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Abstract 

Karl Marx theorized capitalism as a relation between labour, capital and machines. For Marx, 

capital, the process of self-augmenting value appropriated from human labour, is inherently 

driven by competition to replace labour in production with machines. Marx goes as far as to 

describe machines as capital’s “most powerful weapon” for suppressing working class revolt. 

Marx, however, could not have predicted the computing machines – such as artificial 

intelligence – which now form the basis for an increasingly cybernetic capital. Since Marx’s 

time, many Marxist thinkers have sought to apply or update his approach to the cybernetic 

era. The influential post-operaismo school argues that fundamental revisions to Marx’s 

approach are necessitated by the changed nature of high-tech capital wherein arises a novel 

“immaterial” type of labour. Immaterial labour, the argument goes, appropriates the 

machines of capital and achieves a new autonomy from capital, which can no longer control 

labour and instead, can only attempt to capture the fruits of its autonomous productive 

capacities.  

This dissertation’s goal is to assess the validity of post-operaismo’s claim for a new 

autonomy of immaterial labour from capital. It does so by conducting an analysis of work in 

the contemporary artificial intelligence (AI) industry. Work in the AI Industry should be, 

according to post-operaismo, immaterial labour par excellence. Therefore, this dissertation 

answers the following research question: does work in the AI Industry evince the new 

autonomy from capital attributed to immaterial labour by post-operaismo? I argue that it does 

not. I mount this argument with a multimodal methodology. I employ documentary analysis 

and qualitative interviews with workers and management in the AI Industry to produce a 

history, political economy analysis and labour process analysis of the AI Industry. This is 

followed by a theoretical analysis which assesses the claims of post-operaismo by the 

example of the AI Industry. I argue that work in the AI Industry remains under the control of 

capital and that, antipodally to claims of a new autonomy of labour, this industry evinces an 

increasing autonomy of capital. I conclude the post-operaismo mistakes obsolescence for 

autonomy. 
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Summary for Lay Audience 

This dissertation argues that while Karl Marx may have analyzed capitalism a distant two 

hundred years ago, his insights remain relevant today. Marx argued that capitalist businesses 

use machines to oppress and control workers in the interests of harvesting what he called 

surplus-value. Some contemporary theorists, inspired by Marx, argue that while his analysis 

was valuable, it needs to be updated in substantial ways to remain relevant to the social and 

economic systems of today, which are characterized by advanced digital technologies that he 

could never have anticipated, such as the internet and artificial intelligence. This dissertation 

argues against one such school of thought, called post-operaismo, which holds that digital 

technologies mean that work increasingly takes a form they call “immaterial labour” in 

which workers gain increasing control over their own work, ultimately leading to a post-

capitalist society.  

This dissertation disputes immaterial labour theory. It does so through an analysis of work in 

the contemporary AI Industry – which by post-operaismo’s own definitions counts as 

immaterial labour. I argue that contemporary work in the AI Industry does not evince the 

qualities attributed to it by post-operaismo. On the contrary, work in the AI Industry suggests 

the continued relevance of Marx’s original analyses of capitalism.  
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Chapter 1  

1 Introduction: The Artificial Intelligence Industry and 
Immaterial Labour 

1.1 A Fourth Industrial Revolution? 

Karl Marx conducted his analysis of capitalism in the wake of what has come to be 

known as the “industrial revolution,” in which steam and water powered machine-based 

manufacturing became the predominant form of industry in Europe and parts of North 

America (Toynbee 1997).1 The industrial revolution occurred somewhere between 1760 

to 1840; Marx published the first volume of Capital in 1867. The first industrial 

revolution was followed by a second industrial revolution, characterized by the 

proliferation of electricity among other innovations, took place from around 1870 up to 

the First World War in 1914 (Landes 2003). This was followed by a third industrial 

revolution, characterized by the proliferation of digital networks and ICTs after the 

Second World War onto the present day (Rifkin 2011).  

Today we are purportedly living in the midst of a fourth industrial revolution which 

began in the 2010s. According to Klaus Schwab (2017), founder and executive chairman 

of the World Economic Forum (WEF), the fourth industrial revolution is defined by a 

“confluence of emerging technology breakthroughs, covering wide-ranging fields such as 

artificial intelligence (AI), robotics, the internet of things (IoT), autonomous vehicles, 3D 

printing, nanotechnology, biotechnology, materials science, energy storage and quantum 

computing” among others (7). Similarly, the MIT economists Erik Brynjolfsson and 

 

1
 While its use is widespread in both academic and popular culture, the notion of the industrial revolution 

has been justly criticized for oversimplifying complex social processes, attributing deterministic power to 

technology and overlooking the gradual nature of historical change (De Vries 1994; Žmolek 2013). 

Cameron (1982) laments the notion’s wide usage because it “has no scientific standing and conveys a 

grossly misleading impression of the nature of economic change” (377). Accepting these critiques fully, I 

use the concept here only in a schematic way, as shorthand means for summarizing technological milieus. I 

draw on the notions of successive industrial revolutions only to produce an overview of the technological 

evolution of capital, without committing to hard epochal boundaries or endorsing the arguments mounted 

by their promoters.  
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Andrew McAfee (2014) argue that after a long first machine age, which followed the first 

industrial revolution, we are only now entering a “second machine age” defined by the 

same array of technologies noted by Schwab. Brynjolfsson and McAfee (2017) suggest 

that of these technologies, AI will turn out to be the most significant because, like 

electricity or the combustion engine, it is a general-purpose technology with nearly 

limitless applications (3-4). Perhaps unsurprisingly, AI luminaries agree. AI expert and 

venture capitalist Andrew Ng has called AI the “new electricity” (Eckert 2016). He 

asserts that “[j]ust as electricity transformed almost everything 100 years ago, today I 

actually have a hard time thinking of an industry that I don’t think AI will transform in 

the next several years” (Lynch 2017). This sentiment is widespread. The consulting firm 

Accenture proclaims that AI is “the future of growth” (Purdy and Daugherty 2016). And 

while another such firm, Gartner (2018), puts deep learning AI at the apex of its hype 

cycle – “the peak of inflated expectations” – so far enthusiasm has yet to deflate.  

Impressive research advances in AI continue to emerge. One AI system reportedly plays 

the classic computer game DOOM, remembers the environment spatially and temporally 

and has “dreams” about these memories. In its so-called dreams, the system reconstructs 

the game environment based on its experiences within it and autonomously improves its 

ability to play the game by exploring this dream world (Ha and Schmidhuber 2018). 

Another AI system reportedly can diagnose skin cancer by visual inspection with 

accuracy comparable to human dermatologists (Esteva et al. 2017). Yet another 

(AlphaGo) defeats the world champion of Go, and is then itself defeated by its next 

iteration (AlphaGo Zero) – which received no human training at all (Silver et al. 2017).  

Outside the research laboratory, self-driving trucks, powered by AI, now operate in 

limited areas, automated retail stores use AI to dispense with (some) retail employees and 

AI is widely used to conduct advanced analytics anywhere large quantities of data are 

available. In 2016, for the first time, the top five largest companies in the world by 

market value all came from the same country and industry – US big tech (Mosco 2017, 

65). The same five were still on top in 2018: Apple ($926.9B), Amazon ($777.8B), 

Alphabet/Google ($766.4B), Microsoft ($750.6B), and Facebook ($541.5B), with 

Chinese tech giant Alibaba in sixth place ($499.4B) (Forbes 2018). Significantly, all of 
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these companies are now deeply involved in the research and production of AI. In 2017, 

Microsoft dropped its “Mobile First” mantra in favour of a new focus on AI (Darrow 

2017). As I will show in the following chapters, a turbulent, burgeoning industry – the AI 

Industry – has formed around these high tech firms. I define the AI Industry as an 

industry composed of capitalist firms producing AI not only for their own purposes, but 

also for sale as commodities and means of production for other capitalists, as Chapters 3 

and 4 elaborate. 

Yet at the same time as the AI Industry expands, public figures including Elon Musk and 

Bill Gates as well as physicist Stephen Hawking have respectively described AI as “our 

biggest existential threat,” a “concern,” and a potential “end of the human race” (Gibbs 

2014; Holly 2015). In slightly less eschatological terms, concerns have been widely 

voiced over the possibility of widespread technological unemployment driven by a new 

wave of automation powered by fourth industrial revolution technologies such as AI. 

While predictions vary in terms of when and how AI will impinge on labour, a vague 

consensus is emerging that, sooner or later, and in some as of yet unknown way, 

advanced capitalist societies are going to have to address the question of what to do when 

AI automates much of society’s labour.  

For this reason, among others, the analysis conducted by Marx 200 years ago remains 

relevant. Marx argues that while surplus value derives from labour, machines are one of 

capital’s primary means for harvesting that value and controlling the humans on which it 

relies. I will suggest in Chapter 2 that Marx’s thought can be usefully schematized with 

the conceptual triad: labour, capital, machine. Marx shows how, driven by its need to 

harvest surplus value, capital has an inherent and ceaseless drive to technological 

revolution. Capital therefore tends towards an increasingly automated, machinic state.  

Marx was not, however, flatly anti-technology. His work suggests rather that technology 

freed from the constraints of capitalist employment might be used for emancipatory ends 

and the general betterment of humanity. Subsequent Marxian thinkers have further 

developed, and sometimes revised, Marx’s framework to analyze the evolution of 

capitalism throughout the second and third revolutions. Marxist thinkers tend to call the 
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era wrought by the second industrial revolution “Fordism” which finds its most famous 

expression in the deskilled assembly line tending “mass worker” (Wright 2002). The 

digital third industrial revolution has been described, by Marxists and others, as a 

transition to “post-Fordism,” a disputed term which, at the minimum, refers to how 

capital sought to overcome to organized power of the mass worker through the 

deployment of information and communications technologies (ICTs) (Amin 1994, 1-34).  

The strain of Marxian thought called post-operaismo (post workerism) has been 

particularly influential in the analysis of the Post-Fordist era. Post-operaismo is an 

offshot of the operaismo (workerism) school of Marxism developed in Italy in the first 

half of the 20th century, which posited a “Copernican revolution” in Marxist thought by 

emphasizing the power of labour to direct the functioning of capital, rather than the other 

way around (Toscano 2009).2 Post-operaismo thinkers argue that ICTs increase the 

autonomy and power of labour, transforming old forms of work into “immaterial labour” 

which capital cannot control (Lazzarato 1996; Hardt and Negri 2001). Post-operaismo 

claims that Marx’s approach is incapable of grasping this emergent situation because he 

lived in the age of steam-powered factories, not the internet. Post-operaismo posits a 

fundamental “change in the quality and nature of labor … [wherein] information and 

communication have come to play a foundational role in production processes” (Hardt 

and Negri 2001, 289). All labour tends toward a “cyborg, high-tech form” (Dyer-

Witheford 2005, 152-153). 

The shift to immaterial labour is purported to have dramatic effects on the antagonistic 

relation between capital and labour. As Camfield (2007) puts it, immaterial labour is 

claimed to be of “world-historic importance” because it is “dissolving the division of 

time between work and non-work, creating a new commonality, undermining qualitative 

divisions among working people, producing life outside the sway of capital and making 

possible the popular unity of singularities that can achieve absolute democracy” (30). 

 

2
 The English-speaking world has often referred to operaismo and its descendents, like post-operaismo, as 

“autonomist” Marxisms to emphasize their fundamental tenet that labour is autonomous from capital 

(Cleaver 1979; Witheford 1994).  
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Indeed, Antonio Negri, (1996) perhaps the most prominent figure in post-operaismo, 

once asked “[i]s this the third industrial revolution or the time of transition to 

communism?” (156).  

While the internet never catapulted the world into communism, post-operaismo continues 

to advance its immaterial labour theory with little revision. Hardt and Negri (2017) 

evinces little theoretical difference from Hardt and Negri (2001). Many activists and 

academics continue to use immaterial labour theory as a theoretical framework 

(Koloğlugil 2015; Grizzioti 2018). Machines are still supposed to be increasing the power 

of immaterial labour contra capital, even as swaths of capital gather around a new 

nucleus in the AI Industry. One does not have to subscribe to Schwab’s whole fourth 

industrial revolution program to acknowledge that in the last 20 years the technological 

milieu has substantially changed. Machine learning AI, to take only one example, only 

emerged in its contemporary form around 2010. It is a fair question to ask, then, whether 

immaterial labour theory, conceived during the third industrial revolution, fares well 

amidst the fourth?3  

This dissertation contests the validity and utility of post-operaismo’s immaterial labour 

theory. Workers in the AI Industry are immaterial labourers par excellence. Yet, if we 

examine this industry, we find that its workers do not possess the attributes accorded to 

immaterial labour. While post-operaismo makes numerous claims about immaterial 

labour, my focus is its claim for the increased autonomy of immaterial labour vis a vis 

capital.  

My critique is founded on an empirical analysis of the AI Industry, which was produced 

through documentary analysis and interviews conducted with workers and management 

in the AI Industry. This analysis of the AI Industry was then interpreted via a reading of 

 

3
 Left accelerationism (Williams and Srnicek 2014; Mason 2016; Bastani 2019), extolled by post-

operaismo thinkers like Negri (2014), might arguably be considered a new post-operaismo for the fourth 

industrial revolution. Left accelerationism, however, inherits from post-operaismo its flaws, as my co-

authors and I have argued (Dyer-Witheford, Kjøsen and Steinhoff 2019). An assessment of left 

accelerationism falls beyond the scope of this dissertation. 
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Marx influenced by the New Reading of Marx (NRM) school. NRM has a very different 

focus from post-operaismo, focusing on the continued relevance of Marx’s theory of 

value rather than the disruptive significance of technological change. I suggest that work 

in the AI Industry does not exhibit the autonomy attributed to immaterial labour by post-

operaismo and that NRM allows us to better understand labour in the AI Industry as 

subject to continued control by capital. Further, my analysis reveals that the AI Industry 

is giving birth to a new type of automation – automation without codification. I will argue 

that automation without codification signifies a possible technological change within 

capital whereby capital, not labour, appears to be increasing its autonomy. In short, my 

argument is that post-operaismo has it backwards. By the same token, however, the 

advance of AI also puts in sight a horizon over which the concept of value on which 

NRM rests itself threatens to vanish. This issue is taken up in the concluding chapter. 

1.2 Defining Artificial Intelligence 

Defining AI is difficult because there is no consensus on how to define intelligence nor 

on how it should be implemented in machines (Legg and Hutter 2007; Wang 2008). One 

early AI researcher defined AI as “making a machine behave in ways that would be 

called intelligent if a human were so behaving” (McCarthy et al. 1955). Another defines 

AI as “that activity devoted to making machines intelligent, and intelligence is that 

quality that enables an entity to function appropriately and with foresight in its 

environment” (Nilsson 2010, xiii). The problem of definition has been further 

complicated by a phenomenon, called the AI Effect, whereby once a problem in AI is 

solved, it is no longer regarded as requiring intelligence and is relegated to mere 

computation. McCorduck (2004) notes that “every time somebody figured out how to 

make a computer do something—play good checkers, solve simple but relatively 

informal problems—there was chorus of critics to say, ‘that's not thinking’” (204).  

This dissertation adopts a working definition of AI derived from Wang (2008) and 

Kaplan (2016). For Wang (2008), intelligence is “adaptation with insufficient knowledge 

and resources” which means that an intelligent system “is finite, works in real-time, is 

open to novel tasks, and learns from experience” (371). Kaplan (2016) defines the 

“essence of intelligence” as the “ability to make appropriate generalizations in a timely 
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fashion based on limited data. The broader the domain of application, the quicker 

conclusions are drawn with minimal information, the more intelligent the behavior” (5-

6). The definitions offered by Kaplan and Wang have the benefit of delimiting the field of 

what is possibly intelligent or artificially-intelligent by positing human intelligence as a 

tacit benchmark, with its criteria of temporal finitude, finite quantity of information and 

generality of application. These criteria allow us to differentiate between computation 

and AI.4  

Another important definitional point concerns the distinction between AI and robotics.5 

The roboticist Winfield has offered three complementary definitions of a robot: 

1. an artificial device that can sense its environment and purposefully act 

on or in that environment; 

2. an embodied artificial intelligence; or 

3. a machine that can autonomously carry out useful work (2012, 8). 

Most importantly, robots have bodies. AI is software which runs on computing hardware. 

Advanced humanoid robots, such as Honda’s ASIMO, employ AI in perception and 

planning locomotion, but a robot body does not necessarily entail AI. Most of the existing 

robot population today is comprised of relatively dumb industrial robot arms, first 

deployed in 1951, though AI will likely increasingly suffuse robotics.6  

 

4
 A program which can solve a difficult problem given 400,000,000 years of computation to conduct a 

brute force search through every possible solution does not possess intelligence in the sense we use when 

speaking of human intelligence, which operates with a much shorter timescale. Likewise, human 

intelligence functions with limited data all the time, except in constrained formal situations with “perfect 

information” (games such as checkers or chess) (Mycielski 1992, 42). 

5
 AI should also not be associated inherently with consciousness. No existing AI systems have 

consciousness in any conventional sense of the term, excepting theories such as that of Koch (2012) in 

which consciousness is a property of matter in general. The question of machine consciousness is not 

relevant to this dissertation. The analysis presented here does not depend on machine consciousness being 

physically or even logically possible, nor does it depend on the impossibility of such. 

6 Research into humanoid care robots is ongoing in Japan and “cobots” or AI-powered collaborative robots 

are being developed to tackle tasks which machines alone cannot yet handle. 
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1.3 Actually-Existing AI 

This dissertation is primarily concerned with actually-existing AI. This means that, other 

than some speculations in the conclusion, I am not concerned with fictional 

representations and possible future forms that AI might or might not take. The definitions 

of AI provided by Wang and Kaplan help distinguish actually-existing AI from 

speculative forms by plotting them on a continuum of intelligence. It is a handy heuristic: 

the more domains an AI can function in, and the less time, knowledge and resources it 

requires, the more intelligence it exhibits.  

Actually-existing AI is called “narrow” AI because the “vast majority of current AI 

approaches … are primarily designed to address narrow tasks” (Johnson, Hofmann, 

Hutton & Bignell 2016, 4246). All commercial applications of AI, and most AI research 

in general, have focused on such narrow task-based tools. Just as a word processor is not 

useful for generating 3D models, an AI system for recognizing faces is not going to 

predict stock prices. Narrow is thus a useful qualifier for actually-existing AI because it 

denotes that whatever intelligence is at work is of a qualitatively different sort than that 

of humans. Unless otherwise specified, all references to AI in this dissertation will refer 

to actually-existing narrow AI.  

The technical literature on AI lies beyond the scope of this project, but the non-technical 

reader can find useful information in the introductory chapters of AI textbooks, such as 

the popular Russel and Norvig (2009). There also exist many non-technical introductory 

works covering the basics of AI (Warwick 2013; Frankish and Ramsey 2014; Boden 

2016; Kaplan 2016) and machine learning in particular (Alpaydin 2016; Domingos 

2015). There are several histories of AI (McCorduck 2004; Crevier 1993).7 The most 

recent and most comprehensive history is Nilsson (2010). Despite its impressive clarity 

 

7
 There are also histories of particular well-known AI systems and projects, such as Japan’s Fifth 

Generation computing progamme and robotization efforts (Feigenbaum and McCorduck 1984; Shodt 

1988), DARPA’s strategic computing initiative (Roland and Shiman 2002), IBM’s chess-playing Deep 

Blue (Hsu 2004) as well as IBM’s Jeopardy-playing Watson (Ferrucci 2012). 
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and scope, Nilsson’s history, like those that preceded it, focuses primarily on concepts 

and personalities and rarely on how AI became an industry in its own right. 

Narrow AI may be contrasted with general intelligence, such as that of humans. 

Hypothetical future AI with human-like capacities is called artificial general intelligence 

(AGI) and “human-level AI” (Nilsson 2005). AGI is defined as AI with “the capacity for 

efficient cross-domain optimization” or “the ability to transfer learning from one domain 

to other domains” (Muehlhauser 2013). AGI is thus, theoretically, able to engage 

intelligently in a wide variety of contexts and to apply knowledge learned in one context 

to novel situations. By most assessments, the development of AGI, if it is possible, lies 

far in the future, although some futurists place its appearance as early as 2045 (Kurzweil 

2005). While AGI research remains highly speculative, there are at least 45 active AGI 

projects across academia and industry (Baum 2017).8 

1.4 AI Industry Critical Literature Review 

AI has been subject to critical thought since Turing – arguably the first philosopher of AI 

– but there has been a resurgence of critical interest in AI since around 2010. While this 

dissertation draws primarily on Marxist literature, diverse other perspectives have 

considered the social, political and theoretical implications of AI. This section surveys 

several. 

There is a diverse field of philosophical thought about AI. The philosophical literature on 

AI delves into classical philosophical fields such as philosophy of mind, metaphysics and 

epistemology and engages with sempiternal philosophical debates concerning agency, 

materialism and the nature of cognition and the self. Much of the philosophy of AI comes 

from the analytic philosophy tradition (Boden 1990; Copeland 1993). There has been no 

philosophical consensus on any aspect of AI. Some philosophers are dubious of AI’s 

 

8
 AGI is exceeded in speculative amplitude by artificial superintelligence (ASI) or an AI “that greatly 

outperform[s] the best current human minds across many very general cognitive domains” (Bostrom 2014, 

63). ASI is usually imagined as the outcome of a scenario in which AGI is invented and upgrades itself into 

an ASI with god-like powers. This now-classic science fiction scenario receives serious academic 

discussion at prestigious places including Oxford University’s Future of Humanity Institute. 
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philosophical assumptions and goals (Dreyfus 1979, 1992; Penrose 1989; Ekbia 2008) 

while others are more measured (Haugeland 1989). Still others have argued that AI 

(particularly the artificial neural network) upsets the foundations of philosophical thought 

itself, calling for radical revisions (Churchland 1989, Churchland and Sejnowski 1994, 

Churchland 2013). A singular perspective has been developed by Negarestani (2015b, 

2016, 2018) for whom the development of AI, particularly AGI, is the ultimate goal of 

philosophy. 

There is also the field of machine ethics, which “is concerned with giving machines 

ethical principles, or a procedure for discovering a way to resolve the ethical dilemmas 

they might encounter” (Anderson and Leigh Anderson 2011, 1). Some machine ethics 

work focuses on the near term (White 2015; Wallach and Allen 2008) while other work is 

concerned with the possibilities and risks of possible future AI (Majot and Yampolskiy 

2014; Müller 2016). 

Another strand of philosophical thought derives from the continental philosophy 

tradition. While they have rarely spoken about AI specifically in much detail, continental 

thinkers have theorized machines more generally and considered their social and 

philosophical implications. Most of these thinkers draw on, to a greater or lesser degree, 

the work of Deleuze and Guattari (Johnston 2008; Pasquinelli 2015b). The famous 

“Manifesto for Cyborgs” (Haraway 1990) initiated a perspective which melds feminist 

continental philosophy with a critical, yet optimistic, appraisal of technology so as to 

break down categorical barriers between genders, species, humans and machines – 

developing what is now called a “posthuman” perspective (Hayles 2008; Braidotti 2013; 

Roden 2014). Technologies such as AI are often positioned in posthumanist theory as 

constitutive or potentially constitutive of new modes of being for humans and/or new 

ways of thinking about humans and machines. One suggestive example of this is Hayles 

(2017) who advances the notion of the “cognitive nonconscious,” by which cognition is 

to be distinguished from consciousness, and which thereby implies that nonconscious 

things can think (for a similar notion, see Harari 2016). 
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Posthumanism must be distinguished from another philosophical movement in which AI 

is also implicated: transhumanism (Ranisch and Sorgner 2014; Tegmark 2017). 

Transhumanism is a cultural movement which advocates for the technological 

augmentation and/or replacement of humans with advanced technologies, including 

nanotechnology, robotics, biotechnologies and AI. Transhumanism was brought into 

mainstream discourse by inventor and futurist Kurzweil (1990, 2000, 2005) who 

elaborated on ideas drawn largely from the roboticist Moravec (1988, 2000). 

Transhumanism was also popularized by More (1993), and was brought into academic 

discourse by Bostrom (2001) and others. Discussions about transhumanism often include 

mention of the Technological Singularity theory, proposed first by Good (1966) and 

named as such by Vinge (2013 [1993]). The Technological Singularity theory maintains 

some variation on the idea that once a sufficiently advanced AI is created (usually with 

approximately human level capabilities) it will quickly begin to improve itself. This AI, 

the story goes, will iteratively increase its powers, become an AGI, and eventually 

possess god-like powers (Shanahan 2015).9  

More relevant to this dissertation is work on the social, political and ethical implications 

of actually-existing AI. This literature comes from diverse perspectives. Some of this 

literature concerns issues that arise when technologies with some degree of autonomy, 

such as AI, are integrated into weapons making “lethal autonomous systems” (Arkin 

2009, 49) or “killer robots” (Scharre 2018; Krishnan 2016; Garcia 2014; Docherty 2012). 

There has also been interest in the ethical dimensions of civilian autonomous 

technologies, such as driverless cars (Goodall 2014; Bonnefon, Shariff and Rahwan 

2016).  

 

9
 The nature of such an ASI has been subject to debate. Kurzweil (2005) has suggested that humanity will 

be included in the ascendance of the AI while others such as Bostrom (2014) have called for cautionary 

preplanning due to the extreme danger presented by such a scenario. Overall, transhumanism has had a 

number of well-known detractors (Fukuyama 2004; Joy 2000; Barrat 2013). The lively debate over 

transhumanism has been well-documented in volumes of collected essays (Hansell 2011; More and Vita-

More 2013).  
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There is also a rapidly expanding body of work which has been usefully dubbed “critical 

algorithm studies” (Social Media Collective 2016).10 In their excellent review, 

Mittelstadt et al. (2016) divide this body of work into seven categories. Three are 

epistemic in nature. In my own words, they are: the difficulties in understanding output of 

algorithms (Holzinger 2018), the inscrutability of how algorithmic systems produce the 

output they do (Pasquale (2016), and the ruinous influence of bad training data 

(Mittelstadt et al. 2016, 4-5). The authors also discuss concerns around the attribution of 

responsibility to algorithms, which they call “traceability” (Mittelstadt et al. 2016, 5). 

While important to the critical study of AI, these are not of immediate interest to my 

dissertation. However, Mittelstadt et al. (2016) also point out two normative concerns 

that are of immediate interest: unfair outcomes and transformative effects.  

Unfair outcomes refers to how the output of an algorithm may be assessed in terms of 

perceived fairness. Such work investigates how AI is implicated in social power 

relationships including gender, race and class and often exacerbates inequalities therein. 

The predominantly white male identity of AI creators is often the starting point of such 

analyses (Adam 2006; Crawford 2016). O’Neil (2017) demonstrates the wide variety of 

algorithmic discrimination in work, finance and other spheres of life. Noble (2018) and 

Larson, Angwin and Parris Jr. (2016) focus on race and gender, showing how racial 

biases of engineers can be baked into the AI systems they create. Eubanks (2018) focuses 

specifically on how such systems repeat historical patterns of oppressing the poor. Others 

have elaborated the complex intertwinings between AI, Silicon Valley, white supremacy 

and the alt-right. (Pein 2012; Golumbia 2019). 

Transformative effects refers to the capacity for algorithms, and thus AI, to “affect how 

we conceptualize the world, and modify its social and political organization” (Mittelstadt 

et al. 2016, 5). A primary concern of this type of work is how AI-powered automation of 

work will affect societies. Some analyses argue that AI-powered automation is leading to 

 

10
 Critical algorithm studies is diverse and includes work from disciplines ranging from communication 

studies (Granka 2010), human geography (Graham 2005), linguistic anthropology (Kockelman 2014), 

cultural studies (Striphas 2015; Mackenzie 2015) and media archaeology (Mackenzie 2017). Work has 

even been done exploring the theological dimensions of AI (Geraci 2012). 
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a narrowing of human cognitive abilities (Carr 2014; Danaher 2019) or a society-wide 

stupidity (Stiegler 2017).  

In somewhat less theoretical vein, there is an ongoing debate amongst economists, 

computer scientists and business analysts about the effects of AI on employment. Some 

predict wide scale technological unemployment—a full scale “crisis of work” (Steiner 

2012, Standage 2016, Ford 2009; 2015). Others believe job losses to AI-powered 

automation will be far smaller, and counterbalanced by employment gains due to overall 

economic growth and the emergence of new types of AI-related work (T. Lee 2018; 

Hawksworth, Berriman and Goel 2018). While a full assessment of this debate is beyond 

the scope of this dissertation, I review the basics in the next section. This dissertation 

instead focuses on the work of producing AI and whether post-operaismo’s theory of 

immaterial labour is able to adequately explain it. 

1.5 AI and Work: Selective Literature Review 

Researchers at Oxford found that 47% of all US jobs are potentially automatable through 

the application of “computerization” over the next ten to twenty years (Frey and 

Osbourne 2013, 1). A later analysis from the OECD paints a much lighter picture with 

only 9% of jobs across OECD countries as automatable (Arntz, Gregory and Zierhan 

2016, 4). The matter remains unsettled. Hawksworth, Berriman and Goel (2018) argue 

that by the 2030s around 30% of all jobs will be automatable, while analysts at McKinsey 

suggest that half of all paid activities in the global workforce have some potential for 

automation with currently existing technologies. While only less than 5% are completely 

automatable, they assert that for about 60% of all jobs 30% of tasks could be automated 

(Manyika et al. 2017).  

The 2013 Oxford report focuses on jobs as a whole while the latter adopt finer-grained 

task-based perspectives, but even this, argues K.F. Lee (2018), is not sufficient to grasp 

the extent of AI’s impact on work. Both the job and task based approaches consider AI-

powered automation as conducting a “one-to-one replacement of a machine for a human 

worker” but it is necessary to also consider how AI automation might also induce 

“ground-up disruptions” which decimate human employment in a particular industry by 
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completely reconfiguring its structure to deliver its core function in a totally different 

way (K.F. Lee 2018, 177-178).11 Lee cites as an example the news app Toutiao which 

lacks the skills of an editor but still performs the curation of a newsfeed. This kind of AI 

automation, K.F. Lee (2018) suggests, could affect as much as 10% of the workforce in 

the USA (178). 

No consensus can be derived from these reports. As Acemoglu and Restrepo (2018) note, 

“we are far from a satisfactory understanding of how automation in general, and AI and 

robotics in particular, impact the labor market and productivity” (1). Analysts from 

Brookings agree, holding that “the discourse appears to be … suggesting that automation 

will bring neither apocalypse nor utopia, but instead both benefits and stress alike” 

(Muro, Maxim and Whiton 2019). This ambivalence is expressed throughout the 

literature by the repetition of the mantra that new technologies will destroy jobs through 

automation but at the same time enable the creation of new jobs (Susskind and Susskind 

2015, 286; Agrawal, Gans and Goldfarb 2018, 223-4). 

It is, regardless, important to note that the employment outcomes of AI-powered 

automation do not only depend on whether or not a job is “automatable”. The most basic 

Marxist, or even neoclassical, economics reminds us that for machines to be introduced 

they generally have to be not just technically feasible, in a laboratory setting, but also—at 

least over a forseeable length of time—cheaper to the capitalist, in an industrial context,  

than the labour they replace. Since such large-scale machinic displacement of labour is 

likely to, all else being equal, increase the number of unemployed workers, and thus 

decrease the average cost of labour, it would simultaneously make humans more 

attractive to capital than machines. Therefore, it is likely that any enlargements in 

technological unemployment from AI introduction will unfold in a very staggered and 

circuitous process, rather than an abrupt vaporization of jobs. 

 

11
 Here Lee neatly describes the Marxian notion of real subsumption – the reconfiguration of production 

processes to forms adequate to the needs of capital (Marx 1990, 501). I discuss this in the next chapter. 
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Another mantra that is repeated throughout the AI and work literature is what I call 

centaur theory.12 In 1997, the chess champion Garry Kasparov lost to IBM’s AI Deep 

Blue. He was the first human champion to lose to an AI. He later went on to develop a 

style of chess in which human-machine teams (centaurs) would work together. The best 

centaurs could defeat both human masters and the best AI systems (Case 2018). Centaur 

theory is a popular solution to the uncertain future of work in the face of AI-based 

automation.  

Brynjolfsson and McAfee (2014) is one of the most influential works on the economic 

implications of AI as well as centaur theory. Brynjolfsson and McAfee (2014) assert that 

the emergence of “real, useful artificial intelligence” is one of the “most important one-

time events in our history” (90). AI and widespread digital networks are “more important 

than anything since the Industrial Revolution” (Brynjolfsson and McAfee 2014, 90). In 

their assessment, as AI proliferates “costs will go down, outcomes will improve, and our 

lives will get better,” even if low-skill, routine jobs are largely eliminated (Brynjolfsson 

and McAfee 2014, 91). Davenport and Kirby (2016) similarly argue that in the era of 

automation of cognitive work, “the parts of our jobs we’ll keep are just the parts that 

can’t be codified” (14). The notion is that we need develop AI such that it augments, 

rather than automates, human capabilities (see also Markoff 2016; O’Reilly 2017). 

Exactly how labour is divided in the human-AI centaur varies from author to author, but 

the general point is the same: humans will do whatever cannot be automated yet. For 

Brynjolfsson and McAfee (2014), this is creative thinking: “people who are good at idea 

creation will continue to have a comparative advantage” against machines (192). 

Agrawal, Gans and Goldfarb (2018) recommend that machines perform routine data-

heavy predictions and humans use judgment to make predictions in irregular, low-data 

scenarios (68-9). They hold that as machine learning-powered prediction becomes 

cheaper, the value of and demand for, non-automatable human judgment will increase 

 

12
 A genealogy of centaur theory, which there is no space to conduct here, would likely begin with the 

work of Douglas Engelbart who advanced the notion of using technology for human “intelligence 

augmentation” (see Bardini 2000). 
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(Agrawal, Gans and Goldfarb 2018, 178). Daugherty and Wilson (2018) call for a similar 

model in which AI does repetitive tasks while humans employ their judgment. The 

creation of centaurs will, they suggest, create so many jobs that technological 

unemployment should not be worried about (5-8). Frank, Roehrig and Pring (2017) call 

the centaur a “knowledge economy exoskeleton” (151) and assert that “for the vast 

majority of professions, [AI] will actually enhance and protect employment” (8). 

Microsoft (2018) promotes a similarly rosy theory of “human-centered AI” (136). 

Schenker (2017) holds that professional jobs will be largely immune to automation for 

the foreseeable future (63). 

However, some centaur theories are less rosy. Susskind and Susskind (2015) argue that 

even the non-routine and creative jobs of professionals will be done by “increasingly 

capable machines, operating on their own, or with non-specialist users” (159). The one 

sphere where humans might persist, they suggest, is in positions involving moral 

responsibility (Susskind and Susskind 2015, 279-284). It is unclear how many jobs this 

particular specialization will provide. McAfee and Brynjolfsson (2017) have refined their 

original centaur theory, three years later, in light of advances in ML. While they 

originally reserved creative thinking as safely reserved for human workers, the authors 

now note that “machines are getting quite good at coming up with powerful new ideas on 

their own” (McAfee and Brynjolfsson 2017, 111). They are:  

confident that the ability to work effectively with people’s emotional 

states and social drives will remain a deeply human skill for some time to 

come. This implies a novel way to combine minds and machines as we 

move deeper into the second machine age: let the computers take the lead 

on making decisions (or judgments, predictions, diagnoses, and so on), 

then let people take the lead if others need to be convinced or persuaded to 

go along with these decisions (McAfee and Brynjolfsson 2017, 123).  

Their new conclusion is that human workers now need to specialize in affective labour. 

In sum, whether blindingly optimistic or more guarded, centaur theory holds that AI can 

or should be deployed as an augmentation, rather than automation, technology. However, 
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centaur theorists tend not to discuss how the economic system of capitalism compels the 

development and deployment of technologies such that any line between what machines 

can and cannot do is unlikely to remain fixed for long.  

Some analyses of AI and work have paid more attention to essential dynamics of capital. 

Kaplan (2015) expects that AI-powered automation will exacerbate persistent social 

problems like inequality and unemployment (3). He even asserts that widespread AI 

automation will reveal that Marx was right that capitalism “is a losing proposition for 

workers” (Kaplan 2015, 11). He suggests that AI presents a dire picture of the future that 

Marx could not imagine: a society in which capital no longer needs labour: “[t]he real 

problem is that the wealthy will need few, if any, people to work for them at all” (Kaplan 

2015, 11). His solution to the problems that will be caused by AI automation is a 

framework of “free-market solutions to address the underlying structural problems we are 

creating” (Kaplan 2015, 13). These include a new financial instrument, the “job 

mortgage” as well as a “government-certified measure of corporate ownership … [called] 

the public benefit index” (Kaplan 2015, 14). The problem with Kaplan’s work is that 

while he recognizes that AI presents a heightening of the labour-capital conflict, he does 

not recognize this conflict as irreducible under capitalism. 

Ford (2015) develops a clearer picture of the situation because he grasps the essential 

dynamics of the process of capital. Like Kaplan, he holds that a new wave of AI-enabled 

automation makes the elimination of routine and predictable jobs certain and that this will 

have disastrous consequences for labour. Ubiquitous computing power and the 

“distributed machine intelligence that accompanies it” means that any new fields of work 

created will not be labour-intensive (Ford 2015, 176). Unlike Kaplan, he does not think 

the problems posed by AI can be addressed without modifying the capitalist mode of 

production itself.  Ford is skeptical of the centaur theory argument and also of free market 

fixes like those of Kaplan, because as he correctly notes, automation is not the individual 

choice of management or individuals: “progression toward ever more automation is not 

an artifact of ‘design philosophy’ or the personal preferences of engineers: it is 

fundamentally driven by capitalism” (Ford 2015, 255-256). He therefore argues that 

stopping the tide of AI automation “would require modifying the basic incentives built 
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into the market economy” (Ford 2015, 256). Ford stops short of advocating for 

revolution, instead opting for the establishment of universal basic income (UBI). This 

presents its own difficulties, which are beyond the scope of this dissertation.13  

1.6 Primary Research Question and Methodology 

This dissertation provides an answer to the following primary question:  

Does work in the AI Industry evince the new autonomy from capital attributed to 

immaterial labour by post-operaismo? 

By answering this question, this dissertation aims to contribute to a better understanding 

of contemporary high-tech labour. Adapting from Raniero Panzieri (1965), it aims to 

“defy all kinds of mystical ideas” about labour by testing post-operaismo’s theoretical 

claims with the concrete example of work in the AI Industry. To do so, it deploys a multi-

pronged methodology. This dissertation combines documentary analysis, theoretical 

analysis and qualitative interviews with AI workers and management. Documentary 

analysis and interviews were used to produce a history, political economy analysis and 

labour process analysis of the AI Industry. Theoretical analysis was then applied to assess 

post-operaismo’s claim for a new autonomy of immaterial labour. It is important to 

explain why this analysis required three different (history, political economy and labour 

process) analyses of the AI Industry. 

This dissertation studies the AI labour process because this is where the purported new 

autonomy of immaterial labour should be evident. Marxist analyses have argued that 

technological change in the labour process is one of capital’s main ways of increasing the 

exploitation of labour and thus its harvest of surplus value. As Wright (1981) puts it: 

The Marxist model … directs our research efforts toward those 

transformations of the socio-technical conditions of production that 

directly impinge on surplus labour. It is for this reason that the Marxist 

 

13
 For a Marxian analysis of UBI, see Dyer-Witheford, Kjøsen and Steinhoff (2019).  
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analysis of production revolves around the analysis of the labour process 

(63). 

Yet, analysis of the labour process alone is not sufficient. The labour process must be 

situated within a larger political economic context to be properly understood. Labour 

processes are structured and changed according to the dynamics of the antagonism 

between labour and capital and the industry at large. One must attempt to elaborate the 

“relationship between what goes on in the workplace and the forms it assumes and is 

determined in and by virtue of the market” (Pitts 2018b, loc 2008). In other words, a 

labour process study should not neglect what Marxists call the valorization process, or the 

process by which capital augments itself as value.14 Further, since any given industry, 

with its particular political economic dynamics, does not arise spontaneously, but is a 

product of the social and material situation that came before it, an attempt at historicizing 

is also necessary. Indeed, for a Marxist, which is necessarily a materialist, analysis, the 

“development of the economic formation of society is viewed as a process of natural 

history” (Marx 1990, 92). This dissertation thus situates today’s AI Industry against a 

historical backdrop to show where it came from and how it came to be. 

1.7 Chapter Outline 

The second chapter offers a survey of several different schools of Marxist theory. This 

survey is conducted through the lens of a conceptual triad formed by three concepts: 

labour, capital and machine. It shows how these three concepts, although always 

connected in Marxist thought, have been articulated in different ways. The chapter also 

shows that despite their interest in technology, Marxist theorists have rarely discussed AI 

or the work of producing AI. The chapter begins by briefly discussing the conceptual 

milieu in which Marx’s work emerged – classical political economy. Then it moves on 

the elaborate Marx’s critique of political economy and his theorization of capital’s 

inherent tendency towards an increasingly machinic or automated state. It shows how, for 

 

14
 Wright (1981) notes that “[w]hile the labour theory of value has been implicit in most of this [labour 

process] research, rarely is it explicitly into the conceptualization of the problem” (65). 
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Marx, machines are capital’s favored weapon in its ongoing struggle against the human 

labour it relies on. It also elaborates how Marx’s theory of capital is essentially recursive. 

Recursion is a motif that will reappear throughout this dissertation. 

Next, a variety of more recent Marxisms are discussed, with attention to those theorists 

who have attempted to apply Marxism to cybernetic capitalism. Labour process theory, 

which focuses on concrete labour practices and how capital attempts to wrest control of 

them from labour via the introduction of machines, is also elaborated. The significant 

inversion of the Marxist theory of machines conducted by post-operaismo, with its theory 

of immaterial labour, is then discussed. Post-operaismo’s claim for a new autonomy of 

immaterial labour from capital – the object of critique for this dissertation – is introduced. 

Finally, the New Reading of Marx (NRM) is introduced. This approach, which is critical 

of post-operaismo, is positioned as an alternative way to understand AI and AI work. 

The third chapter consists of a political economic history of the AI Industry. AI is 

situated in a broader history of automation and computer technologies for which 

recursion – simply put, the application of computing to computer development – is a 

central property. The history of the AI Industry begins in the 1950s with the advent of AI 

research in the USA and Britain and develops through the “AI winter” into its first 

manifestation around GOFAI in the 1980s. Then, after advances in machine learning, the 

contemporary AI Industry first appears around 2010 and rapidly expands in the following 

years. 

The fourth chapter conducts a political economy analysis of the contemporary AI 

Industry, drawing on both interview data and documentary research. It considers the 

capital side of the AI industry, including its scale and scope, the various types of 

companies that make it up, the types of products produced and the peculiar dynamics that 

distinguish it from others, including the proliferation of open source AI tools. It also 

considers the labour side of the industry. It analyzes the hierarchy of AI labour, the 

massive salaries earned in the industry, the widespread sexism and racism of the industry, 

the shadow world of online microworkers engaged in cleaning and moderating data, as 
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well as the recent emergence of organization and activism in AI and other high tech 

labour, which has been historically characterized by its apoliticism.  

In the fifth chapter, I switch from macro scale analysis to focus on the labour process of 

the contemporary AI Industry. In particular, this chapter examines how machine learning 

AI is produced. It draws extensively on interview data as well as documentary research, 

so I present a full account of the interview methodology at the start of this chapter. The 

chapter describes the three technical stages of the machine learning labour process and 

then discusses four key themes drawn from interview data with people working in the AI 

Industry. These are the commodity form of AI, empirical control of the machine learning 

labour process, AI as an automation technology and the automation of AI work. The 

automation of AI work with the technology of automated machine learning (AutoML) is 

then detailed for all three stages of the machine learning labour process. I argue that 

AutoML represents a new type of automation, which I call automation without 

codification. 

The sixth chapter draws on the previous chapters to mount a critique of post-operaismo’s 

purported new autonomy of immaterial labour. It first attempts to reconstruct, in optimal 

form, post-operaismo’s technological argument for new autonomy. It then argues, that 

based on the analysis of the AI Industry presented in this dissertation, AI work – which is 

immaterial labour par excellence – does not exhibit in any sense the new autonomy 

described by post-operaismo. It argues that, on the contrary, AI work, with the emerging 

technology of AutoML, instead seems to indicate a trajectory for the increasing 

autonomy of capital, rather than labour. I argue that NRM, with its insistence on the 

continued relevance of Marx’s theory of value, is better equipped to grasp this scenario. 

However, even NRM is not fully prepared to deal with the possibilities presented by the 

long-term development of AI-powered automation, which, I suggest, could undermine 

NRM’s concept of the interdependence of human labour and value.  Thus, neither post-

operaismo nor NRM emerge unscathed from the encounter with AI staged in this 

dissertation. 
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The seventh chapter argues that while the analysis of AI work and the critique of post-

operaismo mounted here may seem cripplingly negative, it indicates one way forward for 

critical thought and practice, beyond the chronic pessimism of NRM, even if the path 

suggested is far from the breezy autonomy posited by post-operaismo. This chapter also 

discusses limitations of the study. 

1.8 Contribution to Existing Body of Knowledge 

This dissertation offers two original contributions to the existing body of knowledge. One 

of these contributions derives from its Marxist engagement with AI. As Chapter 2 shows, 

few Marxist thinkers of any stripe have engaged with contemporary AI in any detailed or 

systemic manner. One exception to this is Dyer-Witheford, Kjøsen and Steinhoff (2019), 

of which I am co-author. This dissertation differs in focus from that monograph, 

however, in that it draws on interviews with people working in the AI Industry and that it 

explores the emerging technology of AutoML, which has significant ramifications for 

Marxist theory. The second contribution offered by this dissertation concerns the 

empirically-grounded critique mounted against post-operaismo’s claims for a new 

autonomy of immaterial labour. While post-operaismo has received critiques on 

numerous fronts, as Chapter 2 and 6 show, its claims for a new autonomy have received 

minor attention, and have not been addressed on the specifically technological level on 

which they are formulated.  

In sum, this dissertation contributes to the sophistication of critical theory by offering a 

Marxist approach to studying AI and by demonstrating the invalidity of a fundamental 

premise of a very popular theoretical framework. In so doing, it aims to contribute to a 

better understanding of cybernetic capitalism. 
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Chapter 2  

2 Labour, Capital, Machine 

Marxist thinkers have devoted little attention to the analysis of AI, but they have, in 

various ways, described how technology and labour are intertwined in the process of 

capital valorization. This chapter does not survey every one of these numerous 

approaches, but focuses on those that have been most energetically developed (or which I 

intend to develop) in the analysis of digital technology and digital labour, and its most 

recent manifestation, AI.15 In order to develop a better Marxist approach to AI, this 

chapter surveys how several schools of Marxist thought have theorized the entanglement 

of labour and technology under capitalism, forming a conceptual triad: labour, capital, 

machine. I follow this triad from its first manifestations in classical political economy, 

through Marx’s critique of political economy, and on to its diverse permutations in 

several more recent Marxian schools of thought which have attempted to grapple with 

increasingly computerized or cybernetic capitalism. These include labour process theory, 

the New Reading of Marx, operaismo, and post-operaismo (the object of critique of this 

dissertation).16 While I assess post-operaismo’s particular claim for a new autonomy of 

immaterial labour in detail in Chapter 6, this chapter first maps the Marxist theoretical 

landscape more generally, so that post-operaismo may be distinguished from rival 

schools of thought.  

 

15
 For example, this dissertation does not pursue the highly abstruse debates about the tendency of the rate 

of profit to fall due to an increase in the organic composition of capital. This is because, important as 

such analysis is, it has not to date yielded any specific in-depth examination of AI or of the labour involved 

in creating it  

16
 A note is necessary on an unavoidable issue of circularity. The reader should be aware that since I 

endorse a NRM interpretation of Marx (and there is no interpretation-free version of Marx), my exposition 

of his work necessarily slants towards a NRM reading. While I have tried to quote minimal commentators 

in my exposition of Marx, some were too useful to pass up.  
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2.1 Classical Political Economy 

The diverse school of Marxist thought have their roots in the work of the 18th and 19th 

century political economists who pioneered the notion that “the wealth of nations is 

founded on the productive power of labour” (Bonefeld 2014, 22). While the young Marx 

focused his critique philosophers such as Hegel and Feuerbach, the mature Marx shifted 

his attention to the political economy of Adam Smith and David Ricardo, among others, 

who sought to understand the capitalist system, which was transitioning to industrial 

production, around them. Marx’s mature work Capital is subtitled “a critique of political 

economy”. Yet, while Marx did severely critique the political economists, his work built 

upon the foundation they established. Along with the centrality of labour, the political 

economists also recognized the fundamental importance of machines. And they 

discerned, in different ways, the development of an antagonism between labour and 

machines under capitalism – an antagonism inherently connected to the production of 

value.  

Adam Smith was perhaps the first to recognize the integral link between technology and 

labour in capitalism. Labour was central to Smith’s theory because it was the labour 

expended in production that determined the value of a commodity and therefore the basis 

of capitalist economies. Smith held that: “The value of any commodity … to the person 

who possesses it, and who means not to use or consume it himself, but to exchange it for 

other commodities, is equal to the quantity of labour which it enables him to purchase or 

command. Labour … is the real measure of the exchangeable value of all commodities” 

(Smith 1991 [1776], 36).  

By positing labour as the source of value, Smith initiated a process of, according to Pitts 

(2018b), “plunging deeper into the layers below” surface phenomena such as exchange 

(29-30). Pitts (2018b) holds that Smith significantly looked beyond particular physical 

acts of labour to labour’s “generalized role in the production process as a whole” and to 

the social form taken by labour in a society founded on exchange (28). He supposed that 

value derived not only from labour, but also from the “work” of the other two classes: 

landowner (rent) and capitalist (interest) as well, thus expressing a vague notion of value 

as comprised from a social relation – something that Marx would later elaborate. But 
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although Smith initiated this critical gesture, his concept of value remains expressed in 

price and thus lacks the critical force of Marx’s concept of value, as I will show below. 

Smith is also notable, contrary to how he is referenced by mainstream economists today, 

for his acknowledgement that capital and labour possess inherently opposed interests. 

Toussaint (2009) even argues that Smith adumbrated the theory of class struggle 

described in Marx and Engels’ Communist Manifesto seventy years after the publication 

of Smith’s opus The Wealth of Nations. Smith notes that: 

The workmen desire to get as much, the masters to give as little as 

possible. The former are disposed to combine in order to raise, the latter in 

order to lower the wages of labour. It is not, however, difficult to foresee 

which of the two parties must, upon all ordinary occasions, have the 

advantage in the dispute, and force the other into a compliance with their 

terms (Smith 1991 [1776], 98). 

Smith also noted that capital was driven towards the use of technology in production, 

even in his pre-industrial time. He famously detailed and extolled the division of labour 

in manufacturing for its enhancement of productivity of labour through specialization and 

his respect for machines runs along similar lines. Machines are valuable because they 

“facilitate and abridge labour, and enable one man to do the work of many” (Smith 1991 

[1776], 21-22). Therefore, a “much smaller quantity of labour becomes requisite for 

executing any particular piece of work” (Smith 1991 [1776], 338). Smith, however, did 

not connect the antagonism between classes to machinery. 

Such positive evaluations of technology were widely held in the years following the 

publication of Smith’s The Wealth of Nations. Two proponents of this type of discourse 

frequently cited by Marx are Charles Babbage and Andrew Ure. Babbage (1832) extolled 

machinery for its ability to “supersede the skill and power of the human arm”. He 

described three advantages derived from the use of machines: “The addition which they 

make to human power. The economy they produce of human time. The conversion of 

substances apparently common and worthless into valuable products” (Babbage 1832). 

Ure (1835) went so far as to assert that: “The constant aim and effect of scientific 
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improvement in manufactures are philanthropic, as they tend to relieve the workmen 

either from niceties of adjustment which exhaust his mind and fatigue his eyes, or from 

painful repetition of effort which distort or wear out his frame” (8). Interestingly, both 

Ure and Babbage were not only promoters of industrial machinery, but also, in different 

ways, early forayers into computing (Zimmerman 1997). Babbage designed an early 

mechanical calculator or proto-computer called the Difference Engine while Ure’s 

musing on manufacturing might be considered proto-cybernetic in how they interlink 

human and machine. 

David Ricardo complicated the rosy view on machines. Like Smith, Ricardo advocated a 

labour theory of value. He held that the: “value of a commodity, or the quantity of any 

other commodity for which it will exchange, depends on the relative quantity of labour 

which is necessary for its production, and not on the greater or less compensation which 

is paid for that labour” (Ricardo 2001 [1821], 8). Ricardo thus shifted focus from of price 

to embodied labour as the locus of value. He dismissed Smith’s ruminations on the social 

nature of value in favour of a theory of value founded on the concrete act of labour at the 

point of production (Pitts 2018b, 29-30). This embodied conception of labour allowed 

him to conceptualize machines “and other aids to production” as “accumulated labour” 

(Dinerstein and Neary 2002, 14-15, cited in Pitts 2018b, 30). Here Ricardo connects the 

products of labour back to labour – a point later developed by Marx.  

At first, Ricardo saw machines as Smith, Babbage and Ure did: benefitting both capital 

and labour. However, by the third edition of his On the Principles of Political Economy 

and Taxation, Ricardo changed his optimistic tune (Kurz 2010, 1197-1198). He then 

argued that while the introduction of machines into production certainly benefits the 

capitalist because it increases output and decreases labour costs, “the substitution of 

machinery for human labour, is often very injurious to the interests of the class of 

labourers” (Ricardo 2001 [1821], 283). Ricardo thus affirms what Smith noted, that 

different classes in society may have differing and contrary interests, but he also connects 

class antagonism to the application of technology in the workplace. The “same cause 

which may increase the net revenue of the country, may at the same time render the 

population redundant, and deteriorate the condition of the labourer” (Ricardo 2001 
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[1821], 284). Ricardo even speculated on the possibility of a fully-automated mode of 

production, in what we might call Ricardo’s Fragment on Machines: “If machinery could 

do all the work that labour now does, there would be no demand for labour. Nobody 

would be entitled to consume any thing who was not a capitalist, and who could not buy 

or hire a machine” (Ricardo 1951–1973, VIII: 399–400, cited in Kurz 2010, 1195). Here 

Ricardo envisions a capitalism in which machines are functionally-identical to humans 

and wholly replace them; humanity as a whole becomes what Marx would later call a 

“surplus population” (Marx 1990, 517). Marx would also later develop the ramifications 

of machines taking on increasingly more capacities once reserved for humans, as the next 

section shows.  

In sum, classical political economy set the scene for Marxist theory by triangulating 

labour, capital and machines. As a whole, however, political economy only managed to 

describe the functioning of capitalism from its surface. In the words of Pitts (2018b), 

while Ricardo attempted to dive below surface appearances of capital to unearth the truth 

of labour, “he did not pose the question as to why and how products of labour become 

value-bearing commodities on this basis [of labour]. It is this question that forms the 

springboard of Marx’s analysis” (30). In other words, while political economy asks about 

how capitalism works, Marx asks why it is that capitalism works in the way it does. 

2.2 Marx on Value and Labour 

Marx’s critique of political economy draws on both Smith and Ricardo, but mainly, and 

crucially, in order to reveal the inadequacies of their theorizations of capital. Marx’s 

position is elaborated throughout his mature work: the three volumes of Capital (Marx 

1990, 1992, 1991) and the notes he made while conceiving Capital, now called 

Grundrisse (Marx 1993). Marx deepens the contradiction that Ricardo noted between 

labour and machines under capital, and posits a fundamental antagonism between the 

two. But he also paints a picture, though never completed, that suggests that machines 

might ultimately betray capital to the benefit of labour. Different interpretations of the 

properties of machinery in Marx are one reason for the theoretical divergence amongst 

different schools of Marxism.  
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To grasp the significance of Marx’s critique of political economy one has to see how his 

use of the categories of political economy (such as labour) differs from that of the 

political economists. As indicated above, Marx’s goal is to get below the surface 

appearances of capital. However, this does not mean that reading Marx’s gospel will 

dispel the false preconceptions of the reader and somehow give her an undistorted access 

to reality. This is because the surface appearances of capital are nonetheless real things 

with real effects. As Smith (2009) puts it: “Marx’s main theoretical task is to explain how 

the social relations of capitalism necessarily generate appearances that distort what 

capital essentially is (appearances that none the less have material effects)” (125). One 

ready way to grasp this is by looking at Marx’s concept of labour. 

Like Smith and Ricardo, Marx holds that value is comprised of labour. Labour is, first of 

all, a generic term for workers and the working class. However, labour is also an activity 

universally performed by humans. Labour “is a condition of human existence which is 

independent of all forms of society; it is an eternal human necessity which mediates the 

metabolism between man and nature, and therefore life itself” (Marx 1990, 132). Under 

capitalism, however, labour takes the particular form of wage labour, in which a capitalist 

pays a worker a wage for control over the worker’s capacity to labour for a given period 

of time. For Marx, unlike Smith and Ricardo, wage labour exists in two forms: concrete 

and abstract. Concrete labour is the human capacity to process the environment into novel 

useful forms, creating use-values, or useful products or services. This is why Marx deems 

labour a transhistorical universal. However, at the same time, concrete labour always 

refers to a particular act of labour: writing a program, drilling a fencepost or assembling a 

circuit board.   

However, within the capitalist mode of production there exists a second form of labour, 

which Marx calls “abstract labour”. At the same time as any given act of concrete labour 

consists of a particular kind of labour, it is also “an expenditure of human labour-power” 

(Marx 1990, 137). Labour-power is the capacity to labour or “the aggregate of those 

mental and physical capabilities existing in the physical form, the living personality, of a 

human being” (Marx 1990, 270). Marx (1990) is clear on this: “When we speak of 

capacity for labour, we do not speak of labour” (277). One might assume then that 
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abstract labour refers simply to all labour in a broad, generic sense. But this is not the 

case. Marx (1990) states that abstract labour has the function of forming the value of 

commodities, in particular its “quality of being equal” does so (137). But how could 

various acts of abstract labour which supervene on particular acts of concrete labour, as 

the application of a set of capacities for labouring, be measured and judged equal? By 

duration (Marx 1990, 164). Since duration is a pure quantity, value is thus defined as 

“congealed quantities of homogenous [abstract] human labour” measured temporally 

(Marx 1990, 128). It is only because of this homogeneity that one commodity can be 

compared with another in terms of value, and thus exchanged. Value as congealed labour 

is what makes commodity exchange possible: “[t]he equality of the kinds of human 

labour takes on a physical form in the equal objectivity of the products of labour as 

values” (Marx 1990, 164).  

Yet the actual quantity of hours worked cannot determine value alone, or merely working 

slowly would increase the value of products. Therefore, Marx (1990) reasons, the value 

of a commodity is determined by the average “[s]ocially necessary labour-time” for its 

production (129). This refers to the “labour-time required to produce any use-value under 

the conditions of production normal for a given society and with the average degree of 

skill and intensity of labour prevalent in that society” (Marx 1990, 129). The value of a 

commodity is thus not equivalent to the amount of time spent working on it by its 

producer, but rather the average time that it takes to produce such a commodity in that 

particular time and place. Socially necessary labour time thus reveals value, which 

appears as a thing or property of things, as a complex social relation. Marx (1990) states 

that value’s “objective character ... is ... purely social” (138-9). It is not, contra Ricardo, 

imparted to the commodity by the concrete labour of producing it, nor is it some 

substance that inheres in commodities after their production: “[n]ot an atom of matter 

enters into the objectivity of commodities as values” (Marx 1990, 138). Value arises from 

the social form of commodity production.  

Value is central to Marx’s analysis, but like labour, it manifests in two ways. Marx 

distinguishes exchange value (which is expressed as price) from value, which is 

determined by socially necessary labour time. The two do not necessarily coincide. In 
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fact, Marx argues that capital is not primarily driven to maximize exchange value. 

Instead, the aim of capital is to produce value, but “not just value … also surplus-value” 

(Marx 1990, 293). Surplus-value is a quantity of value which capital appropriates from 

labour without recompense. This appropriation is the overarching goal which immanently 

configures the capitalist mode of production. How does capital appropriate surplus-value 

from labour? Against today’s common sense, Marx holds that surplus-value does not 

arise from selling commodities for more than they were produced for (this generates 

profit, which is not the same). Rather, surplus-value arises from the unequal exchange 

between capital and labour.  

To grasp Marx’s argument one must realize that the labour-power of the worker is a 

commodity which the worker sells to the capitalist (Marx 1990, 271). The value of 

labour-power is determined by the average socially-necessary cost for its production, like 

any other commodity. This takes the form of things the worker needs for the 

“reproduction of himself and his maintenance” such as food and shelter (Marx 1990, 

274). The time it takes a worker to earn enough money to successfully reproduce her 

labour-power is defined by Marx as “necessary labour” (1990, 325). The capitalist buys a 

temporal quantity of labour-power and aims, in general, to pay as little as possible 

without impinging on the reproduction of labour-power. This is because any time the 

worker works beyond necessary labour is “surplus labour” in which the worker produces 

value for which the capitalist has not paid an equivalent – surplus value (Marx 1990, 

325). The commodity of labour-power is unique in that it produces more value than is 

paid for it. This unequal exchange defines Marx’s technical term exploitation and it 

explains why, for Marx (1990), there is an inherent antagonism between labour and 

capital (418-421).  

What then is capital? Marx (1990) defines the “general form of capital” as M-C-M’ 

“where M’ = … the original sum advanced plus an increment … This increment or 

excess over the original value I call surplus-value” (251). This formula represents the 

process by which money (M) is invested in the production of commodities (C) which are 

sold and turned into more money than was initially invested (M’). This formula 

demonstrates that while surplus-value is appropriated during production, it is not realized 
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until capital exchanges the commodities produced for money. Thus to say that surplus-

value is extracted by capital by the exploitation of labour in production is only part true. 

The circulation of commodities is also essential. If labour is successfully exploited, and if 

capital successfully realizes the value of its commodities, it now has more value than 

when it hired the worker – this capital has accumulated value and has thus been 

“valorized” (Marx 1990, 252). This valorized capital can then be invested in new circuits 

of commodity production. Thus Marx (1990) asserts that “capital is not a thing” but 

rather, a process (953). Capital “only becomes real capital, value valorizing itself, in the 

course of the process” (Marx 1990, 1061). And not only is capital not a thing, it is not 

finite: “the circulation of money as capital is an end in itself … The movement of capital 

is therefore limitless” (Marx 1990, 253). This conception of capital as an infinite, self-

referential process is perhaps Marx’s greatest innovation because it reveals capital as, 

most simply, the blind compulsion towards the accumulation of surplus-value. As Nick 

Land (2017) puts it, capital “appeals to nothing beyond itself, it is inherently nihilistic. It 

has no conceivable meaning beside self-amplification. It grows in order to grow”. Capital 

is an infinite, self-referential process, and Marx suggests, it can achieve an increasingly 

automatic operation. Marx describes capital as “the subject of a process in which, 

constantly assuming the form in turn of money and commodities, it changes its own 

magnitude, throws off surplus value from itself … and valorizes itself independently” 

(1990, 255). Marx thus calls capital the “self-valorization” (1990, 255) of value, the 

“automatic subject” (1990, 255) and the “dominant subject” (1990, 255).  

This is another way of understanding Marx’s assertion that “the characters who appear on 

the economic stage are merely personifications of economic relations; it is as the bearers 

of these economic relations that they come into contact with each other” (Marx 1990, 

179). Humans, capitalist as well as worker, are actors directed by the script of capital’s 

prime directive, the increase of value: “The buyer of labour-power is nothing but the 

personification of objectified labour which cedes a part of itself to the worker in the form 

of the means of subsistence in order to annex the living labour-power for the benefit of 

the remaining portion, so as to keep itself intact and even to grow beyond its original size 

by virtue of this annexation” (Marx 1990, 1003-1004). To flesh out this position it is 

useful to turn to the concept of fetishism, which Marx supplies in his analysis of the 
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commodity. Marx suggests that to grasp how the commodity functions in capitalism we 

must make a comparison to the “misty realm of religion” where: 

the products of the human brain appear as autonomous figures endowed 

with a life of their own, which enter into relations both with each other 

and the human race. So it is in the world of commodities and the products 

of men’s hands. I call this the fetishism which attaches itself to the 

products of labour as soon as they are produced as commodities, and is 

therefore inseparable from the production of commodities (Marx 1990, 

165). 

Marx argues “as soon as men start to work for each other in any way, their labour … 

assumes a social form” (1990, 164). The social form of labour influences the form the 

product of labour assumes. The capitalist mode of production entails that products of 

labour take the form of commodities, that is, products intended for exchange. Because the 

wants and needs of life are commoditized, nearly all aspects of social life are constituted 

as exchange relations. The form the commodity takes:  

reflects the social characteristics of men’s own labour as objective 

characteristics of the products of labour themselves, as the socio-natural 

properties of these things. Hence it also reflects the social relation of the 

producers to the sum total of labour as a social relation between objects, a 

relation which exists apart from and outside the producers (Marx 1990, 

164-165).  

Thus, under capital, “the definite social relation between men themselves … assumes 

here, for them, the fantastic form of a relation between things” (Marx 1990, 165). The 

commodity obscures its own origin in labour and appears as value. 

It is important to note how exactly Marx phrases the relation of humans to fetishism. 

Marx writes “the products of the human brain appear as autonomous figures” (1990, 165) 

and assume “for them, [humans] the fantastic form of…” (1990, 165). This indicates that 

there is an illusory character to this appearance. However, it is not that simple. Capitalists 
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are actually constrained to pursue valorization or face bankruptcy while workers are 

obliged to sell their labour-power or starve to death. The fetish-character of the 

commodity is both real and efficacious in the world as well as an illusion; it is a “real 

illusion” (Holloway 2002, 71), “real abstraction” (Toscano 2008) or “spectral objectivity” 

(Heinrich 2012, 52). It has objective effects on the world, but its ontological status is that 

of a relation among humans. In other terms, the social relations humans come to engage 

in eventually come to control them by appearing as things. Appearance thus means, for 

Marx, “a concrete social reality created on the basis of a mystified and disguised process” 

(Dyer-Witheford, Kjøsen and Steinhoff 2019, 21). Marx (1990) makes this clear: 

Men do not therefore bring the products of their labour into relation with 

each other as values because they see these objects merely as the material 

integuments of homogeneous human labour. The reverse is true: by 

equating their different products to each other in exchange as values, they 

equate their different kinds of labour as human labour. They do this 

without being aware of it. Value … does not have its description branded 

on its forehead; it rather transforms every product of labour into a social 

hieroglyphic. Later on, men try to decipher the hieroglyphic, to get behind 

the secret of their own social product: for the characteristic which objects 

of utility have of being values is as much men's social product as is their 

language (166-167). 

The commodity and capital thus really do have “a life of their own” (Marx 1990, 165) at 

the same time that that life is comprised of the social relations of humans. Capital is a 

subject or “higher-order alien power” (Smith 2009, 123) even while it is a process 

comprised of humans socially relating in a particular way. This duality means that 

fetishism is not merely something in the mind of people. It is a material state of affairs 

and thus “cannot be overcome in thought alone” (Holloway 2002, 71).  

In sum, Marx’s critique of political economy generates an image of capital as a 

potentially infinite process of the valorization of value, which through its functioning, 

systemically occludes its true nature through the generation of efficacious real illusions, 
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such as value. Valorization requires the exploitation of labour to capture surplus value, 

but capital appears as productive of value itself – and it is, insofar as value takes an 

objectified form which is recursively applied to labour, from whence it came. However, 

production, and thus valorization, depend on more than labour-power, they require also 

the means of production, including raw materials, facilities, tools, and machines.  

To see how machines fit into Marx’s view of capital, we now need to switch perspectives 

from the “valorization process” to the “labour process” (Marx 1990, 283). Since value is 

a non-physical real abstraction, the valorization process necessarily supervenes on the 

physical substratum of the concrete production of use-values. As Marx (1990) puts it: 

“Just as the commodity itself is a unity formed of use-value and value, so the process of 

production must be a unity, composed of the labour process and the process of creating 

value” (293). While the valorization process requires a labour process on which to 

supervene, the labour process is simultaneously determined in its nature by the exigencies 

of valorization. The machine is capital’s preferred device by which to determine the 

nature of the labour process. 

2.3 Marx on Machines: “devourers of living labour”17 

While I follow Marxian tradition and speak of capital as such, it is important to recollect 

that capital is comprised of many individual capitals competing with one another on the 

market, as well as individually, against their more or less recalcitrant labour forces. The 

immanent drive of capital to valorization is thus inextricable from the competitive 

dynamic amongst individual capitals: “the immanent laws of capitalist production … 

assert themselves as the coercive laws of competition” (Marx 1990, 433). Individual 

capitals thus employ a variety of techniques for minimizing necessary labour time and 

thus increasing surplus-value extraction.   

The simplest way to do this is to lengthen the working day; the necessary labour stays the 

same while the surplus increases. This Marx calls “absolute surplus-value” (1990, 432). 

 

17
 (Marx 1990, 983). 
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He also describes “relative surplus-value” (1990, 432) which is produced when a relative 

decrease in necessary labour time is achieved, with a consequent increase in surplus 

labour time. While the absolute approach “maxes out” due to the finite length of the day, 

the increase in relative surplus-value has no internal limit and thus is the primary axis of 

intercapitalist competition. Since the amount of necessary labour-time is determined by 

the cost of the reproduction of labour-power, the first can be decreased by reducing the 

cost of the second. Due to the need to capture relative surplus-value, “[c]apital therefore 

has an immanent drive, and a constant tendency, towards increasing the productivity of 

labour, in order to cheapen commodities and, by cheapening commodities, to cheapen the 

worker himself” (Marx 1990, 436-437).  

Marx discusses several methods by which individual capitals compete to optimize the 

capture of relative surplus-value, including cooperation and the division of labour (Marx 

1990, 452-456). While these remain essential to capital to this day, the most effective 

technique in capital’s repertoire, in Marx’s time as it is now, is machinery. Marx opens 

his chapter on machines by stating that the alleviation of the burden of work is “by no 

means the aim of the application of machinery under capitalism” (1990, 492). On the 

contrary, he argues that “[l]ike every other instrument for increasing the productivity of 

labour, machinery is intended to cheapen commodities and, by shortening the part of the 

working day in which the worker works for himself, to lengthen the ... part he gives to the 

capitalist for nothing (Marx 1990, 492). The machine “is a means for producing surplus-

value” (Marx 1990, 492) not because it produces value itself, but because it allows the 

reduction of necessary labour-time: “[t]he productivity of the machine is therefore 

measured by the human labour-power it replaces” (Marx 1990, 513).  

In contrast to variable capital or the wage, machines employed in capitalist production 

take the form of fixed capital. Fixed capital is bought and does not have labour-power 

which it might sell for a wage used to buy reproductive necessities. For Marx, labour-

power is an exclusively human attribute. Machines cannot possess it. It exists “only as the 

capacity of the living individual” (Marx 1990, 274). Fixed capital cannot be exploited 

and cannot generate surplus value: “[m]achinery … creates no new value but yields up its 
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own value to the product it serves to beget” (Marx 1990, 509). The machine “never adds 

more value than it loses, on an average, by depreciation” (Marx 1990, 509).  

What exactly is a machine? Marx distinguishes machines from tools. He defines a 

machine as comprised of three parts: a motor mechanism, a transmission mechanism and 

a “tool or working mechanism” (1990, 494). When “the tool proper is taken from man 

and fitted into a mechanism, a machine takes the place of a mere implement” (1990, 495). 

This is because the human body is limited in terms of how many tools it can wield, the 

type of tools it can wield, and the forces it can exert. Machines have no necessary form 

and therefore no such “organic limitations” (Marx 1990, 495). Machines may also be 

linked together to form a “complex system of machinery” (Marx 1990, 499) in which an 

array of interconnected machines undergo a new division of labour (Marx 1990, 501). 

Such a system “constitutes … a vast automaton as soon as it is driven by a self-acting 

prime mover” (Marx 1990, 502) even if parts of the machine need to be handled like a 

tool by a worker (Marx 1990, 502-503).  

Such systems are impressive to Marx, but he notes a categorical difference only in what 

he calls “automatic” machines: “As soon as a machine executes, without man’s help, all 

the movements required to elaborate the raw material, and needs only supplementary 

assistance from the worker, we have an automatic system of machinery, capable of 

constant improvement in its details” (1990, 503). In an “organized system of machines to 

which motion is communicated by the transmitting mechanism from an automatic centre” 

Marx saw “the most developed form of production by machinery” (1990, 503). From the 

simple machine evolves a “mechanical monster whose body fills whole factories, and 

whose demonic power, at first hidden by the slow and measured motions of its gigantic 

members, finally bursts forth in the fast and feverish whirl of its countless working 

organs” (Marx 1990, 503). Here Marx describes the process of automation, avant la 

lettre.  

Since, as a general rule, the “tendency and the result of the capitalist mode of production 

is steadily to increase the productivity of labour” (Marx 1990, 959), driven by its hunger 

for relative surplus-value, capital follows a trajectory towards an increasingly automatic 
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and machinic state. This Marx also called the increasingly “organic composition of 

capital,” defined by the relative increase of fixed as opposed to variable capital (Marx 

1990, 762). This is why Marx refers to machinery as “capital’s material mode of 

existence” and the “material foundation of the capitalist mode of production” (Marx 

1990, 554). Marx (1993) asserts: “[t]he development of the means of labour into 

machinery is not an accidental moment of capital, but is rather the historical reshaping of 

the traditional, inherited means of labour into a form adequate to capital” (694). This 

process of increasingly automatic machine production forms the labour process 

equivalent of automatic self-valorization in the valorization process. 

Machinery’s adequacy to capital is best explained by reference to Marx’s notion of 

subsumption. There are two kinds of subsumption. Formal subsumption is simply when 

an existing labour process comes under the control of a capitalist and thus becomes part 

of a circuit of capital valorization (Marx 1990, 1019). This form of capitalist control does 

not alter the labour process itself, and, as such, can only produce absolute surplus value 

by lengthening the working day (Marx 1990, 1021). Competition, however, compels 

capitals to increase the production of relative surplus value by reconfiguring the entire 

labour process, primarily through the introduction of machines, such that “a specifically 

capitalist form of production comes into being (at the technological level too)” (Marx 

1990, 1024, emphasis original). The assembly line is an easy example of this. Later 

Marxian thinkers have extended the concept of subsumption beyond production, as we 

will see in the following sections. The “essential difference,” says Marx, is that with real 

subsumption, via the introduction of machines, “[t]he worker has been appropriated by 

the process; but the process had previously to be adapted to the worker” (1990, 501). 

Marx noted three consequences for workers that had already occurred with the 

application of machines in production: allowing women and children in the workforce 

(therefore increasing the total number of workers and driving wages down) (1990, 517), 

lengthening the working day (1990, 526), and intensifying work itself (1990, 533). Yet 

more significant than these are the consequences entailed by the structure of capitalist 

production itself.  
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Marx holds that capital’s drive towards the machinic entails an attack on labour as such. 

While the “division of labour develops … labour-power in a one-sided way, by reducing 

it to the highly particularized skill of handling a special tool,” a worse scenario obtains 

“[w]hen it becomes the job of the machine to handle this tool, [because] the use-value of 

the worker’s labour-power vanishes, and with it its exchange-value” (Marx 1990, 557). In 

other words, “[t]he instrument of labour, when it takes the form of a machine, 

immediately becomes a competitor of the worker himself” (1990, 557). Thus, the 

“instrument of labour strikes down the worker” (1990, 559). The adversarial nature of the 

exploitation relationship is intensified into “complete and total antagonism with the 

advent of machinery” (Marx 1990, 558). Machinery is “the most powerful weapon for 

suppressing strikes, those periodic revolts of the working class against the autocracy of 

capital” (1990, 562). Marx even suggests that it “would be possible to write a whole 

history of the inventions made since 1830 for the sole purpose of providing capital with 

weapons against working-class revolt” (1990, 563).  

By combining the perspectives of both labour process and valorization process, we can 

see that the logic of fetishism also applies to machines when they take the form of capital. 

As I have shown, according to Marx, value and thus capital, are comprised by dead 

labour. The “social character of his labour confronts the worker as something not merely 

alien, but hostile and antagonistic; when it appears before him objectified and personified 

in capital” (Marx 1990, 1025). This takes a particularly vivid form in machines, in which 

value as dead labour manifests concretely within the labour process, in material entities 

which exhibit the capacity to move and do work (though not labour) – today, we can add 

the capacity to think. In confronting machines, the worker is confronting his own 

creations, which have been captured by capital and turned against their creator: “[t]he 

entire development of the productive forces of socialized labour … and together with it 

the use of science (the general product of social development), in the immediate process 

of production, takes the form of the productive power of capital” (Marx 1990, 1024, 

emphasis original). It is through machines, as well as money, that capital assumes the 

fetish character of autonomous productive power. Marx puts it poetically: “(P)ast labour 

– in the automaton and the machinery moved by it – steps forth as acting apparently in 

independence of [living] labour, it subordinates labour instead of being subordinate to it, 
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it is the iron man confronting the man of flesh and blood” (Marx 1861-63c, 30 quoted in 

Smith 2009, 125). The Marxist understanding of machinery thus seems clear. It is 

capital’s best weapon in its ongoing struggle to control and exploit labour for the 

production of surplus-value. This understanding is complicated, however, by a passage 

from Marx’s notes for Capital. 

2.4  The Fragment on Machines 

Marx expresses a different relation between labour, capital and machines in the 

Grundrisse. Here he imagines a highly automated future capitalism and draws from this 

scenario some startling conclusions. Marx asserts that the “full development of capital” 

occurs: 

only when the means of labour has not only taken the economic form of 

fixed capital, but has also been suspended in its immediate form, and when 

fixed capital appears as a machine within the production process, opposite 

labour; and the entire production process appears as not subsumed under 

the direct skillfulness of the worker, but rather as the technological 

application of science (Marx 1993, 699).  

Capital only achieves maturity when it becomes predominantly machinic. Direct labour 

becomes an “indispensable, but subordinate moment, compared to general scientific 

labour, technological application of natural sciences … and to the general productive 

force arising from social combination” (Marx 1993, 700). In this scenario the “human 

being comes to relate more as watchman and regulator to the production process” (Marx 

1993, 705). A few workers set in motion, and then oversee, and perhaps perform 

maintenance on, a vast system of machinery. The collective knowledge of the society (i.e. 

science), as represented in machines, is the most significant component of production. In 

this speculative future context, Marx deploys the peculiar term “general intellect”:  

The development of fixed capital indicates to what degree general social 

knowledge has become a direct force of production, and to what degree, 

hence, the conditions of the process of social life itself have come under 
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the control of the general intellect and been transformed in accordance 

with it (Marx 1993, 706).   

Social knowledge becomes a direct force of production, but only (contrary to the reading 

of post-operaismo, as I show in Chapter 6) once it has been implemented in machinery—

because only in an object external to the human body can human skills and knowledge be 

called social—and most machinery in production functions as fixed capital. The general 

intellect refers to this ever-increasing manifold of skill and knowledge possessed by 

capital as machinery. Prior to its machinic implementation, the skill and knowledge of the 

social individual is called by Marx the “social brain” (1993, 694). Capital excises and 

machinically emulates aspects of the social brain and adds them to the general intellect.  

As production grows increasingly automated, “the creation of real wealth comes to 

depend less on labour time … than on the power of the agencies set in motion during 

labour time, whose ‘powerful effectiveness’ is … out of all proportion to the direct labour 

time spent on their production” (Marx 1993, 704-705). However, since machines cannot 

be exploited and therefore cannot produce surplus value, as the general intellect expands 

and capital approaches full automation, there is less and less labour to exploit. 

Eventually, capital cuts off its source of sustenance and starves itself to death. For this 

reason, Marx describes capital as “the moving contradiction” because “it presses to 

reduce labour time to a minimum, while it posits labour time, on the other side, as sole 

measure and source of wealth. Hence it diminishes labour time in the necessary form so 

as to increase it in the superfluous form” (1993, 706). While capital can intensify the 

exploitation of its remaining workers, Marx speculates that eventually the process will 

terminate in the collapse of capitalism. In effect, capital “works towards its own 

dissolution as the form dominating production” (Marx 1993, 700) and “production based 

on exchange breaks down” (Marx 1993, 705). Machinery betrays capital and destroys the 

conditions for its existence. The machinery developed by capital for maximum surplus 

value extraction can then be repurposed towards communist ends such as “the general 

reduction of the necessary labour of society to a minimum, which … corresponds to the 

artistic, scientific etc. development of the individuals in the time set free” (Marx 1993, 

06).  
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Although “The Fragment on Machines” is often described as a complete outlier in Marx’s 

writings, its vision of a capital that automates itself out of existence can be understood as 

an extreme version of a fundamental thematic that winds throughout his works. This is 

the idea that at a certain point of development within any mode of production, the “forces 

of production” – of which technology is a salient component – come into contradiction 

with the “relations of production” – property relations – causing revolutionary crises that 

result in the emergence of a new socio-economic order (Marx 1973). Nonetheless, the 

spectacular account of capital’s demise at the hands of its own technological creations is 

notable for its divergence with the more sober tone of Capital. And since it is a rather 

cryptic and fragmentary text which was never published in Marx’s lifetime, it is not 

possible to determine with certainty whether it really was a prediction of the future, some 

sort of speculative thought experiment, a parodic rendering of a position under critique or 

something else entirely. Given this uncertainty, reliance on “The Fragment” is highly 

controversial within contemporary Marxism – a point I return to later. 

2.5 Marxism(s) 

A number of guides to reading Capital have been written, advocating substantially 

different understandings of Marx (Harvey 2010; Heinrich 2012; Cleaver 2000 [1979]). 

Indeed, due to the diverse ways in which Marx has been read and applied, any use of 

Marx’s theory must make clear its adherence to a particular school (or schools) of 

Marxism. My research draws upon two Marxist schools of thought: the New Reading of 

Marx (NRM) and labour process theory. In this section, I will distinguish these from both 

orthodox Marxism and the influential paradigms of operaismo and post-operaismo. I will 

show how differently the triad labour, capital, machine has been configured by these 

various interpreters of Marx. 

Marx only lived to see the publication of Volume 1 of Capital. The first dominant school 

of Marxism was driven by Engels’ editing, publication and interpretation of Marx’s work 

after his death (see Engels 1947), as well as the influential work of Karl Kautsky (1903). 

For Engels and Kautsky, Marx’s achievement was to have achieved a “scientific” 

understanding of the historical laws which govern social development (Elbe 2013). What 

is now often called orthodox Marxism led, via Lenin and the Bolshevik Revolution of 
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1917, to the official Communist Party doctrine of Marxism-Leninism promulgated by 

Joseph Stalin and Abram Deborin. Heinrich (2012) holds that “[i]deas in general 

circulation today concerning Marx and Marxian theory – whether these are appraised 

positively or negatively – are essentially based upon” this orthodox reading of Marx, 

which he calls “worldview Marxism” (26). Engels’ influence on this interpretation of 

Marx’s work was so substantial that Elbe (2013) suggests that orthodox Marxism should 

rather be called “Engelsism”. The orthodox reading of Marx posits a teleological 

character to social development, with communism standing at the end of history as the 

necessary resolution of the contradictions of capitalism. Capitalism must and will fail and 

communism must take its place; thus “humanity is subordinated to a ‘scientifically 

verifiable’ automatism of liberation” and Marx’s critical analysis is thus reduced to a 

“vulgar empiricism and historicism” (Elbe 2013).  

The outcome of this was Communist Party doctrine in which technology was regarded as 

a capitalist development which could (and would) be appropriated by communist 

revolutionaries in the transition to a new mode of social being. While Lenin (1972 

[1914]) first described Taylorism as “Man’s Enslavement by the Machine” he would, a 

few years later, strikingly assert that “the Taylor  system, properly controlled and 

intelligently applied by the working people themselves, will serve as a reliable means of 

further reducing the obligatory [in the context of labor conscription] working day for the 

entire working population” (Lenin 1968 Vol. 42, 80, cited in Scoville 2001, 621). This 

technological optimism is also visible in Lenin’s (1920) famous dictum “Communism is 

soviet power + electrification of the whole country”. 

A different understanding of Marx was initiated after the First World War by György 

Lukács (1972 [1923]) and Karl Korsch (2013 [1923]). According to Elbe (2013), Lukács 

was the first Marxist theorist to question whether Engels’ presentation of Marx reflected 

the intentions of its author. Lukács disputed the transhistorical laws and teleological 

formulations of orthodox Marxism and instead focused on the notion of ideology and the 

historically specific nature of capitalism. Other prominent theorists of what Elbe (2013) 

calls Western Marxism were Antonio Gramsci and the Frankfurt School critical theorists 

Theodor Adorno, Herbert Marcuse and Max Horkheimer. In different ways, these 



43 

 

thinkers were concerned with subjectivity and social praxis and often incorporated 

elements of psychoanalysis and Hegelian philosophy in addition to Marx’s work. 

Frankfurt School thinkers rejected Lenin’s appraisal of the prospects for unifying 

technology and labour. Marcuse’s (2013 [1964]) One Dimensional Man is emblematic of 

this position, critiquing both capitalist and state socialist societies for their one-sided 

deployment of technological rationality and concomitant reduction of human 

potentialities to the service of narrow economic goals. Gramsci (1992 [1971]) held a 

more ambivalent view, recognizing a necessity, for communism, of the Taylorist 

rationalization of production, while objecting to its militarization in the service of War 

Communism (309-310).  

In the wake of Western Marxism there emerged many influential schools of Marxian 

thought. The following sections examine several that made technology central to their 

analyses. 

2.6 Labour Process Theory 

Harry Braverman (1998) popularized labour process theory with his study of the theory 

of scientific management (or Taylorism) as propounded by Frederick Winslow Taylor in 

the late 19th and early 20th century. Labour process analysis draws on Marxist theory but 

eschews looking at the valorization process or the large-scale dynamics of capitalist 

labour and technology. Instead, labour process theory focuses on the particular concrete 

actions and procedures that comprise the labour processes of workers and the ways in 

which capital seeks to reconfigure these for its own ends through management practices, 

including the application of automation technologies. Braverman (1998) defines the 

labour process as “in general a process for creating useful values” which is also 

“specifically a process for the expansion of capital, the creation of a profit” (36). That is, 

the labour process, as Marx noted, is always subject to the exigencies of the valorization 

process.  

Labour process theory thus draws inspiration from Marx’s detailed analyses of the 

introduction of machines into 19th century factories in Chapter 15 of Capital Volume I. 

Braverman shows how Taylorist management subjected the movements and knowledge 
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of industrial workers to fine-grained scrutiny and documentation to make both available 

for analysis, and thus control, by capital via management. Taylorist analysis allowed 

capital to achieve new levels of real subsumption, increasing the division of labour and 

simplification of work. This had the consequence of deskilling labour, reducing the value 

of labour-power, and eventually, enabling the augmentation and replacement of labour by 

machines.  

According to Braverman (1998), Taylorist deskilling is guided by three principles. The 

first is “the dissociation of the labor process from the skills of the workers” (78). This is 

the process by which management studies or interrogates workers to obtain their 

knowledge about their work tasks, so as to capture it and to control how it gets passed on 

to future workers. The second principle is “the separation of conception from execution” 

(Braverman 1998, 79). According to this principle, all creative and planning aspects of 

work should become the exclusive property of management. The third principle is “the 

use of [the] monopoly over knowledge to control each step of the labor process and its 

mode of execution” (Braverman 1998, 82). This means that the worker’s work should be 

prescribed, and followed mechanically, at as fine a grain as possible. Braverman (1998) 

argues that these principles could and would be applied to all kinds of work and that they 

remained “fundamental to all advanced work design or industrial engineering today” 

(77). Indeed, he holds that: 

[m]odern management came into being on the basis of these 

principles … Its role was to render conscious and systematic, the 

formerly unconscious tendency of capitalist production. It was to 

ensure that … the worker would sink to the level of general and 

undifferentiated labor power, adaptable to a large range of simple 

tasks, while as science grew, it would be concentrated in the hands 

of management (Braverman 1998, 83).  

With Taylorism, capital recognizes its own inherent drive towards extracting relative 

surplus-value and subjects it to systemic formalization, study and improvement. Labour 

becomes subject to all kinds of means of control, but most notably, machines. Machinery 
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“offers to management the opportunity to do by wholly mechanical means that which it 

had previously attempted to do by organizational and disciplinary means” (Braverman 

1998, 134). Machines do this through “the progressive elimination of the control 

functions of the worker, insofar as possible, and their transfer to a device which is 

controlled, again insofar as possible, by management from outside the direct process” 

(Braverman 1998, 146). Witnessing the advent of information technology, in the form of 

numerical control, Braverman was pessimistic about the future because control would no 

longer be limited by the particular form of the machine. Instead, he expected a new 

“universality of the machine” which could be put to many uses without loss of control 

“since that control is no longer dependent upon its specialized internal construction” 

(Braverman 1998, 132). Braverman (1998) showed that, in the 1970s, clerical and so-

called white collar office work was already subject to Taylorist management and 

suggested that the future would see the extension of such practices to “draftsmen and 

technicians, engineers and accountants, nurses and teachers” (282). He also noted how 

early programming work was almost from its inception subjected to a division of labour 

and suggested that it too could be Taylorized (Braverman 1998, 227-8).  

Labour process theory received substantial criticism for a purported neglect to 

considerations of worker subjectivity, favouring instead structural relations of control. 

This conflict, and others, have been documented in several collections (Knights and 

Wilmott 1990; Wardell, Steiger and Meiksins 1999; Thompson and Smith 2010). Notable 

for labour process analyses which clearly include consideration of worker subjectivity is 

the work of David Noble (1979; 2011) for whom the labour process is recognized as a 

result of persistent worker resistance as well as capitalist control. Labour process theory 

was also criticized for its central deskilling thesis, even by those working within the 

tradition (Wood 1982). However, the issue is far from settled. As the editors of a recent 

volume on labour process theory and digital work note, new technologies and their 

applications for automation have brought the question of the degradation of work back 

into popular discourse (Briken, Chillas and Krywdinski 2017, 2).  

Since Braverman, the labour process approach has been applied to various diverse fields 

of work including: machine shops (Noble 1984), telework, creative and knowledge work 
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(Thompson and Warhurst 1998; Huws 2003, 2014; McKinlay and Smith 2009), the work 

of Mobile app developers (Bergvall-Kåreborn and Howcroft 2013), airplane cabin crews 

(Taylor and Moore 2015), subcontracted service work (Grimshaw, Cartright, Johnson and 

Rubery 2017). Labour process analysis has also been contextualized within global supply 

chain networks (Newsome, Taylor, Bair and Rainnie 2015) and China, broadly (Liu and 

Smith 2016). However, very little labour process analysis has been done on the 

production of AI. The broad strokes of such an analysis are given in Dyer-Witheford, 

Kjøsen and Steinhoff (2019) and will elaborated in the fifth chapter of this dissertation. 

In the near total absence of labour process analysis of AI production, my research has 

been informed by labour process analyses of software work in general. Kraft (1977, 

1979) was the first to conduct a labour process analysis of software workers. Kraft (1977) 

argued that programmers were not exempt from the deskilling process outlined by 

Braverman (53). Kraft and Dubnoff (1986) concluded that “software work replicates 

rather than revolutionizes traditional relationships between managers and managed” 

(184). Cooley (1981) held that “Taylorism is destined not just for those who use 

computers or are in middle management, but for a range of intellectual ‘workers’ 

including scientists and technologists (51). Much early labour process work on software 

development echoed these sentiments (Cooley 1980; Duncan 1981; Orlikowski 1988; 

Greenbaum 1979, 1998; Ensmenger and Aspray 2000). Other voices dissented, arguing 

that there was no evidence of deskilling in software work (Tarallo 1987; Ainspain 1999; 

Hounshell 2000).  

Rowena Barret has presented a more complicated picture, arguing that while traditional 

forms of direct control may not be evident in software development, these labourers are 

subject to control via “‘responsible autonomy’ which attempts to ‘harness the adaptability 

of labour power by giving workers leeway and encouraging them to adapt to changing 

situations in a manner beneficial to the firm’” (Friedman 1977, 78 cited in Barrett 2005, 

79). Rasmussen and Johansen (2005) agree that “autonomy can be used as a strategy for 

increased control over the workers … by devolving responsibility” (118). One particular 

manifestation of responsible autonomy is what Barret (2005) calls “technical autonomy” 
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or “management allowing software developers autonomy to develop the ‘best’ program 

using their skills and expertise” (82).  

Yet, even as they identify these more subtle forms of control, labour process theorists 

have argued that it is “difficult to equate the practices and processes in software startups 

with an industrial assembly line. At every stage human rather than machine intervention 

predominates … each project requires fresh planning and decisions. This reality stands in 

sharp contrast to the ‘one-best-way’ of Taylorized work settings” (Andrews, Lair and 

Landry 2005, 66; see also Barrett 2005). This is because software production is 

“dependent upon the skills of individuals and the synchronization of their disparate 

efforts” in ways management cannot implement from above (Andrews, Lair and Landry 

2005, 59). Thus, a popular position from labour process theory today appears to be that 

software production is “craft rather than … technical-oriented” and not to be at threat of 

deskilling because to “fully standardize computer programming … would require the 

seemingly omniscient knowledge of both the emergent problems and the associated 

solutions” (Andrews, Lair and Landry 2005, 67). According to this view, software work 

thus admits of a fundamental shift in the triad labour, capital, machine: in the software 

industry capital cannot capture labour’s skills and knowledge and implement them in 

machines. The production of information machines is resistant to machinic 

implementation. Such a view, I will show, is shared by post-operaismo.18  

2.7 Theorists of Cybernetic Capitalism 

Before examining post-operaismo, I will survey some of the numerous Marxist and 

Marx-influenced thinkers who have attempted in diverse ways to apply and/or adapt 

 

18
 Not all LP theorists agree with the conclusions of post-operaismo. Some explicitly reject them. 

Thompson and Briken (2017) argue that cognitive capitalism theory (an alternate name for post-operaismo) 

“is all too typical of the sweeping generalisations, unrepresentative exemplary industries and absence of 

plausible evidence that characterizes much of the recent social theorizing about capitalism” (Thompson and 

Briken 2017, 246). Further, they charge that “[t]heorists of cognitive capitalism … significantly challenge 

LPA as they deny the idea of material production as a privileged site for the value extraction and 

antagonism between capital and labour” (Thompson and Briken 2017, 242). 
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Marx’s triangulation of labour, capital and machine to the changed situation of capitalism 

since Marx wrote Capital between 1867-1883. Since technology is such a fundamental 

aspect of Marxist thought and almost all Marxist works engage with it to some degree, a 

complete survey is impossible here. Instead, I focus on the period of “cybernetic 

capitalism” (Freyre 1966, 106; Robins and Webster 1988; Peters 2015, 40). While there 

is no consensus definition for this term, I use it here to refer to the period of capitalism 

characterized by the proliferation of ICTs (and AI) after World War II (see Dyer-

Witheford, Kjøsen and Steinhoff 2019, 51).  

Marxian political economists of communication and media such as Schiller (1999; 2014) 

and Manzerolle and Kjøsen (2012) have studied the processes by which capital became 

digitally networked and the substantial military origins of networking technologies such 

as the internet. Huws (2003; 2014) and others (Mosco and Wasko 1988; Mosco and 

McKercher 2008; Burston, Dyer-Witheford and Hearn 2010) have explored the novel 

forms that labour has taken with the advent of digitally networked capital, including, 

early on, telework and later forms of internet work. Fuchs and Dyer-Witheford (2013) 

argue for the utility of the Marxist approach to internet studies as well as digital labour 

across the spectrum of the digital industries (see also Fuchs 2014, Dyer-Witheford 1999; 

2015, Fuchs and Mosco 2015). Terranova (2004) initiated research on the “free labour” 

performed by users of internet sites such as social media, while others discerned the rise 

of a second new type of work often called the “gig economy” or on-demand economy, 

which involves work which is paid but sourced through digital platforms on an irregular 

basis (De Stefano 2015; Graham et al., 2017). 

Some scholars have conducted critical analyses of the platform as both technology and 

business model (Gillespie 2010, Dyer-Witheford 2013, Srnicek 2017). Many software 

and AI-producing companies operate a platform model. Mosco (2015) has studied the 

technology of cloud computing which on which platforms operate, as well as the digital 

high-tech industries more generally, although he accords minimal coverage to AI (Mosco 

2017). Daubs and Manzerolle (2017) collects studies of mobile and ubiquitous media 

while Miller and Matviyenko (2014) collects some of the earliest studies of apps.  
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Three thinkers are especially relevant for configuring Marx’s triangulation of labour, 

capital and machine in the age of AI. In different ways, the three of them grapple with the 

emerging capacities for recursion wrought by capital suffused with computers and other 

information technologies. 

One is Morris-Suzuki (1984), who was among the first Marxists to think seriously about 

robots and AI. She holds that the “separation of hardware from software … may be seen 

as constituting a revolutionary fission of the labour process itself” (1984, 112). The 

emergence of software, she holds, redefines completely the nature of machinery in two 

ways: “firstly that a single machine may be made to vary its movement without alteration 

to its mechanical structure … secondly … the worker’s knowledge may be separated 

from the physical body of the worker and may itself become a commodity” (1984, 113). 

The worker’s knowledge can then be represented as digital information, which Morris-

Suzuki suggested capitalism would come to reorganize itself around: “information … 

which contributes to productive processes—will become a commodity churned out by 

corporate enterprises almost as routinely and monotonously as cars flowing from an 

assembly lines” (1984, 114-115). The industrialization of information production entails 

that “it too becomes subject to the forces of automation” (1984, 120). With this, capital 

achieves a recursive capacity which empowers its technologies, leading Morris-Suzuki to 

argue that Braverman’s deskilling thesis would indeed extend to intellectual labour with 

only the most complex jobs occupying a safe position (1984, 118-119). 

The second important thinker is Caffentzis (2013), who ruminates on the possibilities of 

capital’s tendency towards automation pushed to an extreme. He holds that capital’s 

“dream” of fully-automated “workerless and struggle-less production” entails a “logical 

escape” for capital, from the annoyances posed by human labour, “through self-

reflexivity” or machines which can produce machines without the aid of human labour 

(2013, 128). Caffentzis holds that: “Only when automata create automata, i.e., when the 

elements of automata systems become products of automata systems” can high-

technology capital “find its fitting foundation” (1993, 128). He notes that while such an 

“automatization of automation” might seem outlandish, capital continues to make 

impressive strides today (1993, 129).  
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The third important thinker is Ramin Ramtin, who attempts to update Marx to the 

cybernetic era by developing a theory of automation, which he distinguishes from 

mechanization. Ramtin argues that “‘Automate or die’ is an objective necessity imposed 

by the very functioning of the capitalist mode of production itself, in accordance with and 

as a result of the law of value” (1991, 101). Mechanization, which Marx witnessed in his 

time, is the predecessor to automation, which did not take off until the programmable 

microprocessor was developed in 1971 (Ramtin 1991, 49). Mechanization involves the 

machinic copying of human tasks, but automation involves the “systemic application of 

the principle of feedback” such that a system “includes a procedure of measurement and 

inspection (or ‘sensing’), the evaluation and processing of this information and an output 

of instructions as a response, which is then utilized by the system to control all aspects of 

the particular operations undertaken” (Ramtin 1991, 60). While simple forms of feedback 

have been utilized since antiquity, the microprocessor enables a new generality of 

technological recursion. Since it is “a general-purpose logical unit, [the microprocessor] 

can be programmed to perform an unlimited number of tasks” (Ramtin 1991, 50). 

Capital’s dream of “self-reflexivity” (Caffentzis 2013, 128) comes one step with closer 

with the advent of automation because: “there is now a set of technologies available that 

can actually directly accept objectified information … without the … mediation of human 

labour-power” (Ramtin 1991, 53). Ramtin argues that the most important characteristic of 

automation is that  

it has a capability for communicative and symbolic manipulative 

simulation … It is this characteristic which no previous instrument, 

network of devices or even whole technological systems had ever 

possessed. It is … a technology that potentially can be utilized to perform 

any task which a worker (manual and intellectual) can perform in a 

production process, and, from capital’s standpoint, much faster and more 

reliably (1991, 50-51).  

Automation presents a possibility that Marx could barely imagine: machines doing 

intellectual and creative work. Ramtin (1991) notes that “there is increasing pressure to 

raise the productivity of software specialists … the main path to the raising of efficiency 
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here lies in the development of new software packages as a replacement for the skilled 

labour involved in software production itself” (113). The apex of such software is AI. 

Ramtin asserts that AI heralds “new wave of automation” (1991, 66) wherein “the 

process of externalization of control [will become] finally and absolutely complete” 

(Ramtin 1991, 17). He holds that the “externalization or the complete abstraction of 

control systems through objectification (in particular as a result of the development of 

software systems such as ‘expert systems’ or ‘artificial intelligence’) makes possible the 

removal of the mediatory role of labour. Once this process is fully developed, social and 

technical control become totally fused” (1991, 58). The increasing sophistication of such 

technologies “can in fact bring about the objectification of the collective labourer in total. 

And because of this potentiality, it enables the complete dissociation of living labour … 

from the production process” (1991, 58). Capitalism thus tends towards the “ultimate 

vision of an automated system” (Ramtin 1991, 61): the goal of fusing “conception, co-

ordination and execution into an all-embracing purely managerial function” (1991, 65). 

However, this is not a prediction of capital’s final victory.  

On the contrary, Ramtin argues that automation “represents the final maturity of the 

development of the material productive forces under capitalism” (Ramtin 1991, 2, 

emphasis original) because “automation radically and qualitatively transforms the 

structure of production, objectively eliminating the process of extraction of surplus 

labour” (1991, 17). Therefore “the breakdown of capitalism must occur with all the 

inevitable force of a natural law” (1991, 179). Here Ramtin echoes the logic of “The 

Fragment on Machines”. Next, we turn to another cluster of thinkers who have taken this 

line of thought up – operaismo and post-operaismo. 

2.8 From operaismo to post-operaismo 

Before Braverman popularized the Labour Process approach, a group of theorists and 

workers in 1950s Italy were applying Marxist ideas to the triad of labour, capital and 

machine in a different way under the banner of operaismo (workerism). Between the 

1960s and 2000, the operaismo school developed into autonomismo (autonomism), and 

then into post-operaismo, a blend of Marxian ideas and poststructuralist theory (see 

Wright 2002b; Dyer-Witheford 1999). Today, post-operaismo is widely popular in both 
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academia and activist circles. It asserts that a qualitative break with orthodox and 

Western Marxism is necessary due to the computerization and networking of capitalism. 

Most notoriously, post-operaismo has argued that a new form of “immaterial labour” 

conducted by a new revolutionary subject called the “multitude” means that labour is 

now technologically-empowered vis a vis capital. According to post-operaismo, high-

tech immaterial labour exhibits a novel autonomy from capital which entails a “crisis of 

value” (Hardt and Negri 2001). Advocates of this theory thus call for an abandonment of 

Marx’s theory of value—a position this dissertation is largely devoted to repudiating.  

Operaismo broke sharply with traditional Marxism and called for more attention to the 

creative capacities of labour and how they change over time. Thus, operaismo theorists 

did not focus on the deskilling of labour in the face of capitalist machines, but rather on 

how capital was forced to apply machines in attempts to control the refractory power of 

labour. The primary theoretical innovation of operaismo was to argue for this inversion 

of the categories of capital and labour. Mario Tronti (1964) held that putting: 

capitalist development first, and workers second … is a mistake … we 

have to turn the problem on its head, reverse the polarity, and start again 

from the beginning: and the beginning is the class struggle of the working 

class. At the level of socially developed capital, capitalist development 

becomes subordinated to working class struggles; it follows behind them, 

and they set the pace to which the political mechanisms of capital’s own 

reproduction must be tuned. This is not a rhetorical proposition. 

Rather than see labour as reacting and resisting capital’s attempts at real subsumption, 

Tronti and operaismo held that it was capital that was reacting to new capacities for 

insubordination developed by labour. Any new introduction of machines by capital is met 

with new forms of insubordination such that a series of struggles based on new capacities 

and with different dynamics can be noted (Holloway 2002, 161-162). Operaismo 

elaborated on the capacities of labour with the notion of “class composition” as a 

counterpoint to Marx’s notion of the organic composition of capital (Cleaver 1992, 108). 

Rather than a linear trajectory of ruthless capitalist technological deskilling, operaismo 
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posited a “cycle of struggles” in which capital and labour mutate throughout an ongoing 

battle, the outcome of which is uncertain (Dyer-Witheford 1999). This perspective aimed 

to overcome static conceptions of class which posited productive labourers (usually 

industrial) as the working class and thus revolutionary actor. Operaismo instead pointed 

the way towards a broader conception of the proletariat. Tronti (1966) held that capital 

“sees society as a means and production as an end”. He and other operaismo thinkers 

used the concept “social factory” (Dyer-Witheford 1999, 134) to describe how society at 

large was being reconfigured around production.  

Antonio Negri pushed this idea further by proposing that a new type of worker was 

emerging: the socialized worker (Dyer-Witheford 2005, 137-138). The socialized worker 

is characterized by a world in which society is not only reorganized around the factory, 

but society as a whole becomes a “factory without walls” (Negri 1989, 89). The locus of 

antagonism between capital and labour therefore shifts from the factory of the mass 

worker to society at large. As Dyer-Witheford (2005) puts it, “conflict over exploitation 

fractally replicates, manifesting in myriad new movements that contest the logic of 

capital not only in workplaces but also in homes, schools, universities, hospitals, and 

media” (138). The socialized worker thus has many faces. What is shared by the diverse 

faces of this emergent figure of labour is an immersion in technology. 

Pasquinelli (2015a) shows how early operaismo thinkers recognized information 

technologies as new weapons of capital. Alquati (2013 [1961]) noted how information 

technologies allowed capital to capture worker’s knowledge and decision-making 

processes, asserting that the “universal diffusion of capitalist despotism … realizes itself 

above all through its technology, its ‘science’”. He was accompanied by Panzieri (2017 

[1961]) who saw such technologies as inherently, in their design, antagonistic to labour: 

“the capitalist use of machinery is not … a mere distortion of; or deviation from, some 

‘objective’ development that is in itself rational”. Panzieri (2017 [1961]) discerned no 

“occult factor, inherent in the characteristics of technological development or planning in 

the capitalist society of today, which can guarantee the 'automatic' transformation or 

'necessary' overthrow of existing relations”. There was no self-destruction of capital 

posited by operaismo. The malignancy of technology compelled the young Negri (1979) 



54 

 

to advocate the sabotage of capitalist technology as a necessary condition for worker 

resistance. 

By the era of the socialized worker, Negri’s views on machines changed substantially. 

From advocating sabotage he came to extol technology as empowering labour: “[t]hough 

initiated for purposes of control and command, as the system grows it becomes an 

‘ecology of machines’— an everyday ambience of potentials to be tapped and explored 

by the socialized worker, a technohabitat whose uses can no longer be exclusively 

dictated by capital” (Negri 1989, 93, cited in Dyer-Witheford 2005, 140). What exactly 

are these potentials? As Dyer-Witheford (2005) notes, on this Negri was 

“characteristically abstract” (140), asserting vaguely that productive capacities for the 

socialized worker center on “science, communication and the communication of 

knowledge” (Negri 1989, 116). Based on this concept of labour and its new relation to 

technology, Negri rejected Marx’s value theory as a “bourgeois mystification” (Negri 

1991, 23). He argued that in high technology capitalism, value is produced socially by the 

whole of the population, while Marx’s theory is based on the work of the individual and 

is thus “heavily reductive” (Negri 1991, 29) as well as “objectivist, atomized, and 

fetishist” (Negri 1991, 64).  

The notion of the social factory and the primacy of labour over capital, along with 

Negri’s affirmative orientation to technology paved the way for post-operaismo, which 

further elaborated these positions and brought them into widespread use in academia and 

beyond.  

2.9 Post-operaismo 

The most prominent figures in post-operaismo are Michael Hardt, Antonio Negri, Paulo 

Virno, Yann Moulier-Boutang19 and Maurizio Lazzarato.20 Lazzarato (1996) laid out the 

 

19
 Moulier-Boutang (2012) is an advocate of “cognitive capitalism theory” which differs little from post-

operaismo and agrees essentially on the theory of immaterial labour. See also Vercellone (2005; 2007) 

20
 Other influential post-operaismo thinkers include Berardi (2009, 2011), Marazzi (2008, 2011) and 

Lazzarato (2014). In addition, there is the work of Matteo Pasquinelli – the only post-operaismo thinker to 
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purportedly novel situation of work in post-Fordism and was followed by Hardt and 

Negri’s enormously popular Empire (2001). Since then, Hardt and Negri have elaborated 

their position over the course of three sequels (Hardt and Negri 2005; 2009; 2017). Post-

operaismo draws not only from Marxist theory but also from poststructuralist 

philosophers such as Deleuze and Guattari (1983; 1987) and their influences, including 

Simondon (2011), Freud (1948) and Lacan (1988). 

Post-operaismo posits a new era of capitalist production called post-Fordism. Post-

Fordism is characterized by a new composition of labour called immaterial labour. In 

theorizing immaterial labour, post-operaismo draws on a controversial reading of Marx’s 

“Fragment on Machines”. This reliance is of such importance to the theory that Pitts 

(2017) has suggested calling post-operaismo “fragment-thinking” (328). Hardt and Negri 

(2001) interpret “The Fragment” as a prophecy: “[w]hat Marx saw as the future is our 

era. This radical transformation of labor power and the incorporation of science, 

communication, and language into productive force have redefined the entire 

phenomenology of labor and the entire world horizon of production” (364). But there is 

one essential difference—capitalism has not imploded. Virno (2001) asserts that “[i]n 

Postfordism, the tendency described by Marx is actually realised but surprisingly with no 

revolutionary or even conflictual implication. Rather than a plethora of crises, the 

disproportion between the role of the knowledge objectified in machines and the 

decreasing relevance of labour time gave rise to new and stable forms of domination”. 

Despite this, post-operaismo remains upbeat. Hardt and Negri (2001) notice in post-

Fordism` the “potential for a kind of spontaneous and elementary communism” (294). 

How is the triad labour, capital, machine configured here? 

 

 

engage directly with AI. He has elaborated the necessity of understanding information machines and data 

as key components of labour and capital in 21st century capitalism (2009, 2015a, 2017a). He has also 

contributed philosophical ruminations on AI (2016; 2017b). Despite evidently recognizing that capital and 

AI have deep, evolving affinities, he has yet to develop a systematic post-operaismo theory of AI. 

Hopefully, this will be provided in his upcoming (2019) monograph. 
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Post-operaismo posits a “change in the quality and nature of labor … [wherein] 

information and communication have come to play a foundational role in production 

processes” (Hardt and Negri 2001, 289). This new kind of labour no longer is subject to 

Taylorist management. Lazzarato (1996) describes it as “post-Taylorist production” 

(140). This shift is compelled by the proliferation of the computer, which “proposes itself 

… as the universal tool, or rather as the central tool, through which all activities might 

pass” (Hardt and Negri 2001, 292). The information-based nature of labour enabled by 

the computer makes labour purportedly immaterial. Lazzarato (1996) defines immaterial 

labour pithily as “the labor that produces the informational and cultural content of the 

commodity” (133). 

[o]n the one hand … it refers directly to the changes taking place 

… where the skills involved in direct labor are increasingly skills 

involving cybernetics and computer control (and horizontal and 

vertical communication). On the other hand … immaterial labor 

involves a series of activities that are not normally recognized as 

‘work’ – in other words, the kinds of activities involved in defining 

and fixing cultural and artistic standards, fashions, tastes, 

consumer norms, and, more strategically, public opinion 

(Lazzarato 1996, 133). 

The first aspect of immaterial labour is digital or informational labour, understood as any 

work involving the use of computers and/or other ICTs. This is itself a broad category. 

But it is exceeded in breadth by the second aspect, which Lazzarato sums up as 

communication (1996, 134-135). He suggests that all of these kinds of work figure into 

producing the “most important contents” of communication: subjectivities (1996, 140). 

Taking both of these aspects at once, we might assume that immaterial labour is 

characterized by an aristocracy of elite high-technology workers who produce 

information commodities and modulate the subjectivities of the rest of the populace, but 

this is not the case, or at least it is not only comprised of such workers. Lazzarato holds 

that “this form of productive activity is not limited only to highly skilled workers; it 
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refers to a use value of labor power today, and, more generally, to the form of activity of 

every productive subject within postindustrial society” (1996, 136). 

Hardt and Negri define immaterial labour in similarly expansive terms and with a similar 

dual character. Immaterial labour is sometimes defined as labour “that produces an 

immaterial good, such as a service, a cultural product, knowledge, or communication” 

(2001, 290). Hardt and Negri (2001) posit three types of this kind of immaterial labour. 

The first is industrial production that has been computerized or “has incorporated 

communications technologies in a way that transforms the production process itself,” 

such as just-in-time manufacturing (293). The second type is analytical and symbolic 

work, which may be either “creative and intelligent manipulation” or “routine symbolic 

tasks”. This refers to the proliferation of computer work, but also to how “[e]ven when 

direct contact with computers is not involved, the manipulation of symbols and 

information along the model of computer operation is extremely widespread” (291). The 

third type is the production and manipulation of affect, which “requires (virtual or actual) 

human contact, labor in the bodily mode” (293). This includes care work as well as 

entertainment and any “services of proximity” (293). Most recently, Hardt and Negri 

restate their position as follows: 

the nature and conditions of labor have changed radically from the industrial 

forms that Marx analyzed … First, people work in ever more flexible, mobile, 

and precarious arrangements … Second, labor is increasingly social and based 

on cooperation with others, embedded in a world of communicative networks 

and digital connections … Capital is valorized through cooperative flows in 

which language, affects, code, and images are subsumed in the material 

processes of production (2017, 93). 

However, as in Lazzarato’s formulation, for Hardt and Negri, immaterial labour is not 

limited to a technological elite. At times Hardt and Negri alternatively refer to immaterial 

labour as “biopolitical labor” or “labor that creates not only material goods but also 

relationships and ultimately social life itself,” echoing Lazzarato’s notion of the 

production of subjectivities (Hardt and Negri 2005, 109). Post-operaismo’s purportedly 
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new figure of labour thus has a contradictory dual character. At the same time, immaterial 

labour refers to both people doing high-tech work with computers and literally every 

person on earth, as biopolitical producers of subjectivity (Camfield 2007, 47).  

On one hand, immaterial labour is performed by the “social worker” (Hardt and Negri 

2001, 409, emphasis original). The social worker refers to humans throughout society at 

large, not just the industrial proletariat. The “central role previously occupied by the labor 

power of mass factory workers in the production of surplus value is today increasingly 

filled by intellectual, immaterial, and communicative labor power” (Hardt and Negri 

2001, 29). These “new productive forces have no place … because they occupy all 

places, and they produce and are exploited in this indefinite non-place” (Hardt and Negri 

2001, 210). The diverse types of immaterial labour performed by the social worker 

entails, for post-operaismo, a redefinition of what used to be called the proletariat. Hardt 

and Negri (2001) suggest the term “multitude” which has been widely adopted — but 

also widely contested.21 The multitude extends beyond people traditionally classified as 

workers. It represents the “claim that there is no political priority among the forms of 

labor: all forms of labor are today socially productive, they in common, and share too a 

common potential to resist the domination of capital” (Hardt and Negri 2005, 106-107).  

On the other hand, immaterial labour is also defined as a specific type of network 

computer work. Immaterial labour is the result of a “new ‘mass intellectuality’ [having] 

come into being” (Lazzarato 1996, 134). Moulier-Boutang uses the term cognitive 

worker or “cognitariat” (96). Thus, for Moulier-Boutang (2012) it is now appropriate to 

speak of a specifically “cognitive” capitalism which can “only take place on the basis of 

collective brain activity mobilised in interconnected digital networks” (Moulier-Boutang 

2012, 56). Hardt and Negri discern an “artificial becoming” (2001, 216) which produces 

a “machinic humanity” (2017, 114) for whom “the appropriation of knowledge” and 

machines “can become decisive” (Hardt and Negri 2017, 119).  

 

21
 Post-operaismo deploys a term borrowed from Marx (though its meaning is inverted) – the “general 

intellect” – to describe the technological and social capacities of the multitude (Hardt and Negri 2017, 114). 

I return to, and critique, the post-operaismo uptake of this concept in the final chapter. 
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Thus, despite the supposed universality of immaterial labour, a particular kind of 

computerized work is involved in them all: the “computer and communication revolution 

of production has transformed laboring practices in such a way that they all tend toward 

the model of information and communication technologies” (Hardt and Negri 2001, 291). 

The immateriality of computerized work generates a “real homogenization of laboring 

processes” (2001, 292) in which, for instance, the corporeal care labour of a personal 

support worker and the code work of a data scientist achieve a new equivalence. This is 

because capital supposedly no longer cares about concrete labour, but instead is 

interested solely in “the universal capacity to produce … abstract social activity and its 

comprehensive power” (Hardt and Negri 2001, 209). This communicative capacity, in a 

mutation of Marx’s original definition, as discussed above, is referred to as “abstract 

labour” (Hardt and Negri 2001, 209). For post-operaismo, abstract labour historically 

follows concrete labour, rather than co-existing simultaneously with it as part of the dual 

character of labour. 

This shows that, as Dyer-Witheford (2005) puts it, “the cyborg, high-tech form of such 

labor continues to be the privileged point of reference for” immaterial labour theory (152-

153). Because of this, I have chosen to evaluate post-operaismo’s claims for immaterial 

labour by exploring the dynamics of work in the AI Industry. As will become clear over 

the next three chapters, AI work is immaterial labour par excellence. Yet, it does not 

evince certain essential qualities – such as a new autonomy from capital – attributed to it.  

Another aspect of post-operaismo is worth mentioning here. Because the products of 

immaterial labour “tend to exceed all quantitative measurement and take common 

forms,” post-operaismo argues that Marx’s labour theory of value can no longer function 

(Hardt and Negri 2009, 135-136). In other words, because immaterial labour takes on an 

informational, communicative form, capital encounters a “crisis of measurability” 

(Marazzi 2008, 43). However, this is not to say that post-operaismo abandons the notion 

of value completely. Hardt and Negri hold that “[e]ven if in postmodern capitalism there 

is no longer a fixed scale that measures value, value nonetheless is still powerful and 

ubiquitous” (2001, 356). Value is now produced “in some sense, externally to [capital]” 

(Hardt and Negri 2009 141) by networked “abstract cooperation” which labour conducts 
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increasingly autonomously from capital (Hardt and Negri 2001, 296). Value thus 

undergoes a substantial shift in meaning here, along with its associated terminology. In 

the era of immaterial labour, cooperation “afford[s] labor the possibility of valorizing 

itself. Brains and bodies still need others to produce value, but the others they need are 

not necessarily provided by capital and its capacities to orchestrate production” (Hardt 

and Negri 2001, 294). Valorization, a term Marx uses to describe the process of capital 

augmentation, is here co-opted by Hardt and Negri to describe a process by which the 

proletariat increases its own capacities. Value is therefore no longer a term for the 

average socially necessary labour time for the production of a commodity. Post-

operaismo therefore calls for a new theory of value which can grasp the “immediately 

social dimension of exploitation” (Hardt and Negri 2000, 29). I will return to critiques of 

this, and post-operaismo’s immaterial labour theory more generally, in Chapter 6, when I 

mount my own.  

2.10 The New Reading of Marx (NRM) 

Around the same time as operaismo appeared, German-speaking scholars, particularly 

students of Adorno, were forming a distinct school of Marxism that came to be known as 

the New Reading of Marx (NRM). NRM is riven by various controversies, but in general, 

it is characterized by a dismissal of Engels’ work and traditional Marxism as a whole, as 

“remaining at a purely ‘exoteric’ level that perpetuated traditional paradigms” of political 

economy (Elbe 2013). Instead, NRM attempts to find the “esoteric” dimension of Marx’s 

work, which is best described by a focus on the form of value. The emphasis on the form 

of value leads NRM to assert the ongoing relevance of Marx’s theory of value, contra 

post-operaismo.  

Like post-operaismo, NRM is a revisionist Marxism, but in contrast to post-operaismo’s 

revisionism, which is founded on perceived empirical changes in the technology of the 

mode of the production, NRM is based on an exegesis of Marx’s writings enabled by the 

German language knowledge of early NRM scholars (Pitts 2018b, 1-2; Endnotes 2010). 

In other words, NRM is based on the claim that Marx has largely been misread, and that 

in some cases, Marx himself needs to be revised. NRM regards the corpus of Marxian 

texts, with their many fragments, revisions and version with a “radical openness that 
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allows [it] to be free of constant reservations based upon what Marx did and did not say 

on this or that issue, and to move the debate forward into virgin areas of investigation and 

critique whilst still remaining within in a rich and multifaceted Marxist paradigm” (Pitts 

2018b, 24-25).22  

The primary result of the exegesis conducted by NRM has been the extraction “from the 

development of Marx’s work a reconstruction of his value theory” (Pitts 2018b, 2) and it 

as such has sometimes been called value form analysis. Form, in this context, can be 

understood as referring to a “mode of existence” (Holloway 2002, 51). In the words of 

Bonefeld, “[v]alue form analysis … amounts to an exposition of the law of value as a 

process of social ‘autonomization’, which economics analyses in terms of price 

movements, stock market developments and other such macro-economic analyses of, in 

themselves, incomprehensible economic quantities” (2014, 8). NRM mounts its critique 

not to conduct an economic analysis, but to explain how the system which economics 

studies is possible – or, how value structures society. But importantly, it does not 

understand value in an abstract sense: “What is … ‘autonomized’ is not some abstract 

essence of value as the ‘ontological foundation of the capitalist system’ that generates an  

‘inverted reality’ … Rather it is the definite social relations of production that subsist in 

the form of mysterious economic things that seemingly possess the mystic character to 

‘instantiate’ themselves” (Bonefeld 2014, 9). Marxism “asks why human social 

reproduction manifests itself in the form of self-moving economic forces that assert 

themselves behind the backs of the acting subjects, indifferent and indeed hostile to their 

needs” (Bonefeld 2014, 21-22). As such, NRM describes itself as the “critique of political 

economy as critical social theory” (Bonefeld 2014). 

NRM’s difference from post-operaismo in relation to value is best approached in 

connection with labour, specifically abstract labour. For post-operaismo, abstract labour 

is the result of a historical homogenization of labour processes wrought by 

 

22
 As Pitts (2018b) acknowledges, “Marx’s work on the question of labour and value contains interlaced 

ambiguities which lend themselves well to varying interpretations, each with its own arsenal of quotations 

and passages to confirm its position” (24). 
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computerization. The NRM focuses instead on abstract labour as one of the dual aspects 

of labour that co-exist in the simultaneous labour/valorization processes that Marx 

outlined, but with an emphasis on its realization as value in circulation.23 As Pitts 

(2018b) puts it, abstract labour is “a category of social mediation expressed in money. It 

springs from the exchange of commodities by means of money in the sphere of 

circulation” (3). NRM is not claiming that value is increased only through selling above 

the cost of making. As Marx outlines, surplus-value is produced via exploitation which 

occurs in production. However, if the commodity produced never is successfully sold for 

its socially necessary labour time, then capital never accrues value and the commodity is 

in effect, without value. For Pitts (2018b) “[a]bstract labour does not so much take place 

itself, as come about by means of an invention” (26). Heinrich explains this when he 

states that value “expresses the equal social validity of two completely different concrete 

acts of labor” (2012, 59). “Prior to being exchanged,” he notes, “the magnitude of value 

can only be more or less estimated” (Heinrich 2012, 55). Thus, he makes an argument 

characteristic of NRM: “[v]alue isn’t just ‘there’ after being ‘produced’ someplace” it is a 

“social relationship … constituted in production and circulation, so that the ‘either/or’ 

question is senseless” (Heinrich 2012, 54).  

Since neither production nor circulation alone are responsible for value, NRM suggests 

that post-operaismo claims of the collapse of value based on the computerization of 

production miss the point: “a critical Marxist theory of value situates itself in the circuit 

of capital as a whole” (Pitts 2018a, 25). In fact, Pitts holds, “postoperaist interpretations 

of the Fragment’s realization in immaterial labour are seldom immaterial enough” 

(2018b, 255). Value is, in fact, very much immaterial since it is contingent on realization 

in exchange. The crisis of measurability posited by post-operaismo is based on the notion 

of value as the expenditure of concrete labour, which when it is socialized across 

networks of humans by computerization, is rendered impossible to quantify. However, 

since “value relates to labour’s abstract residue in exchange and not its concrete 

practice,” this argument fails (Pitts 2018b, 216).  

 

23
 Here NRM draws heavily on the pioneering work of Rubin (1972). 
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Post-operaismo thus makes a category error between concrete and abstract labour, or in 

NRM’s terms, between the “’content’ of something (its ‘natural form’)” and its “‘social 

form’” or “‘economic form-determination’” (Heinrich 2012, 40). They do not understand 

value as a “real abstraction resulting from spatiotemporal activity” (Sohn-Rethel 1978, 

21, quoted in Toscano 2008, 281). In other words, a real abstraction is an abstraction 

carried out not in the minds of humans, but one that is “carried out in the actual behaviour 

of humans, regardless of whether they are aware of it” (Heinrich 2012, 49).24 One might 

also approach this notion by saying that the valorization process determines the form of 

the production process and not the other way around. That is, while post-operaismo 

asserts that changes in the technologies of production entail a disruption of valorization, 

NRM, on the contrary, asserts that capital valorization adapts technologies to its needs. 

As Pitts (2018b) puts it, “[c]hanges in the immediate form of labour do not imply changes 

in forms of abstract social mediation like value” (loc 2391-2401). 

NRM does not perceive a radical technological break of the kind post-operaismo claims 

has already happened or will happen. This is because, according to NRM, the 

fundamental dynamics of the law of value are unaffected by the computerization of 

labour. Since from a value form perspective, intellectual and manual labour are identical 

as value, there is no qualitative change when capital begins to rely on scientific and 

diffuse kinds of labour. Against the purported novelty of immaterial labour, Heinrich 

holds that “the separation of the intellectual potentialities of the production process from 

workers is a tendency that is immanent in all capitalist production” (Heinrich 2012, 211). 

For NRM then, technology thus continues to function as means for relative surplus-value 

extraction, even with the proliferation of computers and other ICTs. Machines in under 

capital continue to function, from a value-form perspective, largely the same as they have 

for the past hundred years or more: “[w]orking through abstraction, capitalism refashions 

what is real and concrete in the image of the value-form” (Pitts 2018b, 188).  

 

24
 NRM is not immune to critique. As Bonefeld (2014) and Pitts (2018b) acknowledge, NRM has often 

neglected to connect its form analysis to concrete social relations, i.e. class struggle. As Pitts (2018b) 

emphasizes, it is crucial that NRM analyses recognize that “socially mediate forms are rooted in real 

relations of antagonism, coercion, domination and dispossession” (5). 
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This is perhaps why NRM thinkers have devoted little analysis to the particular cutting-

edge technologies emerging today, such as AI – an omission which this dissertation 

intends to rectify. And it is also perhaps why NRM has been silent about post-

operaismo’s claims for a new technologically-enabled autonomy of immaterial labour, 

even as the first lucidly devastates the second’s claims for a crisis of value. While 

according to post-operaismo’s argument, the new autonomy of immaterial labour is based 

upon the premise of the crisis of value, this is not necessarily the case. It is possible that 

labour could experience a new autonomy derived from new technological capacities 

without the law of value collapsing. For this reason, post-operaismo’s claim for a new 

autonomy of immaterial labour must be investigated in the real world. 

2.11 Conclusion 

In this chapter, I have reviewed several schools of Marxist theory through the conceptual 

triad: labour, capital, machine. I have done so in order to consider how AI might be 

analyzed from a Marxist perspective. While AI has of yet received little exploration from 

Marxist theorists, it has been taken up by a few, but many of these analyses are dated, and 

there is little consensus to be drawn from them. To arbitrate between these positions, and 

add to their analysis, it is now necessary to give a fuller account of AI and its relation to 

capitalism. The next chapter therefore provides a political economic history of how AI 

came to constitute a powerful sector of capital – the AI Industry. 
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Chapter 3  

3 A Political Economic History of the AI Industry 

This chapter charts how AI went from a fringe research interest for a handful of scientists 

to a feted centerpiece of 21st century cybernetic capital. By situating AI in its historical 

political economic context, we can see it not as an abstract intellectual enterprise or 

disinterested scientific endeavour, but a technology of automation that has been tightly 

intertwined with capital, the state and military, since its invention. In the course of this 

history, I introduce the major schools of AI in their historical social contexts and show 

how capital has attempted to mobilize them. I show that AI possesses a new level of 

recursivity, inherent to information technologies generally, which make it an ideal 

technology for capital, with its inherent drive towards an increasingly machinic form. I 

discuss the first manifestation of the AI Industry, built around GOFAI expert systems in 

the 1980s, and how it collapsed due to technological limitations. I conclude by showing 

how competition between nation states and advances in machine learning AI between the 

1980s and 2010s laid the foundation for today’s AI Industry, the analysis of which is 

conducted in Chapter 4.  

3.1 The Historical Context 

AI is an information technology which runs on computers. If as Ramtin (1991) holds, 

automation only truly appears with information technology, then any history of AI must 

also be a history of automation. As Chun (2005) points out, the earliest computers were 

mechanical; there was no such thing as software and each new program had to be built 

from physical switches by human hands. The stored program, implemented in the first 

general purpose digital computer, ENIAC, in 1947, initiated what we today call software, 

and thus automation (28). The stored program “meant that ‘for the first time it became a 

practical and attractive proposition to use a computer to assist with the preparation of its 

own programs’” (Randell, 1973, cited in McCorduck 1979, 62).  

Early software was written in binary machine code which was read directly by the 

computer’s CPU. Machine code precisely specifies all functions of a given piece of 
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software in relation to its hardware. Being composed solely of ones and zeros, machine 

code was “extremely difficult to use and even more difficult to debug” (Edwards 1996, 

247). It was made easier by the development of higher- level programming languages 

which abstracted from the binary, allowing programming to be done in more-or-less 

natural languages (Sammet 1969, 1-2). Chun thus refers to programming languages (and 

programming as we know it today) as the “automation of programming” (Chun 2005, 30) 

fueled by the “desire … to recruit the computer into its own operation” (Chun 2005, 29). 

Software is thus grounded in a process where it is made to work on itself; what Tim 

Jordan (2015) calls recursion or “the application of information to itself” (31). I suggest 

viewing the history of AI as the elaboration of this capacity for recursion, and capital’s 

attempts to appropriate this capacity for its own ends. 

The intellectual history of AI is usually traced back at least as far as Alan Turing (see his 

collected works in Turing 2004). While the influence of Turing is too vast and complex 

to be adequately explored here, we can briefly note that in 1937, Turing first proposed a 

hypothetical device now called a Universal Turing Machine. While his point was show 

that any mathematical problem that could be precisely formulated could be solved by a 

sufficiently powerful Turing Machine, the paper is also notable for the proposition that 

human thought could be translated into a series of discrete steps – and thus be subject to 

mechanical implementation (Edwards 1996, 16).25 With this gesture, Turing became the 

philosophical background for all AI. 

The story of AI research proper is usually taken to begin less than 10 years after the 

deployment of ENIAC, in post-World War II Massachusetts, at the 1956 Dartmouth 

Summer Research Project where the term artificial intelligence was coined.26 AI 

 

25
 Turing is also notable for his famous thought experiment the Imitation Game, proposed in 1948, now 

often called the Turing Test. In this test, a subject would engage in textual dialogue with a machine and a 

human, both of which would be hidden from view. The subject would attempt to determine which was 

which, and if he/she could not, the machine would pass the test. The test is interesting in that it does not 

strictly test for intelligence, but rather the appearance of intelligence. 

26
 Nilsson (2010) points out that two other lesser-known meetings were also important – the 1955 “Session 

on Learning Machines” in Los Angeles, and the 1958 symposium on the “Mechanization of Thought 

Processes” at the National Physical Laboratory in Teddington, England. 
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appeared in a political economic context already enamored with the recursive 

possibilities of information technology. This was also a context in which the antagonism 

between capital and labour took on a new, technologically-mediated intensity. While this 

chapter cannot perform an adequate analysis of the whole situation, four related factors 

are especially important. 

The first is the influence of cybernetics, “the science of control and communication in the 

animal and machine” (Wiener 1948). Norbert Wiener (1948) popularized cybernetics and 

its central concern with elaborating connections between the new digital computers and 

the human brain. Cybernetics drew similarities between humans and machines, based on 

the use of feedback for control, and invented ways in which the two might be put to work 

together in complex systems, such as artillery. AI cannot be cleanly separated from the 

influence of early cybernetics. There was considerable overlap between the two; several 

of the Dartmouth workshop attendees were involved with cybernetics (Kline 2011, 6). By 

the 1960s, the fields were distinct, based on a split between “‘symbolic versus continuous 

systems’ and ‘psychology versus neurophysiology’” (Newell quoted in Kline 2011, 6). 

While cybernetics focused on continuous systems and physiology, early AI research 

came to by dominated by the symbolic, psychological approach. Edwards (1996) 

describes this as a shift from cybernetics’ computer-brain analogy to “the even more 

comprehensive and abstract computer-mind metaphor of artificial intelligence” – a shift 

that would not be reversed until at least the 1980s (Edwards 1996, 252). The precise 

interactions between AI and cybernetics are too complex to chart here, but we can note 

that cybernetics, by breaking down conceptual barriers between human and machine, 

contributed to the creation of a “cyborg discourse” (Edwards 1996, 2). AI would take up, 

and advance this discourse in its quest for increasing recursivity. 

A second factor is the increased industrial productive capacity of capital driven by 

advances in automated machinery and computing technology. As early as 1946 Fortune 

magazine published an influential article entitled “Machines without Men” which called 

for the full-scale application of wartime technological advances in automatic machinery 

to peacetime manufacturing (Leaver and Brown 1946). Two years later, discussing the 

industrial endeavours of the Ford Motor Company, Le Grand (1948) produced the first 

definition of automation as “the art of applying mechanical devices to manipulate work 
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pieces into and out of equipment, turn parts between operations, remove scrape and to 

perform these tasks in timed sequence with the production equipment so that the line can 

be wholly or partially under push-button control at strategic stations”. The exigencies of 

military production in World War 2 had driven a massive increase in productive capacity 

in the Allied countries, particularly the USA and Canada. Increased capacity was due to a 

growth in the sheer number of factories but also to the intensification of labour processes 

via Fordism and the wide application of mechanization and automation technologies. 

According to Smith (2000), the “height of the Fordist era coincided with the first period 

of the so-called computer age. Beginning in the 1950s corporations introduced mainframe 

computers for data processing” (5). Computers enabled the introduction of information 

technology automation such as numerical control machine tools (Noble 2011). The first 

computerized automation technologies were installed in chemical plants in 1960 and 

became prevalent over the course of the decade. In 1959, the first industrial robot, called 

Unimate, was installed at a General Motors factory in New Jersey. It was a relatively 

simple machine by today’s standards, consisting of a single arm which could perform one 

task at a time. It was in mass production by 1961 and was widely copied, leading to 

industrial robot proliferation (Wallén 2008, 9-10). Machines performing actions 

previously reserved for humans in both manual and (limited) cognitive contexts were 

now a reality and their economic potential was beginning to be realized.  

The third factor is the changed face of post-war labour. The mass worker of the Fordist 

workplace came out of the Second World War in a strong position vis a vis capital. The 

USA’s no-strike pledge had expired and “newly powerful unions [were] ready to test their 

strength” against capital (Noble 2011, 24). However, labour’s power, which manifested in 

numerous, often wildcat, strikes over wages, drove capital to conduct a multipronged 

assault on labour, one powerful arm of which constituted the application of automation 

technologies. As Noble (2011) puts it, the post-World War II years offered capital 

“unprecedented opportunities” for “reduced skill requirements, more concentrated 

management control, and the replacement of workers by machines” (36).27 While, as 

 

27
 Norbert Wiener himself recognized the long-term potential effects of automation on workers. In an 

unanswered 1949 letter he wrote to then UAW president Walter Reuther, Wiener warned that progress in 
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Noble (2011) demonstrates, automation technologies did not achieve the delirious goals 

of perfection their promoters promised, they did allow firms to reduce the number of 

unskilled and low-skilled workers they employed. And as operaismo theorists have 

emphasized, this had the effect of breaking the power of unified mass workers (Wright 

2002a). At the same time, many capitalist states turned to Keynesian welfare to effect a 

“class compromise” between labour and capital (Harvey 2007, 10). This successfully 

blunted the antagonistic energies of post-war labour. Industrial workers traded in 

revolutionary aggression for benefits and wage increases. 

Outside of the factory, other changes to labour were occurring. The management theorist 

Peter Drucker (1957) pronounced the rise of a revolutionary new knowledge society 

founded on the automation of manual labour and the technologically augmented skills of 

the knowledge worker. One year after the Dartmouth workshop, Drucker argued that:  

Today the assembly line is obsolescent … even mechanical work is best 

organized as joint effort of men of high skill and knowledge exercising 

responsible, decision-making, individual judgment in a common effort and for a 

joint end … Automation may well eliminate the unskilled worker from the 

production floor. But it replaces him by an equal number of men of high skill and 

judgment … Each of them works in his own field of knowledge with a broad 

discretionary area of judgment. Each of them, however, must of necessity work 

closely with all the others - in constant communication with them, constantly 

adjusting to their decisions and in turn making decisions that affect their work 

(Drucker 1957, 67).  

 

 

automation “will undoubtedly lead to the factory without employees”. He goes on to state: “I do not wish to 

contribute in any way to selling labor down the river, and I am quite aware that any labor, which is in 

competition with slave labor, whether the slaves are human or mechanical, must accept the conditions of 

work of slave labor” (Wiener 1949) 
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Looking back, we now know that what Drucker observed applied only to a small subset 

of workers in only a few parts of the world. High-skill collaborative and communicative 

work did appear, but it did not do away with previous forms of deskilled work. Yet, 

discourse such as Drucker’s continues to appear alongside technological innovations, as 

we will see. Indeed, even at the time of Drucker’s writing, new fields of work were 

appearing which exhibited none of the shining characteristics he describes.  

As the mass worker squared off with increasingly powerful automated industrial 

machinery, a new workforce was forming around emerging computing technology, and 

was being, even at that early stage, subject to deskilling forces analogous to those 

experienced by industrial labour. Computer scientists and engineers were few and a large 

amount of routine programming and debugging labour was required to make computers 

actually work. By 1955, “the one thousand or so extant general-purpose computers 

required the services of perhaps 10,000 programmers. Five years later, in the midst of a 

booming commercial computer market, programming had suddenly become a profession 

in its own right, with about 60,000 practitioners servicing some five thousand machines. 

Programming began to emerge as a craft” (Edwards 1996, 248). 

However, even as programming was emerging as a craft, “already the amount of 

mathematical skill it required had begun to diminish” (Edwards 1996, 248-249). In its 

early days during the Second World War, computer work was “the job of the 

dispossessed, the opportunity granted to those who lacked the financial or societal 

standing to pursue a scientific career. Women probably constituted the largest number of 

computers, but they were joined by African Americans, Jews, the Irish, the handicapped, 

and the merely poor” (Grier 2005, 276). Ten years after the end of war, this work was 

still performed by subordinated groups: “[m]usic teachers and women without specialized 

backgrounds were among the most successful [programmers]. Such groups could not be 

expected to learn machine code or produce mathematically elegant algorithms; to make 

this new work force effective required symbolic languages easily learned by 

nonspecialists” (Edwards 1996, 249). Deskilling was further motivated by the fact that 

“[b]usinesses … wanted to write their own software without hiring expensive experts … 

they had to if they were going to use computers at all, since before the 1960s ‘off-the-
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shelf’ software was virtually unknown” (Edwards 1996, 249). The emerging 

programming workforce was stratified from its inception. I will show later that this 

quality has continued into the contemporary AI Industry. 

While far from a complete picture, these factors outline the context of technologically-

reconfigured antagonism between labour and capital in which AI emerged - and from 

which its critical study should not be divorced.  

3.2 The Advent of AI 

The organizers of the 1956 Dartmouth Workshop (funded by the Rockefeller Foundation 

and the US Office of Naval Research (ONR)) founded their project: 

on the basis of the conjecture that every aspect of learning or any other 

feature of intelligence can in principle be so precisely described that a 

machine can be made to simulate it. An attempt will be made to find how 

to make machines use language, form abstractions and concepts, solve 

kinds of problems now reserved for humans, and improve themselves 

(McCarthy, Minsky, Rochester and Shannon 1955).  

These AI pioneers set out to achieve the same capture and emulation of human 

activity that Marx posited as the function of automatic machinery, but in the 

mental, rather than physiological, domain. It is therefore not hard to imagine why 

capital might find AI appealing. Only a few years later, two influential researchers 

proclaimed that “there are now in the world machines that think, that learn, and 

that create … their ability to do these things is going to increase rapidly until in a 

visible future-the range of problems they can handle will be coextensive with the 

range to which the human mind has been applied” (Simon and Newell 1958, 8). 

They go on to explain that “[w]ith recent developments in our understanding of 

heuristic processes and their simulation by digital computers, the way is open to 

deal scientifically with ill-structured problems - to make the computer coextensive 

with the human mind” (Simon and Newell 1958, 9). The Dartmouth organizers 

even hoped for a recursive kind of self-modifying AI, noting that “[s]ome 

schemes for [self improvement] have been proposed and are worth further study”. 
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They were terribly optimistic, holding that their “2 month, 10 man study” could 

make a “significant advance” towards machine intelligence (McCarthy, Minsky, 

Rochester & Shannon 1955).  

Such lofty aspirations proved exorbitant; few of their goals were realized. Hopes 

for cybernetic learning machines inspired by neurophysiology were largely 

dashed, beyond some interesting curiosities, and instead, an approach now known 

as GOFAI (Good Ol’ Fashioned AI) (also known as symbolic AI) took off and 

remained, until the mid-1980s, “the dominant (though not only) approach in AI” 

(Boden 2014, 89). GOFAI is an approach to AI that aims to implement high-level 

cognitive functions, such as logical reasoning, in machines through the 

manipulation of information encoded in a symbolic language. In contrast to 

learning machines, GOFAI “sought first to formalize knowledge of the world, 

injecting it into computer systems predefined and predigested. Logic, not 

experience, would determine its conclusions” (Edwards 1996, 255). 

GOFAI is thus based on the assumption that “a large part of human thought 

consists of manipulating words according to rules of reasoning and rules of 

conjecture” (McCarthy et al 1955). It can also be summarized by the assertion that 

“[s]ymbols lie at the root of intelligent action” or that intelligent action is 

produced by the manipulation of symbols (Newell and Simon 1976, 114). A 

GOFAI system solves problems by “generating and progressively modifying 

symbol structures until it produces a solution structure” (Newell and Simon 1976, 

120-121). This is also called “heuristic search” (Boden 2014, 90). This means that 

the system creates internal representations of its world or problem domain in a 

symbolic language and performs logical or rule-based manipulations on this 

representation to solve a problem. 

One obvious example here is chess. There are a finite (though large) number of possible 

states the chess board can be in and a finite set of rules that determine its possible state 

changes and future states. There are a finite number of possible moves at any given time. 

However, a good chess player looks not only at the current state of the board, but also 

considers possible future states, and plans ahead. However, mentally scrolling through all 
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possible moves both current and future is time-consuming and cognitively wasteful, so a 

good chess player will apply some form of heuristics, or rules of thumb that may not 

always work properly, but cut down the list of options to be searched. A chess-playing 

GOFAI system will also employ heuristics.  

The necessity of explicit internal representation led to a serious issue for GOFAI, known 

as the frame problem, or “the problem of updating, searching, and otherwise 

manipulating, a large structure of symbols in realistic amounts of time” (Copeland 2000, 

see also Dennett 2006). One way to think of this is in terms of common sense reasoning. 

For instance, if we humans perceive a plate resting on a table (in the absence of 

contributing factors such as a meddlesome cat) we do not wonder whether it might 

suddenly disappear, or reappear under the table, or suddenly shatter. We know that force 

must be applied to it for any of these things to happen. A GOFAI system must have all 

such basic notions programmed into it explicitly in the form of rules, and there are very 

many rules required to accurately approximate even naïve conceptions of physics. Since 

all of these rules had to be discerned and then programmed, beyond the simplest virtual 

domains, GOFAI was bound to run into problems of complexity.  

Despite this and other problems, most of AI’s early successes can be credited to GOFAI 

and it was GOFAI that first constituted the AI industry, in the form of expert systems, as 

I will show. While GOFAI’s fame has since faded, it is still used in the AI subfield of 

planning which finds applications in video games, route planning, air traffic control, and 

configuring electronics components (Kaplan 2016, 25). Few now see GOFAI as the 

future of AI since, as Boden reflects, “most of the ‘intelligence’ involved [in GOFAI] lies 

in the choices of actions, operators, and heuristics specified by the programmer” (2014, 

90). But in the early years things were different. 

There was not yet an AI industry (ie. AI was not yet sold as a commodity) in the 1950s 

and 60s, although those researching the topic came from both industry and academia – 

usually, with the majority of funding from the US military. By the end of the Second 

World War, the US Office of Scientific Research and Development (OSRD) had 

increased military research and development funding from a prewar ~$23 million to over 

$100 million yearly (Edwards 1996, 46). This generous outlay of research funding 



74 

 

continued after the war with the establishment of a small number of “centers of 

excellence” in research, situated in universities (Edwards 1996, 261). Some of these were 

devoted to AI. Starting in the 1960s, “AI, for over two decades almost exclusively a pure 

research area of no immediate commercial interest, received as much as 80 percent of its 

total annual funding from ARPA” (Edwards 1996, 64).  

The Advanced Research Projects Agency (ARPA) and the Office of Naval Research 

(ONR) were two of the largest funders of AI research. Formed in 1946, the ONR is a 

department of the US Navy that engages in and funds technology research and 

development with applications to naval security. The ONR’s Information Systems branch 

funded several AI projects at a number of institutions (Nilsson 2010, 118). ARPA was 

formed in 1958 as a response to the USSR’s successful deployment of the Sputnik 1 

satellite the year prior. The agency changed its name to Defense Advanced Research 

Projects Agency (DARPA) in 1972 and 1996 and reverted briefly to ARPA from 1993-

1996. The agency’s overall task remains the achievement and maintenance of US 

technological superiority through organizing and funding research; including AI: 

“DARPA has held to a singular and enduring mission: to make pivotal investments in 

breakthrough technologies for national security” (DARPA 2015, 1). ARPA opened an 

Information Processing Techniques Office (IPTO) in 1962. Directed by J.C.R. Licklider, 

who advocated a “symbiosis” between humans and machines (Licklider 1960), the IPTO 

funded AI and other computing projects at MIT, Stanford, Carnegie Mellon, SRI, RAND, 

BBN and SDC, among others, beginning around 1962 (Nilsson 2010, 120).  

It is difficult to categorize the researchers from this period as belonging to either 

academia or industry. Most of them passed between the two throughout their careers, 

often more than once. The integration of academia and industry, built on the foundation 

of military funding leads Edwards (1996) to categorize the nascent computing industry as 

an “‘iron triangle’ of self-perpetuating academic, industrial, and military collaboration” 

(47). This dynamic continues today in the AI Industry.  

The universities associated with early AI research are few: MIT in Cambridge, 

Massachusetts, Carnegie Tech (now Carnegie Mellon University) near Pittsburgh, 



75 

 

Pennsylvania, Stanford University in Stanford, California and the University of 

Edinburgh in Edinburgh, Scotland.  

The industry organizations most important to AI’s inception were all based in the USA. 

Perhaps the most well-known of these is the RAND (Research and Development) 

Corporation headquartered in Santa Monica, California. RAND still exists as a non-profit 

organization which conducts science, technology and policy research. Originally Project 

RAND, a 1945 US Air Force project with a mandate to direct research and development 

towards strategic ends. The project was spun-off into its independent form in 1948 and 

developed into one of the most influential private institutions of the past century. As one 

RAND researcher puts it in a popular history of the organization, “[s]atellites, systems 

analysis, computing, the internet – almost all the defining features of the information age 

were shaped in part by the RAND Corporation” (Campbell 2004, 50). The first book on 

AI, the anthology Computers and Thought (Feigenbaum and Feldman 1963) had no less 

than six of its twenty chapters previously published by RAND researchers (Klahr and 

Waterman 1986, 1). 

International Business Machines (IBM) has also been involved with the development of 

nearly all aspects of information technology, AI included. Founded in 1911 as 

“Computing-Tabulating-Recording Company” in New York City, it was renamed IBM in 

1924 and moved its headquarters to Armonk, New York in 1963. Arthur Samuel, an IBM 

researcher, developed a checkers playing program which was able to improve itself and 

successfully won a televised match in 1956.28 Samuel is attributed with the first use of the 

term machine learning. He hoped that “[p]rogramming computers to learn from 

experience should eventually eliminate the need for much of this detailed programming 

effort” (Samuel 1959, 211).  

Bell Laboratories was also involved in the development of a myriad of information 

technologies, but also lasers and solar panels, as well as early experiments in AI. Claude 

Shannon, inventor of information theory, worked for Bell starting in 1941 and developed 

 

28
 While Samuel is often cited as the creating the first checkers playing program, Nilsson (2010) notes that 

Christopher Strachey at the University of Oxford seems to have created one as early as 1951 (90).  
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an artificially-intelligent mouse called Theseus based on technology developed for 

telephone switching. The mouse employed a rudimentary form of machine learning to 

find its way out of mazes.  

The Systems Development Corporation (SDC) is considered the world’s first software 

company (Campbell-Kelly 2004, 36-41). It began as a project group of the RAND 

Corporation in 1955 and was spun off as a non-profit in 1957. SDC specialized in 

designing and consulting on large and complex, networked computer systems. They are 

perhaps best known for their involvement in the production of the Semi-Automated 

Ground Environment (SAGE). SAGE was a system of networked radar sites and 

computer that was intended to provide comprehensive surveillance of US airspace for the 

purposes of defense. Because the amount of the data the system was required to process 

was enormous, AI techniques were deployed. SAGE went live on 1958 and was never put 

to the test. In 1969, SDC turned into a for-profit company.  

A number of other firms were influential. BBN Technologies, founded in 1948, in 

Cambridge, Massachussets, was led to AI by the complex computations involved in 

acoustic design research. BBN was involved in the development of several influential 

technologies including the internet. SRI International (formerly Stanford Research 

Institute) is a nonprofit thinktank established by trustees of Stanford University in 1946. 

In 1966, the institute opened its Artificial Intelligence Center that developed “Shakey,” 

widely accepted as the first mobile robot with the ability to perceive and reason about its 

surroundings (SRI International n.d.). Lincoln Laboratories, created in 1951 as a 

federally-funded research and development center at MIT, was meant to remedy 

perceived inadequacies in the USA’s air force. The Laboratories’ famous first project was 

the SAGE system which SDC also contributed to.   

Early AI researchers moved between these institutions throughout the 1950s and 60s. 

There seems to have been no discernable trend in migrations from academic to industry 

positions or vice-versa. J.C.R. Licklider, for instance, worked first at Lincoln Laboratory 

and MIT and later went to BBN and eventually, to ARPA (discussed below) (Nilsson 

2010, 119). Allan Newell on the other hand, worked at RAND in his early years but spent 

his later years solely at CMU (Nilsson 2010, 115). While there were, by the late 1950s 



77 

 

and early 1960s, labs devoted to AI at some of the above universities, researchers would 

often have to use the powerful and expensive computers owned by companies such as 

BBN for computationally demanding AI projects (Nilsson 2010, 116). MIT owned an 

IBM 704 which was cutting-edge at its release in 1954, but it quickly began to pale as AI 

research intensified. The first PDP-1 (programmed-data-processer) computer which 

possessed magnitudes more computational power was bought by BBN in 1960 for 

USD$120,000 (USD$1,041,100.34 in 2019 dollars).29 This expensive hardware ensured 

that AI researchers would continue to be reliant on the deep pockets of military funding.   

This situation obtained until the late 1960s. Military-funded AI research flourished in the 

limited context of think-tanks and academic departments. Much of the work done at this 

time was based in the GOFAI paradigm, but some research was also conducted into 

rudimentary artificial neural networks, which I return to later. There were a number of 

impressive achievements in fields such as machine vision, robotics and theorem proving. 

There were, however, no commercial applications developed. 

3.3 The AI Winter 

The end of the 1960s and early 1970s were a dark time for AI research. While the world 

economy began tapering off from the post-WWII boom, “stagflation” threatened Western 

states and civil rights activists mobilized for a variety of causes including gender 

relations and opposition to militarism, the excessive optimism of proclamations about AI, 

such as those made by the Dartmouth researchers, became recognized as such. A barren 

“winter” ensued in which funding for AI research dried up (Crevier 1993, 203). In 

November 1966, AI research received a hefty blow by the negative assessment of the 

ALPAC (Automatic Language Processing Advisory Committee) Report, commissioned 

by the US government to evaluate the prospects for machine translation research. The 

report ended most government funding into machine translation and damped enthusiasm 

for AI in the public sphere. In 1969, the US Congress passed, as part of the 1970 Military 

Authorization Act, the first Mansfield Amendment. Section 203 of the amendment stated: 

 

29
 Adjustment for inflation according to US Bureau of Labor Statistics: 

https://www.bls.gov/data/inflation_calculator.htm 
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“None of the funds authorized by this Act may be used to carry out any research project 

or study unless such project or study has a direct and apparent relationship to a specific 

military function” (quoted in Laitinen 1970, 689). The Mansfield Amendment had the 

effect of strictly limiting the kinds of AI research government bodies, such as the ONR, 

could fund. The amendment “brought about a swift decline in some of the military’s 

support for basic research, often driving it toward the applied realm” (National Research 

Council 1999, 213). ARPA’s autonomous nature made it exempt for the 1969 amendment, 

but a second amendment, passed in 1973, applied the same restrictions specifically to that 

agency. Despite a restricted range of research problems, by the mid-1970s “as much as 80 

to 90 percent of funding for the major AI groups – MIT, Stanford, SRI and Carnegie-

Mellon” was provided by ARPA (Edwards 1996, 296) 

1973 also saw the publication of the Lighthill Report in the UK. The mathematician Sir 

James Lighthill was commissioned by British Science Research Council to study the 

prospects of AI. The report, “Artificial Intelligence: A General Survey” was damning and 

recommended that much AI research was pointless as it would remain stymied by the 

fundamental problem of the combinatorial explosion. This report dampened AI research 

in the UK, which did not recover until the early 1980s, and arguably contributed to 

American dominance in the field.  

Despite the climate of the AI winter, some universities opened new AI research groups. 

The most prominent were Toronto, Rochester, Texas, Maryland, British Columbia, 

California and Washington, but there were others in Europe and Asia (Nilsson 2010, 

207). But with the major sources of funding for AI research now strictly limited, many 

academic researchers working on basic research were compelled to turn to applied 

research while others left academia altogether. This chilling effect is often credited with 

contributing to the rise of startups, the proliferation of private research labs and the 

computing industry in general. Non-AI computing companies, such as Microsoft, 

founded in 1974, flourished at this time. Microsoft released the influential operating 

system MS-DOS in 1981. Victor (2013) suggests that “[o]ne way of interpreting … the 

Mansfield Amendment [is that it] killed research, but ‘induced labor’ on an industry”.  
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3.4 The Birth of the AI Industry: Expert Systems 

To make major productivity gains, we discovered that the automation net would have to 

be cast farther out than the factory floor – to cover the information handlers, those doing 

the planning, the problem solving, and the decision making. In short, it was necessary to 

bring the power of automation to the knowledge worker (Feigenbaum, McCorduck and 

Nii 1988, 4) 

In the 1970s, social theorists such as Daniel Bell took up and elaborated ideas broached 

first in Drucker’s notion of the knowledge worker. Bell (1973) predicted a coming “post-

industrial” society. This would be characterized by “a shift from a goods producing to a 

service economy; a move in occupational distribution away from manual labour to the 

pre-eminence of professional and technical work; increasing capacities of assessment and 

forecasting; and a new ‘intellectual technology’ of games-theory and systems-analysis, 

materially embedded in computer systems” (Dyer-Witheford 1999, 30).30 Despite the 

tendency of epochal modes of analysis like Bell’s to overemphasize change at the 

expense of continuity (Webster 2014), there did occur substantial changes around that 

time. Between 1948 and 1990 employment in the USA increased by nearly 83% with 

97% of this increase coming from “nongoods-producing industries” including “services, 

transportation, communications, utilities, wholesale and retail trade, finance, insurance, 

and real estate” (US Bureau of Labour Statistics 1993, 7). The shift towards service jobs 

truly took off only in the 1970s. Between the 1970s and 1990s, “the process of economic 

restructuring and the technological transformation … led to a reduction in the share of 

manufacturing employment in all countries” which varied considerably, but in some 

countries surpassed 20% (Castells and Aoyama 1994, 11).  

 

30
 Marx-influenced critical analyses would use the notion of post-Fordism to discuss the very same 

phenomena, as the previous chapter discussed (see also Amin 1994). Operaismo theorists such as Negri 

(1989) proposed that the mass worker of Fordism was being replaced by a new figure called the socialized 

worker. The socialized worker referred to diverse people living in a world “where capital had insinuated 

itself everywhere,” and work now depended more on communication and sociality than it had before 

(Dyer-Witheford 2005, 138). By the publication of Empire, the socialized worker was reconfigured into the 

“immaterial” labourer (Hardt and Negri 2001, 290) who was adept with information technology and might 

even be able to turn it against capital. 
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Coincidentally or not, as skilled, intellectual labour burgeoned, so did efforts to automate 

it. As capital reconfigured itself around so-called knowledge work during the 1970s, AI, 

for the first time, coalesced into an industry based on an application of GOFAI called 

expert systems or knowledge-based systems. Expert systems were intended to capture 

sophisticated knowledge about a particular expert domain and make it available to 

management and/or workers lacking in said knowledge. While some of these systems 

attempted to embody the knowledge represented by textbooks or documents, most often, 

they were intended to model the knowledge of expert human workers and thus explicitly 

manifested the Taylorist principle of “the dissociation of the labor process from the skills 

of workers” (Braverman 1998 [1974], 78). Critical analysts of the day did not fail to 

notice this, as I show below.  

Expert systems are comprised of two basic parts: the knowledge base and the inference 

engine. The knowledge base is comprised of factual and heuristic knowledge, represented 

in a symbolic language. It is created by a process called knowledge engineering in which 

human engineers interview experts in a given field to gather their knowledge and then 

encode this knowledge in a symbolic language as conditional (if-then-else) rules 

(Feigenbaum, McCorduck and Nii 1988). The inference engine defines the steps taken to 

apply the stored knowledge. The idea is that once the knowledge is encoded into the 

expert system, less skilled workers or management can simply solve problems in that 

domain, without recourse to the former possessor of that knowledge.  

Intellicorp, arguably the first AI startup, was founded in 1980 by Edward Feigenbaum 

and others. Intellicorp “won a contract in 1984 for $1,286,781 [from DARPA] to develop 

an ‘evolutionary new generation system tool’” (Roland and Shiman 2002, 198). In 1984, 

DARPA “budgeted $1,813,260 for Teknowledge over two years, with an option to renew” 

(Roland and Shiman 2002, 201). Teknowledge was another startup founded in 1981 by 

Feigenbaum. Along with some nineteen scientists from Stanford, as well as Frederick 

Hayes-Roth, then Research Program Director for Information Processing Systems at 

RAND, Teknowledge began as a consulting business, but with ARPA’s funding moved 

into expert systems. This interplay of academia and industry, boosted by military funding, 

brought the AI industry into being and continues to characterize the AI industry today. 
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The first expert system, Dendral, was developed throughout the 1960s by Feigenbaum 

and Joshua Lederberg at Stanford University with the goal of helping organic chemists 

identify unknown biological molecules (Lederberg 1987, 1). While it mainly just 

eliminated implausible compounds, Dendral proved that the expert system concept could 

work, and while it remained in academia, it spawned many offspring, some of which 

were commercialized. The earliest of Dendral’s descendants to be deployed 

commercially were developed in cooperation between academia and industry. The 

“Dipmeter Adviser” was developed by the oilfield services corporation Schlumberger in 

cooperation with academic AI engineers. This system was used for “inferring subsurface 

geologic structure” in preparation for drilling by analyzing data from sensors lowered 

deep into the earth’s crust (Davis et al., 1981, 846). A prototype was developed in 1980 

but the system was not deployed in Schlumberger’s operations until 1984 (Davis et al., 

1981, 129). The system had 90 rules which used about 30 predicates and functions to 

represent data (Smith and Young 1984, 16). In 1980, Digital Equipment Corporation 

(DEC) deployed the “first expert system in daily production use in industry,” XCON 

(Expert Configurator) (Virginia and Dennis 1989, 298). XCON aided in the configuration 

and assembly of complex, customizable computer systems (Virginia and Dennis 1989, 

221). Compared to Dipmeter Adviser, it was massive, containing over 2000 rules (Kraft 

1984, 43). According to Roland and Shiman (2002), by “the middle of the decade [DEC] 

estimated it was saving $40 million annually by use of XCON” (191). Word of the utility 

of expert systems spread throughout the business world and demand exploded throughout 

the mid-1980s (Crevier 1993, 198). Commenting on the “industrialization of artificial 

intelligence” in 1984, Kaplan notes “[o]ver the past few years, the character of the AI 

community has changed. AI researchers used to be able to go about their work in peace 

… As the promise of practical applications of AI has slowly become reality, new players 

have entered the field, changing its nature forever” (1984, 51). According to one 

contemporary estimate, 1500 expert systems were used commercially by the end of 1987 

(Feigenbaum, McCorduck and Nii 1988, x).  

It is only at this point in the late 1980s that it is fair to say that AI comprised a distinct 

industry. Crevier describes it as composed of three main sectors. The largest sector, 

comprising over half the market, were specialized AI computers called LISP machines, 



82 

 

the largest producers of which were the corporations Xerox and Texas Instruments and 

two startups from Massachussets: Symbolics and Lisp Machines (Crevier 1993, 200). 

The second largest sector was that of expert system “shells” or frameworks which had to 

be engineered to function on its particular knowledge base. The third sector, complete 

expert system applications, were the smallest sector of the industry. Roland and Shiman 

(2002) note that the “commercial firms springing up in the early 1980s were building 

custom systems one client at a time. DARPA would try to raise the field above that level, 

up to the generic or universal application” (Roland and Shiman 2002, 194). Expert 

systems were very narrow, but DARPA wanted a generally-applicable expert system that 

could be deployed to different domains without its core components needing to be 

modified. The development of such a generic expert system guided research programs at 

both Teknowledge and Intellicorp. While such a recursive expert system was not 

achieved, interest in, and funding for, expert systems drew labour to the field. 

The number of people trained to work in AI dramatically increased throughout the 1980s 

due to the establishment of new graduate programs aimed not at producing academic 

researchers, but instead nurturing the basic skills for practical applications of AI. 

Feigenbaum developed such an applied Masters’ of Science in Artificial Intelligence that 

was the first of its kind (Roland and Shiman 2002, 196). Membership in the Association 

for the Advancement of Artificial Intelligence (AAAI) “rose from around 5,000 shortly 

after the society’s founding [in 1979] to a peak of 16,421 in 1987” (Nilsson 2010, 271). 

The increase in skilled labour enabled “[m]ost large companies [to establish] AI groups to 

develop in-house applications. In 1985, 150 companies spend [sic] $1 billion altogether 

on internal AI groups. At DEC, for example, the AI group had grown to 77 people by 

1986, and mushroomed to 700 in 1988” (Crevier 1993, 199). In 1987, the conglomerate 

DuPont “had 100 expert systems in routine operation and 500 in various stages of 

development” (Crevier 1993, 199).  

While detailed figures are hard to come by, Crevier (1993) gives one snapshot of the 

nascent AI industry. According to Crevier, in 1986, sales in the USA of “AI-related 

hardware and software reached $425 million (1993, 200). Forty new companies were 

formed that year alone, with total investments of around $300 million (Crevier 1993, 

200). Enthusiasm for expert systems continued throughout the 1990s. From 1500 expert 
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systems in use in 1987, the AI industry exploded to an estimated 12,500 expert systems 

in 1997 (Liebowitz 1997, 118). 

3.5 Strategic Computing: AI and the State 

The 1980s have been characterized politically predominantly by the rise of neoliberalism, 

first in Chile, the UK and USA, and then elsewhere. Harvey defines neoliberalism as a 

“theory of political economic practices that proposes that human well-being can best be 

advanced by liberating individual entrepreneurial freedoms and skills within an 

institutional framework characterized by strong private property rights, free markets, and 

free trade” (Harvey 2007, 2). While neoliberal theory extols the virtues of market 

freedom from state influence, it has in reality entailed the formation of a “neoliberal 

state” (Harvey 2007, 7) which implements whatever practices are necessary to keep the 

market operating. Neoliberal states have shown an “intense interest in and pursuit of 

information technologies” because they require “technologies of information creation and 

capacities to accumulate, store, transfer, analyse, and use massive databases to guide 

decisions in the global marketplace” (Harvey 2007, 3). One manifestation of this was 

state involvement in AI research in the 1980s, carrying initial military interest into 

commercial domains. While neoliberalism was spread unevenly then, its technological 

impetus was contagious. The world’s most powerful states then engaged in a pursuit of 

AI technology not unlike the Space Race, even if it ended much less spectacularly. AI did 

not become an industry in its own right solely because a few intrepid academics, such as 

Feigenbaum, ventured out into the business world. During the 1980s, AI (primarily 

expert systems) and computing became axes of competition for the most technologically-

sophisticated states.  

Japan’s Ministry of Trade and Industry (MITI) jumpstarted the process with its Fifth 

Generation Computer Systems project in 1982.  MITI created the Institute for Next 

Generation Computer Technology (ICOT) to carry out a ten-year plan of developing 

massively parallel expert systems specifically for implementing AI (Feigenbaum and 

McCorduck 1984, 31-32).  ICOT was backed by a consortium comprised of two 

government research labs and eight Japanese giants of industry: Fujitsu, Hitachi and 

Toshiba (Feigenbaum and McCorduck 1984, 130). MITI committed to $450 million over 
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the ten years with large contributions from the firms composing a budget of 

approximately $850 million (Feigenbaum and McCorduck 1984, 137). By 1992, some 

interesting technological developments had been achieved, but commercial success had 

not. While the project did not achieve its goals, it did substantially advance Japan’s 

computing infrastructure and knowledge, though not enough to contest the dominance of 

the USA (Roland and Shiman 2002, 326). 

Reacting to Japan’s computational ambitions, the USA began its Strategic Computing 

(SC) Initiative in 1983.31 By 1993, DARPA had spent “an extra $1 billion on computer 

research to achieve machine intelligence” (Roland and Shiman 2002, 1). The main goal 

was generic expert systems employing massively parallel processing: “AI would become 

an essential component of SC; expert systems would be the centerpiece” (Roland and 

Shiman 2002, 192). It is under the aegis of SC that Teknowledge and Intellicorp received 

the funding they did, as discussed above. SC also failed to meet its ambitious goals for 

AI, and was instead adapted to a project of “high-performance computing” by the end of 

the 1980s (Roland and Shiman 2002, 325). Like Japan’s Fifth Generation project, it did 

however contribute greatly to improved computing infrastructure and a proliferation of 

knowledge about AI (Roland and Shiman 2002, 331). Not all USA AI initiatives failed, 

however, the Dynamic Analysis and Replanning Tool (DART) was developed for 

DARPA by a team led by an engineer from BBN. Deployed in 1991, it successful 

logistical management reportedly “paid back all of DARPA’s 30 years of investment in 

AI in a matter of a few months” according to the director of DARPA at the time 

(Hedberg 2002, 81-83). 

The USA’s technological mobilization was also motivated by fears of the increasingly 

technological figure of communism. There is little available literature in English about 

Soviet AI research, although it is certain that some did occur. Computing got off to a 

slow start in the USSR due to at least two factors (Peters 2016). One is that the Party 

 

31
 1983 also saw the advent of the ballistic missile oriented Strategic Defense Initiative (SDI). The 

connections between the two initiatives were subject to much debate although the SDI was explicitly 

described as responding to the Soviet, rather than Japanese, threat (Roland and Shiman 2002, 63-64).  
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concealed the existence of computers in the Union from both its citizens and other 

nations for the first years of their existence, slowing computational skill diffusion. 

Second is that cybernetics was construed, well into the mid-1950s, as an ideological 

taboo for Soviet cold warriors, a bourgeois pseudo-science that contradicted Marxism-

Leninism (Gerovitch 2004). After the death of Stalin, cybernetics gradually became 

acceptable and research into AI became acceptable. According to Malinovsky (2010), the 

prominent Soviet cyberneticist Glushkov “regarded artificial intelligence as the most 

promising direction in Cybernetics” (32). Soviet AI practitioners pursued research into 

theorem proving, pattern recognition and machine vision (Gerovitch 2011, 180; Peters 

2016, 117). In 1960, a visiting RAND researcher surveyed the Soviet AI and computing 

landscape and noted several AI projects underway including learning machines, speech 

recognition, heuristic search and machine translation. He concluded that in the USSR 

“computer time is becoming less scarce and that research on artificial intelligence and 

other advanced applications of computers is beginning to achieve a priority which it did 

not seem to have just one year ago” (Feigenbaum 1961, 579). By 1966, at the first 

machine versus machine chess championship, a Soviet chess-playing AI program 

defeated by 3-1 a program built by AI practitioners from MIT and Stanford, including 

McCarthy (Adelson-Velskii 1970; Feigenbaum 1969). The USSR did not, however, ever 

achieve influential status in the AI community.  

Also reacting to Japan’s Fifth Generation program, the British government established 

the five-year Alvey Programme in 1983. AI was the “initial focus” of Alvey, though it 

encompassed other computing research as well (Oakley and Owen 1989, 172). The 

Programme received £290 million in funding from a combination of public and private 

sources (Oakley and Owen 1989, 195). It did not posit goals as optimistic and those of 

Japan or the USA, but whether it constituted a success was a considerable debate. It is 

held by some in the field to have rejuvenated AI research in the UK, which was largely 

stagnant since the Lighthill Report of 1973, and also drummed up interest in expert 

systems (Oakley and Owen 1989, 172). Also in 1983, the Commission of European 

Communities launched the ten-year European Strategic Program on Research in 

Information Technology (ESPRIT). This project was designed to develop the industrial 

potential of European information technology with a strong focus on AI (Steels and 
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Lepape 1993, 5). It consisted of two phases, the first of which included 32 AI projects 

funded at cost of 84 million ECU. By 1993, the ongoing second phase involved 27 more 

projects involving AI with funding around 80 million ECU (Steels and Lepape 1993, 4).  

Although each of these strategic computing projects varied considerably in the details of 

their organization and their particular successes, a few useful generalizations can be 

made. All were driven by national and supranational bodies which recognized a need for 

direct intervention in high tech and particularly, AI. All involved forced collaboration 

across academic, commercial and industrial sectors (and national borders in the case of 

ESPRIT). All largely failed to achieve their original goals, whether in particular AI 

achievements or social/economic benefits. However, despite this, all of these projects 

contributed to strengthening their relative nation’s or community’s computing and AI 

infrastructure in terms of products, facilities and skilled developers and researchers.  

The embrace of AI, and particularly expert systems, by capital and state during the 1980s 

generated AI’s first critical backlash. A spate of articles wary of the emergent capacities 

of expert systems emerged. The engineer and militant trade unionist Cooley (1981) notes 

that with the proliferation of computers, Taylorism can now be applied to intellectual as 

well as manual work: “fixed capital appropriates not only living labour … [but also] the 

scientific and intellectual output of the white-collar workers” (46-47). Positing a need for 

a forum to discuss the social and political implications of “the deluge of quasi-expert 

systems [and] artificial-intelligence software tools,” Cooley founded the journal AI and 

Society, which still exists today (Cooley 1987, 179). A number of other Marxist voices 

agreed with Cooley’s analysis of AI. Athanasiou (1985) described AI as “cleverly 

disguised politics”. Berman (1992) elaborated this position: 

the ideological importance of AI can best be understood as analogous to 

the role played by scientific management in the second industrial 

revolution … AI seeks to achieve the same control over mental processes 

that scientific management sought to achieve over physical labour through 

a process of rationalization, fragmentation, mechanization and 

routinization” (104-105). 
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Critics of this period did not see their worst fears for AI realized, as by the early 1990s 

the AI industry went into a decline which it would not recover from for over two decades. 

This was largely based on the limitations inherent to the expert system approach to AI.  

3.6 The Decline of Expert Systems 

Despite the efforts of numerous states, the AI industry underwent a second AI winter in 

the early 1990s. Commonly cited reasons for this second AI winter are the “brittleness” 

of expert systems or their performance dropping to zero when posed a problem beyond 

their defined scope (Feigenbaum, McCorduck and Nii 1988, 253) as well as their 

“opacity” or the unpredictable ways they perform as more and more interacting rules are 

added (Crevier 1993, 204). However, there are other factors as well. The first was a shift 

in the underlying technology. Expert systems generally ran on LISP machines specially 

built for the purpose, which cost tens of thousands of dollars. However, in 1977, the 

Commodore PET ($795) and the Apple II ($1298) were released and the personal 

computing became possible. Cost, ease of use and wide applicability diverted interest 

from LISP machines, and as PCs became more powerful, AI could run on them as well.  

It was not just a technological issue, however. Labour was a problem for expert systems. 

Some workers resented their knowledge being captured by the knowledge engineering 

process. Nor was management always enthusiastic towards the large expenditures 

necessary for hardware and wages of knowledge engineers. One of the creators of XCON 

noted in 1984 that a “lot of missionary work is still needed” for expert systems to become 

widely accepted (Kraft 1984, 48). Perhaps more significantly, there turned out to be more 

labour involved in producing and maintaining expert systems than expected. As expert 

systems passed from the research lab to commercial application they were applied to 

increasingly complex domains and so required more and more rules to capture all 

possibilities. Imagined future expert systems were calculated to require impossibly 

herculean efforts on the part of knowledge engineers, such that by the mid-1980s, 

“knowledge engineers were starting to realize that building truly extensive AI systems 

would require automating the knowledge-acquisition process itself” (Crevier 1993, 205).  
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Even DARPA recognized that “production of the systems had to be dramatically 

streamlined” (Roland and Shiman 2002, 194). In addition, the problem of maintenance 

became apparent. Expert systems needed to be updated every time their problem domains 

changed. With the constant revolutionizing of business processes required by capitalist 

competition, the knowledge engineering task for commercial expert systems was never-

ending. The solution to both problems was to produce recursive expert systems which 

could perform their own knowledge engineering, or “to codify for computer use the very 

knowledge that is helpful in building expert systems” (Feigenbaum, McCorduck and Nii 

1988, 250). This proved intractable. Writing in the mid-1980s, proponents of expert 

systems admitted that “[l]earning is the ‘magic bullet’ that is needed to help with the 

building of the large knowledge bases” (Feigenbaum, McCorduck and Nii 1988, 255). 

However, expert systems could not be taught to learn, and by the late 1990s, the industry 

was in decline. The term “expert system” faded away as the technology was invisibly 

embedded within more mundane information technologies (Angeli 2010, 52). The search 

for recursive AI would shift elsewhere. 

During this second AI winter, new technologies, such as the internet, took central stage in 

public interest while AI languished in academic shadows. The late 1990s saw the rise of 

what Schiller (1999) calls “digital capitalism,” defined by the global market’s 

reconstitution around the infrastructure of the internet. This period saw a mania of 

speculative investment in early internet companies. According to one analysis, the release 

of the Mosaic web browser enabled easy and increased internet access. With it, internet 

companies proliferated, with investors happy to throw money at anything purporting to 

do business on the net (Kline 2003). Around 50,000 companies attempted to turn profits 

on the internet and gathered around $256 billion in investments (Goldfarb, Kirsch and 

Pfarrer 2005, 2). Several of these internet startups became today’s AI producers: 

Amazon, an internet retailer, was founded in 1994 and both Google, initially focused on 

internet search, and Tencent, initially focused on social media, were both founded in 

1998.  

As the internet and other information technologies diffused throughout industry, making 

communication and coordination at a global scale easier, industrial production did not 
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disappear, but changed. Theorists inspired by the production model developed by Japan’s 

Toyota promoted “lean” production as a successor to Fordist mass production. Lean 

production aims to have the quality and flexibility of craft production as well as the 

quantity of mass production, or in other words it “employ[s] teams of multiskilled 

workers at all levels of the organization and use[s] highly flexible, increasingly 

automated machines to produces volumes of products in enormous variety” (Womack et 

al. 1990, 13). While lean production has a spotted track record with less than 10% of 

companies adopting it doing so successfully (Bhasin and Burcher 2006), it has been 

widely adopted in software, and AI, production.  

The widespread technological optimism of the 1990s took a dramatic blow when the “dot 

com” speculative investment bubble collapsed in 2000, drawing the global economy into 

a recession by the following year. Amazon, pre-AI orientation, was devastated with its 

stock falling from $107 to just $7 (Edwards 2016). Many companies, including some 

large ones such as Pets.com, were killed off in the crash. Others, such as Amazon 

recovered, in part due to its establishment of the cloud platform Amazon Web Services 

(AWS) in 2002. Companies such as Google thrived in the post-crash economy and began 

diversifying their businesses. For instance, Google acquired video-streaming site 

YouTube in 2006 and online ad company DoubleClick in 2007. AI was no longer a 

buzzword in the tech industry, but AI research did not cease. It continued, behind the 

scenes, in academia. GOFAI and expert systems had failed to deliver, but competing AI 

paradigms were on the rise.32 

 

32
 One of these competing paradigms was the “situated, embodied, dynamical” (SED) framework (Beer 

2014). SED plays a peripheral role in the history of AI and even less in the formation of today’s AI 

Industry. SED refers to a variety of approaches to AI, developed since the 1980s, that emphasize the 

irreducible importance of the body and its perceptual apparatuses to cognition (Beer 2014, 128). Advocates 

argue that any attempt to engineer intelligence which only emulates disembodied high-level cognition is 

doomed to fail when presented with the complexities of concrete reality. The SED approach has thus been 

concerned with robotics as well as AI. Against the symbolic representations of GOFAI, SED pioneer 

Rodney Brooks (1991) asserts that it is “better to use the world as its own model” (140). Aiming to 

circumvent the frame problem, SED systems “do not contain a complicated symbolic model of their 

environment. Information is left ‘out in the world’ until such time as the system needs it” (Copeland 2000). 

Sensors may therefore replace symbolic structures, to some degree. However, as Beer (2014) notes, 

“abstract reasoning is not rejected by situated approaches, but rather relegated to a supporting role as an 

evolutionarily recent elaboration of a more basic capacity for getting around in the world” (131). The SED 
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3.7 The Rise of Machine Learning 

“The Industrial Revolution automated manual work and the Information Revolution 

automated did the same for mental work, but machine learning automates automation 

itself” (Domingos 2015, 9-10). 

There is an alternate paradigm for AI, which has also existed since the Dartmouth 

workshop. This is the machine learning (ML) approach. Although machine learning was 

around since 1956, successful attempts to commercialize it were not made until the 1980s 

and it did not become commercially widespread until after 2010 when it became the main 

force of the AI industry’s second era.33 With machine learning and the new level of 

recursion it enables, capital would find a new technological base around which to 

reconfigure its processes. 

In 1969, Minsky and Papert (1969) undertook a critical analysis of an early machine 

learning system called the perceptron. The book demonstrated that perceptrons are unable 

to process the logical function of exclusive disjunction (XOR). This inability to process a 

basic logical function generated a lot of skepticism for the machine learning paradigm. 

While more complex machine learning systems (with hidden layers) were later developed 

that could implement XOR, it is generally held that Perceptrons caused research into 

connectionist systems to largely die off until the late 1980s. However, throughout the 

1970s, Geoffrey Hinton, David Rumelhart and James McCelland continued to research 

machine learning at the University of California San Diego. They headed a group called 

the PDP (parallel distributed processing) group (Nilsson 2010, 339). Their work was not 

at first generally regarded as being of much importance. Nilsson (2010) notes that “before 

 

 

approach has enjoyed limited commercial success, although humanoid robots based on SED approaches are 

being developed for industrial settings by companies such as ReThink Robotics (Crowe 2018). 

33
 Machine learning is not an equivalent term to artificial neural network. The ANN is one possible way of 

doing ML. As Mackenzie (2017) demonstrates, there are many different ways to do ML. However, since 

the various approaches to ML are not relevant here, beyond the types of learning, I use ML and ANN 

interchangeably. This is also motivated by ANNs, in the form of deep learning, being the cutting-edge in 

ML today.  
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about 1980 machine learning (represented mainly by neural network methods) was 

regarded by some as on the fringes of AI” (398). This attitude was put to rest in 1986 

with the PDP group’s publication of Parallel Distributed Processing: Explorations in the 

Microstructure of Cognition (Hinton, McClelland and Rumelhart 1986). This collection 

contained many now-fundamental papers, including one which popularized the 

“backpropagation” algorithm which was first discussed by Paul Werbos in 1974, enabling 

many new machine learning applications. 

Machine learning takes a very different approach to AI than GOFAI, in at least two 

respects. The first distinguishing characteristic of machine learning is its statistical 

nature. The predictions or descriptions made by a machine learning system are 

probability functions, not logical statements. Thus, the well-known dictum of statisticians 

that correlation does not equal causation applies to machine learning, although at least 

one researcher has recently argued that there are ways to overcome this (Hao 2019). 

Because of its statistical nature, machine learning has not primarily been applied to 

emulate high-level, usually conscious, human cognitive functions such as logical 

reasoning. Instead, machine learning has usually been applied to achieve the machinic 

implementation of lower-level, pattern-recognition functions that may lie partially or 

completely outside of conscious awareness. This include machine vision, including the 

recognition of shapes, objects and faces. The statistical nature of machine learning also 

makes it very useful for finding patterns in vast quantities of data which humans would 

be unlikely to ever discover. 

Second, machine learning systems are distinguished from GOFAI by their capacity to 

learn, or to “extract patterns from data” (Kaplan 2016, 27). As Alpaydin puts it, to “solve 

a problem on a computer, we need an algorithm … For some tasks, however, we do not 

have an algorithm” (2014, 1). If we cannot create a suitable algorithm, we can use 

machine learning “to extract automatically the algorithm for [a] task” from available data 

(Alpaydin 2014, 2). From this recursive automaticity machine learning derives it novel 

capacities for automation.  
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Machine learning systems learn through training. While machine learning is an approach 

that can operate on a variety of architectures, today the cutting edge of machine learning 

mostly uses artificial neural networks (ANNs)—computer programs that are inspired by 

(although actually quite different from) the human brain. ANNs roughly mimic the 

electrical operations of the brain’s neuronal connections rather than emulate high-level 

logic; they are “based on the assumption that cognition emerges through the interactions 

of a large number of simple processing elements or units” called neurons (Sun 2014, 

109).34 The neurons are organized into series of layers which are also connected to each 

other. The lowest level receives input data. Middle levels—also referred to as hidden 

layers—process data which is sent up from the layers below them. An output layer at the 

top of the network outputs a solution to a problem. In general, the more layers an ANN 

has, the more complex patterns it can find and the more complex problems it can solve.  

In an ANN, the artificial synapses which connect the layers of artificial neurons are 

“weighted” with numeric values representing the strength of the connection. Initially 

these are set randomly. The network “learns” through adjusting the weights of these 

connections with a learning algorithm. It adjusts them in accord with an inputted dataset, 

which might be images of faces or audio clips of people saying hello. The network is 

exposed to many instances of the chosen object(s) and eventually learns to recognize a 

face or the word hello. This would not, however, be a very powerful attribute of machine 

learning if these systems could not apply what they have learned to new situations or data 

not included in the training dataset. In many cases, what matters most is how good the 

system is at doing that - its “generalization ability” (Alpaydin 2016, 40). Generalization 

ability depends not only on the training dataset, but also on the model which “defines the 

template of relationship between the inputs and the output” or how the system uses the 

training data (Alpaydin 2016, 36). A model has adjustable parameters which are modified 

in the course of learning (Alpaydin 2016, 37). Alpaydin (2014) sums up the machine 

learning approach like this: “[w]e have a model defined up to some parameters, and 

learning is the execution of a computer program to optimize the parameters of the model 

 

34
 These networks are not actually comprised of physical mechanical neurons. They are software.  
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using the training data or past experience. The model may be predictive to make 

predictions in the future, or descriptive to gain knowledge from data, or both” (3).  

The shift described by Alpaydin from knowing a solution to a problem in advance and 

writing an algorithm to solve it, as with GOFAI, to using a machine learning approach 

which generates its own solution from data, indicates a qualitative shift in the nature of 

AI. As Mittelstadt et al. (2016) cautiously put it, “learning capacities grant algorithms 

some degree of autonomy” (3). More poignantly, Domingos suggests we can “think of 

machine learning as the inverse of programming” because with machine learning we have 

“algorithms that make other algorithms … computers write their own programs so we 

don’t have to” (2015, 6-7). Machine learning thus represents a new level of technological 

recursion or “the application of information to itself” (Jordan 2015, 31). While higher-

level programming languages abstract from machine code and are thus inherently 

“automatic,” as Chun (2005) points out, machine learning, at least ideally, abstracts from 

knowing the solution to the problem one is trying to solve (30). As I will show in Chapter 

5, emerging machine learning techniques continue to tend towards an increasing 

automaticity.   

Machine learning first became commercially successful in the late 1980s when it was 

applied to fields such as speech recognition and optical character recognition for cheque 

cashing (Crevier 1993, 215-216; Lisboa and Vellido 2000, vii). In 1989, three hundred 

companies, “most of them startups founded by researchers, competed for [the ANN] 

market” (Crevier 1993, 216). However, ten years later researchers noted that 

“[a]pplications of neural networks in ‘real world’ scale are scant. Even though quite a 

few companies have nurtured neural network prospective studies, not so many make use 

of neural networks in every-day-business life” (Vellido, Lisboa and Vaughan 1999, 57). 

That would not happen for another decade.  

The 1990s saw the continued sophistication of AI research, but machine learning was not 

widely commercialized. Experimental autonomous vehicles appeared and enjoyed 

moderate successes in controlled environments and the Chess-playing system Deep Blue 

won its first game against chess master Gary Kasparov in 1993. In 1994, the global 



94 

 

market for AI was placed at “about $900 million, with North America accounting for 

two-thirds of that total” (Roland and Shiman 2002, 214). Another analysis valued the AI 

industry as a whole $363,380,281.69 in 1995 (Liebowitz 1997, 118). In 1998, perhaps the 

first AI commodity for the domestic sphere appeared in the form of the Furby toy, 

developed by Tiger Electronics (now Hasbro). The plush owl-hamster hybrid employed 

simple AI techniques to mimic human speech and associate sounds and enjoyed massive 

commercial success. 

3.8 Canada, Deep Learning and the contemporary AI 
Industry 

At this point, the story of the AI industry switches focus to Canada. Canada’s first “high-

speed, large-scale” computing facility was built in 1952 at the University of Toronto 

(Vardalas 2001, 45). As in the USA, the military was involved from the first years of 

computing research, with the Navy being the most active (Vardalas 2001, 14-43). Canada 

enjoyed an important, if peripheral role in the earliest decades of AI.35 Canada’s AI 

researchers tended to leave the country for better-funded labs, usually in the USA (SCC 

1983, 63). But in 1982, The Canadian Institute for Advanced Research (CIFAR) was 

established in Toronto and in 1984 CIFAR established AI and robotics as its first research 

area. By 1987, Geoffrey Hinton of the PDP Group was drawn from San Diego to CIFAR 

to continue his research into machine learning.36 Hinton and a small group of students 

continued working on machine learning into the 2000s while most other researchers lost 

 

35
 In 1973, the Canadian Society for Computational Studies of Intelligence (CSCSI) (later CAIAC) had its 

first meeting at The University of Western Ontario in London, Ontario. As one government-funded report 

from 1983 put it, “Canada cannot boast any major AI laboratories that are privately funded. Most of the 

expertise is concentrated in university departments in small groups that tend to be underbudgeted and 

overwhelmed with the need to train graduate students” (SCC 1983, 62). 

36
 1987 also saw the founding of Precarn Inc., an industrial research consortium composed of 34 Canadian 

corporations from various sectors. Precarn was intended to “conduct and promote long-term, 

precompetitive research and experimental development in advanced robotics and AI development” 

(National Research Council Canada 1991, 4). Precarn was influential in coordinating research between 

academia and industry and was involved in developing a number of commercial applications of AI. Money 

came in for AI from various sources, including a number of other collaborative organizations and 

government funding agencies, such as NSERC, which invested over $3.6 million in AI research in 1989-90 

(National Research Council Canada 1991, 5). In 1991, “[o]ver 1000” people in Canada were reported 

working full-time in the field of AI (National Research Council Canada 1991, 14). 
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interest: “[b]y the early 2000s, the number of researchers who specialized in neural 

networks dwindled to fewer than half a dozen” (Allen 2015).  

More companies which would later become AI giants appeared at this time. In 2000, 

Baidu was founded, with a focus on internet search, while Facebook, the social medium 

to end all others, appeared in 2004. This was the era of “Web 2.0” – applications and 

websites defined by the proliferation of user-generated content and increased ease of use 

for casual users (DiNucci 1999, 32). In 2006, Hinton and company demonstrated what 

came to be known as “deep” machine learning because of the numerous layers which 

compose the networks, with some networks possessing as many as 1000 (LeCun, Bengio 

and Hinton 2015, 436-444; He, Zhang, Ren & Sun 2016). The CIFAR researchers 

described deep learning as using “multiple levels of representation, obtained by 

composing simple but non-linear modules that each transform the representation at one 

level (starting with the raw input) into a representation at a higher, slightly more abstract 

level” (LeCun, Bengio and Hinton 2015, 436). In the years that followed, they would 

refine the deep learning approach and the approach would garner more and more 

attention. 

At the same time, the financial crisis of 2007-2008, spurred by subprime mortgage 

lending and consequent housing bubble in the USA, amplified by diverse high-risk 

lending practices by banks, culminated in the near collapse of the global economy. 

Enormous government bailouts prevented a total collapse of the banks, although the 

Great Recession still descended on the world in 2009. While it might seem strange to 

mention this crisis, based as it was on finance, in the context of the AI industry, it was not 

unconnected to the dot com crash of 2000 with which several of today’s AI giants were 

implicated. As Perez (2009) argues, the two crises should rather be seen as a “double 

bubble” or two episodes of the same story: “[t]he first was based on technological 

innovation, the second on financial innovation, facilitated, accelerated and made global 

by information technology and the internet” (802). Amongst the widespread financial 

fallout after the crisis, hundreds of thousands of jobs were lost, income inequality 

between the richest and poorest increased substantially and wealth was increasingly 

concentrated in the richest families (Federal Reserve 2014). It also saw the continuation, 
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noted by both the OECD (2012) and IMF (2017), of the fall in labour’s share of national 

incomes which began in the 1980s. As of 2019, the economy has yet to fully recover 

from this double crisis. IMF economists note that “[a]mong the economies that 

experienced a banking crisis in 2007–08, about 85 percent are still operating at output 

levels below precrisis trends” (Chen, Mrkaic and Nabar 2018). One analyst adds that 

while “stocks have beaten all performance records on Wall Street, there has been no 

corresponding economic recovery” (Bruno 2018).  

In 2012, while the world economy was still reeling from the crash, the power of deep 

learning became widely recognized when Hinton and others demonstrated a record-

breaking application of the technique to speech recognition (Hinton et al. 2012). In the 

next few years, the market for machine learning opened and the AI industry began 

developing its contemporary form. Three technological factors are generally held to have 

contributed to deep learning’s success (Kelly 2014; T.S. 2016). The first is advancement 

in learning algorithms, particularly the rehabilitation of the backpropagation algorithm. 

Second is the availability of big data generated by online activity and the proliferation of 

mobile devices, since machine learning systems need data on which to be trained. Third 

is the discovery that graphics processing units (GPUs), formerly devoted to computer 

gaming, work very well for the massive parallel processing necessary for DL.  

Enthusiastic about these technological advances, capital was hungry for AI-producing 

labour. Most of the researchers at CIFAR spun off their research into startups, many of 

which were bought up by Chinese and Silicon Valley tech giants. Hinton and two 

students, Alex Krizhevsky and Ilya Sutskever, formed DNNresearch Inc. in 2012 to 

market applications of deep learning for image recognition and language processing. 

DNNresearch quickly won a $600,000 award from Google before being acquired by the 

tech giant in 2013. The same year, Hinton was hired as a distinguished researcher by the 

commercial research team Google Brain.37 Krizhevsy and Sutskever were also hired by 

Google. Also in 2013, another of Hinton’s student’s, Yann Lecun, was hired to lead 

 

37
 In 2017, Hinton returned to Toronto to act as Chief Scientific Advisor at the newly founded Vector 

Institute, a nonprofit aiming to advance Canadian AI capabilities. 
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Facebook’s AI Research Group and Yoshua Bengio, who also worked with Hinton at 

CIFAR, was hired by IBM in 2015 to help commercialize the Watson supercomputer 

(Knight 2015). Finally, Ruslan Salahutdinov, who studied under Hinton in Toronto, now 

teaches at CMU and was hired by Apple to direct its AI research program in 2016.  

By 2016, The Economist (2016a) could state that “artificial intelligence is finally starting 

to deliver on its promises”. By the same year, nearly all of the Silicon Valley giants had 

opened in-house AI research labs and tech CEOs such as Google’s Sundar Pichai were 

proclaiming a shift from “mobile-first” to “AI-first” computing (D’Onfro 2016). Even 

relatively ancient corporations such as General Electric and IBM became interested in 

both producing AI and incorporating AI into their production processes (Woyke 2017; 

Boyle 2017). Around these giant companies both old and new there exists a horde of 

startup companies, winking in and out of existence, and sometimes being bought up by 

the large firms.  

At the time of writing, in 2019, the AI Industry is flourishing. The products of the AI 

Industry are being purchased and applied in diverse industries. Businesses “are now 

adopting different AI technologies to capture benefits such as lower labor costs, increased 

throughput, enhanced quality and lower downtimes” (Tractica 2019, 11). AI automation 

is once again a reality and with it comes the “return of the machinery question” (The 

Economist 2016a). The following chapter examines the political economic dynamics of 

the AI Industry, but first, I will end this history by examining three factors which 

influenced the industry’s formative days.   

The first of these is the platform business model. In the wake of the 2008 financial crisis, 

many large capitals reconfigured their operations around what Srnicek calls the platform 

model. All of the AI giants, as we will see in the next chapter, have incorporated the 

platform model into their operations. Platform capitalism is “centred upon extracting and 

using a particular kind of raw material: data” (Srnicek 2017a, 39). Platforms are “digital 

infrastructures that enable two or more groups to interact. They … position themselves as 

intermediaries that bring together different users … More often than not, these platforms 

also come with a series of tools that enable their users to build their own products, 
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services, and marketplaces” (Srnicek 2017a, 43). Through their position as 

intermediaries, platform capitals are able to extract, control and monetize the data which 

passes through their platforms. Data thus becomes a resource which platform capitals can 

appropriate for free. The collection of as much data as possible, argues Srnicek (2017a), 

is not an unfortunate side effect of bad management at these companies, but is rather a 

necessary consequence of the platform business model. While privacy advocates debate 

how to reform platform capital’s data hunger, others have argued that this drive to data 

collection cannot be curtailed in a mode of production that amounts most accurately to 

“surveillance capitalism” (Zuboff 2015). 

As the world becomes increasingly digitized and data is continually produced in new 

fields, platforms engage not only in vertical Fordist integration, but primarily “rhizomatic 

connections driven by a permanent effort to place themselves in key platform positions” 

(Srnicek 2017a, 103). One of these rhizomatic branches is AI – as we have seen, all of the 

AI giants began business in other fields. Yet machine learning has a particularly special 

relation to the platform model – it too is necessarily dependent on the collection of data. 

ML requires extensive data for training. Platforms, with their powerful data collection 

devices, are thus ideal environments for the production of machine learning. In turn, 

machine learning offers diverse ways to optimize the functioning of platforms (via 

microtargeted ads, to take one example). Machine learning and platforms thus form a 

virtuous data cycle. The platform model is also notable for the far-reaching effects it has 

had on employment. Platforms have enabled a resurgence of the pre-industrial piecework 

model of employment. Today this is often called “gig” or “on-demand” work (De Stefano 

2015). The next chapter explores how gig work is essential to the AI Industry. 

A second factor is the shrinking availability of cheap labour on the global market, 

particularly in China. Since China’s opening to the world capital market in 1978, capital 

from the Global North has become accustomed to accessing its abundant supply of cheap 

manufacturing labour. However, since 2005 the cost of Chinese labour has increased 

threefold and now exceeds the cost of labour in Brazil, Argentina and Mexico (Gao 

2017). This rising wage is at least partially the result of persistent worker struggles in 

China. Despite dissidence often being met with militaristic force, the China Labour 
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Bulletin (CLB) notes that worker strikes and protest are on the rise with “more than 1,700 

incidents [in 2018], up by 36 percent from 1,250 in 2017” (Symonds 2019).  

It is not difficult to see capital’s enthusiasm for AI as, at least in part, a reaction to such 

wage increases. As the global cost of labour rises, the incentive to AI-powered 

automation will increase. As the think tank Brookings notes laconically, “[r]ising wages 

make computers cost-effective for an increasing number of low-skill tasks” (Karsten and 

West 2015). Already in China, large capitals are feeling the pressure. Foxconn, the 

electronics manufacturing giant, is seeing substantial profit decreases. Foxconn has 

already deployed thousands of production robots, but it now reportedly planning a $4 

billion “rollout of cutting-edge robots and also envisions using high-resolution 8K 

sensors to spot defects that cannot be seen with the human eye” (Ihara 2018). In 2016, 

President Trump ballyhooed his success in pressuring the heating and air conditioning 

manufacturer Carrier to cancel its planned move of 1000 jobs from Indiana to Mexico. 

However, the president of Carrier, Greg Hayes, later admitted that “to continue to be 

competitive” the company would be investing $16 million USD in automation, which 

“ultimately means … there will be fewer jobs” (Turner 2016). 

A third factor is renewed interest in military applications of AI. The post 9/11 USA’s war 

of terror was already invested heavily in “the cyber” but the revelations of Russian 

interference in the 2016 USA elections brought even more attention to the diverse ways 

information technologies might be offensively mobilized (Dyer-Witheford and 

Matviyenko 2019). The past decade has also seen the military-funded development of 

diverse weapons incorporating various types of AI. AI a component in autonomous battle 

systems, vehicles including drones, battlefield robots and cyborg soldier augmentation 

technology (Scharre 2018; Surber 2018). 

In 2017, President Putin declared, “Whoever leads in AI will rule the world” (RT 2017). 

Other national governments seem to agree. The US Department of Defence formed the 

JAIC (Joint Artificial Intelligence Center) in 2018 with a mission to “transform the DoD 

by accelerating the delivery and adoption of AI” (CIO DoD 2018). The top five US 

defense contractors, including Lockheed Martin, all have AI projects underway (Roth 
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2019) and many of the major AI producers, such as Google, have been revealed to be 

doing work for military agencies (to the chagrin of many of their employees). While 

Google has pledged not to work on offensive weapons, Oberhaus (2018) argues that the 

interaction between the military and AI is unlikely to cease because AI producers must 

continue to sell commodities: “once you’ve dominated civilian markets, the capitalist 

imperative to grow doesn’t just magically stop”.  

3.9 Conclusion 

This chapter has presented a brief political economic history of the AI Industry. It has 

shown that AI has been implicated with capital, state and military since its inception. AI 

has not led a purely ideal or conceptual life; it has continually been mobilized as an 

automation technology. Today, AI research and development it is almost exclusively 

controlled by capital, as the next chapter, which examines the political economy of the 

contemporary AI Industry, shows. 
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Chapter 4  

4 Political Economy of the AI Industry 

This chapter explores the political economy of today’s AI Industry. It aims to situate 

contemporary AI as the product of a rapidly growing, highly competitive and 

increasingly concentrated capitalist industry. First, this chapter discusses the capital side 

of the AI Industry. I survey attempts to quantify the industry, the various types of 

companies and institutions that make it up and the characteristics that distinguish it from 

others. These include the involvement of the state, the high degree of concentration and 

the particular axes of competition, including the cloud computing and AI hardware 

markets as well as the vigorous open-source AI movement. Second, I discuss the labour 

side of the AI Industry. I distinguish the different jobs in the industry, from highly paid 

data scientists to microtask gig workers who earn mere dollars a day. I also discuss how 

the AI Industry is sharply stratified by both gender and race, with white males occupying 

the vast majority of lucrative positions. I also discuss how the industry is characterized by 

rampant sexism and racism and how this has unique consequences for an industry built 

around machine learning, which relies on quality training data. Finally, I discuss how AI 

Industry and other tech industry workers have recently bucked a historical trend and 

begun organizing around such issues as sexism and the militarization of AI research. 

With this picture of the AI Industry painted, the stage is set for the analysis the machine 

learning labour process in the following chapter. 

4.1 Charting the AI Industry 

While firms in diverse industries are now interested in applying AI in their business 

processes in a variety of ways, there are relatively few companies which actually produce 

AI technology as a commodity. It is these producers of commoditized AI which I refer to 

when I mention the AI Industry.38 The AI Industry spans the globe although it is 

 

38
 The producers of AI are not identical to those investing in AI. It is not very surprising to know that the 

sector which invests the most in AI is the software and information technology sector, with 32% (Naimat 

2016, 7). But some unexpected names are also investing large amounts on AI. Naimat (2016) puts the top 
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unevenly concentrated. The USA is the powerhouse of the AI Industry, followed by 

China. Other significant countries include Canada, Israel and the UK (Jang 2017; Rapp 

and O’Keefe 2018).  

Attempts at grasping the AI Industry quantitatively have produced varied results. This is 

due to the industry’s nascent and evolving nature and a lack of consensus on how to 

define and segment it (Faggella 2019; Zilis and Cham 2016). A quick survey of a few 

available figures confirms this. One 2016 report states that the “global market for smart 

machines reached $6.6 billion in 2015” (McWilliams 2016). Another report published the 

same year reckons that “the revenue generated from the direct and indirect application of 

AI software is estimated to grow from $643.7 million in 2016 to $36.8 billion by 2025” 

(Tractica 2016). More recently, the same source puts the global AI market at $3.2 billion 

USD in 2016 and expects it will grow to $89.85 billion USD by 2025 (Tractica 2019). 

International Data Corporation (2018) places global spending on AI at $19.1 billion in 

2018 and predicts it will reach $52.2 billion by 2021. The one thing these numbers 

confirm is that capital is excited about the prospects of the AI Industry. It is certain that 

the industry is growing rapidly.  

In contrast to the first manifestation of the AI Industry, which revolved solely around 

GOFAI expert systems, today’s burgeoning AI Industry is based on machine learning, 

which has myriad potential applications.39 However, it is important to note that the 

majority of existing AI companies are still in early stages of development. 62% of the 

1548 AI companies surveyed by Naimat (2016) were still in the “lab project” stage while 

 

 

18 investors in AI in order as: Google, Facebook, Rocket Fuel, IBM, Amazon, Yahoo, Intel, Microsoft, 

Deloitte, MITRE, Baidu, LinkedIn, Apple, Cylance, Lockheed Martin, NASA, Sentient Corporation, 

Electronic Arts (8). Deloitte is a multinational accounting and consulting firm, while MITRE is a non-profit 

research and development organization in the USA and Electronic Arts is a video game company.   

39
 According to Dong (2017), while AI research labs at the tech giants focus on cutting-edge deep learning 

“most applications of machine learning at these same companies do not rely on neural networks and instead 

use traditional machine learning models. The most common models include linear/logistic regression, 

random forests and boosted decision trees. These are the models behind … friend suggestions, ad targeting, 

user interest prediction, supply/demand simulation and search result ranking”. 
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a mere 5.6% were ready for “strategic direction for business” (6).40 Despite this, it is 

worth surveying the variety of AI commodities under development. Rather than discuss 

particular AI products, I will survey some of the attempts that have been made to segment 

the industry by type of product.  

One approach is to divide by the type of AI subfield employed. Chen (2016) suggests the 

following breakdown: logical reasoning, knowledge representation, planning and 

navigation, natural language processing, and perception. According to a similarly framed 

study, just over a third (505) of a total 1500 AI startups are working on natural language 

processing, with image processing coming in second at 197. With 169 is cognitive 

computing (IBM’s personal term for AI), with 98 is autonomous vehicles, and with 

58, chatbots (Naimat 2016, 14). Research from Tractica takes a different 

approach, dividing the industry into three broad subfield groups: big data, vision and 

language, with big data representing the majority of uses cases in applications such as 

analytics, data processing and algorithmic trading, though vision and language are 

gaining ground (Groopman 2017, 4). Another market research firm describes the industry 

in terms of six applications: virtual reality assistants, intelligent agents, expert systems, 

embedded software, autonomous robots/vehicles and purpose-built smart machines (BCC 

Research 2016). Another (ambitious) attempt has been made, by Zilis and Cham (2016), 

to segment the AI Industry by field of application. Only a few of these include education, 

logistics, customer support, security, agriculture, medicine, as well as a variety of 

enterprise and technology applications.  According to one study of the 50 highest-funded 

AI startups, the most popular fields were advertising and customer resource management, 

followed by core AI technologies and business intelligence and analytics (Pham 2017). 

Another meta-analysis claims that healthcare, finance and marketing appear to be the 

most popular applications (Faggella 2019).  

 

40
 It is also important to note that most successful applications are based on relatively simple ML 

techniques rather than the cutting edge. According to a CEO I spoke to, “there’s an increasing mismatch 

between the requirements of industry and the progress in academia. For example, a lot of these fancy neural 

network approaches like adversarial networks and other generative models, nobody wants them. Businesses 

… need like text processing, speech recognition, they need like the bottom floor. Not the 400th floor” (P 

13). 
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More simply, Brynfolfsson and McAfee (2017) present a useful heuristic division of the 

AI Industry into two branches which have enjoyed the most successful commercial 

application: perception and cognition. Perception is the machinic implementation of the 

functions of the human sensory apparatus. It includes techniques such as machine vision, 

natural language processing and sentiment analysis. AI perception has been commercially 

applied in fields such as image recognition, speech recognition and medical diagnosis. As 

of 2018, many such systems now match or exceed human performance in their narrow 

domains. Perception is an essential component of autonomous vehicle research. 

Cognition, in the AI Industry context, has two prevalent forms: classification and 

prediction. Classification is perhaps the most popular commercial application of machine 

learning because there are many situations in which a business wants to know whether X 

belongs to category A, B or C (Brynfolfsson and McAfee 2017). Prediction can be 

thought of as extrapolating from classifications. The credit agency Equifax claims to have 

applied machine learning to improve the predictive ability of their credit scoring models 

by 15% (Press 2017). Some analysts expect that prediction will ultimately become the 

characteristic commercial application of machine learning (Agrawal, Gans & Goldfarb 

2016).  

High-level portraits of the AI industry as a whole, while giving a useful orientation to the 

field, necessarily lack detail as to the industrial organization of its various branches. 

Therefore, the next section discusses the five major types of organizations involved. 

These include three types of companies: first, a handful of giant tech capitals hailing from 

the USA and China. These include Facebook, Google, Amazon, IBM and Microsoft and 

China’s Baidu and Tencent. Second, are large, older corporate “dinosaurs” such as 

General Electric and Siemens, which are attempting to modernize by both incorporating 

AI into their production processes and moving into AI production. Third, is a globally 

distributed horde of startup companies which are often bought up by the larger firms. 

Besides these three types of companies, there exist a number of think tanks and research 

laboratories. Some of these operate as non-profits while others are funded by a 

combination of academia, industry and government. Indeed, state involvement in AI 

production is significant enough that it constitutes the fifth type of involved organization. 
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In the next section, I analyse examples of each type of organization and show how each 

exhibits the typical characteristics of such an organization.  

4.2 AI Tech Giants 

As early as 2016, The Economist (2016b) noted that in “Silicon Valley a handful of giants 

are enjoying market shares and profit margins not seen since the robber barons in the late 

19th century”. Today these powerful tech capitals have nearly all delved into the 

production of AI, which as we have seen, has a recursive relationship with the datacentric 

nature of platforms. According to Krauth (2018) the top investors (in the USA) in AI 

research are: 

1. Google - $3.9 billion  

2. Amazon - $871 million  

3. Apple - $786 million  

4. Intel - $776 million  

5. Microsoft - $690 million  

6. Uber - $680 million  

7. Twitter - $629 million  

8. AOL - $191.7 million  

9. Facebook - $60 million  

10. Salesforce - $32.8 million  

Unsurprisingly, the USA AI tech giants are well represented in this list. Also 

unsurprisingly, all of these companies incorporate the platform model discussed in the 

previous chapter. We have already noted the centrality of data to these companies, and 

the rhizomatic expansion into new markets and data sources that this entails, but another 

characteristic is worth nothing. Srnicek (2017a) holds that, driven by data hunger, 

platforms are compelled not only to integrate vertically or horizontally like older 

businesses, but instead attempt to occupy key positions wherever data may be extracted 

(106-107).41 This leads to what Srnicek (2017a) terms the “convergence thesis” or the 

theory that there is a “tendency for different platform companies to become increasingly 

similar as they encroach upon the same [key] market and data areas” (107). Thus, to take 

only a few examples, Google the search company has attempted to create a social media 

 

41
 For a detailed study of how contemporary cybernetic capitalism is built upon a complex “stack” of 

interacting layers of technological infrastructure see Bratton (2016). 
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platform (Google+) while Facebook, the social media platform, has attempted to move 

into online retail, which Amazon dominates. More recently, Facebook has announced that 

it will release its own cryptocurrency called Libra, which it hopes will allow it control 

over payment data (Costine 2019). Whether Srnicek’s convergence thesis proves 

completely true or not, AI is one case where it does seem to be verified. The tech giants 

are all tending towards a platform or cloud AI model.  

I will explore typical features of AI tech giants by looking at the example of Google, 

even if Google is something of a special case because it dwarfs the other tech giants in 

scale and diversity. Founded in 1998, Google weathered the dot com crash of 2000-2002 

and rapidly ascended the corporate technology hierarchy thereafter. Based on the Google 

search algorithm, the company now owns the most popular search engine in the world, 

the biggest streaming video platform (YouTube), the most popular web browser 

(Chrome) and email service (Gmail) as well as the most widely used mobile operating 

system (Android) (Dickey 2014). Google first publicly delved into AI proper with the 

founding of Google Brain in 2011. Shortly after, Google Brain researchers demonstrated 

a deep learning system that learned, via unsupervised learning, to recognize cats in 

YouTube videos (Markoff 2012). This feat was followed by a spate of cutting-edge AI 

research, much of which Google researchers share through publishing in academic 

journals as well as the Google AI Blog. 

Like most of the AI tech giants, Google produces AI for both the consumer commodity 

(nonproductive use) and fixed capital (used in production processes) markets. Google’s 

most visible AI consumer commodity is the Google Home “smart speaker” first produced 

in 2016. This is a physical platform for Google Assistant which employs various types of 

AI, including speech recognition, to perform entertainment, organization and home 

automation tasks via spoken word commands. Ongoing incidents have revealed that 

Home and other smart speakers also function as data gathering devices (Day 2019). 

Google’s most significant AI products are, however, sold for use as fixed capital by other 

capitals. This occurs primarily through Google Cloud Platform, which at $1 billion per 

quarter in 2017 is the fastest growing business in the company (Trefis Team 2019). While 
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the cloud was originally limited to providing storage functions, it is now used to provide 

computing and AI functions. Computing power necessary for cutting-edge research 

continues to increase. Amodei and Hernandez (2018) calculate that since 2012, the 

amount of computing power “used in the largest AI training runs has been increasing 

exponentially with a 3.5 month doubling time”.42 Since few companies can afford to own 

expensive computing hardware they obtain access to it via the cloud.  

Google’s Cloud AI offering include a platform for AI developers to train models as well 

as a variety of tools, applications, “plug and play AI components” and “building blocks” 

which “make it easy for developers to add sight, language, conversation, and structured 

data to their applications” (Google n.d.a). These offerings help data scientists and other 

skilled AI workers integrate existing machine learning models into their businesses. 

Google also offers “prepackaged” AI solutions to common business problems targeted at 

users lacking expertise in AI and machine learning. The “Document Understanding AI” 

automates the reading and processing of documents while the “Contact Center AI” 

automates customer service via speech or text. These solutions are purported to “deliver 

personalized customer experiences, increase sales while lowering costs, and get the 

insights you need to make better business decisions” (Google n.d.b). Finally, as I will 

discuss in greater detail in Chapter 5, Google has since 2018, been offering an 

“automated way for businesses to build new algorithms” (Metz 2018b). This automated 

machine learning aims to make machine learning available to businesses lacking 

technical expertise. Several of the other AI tech giants are converging around similar 

cloud AI platforms. Amazon Web Services is the dominant platform with 35% market 

share (Miller 2017). Other cloud platforms include Microsoft Azure, IBM Cloud and 

Alibaba Cloud. Facebook has yet to enter the cloud AI market. 

 

42
 The energy consumption of cloud facilities is staggering. In 2014, data centers in the USA used 70 

billion kWh, about 1.8% of total US energy consumption (Shehabi et al 2016, ES-1). While the largest of 

these are operating increasingly efficiently in terms of energy consumption in recent years, there is no 

upper limit on how large or how numerous such centers will become (Shehabi et al 2016, ES-1). It has been 

predicted that Iceland will soon expend more energy powering cryptocurrency mining data centers than it 

does on residential consumption (Farivar 2018). 
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Beyond its AI commodity and fixed capital production, Google is engaged in “moonshot” 

research. Some of these, like Google Glass, have failed spectacularly. Others, especially 

in AI, have paid off remarkably. In 2014, Google acquired the UK startup DeepMind, a 

“startup with no revenue or marketable product but a team of ‘deep learning”’ 

researchers” for £400 million (The Economist 2017). Since then DeepMind has gone on 

to produce groundbreaking machine learning research such as AlphaZero. DeepMind’s 

(n.d.a) stated goal is to “Solve Intelligence. Use it to make the world a better place”. They 

describe their research as striving towards the creation of AGI, or in other words, 

“developing programs that can learn to solve any complex problem without needing to be 

taught how” (DeepMind n.d.b). While this remains a distant goal, Google is already 

actively redirecting DeepMind’s work towards commercializable healthcare applications 

(DeepMind n.d.c).  

Yet, while AI is now a central interest for Google and other tech giants like Amazon and 

Facebook, none of these companies is solely invested in AI. For instance, Google 

generates around 85% of its overall revenue from advertising (Schomer 2019). However, 

Google is continually expanding its range of AI products. It also recursively integrates its 

AI products into its own operations. AI is central to its advertising efforts and a 

DeepMind AI was applied to reduce the energy usage of a Google data center by over 

40% (Evans and Gao 2016). AI is also integral to the ostensibly free product-services 

which such companies provide to users in (tacit) exchange for access to data. Google 

Maps and Translate both employ AI to perform their respective functions of navigation 

and language translation. The data gathered from users of these services is then fed back 

into them to improve their operation, but is also added to Google’s larger data vaults. 

In sum, Google is typical of the AI giants insofar as it increasingly integrates AI 

functions into its diverse business involvements, most or all of which give Google access 

to vast amounts of data, which it uses to power its AI efforts. Like most AI giants, 

Google produces for both commodity and fixed capital markets, and delivers much of its 

fixed capital AI via a cloud platform (Facebook has yet to enter the cloud computing or 

cloud AI market). Like all other AI giants, Google is also engaged in the frequent 

acquisition of AI startups and continually strives to break into new markets.  
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While an ideal representative of its type, Google is distinguished from the other giants by 

its sheer size, diversified nature and massive investment in research. It is nearly 

impossible to use the internet without coming into contact with a Google product or 

service. This pervasiveness makes it unique, at least beyond China, where Baidu controls 

most of internet search and Baidu and Tencent dominate video streaming (Sun 2018).  

4.3 AI Dinosaurs 

General Electric (GE), founded in 1892 in Boston, Massachusetts, is a different breed of 

AI company. Originally a producer of a variety of electrical products, GE was also a 

contributor to the early computing industry of the 1960s. Today GE is a huge 

conglomerate and is invested in diverse fields from healthcare to aviation. Around 2015, 

GE made a move to modernize its operations by focusing on AI, machine learning and 

other 4th industrial revolution technologies (Woyke 2017). GE (n.d.a) offers a wide range 

of research, design and fabrication services which are now augmented by an AI-powered 

platform which offers capacities for simulation, testing and prediction.  

However, the main product of AI dinosaurs is fixed capital for other industrial producers. 

GE (nd.b) sells AI-powered software for industrial automation, such as iFIX, which 

allows a plant operator to see and control all of the relevant operations of a factory in one 

app, thereby “[r]educ[ing] costs and risk”. GE is also selling the Predix Industrial IoT 

Platform which it is marketed as an operating system for factories (Passieri 2015). Predix 

integrates data from diverse aspects of production and circulation processes and allows 

for a predictive rather than reactive approach to managing these processes. It is described 

as providing “the software architecture and services required to make any machine an 

intelligent asset” (Predix n.d.). The even older German conglomerate Siemens (founded 

1847) offers a similar product called MindSphere, which it describes as a “cloud-based, 

open IoT operating system … that connects your products, plants, systems, and 

machines” (Siemens n.d.).  

AI dinosaurs are, like tech giants, eager to buy up startups. Siemens spent $10 billion 

USD on acquiring software startups from 2007 to 2017 (Walker 2019). While AI 

dinosaurs do buy technology from the AI giants if necessary (Siemens uses IBM’s 
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Watson Analytics) they are generally attempting to develop their own AI in-house. 

According to one analysis, “most of the major companies making the machine learning 

tools for manufacturing are also using the same tools in their own manufacturing. This 

makes them the developer, the test case and the first customers for many of these 

advances” (Walker 2019).  

While dinosaurs like GE and Siemens are focusing on machine learning-driven analytics, 

others like Fanuc and KUKA, are using AI to power smart robots (Walker 2019). In 

different ways, AI dinosaurs are providing new ways for industrial capitals to “bring 

down labor costs, reduce product defects, shorten unplanned downtimes, improve 

transition times, and increase production speed” (Walker 2019). Whether or not these 

companies will converge with the AI tech giants remains to be seen, though it currently 

seems unlikely GE will delve into social media any time soon.  

4.4 AI Startups 

AI startups are smaller companies which often rely on venture capital to fund their 

operations. The startup companies that I interviewed workers from ranged in size from 

only six employees to more than thirty. AI startups operate a variety of business models. 

One machine learning scientist told me that startup companies deliver premade models, 

insights or services. Recently, startups have even begun to produce specialized AI 

hardware (Metz 2018c). 

Premade AI models are made for diverse usages. One of my interviewees worked on a 

voice biometrics system for jails. Other interviewees described working on a variety of 

marketing and advertising applications requiring predictive analytics, while another was 

applying machine vision to healthcare. It is impossible to neatly sum up the types of 

commodities produced by AI startups. Companies which provide insights or services 

operate a consulting business model or build customized AI systems for the particular 

needs of other businesses. Again, the potential applications vary widely. One of my 

interviewees did a lot of AI consulting work in the financial sector, while another had 

recently been advising on a natural language processing system for incorporation in smart 

televisions.  
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One recent analysis puts the global total number of AI startups at 3465 (Fabian 2018). 

Fabian (2018) found 1393 startups located in the USA, China following with 383 and 

Canada in fifth place with 131. Naimat (2016) reckons that “1,500 companies in North 

America that are doing anything related to AI today” though only 87 have projects 

mature enough for deployment in business (8-13). Most AI startups depend on venture 

capital funding to get off the ground. Benaich (2016) holds that in 2015, 267 AI firms 

raised $1.9 [billion] in venture capital funding [in North America]. AI Index (2018) 

counted just over 750 VC funded AI startups in the US in 2018, an increase of 113% 

from 2015 (31). However, the number of AI startups at any moment is difficult to place 

with certainty since many simply die off while also there is a “massive amount of venture 

funding and acquisition”; 115 out of 120 AI startups that exited the market in 2017 were 

acquired (Patrizio 2018). The Economist (2017) noted $21.3 billion in mergers and 

acquisitions related to AI in 2017. Google alone has acquired at least 30 AI startups since 

2014. AI startups are generally closely linked to the AI tech giants even before being 

bought up. Many receive funding before being acquired and almost all AI startups 

purchase cloud computing power from the AI giants and employ their AI tools. 

In 2018, Chinese startup SenseTime received a $600 million USD round of funding, led 

by Alibaba, which put its total valuation at more than $4.5 billion USD, making it the 

most valuable AI startup in the world at the time (Vincent 2018). Founded in 2014, the 

company became profitable in 2017 and claims to have “more than 400 clients and 

partners” (Vincent 2018). Its products focus on machine vision and range from 

smartphone “beautification” filters for social media to autonomous vehicles to automated 

surveillance video analysis sold to police (Vincent 2018). This is one path AI startups 

may take. Others, like DeepMind, as discussed above, aim to be acquired before ever 

producing a working product.  

4.5 AI Think Tanks 

Think tanks are private research institutes that may be non-profit or funded by academia, 

industry or advocacy groups. While AI has been involved with think tanks since its 

inception (i.e. RAND), think tanks devoted specifically to AI only began to appear in 

the mid 2010s (Think Tank Watch 2018). The nature of these organizations vary. Some 
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were founded by transhumanists concerned with the dangers and prospects of future AGI 

and/or ASI. These include the Machine Intelligence Research Institute (MIRI) a non-

profit funded by philanthropic groups including the Thiel Foundation, and the Future of 

Humanity Institute (FHI) at Oxford University. These thinktanks are part of the “AI 

safety” movement which aims to ensure that if human-level (or higher) AI appears, it can 

be controlled (Future of Life Institute n.d.). They fund outside academic researchers as 

well as produce their own research.  

Other AI think tanks are more concerned with actually-existing AI and the AI 

Industry. These usually have connections to both industry and academia, such as the AI 

Now Institute (part of NYU and funded by Google and Microsoft) and the Partnership on 

AI (partners include MIT Media Lab, Amazon, Facebook and Google). AI Now (n.d.) 

describes itself as studying the “social implications of artificial intelligence” while the 

Partnership on AI (n.d.) states that its goal is to “study and formulate best practices on AI 

technologies, to advance the public’s understanding of AI, and to serve as an open 

platform for discussion and engagement about AI and its influences on people and 

society”. These think tanks do indeed produce valuable research on diverse aspects of the 

social implications of AI, from gender to automation of work; some of which I draw on 

in this dissertation. But they serve other functions as well.  

One important function is serving as a vehicle for the so-called “democratization” of AI 

programs which the tech giants are advancing. This will be discussed below in more 

detail, but for now it is enough to note that these socially-concerned think tanks, and 

other similar initiatives by AI capitals, play an important public relations function. This 

came to light definitively in the wake of revelations about Google’s secret agreement to 

provide machine learning image recognition for the Pentagon’s “Project Maven”. In 

emails leaked to The Intercept, Fei Fei Li, Google’s then head scientist at Google Cloud, 

worried that the exposure of Project Maven, with which she was centrally involved, could 
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counteract her company’s efforts to portray their AI products as socially benevolent.43 Li 

writes: 

I don’t know what would happen if the media starts picking up a theme 

that Google is secretly building AI weapons or AI technologies to enable 

weapons for the Defense industry … Google Cloud has been building our 

theme on Democratizing AI in 2017, and Diane and I have been talking 

about Humanistic AI for enterprise. I’d be super careful to protect these 

very positive images (quoted in Fang 2018). 

It would be incorrect to attribute solely public relations function to AI think tanks, but it 

would be simply false to deny its importance as AI tech giants come under increasing 

scrutiny for diverse reasons. I return to this in section on labour. However, there are some 

other AI think tanks with a different function. One particularly interesting case is that of 

OpenAI.  

OpenAI was founded in 2015 by Elon Musk with $1 billion USD funding from Musk, 

Peter Thiel and other business magnates. Sutskever, former student of Hinton, acts as 

director of research. While, like MIRI and FLI, OpenAI conducts research aimed towards 

producing safe AGI, it is distinctive in that it actively produces cutting-edge AI systems, 

such as OpenAI Five, which has defeated skilled players at the video game DOTA2 

(OpenAI 2018). While initially operating as a non-profit, in 2019 OpenAI announced a 

shift to a “capped-profit” model which will allow them to raise the capital necessary to 

compete with the AI tech giants. They describe the shift as motivated by the “need to 

invest billions of dollars in upcoming years into large-scale cloud compute, attracting and 

retaining talented people, and building AI supercomputers” (OpenAI 2019). Since then, 

Microsoft has invested $1 billion USD in OpenAI and has become its exclusive cloud 

provider (Brockman 2019). This shift sums up the difficulties of AI research and 

development beyond the reach of capital – something I will return to in the final 

 

43
 Li is also co-founder of the non-profit AI4ALL (n.d.) which purports to be “dedicated to increasing 

diversity and inclusion in AI education, research, development, and policy”. 
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chapter. Whether non-profit thinktanks like MIRI will be able to continue to exist without 

massive support from and integration with AI capital remains to be seen.  

4.6 AI and the Contemporary State 

I showed in the previous chapter how national governments have played key roles in the 

history of the AI Industry. Nearly forty years after Japan’s Fifth Generation Computing 

initiative and the USA’s Strategic Computing Program ended, AI is once again a topic of 

national interest. Whether or not it is true, there is an increasingly widespread belief that, 

in the words of China’s State Council, AI “has become a new engine of economic 

development” (Bloomberg News 2017). The USA had the first national government to 

explicitly engage with the AI Industry. In 2016, the outgoing Obama administration 

directed the Executive Office of the President to produce two reports on AI. The first 

report states that the USA government spent approximately $1.1 billion on unclassified 

R&D for “AI-related” technologies in 2015 (Executive Office of the President 2016, 25). 

The report asserts that a “strong case can be made in favor of increased Federal funding” 

to the tune of doubling or even tripling, with a lucrative expected payoff in economic 

growth (Executive Office of the President 2016, 25). The report also notes a deficit in 

qualified AI workers and recommends increased funding for education. In 2019, 

President Trump signed an executive order to launch the American Artificial Intelligence 

Initiative which outlines five areas of focus: “research and development, availability of 

data and resources, ethical standards and governance, education, and international 

collaboration that also protects American interests” (Wei-Haas 2019). The Initiative is 

driven by a recognition that “Artificial Intelligence will affect the missions of nearly all 

executive departments and agencies” (Trump 2019). 

In Canada, a despairing report by the Information and Communications Technology 

Council (2015) described Canada as suffering a dire lack of AI graduate students and 

funding to attract and keep them in the country. In early 2017, Hinton and others 

published a piece in The Globe and Mail expressing their dissatisfaction with the state of 

AI in Canada. Their machinations proved effective and later that year, Canada became 

the first country to launch a fully-funded AI strategic plan ($125 million), recognizing 

that AI “has the potential to drive strong economic growth, by improving the way we 
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produce goods, deliver services and tackle challenges like climate change” (Canadian 

Federal Government 2017, 103). As part of this strategy, AI research institutes were 

established in both Toronto and Montreal.   

Other states have followed suit. President Macron stated in March 2018 that the French 

government would spend €1.5 billion over five years to advance national AI research. In 

the UK, The Alan Turing Institute encourages collaboration between academic and 

industry researchers with the aim of increasing national AI capacities. In addition, a 

coalition of researchers from across Europe have written a manifesto which calls for the 

establishment of a European Lab for Learning & Intelligent Systems (ELLIS) by which 

to develop AI talent in Europe. At least 18 countries have now announced national AI 

strategies (Dutton, Barron and Boskovic 2018). Perhaps most significant of these is that 

of China. 

In 2017, China’s State Council issued a notice outlining its Next Generation Artificial 

Intelligence Development Plan which aims to achieve, by 2020, AI capacities on par with 

the USA. By 2030, China aims to be the number one producer of AI with a “gross output 

of RMB 1 trillion (U.S. $150.8 billion) for the core AI industry and RMB 10 trillion (1.5 

trillion) for related industries” (Ding 2018, 7). This plan is significant not only for its 

unprecedented levels of spending, but also because China is currently the only country 

with the expertise and resources to contest USA AI dominance. More than one analysis 

suggests that countries that fail to invest in AI now will fall economically behind forever, 

as recursive AI productivity gains compel exponential increases in the economies of 

China and the USA (Cummings et al. 2018 vi; K.F. Lee 2018, 185-186). While K.F. Lee 

(2018) is reluctant to describe this situation in terms of a national “AI race” because of its 

zero-sum connotations (246). However, AI is in fact a central component of a new global 

arms race (Simonite 2017c; Allen 2019).  

The Chinese People’s Liberation Army intends a transformation towards AI-powered 

“intelligentized” warfare (Kania 2017) while in the USA, DARPA is working on 

COMPASS (Collection and Monitoring via Planning for Active Situational Scenarios) 

which will “leverage advanced AI and other technologies to help commanders make 
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more effective decisions to thwart an enemy’s complex, multi-layered disruptive activity” 

(South 2018). While fully autonomous weapons do not yet exist, or at least remain secret, 

increasing degrees of semi-autonomy have been achieved (Scharre 2018). Autonomous 

weapons are, however, only one way that AI might be weaponized. Autonomous 

weapons threaten physical security, but AI might also be used to threaten digital security 

via cyberattacks, and political security via surveillance, persuasion and deception 

(Brundage et al. 2018, 6). Further, AI might exacerbate the risk of nuclear war (Geist and 

Lohn 2018). 

Despite this state interest, Cummings (2018) notes that due to the tech industry’s massive 

salaries, governments are finding it hard to hire AI experts and are forced to contract out 

for their AI needs. He wonders if “defence companies and governments continue down a 

path of relative AI illiteracy, could this enable a potential power shift such that critical AI 

services will be leased via Google, Amazon or Facebook?” (Cummings 2018, 16). While 

the possibility of national militaries powered by corporate AI lies beyond the scope of 

this dissertation, based on the situation of the AI industry today, there is no doubt that AI 

producers aim to keep concentrated control of the technology they produce.  

4.7 AI Industry Concentration 

An arms race seems like an apt descriptor of the dynamics of the AI Industry. Despite a 

hangover of early internet era language rife with connotations of freedom, 

decentralization and democratization, today’s AI industry is “dominated by a small 

number of internationally active companies and is characterized by a strong trend toward 

market concentration in all major segments” (Dolata 2018, 102). Strong concentration is 

enabled by “extraordinary financial strength” which allows the tech giants to invest 

heavily in continual research, development and fixed capital improvement, making it 

“very hard for newcomers to become serious competitors of the established leaders in any 

of the already occupied core business fields” (Dolata 2018, 91).  Only the rival giants will 

be able to engage in “fierce oligopolistic competition … carried out primarily through 

aggressive innovation and expansion strategies” (Dolata 2018, 98). The Economist (2017) 

predicts that: 



117 

 

 

Over the next several years, large tech firms are going to go head-to-head 

in three ways. They will continue to compete for talent to help train their 

corporate “brains”; they will try to apply machine learning to their existing 

businesses more effectively than rivals; and they will try to create new 

profit centres with the help of AI.  

My interviewees also noted the fierce competition of their industry. One data scientist 

told me “we’re not living in real free market condition. There are bigger forces that 

dominate the market all the time ... the fate of the industry is tied to … Google, Amazon 

… IBM. Giants ... they hire most of the advanced graduates” (P 9). A startup CEO 

expressed a similar view: “We’re financially competing with Facebook and Google for 

talent … you can’t find the right people because Google and Facebook just bought them 

all” (P 13). Dolata (2018) expects that this concentrated competition of elites will 

produce a “remarkable volatility of acquired market and power positions, which must be 

repeatedly defended and renewed in the face of the extremely rapid succession of 

innovation dynamics” (103). Several other analyses have come to similar conclusions. 

The Economist (2017) deems it  

likely that the incumbent tech groups will capture many of AI’s gains, 

given their wealth of data, computing power, smart algorithms and human 

talent, not to mention a head start on investing. History points to the 

likelihood of concentration; both databases and personal computers 

ushered in ascendancies, if only for a while, of a tiny group of tech firms.  

Data is of particular importance. Since machine learning requires massive, quality 

datasets, those AI companies which have access to large amounts of data from their 

operations (e.g. social media, online retail, search) have been the ones to thrive. Agrawal, 

Gans and Goldfarb (2018) predict further concentration for the AI Industry based on this 

recursive dynamic of machine learning and data:  
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AI has scale economies … AI tools are often characterized by some 

degree of increasing returns: better prediction accuracy leads to more 

users, more users generate more data, and more data leads to better 

prediction accuracy. Businesses have greater incentives to build [AI] if 

they have more control, but along with scale economies, this may lead to 

monopolization (23). 

K.F. Lee (2018) argues similarly that the “positive-feedback loop generated by increasing 

amounts of data means that AI-driven industries naturally tend toward monopoly, 

simultaneously driving down prices and eliminating competition among firms” (161). 

Practically, this means that companies such as Facebook and Google, which have access 

to vast, continually accruing quantities of search and social media data have a decided 

advantage in the industry. One analysis of IBM asserts that because the company does 

not have data resources like those of Facebook and Google it will necessarily find it 

difficult to form a “virtuous circle” of AI commercialization in which “launching a 

product gets users, users generate data, and the data improves the product” (Kisner, 

Wishnow and Ivannikov 2017, 19-20). Or as one startup CEO put it to me: “large 

companies that have large amounts of data ... have a huge defensive moat ... it becomes 

really hard for a startup to come along and disrupt the big one if they don’t have a dataset 

… how do they get that dataset if they don’t have any algorithms ... or a deployed 

product” (P 3). In sum, the “key processes and categories with which to adequately 

describe the essential developmental trends” of the AI Industry are not “decentralization, 

democratization and cooperation but rather concentration, control and power” (Dolata 

2018, 86). Countervailing forces may, however, be on the horizon.  

There is a growing consensus that the tech giants have accrued too much power, even if 

there is no consensus on how to deal with it. At the time of writing, the US Justice 

Department and Federal Trade Commission are engaged in an antitrust investigation in 

the tech sector (Kelly 2019). Some commentators argue that all that is needed is to 

stimulate competition (Doctorow 2019; The Economist 2019). Others call for new types 

of regulation (Chen 2019; Cath et al. 2018; Reed 2018). Still others, including 2020 US 

Democrat president candidate Elizabeth Warren (2019) argue for breaking up the tech 
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giants so that they “do not crowd out potential competitors, smother the next generation 

of great tech companies, and wield so much power that they can undermine our 

democracy”. Warren (2019) suggests that the platforms established by the tech giants be 

split from their other business ventures and operated as “platform utilities”. Precedent for 

all of this is provided by the EU’s 2018 implementation of the General Data Protection 

Regulation (GDPR), which puts strict rules on how companies must store and use user 

data. In January 2019, France fined Google €50 million for violating the GDPR. Shortly 

after, Apple CEO Tim Cook (2019) published an opinion piece in Time calling for similar 

regulations in the USA. How these discussions will play out remains uncertain. It is hard 

to guess, for instance, exactly how states will balance the emerging desire to reign in the 

AI tech giants with the competitive dynamics of an international AI arms race driven by 

those same companies. 

4.8 Open Source AI, Clouds, AI Chips 

Amongst this turbulence, an interesting phenomenon of open source AI tools has swept 

across the industry. In 2015, Google open sourced its Tensorflow machine learning 

software library.44 Google CEO Sundar Pichai (2015) said he hoped it would help 

“exchange ideas much more quickly, through working code rather than just research 

papers. And that, in turn, will accelerate research on machine learning, in the end making 

technology work better for everyone”. Since then, nearly all of the AI giants have 

released some of their AI tools as open source, including IBM’s SystemML, Facebook’s 

PyTorch, Amazon’s Neo-AI and Baidu’s Warp-CTC. According to my interviews, use of 

these open source tools is near universal. One CEO I spoke to said, “[m]ost startups … 

use open source technologies. Everything from the programming language that we use, 

which is primarily Python and Javascript … to the software packages we use” (P 3). 

 

44 Tensorflow was actually not the first open source ML toolkit; pre-existing Google’s open source offering 

were at least two other open source libraries suitable for ML, including Theano (developed by the Montreal 

Institute for Learning Algorithms) and Keras (privately developed primarily by François Chollet, a Google 

engineer). The open source programs of Google and the other AI giants should be read as a reaction to 

these predecessors which were produced outside of their control. 
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Another CEO agreed: “all the tools that we actually use for building the product … 

besides [operating systems], are open source. The couple exceptions, like NVIDIA, have 

some software called cuDNN, that’s proprietary. But every machine learning researcher 

uses it” (P 2). Several companies also used MathWorks’ MATLab, a proprietary software 

suite, but a vast majority of the tools for producing machine learning are freely available.  

Why would an industry characterized by aggressive oligopolistic competition be so eager 

to open source proprietary software? According to the tech giants, it is out of a 

benevolent desire to bring AI to the masses. Concerning its “Democratizing AI” program, 

Microsoft (2016) asserts that “We’re going to infuse every application that we interact 

with, on any device, at any point in time, with intelligence,” while Intel extols the 

wonders of “ubiquitous artificial intelligence” (Intel Brandvoice 2018). Microsoft (2016) 

says it will make “these same intelligent capabilities that are infused in our own apps … 

available to every application developer in the world”. The goal is “helping everyone 

achieve more — humans and machines working together to make the world a better 

place” (Microsoft 2016). Commentators have been more prosaic. Aside from the free 

contributions of a community of contributing developers, Gershgorn (2015) suggests that 

such companies “might indirectly benefit from open-sourcing their tools” by both 

providing skilled employees for future hiring in a tight market and becoming the ground 

on which future applications are built, thus ensuring the ongoing relevance of their 

products. This is the same strategy which Google deployed by open sourcing its Android 

mobile operating system, which is now the most popular open source mobile OS in the 

world (Gershgorn 2015; Amadeo 2018). 

This is, however, only half the story of the corporate assimilation of open source AI, 

which should be considered alongside two other avenues which many of the AI giants 

have begun exploring in the last five years: specialized AI hardware and the cloud. In the 

words of one data scientist I spoke to: “Most of the computation in data science is done 

on the cloud. We have the local servers also running, but most of the heavyweight data 

solutions [are] on the cloud” (P 9). Google and Amazon’s cloud services were the most 

popular, but Microsoft Azure was also mentioned a few times, while a smaller firm, 

Digital Ocean, received one mention. AI startups do not only use the GPU computing 
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power of the cloud. Many also employ the premade AI solutions offered by the giants. 

One CEO told me: “I use Google Cloud a lot … I use them for speech-to-text … I use 

them for geolocation services” (P 13). 

As I mentioned above, the AI Industry was partially enabled by the discovery that GPUs 

were a great improvement over CPUs when it comes to running AI applications. GPUs 

were not, however, created with AI in mind. AI producers are now investing in the 

development of special AI chips, in direct competition with traditional GPU 

manufacturers such as NVIDIA, from which they have historically purchased GPUs. 

Google, to take one example, has been developing the Tensor Processing Unit (TPU), 

which is specially designed for training and running artificial neural networks (Freund 

2017). However, the “performance boost provided by TPUs works only if you use the 

right kind of machine-learning framework with it. And that means Google’s own 

TensorFlow” (Yegulalp 2017). Thus, the open source distribution of TensorFlow can be 

read as a technique for channeling developers towards the Google Cloud with its 

specialized hardware. Not to mention that the combination of both technologies gives 

Google control over both hardware and software for its production processes, giving the 

company an increased vertical integration and “a comprehensive and optimized platform 

to support their research and product development” (Freund 2017). 

4.9 Labour in the AI Industry 

The burgeoning AI Industry and widespread hype surrounding it have created an 

enormous demand for skilled AI labour. Peter Lee, Head of Research at Microsoft has 

described his company as engaged in a battle for deep learning talent with Facebook and 

Google. Lee said that Microsoft went from four full-time deep learning experts to seventy 

in the period 2011-2014 and would have hired more if they could (Vance 2014). The 

number of AI jobs in the USA grew by 4.5 times between 2013 and 2017 (AI 

Index 2017). Demand for AI workers continues to outpace supply. According to one 

study, in 2018 only 22,000 people in the world had the skills to “do serious A.I. 

research,” a figure over double that of the previous year (Metz 2018a). As I discuss 

below, this is because high level AI work requires advanced skills in mathematics as well 

as programming.  
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For the qualified, AI Industry salaries ranging from substantial to astronomical are 

available. According to Microsoft president Lee, in 2013: “the cost of a top, world-class 

deep learning expert” was similar to that of a NFL quarterback prospect (Vance 2014). 

However, there are a variety of roles in the AI Industry. Colson (2019) notes that “end-to-

end algorithmic business capability requires many functions, and so companies usually 

create teams of specialists: research scientist, data engineers, machine learning engineers, 

causal inference scientists, and so on” (Colson 2019).45 However, job titles in the AI 

Industry have yet to be, like the rest of the industry, distinctly defined. One data scientist 

I interviewed explained that “these [job titles] are ... not very well defined. And people 

use them in many different manners” (P 16). The lines between engineer and scientist are 

especially unclear. However, we can usefully make at least five divisions. From most 

remunerated to least, these are: data/machine learning scientist46, data engineer, data 

analyst, service worker and data ghost worker.47 

Data scientists and/or machine learning scientists occupy the apex of the AI labour 

hierarchy and receive most of the AI industry hype as well as the stellar wages described 

above. Aghabozorghi and Lin (2016) breathlessly describe the data scientist as the 

“alchemist of the 21st century: someone who can turn raw data into purified insights”. A 

survey conducted by Stackoverflow (2018), which garnered 57, 138 responses, puts the 

median salary for a data scientist or machine learning specialist in the USA at $102,000 

USD, while the global median salary for the same position is $60,000 USD. According to 

Indeed.com (2019a), data scientists earn an average of $120,301 USD yearly. With the 

average wage in the USA in 2017 at $50,620, data scientists are doing well for 

themselves.  

 

45
 Theuwissen (2015) offers another typical breakdown: data scientist, data analyst, data architect, data 

engineer, statistician, database administrator, business analyst, data and analytics manager. 

46
 Data scientist and ML scientist are often used interchangeably but are not necessarily so. According to 

one 240 interviewee study 90% of data scientists are involved with ML to some degree. For 40% it 

constitutes the majority of their work (Theuwissen 2015, 11). 

47
 This refers only to the technical side of AI businesses. There are, of course, numerous roles on the line 

of business side which may be more or less involved in technical matters, and some workers do straddle 

both sides. 
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If they can manage to be hired by one of the tech giants, data scientists can do very well 

indeed. Someone “proficient in deep learning can earn upward of $250,000 a year at 

places like Google and Facebook, according to several sources; exceptional or more 

experienced ones can net seven-figure salaries” (Bergen and Wagner 2015). Another 

account puts the figure even higher: “Typical A.I. specialists, including both Ph.D.s fresh 

out of school and people with less education and just a few years of experience, can be 

paid from $300,000 to $500,000 a year or more in salary and company stock” (Metz 

2017a). For well-known names, the sky is the limit. As Metz (2018a) reports, Sutskever, 

student of Hinton, was paid $1.9 million USD in 2016 for his position at the then-non-

profit OpenAI. These high salaries are draining experts from academia. Uber alone 

poached 40 researchers and scientist from Carnegie Melon University in 2015 (Metz 

2017a). According to Theuwissen (2015) nearly “50% of data scientists get contacted at 

least once a week about a new job opportunity … 85% get contacted at least once a 

month” (8).  

The data scientist is the one who creates machine learning models and algorithms and 

performs advanced analytics with them. According to Anderson (2018), data scientists 

often come from backgrounds in math, statistics or physics, tend to have graduate 

degrees, and also know how to program. Data scientists are distinguished by their central 

technology: machine learning, which is reflected in their kind of work. One data 

scientists told me “I’m expected to do more modelling and more delivering … ML 

models as opposed to analytics. That is a data scientist’s job … data comes in, data 

engineers process them, and then deliver them … to the data scientists” (P 16). Another 

data scientist told me his work comprised three domains: “scheduled incremental feature 

work … build[ing] in more data science capabilities and feature stuff that we decided on 

... [and] ... firedrills. Where something isn’t working or something crashed and we need 

eyes on it immediately ... And then a lot of the time is also spent just for open ended 

research” (P 15). 

Data engineers are similarly highly educated to data scientists but tend to have stronger 

programming backgrounds rather than maths or physics (Anderson 2018). They 

specialize “in creating software solutions around big data” and building “data pipeline[s]” 
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by connecting diverse big data technologies (Anderson 2018). They are often 

characterized as preparing the big data infrastructure necessary for data science 

(Aghabozorghi and Lin 2016). Despite not partaking in the glamour of being called a 

scientist, according to Indeed.com (2019b), data engineers seem to be paid similarly at an 

average $129,653 USD. 

Quarterback-equivalent salaries are not available to all members of the AI Industry 

workforce. A study from the University of California in Santa Cruz shows that “[n]ine in 

10 workers in Silicon Valley make less now than they did in 1997 after adjusting for 

inflation” with only the highest earners seeing increases (Sheng 2018). Less lucrative 

data work abounds in the AI Industry. A prominent example of this are data analysts, 

who “query and process data, provide reports, summarize and visualize data” 

(Aghabozorghi and Lin 2016). They work with pre-existing software and tools to do 

things with data, including create visualizations, and do not generally create software. 

They have less education than data scientist or engineers, usually possessing a bachelors 

and/or professional certificates in fields such as data mining. According to Indeed.com 

(2019c), data analysts earn approximately half the wages of data scientists and engineers 

at $65,502 USD yearly. 

Finally, we have a category not always included in discussion of the AI industry 

workforce: data ghost workers.48 The term “ghost work” comes from Gray and Suri 

(2019) who define it as the “often intentionally hidden” human work “powering many 

mobile phone apps, websites, and artificial intelligence systems” (4). Since Roberts’ 

(2014) exploration of the content moderation work done behind the scenes of platforms 

like YouTube, ghost work has become increasingly visible. Ghost workers fill in the gaps 

 

48 Another often invisible part of the AI Industry workforce are the service workers who provide the perks 

for Silicon Valley-style tech workplaces. These include shuttle bus drivers, cooks and janitorial staff. 

According to a report by Working Partnerships USA (2016), in Silicon Valley these workers earn a yearly 

average of $19,900 USD while local rent averages $21,444 USD (1). Most tech service workers are 

employed by subcontracting agencies that offer minimal job security and benefits, if any. Despite, or 

because of, this they are the most organized segment of labour in the AI Industry and have won some gains 

through unionization.  
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that automated systems cannot manage, identifying explicit images and identifying hate 

speech, to take only two instances. Ghost workers are usually hired through automated 

systems like Amazon’s Mechanical Turk to perform small piece work tasks for 

micropayments – often averaging less than $5 USD an hour (Hitlin 2016). The low pay 

and precarious nature of ghost work make it difficult to learn a living on. In addition, 

some ghost workers, like content moderators, are exposed to traumatic content which 

may take a psychological toll.  

Ghost work is essential to contemporary AI. Singer (2019) calls it the “secret sauce for 

most of the AI development today”. Machine learning requires massive amounts of 

training data, but data must be prepared before it can be used for training. Many, though 

not all, ghost workers come from poorer countries where the low piece work wages can 

provide some degree of subsistence. The work is usually very repetitious and involves 

long, dedicated hours of work if it is to be a primary source of income. Yu (2017) 

compares this type of work to that done in Fordist factories: “today’s AI projects are 

being built to a large degree using old-fashioned manual labour”. Nakashima (2018) 

describes it as “the digital equivalent of needlework —drawing boxes around cars in 

street photos, tagging images, and transcribing snatches of speech that computers can't 

quite make out”. It is, regardless of the comparisons drawn, far from the revolutionarily 

new type of immaterial labour posited by post-operaismo. 

One prominent product of AI ghost work is the massively influential image dataset 

ImageNet, which is widely employed in training image recognition machine learning 

models. ImageNet is a set of 14,197,122 images with content varying from amphibians to 

geological formations to people. All of these images are labelled according to these 

categories as well as a plethora of subcategories; the category “animal” alone has 3822 

subcategories (ImageNet 2010.). ImageNet was labelled by 49,000 Mechanical Turk 

ghost workers, hired by machine learning researchers between 2007-2010 (Li 2017). 

Today, professional data labelling companies exist and some are even attempting to 

describe their product as “fair trade” data because they offer more traditional employment 

structures and benefits than do platforms like Mechanical Turk (Kaye 2016). However, 

the title of “fair trade” data is merely self-appointed by companies looking to appear 
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ethical to customers and there are few prospects of ghost workers unionizing in the 

foreseeable future (Kaye 2019). 

Even if the conditions of ghost work are improved, these workers still face a peculiar 

form of precarity. As they help train AI systems, these workers render their own 

functions obsolete and must constantly shift to new tasks. Gray and Suri (2019) hold that 

“[o]nce they have successfully trained artificial intelligence to perform like humans, 

workers move on to the next tasks engineers assign them that push the boundaries of 

automation” (17). This “paradox of automation’s last mile” gives Gray and Suri (2019) a 

measure of hope for ghost workers because, even if the work is unpleasant, “the desire to 

eliminate human labor always generates new tasks for humans” (17, emphasis original). 

According to their analysis, ghost work thus epitomizes how the threat of automation is 

often oversold and how a human component to AI production remains insoluble. Pointing 

out the essential and often hidden human labour behind AI is important for any critical 

evaluation. Sadowski (2018) provides several examples of this – which he calls 

“Potemkin AI” – not only in preparing training data, but also in the deployment of 

diverse AI products. To take one example, in 2017 the company Expensify, which 

purports to automate business document processing with machine learning, was revealed 

to be outsourcing the work Mechanical Turk ghost workers. These documents included 

receipts and benefits documents with personal information and home addresses 

(Gallagher 2017). While such occurrences reveal significant holes in the rhetoric of AI 

producers, as the next chapter shows, the long-term necessity of human ghost work is 

dubious. 

4.10 Composition of AI Industry Labour 

The AI Industry workforce is characterized by a heightening of the dynamics of 

inequality present in the larger tech sector. Further, due to the contemporary AI 

Industry’s focus on machine learning, which relies on training data, this inequality is 

directly manifest in the products of the industry.  

Compared to private industry at large, the tech sector is more male and more white. 

While women make up 48% of private industry at large, in tech they represent only 36%. 
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While tech employs 6.2% more Asians than private industry in general, it employs 7% 

less African Americans (US Equal Employment Opportunity Commission 2016). In the 

AI Industry, these same dynamics are exacerbated. A World Economic Forum report 

shows that only 22% of “AI professionals” in the world are female (Duke 2018). In 

addition, female AI workers work predominantly in the use and application of AI, rather 

than in its development: “female AI professionals are more likely to work in 

‘traditionally female’ industries – those which already have a relatively high share of 

female workers, such as the nonprofit, healthcare and education sectors” (Duke 2018). In 

addition, female AI and tech workers get paid less for doing the same work as their male 

counterparts. A 2016 US Labor Department investigation found that Google had 

“systemic compensation disparities against women pretty much across the entire 

workforce” (Kolhatkar 2017). While Google has disputed this, and refused to disclose all 

of its employees’ earnings, an employee-led investigation (only totaling 2% of 

employees) revealed that men do indeed make more than women (Ehrenkranz 2017). 

New legislation in the USA may soon force Google, and all companies with over 100 

employees, to disclose wages in relation to employee gender and race (Smith, Greenfield 

and Green 2019). 

A report from the AI Now Institute notes that only 4% of Facebook and Microsoft’s 

workforces are black and a mere 2.5% at Google (West, Whittaker and Crawford 2019, 

3). Working Partnerships USA (2016) shows that while 10% of the “direct tech” 

workforce is black or Latino, the same groups comprises 58% of “blue-collar potential 

contract workers” (3). The poorly paid ghost workers which ground AI production are 

less likely to be white males. A study from the International Labour Organization shows 

that ghost workers – which it calls crowd workers – come from “[n]early all regions of 

the world … with important representation from workers in Brazil, India, Indonesia, 

Nigeria and the United States, as well as Western and Eastern Europe” (Berg et al. 2018, 

31). Of these workers, one in three are women, though in developing countries this drops 

to only one in five (Berg et al. 2018, xvi). The divide between highly-remunerated, 

predominantly white or Asian, male data scientists and engineers and ghost workers, who 

are largely non-white and often not male, is sharp.  
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Further, attempts to increase diversity in the AI Industry have met with substantial 

criticism. A recent report from the think tank AI Now judges that these attempts have 

been ineffective due to a narrow focus on white women, as well as focus on helping 

women get from school to industry, rather than addressing the sexist and racist power 

dynamics which characterize working in the industry (West, Whittaker and Crawford 

2019, 3).  

The tech industry is distinguished by a primarily white-male frat boy culture. Chang 

(2019) describes Silicon Valley as a “Brotopia” defined by systemic denigration of 

women. Chang (2018) describes the lavish parties held at the mansions of tech 

entrepreneurs as bastions of traditional male chauvinism in which women are treated as 

accessories: “outside of the new types of drugs, these stories might have come out of the 

Playboy Mansion circa 1972”. The widespread sexism of the tech industry became 

visible to the public with the publication of the study “Elephant in the Valley” which 

showed that over 200 female respondents experience a wide variety of discrimination in 

tech work (Vassallo et al. 2015). 2017 saw the circulation of Google engineer James 

Danmore’s internal memo that “questioned the company’s diversity efforts and argued 

that the low number of women in technical positions was a result of biological 

differences instead of discrimination” (Wakabayashi 2017). Danmore was fired, but the 

same year saw a massive amount of disclosures of sexual assault and harassment by 

female workers in the tech industry (Benner 2017a; Benner 2017b). After an outpouring 

of apologies by various male tech industry figures, including many CEOs, pervasive 

discrimination continues. A recent study by recruiting company CWJobs shows that 

nearly 30% of women in tech jobs have been told they only obtained their job because of 

their gender, while 51% say that someone has implied that their gender might prohibit 

their career (J. Forbes 2019). 

Due to the nature of machine learning, the consequences of discrimination in tech work 

extend beyond the workplace experiences of female workers. As Crawford (2016) 

asserts, AI’s “white guy problem” is “fundamentally a data problem”. Machine learning 

systems “pick up any tendencies that already exist in the data they train on” (Dickson 

2018). When they are produced in work environments characterized by rampant 
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discrimination, “[s]exism, racism and other forms of discrimination are … built into the 

machine-learning algorithms that underlie the technology behind many ‘intelligent’ 

systems that shape how we are categorized and advertised to” (Crawford 2016). 

Therefore, AI “may already be exacerbating inequality in the workplace, at home and in 

our legal and judicial systems” (Crawford 2016). Three years after Crawford’s piece was 

published, examples of perniciously biased AI systems abound; a Google algorithm 

categorizes black people as gorillas, predictive policing algorithms target black 

neighbourhoods disproportionately and a beauty contest judged by AI overwhelmingly 

chose white, and a few Asian, winners (Dickson 2018). An Amazon AI tool for hiring 

employees was scrapped before deployment when it was found to prefer the resumes of 

men over those of equally qualified women (Cook 2018). These are only a handful of 

possible examples. 

One might expect that such palpable inequality and discriminatory power dynamics 

would catalyze a highly organized labour force, but this is not the case in the AI Industry, 

nor has it been the case historically in the tech industry at large. There are, however, 

some signs of change. Discrimination is in fact one issue around which AI labour is 

rallying.   

4.11 AI Industry Labour Organization 

The AI Industry has no formal labour organization among its high-skill employees. This 

is another trait it inherits from the tech industry at large, and from Silicon Valley in 

particular. Hyde (2003) notes, “[i]n high technology, unions are hardly present at all” 

(155). There are several factors contributing to this state. One popularly cited reason for 

the lack of labour organization in high-tech work are the high wages and general job 

satisfaction experienced by these workers (Milton 2003, 32). It is true that AI giants such 

as Google famously distribute free perks to keep employee spirits high, including “free 

meals at more than 30 cafes … nap pods, [and] a concierge service” (ABC 7 News 2018). 

Another factor contributing to the lack of unionization is the high demand for, and low 

supply of, skilled workers. This imbalance means that it is “at least as easy for a tech 

worker to quit their job and find another better one as it is to attempt to organize their 

coworkers” (Patel 2017). While these are both no doubt significant factors, they must be 
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considered alongside a third factor which goes back to Silicon Valley’s roots. In the 

1960s, Bob Noyce, co-founder of Intel stated:  

Remaining non-union is an essential for survival for most of our 

companies. If we had the work rules that unionized companies have, we’d 

all go out of business. This is a very high priority for management here. 

We have to retain flexibility in operating our companies. The great hope 

for our nation is to avoid those deep, deep divisions between workers and 

management that can paralyze action (quoted in Rogers and Larsen 1984, 

191 in Hyde 2003, 155).  

This view of labour organizing persisted throughout the tech boom and remains with the 

AI Industry, even if it is now most often camouflaged in what Leonard (2014) calls 

“stealth libertarianism”. Whatever the exact conjunction of reasons, it is a fact that the 

only successful organization attempts in Silicon Valley have been 

amongst contract service workers (Hyde 2003, 155). From 2014-2017 around 5000 

contract services workers became unionized in Silicon Valley. Labour organization may 

now be spreading to higher skill tech workers. 

Political orientation is not what has kept tech workers away from labour organizing – 

many are left-leaning. As Roose (2013) notes, “despite being largely socially progressive 

and voting overwhelmingly for Democrats in national elections, Silicon Valley is 

probably America’s least-organized labor industry”. However, since the election of 

Trump, high-tech workers have begun to get visibly agitated, with some attending anti-

Trump rallies, some protesting AI company Palantir’s involvement in Trump’s border 

policing (Buhr 2017). Trump and immigration are not the only issues which tech workers 

are mobilizing around. USA Google employees have also effectively protested their 

employer’s military contracts with the Pentagon, causing the company to drop contracts 

and global walkout by 20,000 Google employees in 2018 after the company gave a $90 

million severance package to Andy Rubin, creator of the Android operating system, when 

he was fired for sexual assault on an employee (Harwell 2018; Canon 2018). 
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This activism did not arise spontaneously. Much of it should be attributed to the efforts of 

grassroots organizations such as the New York City Democratic Socialists Tech Action 

Working Group, Tech Workers Coalition, and Tech Solidarity. Such groups have 

organized demonstrations, education sessions and are aiming to influence policy 

(Coren 2017). They have also advised and aided tech workers in the rare attempts at 

unionization. Perhaps the first instance of this occurred in 2018 when 14 software 

engineers at the software startup Lanetix (since rebranded as Winmore) attempted to join 

the union NewsGuild–Communications Workers of America (CWA). Shortly after 

receiving notice, Lanetix management fired all of the involved employees. The retaliatory 

nature of the firings drew heavy media attention and support from the Tech Workers 

Coalition, who joined fired employees at a protest outside of Lanetix offices in San 

Francisco in March 2018. The National Labour Relations Board ruled in the workers’ 

favor and Lanetix paid them a $775,000 USD settlement (Perry 2018). This sets a 

precedent that other tech workers, such as those in the AI Industry, might follow. Another 

event occurred in February 2019, when web development tool company NPM laid off 

five workers who were talking to organization including the International Federation of 

Professional and Technical Engineers and Tech Workers Coalition about forming a union 

to fight degrading work conditions (Conger and Scheiber 2019). Once the issue was 

brought to the National Labour Relations Board, NPM paid a settlement, but no union 

was formed. While it is, of course, impossible to predict the future of tech work 

organization, at least some commentators descry a “budding socialist movement” in 

Silicon Valley (Spencer and Karlis 2019).  

4.12 Conclusion 

This chapter has surveyed the political economic dynamics of the contemporary AI 

Industry; its highly concentrated oligopolistic capital side as well as its dramatically 

stratified labour force, riven by rampant sexism and racism. It is in this volatile context 

that AI is actually produced. To complete the picture of AI production the next chapter 

shifts perspective to a labour process analysis. 
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Chapter 5  

5 The Production of Machine Learning: A Labour Process 
Analysis 

The previous two chapters charted how AI evolved from a fringe research interest for a 

handful of scientists to a central, and expanding, industry of cybernetic capitalism. In this 

chapter, I shift from macro scale analysis to a micro scale analysis of the labour process 

by which machine learning (ML) AI is produced. The goal is to develop a concrete 

understanding of what “AI work” looks like.49 This analysis is based on data collected 

during interviews I conducted with workers and management in the AI Industry between 

July 2017 and January 2018 and was fleshed out with follow up research in 2018 and 

2019.  

First, I describe my interview methodology. Second, I describe the three technical stages 

of the machine learning labour process. Third, I discuss four key themes drawn from my 

interviews. All of these relate, in different ways, to my central research question 

concerning the purported new autonomy of immaterial labour posited by post-operaismo. 

They are the commodity form of machine learning and its effects on AI work, the 

empirical mode of control of the machine learning labour process, the conception of AI 

as automation and the automation of AI work itself. Finally, I explore in detail the 

emerging method of automating AI work known as automatic machine learning 

(AutoML). This chapter thus sets the scene for the next in which I argue that AI work 

does not exhibit the new autonomy posited by post-operaismo.   

 

49
 In this chapter, AI and ML may be taken as equivalent. While I distinguished earlier between ML and 

other types of AI, this chapter only deals with people working at companies which produce ML products. 

My interviewees, like the rest of the AI Industry, tended in conversation to interchange various terms 

including AI, ML, machine intelligence and data science. Some of them, as this chapter shows, even 

remarked on the fluidity with which such labels are used in the industry. 
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5.1 Group Selection 

My interviewees were drawn from the AI Industry. The AI Industry comprises, as 

Chapter 4 discusses in detail, a handful of powerful AI tech giants such as Google, older 

conglomerates that are shifting gears into AI production like Siemens, a wealth of startup 

companies and a variety of think tanks. I aimed to recruit interviewees from each of these 

four categories so as to represent a cross-section of the industry. I did not, however, 

manage to recruit anyone from a think tank. 

I recruited interviewees by contacting AI companies directly. By reading technology, 

business and investment journalism, I was able to compile a list of AI companies. I 

initially focused on Canadian AI companies, but in the course of recruitment, I chose to 

expand my focus worldwide. This was motivated by a lack of responses from the 

relatively limited supply of Canadian companies, as the following section discusses. One 

substantial resource I came across while expanding my list of potential companies was 

the database of AI companies compiled by the AI business research company Emerj 

(nd.).  

The AI Industry is, like any other industry, composed of two groups or classes of people: 

labour (workers) and capital (management). While I sought to interview both classes, I 

was more interested in recruiting workers. This was because management’s point of view 

already finds expression in mainstream and business journalism, while that of workers 

often remains unheard.  

5.2 Recruitment 

Prior to recruitment, the study (Ethics File #109130) was approved by The Office of 

Human Research Ethics at Western University (Appendix 4).  

I emailed the AI companies collected in my list at email addresses made publically 

available on their websites. Some companies listed addresses for the company in general, 

some were for the human resources department, and some only posted the address for 

particular members of the executive (i.e. CEO). Whenever possible, I chose to contact the 

human resources department. My initial email consisted of an attached recruitment poster 
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along with a short explanatory blurb in the body of the email (Appendices 1 and 2). In the 

blurb, I briefly explained the point of the interview and asked whether the company 

would be willing to forward a call for interviewees to employees via email or post a 

recruitment poster in the workplace. I offered to send the official Letter of Information 

and Consent if they were interested (Appendix 3).  

In all, I sent 92 emails. Of these, I received less than 20 responses. Some of these asked 

for more information, but were ultimately not interested in participating. However, in 

addition to the positive responses to my emails, I gathered a number of participants 

through word of mouth. Some participants and some contacts in my network shared 

information about my study with their contacts. This led to people volunteering to 

participate. When a potential interviewee expressed interest, I sent them the official 

Letter of Information and Consent. After the potential interviewee had reviewed this 

document, I obtained verbal consent from them before starting the interview. Since the 

interviews pertained to work, and there could be negative consequences for employees 

expressing critical views of their employers or workplaces, all interviews were conducted 

under conditions of anonymity.  

5.3 Interview Preparation 

I employed semi-structured, qualitative in-depth interviews. The qualitative interview is a 

“knowledge-producing conversation” through which we can learn about “how [people] 

experience the world, how they think, act, feel and develop as individuals and in groups” 

(Brinkman 2013, 1). I chose the qualitative method because I wanted to learn about 

people’s experiences working in the AI industry and not just quantitative facts.  

I adopted a semi-structured approach because I wanted to remain open to change in the 

course of the interview. In semi-structured interviews, the interviewer produces a loose 

plan or series of topics which are intended to guide the interview, but rigorous adherence 

is not sought. Instead, the interview is conducted as a conversation and is allowed to 

develop organically, within certain bounds (Brinkman 2013, 21). The goal of a 

conversational attitude is also reflected in the qualifier “in-depth,” which signifies a 

closely engaged, relatively informal interview format intended to establish rapport 
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(Johnson and Rowlands 2012, 99). I chose this approach because it is “best suited to 

research questions of the descriptive or exploratory type” (Johnson and Rowlands 2012, 

101). Since very little information was available about the AI Industry, exploration was 

precisely what I wanted to do. Further, in-depth interviews “rarely constitute the sole 

source of data in research. More commonly, they are used in conjunction with data 

gathered through [other] avenues” (Johnson and Rowlands 2012, 100). In particular, they 

may be used as “a way to check out theories” (Johnson and Rowlands 2012, 100).50 

Assessing the validity of immaterial labour theory was precisely my goal.  

I prepared a list of interview topics grouped under four broad categories: labour 

process/organization, industry dynamics, use of machine learning to produce machine 

learning and speculations. The list originally consisted of ~30 questions, but after the first 

few interviews, I pared this down to a more manageable 16 (Appendix 5). Some of these 

eliminations were based on redundant answers, while one (regarding income) was 

dropped due to the refusal of the first three participants to answer.  

5.4 Conducting the Interviews and Composition of 
Interviewees 

Ultimately, I conducted 16 interviews between July 2017 and January 2018. One 

interview was discarded. That interview was with a manager at a regional utilities 

company that had recently begun experimenting with AI in their operations. While it was 

interesting, it did not meet my criteria for belonging to the AI Industry since that 

company did not produce an AI product.  

Thus my research draws on a total of 15 interviews. The interviews were an average of 

60 minutes long. One interview was conducted at a café on a university campus while the 

14 other interviews were conducted via Skype, Google Hangouts or telephone and were 

recorded with a digital voice recorder and later transcribed and anonymized by myself. 

 

50
 I chose interviews instead of surveys because of these exploratory capacities. While focus groups could 

have been useful, the expected (and confirmed) difficulty in recruiting AI workers and management for 

one-on-one interviews would have been substantially compounded by having to coordinate multiple 

participants’ schedules and/or physical locations. 
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Brinkman (2013) notes that 15 is a common amount of participants for interview studies 

as it presents a manageable quantity of data and since “the aim is not statistical 

representativeness … but instead the chance to look in detail at how selected people 

experience the world” (59). However, it is important to note that if samples are too small 

“they can easily miss key constituencies within the population, or contain too little 

diversity to explore the varying influences of different factors” (Ritchie, Lewis and Elam 

2003, 85). Or in other words, “small-scale samples only work in qualitative research if 

good purposive or theoretical sampling has taken place” (Ritchie, Lewis and Elam 2003, 

84-85). This was precisely why I sought to interview both workers and management.  

Capital or management was represented by 5 participants, all of which were CEOs. 

Labour was represented by the remaining 10 participants, who ranged across the 

hierarchy of AI Industry labour roles. 4 participants defined their roles as scientist (2 data 

scientists, 1 machine learning scientist, 1 lead scientist). 3 participants defined their roles 

as engineer (2 senior software engineers and 1 inference engineer. 1 participant identified 

as a research and development programmer, 1 as an intern and 1 as a PhD student at a 

research institute with close ties to industry. Ghost workers are, unfortunately, not 

represented in these interviews. This is because, at the time of conducting the interviews, 

I was unaware how critical such work is to the production of AI. Thus, these interviews 

focus on the high end of the spectrum of work in the AI Industry and are thus, as the 

previous chapter discusses, drawn from an overwhelmingly white and male pool of 

possible participants.  

I did not ask interviewees to identify their race, but interviewees were residents of North 

America, Africa and Asia. The participants ranged in age from 27-43 with an average age 

of 28.6 years. All participants were male. Despite an effort to reach specifically female 

participants, including directly e-mailing several prominent female public figures in AI, I 

did not obtain any. I hoped to speak to female AI workers to gain their perspectives on 

the substantial gender bias exhibited by the tech industry, as discussed in Chapter 4.  

13 participants had obtained or were in the process of completing a Master’s degree, 

while 6 had obtained or were in the process of completing doctorates. Almost all of the 
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participants had studied or were studying a type of science or engineering, but particular 

fields varied from cognitive science, to computer science, to mathematics, to quantum 

mechanics, atmospheric science and medical science. 

8 participants worked at startup companies. Half of these had less than 10 employees and 

half had between 10 to 40 employees. 3 worked at startups which were either distinct 

entities created within a larger firm or were bought up and integrated into a larger firm. 

These internal startups had between 10 and 19 people. 2 participants worked for large 

international companies. The particular branches they worked at employed between 30-

50 people. 1 participant was at a research institute with around 20 people and 1 worked at 

a small but established company of around 10 people. The majority of these companies 

were established between 2012-2017 with only the 2 large international firms dating to 

1998.  

Most participants had not been at their current position for a long time. Only 2 had held 

their current position for 5 years. 4 had been at their current position for 2-3 years, while 

9 had been there for around a year or less. 

5.5 Exploratory Interviews and Follow-up Research 

As mentioned above, the interviews were conducted in an exploratory mode. As an 

outsider to the AI Industry and data science generally, I learned about a lot of new things 

in the course of the interviews. After the interviews, I conducted follow-up research 

regarding the technologies, practices and other phenomena that I heard about. The 

presentation of my interview data in this dissertation is supplemented by, and integrated 

with, this follow-up research.  

5.6 The Machine Learning Labour Process 

In Chapter 2 I discussed how in a capitalist economy a labour process is “in general a 

process for creating useful values” which is also “specifically a process for the expansion 

of capital, the creation of a profit” (Braverman 1998, 36). While AI is often portrayed as 

an abstract, intellectual enterprise, it is, like any other commodity, produced by labour. 

As the AI Industry expands, recognition of this is growing. In a recent business-oriented 
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lecture, Oren Etzioni (2018), computer scientist and serial AI entrepreneur emphasizes 

that making AI requires “99 percent manual labor”. Thompson (2019) notes that while 

the stereotypical image of a software producer has been the “hoodied young 

Zuckerbergian,” a new image is emerging – that of the “Blue-collar Coder” (326; see also 

Dash 2012). The rest of this chapter details the labour of these in the AI Industry. Any 

labour process is composed of individual days of work. When asked to describe a typical 

day at work in the AI Industry, one R&D programmer working at a startup told me: 

You usually have some pending tasks from a previous project, or you have 

a new task from a new project … the CEO comes over to your desk and he 

starts talking about what exactly the vision is and what the project is 

about. How we should do things. He discusses certain algorithms and 

various concepts that need to be … fleshed out before it can be done in the 

code. There can be multiple people standing around a computer and 

talking about various ... high level design principles. Then they can go to a 

white board and we can talk about ... various little details … [but] [m]ost 

programming in any company is a solitary activity ... that’s the nature of 

programming (P 4). 

My interviews revealed a consensus on this basic type of workday breakdown – a 

coordinating meeting opening the day, followed by largely solitary work, interspersed 

with meetings. Machine learning projects are not completed in a day, however. When 

asked to describe a typical day at work, one machine learning scientist told me that “Due 

to agile development ... it makes more sense to talk about [work] in terms of the week. 

That is, our sprints” (P 16). Agile is a software development methodology which nearly 

all of my respondents described their workplaces as operating, to a more or less formal 

degree. Sprints are periods between a week and a month long into which development is 

broken down. I discuss Agile and other development methodologies later, but first I detail 

the technical stages of the machine learning labour process. 

The machine learning labour process is typically broken down into three stages. Dettmers 

(2015) writes that with machine learning: “we (1) take some data, (2) train a model on 
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that data, and (3) use the trained model to make predictions on new data”. Similarly, 

Dong (2017) explains that, “[m]achine learning engineering happens in three stages — 

data processing, model building and deployment and monitoring” with model building 

being the “meat” of the machine learning sandwich because this is where predictive 

capabilities emerge (Dong 2017). However, the bread actually takes more labour time to 

produce. According to one study, data scientists spend 19% of their time at work 

collecting data sets, 60% cleaning and organizing it and merely 7% building training sets 

and refining algorithms (Crowdflower 2016, 6).51 Let us now run through the three stages 

in detail.  

5.7 Data Processing 

Data processing “involves cleaning and formatting vast amounts of data to be fed into the 

model” (Dong 2017). This is the primary stage for ghost work. Ready-to-use data does 

not exist and a lot of work must be done to make data usable. Data is often extracted from 

databases with tools such as SQL. Brownlee (2013) breaks this stage down into three 

sub-steps which he describes as “very likely to be iterative with many loops” (Brownlee 

2013). First is selecting data or determining “what data is available, what data is missing 

and what data can be removed”. While more data is generally better for machine learning, 

not all available data are going to be relevant to every problem. Additionally, important 

data may be missing and may have to be simulated. Second is preprocessing data “by 

formatting, cleaning and sampling from it.” This involves making the data usable by the 

tools that process it, fixing errors or missing values and removing sensitive information. 

In addition, huge datasets may need to be sampled rather than used whole to reduce the 

computational load (Brownlee 2013). Dong (2017) describes this stage as “frustrating 

manual labor” and “repetitive work”. It is, however, necessary. As one R&D programmer 

told me, “[i]f you want to get very good results then you need to clean out the data a lot” 

(P 4). Third, comes feature engineering or data transformation: working up preprocessed 

 

51
 In addition to the direct labour process, ML work involves a lot of research. According to Theuwissen 

(2015), 83% of interviewed data scientists “spend between 25-75% of their time on R&D as opposed to 

production” (12). 



140 

 

data by engineering features using techniques including “scaling, attribute decomposition 

and attribute aggregation” (Brownlee 2013). Feature engineering is “the process of 

transforming raw data into features that better represent the underlying problem to the 

predictive models, resulting in improved model accuracy on unseen data” (Brownlee 

2014). This is an essential step because “[m]uch of the success of machine learning is 

actually success in engineering features that a learner can understand” (Locklin 2014). 

For Dettmers (2015) it is the “most important skill” for making machine learning. 

Because not all features are obvious, feature engineering is often referred to as an “art” 

requiring some sense of intuition (see also Brownlee 2014). 

5.8 Model Building 

In this stage the processed data is input to a learning algorithm which then produces a 

model which “contains the learned relationships” between the data (Brownlee 2015). This 

model can then be applied to analyze unseen data. Tools used here include TensorFlow 

and Spark ML. Here it is useful to distinguish between three primary types of learning: 

supervised, reinforcement and unsupervised learning. 

The majority of commercial machine learning today uses supervised learning (Brownlee 

2016). In supervised learning, the data from which the algorithm learns is labelled by 

humans, usually in terms of categories. This approach thus “require[s] a feedback signal 

(from external sources) … in order to get going” (Sun 2014, 111). The system learns the 

categories by discerning patterns across the labelled examples. The labelled data thus acts 

as a supervisor (Brownlee 2016). Given enough labelled photos of red hexagonal signs 

with the word STOP on them, in various visibility conditions and from various angles, as 

well as examples of non-stop signs, a supervised learning system can learn a concept of 

stop sign and output the category ‘stop sign’ whenever it is fed an image of a stop sign. 

Ideally, the concept of stop sign formed by the system will be robust enough to enable it 

to generalize beyond its training data, to recognize stop signs in images it has never seen 

before. The “supervisor provides the correct values, and the parameters of a model are 

updated so that its output gets a close as possible to these desired outputs” (Alpaydin 
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2016, 111). Learning ceases when “the algorithm achieves an acceptable level of 

performance” (Brownlee 2016). 

Because of the necessity of labelling, supervised learning entails a lot of repetitive labour 

(often performed by ghost workers, as discussed in Chapter 4). AI companies have, 

however, developed creative methods to obtain labels without paying even miniscule 

ghost work wages. The reCAPTCHA system (acquired by Google in 2009), which is 

designed to prevent bots from accessing certain websites, asks human users to label 

objects such as stop signs, vehicles and storefronts in photos. The click work involved is, 

by Google’s (nd) admission, used to “build machine learning datasets” and help “solve 

hard AI problems”. Some machine learning practitioners speak of a “machine learning 

data bottleneck” and lament that “[l]abeling data by hand can be time consuming, 

expensive, and impractical; and sometimes you don’t even have sufficient examples to 

label, especially of the rare events that are most important” (Mugan n.d.). The two other 

types of machine learning may be seen, in part, as attempts to overcome this data 

bottleneck.  

In unsupervised learning “there is no predefined output, and hence no supervisor … only 

the input data” (Alpaydin 2016, 111). Instead the goal is to automatically “find structure 

in the data” (Alpaydin 2016, 117). In so doing, unsupervised learning may be said to 

generate categories or theories – such as that of stop sign. In other words, unsupervised 

learning automatically produces a “hidden model” which represents a theory of the 

meaning of data, or its “underlying factors and their interaction” (Alpaydin 2016, xi).52 

As such, unsupervised learning can be considered the automation of supervised learning. 

Indeed, the work entailed by labelling data drives research in unsupervised learning 

because “unlabeled data is a lot easier and cheaper to find” (Alpaydin 2016, 117). The 

internet is a gigantic trove of unlabeled data.  

 

52
 Two prominent types of unsupervised learning are “clustering”, in which data points are grouped by 

some type of similarity and “association”, in which “rules” that describe correlations between data points 

can be discovered (Brownlee 2016). Clustering may help support a theory about relationships between 

variables, but more interestingly, “there may be a cluster or clusters that no expert could have foreseen” 

(Alpaydin 2016, 115). Novel knowledge may be produced. 
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The pioneers of deep learning argue that unsupervised learning will eventually become 

the central machine learning approach because it is how humans and animals evolved to 

learn; not by being told what everything in the world is called, but through observing it 

(LeCun, Bengio and Hinton 2015, 442). One group of researchers recently pointed out 

that high definition video contains so much data that to analyze it with supervised 

learning, with its need for labelled data, would require “several orders of magnitude more 

labels” than doing the same for pictures, and as such seems infeasible (Luo, Peng, Huang, 

Alahi and Li Fei-Fei 2017, 2203). They suggest the unsupervised learning will become a 

necessity for AI.  

However, unsupervised learning finds competition in the approach called reinforcement 

learning, which attempts to overcome the data bottleneck in a different way. The pioneers 

of this approach describe it as “learning what to do … so as to maximize a numerical 

reward signal. The learner is not told which actions to take … but instead must discover 

which actions yield the most reward by trying them” (Sutton and Barto 1998, 127). 

Alpaydin (2016) describes reinforcement learning as “learning with a critic” (127). 

However, the so-called critic is not human. Instead, reinforcement learning aims to 

emulate the process of learning by experience, just as young humans learn that fire is 

painful to the touch through trial and error. There “is no external process that provides the 

training data. It is the agent that actively generates data by trying out actions in the 

environment and receiving feedback (or not) in the form of a reward” (Alpaydin 2016, 

128).53  

Reinforcement learning was thought only be usable in simple domains, such as 

Backgammon, which it mastered in 1992, until 2013 when DeepMind combined it with 

unsupervised learning (Knight 2017). DeepMind showed that this combination of 

approaches could be used to teach a system to play Atari games with superhuman skill, 

 

53
 The necessity of experimentation means that reinforcement learning may require less data but more 

time. However, because such systems can operate in virtual environments at accelerated timescales, they 

can accrue much more experience (data) than humans can in a given period. Indeed, Andrew Ng holds that 

to accrue the necessary data for successful reinforcement learning such systems must “practice relentlessly 

in simulations” (Knight 2017). 
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without programming any knowledge about the games into the system and giving it 

access only to the pixel information displayed on the screen. The same combination 

enabled AlphaGo’s win over Go master Lee Sedol in 2016. 

5.9 Deployment 

A trained machine learning model is deployed by integrating it “into an existing 

production environment in order to start using it to make practical business decisions 

based on data” (DataRobot n.d.). Tools such as Git, Docker and Grafana are used. One 

major hurdle of deployment is that there is often a discrepancy between the machine 

learning programming languages and other business software (DataRobot n.d.). This 

entails either re-coding the entire model or building an API (application programming 

interface), which translates between the two and allows the model to be integrated with 

other software (Paul 2018). 

Deployment also involves maintenance. The model may need to be updated on new data 

to reflect changes in its environment. Therefore “engineers re-train production models on 

fresh data on a daily to monthly basis, depending on the application” (Dong 2017). In 

addition, Dong (2017) explains that since “traditional unit tests — the backbone of 

traditional software testing — don’t really work with machine learning models, because 

the correct output of machine learning models isn’t known beforehand”. Instead, 

“engineers take a less structured approach: They manually monitor dashboards and 

program alerts for new models” (Dong 2017). Dashboards are representations, often 

graphical, of various metrics of the model’s functioning, often in real-time. In business 

settings, these will often be key performance indicators (KPIs). One data scientist 

described to me how dashboards have simplified deployment: “Compared to the standard, 

years ago, you’d have … analysis reports ... numbers on the screen … the evolution of 

that is the dashboard, which is dynamic. Any person can go spend time and find” what 

they need (P 9). Dashboards are also often used to present models to nontechnical 

interested parties including management and customers.  

These are the basic technical stages of the machine learning labour process. But how is 

this labour process influenced by the valorization process – the necessity of increasing 
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capital – on which it necessarily supervenes? The next sections elaborate four themes 

extracted from the interviews which answer this question in different ways.  

5.10 The Commodity Form of AI 

AI Industry products are commodities and their production has been structured for speed 

and efficiency in accord with the competitive dynamics of capitalist production. For one 

startup CEO, the near term goal is to “knock down some more customers” (P 2), while 

for another, “the whole idea is to make money through artificial intelligence but at the 

same time find creative and holistic ways to give back to the society” (P 5). Yet another 

CEO describes his company’s goal as: 

Make as much money as possible in as short a time as possible ... There’s 

no such thing as enough ... honestly, we’re making a magic factory. And 

you can quote me on that. What we’re trying to do ... is that machine that 

shoots out baseballs and just throws strikes all day (P 13). 

The commodity nature of AI entails the long workweeks familiar to software work in 

general. Most of my interviewees reported working well over a typical 40 hour work 

week. As a senior software engineer put it, “if you want to work from 9 to 5, I mean it’s 

fine, but don’t expect that will be very competitive in the marketplace” (P 7). An 

inference engineer who returned to the company he did an internship at, summed up his 

experience like this: “the CEO … said the amount of hours [40] you’re putting in were 

what we call like mediocre. You need to put more in if you come full time. So he just 

made that known and I agreed to it ... I’d say maybe 50 to 60 hours, that’s low” (P 10). 

One CEO told me that concerning his work week, “there’s no fixed number to it, but it’s 

definitely above ... 80 hours a week”. In addition to these long standard weeks, AI work 

is subject to sporadic periods of intense, nearly non-stop work. Such so-called “death 

marches” have been a noted and feared component of software production since the 

1990s (Yourdon 2004). As one inference engineer told me, “when stuff broke or hit the 

fan or there was a deadline ... it could easily go to 12 hours every single day. Including 

weekends. And there had been times as well when something breaks in the middle of the 

night. You get paged ... You have to wake up and fix it”. 
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The competitive nature of machine learning production also means that work is changing 

rapidly as related technologies continue to evolve. This is an industry where work is 

subject to continual revision and workers must continually learn new skills. One machine 

learning scientist described his work as always in flux: 

For a data scientist it’s already very fast paced and evolving every second 

… New articles from even the most prominent researchers are coming out 

twice a week. That changed the entire perspective of the field. Or new 

applications that change the entire perspective of the field. So it’s already 

very fast paced. So if … it’s a data science job, it’s an everyday story that 

the methods that you used previously are really not as good anymore … a 

lot of things are unknown. We don’t know how to use all these potentials 

in the field ... the thing that is state of the art two weeks ago is kind of 

taken for granted now (P 16). 

One startup CEO agreed, describing the industry as having a “rate problem. It’s not a 

fixed benchmark of what is enough, it’s really how fast can you build. Because 

everything is changing. Nobody can predict in two years what the landscape is really 

going to look like” (P 2). This compels many machine learning workers to augment their 

university education with online courses from providers like Coursera and Udacity. One 

data scientist told me he was “continuously improving” his skills on such sites (P 8) 

while another, who reported spending around 50% of his time at work on research, said 

“I’m constantly trying to learn. New things are coming up. It’s very difficult to keep up 

… with the new developments” (P 9). Further uncertainty is added by machine learning’s 

reliance on data which entails a whole suite of problems surrounding the quality and 

availability of data. According to a startup CEO: “If you’re too inflexible in data science 

you’re setting yourself up to fail. Because the truth is, you don’t know what’s going to 

happen. You hope what’s going to happen. You build a plan around it that makes a lot of 

sense, but often times, weird things happen. For example, you think you have the data 

and you don’t have the data” (P 13). 
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A common way of structuring AI production, to control the various contingencies 

mentioned above, is the set of development principles called continuous integration. 

Continuous integration means that “when someone checks his or her revised code into the 

repository, an automated system picks up the change, checks out the code, and runs a set 

of commands to verify that the change is good and didn’t break any-thing”  (Meyer 2014, 

14). Many of my interviewees explicitly reported using it, while it is implicit in the Agile 

and Agile-like methods mentioned by others. One CEO told me the general idea of 

continuous integration is: 

you wanna be releasing as frequently as possible. So any time someone 

adds code to the code base that is polished and good it should go to 

production right away … that should all be done automatically. People 

shouldn’t have to manually push code to the server. Which … is an error 

prone step … you wanna just have like an automatic flow (P 2). 

An R&D programmer said that “when somebody finishes their code and pushes their 

code it’ll automatically get built and they’ll get the build out of that. They won’t have to 

build it on their machine … It’s very essential. Without continuous integration it’s very 

difficult to get any work done” (P 4). One CEO reports doing continuous integration “at 

an unusual speed. So many companies have like a nightly build or a weekly build … We 

build … for every change somebody makes” (P 2). Continuous integration aims to 

automate, and thus accelerate, testing for bugs. For one commentator this is necessary 

because, “[i]f tests run longer than 10 minutes, developer productivity drops, slowing 

down the process of shipping new features or bug fixes to the customer” (Meyer 2014, 

14). The commodity form of AI not only influences the labour process via competition 

dynamics, however. It also exerts influence through other interested parties including 

customers, funders and management.  

The customer’s influence on the AI labour process can be substantial since many AI 

companies offer a consulting service as part of their business model. Others continually 

must respond to changing customer demands throughout the development process. One 

data scientist reported spending 40% of his time at work “responding to … ad hoc 
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requests coming from clients” (P 9). One startup CEO told me that, although he has a 

technical background, he spends a lot of time: 

going to conferences, going to events where we have to tell people how 

data science is different from BI [business intelligence] work. How data 

science is actually different ... from any of the software-as-a-service 

solutions that they are using … You can call that business development or 

you can call that building up client’s knowledge base (P 6) 

He elaborated that the “consulting business requires immediate response to clients, 

immediate photo ops, only then are you able to build a name big enough that you can … 

actually get word of mouth and clients start coming back to you. Rather than you going 

out and pitching to clients” (P 6). A different CEO even works as a CTO for one of his 

largest clients as a way “to offer something extra special” (P 13). Yet another CEO 

emphasized the commercial aspect of his work, noting that “the two things I spend most 

of my time on are pitching investors and sales” (P 3). A different CEO described a 

downside of his startup’s consulting business model: 

you know how they say that the sun never sets on the British empire? The 

same kind of deal. Because people are all in different time zones, it’s 

really bad for my sleeping patterns ... that’s a major drawback of being a 

high availability consultant ... it’s not healthy for you. We’re solving that 

with money. We got a cleaning lady who cleans the house. We’ve got a 

babysitter who watches the kids. So like, you know, a lot of things can be 

solved just with money (P 13). 

Another possible vector of influence is the potential for startups to be bought up. While 

none of the startup employees I spoke to told me their companies were actively seeking 

acquisition, one CEO (who said his company was too new to consider acquisition) told 

me that:  

one of the things that I’ve heard other companies say is that they kind of 

realized that they couldn’t get to the next phase on their own. So you 
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know the cost of acquiring new customers or they didn’t have the level of 

skill in their management to go after some big clients. That being part of 

bigger company just helped them pursue their goal better … generally 

there’s a strong desire for companies to exit, whether that means going 

public or becoming much, much bigger … being acquired (P 3). 

Further influence on workers comes from management, VC funders and incubator 

programs, to whom machine learning workers have to explain and justify their work. One 

data scientist described how after the production process is complete, he has to present 

his work to his managers: 

usually we sit in a conference room and we display the result on the 

projector. We zoom in to the visualizations to see what is happening. I 

present to higher management and after the work is approved, we compile 

it into a report or dashboard and then the higher management goes to the 

user or the customer … you have to do a number of iterations and then 

come up with some result and you have to convince your upper 

management that this is how I did it and this is the significance of that 

result (P 7) 

A lead scientist working at a startup embedded within a large company told me that “we 

report to an angel board that gives us our funding and funding decisions. But, ultimately 

they are less fickle than an outside agency might be” (P 15). One data scientist told me 

that an important part of his job was explaining how machine learning works to his 

bosses: “My managers don’t understand the complex mathematics ... I am the one who 

decodes all of this for them” (P 8). One engineer told me that one of the biggest problems 

facing his company was that they do not have a co-founder which means that the social 

“bandwidth” of the company is solely provided by the CEO (P 4). A CEO described his 

experience in an incubator program like this: 

every 8 weeks you meet a whole bunch of successful entrepreneurs, 

investors and they grill you. And if one or two is willing to spend 4 hours 
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of their own time over the next eight weeks, then you can stay in the 

program. If no one wants to commit time to you, then you get kicked out. 

So ... obviously, it can be pretty anxiety provoking and stressful (P 3). 

A recent study confirms that communicating to one’s superiors is a large component of 

work in the AI Industry. According to Bowne-Anderson (2018) “the vast majority” of 

data scientists say that their “key skills” are not their technical machine learning or data 

science skills but rather their “abilities to learn on the fly and to communicate well in 

order to answer business questions, explaining complex results to nontechnical 

stakeholders … and convincing decision makers of their results”.  

In sum, the commodity form of AI necessitates a labour process optimized for speed, 

with long workweeks, continual adaptation of workers to technical change and an 

emphasis on communicating technical aspects of work to non-technical stakeholders 

including management. 

5.11 Empirical Control of the Machine Learning Labour 
Process 

The machine learning labour process is not only optimized for competitive commodity 

production. It has also been structured for maximum control, albeit of a decentralized or 

deterritorialized variety of control. This is evident if one observes the development 

process ideologies and the software tools employed.  

As I mentioned above, nearly all of my interviewees reported their workplace as using an 

Agile or Agile-like development framework. Agile is a methodology for managing 

knowledge workers. To understand the significance of Agile, it must be seen in contrast 

to the waterfall development model which preceded it. The waterfall model is a 

sequential model of development where a certain number of stages follow one another in 

a rigid order. It derives from manufacturing, but was deployed in early software work 

before specialized paradigms for software had been developed. An early, possibly the 

earliest, formal description of the waterfall model appears in Royce (1970) who says it is 
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“risky and invites failure” in the context of software production because testing only 

occurs at the end, meaning that failure entails restarting the process entirely (329).  

 

Figure 1: Waterfall Methodology (Royce 1970, 329) 

The problem is that a software product cannot usually be specified in sufficient detail in 

advance, like a bridge or automobile can be. While the waterfall method “assumes that 

variations are the result of errors,” Agile expects that “external environmental changes 

cause critical variation,” or in other words, that changes in the course of development are 

inevitable and their cost should be minimized (Highsmith and Cockburn 2001, 120). 

Proponents of the approach thus describe Agile as “the ability to create and respond to 

change. It is a way of dealing with, and ultimately succeeding in, an uncertain and 

turbulent environment” (Agile Alliance n.d.). It is thus no surprise that it has been widely 

adopted in today’s AI Industry with its focus on machine learning production which is 

“significantly … less predictable process than traditional software development since the 

models learn from data rather than specific human instruction” (Yao 2019). The 

principles of Agile were stated in a manifesto by a group of software engineers in 2001 as 

follows: 
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Individuals and interactions over processes and tools 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following a plan (Beck et al. 2001) 

Rather than following a one-way waterfall sequence, Agile functions incrementally and 

iteratively. Incremental means that each step of the production process should produce a 

new working part that is added to preexisting ones. Iterative refers to recognizing the 

“impossibility (or at least improbability) of getting a feature right the first time” (Cohn 

2010, 257). Agile development is thus organized into a series of “sprints” which are 

usually between a week and a month long, at the end of which the workers are expected 

to deliver working software (Cohn 2010, 258). The goal is that a working prototype is 

produced as soon as possible and is progressively improved. One software engineer 

summed it up to me as “the idea of pushing something out early and iterating on it” (P 

12). 

 

Figure 2: Agile Methodology (Kuruppu 2019) 

There are many Agile approaches to software development but one that several of my 

interviewees mentioned (and perhaps the most popular overall) is Scrum (Denning 2015; 

Scrum Alliance 2018). Proponents of Scrum describe it as a “radically different 

approach” to software development which “reintroduces flexibility, adaptability, and 

productivity into systems development” (Schwaber and Beedle 2002, 1). It aims to the 
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increase the flexibility attributed to Agile approaches by a further dismemberment of 

traditional management practices. While Agile development in general may still be 

structured in a traditional hierarchical manner, in Scrum the workers, called the Scrum 

Team, are “self-organizing and fully autonomous. They are constrained only by the 

organization’s standards and conventions, and by the Product Backlog that they have 

selected” (Schwaber and Beedle 2002, 9). The Product Backlog is a “prioritized list of 

project requirements” which is continually modified throughout production (Schwaber 

and Beedle 2002, 7). The Product Backlog is dealt with through a system of commitment 

making. After deciding on a task and timeline, one inference engineer told me that 

management “treated it as a promise. Where if you missed it you’d have to give daily 

updates or hourly updates ... And there’d be someone else, another engineer, who’d co-

sign with you. And they were also responsible for you finishing that task” (P 10). 

Since the Scrum Team determines how to complete a sprint autonomously, the function 

of management is redefined. In Scrum, rather than direct and delegate, “[m]anagement's  

new and primary job [is] to maximize the team's productivity, to be there to help it do the 

best that it [can]” (Schwaber and Beedle 2002, 7). A primary function of a manager in 

Scrum is to run the Daily Scrum. This is an approximately 15 minute meeting, usually 

held in the morning, in which the Scrum Team assesses their progress, revises the 

Product Backlog, and commits to their next tasks. People not in the Scrum Team may 

attend these meetings, but may not speak or interfere in any way (Schwaber and Beedle 

2002, 42). The manager largely reacts to what is learned from the Scrum Team during 

these daily meetings. Proponents of Scrum argue that by “stripping away cumbersome 

inappropriate and cumbersome management practices, Scrum leaves only the essence of 

work ... Although the Scrum process seems simple and skeletal, it provides all the 

necessary management and controls to focus developers and quickly build quality 

products” (Schwaber and Beedle 2002, 10).  

The workers I spoke to generally enjoyed the autonomy provided by Scrum and Agile 

approaches. One research intern described his company as “very good about letting 

people manage their own time ... They were pretty flexible. As long as your targets are 

being met. And you’re making progress. I really liked that part. I didn’t have to actually 
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be at work. There would be days where I would just work from home” (P 17). One lead 

scientist expressed an interesting bipolarity of autonomy entailed by these development 

methods: 

On the one hand, what we are doing is decided … So on that level there is 

no autonomy because the projects are broadly set. But on the level of how 

exactly we’re doing that I have complete autonomy. The absolute freedom 

to choose between techniques and approaches ... Or to do research into 

them if I feel it’s necessary. That’s one of the reasons I like working at a 

smaller place like this. I feel you get to set what the project is and you get 

to do what you’re passionate about, what you like (P 15). 

This agrees with what Barret (2005) describes with her notion of “technical autonomy” in 

software work, as discussed in Chapter 2 (95). However, while workers do enjoy this 

sense of autonomy, Scrum remains a “management and control process” and a “kind of 

social engineering aiming to achieve the fulfillment of all by fostering cooperation,” as 

proponents of it admit (Schwaber and Beedle 2002, 1). And like other management 

control techniques, Scrum has an interesting relationship to automation.  

Scrum promoters Schwaber and Beedle (2002) distinguish between defined and complex 

production processes. Defined processes are “simple with unobtrusive noise” and can be 

controlled and executed repeatedly through rigorous definition (94). Any process that 

cannot be described in sufficient detail to be controlled predictably and repeatedly is a 

complex process that must be controlled by empirical process control. The “empirical 

model of process control ... provides and exercises control through frequent inspection 

and adaptation for processes that are imperfectly defined and generate unpredictable and 

unrepeatable outputs” (Schwaber and Beedle 2002, 25). They offer this illustration: 

Chemical companies have advanced polymer plants that require empirical 

controls. Some chemical processes haven't been defined well enough for 

the plant to operate safely and repeatably using a defined process control 

model. Noise has rendered statistical controls ineffective. Frequent 

inspections and verification are required to successfully produce a batch. 
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As chemical processes become better understood and the technology 

improves, the plants become more automated. However, assuming 

predictability too soon is the recipe for an industrial catastrophe 

(Schwaber and Beedle 2002, 100-101) 

The authors argue that because all extant software development methods are based on 

“partial and weak definitions of development activities” software production must 

likewise use empirical control (Schwaber and Beedle 2002, 95). Hence, the surveillance 

inherent in the Daily Scrum. Rather than dictate the work of expert machine learning 

workers, with Scrum management monitors them, at least until the automation of said 

work becomes feasible. The technical autonomy of machine learning workers must be 

understood in this context of control and surveillance. The words of a VP of engineering 

responding to a presentation on the Scrum methodology are instructive: “Fine ... I'm 

willing to take the risk of giving the team autonomy for defined periods” (Schwaber and 

Beedle 2002, 82).  

Scrum can more easily be grasped as a technique of control by looking at the software 

tools it employs. Scrum-based production typically employs a variety of proprietary 

software. One of these which several of my interviewees reported using is JIRA. JIRA is 

a project management and bug tracking software produced by the Australian enterprise 

software company Atlassian. Nevogt (2019) writes that “Agile methodology is built right 

into JIRA”. JIRA is a centralized project management system in which “[a]ll projects are 

logged into a central database and each one goes through a number of workflows 

(processes) … [which] control the status of the project as well as the rules by which it 

transitions to other statuses” (Nevogt 2019). Workflows are comprised of issues that are 

represented as boxes (states) connected by arrows (transitions). JIRA can automatically 

generate a variety of visualizations and summaries tracking various aspects of the labour 

process for managers. Further, JIRA includes “feature-rich time tracking” and the option 

for automatic screenshots, as frequently as every minute, for all users so that management 

can “get accurate timesheets for [the] whole team” (Nevogt 2019). Advocates of Scrum 

are proud that there are “no mechanisms in Scrum for tracking the amount of time that a 

team works. Teams are measured by meeting goals, not by how many hours they take to 
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meet the goal” (Schwaber and Beedle 2002, 73). JIRA, however, provides a technical 

way to include time tracking in Scrum and allows real-time surveillance of the work of 

the whole Scrum Team.  

In sum, while the machine learning labour process is free from defined control models, it 

is subject to empirical control via development methodologies like Agile and Scrum and 

software such as JIRA.  

5.12 AI is Automation 

Patel (2017) writes that many “though not all, tech workers are integral to the employing 

class’s current efforts to flexibilize, speed up, or eliminate other people’s work”. When I 

asked AI Industry workers whether they thought of AI as an automation technology and 

whether they were concerned about its potential effects on employment in general, 

responses varied. One software engineer defined machine learning not as automation but 

rather as machines doing things that people cannot, but he was the exception to the rule 

(P 4). Most recognized AI as an automation technology, although there was a range of 

evaluations as to its likely effects on society. Nearly all respondents recognized that AI 

automation would have effects on employment, though the extent of effects they 

expected varied. What was most interesting to me was how AI-based automation was 

described, regardless of its potential effects. Several interviewees spoke of AI as 

automation in terms of desirable efficiency.54 A software engineer told me: 

people in the industry tend to think of ML, or AI ... in terms of efficiency 

… We’re discovering ways of making processes more efficient than they 

currently are ... the way that technology contributes to the economy, it is 

in discovering new efficiencies ... Uber is cool not because people are 

driving around or picking people up, but because it’s more efficient than 

what the current system, or the preexisting system of getting rides was (P 

12) 

 

54
  This is likely connected to the notion of optimization which Wu (2019) argues is uncritically deployed 

widely in computer science. 
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The same engineer elaborated: “I definitely envision the work we’re doing enabling 

automation in areas which are currently busywork … Should we pay someone 4, 5, 6 

hundred thousand dollars a year just to say this is where the cancer is? That’s a cost to 

our health system ... In the long run, probably we shouldn’t be paying that if we can 

automate that” (P 12). This sentiment was echoed by a lead scientist for whom 

“automation itself is about, broadly, timesaving” (P 15) and by a startup CEO, who said: 

It’s about making processes more efficient. Which is what software is 

about in general. It’s just a new kind of software. It’s something people 

have to adopt to stay competitive … I sleep very well at night. I don’t 

worry about … am I taking people’s jobs away? Ask your blacksmith (P 

13) 

One lead scientist said that fears of technological unemployment are “always rooted in 

the lump of labour type fallacy where this certain demographic is going to be completely 

replaced and therefore those people will just lose their jobs … I think historically that 

hasn’t really panned out” (P 15). A software engineer, discussing automation, said: “I am 

an optimist. I think if there are no sweatshops left, that would on the whole be a net good 

for humanity” (P 12). An inference engineer similarly told me that he expects the “overall 

impact in society … will be positive in the long run … I think it has potential to free up 

people’s time so they can maybe do something else that’s productive for the economy or 

their selves or whatever” (P 10). One lead scientist even evoked a utopian (or Marxian) 

spirit: 

I would like to believe the early socialist and communist writers. That 

having that extra labour taken care of in the work force will free people up 

for extra time. That your productivity will increase and therefore the time 

required for your work will decrease. That has never happened, but I 

would like to believe it (P 15) 

In the course of discussing automation I also asked AI workers whether they thought their 

own work might be automated. What I learned surprised me and set me on a new path of 

research. 
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5.13 The Automation of AI Work 

My interviewees told me that high-skill work in the AI industry is already being 

automated – sometimes through the recursive use of AI.55 While some interviewees 

expressed concern for their jobs, others told me that they wanted more, not less, 

automation in their own work. An inference engineer told me that while he thinks his job 

is safe for now, “[s]omething is going to automate it eventually … But I’m not worried 

because I don’t see any kind of like general AI for decades probably” (P 10). Others 

expressed more imminent threats to their jobs. One data scientist told me:  

if I want to secure my job in the future, maybe after five years, I need to 

learn new technologies. I need to step out of the typical ML models, move 

toward deep learning or move towards big data … in my company, a few 

years before the data cleaning was performed using Excel. But now we 

have replaced all that with … complex programs which take in the data 

and sort out all the anomalies and clean out the data (P 8).  

One R&D programmer said: 

I think [the chance my work will be automated is] very high ... all work is 

possible to automate in my opinion ... the last few things to go will be very 

high end programming, that is, the part of my job that is the most creative 

and most intellectual … But most of programming, let’s say 70-80% of 

programming, is drudgery. It’s a lot of … moving around code … doing 

all sorts of nonsense. All that is going to go away ... the last things that 

will be to fall are other creative tasks, for instance, poetry and music. But 

 

55
 One startup CEO I spoke to was very skeptical of this, though since then the practice has become 

increasingly prevalent. He said “But ML writ large, things are changing too fast. There’s no point in 

automating it. You’re going to spend more time doing the automation than you are just doing the work. 

There’s certain automation that’s very smart. For example, taking snapshots so that you can reuse large 

chunks of work. Containerization … There’s a very poor history of code writing code, like code generators. 

It’s unreadable, it’s not efficient ... It does not work. There are many, many efforts to do this. None in 

production in real companies. The software that you’re using, the ML stuff that you see when you go to 

Amazon or whatever. It’s all written by humans. None of it is computer generated” (P 13). 
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even that, I hesitate to say because there are engines that can prepare ... 

poetry now ... Maybe mathematics … I need to start doing math … Too 

many people can do [programming]. And machines will soon be able to do 

it … I’m actually applying for a math Ph.D. soon (P 4) 

One startup CEO discerned a similar threat:  

Machines will teach machines better. That’s what’s going to happen in the 

future … I think even ML jobs are going to be really, really replaced … 

most software related jobs are going to go eventually. I see them in the 

next 20 years going ... People will just describe over voice commands – 

say 'OK, I want to build an Uber-like app that does X, Y, Z'. And then the 

computer will ... simulate a couple of them ... the idea is not art, what you 

can build, as funny as it sounds, it’s actually finite. It’s very large, but it’s 

finite. What’s infinite is the design. But in terms of the core functionality 

what you’re really doing is, you’re inserting the data, you’re applying 

some logic and you’re storing the data. That’s finite. What’s infinite is, 

OK I want it to be this colour blue, I want the box here, I want this. And 

we already have software solutions that do those kind of approximations 

for us right now ... You know people use Google Firebase so I really see a 

lot of software jobs going in the future” (P 5). 

A similar view was expressed by one data scientist who said “I think the next step for 

machine learning is to make it possible for anyone to run some pattern recognition or 

statistic task in little time, get the results for themselves” (P 9). But not all of my 

interviewees were so concerned. Some expressed quite the opposite opinion. One 

machine learning scientist told me: 

for data scientists and ML scientists in general … I don’t think the fact 

that it’s being automated is a threat. It’s sort of a convenience I would say, 

because then you can go and do more important stuff. More higher level 

stuff. Things that actually matter ... a few decades ago, you’d sit down and 

… use assembly, talking in 0s and 1s to the computer, which was really 
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hard. And you wouldn’t get too far. But now we have very high level 

languages ... so when Python as a programming language got really 

popular, you were like, oh! I can do a [inaudible] with so many less 

characters or lines. But now, even the languages get updated and now the 

thing that was half a page of code is now just a couple of lines of code. So 

things go higher ... You can go think about what matters ... So I think it’s, 

at least for the ML community … not so much of a threat (P 16) 

When asked whether he thought his work will be automated, one data scientist said he 

was looking for a way to automate feature engineering in particular. Another had more 

general hopes for automation: 

I think if you work as a programmer, as a general rule, if you keep doing 

the same thing for six months you have to start to think of automating. It 

shouldn’t take much longer than that. And if you keep doing the same 

routine job for a year, you’re probably doing it wrong. There must be a 

higher level of abstraction that can use to go… make things easier for 

yourself … you don’t have the limitation of tools and material. A civil 

engineer needs all the steel, and all the workers, to build a thing he 

designed. But if you design something in the computer you can ... test it, 

tear it down and build something on top of it that operates it. We should 

always move towards automating. That’s what I always ask everyone in 

our crew … what is the routine and if we can automate it, let’s do it (P9) 

This is a widely held view. A study of 240 data scientists found that “they don’t 

particularly love munging and cleaning data … [they consider it a] waste of their skills to 

be polishing the materials they rely on” (Theuwissen 2015, 9). Vorhies (2017b) explains 

that it “seems like a natural progression to automate what can be safely automated and 

preserve our time for the creative portions of data science”. McClure (2018) even argues 

that “automation is the responsibility of the seasoned practitioner … automation ensures 

our work focuses solely on what is novel to the challenge. When we can rapidly explore 

the space of possibilities, we promote a much stronger ROI on data-intensive projects”. 
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However, ease and efficiency are not the only reasons for desiring more automation. A 

senior software engineer I spoke to explained how the machine learning labour process 

requires a lot of guesswork and experimentation. This lack of knowledge, he held, was a 

primary motivation for automating machine learning work: 

there’s a lot of dark art to the design and layout of a neural network. 

You’re ... drawing a graph and … you have this expectation that data is 

going to flow through this graph in some way and you’re going to update 

these things and there’s some relationship between the shape of the layout 

of this graph and the quality of the outputs that come through it. What is 

that relationship? … nobody really has more than a cursory understanding 

of that relationship. Well, we know how to make it really, really bad. We 

know what not to do ... And if we wanna get better performance we can 

tweak it a little bit. But we don’t actually have a firm model or theory 

behind it ... if you’ve got a model going, it’s doing these predictions, 

you’re sitting there and you’re trying to tweak it to get a little more 

performance. And some of this tweaking is random and some of it is like 

enlightened randomness ... And we pay people quite a bit to be better than 

random at this. But at the end of the day, they’re not experts at this. They 

don’t have this deep understanding of how to make the perfect network 

that works as well as it possibly can … In my mind, automating this 

process of exploring, trying different types of networks, that seems a very 

natural leap to me … There are many aspects of ML where we actually 

use ML systems to try to tweak it in various ways. And this is just a 

growth of that into: can we try to use ML to learn all the parameters of a 

ML network itself? So it seems like an incremental development to me” (P 

12) 

In this formulation, the dark art at the heart of machine learning drives the automation of 

its production. A survey of 240 AI workers agrees that in machine learning there “isn’t a 

codified set of strategies but a wide range of approaches” (Theuwissen 2015, 13). Quoc 

Le, a Google machine-learning researcher, admits “We do it by intuition” (Simonite 
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2017b). McClure (2018) agrees that data science is an “art” because “knowing what 

knobs to turn, and by how much, cannot be codified. It involves experience, conversation 

with domain experts, and above-all trial and error”. However, it could be argued that this 

work is being automated precisely because it has not been codified. Indeed, I will argue 

that the automation of machine learning work represents a qualitative shift in automation 

towards what I call automation without codification. The next section explores this 

emerging technology in depth.  

5.14 Automating the Machine Learning Labour Process 

My interviewees did not have much detailed information about how exactly machine 

learning work is being automated, but mention of a technique called hyperparameter 

optimization put me on the trail of the emerging practice of automatic machine learning 

or AutoML. AutoML refers to a diverse and growing collection of techniques which 

automate tasks in all three stages of the machine learning labour process, “from data 

collection and cleaning, to model development and testing, to production deployment and 

scaling” (Yao 2019). AutoML has become increasingly prevalent since the time of my 

interviews. What used to be an experimental project for AI tech giants like Google and 

Facebook is now the basis for several commodities and open source projects.  

In the first stage, data processing, AutoML applications such as MLBox are available for 

data preprocessing, cleaning and formatting. Zöller and Huber (2019) survey the variety 

of applications by which “low quality data can be automatically detected and corrected” 

although they note that, for now, only basic, general aspects of cleaning are automated 

and “advanced and domain specific data cleaning is conferred to the user” (19-20). The 

key task of feature engineering, which requires considerable knowledge about the domain 

the data represents as well as intuition and a lot of trial and error, is also being automated 

via “feature learning” networks which can automatically pull out the most relevant 

features from data sets (Hardesty 2015; Koehrsen 2018).  

While so far attempts at automating AI ghost work have not been completely successful, 

as widespread reliance on human ghost workers evinces, efforts are underway. 

Companies such as ClaySciences and DataLoop are producing “automatic annotation” AI 
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systems which make an initial pass at annotating datasets, so that human ghost workers 

only have to provide corrects and supplementary information (Singer 2019; Nakashima 

2018; DataLoop n.d.). One machine learning expert predicts that in five to ten years the 

process will be fully automated (Nakashima 2018). The windows provided by the 

“paradox of automation’s last mile” may not continue to appear forever (Gray and Suri 

2019, 17). 

AutoML is also being applied in the second stage, where the machine learning model is 

trained, in at least two ways. The first is model design. Designing machine learning 

models requires a “significant amount of time and experimentation by those with 

significant machine learning expertise” because “the search space of all possible models 

can be combinatorially large — a typical 10-layer network can have ~1010 candidate 

networks” (Zoph and Le 2017). It is often not possible to say what will work best for an 

unfamiliar problem. Model design is being automated via “neural architecture search” 

which uses machine learning to design and test thousands of options in the time humans 

could try a few (Elsken, Metzen and Hutter 2019).56 Some of these have come up with 

solutions their creators had previously not considered (Simonite 2017b).  

Another AutoML application in the second stage is hyperparameter optimization or 

“configuring the internal settings that govern the behavior of a model”. It is being 

automated in a way similar to neural architecture search, via the automatic design and 

testing of configurations at inhuman speeds (Li and Talkwalkar 2018).57 TransmogrifAI 

(n.d.) boasts that its AutoML product: “achieves accuracies close to hand-tuned models 

with almost 100x reduction in time”. 

 

56
 Microsoft is employing a similar technique called “human-assisted search” in which “researchers can 

identify a promising arrangement for massive neural networks, and then the system can cycle through a 

range of similar possibilities until it settles on this [sic] best one” (Metz 2016a). 

57
 Facebook has also developed Asimo, called an “automated machine learning engineer” which “can 

automatically generate enhanced and improved incarnations of existing models” (Metz 2016b). According 

to one Facebook scientist: “It cannot yet invent a new AI algorithm … But who knows, down the road” 

(Metz 2016b). 
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Finally, AutoML is also used in the deployment stage. Companies such as Seldon 

automate the process of “wrapping” a model in a different programming language API 

while Microsoft Machine Learning Service allows a model to be automatically deployed 

as a web service, ready for embedding in applications (ThinkGradient 2019). 

5.15 Automation Without Codification 

What is distinctive about AutoML techniques is that they are being applied to aspects of 

machine learning work which have been resistant to Taylorist codification due to a lack 

of knowledge which not even expert workers possess. As Vorhies (2017b) writes, the 

“features being automated require a great deal of skill and experience to get right”. 

AutoML overcomes or sidesteps the lack of skill and expertise through brute force 

techniques of experimentation and learning. Automation without codification. Instead of 

codifying, AutoML enacts a new level of technological recursion. It uses the results of 

machine learning “to train another machine learning model that can optimize the training 

of machine learning models” (Metz 2016b). 

Classical AI is automation. It eliminates the worker by capturing her knowledge and 

skills about how to solve a problem (via interviews or time-motion studies). Machine 

learning can thus be described as “automating automation” (Raschka 2016). Machine 

learning (ideally) eliminates the need for a worker who first knows the solution to a 

problem by extracting the solution from data automatically without it first existing in a 

worker’s head. However, it requires skilled machine learning workers to prepare data, 

choose algorithms and train models. 

AutoML (ideally) eliminates not only the need to know the solution to a problem in 

advance, but also the need for knowledge of much of the “black art” of machine learning. 

It replaces aspects of high skill machine learning work with brute force experimentation. 

AutoML can thus, prolixly, be called “the automation of automating automation” (Mayo 

2016). AutoML represents for capital the possibility of dispensing with labour in two 

senses: in terms of both conceiving of the problem and a solution, as well as 

understanding and creating the tools by which a solution might be produced 
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automatically. Ideally, AutoML dispenses with both the need for someone to know how 

to solve the problem as well as for a skilled creator of an automatic problem solver.  

Since I conducted my interviews, AutoML has gone from an experimental technique for 

the AI giants to play around with to an emergent commodity. It is a primary component 

of the push for a so-called “democratization” of AI (Steinhoff 2019). This movement is 

largely motivated by the tech giants for whom it means “mak[ing] it possible for the 

citizen data scientist (aka lesser or untrained amateurs) to build some models directly” 

(Vorhies 2017b). But it is also tied up with capitalist competition. Discussing AutoML, 

Jeff Dean of Google Brain, says: “[c]urrently the way you solve problems is you have 

expertise and data and computation … Can we eliminate the need for a lot of machine-

learning expertise?’” (Simonite 2017a). 

It should be noted that AutoML techniques consume huge amounts of computational 

power. As recently as 2017, experts were saying that AutoML “requires such extreme 

computing power that it’s not yet practical to think about lightening the load, or partially 

replacing, machine-learning experts” (Simonite 2017a; see also Simonite 2017b). 

However, only two years later in 2019, many AutoML applications are already accessible 

via cloud platforms. There is now talk of “deep automation” in machine learning (Lorica 

and Loukides 2018) and the tech giants are working on “end-to-end” or “one-click” 

AutoML packages which aim to streamline the variegated components of the machine 

learning labour process into one user-friendly app which will require very little technical 

knowledge. These include Facebook’s FBLearner Flow, Google Cloud AutoML, Uber 

Michelangelo ML, Amazon ML, Microsoft Azure and Baidu’s EZDL (Dong 2017). A 

Facebook engineer describes Flow as a “machine learning assembly line” which will 

“help engineers build, test, and execute machine learning algorithms on a massive scale 

… using as little human grunt work as possible” (Metz 2016b).  

Some commentators are skeptical that the whole process can be automated due to a 

“combinatorial explosion” comprised of interacting “data attributes, models and 

parameters” (McClure 2018). Others argue that “there is one thing that AutoML 

definitely cannot do – it never replaces domain expertise” (Yao 2019). Yet, one has to 
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question the validity of such assertions in light of a recent achievement by Google.58 The 

Google AI lab recently demonstrated an end-to-end AutoML system (still in the research 

phase) which demonstrated “full automation” meaning that “[d]ata and computation 

resources are the only inputs, while a servable TensorFlow model is the output. The 

whole process requires no human intervention” (Lu 2019).  

 

Figure 3: Google AutoML (Lu 2019)  

In April 2019, the Google AutoML participated in a Kaggle Hackathon, competing 

against grandmaster level data scientists. The task of the competition was “predicting 

manufacturing defects given information about the material properties and testing results 

for batches of automotive parts” (Lu 2019). The Google AutoML placed second overall. 

Google researchers suggest that their success indicates the “potential application of 

AutoML methods across a wide range of real business problems” (Lu 2019). While it 

remains unclear how domain expertise might be automated, end-to-end AutoML should 

not be discounted as hype.  

5.16 Other Forms of Automation in Machine Learning 

Another important note is that AutoML has mainly been applied to supervised learning 

(Oliveira 2019). How or whether AutoML might be extended to unsupervised learning 

remains uncertain. But another machine learning technique known as deep learning may 

present opportunities for the increased automation of unsupervised learning. 

Most of the famed successes of deep learning have used supervised or reinforcement 

learning (Graves and Clancy 2019). However, as one data scientist told me, deep learning 

“is all about automating feature extraction … what are the important features that if my 

 

58
 One might also cite this statement from Brownlee (2014), proven wrong five years later: “we will 

probably never have automatic feature engineering”. 
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system is exposed to it, can best solve the problem? Deep learning basically tackles that 

part. So it’s inherently automation” (P 16). Indeed, the pioneers of deep learning point 

out that a “key aspect of deep learning” is that the “layers of features are not designed by 

human engineers: they are learned from data using a general-purpose learning procedure” 

(LeCun, Bengio and Hinton 2015, 436).  

Deep learning (at least theoretically) also addresses the question of domain expertise. 

According to Runfeldt (2017), “[o]ne of the biggest promises of deep learning (DL) is 

that domain expertise and handcrafted rules are no longer required to create really good 

predictive or generative models”. Instead, DL offers the “possibility of having a single 

algorithm go from raw data to a desired task, or ‘end-to-end learning’” (Runfeldt 2017). 

While this remains hypothetical as of 2019, a variety of attempts are being made to 

automate the unsupervised learning, which remains “the Holy Grail of Deep Learning” 

(Culurciello 2016). One of these is the use of evolutionary algorithms to evolve DL 

network architectures automatically (Wistuba 2018). Another area of research is meta-

learning or “learning to learn” which attempts to overcome the need for massive amounts 

of context-specific training data by having a system learn its own learning algorithm 

based on its environment or to automatically “exploit structure in the training domain”. 

Finn (2017) explains: “if we want our agents to be able to acquire many skills and adapt 

to many environments, we cannot afford to train each skill in each setting from scratch. 

Instead, we need our agents to learn how to learn new tasks faster by reusing previous 

experience, rather than considering each new task in isolation”.  

Another line of research is generative modelling. The generative adversarial network 

(GAN) has been successfully used to generate very convincing photos of people and 

objects which never existed in the real world (Goodfellow et al. 2014). GANs do not 

“simply reproduce the data they are trained … but rather build a model of the underlying 

class from which that data was drawn” (Graves and Clancy 2019). Fed enough 

(unlabeled) images of dogs, a GAN can eventually generate a new image of a dog which 

it has never seen before. The GAN is comprised of two networks which engage in a game 

of counterfeiting – one tries to generate new images while the other attempts to discern 

which ones the first has made. Throughout this process, both networks learn to do their 
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respective tasks better. Eventually, a GAN can produce synthetic images that are hard to 

discern from real ones – without human intervention. 

A final phenomenon worth noting is the automatic production of synthetic data. One 

machine learning scientist, who was familiar with adversarial modelling, told me: “I’m 

aware of a lot of techniques that work on sparse data. Ultimately they do work, don’t get 

me wrong. But the sort of ideology behind them is always that more data makes them 

better. It’s very rare that you’ll find anyone in the field who’ll say I’ve got enough data, 

it’s fine” (P 15). It is not surprising then that the process of automation is also being 

applied to solve the problem of data availability by creating data instead of functioning 

with less of it. Research is being conducted on how use machine learning to generate 

synthetic data instead of gathering it from the real world. One such system, called by its 

creators the “synthetic data vault” has generated data which data scientists have then 

trained models on and deployed with accuracy exhibiting “no significant difference” in 

performance from models trained on real world data (Patki, Wedge and Veeramachaneni 

2016, 1). 

5.17 Conclusion 

This chapter has shown how the machine learning labour process is structured by the 

exigencies of commodity production and is governed by empirical control practices. It 

has also explored how the stages of the machine learning labour process are being 

automated through the recursive application of AutoML, which represents a qualitatively 

novel type of automation – automation without codification. In the next chapter, I analyze 

post-operaismo’s claim for a new autonomy of immaterial labour. I show that if we 

interrogate the theory of immaterial labour by the light of the labour process analysis of 

this chapter, claims for a new autonomy seem dubious at best.  
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Chapter 6  

6 The New Autonomy of Immaterial Labour 

With the reality of work in the contemporary AI Industry now set out, I am now able to 

assess post-operaismo’s claim for a new autonomy of immaterial labour from capital. 

First, I clear the ground by noting several substantial criticisms that have been levelled at 

immaterial labour theory. While these are all serious objections which point to flaws in 

the conceptual grounding of the theory of immaterial labour, my approach is different. 

Instead of attempting to reveal theoretical inconsistencies within immaterial labour 

theory, I test it by comparing it to actual AI work. I do so by reconstructing the 

technological argument for immaterial labour’s purported new autonomy.  

While the purported new autonomy of immaterial labour is certainly connected, as Pitts 

(2018b) argues, to Negri’s philosophical shift from dialectics to Spinozan immanence, 

more important from the point of view of this study is post-operaismo’s argument that 

technological change is at the root of the purported new autonomy of immaterial labour. I 

show that the three stages of the technological argument for new autonomy are refuted by 

what I have learned about AI work – immaterial labour par excellence. I argue that AI 

work is, in fact, characterized by its subjection to diverse forms of control by capital and 

that therefore post-operaismo does not provide an adequate theoretical framework for 

studying AI labour.  

Finally, I show how AI work maps better onto the theoretical framework offered by 

NRM. Because it asserts the continued relevance of Marx’s theory of value, NRM allows 

us to understand the AI Industry as characterized by the same the dynamics of labour and 

capital which Marx himself noted 200 years ago. The AI Industry today is, in particular, 

centered around the production of fixed capital, production that itself recursively requires 

ever larger outlays of fixed capital. A perspective influenced by NRM also allows us to 

grasp the new type of automation represented by AutoML – automation without 

codification – as indicative of a new tendency for capital. I suggest that with AutoML 

capital gains an embryonic autonomy from labour, rather than the other way around. In 
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conclusion, I argue that what post-operaismo thinks is autonomy is in fact obsolescence. 

However, NRM does not escape this encounter unscathed either. I suggest that NRM’s 

labour theory of value is not prepared to grasp the future trajectory of AI and capital 

suggested by AutoML. 

6.1 Extant Criticisms of Immaterial Labour Theory 

Before setting out my critique of immaterial labour’s purported new autonomy from 

capital, I will first review some extant criticisms of related elements of the theory of 

immaterial labour.   

A substantial criticism, related to how immaterial labour comprises two 

incommensurable types of worker, as briefly discussed in Chapter 2, is the claim for the 

hegemony of immaterial labour. Hardt and Negri hold that immaterial labour has 

“become hegemonic in qualitative terms and has imposed a tendency on other forms of 

labor and society itself … today labor and society have to informationalize, become 

intelligent, become communicative, become affective” (2005, 109). While Hardt and 

Negri sometimes hedge this as designating only a “tendency” (2005, 107) they 

simultaneously hold that there has already been “a real homogenization of laboring 

processes” (2001, 292). A ready objection is that this hegemony ignores, for instance, the 

slave labour in African coltan mines and the Fordist manual labour of Foxconn factories. 

And as Fuchs (2014) asserts, such formulations “hardly account for the continued 

importance of … very material resources like oil” (140). Immaterial labour theory suffers 

from making broad generalizations. As Camfield (2007) argues, positing a “globally 

hegemonic socio-technical figure of labour in any era in the history of capitalism” both 

ignores the various forms wage labour has taken over the history of capitalism and 

glosses over so much detail as to be analytically useless (13-14). This is true, but it does 

not necessarily preclude the new autonomy of immaterial labour posited by post-

operaismo.  

Two further criticisms have been made of immaterial labour’s putative immateriality. The 

first concerns the necessary materiality of labour. Thompson (2005) points out that labour 

is “never immaterial. It is not the content of labour but its commodity form that gives 
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‘weight’ to an object or idea in a market economy” (84). Hardt and Negri (2005) attempt 

to address such objections by explaining that immaterial labour “remains material – it 

involves our bodies and brains as all labor does. What is immaterial is its product” (109). 

However, this does little to fix the issue raised by Thompson – post-operaismo’s neglect 

of the form of value. As Pitts (2017) argues, “[i]f Marx’s theory of value relates not to 

quantification but to the analysis of form, there is little difference between material and 

immaterial labours” (333). The same applies to the products of labour. This connects to 

yet another – most damning – objection to immaterial labour theory. 

This is the refutation of post-operaismo’s argument against Marx’s labour theory of 

value. According to post-operaismo, the multitude collectively produces, often outside 

the workplace. Therefore, immaterial labour cannot be quantified, and value can no 

longer be measured. Marx’s ruminations about the collapse of capital in “The Fragment 

on Machines” have come true. Pitts (2017) lucidly shows how this position relies on a 

premise which it simultaneously denies: “postoperaist claims of the Fragment’s 

realization rest on a disavowed orthodoxy. Despite their professed anti-productivism, 

they advocate a conventional labour theory of value (LTOV) as a means by which it can 

be dismissed as historically redundant” (329). In other words, post-operaismo posits 

Marx’s value theory as dead because the distributed immaterial labour of the multitude 

makes it unmeasurable. However, on a NRM reading of Marx’s value theory, there is 

already a mechanism built-in to capital for quantifying this distributed sort of labour – the 

exchange relation, in which value as a form of social mediation, is realized (Pitts 2018a, 

11-12). Immateriality is always a property of labour under capital because value is 

immaterial. Pitts (2018a) therefore argues that post-operaismo’s understanding of value is 

“nowhere near immaterial enough” (6). I will discuss later how value continues to 

structure the AI Industry and work therein.  

Post-operaismo’s claim for a new autonomy of immaterial labour has received relatively 

little attention. An early critique was made by Thoburn (2001) who notes that Empire and 

Negri’s earlier solo work seem “to equate a tendency toward the productivity of 

communication with an emerging freedom—as if the more fluid and immaterial 

production becomes, the more it escapes control … socialized work itself [seems to be] 
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tending toward autonomy” (86-87). Yet, even as it describes this “emerging autonomy of 

immaterial labour” it contradictorily ascribes “Foucauldian and Deleuzian conceptions of 

the immanence of power to all social relations” (Thoburn 2001, 87). Camfield (2007) 

frames the same theoretical contradiction in terms of subsumption: 

Hardt and Negri’s claim amounts to a contention that the real subsumption 

of labour to capital is retreating, making capital parasitically exploitative 

of autonomous production. They do not attempt to reconcile this with their 

contention that the real subsumption of society as a whole to capital has 

taken place (35) 

This critique is substantial. It points out a fundamental contradiction in the 

theoretical foundations of post-operaismo. This, as Pitts (2018b) argues, is a result 

of Negri’s philosophical shift, which was elaborated by post-operaismo, away 

from Hegel’s dialectics to Spinozan immanence (153). Pitts is correct to point out 

that the shift to immanence changes the nature of the capital/labour antagonism. 

However, disputing the philosophical grounds of immaterial labour’s supposed 

new autonomy is not the goal of this dissertation. Instead, my focus is to assess 

the adequacy of immaterial labour theory for analyzing the real world. It is 

logically possible that immaterial labour’s purported new autonomy might obtain 

whether or not its theoretical foundations are consistent. As I will show, new 

autonomy is purported to be a result of technological changes in post-Fordism. In 

the next section, I reconstruct this technological argument.  

6.2 The Technological Logic of New Autonomy 

I argue that post-operaismo’s technological logic for a new autonomy of immaterial 

labour proceeds by three main steps. 

Human-machine hybridization > Abstract Cooperation > New Autonomy 

The following sections elaborate each stage to reveal the technological logic that 

underlies ILT. 
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6.3 Human-Machine Hybridization 

Post-operaismo argues that in post-Fordism the balance of technological power shifts in 

favour of labour, contrary to the grim depictions of workers becoming the appendages of 

machines in Chapter 15 of Capital Volume 1. Capital increases its organic composition, 

but “the changing composition of capital … contributes, subjectively, to strengthening 

the position of labor” (Hardt and Negri 2017, 114). The “repressive use of technology, 

including the automation and computerization of production” which capital relied on in 

previous eras becomes increasingly difficult because technology and labour are no longer 

at odds with one another (Hardt and Negri 2001, 267). Rather than being subject to 

increased deskilling and domination, labour gains increasing control over, and merges 

with, machines: “the hybridization of humans and machines is no longer defined by the 

linear path it followed throughout the modern period … [workers] have the capacity to 

take control of the processes of machinic metamorphosis” (Hardt and Negri 2001, 367). 

Capital loses control over technology and therefore the logic of increasing organic 

composition of capital outlined by Marx is supposedly no longer valid. Instead, the 

multitude becomes increasingly machinic: 

The scientific, affective, and linguistic forces of the multitude 

aggressively transform the conditions of social production … This 

consists above all in a complete revision of the production of 

cooperative subjectivity; it consists in an act … of merging and 

hybridizing with the machines that the multitude has 

reappropriated and reinvented; it consists … in an exodus that is 

not only spatial but also mechanical in the sense that the subject is 

transformed into (and finds the cooperation that constitutes it 

multiplied in) the machine (Hardt and Negri 2001, 366-367). 

Hardt and Negri restate this notion in their latest book: “[w]e should also recognize, 

perhaps now beyond Marx, as production is increasingly socialized, how fixed capital 
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tends to be implanted into life itself, creating a machinic humanity” (2017, 114).59 It is 

important to note here that while Hardt and Negri certainly draw on the broad and 

figurative conception of the machine developed by Deleuze and Guattari (see Hardt and 

Negri 2017, 110) not all of their references to machines can be understood in this register. 

Deleuze and Guattari’s notion of the machine was deployed to express how human labour 

is always already enmeshed with technologies, institutions, techniques and various non-

humans.60 In contrast to this transhistorical conception of machine, Hardt and Negri 

describe a new process of human-machine merging, specific to the post-Fordist era. In the 

past “the productive process … severely restricted the actualization of the potential that 

exceeds capital’s bounds … The affective and intellectual talents, the capacities to 

generate cooperation and organization networks, the communication skills” (Hardt and 

Negri 2009, 151-152). But things are different in the era of immaterial labour: 

Ever since industrial civilization was born, workers have had a much more 

intimate and internal knowledge of machines and machine systems than 

the capitalists and their managers ever could. Today this process of worker 

appropriation of knowledge can become decisive: it is not simply realized 

in the production process but is intensified and concretized throughout 

productive cooperation and spreads throughout the life processes of 

circulation and socialization (Hardt and Negri 2017, 119). 

Technology changes from something alien that confronts the worker in the production 

process to a collective human prosthesis. Today, “[f]ixed capital … the memory and 

storehouse of past physical and intellectual labor, is increasingly embedded in ‘the social 

individual’” (Hardt and Negri 2017, 114). This new human-machine hybridity process or 

 

59
 The incorrect usage of fixed capital here, and in numerous other places, indicates the ongoing lack of 

interest of post-operaismo in the form of value.  

60
 “What is critical … in the concept of the machine, as both Deleuze and Guattari employ it, is a 

consideration of the organisation of the variety of components in relation to each other that comprises any 

given machine. For that reason machines can and do exist on any scale and can be both material and 

immaterial … visible or invisible … the key focus was on the assemblage as a collective machine and not 

… on the actual technical object” (Savat 2009, 3). 
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“machinic exodus” defines a new kind of human (Hardt and Negri 2001, 367). Hardt and 

Negri (2017) explain “when we say fixed capital is reappropriated by laboring subjects 

we do not mean simply that it becomes their possession but instead that it is integrated 

into the machinic assemblages, as a constituent of subjectivity” (122).  

The human-machine hybridization process is sometimes described as an ongoing 

struggle. Technologies, the “repositories of social intelligence, become ever more crucial. 

The curtain raises on the field of battle over control of fixed capital … Today we must 

immerse ourselves into the heart of technologies and attempt to make them our own” 

(Hardt and Negri 2017, 111). While the battle remains to be won, Hardt and Negri (2017) 

espouse an optimism founded, apparently, on the smartphone use habits of millennials: 

“When we look at young people today who are absorbed in machinic assemblages, we 

should recognize that their very existence is resistance” (123). This is a rather perplexing 

formulation of resistance. I suggest that it becomes comprehensible only if one elaborates 

an overlooked aspect of post-operaismo – its insistence on an irreducible human element 

in immaterial labour. 

Post-operaismo evinces a conviction that certain capacities of human labour are 

necessarily off-limits to implementation in machines. This allows it to affirm the 

becoming-machine of labour not as capital’s increasing organic composition, but rather 

as the expansion of labour’s self-directed capacities. Hardt and Negri (2017) assure us 

that a “Digital Taylorism” can only go so far—while it “sometimes seems as though 

computer systems, artificial intelligence, and algorithms are making human labor 

obsolete … in fact, there are innumerable digital tasks that machines cannot complete” 

(131). Virno (2003) explains this clearly when he asserts that in post-Fordism, “the 

means of production are not reducible to machines but consist of linguistic-cognitive 

competencies inseparable from living labor” (61). In other words, a “decisive role is 

played by the infinite variety of concepts and logical schemes which cannot ever be set 

within fixed capital, being inseparable from the reiteration of a plurality of living 

subjects” (Virno 2003, 106). For Moulier-Boutang, “[w]ithout the power of the living … 

which is radically distinct from machinery … none of this [immaterial labour] can take 

place” (2012, 163). This power of the living is autonomous creativity (Hardt and Negri 
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2001, 83) or “collective intelligence, creativity distributed through the entirety of the 

population” (Moulier-Boutang 2012, 34). For Moulier-Boutang (2012) the “essential 

point is no longer the expenditure of human labour power, but that of invention-power … 

the living know-how that cannot be reduced to machines and the opinions shared in 

common by the greatest number of human beings” (32, emphasis original). This he also 

defines as “implicit knowledge that is irreducible to machinism, to standardized and 

codified human capital” (Moulier-Boutang 2012, 54).  

6.4 Abstract Cooperation 

Post-operaismo attempts to conceptualize this essentially human creative capacity of the 

multitude with a reconfigured version of the notion of general intellect presented by Marx 

in “The Fragment on Machines”.61 While in Marx’s original formulation, the general 

intellect refers to capital’s armamentarium of knowledge and capacities excised from 

human labour and implemented in technology, post-operaismo reworks Marx’s notion of 

general intellect to describe the technologically-enabled mass intellectuality of 

immaterial labour. In so doing it inverts the concept. Hardt and Negri define general 

intellect as a “collective, social intelligence created by accumulated knowledges, 

techniques and know-how” (2001, 364). This definition, in itself, does not necessarily 

contradict Marx’s formulation. However, when they hold that in post-Fordism “labour is 

the productive activity of a general intellect and a general body outside measure” (Hardt 

and Negri 2001, 358) it is evident something has changed. Virno’s (2003) explanation for 

this change is as follows: 

Marx conceives the ‘general intellect’ as a scientific objectified capacity, as a 

system of machines. Obviously, this aspect of the ‘general intellect’ matters, 

but it is not everything. We should consider the dimension where the general 

intellect, instead of being incarnated (or rather, cast in iron) into the system of 

 

61
 Reading the notes which comprise Grundrisse on par with Capital Volume 1 is problematic. As 

Heinrich (2013) argues, Grundrisse lacks the fully developed theory of relative surplus-value which we 

find in Capital. The explosive contradiction that Marx finds waiting within capital in Grundrisse is 

resolved into the difference between absolute value and maximum surplus-value (210-212). 



176 

 

machines, exists as attribute of living labor. The general intellect manifests 

itself today, above all, as the communication, abstraction, self-reflexion of 

living subjects. It seems legitimate to maintain that, according to the very 

logic of economic development, it is necessary that a part of the general 

intellect not congeal as fixed capital but unfold in communicative interaction, 

under the guise of epistemic paradigms, dialogical performances, linguistic 

games (65). 

On this account, machines are but one component of the general intellect. For post-

operaismo, the general intellect refers also, and more importantly, to the new creative 

capacities of networked labour; it is “one and the same as cooperation, the acting in 

concert of human labour, and the communicative competence of individuals” 

(Virno 2003, 65). In other words: “General intellect should not necessarily mean the 

aggregate of the knowledge acquired by the species, but the faculty of thinking: potential 

as such, not its countless particular realizations” (Virno 2003, 66). The general intellect 

of the networked multitude socially produces value for capital through its communicative 

capacities. Individual workers no longer matter as much as the whole multitude: “today 

the general intellect is becoming a protagonist of economic and social production” (Hardt 

and Negri 2017, 114). This new social labour entails a new kind of exploitation: 

The dialectic between productive forces and the system of domination no 

longer has a determinate place. The very qualities of labor power 

(difference, measure, and determination) can no longer be grasped, and 

similarly, exploitation can no longer be localized and quantified. In effect, 

the object of exploitation and domination tend not to be specific productive 

activities but the universal capacity to produce … abstract social activity 

and its comprehensive power (Hardt and Negri 2001, 209). 

Post-operaismo thus posits a broadening and softening of exploitation. Broadening 

because all social existence is now productive labour and therefore exploitation is a net 

cast wide across society. Softening because there is no definite moment of exploitation – 

it is “omnipresent” but “there is nothing miserablist about it” (Moulier-Boutang 2012, 
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92). Exploitation is not eliminated, just redefined as “the expropriation of cooperation 

and the nullification of the meanings of linguistic production” (Hardt and Negri 2001, 

385) or the “capturing positive externalities” (Moulier-Boutang 2012, 55). Capital can 

only appropriate the results of social production, not direct its activities. Capital “is 

increasingly external and has an ever less functional role in the productive process” 

(Hardt and Negri 2009, 142). Capital can therefore only survive by becoming parasitic on 

the products of autonomous production: “capital expropriates cooperation … at the level 

of social production and social practice” (Hardt and Negri 2009, 140-141). Exploitation 

becomes “the private appropriation of part or all of the value that has been produced as 

common” (Hardt and Negri 2005, 145).  

On this basis, Hardt and Negri (2017) discern “a challenge or even a potential threat to 

capital because the primary role in the social organization of production tends to be 

played by the living knowledges embodied in and mobilized by labor rather than the dead 

knowledges deployed by management and management science” (115). Immaterial 

labour exhibits a novel form of cooperation which Hardt and Negri (2001) call “abstract 

cooperation” (296). This is “completely immanent to the laboring activity itself” while in 

previous eras of capitalism, cooperation had to be organized by the capitalist controlling 

the labour process (Hardt and Negri 2001, 294, emphasis original). While capital 

implemented scalable cooperation when it imposed the division of labour, labour is now 

“immediately a social force animated by the powers of knowledge, affect, science, and 

language” (Hardt and Negri 2001, 358). This is enabled by “computerization” (Hardt and 

Negri 2001, 292). Networks generate a novel way of working or a “becoming common” 

(Hardt and Negri 2005, 129). The “assembly line has been replaced by the network as the 

organizational model of production” (Hardt and Negri 2001, 295, emphasis original). For 

Lazzarato (1996), “immaterial labor constitutes itself in forms that are immediately 

collective, and we might say that it exists only in the form of networks and flows” (154). 

The networked multitude engages in abstract cooperation, employing communicative and 

creative capacities which capital cannot implement in machines. Capital’s drive towards 

an increasing machinic state thus runs into an obstacle and labour gains a new autonomy 

from it. 
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6.5 New Autonomy from Capital 

Post-operaismo thus posits an emergent capacity for “autonomous production” 

for immaterial labour (Hardt and Negri 2001, 276). This is also formulated as 

“real (and increasing) productive powers and capacities for autonomy” (Hardt and 

Negri 2017, 77) as well as the “radical autonomy of the productive synergies of 

immaterial labor” (Lazzarato 1996, 140). This new autonomy is described as a 

result of machinic hybridization and abstract cooperation in a wealth of grandiose 

proclamations: “[t]o the same degree that capital, as this process [of 

hybridization] proceeds, loses the capacity for self-realization, the social 

individual gains autonomy” (Hardt and Negri 2017, 114). Workers, “having 

incorporated the tools of production, having been metamorphosed 

anthropologically, act and produce machinically, separately and autonomously 

from capital” (Hardt and Negri 2017, 133). Immaterial labour thus “becomes in 

cooperation increasingly abstract from capital—that is, it has a greater ability to 

organize production itself, autonomously, particularly in relation to machines” 

(Hardt and Negri 2017, 117).  

The “productive social cooperation of workers endowed with fixed capital … 

poses the potential for the autonomy of workers, inverting the relation for force 

between labor and capital” (Hardt and Negri 2017, 115). Labour has “reached 

such a level of dignity and power that it can potentially refuse the form of 

valorization that is imposed on it and thus, even under command, develop its own 

autonomy” (Hardt and Negri 2017, 117). Capital becomes increasingly machinic, 

but it cannot use machines to increase relative surplus value extraction any longer 

because production now depends on processes of autonomous communicative 

cooperation by the multitude. In this development, post-operaismo discerns the 

kernel of a future beyond capital.  

Autonomous production “exceeds capitalist relations … grants labor increasing 

autonomy and provides the tools or weapons that could be wielded in a project of 

liberation” (Hardt and Negri 2009, 137). This is not only a liberation from work. 
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Autonomy from capital entails a revolutionary transformation of all life. Lazzarato sees 

“a ‘silent revolution’ taking place within the anthropological realities of work and within 

the reconfiguration of its meanings” (Lazzarato 1996, 140). But Hardt and Negri (2001) 

suggest that immaterial labour’s new autonomy “seems to provide the potential for a kind 

of spontaneous and elementary communism” (294). Workers, “[h]aving incorporated the 

productive tools and knowledges into their own minds and bodies … are transformed and 

have the potential to become increasingly foreign to and autonomous from capital. This 

process injects class struggle into productive life itself” (Hardt and Negri 2017, 115). 

Emerging is a “new productive nature … a new form of life that is at the base of a new 

mode of production” (Hardt and Negri 2017, 119). The sense of autonomy that comes 

with this new mode of production is qualitatively novel in the history of capitalism: 

Is this autonomy the same as the forms of worker autonomy we spoke of 

in earlier phases of capitalist production? Certainly not, because now there 

is a degree of autonomy not only in regard to the processes of production, 

but also in an ontological sense—labor gains an ontological consistency, 

even when still completely subordinated to capitalist command (Hardt and 

Negri 2017, 117) 

Because production now takes place beyond the workplace, labour “appears simply as the 

power to act” (Hardt and Negri 2001, 358) or as “collective human activity as world-

constituting practice” (Pitts 2018b, 160). This new ontological autonomy is thus 

equivalent to an immanent “potentiality of the multitude” to create (Hardt and Negri 

2001, 82; Pitts 2018b, 153-160). Capital cannot emulate this potentiality and thus can 

only survive on what scraps it can steal from the autonomous production of immaterial 

labour. 

The technological argument for a new autonomy of labour can be summed up in one 

quote from Hardt and Negri (2009): “the powers of the new technical composition of 

labor-power cannot be contained by the capitalist modes of control” (143). The 

proliferation of ICTs and technical skills in workers enables a machinic hybridization of 

immaterial labour (which is inherently resistant to total machinic takeover by capital). 
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Hybridization produces a new social subject (multitude) which possesses a new capacity 

for self-organization or abstract cooperation. This technologically-enabled cooperation 

cannot be implemented in machines and so capital can only parasitically capture value 

produced by the multitude. Immaterial labour thus produces increasingly autonomously 

from capital.  

Before assessing the theory of immaterial labour, it is important to mention the ambiguity 

with which claims for it are formulated. Post-operaismo tends to be unclear as to whether 

the revolutionary changes it describes have already occurred, are underway, or might 

occur in the future. As the quotations above show, immaterial labour is often described 

as, for instance, fully hegemonic, in other passages we are told that some “propositions 

have to be understood as indicative of a tendency” (Hardt and Negri 2017, 118). 

Likewise, while labour is sometimes depicted as beyond the control of capital, at other 

times it is described as possessing only “certain limited margins of autonomy” (Hardt and 

Negri 2017, 133) or capital’s influence over labour is described as holding, but “not to 

the same extent” (Hardt and Negri 2009, 140). Sometimes capital is described as solely 

parasitic on autonomous production, while in other formulations, labour remains 

“subordinated to the mechanisms of the extraction of value by capital” although they no 

longer function properly (Hardt and Negri 2017, 117).  

In the interest of producing the most productive engagement possible with immaterial 

labour theory, I want to represent the argument for a new autonomy of immaterial labour 

as strongly as possible. This is known as creating a “steel man,” in contrast to a “straw 

man,” which is an easy-to-defeat misrepresentation of an argument (lukeprog 2011). It is 

certain today that labour has not achieved full autonomy from capital, so I will abandon 

that interpretation immediately. I suggest the following reconstruction of post-

operaismo’s technological argument for new autonomy as a cyclical process comprising 

three stages. This formulation has the benefit of reining in post-operaismo’s more far-

fetched statements. 

The Technological Argument for the New Autonomy of Immaterial Labour 

Machine hybridization > Abstract Cooperation > New Autonomy 
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Summarily: machinic hybridization enables abstract cooperation which enables a new 

degree of autonomy for immaterial labour. Whatever level of autonomy has been 

obtained in the course of this process is then used to appropriate more technology, 

augment hybridity and expand the capacities of abstract cooperation, beginning the 

process over again. Eventually, labour achieves full autonomy and escapes from capital, 

which then perishes, starved of surplus-value. On this reading, immaterial labour’s new 

autonomy is currently partially achieved and is set to increase in the future.  

6.6 AI Work and Immaterial Labour Theory 

The study of AI work conducted in this dissertation does not support the technological 

argument outlined above. AI work is far from exhibiting the novel human-machine 

hybridization, abstract cooperation or autonomy of labour posited by immaterial labour 

theory. On the contrary, work in the AI Industry continues to be structured by the 

exigencies of capital valorization; it evinces capital’s “immanent drive, and … constant 

tendency, towards increasing the productivity of labour, in order to cheapen commodities 

and, by cheapening commodities, to cheapen the worker himself” (Marx 1990, 436-437). 

AI work exhibits characteristics of labour under capital which date back to Marx’s time. 

The theory of immaterial labour is founded upon the becoming-machine of labour as the 

multitude. According to this proposition, immaterial labour wrests control over 

machinery from capital, begins to use it for its own ends and even merges with it. 

Capital’s affinity with machines is reversed. Yet, it seems to be the case that AI work 

relies essentially on machines developed and controlled by capital. While AI research 

continues in academia, many important breakthroughs and all applied AI technologies are 

produced by capital. And, as I have shown, AI research in general and the AI Industry in 

particular, would not be possible without the huge amounts of computing power provided 

by the cloud. This necessary infrastructure for AI work is controlled by a handful of 

ruthlessly competing AI tech giants. In Chapter 4, I discussed how the originally non-

profit think tank OpenAI recently converted to a for-profit model, supported by funding 

from Microsoft, who is now their sole cloud provider. OpenAI justifies this change by 
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simply stating that AI work “requires a lot of capital for computational power” 

(Brockman 2019). If an AI think tank funded by the philanthropy of billionaires like Elon 

Musk cannot operate outside of capital, what hope is there for a proletarian AI initiative? 

One might, however, argue that considerations of hardware are misdirected and that the 

proliferation of open source AI software tools signifies a more important phenomenon of 

machinic hybridization. Both the AI Industry and post-operaismo are united in their 

enthusiasm for open source software (Moulier-Boutang 2012, 79-83). I have shown in 

Chapter 4, however, that companies in the AI Industry are using the open-source model 

merely as a new weapon in ongoing attempts at market domination. Indeed, the notion 

that open-source software is developed by independent users might be wholly overturned 

as the AI Industry takes off. While equivalent statistics for the AI Industry are not 

available, the 2017 Linux kernel received “well over 85 percent” of its contributions from 

“developers being paid for their work” (Corbet and Kroah-Hartman 2018, 15). With the 

AI tech giants benefitting from open source development, the practice may soon be just 

another capitalist labour cost-saving technique.  

There is a third sense in which post-operaismo’s notion of human-machine hybridity is 

contested by AI work. Contrary to post-operaismo’s assertions of a dramatic reversal in 

control over technology, my analysis of AI work shows the continuation of the same 

processes of deskilling, fragmentation and automation that Marx and Braverman noted in 

earlier types of labour, as Chapter 5 details. As an NRM perspective, for which the 

determination of the value form continues to be efficacious, would expect, all levels of AI 

work are already being turned over piecemeal to machines, indicating the increasing 

capacities of capital’s general intellect.62 From the high-skill work of data scientists and 

machine learning engineers to the digital manual labour of the ghost workers who 

annotate training data, AI work is being degraded in the Bravermanian sense and the 

 

62
 Terranova (2004), who endorses a version of immaterial labour theory, argues that post-operaismo’s 

humanist reconfiguration of the general intellect is justified because, if it were not “the Marxian monster of 

metal and flesh would just be updated to that of a world-spanning network, where computers use human 

beings as a way to allow the system of machinery (and therefore capitalist production) to function” (87). 

This, I suggest, is precisely the trajectory indicated by my analysis of the AI Industry. 
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organic composition of the AI Industry continues to increase. Gray and Suri (2019) argue 

that “the desire to eliminate human labor always generates new tasks for humans” (17, 

emphasis original). However, AutoML, with its novel capacity for automation without 

codification, and in particular end-to-end AutoML, with its aim to eject the human 

element entirely from the production of machine learning models, may represent a new 

type of machine-labour dynamic which meets the needs of capital in an entirely new way. 

I return to this point below. 

Overall, post-operaismo’s notion of human-machine hybridity is founded upon the belief 

that certain social and creative capacities of humans simply cannot be achieved with 

machines, and that therefore human labour is safe from widescale replacement in 

production. Here post-operaismo agrees with capitalist centaur theorists. But neither 

centaur theorists nor post-operaismo supply any support for this claim. A brief look at the 

history of technology shows that assuming an eternal divide between what machines can 

and cannot do has yet to work out. To take one example, Dreyfus (1972) argued for 

inherent limits to AI which have since been overcome by the ascendant machine learning 

approach. Today, AI research continues to advance. The “impossible-to-automate human 

capacities” demarcated by post-operaismo are already being automated (Dyer-Witheford, 

Kjøsen and Steinhoff 2019, 65). I therefore argue that quite the opposite to the 

multitude’s becoming-machine seems to be happening. Instead, capital, in the form of 

machinery, is taking on increasingly human capacities, even if it is unlikely to obtain 

subjectivity any time soon. In other words, AI work evinces the “development of the 

means of labour into machinery … the historical reshaping of the traditional, inherited 

means of labour into a form adequate to capital” (Marx 1993, 694). 

Immaterial labour theory also relies on a central claim for abstract cooperation, by which 

the multitude produces socially, outside of capitalist control. I have shown, on the 

contrary, that AI work is characterized by a combination of decentralized control 

practices and software, such as the Scrum methodology and the JIRA software, which are 

applied by management. Cooperation is still instituted by capital, in accord with its own 

ends. While AI workers have a limited sense of what Barret (2005) calls “technical 

autonomy” their work is surveilled and optimized for competitive advantage through a 
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variety of social and technical mechanisms (82). What Meiksins (1996) says about 

franchise models applies also to development methodologies like Scrum – though 

ostensibly decentralized, they ultimately serve to “eliminate local autonomy and to 

maximize the degree of control from the center” (156). Cooperation in AI work remains 

directed by the exigencies of commodity production. As Pitts (2018b) puts it, 

“[c]apitalism is characterized by categories of social mediation. They persist regardless of 

whether a work uses a keyboard or a hammer, ideas or nuts and bolts. And in this is 

implied the persistence of means of measure and time discipline familiar to the pre-

‘social’ factory” (loc 4002). Software development methodologies are merely a new way 

of measuring and disciplining the productivity of labour.  

Post-operaismo posits a new autonomy of immaterial labour but AI work evinces nothing 

of the sort. This is fundamentally because, AI work, like all work under capital, continues 

to be structured by the value form and is thus characterized by precisely the same 

dynamics which Marx noted in studying industrial labour two hundred years ago, even if 

different tools and management techniques are used. Capital’s inherent drive towards an 

increasingly machinic state continues in AI work. I must agree with Camfield (2007) who 

asserts that the notion of immaterial labour taking place outside of the circuits of capital 

is “little more than an example of wishful thinking” (47). AI work instead lies at the heart 

of cybernetic capital. Not only is AI a type of fixed capital that is finding more uses daily. 

As I, and my co-authors, have argued elsewhere, capital is positioning AI as a new 

intelligent infrastructure, or in Marxist terms, as a new part of the “general conditions of 

production” (Steinhoff 2019; Dyer-Witheford, Kjøsen and Steinhoff 2019, 30). The 

producers of this new infrastructure, the AI Industry, are, like any other capitalist 

industry, subject to the inexorable drive towards greater automation. I thus disagree also 

with the LPT thinkers who have described software work as a “craft” which resists 

deskilling and automation because to “fully standardize computer programming … would 

require the seemingly omniscient knowledge of both the emergent problems and the 

associated solutions” (Andrews, Lair and Landry 2005, 67). I have shown how with 

machine learning the need for knowledge of a solution is, at least ideally, dissolved. And 

with AutoML, an even further abstraction from the problem is possible. Hardt and Negri 

(2017) argue: 
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Today we can really begin to think of a reappropriation of fixed capital by the 

workers and the integration of intelligent machines under autonomous social 

control into their lives, a process, for example, of the construction of 

algorithms disposed to the self-valorization of cooperative social production 

and reproduction in all of their articulations (119) 

However, the production of intelligent machines remains under the control of capital. The 

production of AI has been automated, and that process of automation is itself being 

increasingly automated with the recursive technique of AutoML, the significance of 

which Caffentzis (2013) adumbrates when he speaks of the “automatization of 

automation” (129). I suggest that AutoML, with its capacity for automation without 

codification, signifies, in embryonic form, a trajectory for capital that few extant Marxist 

theories of labour, capital and machines are prepared to grasp: the “complete dissociation 

of living labour … from the production process” (Ramtin 1991, 58).  

6.7 Autonomy of What? 

Post-operaismo holds that because of the new autonomy of immaterial labour, capital 

will resort to desperate strategies which will generate new and fiercer social antagonisms 

than those of previous eras. Hardt and Negri (2017) assert that if “capital can expropriate 

value only from the cooperation of subjectivities but they resist that exploitation, then 

capital must raise the level of command and attempt increasingly arbitrary and violent 

operations of the extraction of value from the common” (123). Lazzarato (1996) agrees 

that immaterial labour “re-poses the [class] antagonism at a higher level, because it both 

mobilizes and clashes with the personality of the individual worker” (135). This position, 

however, assumes the ongoing irreducibility of a human component of labour, which as I 

showed above, is uncertain, if not dubious. One might argue, however, that the recent 

spate of activism in the tech industry is a sign of some sort of autonomy of labour 

emerging in this sector of capital. I will take up this possibility in the conclusion. 

But first, I want to advance the argument that the automation without codification 

enabled by AutoML is indicative of a possible tendency for cybernetic capital – a 

technique for augmenting capital’s general intellect without first capturing knowledge or 
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skills from human labour. This, I suggest, casts today’s AI Industry as the birthplace not 

of newly autonomous immaterial labour, but, conversely, of a technology by which 

capital could become increasingly autonomous from human labour. While the notion 

perhaps seems excessively futuristic, as I mentioned in Chapter 2, the possibility was 

considered as early as the 19th century by David Ricardo, who reasoned that “[i]f 

machinery could do all the work that labour now does, there would be no demand for 

labour. Nobody would be entitled to consume anything who was not a capitalist, and who 

could not buy or hire a machine” (Ricardo 1951-1973, VIII: 399-400, cited in Kurz 2010, 

1195). Here Ricardo imagines a capitalism in which all workers have been replaced with 

machines while human capitalists continue to direct their operations and reap the spoils 

of machine-labour. But there is also the possibility that capital could become 

“autonomous not just from human labour, but from human beings tout court” (Dyer-

Witheford, Kjøsen and Steinhoff 2019, 139).  

This scenario was first fleshed out by Nick Land.63 Starting in the 1990s, Land 

championed a theory of “capital autonomization” (Land 2018). Essential to capital 

autonomization is his notion of a “teleological identity of capitalism and artificial 

intelligence” (Land 2014). He theorizes capital as a process of positive (i.e. recursive) 

cybernetic feedback which employs computers, and then AI, to amplify and accelerate its 

feedback loops (Land 2012, 286-300). For Land, capital is software which has 

historically run on human hardware. The market was an early form of its intelligence. But 

with the proliferation of computers, Land suspected that capital was in the process of 

switching to a new, more adequate substratum – machines. Land (2012) asserts that 

capital “only retains anthropological characteristics as a symptom of underdevelopment 

… Man is something for it to overcome” (446). He theorizes AI as capital’s method of 

escape from its reliance on human labour: “[j]ust as the capitalist urbanization of labour 

abstracted it in a parallel escalation with technical machines, so will intelligence be 

transplanted into the purring data zones of new software worlds in order to be abstracted 

 

63
 I wish to emphasize my disdain for Land’s more recent neo-reactionary, alt-right output. I draw here 

only on his early theorization of cybernetic capital.  
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from an increasingly obsolescent anthropoid particularity” (Land 2012, 293). For Land 

(2012), capital tends towards a purely cyberspatial form where it can function, without 

human intervention, at supercomputing speeds; capital institutes a “becoming inhuman of 

cognition, a migration of cognition out into the emerging planetary technosentience 

reservoir … where human culture will be dissolved” (293). More recently, Krašovec 

(2018) develops a similar theory of cybernetic capital, asserting that “anthropocentric 

theories of capital” are unable to grasp how “autonomous machines and artificial 

intelligence” are moving “towards an ever greater independence of capital from 

humanity” via an “autonomisation that simultaneously denotes self-referentiality”. He 

suspects that we are entering a time in which: 

human labour and intellect are becoming, from the point of view of capital, 

increasingly cumbersome, inert and obsolete and thereby redundant, a time 

where technologies of design, production and multiplication of technological 

innovation are immanent to capital itself (and are not borrowed from 

humanity) (Krašovec 2018). 

If this were to occur, capital would become a self-augmenting automaton whose sole 

concern (value) would be expressed in competition-driven continual upgrades of its 

production apparatus: “production results in profit, which provides the possibility for 

improvement, a technological upgrade of the process of production and so on into 

infinity” (Krašovec 2018). This, he poses in counterpoint to anthropocentric theories of 

capital, as the notion of the “real autonomy (RA)” of capital, or a: 

technological dynamic that is regulated and determined by competition. In the 

phrase RA we have ‘autonomy’ because this logic is non-human, it is 

independent of human intentions and/or needs, and ‘real’ because this is 

actual autonomy, not a fetishistic illusion, it is not attribution of mystical 

intrinsic characteristics to things (to money or machines, for instance), but a 

description of how capital relation actually functions (Krašovec 2018) 

There are problems with Krašovec’s analysis (his understanding of the value form), but 

he usefully supplies a term for the tendency indicated by AutoML’s automation without 
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codification – the real autonomy of capital, not labour.64 Even if the real autonomy of 

capital is a concern only for future generations, the tendency I have noticed in AutoML is 

significant for Marxist theory today – and not only for post-operaismo. As I indicated in 

Chapter 1, the long-term possibility of increasingly autonomous capital posed by AI also 

entails a problem for NRM.  

In the face of the possibility of the real autonomy of capital, any theorization of capital 

and labour must question the long-term viability of the Marxist dictum that “[t]here are 

no powers of capital that are not ultimately the collective social powers of labour (or the 

powers of nature, machinery and science mobilized by collective social labour)” (Smith 

2009, 124). It is undoubtedly important for Marxist theory not to attribute capacities to 

machines which they do not possess. Hardt and Negri (2017) are correct to point out how 

algorithms can often obscure the “potent figure of labour” that goes into producing them 

(118). One must ask at what point is a machine produced by machines no longer a 

product of human labour? How many generations of AI, autonomously produced by AI, 

autonomously produced by different AI, etc., will it take before the distant origin in 

human labour becomes negligible? This scenario, which I suggest might be called the 

“cybernatural,” is beyond the theoretical reach of any Marxist theory which cannot 

imagine the possibility of machines becoming exploitable in the technical Marxist sense. 

A value form perspective such as NRM, however, has some advantages here because it 

emphasizes the already-inhuman nature of capital, which thinks only in terms of value.65 

Marx (1992) writes that it is “only the function of a product as means of labour in the 

production process that makes it fixed capital. It is in no way fixed capital itself” (240). 

 

64
 This example fails to distinguish between the forms of fixed and variable capital and thus attributes 

labour to a simple app which has certainly not been proletarianized: “a hired programmer writes a code for 

an application that offers yoga advice, let’s say. A few extra people handle the marketing and promotion of 

the application, but the app does most of the work by itself: it answers the questions of consumers, adapts 

to situations, recalls previous queries etc. And in the end, the company earns profit, so the activity must 

have been productive and brought surplus value, which means that we have a situation where in capitalist 

economic activity it is actually the (flexible and intelligent) app that is being exploited” (Krašovec 2018). 

The proletarianization of machines is not a topic that can be adequately addressed here. For an elaboration 

on this topic, see Dyer-Witheford, Kjøsen and Steinhoff (2019). 

65
 On this point, I am indebted to Kjøsen (2013), who first elaborated it. 
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Marx explains that any given object under capital has its natural form, as well as its social 

form – which is to say, value (Marx 1990, 138). A human, as Dyer-Witheford, Kjøsen 

and Steinhoff (2019) explain, can therefore be made into fixed capital – indeed, this is the 

economic form of slavery: “The slave … has the same ontological status – appearing in 

the form of fixed capital – as machines or animals when used in a capitalist production 

process” (135). It is possible that the inverse of this ontological change could occur with 

sufficiently advanced machines. AI functioning as fixed capital could become variable 

capital, or in other words, be proletarianized and exploited, and enable the harvest of 

surplus-value (Dyer-Witheford, Kjøsen and Steinhoff 2019, 137-138). While NRM is 

better prepared to grasp this scenario insofar as its emphasis on the form of value lacks a 

notion of irreducible humanity, few NRM thinkers would be ready to endorse this notion 

since it demands a fundamental revision to the concept of labour; labour would no longer 

be an exclusively human capacity. Thus, even as this dissertation uses NRM to critique 

post-operaismo, it recognizes that NRM is also not fully prepared to theorize the 

dynamics of labour and machine under advanced cybernetic capitalism. While this 

dissertation cannot offer an adequate formulation, it indicates the need for Marxist theory 

of the future to not underestimate the inhuman nature of capital’s nihilistic drive towards 

the machinic. 

Not only dystopian sci-fi inflected analyses come to dire conclusions when assessing the 

increasing organic composition of cybernetic capitalism. Other more immediate analyses 

not enamoured of immaterial labour pronounce analogously grim expectations for the 

future. The collective Endnotes comes to similar conclusions based on their reassessment 

of Marx’s discussion of surplus populations. Marx (1990) suggests that a result of 

capital’s machinic tendency is the production of a “redundant working population… 

which is superfluous to capital’s average requirements for its own valorization” (782). 

This “surplus population” is described as a cyclical by-product of industrial production, 

or a sort of pressure-release valve for capital (Marx 1990, 517). Endnotes has, however, 

argued that the long-term dynamics of capital’s becoming-machinic compel a secular 

increase in surplus populations, not merely cyclical crises. They hold that “labour-saving 

technologies tend to generalise, both within and across [production] lines, leading to a 

relative decline in the demand for labour” (Endnotes 2010, emphasis original). And while 
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this relative decline has been counteracted throughout the 20th century by various 

countervailing forces, the ultimate direction must be towards an absolute decrease in 

necessary labour: 

Marx … notes that the higher the organic composition of capital, the more 

rapidly must accumulation proceed to maintain employment, “but this more 

rapid progress itself becomes the source of new technical changes which 

further reduce the relative demand for labour.” This is more than just a 

feature of specific highly concentrated industries. As accumulation proceeds, 

a growing “superabundance” of goods lowers the rate of profit and heightens 

competition across lines, compelling all capitalists to “economise on labour”. 

Productivity gains are thus “concentrated under this great pressure; they are 

incorporated in technical changes which revolutionise the composition of 

capital in all branches surrounding the great spheres of production (Endnotes 

2010). 

Due to its recursive technological revolutionizing, capital “produces a relatively 

redundant population … which then tends to become a consolidated surplus population, 

absolutely redundant to the needs of capital” (Endnotes 2010). Today, as swaths of 

desperate migrants throw themselves against hostile borders and venture across seas in 

leaking rafts, as conventional labour diminishes while platform labour and ghost work 

proliferate and as new applications of automation continue to appear, it is difficult to 

deny this analysis plausibility.  

While Endnotes is not predicting a sudden jobs apocalypse, but rather describing an on-

going dynamic of capital which meets with countervailing tendencies, it is possible to 

read Marx’s musings on surplus populations as a sort of alternate, dark ending to the 

high-tech scenario he explores in “The Fragment”. Pushing the logic of the surplus 

populations argument to the limit, one can imagine a scenario in which a hyper-

automated capital, which has eliminated its reliance on human labour, does not implode 

due to a vacuum of value, but instead, with proletarianized machines allowing the 

continued harvest of surplus-value, jettisons its former human substratum completely, 
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creating a global population superfluous to its needs. Here there is no capital parasitic on 

the autonomous production of immaterial labour. On the contrary, here is an autonomous 

capital with which destitute humans, for whom a wage is impossible, must parasitically 

engage to obtain the necessities of survival. 

Of course, it remains uncertain how widely automation without codification might be 

applied. But if it does find wide applicability, as machine learning increasingly is, we can 

expect a radical new wave of real subsumption. This is one way in which the “ground up 

disruptions” which reduce whole industries to a few workers, as mentioned in Chapter 4, 

could occur (K.F. Lee 2018, 177-178). At the very least, the notion of automation without 

codification should remind us that capital is not “exclusively a reorganisation of human 

production” it can also be a “radically new, alien way of production” (Krašovec 2018). In 

the striking words of Smith (2009), capital is a “higher-order alien power operating at the 

level of society as a whole. It systematically selects for human ends compatible with its 

end, ‘the self-valorization of value’, and systematically represses all human ends that are 

not compatible with this non-human end” (123). AI, machine learning and AutoML 

function as new prostheses for capital’s reconfiguration of society. 

6.8 Conclusion 

Immaterial labour theory has not fared well in its assessment by the example of the AI 

Industry. I have shown that AI work, which represents a prime example of immaterial 

labour, does not exhibit the new autonomy from capital attributed to it by post-

operaismo. AutoML was the culminating moment in an exploration of AI and capital and 

their conjunction in the contemporary AI Industry. Both AI (and computing generally) as 

well as capital, exhibit properties of recursion which make suggestions that they possess a 

“teleological identity” plausible (Land 2014). This investigation thus concludes that what 

post-operaismo theorizes as a new autonomy of labour is quite the opposite – the growing 

obsolescence of labour for capital and the growing autonomy of capital from labour.  

Capital, as Marx recognized, is always searching for ways to overcome barriers to its 

valorization. The circulation of money, for instance, allows capital to overcome the 

temporal and spatial barriers inherent in direct exchange (Marx 1990, 209). Capitalist 
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machinery enables the overcoming of a different barrier. The “automatic mechanism” 

helps “reduce to a minimum the resistance offered by man, that obstinate yet elastic 

natural barrier” (Marx 1990, 527). AI-powered cybernetic capitalism requires a theory of 

labour, capital and machine that can grapple with increasingly autonomous kinds of 

capitalist machinery which encroach increasingly on capacities historically reserved for 

humans. Post-operaismo does not offer such a theory. 
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Chapter 7  

7 Conclusion 

This dissertation has assessed post-operaismo’s claim for a new autonomy of immaterial 

labour from capital through an analysis focused primarily on high-skill data science work 

in the AI Industry. I have shown how the history of the AI Industry and the form it takes 

today are characterized by an increasing technological recursion which allows capital to 

substitute a mounting array of machines for the capacities of human labour. I have argued 

that AI work is characterized by capitalist control in ways familiar from previous 

industries. The analysis of the labour process presented here shows that both Taylorist 

methods of control applied since industrial capitalism and more recent forms of 

“empirical” control via Agile and Scrum development methodologies are present in AI 

work (Schwaber and Beedle 2002, 25). Further, I have explored how, with the emergent 

techniques of AutoML, AI work is itself being automated through the recursive 

application of AI. I have argued that, antipodally to the purported new autonomy of 

immaterial labour claimed by post-operaismo theorists, the possibility of automation 

without codification presented by AutoML indicates a technological means by which 

capital might increase its autonomy from labour.   

With the argument complete, this concluding chapter discusses some limitations of this 

dissertation, ways they might be addressed in future work, and some considerations on 

how critical thought and practice concerning AI in general might move forward. But first, 

I want to raise one critical point which has been implicit throughout this dissertation, 

although not explicitly argued. This is the importance of considering AI as a technology 

of automation.  

7.1 The Importance of Automation 

There are many possible ways to conceptualize AI, as Chapter 1 shows, and not all of 

them consider automation an important aspect. In his illuminating Foucauldian 

archaeology of machine learning, Adrian Mackenzie (2017) recognizes the technology as 

a form of control, but is “less certain about treating machine learning as automation” 
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because “[l]earning from data … often sidesteps and substitutes for existing ways of 

acting, and practices of control, and it thereby reconfigures human-machine differences” 

(8). Rather than automating, Mackenzie (2017) argues, machine learning reconfigures 

various objects and populations in an operation he calls “probabilization” (105). This 

means that machine learning “is not simply automating existing economic relations or 

even data practices” (Mackenzie 2017, 13). He thus argues that to  

qualify or specify how machine learners exist in their generality, we would 

need to specify their operations at a level of abstraction that neither 

attributes a mathematical or algorithmic ideality to them nor frames them 

as yet another means of production of relative surplus value (Mackenzie 

2017, 17)  

This dissertation, however, demonstrates that any critical analysis of AI is inadequate if it 

does not consider how AI is produced today as a commodity by powerful capitalist firms 

and is increasingly deployed as fixed capital in diverse sectors of capital. Here I have to 

agree with AI luminary and entrepreneur Andrew Ng (2017) who suggests that if you are 

trying to understand AI’s near-term impact, “don’t think ‘sentience.’ Instead think 

‘automation on steroids’”. Indeed, Mackenzie’s book presents a wealth of critical insight, 

but does not suggest that it might be relevant that machine learning sits at the center of a 

burgeoning industry. This is not to say Mackenzie is wrong, only that he is missing part 

of the picture. I have suggested that machine learning might be both automation and a 

way of sidestepping or substituting for existing ways of control. According to my 

argument, AutoML precisely represents the nascent possibility of automating by 

sidestepping the capture of human skills and knowledge. If this is so, then more rather 

than less attention to conceptualizing AI as automation ought to be paid because the 

meaning of the term may be changing at a fundamental level.  

7.2 Limitations and Ways to Address Them 

This dissertation has many limitations. Some of these concern the analysis of work in the 

AI Industry while others pertain to the theoretical argument developed on the basis of this 

analysis.  
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One particularly significant limitation concerning the analysis of work in the AI Industry 

is the relatively small sample size of interviews. While this was necessary due to the 

limited time and resources available, a larger sample would ideally be able to capture 

more diverse perspectives and allow for a comparative analysis between the different 

types of AI workplace, from tech giant to startup. One particularly notable lacuna in the 

interviews is the lack of female interviewees. Another is the lack of ghost workers. As I 

have discussed in Chapter 4, the AI Industry and larger tech industry are dominated by 

white males. The experience of female AI workers would be an asset in developing a 

better critical perspective on AI work as well as arguments about new hegemonic forms 

of labour such as those advanced by post-operaismo.  

The study could also have benefitted from interviews with the purchasers of AI 

commodities. This dissertation focused on the production of AI. However, as NRM 

theorists have emphasized, production does not function as valorization unless the 

commodity is sold, and its value is realized. Therefore, a complete analysis of AI 

production would need to include the distribution of AI commodities.      

Another significant limitation of this study is its lack of workplace observation of the 

labour process. The understanding of the labour process presented could be greatly 

enhanced by ethnographic observation of AI workers as they go about their workday. 

This research would draw on work by Forsythe (2001) who pioneered the anthropological 

study of AI researchers. There are undoubtedly social interactions, attitudes and other 

behaviour which were not addressed by the interviews but could contribute to better 

understanding what goes into the production of AI products.  

Further, it could be beneficial to study AI products themselves. How do AI workers, as 

Brian Brown (2012) asks of Flickr contributors, impart their subjectivities to the products 

of their labour (126-127)? This question becomes especially interesting with the 

proliferation of AutoML. Whether it is possible to determine the effects of AutoML on 

AI products is a question I hope to take up in future research.  

However, to conduct that research I will need to overcome another limitation of this 

study – my lack of technical knowledge about AI and machine learning. This dissertation 
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no doubt makes more than one misstep in theoretical or technical explication. While I 

made all possible attempts at accuracy, the nascent and continually evolving nature of the 

field makes it difficult. Going forward, I intend to pursue a fuller technical understanding 

of machine learning. 

This dissertation was not only about characterizing work in the AI Industry. There are 

also limitations pertaining to the theoretical argument advanced on the basis of that 

analysis. The primary limitation here concerns generalizability. While AI work is 

certainly what post-operaismo describes as immaterial labour, it is not the only type of 

work that falls under this banner. It is not immediately certain that the critique advanced 

here applies to other types of immaterial labour such as, for instance, independent 

YouTube content production or other activities which do not occur in traditional 

workplaces. Other labour processes would have to be analyzed and attempts at 

automating them would have be assessed. Nonetheless, given the evident importance of 

AI development in contemporary capitalism, the problems it poses for post-operaismo, 

which enjoys widespread popularity, are, I suggest, significant. 

Finally, this dissertation might be accused of an overdriving pessimism or at least of 

lacking in constructive content by which critical research and activism concerning AI 

might proceed. While the argument advanced here is certainly a critique of the resolute 

optimism of post-operaismo, it is does not intend to argue for a determinism in which the 

destiny of humanity is subjugation or annihilation at the hands of apotheothic cybernetic 

capital. I do agree with venture capitalist Kai-Fu Lee (2018), former executive at both 

Google and Microsoft, when he asserts that “if left unchecked, AI will throw gasoline on 

the socioeconomic fires” (161). The reader might have noticed that so far, this 

dissertation has not discussed at all how AI might be, as Lee puts it, “checked”. That is 

because somehow “checking” AI means very little if it does not include consideration of 

how AI is fundamentally tied up with the recursive technological process that is capital. 

In other words, “checking” AI means no less than “checking” capital’s inherent drive 

towards an increasing organic composition. While this is a task beyond the scope of this 

dissertation, now that the connections between AI and capital have been elucidated, I 
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will, in closing, briefly consider how critical thought and practice concerning the AI 

Industry might move forward.  

7.3 Seize the Means of Cognition? 

High-skill AI workers like data scientists and machine learning engineers already occupy 

positions of considerable power within cybernetic capitalism. If they follow up on the 

early stirrings of labour activism and organizing in tech work which were discussed in 

Chapter 4, it is impossible to predict what might happen. Indeed, it might be argued that 

those agitations are signs of the emerging autonomy which I have argued against in this 

dissertation. That is possible, though at this point all victories of labour against AI-

producing capital have been decidedly local, temporary or marginal. While, for instance, 

after employee protests, Google dropped drone vision work on the Pentagon’s Project 

Maven, it still insists that it will work with the military “in many other areas” (Statt and 

Vincent 2018). And while gender pay gaps may soon have to be openly disclosed by 

companies, over the AI Industry as a whole, the product of which is automation 

technology, “hangs the shadow that resistance may spur further automation” (Dyer-

Witheford, Kjøsen and Steinhoff 2019, 108). 

However, as I have argued briefly in Chapter 4, and elsewhere, AI is being positioned by 

capital as a new layer of infrastructure (Steinhoff 2019) or “means of cognition” (Dyer-

Witheford, Kjøsen and Steinhoff 2019, 52). If AI does become a ubiquitous 

infrastructural technology, then the positions of high-skill AI workers within capital 

could become pivotal. Workers who service and control infrastructure can wield 

considerable social power by obstructing key moments of the valorization process. For 

instance, more than one analysis has pointed to the example of dock and port workers and 

their occupation of a “strategic position at the choke points of commodity distribution” 

within logistical capitalism to demonstrate how small sections of infrastructural workers 

can possess leverage against capital through their “ability to shut down large parts of the 

economy” (Bernes 2013; see also Frase 2015). If AI takes on the infrastructural ubiquity 

expected by its capitalist boosters, then AI workers will quite literally hold the controls to 

capital, at least until efforts to fully automate or “democratize” the complete process of 

AI production succeed. 
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Another possibility is suggested by what Gray and Suri (2019) call the paradox of 

automation’s last mile or “the ever-moving frontier between what machines can and can’t 

solve” (206). As we have seen, ghost workers are employed to complete key tasks in AI 

production that machines, for the moment, cannot. As data scientists figure out how to 

automate their tasks and crucial ghost workers become redundant, they are shuttled on to 

the next currently un-automatable task. AutoML techniques are attempting to automate 

ghost work entirely. However, during that window before they are replaced, ghost 

workers are critical to the functioning of AI systems and are therefore essential to the 

valorization processes of the capitals that employ them. Although their potential leverage 

is mitigated by their precarious employment situation and easy replaceability, as long as 

AI relies on ghost work, there will exist a weak point in cybernetic capital at the bottom, 

as well as the top, of the AI Industry labour hierarchy.  

One might argue that expecting only the workers in the AI Industry to do something 

about AI is misguided. Perhaps an actual democratization of AI might occur. In other 

words, could AI be socially repurposed towards ends other than those of capital? This is 

the question posed, originally concerning capital’s logistics networks, in the 

“reconfiguration debate” initiated by Toscano (2011) and Bernes (2013). I have 

previously argued that, currently, an anti-capitalist reconfiguration of AI seems 

implausible due to capital’s extant control over the massive quantity of hardware, energy, 

data and skill required to produce and maintain such systems and the radical left’s paucity 

of such capacities (Steinhoff 2017, 3-4). More recently, my co-authors and myself have 

pointed out that “the real subsumption of labour by capital means that capital develops 

and adopts technologies that fit its systemic requirements of valorization; this imperative 

can be baked into the very design of technology” (Dyer-Witheford, Kjøsen and Steinhoff 

2019, 149). While AI might be a necessity for a planned communist economy, as 

Cockshott (2017) argues, its utility to capital, which already controls it, is superlative. 

Control of AI by labour, were it possible, is unlikely to be wrested without a fight. 

Assessing the possibilities of a seizure of AI in the way that the Bolsheviks seized key 

infrastructure like railroads after the revolution in 1917, is, however, beyond the scope of 

this dissertation.  
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In closing, I want to suggest the possibility that AI might not necessarily have to be 

collectively seized to provide openings for critical action. It is possible that the 

technology of AI itself may afford openings. Zittrain (2019) suggest that using machine 

learning to solve problems incurs “intellectual debt” because “most machine-learning 

models cannot offer reasons for their ongoing judgments [and] there is no way to tell 

when they’ve misfired if one doesn’t already have an independent judgment about the 

answers they provide”. When machine learning applications are trained on data generated 

by other applications and AI systems are autonomously interacting with other AI 

systems, this debt grows. Zittrain (2019) argues that the widespread use of machine 

learning to solve problems and make decisions could result in a creation of a “world of 

knowledge without understanding … a world without discernible cause and effect” in 

which humans rely on intelligent machines to interpret reality and guide them through an 

incomprehensible world.  

However, it is not just the end user who experiences intellectual debt in this scenario. 

Zittrain’s understated, but most compelling, point is that the companies who produce AI 

will bear the brunt of intellectual debt. That is, their business processes will increasingly 

be based upon occult machine logics. The question is whether such an intellectual debt of 

capital could be exploited by anti-capitalist action. As Zittrain (2019) notes, machine 

learning misfires can “be triggered intentionally by someone who knows just what kind 

of data to feed into that system”. Research to counteract this looming problem is already 

underway. DARPA and others are invested in “explainable AI” research which seeks to 

mitigate or eliminate intellectual debt by building AI which can recount the processes 

which led to its output (Gunning 2017; Holzinger 2018). In DARPA’s case, this is 

presumably so that future autonomous weapons can explain why precisely they killed the 

targets that they did.  

However, the AI world is not universally agreed on the desirability or feasibility of 

explainable AI. Deep learning luminary Hinton recently said in a Wired interview that he 

thinks it would be a “complete disaster” if regulators could “insist that you can explain 

how your AI system works” because even humans “can’t explain how they work, for 

most of the things they do” (quoted in Simonite 2018). A group of researchers in the field 
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assert that real solutions to the “explainable AI problem will be only made possible by 

truly interdisciplinary research, bridging data science and AI with human sciences, 

including philosophy and cognitive psychology” (Guidotti, Monreale, Pedreschi 2019). 

While the future of explainable AI is uncertain, the tendency towards automation without 

codification indicated by AutoML suggests a future rife with intellectual debt.  

If capital’s increasing organic composition is achieved through automation without 

codification then its functioning will become increasingly mysterious even to itself. 

Companies will not know how or why they do what they do – only whether their capital 

is being valorized or not. The global system of capital will be a slew of such capitals 

interacting, all potentially with no knowledge of their own or anyone else’s methods. 

Land (2012) is correct when he describes capital as “not an essence but a tendency, the 

formula of which is decoding, or market-driven immanentization, progressively 

subordinating social reproduction to techno-commercial replication” (339-340). What he 

does not account for is that as capital migrates away from its historical human substratum 

it opens up new technological points of weakness. This suggests a way forward for 

critical thought and practice which cannot be explored here, but might be founded on a 

reconsideration of the young Negri’s (1979) advocacy for the working class sabotage of 

capitalist machines. Land (2012) suggests that “[o]nly proto-capitalism has ever been 

critiqued” (340). It is also true that only proto-capitalism has ever been attacked.  
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Appendices 

Appendix 1: Recruitment Blurb 

Dear [company/individual], 

I’m a PhD candidate in the Faculty of Information and Media Studies at The University 

of Western Ontario. My doctoral research is concerned with the labour practices and 

experiences of people working in and around the field of machine learning in a 

commercial setting. I am looking for volunteers who would be willing to participate in an 

approximately 1-hour interview with me on the topic. I’m interested in speaking with 

developers, CEOs and anyone else. This research is funded in part by a grant from the 

Social Sciences and Humanities Research Council of Canada (SSHRC). 

Would your company be willing to distribute a call for interviewees to your employees? 

This could be done via a forwarded email, or by posting a recruitment poster in the 

workplace (e.g. break room). If this might be possible, or if you’d like more information, 

please contact me and I will be happy to provide you with the official Letter of 

Information. I have attached a recruitment poster.  

 

Thank you, 

James Steinhoff 

PhD Candidate 

Faculty of Information and Media Studies 

The University of Western Ontario 
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Appendix 2: Recruitment Poster 

PARTICIPANTS NEEDED FOR  

RESEARCH IN THE PRODUCTION OF MACHINE LEARNING TECHNOLOGY  

We are looking for volunteers to take part in a study of the production of machine 

learning technology who are employees or executives of a company which produces 

machine learning technology  

If you are interested and agree to participate you would be asked to take part in an 

individual interview.  

Your participation would involve 1 session   

which will be about 60 minutes long.  

You will not be compensated for your participation.  

For more information about this study, or to volunteer for this study,   

please contact:   

 

Primary Investigator  

Nick Dyer-Witheford, PhD.  

Faculty of Information and Media Studies  

The University of Western Ontario  

Research Assistant  

James Steinhoff, PhD Candidate  

Faculty of Information and Media Studies  
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Appendix 3: Letter of Information and Consent 

Letter of Information and Consent: The Production of Machine Learning Technology  

 

Dr. Nick Dyer-Witheford, PhD, Information and Media Studies  

The University of Western Ontario 

James Steinhoff, PhD Candidate, Information and Media Studies  

The University of Western Ontario 

Invitation to Participate  

You are being invited to participate in this research study about the production of 

machine learning technology because you work in this field.  

Why is this study being done?  

The goal of this project is to understand how machine learning technologies are 

produced, focusing on skills required, tools employed, labour processes and 

organizational systems.  

How long will you be in this study?   

It is anticipated that the interview will take one hour in one session.  

What are the study procedures?  

If you agree to participate, you will be asked to engage in a one-on-one interview with a 

researcher. The interview will be conducted at your office or an agreeable public space 

(eg. library, café) of your preference. This interview will be audio recorded for later 

transcription, after which it will be destroyed. The transcriptions will be anonymized. If 

you do not wish to be audio recorded, the researcher will take notes by hand. There will 

be a total of 15 participants in the study.  

What are the risks and harms of participating in this study?  
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There is a possible risk that critical opinions of your workplace or co-workers expressed 

by you could be detrimental to your career if they were disseminated. However, all of 

your responses will be anonymized and will not be attributable to you.   

What are the benefits of participating in this study?  

A possible benefit to you may be an improved understanding of labour conditions in 

machine learning. A possible benefit to society may be a better understanding of an 

increasingly important sector of high-technology work.  

Can participants choose to leave the study?  

You may withdraw from the study at any time. If you decide to withdraw from the study, 

you have the right to request withdrawal of information collected about you. If you wish 

to have your information removed please let the researcher know.  

How will participants’ information be kept confidential?  

The audio recordings of interviews will be stored on an encrypted file and password-

protected hard drive which only the primary investigator and research assistant will have 

access to.   

The recordings will be destroyed after transcription and the transcripts will be 

anonymized and stored on an encrypted and password-protected hard drive.  

If the results of the study are published, your name will not be used.  

Representatives of The University of Western Ontario Non-Medical Research Ethics 

Board may require access to your study-related records to monitor the conduct of the 

research.    

While we do our best to protect your information there is no guarantee that we will be 

able to do so. If there is data collected during the project which is required by law to 

report we have a duty to report.  
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The researcher will keep any personal information about you in a secure and confidential 

location for a minimum of 5 years. A list linking your study number with your name will 

be kept by the researcher in a secure place, separate from your study file.  

Are participants compensated to be in this study?  

You will not be compensated for your participation in this research.  

What are the rights of participants?  

Your participation in this study is voluntary. You may decide not to be in this study.  

Even if you consent to participate you have the right to not answer individual questions 

or to withdraw from the study at any time.  If you choose not to participate or to leave the 

study at any time it will have no effect on your employment status.   

We will give you new information that is learned during the study that might affect your 

decision to stay in the study.    

You do not waive any legal right by signing this consent form.  

Whom do participants contact for questions?  

If you have questions about this research study please contact:   

James Steinhoff, PhD Candidate  

Dr. Nick Dyer-Witheford, PhD   

If you have any questions about your rights as a research participant or the conduct of this 

study, you may contact:  

The Office of Human Research Ethics   
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Appendix 4 : Ethics Approval 
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Appendix 5 : Interview Questions 

 

1 - Labour process/organization  

What is your position?  

What is your educational background?  

What does your company produce?  

Can you describe a typical day at work?  

How many hours do you typically work per day? Per week?  

What is the organizational structure of your workplace?   

Do you tend to work alone or in groups?  

What development process [and business process?] does your workplace employ? -agile 

vs life cycle (waterfall) processes?   

How does it work?  

How are you involved?  

What programs, languages and tools do you use?  

What is the place of open-source in your work? Github etc.  

What free services do you use?  

Have there been any significant changes to your typical activities at work during your 

employment?  

What is your company’s long-term goal?  

What are the biggest problems you face in your work?  
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2 - ML   

How do you and your company use ML?  

How do you use other kinds of AI?  

Have you worked in any other ML companies prior to this one?  

Have you worked in other fields of software production? How is machine learning 

different?  

What are the most exciting prospects/applications for machine learning (at your work and 

generally)?  

What are the biggest problems for machine learning?  

What are the most salient risks or dangers presented by machine learning?  

Do you think of ML as an automation technology?  

Are aspects of your work automated now? Do you think aspects of your work will be 

automated in the future?  

Do you work on personal machine learning projects when not at work?  

3 - Use of ML to make ML  

Do you employ machine learning or artificial intelligence technology in your work? If so, 

how? If not, how do you think it could or will be?  

Are you aware of Google’s/Facebook's (or any other) employment of machine learning 

technology in the production of machine learning technology? What do you think of it?  

4 - Speculations  

What do you think of the Computational Creativity paradigm?  

What do you think are the prospects of AGI and ASI?  
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What is your opinion of the Technological Unemployment thesis? Or does new 

technology generate new jobs?  
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