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Abstract 

Advances in topological acoustics are leading to potential development for noise attenuation, 

ultrasonic imaging, sound manipulation, and information delivering, etc. Recently, ideas and 

methodologies from condensed-matter physics, such as the quantum Hall effect (QHE), the 

quantum spin Hall effect (QSHE), and the quantum valley Hall effect (QVHE), combined 

with configurations of sonic crystals and metamaterials, have been investigated in 

manipulating acoustic transmissions in the form of one-way edge modes and defect-immune 

protected acoustics. However, many related studies are still in their infancy and mostly rely 

on bulky, noisy, overly complicated, untunable and narrow-band-effective facilities, and so it 

is highly desirable but challenging to design more practical topological acoustic systems, 

with backscattering immune, tunable, broadband and miniaturized topological acoustic 

properties.  

This thesis investigates novel modulation mechanisms, versatile configurable lattice 

structures, and microscale acoustic transmission mechanisms to solve the aforementioned 

airborne topological acoustic challenges. Starting with the rotating modified spiral springs 

configuration adjusting the inner radius without altering the external lattice structure, a 

gapless topologically protected acoustic flow-free resonator system based on the QVHE in 

reconfigurable sonic crystals is designed to realize backscattering immune, tunable and 

broadband functional acoustic applications. Then, based on the acoustic analogue of the QHE, 

to replace the generating mechanism of the noisy fan-induced airflow, a new method using 

heat-induced natural convection coupled with an acoustic circulator is proposed to realize 

robust nonreciprocal acoustic propagation. This strategy is more feasible because of its 

dynamic control and versatile topological structures in the absence of moving parts. To 

further promote the topological acoustics into a more practical stage, based on the QSHE, a 

temperature modulation scheme is designed to demonstrate that the Floquet topological 

insulators with thermal-induced impedance matching can realize robust topological acoustic 

propagation, which is especially useful for noiseless and miniaturized airborne acoustics. 

Thermal modulation enables miniaturized topological airborne acoustics to the millimeter 

scale or even smaller. Additionally, a theoretical model with a second-order slip boundary to 
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describe acoustic wave propagation in micro- and nanochannels is proposed to investigate the 

miniaturized topological acoustic transmission mechanism. Based on the molecular-based 

direct simulation Monte Carlo (DSMC) method, this model provides an analytical solution 

beneficial for topological acoustics in ultrasonic or in miniaturized structures.  

Keywords 

Topological acoustics,  the quantum Hall effect, the quantum spin Hall effect, the quantum 

valley Hall effect, sonic crystals, metamaterials, tunablility, miniaturization, versatile 

configurable lattice structures, microscale acoustic transmission mechanism, heat-induced 

natural convection, thermal-induced impedance matching, direct simulation Monte Carlo 

method.  
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Summary for Lay Audience 

Advances in topological acoustics are leading to potential development for noise attenuation, 

ultrasonic imaging, sound manipulation, and information delivering, etc. Recently, ideas and 

methodologies from condensed-matter physics, combined with configurations of sonic 

crystals and metamaterials, have been investigated in manipulating acoustic transmissions in 

the form of one-way edge modes and defect-immune protected acoustics. However, many 

related studies are still in their infancy and mostly rely on bulky, noisy, overly complicated, 

untunable and narrow-band-effective facilities, and so it is highly desirable but challenging to 

design more practical topological acoustic systems, with backscattering immune, tunable, 

broadband and miniaturized topological acoustic properties.  

This thesis investigates novel modulation mechanisms, versatile configurable lattice 

structures, and microscale acoustic transmission mechanisms to solve the aforementioned 

airborne topological acoustic challenges. Starting with the rotating modified spiral springs 

configuration adjusting the inner radius without altering the external lattice structure, a 

gapless topologically protected acoustic flow-free resonator system in reconfigurable sonic 

crystals is designed to realize backscattering immune, tunable and broadband functional 

acoustic applications. Then, to replace the generating mechanism of the noisy fan-induced 

airflow, a new method using heat-induced natural convection coupled with an acoustic 

circulator is proposed to realize robust one-way acoustic propagation. This strategy is more 

feasible because of its dynamic control and versatile structures in the absence of moving 

parts. To further promote the topological acoustics into a more practical stage, a temperature 

modulation scheme is designed to demonstrate that thermal-induced impedance matching can 

realize robust topological acoustic propagation, which is especially useful for noiseless and 

miniaturized airborne acoustics. Thermal modulation enables miniaturized topological 

airborne acoustics to the millimeter scale or even smaller. Additionally, a theoretical model 

with a second-order slip boundary to describe acoustic wave propagation in a small scale is 

proposed to investigate the miniaturized acoustic transmission mechanism. Based on the 

molecular-based direct simulation Monte Carlo method, this model provides an analytical 

solution beneficial for topological acoustics in ultrasonic or in miniaturized structures. 



 

v 

 

Co-Authorship Statement 

This thesis is based upon a combination of published work. Various chapters are adapted 

from the following list of published work.  

Chapter 2 was drafted by Xingxing Liu based on the following publication: 

Liu, X., Q. Guo, and J. Yang, Tunable acoustic valley edge states in a flow-free resonator 

system. Applied Physics Letters, 2019. 115(7): p. 074102. 

Chapter 3 was drafted by Xingxing Liu based on the following publication: 

Liu X, Cai X, Guo Q, Yang J. Robust nonreciprocal acoustic propagation in a compact 

acoustic circulator empowered by natural convection[J]. New Journal of Physics, 2019, 

21(5): 053001. 

Chapter 4 was drafted by Xingxing Liu based on the following publication: 

Liu, Xingxing, Qiuquan Guo, and Jun Yang. "Miniaturization of Floquet topological 

insulators for airborne acoustics by thermal control." Applied Physics Letters 114.5 (2019): 

054102. 

Chapter 5 was drafted by Xingxing Liu based on the following publication: 

Liu X, Cai X, Guo Q, Yang J. Study of acoustic wave propagation in micro-and 

nanochannels[J]. Wave Motion, 2018, 76: 51-60. 

All other chapters are drafted and revised solely by Xingxing Liu. 

  

 

 

 

 

 

 

 



 

vi 

 

Acknowledgments 

It is a pleasure to acknowledge the meaningful contribution from everyone who supported to 

make this work possible. 

First and foremost, I would like to thank my supervisor, Professor Jun Yang, for his patient 

guidance, valuable suggestions, and positive encouragement throughout my PhD period. I 

really appreciate that I have the opportunity and honor to be working under the supervision 

of such brilliant and innovative mind. Also, I would like to thank my advisor committees, 

Prof. Samuel F Asokanthan and Prof. Liying Jiang, for their kindly guidance. 

Many thanks to all of the outstanding colleagues I have had at the University of Western 

Ontario, for all the passionate and meaningful discussions, and for all the interesting moment 

we shared together. I have learned a lot from all of you and am very appreciative to have a 

team with people like you. I would also like to give special thanks to Dr. Cai, Dr. Guo and 

Dr. Zhang for their insightful suggestions and guidance in both research and life, which 

really helps a lot to do my study during my PhD period. 

Also, I would like to thank all my families and my friends who are always backing me up 

and relieving my struggles. Without any of you, I would never go this far.  

Finally, a big thank you goes to the Natural Science and Engineering Research Council of 

Canada (NSERC) and the University of Western Ontario. Their support and funding has 

made all of this research possible, and I am very grateful for the opportunities they have 

provided. 

 

 

 

 

 



 

vii 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ........................................................................................... iv 

Co-Authorship Statement.................................................................................................... v 

Acknowledgments.............................................................................................................. vi 

Table of Contents .............................................................................................................. vii 

List of Tables ...................................................................................................................... x 

List of Figures .................................................................................................................... xi 

List of Abbreviations ....................................................................................................... xvi 

Chapter 1 ............................................................................................................................. 1 

1 Introduction to the airborne topological acoustics ......................................................... 1 

1.1 History and development of the QHE, QSHE and the QVHE in the condensed-

matter system .......................................................................................................... 1 

1.2 Acoustic analogues of the QHE for the airborne nonreciprocal acoustics and 

topological acoustics ............................................................................................... 5 

1.3 Acoustic analogues of the QSHE for the airborne topological acoustics ............... 8 

1.4 Acoustic analogues of the QVHE for the airborne   topological acoustics .......... 14 

1.5 Lattice Boltzmann method and DSMC method for the miniaturization of 

topological acoustics ............................................................................................. 19 

1.6 Challenges and objectives ..................................................................................... 23 

1.7 Outline of the thesis .............................................................................................. 24 

Chapter 2 ........................................................................................................................... 27 

2 Tunable acoustic valley edge states in a flow-free resonator system........................... 27 

2.1 Introduction ........................................................................................................... 27 

2.2 Topological acoustic model and mode analysis.................................................... 30 

2.3 Analytical acoustic band structures ...................................................................... 31 

2.4 Topological acoustic performance ........................................................................ 34 



 

viii 

 

2.5 Supplementary material ........................................................................................ 37 

Chapter 3 ........................................................................................................................... 40 

3 Robust nonreciprocal acoustic propagation in a compact acoustic circulator 

empowered by natural convection ............................................................................... 40 

3.1 Introduction ........................................................................................................... 40 

3.2 Prototype design and mode analysis ..................................................................... 42 

3.3 Velocity distribution of heat-induced natural convection ..................................... 44 

3.4 Nonreciprocal performance .................................................................................. 46 

3.5 Coupled-mode theory for an acoustic circulator by angular-momentum bias ...... 48 

3.6 Robust nonreciprocal acoustic circulator with other interior configurations ........ 49 

3.7 Discussion ............................................................................................................. 51 

3.8 Supplementary material ........................................................................................ 52 

Chapter 4 ........................................................................................................................... 56 

4 Miniaturization of Floquet topological insulators for airborne acoustics by thermal 

control .......................................................................................................................... 56 

4.1 Introduction ........................................................................................................... 56 

4.2 Prototype design and mode analysis ..................................................................... 58 

4.3 Topological performance ...................................................................................... 61 

4.4 Supplementary material ........................................................................................ 64 

Chapter 5 ........................................................................................................................... 70 

5 Study of acoustic wave propagation in micro- and nanochannels ............................... 70 

5.1 Introduction ........................................................................................................... 70 

5.2 Theory for acoustic wave propagation in narrow channels .................................. 73 

5.3 The complete solutions based on slip boundary conditions .................................. 76 

5.4 DSMC for the verification of acoustic wave propagation in a narrow channel .... 79 

5.5 Properties of the new second-order slip model ..................................................... 82 

5.6 Conclusions ........................................................................................................... 86 



 

ix 

 

6 Conclusion and Future Work ....................................................................................... 88 

6.1 Conclusion ............................................................................................................ 88 

6.2 Future work ........................................................................................................... 91 

References ......................................................................................................................... 93 

Curriculum Vitae ............................................................................................................ 104 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 

 

List of Tables 

Table 1-1. Schematic illustration of different topological phases ............................................ 2 

Table 5-2. Values of different slip coefficients ...................................................................... 78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xi 

 

List of Figures 

Figure 1-1. The analogous QHE in sonic crystal systems. (a-b) The fan-induced-airflow 

acoustic circulator and its nonreciprocal performance. (c) The hexagonal acoustic lattice 

incorporated with circulating airflow is presented, and has topological performance against 

the structure disorder and defects. (d) The honeycomb acoustic lattice with rotating airflow, 

and the robust edge state transmission against various defects. Reprint with permission from: 

(a-b) ref.[29],  (c) ref. [30], (d) ref. [31]. .................................................................................. 7 

Figure 1-2. (a) Photograph of a 2D coupled metamaterial ring lattice system. The U-shape 

waveguides are the input and output ports with specific pseudo-spins. (b) Photograph of one 

lattice ring surrounded by four coupling rings. The red arrow shows that the wave is carrying 

pseudo-spin-up, viz. propagating in clockwise.  (c) Details of the metamaterial waveguide. 

(d) The simulated and experimental pressure amplitude distributions when pseudo-spin-up 

and pseudo-spin-down acoustic one-way edge states are excited, showing the robustness of 

the edge states against the sharp bending. Reprint with permission from ref. [40] ................ 10 

Figure 1-3. (a) Schematic of the hexagonal acoustic metamaterial lattice composed of 

artificial metamolecules. (b) Dispersion relation of the lattice based on the original unit 

cell for single Dirac cones at the 1st BZ corners.  (c) Topologically protected one-way edge 

waveguide for airborne acoustics and the corresponding acoustic intensity fields. The 

pseudospin-down mode is excited at the lower and upper edge, and the topological edge 

states with three types of defects: cavity, disorder, and bends. (d) The spin-locked edge state 

propagation. (e) Robustness against versatile defects. Reprint with permission from: (a-c) ref. 

[43] (d-e) ref. [44] ................................................................................................................... 11 

Figure 1-4. (a) A time-dependent phononic crystal formed by a hexagonal lattice of acoustic 

trimers. The grey material represents the silicone rubber. (b) For each unit cell, the acoustic 

capacitance of each cavity is periodically modulated in a rotating fashion. (c, d) The 

degenerate dipolar lumped resonance (c) at 21.6 kHz and the next dipolar resonance (d) at 60 

kHz. (e, f) Comparison between the bulk band structures in the absence and in the presence 

of modulation. (g) The boundary between two crystal domains with opposite modulation 

handedness makes a reconfigurable, backscattering immune and broadband nonreciprocal 



 

xii 

 

waveguide, which perfectly transmits acoustic waves along the boundary, regardless of turns 

and defects. Reprint with permission from ref. [45] ............................................................... 13 

Figure 1-5. (a) A schematic of the acoustic valley Hall insulator. (b) Dispersion relations for 

the gapless case of 𝜶 = 𝟎° (black lines) and gapped cases of −10° (color lines). (c) 

Topological phase dependency with 𝜶 where the inset shows the vortex features. (d) 

Dispersions for the interfaces separating two topologically identical (upper panel) and 

distinct (lower panel) AVH insulating phases. (e) Power transmission (black line) and 

reflection (red line) spectra for a zigzag path, where the inset shows the field distribution. (f) 

Transmitted pressure measured for the zigzag path (red circles), and a straight channel (black 

circles). Reprint with permission from ref. [65] ..................................................................... 16 

Figure 1-6. (a) Top and side views of the unit cell of acoustic honeycomb lattice. Two 

resonators play the role of artificial atoms connected by thin coupling waveguides. (b) Band 

diagram when a unit cell contains identical resonators (blue lines) and when the resonators 

are of different heights with 𝜟𝒉 = 𝟎. 𝟏𝟓𝒉 (red lines). (c) Pressure field distribution for 

eigenstates K1 and K2. (d) Topological transition as the height difference 𝜟𝒉 changes from 

negative to positive. (e) Acoustic pressure field for a finite honeycomb lattice 

comprising 26×15 unit cells with a Z-shaped zigzag interface. The red arrow indicates the 

acoustic source. Reprint with permission from ref. [70] ........................................................ 17 

Figure 1-7. Acoustic valley pseudospin states and topological mode inversion. (a) Schematics 

of the hexagonal lattice composed of perturbed three-legged rods (TLRs) embedded in an air 

matrix. (b) Symmetry breaking by rotating the rods attached to the computer-controlled 

electric motor. (c-e) Dispersion relations of the acoustic modes by reconfiguring the 

angle 𝝋 = 𝟑𝟎°, 𝟎°,−𝟑𝟎° . The symbols K+ and K− denote the pseudospin states.  (f) Setup 

of the reconfigurable topological switch. The pedestals of the TLRs in the black region can 

be rotated to different angles. (g) The distributions of the pressure fields when switched 

between different topological states. Sound waves transmit through port 1 (port 2) at the 

rotation angle −𝟑𝟎°(𝟑𝟎°) of the reconfigurable control region. Reprint with permission from 

ref. [67] ................................................................................................................................... 18 

Figure 1-8. Schemes of the collision model and the D2Q9 velocity discretization model. 

Reprint with permission from ref. [78] ................................................................................... 20 



 

xiii 

 

Figure 2-1. (a) The hexagonal lattice formed by acoustic double-trimer cell. Each trimer 

consists of three connected hollow circulators and rectangular channels, with air filled inside 

all the grey regions (inset: region A, B, C denotes different radius combination units). (b) 

Two types of double-trimer centrosymmetric cells with self-inward (upper structure) or self-

outward (lower structure) radii-rotating modulation. (c) Two types of doubly degenerate 

dipolar resonances at 7970-8010 Hz corresponding to the configurations of upper and lower 

structures in (b). The colors from red to blue represent the values of pressure from positive 

maximum to negative maximum. (d) The tunable inner radius using modified spiral springs 

with lead rail. (e) Comparison between the band structure without (black curves, same radius 

in the trimer structure) and with (red dots) radius modulation. .............................................. 29 

Figure 2-2. The ratio of acoustic intensity (Output 3/Output 2) at different radius modulations 

in a single trimer (middle inset: trimer structure). The dimensions display the inner radius of 

every circulator in the trimer structure. The inner radius changes from 1.5 mm to a maximum 

of 8.0 mm. ............................................................................................................................... 31 

Figure 2-3. (a) Acoustic band-structure diagram for a supercell composed of a 1-by-12 

periodic array of double-trimer cells. Black dots refer to bulk modes, and blue dots refer to 

edge modes. (b) Acoustic pressure distribution for the dominant harmonic cells of an edge 

mode localized at the supercell centre. ................................................................................... 34 

Figure 2-4. (a) Immunity of the nonreciprocal edge mode to versatile edge geometries and 

sharp turns. (b) Reconfigurable and topologically protected one-way edge waveguide along 

the separating boundary and the robustness against defects. The self-inward radii-rotating 

modulation cell array is placed in the upper domain, while the self-outward modulation is 

placed in the lower domain. (c) Topological edge states with the opposite direction for the 

input source as of (b). The color legend displays the acoustic pressure. ................................ 36 

Figure 3-1. Model configuration and pressure distribution. (a) Geometrical top view of cross-

section at 𝐇 = 𝟐𝟐 𝐦𝐦. The red region is specified as high temperature region is heated at a 

given temperature that is 373.15 K, 423.15 K, 473.15 K, 523.15 K, 573.15 K and 623.15 K, 

respectively. The rest blue area is set as a balanced temperature 273.15 K. (b) The acoustic 

pressure distribution in the condition of the optimal nonreciprocal performance with all the 



 

xiv 

 

dimensions labeled. The pressure distribution of the clockwise (c) and counterclockwise (d) 

dipole modes of the acoustic circulator corresponding to the azimuthal order to be m=1. .... 44 

Figure 3-2. The contours and vectors of velocity field distributions in different temperatures. 

The high temperature region is set as (a) 373.15 K, (b) 423.15 K, (c) 473.15 K, (d) 523.15 K, 

(e) 573.15 K, (f) 623.15 K, respectively. The arrows show the velocity vectors. .................. 45 

Figure 3-3. Nonreciprocal performance in different temperatures and the comparison with 

experimental and theoretical results. (a) Transmission coefficients at different high 

temperatures for Port 2 (curves with lower peak values) and Port 3 (curves with higher peak 

values). (b) Comparison of normalized transmission among Alu’s experimental results[29], 

theoretical results (Eq. (3-6)) and the simulation results of the biasing velocity distribution 

induced by the applied high temperature at 623.15 K. ........................................................... 47 

Figure 3-4. The velocity contours and nonreciprocal performance of acoustic circulators with 

four types of interior configurations, where temperature of the high temperature region is 

523.15 K. The velocity contours and vector arrows for (a) Triangle structure. (b) Y-parallel 

triangles structure. (c) Hexagon structure. (d) Hexagram structure. (e) Transmission 

coefficients for Port 2 (curves with lower peak values) and Port 3 (curves with higher peak 

values). .................................................................................................................................... 50 

Figure 4-1. (a) The hexagonal lattice of acoustic trimers. Each trimer is composed of three 

connected hollow circulators and resctangular channels. The inner media is air. (b) The 

periodically modulated and distributed acoustic impedance of each circulator, with the 

modulation scheme of 𝟎 ℃, 𝟗𝟎 ℃ and 𝟑𝟎𝟎 ℃ throughout the double-trimer lattice. (c) A 

doubly degenerate dipolar resonance at 6.85-7 kHz. (d) The next resonant range, occurring at 

8.6-8.85 kHz, due to one degenerate dipolar resonance. The colour legend denotes the 

acoustic pressure distribution. (e) Camparison between the band structure with (black curves) 

or without (red dots) modulation. ........................................................................................... 59 

Figure 4-2. Normalized transmission coefficients of pressure at different temperature 

distributions in a single trimer (the upper left inserted trimer structure), as the temperature 

distribution of the acoustic input metamolecule remains is 𝟎 ℃, while two outputs are shown 

in the above legend. Curves with same colour represents the output values in two output 



 

xv 

 

ports, for the highest temperature output port relates to the upper curve (port 1) and the 

middle-high temperature output port relates to the lower curve (port 2). ............................... 62 

Figure 4-3. (a) The simplified modulation scheme for two trimers in the double-trimer lattice 

are mirror symmetric with each other, as the colours of red, yellow and green represent 

acoustic impedances induced by the temperatures of 𝟎 ℃, 𝟑𝟎𝟎 ℃ and 𝟗𝟎 ℃, respectively. 

(b) The one-way edge transmission in the modulation scheme of (a), as the arrows show a 

lower transmission edge route. (c) The modulation scheme for every double-trimer lattice is 

not mirror symmetric, while the right trimer is anticlockwise rotating around the left trimer. 

(d) The edge transmission in the modulation scheme of (c), as the arrows also show an upper 

transmission edge route........................................................................................................... 63 

Figure 5-1. Narrow channel geometry for acoustic wave propagation from the left to right 

side, exhibiting fully diffuse reflection on the upper and lower walls.................................... 74 

Figure 5-2. Comparison between the simulation result and the analytical predictions of 

different slip models on attenuation coefficient for 𝒘 = 𝟔 × 𝟏𝟎𝟖 𝒓𝒂𝒅/𝒔. ........................... 80 

Figure 5-3. Comparison of the new second-order slip model, no-slip model and first-order 

slip model for the relative complex effective density. ............................................................ 84 

Figure 5-4. Comparison of the new second-order slip model, no-slip model and first-order 

slip model for the effective damping coefficient 𝑹′. ........................................................... 85 

Figure 5-5. Comparison of the new second-order slip model, no-slip model and first-order 

slip model for the relative effective acoustic speed. ............................................................... 85 

Figure 5-6. Comparison of the new second-order slip model, no-slip model and first-order 

slip model for the relative characteristic impedance. .............................................................. 86 

 

 

 

 



 

xvi 

 

List of Abbreviations 

QHE……..  quantum Hall effect 

QSHE……..quantum spin Hall effect 

QVHE…….. quantum valley Hall effect  

QVH…….. quantum valley Hall 

TKNN…..Thouless–Kohmoto–

Nightingale–den Nijs 

SCs….…..sonic crystals 

2D…….... two-dimensional  

AVH……..acoustic valley-Hall 

TI…….…..topological insulator 

LBM…….. lattice Boltzmann method 

FEM…….. finite element method  

FDTD…... finite-difference time-domain 

DSMC….…..direct simulation Monte 

Carlo 

CFD……... computational fluid dynamics 

MEMS…….. micro-electromechanical 

systems 

Kn…………..Knudsen 

BGK……….. Bhatnagar–Gross–Krook  

UGKS-DSMC……..unified gas-kinetic 

scheme DSMC  

IP-DSMC…….. information preserving 

DSMC  

N-S equation…….. Navier-Stokes 

equation 

LVDSMC……....Low-Variance 

Deviational Simulation 

Monte Carlo  

MD…………….. molecular dynamics  

VHS………..….. variable hard sphere 

HS…………….... hard sphere 

TMAC…………..tangential momentum 

accommodation coefficient 

 

 

 

 



 

1 

 

Chapter 1  

1 Introduction to the airborne topological acoustics 

Airborne topological acoustics have been investigated for around five years while 

tremendous efforts have been made to solve problems of topologically protected acoustic 

transmissions. Many ideas and methodologies, from condensed-matter physics, such as the 

QHE, the QSHE, and the QVHE etc., have been utilized and fully investigated to realize 

some potential applications, like information delivering, ultrasonic imaging, and noise 

reduction, etc. The theme of this thesis is to develop more practical topological acoustic 

properties applied in related devices or systems, including backscattering immune, tunable, 

broadband and miniaturized topological acoustic applications. Some detailed modulation 

strategies and controlling mechanisms have been fully investigated and developed, including 

importing air-induced flow field to mimic magnetic field in the QHE based system, 

metamaterial-type lattice array modification in the QSHE or QVHE based systems, and 

versatile acoustic properties based modulation model. This chapter will review the research 

background and recent efforts to investigate acoustic topological states in two- and three-

dimensional systems, where the spin and valley degrees of freedom are utilized to control the 

acoustic transmission route in the form of unidirectional edge modes and defect-immune 

topological protected acoustics. The theoretical investigations and related experimental 

verifications are summarized based on the latest advancements in airborne topological 

acoustics, then the research challenges and objectives are identified.  

1.1 History and development of the QHE, QSHE and the 
QVHE in the condensed-matter system 

In a condensed-matter system[1], the specific phases of matter are characterized by the 

spontaneously broken underlying symmetries. These phases have differences in their 

symmetric properties[2] that cannot be smoothly interconnected by any path in parameter 

space. In 1980, Von Klitzing’s discovery of the QHE[3] constructed an effective way to 

classify the phases of matter. The quantized Hall conductivity[4] was discovered when a 2D 

electron gas sample was disposed in a strong magnetic field with a low temperature, and was 

independent of impurities and sample size. The state used to describe this phenomenon was 
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switched to the notion of topological orders[4, 5], which characterize phases of matter 

beyond the symmetry breaking, thereby opening a new research branch in photonic/phononic 

waves[6], electromagnetic waves, and mechanical waves, etc.  

Topological performance for phases of matter depends on the fundamental properties of the 

whole system and changes only under a transition state of quantum phase[7], and is 

insensitive to perturbations of material parameters. For the QHE, the quantization of the Hall 

conductivity originates from the fundamental non-trivial topological properties of the band 

structures. According to the Thouless–Kohmoto–Nightingale–den Nijs (TKNN) theory[5], 

the Chern number[8] is used to describe the non-zero topological invariant[9], and 

characterizes the Berry phase[10] accumulation over the Brillouin zone[11]. The value of the 

Chern number closely depends on the performance of the energy bands in the momentum 

space[12]. For electromagnetics, a periodic magnetic flux can be utilized to break the time-

reversal symmetry of structures and produce a non-zero Chern number[13]. The resulting 

topologically non-trivial property[14-17] supports the existence of a gapless edge state[18] in 

the bulk band gap structure, exhibiting a special electronic property whereby electrons are 

conducted along the edge but insulated in the bulk of the structure. As shown in Table 1-1, 

this property is essentially different from a normal insulator with a zero Chern number.  

Table 1-1. Schematic illustration of different topological phases 

Topological 
phases 

Normal insulator

 

Time-reversal broken QH insulator 

 

Properties 

Normal insulators exhibit band gaps, 
separating the conducting bands 

from the valence bands, 
characterized by the zero Chern 
number (a topological invariant). 

A quantum Hall insulator can be realized 
by breaking time-reversal symmetry. It 

also has a band gap, which is spanned by 
a gapless edge state, exhibiting the 

electronic property that is conducting on 
the edge but insulating in the bulk. This 

phenomenon is characterized by the 
non-zero Chern number. 
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Topological 
phases 

Time-reversal-invariant QSH insulator 

 

Time-reversal-invariant QVH insulator 

 

Properties 

The inherent spin-orbital coupling 
can also give rise to non-trivial 

topological states, known as the QSH 
insulators. A pair of gapless edge 

states emerges in the insulating band 
gap. The edge states carry conjugate 

electronic spins and exhibit spin-
dependent propagation property. 
This is characterized by the spin 

Chern number (C+ and C-), while the 
total Chern number is zero, implying 
the intact time-reversal symmetry. 

A discrete valley degree of freedom has 
also been proposed to realize 

topological states, known as the QVH 
insulators. Valley refers to the two 

energy extrema of the band structure in 
the momentum space, in which the 

Berry curvature exhibits opposite signs. 
Its integral over the whole Brillouin zone 

is zero, while the integral within each 
valley is nonzero. The system shows a 

valley-selective non-trivial property. The 
QVHE is characterized by the valley 
Chern number (C+ and C-). The total 

Chern number is also zero, hence the 
time reversal symmetry is intact. 

Later in 2005, the QSHE was proposed by Kane and Zhang et al[14, 16]. Beyond the effect 

of magnetic field, it was found that the inherent spin-orbit, coupled to the spin of the electron, 

can also create non-trivial topological phases, and a pair of gapless edge states exists in the 

insulating band gap. The edge states exhibit conjugate electronic spins[19] and spin-based 

propagation property, as shown in Table 1-1. In the QSHE, the total Hall conductivity and 

the Chern number are zero, implying that the time-reversal symmetry remains intact, which 

is the reason for protecting the spin-based edge states. The separating spin Hall conductivity 

is non-zero despite the fact that the total Hall conductivity is zero, and can be described by 

the spin Chern number[20].  

Recently, a valley state with another discrete degree of freedom was investigated to achieve a 

topological state, and is known as the QVHE in valleytronics[21, 22]. The valley state 

denotes the two extrema of the energy band structure in the momentum space, and its Berry 

curvature[23] exhibits opposite numbers in the separating band regions. The integral of the 

full Brillouin zone is calculated as zero, while the integral within the separating valley is 
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nonzero. As a result, the whole QVHE system shows a valley-selective topologically non-

trivial property, and also retains the intact time-reversal symmetry. Although the nature of 

the aforementioned topological phases differs, they share the same properties in that the edge 

states crosslink the bulk band gap and even separate band domains with different Chern 

numbers.  

Different types of topological states and their associated properties can introduce many 

potential applications for the next generation of topological quantum computing[24-26] and 

electronic devices. However, in real electronic applications, realizing topological states 

remains challenging based on the existence of the inevitable material defects and the validity 

of the single electron approximation. As a result, utilizations of topological states have been 

extended to the research of phononic and photonic systems[27], taking advantage of their 

large scale in both space and time. These advantages make the fabrication and measurement 

process more accurate and much easier to realize compared to electronic systems. 

Additionally, as the phononic/photonic systems[27] are normally not restricted by the Fermi 

level (the thermodynamic work required to add one electron to the body), so many 

appropriate methods and strategies can be of interest in thorough investigations. 

Nevertheless, many challenges lie in emulating the topological states in the condensed-matter 

system given the classical wave regime, due to the mechanism difference between the 

electron and the phonon/photon. For example, phonon/photon systems cannot directly 

interact with the magnetic field as they are unable to carry a half-integer spin[28], so that 

these systems often require additional efforts to break the time-reversal symmetry. In the 

search for topological states of matter, the difference between bosons[29] and fermions[30] 

can also inspire potential applications in the investigation of low loss phononic/photonic 

devices. Compared to photonic systems, acoustic systems differ substantially since acoustic 

wave lacks a degree of freedom for transverse polarization that can be utilized to construct 

pseudo spins, which mimic the spin-up and spin-down modes in electronic systems. Acoustic 

systems often require additional complexities to break the time-reversal symmetry, which is 

one key factor in mimicking the quantum effects and in realizing topologically robust 

acoustic propagation.  
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The following paragraphs in the introduction offer some recent detailed advances in 

topological states in the airborne acoustic wave regime. The specific organization of the 

content is as follows: first, the origins of the analogous QHE for acoustics are introduced to 

obtain nonreciprocal or topological performance, followed by the main breakthroughs in the 

analogous QSHE used in acoustic systems. Then, recent developments in the analogous 

QVHE are provided and discussed. Some basic principles and mechanisms that can 

effectively clarify the acoustic transmission mechanism in micro- and nanochannels are 

introduced to investigate the topological acoustics in ultrasonic or in a micro- or 

nanostructure to realize miniaturization. The last section discusses the perspectives on 

existing challenges and my objectives in this investigation of airborne topological acoustics. 

1.2 Acoustic analogues of the QHE for the airborne 
nonreciprocal acoustics and topological acoustics 

The topological phases of matter were first exemplified by the QHE, exhibiting the 

phenomenon of an insulator in the metal bulk while a conductor along the structure edges, 

where the electrons transmit unidirectionally without dissipation and backscattering. The 

associated Hall conductivity is quantized as 𝜎𝑥𝑦 = 𝐶𝑒
2/ℎ, which is not affected by material 

impurities. Here, C is the Chern number, e is the charge of one electron, and h denotes the 

Plank constant. The characterized topology of the electronic functions in the momentum 

space is independent of the constructed material properties[4, 5], which leads to topological 

robustness against impurities. In a 2D system, the Chern number is calculated by,  

C =
1

2𝜋
∫𝐹(𝒌) ∙ 𝑑𝒔                                                   (1-1) 

where 𝐹(𝒌) = ∇𝒌 × 𝐴(𝒌) represents the Berry curvature and 𝐴(𝒌) = 〈𝑢𝑛(𝒌)|𝑖∇𝒌|𝑢𝑛(𝒌)〉 is 

defined as the Berry connection. 𝑢𝑛(𝒌) is the periodic part of the Bloch state for the nth 

energy band of the momentum k. In the condition of symmetric operation, the Berry 

curvature obeys the definitions of 𝑇𝐹(𝒌) = −𝐹(−𝒌) and 𝑃𝐹(𝒌) = 𝐹(−𝒌), where T and P 

represent the time-reversal and parity operators, respectively. Breaking T symmetry but 

retaining the P symmetry, the integral over the whole Brillouin zone makes the Chern 

number a non-zero value. For the QHE, the zero Chern number corresponds to a topological 

trivial state while the non-zero Chern number corresponds to a topological non-trivial state. 
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The topological states with the non-zero Chern number display special wave transmission 

properties of unidirectional edge transmission and immunity to impurities, which have 

potential in the next-generation of quantum computing and electronic devices.  

Inspired by the development of electronic systems, the concept of topological state with the 

QHE was quickly utilized in the analogous classical acoustic realms. Generally, breaking the 

T symmetry is challenging, usually requiring extraordinary complexities, such as importing 

nonlinearity or utilizing magneto-acoustic materials. These possible methods either introduce 

inherent signal distortion or require impractically large volume. Then in 2014, inspired by an 

investigation utilizing magnetic bias to create electromagnetic nonreciprocity in 

gyromagnetic materials, Fleury et al. proposed an effective method of using rotating airflow 

to break the T symmetry in acoustic  𝐶3𝑣 symmetric ring cavities[31]. As shown in Figure 1-

1(a-b), the imparted fan-induced airflow, replacing the role of magnetic bias, splits 

degenerate modes of the two counter-propagating azimuthal ring resonators and introduces 

acoustic nonreciprocity. The nonreciprocal performance is good around the dipolar resonant 

frequency. Specifically, for the QHE-based topological acoustics, the acoustic transmission 

equation in a circumstance of the background airflow is, 

[(∇ − 𝑖𝑨𝒆𝒇𝒇)
2
+
𝑤2

𝑐2
+ (

∇𝜌

2𝜌
)
2

−
∇2𝜌

2𝜌
] 𝜙 = 0                                   (1-2) 

where w is the angular frequency, c is the acoustic speed, 𝜙 is the velocity potential, and 𝜌 is 

the mass density of air. The effective vector potential 𝑨𝒆𝒇𝒇 = −𝑤𝑽/𝑐
2generates the effective 

magnetic field   𝑩𝒆𝒇𝒇 = ∇ × 𝑨𝒆𝒇𝒇 that can break the T symmetry, and 𝑽 is the background 

velocity field. The equation (1-2) denotes the acoustic transmission mechanism with airflow. 

Based on the method of introducing external flow field, many designs of the analogous QHE 

in sonic crystal systems to achieve topological performance have been provided[32-36]. In 

Figure 1-1(c-d), the hexagonal acoustic lattice and the honeycomb lattice both display the 

imported circulating fluid flow can be used to break the T symmetry. Due to the intrinsic 

symmetry of lattice structures, a pair of Dirac-like points emerges at the boundary of the 

Brillouin zone[37-39] when 𝑽 = 0. In contrast, when the external airflow is introduced, the 

Dirac-like point degeneracies are lifted to create a finite complete band gap by breaking the T 
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symmetry, which is characterized by an opened band gap. The calculated Chern number for 

the two separating bands obtains non-zero values (C = ±1), which implies the systems are in 

the topological non-trivial states. Some topological performance of one-way edge 

transmission along boundaries, even truncated by the lattice with topologically trivial states 

and unidirectional behaviors immune to structure defects and sharp bends, are demonstrated 

in the lower part of Figure 1-1(c-d).  

 

Figure 1-1. The analogous QHE in sonic crystal systems. (a-b) The fan-induced-airflow 

acoustic circulator and its nonreciprocal performance. (c) The hexagonal acoustic 
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lattice incorporated with circulating airflow is presented, and has topological 

performance against the structure disorder and defects. (d) The honeycomb acoustic 

lattice with rotating airflow, and the robust edge state transmission against various 

defects. Reprint with permission from: (a-b) ref.[31],  (c) ref. [32], (d) ref. [33]. 

A few more studies have proceeded based on the QHE. For experimental implementation, the 

design of uniform flow biased circulators often imposes serious challenges. Zhu et al. used a 

chiral-structured rotor coupling with ring resonators to realize high-order whispering gallery 

modes with a high Q factor[40]. This design makes the acoustic system produce a stable and 

uniform airflow, and achieves good acoustic nonreciprocity even at low rotating airflow 

speeds. Chen et al. designed a C4v symmetric circulator by considering different rectangular 

waveguide sizes and tunable rotating airflow velocities[35]. The resulted adjustable topology 

of the band gap enriched the use of acoustic topological insulators. 

1.3 Acoustic analogues of the QSHE for the airborne 
topological acoustics 

Naturally, in addition to acoustic analogues of the QHE that require breaking T symmetry, 

exploiting the QSHE to investigate topological states under preserved T symmetry is 

proposed. The band structure of the QSHE can be considered a combination of two coupled 

Quantum Hall States. Differently, the spin-orbit coupling dominates in the QSHE where the 

coupling between orbital angular momentum and spin makes the moving electrons exert a 

spin-dependent force, even without magnetic materials and an electromagnetic field. As a 

result, the electrons with spin up and spin down angular momenta transmit in opposite 

directions along the state edges. The spin Chern number is used to describe the 

corresponding topological order as[41],  

C± =
1

2𝜋
∫𝐹±(𝒌) ∙ 𝑑𝒔                                                    (1-3) 

where 𝐹±(𝒌) = ∇𝒌 × 〈𝑢±(𝒌)|𝑖∇𝒌|𝑢±(𝒌)〉 represents the Berry curvature. The electron Bloch 

states are decomposed into two parts, 𝑢+(𝒌) and 𝑢−(𝒌), representing the spin up and spin 

down components, respectively. The true topological invariants defined in equation (1-3) 

make the QSHE-based topological systems robust against structure disorder or defects, 
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including different types of spin symmetry-breaking perturbations. Any non-magnetic 

impurities will not remove the existence of metallic edge states, as electrons are not 

completely reflected when scattered, even in stronger impurities.  

The QSHE with the spin-locked and T symmetry protected edge states can find its 

counterparts in phononics, which require the pseudo T symmetry and fermion-like pseudo 

spins. However, as the airborne acoustic wave only propagates longitudinally, the lack of 

various polarizations makes it challenging to realize analogous QSHE. One existing solution 

was provided by using coupled resonator lattices that support anticlockwise and clockwise 

resonant modes, which take the role of pseudo spins[42, 43]. Figure 1-2 shows a cell of the 

2D coupled metamaterial ring lattice, consisting of one central lattice and four surrounding 

coupling lattice rings[42]. The sufficiently large coupling strength defines the pseudo-spin 

modes of acoustics, and the topological edge state depends on wave circulation directions 

constructed in the lattice rings. The designed lattice configurations, like the pseudo-spin-up 

clockwise mode and the pseudo-spin-down anticlockwise mode[44], support the pseudo-spin 

dependent edge states and realize the scattering immune to sharp boundary turns or lattice 

dislocations. The edge states with different pseudo-spin modes are decoupled given the 

existence of the homogenous coupling between neighboring rings, and close the time-

reversed channels due to backscattering. The rings of the designed structure no longer act as 

resonators and the mode of the edge state is considered a conventional waveguide mode. As 

shown in Figure 1-2, when the coupling strength between two adjacent lattice rings outstrips 

a threshold, any acoustic wave holding a pseudo-spin in a lattice ring can tunnel into 

neighboring coupling rings with a flipped pseudo-spin mode, then transfers to another lattice 

ring with the pseudo-spin reserved, leading to the formation of an interesting zigzag route.  

Recently, another method utilizing two degenerate Bloch modes to induce the pseudo spin 

states, instead of taking two polarizations of two resonant modes, was proposed[45]. 

Specifically, as shown in Figure 1-3(a-c), by expanding a primitive small unit cell into a 

larger unit cell, the Dirac-like cones in K and K′ points existing in the primitive Brillouin 

zone are folded into the Γ  point of the new Brillouin zone, which forms the doubly 

degenerate Dirac-like cones. By tuning the geometric parameters of lattice structures, a band 

inversion can be found close to the degenerate point, which can be characterized as the 
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topological transition.  The scalar acoustic modes display electronic orbital d-like and p-like 

wave shapes, which correspond to the spin-down and up states. Simply adjusting the 

intermolecular coupling strength by expanding or contracting the hexagonal resonator lattice 

can create band inversion between the pseudospin dipole mode and quadrupole mode, and 

thereby realize configurable one-way transmissions and topologically protected edge states.  

 

Figure 1-2. (a) Photograph of a 2D coupled metamaterial ring lattice system. The U-

shape waveguides are the input and output ports with specific pseudo-spins. (b) 

Photograph of one lattice ring surrounded by four coupling rings. The red arrow shows 

that the wave is carrying pseudo-spin-up, viz. propagating in clockwise.  (c) Details of 

the metamaterial waveguide. (d) The simulated and experimental pressure amplitude 

distributions when pseudo-spin-up and pseudo-spin-down acoustic one-way edge states 
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are excited, showing the robustness of the edge states against the sharp bending. 

Reprint with permission from ref. [42] 

 

Figure 1-3. (a) Schematic of the hexagonal acoustic metamaterial lattice composed of 

artificial metamolecules. (b) Dispersion relation of the lattice based on the original unit 

cell for single Dirac cones at the 1st BZ corners.  (c) Topologically protected one-way 

edge waveguide for airborne acoustics and the corresponding acoustic intensity fields. 

The pseudospin-down mode is excited at the lower and upper edge, and the topological 

edge states with three types of defects: cavity, disorder, and bends. (d) The spin-locked 

edge state propagation. (e) Robustness against versatile defects. Reprint with 

permission from: (a-c) ref. [45] (d-e) ref. [46] 

Specifically, as shown in Figure 1-3(d-e), based on the principle of accidental 

degeneracy[46], the acoustic analogous QSHE is realized by a honeycomb lattice consisting 

of steel rods in air. The C6v symmetric honeycomb lattice supports two pairs of degeneracies 
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at the Γ point, including the dipolar modes 𝑝𝑥 𝑝𝑦⁄  and the quadrupolar mode 𝑑𝑥2−𝑦2 𝑑𝑥𝑦⁄ , 

which can interchange to emulate different pseudo spin states. By decreasing the volume 

ratio of the steel rods, the pair of dipolar modes that are separated by the band gap will 

exchange their positions as the movement of frequency, and the same phenomenon will 

happen in the pair of quadrupolar modes as the band inversion. In the middle of this 

transition process, there is a state where the band gap closes and the two bands would touch 

together, forming the doubly degenerate Dirac-like cones. This gap opening, closing and 

reopening process characterizes a topological transition from the ordinary (trivial) state to the 

topological state (non-trivial) state. In the acoustic topological state, a pair of edge states 

emerges to carry opposite group velocities to mimic the spin-up and down states. 

Correspondingly, the spin-dependent acoustic transmission depicted in Figure 1-3(d). Further 

investigation in Figure 1-3(e) reveals that the spin-locked edge state transmission is robust 

against cavities, bends, and disorders. 

Moreover, as shown in Figure 1-4, Fleury et al. introduced[47] one fluidic acoustic 

topological system whose lattices are modulated in a time-harmonic rotating strategy, as a 

change in space and time, demonstrating the Floquet topological insulators[48-53] for 

acoustic analogues. This proposal is based on an on-site rotating modulation scheme 

compressing the volume of each cavity cell using a piezoelectric actuator, and the phase-

uniform lattice is not requested. The imparted acoustic capacitance modulation creates an 

effective spin on each trimer unit to equivalently break the time-reversal symmetry. 

Modulations up to tens of percents are available using suitable actuating strategies, which 

make possible topologically protected, broadband and unidirectional acoustic devices. This 

work also realizes the applications of an ultra-broadband acoustic diode and a topologically 

protected acoustic emitter. All the aforementioned properties make the QSHE-based acoustic 

designs have potential in developing chip-scale acoustic devices.  
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Figure 1-4. (a) A time-dependent phononic crystal formed by a hexagonal lattice of 

acoustic trimers. The grey material represents the silicone rubber. (b) For each unit 

cell, the acoustic capacitance of each cavity is periodically modulated in a rotating 

fashion. (c, d) The degenerate dipolar lumped resonance (c) at 21.6 kHz and the next 

dipolar resonance (d) at 60 kHz. (e, f) Comparison between the bulk band structures in 

the absence and in the presence of modulation. (g) The boundary between two crystal 

domains with opposite modulation handedness makes a reconfigurable, backscattering 

immune and broadband nonreciprocal waveguide, which perfectly transmits acoustic 

waves along the boundary, regardless of turns and defects. Reprint with permission 

from ref. [47] 
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1.4 Acoustic analogues of the QVHE for the airborne   
topological acoustics 

Most recently, the discrete valley degree of freedom[54-58], characterizing as quantum states 

of energy extrema in the momentum space, due to its great potential as a new method of 

information carrier, is attracting increasing attention. This is also considered as the valley 

pseudospin, which has been widely observed in 2D crystals and conventional semiconductors. 

The intervalley scattering barely occurs as the existence of the large separation in the 

momentum space, and it means that the valley can be considered as a good index to 

characterize the quantum states. The existence of valley-like frequency dispersions can 

transfer the valley concept to the classical wave system, as the similarity of classical waves in 

periodic structures, these dispersions have been realized in photonic crystals[59-63] and 

SCs[37, 64]. Based on the QVHE[65, 66], the corresponding valley-protected edge states[67-

73] were theoretically and experimentally investigated in 2D acoustic systems.  

In 2016, Lu et al.[65, 67] firstly introduced valley states of SCs for acoustics. As shown in 

Figure 1-5, the hexagonal SC lattice consists of solid triangular rods constrained in a 2D 

waveguide, and its symmetric property can be denoted by the rotation angle α. At the corners 

of the 1st Brillouin zone, the existence of a two-fold Dirac degeneracy for any SC with α =

nπ/3 is preserved by the 𝐶3𝑣 symmetry, while the degeneracy would be lifted by any other 

rod rotation angle if the mirror symmetries[64] are broken. The dispersion relations for the 

SCs with α = 0°  and α = −10°  are shown in Figure 1-5(b). The vortex revolution of the 

clockwise mode and anticlockwise mode at each valley characterizes the valley degree of 

freedom in this 2D acoustic system, as shown in Figure 1-5(c). The tuning of the acoustic 

valley-Hall (AVH) phase transition in a SC structure is adjusted by the rotating angle α. 

When α < 0°, the vortex chirality of the upper (lower) state corresponds to anticlockwise 

(clockwise) mode, which is strictly inverted when α > 0° . The AVH phase transition 

accompanied by the inversion of two pseudo spin states can be characterized by the α-

dependent continuum Hamiltonian. Based on the 𝐤 ∙ 𝐩 perturbation method, the unperturbed 

Hamiltonian 𝐻(𝒌⊥) ≡ 𝐻0(𝛿𝒌) close to Dirac points can be calculated as[14, 74] 𝐻0(𝛿𝒌) =

𝜈𝐷(𝛿𝑘𝑥𝜎𝑥 + 𝛿𝑘𝑦𝜎𝑦), where 𝜈𝐷  is the group velocity, 𝛿𝒌 = (𝛿𝑘𝑥, 𝛿𝑘𝑦) ≡ 𝒌⊥ − 𝒌𝑫  denotes 



 

15 

 

the distance difference of K and K′ points as 𝒌𝑫 = ±
4𝜋

3𝛼0
𝑒𝑥, and 𝜎𝑥, 𝜎𝑦 are Pauli matrices of 

the vortex pseudo spins. The perturbation Hamiltonian is diagonalized with 𝐻𝑃 = 𝑚𝜈𝐷
2𝜎𝑧. 

The +/- sign of the effective mass 𝑚 = (𝑤𝑞+ − 𝑤𝑞−)/2𝜈𝐷
2  means two different types of AVH 

insulators are separated by the Dirac semi-metal phase, and takes m=0 in the phase diagram. 

In the first Brillouin zone, the massive Dirac Hamiltonian 𝛿𝐻 imports a non-trivial Berry 

curvature Ω𝐾(𝛿𝒌) =
𝑚𝜈𝐷

2(𝛿𝒌2+𝑚3𝜈𝐷
2 )3/2

. The time-reversal symmetry is corresponding to the zero 

Chern number, which is the Berry curvature integral over the whole Brillouin zone. If the 

Berry curvature integral over one half of the Brillouin zone for an individual valley is 

accurately calculated, the non-zero valley Chern number can be defined as[75] 𝐶𝐾 =

sgn(𝑚)/2. As a result, the difference for the topological order over the interface is quantized, 

which maintains a chiral edge mode in the bulk-boundary correspondence[76]. Two different 

SC interfaces were studied to verify this, one is constructed by α = 10° and 50° SCs, while 

the other is constructed by α = −10°  and 10°  SCs, as the detailed dispersion relation is 

correspond to the top panel and bottom panel of Figure 1-5(d), respectively. For the 

configuration of the top panel, the band structure is completely gapped due to the existence 

of identical valley-Hall states within the SC lattice. For the bottom panel, topological edge 

states lie within the bulk band gap as shown by the green lines, which are based on the AVH 

phase inversion crossing the interface. Similar to the acoustic analogues of the QSHE, the 

topological edge states associated with the acoustic analogues of the QVHE also emerge 

robustly against crystal bends and defects. Figure 1-5(e-f) also shows an immune 

backscattering transmission of the topological valley edge mode[69, 74] along the interface 

separating two different sharp bends, even though the lattice obstacles and defects induce 

inter-valley scattering transmission.  
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Figure 1-5. (a) A schematic of the acoustic valley Hall insulator. (b) Dispersion relations 

for the gapless case of 𝜶 = 𝟎° (black lines) and gapped cases of −10° (color lines). (c) 

Topological phase dependency with 𝜶 where the inset shows the vortex features. (d) 

Dispersions for the interfaces separating two topologically identical (upper panel) and 

distinct (lower panel) AVH insulating phases. (e) Power transmission (black line) and 

reflection (red line) spectra for a zigzag path, where the inset shows the field 

distribution. (f) Transmitted pressure measured for the zigzag path (red circles), and a 

straight channel (black circles). Reprint with permission from ref. [67] 

Yang et al.[72] designed a periodic acoustic resonator system that can be considered as an 

acoustic analogue of a gapped graphene monolayer. The designed honeycomb acoustic lattice 

consisting of circulators is described with a simple nearest-neighbor tight-binding model, and 

the height of the circulator is tuned periodically to emulate the acoustic counterpart of the 

QVH topological insulator. As the heights change in the adjacent two resonators, the band 

gap remains unchanged while the band inversion will emerge. As shown in Figure 1-6, a 

zigzag domain wall separated by different modulation domains with opposite valley Chern 
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numbers is characterized as gapless topological valley edge states, while an armchair 

domain wall is characterized as gapped edge states. Moreover, the valley vortex states in this 

acoustic resonator system analogously rotate around six atoms as an 𝜋 orbit configuration in 

the graphene, rather than valley vortex existing in the space among the adjacent sites. 

 

Figure 1-6. (a) Top and side views of the unit cell of acoustic honeycomb lattice. Two 

resonators play the role of artificial atoms connected by thin coupling waveguides. (b) 

Band diagram when a unit cell contains identical resonators (blue lines) and when the 

resonators are of different heights with 𝜟𝒉 = 𝟎. 𝟏𝟓𝒉 (red lines). (c) Pressure field 

distribution for eigenstates K1 and K2. (d) Topological transition as the height 

difference 𝜟𝒉 changes from negative to positive. (e) Acoustic pressure field for a finite 

honeycomb lattice comprising 26×15 unit cells with a Z-shaped zigzag interface. The 

red arrow indicates the acoustic source. Reprint with permission from ref. [72] 
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Zhang et al.[69] experimentally realized acoustic topologically protected adjustable edge 

states using three-legged epoxy resin rods, and the formed phononic TI is based on valley 

pseudospin without introducing external bias. Three-legged rods are arranged to construct a 

triangular lattice, which is tuned by the computer-controlled motors. Specifically, each of the 

rods can be rotated independently enabling flexible switching between trivial and non-trivial 

configurations. This design provides a robust and versatile approach towards manipulating 

acoustic transmission route without back reflection. Moreover, the broad frequency response 

of the tunable acoustic transmission has been utilized to design acoustic delay lines, which 

has the potential for acoustic applications of pulse processing and signal buffering. 

 

Figure 1-7. Acoustic valley pseudospin states and topological mode inversion. 

(a) Schematics of the hexagonal lattice composed of perturbed three-legged rods (TLRs) 

embedded in an air matrix. (b) Symmetry breaking by rotating the rods attached to the 

computer-controlled electric motor. (c-e) Dispersion relations of the acoustic modes by 
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reconfiguring the angle 𝝋 = 𝟑𝟎°, 𝟎°,−𝟑𝟎° . The symbols K+ and K− denote the 

pseudospin states.  (f) Setup of the reconfigurable topological switch. The pedestals of 

the TLRs in the black region can be rotated to different angles. (g) The distributions of 

the pressure fields when switched between different topological states. Sound waves 

transmit through port 1 (port 2) at the rotation angle −𝟑𝟎°(𝟑𝟎°) of the reconfigurable 

control region. Reprint with permission from ref. [69] 

1.5 Lattice Boltzmann method and DSMC method for the 
miniaturization of topological acoustics 

An analytical model that can effectively predict the acoustic transmission mechanism in 

micro- and nanochannels is important to future research into topological acoustics in 

ultrasonics or in a small structure so as to realize miniaturization. The major challenges of 

micro-nano scale acoustic transmission are mainly due to the unknown mechanisms in this 

discontinuous medium, and the difficulty of fabricating effective physical devices for 

experimental measurement. Therefore, numerical methods may become necessary tools to 

further investigate this issue. While there are a variety of numerical methods dealing with 

acoustic propagating problems, including the finite element method (FEM) and finite-

difference time-domain (FDTD) method, few of them have proven to be effective at micro-

nano scales. Among them, the use of the lattice Boltzmann method (LBM) has shown great 

feasibility and potential in studying micro-nano acoustic transmission issues.  

The LBM[77, 78] was first introduced to investigate gas flow and proved to be an effective 

tool to avoid certain weaknesses in lattice gases, while retaining their distinct advantages: 

parallelization and simplicity. Instead of handling a single particle, the LBM handles particle 

distribution probability using statistical methods to compute the macroscopic parameters of 

the whole system. The reason for the LBM's simple parallelization lies in the fact that the 

operations on the grids are local, so that each node can be updated independently of others. 

The application of LBM in micro-nano scale acoustic transmissions was first proposed by 

McNamara and Zanetti[79]. The mechanism of particle collision and transferring process of 

LBM are also applicable in micro-nano acoustic transmissions, which should consider 

propagation in a discontinuous medium, as in essence, the airborne acoustic wave 
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propagating is the result of air molecule movement. For monocomponent gas, the 

distribution function of the particle is denoted as 𝑓, which is a function of space location 

vector r(x,y,z), particle velocity vector ξ(𝜉𝑥 , 𝜉𝑦, 𝜉𝑧)  and time t. Assuming ma to be an 

external force exerted on every particle, then during every time step dt, if no collision occurs: 

𝑓(𝒓 + 𝑑𝒓, 𝜉 + 𝒂𝑑𝑡, 𝑡 + 𝑑𝑡)𝑑𝒓𝑑𝜉 = 𝑓(𝒓, 𝝃, 𝑡)𝑑𝒓𝑑𝜉                              (1-4) 

Employing the Taylor expansion, and considering the change of particle number in collision, 

that is, (
𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝑑𝑟𝑑𝜉𝑑𝑡, then yields: 

(
𝜕𝑓

𝜕𝑡
)𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 =

𝜕𝑓

𝜕𝑡
+ 𝝃 ∙

𝜕𝑓

𝜕𝒓
+ 𝒂 ∙

𝜕𝑓

𝜕𝝃
                                              (1-5) 

The collision process denotes particle diameter as 𝑑𝐷, particle velocities before and after 

collision as 𝝃𝟏, 𝝃𝟐 𝑎𝑛𝑑 𝝃𝟏
′ , 𝝃𝟐

′ , and considers the whole collision process elastic. Therefore, 

after considering momentum conservation, energy conservation and the increment of 

particles during the collision process, the final distribution function f, that is, the Boltzmann 

equation, can be expressed as: 

𝜕𝑓

𝜕𝑡
+ 𝝃 ∙

𝜕𝑓

𝜕𝒓
+ 𝒂 ∙

𝜕𝑓

𝜕𝝃
= ∬(𝑓′𝑓′1 − 𝑓𝑓1)𝑑𝐷

2 |𝒈|𝑐𝑜𝑠𝜃𝑑Ω𝑑𝜉1                        (1-6) 

where, |𝝃𝟐
′ − 𝝃𝟏

′ | = |𝝃𝟐 − 𝝃𝟏| = |𝒈|; dS is the sphere microelement, dS = 𝑑𝐷
2𝑑Ω, with dΩ 

being the angle of the first particle. The right side of equation (1-6) is considered the 

collision term, usually represented as J(ff1). 

     

Figure 1-8. Schemes of the collision model and the D2Q9 velocity discretization model. 

Reprint with permission from ref. [80] 

The Maxwell distribution is a particular solution for the Boltzmann equation in the condition 

of monocomponent gas without external force. The collision term in the Boltzmann equation 
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is nonlinear, which makes it very complicated to obtain a detailed solution. The BGK 

approximation[81] uses a simplified operator Ωf  to replace the collision term J(ff1) in the 

Boltzmann equation: 

Ω𝑓 = 𝑣[𝑓𝑒𝑞(𝑟, 𝜉) − 𝑓(𝑟, 𝜉, 𝑡)]                                               (1-7) 

Where 𝑓𝑒𝑞 is the Maxwell equilibrium distribution; 𝜏0 is the average time interval between 

two collisions, i.e., relaxation time. Thus the Boltzmann-BGK equation can be re-written as: 

𝜕𝑓

𝜕𝑡
+ 𝝃 ∙

𝜕𝑓

𝜕𝒓
+ 𝒂 ∙

𝜕𝑓

𝜕𝝃
=

1

𝜏0
(𝑓𝑒𝑞 − 𝑓)                                          (1-8) 

𝑓𝑒𝑞 − 𝑓 = (𝑓𝑒𝑞 − 𝑓)|𝑡=0exp (−
𝑡

𝜏0
)                                        (1-9) 

The lattice Boltzmann (LB) equation is a special discrete form of the Boltzmann-BGK 

equation. The particle velocity ξ can be simplified as a velocity space of finite dimensions 

{𝒆0, 𝒆1, … , 𝒆𝑵}, with N representing the number of different types of velocities. Then the 

distribution function f can be discretized as {𝑓0, 𝑓1, … , 𝑓𝑁}, 𝑓𝛼 = 𝑓𝛼(𝒓, 𝒆𝜶, 𝑡). So the lattice 

Boltzmann-BGK equation with the external force term can be expressed as:  

𝑓𝛼(𝒓 + 𝑒𝛼𝛿𝑡, 𝑡 + 𝛿𝑡) − 𝑓𝛼(𝒓, 𝑡) = −
1

𝜏
[𝑓𝛼(𝒓, 𝑡) − 𝑓𝛼

𝑒𝑞(𝑟, 𝑡)] + 𝛿𝑡𝐹𝛼(𝒓, 𝑡)            (1-10) 

Where, 𝐹𝛼  is the external force term and can be denoted as 𝐹𝛼 = (𝒂 ∙ ∇𝜉𝑓)𝛼 , while the 

dimensionless relaxation time is τ = τ0/δt, with δt being the time step. 

Besides the above models, there are several other LB models divided by velocity 

discretization or boundary conditions. For example, Qian[82] proposed D2Q9, D2Q7, 

D3Q15 and D3Q19 models, etc. More specifically, for incompressible LB models[83], there 

are incompressible isothermal models and incompressible thermal models, while for 

compressible perfect gas LB models, there are multi-velocities models (Chen-Ohashi 

model[84], Watari-Tsutahara model[85]), tunable specific heat ratio models (multi-energy 

model[86], Kataoka-Tsutahara model[87], Qu-Shu model[88]) and coupled double 

distribution function models[89], etc. In terms of boundary conditions[90], the LBM can be 

further divided into the heuristic scheme, the kinetic scheme, the extrapolation scheme and 

the complex boundary scheme, etc. In the application of acoustic transmissions, the 

compressible model with different boundary conditions is mostly employed.  
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However, most of the LB models are applied in the continuum regime for fluid flow issues, 

while the DSMC method can be available in the transition regime (the hydrodynamic length 

is in the same magnitude of the related mean free path). To investigate wave propagation in 

small confined geometries with specific boundary conditions, Hadjiconstantinou[91] in 2003 

developed a model with the first-order slip boundary condition and provided an analytical 

solution for acoustic wave propagation in micro- and nanochannels, which was an extension 

of Lamb’s continuum treatment[92, 93]. In 2005, considering the effects of the Knudsen 

layer and using the second-order velocity boundary condition, Hadjiconstantinou[94] solved 

the oscillatory shear-driven Couette flow problem using the Navier-Stokes approximation 

and achieved good agreement with DSMC results up to  Kn ≈ 0.4 . Kozlov et al.[95] 

investigated acoustical properties in pores of simple geometries with the first-order 

approximation and validated their results with experimental data of dynamic density at low 

frequencies. Umnova et al.[96] developed an analytical model to describe acoustic 

propagation in microfibrous materials while accounting for the slip boundary effect, where 

the homogenous method used was also verified by finite element method (FEM) simulation. 

In terms of numerical investigation, various simulation methods have been proposed, such as 

the linearized Boltzmann method[97-99], Lattice Boltzmann method[100-102], Bhatnagar–

Gross–Krook (BGK) model[103, 104], molecular dynamics (MD) model[105-107], and 

DSMC[80, 108]. Based on our literature survey, the DSMC method, initially proposed by G. 

A. Bird[80], is the most widely used tool for the simulation of acoustic wave propagation at 

the micro- and nanoscales and is renowned for its accuracy and time efficiency. Derivative 

DSMC methods, such as Wang and Xu’s unified gas-kinetic scheme DSMC (UGKS-

DSMC)[109], Fan and Shen’s information preserving DSMC ( IP-DSMC)[110], Mohssen 

and Hadjiconstantinou’s Low-Variance Deviational Simulation Monte Carlo 

(LVDSMC)[111], were proposed to improve the performance of the traditional DSMC 

method. All these works mentioned above can only extend the traditional continuum theory 

up to Kn ≈ 0.4  or even smaller for the acoustic wave propagation in micro- and 

nanochannels, so there is still a need to develop an analytical solution suitable for higher 

Knudsen numbers. 
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1.6 Challenges and objectives 

Although versatile topological acoustic systems have been designed and investigated, there 

are many limitations blocking their applications in sound attenuation[112-114], information 

delivering[54, 55, 58], ultrasonic imaging[115-117], and acoustic cloaking[118-120], etc. 

The development of topological acoustics has reached a stage where many analogous 

methodologies of condensed matter systems have been investigated, including the QHE, the 

QSHE and the QVHE based methods. However, these systems are still considered to be at an 

early stage, as the more practical properties of miniaturization, broadband, wide tunability 

and noiseless dynamic controlling for topological acoustic systems or designs still require 

further investigation.  

Specifically, two types of mechanisms are fully investigated to realize topological acoustics, 

including introducing external air flow and designing unique metamaterials with gapless 

edge spin states, both have their unique advantages and disadvantages. Generally, for the 

QHE based methods, bulky and noisy external equipment is needed to import air flow inside 

an acoustic circulator. For the QSHE and QVHE based methods, a specific lattice array is 

needed to realize good topological performance. Despite current research, and in order to 

obtain their practical properties, special modulation strategies and versatile mechanisms 

require further investigation. For instance, an acoustic transmission mechanism at a 

microscale or smaller scale is needed to realize miniaturized topological acoustic systems and 

ultrasonic imaging related applications. Modulation strategies other than introducing external 

air flow and rotating sonic crystal units are needed to obtain dynamically wide-band 

unidirectional transmission control.  

Paving the way towards practical performance of topological acoustics is necessary in real 

applications. Therefore, the ultimate objective of this thesis is to develop more modulation 

strategies and more detailed mechanisms to advance the realization of miniaturization, 

broadband, wide tunability and noiseless dynamic controlling for topological acoustic 

systems. Specifically, miniaturizing the unit cell into the millimeter or even smaller scale 

requires better modulation strategies and fuller investigation of acoustic transmission 

mechanisms at the micro- and nanoscale, which is significant to realizing ultrasonic related 

applications. Wide tunability plays a key role in wide-band control of one-way transmission 



 

24 

 

routes and edge transmission properties, and promotes the applications of acoustic cloaking, 

ultrasonic imaging, information delivering and noise attenuation, etc. In addition, noiseless 

dynamic controlling makes the topological acoustic system more accurate and reliable.  

1.7 Outline of the thesis 

In what follows, the dissertation will be organized in an outline as six chapters.  

Chapter 1 reviews the research background information relevant to the thesis work, including 

the designs, modulation strategies and functionalities for acoustic analogues of the QHE, the 

QSHE, and the QVHE, respectively. Different topological acoustic properties can be 

achieved based on analogues of the condensed matter system, such as edge transmissions, 

specific route transmissions, and nonreciprocal control. Then, the acoustic transmission 

mechanism at the micro- and nanoscale is provided for further investigation. Finally, research 

challenges and objectives are identified. 

Recent developments in valleytronic materials have inspired developing various analogues of 

sonic crystal systems for manipulating airborne acoustic transmissions. Earlier designs of 

acoustic topological insulators were normally characterized by untunable bulky geometries 

and a narrow effective frequency response, which limited the design and development of 

practical acoustic devices. To avoid the aforementioned limitations, Chapter 2 introduces a 

gapless topologically protected acoustic resonator system based on the QVHE in 

reconfigurable phononic crystals. The method of simply rotating the modified spiral springs 

to adjust the inner radius without altering the lattice structure can be utilized to realize 

backscattering immune, tunable, broadband and miniaturized functional acoustic applications. 

It offers a design route in novel valley phenomena for acoustic topological flow-free 

resonator systems. 

The QVHE based topological acoustic design in Chapter 2 still need bulky mechanical 

control devices and the whole setup is not noiseless. The further investigation of 

nonreciprocal acoustics and topological acoustics can be inspired by the recent development 

of the QHE that breaks time-reversal symmetry by magnetic biasing. Nonreciprocal acoustic 

propagation is highly desirable to control acoustics in isolation, broadband unidirectional 
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transmission, and topologically robust to structural disorders or defects. So far, these 

fascinating properties have been investigated through fan-induced moving media, acoustic 

capacitance adjustment and acoustic metamaterials. However, these may be associated with 

disadvantages including extra noise and limited dynamic controlling performance. To solve 

these problems, Chapter 3 introduces heat-induced natural convection coupled with an 

acoustic circulator to demonstrate that a classical acoustic circulator with thermal 

management can realize robust nonreciprocal acoustic propagation, which is based on the 

QHE. The concept of combining heat-induced natural convection and aeroacoustics creates a 

new practical paradigm and increases the feasibility for nonreciprocal acoustics due to the 

merits of dynamic control, versatile topological structures, and miniaturization in the absence 

of moving parts. 

Some fascinating topological acoustic properties have been investigated through fan-induced 

moving media (or the natural convection induced air flow provided by me in Chapter 3), 

acoustic capacitance adjustment and acoustic metamaterials (Chapter 2). However, most of 

them are still associated with disadvantages including extra noise, bulky volume and limited 

dynamic controlling performance. Thus, Chapter 4 introduces a temperature modulation 

scheme in a lattice of resonators to demonstrate that the Floquet topological insulators with 

thermal control can realize topologically robust and nonreciprocal acoustic propagation. This 

control strategy provides an alternative platform to conduct acoustic topological applications, 

especially for noiseless and miniaturized airborne acoustics. Thermal modulation provides 

the possibility of miniaturizing topological airborne acoustics into the millimeter scale or 

even smaller. 

Furthermore, in order to investigate the topological acoustics in ultrasonic or in a micro- or 

nanostructure to realize miniaturization, an analytical model that can effectively clarify the 

acoustic transmission mechanism in micro- and nanochannels is necessary. Moreover, the 

acoustic wave propagating through porous nanomaterials like aerogels, MEMS devices, high-

frequency acoustic transmission devices or near-vacuum systems, possesses relatively high 

Knudsen numbers, normally in the transition regime (0.1<Kn<10), in which the classical 

continuum theory breaks down. So in Chapter 5, a theoretical model with the second-order 

slip boundary to describe acoustic wave propagation in micro- and nanochannels, is proposed. 
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The proposed theoretical model provides analytical solutions for the complex wavenumber, 

attenuation coefficient and other related transmission variables as functions of a Knudsen 

number in the early transition regime (0.1<Kn<1.0), which are valuable for understanding 

acoustics at the micro- and nanoscales. In addition, numerical simulations using the 

molecular-based DSMC method for dilute argon gas are carried out to validate the model and 

its analytical results. This model can effectively predict the acoustic behaviour in micro- and 

nanochannels, which is important for future research into topological acoustics in ultrasonic 

or in a small structure to realize miniaturization.  

Finally, Chapter 6 provides conclusions and a summary of all the results reported within the 

thesis, along with prospects for future work.  
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Chapter 2  

2 Tunable acoustic valley edge states in a flow-free 
resonator system 

Recent developments in valleytronic materials have inspired developing various analogues of 

sonic crystal systems for manipulating airborne acoustic transmissions. Earlier designs of 

acoustic topological insulators were normally characterized by untunable bulky geometries 

and a narrow effective frequency response, which limited the design and development of 

practical acoustic devices. Here we design a gapless topologically protected acoustic 

resonator system based on valley edge states in reconfigurable phononic crystals. By simply 

rotating the modified spiral springs to adjust the inner radius without altering the outer lattice 

structure, this method can be utilized to realize backscattering immune, tunable, broadband 

and miniaturized functional acoustic applications. This study also offers a design route in 

novel valley phenomena for acoustic topological flow-free resonator systems. It is noted 

here, this Chapter is based on author’s publication: Liu, X., Q. Guo, and J. Yang, Tunable 

acoustic valley edge states in a flow-free resonator system. Applied Physics Letters, 2019. 

115(7): p. 074102. And all the figures are used with the permission from ref. [121]. 

2.1 Introduction 

The discoveries of TIs[16, 122, 123], the QHE[124, 125], and QSHE[14, 17] in condensed 

matter physics have inspired the exploration of nonreciprocal or topological performances of 

classical waves, such as acoustics[43, 46, 126-129], light[130-132], and mechanical 

waves.[133-135] Early attempts at constructing nonreciprocal[31, 129] and topological 

acoustic states[33, 34, 127, 136, 137] relied on importing external circulating fluid as the 

background flow, which can work as the analogue of the electromagnetic field in the QHE. 

Artificial structures of phononic graphene in the doubly degenerate Dirac-like cones[5, 45, 

46, 138] can be used to map the QSHE. 𝐶3𝑣 phononic crystals or acoustic metamaterials[45, 

134, 139, 140] consisting of anisotropic rods with versatile modulations[72] and inherent 

spin-orbital coupling bands constitute the QVHE.[65-67] All these concepts are investigated 

to design different types of acoustic topological insulators to control acoustic transmissions, 
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resulting in acoustic isolation, one-way transmission along edges, and topological immunity 

against structural disorder or defects.  

Recently, the QVHE labeled with the band structure of the two energy extrema in the 

momentum space has shown great potential in delivering and storing information. The 

discrete degree of freedom displays a selective valley with topologically non-trivial 

properties, among which the Chern number remains zero and the time-reversal symmetry is 

intact. The easily achieved valleytronic properties[55, 141] of manipulation and transmission 

have been extended to the topological acoustics for novel control of airborne acoustics. In 

acoustic related research of the valley edge states, the topological acoustic performances are 

achieved by the anisotropic lattice of scatters with versatile geometries and rotating units.[35, 

45, 70, 142] However, great challenges still remain given the lack of tunable, broadband and 

miniaturized functional acoustic related applications.  

Here, we present a design to realize tunable and broadband acoustic topological edge states 

in a flow-free resonator system with a millimeter order of magnitude for each small unit. This 

two-dimensional periodic acoustic counterpart of a gapped graphene monolayer can be 

considered a tight-binding model. By designing tunable inner radii of adjacent hollow 

circulators to realize versatile combinations of chiral on-site rotating modulation schemes, 

the existence of topological transition is demonstrated, which is characterized by the opposite 

valley Chern numbers. Different from breaking translational symmetries and point groups in 

pseudomagnetic fields, we mimic the QVHE-based valley states as opposed to spin states. 

Specifically, the mirror-symmetry-breaking property is accomplished by dynamically 

adjusting the inner radii of the six hollow circulators in each primitive cell. This induces 

inversed band modulation in different valley pseudospin degrees of freedom. Moreover, the 

tunable inner radius in each circulator can allow us to adjust this type of acoustic topological 

property with wide effective frequency ranges and configurable transmitting routes. Full-

wave simulations of band structure analysis and acoustic propagation are conducted and used 

to display these fascinating physics of topological acoustics with versatile potential 

applications, including acoustic cloaking[118-120, 143], ultrasonic imaging[115-117, 144-

146], RF filters[147-149], and noise attenuation[112-114, 150-154], etc. 
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(a) 

 

(b)                                                               (c) 

   

   

(d)                                                                               (e) 

    

Figure 2-1. (a) The hexagonal lattice formed by acoustic double-trimer cell. Each trimer 

consists of three connected hollow circulators and rectangular channels, with air filled 
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inside all the grey regions (inset: region A, B, C denotes different radius combination 

units). (b) Two types of double-trimer centrosymmetric cells with self-inward (upper 

structure) or self-outward (lower structure) radii-rotating modulation. (c) Two types of 

doubly degenerate dipolar resonances at 7970-8010 Hz corresponding to the 

configurations of upper and lower structures in (b). The colors from red to blue 

represent the values of pressure from positive maximum to negative maximum. (d) The 

tunable inner radius using modified spiral springs with lead rail. (e) Comparison 

between the band structure without (black curves, same radius in the trimer structure) 

and with (red dots) radius modulation. 

2.2 Topological acoustic model and mode analysis 

As shown in Figure 2-1(a), the acoustic system designed in this work can be considered a 

complex honeycomb acoustic lattice described by a simplified nearest-neighbor tight-binding 

model.[155] The primitive double-trimer cell with mirror-symmetry-breaking self-inward or 

self-outward units is shown in Figure 2-1(b). All the grey regions are treated as air and the 

white regions are considered solid walls in the simulation. Each trimer consists of three 

acoustic hollow resonators connected by thin rectangular waveguides (ℎ1 =
1

30
𝑎, ℎ2 =

1

6
𝑎). 

The nearest-neighbor distance of two resonators is 𝐻 = 𝑎 = 30 𝑚𝑚, and the lattice constant 

is 𝑎0 = (
10√3

3
− 1) 𝑎 . Each primitive cell has two acoustic three-unit resonators (each 

resonator has the same outer radius of 𝑅 = 10 𝑚𝑚, but with tunable inner radius, while for 

the designs of Figure 2-1, 2-3, 2-4, 𝑟1, 𝑟2 𝑎𝑛𝑑 𝑟3 are set as 
1

15
𝑎,

2

15
𝑎 𝑎𝑛𝑑

4

15
𝑎, respectively). 

The tunable-radius mechanism is realized by replacing the solid inner cylindrical column 

with modified spiral springs as shown in Figure 2-1(d). The solid column in the middle of 

this spiral spring is connected with the outer spring edge by the lead rail, while the end 

interface of the outer spring edge is pinned in the lead rail, which makes this spiral spring 

well convoluted while rotating the solid column in the radius-changing process. All the inner 

radii of the resonators can be adjusted to realize different acoustic properties.  

Different inner radii of the trimer structure are modulated by rotating the modified spiral 

springs, which can obtain wide-band nonreciprocal acoustic transmission and can be used to 
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guide the design of topological acoustic systems. The ratio of acoustic energy intensity 

between the acoustic output 3 and output 2 is shown in Figure 2-2. Specifically, different 

combinations of circulators in the trimer unit display different optimal nonreciprocal 

frequency ranges. The corresponding effective bandwidth is around 50 Hz for every type of 

trimer structure without changing the outer radius. More radius combinations can be found in 

the supplementary material and the working frequency can be in a wide range of 6.1-8 kHz in 

the dipolar mode. Although the radius difference is small, there are good nonreciprocal 

transmission properties and the dimensions considered in this design can be narrowed into 

the millimeter scale, which really inspires future investigations of tunable broadband and 

miniaturized acoustic topological performance. For even smaller structures, the tuning 

mechanisms can be thermal management with thermal expansion material, camera aperture 

rotating mechanical structure, or the smaller proposed modified spiral spring structure. 

 

Figure 2-2. The ratio of acoustic intensity (Output 3/Output 2) at different radius 

modulations in a single trimer (middle inset: trimer structure). The dimensions display 

the inner radius of every circulator in the trimer structure. The inner radius changes 

from 1.5 mm to a maximum of 8.0 mm. 

2.3 Analytical acoustic band structures 

The geometry under analysis is mapped onto a tight-binding Hamiltonian model considering 

the hexagonal lattice with the nearest-hopping, which is modified to adjust the internal trimer 
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structure (shown in the middle inset of Figure 2-2). The Bloch Hamiltonian[67] �̅� of this 

hexagonal periodic system can be written as 

�̅� = (

𝑉0 + 𝑉𝐴 𝐻𝒌 𝐻𝒌
∗

𝐻𝒌
∗ 𝑉0 + 𝑉𝐵 𝐻𝒌

𝐻𝒌 𝐻𝒌
∗ 𝑉0 + 𝑉𝐶

)                                            (2-1) 

𝐻𝒌 = −𝜀𝑉[exp(−𝑖𝒌 ∙ 𝒆𝟏) + exp(−𝑖𝒌 ∙ 𝒆𝟐) + exp(−𝑖𝒌 ∙ 𝒆𝟑)]                          (2-2) 

The parameters introduced in Eq. (2-1) and Eq. (2-2) are defined in the form of the 

Hamiltonian, where 𝑉0 is the on-site energy, which is in the condition of the lowest resonant 

frequency for the average of all isolated acoustic resonators. 𝑉𝐴 , 𝑉𝐵  and 𝑉𝐶  represent the 

energy modulations for the corresponding resonators due to the changes in volume, while 𝐻𝒌 

is the on-site coupling energy between the resonators. Moreover, 𝜀𝑉  is denoted as the 

hopping terms. 𝒆𝟏 = (0, 𝒂), 𝒆𝟐 = (−
√𝟑

𝟐
𝒂,−

𝒂

𝟐
) , 𝑎𝑛𝑑 𝒆𝟑 = (

√𝟑

𝟐
𝒂,−

𝒂

𝟐
) are used to define the 

position of the nearest-neighbor connected resonators, and 𝒌 = (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧)  is the Bloch 

wave vector. When 𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶, this means all three resonators in the acoustic trimer are 

the same, and the system in this condition exhibits space-inversion symmetry.  

The band structure of the double-trimer cell is achieved by the full-wave simulation using 

COMSOL Multiphysics, and it exhibits one Dirac cone at the K point when 𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶, as 

shown in the black line of Figure 2-1(e). If 𝑉𝐴 ≠ 𝑉𝐵 ≠ 𝑉𝐶, as shown in the red dots of Figure 

2-1(e), such a cell includes this specific orientation in which the band gap opens at the K 

point from 7970-8010 Hz. The doubly degenerate dipolar resonance associated with the 

exchange of kinetic and potential energy between the interconnected waveguides and the 

hollow circulators is shown in Figure 2-1(c). The self-inward or self-outward radii-rotating 

modulation directs the acoustic pressure distribution in two opposite paths. The topological 

transition exists when the exchange between the two opposite modes in the same valley 

emerges.  

In order to further understand this topological transition, we expand the above Hamiltonian in 

Eq. (2-1) with the consideration of a nonzero valley Chern number. Also, the 𝐤 ∙ 𝐩 

perturbation method[67] is applied as a form of effective Hamiltonian, 
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𝐻𝑲(𝛿𝒌) = 𝜈𝐷𝛿𝑘𝑥𝜎𝑥 + 𝜈𝐷𝛿𝑘𝑦𝜎𝑦 +𝑚𝜈𝐷
2𝜎𝑧                                      (2-3) 

where 𝜈𝐷 and 𝜎𝑖 are the Pauli matrices for the degrees of freedom of the valley and the cell, 

respectively. By separating the Dirac phase with 𝑚 = 0, the mass term of 𝑚 = Δ𝑤/2𝜈𝐷
2  is 

utilized to characterize the different valley Hall insulators, as Δ𝑤 denotes the bandwidth for 

the opening band gap. The same radii-rotating orientation in the double-trimer cell combines 

with 𝑉𝐴 ≠ 𝑉𝐵 ≠ 𝑉𝐶 , which determines the band states of this acoustic structure. The local 

Berry curvature[58] around the valley can be calculated utilizing the eigenvector,  

Ω𝐾(𝛿𝒌) =
𝑚𝜈𝐷

2(𝛿𝒌2+𝑚3𝜈𝐷
2 )3/2

                                                    (2-4) 

Therefore, the topological charges (denoted as the valley Chern number) of the first band can 

be calculated by integrating the local Berry curvature in half of the Brillouin zone [56, 57], as 

the upper band or the lower band in the valley K (K’) displays different signs of for the 

difference of the valley-projected Chern numbers, 

2𝜋𝐶𝐾 = ∫Ω𝐾(𝛿𝒌)𝑑𝑆 = 𝜋sgn(𝑚)                                            (2-5) 

2𝜋𝐶𝐾′ = ∫Ω𝐾′(𝛿𝒌)𝑑𝑆 = −𝜋sgn(𝑚)                                       (2-6) 

The Chern numbers of the inward (outward) rotating modulation in the upper (lower) cell 

structure of Figure 2-1(b) are ±
1

2
(∓

1

2
) for the upper or lower band at related valley domains. 

If a proper domain wall is built with the appropriate modulation of each cell array (domain 

A, B and C in Figure 2-1(a)), the difference in the two opposite bands for the Chern numbers 

is equal to ±1, which indicates the existence of a topological valley edge state at the interface 

of the two opposite modulation domains with the correspondence of the bulk edge. 

Obviously, the topological phase transition state occurs when 𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶 . Furthermore, 

there are three resonator units in every domain, which means the phase modulation in this 

type of structure can include a large amount of combinations.  

To verify the existence of such valley-dependent edge states at the designed resonator system 

with topological performance, we utilize a supercell composes of a 1-by-12 array of primitive 

cells with inward and outward rotating modulations in the upper and lower domain, 
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respectively (Figure 2-3(b)). Simulation results, along with the consideration of periodic 

boundary conditions in Figure 2-3(a), exhibit the bulk and edge bands of the corresponding 

projected band structures. The group velocity of the edge state at the valley point is positive 

(negative) because the change of valley Chern number between the two types of domains is 

equal to 1(−1), indicating the positive (negative) transmission direction in the edge states. 

Also, the pressure distribution of this edge mode is shown in Figure 2-3(b), which displays 

the local valley pseudospin state locked to the transmission direction.  

(a)                                                               (b) 

  

Figure 2-3. (a) Acoustic band-structure diagram for a supercell composed of a 1-by-12 

periodic array of double-trimer cells. Black dots refer to bulk modes, and blue dots 

refer to edge modes. (b) Acoustic pressure distribution for the dominant harmonic cells 

of an edge mode localized at the supercell centre. 

2.4 Topological acoustic performance 

This tunable acoustic valley edge state based topological insulator allows the existence of 

excellent topological protections against local disorders and defects. To confirm the 

topological performance of these acoustic valley edge states, large-scale numerical 

experiments with a large amount of the lattice array are conducted. Figure 2-4(a) displays 

that an acoustic edge state can seamlessly transmit along a periodic lattice array despites the 

presence of a stringent structure of turns and transitions. Moreover, the absence of backward-

transmission modes ensures the lack of back reflection initiated by arbitrary abruption or 

discontinuity. Figure 2-4(b) illustrates two types of domains with inward-radii modulation 
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spins and outward-radii modulation spins placed in the upper domain and lower domain, 

respectively. Even with one missing trimer defect and sharp turns, we can still realize 

backscattering immune, broadband nonreciprocal, and dynamically tunable acoustic 

waveguides. Moreover, the transmission route can be reconfigured by changing the 

separating boundaries and the related radius modulation strategy, which provides great 

potential in acoustic manipulating devices. For the opposite domain configuration, as shown 

in Figure 2-4(c), the gapless topological edge state is not supported so that the transmission 

along the domain separating edge will vanish.  

In this work, we have designed a flow-free acoustic resonator system that can work as the 

acoustic analogue of the QVHE-based topological insulator. Through the radius modulations 

in a two-dimensional trimer structure, the formed honeycomb lattice with topological valley 

edge states can easily realize backscattering immune, broadband nonreciprocal, and 

dynamically tunable acoustic waveguides. In particular, the ability to independently adjust 

the inner radius of the circulator for the trimer-based lattice structure enables flexible 

topological configurations in a wide frequency range, which can further extend the design 

versatilities of future tunable acoustic topological devices.  

(a) 
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         (b) 

 

         (c)  

 

Figure 2-4. (a) Immunity of the nonreciprocal edge mode to versatile edge geometries 

and sharp turns. (b) Reconfigurable and topologically protected one-way edge 

waveguide along the separating boundary and the robustness against defects. The self-

inward radii-rotating modulation cell array is placed in the upper domain, while the 

self-outward modulation is placed in the lower domain. (c) Topological edge states with 

the opposite direction for the input source as of (b). The color legend displays the 

acoustic pressure. 
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2.5 Supplementary material  

2.5.1. Broadband acoustic transmission in radii-tunable resonator systems 

 
Figure S2-1. The ratio of acoustic intensity (Output 3/Output 2) at different radius 

modulations in a single trimer with a wider resonant frequency range. The inner radius 

changes from 1.5 mm to a maximum of 8.0 mm. 

 

2.5.2. Simulation process 

Acoustic pressure distribution, band structures and mode patterns presented in this work are 

computed using the finite element solver COMSOL Multiphysics. Pressure acoustics, 

eigenfrequency model is adopted and the media filled in the resonators is set as air. In Figure 

2-3(a), the band diagram is computed with a 1 × 12 supercell which is periodic along x 

direction. To compute the full-wave numerical simulation in Figure 2-4(a), a 14 × 9 

periodical lattice array is adopted. All the field patterns shown in the manuscript are 

computed with pressure acoustics, frequency domain model in the finite element solver 

COMSOL Multiphysics. 
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2.5.3. Hamiltonian derivation process 

The Bloch Hamiltonian �̅� of this hexagonal periodic system can be written as, 

�̅� = (

𝑉0 + 𝑉𝐴 𝐻𝒌 𝐻𝒌
∗

𝐻𝒌
∗ 𝑉0 + 𝑉𝐵 𝐻𝒌

𝐻𝒌 𝐻𝒌
∗ 𝑉0 + 𝑉𝐶

)                                    (S2-1) 

                          𝐻𝒌 = −𝜀𝑉[exp(−𝑖𝒌 ∙ 𝒆𝟏) + exp(−𝑖𝒌 ∙ 𝒆𝟐) + exp(−𝑖𝒌 ∙ 𝒆𝟑)]                (S2-2) 

According to the k•p perturbation method, the perturbation term of the Hamiltonian is 

defined as, 

H′𝑘 =
ℏ2𝑘2

2𝑚
+
ℏ𝒌∙𝒑

𝑚
                                               (S2-3) 

𝒌 ∙ 𝒑 = 𝑘𝑥 (−𝑖ℏ
𝜕

𝜕𝑥
) + 𝑘𝑦 (−𝑖ℏ

𝜕

𝜕𝑦
) + 𝑘𝑧 (−𝑖ℏ

𝜕

𝜕𝑧
)                  (S2-4) 

And also, the Hamiltonian is, 

𝐻𝑘 = H′𝑘 + 𝐻0                                              (S2-5) 

     𝐻0 =
𝑝2

2𝑚
+ 𝑉                                               (S2-6) 

Then considering the acoustic wave equation,  

∇2𝑝 + 𝑘2𝑝 = 0                                          (S2-7) 

The following Eq. (S2-8) is the k•p perturbation term for the acoustic wave equation, which 

can be obtained by expanding the Bloch eigenstates at point k as the linear combinations of 

the Bloch eigenstates at point Γ, then we can derive, 

H′𝑘 =
2𝑖

𝜌
𝒌 ∙ ∇ + 𝑖𝒌 ∙ ∇

1

𝜌
−
𝑘2

𝜌
                              (S2-8) 

For the trimer unit with 𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶, the perturbation Hamiltonian δk ⋅ p, spanned by the 

degenerated states 𝜓𝑝−
0

 and 𝜓𝑞+
0

, yields conic dispersions centered at the hexagonal 
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Brillouin zone corners due to the protection of the C3v symmetry. Here, p is a vectorial 

operator determined by the density distribution of the lattice unit. The mirror symmetry is 

broken as the change of modulation handedness, and the deterministic degeneracy is thus 

removed. This leads to a Dirac mass term δij(ωi
2 − ωD

2), where ωi = ωp
− or ωq

+ is the volume 

difference dependent band-edge frequency, and ωD is the Dirac frequency of the trimer unit 

with  𝑉𝐴 = 𝑉𝐵 = 𝑉𝐶. Utilizing the detailed form of the p matrix, p11 = p22 = 0 and 𝐩21 =

𝐩21 = 2𝑤𝐷𝑣𝐷(�̂� + 𝑖�̂�), we can derive a compact form of the perturbation Hamiltonian H′𝑘 

that satisfies the eigen-problem H′𝑘ψ = δωψ, where δω is the frequency deviation from ωD.  

We can further expand the above Hamiltonian in Eq. (S2-1) near the K point, from the k ⋅ p 

perturbation method and spanned by the degenerate vortex pseudospins 𝜓𝑝−
0

 and 𝜓𝑞+
0

, 

which can be expressed as, 

𝐻𝑲(𝛿𝒌) = 𝜈𝐷𝛿𝑘𝑥𝜎𝑥 + 𝜈𝐷𝛿𝑘𝑦𝜎𝑦 +𝑚𝜈𝐷
2𝜎𝑧                             (S2-9) 
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Chapter 3  

3 Robust nonreciprocal acoustic propagation in a compact 
acoustic circulator empowered by natural convection 

The aforementioned QVHE based topological acoustic design still need bulky mechanical 

control devices and the whole setup is not noiseless. The further investigation of 

nonreciprocal acoustics and topological acoustics can be inspired by the recent development 

of the quantum Hall effect in condensed matter physics that breaks time-reversal symmetry 

by magnetic biasing. Nonreciprocal acoustic propagation is highly desirable to control 

acoustics in isolation, broadband unidirectional transmission, and topologically robust to 

structural disorders or defects. So far, these fascinating properties have been investigated 

through fan-induced moving media, acoustic capacitance adjustment and acoustic 

metamaterials. However, these may be associated with disadvantages including extra noise 

and limited dynamic controlling performance. Here we overcome these limitations by 

introducing heat-induced natural convection into acoustic circulator, and demonstrate that the 

classical acoustic circulator with thermal management can realize robust nonreciprocal 

acoustic propagation. The concept of combining heat-induced natural convection and 

aeroacoustics creates a new practical paradigm and increases the feasibility for nonreciprocal 

acoustics due to merits of dynamic control, versatile topological structures, and 

miniaturization in the absence of moving parts. It is noted here, this Chapter is based on 

author’s publication: Liu X, Cai X, Guo Q, et al. Robust nonreciprocal acoustic propagation 

in a compact acoustic circulator empowered by natural convection[J]. New Journal of 

Physics, 2019, 21(5): 053001. And all the figures are used with the permission from ref. 

[129]. 

3.1 Introduction 

The exploration at the basis of the QHE[15, 122, 156], has inspired many researchers in 

related fields of interest to investigate nonreciprocity and topologically nontrivial states[16, 

123, 128, 157-159]. Reciprocity[132, 160] is a basic property in wave transmission process 

associated to the physical laws of time-reversal symmetry, which in return, makes the non-

trivial band gaps attribute to the broken time-reversal symmetry[34, 47]. For the 
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electromagnetic nonreciprocity[161-163], the magnetic biasing is commonly employed to 

break reciprocity and achieve unidirectional mode with the local perturbation to the edge. 

Examples can be found in some photonic analogues, such as bianisotropic 

metamaterials[164], chiral waveguides[165, 166], silicon-ring resonators[167, 168] and 

photonic crystals[43, 127, 169, 170].  

However, for the nonreciprocal acoustics, the magnetic biasing is typically associated with a 

weak magneto-acoustic effect[171], which is only observable under large and impractical 

biasing structures. Inspired by using the external magnetic biasing to create the 

electromagnetic nonreciprocity due to the Zeeman effect[172], some analogous approaches 

are introduced by importing rotational motion[31, 33, 136, 140] or angular momentum in 

specific acoustic resonators[32, 34]. Alu et al[31, 34] designed a circular resonator with 

flowing air rotating inside, together with three uniformly distributed ports for acoustic wave 

input/output. The flowing air works as the magnetic biasing counterpart and exhibits 

nonreciprocal acoustic propagation by breaking the time-reversal symmetry. Alu et al. also 

proposed[47] the idea of acoustic Floquet topological insulators combining with the concept 

of capacitance adjustment in the trimer metamolecules, which realized broadband acoustic 

isolation and nonreciprocal acoustic emitters. Ni et al.[32] investigated similar two-

dimensional topologically one-way edge mode in networks of acoustic resonators with 

circulating air flow, which shows robust one-way edge transmission against structural 

disorders and defects. Moreover, in order to achieve unidirectional acoustic transmission, 

acoustic metamaterials, sonic crystal structures[67, 136] and phononic crystals[173, 174] 

combining circulating flow, have been proposed to realize one-way propagation of pseudo-

spin-dependent edge states under broken time-reversal symmetry or controlled propagation 

of acoustic wave in an arbitrary network pathway.  

The previous studies have developed various acoustic devices or system-level configurations 

to demonstrate the concept of nonreciprocal acoustics by breaking time-reversal symmetry or 

parity symmetry. More work is demanded to advance this technology into more practical 

functions. Using fans or other rotating machines as the formation of circulating flow did 

create a valid gauge flow field to break the time-reversal symmetry, whereas introducing 

inevitable extra noise and difficulty in miniaturizing the whole structure due to the bulky 
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angular momentum generator. For the case of acoustic capacitance adjustment[47], elastic 

material and piezoelectric actuators were employed, making it difficult to fabricate and 

realize dynamic control. For the acoustic metamaterial and sonic crystals, specific arrays or 

configurations often required relatively bulky structures that greatly limit their applications in 

a broad frequency range or concise dynamic control.  

In this study, we propose a design of using heat-induced natural convection to form a steady 

air-flow circulation, which can break time-reversal symmetry and achieve robust 

nonreciprocal acoustic propagation in a ring resonator. In our geometry of analogue, a 

circulator with 120-degree rotational symmetry of three-port coaxial cylinders associated 

with three corresponding rectangular waveguides is designed. Distribution of a temperature 

gradient in a vertically placed ring circulator creates a steady circulating air-flow field due to 

the existence of buoyancy force. Meanwhile, velocity and flow direction in the circulator can 

be easily tuned by adjusting temperature distribution. In this scenario, no extra noise would 

be generated as no moving components are employed in the whole setup, which can facilitate 

its applications by conducting more accurate control and miniaturizing the whole structure. 

Our design, a compact configuration without moving parts, creates a new paradigm for the 

application of nonreciprocal acoustics, which reduces the difficulty in device/material 

fabrication. Moreover, we further demonstrate that the nonreciprocal resonators with 

different interior circulator configurations, can exhibit excellent nonreciprocal acoustic 

propagation performance empowered by the heat-induced natural convection. This study also 

shows great potential for the insulation of any interior structures in acoustic circulators. 

3.2 Prototype design and mode analysis 

In the designed 3D nonreciprocal acoustic circulator, three-port subwavelength rectangular 

waveguides (44 × 178 × 44 mm)  are connected by hard-walled coaxial cylinders ( r =

4.75 mm, h = 21 mm ), and the height of the whole structure is 44 mm. Three groups of thin 

heating layers are evenly distributed (spaced with 120° within the hollow ring circulator) to 

form a tri-symmetric structure and relatively uniform velocity distribution. Moreover, 

dynamic control of the velocity field can be realized by heating different groups of these thin 

heating layers. The inner and outer radii of the ring circulator are set as 𝑅1 =
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51 𝑚𝑚 𝑎𝑛𝑑 𝑅2 = 92 𝑚𝑚 , respectively. The fundamental waveguide mode for acoustic 

plane wave is supported in the studied frequency range. In Figure 3-1(a), it can be found that 

the temperature distribution in the vertically placed circulator (buoyancy created by the lower 

left high temperature region) induces a steady circular velocity field by natural convection. 

Specifically, all the surfaces and two thin heating layers inside the hollow circulator of the 

red region are set as the high temperature region. Introducing this circular momentum to fill a 

subwavelength acoustic resonant ring circulator, the degenerate counter-propagating 

azimuthal resonant mode can be split. As is shown in Figure 3-1(b), the pressure distribution 

in a peak frequency is displayed with all the dimensions labeled, which can visualize the 

nonreciprocal protection. A proper velocity distribution induced by natural convection and a 

suitable circulator design together can create giant nonreciprocity through modal 

interference.  

As is shown in Figure 3-1(c) and Figure 3-1(d), the acoustic circulator with biasing angular 

momentum field can support clockwise and counterclockwise dipole modes[32] with 

eigenfrequencies 𝑤±. If the fluid inside the circulator is stationary, these modes would be 

degenerate with 𝑤+ = 𝑤−. When the biasing angular momentum in the form of air rotation is 

induced by natural convection, the degeneracy is lifted by ∆𝑤 = 𝑤+ − 𝑤− = 2𝑣𝑎𝑣/𝑅𝑒𝑓𝑓 , 

where 𝑣𝑎𝑣  represents the average air velocity and 𝑅𝑒𝑓𝑓  is the effective radius of the 

circulator.     

        

      (a)                                                       (b) 
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(c)                                                     (d)  

   

Figure 3-1. Model configuration and pressure distribution. (a) Geometrical top view of 

cross-section at 𝐇 = 𝟐𝟐 𝐦𝐦. The red region is specified as high temperature region is 

heated at a given temperature that is 373.15 K, 423.15 K, 473.15 K, 523.15 K, 573.15 K 

and 623.15 K, respectively. The rest blue area is set as a balanced temperature 273.15 

K. (b) The acoustic pressure distribution in the condition of the optimal nonreciprocal 

performance with all the dimensions labeled. The pressure distribution of the clockwise 

(c) and counterclockwise (d) dipole modes of the acoustic circulator corresponding to 

the azimuthal order to be m=1. 

3.3 Velocity distribution of heat-induced natural 
convection  

Natural convection is a heat transporting process, in which the fluid motion is not created by 

external sources but by the spatial density differences due to the temperature gradient. In the 

acoustic circulator with a controlled temperature distribution, the fluid in the heated region 

becomes less dense and rises, while the fluid in the cooler region moves downside forming 

an air-circulating cycle. In order to form a steady circulating velocity field, the high 

temperature and low temperature regions are controlled by specific heat fluxes to maintain 

relative balanced temperature distribution. Normally, the internal driving force of natural 

convection comes from fluid density difference induced buoyancy, which would be affected 

by factors[175], such as temperature gradient, density difference, gravity, distance through 

the convective medium, diffusion rate and viscosity, through which dynamic control can be 

easily realized.  
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The contours and vectors of velocity field distributions in different temperature gradients 

are illustrated in Figure 3-2. The obtained velocity field is then used to calculate acoustic 

transmission in this biasing circulator by Aeroacoustics Module in COMSOL. As is shown in 

Figure 3-2, the high temperature region is placed in the lower left corner, which takes up a 

quarter of this circulator, and the rest region is kept at a relative balanced temperature 273.15 

K by ice-water bath. For a fully developed and steady state air flow in this circulator, the 

average velocity on the left side is higher than the velocity on the right side, which could 

contribute better to the unidirectional acoustic propagation incident from the left channel. 

Moreover, the maximum velocity will also increase with the increase of temperature 

gradient. Three groups of thin heating layers also act as flow deflectors that can be used to 

facilitate the formation of a relatively more uniform and higher velocity distribution to 

achieve better nonreciprocal performance (More details in the supplementary material).  

(a)                                           (b)                                             (c) 

 

(d)                                           (e)                                             (f) 

  

Figure 3-2. The contours and vectors of velocity field distributions in different 

temperatures. The high temperature region is set as (a) 373.15 K, (b) 423.15 K, (c) 
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473.15 K, (d) 523.15 K, (e) 573.15 K, (f) 623.15 K, respectively. The arrows show the 

velocity vectors. 

3.4 Nonreciprocal performance 

Modeling of the complex coupling of air flow and acoustics can be achieved by COMSOL 

Multiphysics and the add-on Acoustics Module using the linearized Navier-Stokes Module 

interfaces, which allows robust simulation of complex flow-acoustics interaction that leads to 

flow-dependent acoustic property change. This Acoustic Module offers a detailed analysis of 

turbulent and non-isothermal flow that influences the acoustic field in this system. This 

module takes all the energy dissipation from viscous loss and thermal loss into account, 

while do not include flow-induced noise source terms. Basically, the full linear perturbation 

to the general equations of CFD (computational fluid dynamics)-mass, momentum, and 

energy conservation can be solved using the Eq. (3-1)-Eq. (3-3).  

The linearized Navier-Stokes equations represent a linearization to the full set of governing 

equations for a compressible, viscous, and non-isothermal flow[176]. Here, it is performed as 

the first-order perturbation around the steady-state background flow defined by its pressure, 

velocity, temperature, and density (p0, u0, T0, and ρ0). This yields the governing equations for 

the propagation of small acoustic perturbations in the pressure, velocity, and temperature (𝑝′, 

𝑢′, and T′). In the perturbation theory, a superscript ′ is used to denote variables of the first-

order perturbations. The governing equations (with subscript 0 on the background fields) are: 

𝜌0𝐶𝑝 (
𝜕𝑇′

𝜕𝑡
+ 𝒖′ ∙ ∇𝑇0 + 𝒖0 ∙ ∇𝑇′) + 𝜌𝐶𝑝(𝒖0 ∙ ∇)𝑇0 − 𝛼𝑝𝑇0 (

𝜕𝑝′

𝜕𝑡
+ (𝒖′ ∙ ∇)𝑝0 + (𝒖0 ∙ ∇)𝑝

′) −

                                                      𝛼𝑝𝑇
′(𝒖0 ∙ ∇)𝑝0 = 𝛁 ∙ (𝑘∇𝑇

′) + Φ +𝑸                                            (3-1) 

𝜌0[
𝜕𝒖′

𝜕𝑡
+ (𝒖′ ∙ ∇)𝒖0 + (𝒖0 ∙ ∇)𝒖′] + 𝜌′(𝒖0 ∙ ∇)𝒖0 = ∇ ∙ 𝜎 + 𝑭 − 𝒖0𝑀              (3-2) 

𝜕𝜌′

𝜕𝑡
+ ∇ ∙ (𝜌′𝒖0 + 𝜌

0
𝒖′) = 𝑀,                                              (3-3) 

where M, F, and Q represent different source terms, 𝛷 is the viscous dissipation function, 𝜎 is 

the stress tensor, and normally in frequency domain, the time derivative 𝜕/𝜕𝑡 can be denoted by 
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harmonic dependence 𝑖𝑤, and w is defined as frequency. The standard hard wall boundary 

conditions and perfectly matching layers have been assigned in the simulation process. 

Numerical simulations of the heat-induced natural convection based acoustic circulator in 

dipole mode are performed to investigate nonreciprocal acoustic propagation. As is shown in 

Figure 3-3(a), the acoustic pressure amplitude of transmission coefficient at Port 2 and Port 3 

in the absence of angular-momentum biasing at two output ports are identical and equal to 

0.691 due to the symmetric splitting circular structure, with the remaining 1/9 of acoustic 

power being reflected or dissipated. Figure 3-3(a) nevertheless displays, in the condition of 

the acoustic circulator with angular-momentum biasing, the transmission coefficient of 

output Port 3 is proportional to the temperature in high temperature region and could reach a 

maximum value of more than 0.9 at 623.15 K. On the contrary, the related transmission 

coefficients of output Port 2 decreases, and can be less than 0.1. Actually the velocity field 

created by the heat-induced natural convection can lead to robust nonreciprocal acoustic 

transmission, even by a small temperature gradient, indicating that the proposed acoustic 

nonreciprocal circulator is robust. 

(a)                                                                  (b) 

  

Figure 3-3. Nonreciprocal performance in different temperatures and the comparison 

with experimental and theoretical results. (a) Transmission coefficients at different high 

temperatures for Port 2 (curves with lower peak values) and Port 3 (curves with higher 

peak values). (b) Comparison of normalized transmission among Alu’s experimental 

results[31], theoretical results (Eq. (3-6)) and the simulation results of the biasing 

velocity distribution induced by the applied high temperature at 623.15 K. 
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In Figure 3-3(b), all the full-wave simulation and theoretical results are compared with the 

experimental results, which show good agreement, once the average value of the  heat-

induced velocity distribution matches the value from Alu’s model[31]. As stated above, by 

varying the heating temperature, different interior velocity distributions can be easily 

obtained and the optimal nonreciprocal effect can be achieved when the temperature of the 

heated region is 623.15 K. The optimal velocity predicted by the analytical model coincides 

well with the average value of the velocity field. As predicted in the former analytical theory, 

the transmission to Port 2 can be reduced to zero at the operating frequency 𝑤0, whereas the 

transmission to Port 3 is close to unity, which indicates almost all the acoustic power is 

transmitted to Port 3. These results show the correct amount of acoustic Zeeman splitting to 

achieve well-performed acoustic circulators with natural convection by a wide range of 

temperature gradients, enabling the dynamic control with minor temperature gradient for 

robust nonreciprocal acoustic transmission in specific structures. 

The acoustic pressure distributions in an unbiased condition (Supplementary Figure S3-1(b)) 

and the biased conditions induced by natural convection (Figure 3-1(c) and 3-1(d)) are 

compared to fully understand the mechanism of the proposed design. For the unbiased 

condition, the resonant dipole modes are degenerate and evenly excited, resulting in a 

symmetric acoustic pressure distribution with respect to the axes of three ports in this cavity. 

While for the biased condition, the resonant dipole modes are split to produce an asymmetric 

field distribution for all the output ports. Specifically, the acoustic transmission in Port 2 is 

very small, while it in Port 3 is close to 1, which confirms a robust nonreciprocal acoustic 

transmission in the proposed acoustic circulator design. In addition, the selection of heated 

regions and temperature ranges can be adjusted to realize dynamic control of acoustic 

transmission direction and its nonreciprocal performance. In this scenario, the acoustic 

energy is routed exclusively in one direction and is easy to realize dynamic control without 

any moving components. 

3.5 Coupled-mode theory for an acoustic circulator by 
angular-momentum bias 

The modified coupled-mode theory[34, 155, 177] is developed as an analytical solution to 

describe the acoustic propagation in the circulator under angular-momentum bias considering 
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acoustic energy dissipation, which agrees well with the full-wave simulation results 

conducted by COMSOL Multiphysics. Based on the model of an azimuthally symmetric 

acoustic circulator under angular-momentum bias, the scattering parameters 𝑆𝑖1 = 𝑆𝑖
−/𝑒−𝑖𝑤𝑡 

can be achieved according to Eq. (3-4)-Eq. (3-6), which represent reflection coefficient and 

transmission coefficients for Ports 1, 2 and 3, respectively, as: 

𝑆11 = −1 + 𝑒𝜑11(√
2𝛾+

3
𝛼+ +√

2𝛾−

3
𝛼−)                                    (3-4) 

𝑆21 = 𝑒
2𝜋𝑖

3
+𝜑21√

2𝛾+

3
𝛼+ + 𝑒

−
2𝜋𝑖

3
+𝜑21√

2𝛾−

3
𝛼−                                    (3-5) 

𝑆31 = 𝑒
4𝜋𝑖

3
+𝜑31√

2𝛾+

3
𝛼+ + 𝑒

−
4𝜋𝑖

3
+𝜑31√

2𝛾−

3
𝛼−，                                (3-6) 

where, 𝛾± denotes the inverse of decay times to the output Ports 1, 2 and 3, which are located 

at the equally distributed positions 𝜑 = 0,
2𝜋

3
𝑎𝑛𝑑 4𝜋/3, respectively, which normally can be 

denoted as 𝛾+ = 𝛾− = 𝛾 owing to symmetry. The coefficient 𝛼±  is 𝛼± = 𝑖𝑒𝜑11√
2𝛾±

3
/(𝑤 −

𝑤± + 𝑖𝛾±), where the eigenfrequencies of the right and left-handed modes are given by 

𝑤± = 𝑤0 ± 𝑣𝑎𝑣/𝑅𝑒𝑓𝑓  when the cavity modes are split. 𝑤0 is the resonance frequency and 

𝑅𝑒𝑓𝑓 comes from the calculation of 𝑤0 = 𝑐𝑒𝑓𝑓/𝑅𝑒𝑓𝑓, where effective acoustic speed changes 

with air temperature in the form of √𝑘′ ∙ 𝑝/𝜌, as 𝑘′ is the ratio of specific heat. Optimal 

nonreciprocal performance can be achieved at 𝑤± = 𝑤0 ± 𝛾±/√3. Moreover, considering the 

acoustic energy dissipation generated by the non-uniform velocity and temperature 

distribution, related damping coefficients 𝜑11 , 𝜑21  and 𝜑31  are substituted in the 

transmission Eq. (3-4)-Eq. (3-6). More details can be found in the supplementary material. 

3.6 Robust nonreciprocal acoustic circulator with other 
interior configurations 

We’ve designed different interior structures to confirm that the heat-induced natural 

convection can form a robust nonreciprocal acoustic transmission in this type of acoustic 

circulator. As is shown in Figure 3-4(a-d), the interior structures of triangle, Y-parallel 
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triangles, hexagon and hexagram are placed vertically with a well-adjusted high temperature 

region and a low temperature region, which can form a steady velocity field therein. The 

triangle structure achieves a maximum velocity distribution, whereas the Y-parallel triangle 

structure gets a minimum velocity distribution. In Figure 3-4(e), the interior configurations of 

hexagon and hexagram obtain the best nonreciprocal performance, although their velocities 

are not the maximum ones. We can conclude that nonreciprocal performance is not only 

determined by the velocity distribution, but also the specific geometrical configuration. 

Moreover, in this type of acoustic circulator, the differences for transmission coefficients of 

two output ports are still big enough to obtain excellent nonreciprocal performance. 

(a)                                            (b)                                          (c) 

 

(d)                                                     (e) 

  

Figure 3-4. The velocity contours and nonreciprocal performance of acoustic 

circulators with four types of interior configurations, where temperature of the high 

temperature region is 523.15 K. The velocity contours and vector arrows for (a) 
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Triangle structure. (b) Y-parallel triangles structure. (c) Hexagon structure. (d) 

Hexagram structure. (e) Transmission coefficients for Port 2 (curves with lower peak 

values) and Port 3 (curves with higher peak values). 

3.7 Discussion 

We have reported that the heat-induced natural convection can be easily incorporated into 

acoustic circulators to realize nonreciprocal acoustic propagation in compact configurations 

without using moving components that may generate extra noise, taking a significant step 

towards the realization of nonreciprocal acoustics for practical applications. In many applied 

scenarios, compared to other methods of adopting external biasing variables, manipulating 

temperature gradient is convenient to realize and can be controlled more concisely. Our 

design confirms that the classical yet simple acoustic circulator with different temperature 

distributions can realize robust nonreciprocal acoustic propagation. Moreover, in order to 

demonstrate that the heat-induced natural convection is a facile way of generating steady 

velocity field in various structural configurations to realize nonreciprocal acoustic 

propagation, four types of interior structures are designed to verify the versatility and 

robustness in these circulator configurations. The simulation results show excellent 

nonreciprocal performance for the protection of interior structures, which also certifies the 

feasibility and reliability at the basis of coupling thermal control with nonreciprocal 

acoustics. 

This work, by combining the concept of natural convection and aeroacoustics, opens a new 

practical paradigm in nonreciprocal acoustics, particularly for practical applications. Due to 

its noiseless, controllable, structurally flexible and size-compact merits, such acoustic 

nonreciprocal design will also lead to new applications in the miniaturization of 

nonreciprocal acoustic-related applications, such as ultrasonic components, MEMS devices 

and sound attenuation in circumstances with temperature control capability, which provides 

alternative and practical option for the design of nonreciprocal acoustics based on existing 

external flow-driven basing model. 

 



 

52 

 

3.8 Supplementary material 

(a)                                                (b) 

         
Figure S3-1| Detailed model configuration and mode analysis. (a) Detailed 3D model 

with interior deflectors evenly distributed. (b) The pressure distribution of the dipole 

mode of the acoustic circulator without angular-momentum biasing. The color from red 

to blue represents the value of pressure from positive maximum to negative maximum. 

 

3.8.1. Governing equations for natural convection in the acoustic 

circulator  

Our numerical model includes predefined Multiphysics coupling effect for the non-

isothermal flow in which the density depends on temperature. Also, this model couples the 

compressible flow (Ma<0.3) with heat transfer in fluid[175, 178], and the effect of thermal 

radiation. The Non-Isothermal Flow and Conjugate Heat Transfer interfaces incorporate the 

fully compressible formulation of the continuity and momentum equations. Some basic 

governing equations of heat transfer with radiation and compressible flow with gravity are 

written as, 

 ρCp (
∂T

∂t
+ u ∙ ∇T) + ∇ ∙ [−k∇T + ε(G − n2σT4)] = αpT(

∂p

∂t
+ u ∙ ∇p) + τ ∶ ∇u + Q  (S3-1) 

                ρ
∂u

∂t
+ ρ(u ∙ ∇)u = ∇ ∙ [−pI + μ(∇u + (∇u)T) −

2

3
μ(∇ ∙ u)I] + F + ρg             (S3-2) 

                                                                   
∂ρ

∂t
+ ∇ ∙ (ρu) = 0,                                                         (S3-3) 
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where, ρ is density, Cp is the specific heat capacity at constant pressure, T is the absolute 

temperature, u is the velocity vector, k is the thermal conductivity, ε is the emissivity, G is 

the incoming radiative flux, n is the refractive index, σ is the Stefan–Boltzmann constant, αp 

is the coefficient of thermal expansion, τ is the viscous stress tensor, Q contains heat sources 

other than viscous dissipation, F is the body force vector, and g is the gravity constant. 

 

3.8.2. Couple-mode theory considering dissipation 

According to the temporal coupled-mode theory based on Fano resonance in optical 

resonators, and also in combination of the 120-degree rotational symmetry this circulator, we 

can obtain the equation (S3-4). Here, 𝑲 and 𝑫, represents the coupling coefficients between 

the resonances and the waves at the ports, respectively. This model is valid only when the 

characteristic length of the circulator is far smaller than the resonance frequency, which is 

confirmed in the simulation and experiment results. Moreover, considering the acoustic 

energy dissipation generated by the non-uniform velocity and temperature distribution, 

related damping coefficients φ1 and φ2 are imported in the transmission equations. 

𝑲∗ = 𝑫 =

{
 
 

 
 𝑒𝜑11√2𝛾+/3 𝑒𝜑11√2𝛾−/3

𝑒−
2𝜋𝑖

3
+𝜑21√2𝛾+/3 𝑒

2𝜋𝑖

3
+𝜑21√2𝛾−/3

𝑒−
4𝜋𝑖

3
+𝜑31√2𝛾+/3 𝑒

4𝜋𝑖

3
+𝜑31√2𝛾−/3}

 
 

 
 

                            (S3-4) 

The equation (S3-4) can then be substituted into the temporal coupled-mode theory 

consisting of a single-mode resonator coupled with 3 ports. Where the amplitudes a+ and a− 

of the clockwise and counterclockwise modes of this acoustic circulator under angular-

momentum biasing can be denoted as: 

da+

dt
= (−iw+ − γ+)a+ + e

φ11√
2γ+

3
S1
+ + e−

2πi

3
+φ21√

2γ+

3
S2
+ + e−

4πi

3
+φ31√

2γ+

3
S3
+           (S3-5) 

   
da−

dt
= (−iw− − γ−)a− + e

φ11√
2γ−

3
S1
+ + e

2πi

3
+φ21√

2γ−

3
S2
+ + e

4πi

3
+φ31√

2γ−

3
S3
+           (S3-6) 

where S1
+, S2

+ and S3
+  are the excitation signals at related ports. The output signals 

S1
−, S2

− and S3
− can be derived from the interferences of resonance-assisted coupling, coupling 
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through a direct pathway of the incoming and outgoing waves, and the acoustic energy 

dissipation. The related equations of output signals are shown as: 

                                        S1
− = −S1

+ + eφ11(√
2γ+

3
a+ +√

2γ−

3
a−)                                   (S3-7) 

                                S2
− = −S2

+ + e
2πi

3
+φ21√

2γ+

3
a+ + e

−
2πi

3
+φ21√

2γ−

3
a−                          (S3-8) 

                                 S3
− = −S3

+ + e
4πi

3
+φ31√

2γ+

3
a+ + e

−
4πi

3
+φ31√

2γ−

3
a−.                        (S3-9) 

Here, we assume the excitation is harmonic and only works at port 1 for S1
+ = e−iwt,  S2

+ =

S3
+ = 0. For the variable change of amplitudes α± = a±e

−iwt, we can achieve the following 

equations: 

−iwa+ = (−iw+ − γ+)a+ + e
φ11√

2γ+

3
                                  (S3-10) 

−iwa− = (−iw− − γ−)a+ + e
φ11√

2γ−

3
                                (S3-11) 

Then we can achieve the solutions displayed in the article as: 

α± = ieφ11√
2γ±

3
/(w − w± + iγ±)                                    (S3-12) 

S11 = −1 + eφ11(√
2γ+

3
α+ +√

2γ−

3
α−)                                 (S3-13) 

S21 = e
2πi

3
+φ21√

2γ+

3
α+ + e

−
2πi

3
+φ21√

2γ−

3
α−                           (S3-14) 

S31 = e
4πi

3
+φ31√

2γ+

3
α+ + e

−
4πi

3
+φ31√

2γ−

3
α−                         (S3-15) 
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In different heat induced angular-momentum biasing field, the damping coefficients φ11, 

φ21 and φ31  are different. In Figure S3-2, the theoretical prediction of S parameters are 

based on the simulation results for the definition of the damping coefficients.  

 

 
 Figure S3-2| Scattering parameters. Magnitude of the scattering parameters versus 

frequency for different velocity distributions of the temperature gradient induced 

biasing. 
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Chapter 4  

4 Miniaturization of Floquet topological insulators for 
airborne acoustics by thermal control 

The acoustic topological insulator is a revolutionary design to control acoustics in isolation 

and broadband unidirectional transmission, which is topologically robust and immune to 

structural disorders or defects. Currently, these fascinating properties have been investigated 

through fan-induced moving media, acoustic capacitance adjustment and acoustic 

metamaterials. However, most of them are still associated with disadvantages including extra 

noise, bulky volume and limited dynamic controlling performance. In this study, we 

overcome these limitations by introducing a modulation scheme of temperature difference in 

a lattice of resonators to demonstrate that the Floquet topological insulators with thermal 

control can realize topologically robust and nonreciprocal acoustic propagation. This 

controlling strategy provides an alternative platform to conduct acoustic topological 

applications, especially for noiseless and miniaturized airborne acoustics. Thermal 

modulation provides possibility to miniaturize topological airborne acoustics into millimeter 

scale or even smaller. It is noted here, this Chapter is based on author’s publication: Liu, 

Xingxing, Qiuquan Guo, and Jun Yang. "Miniaturization of Floquet topological insulators 

for airborne acoustics by thermal control." Applied Physics Letters 114.5 (2019): 054102. 

And all the figures are used with the permission from ref. [127]. 

4.1 Introduction 

The development of topological insulators has had a profound impact in condensed matter 

systems.[9, 16] Such insulator systems host robust one-way edge transmission against 

structural disorders[179] or defects.[180] Studies have demonstrated that the analogous 

topological insulators can lead to significant possibilities when extended to classical 

photonic[181-183] or acoustic systems[33, 45, 46, 126, 157, 184]. Specifically, for acoustic 

systems, some attempts[130, 180, 185, 186] have been made to construct topological ordered 

edge states by emulating the quantum Hall effect, breaking time-reversal symmetry, and 

forming internal or lattice symmetries.[131, 168, 187] In most acoustic application scenarios, 

structural disorders or defects coupling with backscattering waves in transmission process, 



 

57 

 

leads to a significant and pivotal issue of impedance matching in engineering acoustic 

systems.  

Recently, many strategies of breaking time-reversal symmetry have been investigated by 

introducing rotational motion[31, 32] or angular momentum[34] in topological acoustic 

systems. Zhang et al.[72] applied different heights of acoustic honeycomb lattice with 

inversion symmetry breaking to form an acoustic analogue of a gapped graphene monolayer. 

For acoustics in liquids, Alu et al.[126] proposed the idea of acoustic Floquet topological 

insulators with weak spatiotemporal modulation to realize capacitance adjustment in trimer 

metamolecules. However, implementing uniform motion in a resonator encounters many 

challenges, including acoustic energy losses, extra noise, and bulky configuration, which 

may become detrimental in most acoustic application scenarios. 

In this study, we investigate the miniaturization of Floquet topological insulators for airborne 

acoustic systems based on the modulation of acoustic impedance. This modulation scheme 

possesses the ability to eliminate impedance matching challenges. This is achieved in an 

acoustic double-trimer lattice whose impedance matching is modulated by separating 

temperature distributions in each metamolecule, demonstrating the acoustic analogue of 

Floquet topological insulators. Different from Alu’s[126] on-site rotating modulation scheme 

in liquid, we demonstrate that the temperature-based modulation of acoustic impedance 

matching can function well in airborne topological acoustic systems, especially for the 

miniaturization of these systems. This opens a new avenue for practical applications of 

acoustic topological insulators.  

Specifically, different temperatures can induce different acoustic impedances as density and 

acoustic speed change in distributed metamolecules of each trimer, which is exploited as the 

basis of modulation strategy. As the airborne acoustic impedance of metamolecules can be 

modulated in an effective manner, up to tens of percents, this method opens the possibility to 

design topologically protected, broadband, noiseless, dynamic controlling, and miniaturized 

(approximately 1/10 of other models[31, 32, 34] in size, due to the existence of lumped 

impedance matching units) acoustic topological systems, including a broadband acoustic 

topological insulator, and a nonreciprocal acoustic array which is robust to impedance 
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disorders. We employ a rigorous full-wave acoustic transmission[188] and band gap 

simulation (all simulations are performed by COMSOL Multiphysics) to demonstrate the 

possibility of Floquet topological insulators and their related applications to practical devices 

for airborne acoustic engineering. 

4.2 Prototype design and mode analysis 

The acoustic system we propose in this work is shown in Figure 4-1. An acoustic hexagonal 

lattice array is formed by the unit of double-trimer acoustic lattice, as shown in Figure 4-1(a). 

Each trimer consists of three acoustic hollow circulators interconnected by cylindrical 

waveguides, which can work as resonant acoustic metamolecules. The inner and outer radii 

of the hollow circulator are set as 5 mm and 10 mm (Rinner and Router), respectively. The 

fundamental waveguide mode for an acoustic plane wave is supported in the studied 

frequency range. To realize dynamic control of acoustic impedance (Figure 4-1(b)) for every 

hollow circulator, we control the heat flux to keep each hollow circulator at a relative 

constant temperature, which can be realized by immersing each circulator into the different 

temperature circumstances. The detailed setup includes; heated oil circumstance for highest 

temperature, ice water for  0 ℃ , and heated water for middle-high temperature with a 

feedback control. The proposed realization is speculative and not yet verified experimentally. 

The interconnected waveguides are made of adiabatic material to avoid heat conduction. 

Each hollow circulator can be modelled as a lumped element[126] storing acoustic energy, 

which can be described on the basis of acoustic impedance 𝑍 = 𝜌𝑐 . For the working 

temperature range in this study, a trimer consists of three hollow circulators are considered as 

a L-C resonating circuit, supporting a doubly degenerate dipolar resonance at 6.85-7 kHz 

associated with the resonant exchange of kinetic and potential energy among the coupling 

waveguides and the hollow circulators (Figure 4-1(c)). As shown in Figure 4-1(d), the next 

resonant range, occurring at 8.6-8.85 kHz, is formed by one degenerate dipolar resonance.  

To break time-reversal symmetry and induce topologically nontrivial properties in this 

resonant acoustic circulator array, the acoustic impedance of each circulator is modulated by 

on-site impedance matching as the temperature distribution changes. As it is shown in Figure 

4-1(b), this modulation protocol of the double-trimer lattice is almost uniform within each 

circulator, while due to the surface radiation and thermal convection there is a gradient in the 
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connected channels. Specifically, as the temperature is set as variable, acoustic speed is 

defined as 𝑐 = √
𝛾𝑅𝑇

𝜇
 and air density is 𝜌 =

𝑃

𝑅𝑇
, where 𝛾  represents the adiabatic index, 𝑅,

𝜇, 𝑇 and 𝑃  are defined as the molar gas constant, the mean molar mass of air,  the air 

temperature, and the ambient pressure, respectively. Acoustic impedance will decrease with 

the increase of temperature (Supplementary Figure S4-1(b)). Impedance modulation up to 

tens of percents is easy to achieve using suitable temperature controlling strategies, which 

may be leveraged to further increase the bandwidth of the topologically nontrivial band gap 

(Figure 4-1(e)). Moreover, when thermal modulation is applied, the band structure folds 

along the frequency axis. By introducing impedance modulation to break temporal 

symmetry, degeneracy is lifted by some degrees related to the modulation scheme at the 

diagonal direction of the double-trimer lattice. Black lines show the band structure for such a 

unit lattice in which the band gap opens at the kx direction in the frequency ranges of two 

dipolar resonances. Dipolar modes can be considered as a superposition of counter-rotating 

band states 𝑝𝑥 ± 𝑖𝑝𝑦, which is similar to the rotating modulation strategy. K and K’ points 

also coincide well with the peak-transmission frequencies.  

 

    

           

Figure 4-1. (a) The hexagonal lattice of acoustic trimers. Each trimer is composed of 

three connected hollow circulators and resctangular channels. The inner media is air. 
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(b) The periodically modulated and distributed acoustic impedance of each circulator, 

with the modulation scheme of 𝟎 ℃, 𝟗𝟎 ℃ and 𝟑𝟎𝟎 ℃ throughout the double-trimer 

lattice. (c) A doubly degenerate dipolar resonance at 6.85-7 kHz. (d) The next resonant 

range, occurring at 8.6-8.85 kHz, due to one degenerate dipolar resonance. The colour 

legend denotes the acoustic pressure distribution. (e) Camparison between the band 

structure with (black curves) or without (red dots) modulation. 

A semi-analytical model[137, 155] considering the impedance matching issue for the 

calculation of the transmission coefficients at output ports 1 and 2 is, 

                                           𝑇0→1 = |
2

3
(

𝑒
−
4𝜋𝑖
3

1−
𝑖(𝑤−𝑤−)

𝛾−

+
𝑒
−
2𝜋𝑖
3

1−
𝑖(𝑤−𝑤+)

𝛾+

)|                                      (4-1) 

                                           𝑇0→2 = |
2

3
(

𝑒
−
2𝜋𝑖
3

1−
𝑖(𝑤−𝑤−)

𝛾−

+
𝑒
−
4𝜋𝑖
3

1−
𝑖(𝑤−𝑤+)

𝛾+

)|                                      (4-2) 

where, 𝛾± denotes the inverse of related decay times to the input port (port 0), output port 1 

and 2, which are located at the azimuthal positions 𝜑 = 0, 2𝜋/3 𝑎𝑛𝑑 4𝜋/3, respectively. 

Due to symmetry, 𝛾+ and 𝛾− are usually equal, i.e. 𝛾+ = 𝛾− = 𝛾. In order to achieve 𝑇0→1 =

1 𝑎𝑛𝑑 𝑇0→2 = 0  at the frequency 𝑤 = 𝑤0 , when the cavity modes are split, the optimal 

nonreciprocal performance (the ratio of 𝑇0→1/𝑇0→2  is maximum or minimum) can be 

achieved at 𝑤± = 𝑤0 ± 𝛾±/√3. After considering the eigenfrequencies of the right and left-

handed modes given by 𝑤± = 𝑤0 ±𝑚𝑐𝑒𝑓𝑓/𝑅𝑒𝑓𝑓, we can get the optimal analogous speed (in 

the condition of optimal nonreciprocal performance) created by impedance modulation is 

𝑐𝑜𝑝𝑡 = 𝛾𝑅𝑒𝑓𝑓/√3 . The integer number m is the azimuthal order. 𝑤0  is the resonance 

frequency and 𝑅𝑒𝑓𝑓 = (𝑅𝑖𝑛𝑛𝑒𝑟 + 𝑅𝑜𝑢𝑡𝑒𝑟)/2 is the effective radius. This trimer structure can 

be considered as three interconnected lumped elements, and the related impedance is 𝑍𝑖 =

 𝜌𝑐 = (𝜌0 + 𝜌𝑖)(𝑐0 + 𝑐𝑖) . We can employ the impedance translation theorem[188] or 

simulation results to obtain the effective impedance 𝑍𝑒𝑓𝑓 and the effective density 𝜌𝑒𝑓𝑓 for 

the whole trimer unit, while the effective speed is set as 𝑐𝑒𝑓𝑓 =
𝑍𝑒𝑓𝑓

𝜌𝑒𝑓𝑓
− 𝑐0. The related design 

strategy can be based on that. 
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4.3 Topological performance 

As it is shown in Figure 4-2, different groups of temperature-distribution-modulation 

schemes are applied to investigate nonreciprocal performance in each trimer unit (one input 

port connecting with two output ports), which is significant to guide the design of topological 

device. Generally, higher temperature distribution difference exhibits better and wider 

broadband nonreciprocal performance. In terms of acoustic output energy difference, the 

related ratio of the the highest temperature output port divided by the middle-high 

temperature output port can be in the range of 4-100, which means the major acoustic energy 

would transmit in one direction in peak frequency ranges. Efficient nonreciprocal 

performance is demonstrated in two resonant frequency regions, even in a small temperature 

gradient within three metamolecules of each trimer. This investigation certificates an 

efficient acoustic nonreciprocal performance can be achieved within a wide thermal 

modulation. The following modulation disorder robustness and impedance matching (see 

Figure S4-2 in supplementary material) issue are designed based on the efficient 

nonreciprocal performance within a lattice of acoustic Floquet topological insulators. 

Moreover, as stated by Alu et al,[47] this type of impedance modulation scheme has the 

capability of breaking time-reversal symmetry, while this modulation is also too weak to 

resonantly couple different Floquet orders. The opened band gap has topological nature of 

the first Chern class[51] as expected, which is characterized by a non-vanishing topological 

invariant.[126] To understand the topological properties induced by the impedance 

modulated system a semi-analytical approach based on the derivation of the effective 

Hamiltonian of the impedance-dependent tight-binding model[53] is proposed (see section 3 

of supplementary material). This allows a traditional characterization of this modulated 

topological system based on topological invariants. 



 

62 

 

 

Figure 4-2. Normalized transmission coefficients of pressure at different temperature 

distributions in a single trimer (the upper left inserted trimer structure), as the 

temperature distribution of the acoustic input metamolecule remains is 𝟎 ℃, while two 

outputs are shown in the above legend. Curves with same colour represents the output 

values in two output ports, for the highest temperature output port relates to the upper 

curve (port 1) and the middle-high temperature output port relates to the lower curve 

(port 2). 

As it is shown in Figure 4-3, the acoustic transmission edge states based on Floquet 

topological insulators are robust against impedance modulation disorders. This extraordinary 

property is demonstrated by this input-output numerical experiment. In Figure 4-3(a), the 

impedance modulation scheme of each double-trimer lattice is perfectly ordered with mirror 

symmetry vertically, as the colours of red, green and yellow represent acoustic impedances 

induced by specific increasing temperatures. This regular array is compared with the 

disordered scenario as shown in Figure 4-3(c), whose trimers in the double-trimer lattice are 

not mirror symmetric but with anticlockwise rotating strategy. However, as it is shown in 

Figure 4-3(b, d), the acoustic intensity distributions all display the route of one-way edge 

transmission, demonstrating the topological protection is not affected by the modulation 

scheme within the lattice. Small part of the acoustic energy transmits into the bulk because a 
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Floquet insulators system in ideal condition should have infinite units to avoid reflection in 

edge, or the temperature modulation should be further improved to achieve better effect. The 

handedness of the modulation scheme within the trimers mostly defines the topological 

properties of this lattice structure. Thus, our modulation scheme based on the change of 

temperature in each metamolecule does not have to be specific or uniform throughout the 

lattice structure. The strategy of changing temperature owns advantages in realizing dynamic 

control and possibility of miniaturization for topological insulator structures. Fundamentally, 

the on-site part of the Hamiltonian can decouple the effect of the modulation from the phase 

of the Bloch state.[189] This is possible as the resonant nature of trimers guarantees that the 

on-site energy is confined within each resonator. Moreover, by tailoring boundaries with or 

without modulation, excitation of a one-way edge mode and its propagation along an 

irregularly shaped domain wall are observed (section 3 of supplementary material). Our 

design based on Floquet topological insulators, takes a significant step towards the practical 

applications of topologically protected, broadband and dynamic controlling acoustic systems. 

 

 

Figure 4-3. (a) The simplified modulation scheme for two trimers in the double-trimer 

lattice are mirror symmetric with each other, as the colours of red, yellow and green 

represent acoustic impedances induced by the temperatures of 𝟎 ℃, 𝟑𝟎𝟎 ℃ and 𝟗𝟎 ℃, 

respectively. (b) The one-way edge transmission in the modulation scheme of (a), as the 

arrows show a lower transmission edge route. (c) The modulation scheme for every 



 

64 

 

double-trimer lattice is not mirror symmetric, while the right trimer is anticlockwise 

rotating around the left trimer. (d) The edge transmission in the modulation scheme of 

(c), as the arrows also show an upper transmission edge route. 

In this work, the design of the Floquet topological insulator systems based on the thermal 

modulation is applied to demonstrate efficient topological performance with the possibilities 

of broadband transmission, dynamic control and miniaturization. Different from the 

previously studied modulation methods, such as introducing fluid flow within cavities or 

controlling the volume of each metamolecule, the designed modulation disorder systems and 

topologically protected edge mode directly control the temperature in each metamolecule. 

This helps to realize different effects of acoustic impedance matching for trimer units, which 

can host gapless edge states. This unique controlling strategy can expand the engineering 

toolkit of acoustic topological applications, especially in the area of miniaturization of 

airborne acoustics, as thermal control can support lumped elements to generate the effect of 

breaking time-reversal symmetry. 

4.4 Supplementary material 

4.4.1. Acoustic transmission model configuration and simulation  

 

(a)                                                (b) 

   
 

Figure S4-1| Detailed model configuration and impedance. (a) This trimer unit has one 

input port and two output ports. (b) The acoustic impedance changes in different 

temperature. 
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As shown in Figure S4-1(a), the inner and outer radii of the hollow circulator are set as 5 

mm and 10 mm, respectively. The distance between two closest hollow circulators is 30 mm. 

The interconnected channel within trimer structure is with the width of 1 mm. For the 

channel connecting two trimer structures, the width is 5 mm and the length is 24 mm. There 

are one input port and two output ports. 

For the thermal simulation, we employed the simulation of thermal modulation, considering 

the surface radiation and air convection inside all the hollow structures. Our numerical model 

includes predefined Multiphysics coupling effect for the non-isothermal flow in which the 

density depends on temperature. Also, this model couples the compressible flow (Ma<0.3) 

with heat transfer in fluid[175, 178], and the effect of thermal radiation. The Non-Isothermal 

Flow and Conjugate Heat Transfer interfaces incorporate the fully compressible formulation 

of the continuity and momentum equations. Some basic governing equations of heat transfer 

with radiation and compressible flow are written as, 

          𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝒖 ∙ ∇𝑇) + ∇ ∙ [−𝑘∇𝑇 + 𝜀(𝐺 − 𝑛2𝜎𝑇4)] = 𝛼𝑝𝑇 (

𝜕𝑝

𝜕𝑡
+ 𝒖 ∙ ∇𝑝) + 𝜏 ∶ ∇𝒖 + 𝑸         (S4-1) 

                 𝜌
𝜕𝒖

𝜕𝑡
+ 𝜌(𝒖 ∙ ∇)𝒖 = ∇ ∙ [−𝑝𝑰 + 𝜇(∇𝒖 + (∇𝒖)𝑇) −

2

3
𝜇(∇ ∙ 𝒖)𝑰] + 𝑭              (S4-2) 

                                                           
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0,                                                 (S4-3) 

where, ρ is density, Cp is the specific heat capacity at constant pressure, T is the absolute 

temperature, u is the velocity vector, k is the thermal conductivity, ε is the emissivity, G is 

the incoming radiative flux, n is the refractive index, σ is the Stefan–Boltzmann constant, αp 

is the coefficient of thermal expansion, τ is the viscous stress tensor, Q contains heat sources 

other than viscous dissipation, and F is the body force vector. 

By adjusting heat flux to different lumped element in each trimer, we can achieve relative 

distributive constant temperatures. In Figure S4-1(b), the acoustic impedance as the change 

of temperature is displayed. We can easily find that the modulation of each trimer can be tens 

of percents for impedance. For the full-wave numerical experiment of acoustic topological 

performance, we coupled the simulated thermal modulation distributions of air density and 

temperature with full-wave acoustic simulation to achieve the acoustic transmission process. 
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4.4.2. Acoustic analogue of couple-mode theory 

According to the temporal coupled-mode theory[137, 155] based on Fano resonance[137] in 

optical resonators, and also in combination of the 120-degree rotational symmetry this trimer 

unit, we can obtain the equation (S4-4). Here, K and D, represents the coupling coefficients 

between the resonances and the waves at the azimuthal positions 0, 2π/3 and 4π/3, which 

corresponds to the input port, port 1 and port 2, respectively. This model is valid only when 

the characteristic length of the circulator is far smaller than the resonance frequency, which is 

confirmed in the simulation results.  

 𝑲∗ = 𝑫 =

{
 
 

 
 √2𝛾+/3 √2𝛾−/3

𝑒−
2𝜋𝑖

3 √2𝛾+/3 𝑒
2𝜋𝑖

3 √2𝛾−/3

𝑒−
4𝜋𝑖

3 √2𝛾+/3 𝑒
4𝜋𝑖

3 √2𝛾−/3}
 
 

 
 

                                 (S4-4) 

The equation (S4-4) can then be substituted into the temporal coupled-mode theory 

consisting of three resonator coupled with 3 ports. Where the amplitudes a+ and a− of the 

clockwise and counterclockwise modes of this acoustic trimer under angular-momentum 

biasing can be denoted as: 

                     
d𝑎+

dt
= (−𝑖𝑤+ − 𝛾+)𝑎+ +√

2𝛾+

3
𝑆1
+ + 𝑒−

2𝜋𝑖

3 √
2𝛾+

3
𝑆2
+ + 𝑒−

4𝜋𝑖

3 √
2𝛾+

3
𝑆3
+          (S4-5) 

                       
d𝑎−

dt
= (−𝑖𝑤− − 𝛾−)𝑎− +√

2𝛾−

3
𝑆1
+ + 𝑒

2𝜋𝑖

3 √
2𝛾−

3
𝑆2
+ + 𝑒

4𝜋𝑖

3 √
2𝛾−

3
𝑆3
+,            (S4-6) 

where S1
+, S2

+ and S3
+  are the excitation signals at related ports. Here, S1

+, S2
+ and S3

+  are 

signals from the input port, port 1 and port 2, respectively. The output signals S1
−, S2

− and S3
− 

can be derived from the interferences of resonance-assisted coupling, coupling through a 

direct pathway of the incoming and outgoing waves. The related equations of output signals 

are shown as: 

                                           𝑆1
− = −𝑆1

+ +√
2𝛾+

3
𝑎+ +√

2𝛾−

3
𝑎−                                         (S4-7) 

𝑆2
− = −𝑆2

+ + 𝑒
2𝜋𝑖

3 √
2𝛾+

3
𝑎+ + 𝑒

−
2𝜋𝑖

3 √
2𝛾−

3
𝑎−                                   (S4-8) 

𝑆3
− = −𝑆3

+ + 𝑒
4𝜋𝑖

3 √
2𝛾+

3
𝑎+ + 𝑒

−
4𝜋𝑖

3 √
2𝛾−

3
𝑎−.                                  (S4-9) 



 

67 

 

Here, we assume the excitation is harmonic and only works input port for S1
+ = e−iwt,  S2

+ =

S3
+ = 0. For the variable change of amplitudes α± = a±e

−iwt, we can achieve the following 

equations: 

−iw𝑎+ = (−𝑖𝑤+ − 𝛾+)𝑎+ +√
2𝛾+

3
                                      (S4-10) 

−iw𝑎− = (−𝑖𝑤− − 𝛾−)𝑎+ +√
2𝛾−

3
                                    (S4-11) 

Then we can achieve the solutions as: 

𝛼± = 𝑖√
2𝛾±

3
/(𝑤 − 𝑤± + 𝑖𝛾±)                                       (S4-12) 

𝑆11 = −1 + √
2𝛾+

3
𝛼+ +√

2𝛾−

3
𝛼−                                    (S4-13) 

𝑆21 = 𝑒
2𝜋𝑖

3 √
2𝛾+

3
𝛼+ + 𝑒

−
2𝜋𝑖

3 √
2𝛾−

3
𝛼−                                   (S4-14) 

𝑆31 = 𝑒
4𝜋𝑖

3 √
2𝛾+

3
𝛼+ + 𝑒

−
4𝜋𝑖

3 √
2𝛾−

3
𝛼−                                   (S4-15) 

where, γ±  denotes the inverse of related decay times to the Ports 0, 1 and 2, which are 

located at the azimuthal positions φ = 0, 2π/3 and 4π/3, respectively. Due to symmetry, γ+ 

and γ− are usually equal, i.e. γ+ = γ− =. In order to achieve T0→1 = 1 and T0→2 = 0 at the 

frequency w = w0 when the cavity modes are split, optimal topological performance can be 

achieved at w± = w0 ± γ±/√3. After considering the eigenfrequencies of the right and left-

handed modes given by w± = w0 ±mceff/Reff , we can get the optimal analogous speed 

created by impedance modulation is copt = γReff/√3. The integer number m is the azimuthal 

order. w0 is the resonance frequency and Reff is the effective radius, where effective acoustic 

speed changes with air temperature in the form of √k′ ∙ p/ρ, as k′ is the ratio of specific heat. 

This trimer structure can be considered as three lumped elements, and the related impedance 

is Zi =  ρc = (ρ0 + ρi)(c0 + ci) . We can employ impedance translation theorem[188] or 

simulation result to get the effective impedance Zeff and effective density ρeff, then ceff =

Zeff

ρeff
− c0. Related design strategy can be based on that by considering the factors of the size, 



 

68 

 

geometry type and temperature distribution, etc. Then we can get the transmission 

coefficients at ports 1 and 2, 

                                       𝑇0→1 = |
2

3
(

𝑒
−
4𝜋𝑖
3

1−
𝑖(𝑤−𝑤−)

𝛾−

+
𝑒
−
2𝜋𝑖
3

1−
𝑖(𝑤−𝑤+)

𝛾+

)|                                       (S4-16) 

                                       𝑇0→2 = |
2

3
(

𝑒
−
2𝜋𝑖
3

1−
𝑖(𝑤−𝑤−)

𝛾−

+
𝑒
−
4𝜋𝑖
3

1−
𝑖(𝑤−𝑤+)

𝛾+

)|                                       (S4-17) 

 

4.4.3. Topological proteced edge mode and analysis 

 
Figure S4-2| Topological protected acoustic edge mode. Excitation of a one-way edge 

mode and its propagation along an irregularly shaped domain wall. 

As shown in Figure S4-2, the top structure consists of units without modulation, and the 

down structure consists of units with the modulation of Figure 4-3(c). It shows the possibility 

of creating dynamically reconfigurable and backscattering immune nonreciprocal 

waveguides in temperature modulation.  

This designed geometry can be mapped onto a tight-binding Hamiltonian related to a 

hexagonal lattice with nearest-neighbour hopping, which is modified to consider the 

interconnected waveguides of the metamolecules 

�̂� = ∑ 𝜀�̂�(𝑍)|𝐦𝑚 𝐦| + ∑ (𝐽|𝐧𝑚,𝑛 𝐦| + 𝐽∗|𝐦𝐧|),                     (S4-18) 
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where |m = |m1, m2, m3 is a vector whose three parts correspond to the three acoustic 

circulators consisting in each node of the hexagonal lattice. The impedance-independent 

hopping terms are defined by a diagonal 3 × 3 matrix Ĵm = JÎ, while the on-site term can be 

defined as, 

𝜀�̂� = (

𝑤0 + 𝛿𝑤1(𝑍) 𝑘 𝑘∗

𝑘∗ 𝑤0 + 𝛿𝑤2(𝑍) 𝑘
𝑘 𝑘∗ 𝑤0 + 𝛿𝑤3(𝑍)

),                 (S4-19) 

where δw1(Z), δw2(Z), and δw3(Z) are the impedance modulation for each component. The 

related parameters introduced here are based on the form of the Hamiltonian: w0 is the on-

site energy (the lowest resonance frequency of acoustic circulators), and k is the on-site 

coupling between acoustic circulators of the same trimer. 

Topological invariant of each acoustic band can be extracted by full-wave finite-element 

simulation in equations (S4-15 and S4-16), that is, Chern numbers, Cn =
1

2π
∬(∂kxAy −

∂kyAx)d
2k. Here, the numerically simulated eigenstates |pn of the effective Hamiltonian 

Ĥeff and the Berry connection A = −ipn| ∂k|pn are employed. The integration of Berry 

curvature over the entire Brillouin zone indicates the four interested bands yielding the Chern 

number Cn = {±1, 0, 0, ∓1}  for the right-handedness/left-handedness modulation in this 

trimer structure.  
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Chapter 5  

5 Study of acoustic wave propagation in micro- and 
nanochannels 

In order to investigate the topological acoustics in ultrasonic or in a micro- or nanostructure 

to realize miniaturization, an analytical model that can effectively clarify the acoustic 

transmission mechanism in micro- and nanochannels is necessary. Moreover, the acoustic 

wave propagating through porous nanomaterials like aerogels, MEMS devices, high-

frequency acoustic transmission devices or near-vacuum systems, possesses relatively high 

Knudsen numbers, normally in the transition regime (0.1<Kn<10). In this regime, the 

characteristic length of micro- and nanochannels is comparable with the mean free path of 

monatomic gases, in which the classical continuum theory breaks down. In this paper, a 

theoretical model with the second-order slip boundary is proposed to describe acoustic wave 

propagation in micro- and nanochannels. The proposed theoretical model provides analytical 

solutions for the complex wavenumber, attenuation coefficient and other related transmission 

variables as function of a Knudsen number in the early transition regime (0.1<Kn<1.0), 

which are valuable for understanding acoustics at micro- and nanoscales. In addition, 

numerical simulations using the molecular-based DSMC method for dilute argon gas are 

carried out to validate the model and its analytical results. Findings suggest that such a model 

can effectively predict the acoustic behaviour in micro- and nanochannels. It is noted here, 

this Chapter is based on author’s publication: Liu X, Cai X, Guo Q, et al. Study of acoustic 

wave propagation in micro-and nanochannels[J]. Wave Motion, 2018, 76: 51-60. And all the 

figures are used with the permission from ref. [128]. 

5.1 Introduction 

Advancing the understanding of wave propagation through rarefied gases in porous 

nanomaterials, MEMS-like inertial sensors, resonant filters, and actuators[190, 191]-have 

been increasingly in demand. Continuum-based flow models have been often used to study 

the acoustic transmission issues analytically and numerically[188]. However, the extensive 

development of acoustical porous nanomaterials and miniaturization of MEMS devices at 

sub-atmospheric pressures, which cannot be modelled with sufficient accuracy by traditional 
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continuum theory, demand a more fundamental understanding of acoustics at micro- and 

nanoscales. In contrast, an analytical theory or model is always preferable and valuable for 

practical uses. 

A theoretical model that is able to describe acoustic transmission in the transition regime can 

be applied to investigate sound propagation in micro- and nanostructures or in rarefied gas 

conditions, and therefore provide guidance in the design of nanomaterials and micro- or 

nanodevices. A detailed analysis of such phenomenon requires consideration of the rarefied 

effect, which is denoted by the Knudsen number as 𝐾𝑛 = 𝜆/𝐻, where 𝜆 is the mean free path 

for a specific gas and H is the characteristic hydrodynamic length. Based on the Knudsen 

number, gas flow can be classified into three major flow regimes: the continuum regime 

(Kn<0.1), where the flow field can be described accurately by classical continuum theories; 

the transition regime (0.1<Kn<10), where continuum-theory-based descriptions fail because 

the ratio of gas-structure collisions to intermolecular collisions becomes significant; and the 

free-molecular regime (Kn>10), where there are nearly no collisions among the 

molecules[192].  

Many MEMS devices and nanomaterials like aerogels fall in the early transition regime. The 

increasing popularity of nanomaterials and applications of MEMS devices demand more 

investigations of acoustics in the transition regime. Furthermore, these investigations can be 

applied to cases where either characteristic time or length scale is assumed to be smaller than 

that of the collision period or the mean free path of a specific gas, respectively. Such 

conditions can be found in the high-frequency acoustic transmission or near-vacuum 

systems[193]. Recently, realizations of negative effective density and slower effective 

acoustic speed of some acoustic metamaterials and lightweight sound absorbing materials 

like aerogel[139] also demand full investigation of acoustic transmission in the transition 

regime. In the area of topological acoustics[33], when the characteristic hydrodynamic length 

approaches the nanoscale, the related analytical theory of acoustics is also very important. 

Even for classical resonance structures, the analysis of acoustic mass, resistance and 

compliance may show some differences at the micro- and nanoscales. These potential 

applications indicate the importance of the study of acoustic wave propagation in the 

transition regime. 
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The pioneering theoretical and experimental research for acoustic wave propagation in the 

non-continuum regime was done by Greenspan[194] and Meyer et al.[195] in the 1950s, and 

has since attracted many researchers to study related issues. Initially, theoretical works were 

focused on acoustic propagation in infinite or semi-infinite geometries, where one moving 

boundary works as an acoustic source[193, 196, 197], and specific propagation properties 

like damping effects, wave speed and wavenumber in different external conditions 

(temperature, gases type and humidity) were studied. Afterwards, different geometrical 

cross-sections and gas-structure interaction models were proposed to investigate acoustic 

wave propagation in the transition regime analytically and numerically[95, 96]. Later, 

contributions were made on a confined configuration, setting one stationary boundary as a 

“resting receiver” to study the effects of acoustic wave reflection and other related 

transmission issues[198-200]. The majority of studies in this area have assumed linearized 

small-amplitude acoustic wave solutions, while few have examined nonlinear large-

amplitude issues[201]. 

To investigate wave propagation in small confined geometries with specific boundary 

conditions, Hadjiconstantinou[91] in 2003 developed a model with the first-order slip 

boundary condition and provided an analytical solution for acoustic wave propagation in 

micro- and nanochannels, which was an extension of Lamb’s continuum treatment[92, 93]. 

In 2005, considering the effects of the Knudsen layer and using the second-order velocity 

boundary condition, Hadjiconstantinou[94] solved the oscillatory shear-driven Couette flow 

problem using the Navier-Stokes approximation and achieved good agreement with DSMC 

results up to Kn ≈ 0.4. Kozlov et al.[95] investigated acoustical properties in pores of simple 

geometries with the first-order approximation and validated their results with experimental 

data of dynamic density at low frequencies. Umnova et al.[96] developed an analytical model 

to describe acoustic propagation in microfibrous materials while accounting for the slip 

boundary effect, where the homogenous method used was also verified by finite element 

method (FEM) simulation. In terms of numerical investigation, various simulation methods 

have been proposed, such as the linearized Boltzmann method[97-99], Lattice Boltzmann 

method[100-102], Bhatnagar–Gross–Krook (BGK) model[103, 104], molecular dynamics 

(MD) model[105-107], and DSMC[80, 108]. Based on our literature survey, the DSMC 

method, initially proposed by G. A. Bird[80], is the most widely used tool for the simulation 



 

73 

 

of acoustic wave propagation at the micro- and nanoscales and is renowned for its accuracy 

and time efficiency. Derivative DSMC methods, such as Wang and Xu’s unified gas-kinetic 

scheme DSMC (UGKS-DSMC)[109], Fan and Shen’s information preserving DSMC ( IP-

DSMC)[110], Mohssen and Hadjiconstantinou’s Low-Variance Deviational Simulation 

Monte Carlo (LVDSMC)[111], were proposed to improve the performance of the traditional 

DSMC method. All these works mentioned above can only extend the traditional continuum 

theory up to Kn ≈ 0.4 or even smaller for the acoustic wave propagation in micro- and 

nanochannels, so there is still a need to develop an analytical solution suitable for higher 

Knudsen numbers. 

In this paper, we investigate acoustic wave propagation in micro- and nanochannels that fall 

in the transition regime. Specifically, an accurate and easy-to-use theoretical model and 

associated analytical solutions is developed using the second-order velocity and temperature 

slip boundary conditions, and verified by DSMC simulations. Based on the modified acoustic 

slip surface definition of the second-order slip boundary condition in gas flow, we develop a 

theoretical and analytical model that is able to provide a detailed description of acoustic wave 

propagation at relatively high Kn numbers, up to 1.0. Based on this model, we can extract 

properties such as the acoustic propagation constant, complex effective density, effective 

acoustic speed and characteristic impedance. A DSMC program based on Bird’s DS2V 

simulation tool is developed to validate our analytical results in the transition regime. 

5.2 Theory for acoustic wave propagation in narrow 

channels 

The basic wave propagation theory in narrow channels is derived from Hadjiconstantinou’s 

method[91], and some data setups are based on Hadjiconstantinou and Garcia’s paper[202]. 

Specifically, the long-wavelength approximation is used to assume that the axial component 

of the viscous term is negligible, and the pressure is assumed to be uniform in the cross-

section such that the velocity and temperature interaction fields are decoupled. Also, the 

Maxwell diffusive model is used to model the gas-structure interactions in a two-dimensional 

long smooth channel, where the channel length L is much longer than the height H (see 

Figure 5-1).  
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Based on the acoustic property of fluctuation, the gas velocity, pressure, density, 

temperature fields is defined respectively as 

𝑢(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦) exp(𝑖𝑤𝑡),                                          (5-1a) 

                                              𝑃(𝑥, 𝑡) = �̃�(𝑥) exp(𝑖𝑤𝑡) + 𝑃0,                                          (5-1b) 

 𝜌(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦) exp(𝑖𝑤𝑡)+𝜌0,                                       (5-1c) 

𝑇(𝑥, 𝑦, 𝑡) = �̃�(𝑥, 𝑦) exp(𝑖𝑤𝑡)+𝑇0,                                      (5-1d) 

where 𝑃0, 𝜌0, 𝑇0 are the equilibrium values of pressure, density and temperature for gas flow 

in the channel, respectively. �̃�(𝑥, 𝑦), �̃�(𝑥), �̃�(𝑥, 𝑦), �̃�(𝑥, 𝑦) are defined as the fluctuation 

amplitudes of velocity, pressure, density and temperature, respectively. 

 

Figure 5-1. Narrow channel geometry for acoustic wave propagation from the left to 

right side, exhibiting fully diffuse reflection on the upper and lower walls. 

As stated in Lamb’s approach[92], these narrow micro- and nanochannels can be assumed to 

be a quasi-static and isothermal system. Thus, as demonstrated by Hadjiconstantinou[91], the 

propagation characteristics can be determined by substituting the pressure gradient with the 

gas average particle displacement 𝜉, as shown below: 

�̃�𝑏 = −
1

𝑅

𝑑�̃�

𝑑𝑥
,                                                         (5-2a) 

𝑑𝑃

𝑑𝑥
= −(

𝜕𝑃

𝜕𝜌
)
𝑎𝑣
𝜌0

𝜕2𝜉

𝜕𝑥2
,                                               (5-2b) 
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where R is defined as the flow resistance and �̃�𝑏 is the gas bulk velocity in the cross-section 

of the narrow channel. (𝜕𝑃/𝜕𝜌)𝑎𝑣 denotes that this derivative is an average value. Moreover, 

assuming negligible edge effect in a long narrow channel undergoing the isothermal 

propagation process, the related equations for the steady state can be derived, as shown 

below: 

𝑖𝑤𝜉 =
𝜌0(𝜕𝑃/𝜕𝜌)𝑇

𝑅

𝜕2𝜉

𝜕𝑥2
,                                                 (5-3) 

𝛽2 ≡ (𝑚 + 𝑖𝑘)2 =
𝑖𝑤𝑅

𝑃0
,                                              (5-4) 

where 𝛽 (𝑢𝑏 ∝ exp(−𝛽𝑥)) is defined as the complex propagation constant, 𝑘 = 2𝜋/𝑙 is the 

complex wavenumber, m is the attenuation coefficient and l is the complex wavelength.  

When an acoustic wave transmits through a narrow channel, the fluid inertia and heat 

conduction will affect the transmission equations. The long-wavelength approximation issue 

is corrected for by solving the linearized momentum and energy equations. The linearized 

momentum equation transformed by amplitude �̃� and �̃� is 

𝜕2𝑢

𝜕𝑦2
+ 𝜙2�̃� =

1

𝜇

𝑑�̃�

𝑑𝑥
,                                              (5-5) 

where 𝜙2 = −𝑖𝜌0𝑤/𝜇. Based on the discussion in Stinson et al.[93], the assumption of a 

constant pressure field in the cross-section of the channel and negligible axial component of 

the viscous term requires |𝜙2| ≫ |𝛽2| and |𝛽𝐻| ≪ 1.  

The linearized energy equation transformed by amplitudes �̃� and �̃� is 

𝜕2�̃�

𝜕𝑦2
+ 𝜓2�̃� = 𝜓2

(𝛾−1)

𝛾

𝑇0

𝑃0
�̃�,                                      (5-6) 

where 𝜓2 = −
𝑖𝜌0𝑐𝑝

𝜅
= 𝜙2𝑃𝑟, 𝜅 is the thermal conductivity, cp is the specific heat in constant 

pressure, Pr is the Prandtl number and 𝛾 is the ratio of specific heats. 



 

76 

 

5.3 The complete solutions based on slip boundary 

conditions 

The solutions of Boltzmann equations by Cercignani[203] and Hadjiconstantinou[91] proved 

that, for Kn < 0.1, the accurate hydrodynamic fields of bulk flow properties can be achieved 

with the continuum description of specific slip boundary conditions. Due to the existence of 

the Knudsen layer near the boundary wall in the transition regime, whose thickness is 

normally 1.5𝜆, the continuum description will not be accurate[204]. Consequently, some 

modifications must be made to extend the continuum theories for a convenient calculation of 

acoustic propagation in a narrow channel. Hadjiconstantinou[91] used the first-order slip 

boundary condition to make the analytical calculation effective around Kn = 0.1. Here, we 

use second-order slip boundary conditions to extend the analytical calculations of acoustic 

propagation to the transition regime. For engineering applications, the momentum 

accommodation coefficient is set to be unity, so that the general form yields 

𝑢 − 𝑈𝑤𝑎𝑙𝑙 = 𝐶1𝜆 (
𝜕𝑢

𝜕𝑛
)
𝑤𝑎𝑙𝑙

− 𝐶2𝜆
2 (

𝜕2𝑢

𝜕𝑛2
)
𝑤𝑎𝑙𝑙

,                                  (5-7) 

𝑇 − 𝑇𝑤𝑎𝑙𝑙 = 𝐶3𝜆 (
𝜕𝑇

𝜕𝑛
)
𝑤𝑎𝑙𝑙

+ 𝐶4𝜆
2 (

𝜕2𝑇

𝜕𝑛2
)
𝑤𝑎𝑙𝑙

,                                   (5-8) 

where 𝐶1, 𝐶2, 𝐶3 𝑎𝑛𝑑 𝐶4 represent slip coefficients, 𝑈𝑤𝑎𝑙𝑙 and 𝑇𝑤𝑎𝑙𝑙 are the wall velocity and 

temperature, respectively. Based on the condition of symmetric channel and velocity slip 

boundary conditions at walls, the solution of the momentum equation in acoustic propagation 

is 

 �̃� =
1

𝜇𝜙2
𝑑�̃�

𝑑𝑥
(1 +

𝑐𝑜𝑠𝜙𝑦

𝐶1𝜆𝜙𝑠𝑖𝑛
𝜙𝐻

2
+𝐶2𝜆2𝜙2𝑐𝑜𝑠

𝜙𝐻

2
−𝑐𝑜𝑠

𝜙𝐻

2

),                        (5-9) 

and thus the bulk velocity is 

�̃�𝑏 =
1

𝐻
∫ �̃�𝑑𝑦 =
𝐻

2

−
𝐻

2

1

𝜇𝜙2
𝑑�̃�

𝑑𝑥
(1 +

2

𝐻𝜙

1

𝐶1𝜆𝜙+𝐶2𝜆2𝜙2𝑐𝑜𝑡
𝜙𝐻

2
−𝑐𝑜𝑡

𝜙𝐻

2

) = −
1

𝑅

𝑑�̃�

𝑑𝑥
.        (5-10) 
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Similarly, based on the condition of symmetric channel and temperature jump boundary 

conditions at the walls, the solution of the energy equation in acoustic propagation is 

�̃�(𝑥, 𝑦) =
(𝛾−1)

𝛾
�̃�
𝑇0

𝑃0
(1 +

𝑐𝑜𝑠𝜓𝑦

𝐶3𝜆𝜓𝑠𝑖𝑛
𝜓𝐻

2
−𝐶4𝜆2𝜓2𝑐𝑜𝑠

𝜓𝐻

2
−𝑐𝑜𝑠

𝜓𝐻

2

),                  (5-11) 

and the average temperature for every cross-section in the channel is 

�̃�𝑎𝑣(𝑥) =
1

𝐻
∫ �̃�𝑑𝑦 =
𝐻

2

−
𝐻

2

(𝛾−1)

𝛾
�̃�
𝑇0

𝑃0
(1 +

2

𝜓𝐻

1

𝐶3𝜆𝜓−𝐶4𝜆2𝜓2𝑐𝑜𝑡
𝜓𝐻

2
−𝑐𝑜𝑡

𝜓𝐻

2

).        (5-12) 

During no-slip isothermal flow, following Lamb’s analysis, we have|𝜓𝐻/2|~|𝜙𝐻/2| →

0,
𝜌0

𝑃0
(𝜕𝑃/𝜕𝜌)𝑎𝑣 → 1 (�̃� → 0). Assuming an ideal gas, based on the equation of state and the 

fact that �̃�𝑎𝑣 = �̃�, we find 

𝜌0

𝑃0
(
𝜕𝑃

𝜕𝜌
)𝑎𝑣 =

1

1−
𝑃0
𝑇0
(
𝜕�̃�

𝜕�̃�
)𝑎𝑣
=

1

1−
(𝛾−1)

𝛾
(1+

2

𝜓𝐻

1

𝐶3𝜆𝜓−𝐶4𝜆
2𝜓2𝑐𝑜𝑡

𝜓𝐻
2
−𝑐𝑜𝑡

𝜓𝐻
2

)

.              (5-13) 

Finally, the complete solution for propagation constant in this narrow channel is 

𝛽2 ≡ (𝑚 + 𝑖𝑘)2 =
𝑖𝑤𝑅

𝜌0(
𝜕𝑃

𝜕𝜌
)
𝑎𝑣

= −

𝑖𝑤𝜇𝜙2[1−
(𝛾−1)

𝛾
(1+

2

𝜓𝐻

1

𝐶3𝜆𝜓−𝐶4𝜆
2𝜓2𝑐𝑜𝑡

𝜓𝐻
2
−𝑐𝑜𝑡

𝜓𝐻
2

)]

𝑃0(1+
2

𝐻𝜙

1

𝐶1𝜆𝜙+𝐶2𝜆
2𝜙2𝑐𝑜𝑡

𝜙𝐻
2
−𝑐𝑜𝑡

𝜙𝐻
2

)

             (5-14) 

where the viscosity based mean free path 𝜆 = 4𝑐̅𝜇/(5𝑃0), in which 𝑐̅ = √8𝑘𝑏𝑇/(𝜋𝑚𝑚) is 

defined as the average gas molecular speed, 𝑚𝑚 is the molecular mass, 𝑘𝑏 is the Boltzmann 

constant and 𝜇 is the gas dynamic viscosity.  

Although very few investigations have focused on acoustic wave transmission at the micro- 

and nanoscales, there have been many studies conducted in the area of gas flow at narrow 

channels. Our study has been informed by previous studies listed in Table 5-2, which shows 

different slip coefficients deriving from past research on gas flow.  

Radtke and Hadjiconstantinou[205] used the LVDSMC method based on the BGK model 

and HS model to consider the corresponding constant volumetric heating implementation, 
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which makes the second-order velocity and temperature slip boundary conditions effective 

in the transition regime. Hadjiconstantinou[91] applied the solution of the linearized 

Boltzmann equation by Sone, Ohwada & Aoki[206] to obtain the first-order slip coefficients 

of acoustic propagation in a narrow channel. Li et al.[207] combined the effective relaxation 

time in the lattice Boltzmann model with Bosanquet-type effective viscosity to achieve an 

accurate slip boundary condition. Aubert and Colin[208] showed a strong correlation 

between experimental results and the predictions from the first-order slip boundary condition, 

and used the reflection coefficient and corresponding mass flow rate to calculate the second-

order slip coefficients. Wu[209] derived an improved second-order slip model from kinetic 

theory, which was also verified by the numerical result of the linearized Boltzmann equation. 

For all of above studies, the related experimental results were consistent with the analytical 

predictions. 

Table 5-2. Values of different slip coefficients 

References C1 C2 C3 C4 Remark 

Radtke and 
Hadjiconstantinou  

1.11 0.61 1.1545 -1.1 BGK model, LVDSMC, volumetric 
heating 

Radtke and 
Hadjiconstantinou  

1.11 0.61 2.127 -2.4347 HS model, LVDSMC, volumetric 
heating 

Hadjiconstantinou  1.1 0 2.0681 0 LBE 

Li et al.  1.0 0.8 0 0 LB model 

Aubert and Colin  1.0 1.125 0 0 N-S equation 

Wu  1.333 0.25 0 0 Kinetic-based theory 

Hadjiconstantinou  0 0 0 0 No-slip boundary condition 
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5.4 DSMC for the verification of acoustic wave 
propagation in a narrow channel 

DSMC method uses simulation molecules to represent a large amount of real molecules 

based on probabilistic simulation to solve Boltzmann equation for finite Knudsen number 

gas flows. Specially, molecule-surface collisions are calculated through probabilistic and 

phenomenological methods. In this simulation process, molecules are moved and collided in 

a realistic manner which could be directly coupled to physical space and time such that all 

the unsteady flow characteristics can be simulated.  As is shown by Wagner[210], at the 

limit of infinitesimal discretization and huge amount of numerical particles, the DSMC 

solution is consistent with the solution of the Boltzmann equation, provided that the time 

step is sufficiently small and enough ensemble samples are taken. Furthermore, the 

Chapman-Enskog expansion theory[211, 212] can provide a solution for the Boltzmann 

equation in the continuum form of the conservation theory. A detailed description of DSMC 

is provided by Bird[80], which includes all the gas-structure interaction models, gas 

collision models and sampling techniques.  

In this paper, the simulation of acoustic wave propagation in a narrow channel is based on 

the codes distributed by Bird’s research group. Using the DSMC program, the monatomic 

gaseous argon (hard-sphere diameter is 𝜎 = 3.66 × 10−10 𝑚 and molecular mass is 𝑚𝑚 =

6.63352 × 10−26 𝑘𝑔) is modelled in a two-dimensional channel with fully accommodating 

Maxwell gas-structure interactions based on the variable hard sphere (VHS) collision model. 

The gas pressure and temperature are set as 𝑃 = 1.013 × 105 𝑃𝑎  and  𝑇 = 273.15 𝐾 , 

respectively. The mean free path is calculated as 𝜆 = 6.31 × 10−8 𝑚.  

  The wave amplitude should be small enough to avoid nonlinear effects[202]. Especially in 

the case that the velocity amplitude 𝑣 ≪ 𝑐/𝑅′′, 𝑅′′ = 𝑐2𝜌/𝑤𝜇, where 𝑅′′ is defined as the 

acoustic Reynolds number, 𝜌 is the gas density, 𝜇 is the viscosity and c is acoustic speed, the 

viscous term can dominate the nonlinear term. At the high frequency range, the attenuation 

coefficient can be fairly high, such that the simulation domain does not need to be large to 

be effective, which serves to reduce computation time. In this paper, the simulated angular 

frequency is set to  6 × 108 𝑟𝑎𝑑/𝑠 , which corresponds to  4 < 𝑅′′ < 20 , and thus the 
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reasonable velocity amplitude should be around 𝑣0 ≈ 0.025𝑐  to avoid nonlinear effects. 

Correspondingly, the velocity is set to 10 m/s.  

For the setup of program design, the oscillatory piston boundary wall is activated during half 

of the period as a sound source at 𝑥 = 0 . During this unsteady flow, the time average 

calculation in steady flow is replaced by the ensemble average at every time step. To 

minimize the error produced by sampling, five cells per mean free path, five steps per 

collision time and two steps per transit time are chosen. Also, the nearest neighbour collision 

model is used to achieve required accuracy with fewer simulated particles. To ensure that 

each distributed cell size is less than  0.1𝜆 and the mean number of particles per cell exceeds 

100 in order to obtain satisfactory accuracy[202], the numerical time step in this unsteady 

simulation should be significantly small, that is, ∆𝑡 ≪ 𝜆/√2𝑘𝑏𝑇/𝑚𝑚 . Moreover, when it 

comes to the fluctuation issue, in order to guarantee enough acoustic resolution, the time step 

chosen should also satisfy ∆𝑡 ≪ 2𝜋/𝜔. Here, we set ∆𝑡 = 0.1𝜆/√2𝑘𝑏𝑇/𝑚𝑚, such that the 

largest ∆𝑡  is 1.8713 × 10−11 𝑠 , which is much smaller than 2𝜋/𝜔 ≈ 1.0472 × 10−8 𝑠 . 

Seven cases for 𝐾𝑛 = 0.1, 0.2, 0.4, 0.5, 0.7, 0.8, 1.0  are simulated and compared with the 

analytical results from Eq. (5-14) based on the attenuation coefficient, which defines the 

performance of acoustic energy dissipation in this channel as shown in Figure 5-2. 

 

Figure 5-2. Comparison between the simulation result and the analytical predictions of 

different slip models on attenuation coefficient for 𝒘 = 𝟔 × 𝟏𝟎𝟖 𝒓𝒂𝒅/𝒔. 
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As shown in Figure 5-2, all the above models show strong similarity to each other when 

Kn < 0.1. Beyond that range, for 0.1 < Kn < 1.0, Hadjiconstantinou’s first-order slip model 

and Wu’s kinetic-based model show a relative better approximation than other models 

compared to the simulation results. Two standard second-order models of rarefied gas flow 

based on BGK model and HS model provided by Radtke and Hadjiconstantinou have shown 

relative big difference compared to our simulation result, although BGK model shows a 

similar trend for the attenuation coefficient. Here we propose a new second-order slip model 

based on the fact of the oscillatory property for acoustic wave propagation in micro- and 

nanochannels, especially near the walls. The oscillatory wave will raise the slip velocity, and 

also lead to a high shear rate, which means that the velocity distribution of a slip layer using 

the classical second-order velocity slip boundary condition proposed by Karniadakis and 

Beskok[213] is not suitable. Zhang et al.[214]  proposed an adjustment second-order velocity 

slip model, which is in the form of  

 𝑢𝑠 − 𝑈𝑤𝑎𝑙𝑙 =
1−(1−𝐶)𝜎𝑣

𝜎𝑣
[𝜆 (

𝜕𝑢

𝜕𝑛
)
𝑤𝑎𝑙𝑙

+
(1−𝐶)

2
𝜆2 (

𝜕2𝑢

𝜕𝑛2
)
𝑤𝑎𝑙𝑙

].             (5-15) 

Eq. (5-15) comes from the idea that the contribution of the slip velocity between the Knudsen 

layer and wall surface should be inversely proportional to the distance of the slip layer from 

the Knudsen layer versus the distance of the slip layer from the wall surface. 𝜎𝑣 is defined as 

the tangential momentum accommodation coefficient (TMAC). The coefficient C =

𝜉𝑠/𝜆 (C ∈ [0,1]), in which 𝜉𝑠 represents the distance between the slip surface and the wall, is 

comparable to the mean free path, which should not be neglected.  

Here, we import an acoustic perturbation coefficient A, which will reduce the contribution of 

agglomeration near the wall surface. Based on this fact, the value of A should be larger than 

1, so the related particle number density is  

𝑛𝜆 = 𝐴𝐶𝑛𝑠 ,  𝑛𝑤 = (1 − 𝐴𝐶)𝑛𝑠,                               (5-16) 

where 𝑛𝜆 represents particles from the Knudsen layer, 𝑛𝑤 represents particles from the wall 

surface, and 𝑛𝑠 denotes particles in the slip surface.  

According to the tangential momentum conservation in the slip surface, there are 
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𝑢𝑠 = [𝐴𝐶 + (1 − 𝐴𝐶)(1 − 𝜎𝑣)]𝑢𝜆 + (1 − 𝐴𝐶)𝜎𝑣𝑢𝑤,          (5-17) 

after 𝑢𝜆 is expanded by Taylor series of 𝑢𝑠, combining Eq. (5-17) with the related result, we 

can get the final new second-order slip model, which considers the effect of acoustic 

perturbation 

𝑢𝑠 − 𝑈𝑤𝑎𝑙𝑙 =
1−(1−𝐴𝐶)𝜎𝑣

𝜎𝑣
[𝜆 (

𝜕𝑢

𝜕𝑛
)
𝑤𝑎𝑙𝑙

+
(1−𝐴𝐶)

2
𝜆2 (

𝜕2𝑢

𝜕𝑛2
)
𝑤𝑎𝑙𝑙

].      (5-18) 

According to Zhang’s and Bao’s[215] simulation results, the value of C varies with Knudsen 

number, so we use an average value of C=0.43. Finger[216] had defined the TMAC as being 

in the range of 0.85-1.06. Here, we will set 𝜎𝑣 = 1.0  to satisfy common engineering 

applications. The simulation of acoustic transmission by Denize Kalempa[217] at the 

frequency around 6 × 108 𝑟𝑎𝑑/𝑠 shows less particle condensation distribution along the wall 

surface, which confirms that we can set A=1.51163. Based on Eq. (5-18), the velocity slip 

coefficients of 𝐶1 𝑎𝑛𝑑 𝐶2 are equal to 0.65 and -0.18525, respectively, and the temperature 

slip coefficients remain the same values as the HS model of Radtke and 

Hadjiconstantinou[205]. With this second-order slip model, the analytical result of the new 

model agrees well with the simulation result. Moreover, it also agrees well with the solution 

of Boltzmann equation from Cercignani[203] based on the concept of the proportionality 

coefficient. 

5.5 Properties of the new second-order slip model 

For practical applications, it is important to express this new second-order slip model in 

terms of parameters related to acoustic transmission. Some parameters such as complex 

effective density, effective damping coefficient, effective acoustic speed and characteristic 

impedance are investigated in comparison with the related parameters of the no-slip model 

and Hadjiconstantinou’s first-order model[91], which reveals some transmission differences 

at the micro- and nanoscales. 

Eq. (5-10) can be rewritten in the form of complex effective density and effective damping 

coefficient[188] 

�̃�𝑏 =
𝑑�̃�

𝑑𝑥
(𝑖𝑤𝜌 + 𝑅′) = −

1

𝑅

𝑑�̃�

𝑑𝑥
,                                           (5-19) 
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and thus the complex effective density can be denoted as 

𝜌 = 𝐼𝑚 [
1

𝑤𝜇𝜙2
(1 +

2

𝐻𝜙

1
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2

)],                            (5-20) 

and the effective damping coefficient can be denoted as 

𝑅′ = 𝑅𝑒 [
1

𝜇𝜙2
(1 +

2

𝐻𝜙
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𝜙𝐻
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)].                             (5-21) 

From Eq. (5-14), the effective acoustic speed is defined as 𝑐 = 𝑤/𝑘, where k is the complex 

wavenumber. Thus c can be defined as 

𝑐 =
𝑤

𝐼𝑚

{
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,                       (5-22) 

and the characteristic impedance can be defined as 𝑍 = 𝜌𝑐, so Z can be written as 

𝑍 = 𝑤 ∗

𝐼𝑚[
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,                  (5-23) 

Figure 5-3 shows a comparison of the new second-order slip model, no-slip model and first-

order slip model concerning the relative complex effective density as a function of Knudsen 

number. The no-slip model achieves a larger complex effective density compared to the slip 

models throughout the calculated Knudsen number range, due to more particle condensation 

near the wall surface. Moreover, at around Kn = 0.07, there is a peak for both slip models. 

For the new second-order slip model, the effective density is slightly less than the static 

density when Kn > 0.28, which may be due to a change in slip velocity that is large enough 

to offset the particle condensation effect in this narrow channel. However, for the no-slip 

model, the complex effective density stabilizes at a higher Knudsen number and is always 

larger than the static density.  
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Figure 5-3. Comparison of the new second-order slip model, no-slip model and first-

order slip model for the relative complex effective density. 

Figure 5-4 shows a comparison of the new second-order slip model, no-slip model and first-

order slip model concerning the effective damping coefficient, which represents the 

performance of acoustic resistance along the channel, as a function of Knudsen number. In 

this figure, due to the higher energy dissipation, the no-slip model achieves a higher effective 

damping coefficient compared to the slip models throughout the calculated Knudsen number 

range and this deviation from the slip models increases as the Knudsen number increases. 

The new second-order slip model shows similar result compared to the first-order slip model. 

Figure 5-5 shows a comparison of the new second-order slip model, no-slip model and first-

order slip model concerning the relative effective acoustic speed as a function of Knudsen 

number. The existence of slip velocity decreases the effective density, and thus both slip 

models achieve a higher effective acoustic speed than the no-slip model throughout the 

calculated Knudsen number range and their deviation from the no-slip model increases as the 

Knudsen number increases. Also, the effective acoustic speed is consistently less than the 

normal acoustic speed in infinite space.  
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Figure 5-4. Comparison of the new second-order slip model, no-slip model and first-

order slip model for the effective damping coefficient 𝑹′. 

 

Figure 5-5. Comparison of the new second-order slip model, no-slip model and first-

order slip model for the relative effective acoustic speed. 
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Figure 5-6. Comparison of the new second-order slip model, no-slip model and first-

order slip model for the relative characteristic impedance.  

Figure 5-6 shows a comparison of the new second-order slip model, no-slip model and first-

order slip model concerning the relative characteristic impedance as a function of Knudsen 

number. Both slip models achieve higher characteristic impedance than the no-slip model 

throughout the calculated Knudsen number range and their deviation from the no-slip model 

increases as the Knudsen number increases. Also, the characteristic impedance is consistently 

less than the normal one in infinite space. Moreover, at around Kn=0.07, there is a peak for 

the new second-order slip model. This figure also indicates that the difference in the 

characteristic impedance for nanoporous structure and infinite space is negligible at relative 

low Knudsen numbers, which can lead to reconsideration in the design of some acoustic 

absorption structures. 

5.6 Conclusions 

In this paper, we develop a new model based on the second-order velocity and temperature 

slip boundary conditions and obtain an analytical solution for acoustic wave propagation in 

micro- and nanochannels, which is validated by DSMC simulation results. This theoretical 

model, which extends to the non-continuum regime, remains robust and reasonably accurate 

up to Kn ≈ 1.0. Thus, with a high angular frequency of 𝑤 = 6 × 108 𝑟𝑎𝑑/𝑠, the acoustical 

properties of argon gas in the range of 0.1<Kn<1.0 can be solved by our analytical method, 
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covering a wider range of Knudsen numbers as compared to Hadjiconstantinou’s first-order 

slip model[91]. For different frequencies, as shown in related simulation results, the slip 

surface coefficient C keeps constant in different frequencies, while the acoustic perturbation 

coefficient A can be smaller as the frequency goes higher. When comes to a relative lower 

frequency range, the coefficients C and A are almost invariable. So it would be easy and 

convenient to achieve related slip coefficients for the dependency of frequencies. These kinds 

of models are highly desirable because they allow the analytical study of acoustic wave 

propagation in micro- and nanoscales, which is more efficient and convenient than 

molecular-based numerical simulation methods. Results corresponding to different slip 

models have been compared to the simulation results and show different attenuation 

properties as the Knudsen number changes. Highly practical and useful parameters such as 

complex effective density, effective damping coefficient, effective acoustic speed and 

characteristic impedance are investigated in comparison to their counterparts in the no-slip 

model and first-order slip model. 

The newly developed model and the analytical solutions obtained from it show great 

potential in advancing our fundamental understanding of acoustics in porous nanomaterials 

such as aerogel, MEMS devices, metamaterial and small resonance structures. This can in 

turn improve the design of such acoustical nanomaterials and devices. Even for more 

complex topological acoustics, which often require full investigation of acoustic diffraction, 

scattering, resonance, etc., the newly developed model can provide very useful information 

and guidance.  
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6 Conclusion and Future Work 

6.1 Conclusion 

The discovery of topological acoustics advances the potential development of noise 

attenuation, ultrasonic imaging, sound manipulation, and information delivering, etc. 

Tremendous efforts have been made to develop practical topological acoustic devices or 

systems. In recent years, ideas and methodologies from condensed-matter physics, such as 

the QHE, the QSHE, and the QVHE, combined with the configurations of sonic crystals and 

metamaterials, have been utilized and thoroughly investigated to achieve topologically 

protected acoustic transmission. However, many of these studies are still in their infancy and 

mostly rely on bulky, noisy, overly complicated, untunable and narrow-band-effective 

facilities, which severely block the development of practical acoustic applications. It is 

therefore highly desirable but challenging to design more practical topological acoustic 

devices or systems, including backscattering immune, tunable, broadband and miniaturized 

topological acoustic properties. My PhD work has focused on developing novel modulation 

mechanisms, versatile configurable lattice structures, and microscale acoustic transmission 

mechanisms for airborne topological acoustics, aimed at solving the aforementioned 

challenges in practical acoustic applications. 

Acoustic analogues of the QHE, the QSHE and the QVHE, configured to form different 

types of sonic crystals or metamaterial structures, have their unique advantages and 

disadvantages. For example, acoustic analogues of the QHE for airborne topological 

acoustics have their advantages in nonreciprocal performance in a single unit cell and 

relatively good dynamic control performance, while still requiring bulky external airflow 

importing equipment, which makes it difficult to realize broadband and miniaturized 

topological acoustic properties. To overcome these defects and make these systems more 

practical in real applications, a design using heat-induced natural convection to form a steady 

air-flow circulation is proposed. Utilizing natural convection to import airflow rather than a 

fan or other mechanical equipment to induce airflow can effectively reduce the dimensions of 

the acoustic system and realize wide-band dynamically controlling performance, which can 

also break the time-reversal symmetry and achieve robust nonreciprocal acoustic propagation 

in a ring resonator. Specifically, in my work, a circulator with 120-degree rotational 
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symmetry of its three-port coaxial cylinders associated with three corresponding rectangular 

waveguides was designed. The distribution of a temperature gradient in a vertically placed 

ring circulator creates a steady circulating air-flow field due to the effect of buoyancy force. 

Meanwhile, velocity and flow direction in the circulator can be easily tuned by adjusting 

temperature distribution. In this scenario, no extra noise would be generated as no moving 

components are employed in the whole setup, which can facilitate its applications by 

conducting more accurate control and miniaturizing the whole structure. My design, a 

compact configuration without moving parts, creates a new paradigm for the application of 

nonreciprocal acoustics, which reduce the difficulty in device/material fabrication. Moreover, 

I further demonstrate that the nonreciprocal resonators with different interior circulator 

configurations, can exhibit excellent nonreciprocal acoustic propagation performance 

empowered by the heat-induced natural convection. This study also shows great potential for 

the insulation of any interior structures in acoustic circulators.  

As for the acoustic analogue of the QSHE for the airborne topological acoustics, this type of 

design has its advantages in miniaturization while maintaining drawbacks in dynamic 

controlling and broadband acoustic transmission manipulation. The analogous pseudospin-

down mode and pseudospin-up mode lock the acoustic wave in edges or specific 

transmission routes. This special modulation requirement makes it difficult to realize 

dynamic control, which often needs extra equipment and processes to manipulate the lattice 

array. To improve the performance of the QSHE based topological acoustic system, an 

airborne Floquet topological insulator system based on the modulation of acoustic impedance 

was designed. This modulation scheme possesses the ability to eliminate impedance 

matching challenges. This was achieved in an acoustic double-trimer lattice whose 

impedance matching is modulated by separating temperature distributions in each 

metamolecule, demonstrating the acoustic analogue of Floquet topological insulators. 

Different from Alu’s on-site rotating modulation scheme in liquid, we demonstrate that the 

temperature-based modulation of acoustic impedance matching can function well in airborne 

topological acoustic systems, especially for the miniaturization of these systems. This opens 

a new avenue for practical applications of acoustic topological insulators. Specifically, for 

this modulation strategy, different temperatures can induce different acoustic impedances as 

density and acoustic speed change in distributed metamolecules of each trimer. As the 
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airborne acoustic impedance of metamolecules can be modulated effectively, up to tens of 

percents, this method opens the possibility of designing topologically protected, broadband, 

noiseless, dynamic controlling, and miniaturized (approximately 1/10 of other models in size, 

due to the existence of lumped impedance matching units) acoustic topological systems, 

including a broadband acoustic topological insulator, and a nonreciprocal acoustic array that 

is robust to impedance disorders. 

As for the acoustic analogue of the QVHE for airborne topological acoustics, this type of 

design has its advantages in miniaturization while maintaining limited performance in 

dynamic controlling and broadband acoustic transmission. A design realizing tunable and 

broadband acoustic topological edge states in a flow-free resonator system with a millimeter 

order of magnitude for each small unit, which is based on the QVHE, was proposed. This 

two-dimensional periodic acoustic counterpart of a gapped graphene monolayer can be 

considered a tight-binding model. By designing tunable inner radii of adjacent hollow 

circulators to realize versatile combinations of chiral on-site rotating modulation schemes, 

the existence of a topological transition is demonstrated, which is characterized by the 

opposite valley Chern numbers. Different from breaking translational symmetries and point 

groups in pseudomagnetic fields, we mimic the QVHE-based valley states as opposed to spin 

states. Specifically, the mirror-symmetry-breaking property is accomplished by dynamically 

adjusting the inner radii of the six hollow circulators in each primitive cell. This induces 

inversed band modulation in different valley pseudospin degrees of freedom. Moreover, the 

tunable inner radius in each circulator can allow us to adjust this type of acoustic topological 

property with wide effective frequency ranges and configurable transmitting routes. Full-

wave simulations of band structure analysis and acoustic propagation were conducted and 

used to display these fascinating physics of topological acoustics with versatile potential 

applications. 

In order to realize the miniaturization of topological acoustic systems in a smaller scale 

compared to the existing dimensional magnitude, further investigation of the acoustic 

transmission mechanism in micro- and nanoscale is needed. Chapter 5 proposes a theoretical 

model with the second-order slip boundary to describe the acoustic wave propagation in 

micro- and nanochannels. The proposed theoretical model provides analytical solutions for 

the complex wavenumber, attenuation coefficient and other related transmission variables as 
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a function of the Knudsen number in the early transition regime (0.1<Kn<1.0), which are 

valuable for understanding acoustics at micro- and nanoscales. In addition, numerical 

simulations using the molecular-based DSMC method for dilute argon gas are carried out to 

validate the model and its analytical results. Findings suggest that such a model can 

effectively predict the acoustic behaviour in micro- and nanochannels, which is important for 

the future research about topological acoustics in ultrasonic or in a small structure to realize 

miniaturization.  

6.2 Future work 

The development of topological acoustics is still in its infancy, although many researchers 

have been working on this area in recent years. Different methods or designs based on the 

QHE, the QSHE or the QVHE have their own advantages and disadvantages, which lead to 

the need to design more practical topological acoustic devices or systems, including 

backscattering immune, tunable, broadband and miniaturized topological acoustic 

applications. These related applications include sound attenuation, ultrasonic imaging, 

information delivering, and acoustic cloaking, etc. My PhD work improves the performance 

of topological acoustic systems by introducing new modulation mechanisms and lattice 

arrays. However, tremendous efforts are still needed to put topological acoustic designs into 

practice. 

Specifically, for my current work, optimizing the geometrical lattice array in the form of SCs 

or metamaterials in combination with thermal modulation is being investigated. Smaller 

dimensions and easier to reconfigure lattice arrays to realize wider functional frequency 

ranges are key optimizing objectives. Moreover, experimentally realizing programmable 

dynamic control of the thermal modulation in a miniaturized system is necessary in related 

acoustic applications. Also, we are working on using machine learning to investigate multiple 

variables, such as air velocity, structure geometry and temperature distribution, to optimize 

muffler and topological acoustic performance.  

As for the future work, application-driven research is always needed. For ultrasonic imaging 

or information delivering, miniaturization plays a key role, which requires versatile control 

equipment and modulation mechanisms. The existing fan-induced airflow with a bulky 

structure is not applicable, and even for the QVHE based topological analogues, the 
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tunability of the unit cell using the mechanical method has a limited working frequency range 

and requires a complex supporting system. That means more advanced modulation strategies 

are needed. For sound attenuation and cloaking, optimized and frequency-dependent 

structure design is important in adapting to the requirements of different frequency ranges. 

Moreover, a complete theory guiding SCs and metamaterial design is strongly needed, 

especially for miniaturized structures. As for other applications of topological acoustics, such 

as acoustic MEMS sensors and on-chip filters, properties related to miniaturization and 

programmable tunability need further investigated.  

Also, strategies used in photonic and electronic topological systems can still inspire and 

promote research in topological acoustics, as they have been developed over a longer time. 

The related research will continuously provide ideas and methodologies regarding sound 

manipulation and mechanical vibration to spearheaded novel wave physics. In many acoustic 

applications, combining acoustics with elasticity has more technological oriented 

applications and challenges. Therefore, realizing defect insensitive and topological robust 

wave manipulating, signal splitting and buffering, reveals new avenues for the improvement 

of on-chip filters in mobile phones, surface acoustic sensors, bio-chemical sensing robustness, 

and coupling efficiency in touchscreens. To handle the aforementioned challenges, efforts in 

shrinking the topological acoustical and mechanical geometries into a micro scale with novel 

relevant performance and properties should fully take advantage of topologically robust 

acoustic manipulation for unprecedented possibilities and routes for phononic technologies. 
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