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Abstract 

Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are 

complementary modalities commonly acquired simultaneously to study brain function 

with high spatial and temporal resolution. The time-varying gradient fields from fMRI 

induce large-amplitude gradient artifacts (GRAs) that overlap in time and frequency with 

EEG, making GRA removal a challenge for which no satisfactory solution yet exists. We 

present a new GRA removal method termed Schrödinger filtering (SF). SF is based on 

semi-classical signal analysis in which a signal is decomposed into a series of energy-

based components using the discrete spectrum of the Schrödinger operator. Using a 

publicly available dataset, we compared our pipeline, which features only the popular 

average artifact subtraction (AAS) technique and SF, to two popular pipelines. The SF 

pipeline outperformed across all frequency bands based on metrics of signal preservation 

and GRA removal. SF, when combined with AAS, is therefore effective in removing 

GRA from EEG data. 

 

Keywords: Electroencephalography (EEG), functional magnetic resonance imaging 

(fMRI), gradient artifact, Schrödinger equation, semi-classical signal analysis (SCSA), 

filter, signal processing. 



 

 iii 

Lay summary 

Electroencephalography (EEG) directly measures brain activity with electrodes placed on 

the scalp. EEG records measurements quickly although it is unable to well-localize the 

sources of the activity. Functional magnetic resonance imaging (fMRI) forms a set of 

images of the brain over time. These images measure changes in blood flow and 

oxygenation that accompany brain activity. Therefore, fMRI indirectly measures brain 

activity. fMRI well-localizes brain activity but takes relatively long to acquire a single 

image. Both EEG and fMRI are non-invasive. The combined modality of simultaneous 

EEG and fMRI (EEG-fMRI) therefore offers the benefit of noninvasively recording brain 

activity with both high spatial and temporal resolution. 

 One unique challenge of EEG-fMRI is the gradient artifact: a large-amplitude set 

of signal disruptions in the EEG data caused by the interaction of the fMRI magnetic 

gradient fields with the EEG equipment. The gradient artifact has been studied for over a 

decade and numerous solutions have been proposed. However, no solution reduces the 

gradient artifact while preserving the underlying signal such that it is not a significant 

impediment to the analysis of the EEG data. 

 We present a new technique for removal of the gradient artifact called 

Schrödinger filtering. Schrödinger filtering is able to decompose a signal into a set of 

constituent signals, each possessing a different energy, where energy is proportional to 

signal amplitude. Schrödinger filtering is well-suited for gradient artifact removal 

because these constituent signals separately capture the signal and artifact based on 

energy differences. 

On an online dataset, we applied a popular gradient artifact removal step called 

average artifact subtraction followed by Schrödinger filtering. We compared the 

performance of our processing pipeline to that of two other popular pipelines in terms of 

signal preservation and artifact removal. Our pipeline outperformed the other two. These 

results indicate that Schrödinger filtering is an excellent processing technique for gradient 

artifact removal that helps with the analysis of EEG data of EEG-fMRI. 
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1 Introduction 
The human brain is one of the most complex and mysterious systems known. An 

information storage and transmission apparatus, it sends signals mainly using constituent 

cells called neurons. The human brain has an estimated one-hundred billion neurons1 and 

one-hundred trillion neural connections2. Most important about the brain is its central 

agency in one’s quality of life—a malfunctioning brain is costly to both the individual 

and the economy. With such complexity, brain disorder and disease are unfortunately 

inevitable. Perhaps more unfortunate is that the delicacy of the brain makes it so difficult 

to study effectively and noninvasively. The two most valued tools we have for such are 

electroencephalography (EEG) and functional MRI (fMRI). Their combined 

simultaneous acquisition (EEG-fMRI) is especially valuable although it comes with 

unique drawbacks that require solutions. 

Ion fluxes in and out of neurons produce extracellular electric potentials that are 

noninvasively measured using the modality of EEG, in which an array of recording 

electrodes is placed on the scalp3. EEG has proven useful for all forms of brain study, 
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including those of sleep disorders4–6 and epilepsy7–9. A strength of EEG is that it is able 

to record at a very high temporal resolution10 while major weaknesses are its low spatial 

resolution11 and low signal-to-noise ratio (SNR)12. 

The fuel sources of the brain are glucose and oxygen, which are delivered via the 

blood. Oxygen is delivered by hemoglobin, a protein in red blood cells. Hemoglobin has 

magnetic properties that depend on whether oxygen is bound and to what extent13. Areas 

in the brain with elevated neural activity exhibit a blood supply with a greater 

concentration of oxygenated hemoglobin. Nuclear magnetic resonance (NMR) can 

differentiate hemoglobin based on its oxygenation state. Magnetic resonance imaging 

(MRI), which uses NMR, is thus able to indirectly map changes in neural activity over 

the whole brain via fMRI14–16. fMRI is the most popular modality for studying the brain, 

especially in cognitive neuroscience17 and with some use in medicine18. Despite its fine 

spatial resolution, the process by which oxygen supply is increased is sluggish, limiting 

the temporal resolution of fMRI19. 

EEG and fMRI are complementary in their strengths and weaknesses. While both 

modalities are non-invasive, EEG directly measures neural activity with high temporal 

resolution but poor spatial resolution. Conversely, fMRI indirectly does so with poor 

temporal resolution but high spatial resolution. Moreover, these two modalities are gold 

standards with respect to their strengths. Therefore, EEG-fMRI is preferred as a 

theoretical ultimate modality. EEG-fMRI is desirable for simply studying the brain with 

high spatial and temporal resolution. It is also useful for studies of neurovascular 

coupling, in which EEG measures neurons’ electrical activity while fMRI measures their 

accompanying metabolics and hemodynamics20. However, combining acquisition of 



 

 3 

these two modalities has unique weaknesses in which each modality imparts artifact on 

the other. The most detrimental artifact of EEG-fMRI is the gradient artifact, in which the 

interaction of the EEG equipment with the time-varying gradient fields of the MRI 

scanner induces large-amplitude distortions in the EEG signal21–24. 

Several approaches for reducing the gradient artifact while preserving EEG signal 

have been conceived21–40, yet the gradient artifact remains an impediment to analysis of 

the EEG signal from EEG-fMRI41. The existing processing methods for gradient artifact 

removal apply linearly in either the time or frequency domains. In both these domains, 

the EEG signal and gradient artifact overlap, limiting these methods’ effectiveness. The 

technique of average artifact subtraction (AAS)22—in which a local average of the 

artifact-contaminated signal forms an approximate template of the artifact that is 

subtracted from the signal—is simple and effective, although significant residual artifact 

remains following AAS41. 

This thesis introduces a new gradient artifact removal technique called 

Schrödinger filtering. Schrödinger filtering is based on the new signal processing 

technique of semi-classical signal analysis (SCSA)42. In SCSA, an input signal is used as 

an attractive potential in the semi-classical Schrödinger operator, and the discrete 

spectrum of this operator is used to decompose the input signal into a series of energy-

based components. SCSA is therefore analogous to the discrete Fourier transform, which 

represents an input signal as a series of sinusoids of different frequencies. SCSA is 

particularly suited for gradient artifact removal because it generates components that 

separately capture signal and artifact based on energy differences. 

Schrödinger filtering adapts SCSA for gradient artifact removal in two steps. 
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Firstly, following AAS, the EEG signal is rid of gradient-related spikes by selectively 

removing so-called Schrödinger components—in particular, the high-energy components 

that depict the spikes. Secondly, the de-spiked signal is globally filtered by removing 

Schrödinger components corresponding to residual artifact. De-spiking facilitates a finer 

separation between components representing artifact and those representing signal. 

Schrödinger filtering also has the inherent benefit of denoising the signal. 

To fully appreciate the multi-modal method of EEG-fMRI, each modality is 

introduced separately. Thus, the remainder of this introduction begins with background 

on the principles of fMRI and EEG and is followed with a description of EEG-fMRI. The 

gradient artifact is explained, and existing gradient artifact removal methods are given. 

Finally, Schrödinger filtering is described, beginning with a presentation of SCSA. 

1.1  Functional magnetic resonance imaging (fMRI) 

fMRI is a type of MRI used to probe brain activity. The most common type of fMRI—

i.e., blood oxygenation level-dependent (BOLD) fMRI—is sensitive to changes in 

deoxyhemoglobin, which commonly occur with neural activity16. As such, BOLD fMRI 

is an indirect measure of brain activity. MRI is a family of imaging modalities used in 

biology and medicine. MRI has high spatial resolution and a versatile set of contrasts and 

applications; uses non-ionizing radiation; and is non-invasive. MRI is based on the 

phenomenon of NMR. 

In NMR, the hydrogen atoms of water molecules can be thought of as precessing 

vectors—called spins—about an external and uniform magnetic field. The spins precess 

at the characteristic Larmor frequency. The macroscopic average of the spins—called the 
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Figure 1.1: Precession of hydrogen atoms of water molecules. 
The magnetic spins of the water hydrogen atoms precess about the external uniform 
magnetic field 𝐵B⃗ � with frequency 𝜔BB⃗ �. In the presence of 𝐵B⃗ �, the spins exist in either the 
spin-up (parallel to 𝐵B⃗ �) or spin-down (anti-parallel to 𝐵B⃗ �) state. The spin-up state is 
slightly lower-energy and therefore slightly more probable at room temperature, which is 
illustrated with four spin-up (blue spheres) and three spin-down states (orange spheres). 
The vector average of all the magnetic dipole moments associated with each spin 
surmount to a magnetization vector 𝑀BB⃗  that points along 𝐵B⃗ �. 
 
 
magnetization—points along the direction of the external field (Figure 1.1). Application 

of a radiofrequency (RF) pulse, which oscillates at the Larmor frequency, tips the 

magnetization from equilibrium (Figure 1.2). The rate at which the magnetization 

recovers back to equilibrium is material-specific, which facilitates good tissue contrast in 

MRI. In the process of this recovery, the magnetization precesses and acts as a 

transmission antenna, giving off the NMR signal43. 

The signal recorded in MRI is the NMR signal. MRI uses gradient fields to distort 

the field experienced by a sample in a controlled manner over so-called image space. 

Image space is related to spatial frequency (𝑘) space, called 𝑘-space, by a Fourier 

transform (Figure 1.3). This Fourier relationship allows for efficient spatial localization 

and discretization of the NMR signal in the sample into a grid of voxels44.  
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Figure 1.2: RF tipping. 

For biologically relevant nuclei such as water protons, the Larmor precession frequency 
𝜔� is in the radiofrequency (RF) range. When a transiently applied electromagnetic field 
𝐵B⃗ W (A), commonly referred to as an RF pulse, has a frequency at or near 𝜔�, it imparts a 
maximal amount of energy to the spins. This is called resonance and macroscopically 
corresponds to 𝑀BB⃗  tipping away from the longitudinal axis of	𝐵B⃗ � (B). The duration and 
amplitude of 𝐵B⃗ W determine the tip angle 𝜃. While tipped, 𝑀BB⃗ 	precesses the longitudinal 
axis with frequency 𝜔�. Over time, the additional energy from the RF excitation is slowly 
lost and 𝑀BB⃗ 	points closer toward the longitudinal axis while still precessing at 𝜔� (C). 
After a long time, 𝑀BB⃗ 	returns to point entirely along the longitudinal axis (D). 
 
 

BOLD-contrast fMRI is the most popular type of fMRI since it has higher SNR 

and finer temporal resolution than its counterparts—e.g., arterial spin labeling45 and 

vascular space occupancy fMRI46. BOLD fMRI is sensitive to the regional amount of 

deoxyhemoglobin, which is used as an indirect measure of neural activity47. BOLD fMRI 

measures brain function in the form of a voxel-wise timeseries of images. From here on, 

fMRI will refer exclusively to BOLD fMRI. 

Hemoglobin is a protein in red blood cells that stores and delivers oxygen to cells 

throughout the body. Hemoglobin has deoxygenated and oxygenated forms. 

Deoxyhemoglobin is strongly paramagnetic, giving it positive magnetic susceptibility. 

Oxyhemoglobin, on the other hand, is weakly diamagnetic, giving it negative 

susceptibility13. Tissue is also weakly diamagnetic48. Due to a susceptibility mismatch, 

deoxyhemoglobin weakens the magnetic field in nearby tissue, including vessels and 

brain tissue. The result is a greater spread of spins precessing at different frequencies in a 
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voxel—i.e., dephasing. Dephasing shortens transverse relaxation, leading to a lower 

signal. In response to neural activity, there is an increased supply of oxyhemoglobin that 

decreases the concentration of deoxyhemoglobin in the activated brain regions, leading to 

a higher signal relative to the rest of the brain. This is known as BOLD contrast49. 

 

 
Figure 1.3: Fourier transform (FT) relationship between k-space and image space. 
Different points along k-space are sampled by applying gradient fields, which alter the 
sample’s spins’ precession frequencies and therefore their phases. The Fourier transform 
of the k-space spectrum is the image. (Courtesy of Allen D. Elster, MRIquestions.com. 
Proof of permission provided in Appendix A.) 
 
 
 

Image acquisition in fMRI commonly uses a time-efficient technique called 

gradient-echo echo-planar imaging. One single image volume acquired with gradient-

echo echo-planar imaging is composed of a set of stacked slices. Per slice, there is one 

RF pulse and numerous gradient pulses. A single run of fMRI is typically hundreds of 

volumes long. The result is many RF and gradient pulses applied50. 

Spatial resolution in fMRI is very good, as the entire brain may be imaged at 

hundreds of microns to millimeters per voxel. Spatial resolution comes with trade-offs in 

SNR and temporal resolution, however. The lower limit of effective spatial resolution in 
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fMRI is in fact a few hundred microns due to the spacing of the microvasculature. 

Effective temporal resolution in fMRI, on the other hand, is limited by the hemodynamic 

response, which takes effect within roughly 1-2 seconds19 (Figure 1.4). 

 
Figure 1.4: Schematic of the blood oxygenation level-dependent (BOLD) effect. 
At baseline, there is a moderate supply of oxygen (O2) to the neuron. Immediately 
following the start of neural stimulation, there is an increased O2 demand for the neuron, 
resulting in a high concentration of deoxyhemoglobin (Hg) in the supplying capillary. 
Due to the susceptibility mismatch between strongly paramagnetic Hg and weakly 
diamagnetic blood vessels and brain tissue, the magnetic field near the stimulated neuron 
is weakened, as shown by the dephased spins. Shortly following this initial dip, there is 
an increase in blood volume and flow to the neuron in a process called the hemodynamic 
response. The result is concentrations of oxyhemoglobin (Hb-O2) and Hg that are greater 
than and less than at baseline, respectively, even after supplying O2 to the neuron, and 
therefore an increased BOLD contrast. 
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1.2  Electroencephalography (EEG) 

EEG is a direct measure of neural activity—i.e., the extracellular electric potential 

generated by populations of neurons from ion fluxes in and out of cells. The EEG signal 

is sampled at a high rate—usually kilohertz. Most commonly, EEG refers to non-invasive 

measurement using recording electrodes placed on the scalp and will be referred to as 

such. This EEG signal suffers poor spatial resolution due to spatial smearing of the scalp 

potential distribution by the low-conductivity skull and poor SNR due to far recording 

distances and signal attenuation through the skull and meninges. 

Ions constantly influx and efflux across cell membranes. These ion fluxes 

generate electric currents that, due to Ohm’s law, cause an electric potential across the 

resistive cell membrane. A neuron’s potential is modulated by inputs it receives from 

other neurons. Neurons are arranged in circuits and are connected by chemical synapses 

at their somas and dendrites. Inputs are in the form of neurotransmitters—chemicals 

released from the presynaptic neuron that cross the synaptic cleft and interact with 

receptors on the postsynaptic membrane. These postsynaptic receptors are responsible for 

opening or closing channel proteins specific to one or more ions. The transmission of ions 

across these channels modulates the postsynaptic neuron’s potential. Hence, a neuron’s 

potential is modulated by excitatory (EPSPs) and inhibitory postsynaptic potentials 

(IPSPs), which correspond to making the potential less or more negative—i.e., 

depolarization and hyperpolarization, respectively51. 

Generally, a single synapse is purely excitatory or inhibitory. The currents across 

the synaptic cleft of an excitatory synapse cause an active sink in the extracellular space 

near the synapse with passive sources along the rest of the soma-dendritic membrane. 
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Similarly, an active source is created at an inhibitory synapse with passive sinks along the 

rest of the membrane. Such source-sink configurations form effective electric dipoles that 

are responsible for extracellular potentials (Figure 1.5B)3. 

The major contributor to the EEG signal is the extracellular potential generated by 

synchronously active cortical pyramidal neurons. Since these neurons are arranged in 

palisades with apical dendrites perpendicular to the cortical surface, they act as a dipole 

layer with electric potentials measurable as distant as the scalp (Figure 1.5C)3. 

 
Figure 1.5: Dipoles formed by pyramidal neurons in generating the EEG signal. 
(A) An electric dipole is the set of one positive and one negative charge, and the current 
that flows between them. (B) Since cortical pyramidal neurons’ postsynaptic inputs are 
either inhibitory or excitatory, the entire cell is roughly modeled as an electric dipole. (C) 
Cortical pyramidal neurons are commonly arranged in palisades and fire synchronously, 
making their net extracellular potential detectable as far as the scalp. (Neuron graphic 
courtesy of Marc Dingman of NeuroscientificallyChallenged.com. Proof of permission 
provided in Appendix A.) 
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The synchronized rhythmic firing of populations of neurons is responsible for the 

wave property where the EEG signal fluctuates over time. In different frequency bands, 

distinct patterns and properties have been observed. EEG waves exhibit a frequency 

distribution approximately following amplitude 1/𝑓, where 𝑓 is the frequency. The 

classical EEG frequency bands are defined as: delta 1-4 Hz; theta 4-8 Hz; alpha 8-12 Hz; 

beta 12-30 Hz; and gamma above 30 Hz52. 

  An example of a band-specific phenomenon is alpha blocking. Alpha activity is in 

general mostly generated by posterior brain regions. In these posterior regions, alpha 

amplitudes decrease and beta amplitudes increase in response to the opening of the eyes. 

Alpha blocking is detectable at electrodes placed at posterior portions of the scalp52. 

 There are a number of shortcomings of EEG signal quality. Action potentials, also 

called spiking potentials, are usually not strong enough to be detected at the scalp. 

Moreover, since the EEG signal is from synchronous populations of neurons, 

nonsynchronous neurons do not contribute and cannot be studied53. The SNR in EEG is 

low due to the scalp being far from the cortical signal source and due to attenuation by 

the meninges and skull. This attenuation is especially impactful for higher frequencies 

and therefore the tissues act as a low-pass filter54. Lastly, spatial resolution is poor since 

the low conductivity of the skull smears the potential distribution on the scalp surface55. 

Electrodes are placed on the scalp according to a standardized anatomic 

landmark-based system called the International 10-20 system. The name of this system 

comes from the fact that the distance between adjacent electrodes is 10% or 20% of the 

anterioposterior or lateral distances of the skull. Electrodes on the left and right halves of 

the skull are numbered odd and even, respectively, with electrodes along the midline 
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numbered zero (‘z’). In the most basic configuration, 21 electrodes are arranged as in 

Figure 1.6A. Additional electrodes can be placed as in Figure 1.6B56. 

 

 
Figure 1.6: Examples of scalp electrode configurations. 
(A) The basic 21-electrode configuration. (B) A 30-electrode configuration. Fp, 
prefrontal; F, frontal; AF, between Fp and F; C, central; FC, between F and C; T, 
temporal; P, parietal; CP, between C and P; O, occipital; PO, between P and O; A, 
earlobe reference. 
 
 
 There are two main ways to electronically reference the electrodes. The first is 

bipolar recording, in which the EEG signals of the various scalp electrodes are referenced 

to one or more of these same scalp electrodes. The second is monopolar recording in 

which an extra electrode, presumed to be mostly free of brain activity, is used as the 

reference for all scalp electrodes. A common source of monopolar reference is one or 

both earlobes56. 

Since the EEG signal at a single electrode is a weighted sum of multiple sources, 

it is impossible to identify with full certainty the intracerebral sources of each electrode’s 

signal. This is an inverse problem with no unique solution. Estimation of the intracerebral 
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sources of each electrode’s signal also requires an accurate model of the geometry and 

conductivities of the various tissues in the head. Estimates are usually computed by 

minimizing an error metric between the recorded signal and the simulated signal from a 

given combination of intracerebral sources12. Common models of intracerebral EEG 

generators are an equivalent dipole, an anatomic prior-based model, and low-resolution 

electromagnetic tomography (LORETA), the latter of which is based on the assumption 

that synchronously and simultaneously active brain regions are most likely neighbours57. 

1.3  Simultaneous EEG and fMRI (EEG-fMRI) 

EEG and fMRI have been acquired simultaneously for over two decades7,9,58–61 due to 

their complementary strengths. EEG measures neural activity directly using electrodes 

sensitive to voltages induced by ion fluxes during action potentials and postsynaptic 

potentials62. EEG is generally recorded at a high sampling rate, on the order of kilohertz. 

However, EEG has poor spatial resolution due to the low conductivity of the skull 

smearing the potential distribution over the scalp surface55. In fMRI, a timeseries of 

images is acquired. Voxels are on the scale of hundreds of microns to millimeters, and 

each voxel’s intensity provides a spatially specific measure of the concentration of local 

deoxygenated hemoglobin—an endogenous paramagnetic contrast agent14. Since the 

concentration of deoxygenated hemoglobin correlates with neural activity through 

hemodynamic processes, fMRI is an indirect measure of neural activity. The 

hemodynamic response is on the order of a couple of seconds, giving fMRI poor 

temporal resolution regardless of how fast each image is acquired. Thus, the high 

temporal resolution and low spatial resolution of EEG complements the high spatial 
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resolution and low temporal resolution of fMRI. 

1.3.1  fMRI artifacts in EEG-fMRI 

High-quality MRI relies on the homogeneity of the main static magnetic field. Magnetic 

field homogeneity is compromised at material interfaces since the local magnetic field 

depends on the change in the material-specific property known as magnetic susceptibility. 

At the high fields used in MRI, even small differences in magnetic susceptibility can 

manifest as signal dropout, geometric distortion, and sometimes image ghosting. 

Therefore, the presence of electrode caps—which contain electrodes typically made of 

Ag/AgCl, resistors, copper wires, and conductive gel—has been found to impart artifact 

in images. Given that most of the materials used (with the exception of safety resistors) 

for EEG recording acquired in the MRI scanner are weakly diamagnetic just like tissue, 

these artifacts are often minor63. 

The RF field used in MRI to excite the sample is also subject to unwanted 

inhomogeneities. In a conductive or dielectric material, such as the electrodes (including 

wires) and head, respectively, the RF field is altered as a result of induced surface 

currents that act to shield the object from the field. Therefore, the electrodes contribute to 

an inhomogeneous RF field profile of the head. This results in images with signal 

dropouts and geometric distortions. Correction of RF field-related inhomogeneities is an 

area of active research63. 

1.3.2  EEG artifacts in EEG-fMRI 

Artifacts in the EEG data are induced voltages ℰ. Faraday’s law states that ℰ arises from 

a time-varying magnetic flux Φ through a closed conductive loop. Consider the following 
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form of Faraday’s law for a spatially uniform magnetic field: 

ℰ = −
𝑑Φ
𝑑𝑡

= −
𝑑
𝑑𝑡
L𝐵B⃗ ⋅ 𝐴M = −

𝑑
𝑑𝑡
(𝐵𝐴 cos 𝜃), (1.3.1) 

where 𝐵B⃗  is the magnetic field, 𝐴 = 𝐴𝑛P is the surface formed by the loop with normal 

vector 𝑛P, and 𝜃 is the angle between 𝐵B⃗  and 𝑛P. In the case of EEG-fMRI, a closed 

conductive loop is formed through the EEG amplifier, electrodes and cables, and tissue64. 

In practice, one must account for the spatial non-uniformity of the magnetic field when 

applying Faraday’s law. However, Equation 1.3.1 serves as a useful illustration of the 

variables involved in generating the gradient artifact. 

Efforts have been made to reduce ℰ by minimizing 𝐴—i.e., twisting the wires 

together as much as possible. As is apparent from Equation 1.3.1, ℰ can arise from a time 

variation in any or all of 𝐵B⃗ , 𝐴, and 𝜃. Movement of the electrode leads during scanning, 

which arises from ballistocardiograms, head movement, and scanner vibration, is 

responsible for time variation in 𝐴 and 𝜃 and, therefore, is a source of artifact. Electrode 

motion is minimized by restraining the various parts of the EEG apparatus, such as by 

immobilizing the electrodes in a skull cap (Figure 1.7A) and weighing down the cables65. 

𝐵B⃗  changes in time as a result of (1) one’s cardiac pulse modulating the local static 

field near blood vessels and (2) the RF and gradient pulses applied during imaging. The 

pulse artifact, also known as the ballistocardiogram artifact, overlaps with the EEG signal 

in time and frequency and commonly has an amplitude comparable to or greater than the 

EEG signal. The pulse artifact is found to have a repetition frequency and phase roughly 

the same as the pulse in one’s corresponding electrocardiogram (ECG), as well as a 

similar shape. The shape over time, however, varies considerably. Processing methods 
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for pulse artifact removal include AAS, the temporal principal component analysis 

(temporal PCA)-based optimal basis set method (OBS), Kalman filtering, wavelet 

transformation and nonlinear noise reduction, a moving general linear model, spatial 

PCA, and spatial independent component analysis (spatial ICA)66. Since AAS, OBS, and 

spatial ICA are also used for gradient artifact removal, they are explained in Section 

1.4.2. 

 

 
Figure 1.7: A common EEG-fMRI recording apparatus. 
(A) A skull cap is used to restrain the electrode leads from head motion, 
ballistocardiographic motion, and scanner-related vibrations. The electrode wires are 
twisted together to further minimize motion as well as current loop area. (B) a designated 
box containing current-limiting resistors. (C) A wireless battery for the amplifier. (D) A 
multi-channel amplifier-digitiser unit. (Reprint of Figure 1 of EEG Instrumentation and 
Safety by Phillip J. Allen by permission from Springer, Berlin, Heidelberg; copyright 
2019; licence agreement found in Appendix A.) 
 
 

The RF and gradient pulses applied during imaging are time-varying magnetic 

fields that impart artifact to the EEG data as per Faraday’s law. The amplitudes of the RF 
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and gradient artifacts are several of orders of magnitude greater than that of the EEG 

signal and, by definition, overlap in time with simultaneously acquired EEG data, thereby 

necessitating their removal. The RF artifact’s fundamental and largest-magnitude 

frequency component is at the Larmor frequency, which is on the order of megahertz and 

is not of concern as it is easily low-pass-filtered from the EEG signal, which does not 

exceed 200 Hz. Some RF artifact also manifests at the frequency of repetition of the RF 

pulse, which is typically below 1 Hz in accordance with the fMRI volume repetition time 

and is removed by high-pass filtering67. The gradient artifact—the removal of which is 

the subject of this thesis—is the most detrimental artifact in EEG-fMRI and is presented 

in the following sub-chapter. 

1.4  The gradient artifact 

The gradient artifact overlaps with the EEG signal in frequency as well as time, having a 

fundamental component at the frequency of slice acquisition—commonly around 10 

Hz—as well as harmonics that can extend into the kilohertz range. Since the gradient 

artifact overlaps in both frequency and time with the EEG signal, and since it exceeds it 

by one to three orders of magnitude, it is the dominant artifact in the EEG data21–24 and 

hampers analysis22,68 (Figure 1.8). 

1.4.1  Gradient artifact structure 

Recall that the EEG artifact depends on the time-variation in the magnetic field, the 

current loop area, and the relative angle between the loop and the field. If the values of all 

these variables were known at an electrode over all times of EEG-fMRI recording, the 
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exact gradient artifact waveform could be known at that channel. Furthermore, since the 

combination of these variables’ values differ across the different electrodes, the various 

electrode channels exhibit different albeit similar gradient waveforms. Due to the 

common pulse sequence experienced at each electrode, the timings of the slews in the 

gradient artifacts are the same across channels64 (Figure 1.9). 

 

Figure 1.8: The gradient artifact. 
(A) Six slice epochs that contain gradient artifact. At full vertical scale, the EEG is 
unresolvable in relation to the large-amplitude artifact. (B) A temporal closeup of the 
gradient artifact from a single slice epoch. The shape of the artifact follows from the 
different gradient pulses applied. (C) A vertical closeup of the EEG signal from the slice 
epochs. On this amplified vertical scale, the EEG signal is resolvable. 
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Figure 1.9: Variation of the gradient artifact across channels. 
The first raw slice acquisition epoch, as defined by the triggers, is shown for each 
channel. Fp, pre-frontal; F, frontal; AF, between Fp and F; C, central; FC, between F and 
C; T, temporal; P, parietal; CP, between C and P; O, occipital; PO, between P and O; 
EMG, electromyography. 
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1.4.2  Gradient artifact removal methods 

1.4.2.1  Interleaved acquisition 

Interleaved acquisition of EEG between image slices does not technically qualify as 

simultaneous acquisition of EEG and fMRI but has been used to avoid the gradient 

artifact9,35–38,58,69–74. This approach disrupts the temporal continuity of the signal and 

promotes compensation in the form of a longer repetition time (and therefore poorer 

temporal resolution) and shortened gradient pulses, the latter of which is potentially 

constrained by limits on slew rate, gradient amplitude, and specific absorption rate. 

1.4.2.2  Stepping-stone sampling 

Stepping-stone sampling is a contrived setup for EEG-fMRI where EEG is sampled 

exclusively between gradient pulses while the gradients are at baseline21. Stepping-stone 

sampling requires synchronization of the EEG and MRI clocks, as well as a special MRI 

pulse sequence. Stepping-stone sampling is able to markedly reduce the raw gradient 

artifact. 

1.4.2.3  Low-pass filtering (LPF) 

Low-pass filtering (LPF) in the frequency domain using a cutoff frequency at the upper 

end of the EEG band has also been used to reduce the gradient artifact21–23,40. However, 

the frequency profile of the gradient artifact is dominated by peaks corresponding to the 

slice frequency—the number of slices per volume divided by the volume repetition 

time—and its harmonics, which overlap with the EEG frequency band. LPF is therefore 

unable to remove much of the gradient artifact. 
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1.4.2.4  Notch filtering 

Notch filtering—i.e., zeroing or reducing the weight of the Fourier components 

corresponding to the slice frequency and its harmonics—has been proposed25,26. This 

carries the disadvantages of completely or mostly removing EEG signal at these 

frequencies, as well as producing a ringing artifact. 

1.4.2.5  Reference layer artifact subtraction 

Dedicated EEG caps have been manufactured that have an extra reference layer of 

electrodes in contact with tissue-like material—i.e., agar or physiological saline27,28. The 

reference signals provide a simultaneous, non-neural, artifact-only version of that 

recorded from the scalp electrodes. Subtraction of the reference signals from their 

respective scalp signals has been shown to remove much of the gradient artifact, albeit 

not all of it, without disrupting the EEG signal. Implementation is difficult, however, as 

no such electrode cap is currently on the market. Moreover, this method does not apply to 

studies of intra-cranial EEG. Hence, post-acquisition processing is favoured. 

1.4.2.6  Average artifact subtraction (AAS) 

To date, the most accepted post-acquisition processing step is AAS22, which locally 

averages the artifact-containing signal using temporal units of slice epochs, as defined by 

scanner triggers, so as to form a template of the artifact that is subtracted from the signal. 

AAS takes advantage of the weakly stationary gradient artifact, which occurs once per 

slice acquisition and has a roughly constant phase, frequency profile, and amplitude 

profile. EEG signal, however, is uncorrelated from one slice epoch to another. The 

average slice epoch, therefore, qualifies as an artifact template since its artifact 

component is nearly identical to that of the individual slice epochs while its neural 
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content mostly cancels. Subtraction of such a template from each slice epoch has been 

shown to dramatically reduce gradient artifact. Potential major practical limitations of 

AAS are (i) artifact phase jitter caused by asynchrony between the sampling clocks of the 

EEG recorder and MRI scanner, (ii) artifact amplitude jitter caused by motion of the 

electrodes during acquisition, and (iii) persistence of neural content in the artifact 

template due to significant correlation of neural signal between slice epochs. Several 

techniques have been devised for remedying these limitations. 

 (i) A common issue with EEG data acquired during fMRI is that the sampling 

clocks of the EEG acquisition unit and MRI scanner are out of phase. This results in the 

timing of the gradient pulse being out of phase with the EEG sampling, resulting in phase 

jitter of the gradient artifact. Artifact phase jitter severely limits the effectiveness of AAS 

since the artifact template poorly represents the individual artifact per slice (Figure 1.10). 

Several post-acquisition techniques have been devised to ameliorate artifact phase jitter, 

such as interpolation, followed by phase-shifting the slice epochs8,23,75. One highly 

effective prospective technique to nearly or entirely prevent artifact phase jitter is the use 

of supplementary electronics that synchronize the clocks of the EEG and MRI24. The 

success of these electronics requires that the sampling rates of the fMRI slice acquisition 

and EEG are integer multiples of one another. Moreover, the compatibility of such a 

commercial product76 (brainproducts.com/productdetails.php?id=19) is only certified in 

Philips scanner systems. Thus, there are significant barriers to preventing artifact phase 

jitter. 

(ii & iii) Returning to Faraday’s law, the induced voltage depends on the angle 

between the magnetic field and the conductive loop. Electrode motion changes this angle, 
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thereby modulating the artifact amplitude and limiting the effectiveness of AAS. To 

account for changes in artifact amplitude, EEG data is usually binned according to some 

metric of similarity, such as temporal localness, and AAS is performed per bin8. EEG 

activity is not necessarily significantly uncorrelated between slice epochs. Such an 

assumption bears the risk of losing EEG information by incorporating EEG activity in the 

artifact template, which gets subtracted. Epoch censoring during template formation is 

sometimes done for epochs that show anomalous structure—e.g., due to templates 

containing significant amounts of EEG or motion—thereby minimizing signal 

loss22,23,30,38,77. 

 

 
Figure 1.10: Residual gradient artifact following AAS. 
(A) In the time domain, the residual artifact is clearly present based on the difference in 
amplitude between times during which the gradients are on and off. (B) In the frequency 
domain, gradient artifact spikes in the FFT magnitude occur roughly every 7 Hz, which 
corresponds to the fundamental slice acquisition frequency (21 slices / 3-second volume 
TR) and harmonics. These spikes are present in both the raw (black) and post-AAS (red) 
data, displayed with different scales. (The raw and AAS spectra were binned and 
averaged every 1 and 0.125 Hz, respectively.) 
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1.4.2.7  Temporal PCA/Optimal basis set (OBS) 

Temporal PCA has been applied to the data following AAS. Temporal PCA forms a set 

of orthogonal basis functions—or principal components—of a timeseries. Assuming the 

residual artifact contains the most variance of the residual artifact-containing data, the 

first few principal components, which capture the most signal variance, are declared the 

OBS and are added to the artifact template from AAS. The improved template is 

subtracted from the pre-AAS data23. Alternatively, EEG data acquired in the absence of 

scanning has been used as a reference to which all principal components of the residual-

containing data are weighted32. 

1.4.2.8  Adaptive noise cancelation (ANC) 

Adaptive noise cancellation (ANC) is a technique that filters an input signal corrupted 

with noise or artifact until its residual with a reference signal is minimized78. The 

reference signal is an estimate of the pure noise or artifact. ANC has been used to reduce 

the residual artifact following AAS. Some reference signals used are a binary comb equal 

to 1 at the slice timings22 and the estimated artifact template following temporal PCA23. 

1.4.2.9  Spatial independent component analysis (spatial ICA) 

ICA is a technique that, given multiple inputs, outputs independent components (ICs) that 

represent statistically independent sources of the inputs79. Spatial ICA—ICA with 

multiple inputs in space—is attractive for gradient artifact removal because these artifacts 

are statistically independent from the EEG signal and vary structurally over space, and 

because it is insensitive to phase jitter26,33,34,40. However, spatial ICA is limited by the 

number of ICs, which is limited by the number of recording channels. This reduces its 

ability to accurately separate between signal and artifact. A further drawback of spatial 
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ICA is that usually, the user must be involved in some capacity in judging which ICs 

contain a significant amount of artifact. 

1.5  Schrödinger filtering 

Although processing steps following AAS reduce the residual gradient artifact, 

satisfactory artifact removal and EEG preservation across all frequency bands remains 

elusive41. We present a pipeline that removes gradient artifact and preserves EEG signal 

without compromise across all frequency bands up to the upper-gamma band (120 Hz). 

The pipeline only includes AAS followed by the proposed Schrödinger filtering 

technique. Schrödinger filtering is based on semi-classical signal analysis (SCSA)42, 

which employs the discrete spectrum of the Schrödinger operator. An input signal, treated 

as an attractive potential in the Schrödinger operator, is decomposed into a set of 

weighted squared eigenfunctions called Schrödinger components. Schrödinger 

components are pulse-shaped signals that individually describe one or more peaks of the 

input signal. Schrödinger components have distinct energies ranging from high to low. 

SCSA reconstructs the input signal using the Schrödinger components, and is therefore 

analogous to the discrete Fourier transform, which reconstructs a signal with a set of 

sinusoids of varying frequency. Schrödinger filtering generates components that 

separately capture signal and artifact based on energy differences in a manner analogous 

to frequency-domain bandpass filtering, and preserves the EEG signal, which overlaps in 

time and frequency with that of the gradient artifact. 
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1.5.1  Semi-classical signal analysis (SCSA) 

It is common to analyze a timeseries according to its frequencies using the discrete 

Fourier transform. The analysis of a pulse-shaped timeseries according to its energies, on 

the other hand, is a new technique called semi-classical signal analysis (SCSA)42. In 

SCSA, a pulse-shaped input signal is treated as an attractive potential in the one-

dimensional Schrödinger operator. The discrete spectrum of the Schrödinger operator, 

corresponding to a discrete set of energies of the signal, is used to analyze the signal. 

The Schrödinger equation was conceived for analysis of quantum-mechanical 

systems in which a particle follows some trajectory over space and time in the presence 

of some external force. The Schrödinger equation is used to calculate the system’s wave 

function, which allows one to determine the probability of measuring the particle in a 

certain region of space at a certain time80. SCSA utilizes the simplest form of the 

Schrödinger equation—i.e., the one-dimensional, time-independent form—in which the 

particle moves in one dimension 𝑥 and is subject to an external force that does not 

explicitly depend on time. The one-dimensional, time-independent Schrödinger equation 

is therefore expressed only in terms of 𝑥 and not in terms of time. However, in SCSA, 𝑥 

is replaced by the variable 𝑡 to more intuitively denote the independent variable of the 

input timeseries. The variable 𝑡 should therefore not be confused with time as it applies in 

quantum mechanics. 

In the general signal processing context motivated thus far, the Schrödinger 

equation is introduced as an eigenvalue problem: 

𝐻&(𝑡)𝜓(𝑡) = 𝜆𝜓(𝑡), (1.5.1) 

where 𝐻&(𝑡) is the Schrödinger operator, 𝜓(𝑡) is an eigenfunction on which 𝐻&(𝑡) 
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operates, and 𝜆 is an eigenvalue. The Schrödinger operator 𝐻&(𝑡) is 

𝐻&(𝑡) = −ℎX
𝑑X

𝑑𝑡X
− 𝑠(𝑡), 𝑡 ∈ ℝ (1.5.2) 

where ℎ ∈ ℝ�� is known as the semi-classical parameter and 𝑠(𝑡) ∈ ℝ�� is a one-

dimensional input signal. (Note the requirement that 𝑠(𝑡) is nonnegative. In practice, 

signals not purely nonnegative are subtracted of their minima in order to allow for 

processing by SCSA.) The value of ℎ is crucial in SCSA’s ability to represent 𝑠(𝑡), 

which, as will be made clear, is optimal in the semi-classical limit of ℎ → 0. 

 There is a finite spectrum of eigenvalues that can be organized into two parts: a 

continuum of positive eigenvalues 𝜆 > 0 plus a discrete spectrum of negative eigenvalues 

𝜆 = −𝜅&,2X ; 𝜅&,2 > 0; 𝑛 = 1,2, … , 𝑁&. Deift and Trubowitz81 showed that if 𝑠(𝑡) at least 

weakly satisfies three conditions, it can be expressed as 

𝑠(𝑡) =
2𝑖
𝜋 ¢ 𝑘𝑅(𝑘)𝑓X(𝑡, 𝑘)𝑑𝑘

Qt

ut

+ 4£𝜅&,2𝜓&,2X
y|

2zW

, (1.5.3) 

where 𝑘 = Xr
#

, 𝑅(𝑘) is the so-called reflection coefficient, the name of which originated 

from quantum scattering, and 𝑓(𝑡, 𝑘) is the solution corresponding to the continuous 

spectrum. The conditions are:  

(I) 𝑠(𝑡) must be infinitely differentiable to ensure it is smooth and continuous; 

(II) 𝑠(𝑡) must asymptotically go to zero quickly according to  

∫ |𝑠(𝑡)|(1 + |𝑡|)𝑑𝑡Qt
ut < ∞; and 

(III) −𝑠(𝑡) must be attractive. I.e., 𝑠(𝑡) ≥ 0. 

There is a special class of potentials called reflectionless potentials for which 𝑅 =

0, and, consequently, the first term on the right-hand side of Equation 1.5.3 is zero. 
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Therefore, reflectionless potentials may be expressed exclusively in terms of the 

eigenvalues and eigenfunctions from the Schrödinger equation (Equation 1.5.1): 

𝑠(𝑡) = 4£𝜅&,2𝜓&,2X
y|

2zW

. (1.5.4) 

One example of a reflectionless potential is the soliton82: a traveling wave packet that 

maintains its shape while moving at a constant speed. If 𝑠(𝑡) is a soliton or multiple 

solitons in interaction traveling in the 𝑡-dimension, the individual terms in the series of 

Equation 1.5.4 are solitons or multi-solitons as well. 

The goal of SCSA is to reconstruct an input signal 𝑠(𝑡) using the discrete 

spectrum of 𝐻&(𝑡). For reflectionless potentials, this goal is achieved with Equation 

1.5.4. Most input signals are not reflectionless, however. Laleg-Kirati et al.42,83 showed 

that input signals 𝑠(𝑡) satisfying conditions (I)-(III) are reconstructed as with the discrete 

spectrum of 𝐻&(𝑡) in the semi-classical limit of ℎ → 0: 

�̃�&(𝑡) = 4ℎ£𝜅&,2𝜓&,2X (𝑡)
y|

2zW

, 𝑡 ∈ ℝ, (1.5.5) 

where �̃�&(𝑡) is the output signal. Note that Equation 1.5.5 is equivalent to Equation 1.5.4 

except for the incorporation of the ℎ parameter. Each term 4ℎ𝜅&,T𝜓&,TX (𝑡) is referred to as 

a Schrödinger component (Figure 1.11). 

Starting with a high ℎ-value, few Schrödinger components 𝑁&, characterized by 

their high energies, are produced in the Schrödinger series according to Equation 1.5.5. A 

Schrödinger series with a small value of 𝑁& broadly reproduces the shape of 𝑠(𝑡) without 

fully reconstructing it (Figure 1.11A). By decreasing ℎ, however, more components are 

generated in the series (Figure 1.11B). The higher-order, lower-energy components 
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capture the fine details of 𝑠(𝑡), allowing for full signal reconstruction (Figure 1.11C). 

Indeed, for a continuous—i.e., not discrete—signal, 𝑠(𝑡) is perfectly reconstructed in the 

semi-classical limit of ℎ tending to zero42. However, for discrete signals, this limit breaks 

down below some critical ℎ-value, called ℎ∗, due to sampling inadequacies. Thus, for a 

discrete 𝑠(𝑡), optimal approximation by SCSA is achieved for ℎ = ℎ∗ and consequently 

𝑁& = 𝑁&∗, where ℎ∗ is defined as the root of the minimum of the mean squared error 𝐽(ℎ): 

𝐽(ℎ) =
1
𝑀 £L𝑠(𝑡) − �̃�&(𝑡)M

X
}

;zW

; (1.5.6𝑎) 

𝐽(ℎ∗) = minL𝐽(ℎ)M . (1.5.6𝑏) 

 

 
Figure 1.11: Illustration of SCSA. 
The Schrödinger components generated by SCSA are nonnegative pulse-like signals that 
sum to the nonnegative input signal. Earlier components are higher-energy and depict the 
largest peaks in the input signal. A simple example is given in which the squared cardinal 
sine function 𝑠(𝑡) = sincX 𝑡 is reconstructed by SCSA. (A) With the relatively high ℎ-
value of ℎ = 12, there is a low number of components (𝑁& = 12) and the signal is under-
constructed. (B) When a smaller ℎ-value (ℎ = 6) is used, there is a greater number of 
components (𝑁& = 10) and the input signal is better represented but is still appreciably 
deviant. (C) With a much smaller ℎ-value (ℎ = 0.36207), the input signal is fully 
constructed with 𝑁& = 158 components. 
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SCSA’s ability to represent 𝑠(𝑡) as a sum of energy-based components offers 

flexibility and utility in data-cleaning applications. For example, the Schrödinger series 

of a blood pressure signal has been used to separate between the systolic and diastolic 

components42; selection of 𝑁& < 𝑁&∗ has been used for denoising of magnetic resonance 

imaging (MRI) and magnetic resonance spectroscopy (MRS) data84,85; and water peak 

suppression in proton MRS data by exclusion of low-order Schrödinger components has 

been found to be effective86. In the present work, we exploit SCSA to separate the 

residual gradient artifact from the EEG signal in a process named Schrödinger filtering. 

1.5.2  Schrödinger filtering 

Whereas SCSA is the representation of a signal with a Schrödinger series, Schrödinger 

filtering is the adaptation of SCSA to remove residual gradient artifact from the post-

AAS time-domain data 𝑦,,-(𝑡). Schrödinger filtering consists of two steps—de-spiking 

and global filtering—each of which adapts SCSA differently. First, de-spiking is applied 

on 𝑦,,-(𝑡) to remove large gradient-related spikes that were not significantly attenuated 

by AAS. This is done by subtracting high-energy Schrödinger components that 

correspond to spikes. De-spiking is valuable for the next step of global filtering as it 

allows for a finer separation between artifact and signal. The resultant de-spiked signal 

𝑦!-(𝑡) is then processed by global filtering to accurately extract the EEG signal 𝑦-0(𝑡). 

Global filtering entails reconstruction of 𝑦!-(𝑡) using 𝑁& < 𝑁&∗ so as to omit residual 

gradient artifact. 

1.5.2.1  Step 1: de-spiking 

Early components in the Schrödinger series of Equation 1.5.5 often solely depict large 
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positive spikes in a signal due to their high energy86. Positive and negative spikes are 

defined here as large peaks above or below the baseline of signal fluctuation, 

respectively. Primary components 𝑦S(𝑡) are such components that feature a single 

potential well-shaped function localized at the spike maximum. Secondary components 

𝑦SS(𝑡) are such components that are forktail-shaped and feature a pair of wells on either 

side of the spike (Figure 1.12C). Although there are components subsequent to 𝑦SS(𝑡) 

with increasingly greater numbers of wells that depict a positive spike, they are also 

increasingly wide and low-amplitude. Therefore, using only 𝑦S(𝑡) and 𝑦SS(𝑡) sufficiently 

captures the spikes and prevents EEG signal loss during de-spiking. 

Since Schrödinger components are purely nonnegative, they are unable to solely 

depict the negative spikes in 𝑦,,-(𝑡). For optimal de-spiking of these negative spikes, the 

input signal must be vertically reflected. The complete de-spiking of 𝑦,,-(𝑡) is therefore 

segmented into two parts: (1) positive de-spiking, where 𝑦,,-(𝑡) is input to remove the 

positive spikes to yield 𝑦!-Q(𝑡); and (2) negative de-spiking, where the vertical reflection 

of 𝑦!-Q(𝑡) is input to subtract the negative spikes. 

De-spiking of 𝑦,,-(𝑡) is a subtraction of 𝑦S(𝑡) and 𝑦SS(𝑡) with respective weights 

𝛽W and 𝛽X. The values of 𝛽W and 𝛽X are such that the amplitude of the positive spike 

region is reduced to that of its neighbourhood (Figure 1.12E). The de-spiked signal 

𝑦!-Q(𝑡) (Figure 1.12F) is therefore 

𝑦!-Q(𝑡) = 𝑦,,-(𝑡) − 𝛽W𝑦S(𝑡) − 𝛽X𝑦SS(𝑡). (1.5.7)

Negative de-spiking is performed in the same manner as positive de-spiking but with an 

input of the negative of 𝑦!-Q(𝑡) and new resultant 𝑦S(𝑡) and 𝑦SS(𝑡) components (Figure 

1.12G). The output, after reflecting back to the original orientation, is the fully de-spiked 
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signal 𝑦!-(𝑡) (Figure 1.12H). 

In removing the gradient-related spikes, the timeseries is rid of amplitude-wise 

outliers without obliterating EEG signal. As a result, the next step of global filtering is 

markedly improved as it is able to more finely delineate gradient artifact from EEG 

signal. 

1.5.2.2  Step 2: global filtering 

Global filtering is applied on 𝑦!-(𝑡) to remove residual gradient artifact while preserving 

EEG signal. There is an optimal value of ℎ = ℎ-0 > ℎ∗ and, consequently, 𝑁& = 𝑁&
-0 <

𝑁&∗ in the Schrödinger series of 𝑦!-(𝑡) for global filtering. The pair of Lℎ-0, 𝑁&
-0M is 

determined by minimizing the error between the portions of 𝑦!-(𝑡) during which the 

gradients were on and off during scanning (i.e., during non-contiguous intervals 𝑇/2 and 

𝑇/00, respectively). The rationale for this error minimization is as follows. During 𝑇/00, 

there is presumably little to no gradient artifact present in 𝑦!-. Moreover, since the data 

during 𝑇/2 and 𝑇/00 are temporally proximal, their EEG activity is similar (Figure 

1.12IJ). Therefore, 𝑦!-(𝑡) during 𝑇/00 is an accurate reference for 𝑦!-(𝑡) during 

𝑇/2,	allowing for effective estimation of Lℎ-0, 𝑁&
-0M. 

Error minimization is conveniently performed in the frequency domain: 

Δ(𝑁&) =
1
𝐹
£�𝑌7!-,/2(𝑓, 𝑁&) − 𝑌		!-,/00(𝑓)�

X

0

; (1.5.8𝑎) 

ΔL𝑁&
-0M = minLΔ(𝑁&)M , (1.5.8𝑏)

where Δ(𝑁&) is the mean squared error as a function of 𝑁&; 𝑓 is the frequency; 𝐹 is the 

spectral bandwidth; 	𝑌7	!-,/2(𝑓, 𝑁&) is the magnitude spectrum of 𝑦:!-(𝑡) during 𝑇/2 for 
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𝑁&; and 𝑌!-,/00(𝑓) is the magnitude spectrum of 𝑦!-(𝑡) during 𝑇/00 (Figure 1.12KLM). 

Once Lℎ-0, 𝑁&
-0M are determined, the artifact-free signal 𝑦-0(𝑡) is constructed using 

Equation 1.5.5 with ℎ = ℎ-0 and 𝑦:!-(𝑡) as the input signal (Figure 1.12NO). 

 

 
Figure 1.12: The Schrödinger filtering algorithm. 
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trend of the signal (D), weighted subtraction (Equation 1.5.7) is used for positive spike 
removal, giving 𝑦!-Q(𝑡) (E,F). The procedure is repeated for negative de-spiking with an 
input of −𝑦!-Q(𝑡) (G,H).  

(2) Global filtering: In sub-timeseries of six epochs, 𝑦!-(𝑡) is segmented into 𝑇/2 
and 𝑇/00 intervals (I). Minimization of the mean squared error Δ(𝑁&) between the 
Fourier spectra 𝑌!-,/00(𝑓) (J) and 𝑌7/2(𝑓, 𝑁&) (K,L) is performed using Equations 1.5.8 to 
determine Lℎ-0, 𝑁&

-0M (M). ℎ-0 is used in Equation 1.5.5 with 𝑦!-(𝑡) as the input signal to 
yield the artifact-free EEG signal 𝑦-0(𝑡) (N,O). 

1.6  Thesis overview 

The human brain is immensely complex and difficult to study. fMRI and EEG are the two 

most powerful modalities for studying the brain. fMRI images the brain over time with 

high spatial resolution yet poor temporal resolution, and in doing so indirectly measures 

neural activity in each voxel. Complementarily, EEG, using an array of scalp electrodes, 

directly measures neural activity with high temporal resolution yet poor spatial 

resolution. The complementary strengths of these two modalities have motivated much 

research using their combined, simultaneous acquisition. Despite the benefits of EEG-

fMRI, there are a number of unique artifacts, the most detrimental one coming from the 

time-varying gradient field of fMRI interacting with and disrupting the EEG signal. For 

years, this gradient artifact has been the target of novel signal processing and prospective 

techniques for mitigation or prevention. However, removal of the gradient artifact and 

preservation of the signal throughout all EEG frequency bands remains an unresolved 

challenge. 

This thesis introduces Schrödinger filtering, a new gradient artifact removal 

technique. Schrödinger filtering is based on semi-classical signal analysis (SCSA). In 

SCSA, an input signal is treated as an attractive potential in the Schrödinger operator. 
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The discrete spectrum of this operator contains a set of weighted squared eigenfunctions 

called Schrödinger components. Schrödinger components are pulse-shaped signals that 

individually describe one or more peaks of the input signal and have distinct energies 

ranging from high to low. SCSA reconstructs the input signal using the Schrödinger 

components and is therefore analogous to the discrete Fourier transform, which 

represents an input signal as a series of sinusoids of different frequencies. SCSA is 

particularly suited to gradient artifact removal since there are Schrödinger components 

that separately capture signal and artifact. Schrödinger filtering adapts SCSA for gradient 

artifact removal in two steps. Firstly, following AAS, the EEG signal is rid of gradient-

related spikes by selectively removing high-energy Schrödinger components that 

represent the spikes. Secondly, following de-spiking, the signal is globally filtered by 

removing Schrödinger components corresponding to residual artifact. De-spiking 

improves the performance of global filtering as it facilitates a finer separation between 

artifact and signal. Schrödinger filtering also has the inherent benefit of denoising the 

signal. 

On a publicly available dataset, Schrödinger filtering was implemented in a 

pipeline that first features average artifact subtraction (AAS)—a simple and effective 

staple in gradient artifact removal pipelines that yet results in residual gradient artifact. 

The Schrödinger filtering pipeline was compared against two popular pipelines: one that 

features AAS, temporal PCA, and ANC; and one that features AAS and manual spatial 

ICA. These latter two pipelines also apply bandpass filtering while the Schrödinger 

filtering pipeline does not. The Schrödinger filtering pipeline outperformed the other two 

pipelines across all EEG frequency bands based on a quantitative metric of EEG signal 
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preservation and performed comparably in terms of artifact removal. Schrödinger 

filtering, when combined with AAS, is therefore a robust solution for removal of the 

gradient artifact from EEG data. 

In Chapter 2: Methods, details are given on the dataset, the Schrödinger filtering 

algorithm, the pipelines used, and the metrics of signal preservation and artifact removal. 

In Chapter 3: Results and Discussion, the performance of Schrödinger filtering is 

presented and discussed. In particular, the individual steps of de-spiking and global 

filtering, as well as their combination, are analyzed and compared against the two other 

pipelines, including according to the metrics of evaluation. In Chapter 4: Conclusions, the 

work of the thesis is recapitulated, including motivation, background, methods, results, 

and a brief discussion. Limitations and future directions of SCSA, Schrödinger filtering, 

and the present study are also given. 
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2 Methods 

2.1  Dataset 

A freely available dataset from the FMRI Artifact Slice Template Removal (FASTR)23 

toolbox website was analyzed (fsl.fmrib.ox.ac.uk/eeglab/fmribplugin). This dataset 

contains 30 channels of human scalp EEG arranged according to the 10-20 international 

system plus 1 channel of electrocardiography and 1 channel of electromyography. Only 

the 30 channels of EEG were analyzed. During scanning, the subject opened and closed 

their eyes in consecutive alternating 10-second intervals. All channels were sampled at 

2048 Hz. The fMRI volume repetition time was 3 seconds and there were 21 slices per 

volume. There was a total of 40 volumes acquired, corresponding to 840 slices and 2 

minutes of scanning. Data was also recorded for roughly 29 seconds before and 13 

seconds after scanning. This data did not feature EEG-fMRI phase synchronization. 
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2.2  Schrödinger filtering algorithm 

The Schrödinger filtering algorithm was organized into two main steps: (1) de-spiking 

and (2) global filtering (Figure 1.12). In the de-spiking step, low-order, high energy 

Schrödinger components, which nearly entirely depict data spikes, were linearly 

regressed from 𝑦,,-(𝑡) to remove the spikes. In the global filtering step, the de-spiked 

signal 𝑦:!-(𝑡) was reconstructed with Lℎ-0, 𝑁&
-0M, which were determined by minimizing 

the mean squared error between the magnitude spectra of the signal while the gradients 

were on and off, to provide the gradient artifact-free EEG signal 𝑦-0(𝑡). 

2.2.1  Step 1: de-spiking 

Using the slice acquisition triggers, the slice acquisition epochs were segmented. The 

post-AAS signal 𝑦,,-(𝑡) was fully reconstructed by SCSA (Equation 1.5.5) to provide 

𝑦:,,-(𝑡) and the pair (ℎ∗, 𝑁&∗) for each epoch and each channel (Figure 1.12A). Positive 

de-spiking was performed as follows in three steps. (1) A positive peak was defined as a 

spike only if: (a) following polynomial detrending, the peak surpassed an empirically 

determined magnitude threshold of 3.5 times the mean absolute deviation (MAD) 

(Figure 1.12B); and (b) there existed a primary component 𝑦S(𝑡) for the spike (Figure 

1.12C). Note that the de-trended signal was only used for spike definition. (2) Following 

100-fold spline interpolation of 𝑦:,,-(𝑡), the boundaries of a spike were determined as the 

two points straddling the spike that intersected with the trend (Figure 1.12D). (3) 

Weighted subtraction of primary and secondary components 𝑦S(𝑡) and 𝑦SS(𝑡) (also 

interpolated) from 𝑦:,,-(𝑡) was performed (Figure 1.12E). Once all positive spikes 

within the epoch were removed, the signal was subsequently de-interpolated to yield 
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𝑦!-Q(𝑡) (Figure 1.12F). The above de-spiking procedure was repeated on the vertical 

reflection of 𝑦!-Q(𝑡) (Figure 1.12G) to remove the negative spikes. After negative de-

spiking, the output signal was reflected back to yield 𝑦!-(𝑡) (Figure 1.12H). 

2.2.2  Step 2: global filtering 

Each channel’s timeseries was divided into sub-timeseries of six epochs, resulting in 140 

sub-timeseries. Per channel, the optimal Lℎ-0, 𝑁&
-0M were determined for only the first 

sub-timeseries and applied to all sub-timeseries (Figure 1.12I). This was computationally 

efficient and effective because Lℎ-0, 𝑁&
-0M was stable over the remaining sub-timeseries 

for each channel. 

The first sub-timeseries was fully reconstructed by SCSA, yielding (ℎ∗, 𝑁&∗). 𝑇/2 

and 𝑇/00 (Figure 1.12I) were determined by magnitude-thresholding the raw timeseries 

(Figure 1.8) at 2.5% of the maximum. The magnitude spectrum 𝑌	!-,/00(𝑓) of 𝑦!-(𝑡) 

during 𝑇/00 was computed for the first sub-timeseries. Likewise, the magnitude spectrum 

𝑌7!-,/2(𝑓, 𝑁&) of 𝑦:!-(𝑡) during 𝑇/2 for the first sub-timeseries was computed as a function 

of 𝑁& up to 𝑁& = 	𝑁&∗ (Figure 1.12JKL). The pair of Lℎ-0, 𝑁&
-0M was then determined 

using Equations 1.5.8 (Figure 1.12M). All sub-timeseries 𝑦:!-(𝑡) were finally filtered by 

SCSA with ℎ = ℎ-0 using Equation 1.5.5 to yield the artifact-free EEG signal 𝑦-0(𝑡) 

(Figure 1.12NO). For some channels, the minimum of the error function Δ(𝑁&) of 

Equation 1.5.8a was broad, giving a range of suitable 𝑁&
-0 values. For these channels, 

𝑁&
-0 was set to the empirically determined conservative value of 90 and the 

corresponding ℎ-0 was determined. 
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2.3  Processing pipelines 

Three pipelines were applied to the dataset in parallel: (1) a variant87 of the FASTR23 

pipeline, which applies AAS, temporal PCA, LPF, and ANC; (2) a pipeline featuring 

AAS, LPF, and manual spatial ICA; and (3) the proposed Schrödinger filtering pipeline 

that features only AAS and Schrödinger filtering. Except for ICA and Schrödinger 

filtering, all processing steps were performed using Flexible Artifact Correction and 

Evaluation Toolbox (FACET)87—an open-source Matlab (MathWorks, Natick, MA) 

toolbox dedicated to gradient artifact removal. FACET handles the data in EEGLAB88 

structure array format and applies its pipeline per-channel. ICA was performed using 

FastICA on Matlab (research.ics.aalto.fi/ica/fastica)79. Schrödinger filtering was 

performed using Matlab scripts available at github.com/gbenigno/schrodinger_filtering. 

The three pipelines were divided into common pre-processing steps up to and including 

AAS, followed by pipeline-specific steps. A schematic of the pipelines is shown in 

Figure 2.1. 

There were four common pre-processing steps. First, a high-pass Gaussian filter 

was applied in the frequency domain at 1 Hz to remove baseline drifts. Second, slice 

timing alignment was performed to correct for the non-synchronicity between the clocks 

of the EEG and the gradients. Third, the volume artifact—the short stretch of data 

between the last slice epoch of one volume and the first slice epoch of the next volume—

was corrected29. Fourth, AAS was performed using a variant of Allen et al.’s original 

method22 that is based on29. 

For the Schrödinger filtering pipeline, the post-AAS signal 𝑦,,-(𝑡) was processed 

by Schrödinger filtering to yield an artifact-free EEG signal 𝑦-0(𝑡) using the de-spiking 
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and global filtering procedures as described in Sections 1.5.2 and 2.2. 

For the ICA pipeline, 𝑦,,-(𝑡)	was low-pass-filtered at 150 Hz before performing 

ICA across the 30 EEG channels. Each of the 30 independent components generated was 

inspected in the time and frequency domains. Components whose variance appeared to 

significantly characterize residual gradient artifact were removed, yielding 𝑦TU,(𝑡). ICA’s 

ability to separate signal from artifact was limited by the low number of independent 

components, which was limited by the number of input signals—i.e., 30. As such, 25 of 

the 30 components were found to contain significant artifact. 

For the FASTR variant pipeline, temporal PCA was used to form an optimal basis 

set (OBS) that described the majority of the variance of the post-AAS residual artifact of 

𝑦,,-(𝑡).		The OBS was added to the AAS artifact template and AAS was repeated with 

the updated template before 150-Hz high-pass-filtering and ANC, yielding 𝑦0,-#R(𝑡). 
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Figure 2.1: Flowchart of the three gradient artifact removal pipelines. 
(1) a variant of FASTR; (2) a pipeline that incorporates manual spatial ICA; and (3) the 
proposed Schrödinger filtering pipeline. The three pipelines share the common steps of a 
1-Hz frequency-domain Gaussian high-pass filter, slice epoch timing alignment, volume 
artifact correction, and AAS. The signal 𝑦,,-(𝑡) following the common steps is then 
subject to pipeline-specific steps. For the FASTR variant pipeline, temporal PCA is 
performed and the first few principal components, which form an OBS, are added to the 
artifact template generated by AAS to form an updated template. AAS is repeated with 
the updated template. Following the OBS step, the signal is low-pass-filtered at 150 Hz 
and then subjected to ANC to give	𝑦~¬®¯(𝑡). For the ICA pipeline, low-pass filtering at 
150 Hz is applied on 𝑦,,-(𝑡). Then, manual spatial ICA is used to remove independent 
components classified as mostly containing gradient artifact. The output is	𝑦TU,(𝑡). For 
the Schrödinger filtering pipeline, 𝑦,,-(𝑡) is processed by Schrödinger filtering, which 
entails de-spiking of gradient-related spikes and global filtering in which Schrödinger 
components belonging to gradient artifact throughout the signal are removed from the de-
spiked signal. The output is 𝑦-0(𝑡). 
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2.4  Evaluation of performance 

The performances of the three techniques were quantitatively compared by measuring the 

amount of EEG preserved and the amount of gradient artifact removed. This was 

achieved using two metrics: median residual activity (MRA) and median fraction at slice 

frequencies (MFSF), respectively. 

2.4.1  Median residual activity (MRA) 

MRA is a measure of the quantity of preserved EEG signal following gradient artifact 

removal. MRA was first introduced by Allen et al.22. The authors binned and averaged 

the Fourier magnitudes with and without scanning (although still in the scanner) into 

delta, theta, alpha, and beta bands (0.8-4, 4-8, 8-12, and 12-24 Hz, respectively). They 

then proceeded to calculate the percent differences per band and per channel. The signal 

acquired without scanning was used as a gradient artifact-free reference. For each band, 

the median value over all channels was deemed the MRA. 

 Since the signals acquired with and without scanning are considerably separated 

in time, their EEG activity is likely different. We therefore used an alternative definition 

of MRA in which only the signal during 𝑇/00, which is assumed free of gradient artifact, 

is analyzed. The percent difference was taken of the signal processed by the Schrödinger 

filtering pipeline, the FASTR variant, and the ICA pipeline during 𝑇/00 relative to the 

post-AAS signal during 𝑇/00. This definition of MRA is likely more accurate at 

estimating EEG preservation. The per-band MRA for each of the three methods is 

𝑀𝑅𝐴;<#&/!1,2! = median �
𝑌+;<#&/!,/001,2! − 𝑌+,,-,/001,2!

𝑌+,,-,/001,2! � , (2.1) 
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where 𝑌+,,-,/001,2!  and 𝑌+;<#&/!,/001,2!  are the per-band magnitude spectral densities of 𝑦;<#&/! 

and 𝑦,,-, respectively, during 𝑇/00; 𝑦;<#&/! refers to one of 𝑦0,-#R, 𝑦TU,, or 𝑦-0; and the 

median is taken across the thirty channels. We analyzed traditional EEG bands as high as 

upper-gamma (1-4, 4-8, 8-12, 12-30, and 30-120 Hz). 

2.4.2  Median fraction at slice frequencies (MFSF) 

MFSF is a measure of gradient artifact removal. Niazy et al.23 performed a measurement 

similar to MFSF in which the ratio of the power spectral densities were taken at the 

fundamental (7 Hz) and the first four harmonic frequencies (14, 21, 28, and 35 Hz) (±1 

Hz) of the slice-wise gradient artifact before and after a particular processing step. The 

spectral powers we used corresponded to the timeseries during 𝑇/2, where the gradient 

artifact is. By omitting data during 𝑇/00, which is mostly EEG signal, the specificity is 

increased of measuring artifact reduction and not signal loss. The MFSF for a single slice 

frequency 𝑓 of each method is 

𝑀𝐹𝑆𝐹;<#&/!
(0) = median°

Y²;<#&/!,/2
(0)

Y²,,-,/2
(0) ³ , (2.2) 

where Y²,,-,/2
(0)  and Y²;<#&/!,/2

(0)  are the power spectral densities (at slice frequency 𝑓 ± 1 

Hz) of 𝑦;<#&/! and 𝑦,,-, respectively, during 𝑇/2, and the median is taken across the 

thirty channels. We analyzed up to the 119-Hz harmonic. 



 

 45 

3 Results and Discussion 

3.1  De-spiking 

In some channels, the EEG amplitude was comparable to or greater than that of the post-

AAS artifact. In such channels, spikes, defined as peaks of the de-trended signal that 

surpassed the threshold of 3.5 times the MAD, were usually not present. In other 

channels where spikes were prevalent, there existed epochs (commonly around the 

middle of acquisition) in which there were no spikes. It is worth emphasizing that where 

spikes were not identified, de-spiking was not performed, thereby appropriately 

preserving signal. 

To illustrate the benefit of de-spiking, Figure 3.1 displays 𝑦!-(𝑡) compared to 

𝑦,,-(𝑡) for six epochs of the F8 channel, which is among the channels with the highest-

amplitude post-AAS gradient artifact relative to the respective EEG signal, and especially 

the highest-amplitude gradient-related spikes. In the frequency domain, the benefit of de-

spiking is apparent, as the magnitudes at the artifact slice frequencies are reduced while 
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the activity elsewhere in the spectrum is unaffected. 

 

 
Figure 3.1: Effect of de-spiking. 
Effect of de-spiking in reducing the contamination of large spikes in 𝑦,,-(𝑡) prior to 
global filtering. (A) The timeseries of six epochs before (black) and after (red) despiking. 
(B) The magnitude of the corresponding spectra. The slice acquisition frequencies of 7, 
14, 21, … Hz are frequencies at which there is significant artifact. At such frequencies 56 
Hz and above, it is evident that the artifact is reduced. 

 
 

The benefit of de-spiking on the performance of Schrödinger filtering in reducing 

the gradient artifact is also evident. Figure 3.2AB shows six epochs of the F8 channel for 

two cases of filtering: AASàglobal filtering and AASàde-spikingàglobal filtering. 

From the timeseries in panel A, it is clear that the gradient-related spikes are reduced in 

the latter case. This is accompanied by a set of magnitude spectra in panel B at the upper 

slice acquisition frequencies (i.e., 56, 63, … Hz) that are reduced as well. Figure 3.2C 

shows the improvement over all channels. A box-and-whisker plot of the MFSF—a 

measure of gradient artifact removal—for all channels is displayed at the fundamental 
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slice acquisition frequency of 7 Hz and harmonics up to and including 119 Hz. The 

MFSF is consistently lower at each of the frequencies. 

 

 
Figure 3.2: Positive impact of de-spiking in Schrödinger filtering. 
The F8 channel, which has a large residual gradient artifact relative to its EEG signal, is 
shown. (A) The timeseries of the six epochs is de-spiked when using the corresponding 
step as indicated by the light-blue stripes. (B) The positive impact of despiking is evident 
in the spectra at the slice acquisition frequencies of 7, 14, … Hz—especially those at and 
above 56 Hz. (C) A box-and-whisker plot of the MFSF, which measures gradient artifact 
removal, showing that Schrödinger filtering, when including despiking, results in better 
removal of the gradient artifact. 

3.2  Global filtering 

To illustrate the overall result of the Schrödinger filtering pipeline, which uses AAS 

followed by Schrödinger filtering, Figure 3.3 and Figure 3.4 each show the timeseries 

and corresponding FFTs of six slice epochs for channels F8 and T4, respectively, as 

produced by all three pipelines. These two channels are examples of channels that have 

artifact amplitudes greater than or comparable to the EEG signal, respectively. In Figure 
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3.3, it is apparent that for the Schrödinger filtering pipeline, de-spiking minimized 

gradient-related spikes compared to the other techniques. In Figure 3.4, the ability of 

global filtering in retaining EEG signal is displayed. 

 

 
Figure 3.3: Performances of the pipelines for channel with large residual artifact. 
The performances of the three pipelines for the F8 channel, which has a large residual 
gradient artifact relative to its EEG signal. EEG signal is well-preserved using 
Schrödinger filtering, with significant reduction of spikes as outlined by the light-blue 
stripes. 
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Figure 3.4: Performances of the pipelines for channel with small residual artifact. 
The performances of the three pipelines for the T4 channel, which has residual gradient 
artifact comparable to its EEG signal in magnitude. Schrödinger filtering best preserves 
EEG signal, as outlined by the rectangles. For Schrödinger filtering, the signal is 
unaffected in the artifact-free 𝑇/00 region, while this is not the case for the other 
pipelines. 

 

Across all channels and all 840 epochs, the Schrödinger filtering pipeline 

outperformed the other two pipelines in preserving EEG signal as measured by MRA 

(Figure 3.5). For all EEG frequency bands, the Schrödinger filtering pipeline has near-

zero MRA-values with a smaller overall interquartile range. 
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Figure 3.5: MRA comparison of the three pipelines. 
Band-wise box-and-whisker plot of median residual activity as a metric of EEG 
preservation across all 30 channels and all epochs. Schrödinger filtering preserves EEG 
better than the FASTR variant or the ICA pipeline, as indicated by MRA-values closer to 
zero and a smaller overall interquartile range. 

 
 

To compare artifact removal across the pipelines, Figure 3.6 shows a box-and-

whisker plot of MFSF for the fundamental slice frequency of 7 Hz and harmonics up to 

119 Hz. At low frequencies, the ICA pipeline performs better than the Schrödinger 

filtering pipeline and the FASTR variant for some channels. However, the ICA pipeline’s 

good MFSF values are accompanied by poor signal preservation, which is evident in its 

poor MRA results, as well as highly variant performance across the channels. Overall, the 

FASTR variant and the Schrödinger filtering pipeline perform comparably in consistently 

removing an appreciable amount of artifact. 
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Figure 3.6: MFSF comparison of the three pipelines. 
Assessment of gradient artifact removal by measurement of median fraction at slice 
frequencies (MFSF) for the three pipelines across all channels and all epochs. At low 
frequencies, the ICA pipeline performs best, although this is accompanied with signal 
loss as indicated by poor MRA results. Overall, the three pipelines perform comparably 
in removing a significant amount of artifact. 
 

The global filtering step of Schrödinger filtering separates Schrödinger 

components representing the EEG signal and those describing the rest of the signal, 

which not only contain residual gradient artifact but also any additive noise incurred 

during data recording. Global filtering is therefore a denoising technique as well as an 

artifact removal technique. 

 Schrödinger filtering preserved the increases in alpha activity in posterior brain 

regions that followed subject eye-closing. Figure 3.7 shows Schrödinger-filtered signals 

from seven posteriorly placed electrodes. It is apparent from the traces that alpha activity 

increases are present in ten-second intervals. This is in accord with the task paradigm of 

alternating ten-second periods of eye closing and opening. 
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Figure 3.7: Preservation of increased alpha-band activity following eye-closing. 
In posterior brain regions, alpha activity diminishes shortly after eye-opening and 
increases shortly after eye-closing. In the present dataset, the subject opened and closed 
their eyes in alternating ten-second intervals. Shown in (A) are the signals of seven 
posteriorly placed electrodes (B) following the Schrödinger filtering pipeline. These 
traces preserve alpha bursts and alpha blocking, which are localized to alternating ten-
second intervals in accord with the task paradigm. 
 

Signal preservation and artifact removal are critical to an EEG-fMRI analysis 

pipeline. The Schrödinger filtering pipeline overall outperformed the other two pipelines 

with respect to preserving the essential features of the EEG. Moreover, the Schrödinger 

filtering pipeline was consistent across frequency bands, including upper-gamma, in 

preserving signal, whereas the ICA pipeline performed poorly overall and with large 

variance across all bands, and the FASTR variant’s performance diminished for higher 

bands. The Schrödinger filtering pipeline is therefore preferred since it facilitates analysis 

of high-frequency—i.e., gamma-band—EEG in scalp EEG-fMRI experiments, which is 

most sensitive to artifact and is usually avoided. 
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4 Conclusions 

4.1  Summary 

EEG data acquired during fMRI, despite decades of work, faces the unresolved issue of 

removing the large-amplitude artifacts that arise from the time-varying gradient fields 

present during scanning. We presented a gradient artifact removal pipeline in which the 

new Schrödinger filtering technique is performed following average artifact subtraction 

(AAS). Schrodinger filtering is derived from semi-classical signal analysis (SCSA), 

which uses the Schrödinger operator to decompose an input signal into Schrödinger 

components of distinct energies. Schrödinger filtering comprises two steps, beginning 

with de-spiking, in which high-energy Schrödinger components corresponding to 

gradient-related spikes in the post-AAS signal are removed. This is followed by global 

filtering in which the EEG signal is extracted from the de-spiked signal. Global filtering 

manipulates SCSA so as to omit residual post-AAS artifact. 

Compared to two other pipelines—a variant of FASTR and a pipeline 
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incorporating manual spatial ICA—the Schrödinger filtering pipeline best preserved the 

EEG signal characteristics across all frequency bands, up to and including upper-gamma, 

with significant reduction of the gradient artifact. Since Schrödinger filtering manipulates 

energy-based Schrödinger components for signal decomposition and reconstruction, our 

pipeline does not require frequency-domain bandpass filtering, unlike other pipelines. 

Also unique to Schrödinger filtering, the global filtering step simultaneously denoises the 

signal and removes artifact. The Schrödinger filtering pipeline is fully automatic for data 

that features pauses between each slice acquisition—the cost function used in the global 

filtering step relies on these periods. For data without such pauses, the pipeline is semi-

automatic. Overall, Schrödinger filtering facilitates accurate EEG signal extraction and is 

therefore a robust method for gradient artifact removal of EEG data acquired during 

fMRI. 

4.2  Limitations and future directions 

SCSA is a young signal analysis technique. (The earliest record of publication is 

from 200989,90.) Thus, research is ongoing in elucidating its mathematical intricacies. For 

instance, the Schrödinger series �̃�&(𝑡) = 4ℎ∑ 𝜅&,2𝜓&,2X
y|
2zW (𝑡) (Equation 1.5.5) does not 

contain an orthonormal basis, making global filtering (Section 1.5.2.2) a nonlinear 

operation. This is unlike filtering using the Fourier or wavelet transforms. Nonlinear 

filters are useful for highly nonlinear systems, such as the system studied in this thesis: 

the overlapping frequency spaces of the EEG signal and gradient artifact. One 

shortcoming of nonlinear filters is that they are difficult to interpret, making it difficult to 

fine-tune the filtering parameters91. Therefore, to improve the efficiency and 
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effectiveness of filtering applications of SCSA, further mathematical exploration is 

required—e.g., whether closed-form expressions of the Schrödinger components and of 

�̃�&(𝑡) can be predicted from a given pair of 𝑠(𝑡) and ℎ; and whether the Schrödinger 

series can be explicitly related to the Fourier transform by means of a describing 

function92 or similar framework. The latter would be valuable for cases where the 

frequency distribution of a time-domain signal is of interest, such as in this thesis. 

The dataset analyzed in this work was recorded with an MRI pulse sequence that 

pauses between slice acquisitions for roughly as long as the acquisitions themselves. This 

pulse sequence resulted in relatively long 𝑇/00. 𝑇/00 is an integral variable of the cost 

function (Equation 1.5.8a) used for automating the global filtering step of the algorithm. 

Contemporary pulse sequences in EEG-fMRI do not typically pause for as long between 

slice acquisitions. However, the de-spiking step is fully automatic regardless of the length 

of 𝑇/00, and global filtering does not fundamentally rely on 𝑇/00. The present work 

demonstrates the ability of Schrödinger filtering in separating EEG signal from residual 

gradient artifact following AAS. Therefore, on any data, including data acquired with 

short 𝑇/00, Schrödinger filtering can be applied semi-automatically—i.e., by manually 

selecting 𝑁&
-0 during global filtering. Future efforts directed at machine learning and the 

mathematical research described in the previous paragraph are expected to help fully 

automate Schrödinger filtering in data with short 𝑇/00. 

All code used in this thesis is available online on GitHub 

(github.com/gbenigno/shcrodinger_filtering) with instructions for implementation on 

one’s own computer. The GitHub platform accommodates miscellaneous improvements 

suggested by users. The code is written in Matlab and is not optimized for speed. An 
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opportune future step for this work is speeding up the execution of the code. Code may 

be sped up in a number of ways, including conversion to a lower-level language (e.g., 

C++) and parallelization. Schrödinger filtering may be extended to the analysis of other 

types of signals such as invasive electrophysiological local field potentials and fMRI 

timeseries. 

Finally, shortcomings of the data must be addressed. There was only two minutes 

of recorded data for each channel, but since there was a large number (thirty) of recorded 

channels and since the sampling rate was high (2048 Hz), the dataset used was sufficient 

for this proof of concept. However, since the data is from only one subject and from a 

single recording apparatus, the algorithm may have overfitted based on unique 

characteristics of the subject (e.g., below-average alpha activity) and the apparatus (e.g., 

above-average post-AAS gradient artifact amplitude). To ensure that the performance of 

Schrödinger filtering in this thesis is representative of subjects and EEG-fMRI recording 

apparatuses in general, inclusion of multiple subjects across multiple sites is necessary. 
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1. GUaQW Rf LLceQVe
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VXbMHcW WR WKH cRQdLWLRQV bHORZ.

1. 2. TKH LLcHQVRU ZaUUaQWV WKaW LW KaV, WR WKH bHVW RI LWV NQRZOHdJH, WKH ULJKWV WR OLcHQVH
UHXVH RI WKH LLcHQVHd MaWHULaO. HRZHYHU, \RX VKRXOd HQVXUH WKaW WKH PaWHULaO \RX aUH
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SHUPLVVLRQ IURP WKaW VRXUcH WR UHXVH WKH PaWHULaO.

2. ScRSe Rf LLceQce

2. 1. YRX Pa\ RQO\ XVH WKH LLcHQVHd CRQWHQW LQ WKH PaQQHU aQd WR WKH H[WHQW SHUPLWWHd
b\ WKHVH TV&CV aQd aQ\ aSSOLcabOH OaZV.

2. 2. A VHSaUaWH OLcHQcH Pa\ bH UHTXLUHd IRU aQ\ addLWLRQaO XVH RI WKH LLcHQVHd MaWHULaO,
H.J. ZKHUH a OLcHQcH KaV bHHQ SXUcKaVHd IRU SULQW RQO\ XVH, VHSaUaWH SHUPLVVLRQ PXVW bH
RbWaLQHd IRU HOHcWURQLc UH-XVH. SLPLOaUO\, a OLcHQcH LV RQO\ YaOLd LQ WKH OaQJXaJH VHOHcWHd
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bHHQ JUaQWHd VHSaUaWHO\ LQ WKH OLcHQcH. AQ\ cRQWHQW RZQHd b\ WKLUd SaUWLHV aUH H[SUHVVO\
H[cOXdHd IURP WKH OLcHQcH.
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UHTXLUH addLWLRQaO SHUPLVVLRQ aQd Pa\ bH VXbMHcW WR aQ addLWLRQaO IHH. POHaVH aSSO\ WR
JRXUQaOSHUPLVVLRQV@VSULQJHUQaWXUH.cRP/bRRNSHUPLVVLRQV@VSULQJHUQaWXUH.cRP IRU WKHVH
ULJKWV.

2. 4. WKHUH SHUPLVVLRQ KaV bHHQ JUaQWHd fUee Rf cKaUge IRU PaWHULaO LQ SULQW, SHUPLVVLRQ
Pa\ aOVR bH JUaQWHd IRU aQ\ HOHcWURQLc YHUVLRQ RI WKaW ZRUN, SURYLdHd WKaW WKH PaWHULaO LV
LQcLdHQWaO WR \RXU ZRUN aV a ZKROH aQd WKaW WKH HOHcWURQLc YHUVLRQ LV HVVHQWLaOO\ HTXLYaOHQW
WR, RU VXbVWLWXWHV IRU, WKH SULQW YHUVLRQ.

2. 5. AQ aOWHUQaWLYH VcRSH RI OLcHQcH Pa\ aSSO\ WR VLJQaWRULHV RI WKH STM PHUPLVVLRQV
GXLdHOLQHV, aV aPHQdHd IURP WLPH WR WLPH.

3. DXUaWLRQ RI LLceQce

3. 1. A OLcHQcH IRU LV YaOLd IURP WKH daWH RI SXUcKaVH ('LLcHQcH DaWH') aW WKH HQd RI WKH
UHOHYaQW SHULRd LQ WKH bHORZ WabOH:

ScRSe Rf
LLceQce

DXUaWLRQ Rf LLceQce

PRVW RQ a ZHbVLWH 12 PRQWKV
PUHVHQWaWLRQV 12 PRQWKV
BRRNV aQd
MRXUQaOV

LLIHWLPH RI WKH HdLWLRQ LQ WKH OaQJXaJH
SXUcKaVHd
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4. AcknoZledgement

4. 1. The LiceQVRU'V SeUPiVViRQ PXVW be acNQRZOedged Qe[W WR Whe LiceQced MaWeUiaO iQ SUiQW.
IQ eOecWURQic fRUP, WhiV acNQRZOedgePeQW PXVW be YiVibOe aW Whe VaPe WiPe aV Whe
figXUeV/WabOeV/iOOXVWUaWiRQV RU abVWUacW, aQd PXVW be h\SeUOiQNed WR Whe jRXUQaO/bRRN'V
hRPeSage. OXU UeTXiUed acNQRZOedgePeQW fRUPaW iV iQ Whe ASSeQdi[ beORZ.

5. Restrictions on Xse

5. 1. UVe Rf Whe LiceQVed MaWeUiaO Pa\ be SeUPiWWed fRU iQcideQWaO SURPRWiRQaO XVe aQd PiQRU
ediWiQg SUiYiOegeV e.g. PiQRU adaSWaWiRQV Rf ViQgOe figXUeV, chaQgeV Rf fRUPaW, cRORXU aQd/RU
VW\Oe ZheUe Whe adaSWaWiRQ iV cUediWed aV VeW RXW iQ ASSeQdi[ 1 beORZ. AQ\ RWheU chaQgeV
iQcOXdiQg bXW QRW OiPiWed WR, cURSSiQg, adaSWiQg, RPiWWiQg PaWeUiaO WhaW affecW Whe PeaQiQg,
iQWeQWiRQ RU PRUaO UighWV Rf Whe aXWhRU aUe VWUicWO\ SURhibiWed. 

5. 2. YRX PXVW QRW XVe aQ\ LiceQVed MaWeUiaO aV SaUW Rf aQ\ deVigQ RU WUadePaUN. 

5. 3. LiceQVed MaWeUiaO Pa\ be XVed iQ OSeQ AcceVV PXbOicaWiRQV (OAP) befRUe SXbOicaWiRQ b\
SSUiQgeU NaWXUe, bXW aQ\ LiceQVed MaWeUiaO PXVW be UePRYed fURP OAP ViWeV SUiRU WR fiQaO
SXbOicaWiRQ.

6. OZnership of Rights 

6. 1. LiceQVed MaWeUiaO UePaiQV Whe SURSeUW\ Rf eiWheU LiceQVRU RU Whe UeOeYaQW WhiUd SaUW\ aQd
aQ\ UighWV QRW e[SOiciWO\ gUaQWed heUeiQ aUe e[SUeVVO\ UeVeUYed. 

7. Warrant\ 

I1 12 E9E17 6HALL LICE1625 BE LIABLE 72 <28 25 A1< 27HE5 3A57< 25
A1< 27HE5 3E5621 25 F25 A1< 63ECIAL, C216E48E17IAL, I1CIDE17AL
25 I1DI5EC7 DAMAGE6, H2:E9E5 CA86ED, A5I6I1G 287 2F 25 I1
C211EC7I21 :I7H 7HE D2:1L2ADI1G, 9IE:I1G 25 86E 2F 7HE
MA7E5IAL6 5EGA5DLE66 2F 7HE F25M 2F AC7I21, :HE7HE5 F25 B5EACH
2F C2175AC7, B5EACH 2F :A55A17<, 7257, 1EGLIGE1CE, I1F5I1GEME17
25 27HE5:I6E (I1CL8DI1G, :I7H287 LIMI7A7I21, DAMAGE6 BA6ED 21
L266 2F 352FI76, DA7A, FILE6, 86E, B86I1E66 23325781I7< 25 CLAIM6 2F
7HI5D 3A57IE6), A1D
:HE7HE5 25 127 7HE 3A57< HA6 BEE1 AD9I6ED 2F 7HE 3266IBILI7< 2F
68CH DAMAGE6. 7HI6 LIMI7A7I21 6HALL A33L< 127:I7H67A1DI1G A1<
FAIL85E 2F E66E17IAL 385326E 2F A1< LIMI7ED 5EMED< 3529IDED
HE5EI1. 

8. Limitations

8. 1. BOOKS ONL<:WheUe 'UeXVe iQ a diVVeUWaWiRQ/WheViV' haV beeQ VeOecWed Whe fROORZiQg
WeUPV aSSO\: PUiQW UighWV Rf Whe fiQaO aXWhRU'V acceSWed PaQXVcUiSW (fRU cOaUiW\, NOT Whe
SXbOiVhed YeUViRQ) fRU XS WR 100 cRSieV, eOecWURQic UighWV fRU XVe RQO\ RQ a SeUVRQaO ZebViWe RU
iQVWiWXWiRQaO UeSRViWRU\ aV defiQed b\ Whe SheUSa gXideOiQe (ZZZ.VheUSa.ac.XN/URPeR/).

9. Termination and Cancellation
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9. 1. LiceQceV ZiOO e[SiUe afWeU Whe SeUiRd VhRZQ iQ COaXVe 3 (abRYe).

9. 2. LiceQVee UeVeUYeV Whe UighW WR WeUPiQaWe Whe LiceQce iQ Whe eYeQW WhaW Sa\PeQW iV QRW
UeceiYed iQ fXOO RU if WheUe haV beeQ a bUeach Rf WhiV agUeePeQW b\ \RX. 

ASSeQdL[ 1 ³ AcNQRZOedgePeQWV:

FRU JRXUQaO CRQWeQW:
RHSULQWHG b\ SHUPLVVLRQ IURP [Whe LLceQVRU]: [JRXUQaO PXbOLVheU (H.J.
NaWXUH/SSULQJHU/PaOJUaYH)] [JOURNAL NAME] [REFERENCE CITATION
(AUWLFOH QaPH, AXWKRU(V) NaPH), [COPYRIGHT] (\HaU RI SXbOLFaWLRQ)

FRU AdYaQce OQOLQe PXbOLcaWLRQ SaSeUV:
RHSULQWHG b\ SHUPLVVLRQ IURP [Whe LLceQVRU]: [JRXUQaO PXbOLVheU (H.J.
NaWXUH/SSULQJHU/PaOJUaYH)] [JOURNAL NAME] [REFERENCE CITATION
(AUWLFOH QaPH, AXWKRU(V) NaPH), [COPYRIGHT] (\HaU RI SXbOLFaWLRQ), aGYaQFH
RQOLQH SXbOLFaWLRQ, Ga\ PRQWK \HaU (GRL: 10.1038/VM.[JOURNAL ACRONYM].)

FRU AdaSWaWLRQV/TUaQVOaWLRQV:
AGaSWHG/TUaQVOaWHG b\ SHUPLVVLRQ IURP [Whe LLceQVRU]: [JRXUQaO PXbOLVheU (H.J.
NaWXUH/SSULQJHU/PaOJUaYH)] [JOURNAL NAME] [REFERENCE CITATION
(AUWLFOH QaPH, AXWKRU(V) NaPH), [COPYRIGHT] (\HaU RI SXbOLFaWLRQ)

NRWe: FRU aQ\ UeSXbOLcaWLRQ fURP Whe BULWLVh JRXUQaO Rf CaQceU, Whe fROORZLQg
cUedLW OLQe VW\Oe aSSOLeV:

RHSULQWHG/aGaSWHG/WUaQVOaWHG b\ SHUPLVVLRQ IURP [Whe LLceQVRU]: RQ bHKaOI RI CaQFHU
RHVHaUFK UK: : [JRXUQaO PXbOLVheU (H.J. NaWXUH/SSULQJHU/PaOJUaYH)] [JOURNAL
NAME] [REFERENCE CITATION (AUWLFOH QaPH, AXWKRU(V) NaPH),
[COPYRIGHT] (\HaU RI SXbOLFaWLRQ)

FRU AdYaQce OQOLQe PXbOLcaWLRQ SaSHUV:
RHSULQWHG b\ SHUPLVVLRQ IURP TKH [Whe LLceQVRU]: RQ bHKaOI RI CaQFHU RHVHaUFK UK:
[JRXUQaO PXbOLVheU (H.J. NaWXUH/SSULQJHU/PaOJUaYH)] [JOURNAL NAME]
[REFERENCE CITATION (AUWLFOH QaPH, AXWKRU(V) NaPH), [COPYRIGHT] (\HaU
RI SXbOLFaWLRQ), aGYaQFH RQOLQH SXbOLFaWLRQ, Ga\ PRQWK \HaU (GRL: 10.1038/VM.
[JOURNAL ACRONYM])

FRU BRRN cRQWeQW:
RHSULQWHG/aGaSWHG b\ SHUPLVVLRQ IURP [Whe LLceQVRU]: [BRRN PXbOLVheU (H.J.
PaOJUaYH MaFPLOOaQ, SSULQJHU HWF) [BRRN TLWOe] b\ [BRRN aXWhRU(V)]
[COPYRIGHT] (\HaU RI SXbOLFaWLRQ)

OWheU CRQdLWLRQV:

VHUVLRQ¬ 1.2

QXeVWionV? cXVWomeUcaUe@cop\UighW.com oU +1-855-239-3415 (Woll fUee in Whe US) oU
+1-978-646-2777.
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