the results of 

Experiment 3A, overall, failed to find evidence for either hypothesis, with extreme-groups 

analyses revealing equal-sized contingency learning effects for low and high WM-capacity 

individuals. The situation was somewhat different in our full-sample analysis, however, as this 

analysis revealed an important role of the order in which Experiment 3A (the non-conflict color 

identification task) was performed. For the participants in Experiment 3A who completed the 

noncolor identification task as the first task (the condition that should be considered the 

normal one), higher WM capacity led to reduced contingency learning effects, consistent with 

the DMC account. Nonetheless, the opposite pattern (larger contingency learning effects for 

higher WM-capacity individuals) was found in the group of participants who performed the 

nonconcolor identification task following the Stroop task, a pattern that is more easily 

reconciled with the contingency learning account.  

Overall, what these results suggest is that a complete explanation for the relation between 

contingency learning and WM capacity is unlikely to be found either in the original contingency 

learning account (e.g., Schmidt et al., 2010) or in control accounts, such as the DMC account, 

extended to explain non-conflict associations (e.g., Abrahamse et al., 2016). In particular, it 

would seem that both types of account would require additional notions to explain the pattern 
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of results that emerged from our full-sample analysis. These notions could include, for example, 

the idea that the process of learning contingencies might be more effective when individuals 

are discouraged from engaging in the concurrent process of making sure that stimulus-response 

mappings are being correctly implemented (Spinelli et al., under review). In turn, the conditions 

under which individuals may feel a weaker vs. stronger need to engage in this monitoring 

process could vary depending on the WM capacity of the individual and/or the amount of 

practice in the task. For example, high WM-capacity individuals may feel a strong need to 

engage in the monitoring process initially, leaving little opportunity to learn the contingencies 

in the task, but after an entire block of practice they may relax the monitoring process and be 

better able to pick up on those contingencies.  

In any case, these hypotheses are, of course, purely speculative at this point. In addition, the 

data suffer from the same power limitation described for the Stroop task above (and even more 

so in the presence of an order effect that essentially cuts the sample in half), casting some 

doubt on the reliability of the effects reported.  Overall, further research is needed to clarify 

whether and how WM capacity influences color-word contingency learning. 

Challenges and conclusions 

The essential message of the present results is that there is a dissociation between contingency 

learning and item-specific proportion-congruent effects. We interpret these data as suggesting 

that the two effects reflect qualitatively different phenomena, with the item-specific 

proportion-congruent effect being a manifestation of a reactive control strategy of adaptation 

to item-specific conflict frequency rather the result of a contingency learning process. 
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Importantly, since the beginning of the debate on conflict adaptation spurred by the 

contingency learning account (Schmidt & Besner, 2008), we are among the first to argue for a 

role of adaptive control processes in the original, two-item set item-specific proportion-

congruent manipulation (Jacoby et al., 2003; for other evidence in support of this position, see 

Hutcheon & Spieler, 2014; Shedden et al., 2013). We are also aware that this position faces the 

difficulty of reconciling the present results favoring a conflict adaptation explanation with 

previous studies supporting a contingency learning explanation (Hazeltine & Mordkoff, 2014; 

Schmidt, 2013a). In those studies, responses to mostly-congruent and mostly-incongruent 

words presented in incongruent colors, colors that the two types of words appeared in equally 

often, did not differ from one another, in contrast with the conflict adaptation prediction that 

mostly-incongruent incongruent words should be responded to faster than mostly-congruent 

incongruent words due to the fact that a conflict adaptation strategy was, presumably, being 

implemented in the mostly-incongruent condition.  

It is important to note, however, that the design of those studies is different from Jacoby et al.’s 

(2003) paradigm in potentially important ways. In the two-item set used in Jacoby et al.’s item-

specific proportion-congruent manipulation (and in the present experiments), mostly-

congruent words appeared in colors that are also mostly-congruent colors, and mostly-

incongruent words appeared in colors that are also mostly-incongruent colors. For example, in 

the version illustrated in Table 2, RED and BLUE function as mostly-congruent words and the 

red and blue colors also appear mainly with congruent words. Similarly, GREEN and YELLOW are 

mostly-incongruent words and the colors green and yellow appear mainly with incongruent 

words. This characteristic of the design might be relevant given recent findings by Bugg et al. 
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(2011, Bugg & Hutchison, 2013) that not only the irrelevant dimension (i.e., the word) but also 

the relevant dimension (i.e., the color) can function as a signal for conflict frequency. Thus, it is 

possible that participants can use both word-specific and color-specific information to predict 

conflict frequency and adapt to it (although in Bugg et al.’s view, there are constraints on the 

use of color-specific information: Bugg et al., 2011; Bugg & Hutchison, 2013).  

What is most relevant for present purposes is that word-specific and color-specific conflict 

frequency provide compatible information in Jacoby et al.’s (2003) two-item set paradigm. For 

example, the item GREENyellow represents both a mostly-incongruent word and a mostly-

incongruent color, thus providing a strong bias toward word inhibition. In contrast, word-

specific and color-specific conflict frequency provide conflicting information in some of the cells 

in Schmidt’s (2013a) and Hazeltine and Mordkoff’s (2014) four-item set designs. For example, in 

Schmidt’s experiment, the critical comparison for probing conflict adaptation involved mostly-

congruent incongruent words and mostly-incongruent incongruent words matched in terms of 

the frequency that they occurred in the presented (incongruent) color. However, Schmidt’s 

analysis is atypical in that it is based on stimuli that combine words that frequently appear in 

incongruent colors, i.e., mostly-incongruent words, and colors that frequently appear with 

congruent words, i.e., mostly-congruent colors.   For example, RED and YELLOW were words 

associated with frequent conflict, however, in the crucial conditions in that experiment, they 

appeared in both blue and green, colors that were associated with infrequent conflict. As such, 

it is impossible to tell whether and how the contrast between color-specific and word-specific 

information was resolved for those items. Thus, the comparison between mostly-congruent and 

mostly-incongruent incongruent words in Schmidt’s and Hazeltine and Mordkoff’s experiments 
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may be one which is not crucial for adjudicating between conflict adaptation and contingency 

learning accounts of the item-specific proportion-congruent effect.  

Another challenge that our position faces is reconciling the present findings with previous 

results coming from a control perspective (Bugg et al., 2011; Bugg & Hutchison, 2013), results 

that, while providing support for a role of control in the item-specific proportion-congruent 

effect in some circumstances, found no support for control in the two-item set design that we 

used. In this regard, Bugg and Hutchison’s (2013) Experiment 3 is of particular interest. In this 

experiment, Bugg and Hutchison used both a two-item and a four-item set design of the item-

specific proportion-congruent manipulation. In the two-item set design, each word appeared in 

two colors (one congruent and one incongruent), as in Jacoby et al. (2003) and the present 

experiments; in the four-item set design, each word appeared in four colors (one congruent 

color and three incongruent colors). The critical difference between these two versions of the 

item-specific proportion-congruent manipulation is that while a high-contingency (i.e., more 

frequent) color existed for mostly-incongruent words in the two-item set design, no high-

contingency color existed for mostly-incongruent words in the four-item set because each word 

appeared equally frequently in each of the four colors (e.g., RED appeared in red 25% of the 

time and in each of the three incongruent colors 25% of the time; by necessity, a high-

contingency color existed for mostly-congruent words in both versions).  

In both versions of the task, an item-specific proportion-congruent effect emerged (i.e., as 

expected, mostly-incongruent words produced a smaller congruency effect than the 

corresponding mostly-congruent words), a result that, per se, is compatible with both a 

contingency learning and a conflict adaptation mechanism. What was crucial to adjudicating the 
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mechanism underlying the item-specific proportion-congruent effect, however, was the pattern 

of results emerging in a new manipulation introduced in the final block of the experiment. In 

this final block, a new set of colors was used that had not been used before in the experiment, 

and both mostly-congruent and mostly-incongruent words were presented in those 

incongruent colors. The rationale for this manipulation was that, if participants learn to focus 

attention to the color when mostly-incongruent words are presented in the first part of the 

experiment (i.e., if they apply a conflict adaptation mechanism), those words should produce 

less interference even when presented in new incongruent colors compared to words that were  

mostly congruent in the first part of the experiment. In contrast, if participants learn to 

associate words with their most likely response in the first part of the experiment (i.e., if they 

apply a contingency learning mechanism), no advantage for mostly-incongruent words should 

occur when new incongruent colors are introduced because participants have acquired no 

information that would allow them to manage conflict more effectively with those words. 

What Bugg and Hutchison (2013) found was that mostly-incongruent words did produce shorter 

latencies than mostly-congruent words when presented in the new incongruent colors in the 

final block, but only in the four-item version of the task (no difference was observed in the two-

item set version). For example, the incongruent color brown (a color used only in the final block 

of the experiment) was named faster if that color appeared in a mostly-incongruent word than 

if it appeared in a mostly-congruent word, but only for participants who completed the four-

item set version of the experiment initially. Based on these results, Bugg and Hutchison (2013) 

concluded that distinct mechanisms are involved in the two designs: In the four-item set design, 

conflict adaptation would be the dominant mechanism, as demonstrated by the fact that, in the 
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final block of their experiment, participants imported previously acquired information about 

item-specific conflict frequency. In contrast, in the two-item set design, contingency learning 

would be the dominant mechanism, as demonstrated by the fact that no such transfer of 

information was observed in the final block in that situation. Yet, in the present experiments, 

we found good evidence in support of conflict adaptation playing an important role in the two-

item set design. What could cause this inconsistency? 

It is worth noting that, in Bugg and Hutchison’s (2013) manipulation, there seems to be little 

necessity for individuals to transfer knowledge about item-specific conflict frequency acquired 

from the set of stimuli appearing in the first part of the experiment to the new set of stimuli 

appearing in the final block, even if the words appearing in the final block are the same as those 

used in the first part. To use an example from a real-life situation, the fact that a certain Joe is a 

trustworthy person does not mean that another Joe should also be considered trustworthy. 

Going back to Bugg and Hutchison’s experiment, there was indeed little reason for participants 

to apply a conflict adaptation strategy in the final block because, in that block, words that used 

to be mostly congruent in the first part and words that used to be mostly incongruent in the 

first part appeared with congruent and incongruent colors equally often (i.e., the item-specific 

proportion-congruent manipulation was not maintained in that block). Of course, the fact that 

there was no necessity to transfer information about item-specific conflict frequency from the 

first part to the final block of the experiment does not mean that participants would not 

transfer that information nonetheless. However, this fact does imply that the failure to observe 

a transfer effect in the final block (i.e., there was not less interference for mostly-incongruent 
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than mostly-congruent words on the new incongruent colors) cannot be used to conclude that 

a conflict adaptation strategy had not been used in the first part of the experiment. 

It is possible that conflict adaptation was engaged in both the version of the task that produced 

transfer in Bugg and Hutchison’s paradigm (e.g., the four-item set version) and the version of 

the task that did not produce transfer (e.g., the two-item set version), with the presence of 

transfer depending on more marginal factors. One possibility, for example, is that participants 

in a two-item set design are more likely than participants in a four-item set design to become 

consciously aware of the item-specific proportion-congruent manipulation because they are 

exposed to a more limited number of stimuli (8 color-word combinations in a two-item set 

design vs. 16 color-word combinations in a four-item set design). Because the item-specific 

conflict information learned in the first part of the experiment does not clearly help in the final 

block, participants in the two-item set version may deliberately decide to reset their control 

settings early in that block, thus purging any item-specific conflict information that they had 

previously acquired. The situation might be different in a four-item set design because, in that 

scenario, item-specific conflict frequency information may be more frequently learned outside 

the focus of awareness. Because item-specific conflict frequency information is acquired in a 

more subtle manner, participants may not feel particularly compelled to reset their control 

settings in the final block, with item-specific conflict frequency maintaining some impact on 

performance. Although this hypothesis is purely speculative, it would seem to provide a 

reasonable explanation for the inconsistency between Bugg and Hutchison’s (2013) data and 

ours (see also Schmidt, 2014b, 2019, for another explanation of Bugg and Hutchison’s data 
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which assumes that the transfer effect observed in the final block of the four-item set version 

has, in fact, nothing to do with conflict adaptation). 

Clearly, further research is needed to examine more closely the contributions of contingency 

learning and of item-specific conflict adaptation to the item-specific proportion-congruent 

effect. What the present results suggest, however, is that there might be more to adaptation to 

item-specific conflict frequency than supporters of the contingency learning and the control 

accounts currently believe. The reactive use of associations between words (and/or colors) and 

their appropriate control setting, in addition to or as an alternative to the use of associations 

between words and motor responses, might be an important cognitive tool in managing item-

specific conflict frequency. 
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Footnotes 

1. We excluded those trials to avoid including trials in the analyses in which participants 

had failed to maintain the memory load. For these and the following experiments, we 

also conducted parallel analyses in which the trials on which participants made an error 

on the WM task were not excluded. The results were virtually identical in all cases. 

2. In addition to the regular analyses of raw RTs, for these and the following experiments, 

we also conducted parallel analyses on z-score transformed RTs (Faust, Balota, Spieler, 

& Ferraro, 1999) to determine whether the WM-load effects of interest would emerge 

in terms of proportional changes from baseline. Again, the results were virtually 

identical in all cases. 

3. For this and the following Stroop experiments (Experiments 2B and 3B), we conducted 

another set of analyses using Contingency (high vs. low) as a factor instead of Item Type 

(mostly congruent vs. mostly incongruent). Mostly-congruent congruent words and 

mostly-incongruent incongruent words would be the high-contingency items; mostly-

incongruent congruent words and mostly-congruent incongruent words would the low-

contingency items. This type of analysis, although not commonly used for Stroop 

experiments (although see Schmidt & Besner, 2008), offers a direct parallel to the 

analysis for the non-conflict color identification task because it allows an evaluation of 

the interaction between Contingency and WM Load in both types of tasks (although 

note that, in the Stroop task, the F value of that two-way interaction is equivalent to the 

F value of the three-way interaction between Congruency, Item Type, and WM Load in 

the analysis with Item Type as a factor). To preview the results, in the Stroop task 
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(Experiments 1B, 2B, and 3B), the interaction between Contingency and WM Load 

(corresponding, statistically, to the three-way interaction between Congruency, Item 

Type, and WM Load in the analysis with Item Type as a factor) never approached 

significance. 

4. The error rates in the low-load group in Experiment 1B, for which no item-specific 

proportion-congruent effect was found, are an exception to this pattern. However, that 

group made very few errors and showed overall smaller congruency effects in the error 

rates than the other groups, suggesting that results from their accuracy data may reflect 

a floor effect and, hence, should be interpreted cautiously. 

5. Another potential reason for the failure to observe a significant reduction in the 

contingency learning effect with increasing WM load in Experiments 1A and 1B is that 

the present load procedure might have led to an underestimation of load effects. 

Because chance performance was 50% in the two-alternative forced choice WM task 

that we used, on a significant proportion of trials, participants might have simply 

guessed the correct answer. As a result, color-naming latencies on those trials would 

have been included in the analyses even though participants were not necessarily 

maintaining a WM load during those trials. Although using a WM task without a two-

alternative forced choice procedure would have been a reasonable way to minimize this 

problem in the subsequent experiments, the strategy that we pursued instead was to 

reproduce the conditions under which Schmidt et al. (2010) obtained their pattern 

(reduced contingency learning effects with increasing WM load) as closely as possible. 

Because the two-alternative forced choice WM task used in Experiments 1A and 1B was 
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the same as that used by Schmidt et al. (2010), for consistency’s sake, we decided to 

maintain that load procedure in the following experiments. To foreshadow those results, 

the contingency learning effects in Experiments 2A and 3A were similar in size to those 

reported by Schmidt et al. (2010), suggesting that the reduced effect sizes in Experiment 

1A were not due to the use of the two-alternative forced choice procedure. 

6. The reported means are based on Hutchison’s (2011) original data but were recalculated 

collapsing low-contingency and high-contingency incongruent stimuli in the mostly-

incongruent item condition (for more details see Hutchison, 2011). 

7. We would like to thank Keith Hutchison for sharing his data with us. 

8. We would like to thank Ken Paap for sharing his questionnaire with us. 

9. We used a 75% cut-off (based on performance in the three complex span tasks) because 

the commonly used 85% cut-off (e.g., Unsworth et al., 2005) resulted in the exclusion of 

quite a large number of participants (i.e., 58, that is 46% of the initial 126 participants), 

thus severely limiting the statistical power of the WM-capacity analysis. Indeed, the 

pattern of results obtained with an 85% cut-off was numerically equivalent to that 

obtained using a 75% cut-off, but some of the effects did not quite reach statistical 

significance in the 85% cut-off analyses. 

10. One may object that the reason that we failed to find a significant reduction in the item-

specific proportion-congruent effect with increasing WM load is that, because WM load 

was manipulated between subjects, our experiments did not have enough power to 

detect that interaction. To alleviate that concern, we conducted an additional set of 

analyses on the combined the data from Experiments 2A and 3A and Experiments 2B 
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and 3B (Experiment (2A vs. 3A; 2B vs. 3B) had no impact in either analysis and was 

dropped as a factor). Not surprisingly, the combined analysis of Experiments 2A and 3A 

revealed that increasing WM load significantly reduced contingency learning effects in 

the non-conflict color identification task in the latencies, F(2, 265) = 14.81, MSE = 27950, 

p < .001, 𝜂𝑝
2 = .101, and marginally so in the error rates, F(2, 265) = 2.52, MSE = .002, p 

= .083, 𝜂𝑝
2 = .019. However, there was no hint in the combined analysis of Experiments 

2B and 3B that WM load produced a reduction in the item-specific proportion-

congruent effect in the Stroop task, i.e., there was no three-way interaction between 

Congruency, Item Type, and WM load, F(2, 265) = .22, MSE = 1053, p = .80, 𝜂𝑝
2 = .002 for 

the latencies, F(2, 265) = .93, MSE = .002, p = .40, 𝜂𝑝
2 = .007 for the error rates. In fact, 

the Bayes Factors for both the latencies, BF01 = 20.11, and the error rates, BF01 = 10.89, 

indicated “strong” evidence for the absence of the three-way interaction. 

11. A related question concerns the implications that reduced contingency learning in vocal 

responding might have for interpreting the results of item-specific proportion-congruent 

manipulations in the Stroop task in which this response modality is used. Specifically, 

because the contingency learning effect is relatively small in vocal responding (as shown 

in Experiment 1A) but a robust item-specific proportion-congruent effect is regularly 

observed when this response modality is used (as shown in Experiment 1B), one might 

conclude that, in vocal responding, the item-specific proportion-congruent effect might 

primarily reflect the action of a conflict adaptation process rather than that of a 

contingency learning process. On the other hand, the results of a recent item-specific 

proportion-congruent manipulation in our lab suggest a more cautious conclusion 
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(Spinelli & Lupker, in press). In that experiment, the design permitted us to dissociate 

the independent contributions of contingency learning and adaptation to item-specific 

conflict frequency in the item-specific proportion-congruent effect. Although a vocal 

response was required, a robust contingency learning effect emerged in that situation in 

addition to a (smaller) effect of adaptation to item-specific conflict frequency. Thus, 

although in the present Experiment 1A, a non-conflict color identification task with vocal 

responding, we did not obtain a large contingency learning effect, contingency learning 

likely has some role in the item-specific proportion-congruent effect in the Stroop task, 

even when a vocal response is required (see also Hutchison, 2011). 

 

  



261 
 

Chapter 5: Summary and Conclusions 

Conflict adaptation is not an illusion: Support for proactive and reactive adaptation to conflict 

frequency in the Stroop task 

The ability to resolve conflict from information that is irrelevant to one’s current goal is a 

primary characteristic of an efficient control system. Another important ability that might 

contribute to an efficient control system is the ability to learn to regulate attention between 

task-relevant and task-irrelevant information based on the frequency with which task-irrelevant 

information conflicts with the current goal. Such a conflict adaptation function is indeed a core 

property of the conflict-monitoring model (Botvinick et al., 2001) and of other popular theories 

of cognitive control (e.g., Braver, 2012; Braver et al., 2007; Kane & Engle, 2003). In recent years, 

however, there has been increasing research interest in the idea that what have traditionally 

been considered markers of processes of adaptation to conflict frequency in tasks such as the 

Stroop (1935) task might reflect, in fact, more general learning processes that are not directly 

related to conflict (Schmidt, 2013b, 2019). In the present research, I aimed to provide an initial 

answer to the fundamental question that this idea entails, i.e., is conflict adaptation an illusion 

(Schmidt et al., 2015)? Tackling this issue using a range of approaches and methodologies, the 

present research has accumulated converging evidence showing that processes of adaptation 

to conflict frequency cannot be dismissed as easily as non-conflict learning accounts suggest.  

First, it was demonstrated that humans can and do adapt to the overall frequency with which 

conflict occurs in a list of trials. This process, examined in the list-wide Proportion-Congruent 

(PC) paradigm in Stroop and Stroop-like tasks, implies that the latency difference between non-
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conflicting items (e.g., congruent) and conflicting items (e.g., incongruent) would be relatively 

small in a list in which conflicting items are frequent (e.g., a Mostly Incongruent [MI] list) 

because, to deal with the high frequency of conflict in this situation, attention to task-relevant 

information would be more focused. On the other hand, that latency difference would be 

relatively large in a list in which conflicting items are infrequent (e.g., a Mostly Congruent [MC] 

list) because, as conflict is infrequently experienced in this situation, attention to task-relevant 

information can be relaxed. 

While this PC effect is indeed the pattern typically obtained, several other processes exist that 

could explain this effect without assuming a process of adaptation to list-wide conflict 

frequency. Specifically, the PC effect could be produced by adaptation to item-specific, as 

opposed to list-wide, conflict frequency (Blais et al., 2007), learning of word-response 

contingencies (Schmidt & Besner, 2008), adaptation to the informativeness of the stimuli 

(Schmidt, 2014b, 2019), and/or learning of temporal expectancies for the emission of a 

response (Schmidt, 2013c). Any of these processes can be engaged in traditional list-wide PC 

paradigms, making it difficult to determine what a list-wide PC effect would reflect in those 

circumstances. Although recent research has attempted to dissociate the process of adaptation 

to list-wide conflict frequency, the process that traditional explanations of the list-wide PC 

effect assume (e.g., Botvinick et al., 2001), from other, mainly conflict-unrelated processes, 

little of that research has clearly reported a list-wide PC effect uniquely attributable to list-wide 

conflict adaptation (Schmidt, 2013b, 2019; but see Cohen-Shikora et al., 2018). The present 

research began to fill this gap by employing two approaches. 
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The first approach, reported in Chapter 2, was to use a variant of the Stroop task, the picture-

word interference task, to construct a list-wide PC manipulation in which no individual target or 

distractor stimulus was repeated. The advantage that this characteristic of the task affords is 

that it completely eliminates processes that are typically made possible in PC manipulations in 

which stimuli are repeated (i.e., adaptation to item-specific conflict frequency, contingency 

learning, and adaptation to stimulus informativeness). Even so, a list-wide PC effect emerged in 

both a task requiring a picture naming response and a task requiring a picture categorization 

response. Furthermore, in line with a recent assessment of the temporal learning account of 

the list-wide PC effect (Cohen-Shikora et al., 2018), both the analyses of the picture-word 

interference tasks and the results of an additional picture naming task failed to show evidence  

that a non-conflict temporal learning process contributed to the obtained list-wide PC effects. 

The second approach, reported in Chapter 3, was to devise a manipulation of conflict frequency 

in the classic color-word Stroop task which, similar to what was achieved in the picture-word 

interference tasks in Chapter 2, would negate the possibility of participants applying processes 

related to item-specific conflict frequency, contingency learning, or stimulus informativeness, 

even though individual stimuli were, by necessity, repeated multiple times. This result was 

obtained by manipulating the frequency of neutral and incongruent items rather than 

congruent and incongruent items as in the standard list-wide manipulation. Similar to the 

standard manipulation, both a frequently conflicting list in which incongruent items were 

frequent and neutral items were infrequent (an MI list) and an infrequently conflicting list in 

which neutral items were frequent and incongruent items were infrequent (a Mostly Neutral 

[MN] list) were used. For some critical items in this manipulation, no processes other than 
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adaptation to list-wide conflict frequency could have had a differential impact in the two lists, a 

situation that cannot be easily implemented in the standard list-wide PC paradigm. 

Nevertheless, a list-wide Proportion-Neutral effect, similar to the list-wide PC effect in the 

standard paradigm, emerged, as the contrast between incongruent and neutral items revealed 

a larger difference (i.e., more interference) in the MN list in which conflict was infrequent than 

in the MI list in which conflict was frequent. Furthermore, an analysis aimed to control for 

temporal learning revealed that no such process could explain the pattern of results obtained. 

Taken together, the findings from Chapters 2 and 3 provide converging evidence that in Stroop 

and Stroop-like tasks, the finding that congruency and/or interference effects are larger for 

infrequently conflicting vs. frequently conflicting lists likely reflects not only non-conflict 

learning processes and/or item-specific control processes, but also a list-wide control process 

whereby attention between task-relevant and task-irrelevant information is adjusted to the 

frequency of conflict in the list. 

Another control process that this research has illuminated is a process whereby attention to 

task-relevant vs. task-irrelevant information is adjusted based on the conflict frequency 

associated with specific items in the list as opposed to the list as a whole. This item-specific 

conflict adaptation process was one of the explanations that Jacoby et al. (2003) proposed for 

their finding that frequently conflicting items (MI items) produced a smaller congruency effect 

than infrequently conflicting items (MC items) when intermixed in the same list – an item-

specific PC effect. The other explanation that Jacoby et al. considered for this effect was a 

contingency learning explanation according to which the item-specific PC effect results from the 

process of learning contingencies between each word and its most likely response. 
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Subsequent research has tended to favor a contingency learning account of the item-specific PC 

effect, at least in Jacoby et al.’s (2003) paradigm in which a contingency learning process can be 

engaged for both MI and MC words (Bugg & Hutchison, 2013; Schmidt, 2013a). The research 

reported in Chapter 4, however, challenges this conclusion. Based on the assumption that 

limited-capacity resources are necessary for learning contingencies (Schmidt et al., 2010), we 

tested the contingency learning account of the item-specific PC effect by combining Stroop and 

non-conflict versions of a color identification task with a concurrent working memory load task. 

Consistent with Schmidt et al., some evidence emerged suggesting that increasing working 

memory load reduces people’s ability to learn contingencies in a non-conflict color 

identification task. In contrast, no impact of concurrent working memory load was found for 

the item-specific PC effect in the classic Stroop task. These results pose a challenge for a 

contingency learning account of the item-specific PC effect. If contingency learning were the 

only process driving the item-specific PC effect, as has been argued (Schmidt & Besner, 2008), 

then carrying a high working memory load should have reduced that effect in the Stroop task, 

paralleling the results obtained for the contingency learning effect in the non-conflict color 

identification task. The fact that, across three experiments, this pattern was not observed, 

suggests that contingency learning might not be the only process driving the item-specific PC 

effect. Instead, adaptation to item-specific conflict frequency might have an important role in 

producing this effect.  

Overall, the results of the present research consistently refute the argument that conflict 

adaptation is an illusion (Schmidt et al., 2015). On the contrary, evidence in favor of this process 

emerged in two popular paradigms used to study adaptation to conflict frequency: the list-wide 
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and the item-specific PC paradigms. Although these paradigms are similar in that they both 

involve manipulating the frequency of conflict in a certain context, they are believed to index 

distinct forms of control (e.g., Blais et al., 2007; Bugg et al., 2008; Gonthier et al., 2016). 

Specifically, according to the Dual-Mechanisms of Control account (Braver, 2012; Braver et al., 

2007; De Pisapia & Braver, 2006; Gonthier et al., 2016), the list-wide PC effect would involve 

two forms of control. On the one hand, a form of proactive or preparatory control that would 

maintain attention focused to task-relevant information in a situation in which conflict is 

frequently experienced (i.e., in an MI list). On the other hand, a form of reactive control (i.e., 

control applied after stimulus onset) would be engaged when conflict is detected in a situation 

in which conflict is infrequently experienced (i.e., in an MC or an MN list) and attention, as a 

result, is more relaxed. This reactive form of control would cause the task goal to be reactivated 

in order to deal with that unexpected conflict. In contrast, the item-specific PC effect would 

mainly reflect the action of reactive control, although this control would be somewhat different 

from the reactive control applied in infrequently conflicting lists in the list-wide PC paradigm. 

Specifically, the reactive control engaged in the item-specific PC paradigm would retrieve the 

control settings that are appropriate to the item being presented, i.e., more focused attention 

to task-relevant information when the presented item is an MI item and relaxed attention when 

the presented item is an MC item.  

This Dual Mechanisms of Control account would also explain why, in Chapter 4, the item-

specific PC effect was not reduced by a concurrent working memory load. According to this 

account, reduced working memory resources would favor reliance on reactive control, the 

mode of control that the item-specific PC effect is a manifestation of (e.g., Burgess & Braver, 
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2010). As a result, a concurrent working memory load would, if anything, encourage 

participants to reactively adapt to item-specific conflict frequency, with the resulting item-

specific PC effect being no smaller while carrying a high working memory load than while 

carrying low or no load.  

This interpretation received partial support from the individual-differences analyses reported in 

Chapter 4. In an extreme-groups comparison, individuals with a low working memory capacity 

showed a larger item-specific PC effect than individuals with a high working memory capacity 

(albeit only in the error rates, similar to what found in previous reports: Hutchison, 2011; Kane 

& Engle, 2003). This result would be consistent with the idea that, because it reflects item-

specific reactive control, adaptation to item-specific conflict frequency is preferentially engaged 

when working memory resources are reduced. On the other hand, another individual-

differences analysis in which the whole range of working memory capacity was considered 

(unlike in the extreme-groups analysis) failed to replicate this result (working memory capacity 

did not modulate the item-specific PC effect in a monotonic fashion). In any case, what these 

results suggest is that, consistent with the Dual Mechanisms of Control account, reactive 

control is not impaired when working memory resources are reduced, either because an 

individual’s working memory capacity is lower or because a load is maintained in working 

memory. In general, the present research is consistent with the view that humans can and do 

use processes of adaptation to conflict frequency, and that these processes occur at multiple 

levels of control (Bugg et al., 2008). 
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Limitations and future directions 

The main objective of the present research was to determine whether PC effects in Stroop and 

Stroop-like tasks are completely explained by non-conflict learning confounds, such that, when 

those confounds are eliminated, so are the PC effects (Schmidt et al., 2015). In that sense, this 

research was successful in that it demonstrated that PC effects are still observable in situations 

in which non-conflict learning processes are impaired or made impossible altogether. However, 

a question that this research leaves unanswered is whether those situations would represent a 

special case compared to the standard PC paradigms. The reason this question is relevant is 

that Bugg and Hutchison (Bugg, 2014a; Bugg & Hutchison, 2013) proposed that in both list-wide 

and item-specific PC paradigms, adaptation to conflict frequency would be the main process 

driving PC effects only if the situation examined is one in which contingency learning is not a 

reliable process overall (e.g., in an MI list [in the list-wide paradigm] and in item-specific PC 

manipulations in which no contingencies can be learned for most of the items or in the list). 

Notably, the situations examined in the present research were all situations of this sort. In fact, 

contingency learning was not an option at all in the list-wide conflict frequency manipulations 

reported in Chapters 2 and 3. Consequently, from these results, it is not clear whether 

adaptation to list-wide conflict frequency would be possible in a situation in which contingency 

learning can be concurrently used, a type of situation that many list-wide PC paradigms create. 

Similarly, although contingency learning was possible in the item-specific PC paradigm reported 

in Chapter 4, the concurrent working memory load manipulation was used precisely to impair 

that process.  Thus, although the fact that an item-specific PC effect was obtained with a 

concurrent working memory load does suggest that, when working memory resources are 
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reduced, this effect likely reflects a process of adaptation to item-specific conflict frequency 

(because contingency learning was supposedly impaired), this effect may not reflect item-

specific conflict adaptation in normal circumstances (when there is no concurrent working 

memory load and, therefore, contingency learning is not impaired). 

Based on these considerations, an obvious goal for follow-up research is to determine whether, 

as proposed by Bugg and Hutchison (Bugg, 2014a; Bugg & Hutchison, 2013), adaptation to 

conflict frequency, albeit possible, would only be a “last resort”, i.e., a process that is only 

engaged when contingency learning cannot be used to minimize interference in the task. In fact, 

some data already exist that seem to run counter to this idea. For example, Hutchison (2011) 

obtained a list-wide PC effect even when the MI list (in addition to the MC list) was constructed 

in such a way that contingency learning was possible for most of the words in that list. In 

addition, Shedden et al. (2013) obtained evidence from Event-Related Potentials that in Jacoby 

et al.’s (2003) item-specific PC paradigm, MC items and MI items are distinguished early in 

processing, a result that is more consistent with the idea that two distinct processes (i.e., a 

process leading to the relaxation of attention for MC items vs. a focusing of attention for MI 

items), rather than one and the same process (i.e., contingency learning), are applied to those 

items. In sum, a closer examination of the idea that adaptation to conflict frequency may be 

applied even when other options (e.g., contingency learning) are available in the task appears 

necessary. 

One way in which this idea might be explored is to modify PC paradigms so as to create a 

situation which allows researchers to separate conflict adaptation processes from non-conflict 

learning processes even though the latter processes can be engaged in the task. For example, 
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Schmidt (2013a) constructed an item-specific PC manipulation in which item-specific conflict 

adaptation and contingency learning could be evaluated independently. Although Schmidt 

found no effect of item-specific conflict adaptation, as discussed in Chapter 4, his manipulation 

was problematic because for most of the critical items used to measure conflict adaptation, 

colors and words provided inconsistent information about the conflict frequency of the item. 

When we fixed this problem in an improved version of his design, an item-specific conflict 

adaptation effect emerged (Spinelli & Lupker, in press). Thus, although the evidence in support 

of a role of adaptation to conflict frequency even when word-response contingencies can be 

concurrently learned is still scarce, this evidence holds considerable promise for the idea that 

processes of adaptation to conflict frequency may not be merely a “last resort”.  

Last word 

The present research, overall, provides a significant contribution to our understanding of 

cognitive control engagement in response to situations varying in conflict frequency, a 

contribution that could be of benefit for both the theory and the practical (e.g., clinical) 

applications of the paradigms examined. Far from being a mere illusion, adaptation to conflict 

frequency might be an important resource in coping with tasks that frequently vs. infrequently 

require people to deal with conflict. Although learning about what to respond (contingency 

learning and stimulus informativeness) and when to do it (temporal learning) might be 

important aspects of successful goal-oriented behavior, learning how to respond (i.e., learning 

the appropriate attentional strategy to achieve the goal) is another human ability that needs to 

be acknowledged.  
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