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Abstract 

Zirconium alloys are used in many thermal neutron fission reactors because of their very 

low neutron interaction cross-sections along with their excellent mechanical strength and 

corrosion resistance. Numerous experiments have been conducted on these alloys at the 

bulk scale to determine their mechanical properties. Recent advancements in micro-

mechanical testing make it easier to study site specific mechanical properties for micron 

or submicron sized samples. Understanding the mechanical response of such small 

volumes of material is extremely important for developing accurate models to predict the 

ductile fracture toughness of these in-reactor materials. Pressure tubes made of Zr-

2.5%Nb alloys are integral part of the CANDU reactors as they carry the fissile uranium 

fuel bundles and also transport the heavy water coolant to the core. During services in the 

reactor the insides surface of these tubes can develop micron sized scratches due to 

repeated sliding motion of the fuel bundles. In order to properly assess the impact of 

these flaws in the long run, good understanding of localized plastic deformation in very 

small regions near these surface scratches is important. Uniaxial compression tests were 

performed on 1μm diameter micro-pillars fabricated from the axial normal (AN) and 

transverse normal (TN) planes of an extruded and 22% cold-drawn  Zr-2.5%Nb CANDU 

pressure tube to assess the effect of crystallographic orientations, α/β interfaces, 

irradiation temperature, and deformation temperature on the mechanical anisotropy and 

active plastic deformation mechanisms. Some of the micro-pillars were implanted with 

8.5MeV Zr+ ions at room temperature and 300°C to simulate the effect of neutron 

irradiation. For the non-implanted αZr pillars compressed at 25°C the flow stress at 10% 

strain, 𝜎𝜀=10% was significantly higher than that reported for larger diameter 
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polycrystalline Zr-2.5%Nb pillars demonstrating the length-scale dependence of the 

mechanical strength of this material. The increasing of the Zr+ implantation temperature 

to 300°C results in reduced strength and onset of brittle cracking of the micropillars. This 

is attributed to the effect of concurrent thermal recovery of the implantation-induced 

crystal damage at 300°C on facilitating strain localization. The mechanical anisotropy of 

the micro-pillars was reduced as a result of increased implantation and test temperature. 

Strain hardening exponent, n varied between 0.2-0.3 for all test conditions. Increased 

serrations were observed in the stress-strain response of micropillars that were implanted 

at higher temperature (300°C). Resolved shear stress (RSS) for pillars oriented with the 

loading direction at various angles of misorientation relative to the basal plane normal 

was plotted and it was observed that the values follow a trend predicted by a 

mathematical/computational model involving deformation by simultaneous dislocation 

glide and twinning. Presence of α/β interface resulted in lowering of compressive strength 

for high temperature implanted and test samples. These observations, and the acquired 

test data reported in this thesis, are of significant benefit to the nuclear industry in 

performing accurate, ductile fracture toughness based life-time assessments of Zr-2.5% 

Nb pressure tubes currently operating in CANDU reactors.  
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Summary for Lay Audience 

Ontario relies greatly on nuclear energy for electricity generation. Approximately 60% of 

Ontario’s power supply is generated by pressurized heavy water moderated nuclear 

reactors popularly known as CANDU reactors. One of the most critical components of 

these reactors are the pressure tubes made of the Zr-2.5%Nb alloy. During the operation 

of the reactors, the inside temperature of the pressure tube is about 300°C and the internal 

pressure is about 10 MPa. For the safe operation of the reactors, it is important to know 

the mechanical properties of the pressure tube materials at different temperatures and 

irradiation conditions. Mechanical properties of these tubes are known from tests 

performed on bulk samples (sample size bigger than a few millimeters). With the 

advancement of material testing technology, now it is possible to conduct experiments on 

very small sized samples (micrometer or nanometer). Information obtained from the 

experimental testing of micron sized samples can be used to improve the mathematical 

models for better prediction of material properties. In this project, we have prepared 

micron sized samples by using Focused Ion Beam-FIB milling and this allowed us to 

prepare mechanical test samples of single grains, and multiple grains with well 

characterized interfaces. These tiny samples were implanted with zirconium ions to 

simulate in-reactor neutron irradiation. We observed that the stress-strain values obtained 

are significantly different from the previously published values for bulk samples prepared 

from the same material. Also, we noticed that the interfaces behave differently during the 

deformation process for implanted and non-implanted samples. All these information will 

be valuable for proper maintenance of existing pressure tubes located in CANDU 

reactors. 
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Chapter 1  

1 Introduction 

Nuclear reactors currently supply approximately 60% of Ontario’s electrical energy 

output. This electrical output is supplied by 17 CANDU nuclear reactors located at three 

sites in the province. Many of these reactors are nearing the end of their thirty year design 

life and the safe continued operation of their internal structural components requires 

continuous attention and monitoring. Of particular concern are the Zr-2.5%Nb pressure 

tubes that carry the fissile uranium fuel bundles and transport the primary coolant through 

the core. The inside surfaces of these tubes sustain periodic scratching during service 

primarily, as a result of sliding motion of the fuel bundles.  The growth of these flaws is 

continuously monitored however ultimately an assessment must be made about the 

fitness for service of a pressure tube based upon the severity of the scratches on its inside 

surface. To make such an assessment one must have very good understanding of the 

ductile fracture toughness of Zr-2.5%Nb pressure tube material when in a highly 

radiation hardened condition. Since this is a ductile fracture problem involving extensive 

localized plastic deformation in the small region, several micrometers in size, around a 

crack tip, this problem reduces to understanding the effect of neutron irradiation 

hardening on the mechanical stress-strain response of small Zr- and Zr/Nb – volumes of 

the Zr-2.5%Nb alloy.  

This thesis presents the results of uniaxial compression tests performed on small, 

micrometer-size, pillars extracted from Zr- phase and Zr/Nb – phase regions of an 

extruded and cold-drawn Zr-2.5%Nb pressure tube. The micro-pillars were subjected to 
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Zr+ implantation to invoke significant crystal damage similar to that resulting from 

neutron irradiation.  The objectives of this investigation were to understand:  

i) The effect of crystal orientation on the stress-strain response of the αZr phase in 

irradiation-hardened Zr-2.5%Nb pressure tubes.  

ii) The effect of constraint imposed by the presence of the Nb phase during the 

deformation of small volumes of Zr/Nb in irradiation-hardened Zr-2.5%Nb pressure 

tubes.  

iii) The effect of irradiation temperature and testing temperature on the mechanism of 

deformation of both the Zr- phase and Zr/Nb – phase of irradiation-hardened Zr-

2.5%Nb pressure tubes.  

1.1 Structure of thesis 

This thesis has been written in integrated-article format following the guidelines of the 

School of Graduate and Postdoctoral Studies at Western University. The thesis consists 

of seven chapters.  

Chapter 2 provides a review of the fabrication process and microstructure of the Zr-

2.5%Nb alloy and the operative deformation mechanisms of this alloy. Background 

information on the effect of high energy particle, ion or neutron, irradiation on the plastic 

deformation of this alloy is also presented.  

Chapter 3 presents a brief description of the sample preparation and analysis techniques 

for all the experiments.  
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Chapter 4 presents the results of the investigation of the effect of Zr+ implantation and 

crystal orientation on the uniaxial deformation of Zr-2.5%Nb α-phase micro-pillars.  A 

version of this chapter was submitted for publication to the Canadian Metallurgical 

Quarterly[1].  

Chapter 5 presents the results of the investigation of the effect of Zr+ implantation on the 

uniaxial deformation of Zr-2.5%Nb two-phase α/β micro-pillars. A version of this chapter 

was submitted for publication to the Canadian Metallurgical Quarterly [2].  

Chapter 6 presents the results of the investigation of the deformation of Zr+ implanted Zr-

2.5%Nb micro-pillars at 250°C. A version of this chapter is to be submitted for 

publication to the Journal of Nuclear Materials [3]. 

 Finally, Chapter 7 provides the conclusions arrived at from this research project and 

presents directions for future work.  

1.2 Novelties of this research:  

Zr-2.5%Nb has been used in the CANDU reactors for a long time and its general “bulk” 

mechanical properties are quite well understood[4][5][6][7][8]  however the mechanical 

properties of the specific αZr and βNb phase constituents of this alloy have not been 

thoroughly studied especially when it comes to their sensitivity to irradiation – induced 

hardening. In this project we have conducted combined novel laboratory techniques 

which include FIB micro-pillar fabrication, high-energy Zr+ implantation, electron back 

scattered diffraction, and high-temperature micro-pillar compression testing to 

characterize, for the first time, the stress – strain response of αZr –phase and αZr/βNb –
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phase regions of the Zr-2.5%Nb microstructure at temperature up to 250°C and at 

irradiation damage levels of 6 dpa.  
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Chapter 2  

2 Literature Review 

The objective of this thesis is to assess the micro-mechanical deformation mechanism 

controlling the length-scale deformation of the Zr-2.5%Nb CANDU pressure tube 

material in the non-implanted and the Zr+ implanted conditions with the view to 

understand the effects of implantation-induced crystal defects on the ductility of small 

volumes of the - and -phase constituents of the alloy. This chapter presents a review 

of previously published literature that provides important background information related 

to: 1) the effects of irradiation on the length scale-dependent plastic deformation of 

metals, 2) methods for assessing this plastic deformation, and 3) role of length scale-

dependent plastic deformation on the fracture of Zr-2.5Nb pressure tube material.  

2.1 The operation of a CANDU reactor 

The CANDU (CANada Deuterium Uranium) nuclear reactor is an iconic pressurized 

heavy water moderated nuclear reactor (Figure 2.1). In a CANDU reactor, deuterium 

(heavy water) is used as a neutron moderator and non-enriched uranium is used as the 

fission fuel. There are several hundred fuel channels inside a typical CANDU reactor, 

similar to the one shown in Figure 2.2. These fuel channels are contained inside the 

horizontal cylindrical Calandria vessel. There is a pressure tube inside each fuel channel. 

These pressure tubes have wall thickness of 4 mm and an inside diameter of 103 mm. 

The pressure tubes are made of extruded and cold-drawn Zr-2.5%Nb alloy and contain 

the fuel bundles and the heavy water (D2O) moderator/coolant. The pressure tube is 

considered to be one of the most critical components in a CANDU reactor because of the 

severity of the operational conditions. The internal operating pressure within this tube is 



7 

about 10 MPa and the temperature of the coolant passing through the tube ranges from 

250°C to 310°C. During the expected 30 year lifetime of these tubes they experience a 

total neutron exposure (fluence) of approximately 3 x 1026 neutrons/m2 [1][2][3]. 

 

Figure 2.1: Schematic of a CANDU reactor core [4] 
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Figure 2.2: Schematic of a CANDU fuel channel [5] 

The microstructure and the crystallographic texture of the Zr-2.5%Nb pressure tubes are 

formed as result of their extrusion and cold-drawing fabrication process. The extrusion is 

performed at around 850℃ followed by cold-drawing to about 25-27%. The extrusion 

temperature corresponds to just within the Zr phase region of the Zr-Nb phase diagram 

(Figure 2.3). At that temperature the microstructure comprises of around 20% α-

Zr(proeutectoid α) and 80% β-Zr phase (Figure 2.4). It can be seen from the phase 

diagram that the α+β phase field stretches from approximately 610℃ to 862℃. The α-Zr 

phase at equilibrium (below 600℃) contains approximately 0.6wt% Nb in solid solution. 

Rest of the niobium (1.9wt%) is present in the bcc β-Zr phase. 

Figure 2.5 shows the schematic of different directions of a section of a pressure tube. The 

extrusion process results in a tube with highly elongated Zr which transform during 

cooling to elongated pro-eutectoid Zr grains surrounded by a Zr/Nb eutectoid lamella 

(Figure 2.6). The hcp Zr grains are highly elongated in the axial direction (Figure 2.7) of 

the tube with an average grain size of about 0.2, 1.0 and 5.0 µm in the radial, hoop and 
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axial directions of the pressure tube respectively. The Zr/Nb eutectoid lamella is 

approximately 20-500 nm thick around the elongated Zr grains.  

 

Figure 2.3: Zr-Nb binary phase diagram [6]. The vertical red line represents the 

position of the Zr-2.5%Nb pressure tube alloy 

 

 

Figure 2.4: Schematic of Zr-2.5%Nb alloy microstructure 

Proeutectoid α (HCP)

Parallel plate eutectoid structure 

α (HCP)+ βNb
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Figure 2.5: Schematic of Zr-2.5%Nb pressure tube section showing different 

directions of the pressure tube. 

 

Figure 2.6: Typical grain structure of Zr-2.5%Nb pressure in CAUDU reactors. The 

light-colored αZr grains are surrounded by thin layer of dark-colored αZr/βNb 

eutectoid lamella [7] 
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Figure 2.7: Transmission electron micrographs from carbon replicas of a pressure 

tube showing: (a) elongated α-grains in the axial/radial section and (b) curved 

flattened α-grains in the radial/transverse section[8] 

2.2 Anisotropic deformation of Zr-2.5%Nb pressure tubes: 

Extruded and cold-drawn Zr-2.5%Nb pressure tubes have a tensile yield strength of about 

850 MPa when loaded in the circumferential (transverse) direction of the tube but only 

about 625 MPa when loaded along the axial direction [9]. This mechanical anisotropy 

arises from: 1) the mechanically anisotropic nature of the hcp pro-eutectoid αZr grains and 
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2) the strong crystallographic texture of the αZr grains developed during the fabrication 

process.  

The fabrication process results in the (0001) basal plane normal vector for the majority of 

the αZr grains being aligned along, or near to, the circumferential (Transverse) direction 

of the tube (Figure 2.8).   

 

Figure 2.8: (0001) basal pole figure of an extruded and cold drawn Zr-2.5%Nb 

CANDU pressure tube [10] 

The basic dislocation slip and twinning systems operative in hcp metals are shown in 

Figure 2.9. [13]. The potential operative dislocation slip systems comprise of the basal 

{0002} <1120> slip systems, prismatic {1010} <1120> slip systems, and {1012} 

<1123> pyramidal slip systems. In addition, plastic deformation by mechanical twinning 

is also commonly observed in hcp metals [11]. The critical resolved shear stress for 
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dislocation slip and twinning along the abovementioned systems in Zr are given in 

Table 2.1.  

Table 2.1: CRSS for basal, prismatic, pyramidal slip and twinning of αZr  at room 

temperature for pure Zr 

Slip system CRSS (MPa) 

Basal 322 [11] 

Prismatic 182 [12] 

Pyramidal 501 [12] 

Twinning 200 [13] 

 

Generally for HCP metals, plastic flow takes place along directions parallel to the basal 

plane by slip on the basal or prismatic plane. Although slip is the common deformation 

mode in zirconium, during tension or compression along the c-axis, basal and prismatic 

slip cannot accommodate the deformation. Pyramidal slips are not easily initiated due to 

their temperature dependence and high critical resolved shear stress. Hence, to complete 

global plasticity, twinning deformation processes needs to be activated. The most 

common twinning mode for zirconium is {1012}. 
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Figure 2.9: Possible dislocation slip systems and twinning systems in hcp crystals 

[14] 

2.3 Size effects on the strength and ductility of metals 

Micrometer sized scratches are created on Zr-2.5%Nb pressure tubes surface due 

primarily to repeated sliding to the movement of fuel bundles. These scratches could 

become stress concentrations from which ductile fracture of the pressure tubes initiates. 

Hence, it is important to understand the ductile fracture process of Zr-2.5Nb pressure 

tubes in order to carry out accurate fitness for service assessments of in-reactor pressure 

tubes containing surface flaws. It is known that these pressure tubes fracture by stable 

crack growth by a process of fracture of brittle phases (such as hydrides), thus leaving 

small α and α/β filaments to support the load ahead of the crack tip. These filaments can 

be as small as 1μm so their mechanical strength may be affected by length scale plasticity 

effects. A few examples of small ligament testing will be provided and after that theories 

needed to explain the deformation mechanism with size effect will be briefly discussed. 
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Zr-2.5%Nb alloy has microstructural similarity with dual phase titanium alloys. Both of 

them contain hcp-α phase and thin ligaments of β phase. Although a number of 

experiments have been carried out to determine the strength of the constituting phases at 

small length scale for titanium alloys [15][16][17][18][19][20][21], in comparison to that 

the number of experiments conducted on small zirconium samples is few [22] [23] [24].  

Weekes et al. [22] examined the deformation mechanism of hydrided Zircaloy-4 using 

hydrided micropillars in the scanning electron microscope. They reported that the matrix 

and hydride can co-deform depending on the orientation of the hydrides in the sample. 

The yield strength is much higher for the hydrided samples compared to as-received ones. 

They also reported that size effect was observed for all the samples.  

 

Figure 2.10:  Load–displacement curves (with inferred secondary stress axis) 

obtained from in situ SEM compressive loading of both as-received (AR1) and 

hydride-containing (H1, H2) micropillars [22] 

Wang et al. [23] conducted micro-cantilever bending test on hydrided and hydride free 

single crystal samples prepared from Zircaloy-4. They observed that the presence of 

hydride changes the deformation mechanism significantly. For the hydride free cantilever 

the applied stress was accommodated by plastic slip, whereas the hydride containing 

cantilever displayed precipitation-induced Geometrically Necessary Dislocation (GND) 
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pile-up at hydride matrix interface before deformation. They reported that at the time of 

plastic deformation, due to the high applied tensile stress, GND density increased 

substantially. 

Chan et al. [24] studied the fracture properties of zirconium hydrides and phase 

boundaries using micro-cantilever testing method. A typical load-displacement curve is 

shown in Figure 2.11. The figure shows that the hydrided cantilever has a brittle fracture 

whereas the cantilevers prepared from α-Zr and interface, shows ductile fracture. They 

also observed that the brittle hydride phase shows a fracture toughness of 

KC = 3.3 ± 0.4 MPam1/2, which is much higher compared to the values obtained from 

bulk Zr hydride samples having a fracture toughness of 1 MPam1/2 . They reported that 

this higher toughness might be due to the fact that δ-hydride on its own at small scale is 

not entirely brittle. They also reported that the yield strength of a hydride at this length 

scale is about 1200 MPa whereas for a typical hydrided zirconium alloy this value is in 

the range of 600-800 MPa. For α-Zr alloy studied in this experiment, the yield strength 

was 570-680 MPa, in comparison to that the value reported for bulk α-Zr samples are 

much lower 205-540 MPa. 
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Figure 2.11:  Typical load-displacement curves of micro-scale pre-cracked 

cantilevers tested at room temperature [24] 

To summarize, when tested in micron or sub-micron length scale, individual phase 

constituents show different mechanical properties compared to the bulk mechanical 

properties. Typically smaller samples are stronger. Several theories have been proposed 

to explain the size effect of the yield stress of materials. These include dislocation 

starvation, source truncation hardening, and dislocation source-limited behavior.  

Dislocation starvation was proposed by Greer et al. [25]. According to this theory, mobile 

dislocations are attracted to the surface by image forces, but in a micron length pillar the 

surface area to volume ratio are very high, as a result the mobile dislocations can leave 

the crystal before dislocation multiplication or nucleation can take place. This causes 

dislocation starvation. As an aftermath of this starvation, more stress is needed to activate 

or nucleate other dislocations so that plasticity can be continued.  
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Another proposed theory to explain size effect is “exhaustion hardening”. In general, the 

number of dislocation sources available in a bulk sample should be far greater compared 

to micron sized samples. The scarcity of dislocation sources in micron sized samples is 

responsible for exhaustion hardening. As there are limited numbers of dislocation sources 

available, hence it takes more stress to activate or nucleate dislocation sources compared 

to large samples.  

Source truncation hardening is another mechanism proposed to explain the size effect. 

According to this theory, dislocation sources are present in the sample in the form of 

double-pinned Frank-Read sources and this source has to be bowed for dislocation 

multiplication. The stress required to bow a Frank-Read source is given by, 

τ =
𝜇𝑏

𝐿
 

Here, μ is the shear modulus, b is the magnitude of the Burger’s vector and L is the 

length of the distance between two obstacles. As a Frank-Read source leaves the free 

surface of a micro pillar the bow shape breaks into two smaller parts or truncated 

dislocations, which results in shorter length for L. This short length of L is mainly due to 

decrease in pillar diameter, which increases the required stress to continue plasticity.   

2.4 Micro-mechanical testing 

Micro-mechanical testing became extremely popular after the publication of the journal 

paper titled ‘Sample dimensions influence strength and crystal plasticity’ by Uchic et 

al.[26]. Although it was shown almost 50 years ago by Brenner [27][28][29]  that single 

crystal metallic whiskers having micrometer diameters exhibit large increase in yield 

http://www.sciencemag.org/content/305/5686/986.short
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strength, the changes in mechanical response of material due to changes in physical 

geometry of a sample had been overlooked for decades.  

Uchic et al. [26][30] developed an unique test methodology which allowed the scientists 

to examine size-scale effects in almost any inorganic material. Using focused ion beam 

milling; cylindrical samples were fabricated from bulk crystals and then compressed with 

conventional nano-indentation device equipped with a flat punch indenter.  

Over the past few years, various micromechanical testing methods have been developed 

to observe the mechanical response of materials at micron and nano length scale. The 

micromechanical testing method is not only limited to compression testing, materials 

with various geometries are also being tested in bending and tension. These experiments 

allow the researchers to address the fundamental issues in crystal plasticity and to 

integrate the material properties at micron scale in the simulations models.  

Micro-pillar compression experiments have been conducted on a variety of materials. 

Three very informative review papers discuss in detail regarding the plasticity at micro 

and nano level and the micromechanical experiments associated with them [31][32][33]. 

These micromechanical experiments allow the researchers to study the size dependent 

and site-specific properties of different materials. Size dependent experiments usually 

deal with extrinsic and intrinsic size effect of the materials. Whereas, site specific 

experiments are becoming popular as they deal with local properties of materials (grain 

boundary, crystal orientation, different phases).  

Experimental studies have been conducted to study the micromechanical properties and 

deformation mechanism of face-centered cubic (fcc) [34][35][36],body-centered cubic 
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(bcc) [37][38], metallic glass [39], intermetallic compound[40]  and amorphous metals. 

The more recent trend is in situ micromechanical experimentation of materials using 

SEM equipped with EBSD [41] and TEM.  

The most commonly observed phenomenon during micro-compression testing is the very 

strong size effects on the yield stress which initiated the slogan “smaller is stronger”. 

Another very interesting phenomenon is the shape of the stress-strain curves obtained 

during compressions. These curves show strain bursts and have a step-like structure. The 

higher strength of the material at small scale has been attributed to the defect free nature 

of smaller crystals. As the smaller crystals have very small surface area they suffer from 

dislocation starvation [42][42][43] which means dislocation move out of the free surface 

very rapidly hence the sample has fewer dislocations. Another possible explanation is 

these small samples have a limited number of dislocation sources which is the cause of 

their high yield strength.  

A lot of micro-mechanical testing has been done on FCC and BCC metals but in 

comparison the amount of work done related to HCP material is less.  As our research 

objective is to obtain information regarding plasticity of Zr based alloy at the micron 

length scale in this report we would particularly focus on different aspects of micro-

mechanical testing of HCP (titanium, magnesium, zirconium, cadmium, zinc) metals such 

as- different sample geometry, different testing techniques and the effects of irradiation. 

Shin et al. [43] performed micropillar compression experiments on circular and square 

pillars and compared the effect of pillar geometry on the evaluated stresses. They 

observed that the stresses are size independent for both circular and square pillars. The 
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interesting observation was that due to taper, in case of the circular pillars the average 

stress at the top surface was approximately 60% larger than the mid portion of the pillar. 

Whereas, for the square pillars the calculated stress was almost same in top, mid and 

bottom position due to the reduced taper. 

Sun et al. [44] conducted uniaxial compression experiments on rectangular prismatic 

titanium micropillars loaded along [1120]. They reported that the flow stress increases 

significantly up to 1040 MPa with decreasing pillar size down to 300 nm. They also 

observed that the critical resolved shear stress is inversely proportional to the sample size 

which is consistent with dislocation source nucleation-controlled plasticity. 

Byer et al. [45] conducted micropillar compression experiments on Mg single crystals. 

They fabricated single-crystal magnesium micropillars in the range of (2.5-10 µm) 

diameter using FIB and the pillars were compressed along [0 0 0 1] c-axis. They did not 

observe any significant size effect on strength for these pillars. They reported that there 

were significant hardening due to multiple active slip systems on the pyramidal planes 

and they did not observe any deformation twinning.   

Byer and Ramesh [46] also studied the effects of the initial dislocation density on size 

effects in single-crystal magnesium. The FIB fabricated pillars were 600 nm to 10µm in 

diameter. The pillars were compressed along two different directions [0 0 0 1] and [231 

4]. They observed that decreasing the initial dislocation density resulted in stronger size 

effect. Based on their experimental investigation they concluded that the mechanical 

properties of magnesium micropillars depend on specimen diameter, the initial 

dislocation density and the orientation of the basal planes with respect to the loading axis.   
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Lilleodden [47] investigated the  stress–strain response, slip mechanisms and size effect 

in Mg (0 0 0 1) single crystal  by micro-compression testing.  She observed that the yield 

stress increases with decreasing diameter by comparing the flow stress obtained for 

columns of 2.1μm diameter with 6μm diameter columns. She also reported that twinning 

is not the predominant deformation mechanism.  

Prasad et al. [48] performed compression test on both micropillar and macro-pillar  

fabricated form magnesium single crystals. They noticed that the micropillars exhibit 

higher flow stress than bulk samples. They also observed that the obtained flow curves 

were smooth for bulk samples but the micropillar flow curves consisted intermittent and 

precipitous stress drops. 

Sumin et al. [49][50] studied the mechanical properties of two HCP metals, zinc and 

cadmium. They performed uniaxial micro-compression test for both the metals and 

observed different trend. They reported that for cadmium micropillars, pillars with 

diameters near 0.5 and 1.1 μm are slightly stronger than bulk but with the reduction of 

pillar diameter to near 0.1 μm the mechanical strengths exceed 1 GPa. Whereas, that zinc 

micropillars at micro scale are insensitive to both strain rate and size. 

2.5 Effect of particle irradiation on the mechanical response 
of Zirconium alloys:  

Impacting a crystalline metal with high energy, atomic- and subatomic-size, particles, 

such as ions or neutrons, causes the generation of crystal defects, such as point defects 

and small dislocation loops, in the metal. These crystal defects result in the metal 

becoming hardened and more brittle. The extent of irradiation damage imparted to the 

http://www.sciencedirect.com/science/article/pii/S1359646209008124
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crystal is usually expressed in units of displacements pre atom (dpa). Figure 2.12 depicts 

the yield strength of Zr-2.5Nb pressure tube material as a function of dpa induced by 

direct exposure to neutron flux during service in a CANDU reactor core. As can be seen 

from this image, the yield strength rapidly increases at comparatively lower fluence. 

After that the strength seems to stabilize and does not increase with the increase in 

fluence due to saturation of irradiation induced hardening. 

 

Figure 2.12:  Dependence of yield stress on fluence [51] 

It is difficult to work directly with radioactive materials, due to the required radiation 

shielding; hence, ion-implantation is widely used as a feasible alternative to simulate 

neutron damage without inducing radioactivity in the samples. Depending on ion species 

and the energy used the amount of damage due to ion-implantation can be controlled 

according to the research need. Landau et al. [52] conducted compression experiments on 
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helium implanted and non-implanted single crystalline Fe samples  and observed that 

implanted material has higher load bearing ability (Figure 2.13). 

 

Figure 2.13: Comparison of ion implanted and un-implanted sample [52]  

There have been some recent micro-mechanical experiments on ion implanted materials 

[53][54][55] and a review has been published emphasizing microstructure and property 

changes of zirconium alloy due to ion irradiation [56].  

2.6 Effect of grain boundaries 

To understand the ductile fracture of Zr-2.5%Nb pressure tube material at the micron-

length scale it is important to understand how small − and -filaments deform at 

different temperatures and different implantation conditions. To offer a general idea 

about the difference in deformation mechanism between single crystal and bicrystal 

samples, a brief review is provided here. Using the focused ion beam technology, it is 

possible to fabricate micron or nano-sized specimens containing a single grain boundary. 
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In addition, applying the EBSD technique, the orientation of the individual grains present 

in a bicrystal can be known.   

Comparison of the mechanical properties between a single crystal and bicrystal 

micropillar of similar dimension provides insight into the effect of the grain boundary. 

The mechanical yield strength of a bicrystal pillar varies depending on many things, such 

as the Schmid factor of the participating grains, ease of slip transferability between the 

two grains, and volume of the pillar occupied by each grain.  

As reported in the literature [57][58][59][60][61] that the type of grain boundary will 

strongly affect the strength of the bicrystal pillars. It has been demonstrated that greater 

applied stress is necessary to force dislocation motion across a highly misoriented (i.e. 

high angle) grain boundary compared to a low angle grain boundary or coherent twin 

boundary. Therefore, based upon this logic, we expect that local angular misorientation 

across grain boundary and interfaces in Zr-2.5%Nb pressure tubes will affect the 

mechanical properties of the pressure tube material.  

Cai et al. [62]reported that the β-Zr phase shows higher compressive and tensile strength 

than α-Zr. Hence it can be assumed that the deformation in a α/β bicrystal pillar would be 

activated in the α-Zr part. Ashton et al. [20]  reported that for dual phase titanium alloys 

the orientation of beta phase relative to the alpha phase plays important role in the 

micromechanical response of the alloy. The flow stress would be higher if the β phase 

acts as barrier to mobile dislocations. As Zr-2.5%Nb has microstructural similarity with 

the dual phase titanium alloy, the β-Zr could also have similar impact in 

micromechanical response. Comparing with the literature, the higher strength of bicrystal 



26 

pillars compared to single crystal pillars could be attributed to the presence of high angle 

grain boundary and relatively lower strength could be attributed to low angle grain 

boundary.  

2.7 Effect of particle irradiation on the microstructure of Zr 
alloys 

Several researchers have worked on effect of particle irradiation on the microstructure of 

Zr alloys [63][64][65][66][67][68][69].Various types of defects can form in Zr alloys as a 

result of particle irradiation. There could be formation of point defects (vacancies and 

interstitials), planar defects (dislocation loops), or volumetric defects (voids, bubbles, 

cavities).  

If the point defects form in vacant lattice sites, they are called vacancies and an equal 

number of interstitials will form due to displaced atoms lying on interstices. The 

combination of vacancy and interstitials is known as Frenkel pairs. These point defects 

agglomerate to form line, planar, and volumetric defects.  

Three type of dislocation loops are generally formed in Zr crystals due to irradiation, 

<a>, <c>, and <a+c>. Among them <a> type loops are the most common ones. They 

form at low damage levels and have a Burgers vector of 
1

3
 <112̅0 > and a prismatic habit 

plane {101̅0}.  They have been reported by many researchers[65][66]. The growth and 

nucleation of <a> type loops are affected by temperature, impurities, stress, and pre-

existing microstructural features. It has been reported that the morphology of these loops 

could change due to increase in temperature. Jostsons et al.[70] reported that with the 

increase of temperature loop diameters of <a> type loop increases whereas the loop 
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density decreases. Alloying elements also plays important role in nucleation, stability and 

growth of <a> -loops. It has been reported that addition of Sn and Nb, result in increase 

in loop size and decrease in the number density of these loops [70].  

<c> component loops form in irradiated Zr alloys at higher doses compared to <a> type 

loops. They have a Burgers vector of 
1

6
 <202̅3 > and align parallel to the basal plane.  It 

has been reported that fluence higher than 5×1025 nm-2 in the temperature range of 287-

500℃ [68] is needed for the formation of <c> loops. <c> type loops are larger in size 

compared to <a> type loops. Tournadre et al. [71] reported that <c> component loops 

formed in Zircaloy-4 at 350℃ as a result of 2 MeV proton irradiation to a damage level 

of 11.5 dpa. They also reported that <c> component loops did not nucleate in Zircaloy-4 

when the irradiation temperature was 300℃ and the damage was 2.9 dpa.  

Zr alloys go through secondary phase evolution and microchemical changes due to 

irradiation. These changes will have significant impact on the microstructure which will 

eventually impact the properties and corrosion resistance of the alloy. The dual phase 

microstructure of Zr-2.5%Nb alloys is not stable under irradiation. As a result, needle like 

Nb-rich precipitates could nucleate in the αZr phase from the secondary β phases as they 

are supersaturated in Nb. Along with Nb precipitation in αZr phase, β phases could also be 

decomposed due to irradiation as chemical changes take place in Nb- rich phases due to 

irradiation. It has also been reported that the ω-phase could also transform into βNb after 

irradiation[67].  
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2.8 Mechanical testing of Zr alloys at different length scales 

The deformation and mechanical behavior of alpha-zirconium single crystal is dependent 

upon crystal orientation. Crystals tested parallel to the c axis <0001> is harder compared 

to crystals tested perpendicular to this direction.  

Akhtar et al. [72] and Akhtar [73][74] performed tensile and compression tests on 

samples prepared from  zirconium single crystals. Akhtar et al. [72] used the angle ΧB 

between the tensile axis and basal plane as a parameter to describe the deformation 

behavior. For tensile samples tested at 78 K, they observed that if ΧB <35° then the onset 

of plastic flow takes place by first order prismatic slip. However, in case of ΧB being 

greater than 35°, the crystal deformation is initiated by twinning which is followed by 

prismatic slip. With the increase of test temperature to 295 K twinning initiated when ΧB 

was greater than 45°. Another important observation is that the stress-strain curves 

generated via tensile testing for zirconium has similarity with those of the FCC crystals in 

terms of work hardening. The work hardening of zirconium single crystals depends on 

test temperature. Stage I hardening is absent if the test temperature is greater or equal of 

room temperature, whereas stage II hardening is visible in this range. Samples tested 

above 423 K consist entirely of stage III hardening.  

In another study, Akhtar [73] compressed single crystals of zirconium along the c-axis for 

a temperature range in between 78 K and 1100 K. He observed that plastic deformation 

takes place by {1122} twinning up to a temperature of 800K, above 800K plastic 

deformation is initiated by a combination of {1011} twin and (c+a) slip. He concluded 

that the increase of flow stress with temperature and high work hardening rate below 



29 

800K is related to {1122} twinning, whereas the decrease in yield stress and low work 

hardening rate above 800 K is associated with {1011} slip and twinning.  

Akhtar [74] performed tensile tests on single crystals of Zr prepared in prismatic slip 

favoring orientation at different temperatures between 473 K and 1113 K. In this 

temperature range only prismatic slip lines were observed by him. He also observed that 

with the increase in temperature the spacing between primary slip lines increases and the 

slip lines gets finer and wavy. The CRSS decreased with increasing temperature up to 

around 600K, in the range of 600 to 800K there was not much change in CRSS values but 

a quick decrease was observed after that.  

Christodoulou et al. [75] conducted tensile test on non-irradiated Zr-2.5%Nb samples at 

different temperatures using different strain rates to observe the temperature and strain 

rate dependence of the yield stress in axial, transverse, and radial directions of a pressure 

tube. They observed that the yield anisotropy remained constant up to 800 K and strain 

rate sensitivity was also constant up to 700 K. Yield strength was comparatively higher in 

transverse direction but strain hardening rate was lower compared to axial direction 

samples (Figure 2.14).          

Himbeault et al. [1] studied the deformation behavior of irradiated Zr-2.5%Nb pressure 

tube material in the temperature range of 30°C to 300°C. They reported that strain 

localization was the reason behind local softening of the material at irradiated condition. 

As can be seen from Figure 2.15, in spite of the irradiation and increase in deformation 

temperature, samples tested in transverse direction display higher yield strength 

compared to axial direction samples. Irradiation hardening resulted in higher yield 
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strength regardless of the elevated deformation temperature if we compare between 

Figure 2.14 and Figure 2.15.   
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Figure 2.14: (a) Tensile flow curves of pressure tube material tested in the axial 

direction (b) Tensile flow curves of pressure tube material tested in the transverse 

direction [75] 



32 

 

Figure 2.15: Typical flow curves for irradiated specimens for transverse and 

longitudinal directions at 250°C [1] 

Long et al. [76] conducted in-situ neutron diffraction experiments at different 

temperatures on non-irradiated and neutron irradiated samples of Zr-2.5Nb pressures 

tubes during tensile testing. They observed that prismatic, basal and pyramidal slip was 

activated in both irradiated and non-irradiated samples. They applied line profile analysis 

to measure the change in dislocation density during the deformation process. They 

concluded that as a result of neutron irradiation, the prismatic and basal slip is hardened, 

whereas the pyramidal slip system is not that much affected by irradiation. Another 

important observation was that with the increase in test temperature the anisotropic ratio 

decreased but the initiation sequence of the three slip modes did not change.  
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Gong et al. [12] determined the slip strengths of basal, prism and pyramidal systems in 

commercially pure zirconium applying micro-cantilever testing. They observed ‘size 

effect’ as the critical resolved shear stress (CRSS) increased in all slip directions with 

decrease in cantilever size. For a 1μm cantilever, they found that the CRSS values for 

prismatic, basal and pyramidal slip systems are 507 MPa, 618 MPa, and 1050 MPa 

respectively.   

A brief review is given in the following section regarding micropillar compression 

[77][22][78][79][65] of zirconium alloys. 

Weekes et al. [22] studied the deformation of hydrides in Zircaloy-4 applying in situ 

micropillar compression technique. Comparing the deformation mechanism between as 

received and hydrided samples they observed that the hydrides harden the material. They 

reported that the during the compression of the un-hydrided sample the macroscopic yield 

occurred at approximately 530 MPa, which is significantly higher than the strength of the 

bulk alloy which has a strength of 370-460 MPa.  They concluded that the matrix and 

hydride can co-deform, and the hydrides acted as storage for deformation defects.  

Oviasuyi and Klassen conducted compression tests on cylindrical samples [78] and 

micropillars [79] prepared from Zr-2.5%Nb pressure tubes. The cylindrical samples were 

2 mm in diameter and 3 mm in height. These samples were prepared from axial (AD), 

transverse (TD) and radial (RD) direction of the pressure tube. Compression tests were 

conducted in a range of 25°C to 300°C. They reported that the yield stress was gradually 

declining in all directions with increasing temperature. The micropillars were 5 μm in 

diameter and 5 μm in height. Similar to the cylindrical samples, micropillars were also 
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fabricated from three different orientations of the pressure tubes. These samples were 

irradiated with 8.5 MeV Zr+ and compressed at room temperature. The effect of 

irradiation was more prominent in the direction with low (0001) basal pole fraction, 

which indicates that irradiation hardens the prismatic dislocation slip more compared to 

pyramidal slip. They observed that the yield stress, strain hardening exponent, and degree 

of strain localization of the micro-pillars increased with ion irradiation (Figure 2.16). 

One of the key observations from this study was that the amount of mechanical 

anisotropy is significantly reduced when the alloy is in irradiation hardened state. 
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Figure 2.16: Typical true stress versus true strain curves obtained from uniaxial 

compression of 5 μm diameter Zr–2.5%Nb micro-pillars in: (a) the non-irradiated 

condition and (b) after Zr+ ion irradiation[79] 

Wang et al. [65] studied the deformation mechanism of heavy ion irradiated Zr-2.5Nb 

pressure tube material by micropillar compression at room temperature. The micropillars 

used in the experiment had top diameters in the range of 1.75μm to 1.85μm and the 

average size of alpha zirconium phase was approximately 200nm. Hence, there were 

around nine grains on average across the diameter of each pillar. They did not observe 

any size effect because of the presence of grain boundaries which acted as dislocation 

sinks. Using 40MeV Zr ion they could create 6.5 μm damage layer in the sample and a 
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damage of 0.6 dpa. They observed that irradiation increased the yield strength more in the 

pillars created in the axial direction of the pressure tube compared to pillars prepared in 

the transverse direction of the pipe (Figure 2.17).   

 

Figure 2.17: Engineering stress-strain curves of (a) AD and (b) TD samples [65] 

It is clear from this literature review, to the best of our knowledge that there has not been 

any work which dealt with micromechanics of plasticity of Zr-2.5 Nb alloy phases at 

irradiated and non-irradiated condition at micron and sub-micron length scale. 

2.9 Summary 

The data presented in this chapter indicate that the ductile fracture behavior of bulk Zr-

2.5Nb pressure tube material is in fact determined by the deformation of micro-meter size 

− phase and −phase filaments in the vicinity of the crack-tip. The operative plastic 

deformation mechanisms of within these filaments may well be quite different than for 

bulk samples. Typically sub-micron samples display significantly high yield stress, 

intermittent strain jumps, and operative deformation mechanism is confined within a 

specific activation volume. These observations are reported by a good number of 
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independent researchers, but questions remain unanswered about the role of grain 

boundary/interface, crystallographic orientations, and irradiation on the operative 

deformation mechanism for sub-micron scale irradiated Zr-2.5%Nb samples at different 

temperatures. The experimental work described in the following chapters will address 

these issues.  
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Chapter 3  

3 Experimental Design and Techniques 

The prime objective of this thesis was to investigate the mechanical properties of Zr-

2.5%Nb pressure tube at different implantation and test temperatures for micron-sized 

samples so that the impact of micron-sized scratches inside the pressure tube could be 

assessed properly. In this chapter, a brief description will be provided about sample 

preparation, design of the experiments, and data collection techniques used in this thesis. 

3.1 Material 

All the experiments carried out in this thesis, were performed on small rectangular 

samples, about 1 cm x 1 cm x 0.4 cm, cut from a ring of Zr-2.5%Nb1 CANDU pressure 

tube off-cut supplied by Canadian Nuclear Laboratories (CNL). The side faces of the 

rectangular samples were labeled as AN, RN, and TN in reference to the Axial, Radial, 

and Transverse directions of the tube (Figure 3.1). The sides of the rectangular samples 

were polished and chemically etched. Scanning Electron Microscopy (SEM) was used to 

obtain images of the microstructure on the AN and TN faces. The microstructure mainly 

comprises of hcp αZr grains that are highly elongated in the axial direction of the tube. 

Surrounding the α-grains is a thin film of bcc βNb phase. The average α-grain size is about 

0.2, 1.0 and 5.0μm in the radial, transverse and axial directions of the pressure tube while 

the β phase is between 20-500 nm thickness.  

 

1
 Chemical composition of Zr-2.5% Nb--- Nb- (2.4-2.8 wt%), O- (900-1300 ppm), N-(<65 ppm), H-(<5 

ppm), Fe-(<1300 ppm) 
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Figure 3.1: Schematic diagram of the pressure tube depicting the orientation of the 

Axial Normal (AN), Radial Normal (RN), and Transverse Normal (TN) planes. The 

predominant orientation of the hexagonal unit cell of the α-phase is shown in red [1] 

3.2 Micropillar fabrication 

As we needed to investigate localized deformation mechanism of this pressure tube, 

regions of the microstructure that contained large -grains were identified on the AN and 

TN planes. It was from these regions that small cylindrical single  crystal micropillars 

were fabricated. To fabricate the α/β micropillars, suitable locations were chosen so that 

the αZr phase occupies half of the pillar top surface. The micropillars were fabricated 

using a Focused Ion Beam (FIB) microscope (LEO Zeiss 1540XB FIB/SEM) operating 

with a 30 keV 10 nA Ga+ ion beam. The pillars were about 1 m in diameter and 3 m in 

height. The pillar tops were flattened by ion milling with a low energy 30 keV 50 pA Ga+ 

ion beam. The experimental matrix is given below. Data obtained from first three sets of 

experiments are discussed in Chapters 4 and 5. Chapter 4 presents the results for αZr 

micropillars compressed at different conditions, whereas chapter 5 presents the results for 

αZr/βNb micropillars. The final two sets of experiments were conducted at 250°C, to 
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observe the effect of test temperature on the deformation behavior of implanted and non-

implanted samples. Experiment number 1 and 2 were conducted at University of Western 

Ontario, experiment number 3 was conducted at RMTL (Reactor Materials Testing 

Laboratory) at Queen’s University, and experiment number 4 and 5 were conducted at 

Chalk River Nuclear Laboratories.  

Table 3.1: Experimental matrix 

Exp. No Pillar 

direction 

Top surface of 

pillar 

Implantation 

temp 

Compression 

temp 

1 AN and TN αZr and αZr/βNb Non-implanted Room Temperature 

2 AN and TN αZr and αZr/βNb Room Temperature Room Temperature 

3 AN and TN αZr and αZr/βNb 300° C Room Temperature 

4 AN and TN αZr and αZr/βNb 300°C 250°C 

5 AN and TN αZr and αZr/βNb Non-implanted 250°C 

3.3 Electron Backscattered Diffraction (EBSD) 

Applying EBSD technique, diffraction patterns can be measured from a sample located 

inside an electron microscope. Electron beam is used to hit the surface of a tilted sample. 

As a result of elastic interaction between the incident beam and planes of atoms, Kikuchi 

patterns form on a phosphor screen. By analyzing the Kikuchi bands, the grain 

orientation could be determined.  
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The flat top region of each micropillar was analyzed with Electron Backscattered 

Diffraction (EBSD) to determine the orientation of the (0001) basal plane normal relative 

to the axial loading direction of the micro-pillar.  The deviation from basal plane normal 

has been mentioned as Basal Misorientation Angle, θ (Figure 3.2). Each grain has a 

specific orientation which can be expressed by Euler angles. Later these angles were used 

to convert global coordinates to crystal local coordinates by using a rotation matrix.  

Because of the relatively strong transverse texture of the basal plane normal in Zr-

2.5%Nb pressure tubes, the α-phase of the micro-pillars fabricated from the TN plane had 

small misorientation angles, although the precise angle varied from one pillar to another, 

while those fabricated from the AN plane had comparatively larger misorientation angles.  

All the EBSD analyses were performed with a JEOL 6600 FEG-SEM and an Oxford 

Instruments EBSD camera at the Zircon and Accessory Phase (ZAP) lab at the University 

of Western Ontario. 
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Figure 3.2: Schematic representation of basal misorientation angle, θ 

 

3.4 Ion implantation 

Selected micro-pillars were Zr+ implanted at 25°C and 300°C with the tandetron ion 

accelerator located at the University of Western Ontario. The implantations were 

performed with 8.5 MeV Zr+ ions to a fluence of 7.07x1019 ions/m2 to generate a peak 

irradiation depth of about 3 μm and an average ion-induced displacement damage of 

approximatley 6 displacements per atom (dpa) (as determined using the SRIM software). 

The damage rate in terms of Number/(Angstrom-Ion) was determined by using the 

Kinchin-Pease option in SRIM [2].  The damage profile was calculated using the 

equation [3] written below,  

θ
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Damage (dpa)=
𝜑 х 108х 𝜈

𝑁
 

Here, φ is the fluence in ions/cm2 ,νis the damage rate and N is the atomic number  

density in atoms/cm3. Figure 3.3 shows the damage profile of the micropillars. As can be 

seen from the figure that on top of the pillar the damage level is low and it gradually 

rughout the pillar can be considered asThe average damage level thodpa. 25increases to   

is about 6dpa. It should be noted that the average neutron-induced radiation damage in a 

Zr-2.5%Nb pressure tube operating for thirty years in a CANDU reactor is about 40 dpa 

[4].  

 

Figure 3.3: Irradiation damage profile of the micropillar 
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3.5 Micro-compression 

The micropillars were then compressed using a nano-indentation hardness tester (Micro 

Materials, Wrexham UK) equipped with a 10 m diameter flat punch diamond indenter. 

The compression tests were performed under load control to about 15% true strain at a 

loading rate of 0.10mN/sec at the University of Western Ontario (non-implanted and 

samples implanted at 25°C) and at the Queen’s University (samples implanted at 300°C). 

Similar setup was maintained for all the experiments in both places to maintain 

continuity. Only the high temperature (250°C) experiments were conducted in-situ within 

an SEM at the Canadian Nuclear Laboratories, Chalk River.  
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Chapter 4  

4 Effect of Zr+ irradiation damage and crystal orientation 
on the uniaxial deformation of Zr-2.5%Nb micro-pillars: Part 
1, Deformation of single-phase αZr micro-pillars 

The uniaxial flow stress of 1 m diameter micro-pillars made from single Zr grains cut 

from Zr-2.5%Nb CANDU pressure tube material was assessed in the non-implanted 

condition and after 6.0 dpa Zr+ implantation performed at 25oC and 300oC to simulate 

neutron irradiation. The normal flow stress, at 10% strain, of the non-implanted micro-

pillars was about 70% higher than that for larger diameter polycrystalline pillars and 

followed the trend expected for the length-scale dependence of flow stress of most ductile 

metals.  The flow stress anisotropy also displays a significant length-scale dependence 

with a stronger length-scale dependence for micro-pillars that were loaded along the 

<0001> basal pole direction than along other directions. Zr+ implantation performed at 

300oC resulted in increased tendency for irregular − flow response consistent with 

increased tendency for strain localization.  The normalized shear stress of Zr micro-

pillars aligned for single-slip deformation displayed a dependence upon crystal 

orientation that is consistent with deformation occurring by concurrent mechanisms of 

dislocation slip and twinning. These findings provide new information on the 

mechanisms by which small volume Zr phase ligaments, located in crack-tip regions, 

deform plastically and thus contribute to the ductile fracture toughness of neutron-

irradiated Zr-2.5Nb CANDU pressure tubes. 
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4.1 Introduction 

Zirconium alloys are used for structural components in heavy water moderated nuclear 

reactors. In Canadian CANDU reactors, extruded and cold-drawn Zr-2.5%Nb pressure 

tubes contain the uranium fuel bundles and transport heavy water primary coolant within 

the core. These tubes are mechanically anisotropic due to their microstructure consisting 

of elongated and crystallographically textured hcp −Zr matrix grains surrounded by thin 

regions of  the Nb-rich bcc -phase [1][2]. Analysis of the ductile fracture of  Zr-2.5%Nb 

pressure tubes (Figure 1) indicates that zirconium hydride fracture ahead of the crack tip, 

which results in the formation of unconstrained Zr or rb ligaments extending 

between the fractured hydrides ( Figure 4.1-4.2). In such a case, the crack growth is 

largely determined by the strength and ductility of these unconstrained ligaments. These 

ligaments are small, typically several micrometers in size, and thus their strength and 

deformation behaviour may be affected by their size through the well-known length-scale 

dependence of the flow stress of common ductile metal [3][4]. The hcp crystal structure 

of -Zr means also that the flow stress will be anisotropic and the dependence of the 

degree of anisotropy on specimen size and irradiation-induced crystal damage are 

important topics that have been studied only by nano-indentation testing [5][6], with its 

associated complex multi-axial stress-strain state, and not with more direct uniaxial stress 

testing.  

Although direct measurement of the mechanical response of unconstrained single phase 

-Zr ligaments has, as  yet, not been reported due primarily to their small micron-scale 

size, analysis of large hcp -Zr single crystals, of pure Zr or Zircaloy alloys, has been 

studied[7][8][9]. Plastic deformation in these systems occurs by several possible 
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deformation mechanisms; namely, {0001}〈0001〉 basal dislocation glide, {101̅0}〈112̅0〉 

prismatic dislocation glide, and {101̅1}〈112̅3〉 pyramidal dislocation glide, and 

{11̅02} < 101̅1 >  twinning (Figure 4.3)[10]. Of these mechanisms, prismatic and 

pyramidal slip are the most frequently reported however, recent experimental and 

theoretical analyses have demonstrated the significant contribution of concurrent 

twinning deformation, initiated from grain boundaries or grain boundary triple-points, 

during deformation [11]. The operation of concurrent deformation mechanisms will result 

in a non-constant measured critical resolved shear flow stress over a range of loading 

orientations.  

In this work, we perform uniaxial compression tests on small micro-pillars made from 

FIB-fabricated, EBSD-indexed, single -Zr grains of extruded and cold-drawn Zr-

2.5%Nb pressure tube material. We analyse the measured stress-strain response and 

compare it to previously published data from larger polycrystalline Zr-2.5%Nb pillars to 

obtain information on the length-scale dependence and the anisotropic nature of the flow 

stress, critical resolved shear stress, and strain hardening coefficient. We also perform 

compression tests on -Zr micro-pillars that were implanted with self-similar Zr+ ions to 

induce atomic displacement, and generation of crystal defects, similar to those induced by 

neutron irradiation during in-reactor. This will enable us to deduce the effect of 

irradiation damage on the length-scale dependent stress-strain flow response of 

unconstrained -Zr ligaments arising in the crack tip region of a CANDU pressure tube. 
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Figure 4.1: Illustration of curved compact tension specimen used for measuring 

fracture toughness of hydrides.  

 

Figure 4.2: The fracture surface of a curved compact tension specimens machined 

from an irradiated Zr-2.5Nb pressure tube. These specimens were tested at 150 °C. 

Transverse cracks formed by the fracture of circumferential hydrides and the 

corresponding inter-hydride ligament of Zr-2.5Nb are indicated. Crack growth is 

from left-to-right beginning at the tip of the pre-test fatigue crack. 
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Figure 4.3: Diagram of an hcp unit cell depicting the basal(𝟎𝟎𝟎𝟏), prismatic{𝟏𝟎𝟏̅𝟎}, 

and pyramidal {𝟏𝟎𝟏̅𝟏}  slip planes along which dislocation glide occurs. 

4.2 Procedure 

Small rectangular samples, about 1 cm x 1 cm x 0.4 cm, were cut from a ring of as-

fabricated, non-irradiated, Zr-2.5%Nb CANDU pressure tube. The orthogonal faces of 

the samples were labeled as Axial Normal (AN), Radial Normal (RN), and Transverse 

Normal (TN) with respect to the Axial, Radial, and Transverse (circumferential) 

directions of the tube. The sides of the samples were polished and chemically etched.  

The microstructure is comprised of elongated hcp α-Zr grains surrounded by a thin film 

of bcc Nb-rich β-phase (Figure 4.4). The average α-Zr grain size is about 0.2, 1.0, and 
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5.0 μm in the radial, transverse and axial directions of the tube respectively. The β-phase 

was between 20-500 nm thickness. Scanning electron microscopy was used to identify 

particularly large -Zr grains on the AN and TN faces of the samples. Small cylindrical 

single -Zr crystal micropillars were then fabricated from these grains using Focused Ion 

Beam (FIB) milling.  

  

Figure 4.4: SEM images showing the microstructure of the (a) AN and (b) TN 

planes of the Zr-2.5%Nb pressure tube material. Large αZr grain regions, such as 

those indicated by the arrows, were selected from which to fabricate the single-

crystal αZr micro-pillars. 

The FIB milling was performed with a LEO Zeiss 1540 XB FIB SEM using  a 30 keV 10 

nA Ga+  beam to create the coarse 1 m diameter and 3 m height micro-pillar 

geometry(Figure 4.5). The tops of the pillars were then flattened and polished with a low 

current, 50 pA, Ga+ ion beam.  

The polished flat top region of each micro-pillar was analyzed with Electron 

Backscattered Diffraction (EBSD) using a Hitachi SU6600 FEG-SEM equipped with an 

HKL EBSD detector/analysis system. The <hklm> crystal orientation corresponding to 

the axial direction of each micro-pillar was therefore determined.  

(a) 

α-phase 

(b) 
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Figure 4.5: Typical 1 µm diameter FIB milled α-Zr micro-pillars made from the AN 

plane of the pressure tube: (a) before, (b) after uniaxial compression showing 

dislocation slip along a single plane, and (c) after compression showing slip along 

multiple crystal planes. 

(a) 

(b) 

(c) 
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The micro-pillars were divided into two sets; non-implanted and Zr+ implanted. The 

implanted pillars were exposed to 8.5 MeV Zr+ (𝜑 =7.07x1019 ions/m2) at either 25°C or 

300°C using the Tandetron ion accelerator located at the University of Western Ontario 

(www.isw.physics.uwo.ca).  . This resulted in peak Zr+ implantation depth of about 3 μm 

as calculated by SRIM software [12]. The average ion-induced atomic displacement, 𝜓 , 

expressed in units of displacement per atom (dpa), was determined using SRIM software 

and the Kinchin-Pease technique as [13]      

   𝜓(𝑑𝑝𝑎) =
𝜑 х 10

8
х 𝜈

𝑁      (1) 

Here,  is the damage rate (atom displacements/ion, as calculated by SRIM) and N is the 

atomic number density (atoms/cm3). The average damage level throughout the 

micropillar was 𝜓̅  ≈ 6𝑑𝑝𝑎 . 

The micro-pillars were then compressed at 25oC using a nano-indentation hardness tester 

equipped with a 10 m diameter diamond flat punch. The compression tests were 

performed under constant loading rate of 0.10 mN/sec to an axial true strain of about 

15%. Fifty Zr micro-pillars were tested in this study (Table 4 1).  
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Table 4.1: Listing of micro-pillar compression tests performed in this study. 

Ion implantation condition  Pressure tube 
plane from 
which the micro-
pillar was 
fabricated 
 

Number of 
micro-pillars 
tested. 

Non-implanted  (𝜓̅ = 0) AN 4  

TN 8 

Zr+ Implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 25oC) AN 9 

TN 9 

Zr+ Implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300oC) AN      9 

TN 11 

 Total number of 
micro-pillars 
tested 

50 

 

4.3 Results 

 

Results of EBSD analyses of the orientation of the Zr phase of each micro-pillar are 

shown in Table 4.2-Table 4.4. Although it is expected that pillars fabricated from the 

AN surface of the pressure tube  would display axial direction significantly misoriented 

relative to the <0001> c-axis crystal direction while those fabricated from the TN surface 

would display axial directions more closely aligned with the <0001> direction, 

significant deviation was observed in pillars fabricated from each surface. 

The uniaxial compression true stress – true strain curves of the -Zr micro-pillars are 

shown in Figure 4.6-Figure 4.8. The stress-strain response shows considerable variability 

for all test conditions studied. In the following section we will demonstrate that this 



66 

variability is primarily the result of differences in the crystal orientations of the micro-

pillars.  
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(a) 

  

(b) 
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Figure 4.6: True stress versus true strain curves for the non-implanted αZr micro-

pillars fabricated from the (a) AN and (b) TN planes of the Zr-2.5%Nb pressure 

tube. 
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(a) 

  

(b) 
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Figure 4.7:  True stress versus true strain curves for the Zr+-implanted (𝝍̅  ≈

𝟔. 𝟎 𝒅𝒑𝒂 @𝟐𝟓𝒐𝑪)  αZr micro-pillars fabricated from the (a) AN and (b) TN planes of 

the Zr-2.5%Nb pressure tube. 
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(a) 

  

(b) 
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Figure 4.8: True stress versus true strain for the Zr+-implanted (𝝍̅  ≈

𝟔. 𝟎 𝒅𝒑𝒂 @𝟑𝟎𝟎𝒐𝑪) αZr micro-pillars fabricated from the (a) AN and (b) TN planes 

of the Zr-2.5%Nb pressure tube 

Table 4.2: Listing of orientation angle θ between the axial loading direction and the 

<0001> crystal direction for the various αZr micro-pillars tested in compression at 

25oC. Also shown are the calculated Schmid factors, m, associated with deformation 

by dislocation slip along the basal, prismatic, pyramidal slip systems, and 

compressive twinning. Also shown is the calculated critical resolved shear stress 

τε=0.10 determined as the product of the maximum calculated Schmid factor and the 

measured normal flow stress σε=0.10. 

 

Micro-
Piller 

Orientn 

Pillar 
Name 

𝜃 
(o) 

𝜎𝜀=0.10 
(𝑀𝑃𝑎) 

Schmid Factor, m (Eq. 2.4) 

(𝜎𝑖 =
𝜏𝑖

∗

𝑚⁄  (𝑀𝑃𝑎)) 

𝜏𝜀=0.10 =
𝑚𝑚𝑎𝑥𝜎𝜀=0.10 

(MPa) 

Basal Prismatic Pyramidal Twinning 
AN ASC1 89.5 905276247.1 0.005 0.45  0.01  0.001  406.1 

ASC2 85.2 1296666084 0.04  0.45 0.03  0.003  584.4 

ASC3 66.3 1274553097 0.22 0.32 0.15 0.079 398.3 

ASC4 79.3 1170875204 0.10 0.45 0.06 0.016 525.6 

TN TSC1 79.4 2016993839 0.16 0.44 0.09 0.076 890.1 

TSC2 82.4 1902617674 0.13 0.49 0.07 0.025 934.4 

TSC3 69.1 1691930032 0.26 0.43 0.18 0.016 720.6 

TSC4 69.3 1764319310 0.31 0.43 0.17 0.024 763.6 

TSC5 58.6 2149004552 0.39 0.33 0.27 0.075 709.4 

TSC6 89.8 2119310078 0.003 0.48 0.02 0.072 1024.5 

TSC7 63.7 1636156242 0.35 0.37 0.23 0.030 600.6 

TSC8 69.6 1890693165 0.28 0.40 0.17 0.022 750.2 

 

Table 4.3: Listing of orientation angle θ between the axial loading direction and the 

<0001> crystal direction for the various αZr micro-pillars implanted at 25℃ and 

tested in compression at 25oC. Also shown are the calculated Schmid factors, m, 

associated with deformation by dislocation slip along the basal, prismatic, 

pyramidal slip systems, and compressive twinning. Also shown is the calculated 



73 

critical resolved shear stress τε=0.10 determined as the product of the maximum 

calculated Schmid factor and the measured normal flow stress σε=0.10. 

 

Micro-
Piller 

Orientn 

Pillar 
Name 

𝜃 
(o) 

𝜎𝜀=0.10 
(𝑀𝑃𝑎) 

Schmid Factor, m (Eq. 2.4) 

(𝜎𝑖 =
𝜏𝑖

∗

𝑚⁄  (𝑀𝑃𝑎)) 

𝜏𝜀=0.10 =
𝑚𝑚𝑎𝑥𝜎𝜀=0.10 

(MPa) 

Basal Prismatic Pyramidal Twinning 
AN E3 84.7 2621103791 0.09 0.41 0.03 0.004 1061.8 

E4 81.5 2618914520 0.15 0.41 0.03 0.011 1084.0 

E5 74.9 2226283703 0.21 0.41 0.12 0.063 921.2 

E6 74.5 2196689303 0.15 0.44 0.09 0.034 956.0 

E7 76.2 2312185961 0.16 0.27 0.11 0.009 613.0 

E8 82.3 2421606676 0.07 0.44 0.03 0.009 1068.7 

E9 74 2562482927 0.13 0.40 0.07 0.038 1029.3 

E10 78 2124524249 0.20 0.44 0.06 0.021 925.7 

E11 78.8 2452034441 0.19 0.42 0.04 0.019 1029.9 

TN C1 1.8 2697041811 0.03 0.004 0.42 0.50 1348.3 

C2 33.4 2565927590 0.41 0.13 0.46 0.33 1266.8 

C3 56.1 2274074348 0.37 0.25 0.30 0.12 1037.9 

C4 39.5 3063749668 0.41 0.18 0.43 0.27 1308.8 

C5 85.5 3985697278 0.05 0.49 0.04 0.008 1481.5 

C6 83 3440783617 0.10 0.43 0.05 0.11 1124.4 

C8 71.2 2150475949 0.28 0.32 0.16 0.005 683.6 

C9 63.1 3073531434 0.33 0.30 0.23 0.05 969.1 

C10 73 2026627969 0.26 0.32 0.14 0.01 862.7 

 

Table 4.4: Listing of orientation angle θ between the axial loading direction and the 

<0001> crystal direction for the various αZr micro-pillars implanted at 250℃ and 

tested in compression at 25oC. Also shown are the calculated Schmid factors, m, 

associated with deformation by dislocation slip along the basal, prismatic, 

pyramidal slip systems, and compressive twinning. Also shown is the calculated 

critical resolved shear stress τε=0.10 determined as the product of the maximum 

calculated Schmid factor and the measured normal flow stress σε=0.10. 
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Micro-
Piller 

Orientn 

Pillar 
Name 

𝜃 
(o) 

𝜎𝜀=0.10 
(𝑀𝑃𝑎) 

Schmid Factor, m (Eq. 2.4) 

(𝜎𝑖 =
𝜏𝑖

∗

𝑚⁄  (𝑀𝑃𝑎)) 

𝜏𝜀=0.10 =
𝑚𝑚𝑎𝑥𝜎𝜀=0.10 

(MPa) 

Basal Prismatic Pyramidal Twinning 

AN B1 48.9 1806801268 0.46 0.20 0.36 0.188 823.9 

B2 82.9 1936353365 0.11 0.48 0.07 0.060 920.9 

B3 9.7 1709104570 0.13 0.01 0.47 0.487 832.7 

B4 48 1760764199 0.50 0.24 0.33 0.224 875.5 

B5 30.9 1607648939 0.30 0.08 0.48 0.369 769.6 

B7 28.5 1559823181 0.36 0.10 0.47 0.374 644.0 

B8 68.5 1943452141 0.32 0.28 0.18 0.024 621.1 

B9 69.5 1969126199 0.29 0.36 0.17 0.018 702.4 

B10 20 2290256901 0.22 0.06 0.50 0.443 1135.1 

TN D1 84.2 1961019976 0.10 0.47 0.04 0.001 923.1 

D2 84.3 1675580034 0.10 0.49 0.05 0.094 818.4 

D3 84.7 2054021134 0.09 0.44 0.02 0.004 908.9 

D4 68.8 1641459143 0.33 0.42 0.14 0.062 685.8 

D5 80.3 1817811896 0.17 0.47 0.06 0.009 845.5 

D6 82.9 1819592528 0.12 0.43 0.02 0.008 783.5 

D7 85.5 1777387743 0.08 0.36 0.04 0.004 635.4 

D8 71.2 1981001254 0.30 0.41 0.10 0.052 820.7 

D9 88.4 1818071104 0.03 0.47 0.02 0.003 854.7 

D10 84.1 2141536760 0.10 0.42 0.02 0.005 906.3 

D11 88.5 2358374312 0.016 0.49 0.03 0.009 1144.3 

 

4.4 Discussion 

The stress-strain response of the Zr micro-pillars indicate that the average normal flow 

stress of the TN oriented pillars is consistently greater than that of the AN oriented 

pillars. Zr+ implantation (𝜓̅ = 6.0𝑑𝑝𝑎) increased the flow stress of pillars of both 

orientations and the effect was most pronounced when the implantation was performed at 

low temperature (Figure 4.9). Our data also indicate that the measured strain-hardening 

rate 𝑛 was not significantly affected by Zr+ implantation (Figure 4.10). It was also 

observed that increased Zr+ implantation temperature, 300oC compared to 25oC, 
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increased the tendency for irregular flow response. This is indicated when 𝑑𝜎 𝑑𝜀⁄  is 

plotted versus 𝜀 (Figure 4.11).  In this figure, the micropillars in the non-implanted and 

Zr+ implanted (T = 25oC) conditions displayed relatively smooth profiles, indicating 

smooth 𝜎 − 𝜀 response, while those that were Zr+ implanted at 300oC displayed 

considerable amounts of sudden strain jumps. Irregular flow response such as this is 

consistent with increased thermally-activated defect accumulation during Zr+ 

implantation at 300oC. This mechanism has been observed to be operative in neutron-

irradiated polycrystalline Zr-2.5Nb and has been associated to the tendency for strain 

localization in this material [14].  

  

Figure 4.9: Histogram representation of the average flow stress (ϵ = 10%) of the αZr 

micro-pillars. 
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Figure 4.10: Histogram representation of the average strain-hardening exponent 𝒏 

of the αZr  micro-pillars. 
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Figure 4.11: Strain hardening rate 𝒅𝝈 𝒅𝜺⁄  versus true strain for the Zr micropillars 

in the: (a) non-implanted, (b) Zr+-implanted (25oC), and (c) Zr+-implanted (300oC) 

conditions. 
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4.4.1 Length-scale dependence of the average flow stress 

Figure 4.12 depicts 𝜎𝜀=10% as a function of pillar diameter for non-implanted Zr-2.5Nb 

micro-pillars. In this figure the data from the 5 m and 2mm diameter pillars are from the 

publications of Oviasuyi et al. [15][16].  The plot indicates nonlinear decreasing flow 

stress with increasing pillar diameter and is typical to the size-dependence of the flow 

stress of most ductile metals [3][4]. The flow stress of the largest, 2 mm, diameter 

polycrystalline pillars is similar to that of bulk Zr-2.5%Nb pressure tube material.  

Figure 4.12 also indicates that the flow stress anisotropy, TN/AN, also increases with 

decreasing pillar diameter. The large 2mm diameter polycrystalline micro-pillars 

displayed TN/AN ≈ 1.30, while the 1m diameter single crystal  pillars display 

TN/AN ≈ 1.50.  The length-scale dependence of yield stress for uniaxially stressed 

specimens, free of local strain gradients, such as the micro-pillars tested in this study is 

usually attributed to a change in the deformation mechanism from one governed by 

obstacle-limited dislocation glide of pre-existing dislocations, for the large specimens, to 

one governed by the nucleation of new dislocation in otherwise defect-free material for 

small specimens [17]. In the following section we will assess the orientation dependence 

of the critical resolved shear flow stress of the 1 m diameter pillars and its dependence 

upon Zr+ ion implantation. 
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Figure 4.12: Average flow stress 𝝈𝜺=𝟏𝟎%, plotted versus pillar diameter for AN and 

TN Zr-2.5%Nb pillars.  The data for the 5 µm and 2 mm diameter polycrystalline 

pillars are from Ref [15] [16], 2 µm pillars are from Ref [18](these values were 

reported for 𝝈𝜺=𝟒%). 

4.4.2 Orientation dependence of the critical resolved shear stress 

In this study we measured both the mechanical flow stress, 𝜎𝜀=10%, and the crystal 

orientation of the -Zr micro-pillars. This allows us to determine the resolved shear stress 

corresponding to 10% axial strain 𝜏𝜀=10% . The Schmid law formulation 

expresses 𝜏𝜀=10%as  

𝜏𝜀=10% = 𝑚𝜎𝜀=10%       (2) 

Where the Schmid factor 𝑚 is  

𝑚 = 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆       (3) 
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and 𝜙 is the angle between the loading direction and the slip plane normal while 𝜆 is the 

angle between the loading direction and the slip direction. The maximum Schmid factor 

corresponding to deformation by each of the following mechanisms common to hcp 

crystals: {0001}〈0001〉 basal dislocation glide, {101̅0}〈112̅0〉 prismatic dislocation 

glide, {101̅1}〈112̅3〉 pyramidal dislocation glide, and {11̅02} < 101̅1 >  twinning 

deformation was calculated for each -Zr micro-pillar (Tables 2-4). During single-slip, 

Stage II, deformation operating by a single deformation mechanism one would expect a 

constant 𝜏𝜀=10%, of magnitude characteristic of the operative mechanism, to be 

insensitive to loading direction.  Figure 4.13 shows the calculated 𝜏𝜀=10% versus basal 

misorientation angle 𝜃, defined as the angle between the loading direction and the 

<0001>, for each micro-pillars tested.  While the magnitude of 𝜏𝜀=10% is generally 

greater for the Zr+-implanted micro-pillars, the scatter in the data is large and thus shows 

no clear dependence upon 𝜃. Examination of the data in Tables 2-4 indicates that, in 

many cases, the Schmid factor is quite similar in magnitude for more than one 

deformation mechanism. It should also be noted that the values for critical resolved shear 

stress is also very close for basal and prismatic slip. The concurrent operation of multiple 

deformation mechanisms may give rise to the significant scatter in 𝜏𝜀=10% shown in 

Figure 4.13.  The occurrence of multiple slip during the compression of many of the -

Zr micro-pillars was also confirmed by post-test SEM imaging which indicated the 

occurrence of plastic deformation on multiple slip plane orientations (Fig.4.5c).  

To remove the effect of concurrent operation of multiple slipsystems, only 𝜏𝜀=10% data 

from micro-pillars that were strongly oriented for single slip or twinning were selected. 

The selected micro-pillars are highlighted in Tables 2-4. To remove the effect of Zr+ 
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implantation on 𝜏𝜀=10% , the selected data were normalized with respect to the resolved 

shear stress when 𝜃 = 0 for each of the three ion-implantation conditions as 

   𝜏̂𝜀=10% =
𝜏𝜀=10%

𝜏𝜀=10%𝜃=0

      (3) 

 Figure 4.14 shows 𝜏̂𝜀=10% versus 𝜃. We observed that 𝜏̂𝜀=10% of these Zr micro-pillars 

is not constant but depends upon 𝜃. While this is contrary to what one would expect for 

simple single-slip deformation, it is consistent with that predicted for deformation 

occurring by concurrent dislocation slip and twinning. This situation has been analyzed 

by Abdolvand et al [11] who demonstrate that twinning deformation can nucleate during 

dislocation glide plasticity of Zr and result in a dependence of 𝜏̂𝜀=10% upon  𝜃, with a 

maximum 𝜏̂𝜀=10% at 𝜃 ≈ 20𝑜 . This is quite close to what we observe in our study. The 

dependence of 𝜏̂𝜀=10% upon  𝜃 predicted by the model of Abdolvand et al is shown by the 

solid line in Figure 4.14.  

4.4.3 Other sources contributing to variability in the 𝜏̂𝜀=10%-  𝜃 
trend 

The data points in Figure 4.14 are from favorably oriented Zr micro-pillars fabricated 

from either the TN or the AN planes of the Zr-2.5Nb pressure tube.  Since the dimensions 

of the Zr grain in these tubes is highly elongated, and its average length in the axial 

direction is about 5 m while its average length in the transvers direction is only about 1 

m, and despite the fact that the micro-pillars in this study were made only from very 

large -Zr grains, the probability of making a 3 m long truly single-crystal micro-pillar 

from the TN plane is lower than from the AN plane. Hence, the TN micro-pillars may 

contain a grain boundary, not apparent on the top, EBSD characterized, surface of the 
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pillar. The crystal misorientation resulting from such a grain boundary will of course 

result in scatter when 𝜏̂𝜀=10%is plotted versus  𝜃 . This is supported by the fact that, in 

Figure 4.14, the micro-pillars made from the TN plane of the pressure tube display the 

most scatter. 

 

 

Figure 4.13: Calculated  𝝉𝜺=𝟏𝟎% (Eq. 2) versus basal misorientation angle 𝜽 for all 

the α-Zr micro-pillars tested in this study 
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Figure 4.14 : Normalized resolved shear stress 𝝉̂𝜺=𝟏𝟎% versus basal misorientation 

angle 𝜽 for α-Zr micro-pillars selected for strong single-slip or twinning.  The data 

from micro-pillars fabricated from the TN and AN planes of the Zr-2.5Nb pressure 

tube are identified for each of the three Zr+ implantation conditions studied. The 

𝝉̂𝜺=𝟏𝟎% - 𝜽 trend predicted by the computational model of Abdolvand et al.[11]  for 

deformation of hcp -Zr via concurrent mechanisms of dislocation slip and 

twinning is shown by the solid line. 

4.5 Conclusions 

In this study we investigated the uniaxial flow stress of small, 1 m diameter, single-

crystal -Zr micro-pillars made from the matrix phase of Zr-2.5%Nb pressure tube 
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material. The dependence of the normal flow stress 𝜎𝜀=10%,  resolved shear stress 

𝝉𝜺=𝟏𝟎%, and strain hardening exponent 𝑛 upon Zr+ implantation, specimen size, and 

crystal orientation were assessed.   

In the non-implanted (as-received) condition, 𝜎𝜀=10% was significantly higher, about 

70%, than that reported for larger diameter polycrystalline Zr-2.5%Nb pillars and 

followed a typical trend to that expected for the length-scale dependence of indentation 

hardness and flow stress of most ductile metals.  We observed that the flow stress 

anisotropy ratio, TN/AN, displays a significant length-scale dependence suggesting that, 

for this strongly textured alloy, a stronger length-scale dependence occurs when the αZr 

pillars are loaded along the <0001> basal pole direction than along other directions.  

The measured true stress-strain response of the Zr micro-pillars indicate that, while 

𝜎𝜀=10% of the TN oriented pillars is consistently greater than that of the  oriented 

pillars, Zr+ implantation (𝜓̅ = 6.0𝑑𝑝𝑎) increased the flow stress of pillars of both 

orientations by about 60-80% when the implantation was performed at 25oC and 10-30% 

when implanted at 300oC. The measured strain-hardening rate 𝑛 was not significantly 

affected by Zr+ implantation however increasing the Zr+ implantation temperature to 

300oC resulted in increased tendency for irregular − flow response. This is consistent 

with the occurrence of increased thermally-activated implantation defect accumulation 

during Zr+ implantation at 300oC compared to 25oC and is similar to what is observed in 

neutron-irradiated polycrystalline Zr-2.5%Nb.    

The normalized shear stress  𝜏̂𝜀=10% of the αZr micro-pillars aligned for predominantly 

single-slip or twinning deformation, displayed a dependence upon crystal basal plane 
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orientation 𝜃 relative to the loading direction such that a maximum occurred when, 𝜃 ≈

20𝑜. This is consistent with that predicted for deformation occurring by concurrent 

dislocation slip and twinning in Zr. 

The experimental data presented in this paper contribute significantly not only to our 

understanding of the operative deformation mechanisms of small, micrometer-scale 

volumes of irradiation-hardened hcp metal, but also to our ability to predict the degree of 

local plasticity, contributed by the uniaxial elongation of unconstrained α-phase 

ligaments  ahead of crack tips in commercial Zr-2.5%Nb pressure tubes. 
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Chapter 5  

5 Effect of Zr+ implantation and crystal orientation on the 
uniaxial deformation of Zr-2.5%Nb micro-pillars: Part 2, 

Deformation of two-phase rb micro-pillars 

The uniaxial flow stress of 1 m diameter Zr-2.5%Nb micro-pillars containing a 

microstructure of mixed Zr and Nb phases was assessed in the non-implanted condition 

and after Zr+ implantation to simulate neutron irradiation. Zr+ implantation (𝜓̅ ≈ 6𝑑𝑝𝑎) 

performed at 300oC resulted in about 20% reduction in the flow stress 𝜎 (𝜀=0.10) and 

displayed increased serrations in the − response. This suggests increased thermally 

activated recovery of the ion-induced crystallographic defect population when irradiation 

damage is invoked on the  microstructure at 300oC compared to at 25oC.  The rNb 

micro-pillars that were Zr+-implanted at 300oC also display axial cracking during 

compression.  This cracking was not observed during compression of non-implanted 

rNb micro-pillars nor was it observed on rNb micro-pillars that were Zr+ implanted 

at 25oC, which illustrates the role of thermal activation during Zr+ ion implantation in 

weakening rNb interfaces.  

5.1 Introduction 

Analysis of the ductile fracture of extruded and cold-drawn Zr-2.5%Nb pressure tubes, in 

CANDU nuclear reactors, indicates that hydride fracture in the crack tip region can result 

in formation of unconstrained ligaments extending between the fractured hydrides. These 

ligaments can be very small and have a microstructure consisting of monocrystalline -

Zr or simple  phase conjugates.  Understanding the uniaxial stress-strain response of 

these ligaments both in the as-fabricated and the neutron-irradiated conditions is 
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imperative for making accurate prediction of the ductile fracture of in-service Zr-2.5%Nb 

pressure tube material. To accomplish this we need experimental data obtained by 

performing uniaxial deformation tests on small single crystal -Zr or simple  phase 

samples, of size similar to the actual ligaments, cut from the actual Zr-2.5%Nb pressure 

tube material.  In our adjoining paper we have reported the results of uniaxial 

compression tests performed on monocrystalline -Zr micropillars (1 m length scale) 

made from as-fabricated and Zr+-implanted Zr-2.5%Nb pressure tube material [3]. We 

characterized the dependence of the critical resolved shear stress and strain-hardening 

rate upon crystal orientation and Zr+ implantation at two implantation temperatures, 25oC 

and 300oC, and observed that the magnitude and the anisotropy of the flow stress displays 

a significant length-scale dependence with a stronger length-scale dependence occurring 

when the micro-pillars are loaded along the <0001> basal pole direction. Zr+ implantation 

at 300oC tends to result in an irregular − flow response consistent with increased 

tendency for strain localization.  The normalized critical resolved shear stress of the Zr 

micro-pillars displayed a dependence upon crystal orientation that is consistent with 

deformation occurring by concurrent dislocation slip and twinning.   

 

In this study we investigate the mechanical properties, under similar uniaxial 

compression conditions, of two-phase rNb micro-pillars to assess, by comparison with 

the previously reported data from -phase micro-pillars, the influence of mixed rNb-

phase microstructure on the local plastic deformation in both the as-fabricated condition 

and after Zr+ implantation-induced crystal damage similar to that resulting from neutron 



91 

irradiation. The data we present here contributes significantly to our understanding of the 

operative deformation mechanisms of small, micrometer-scale volumes of irradiation-

hardened material and thus to our ability to predict the local plasticity contributed by the 

co-deformation of -phases in thin ligaments formed ahead of crack tips in Zr-2.5%Nb 

pressure tubes. 

5.2 Procedure 

Small rectangular samples, about 1 cm x 1 cm x 0.4 cm, were cut from a ring of as-

fabricated, non-irradiated, Zr-2.5%Nb CANDU pressure tube. The orthogonal faces of 

the samples were labeled as Axial Normal (AN), Radial Normal (RN), and Transverse 

Normal (TN) with respect to the Axial, Radial, and Transverse directions of the tube. The 

sides of the samples were polished and chemically etched (Figure 5.1).  

Areas of the microstructure containing clearly demarked  phase boundaries were 

selected for fabrication of micro-pillars by Focused Ion Beam (FIB) milling (Figure 

5.1inset). The micro-pillars were about 1 m diameter and 3 m height and were milled 

with a LEO Zeiss 1540 XB FIB SEM using with a 30 keV 10 nA Ga+ beam. The tops of 

the pillars were further polished with low, 50 pA, Ga+ beam current to minimize the 

depth of ion-induced crystal damage to facilitate subsequent EBSD analyses. 

Figure 5.2 provides a schematic representation of the microstructure structure found in 

the rNb micro-pillars.  The Nb phase consisted of thin, discontinuous filaments. One 

half of the micro-pillar was a continuous -grain while the other half was a mixture of 

Nb regions within an Zr matrix (see red circle in the inset of Figure 5.1).  
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Electron Backscattered Diffraction (EBSD) analyses was performed, using a Hitachi 

SU6600 FEG-SEM equipped with an Oxford Instruments HKL EBSD detector/analysis 

system, on the top surface of each micro-pillar to determine the <hklm> orientation of the 

-Zr phase corresponding to the axial pillar direction. It should be noted that the crystal 

orientation of the -Nb filaments could not be measured due to their small size (thickness 

less than about 0.1 m). 

 

Figure 5.1:Microstructure, on the TN plane, of the extruded and cold-drawn Zr-2.5%Nb 

pressure tube. The red circle in the inset depicts an α/β region typical of that from 

which  micro-pillars were fabricated. 
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Figure 5.2: Schematic depiction of the typical microstructure found on the top 

surface of an αZr/βNb  micro-pillar 

 

Figure 5.3: Typical FIB milled αZr/βNb micro-pillar made from the TN plane of a 

non-implanted Zr-2.5%Nb pressure tube 

The micro-pillars were divided into two sets; non-implanted and Zr+ implanted. The 

implanted pillars were Zr+ implanted The implanted pillars were exposed to 8.5 MeV Zr+ 

(𝜑 =7.07x1019 ions/m2) at either 25°C or 300°C using the Tandetron ion accelerator 

located at the University of Western Ontario (www.isw.physics.uwo.ca). This resulted in 

D=1 µm

α-Zr phase
β- Nb phase
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peak Zr+ implantation depth of about 3 μm as calculated by SRIM software [1]. The 

average ion-induced atomic displacement, 𝜓 , expressed in units of displacement per 

atom (dpa), was approximated using SRIM software and the Kinchin-Pease technique as 

[2]  

   𝜓(𝑑𝑝𝑎) =
𝜑 х 10

8
х 𝜈

𝑁      (1) 

where 𝜑 is the ion dose (ions/m2),  is the calculated average number of atom 

displacements per ion and N is the atomic number density. The average damage level 

throughout the micropillar was about 𝜓̅  ≈ 6𝑑𝑝𝑎 . 

The micro-pillars were then compressed at 25oC using a nano-indentation hardness tester 

equipped with a 10 m diameter diamond flat punch. The compression tests were 

performed under constant loading rate of 0.10mN/sec to an axial true strain of about 15%. 

Forty-one  micro-pillars were tested in this study (Table 5.1). 

Table 5.1: Listing of the micro-pillar compression tests performed.  

Ion implantation condition  Pressure tube 

plane from 

which the 

micro-pillars 

were 

fabricated 

 

Number of 

micro-pillars 

tested. 

𝜎(𝜀=0.10) 

(MPa) 

Non-implanted TN 8 2000±350 

Zr+ Implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 

25oC) 

AN 6 2300±70 

TN 8 2900±300 

Zr+ Implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 

300oC) 

AN      9 1700±200 

TN 10 1600±150 

 Total number 

of micro-

41  
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pillars tested 

5.3 Results 

Uniaxial compression true stress – true strain curves of the rNb micro-pillars are 

shown in Figs. 5.4 -5.6. The stress-strain response shows considerable variability for all 

test conditions. The average normal flow stress at 10% axial strain, 𝜎(𝜀=0.10), is given, 

along with the sample-to-sample scatter, in Table 5.1.  

Results of EBSD analyses of the orientation of the -Zr phase of each of the  micro-

pillars is given in Table 5.2. These data are used, along with values of 𝜎 (𝜀=0.10), to 

approximate the critical resolved shear stress 𝜏 (𝜀=0.10) for the deformation process at 

10% axial strain (Section 5.4.2). 

SEM images of typical deformed TN-oriented  micro-pillars for the non-implanted, 

Zr+-implanted at 25oC and Zr+-implanted at 300oC are shown in Figure 5.7. Axial 

cracking occurs along the rNb interface of micro-pillars that were Zr+-implanted at 

300oC. This is discussed in Section 5.4.1. 
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Figure 5.4: True stress versus true strain curves of the non-implanted TN micro-

pillars. 
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(a) 

   

 

(b) 
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Figure 5.5:  True stress versus true strain for the Zr+-implanted (𝝍̅  ≈

𝟔. 𝟎 𝒅𝒑𝒂 @𝟐𝟓𝒐𝑪) α/β-Zr micro-pillars fabricated from (a) the AN plane and (b) the 

TN plane of the Zr-2.5%Nb pressure tube. 
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(a) 

     

(b) 



100 

Figure 5.6: True stress versus true strain for the Zr+-implanted (𝝍̅  ≈

𝟔. 𝟎 𝒅𝒑𝒂 @𝟑𝟎𝟎𝒐𝑪) α/β-Zr micro-pillars fabricated from (a) the AN plane and (b) 

the TN plane of the Zr-2.5%Nb pressure tube. 

  

(a) (b) 

 

(c) 

 Figure 5.7: TN-oriented α/β micro-pillars compressed at 25oC: (a) non-implanted, 

(b) Zr+-implanted (𝝍̅ ≈ 𝟔𝒅𝒑𝒂) at 25oC, (c) Zr+-implanted (𝝍̅ ≈ 𝟔𝒅𝒑𝒂) at 300oC. 
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Table 5.2: Approximate resolved shear stress (𝝉𝜺=𝟎.𝟏𝟎Eq. 1), basal misorientation 

angle  of the -phase of each of the rb micro-pillars. 

Ion implantation 

condition 

Pressure 

tube plane 

upon 

which 

micro-

pillar was 

made τRSS(MPa) Θ 

Specimen 

designation 

Non-Implanted TN 885 

852 

1039 

947 

1045 

796 

813 

850 

70.7 

10.2 

20.3 

26.7 

15 

74.9 

64.1 

53.7 

2B 

2C 

2D 

2E 

2F 

2G 

2I 

2J 

Zr+-Implanted 

(𝝍̅  ≈
𝟔𝒅𝒑𝒂 @ 𝟐𝟓𝒐𝑪) 

 

TN 1247 

1600 

1520 

1399 

1224 

1213 

1495 

1381 

42.3 

28.6 

4.2 

5.3 

33.9 

28.2 

12.6 

3.5 

D2 

D3 

D4 

D6 

D7 

D8 

D10 

D11 

AN 986 

749 

960 

782 

821 

1074 

89.6 

57.8 

83.5 

82.2 

69.3 

80 

G2 

G3 

G6 

G8 

G9 

G10 

Zr+-Implanted 

(𝜓̅  ≈
6𝑑𝑝𝑎 @ 300𝑜𝐶) 

 

TN 642 

641 

655 

649 

636 

822 

618 

495 

738 

531 

87.4 

85.6 

89.2 

89.2 

76.5 

74.6 

87.6 

74.8 

76.7 

81.5 

X1 

X2 

X3 

X4 

X5 

X6 

X7 

X8 

X9 

X10 
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AN 930 

894 

895 

584 

619 

644 

637 

523 

582 

32.7 

25.2 

57.9 

79.2 

74.3 

56.9 

78.5 

88.1 

66.1 

S1 

S2 

S3 

S4 

S5 

S6 

S8 

S9 

S10 

 

5.4 Discussion 

The objective of this study is to assess the uniaxial flow stress of rNb micro-pillars in 

the as-fabricated (non-implanted) condition and in two Zr+ ion-implanted conditions such 

that the mechanical properties of similar-sized mixed rNb phase ligaments in the 

crack tip region of neutron irradiated Zr-2.5%Nb CANDU pressure tubes can be 

understood and predicted. Figure 5.8 shows a histogram of 𝜎 (𝜀=0.10) for the rNb 

micro-pillars from this study in comparison to single crystal Zr micro-pillars in the non-

implanted and the two Zr+ implanted conditions [3].  

5.4.1 Role of the rb interface on the average micro-pillar flow 
stress 

For all conditions the average flow stress 𝜎 (𝜀=0.10) of the rNb micro-pillars is higher 

for the pillars made from the TN plane than from the AN plane of the Zr-2.5%Nb 

pressure tube. This anisotropy in 𝜎 (𝜀=0.10) reflects the general transverse texture of the 

basal plane normal of the hcp Zr phase. Comparison of the 𝜎 (𝜀=0.10) data for the TN 

rNb micro-pillars with that of the TN Zr micro-pillars indicates that  𝜎 (𝜀=0.10) is of 

similar magnitude for both types of pillars when in the non-implanted condition. The 
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effect of Zr+ implantation on 𝜎 (𝜀=0.10) is similar for the  and the Zr TN pillars in that 

in both cases 𝜎 (𝜀=0.10) increases with Zr+-implantation (𝜓̅ ≈ 6𝑑𝑝𝑎) at 25oC however the 

percentage increase is slightly less (40% compared to 50%) for the rNb micro-pillars. 

Both types of micro-pillars display minimal, or no, increase in 𝜎 (𝜀=0.10) when the Zr+ 

implantation is performed at 300oC. In fact, the  micro-pillars soften, on the average 

by 20%, compared to their non-implanted condition. The process of 300oC Zr+ 

implantation results in increased local fluctuations in the − flow curves obtained at 

25oC. This is observed for both the rNb and the Zr micro-pillars. This is clearly 

illustrated when 
𝑑𝜎

𝑑𝜀
 is plotted versus  for the rNb micro-pillars (Figure 5.9). The 

magnitude of the 
𝑑𝜎

𝑑𝜀
 fluctuations is greatest for the TN samples. The observed softening 

and increased stress fluctuations in the rNb and Zr micro-pillars after Zr+ 

implantation at 300oC, but not after Zr+ implantation at 25oC, suggests that thermally-

activated recovery of the ion-induced crystallographic defect population being the cause. 

Our observation that this softening effect is greater in the  micro-pillars than in the -

Zr micro-pillars suggested that this recovery process occurs more quickly in the  

interface regions.  

The TN rNb micro-pillars that display softening when exposed to Zr+-implantation at 

300oC also display axial cracking along the central rNb interface during compression 

to high strain (Fig 5.7c).  This cracking was not observed during compression of non-

implanted TN  micro-pillars nor was it observed during compression of TN or AN 
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rNb micro-pillars that were Zr+ implanted at 25oC and illustrate the role of thermal 

activation during high temperature Zr+ implantation in weakening rNb interfaces.  

  

 

 

Figure 5.8: Effect of Zr+ implantation on  𝝈̅ (𝜺=𝟎.𝟏𝟎) of the α/β micro-pillars and αZr 

micro-pillars [3] made from the AN and TN planes of a Zr-2.5%Nb pressure tube. 
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(c) 

Figure 5.9: Plots of rate of change of flow stress with respect to strain, 
𝒅𝝈

𝒅𝜺
 , versus 

true strain for TN α/β micro-pillars in: a) non-implanted condition, b) Zr+ 

implanted (𝝍̅ ≈ 𝟔𝒅𝒑𝒂 ) at 25oC, and c) Zr+ implanted (𝝍̅ ≈ 𝟔𝒅𝒑𝒂 ) at 300oC. 

5.4.2 Orientation dependence of the critical resolved shear stress 

The strength of a bicrystalline micro-pillar depends upon several factors such as: the 

orientation of the constituent phases and the volume occupied by each phase. Previous 

neutron diffraction studies have determined that the β-Nb phase has slightly higher yield 

stress and lower elastic modulus compared to the α-Zr phase (𝜎𝑦𝛽−𝑁𝑏
≈

480 𝑀𝑃𝑎, 𝐸𝛽−𝑁𝑏 ≈ 60𝐺𝑃𝑎 𝑀𝑃𝑎 while 𝜎𝑦𝛼−𝑍𝑟
≈ 400 𝑀𝑃𝑎, 𝐸𝛼−𝑍𝑟 ≈ 100𝐺𝑃𝑎 𝑀𝑃𝑎 [4]). 

Hence it can be assumed that the deformation in α/β bicrystal pillar would be activated 

first in the α-Zr phase. Ashton et al. [5] reported that for dual phase titanium alloys the 

orientation of the  phase relative to the  phase plays an important role in the 

micromechanical response of the alloy. The flow stress would be higher if the β phase 
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acts as barrier to mobile dislocations. As Zr-2.5%Nb has microstructural similarity with 

that of a dual  phase titanium alloy, the β-Zr could also have similar impact in 

micromechanical response. As reported in literature [6], [7], [8], [9], and [10] that the 

type of grain boundary would strongly affect the strength of bicrystal pillars.  

Since we do not have information about the orientation of β-Nb phases in our micro-

pillars, due to their small size making EBSD indexing impossible, we cannot calculate 

the precise angular misorientation between the -Zr and -Nb phases at the  

boundaries. We can,  however, obtain a first order approximation of the relative effect of 

-Zr phase orientation on the critical resolve shear stress 𝜏𝜀=0.10 of the -phase within an 

 micro-pillar by assuming the crystallographic misorientation across all the  

interfaces are the same and the volume fraction of the −Nb filaments is small relative to 

that of the -Zr phase. In such a condition, the measured 𝜎 (𝜀=0.10) reflects, to a first 

approximation, the normal compressive stress in the -Zr phase of the micro-pillar. We 

can then use the technique, described briefly below and in more detail in Ref. [3], to 

calculate 𝜏𝜀=0.10   

 

In this study both the mechanical flow stress, 𝜎𝜀=0.10, and the crystal orientation of the -

phase constituent of the  micro-pillars were measured. The Schmid law formulation 

expresses 𝜏𝜀=0.10 as a function of 𝜎𝜀=0.10 as  

𝜏𝜀=0.10 = 𝑚𝜎𝜀=0.10       (1) 

Where the Schmid factor 𝑚 is  
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𝑚 = 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆       (2) 

and 𝜙 is the angle between the loading direction and the slip plane normal while 𝜆 is the 

angle between the loading direction and the slip direction. The maximum Schmid factor 

corresponding to deformation by each of the following mechanisms common to hcp 

crystals: {0001}〈001〉 basal dislocation glide, {001̅0}〈112̅0〉 prismatic dislocation glide, 

{101̅1}〈112̅3〉 pyramidal dislocation glide, and {11̅02} < 101̅1 >  twinning 

deformation was calculated (Table 5.2). During single-slip, Stage II, deformation one 

would expect a constant 𝜏𝜀=0.10, of magnitude characteristic of the operative mechanism, 

to be insensitive to loading direction as indicated by the angle 𝜃 between the loading 

direction and the <0001> basal plane normal direction.    

Figure 5.10 shows a plot of the normalized critical resolved shear stress expressed as  

   𝜏̂𝜀=0.10 =
𝜏𝜀=0.10

𝜏𝜀=0.10𝜃=0

      (3) 

 versus 𝜃. We observed that 𝜏̂𝜀=0.10 of the  micro-pillars is not constant but depends 

upon 𝜃. While this is contrary to what one would expect for single-crystal deformation by 

simple single-slip prismatic glide, it is consistent with that predicted for deformation 

occurring by concurrent dislocation slip and twinning.  

We have compared our experimental results with a model proposed by Abdolvand et al. 

[11] to investigate the effects of grain boundary misorientation on twin inception during 

deformation of hcp bicrystals. Our experimental results match considerably well with the 

model. Of Abdolvand et al (Fig. 5.10). It should be noted that this model does not 

consider the effect of irradiation hardening and that our experiments includes  micro-
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pillars with various thicknesses and volume fractions of β phase. Ashton et al. [5] 

reported that for dual phase titanium alloys, the variation of width of β phase and the 

relative crystallographic orientation of the α-phase with respect to β-phase orientation 

plays an important part in the stress-strain response of α/β colonies. For the samples that 

were Zr+ implanted at 300oC comparatively less variation in the 𝜏̂𝜀=0.10 –  trend (Fig. 

5.10) and this may be the result of thermal energy rearranging the ion-induced crystal 

damage to promoted strain localization, through a dislocation channeling mechanism 

[12].  
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(c) 

Figure 5.10: Variation in the normalized critical resolved shear stress 𝝉̂𝜺=𝟎.𝟏𝟎 (Eq. 3) with 

basal misorientation angle θ for α/β micro-pillars in the: a) non-implanted condition, b) 

Zr+ implanted (𝝍̅ ≈ 𝟔𝒅𝒑𝒂 ) at 25oC, and c) Zr+ implanted (𝝍̅ ≈ 𝟔𝒅𝒑𝒂 ) at 300oC. The 

solid line represents the trend predicted by the model of Abdolvand et al. [11]  

 

5.5 Conclusions 

In this study we have assessed the flow stress, at 25oC, of Zr-2.5%Nb micro-pillars 

containing a microstructure of mixed -Zr and -Nb phases in the non-implanted and in 

two Zr+-implanted (𝜓̅ ≈ 6𝑑𝑝𝑎 at 25oC and 300oC) conditions. These tests were 

conducted to compare the mechanical response of -phase ligaments with those of 

similar size -phase ligaments, reported in Ref. 3, which occur at a crack tip during 

ductile fracture of neutron-irradiated Zr-2.5%Nb CANDU pressure tubes. 
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For all conditions tested, 𝜎 (𝜀=0.10) is generally higher for the TN than for the AN oriented 

micro-pillars and this reflects the mechanical anisotropy of the hcp -phase. 

We observed that 𝜎 (𝜀=0.10) 𝑖s of similar magnitude for TN oriented rNb and r-phase 

micro-pillars in both the non-implanted and the Zr+ implanted (𝜓̅ ≈ 6𝑑𝑝𝑎 at 25oC) 

conditions and both types of micro-pillars displayed decreased 𝜎 (𝜀=0.10), by about 20%, 

when the Zr+ implantation was performed at 300oC. This softening effect is accompanied 

by increased local fluctuations in the − flow curves. These observations suggest that 

increased thermally-activated recovery of the Zr+-induced crystallographic defect 

population occurs when Zr+ implantation is performed at an elevated temperature, 300oC 

compared to 25oC. We observe that the degree of softening is greater in the rNb 

micro-pillars than in the r micro-pillars suggests that the recovery process occurs more 

quickly in the presence of rNb interfaces.  

The TN rNb micro-pillars that display softening when exposed to Zr+-implantation at 

300oC also display axial cracking, occurring near the rNb interface region, during 

compression.  This cracking was not observed during compression of non-implanted TN 

rNb micro-pillars nor was it observed during compression of TN or AN oriented 

rNbmicro-pillars that were Zr+ implanted at 25oC and illustrates the role of thermal 

activation during Zr+ ion implantation in weakening rNb interfaces.  

We observed that concurrent operation of multiple deformation mechanisms gave rise to 

a normalized resolved critical shear stress 𝜏̂𝜀=0.10 which was not constant but varied with 

misorientation angle 𝜃 of the loading direction relative to 〈0001〉 of the Zr phase rNb 
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micro-pillar. The dependence of 𝜏̂𝜀=0.10 upon 𝜃 matched well with the computational 

results of Abdolvand et al [11] for deformation in bicrystalline Zr by multiple 

mechanisms involving twin inception, from grain boundaries, along with dislocation slip.  

For the samples that were Zr+ implanted at 300oC comparatively less variation in the 

𝜏̂𝜀=0.10 –  trend was observed and this may be the result of enhanced thermally-induced 

recovery of Zr+-induced crystal damage to promoted strain localization, through a 

dislocation channeling mechanism, in the region of the rNb interfaces. 
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Chapter 6  

6 Deformation of Zr+ implanted Zr-2.5%Nb alloy at 250°C 

Uniaxial compression tests were performed at 250°C on non-implanted and Zr+ 

implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) Zr-2.5%Nb Zr and r b-phase micro-pillars (1 m 

diameter and 3 m height)  to assess the effect of testing temperature on the normal yield 

stress, critical resolved yield shear stress, and strain hardening capacity. Surface cracking 

and increased serration of the stress – strain response, was observed for the Zr+ implanted 

micro-pillars indicating that Zr+-induced crystal damage either mobilizes or enhances 

oxygen-induced embrittlement through a dynamic strain-aging at 250oC in air.  The 

anisotropy factor, 𝜎0.2%𝑇𝑁
𝜎0.2%𝐴𝑁

⁄ , of non-implanted r-phase micro-pillars decreased 

from about 1.5 to 0.9 with increasing testing temperature from 25oC to 250oC but 

remained essentially unchanged at about 0.9 for the Zr+ implanted micro-pillars. All 

micro-pillar conditions tested displayed reduced strain hardening capacity at 250oC 

compared to 25oC. All the non-implanted r-phase micro-pillars, regardless of crystal 

orientation, and specific Zr+ implanted micro-pillars, aligned for preferential basal 

dislocation glide, displayed decreasing normalized resolved flow shear stress 𝜏̂ with 

increasing temperature from 25oC to 250oC consistent with increased thermal activation 

of obstacle-limited dislocation glide. In contrast, Zr+ implanted micro-pillars aligned for 

preferred prismatic dislocation slip displayed increasing 𝜏̂ with increasing testing 

temperature indicating that the implantation process, followed by prolonged exposure to 

air at 250oC during testing, results in creation of stronger obstacles to prismatic 

dislocation glide. 
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6.1 Introduction 

Zirconium alloys are widely used for structural components of nuclear reactor cores due 

to their low neutron absorption cross-section, good mechanical properties, and high 

corrosion resistance. One example of this is the Zr-2.5%Nb alloy which is used for heavy 

water primary coolant pressure tubes in CANDU nuclear reactors. These tubes normally 

operate at temperature between 250 and 300°C [1]. The mechanical strength and ductility 

of this alloy has been studied extensively with large specimen testing [1][2][3][4]  and 

with micro-/nano-indentation hardness and micro-pillar compression tests [5][6][7][8][9]. 

The mechanical strength of this material is anisotropic due to the elongated shape and 

crystallographic texture of its hcp r-phase matrix. In the as-fabricated condition its 

yield stress is about 20% higher when loaded in the circumferential (transverse) direction 

of the pressure tube than when loaded in the axial direction [8]. Neutron irradiation 

induces significantly hardening to this alloy and appears to reduce the extent of its 

mechanical anisotropy [9].  The bulk of previous investigations into the nature of this 

irradiation – induced hardening were conducted with nano-indentation hardness or micro-

pillar compression tests performed on material that was Zr+ implanted to impart similar 

levels of microstructural damage as neutron irradiation. In our previous papers the 

mechanical strength and ductility at 25oC of Zr+ implanted and non-implanted Zr and r 

b phase micro-pillars of Zr-2.5Nb pressure tube material were investigated [10][11]. 

Zr+ implantation (𝜓̅  ≈ 6𝑑𝑝𝑎) increased the flow strength for Zr and r b micro-

pillars fabricated along the axial and transverse directions of the pressure tube but flow 

strength was significantly reduced when the Zr+ implantation temperature was increased 

from 25oC to 300oC. The presence of an interface in the micro-pillar resulted in lower 
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flow strength compared to single crystal α-phase micro-pillars. This was attributed to the 

r b interface acting as a dislocation sink [12]. 

Since the micro-pillar mechanical testing described above was performed at only one 

temperature, 25oC, it is important that similar tests be performed at ion-implantation and 

mechanical test temperature that is within the 250-300oC operating temperature range of 

CANDU pressure tubes to confirm that the reported deformation effects and mechanisms 

are representative of what occurs in Zr-2.5Nb pressure tubing during service in a 

CANDU reactor.  In this paper we present data on the effect of Zr+ implantation, 

performed at 300oC, on the magnitude and anisotropy of the yield stress and strain 

hardening capacity at 250oC, of Zr and r b - phase micro-pillars made of Zr-2.5Nb 

pressure tube material. 

6.2 Procedure 

Small rectangular samples, about 1 cm x 1 cm x 0.4 cm, were cut from a non-irradiated 

extruded and 25% cold-drawn Zr-2.5%Nb CANDU pressure tube. Two orthogonal faces 

of the samples were labeled as Axial Normal (AN) and Transverse Normal (TN) with 

respect to the Axial, and Transverse (circumferential) directions of the tube. The AN and 

TN sides of the samples were polished and chemically etched to reveal the Zr and b 

phase microstructure. Areas of the microstructure, on the AN and TN sides, containing 

comparatively large α grains were selected for fabrication of singe crystal Zr phase 

micro-pillars while clearly demarked r b phase boundaries were selected for 

fabrication of r b micro-pillars.  
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The micro-pillars, about 1 m diameter and 3 m height (Figure 6.1), were fabricated by 

Focused Ion Beam (FIB) milling with a 30 keV 10 nA Ga+ beam. The tops of the pillars 

were further polished with low, 50 pA, Ga+ beam current to minimize the depth of ion-

induced crystal damage and promote high quality Electron Back Scattered Diffraction 

(EBSD) patterns. For the  micro-pillars the α-phase occupied half of the pillar 

diameter with the  grain boundary located along the axial mid-plane of the pillar. 

 

Figure 6.1: SEM image of a typical αZr-phase micro-pillar 

Electron Backscattered Diffraction (EBSD) analyses were performed on the top surface 

of each micro-pillar to determine θ the basal misorientation angle of the  phase aligned 

in the axial direction of the pillar.  The b phase of the r b micro-pillars was not 

indexed by EBSD. 
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Half the micro-pillars were then Zr+ implanted. The implantation was performed in 

vacuum at 300°C with 8.5 MeV Zr+ (𝜑 =7.07x1019 ions/m2) at the Tandetron ion 

accelerator at the University of Western Ontario. This resulted in peak Zr+ implantation 

depth of about 3 μm as calculated by SRIM software [13]. The average ion-induced 

atomic displacement 𝜓 , expressed in units of displacement per atom (dpa), was 

determined using SRIM software and the Kinchin-Pease technique as [14]  

    𝜓(𝑑𝑝𝑎) =
𝜑 х 10

8
х 𝜈

𝑁     [6.1] 

where, 𝜑, ion dose (ions/m2), ν is the calculated average number of atom displacements 

per ion and N is the atomic number density. The average damage level throughout the 

micro-pillar was about 𝜓̅  ≈ 6𝑑𝑝𝑎 . 

The micro-pillars were then compressed at 250oC using a high-temperature nano-

indentation hardness tester equipped with a 5 µm diameter diamond flat punch. These 

experiments were conducted at Canadian Nuclear Laboratory (Chalk River Ontario). The 

elevated test temperature was maintained with electric resistance heaters located on the 

indenter and directly below the sample.  The sample-indenter assembly was allowed to 

equilibrate for 2 hours at 250oC prior to testing to ensure that ± 1oC thermal stability was 

established. The compression tests were performed under constant loading rate of 0.10 

mN/sec to an axial true strain of about 15%. Table 6.1 summarizes the tests performed.   
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Table 6.1: Listing of micro-pillar compression tests performed in this study 

Ion implantation 
condition 

Pressure tube plane from 
which the micro-pillar was 

fabricated 

Number of 
micro-pillars 

tested 

Non-implanted  (𝜓̅ =
0) 

TN ( α) 3 (Figure 6.2) 

TN (α/β) 3 (Figure 6.3) 

 

Zr+ Implanted (𝜓̅  ≈
6𝑑𝑝𝑎 @ 300oC) 

AN (α) 4 (Figure 6.36) 

AN(α/β) 3 (Figure 6.47) 

TN (α) 3 (Figure 6.4) 

TN(α/β) 1 (Figure 6.5) 

Total number of micro-pillars tested 17 

6.3 Results 

True stress – strain curves from all the micro-pillars tested are shown in Figure 6.2 – 

Figure 6.7: Figure 6.2 and Figure 6.3 show the curves for the non-implanted while Figure 

6.4 and Figure 6.5 show the curves for the Zr+-implanted Zr and r b micro-pillars of 

TN orientation. Figure 6.6 and Figure 6.7 show the curves for the Zr+-implanted Zr and 

r b micro-pillars of AN orientation. The small size of the micro-pillars necessitates 

that the axial strain  be determined from the measured deflection of the diamond flat 

punch which contacted the specimen. The associated load frame compliance therefore  

affects the magnitude of  and resulted in an apparent elastic stiffness S which is of 

considerably smaller magnitude than the true elastic modulus E of the tested material. 

The stress – strain curves display a region of linear elastic deformation and a non-distinct 

elastic-plastic transition.  The 0.2%-offset method was used to estimate the initial yield 

stress 𝜎0.2% (Table 6.2).   
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The stress-strain curves all display some post-yield strain hardening. The flow stress 

corresponding to 10% strain, 𝜎𝜀=10% is larger than 𝜎0.2% and this stress difference ∆𝜎 

reflects the degree of strain hardening (Table 6.2).  

The resolved shear stress within the  phase corresponding to initial yielding was 

calculated by incorporating the EBSD-determined 〈ℎ𝑘𝑙〉  phase direction parallel to the 

axial direction of the pillar and Schmid’s law as 

𝜏0.2% = 𝑚𝜎0.2%         [6.2] 

Where the Schmid factor 𝑚 is  

𝑚 = 𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜆         [6.3] 

and 𝜙 is the angle between the loading direction and the slip plane normal while 𝜆 is the 

angle between the loading direction and the slip direction. The Schmid factor 

corresponding to deformation by each of the following mechanisms common to the hcp 

-Zr crystal: {0001}〈0001〉 basal dislocation glide, {101̅0}〈112̅0〉 prismatic dislocation 

glide, {101̅1}〈112̅3〉 pyramidal dislocation glide, and {11̅02} < 101̅1 >  twinning 

deformation was calculated. Table 2 lists the maximum m for each of the tests performed. 

Post-deformation SEM images of typical TN-oriented αZr micro-pillars are shown in 

Figure 6.8. The Zr+ implanted pillars but not the non-implanted pillars displayed axial 

cracking after deformation at 250oC. Closer examination of a cracked micro-pillar 

indicated that the cracks initiate at the sample surface. 
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Figure 6.2: True stress versus true strain response of the TN-oriented non-

implanted Zr micro-pillars compressed at 250°C 

  

  

Figure 6.3: True stress versus true strain response for TN-oriented non-implanted 

r b micro-pillars compressed at 250°C 

s 
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Figure 6.4: True stress versus true strain response for TN-oriented Zr+ implanted 

Zr micro-pillars compressed at 250°C 
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Figure 6.5: True stress versus true strain response for TN-oriented Zr+ implanted 

r b micro-pillar compressed at 250°C 

 

Figure 6.6 : True stress versus true strain response for AN-oriented Zr+ implanted 

αZr micro-pillars compressed at 250°C 
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Figure 6.7: True stress versus true strain response for AN-oriented Zr+ implanted 

r b micro-pillars compressed at 250°C  

 

Figure 6.8: post-deformation SEM images of (a) non-implanted and (b) Zr+-

implanted micro-pillars compressed at 250°C 
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Table 6.2: Listing of initial yield stress (𝝈𝟎.𝟐%), flow stress at 10% strain (𝝈𝟏𝟎%), stress difference (∆𝝈 = 𝝈𝟏𝟎% − 𝝈𝟎.𝟐%), θ basal 

misorientation angle of the α-phase corresponding to the axial direction of the micro-pillar, maximum calculated Schmid 

factor m, and the critical resolved shear stress (𝝉𝟎.𝟐%) for all the micro-pillars tested in this study 

Ion 
implantation 
condition 

Pressure tube 
plane on which 
micro-pillar was 
made 

Microstuctural 
phase type 

𝝈𝟎.𝟐%  

(MPa) 

𝝈𝟏𝟎%  

(MPa) 

∆𝝈 

(MPa) 
θ m 

 

Slip 
system 

𝝉𝟎.𝟐% 
(MPa) 

Specimen 
Designation 

Non-
Implanted 

(𝜓̅  ≈ 0𝑑𝑝𝑎) 

Transverse 
Normal (TN) 

α 

600 810 210 81.8 0.4502 Prism 270 F1 

591 722 131 21.5 0.4998 Basal 295 F2 

592 715 123 29.9 0.42 Basal 248 F3 

α/β 

857 937 80 26.9 0.3315 Basal 284 E1 

706 872 166 31.7 0.4061 Basal 286 E2 

606 752 146 75 0.4489 Prism 272 E3 

Zr+-
Implanted 

(𝜓̅  ≈ 6𝑑𝑝𝑎) 

 

Transverse 
Normal (TN) 

α 

1040 1501 461 56.6 0.4218 Basal 438 1A1 

762 1509 747 62.1 0.4 Prism 304 1A2 

1030 1804 774 80.7 0.4502 Prism 463 1A5 

α/β 1329 1729 400 55.9 0.29 Basal 385 2A4 
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Axial Normal 
(AN) 

α 

956 1283 327 89.6 0.4373 Prism 418 1B1 

1084 1300 216 83.9 0.4332 Prism 469 1B2 

1065 1412 347 71.6 0.3605 Prism 384 1B3 

1040 1577 537 86 0.4832 Prism 502 1B4 

α/β 

1117 1333 216 87.1 0.4373 Prism 488 2B1 

1074 1567 493 83.8 0.42 Prism 451 2B3 

1019 1562 543 81.6 0.4199 Prism 427 2B4 
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6.4 Discussion 

This paper presents new data on the stress-strain response, at 250oC, of Zr and r b 

phase Zr-2.5Nb micro-pillars in the non-implanted and Zr+-implanted (𝜓̅  ≈

6𝑑𝑝𝑎 @ 300𝑜𝐶) conditions. The objective is to assess the effect of temperature on the 

flow strength, 𝜎0.2% and 𝜏0.2%, and the work hardening capacity, ∆𝜎, of the Zr and r 

b phases of irradiated Zr-2.5Nb pressure tube material.  

6.4.1 Cracking of Zr+ implanted micro-pillars 

A unique observation of this study is that the Zr+-implanted r and r b -phase 

micro-pillars displayed a strong tendency to crack during uniaxial compression at 250oC 

(Fig. 6.8). Previous compression tests performed at 25oC on similar 300oC Zr+ implanted 

micro-pillars did not display axial cracking [10][11].  The 300oC Zr+ implantation was 

performed in high vacuum thus it is unlikely that significant oxidation of the micro-

pillars occurred during the implantation process.  The micro-pillars in our study however 

were all exposed to atmospheric air at 250oC for extended time during the compression 

testing.  

Analysis of the degree of serration of the stress-strain response is shown in Figure 6.9 

where 𝑑𝜎 𝑑𝜀⁄  is plotted versus 𝜀 for TN-oriented  micro-pillars tested in the Zr+-

implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) and tested in compression in air at 25oC and 250oC. At 

low values of strain,  < 0.04, The variation in 𝑑𝜎 𝑑𝜀⁄  is significantly larger for the 

micro-pillars tested at 250oC than those tested at 25oC. This is consistent with a different 

population of obstacles, with different strength characteristics, controlling the dislocation 

glide process during deformation at 250oC compared to 25oC. Since all the micro-pillars 
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in Figure 6.9 were subjected to the same Zr+ implantation (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) one can 

surmise that the observed axial cracking and increased serrations in the stress-strain 

response at 250oC occurs by either diffusive rearrangement of ion-induced crystal 

damage into larger obstacles, that offer more resistance to  dislocation glide, or onset of 

an oxygen-induced dynamic strain-aging process where ion-induced crystal defects 

enhance the ingress of mobile oxygen resulting in creation of new obstacles to dislocation 

glide. The later mechanism has been observed to operate in cold-worked Zr-2.5Nb 

particularly at elevated temperatures [15][16][17].   

 

Figure 6.9: 𝒅𝝈 𝒅𝜺⁄  with true strain (𝜺) during uniaxial compression of TN-oriented 

α micro-pillars in the non-implanted and the Zr+ implanted (𝝍̅  ≈ 𝟔𝒅𝒑𝒂 @ 𝟑𝟎𝟎𝒐𝑪) 

condition. The data from the 25oC test performed on a Zr+ implanted micro-pillar 

are obtained from σ-ϵ data presented in Reference [10] 

 

T = 250oC 

T = 25oC [10] 
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6.4.2 Effect of testing temperature on 𝝈𝟎.𝟐% of non-implanted 
micro-pillars 

Figure 6.10 presents a histogram of the 𝜎0.2% of TN- and AN-oriented r- and r b-

phase micro-pillars compressed at 250°C. Figure 6.11 shows a similar histogram for 

previously reported  𝜎0.2% data from similarly Zr+ implanted r- and r b-phase 

micro-pillars compressed at 25°C.  

The non-implanted TN-oriented r- and r b-phase micro-pillars displayed a 

decrease in the average 𝜎0.2% of about 40% and 50% when the testing temperature was 

increased from 25oC to 250oC. The presence of the b -phase in the TN-orientated non-

implanted r b micro-pillars resulted in a significant, 30% and 17%, increase in the 

average 𝜎0.2% relative to that of the non-implanted -phase micro-pillars when tested at 

25oC and 250oC. It should be noted that the volume fraction of r- and b-phases 

within all the r b micro-pillars was essentially the same; 50% of the micro-pillar was 

pure r-phase while 50% was  lamellae. 

Deformation of the non-implanted micro-pillars occurs primarily by a process of 

thermally-activated obstacle-limited dislocation glide [18].  The operation of this 

mechanism is consistent with the observed increase in 𝜎0.2% for the r b micro-pillars 

compared to the Zr  micro-pillars when tested at 25oC (Figure 6.11). 

Further analysis of the data in Figures 6.10 and 6.11 indicate that, for the non-implanted 

-phase micro-pillars, the yield stress anisotropy factor, 𝜎0.2%𝑇𝑁
𝜎0.2%𝐴𝑁

⁄ , decreases 

from about 1.5 to 0.9 with increasing testing temperature from 25oC to 250oC. This 

suggests that thermal activation of dislocations past obstacles in the non-implanted -
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phase occurs more rapidly upon {0001}〈0001〉 basal slip systems which, because of the 

crystallographic anisotropy of the -phase in the Zr-2.5Nb starting material,  are more 

active during deformation of the TN oriented, than the AN oriented micro-pillars.  

6.4.3 Effect of testing temperature on 𝝈𝟎.𝟐%of Zr+ implanted micro-

pillars 

The Zr+ implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) micro-pillars displayed quite different 

temperature dependence of 𝜎0.2%. Zr+ implantation resulted in 11% decrease and 34% 

increase in 𝜎0.2% for TN and AN oriented -phase micro-pillars tested at 25oC, the 

average 𝜎0.2% increased by 35% for the Zr+ implanted TN-oriented -phase micro-pillars 

tested at 250oC compared to 25oC.  

The anisotropy factor, 𝜎0.2%𝑇𝑁
𝜎0.2%𝐴𝑁

⁄ , of the Zr+ implanted α-phase micro-pillars 

remained constant at about 0.9 for test temperatures of 25oC and 250oC. This decreased 

anisotropy is the result of differential ion-induced hardening along the different 

dislocation slip systems with prismatic dislocation slip being more inhibited than 

pyramidal dislocation slip [15].  The similarity of the anisotropy factor for compression 

tests performed on the Zr+ implanted micro-pillars at 25oC and 250oC indicates that the 

degree of differential hardening is not highly temperature dependent.  
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Figure 6.10: Measured average 𝝈𝟎.𝟐% from the various types of micro-pillars 

compressed at 250°C. The scatter bars represent the measured sample-to-sample 

variability in 𝝈𝟎.𝟐% as indicated by the data in Table 6.2 
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Figure 6.11: Measured average 𝝈𝟎.𝟐% from the various types of micro-pillars 

compressed at 25°C. The data in this plot were previously reported [10][11] 

6.4.4 Effect of  Zr+ implantation and testing temperature on strain 
hardening of micro-pillars 

In this study we use the parameter ∆𝜎 = 𝜎10% − 𝜎0.2% as an indication of strain-

hardening capacity (Table 2). Figure 6.12 presents a histogram of ∆𝜎 of TN- and AN-

oriented α- and -phase micro-pillars compressed at 25oC [10][11] and 250°C.  

For the non-implanted r- and r b -micro-pillars the strain hardening capacity is 

much higher for pillars compressed at 25oC compared to 250oC. For both types of non-

implanted micro-pillars the decreased ∆𝜎 is indicative of enhanced thermal activation of 

dislocations past microstructural obstacles at 250oC compared to 25oC.  

Zr+-implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) α-phase micro-pillars tested at 25oC showed about 

1.5 times higher ∆𝜎 than those tested at 250°C.  The α/β-phase micro-pillars displayed 
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lower ∆𝜎 at either test temperature. To summarize, strain hardening capacity is affected 

by both testing temperature and prior Zr+ implantation: Increasing the test temperature 

lowers Δσ while Zr+ implantation results in increases Δσ.  

 

Figure 6.12: Variation of strain-hardening capacity Δσ obtained from micro-pillar 

compression tests performed on non-implanted and Zr+ implanted αZr- and αZr/βNb 

micro-pillars at 25°C (RT) 250°C. The data from the 25°C tests were obtained from 

σ-ϵ data reported in [10][11] 

6.4.5 Orientation dependence of  𝝉𝟎.𝟐% of -phase deformation at 
250oC 

Figure 6.14 shows the calculated Schmid factor m (Eq. 2) for hcp -phase deformation 

via the mechanisms of {101̅0}〈112̅0〉 prismatic slip, {0001}〈0001〉 basal slip, and 

{11̅02} < 101̅1 > twinning as a function of basal misorientation angle relative to the 

loading direction. Included in the figure are the maximum measured values of m for the 

TN and AN -phase micro-pillars of this study (Table 6.2). Based on their basal 
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misorientation angles, the majority of the -phase micro-pillars of this study can be 

divided into two general groups: i) pillars with misorientation angle between 20o and 65°, 

which deform primarily by basal dislocation slip, and ii) pillars with basal misorientation 

angle greater than 65°, which deform primarily by prismatic dislocation slip.  

 

Figure 6.13 Calculated Schmid factor for deformation along {𝟏𝟎𝟏̅𝟎}〈𝟏𝟏𝟐̅𝟎〉 

prismatic slip, {𝟎𝟎𝟎𝟏}〈𝟎𝟎𝟎𝟏〉 basal slip and {𝟏𝟏̅𝟎𝟐} < 𝟏𝟎𝟏̅𝟏 > twinning systems 

(solid lines) as a function of basal misorientation angle with respect to the loading 

direction. Superimposed on the curves are the measured maximum Schmid Factors 

m for each of the α-micro-pillars of this study (Table 6.2) 
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Figure 6.14 shows the variation of temperature normalized resolved shear stress 

 𝝉̂ = 𝝉𝟎.𝟐% 𝝉𝟎.𝟐%𝟐𝟗𝟖𝑲
⁄         [6.4] 

for -phase micro-pillars aligned for deformation by {0001}〈0001〉  basal slip and 

{101̅0}〈112̅0〉 prismatic slip as a function of testing temperature. The 𝜏̂  values for the 

selected micro-pillars from this study were obtained by normalizing the measured 𝜏0.2% 

(Table 2) with respect to 𝜏0.2%298𝐾
 obtained from similar -phase micro-pillars reported 

previously [10]. 𝜏̂ of our non-implanted micro-pillars follow the same temperature 

dependence as data from other studies; namely, 𝜏̂ decreases as testing temperature 

increases. This is consistent with the expected increased thermal activation of dislocation 

glide past microstructural obstacles that occurs at 250oC compared to 25oC. The -phase 

micro-pillars oriented for preferred basal dislocation slip show the same 𝜏̂ – T trend as 

those oriented for preferred prismatic dislocation slip, indicating that the kinetics of 

thermally-activated dislocation glide is largely the same for both deformation 

mechanisms in the non-implanted -phase.  

Unlike the non-implanted case, the Zr+ implanted (𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) micro-pillars 

that were aligned for preferred prismatic dislocation slip displayed an increasing 𝜏̂ with 

increasing testing temperature while those aligned for basal dislocation slip displayed a 

decreasing 𝜏̂ with increasing testing temperature (Figure 14). This increase in 𝜏̂ indicate 

that prior Zr+ implantation at 300℃ tends to enhance diffusion agglomeration of oxygen 

and/or Zr+-induced crystal defects to create stronger obstacles to dislocation glide on 

prismatic slip systems but not basal slip systems at 250oC.  It has been previously 
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reported that the critical resolved shear stress for dislocation glide decreases more rapidly 

with increasing temperature on basal than on prismatic slip systems [19][20][21].  

 

  

Figure 6.14: variation of  𝝉̂ with temperature for hcp α-phase Zr-2.5Nb subjected to 

{𝟎𝟎𝟎𝟏}〈𝟎𝟎𝟎𝟏〉  basal slip deformation [22][23][24]. Included in the plot are 𝝉̂ data 

from tests performed in this study and in our previous study [10] for α-phase 

samples subjected to {𝟎𝟎𝟎𝟏}〈𝟎𝟎𝟎𝟏〉  basal slip and {𝟏𝟎𝟏̅𝟎}〈𝟏𝟏𝟐̅𝟎〉 prismatic slip 

deformation 

6.5 Conclusions 

In this study we investigated the uniaxial compressive flow stress, at 250°C, of FIB-

fabricated - and -phase micro-pillars (1 m diameter and 3 m height) made from 

Zr-2.5%Nb pressure tube material. The micro-pillars were fabricated from the AN and 

TN planes of the pressure tube and were tested in the non-implanted and Zr+-implanted 



129 

(𝜓̅  ≈ 6𝑑𝑝𝑎 @ 300𝑜𝐶) conditions. The dependence upon testing temperature of yield 

strength 𝜎0.2%, critical resolved shear stress 𝜏0.2%, and strain hardening capacity Δσ were 

assessed. 

Surface cracking was observed to occur in all of the Zr+ implanted micro-pillars. This 

was in contrast to the non-implanted micro-pillars, tested at 250oC, and similarly Zr+ 

implanted micro-pillars tested at 25oC which did not display surface cracking. The 

surface cracking was accompanied by increased serration in the stress – strain response. 

These findings indicate that prior Zr+ implantation results in increased brittleness and 

unstable plastic deformation at 250°C. We suggest that this occurs either by thermally - 

enhanced rearrangement of ion-induced crystal damage into larger obstacles that offer 

more resistance to  dislocation glide or to the onset of an oxygen-induced dynamic strain-

aging process whereby ion-induced crystal defects enhance the ingress of mobile oxygen 

resulting in creation of stronger obstacles to dislocation glide.  

The anisotropy factor, 𝜎0.2%𝑇𝑁
𝜎0.2%𝐴𝑁

⁄ , of non-implanted -phase micro-pillars 

decreased from about 1.5 to 0.9 with increasing testing temperature from 25oC to 250oC 

whereas it remained essentially unchanged at about 0.9 for the Zr+ implanted micro-

pillars tested over the same temperature range. This suggests that, for the non-implanted 

-phase, increasing the testing temperature results in proportionally greater reduction in 

the critical resolved shear stress for {0001}〈0001〉 basal dislocation slip, which is the 

primary deformation mode of the TN micro-pillars, compared to {101̅0}〈112̅0〉 prismatic 

dislocation slip, which is the primary deformation mode of the AN micro-pillars. The 

decreased anisotropy displayed by the Zr+ implanted micro-pillars confirms previous 
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findings that {101̅0}〈112̅0〉 prismatic dislocation slip is more inhibited by Zr+-induced 

microstructural defects than {0001}〈0001〉 basal dislocation slip.  The similarity of the 

anisotropy factor for Zr+ implanted micro-pillars tested at 25oC and 250oC indicates that 

the degree of differential hardening is not highly temperature dependent. 

The strain hardening capacity, Δσ, of both the non-implanted and the Zr+ implanted -

phase micro-pillars decreased with increasing test temperature from 25oC to 250oC 

however the magnitude of Δσ, at a given temperature, was increased for the Zr+ 

implanted micro-pillars. Increasing the testing temperature therefore lowers Δσ by 

increasing the rate of thermal activation of dislocation past microstructural obstacles 

while Zr+ implantation increases Δσ via implantation-induced crystal defects which act as 

obstacles to dislocation glide.  

The temperature-normalized critical resolved shear stress 𝜏̂ of our non-implanted -phase 

micro-pillars aligned for both basal and prismatic dislocation glide and our Zr+ implanted 

micro-pillars aligned for basal dislocation glide displayed decreasing 𝜏̂ with increasing 

temperature from 25oC to 250oC. This is consistent with increased thermal activation of 

dislocation glide past microstructural obstacles that occurs at 250oC. Since, in the non-

implanted case, the -phase micro-pillars oriented for preferred basal dislocation slip 

show the same 𝜏̂ – T trend as those oriented for preferred prismatic dislocation slip 

indicating that the kinetics of the thermally-activated dislocation glide was largely the 

same.  

The Zr+ implanted -phase micro-pillars that were aligned for preferred prismatic 

dislocation slip displayed an increasing 𝜏̂ with increasing testing temperature. This 
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indicates that prior Zr+ implantation followed by prolonged exposure to air at 250oC 

tends to result in stronger obstacles to dislocation glide on prismatic slip systems than on 

basal slip systems. 

The experimental data presented in this paper will be helpful for life-cycle assessment of 

pressure tubes in the existing reactors and predicting the material properties of Zr-

2.5%Nb alloy at high temperature.  
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Chapter 7   

7 Discussion and Future Works 

7.1 Discussions 

This chapter summarizes the key results of the three previous chapters. In addition a 

general discussion correlating these results with the objectives of the thesis and 

recommendations for future work is also provided. As a recap, the prime objective of this 

research project was to investigate the mechanical properties of Zr+ implanted Zr-

2.5%Nb alloy pressure tubes at the micron length scale at different temperatures. To 

obtain localized mechanical properties, micropillar shaped samples were prepared with 

and without interfaces. And these samples were compressed at room temperature and at 

250° to investigate the effect of test temperature on deformation. 

In chapter 4, micropillars were prepared with only αZr phase in the pillar top to assess the 

micromechanical deformation mechanism of this single phase. It is really important to 

know the properties of this phase as it occupies the largest volume fraction of the Zr-

2.5%Nb microstructure. The αZr phase is present in other important zirconium alloys such 

as Zircaloy calandria tubing and fuel sheath material. In our study, the micro-pillars were 

implanted to an average crystal damage level of 6dpa at room temperature and at 300°C. 

These results were compared with non-implanted pillars. Length scale dependence was 

observed for the non-implanted samples; the compressive strength was significantly 

higher compared to bulk polycrystalline samples. The typical anisotropy of Zr-2.5%Nb 

was also present at micron length scale but anisotropic ratio was higher compared to bulk 

samples. Although Zr+ implantation at both temperatures hardened the samples, the effect 

was reduced at higher implantation temperature. This is most likely due to increased 
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strain localization, and our observation of increased serration in the stress-strain response 

suggests that irradiation damage implanted at elevated temperature, 300°C compared to 

25°C, promotes strain localization. The normalized shear stress displayed an initial 

increase and after that a decreasing trend with the increase of basal misorientation angle. 

In chapter 5, the pillars were implanted and compressed in a similar fashion to chapter 4. 

The important difference being that the pillar top surface had alternate layers of αZr/βNb 

interface with half of the pillar top occupied by αZr phase. This experiment was 

conducted to observe the effect of the presence of interfaces on the deformation of 

implanted and non-implanted samples. It was observed that for αZr and αZr/βNb pillars 

fabricated in the TN direction there was not much difference in 𝜎 (𝜀=0.10) value in both 

non-implanted and room temperature implantation conditions. However, with the 

increase in implantation temperature the strength of αZr/βNb micropillars was decreased by 

about 20%. Increased local fluctuations in σ-ϵ curves indicate increased thermally 

activated recovery at higher implantation temperature. It was also observed that the 

presence of the αZr/βNb interfaces influences the orientation dependence of the 

deformation. 

Chapter 6, presents the deformation mechanism of implanted and non-implanted Zr-

2.5%Nb micropillars compressed at 250°C. Surface cracking was observed in 

micropillars implanted at 300°C. These cracks were not present in non-implanted 

samples or samples implanted at room temperature. As the surface cracking was 

accompanied by increased serration in the stress-strain response, this is probably because 

of thermally enhanced rearrangement of ion-induced crystal damage into larger obstacles. 
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With the increase in test temperature, anisotropy factor, 𝜎0.2%𝑇𝑁
𝜎0.2%𝐴𝑁

⁄  for non-

implanted samples decreased significantly. For the implanted samples increase in test 

temperature did not have noticeable impact on anisotropy factor. Anisotropy factor 

remaining the same for Zr+  implanted micro-pillars tested at 25°C and 250°C is probably 

an indication that hardening of AN and TN phases is not highly temperature dependent. 

With the increase in test temperature, for non-implanted samples critical resolved shear 

stress decrease for both basal and prismatic dislocation glide. Whereas for implanted 

samples, the critical resolved shear stress value for prismatic slip remained unchanged 

indicating the presence of strong obstacle to dislocation glide. 

In previous research, typically single crystal or bicrystal Zr alloy samples were fabricated 

from very large α-grain size annealed samples, usually of pure Zr or Zr-Sn (Zircaloy) 

composition. To the best of our knowledge the present thesis research is the first to report 

direct experimental evidence for the length scale dependence of the uniaxial flow stress 

of αZr phase and αZr/βNb- phases of extruded and cold-drawn   for Zr-2.5%Nb pressure 

tube material.  

Anisotropic ratio was around 1.5 for non-implanted samples at micron length scale 

compared to 1.2-1.3 for bulk polycrystalline samples. Ion implantation results in 

decreased anisotropy as it selectively hardens the slip systems. As a general rule, it can be 

stated that increase in implantation temperature and test temperature results in decreased 

anisotropy due to thermally activated dislocation glide. 

Although it is mentioned in literature that axial normal samples observe more strain 

hardening compared to transverse normal samples. In our experiments we did not observe 
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this trend. The probable reason could be that the results in literature are from bulk 

samples, which means those samples had strong texture. But in our case, as the pillar top 

had single phase we observed that pillars fabricated from both the axial normal and 

transverse normal direction of pressure tube had similar basal misorientation angle. It was 

also observed that the basal misorientation angle has strong influence on the deformation 

of αZr micropillars.  

The results presented in this thesis are novel and provide valuable information regarding 

the deformation of Zr-2.5%Nb alloy at sub-micron length scale. The mechanical 

properties of αZr and αZr/βNb micropillars at various implantations and test temperatures 

would be helpful for assessing the ductile fracture due to surface cracks.  

7.2 Future Works 

Although the present work accumulated a considerable amount of new data, there were a 

few limitations. If these issues are addressed in future, it would build upon our findings 

and lead to a more complete understanding of the micromechanical deformation of Zr-

2.5%Nb alloys. Specific suggestions for future work are provided below. 

 The nano-indentation machine used for room temperature experiments was ex-situ, the 

high temperature experiments were conducted in-situ at Chalk River Laboratories. We 

applied load-controlled compression system, which is good for gathering mechanical 

properties. But to obtain deformation related properties, namely to investigate the slip 

planes activated during deformation, a nano-indentation machine with in-situ observation 

ability is more desirable with displacement-controlled mode. As in displacement-



140 

controlled mode you can apply load to create specific amount of displacement and then 

observe the deformation in-situ.  

All these experiments were conducted in a fixed strain rate. Conducting these 

experiments at variable strain rate would allow us to understand the strain rate dependent 

variation of mechanical properties at sub-micron length scale.  

Detailed EBSD mapping of the general sample surface, instead of just the surface of 

already fabricated micro-pillars, would have allowed a selection of micro-pillars with a 

larger range of angular misorientation to be constructed and tested. This would have 

greatly improved the investigation of the dependence of the critical resolved shear stress 

upon basal plane normal-loading axis misorientation. In-situ TEM compressions of 

implanted micro-pillars at different temperatures could be done to directly image the 

interaction of ion-induced crystal defects with moving dislocations during the plastic 

deformation process.  
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