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            Abstract 

  Regardless of the type of vortex chamber, many tornado simulators generate flows that reveal 

similar flow patterns and a general agreement on the variations of the flow structures with swirl 

ratio (the ratio of tangential velocity to radial velocity) was achieved. However, very little is known 

about the underlying physics of the flow, mostly of the fluctuating one, as the previous studies 

have mainly focused on qualitative flow visualization and the quantitative description of the mean 

flow.  

  Herein, coherent structures in tornado-like vortices are extracted using modal decomposition 

techniques. Modal analysis helps us to better understand the complex vortex dynamics including 

vortex wandering, vortex breakdown and sub-vortex dynamics. Proper orthogonal decomposition 

(POD) is applied on the fluctuating velocity field to investigate the prominent mechanisms for a 

range of swirl ratios (0.22≤S≤0.96). Moreover, another technique dynamic POD is used to provide 

the time evolutions of coherent structures. Based on the results of the fluctuating velocity field, 

the three-dimensional vortex structure is revealed.  

  Despite the accepted measurement techniques for surface pressure, the choice of processing tools 

for interpretation of the data is challenging. Here, a comparison between some common statistical 

techniques and modal analysis is provided. Since POD method sometimes results in non-physical 

modes, another technique, called independent component analysis (ICA), is used. Based on the 

results of surface pressure fluctuations, statistical properties of coherent structures in tornado-like 

vortices, including their spectral characteristics, are provided. The discussions of modal analysis 

presented here is applicable to a large class of swirling flows, regardless of the reference to 

tornado-like vortices. 

  By identifying a reduced number of modes representative of tornado-like turbulent velocity field, 

one can construct simplified but physically meaningful analytical models. Here, both mean and, 

for the first time, the fluctuating flow fields are analytically modeled. The mean flow field is 

modeled using a combination of Burgers-Rott model and stagnation flow. The fluctuations 

attributed to random motion of the vortex (wandering phenomenon) are modeled by solving 
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deconvolution integral through assuming a Gaussian PDF for wandering motions, and the 

fluctuations attributed to sub-vortex dynamics are modeled using POD. 

Keywords 

Tornado-like vortex, coherent structures, modal analysis, proper orthogonal decomposition 

(POD), independent component analysis (ICA), analytical modeling  
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                                      Summary for Lay Audience 

  Due to the increase in tornado wind damage during the last decades, the research related to 

tornado-like vortices have become a major subject in wind engineering society. While tornadoes 

can produce extreme wind speeds, the associated extreme destructions may also be linked by 

factors other than wind speed alone. Thus, there is strong motivation to understand the associated 

vortex dynamics which may be responsible for extreme negative pressures and therefore damage. 

  Analytical models derive the variations of wind speed across the tornado path which is a key 

factor in risk analysis. However, due to the complexities involved in the governing equations, there 

are very few analytical models for tornado vortices. Moreover, no analytical model considers the 

fluctuating flow field in tornado vortices.  

  Large-scale fluctuation in tornado-like vortices are attributed to well-correlated regions, referred 

to as coherent structures. The choice of mathematical tools for detection and extraction of the 

coherent structures is a challenging task. These mathematical tools are based on statistical 

properties and modal analysis.  

  Herein, we first used four different modal decomposition techniques to extract the coherent 

structures in tornado-like vortices. The coherent structures help us to better understand the 

associated vortex dynamics which might be responsible for structural damages. Statistical 

properties of these coherent structures are also provided. Finally, we provided an analytical model 

which implements both mean and fluctuating flow fields in tornado vortices.  

 

 

 

 

 

 



iv 
 

Co-Authorship Statement 

 

Chapter 2 is a journal article published in the journal of Physics of Fluids. It is co-authored by M. 

Karami, H. Hangan, L. Carassale and H. Peerhossaini. 

 

Chapter 3 is a journal article and will be submitted for publication under the co-authorship of M. 

Karami, L. Carassale and H. Hangan. 

 

Chapter 4 is a journal article submitted to Journal of Wind Engineering and Industrial 

Aerodynamics. It is co-authored by M. Karami and H. Hangan.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

Acknowledgement 

  I want to begin by expressing my sincere appreciation to Dr. Horia Hangan for his excellent 

supervision and feedback during the last four years. He gave me the time, resources and freedom 

to grow as a researcher. This work would not have been possible without his priceless guidance.  

  I would like to extend my thanks to co-authors on my publications: Dr. Luigi Carassale and Dr. 

Hassan Peerhossaini. Thank you for helping me during my research and providing invaluable 

feedback on my manuscripts.  

  I am also grateful to Dr. Hassan Peerhossaini, Dr. Mojtaba Jarrahi as well as Dr. Ebrahim Shirani 

for recommending me to my supervisor Dr. Horia Hangan.  

  I would like to also thank Dr. Jubayer Chowdhury and Dr. Djordje Romanic as well as Adrian 

Costache, Gerry Dafoe and Priscilla De Luca at the WindEEE Research Institute.  

  My officemates and friends have also been amazing during my PhD. Special thanks to Mahdi, 

Nima, Mostafa, Arash, Hessam, Junayed, Anant, Mahbub, Aya, Marilena, Daniel and Kamran. 

  At last but not the least, I would like to thank my family: my parents (Fereshteh and 

Abdolhassan), my wife (Zahra Habibi), and my sisters (Narges and Nastaran), for all their love 

and support. 

 

 

 

 

 

 

 

 

 

 



vi 
 

      Table of Contents  

 

Abstract ................................................................................................................................ i 

Summary for Lay Audience ............................................................................................... iii 

Co-Authorship Statement................................................................................................... iv 

Acknowledgement .............................................................................................................. v 

Table of Contents ............................................................................................................... vi 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

1 Introduction ...................................................................................................................... 1 

1.1 General introduction................................................................................................. 1 

1.2 Motivation and objectives ........................................................................................ 3 

1.3 Organization of the thesis......................................................................................... 6 

2  Coherent structures in tornado-like vortices ................................................................ 10 

2.1 Introduction ............................................................................................................ 10 

2.2 Experimental setup ................................................................................................. 13 

2.3 Modal representation .............................................................................................. 15 

2.4 Analysis of a simulated synthetic vortex ............................................................... 19 

2.5 Analysis of experimental flow field ....................................................................... 26 

2.6 Summary and tornado-like vortex structure ........................................................... 37 

2.7 Conclusions ............................................................................................................ 41 

3  Statistical and modal analysis of surface pressure fluctuations in tornado-like vortices46 

3.1 Introduction ............................................................................................................ 46 

3.2 Experimental setup ................................................................................................. 49 



vii 
 

3.3 Mathematical description of modal decomposition techniques ............................. 51 

3.4 Modal representation of a simulated synthetic vortex ........................................... 54 

3.5 Analysis of experimental flow field ....................................................................... 57 

3.6 Concluding remarks ............................................................................................... 72 

4  Analytical model for tornado-like vortices: mean and fluctuating flow fields ............ 77 

4.1 Introduction ............................................................................................................ 77 

4.2 Experimental setup of Mini-WindEEE Dome ....................................................... 78 

4.3 Analytical model for the vortex flow ..................................................................... 80 

4.4 Results and comparisons ........................................................................................ 89 

4.5 Concluding remarks ............................................................................................... 96 

5  Conclusions and recommendations .............................................................................. 99 

5.1  Summary ............................................................................................................... 99 

5.2  Conclusions ......................................................................................................... 100 

5.3  Recommendation and future work ...................................................................... 103 

Appendix A ..................................................................................................................... 105 

Curriculum Vitae ............................................................................................................ 107 
 

 

 

 

 

 

 

 

 



viii 
 

     List of Tables 

Table 1. 1. Six categories of Fujita scale for tornado intensity. .................................................................... 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

Figure 1. 1: Locations of tornadoes occurrences in Canada between the years of 1980-2009. Image 

from [13]. ........................................................................................................................................ 2 

 

Figure 2. 1: Photograph of tornado-like vortex for (a) small swirl ratio, 𝑆=0.22, with vortex tilting, 

(b) moderate swirl ratio, 𝑆=0.57, with recirculation bubble of vortex breakdown and (c) a single 

spiral developed behind the bubble, and (d) high swirl ratio, 𝑆=0.96, with double spiral developed 

behind the bubble. Double spiral pattern refers also to as double-cell structure. Reproduced with 

permission from J. Atmos. Sci. (1979)[32]. Copyright 1979 American Meteorological Society. 11 

 

Figure 2. 2: Schematic drawing of Mini-WindEEE Dome. © Elsevier. Used with permission from 

Ref. [25]. ....................................................................................................................................... 13 

 

Figure 2. 3: A snapshot of the vorticity field of the idealized (synthetic) vortex (a) with Gaussian 

random wandering and/or variation in size, (b) with a single spiral rotating around the vortex and 

(c) with a double spiral rotating around the vortex. ...................................................................... 20 

 

Figure 2. 4: Time history of fluctuating vorticity field of the simulated vortex with only Gaussian 

random wandering. Positive (negative) values of vorticity are shown in red (blue) color. .......... 20 

 

Figure 2. 5: The first five POD modes of the idealized (synthetic) vortex with only Gaussian 

random wandering. ....................................................................................................................... 21 

 

Figure 2. 6: Time history of fluctuating vorticity field of the simulated vortex with Gaussian 

random wandering plus a size variation. Positive (negative) values of vorticity are shown in red 

(blue) color. ................................................................................................................................... 22 

 

Figure 2. 7: The first five POD modes of the idealized (synthetic) vortex with Gaussian random 

wandering and variation in size. ................................................................................................... 22 

 

Figure 2. 8: Time history of the vorticity field of (a) single and (b) double spiral rotating around 

the vortex. ..................................................................................................................................... 24 

 

Figure 2. 9: The first two POD modes of the idealized (synthetic vortex) with (a) single and (b) 

double spiral rotating around the vortex (see Figures 3-b and 3-c). ............................................. 25 



x 
 

Figure 2. 10: Energy of POD modes of the idealized (synthetic) vortex with four different 

simulation cases: (I) vortex with only wandering, (II) vortex with wandering plus size variation, 

(III) vortex with single spiral and (IV) vortex with double spiral. ............................................... 25 

 

Figure 2. 11: Time histories of experimental vorticity fields at height of 3.5 cm above the surface 

for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57, and (c) 𝑆 = 0.96. (Time step size is 0.067 s). ............................ 27 

 

Figure 2. 12: Mean tangential velocity (m/s) contours for 𝑆 = 0.22 at different heights for (a) un-

removed wandering and (b) removed wandering. ........................................................................ 28 

 

Figure 2. 13: Mean radial velocity (m/s) contours for 𝑆 = 0.22 at different heights for (a) un-

removed wandering and (b) removed wandering. Converengt and divergent radial flow are shown 

respectively in blue and red colors................................................................................................ 29 

 

Figure 2. 14: Mean tangential velocity (m/s) contours for 𝑆 = 0.57 at different heights for (a) un-

removed wandering and (b) removed wandering. ........................................................................ 30 

 

Figure 2. 15: Mean radial velocity (m/s) contours for 𝑆 = 0.57 at different heights for (a) un-

removed wandering and (b) removed wandering. Converengt and divergent radial flow are shown 

respectively in blue and red colors................................................................................................ 31 

 

Figure 2. 16: Mean tangential velocity (m/s) contours for 𝑆 = 0.96 at different heights for (a) un-

removed wandering and (b) removed wandering. ........................................................................ 31 

 

Figure 2. 17: Mean radial velocity (m/s) contours for 𝑆 = 0.96 at different heights for (a) un-

removed wandering and (b) removed wandering. Convergent and divergent radial flow are shown 

respectively in blue and red colors................................................................................................ 32 

 

Figure 2. 18: First five POD modes of the vorticity field with un-removed wandering for 𝑆 = 0.22 

at ℎ = 3.5 𝑐𝑚. Positive (negative) values of vorticity are shown in red (blue) color. ................. 33 

 

Figure 2. 19: D-POD mode 1 with un-removed wandering, for 𝑆 = 0.22 and ℎ = 3.5 𝑐𝑚 at six 

different phase shifts (α), representing time-lag. Positive (negative) values of vorticity are shown 

in red (blue) color.......................................................................................................................... 34 

 

Figure 2. 20: First five POD modes of vorticity field with un-removed wandering for 𝑆 = 0.57 at 

ℎ = 3.5 𝑐𝑚. Positive (negative) values of vorticity are shown in red (blue) color. ..................... 34 



xi 
 

Figure 2. 21: D-POD mode 3, with un-removed wandering, for 𝑆 = 0.57 and ℎ = 3.5 𝑐𝑚 at six 

different phase shifts (α), representing time-lag. Positive (negative) values of vorticity are shown 

in red (blue) color.......................................................................................................................... 35 

 

Figure 2. 22: First five POD modes of vorticity field with un-removed wandering for 𝑆 = 0.96 at 

ℎ = 3.5 𝑐𝑚. Positive (negative) values of vorticity are shown in red (blue) color. ..................... 36 

 

Figure 2. 23: The first POD mode of the vorticity field with removed wandering effects at ℎ =

3.5 𝑐𝑚 for (a) 𝑆 = 0.22 and (b) 𝑆 = 0.57. Positive (negative) values of vorticity are shown in red 

(blue) color. ................................................................................................................................... 36 

 

Figure 2. 24: Streamlines in a snapshot of the horizontal PIV plane at ℎ = 3.5 𝑐𝑚 for revealing (a) 

single-cell structure for 𝑆 = 0.22, (b) double-cell structure for 𝑆 = 0.57, and (c) double-cell 

structure for 𝑆 = 0.96. Note that double-cell structure includes two co-rotating sub-vortices that 

are embedded in the fluctuating flow field. .................................................................................. 39 

 

Figure 2. 25: First POD mode of vorticity field with un-removed wandering at the different heights 

for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. Positive (negative) values of vorticity are shown 

in red (blue) color.......................................................................................................................... 40 

 

Figure 2. 26: Time-frequency analysis (spectrogram) of the first POD mode of the surface pressure 

fluctuation for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. ....................................................... 40 

 

Figure 2. 27: Schematic of the mean flow observed for the three swirl ratios (a) 𝑆 = 0.22, (b) 𝑆 =

0.57 and (c) 𝑆 = 0.96. .................................................................................................................. 40 

 

Figure 2. 28: Three-dimensional schematic of coherent structures inferred from modal analysis. 

(a) For 𝑆 = 0.22, a single vortex with tilting at low heights (this structure refers to as single-cell), 

(b) for 𝑆 = 0.57, a reciculation bubble (shown in yellow) with a single spiral behind the bubble, 

which still refers to as single-cell structure, and (c) for 𝑆 = 0.96, a reciculation bubble with a 

double spiral behind the bubble, referring to as two-cell strucutre............................................... 41 

 

Figure 3. 1: (a) Schematic drawing of Mini-WindEEE Dome (MWD) and (b) shematic of pressure 

taps arrangement over the surface panel. Obtained from Ref. [29]. ............................................. 49 

 

Figure 3. 2: A bivariate Gaussian synthetic vortex with variation in size and random wandering 

around the geometric center. ......................................................................................................... 54 



xii 
 

Figure 3. 3: The first five POD modes of the idealized (synthetic) vortex with Gaussian random 

wandering motion. ........................................................................................................................ 55 

 

Figure 3. 4: The ICA modes extracted from the data space defined from the first six POD modes 

applied on the synthetic vortex. Positive (negative) values of pressure are shown in red (blue). 55 

Figure 3. 5: Time history of fluctuating pressure field of the simulated vortex with Gaussian 

random wandering plus a size variation. Positive (negative) values of pressure are shown in red 

(blue) color. ................................................................................................................................... 56 

 

Figure 3. 6: The first five POD modes of the idealized (synthetic) vortex with Gaussian random 

wandering motion. ........................................................................................................................ 56 

 

Figure 3. 7: Streamlines in two different snapshots of horizontal PIV plane for 𝑆 = 0.96 revealing 

the presence of both (a) single-cell structure and (b) double-cell structure. Obtained from Ref. [36].

....................................................................................................................................................... 57 

 

Figure 3. 8: (a) Mean and (b) standard deviation of surface pressure field. Wandering effects are 

not removed. ................................................................................................................................. 58 

 

Figure 3. 9: Radial profile of mean surface pressure deficit for removed (corrected) and un-

removed (uncorrected) wandering effects, (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. Radius (𝑟) 

is normalized with updraft radius. ................................................................................................ 59 

 

Figure 3. 10: Power spectral density along the radius for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 =

0.96. Wandering effects are not removed. 𝑟 is normalized with updraft radius. Note that the core 

radius (𝑟𝑐) for the three swirl ratios (a-c) are respectively 𝑟𝑐 = 0.14, 0.32, and 0.45. ............... 60 

 

Figure 3. 11: Cumulated energy of POD modes. .......................................................................... 61 

 

Figure 3. 12: The first five POD modes of surface pressure for 𝑆 = 0.22. Positive (negative) values 

of surface pressure are shown in red (blue). Wandering effects are not removed. ....................... 63 

 

Figure 3. 13: ICA modes extracted from the data space defined from the first five POD modes for 

𝑆 = 0.22. Positive (negative) values of surface pressure are shown in red (blue). Wandering effects 

are not removed............................................................................................................................. 63 

 

Figure 3. 14: Power spectral density of (a) PCs and (b) ICs for 𝑆 = 0.22. .................................. 64 



xiii 
 

Figure 3. 15: (a) Absolute value of the coherence, and (b) phase angle of coherence of PCs for 𝑆 =

0.22. .............................................................................................................................................. 64 

 

Figure 3. 16: D-ICA 𝐚2 for 𝑆 = 0.22 at 𝑓𝑐 = 3.3 𝐻𝑧 with ∆𝑓 = 2.9 𝐻𝑧 at six different phase shifts 

(𝛼). Positive (negative) values of surface pressure are shown in red (blue). The Figure scale is 

doubled. Wandering effects are not removed. .............................................................................. 65 

 

Figure 3. 17: The first five POD modes of surface pressure for 𝑆 = 0.57. Negative (positive) values 

of surface pressure are shown in red (blue). Wandering effects are not removed. ....................... 65 

 

Figure 3. 18: ICA modes extracted from the  data space defined from the first five POD modes for 

𝑆 = 0.57. Positive (negative) values of surface pressure are shown in red (blue). Wandering effects 

are not removed............................................................................................................................. 66 

 

Figure 3. 19: D-ICA (a) 𝐚1 and (b) ) 𝐚2 for 𝑆 = 0.57 at 𝑓𝑐 = 3.3 𝐻𝑧 with ∆𝑓 = 2.9 𝐻𝑧 at six 

different phase shifts (𝛼). Positive (negative) values of surface pressure are shown in red (blue). 

Wandering effects are not removed. ............................................................................................. 67 

 

Figure 3. 20: Power spectral density of (a) PCs and (b) ICs for 𝑆 = 0.57. .................................. 69 

 

Figure 3. 21: (a) Absolute value of the coherence, and (b) phase angle of coherence of PCs for 𝑆 =

0.57. .............................................................................................................................................. 69 

 

Figure 3. 22: The first five POD modes for 𝑆 = 0.96. Positive (negative) values of surface pressure 

are shown in red (blue). Wandering effects are not removed. ...................................................... 71 

 

Figure 3. 23: ICA modes extracted from the data space defined from the firt seven POD modes for 

𝑆 = 0.96. Positive (negative) values of surface pressure are shown in red (blue). Wandering effects 

are not removed............................................................................................................................. 71 

 

Figure 3. 24: Power spectral density of (a) PCs and (b) ICs for 𝑆 = 0.96. .................................. 72 

 

Figure 3. 25: (a) Absolute value of the coherence, and (b) phase angle of coherence of PCs for 𝑆 =

0.96. .............................................................................................................................................. 72 

 

Figure 4. 1: Schematic drawing of WindEEE Dome [12]. ........................................................... 79 



xiv 
 

Figure 4. 2: Schematic representation of vorticity field of coherent structures. (a) 𝑆 = 0.22, a single 

vortex subjected to random wandering motion. (b) 𝑆 = 0.57,  a recirculation bubble vortex at the 

center and a spiral vortex rotating around the bubble. (c) 𝑆 = 0.96, a recirculation bubble vortex 

at the center and a double spiral vortex rotating around the bubble. ............................................ 86 

 

Figure 4. 3: The energy of POD modes for the three swirl ratios of MWD experiment. Wandering 

is included. .................................................................................................................................... 86 

 

Figure 4. 4: Mean tangential velocity profile of MWD experiment for removed (corrected) and un-

removed (uncorrected) wandering effects, (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. .......... 90 

 

Figure 4. 5: The radial profile of normalized tangential velocity and its comparison with existing 

models  for (a) 𝑆 = 0.22  𝑎𝑡 𝑧 = 𝑟𝑐, (b) 𝑆 = 0.57 𝑎𝑡 𝑧 = 0.6 𝑟𝑐, and (c) 𝑆 = 0.96  𝑎𝑡 𝑧 = 0.4 𝑟𝑐.

....................................................................................................................................................... 92 

 

Figure 4. 6: The vertical profile of normalized tangential velocity and its comparison with existing 

models at 𝑟 =  𝑟𝑐 for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57, and (c) 𝑆 = 0.96. .......................................... 93 

 

Figure 4. 7: The radial (a-b) and vertical (c-d) profiles of normalized radial and axial velocity 

components and their comparison with existing models for 𝑆 = 0.22 (𝑧 = 𝑟𝑐 and 𝑟 = 𝑟𝑐). ...... 94 

 

Figure 4. 8: The radial and vertical profiles of mean radial and axial velocity components (Eqs. 4.3 

and 4.4) at 𝑟 = 𝑟𝑐 for (a) 𝑆 = 0.57 𝑎𝑡 𝑧 = 0.6 𝑟𝑐, and (b) 𝑆 = 0.96 𝑎𝑡 𝑧 = 0.4 𝑟𝑐. .................. 95 

 

Figure 4. 9: Radial profile of the fluctuating tangential velocity based on wandering motion and 

its comparison with MWD experiment at 𝑧 =  𝑟𝑐 for 𝑆 =  0.22. ................................................ 96 

 

Figure 4. 10: Radial profile of the fluctuating tangential velocity based on sub-vortex dynamics 

and its comparison with MWD experiment for (a) 𝑆 = 0.57at 𝑧 = 0.6 𝑟𝑐 and (b) 𝑆 = 0.96 at 𝑧 =

0.4 𝑟𝑐............................................................................................................................................. 96 



1 
 



1 
 

Chapter 1 

1 Introduction 

1.1 General introduction 

 

  Tornadoes are referred to as a violent rotating column of air which is in contact with both ground 

and cloud. They can last for hours and produce wind speeds more than 100 m/s close to the earth 

surface, and thus are a serious threat to many regions around the world. For instance, tornadoes 

resulted in about 10 billion dollars damage in the United States in 2011 [1]. 

  Over half of tornadoes have peak wind speeds smaller than 165 km/hr and over 80% of tornadoes 

have peak wind speeds of smaller than 217 km/hr [2]. This means that, although severe tornadoes 

produce extreme wind speeds, the associated extreme destructions may also be linked by factors 

other than wind speed alone. Thus, there is strong motivation to (i) understand the associated 

vortex dynamics which may be responsible for extreme negative pressures and therefore damage 

and (ii) to create a wind field model which would be a key factor in risk analysis application [3-

4]. These are the two main objectives of the present thesis. 

  However, due to the complexities involved in the governing equations, there are very few 

analytical models for tornado vortices. Moreover, no analytical model considers the fluctuating 

flow field in tornado vortices.  

  Large-scale fluctuation in tornado-like vortices are attributed to well-correlated regions, referred 

to as coherent structures. The concept of coherent structures is still not consolidated and 

development of mathematical tools for their detection and extraction is difficult [5]. These 

mathematical tools are based on statistical properties and modal analysis. The most popular and 

probably the oldest technique for modal representation is proper orthogonal decomposition (POD) 

[6]. Sometimes the results are promising [7-9], but the general opinion is that POD method fails 

to provide meaningful modes [10-12].  

  The overall objective of this study is to introduce a new tornado wind field for both mean and 

fluctuating flow fields of tornado-like vortices based on the modal analysis of tornado vortices 
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simulated experimentally in a model of WindEEE Dome (MWD). To model the fluctuating field, 

we first try to characterize the dominant turbulent flow by extracting coherent structures out of 

both velocity and surface pressure fields. Since there is no general accepted technique for 

extracting coherent structures, we used four different modal decomposition techniques: proper 

orthogonal decomposition (POD), independent component analysis (ICA), dynamic POD, and 

dynamic ICA. A comparison between modal analysis and some common statistical techniques is 

also provided. Finally, based on these results, the vortex structure is inferred for the range of Swirl 

ratios (0.22 ≤ 𝑆 ≤ 0.96). This vortex structure is further employed to generate an analytical model 

for the large-scale fluctuating flow field in tornado-like vortices. Note that the main governing 

parameter in simulated tornado-like vortices is the swirl ratio which is defined as the ratio of 

tangential to radial velocity components at the inlet, 𝑆 = (1/2𝑎) (𝑉𝑡𝑎𝑛/𝑉𝑟𝑎𝑑) = (1/2𝑎) 𝑡𝑎𝑛𝜃, 

where 𝜃 is the vane angle with the normal direction to the sidewall. 

 

Figure 1. 1: Locations of tornadoes occurrences in Canada between the years of 1980-2009. 

Image from [13]. 
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1.2 Motivation and objectives  
 

  Tornadoes can happen in different regions of the world. In Canada, they mostly occur in southern 

Ontario, Quebec, Manitoba, Saskatchewan and Alberta. A map of locations of tornadoes 

occurrences between the years of 1980-2009 is shown in Figure 1.1. [13].  

Table 1. 1. Six categories of Fujita scale for tornado intensity. 

Scale 
Wind speed 

range(km/hr) 
Potential damage 

F0 64-116 Light damage, e.g. chimneys and tree branches 

F1 117-180 Moderate damage, e.g. peels surface off roofs 

F2 181-253 Significant damage, e.g. roofs torn off frame houses 

F3 254-332 Severe damage, e.g. roofs/walls torn off houses 

F4 333-418 
Devastating damage, e.g. well-constructed houses 

leveled 

F5 419-512 
Incredible damage, strong frame houses lifted off 

foundations 

 
 

  Intensity of tornadoes is rated by Fujita scale, which is based on damages of tornadoes on 

structures or vegetations. The six categories of Fujita scale based on order of intensity is shown in 

Table 1.1. However, Fujita scale is based on damage and not real wind speed or pressure. Thus, 

Enhanced Fujita (EF) scale replaced Fujita scale in United States and more recently in Canada 

[13]. The new scale still uses F0-F5 rating, but it is based on a new wind speed range for each 

category: 105-137 (km/hr) for EF0, 138-177 (km/hr) for EF1, 178-217 (km/hr) for EF2, 218-266 

(km/hr) for EF3, 267-322 (km/hr) for EF4, >322 (km/hr) for EF5. 

  Most of building structures would not survive these peak winds. Thus, it is often stated that it is 

not worth to consider tornado wind forces in the building codes as the added cost is not justifiable. 

However, more than half of tornadoes have maximum wind speed smaller than 165 km/hr and 

80% of tornadoes falls in the category EF2 [2-3]. Moreover, the area which is subjected to the peak 

winds is much smaller than the damage path of tornado [3]. Wind speed changes significantly 

across tornado damage path. Thus, it is important to have wind characteristics for an accurate 
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assessment of tornado hazard and have an analytical model which implements both mean and 

fluctuating flow fields. The fluctuating flow field can be obtained by modal decomposition 

techniques. 

1.2.1 Modal decomposition techniques  

  Turbulent vortex flows present two types of fluctuations: (i) large-scale fluctuations due to the 

coherent structures, and (ii) small scale fluctuations. Large-scale fluctuations can be identified and 

extracted by modal decomposition techniques.  Modal representation is an efficient way to express 

the complex spatial and temporal variations of turbulent flow as a combination of time-invariant 

distributions, called modes, modulated by scalar coefficients.  

  The most popular and probably the oldest technique for modal representation is proper orthogonal 

decomposition (POD), introduced by Lumely [6]. Arndt et. al. [28] applied space time approach 

to pressure fluctuations surrounding an axisymmetric jet. J. Delville [29] and Ukeiley et. al. [30] 

initially applied the space time approach to hot wire rake data which was available at only one 

streamwise location. Then, they used Taylor’s Hypothesis to map from frequency domain to the 

streamwise wavenumber domain and then proceeded to use such eigenfunction in a dynamical 

system approach. Herein, time stationary form of POD is referred to as Dynamic POD, or Spectral 

POD. W. K. George [31] provided a comprehensive review on this subject. 

  POD as a feature-recognition tool sometimes provides non-physical patterns. This failure is 

mainly attributed to two problems: (i) ranking modes by their own energy might not be relevant in 

cases where weak or intermittent coherent structures exist [7-9], and (ii) mode shapes are likely to 

be determined by the orthogonality constraint and thus may not be physically meaningful [5]. 

   Another technique is independent component analysis (ICA) which mitigates the problems of 

POD method [24-27].  Its main difference with POD is that ICA exploits non-Gaussian structures 

and make them as independent as possible. Despite its widespread in several fields such as image 

recognition and signal processing, its application in fluid dynamics research area is very limited 

and its potentials are still unexplored. 

  In other words, POD can be seen as a mathematical tool to reveal physical phenomena embedded 

in data. POD splits the flow into two functions of time and space, and the space function is referred 
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to as POD modes. To extract physical features, POD maximizes the energy projection of modes. 

This results in an eigenvalue problem, meaning that POD modes are sorted by their eigenvalue 

from maximum to minimum. Since eigenvalues can be associated to energy of the flow (turbulent 

kinetic energy), the first few POD modes have the highest energy. However, POD modes are 

constraint to orthogonal spaces, which results in non-physical modes. ICA mitigates this condition 

by searching for independent modes. Both POD and ICA can be applied in frequency domain and 

provide modes with complex values which helps us to visualize the modes in animation. 

  The above literature review shows that POD and ICA have not been applied on tornado-like 

vortices. This flow is complex since different physical phenomena (wandering, vortex breakdown 

and transition from single-cell to double-cell) can be observed. Here, POD and ICA are used to 

identify and extract coherent structures out of tornado-like vortices which can be used further to 

generate an analytical model for the fluctuating flow field. 

1.2.2 Analytical models of tornado-like vortices  

  A brief review of analytical models of tornado vortices is presented herein. A detailed review is 

presented in Chapter 4.  

  The most well-known and probably the oldest analytical model is Rankine model in which only 

the radial variation of tangential velocity component (𝑈𝜃) is considered. Note that Rankine model 

presents in two versions, refers to as combined or modified models, for which modified model 

gives a smoother variation at the core radius. 

  Vatistas [14] proposed an empirical model for tangential velocity assuming that tangential 

velocity is only function of radius and vortex has solid-body rotation at the core. In this model,  

the radial and vertical components are smaller than the tangential component. While this model 

works for single-cell vortex, it does not capture the downdraft by the vortex breakdown. 

  Wood and White [15,16] modified the Vatistas model and proposed a model in which three 

empirical constants are implemented to control the shape of tangential velocity profile in the core 

radius and outer core area. 

  Kuo-Wen [17,18] presented analytical model which considers the effects of boundary layer. In 

this model, there are two sets of equations for the three velocity components (radial, vertical and 
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tangential components) for within and out of boundary layer. This is the only model that considers 

the effects of boundary layer.  

  Burgers [19] and Rott [20] suggested a model as a solution of Navier-Stokes equations for the 

three velocity components. In this model, the axial velocity remains constant at the different radial 

distance from vortex center, which is not realistic.  

  Xu and Hangan [21] presented a vortex model by combining a jet model with the modified 

Rankine vortex. In their approach, the jet model characterizes the radial and axial motions, and the 

Rankine vortex describes the tangential component. They successfully compared the analytical 

model with experimental data at small values of Swirl ratio (S = 0.28). 

  Recently, Baker and Sterling [22] proposed a vortex model for which the velocity components 

are normalized by maximum radial velocity 𝑈𝑟,𝑚𝑎𝑥. 𝑟 and 𝑧 are normalized 𝑟𝑚 and 𝑧𝑚 as the radius 

and height for which maximum radial velocity occurs. This model is more suitable for calculating 

debris trajectory [23]. 

  The above-mentioned literature review on the analytical modeling of tornado vortices shows that 

no analytical model considers the fluctuating flow fields, despite of its importance in the wind field 

[23]. Large scale wind fluctuations can be extracted and reconstructed using modal analysis. 

1.3 Organization of the thesis 
 

  This thesis follows the “integrated article” format as per thesis submission requirement of 

Western University. The thesis contains three articles described in Chapter 2, Chapter 3 and 

Chapter 4, respectively. 

  Chapter 1 provides a brief introduction to tornado research and defines the main objectives of the 

thesis: (i) the modal decomposition analysis of the velocity and surface pressure fields of 

experimental tornado vortices and (ii) the definition of a mean and novel fluctuating flow field 

analytical model for tornado vortices. It also summarises modal analysis techniques applicable to 

tornado vortices and includes a brief review of related analytical models. 

  Chapter 2 investigates the coherent structure of the tornado vortices using two different 

decomposition methods: (i) proper orthogonal decomposition (POD), also referred to as principle 
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component analysis (PCA) and (ii) dynamic proper orthogonal decomposition (D-POD) to provide 

time evolutions of the POD modes. To foster the physical interpretation of these POD modes, a 

modal decomposition on a simulated synthetic vortex is also applied. 

  Chapter 3 presents statistical analysis of surface pressure fluctuations in tornado-like vortices. A 

comparison between modal decomposition techniques (POD and ICA) and some common 

statistical techniques is also provided. This part of the thesis is fundamental in future understanding 

and modeling of the impact of tornado vortices on buildings and structures. 

  Chapter 4 provides an analytical model for the velocity field of tornado-like vortices with single-

cell and double-cell structures. Both the mean and fluctuating flow fields are considered. The 

analytical model of fluctuating flow field is entirely novel and based on the results of modal 

analysis discussed in Chapter 2 and Chapter 3.  

  Chapter 5 provides a summary of the work and conclusions. This Chapter provides also 

recommendations for the scope of future work.  
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     Chapter 2 

2  Coherent structures in tornado-like vortices 

  The dynamics of tornado-like vortices is investigated through a set of novel physical experiments 

and modal analyses for a wide range of swirl ratios (0.22 ≤ 𝑆 ≤ 0.96). Various physical 

phenomena such as wandering, vortex breakdown or transition from one-cell to two-cell structures 

are observed. To investigate the coherent structure of the tornado vortices, two different 

decomposition methods are applied: (i) proper orthogonal decomposition (POD), also referred to 

as principle component analysis (PCA) and (ii) dynamic proper orthogonal decomposition (D-

POD) to provide time evolutions of the POD modes. To foster the physical interpretation of these 

POD modes, we also applied modal decomposition on a simulated synthetic vortex.  

  The results show that at low swirl ratios before vortex break down, the flow is characterized by 

a single vortex which is tilted at lower heights. For intermediate swirls, before vortex touch down, 

the flow is characterized by a recirculation bubble with a single spiral rotating around it. By further 

increasing the swirl ratio, transition from single spiral to double spiral (one-cell to two-cell 

structures) occurs. Based on these observations, a simple vortex structure of tornado-like vortex is 

put forward which can be used to generate a low order, large scale turbulence  model for these type 

of flows.  

2.1 Introduction 
 

  With the raise in tornado wind damage during the last decades, the research on tornado-like 

vortices has been revived. While mean flow fields have been put forward, [1-4], there remains a 

fundamental lack in understanding and experimental modeling of the turbulent flow dynamics. 

Regardless of the type of vortex chamber, many tornado simulators generate flows that reveal 

similar flow patterns and agree in general on the variations of the flow structures with swirl ratio 

(the ratio of tangential velocity to radial velocity) [3]. However, very little is known about the 

underlying physics of the flow as the previous studies have mainly focused on qualitative flow 

visualization and the quantitative description of the mean flow and some statistical turbulence  



11 
 

 
                 (a)                                   (b)                                   (c)                                    (d) 

 

Figure 2. 1: Photograph of tornado-like vortex for (a) small swirl ratio, 𝑆=0.22, with vortex tilting, 

(b) moderate swirl ratio, 𝑆=0.57, with recirculation bubble of vortex breakdown and (c) a single 

spiral developed behind the bubble, and (d) high swirl ratio, 𝑆=0.96, with double spiral developed 

behind the bubble. Double spiral pattern refers also to as double-cell structure. Reproduced with 

permission from J. Atmos. Sci. (1979), [12]. Copyright 1979 American Meteorological Society. 

 

characteristics [1, 2, 5-9, 14]. This lack of in-depth knowledge about the prominent mechanisms 

of the tornado-like vortices is attributed to several problems.  

  The first problem is the vortex wandering (meandering) phenomenon. Mostly for small swirl 

ratios, the vortex core is displaced in a random fashion around the mean center of the vortex (see 

Figure 2.1-a) [1, 2]. Wandering has an important impact on the accuracy of flow field 

measurements and should therefore be also accounted for. Ashton et al. [10] showed that this 

motion can lead to large errors in estimation of the core radius and maximum tangential velocity. 

They also showed that high fluctuations in the vortex core are the consequences of wandering 

motion. While the underlying mechanism of wandering in tornado vortices was not yet discussed, 

Edstrand et al. [11] suggested the vortex instability effects as the main source of wandering in 

wing-tip vortices, which is rather similar to what is observed in our case. 

  The second problem is the vortex breakdown (VBD) phenomenon. When the swirl ratio increases 

(𝑆 ≅ 0.4), it is observed that the vortex core expands into a recirculation bubble aloft (see Figure 

2.1-b) [2,12,13]. This phenomenon is termed vortex break down which is highly turbulent in 
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nature. By further increasing swirl ratio (0.7 ≤ 𝑆 ≤ 1), VBD moves upstream and reaches the 

surface (vortex touch down), which leads to the break of the vortex structure into a double-cell 

structure [12]. This complex structure contains two intertwined helical vortices orbiting around the 

geometric center (see Figure 2.1-d). These two vortices mutually interact with each other and 

generate turbulence [14]. It’s not clear if the longevity of these vertical structures is dominated by 

large-scale instabilities or by turbulent diffusion. Understanding the decay mechanism is important 

due to its close correlation with variation of vortex circulation. Such a variation would lead to 

changes in maximum tangential velocity, which is of interest in engineering applications.  

  To develop a better understanding of the above-mentioned effects for tornado-like vortices, 

modal analysis can be employed to reveal the dominant turbulent flow characteristics. The main 

objective of modal analysis is the representation of the relevant flow features using a small number 

of modes. The classical method for extraction of the dominant features (coherent structures) is 

proper orthogonal decomposition (POD) method. POD was introduced in fluid dynamics by 

Lumely [15] for extraction of coherent structures in turbulent flows. Sirovich [16] also introduced 

snapshot-POD to minimize the computational time involved in the conventional POD. This 

method, which, in other fields, is often referred to as principal component analysis (PCA), has 

been experimented by several researchers as a feature-recognition tool [17-20]. However, the 

general opinion is that POD modes do not necessarily represent coherent structures, or that they 

do not necessarily have a physical meaning [16, 21-23]. This is mostly due to two factors: (1) POD 

modes are mutually orthogonal, thus modes higher than the first one may be conditioned by this 

constraint that has no physical reason; (2) POD modes are static shapes, thus are suited to represent 

coherent structures that migrate in space [32]. Dealing with turbulent flow field, the orthogonality 

issue was circumvented by replacing POD with the Independent Component Analysis (ICA), while 

the identification of time-variant coherent structures was achieved by extending POD and ICA to 

their dynamic formulations D-POD and D-ICA [33-34].  A recent application of D-POD in fluid 

mechanics has been presented in [23], where D-POD restricted to stationary signals is called 

spectral POD. 

  To date, there has been no crucial examination of the coherent structures of tornado-like vortices 

using modal analysis partly because of the difficulties involved in laboratory experiments and 

partly because of the complex nature of the flow. By applying modal analysis to tornado-like 
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vortices, one can better understand the complex vortex dynamics including vortex wandering, 

vortex breakdown and sub-vortex dynamics. At the same time, by identifying a reduced number 

of modes representative of tornado-like turbulent velocity field, one can construct simplified but 

physically meaningful models. It is hoped that the present investigation may also help in the 

interpretation of the underlying mechanisms in swirling flows in general. 

 
Figure 2. 2: Schematic drawing of Mini-WindEEE Dome. © Elsevier. Used with permission from 

Ref. [25]. 

 

2.2 Experimental setup 
 

  The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University is the 

world’s first 3D and time dependent wind testing chamber that provides a novel technique to 

physically simulate various types of flow fields including tornadoes [25]. A 1/11 scaled model of 

WindEEE Dome (MWD) was built to reproduce and verify the characteristics of WindEEE Dome. 

The MWD testing chamber is hexagonal in shape having 8 fans at the base of five walls out of six 

peripheral walls. The six walls are instrumented with an array of 60 fans distributed into 4 rows×15 

columns fans. Above the testing chamber and communicating with it through a bell mouth 

opening, there is another top pressure chamber with 18 top fans distributed on its periphery walls. 

A schematic drawing of the chamber is shown in Figure 2.2. [25]. 

  In order to produce tornado vortices in the MWD, top fans are used to pull the air out of the 

hexagonal chamber which afterwards recirculates through the peripheral walls of the main lower 

chamber. The inflow in the lower chamber passes through vanes (installed at the base of each of 
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the six walls) whose angles control the radial and tangential inflow velocity components. As the 

inlet flow moves towards the chamber’s center, it is tilted in upward direction by the top fans. 

Then, the flow recirculates through the bell mouth instrumented with a honeycomb in order to 

straighten the flow and thus eliminate the effects of fans swirl. A detailed description of the MWD 

is provided in [2]. 

  In MWD, the geometric aspect ratio 𝑎, defined as the ratio of inflow height to the updraft radius, 

is fixed at 0.35. Moreover, the radial Reynolds number (𝑅𝑒𝑟) for the present study was 6.7 × 104. 

It was shown that the results in MWD and the full scale WindEEE Dome are quasi-independent 

of Reynolds number when 𝑅𝑒𝑟 ≥ 6.7 × 104 [2]. The main governing parameter is the swirl ratio 

which is defined as the ratio of tangential to radial velocity components at the inlet, 𝑆 =

(1/2𝑎) (𝑉𝑡𝑎𝑛/𝑉𝑟𝑎𝑑) = (1/2𝑎) 𝑡𝑎𝑛𝜃, where 𝜃 is the vane angle with the normal direction to the 

sidewall. 

  Particle image velocimetry (PIV) method was used to measure the velocity field in a horizontal 

plane at different heights above the surface (ℎ = 3.5, 4.5, and 7 𝑐𝑚). A pulsed Nd:YAG laser 

generator with a wavelength of 532 nm was used as a source of illumination. The laser run at pulse 

repetition rates of up to 30 Hz with 120 mJ/pulse output energy. A CCD camera (VA-4M32, 

Vieworks) with a spatial resolution of 2336 × 1752 pixels was used to capture images. Using a 

calibration board, the field of view of the camera was set to 23.4 cm by 17.5 cm and pixel to meter 

conversion ratio was determined. A cylindrical lens was used to obtain a light sheet with a uniform 

thickness of 2 mm. The tornado chamber was seeded with Di-Ethyl-Hexyl-Sebacate (C26H50O4) 

particles, with an average diameter of 1 µm. These particles have a response time of 2.55 × 10−6 

s which is 2 to 4 orders of magnitude smaller than Kolmogorov time scale of the simulated tornado 

(Kolmogorov time scale varies between 3.06 × 10−4 s and 1.2 × 10−2 s depending on the swirl 

ratio). A maximum error of 7.2% is estimated for velocity measurements in horizontal planes. A 

detailed description of the experimental setup is provided in [1, 2]. 

  Due to low sampling frequency of the PIV system (15 𝐻𝑧), surface pressure measurements have 

been also performed. 413 static pressure taps were distributed concentrically on a floor panel with 

a diameter of 56 cm. The frequency of pressure signal collector was 700 Hz and the data were 

collected for a period of 60 s. Here, the pressure coefficients are normalized by the dynamic 
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pressure calculated by average updraft velocity at the outlet. The surface pressure measurements 

are used here only to perform time-frequency analysis in order to emphasize the interpretations 

resulting from the velocity field analysis. A complete accompanying paper on the surface pressure 

measurements analysis is to follow. A maximum error of 1.17% is estimated for surface panel 

measurements. 

  The random motion of the vortex (wandering phenomenon) can lead to large errors in evaluating 

the flow field. Thus, it is necessary to remove the effects of wandering from the flow field data. 

Herein, we used two different algorithms to achieve this goal.  

  For 𝑆 = 0.22, the vortex center is detected via finding minimum vorticity magnitude since the 

flow looks laminar. Then, the vortex domain is shifted to the mean center of the vortex using an 

interpolation procedure [26]. Finally, as a second filter, we removed the PIV snapshots in which 

vortex displacement is higher than 10−3 cm.  

  For 𝑆 = 0.57 and 𝑆 = 0.96, wandering removal is more challenging since the flow is highly 

turbulent. We use the following steps to remove wandering effects: (i) the vortex domain is re-

centered by detecting the vortex center as the minimum velocity magnitude, (ii) PIV snapshots, in 

which vortex displacement is higher than 10−1 cm, are removed, (iii) a new grid with high 

resolution in the vortex core is created, and then the velocity field is interpolated in the new grid, 

and (iv) the vortex domain is re-centered again by detecting the vortex center using the method 

introduced by Jiang et al. [27]. This algorithm successfully worked for 𝑆 = 0.57, but it was not 

able to completely remove the wandering effects at 𝑆 = 0.96 for modal analysis purposes. 

  It is worth noting that vortex wandering is a phenomenon which occurs in a large class of vortex 

flows, e.g. wing-tip vortices [28, 29], wind turbine vortices [30] and ground vortices [31]. Thus, 

the present investigation is helpful in the interpretation of the underlying mechanisms in vortex 

flows in general. 

2.3 Modal representation  
 

  This section briefly presents the formulations of POD and D-POD for the extraction of the 

coherent structures from the velocity field [24, 32]. Let us consider a fixed Cartesian reference 

system x, y, z with origin on the floor at the center of the test chamber and its z-axis vertical directed 
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upwards. Let V(p,t) be the velocity measured at the point p and time t. Due to the experimental 

setup, the measurement points pj (j=1…N) are organized in a grid on a horizontal plane and only 

the horizontal components of the velocity are measured. For processing purpose, the measurements 

are organized in the vector q(t) defined as: 

𝐪(𝑡) =

[
 
 
 
 
𝑣𝑥(𝑝1, 𝑡)
𝑣𝑦(𝑝1, 𝑡)

⋮
𝑣𝑥(𝑝𝑁, 𝑡)
𝑣𝑦(𝑝𝑁, 𝑡)]

 
 
 
 

                                                                                                                           (2.1) 

where t = 1…Nt is the discretized time t (Nt is the number of snapshots), while vx and vy are the 

zero-mean fluctuation of the two horizontal components of the velocity. 

2.3.1 Proper Orthogonal Decomposition (POD) 

Let 𝐂𝐪𝐪 be the zero-time-lag covariance matrix estimated from the data as: 

𝐂𝐪𝐪 = E[𝐪(𝑡)𝐪(𝑡)∗] ≅
1

𝑁𝑡
∑ 𝐪(𝑡)𝐪(𝑡)∗𝑁𝑡

𝑡=1  (2.2) 

in which the statistical expectation E[.] is implemented as a temporal average, assuming that 𝐪(𝑡) 

is an ergodic random process and the superscript * indicates the conjugate transpose. According 

to POD, 𝐪(𝑡) is represented by the modal expansion [24,32,33]: 

𝐪(𝑡) = ∑ 𝛟𝑘 𝑥𝑘(𝑡) = 𝑁
𝑘=1 𝚽𝐱 (2.3) 

 

where the vectors 𝛟𝑘 ∈ ℝ𝑁 (k = 1,…,N) are the eigenvectors of 𝐂𝐪𝐪, i.e. the solutions of the 

eigenvalue problem: 

𝐂𝐪𝐪𝛟𝑘 = 𝜆𝑘𝛟𝑘     (k = 1,…,N) (2.4) 

 

The eigenvectors, or the columns in the matrix Φ, are conventionally normalized to unit norm and 

are assembled column-wise to build the matrix Φ. The coefficients 𝑥𝑘 are the Principal 

Components (PC) of the process and are assembled in the vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇. Due to this 

definition, the eigenvectors are mutually orthogonal, and the PCs are mutually uncorrelated for 

zero time lag [e.g. 17]. The eigenvectors and the PCs are enumerated in such a way that their 
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corresponding eigenvalues 𝜆𝑘 are sorted in decreasing order. Since the eigenvalues represent the 

variance of the PCs, the importance of the terms in Eq. (2.3) tends to decrease as their order 

increases. The energy of each mode can be defined as: 𝐸𝑘 = 𝜆𝑘 ∑ 𝜆𝑘
𝑁
𝑘=1⁄ . In practical applications, 

the first few terms of the summation provide a good representation of the observed phenomenon, 

while neglecting high-order terms leads to a noise cancellation [13]. 

2.3.2 Dynamic Proper Orthogonal Decomposition (D-POD) 

  A limitation of POD is implicit in their definition, which is based on a static mixing. The modes 

are constant in time, thus if a coherent structure has a time evolution, more than one mode may be 

necessary for its representation. It is the case, for example, of coherent pressure distribution that 

translate due to the advection produced by the main flow. A general way to overcome this 

limitation is to generalize the static mixture represented by Eq. (2.3) into a convolutive mixture  

𝐪(𝑝, 𝑡) = ∫ 𝚽(𝑝, 𝜏) 𝐱(𝑡 − 𝜏)𝑑𝜏
𝑡

0
 (2.5) 

 

in which the mixing matrix Φ depends on the time lag 𝜏 and has the role of impulse response 

function. In Eq. (2.5), Φ is defined according to D-POD, the PC 𝑥𝑗(𝑡) are mutually uncorrelated 

for any time lag  𝜏 [24].  

  If the modal representation is exploited to extract coherent structures, the use of Eq. (2.5) is not 

practical and it is preferred to translate it in the frequency domain as: 

�̂�(𝑝, 𝜔) = �̂�(𝑝, 𝜔) �̂�(𝜔) (2.6) 

 

where the symbol ∙ ̂represents the Fourier transform and 𝜔 is the circular frequency.  

  In the frequency domain, D-POD is formally a static mixing (different for each frequency) and 

the mixing matrix �̂�  may be interpreted as a frequency response function. The estimation of �̂� 

from data can be obtained through the following procedure: 

1. Samples of �̂�(𝜔) are obtained by calculating the Fourier transform of time portions of the 

given signal 𝐪(𝑡) through the algorithm FFT preceded by a proper windowing. Let �̂�(ℎ)(𝜔) 

(h=1,…,Nw) be the Fourier transform calculated for the hth time window. 



18 
 

2. The covariance matrix of �̂�(𝜔) is computed by averaging on the available time windows as 

𝐂�̂��̂�(𝑝, 𝜔) = E[�̂�(𝑝, 𝜔)�̂�(𝑝, 𝜔)∗] ≅
1

𝑁𝑤
∑ �̂�(ℎ)(𝑝, 𝜔)�̂�(ℎ)(𝑝, 𝜔)∗𝑁𝑤

ℎ=1  (2.7) 

where the symbol * represent the conjugate transpose 

3. The mixing matrix is calculated by solving the eigenvalue problem 

𝐂�̂��̂�(𝜔)�̂�𝑘(𝑝, 𝜔) = 𝛾𝑘(𝜔)�̂�𝑘(𝑝, 𝜔) (k = 1,…,N) (2.8) 

 

The application of D-POD as specified above requires some observations: 

1. The number Nw of time windows extracted from the dataset should be large enough to obtain 

a correct estimation of the expectation in Eq. (2.7); on the other hand, the length of the time 

windows determines the discretization of the frequency values obtained from the Fourier 

transform. 

2. If D-POD is used to extract coherent structures, Eqs. (2.7) and (2.8) must be solved only for 

some (usually a few) frequencies of interest for which the observed phenomenon is relevant.  

3. The covariance of �̂�(𝑝, 𝜔) is, apart from a normalization constant, equal to the Power 

Spectral Density function (PSD) of 𝐪(𝑝, 𝑡) and Eq. (2.7) corresponds to the Welch’s 

estimation method.  

4. Since 𝐂�̂��̂�(𝜔) is Hermitian symmetric, the D-POD modes �̂�𝑘 are mutually orthogonal in ℂ𝑁 . 

5. Modes obtained by D-POD are complex valued, thus represent distributions characterized 

by amplitude and phase. To overcome the difficulty of visualization and  physical 

interpretation, the complex modes can be represented as a sequence of real modes defined 

as [24,34]: 

�̅�𝑘(𝑝, 𝜔, 𝛼) = Re[�̂�𝑘(𝑝, 𝜔) 𝑒i𝛼]                                                                                                       (2.9) 

where 𝛼 is a phase shift common to all the vector components, which can also be related to 

the time-lag 𝜏 = 𝛼/𝜔. 

Beside the procedure described above, D-POD modes can be obtained using a full time-domain 

method that has the advantage of relying on the same algorithms developed for standard POD 

without the need of a specific implementation. In the present study, the full time-domain D-POD 

is chosen and can be formulated according to the following procedure: 
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1. The given signal q(t) is band-pass as 

𝐪𝜔(𝑝, 𝑡) = 𝐵𝑃[𝐪(𝑝, 𝑡); 𝜔; Δ𝜔] (2.10) 

where 𝐵𝑃[∙] is a band-pass filtered with central frequency 𝜔 and bandwidth Δ𝜔. In this 

study, only one frequency band ∆ω=3.5Hz with central frequency ω=4 Hz is considered 

since the sampling frequency of PIV system is 15 Hz.  

2. An analytic signal is constructed by completing 𝐪𝜔(𝑝, 𝑡) with its quadrature term as 

�̃�𝝎(𝒑, 𝒕) = 𝐪𝝎(𝒑, 𝒕) + 𝒊ℋ[𝐪𝝎(𝒑, 𝒕)] (2.11) 

where ℋ[∙] is the Hilbert transform. 

3. The analytic signal is processed through standard POD with the only difference with respect 

to Eqs. (2.1-2.3) that the signal is complex valued. 

 

Apparently, the time-domain D-POD has a user-settable parameter, the filter bandwidth Δ𝜔, that 

is not present in standard D-POD. In reality, in standard D-POD this parameter is determined 

indirectly by the length of the time windows used to calculate the Fourier transform of the signal. 

2.4 Analysis of a simulated synthetic vortex 
 

  POD modes have been widely employed in fluid dynamics to identify dominant flow features 

referred to as coherent structures, which are used to reveal the occurrence of large-scale 

phenomena that are hidden in a turbulent flow [33]. Coherent structures should be interpreted as 

spatially-coherent velocity components whose amplitude fluctuates with zero mean and are 

superimposed to the mean flow. In other terms, the coherent structures are ideal flow fields 

representing zero-mean corrections to the mean flow. Due to this nature, the interpretation of the 

coherent structures is reasonably straightforward when the mean flow is simple, but it requires a 

substantial attention whenever the mean flow is complex like in the present case of the tornado-

like vortex.   
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    (a)                                             (b)                                                 (c) 

Figure 2. 3: A snapshot of the vorticity field (1/s) of the idealized (synthetic) vortex (a) with 

Gaussian random wandering and/or variation in size, (b) with a single spiral rotating around the 

vortex and (c) with a double spiral rotating around the vortex. 

 

 
                      (1)                                                (2)                                             (3) 

Figure 2. 4: Time history of fluctuating vorticity field (1/s) of the simulated vortex with only 

Gaussian random wandering. Positive (negative) values of vorticity are shown in red (blue) 

color. 

  In this section, we investigate the POD representation of an idealized vortex to help us with the 

interpretation of the modes extracted from the experimental measurements. The vortex is simulated 

with a vorticity field distributed according to a bivariate Gaussian function. To simulate different 

phenomenon in our tornado-like vortex, four different cases are considered for simulation of the 

synthetic vortex: (i) a vortex with only Gaussian random wandering (Figure 2.3-a), (ii) a vortex 

with a Gaussian random wandering plus a size variation (Figure 2.3-a), (iii) a vortex with a single 

spiral rotating around the vortex plus wandering motion (Figure 2.3-b), and (iv) a vortex with a 
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double spiral rotating around the vortex plus wandering motion (Figure 2.3-c). A snapshot of the 

vorticity field of the idealized vortex for these simulation cases is shown in Figure 2.3. To apply 

POD, we remove the mean component and then calculate the modes. 

The analytic expression for the first simulation case is as follows: 

𝑓(𝑥, 𝑦, 𝑡) =  
1

2𝜋𝜎2
 exp (−

(𝑥− 𝑥0)2

2𝜎
− 

(𝑦− 𝑦0)2

2𝜎
)                                                                         (2.12) 

where 𝜎 = 0.1, represents the vortex size; 𝑥 and 𝑦 are the domain coordinates,  𝑥0, 𝑦0 is the vortex 

center position. To simulate the vortex wandering, the vortex center is located randomly at each 

time step using a normal distribution in a range of -1 to 1. The snapshots of the fluctuating vorticity 

field are shown in Figure 2.4. It shows that the fluctuating field has dipole-type shape with both 

negative and positive values, and sometimes it consists of mainly a single vortex. Figure 2.5 shows 

the first five POD modes of the idealized vortex with only Gaussian random wandering around the 

geometric center. The first two modes represent wandering motion of the vortex and mode three 

shows a single vortex. Modes four and five are not physically meaningful and are due to the 

orthogonality condition embedded in POD. 

 

 
Figure 2. 5: The first five POD modes of the idealized (synthetic) vortex with only Gaussian 

random wandering.  
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                      (1)                                                (2)                                             (3) 

Figure 2. 6: Time history of fluctuating vorticity field of the simulated vortex with Gaussian 

random wandering plus a size variation. Positive (negative) values of vorticity are shown in red 

(blue) color. 

 

 
Figure 2. 7: The first five POD modes of the idealized (synthetic) vortex with Gaussian random 

wandering and variation in size. 

 

  The second simulation case which is a vortex with a Gaussian random wandering plus a size 

variation (see Figure 2.3-a) is generated using the same procedure for the first simulation case, 

except vortex size (𝜎) which is changing periodically using the equation 𝜎 = 0.3 + 0.2 sin (𝑡). 
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Time history of the fluctuating vorticity field is shown in Figure 2.6. It shows that the fluctuating 

field consists of a single vortex, and then it gradually takes a dipole shape. Figure 2.7 shows the 

first five POD modes of the fluctuating flow field. Mode 1 shows a single vortex and modes 2 and 

3 correspond to wandering motion. Mode 4 represents the size variation of the vortex, and mode 

5 is non-physical.  

  The third simulation case, which is a single spiral rotating around a vortex plus wandering motion 

(see Figure 2.3-b), is generated using the following the formula: 

𝑓(𝑥, 𝑦, 𝑡) =  
1

2𝜋𝜎0
2
exp (−

(𝑥− 𝑥0)2

2𝜎0
− 

(𝑦− 𝑦0)2

2𝜎0
) +

1

2𝜋𝜎1
2
exp (−

(𝑥− 𝑥1)2

2𝜎1
− 

(𝑦− 𝑦1)2

2𝜎1
)                (2.13) 

The first part in the Eq. (2.13) generates a single vortex at the center, and the second part generates 

a spiral vortex rotating the vortex. Both the single vortex and the spiral have the same size 𝜎0 =

𝜎1 = 0.04. The vortex center position, 𝑥0 and 𝑦0, are located randomly at each time step using a 

normal distribution in a range of -1 to 1. The spiral position, 𝑥1 and 𝑦1, are calculated using the 

equation: 𝑥1 = 𝑥0 + 1.5 cos (𝜔𝑡) and 𝑦1 = 𝑦0 + 1.5 cos (𝜔𝑡), where 𝜔 is the angular velocity 

of spiral.  

   The fourth simulation case, which is a double spiral rotating around a vortex plus wandering 

motion (see Figure 2.3-c), is generated using the same procedure for the third simulation case, 

except that two spirals are rotating around the vortex: 

𝑓(𝑥, 𝑦, 𝑡) =  
1

2𝜋𝜎0
2 exp (−

(𝑥− 𝑥0)2

2𝜎0
− 

(𝑦− 𝑦0)2

2𝜎0
) +

1

2𝜋𝜎1
2
∑ exp (−

(𝑥− 𝑥𝑖)
2

2𝜎1
− 

(𝑦− 𝑦𝑖)
2

2𝜎1
)2

𝑖=1          (2.14) 

The first part in the Eq. (2.14) generates a single vortex at the center, and the second part generates 

a double spiral. The second spiral position, 𝑥2 and 𝑦2, are calculated using the equation: 𝑥2 =

 𝑥0 − 1.5 cos (𝜔𝑡) and 𝑦2 = 𝑦0 − 1.5 cos (𝜔𝑡), where 𝜔 is the angular velocity of spiral.  
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                       (1)                                            (2)                                             (3) 

                 (a) 

  
                      (1)                                                (2)                                             (3) 

                    (b) 

 

Figure 2. 8: Time history of the vorticity field (1/s) of (a) single and (b) double spiral rotating 

around the vortex.  

 

 
                 (a) 
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                                                    (b) 

 

Figure 2. 9: The first two POD modes of the idealized (synthetic vortex) with (a) single and (b) 

double spiral rotating around the vortex (see Figures 3-b and 3-c). 

 

Figure 2. 10: Energy of POD modes of the idealized (synthetic) vortex with four different 

simulation cases: (I) vortex with only wandering, (II) vortex with wandering plus size variation, 

(III) vortex with single spiral and (IV) vortex with double spiral. 

 

  Time history of the vorticity field of the third and fourth cases are shown in Figure 2.8. It shows 

the rotation of the single (double) spiral around a single vortex at center while having wandering 

motion. The first two POD modes of third and fourth simulation cases are shown in Figure 2.9. 

For the vortex with single spiral, the POD mode shows a well separated dipole (Figure 2.9-a), 

while the dipoles wrap around each other for the vortex with double spiral (Figure 2.9-b). We will 

show that these modes are very similar to the POD mode of tornado-like vortex for swirl ratio 𝑆 =

0.57 and 0.96.  
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  The energy of POD modes of the synthetic vortex for the four simulation cases are shown in 

Figure 2.10. It shows that the first few POD modes contribute the most to the total energy, while 

the subsequent modes have quite comparable effects. This suggests that we can characterize the 

large-scale fluctuations of the vorticity field by looking into only five POD modes. It can be noted 

that the dipole-type mode pairs (modes 1 and 2 for Case I, Figure 2.5 and modes 2 and 3 for case 

II, Figure 2.7) are associated to eigenvalues that are very close each other. This suggests that the 

dipole-type mode pairs represent 2-dimensional eigenspaces and are likely to be related to a unique 

phenomenon, namely the vortex wandering.  

  The simulation of the synthetic vortex can help us to have a better understanding of different 

phenomena (wandering motion, vortex breakdown and transition from one-cell to two-cell 

structures) in our tornado-like vortex. In the next section, we will look into the mean flow field of 

the tornado-like vortex and then apply POD on its fluctuating flow field. 

2.5 Analysis of experimental flow field 

 

  The tornado-vortex flow structure is highly dependent on the swirl ratio (𝑆). The swirl ratio based 

on the vane angle collapses well with the value obtained from maximum circulation 𝛤∞, 𝑆 =

𝛤∞ 2𝑄𝑎⁄ , where 𝑄 is the flow rate [2]. In the present work, three values of swirl ratio (𝑆 =

0.22, 0.57 and 0.96) were chosen since they represent distinct vortex flow structures.  

  Church et al. [12] showed that for 𝑆 ≅ 0.2, the vortex is tilted at low heights while it is subjected 

to the highly intensified random motion wandering (see Figure 2.1-a). For 𝑆 ≅ 0.4, a recirculation 

bubble (vortex breakdown) forms aloft (see Figure 2.1-b), which moves toward the surface by 

increasing the swirl ratio, until it touches the surface panel around 𝑆 ≅ 0.57. When the swirl ratio 

is 0.7 ≤ 𝑆 ≤ 1, transition from single-cell to two-cell structures occurs. Note that double-cell 

structure includes two intertwined co-rotating sub-vortices that are imbedded in the fluctuating 

flow field. Time histories of the vorticity fields at the height of 3.5 cm above the surface for the 

three different swirl ratios are shown in Figure 2.11. 
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          (a) 
 

 
       (b) 

 
      (c) 

Figure 2. 11: Time histories of experimental vorticity fields (1/s) at height of 3.5 cm above the 

surface for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57, and (c) 𝑆 = 0.96. (Time step size is 0.067 s). 

  Here, we explore the mean flow field first and then the main mechanism underlying these 

phenomena using POD/D-POD techniques. To foster the physical interpretation of the POD/D-

POD modes extracted from the experimental measurements, we also analyzed the velocity field 

produced by a simulated vortex in Section 4.  
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                         (a) 

 
                                                                    (b) 

Figure 2. 12: Mean tangential velocity (m/s) contours for 𝑆 = 0.22 at different heights for (a) un-

removed wandering and (b) removed wandering.  

2.5.1 Mean flow field of tornado-like vortex 

(a) 𝑆 = 0.22. Figure 2.12 shows the mean tangential velocity field for unremoved and removed 

wandering effects. Limited variations of the maximum tangential velocity and the core radius with 

height are observed. The average center of the vortex is not at the center of the test chamber as the 

vortex is weak. When wandering effects are removed (via re-centering the instantaneous vortex to 

its mean center), the maximum tangential velocity at ℎ = 3.5 𝑐𝑚 is increased from 9.3 m/s to 11.5 

m/s and the core radius is decreased from 2.9 cm to 2.2 cm. Figure 2.13 shows the mean radial 

velocity field. A negative (positive) value of radial velocity shows convergent (divergent) flow 

towards the vortex center. It is observed that the radial flow distribution is asymmetric and 

accompanied by divergent flow at the vortex center. The divergent radial flow inside the core is 

unexpected as at this swirl ratio (𝑆 = 0.22) no recirculation breakdown bubble is expected to cause 

a downdraft and therefore divergent radial flow. The absence of vortex breakdown will be inferred 

later (Figure 2.25-a) from the steadiness of the coherent structures (or laminar appearance) along 

the height for this swirl ratio. Interestingly, when we remove the wandering effects (Figure 2.13-



29 
 

b), the divergent flow (shown in red) remains consistent at lower heights (ℎ = 3.5 and 4.5 cm) but 

disappears at higher heights (ℎ = 7 cm). It is believed that this divergent flow is due to vortex 

tilting at low heights. A photograph of vortex tilting at low heights for small swirl ratios (𝑆 = 0.2) 

is shown in Figure 2.1-a [12]. Tang et al. [35] have also reported divergent radial flow in tornado-

like vortex with small swirl ratio at low heights and attributed this behavior to the complex 

structure of vortex.  

 
                                                                     (a) 

 
                                                                     (b) 

Figure 2. 13: Mean radial velocity (m/s) contours for 𝑆 = 0.22 at different heights for (a) un-

removed wandering and (b) removed wandering. Converengt and divergent radial flow are shown 

respectively in blue and red colors.  

   
                                                                              (a) 
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                                                                           (b) 

Figure 2. 14: Mean tangential velocity (m/s) contours for 𝑆 = 0.57 at different heights for (a) un-

removed wandering and (b) removed wandering.  

 

(b) 𝑆 = 0.57. Figure 2.14 shows the mean tangential velocity field. The peak tangential velocity 

and core radius are increased with respect to the ones observed for 𝑆 = 0.22, and the peak 

tangential velocity is reduced rapidly near the ground. Furthermore, the mean center of the vortex 

is closer to the geometric center compared to the 𝑆 = 0.22 case. When wandering effects are 

removed, the maximum tangential velocity at ℎ = 3.5 𝑐𝑚 is increased from 12.8 m/s to 13 m/s 

and the core radius is decreased from 6.4 cm to 5.9 cm. Figure 2.15 shows the mean radial velocity 

field. A negative and positive value of radial velocity corresponds to convergent and divergent 

flow towards the vortex center, respectively. The outward flow (shown in red) in this swirl ratio 

𝑆 = 0.57 is due to the presence of recirculation bubble vortex breakdown inferred later (Figure 

2.25-b) based on the observation of an unsteady behaviour along the vortex height. Moreover, 

when wandering effects are removed, the radial flow becomes almost axisymmetric at lower 

heights, ℎ = 3.5 𝑐𝑚. 

 
                                                                    (a) 
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                                                                          (b) 

Figure 2. 15: Mean radial velocity (m/s) contours for 𝑆 = 0.57 at different heights for (a) un-

removed wandering and (b) removed wandering. Converengt and divergent radial flow are shown 

respectively in blue and red colors. 

 
                                                             (a) 

 
                                                                  (b) 

Figure 2. 16: Mean tangential velocity (m/s) contours for 𝑆 = 0.96 at different heights for (a) un-

removed wandering and (b) removed wandering.  

 

(c) 𝑆 = 0.96. Figure 2.16 shows the mean tangential velocity field. Due to the expanded core 

radius, a smaller area of the outer region is captured in PIV plane. Overall, the maximum tangential 

velocity is increased compared to the case with 𝑆 = 0.57, but varies along the vortex height. When 

wandering effects are removed, the maximum tangential velocity and core radius at ℎ = 3.5 𝑐𝑚 

remain almost constant and equals to 14.6 m/s and 8.2 cm, respectively. Figure 2.17 shows the 

mean radial velocity field. It can be seen that for ℎ = 3.5 𝑐𝑚, the radial outflow expands in an 
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annular form with a stagnant area (zero-value velocity) inside the core region. This quasi 

axisymmetric flow structure weakens with increasing height.  

 
                                                                   (a) 

 
                                                                         (b) 

Figure 2. 17: Mean radial velocity (m/s) contours for 𝑆 = 0.96 at different heights for (a) un-

removed wandering and (b) removed wandering. Convergent and divergent radial flow are shown 

respectively in blue and red colors. 

 

2.5.2 Modal analysis 
 

  This section describes the results of the modal analysis applied to the measured velocity fields. 

The modes extracted by POD represent coherent 2-D velocity fields defined on the horizontal 

measurement plane. To simplify the interpretation of the modes, the figures that follow represent 

the vertical component of the vorticity corresponding to these velocity fields.  

(a) 𝑆 = 0.22. Figure 2.18 shows the first five POD modes of the vorticity field with un-removed 

wandering effects. The vorticity field is calculated by the curl of POD modes of velocity 

components in x and y coordinates in the horizontal planes of the PIV measurements. These POD 

modes are very similar to what was observed for the synthetic vortex with Gaussian random 

wandering (compare Figures 2.5 and 2.18). Dipole modes 1 and 2 represent the wandering motion 

of the vortex. Mode 3 shows a single vortex. Modes 4 and 5 are due to the orthogonality and thus 
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non-physical. The animated movie of mode 1, obtained by D-POD, is shown in Figure 2.19. D-

POD of mode 1 shows the rotation of dipoles at different phase shifts (𝛼), picturing the vortex 

wandering phenomenon. Note that POD modes 1 and 2 correspond to a single vortex but appear 

as two vortices due to the wandering motion. This conclusion is confirmed by the fact that the first 

POD mode applied on the corrected velocity field (removed wandering effects) represents a single 

vortex (see Section 6). In short, for this swirl ratio 𝑆 = 0.22, the flow field is characterized by a 

single vortex subjected to Gaussian random wandering. 

 

 
Figure 2. 18: First five POD modes of the vorticity field with un-removed wandering for 𝑆 = 0.22 

at ℎ = 3.5 𝑐𝑚. Positive (negative) values of vorticity are shown in red (blue) color. 
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Figure 2. 19: D-POD mode 1 with un-removed wandering, for 𝑆 = 0.22 and ℎ = 3.5 𝑐𝑚 at six 

different phase shifts (α), representing time-lag. Positive (negative) values of vorticity are shown 

in red (blue) color. 

  

 
Figure 2. 20: First five POD modes of vorticity field with un-removed wandering for 𝑆 = 0.57 at 

ℎ = 3.5 𝑐𝑚. Positive (negative) values of vorticity are shown in red (blue) color. 
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Figure 2. 21: D-POD mode 3, with un-removed wandering, for 𝑆 = 0.57 and ℎ = 3.5 𝑐𝑚 at six 

different phase shifts (α), representing time-lag. Positive (negative) values of vorticity are shown 

in red (blue) color. 

 

(b) 𝑆 = 0.57. Figure 2.20 shows the first five POD modes of the vorticity field with un-removed 

wandering effects. Modes 1 and 2 are similar to what was observed for the synthetic vortex with a 

single spiral rotating around it (compare 𝜑1 and 𝜑2 in Figure 2.20 with Figure 2.9-a). Mode 4 

shows a single vortex and mode 5 does not contain much coherency. Mode 3 is similar to what 

was observed for the synthetic vortex with variation in size (compare 𝜑3 in Figure 2.20 with 𝜑4 in 

Figure 2.7). It is therefore inferred that mode 3 corresponds to the size varying recirculation bubble 

of vortex breakdown, see also the flow visualization in Figure 2.1-b. Church [12] observed that 

the recirculation bubble has periodic vertical motion which can lead to the variation of vortex core 

size in the horizontal PIV plane. In short, for this swirl ratio 𝑆 = 0.57, the flow is a combination 

between a spiral rotating around the recirculation bubble and a single vortex movement with 

variation in size. Indeed, the animated movie of the mode 3, obtained by D-POD, confirms this 

conclusion. Figure 2.21 shows D-POD mode 3 at ℎ = 3.5 𝑐𝑚. It shows that the single spiral 

(shown in blue) is winding around the bubble (shown in red) during 𝛼 = 0 to 𝛼 = 𝜋/2. Then, the 

coherency starts to disappear at  𝛼 = 2𝜋/3 and 𝛼 = 5𝜋/6 which is probably due to the periodic 
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vertical motion of the vortex. Note that when wandering effects are removed, the first POD mode 

1 (see Section 6) shows a single vortex (or recirculation bubble) structure, suggesting that the 

single vortex, or the bubble, has the highest energy in the flow.   

 

  
Figure 2. 22: First five POD modes of vorticity field with un-removed wandering for 𝑆 = 0.96 at 

ℎ = 3.5 𝑐𝑚. Positive (negative) values of vorticity are shown in red (blue) color. 

 
                     (a)                                             (b) 

 

Figure 2. 23: The first POD mode of the vorticity field with removed wandering effects at ℎ =

3.5 𝑐𝑚 for (a) 𝑆 = 0.22 and (b) 𝑆 = 0.57. Positive (negative) values of vorticity are shown in 

red (blue) color. 
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(c)  𝑆 = 0.96. Figure 2.22 shows the first five POD modes of the vorticity field with unremoved 

wandering effects. Modes 1 and 2 are similar to what was observed for the synthetic vortex with a 

double spiral rotating around it (compare 𝜑1 and 𝜑2 in Figure 2.22 with Figure 2.9-b). Modes 3 

and 4 are similar to what observed for the synthetic vortex with variation in size (compare 𝜑3 and 

𝜑4 in Figure 2.22 with 𝜑4 in Figure 2.7). These modes correspond to the recirculation bubble of 

vortex breakdown based on the same discussion provided for 𝑆 = 0.57. Mode 5 is analogous to a 

single spiral vortex. It appears that for this swirl both a double spiral (modes 1 and 2) and a single 

spiral vortex (mode 5) are present in the flow with the double spiral dominating. This is confirmed 

by the streamline snapshots where one or two vortex structures are observed (see Section 6). In 

short, for this swirl ratio 𝑆 = 0.96, the flow contains a single vortex, or recirculation bubble, with 

variation in size and a double or single spiral rotating around the bubble. 

2.6 Summary and tornado-like vortex structure  
 

  In this section, we address the essential question raised at the beginning: what is the large-scale 

structure of the tornado-like vortex? We used the contours of the mean flow field and modal 

analysis to infer the configuration of the vortex shown in Figures 2.27 and 2.28. We also used the 

coherent structures extracted by POD at the different heights and time-frequency analysis of 

surface pressure fluctuations to reveal the evolutions of coherent structures. Note that due to low 

sampling frequency of PIV system, we applied time-frequency analysis (short-time Fourier 

transform) on the first POD mode of the surface panel pressure fluctuations; we first applied POD 

on the surface pressure fluctuations and then short-time Fourier transform is performed on 

principal component of the first POD mode.  

  For 𝑆 = 0.22, the mean flow field shows a single vortex with convergent radial flow towards 

center. However, a divergent radial flow appears in the horizontal PIV planes at lower heights due 

to the vortex tilting. The modal analysis, or coherent structures extracted by POD, shows a single 

vortex subjected to wandering motion. This conclusion is confirmed also by the first POD mode 

applied on the corrected velocity field (removed wandering effects) representing a single vortex 

(Figure 2.23-a). Streamlines in a snapshot of the horizontal PIV plane also reveals a single vortex, 

shown in 24-a.  Due to the absence of vortex breakdown at this swirl ratio, the coherent structures 

are quite persistent along the height and the flow looks laminar (see Figure 2.25-a). Time-

frequency analysis (performed on the base pressure field) in Figure 2.26-a reveals that frequency 



38 
 

amplitudes are relatively constant in time and lie in the range of 0.1 and 4.5 Hz. The resulting 

schematics of the mean flow field and the vortex dynamics for 𝑆 = 0.22 are shown in Figures 

2.27-a and 2.28-a.   

  For 𝑆 = 0.57, the mean flow field shows a recirculation bubble vortex breakdown accompanied 

with a divergent radial flow at the vortex center. The POD analysis shows a recirculation bubble 

with a single spiral rotating around it, which is rather similar to the synthetic vortex shown in 

Figure 2.3-b. Moreover, the coherent structures gradually disappear along the vortex height (see 

Figure 2.25-b) because of the presence of vortex breakdown. At this swirl ratio, a transition from 

single spiral to double spiral (or transition from one-cell to two-cell), resembling two intertwined 

sub-vortices, occurs, but it is very weak in terms of occurrences. Streamlines in a snapshot of the 

horizontal PIV plane revealing a double spiral pattern are shown in Figure 2.24-b. The number of 

snapshots showing double spiral is 9 out of 2018 snapshots, and the ensemble average distance 

between the two sub-vortices is 2.7 cm. This is also confirmed by the fact that when wandering 

effects are removed, the first POD mode shows a single vortex (Figure 2.23-b). Time-frequency 

analysis of the first POD mode of the surface pressures reveals the intermittency of the coherent 

structures in the low frequency range (Figure 2.26-b). The resulting schematics of the mean flow 

field and the coherent structures are shown in Figures 2.27-b and 2.28-b.   

  For 𝑆 = 0.96, the mean flow field shows that the recirculation bubble is expanded into an annular 

form with a stagnant area (zero-value velocity) inside the core region. The modal analysis, or 

coherent structures extracted by POD, shows a recirculation bubble with a double spiral rotating 

around it. This structure refers also to two-cell structure and it is rather identical to the synthetic 

vortex shown in Figure 2.3-c. Rapid destruction of coherent structure along the vortex height can 

be observed because of the high turbulence in the flow (see Figure 2.25-c). Streamlines in a 

snapshot of the horizontal PIV plane for revealing double spiral pattern are shown in Figure 2.24-

c. Double spiral occurs more often as the number of these snapshots is increased to 134 out of 

2028 snapshots with the ensemble average distance of 6.2 cm between the two spirals. Indeed, 

time-frequency analysis of the first POD mode of the surface pressures (Figure 2.26-c) shows two 

intense frequency components: (i) one is restricted in the low-frequency range around 0.3 Hz 

which is relatively constant in time and (ii) an intermittent component concentrated around the 
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frequency 6.5 Hz. The resulting schematics of the mean flow field and the coherent structures are 

shown in Figures 2.27-c and 2.28-c.   

   
                     (a)                                                (b)                                              (c) 

Figure 2. 24: Streamlines in a snapshot of the horizontal PIV plane at ℎ = 3.5 𝑐𝑚 for revealing (a) 

single-cell structure for 𝑆 = 0.22, (b) double-cell structure for 𝑆 = 0.57, and (c) double-cell 

structure for 𝑆 = 0.96. Note that double-cell structure includes two co-rotating sub-vortices that 

are embedded in the fluctuating flow field. 

 
(a) 

 

 
(b) 
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(c) 

 

Figure 2. 25: First POD mode of vorticity field with un-removed wandering at the different heights 

for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. Positive (negative) values of vorticity are shown 

in red (blue) color. 

 
                          (a)                                                (b)                                               (c) 

 

Figure 2. 26: Time-frequency analysis (spectrogram) of the first POD mode of the surface 

pressure fluctuation for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. 

 
                   (a)                                               (b)                                                (c) 

 

Figure 2. 27: Schematic of the mean flow observed for the three swirl ratios (a) 𝑆 = 0.22, (b) 

𝑆 = 0.57 and (c) 𝑆 = 0.96.  
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                          (a)                                                (b)                                              (c) 

Figure 2. 28: Three-dimensional schematic of coherent structures inferred from modal analysis. 

(a) For 𝑆 = 0.22, a single vortex with tilting at low heights (this structure refers to as single-cell), 

(b) for 𝑆 = 0.57, a reciculation bubble (shown in yellow) with a single spiral behind the bubble, 

which still refers to as single-cell structure, and (c) for 𝑆 = 0.96, a reciculation bubble with a 

double spiral behind the bubble, referring to as two-cell strucutre.  

 

2.7 Conclusions  
 

  Many tornado chambers generate flows that reveal similar flow patterns and agree in general on 

the variations of the flow structures with swirl ratio. However, very little is known about the 

underlying physics of the flow. Herein, we applied POD on the fluctuating flow field to investigate 

the prominent mechanisms of tornado-like vortices for a range of swirl ratios (0.22 ≤ 𝑆 ≤ 0.96). 

Moreover, a relative new Dynamic-POD analysis was used to provide the time evolutions of 

coherent structures. A synthetic vortex POD analysis was also conducted to help with the 

interpretation of the experimental results.  

  The results show that for 𝑆 = 0.22, the flow contains a single vortex which is tilted at lower 

heights. For 𝑆 = 0.57, the flow contains a recirculation bubble with a single spiral rotating around 
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it. Sometimes, transition from single spiral to double spiral (single-cell to two-cell) occurs, but its 

occurrence is very intermittent. By increasing swirl ratio further to 𝑆 = 0.96, transition from single 

spiral to double spiral occurs more often. 

  Based on these results, the vortex structure is inferred for the range of Swirl ratios. This vortex 

structure can be further employed to generate an analytical model for the large-scale fluctuating 

flow field in tornado-like vortices. 

  As a final note, it is important to emphasize that tornado-like vortex has a highly sophisticated 

three-dimensional dynamical structure sensitive to boundary conditions. Categorizing vortex 

structure and its dynamic as such is obviously a drastic simplification. However, such simplified 

models can help extracting predominant underlying physical mechanisms that govern the 

dynamics of tornado-like vortex behaviour. Further detailed investigations on coherent structures 

and their dynamic characteristics are definitely necessary to foster the construction of low-

dimensional models of tornado flows and the definition of wind-loads for design codes and 

standards. 
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Chapter 3 

3  Statistical and modal analysis of surface pressure fluctuations in 

tornado-like vortices 

 

  In the study of aerodynamic behavior of bluff bodies, a general technique is measurement of 

surface pressures. Due to its complex temporal and spatial features, modal analysis is an interesting 

tool to be used for interpretation and discussion. The most common technique for modal 

representation is proper orthogonal decomposition (POD), also refers to as principal component 

analysis (PCA). However, it’s believed that POD sometimes fails to extract meaningful features 

of pressure field. To overcome this deficit, an advanced method independent component analysis 

(ICA) is applied. Furthermore, these two methods are generalized in the frequency domain, called 

dynamic POD and dynamic ICA, to provide the temporal evolutions of coherent structures over 

the spatial domain. A comparison between modal decomposition techniques and some common 

statistical techniques is also provided. Regardless of the reference to tornado-like vortices, the 

discussion of the present paper can be helpful in the physical interpretation of swirling flows in 

general.   

3.1 Introduction 
 

  Measurement of surface pressures is a common technique in bluff-body aerodynamics as it 

provides a description of flow interaction with the body and an evaluation of wind-induced forces. 

Despite the accepted measurement techniques, the choice of processing tools for interpretation of 

the data is challenging as turbulent flow is usually characterized by complex variations in time and 

space. It is believed that there are well-correlated regions in the flow field, known as coherent 

structures, which provide insight into the turbulence. Despite the longstanding interest in coherent 

structure, its concept is still not consolidated and development of mathematical tools for their 

detection and extraction is difficult [1,2].  

  These mathematical tools are based on statistical properties and modal analysis. Modal 

representation is an efficient way to express the complex spatial and temporal variations of 
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turbulent flow as a combination of time-invariant distributions, called modes, modulated by scalar 

coefficients. In principle, the modal representations are infinite, but there are some requirements 

that may suggest some specific choices for the modes. In particular, it is desirable to adopt a modal 

representation that is synthetic, i.e. it should be able to represent the relevant features of the 

phenomenon using a small number of modes. Besides, it is best if the modes can be related to some 

physical phenomena so that the representation can be used as a support for qualitative 

interpretation and discussion. The definition of these two requirements is weak, depending on the 

metrics that is assumed by the analysts, as well as the features of the considered physical problem.  

  The most popular and probably the oldest technique for modal representation is proper orthogonal 

decomposition (POD), which is also referred to as covariance proper transformation, principal 

component analysis (PCA) or Karhunen–Loève expansion [3]. POD provides an optimum number 

of modes on the basis of their energy. The use of POD for extraction of coherent structures has 

been examined by several researchers [4-9], and the results are promising. However, the general 

opinion is that sometimes POD method fails to provide meaningful modes [10-12]. This failure is 

attributed mainly to two problems. (i) Ranking modes by their own energy might not be relevant 

in cases where weak or intermittent coherent structures exist [13-14]. Sieber et al. [14] showed 

that for a swirling jet flow, POD results in mixed coherent structures which do not represent 

distinct physical phenomena. (ii) Mode shapes are likely to be determined by the orthogonality 

constraint and thus may not be physically meaningful [10,15,16]. Carassale and Brunenghi [15] 

showed that POD suggests existence of a symmetric vortex shedding behind a prismatic body 

which is clearly non-physical.  

  To mitigate these problems associated to POD, the concept of independent component analysis 

(ICA) has been introduced for the interpretation of surface pressure field [15-18]. Its main 

difference with POD is that ICA exploits non-Gaussian structures and make them as independent 

as possible. Despite its widespread in several fields such as image recognition and signal 

processing, its application in fluid dynamics research area is very limited and its potentials are still 

unexplored [19]. Carassale and Brunenghi [19] studied wind pressure acting on a prismatic body 

and showed that ICA presents vortex shedding phenomenon independently on the two lateral faces 

of the model and thus avoids non-physical pattern obtained by POD. Gilliam et al. [17] applied 

ICA on the roof corner vortex of a low-rise building and showed its success over POD for 
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identification of the intermittent coherent structures. A weakness of ICA is ambiguity of the 

variances (energies) of the modes which makes the choice of mode order a challenging task. This 

issue is discussed in detail by Carassale and Brunenghi [15]. 

  Both POD and ICA can be also generalized in the frequency domain, which respectively refers 

to as dynamic POD (D-POD) and dynamic ICA (D-ICA). D-POD is also known as spectral proper 

transformation [20,21]. These methods examine both temporal and spatial variations of pressure 

distribution and provide time evolution of coherent structures, also refers to as dynamic coherent 

structures. D-POD/D-ICA modes are completely uncorrelated for any time lag, while POD/ICA 

modes are only uncorrelated for zero-time lag which results in representation of the same physical 

phenomenon by different modes. The applications of these techniques in fluid mechanic problems 

are rare [19]. Sieber et al. [13] provides a comprehensive comparison between a somehow similar 

technique to D-POD (called spectral POD) and POD for three different problems. They showed 

that spectral POD is able to distinguish the coherent fluctuations from turbulent fluctuations in 

spite of their same energy content. On the other hand, Carassale and Brunenghi [19] showed that 

although D-POD modes provide information on the propagating pressure field, they are still 

limited by orthogonality and thus possibly associated to unrealistic physical phenomena.   

  Another alternative for extraction of dynamic coherent structures is dynamic mode 

decomposition (DMD) technique, introduced by Schmid [22]. In DMD, each mode has a single 

frequency and is ordered/arranged by its energy at that frequency, which is different from the 

energy ranking of POD. This technique has been applied on a variety of fluid mechanic problems 

and its advantages over POD method has been illustrated [23-26]. Muld et al. [27] showed that the 

advection of flow structures, represented by two POD modes, can be summarized in a single DMD 

mode. However, some researchers expressed their doubt on whether this method is suitable for the 

extraction of coherent structures in highly turbulent flows [13,14,28]. Due to the restrictions of 

modes to a single frequency, it fails to extract coherent structures that spread over a wide range of 

frequency [13]. 

  The main objective of this article is applying these modal decomposition techniques for tornado-

like vortex induced base pressures as well as comparing the extracted coherent structures from 

four modal decomposition techniques: (i) POD, (ii) ICA, (iii) D-POD and (iv) D-ICA. All the 

methods are applied to base surface pressure measurement which is a fundamental tool in the 
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experimental study of aerodynamic behavior of bluff bodies. To the authors’ knowledge, the 

advanced ICA and D-ICA techniques have been applied only for a very simple case, i.e. a square-

base prism in an atmospheric boundary layer flow [19]. On the other hand, the complex and rich 

nature of tornado-like vortices, in terms of the existence of different types of physical phenomena 

such as vortex wandering and vortex breakdown, can help us to indicate the capability and 

applicability of ICA or D-ICA. Moreover, the discussion presented here can be also helpful in the 

physical interpretation of the swirling flows, regardless of the reference to tornado-like vortices.  

3.2 Experimental setup 
 

  The Wind Engineering, Energy and Environment (WindEEE) Dome at Western University is the 

world’s first three-dimensional and dynamic wind testing chamber that provides a novel technique 

to physically simulate various types of flow fields included tornadoes and downburst. A 1/11 

scaled model of WindEEE Dome (MWD) was built to reproduce and verify the characteristics of 

WindEEE Dome. MWD uses 8 peripheral fans, except one wall that has an array of 4 rows×15 

columns fans. MWD also uses 18 top fans similar to the peripheral ones. The schematic drawing 

of MWD is shown in Figure 3.1-a [29]. 

               
(a)                                                                                (b)  

 

Figure 3. 1: (a) Schematic drawing of Mini-WindEEE Dome (MWD) and (b) shematic of pressure 

taps arrangement over the surface panel. Obtained from Ref. [29].  
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  In order to produce tornado vortices in MWD, top fans are used to extract the air from the 

hexagonal chamber. The inlet flow passes a set of guide vanes whose angles control the radial and 

tangential velocity components. As the inlet flow moves towards the center of the chamber, it is 

tilted in upward direction by the top fans. Then, the flow recirculates through a circuit where a 

honeycomb is installed to straighten the flow and eliminate the swirl produced by fans. 

  In MWD, the aspect ratio 𝑎, i.e. the ratio of inflow height to the updraft radius, is fixed and equal 

to 0.35. Note that the core radius and swirl ratio transition are independent from the aspect ratio 

[30,31]. Moreover, the radial Reynolds number (𝑅𝑒𝑟) is constant and equal to 6.7 × 104. It was 

shown that the dynamic non-similarity between simulated and real tornadoes has negligible 

influence on results when 𝑅𝑒𝑟 ≥ 6.7 × 104 [29,31]. The main governing parameter is the swirl 

ratio which is defined as the ratio of tangential to radial velocity components at the inlet, 𝑆 =

(1/2𝑎) (𝑉𝑡𝑎𝑛/𝑉𝑟𝑎𝑑) = (1/2𝑎) 𝑡𝑎𝑛𝜃, where 𝜃 is the vane angle with the normal direction to the 

sidewall. 

  Surface pressure fields provide new insights into wind loadings caused by tornado vortices. They 

are also fundamental tools for describing the flow fields as the velocity field measurement is 

challenging to measure near to the surface. The surface pressures have been measured with 413 

static pressure taps distributed concentrically on a floor panel with a diameter of 56 cm, shown in 

Figure 3.1-b. The frequency of pressure signal collector is 700 Hz and the data are collected for a 

period of 60 s. Here, the pressure coefficients are normalized by the dynamic pressure calculated 

by average updraft velocity at the outlet. A maximum error of 1.17% is estimated for surface panel 

measurements. For more details of the experimental set-up please refer to Ref. [29].  

    The random motion of the vortex (wandering phenomenon) can lead to large errors in evaluating 

the mean pressure field. Thus, it is necessary to remove the effects of wandering from the surface 

pressure field data. Herein, we removed the wandering effects by detecting the vortex center via 

finding minimum pressure. Then, the vortex domain is shifted to the geometric center using an 

interpolation procedure. 
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3.3 Mathematical description of modal decomposition techniques 
 

  This section describes the formulations of POD, ICA, D-POD and D-ICA for extraction of the 

coherent structures from the surface pressure field fluctuations. The surface pressure field in 

different locations and time are collected into a vector 𝐪(𝑡) ∈ ℝ𝑁 (N = 413) with zero-mean value 

as we want to investigate the fluctuations. It’s assumed that 𝐪(𝑡) is statistically stationary and 

ergodic so that statistical properties can be estimated by time averaging.  

3.3.1 Proper Orthogonal Decomposition (POD) 

Let 𝐂𝐪𝐪 be the zero-time-lag covariance matrix estimated from the data as [32]: 

𝐂𝐪𝐪 = E[𝐪(𝑡)𝐪(𝑡)T] ≅
1

𝑁
∑ 𝐪(𝑡)𝐪(𝑡)T𝑁𝑡

𝑡=1  (3.1) 

where E[.] is statistical expectation which is implemented as a temporal average. According to 

POD, 𝐪(𝑡) is represented by the modal expansion: 

𝐪(𝑡) = ∑ 𝛟𝑘 𝑥𝑘(𝑡) = 𝑁
𝑘=1 𝚽𝐱(𝑡) (3.2) 

where the vectors 𝛟𝑘 ∈ ℝ𝑁 (k = 1,…,N) are the eigenvectors of 𝐂𝐪𝐪, i.e. the solutions of the 

eigenvalue problem: 

𝐂𝐪𝐪𝛟𝑘 = 𝜆𝑘𝛟𝑘     (k = 1,…,N) (3.3) 

The eigenvectors are conventionally normalized to have unit norm and are assembled column-wise 

to build the matrix Φ. The coefficients 𝑥𝑘 are the Principal Components (PC) of the process and 

are assembled in the vector 𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑁]𝑇. The cumulated energy can be defined as: 𝐸 =

∑ 𝜆𝑘
𝑛
𝑘=1 ∑ 𝜆𝑘

𝑁
𝑘=1⁄ . The eigenvectors and the PCs are enumerated in such a way that their 

corresponding eigenvalues 𝜆𝑘 are sorted in decreasing order.  

3.3.2 Independent Component Analysis (ICA) 

  Let us assume that the random fluctuation of the pressure field is provided by a generative model 

of the kind: 

𝐪(𝑡) = 𝐀 𝐬(𝑡) (3.4) 
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where 𝐬 is a vector of 𝑛 ≤  𝑁 statistically independent sources 𝑠𝑘 (k = 1,…,n) said Independent 

Components (IC) and A is an N×n full-rank matrix referred to as mixing matrix. The target of ICA 

is the estimation of the sources 𝐬 and the mixing matrix 𝐀, given the experimental measurements 

𝐪. It is clear that the ICA model (Eq. 3.4) is analogous to the representation formula offered by 

POD (Eq. 3.2), with the difference that the columns 𝐚𝑘 of the matrix A are, in general, non-

orthogonal and that the ICs 𝑠𝑘 are now statistically independent (instead of simply uncorrelated 

like the PCs 𝑥𝑘).  

  The problem of estimating s and A from 𝐪 is indetermination since, as it is clear from the structure 

of Eq. (3.4), any permutation and scaling of the ICs can be compensated by a suitable permutation 

and scaling of the columns of A. In order to remove such an indetermination, it is assumed that the 

ICs have unit variance and that are enumerated by sorting the norms of the corresponding columns 

of A in decreasing order. 

  The estimation of s and A can be carried out by algebraic or iterative methods based on different 

principles including maximum likelihood, mutual information minimization, and non-Gaussianity 

maximization [33,34]. In this paper, the latter principle is adopted and is implemented through the 

fastICA algorithm [34]. 

  The choice of the model order, i.e. the number of independent sources to be estimated, is often 

complicated. No general approaches for the model order selection are presently available, but some 

guidelines have been discussed in [15].  

3.3.3 Dynamic-Proper Orthogonal Decomposition (D-POD) 

  A limitation of POD, as well as ICA, is implicit in their definition, which is based on a static 

mixing. The modes are constant in time, thus if a coherent structure has a time evolution, more 

than one mode may be necessary for its representation. It is the case, for example, of coherent 

pressure distribution that translate due to the advection produced by the main flow. A general way 

to overcome this limitation is to generalize the static mixture represented by Eq. (3.2) into a 

convolutive mixture  

𝐪(𝑡) = ∫ 𝚽(𝜏) 𝐱(𝑡 − 𝜏)𝑑𝜏
𝑡

0
 (3.5) 
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in which the mixing matrix Φ depends on the time lag 𝜏 and has the role of impulse response 

function. In Eq. (3.5), Φ is defined according to D-POD, the PC 𝑥𝑗(𝑡) are mutually uncorrelated 

for any time lag  𝜏.  

  If the modal representation is exploited to extract coherent structures, the use of Eq. (3.5) is not 

practical and it is preferred to translate it in the frequency domain as: 

�̂�(𝑓𝑐) = �̂�(𝑓𝑐) �̂�(𝑓𝑐) (3.6) 

where the symbol ∙ ̂ represents the Fourier transform and 𝑓𝑐 is the circular frequency. In the 

frequency domain, D-POD is formally a static mixing (different for each frequency) and the 

mixing matrix �̂�  may be interpreted as a frequency response function. 

  Modes obtained by D-POD are complex valued, thus represent pressure distributions 

characterized by amplitude and phase. To overcome the difficulty of visualization and physical 

interpretation, the complex modes can be represented as a sequence of real modes defined as 

[15,19]: 

�̅�𝑘(𝑓𝑐, 𝛼) = Re[�̂�𝑘(𝑓𝑐) 𝑒
i𝛼]                                                                                                            (3.7) 

where 𝛼 is a phase shift common to all the vector components, which can also be related to the 

time-lag 𝜏 = 𝛼/𝑓𝑐. 

3.3.4 Dynamic-Independent Component Analysis (D-ICA) 

  D-ICA can be generalized to the dynamic representation ICA following the same procedure 

applied for the time-domain D-POD. Accordingly, the analytic signal obtained by the given signal 

filtered in the neighborhood of  𝑓𝑐 is represented as: 

�̃�𝑓𝑐
(𝑡) = �̂�(𝑓𝑐)𝐬𝑓𝑐(𝑡) (3.8) 

  The complex-valued mixing matrix �̂�(𝑓𝑐) can be obtained for each frequency band of interest 

using the complex generalization of static ICA algorithms. In this paper, like for the static case, 

the fastICA algorithm is adopted. 
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  Likewise, for D-POD, the modes obtained by D-ICA are complex and represent pressure 

distributions characterized by amplitude and phase. To simplify representation and interpretation, 

the complex modes can be translated into a sequence of real modes defined as: 

�̅�𝑘(𝑓𝑐, 𝛼) = Re[�̂�𝑘(𝑓𝑐) 𝑒
i𝛼]                                                                                                         (3.9) 

3.4 Modal representation of a simulated synthetic vortex 
 

  In this section, we investigated the relationship between POD modes and physical mechanism in 

tornado-like vortices. We simulated a synthetic vortex with two different simulation cases: (i) the 

vortex is subjected to a random Gaussian motion while its size remain fixed, and (ii) the vortex is 

subjected to a random Gaussian motion while its size is changing periodically. The mean pressure 

field of the synthetic vortex is shown in Figure 3.2.  

  To apply POD/ICA, we first remove the mean component and then compute the modes. Figure 

3.3 shows the first five POD modes. The first two dipole modes correspond to the wandering 

motion and the third mode is a single vortex. The modes 4 and 5 are not physically meaningful. 

Figure 3.4 shows the ICA modes extracted from the data space defined by the first five POD 

modes. ICA modes 1, 2, 3 and 5 correspond to the POD modes 1 and 2 and thus represent the 

wandering motion. ICA mode 4 somehow corresponds to POD mode 3. The comparison between 

POD and ICA modes suggests that ICA removes the non-physical POD modes 4 and 5 and thus 

provides a closer physical description of the pressure field. 

 
Figure 3. 2: A bivariate Gaussian synthetic vortex with variation in size and random wandering 

around the geometric center.  
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Figure 3. 3: The first five POD modes of the idealized (synthetic) vortex with Gaussian random 

wandering motion. 

 

 
Figure 3. 4: The ICA modes extracted from the data space defined from the first six POD modes 

applied on the synthetic vortex. Positive (negative) values of pressure are shown in red (blue).  
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                      (1)                                                (2)                                             (3) 

Figure 3. 5: Time history of fluctuating pressure field of the simulated vortex with Gaussian 

random wandering plus a size variation. Positive (negative) values of pressure are shown in red 

(blue) color. 

 

 
Figure 3. 6: The first five POD modes of the idealized (synthetic) vortex with Gaussian random 

wandering motion. 
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                                        (a)                                                                                (b) 

 

Figure 3. 7: Streamlines in two different snapshots of horizontal PIV plane for 𝑆 = 0.96 revealing 

the presence of both (a) single-cell structure and (b) double-cell structure. Obtained from Ref. [36].  

  In the second simulation case, we vary the vortex size periodically while it is subjected to a 

random Gaussian motion. Figure 3.5 shows the time history of the fluctuating pressure field of the 

synthetic vortex. In the snapshot 1, the pressure field consists of a single vortex and then it is 

transformed into a dipole shape in the snapshots 2-3. Figure 3.6 shows the first five POD modes. 

Mode 1 consists of a single; its representation will be discussed in Section 5.2.2. Modes 2 and 3 

are dipole and represent wandering motion. Mode 4 corresponds to size variation of the vortex, 

and mode 5 is not physically meaningful and is due to the orthogonality constraint embedded in 

POD. 

  Modal representation of the simulated synthetic vortex will assist understanding the relationship 

between the main mechanism of the tornado-like vortices and POD modes. In the next section, we 

apply modal decomposition on the fluctuating surface pressure field of the MWD experiment. 

3.5 Analysis of experimental flow field 
 

  The structure of tornado-like vortex is highly dependent on the swirl ratio (𝑆). Here, we selected 

three different swirl ratios (𝑆 = 0.22, 0.57 and 0.96) due to the existence of different vortex 

structures [29,35,36].  

  The vortex structure demonstrated based on the velocity and vorticity fields analysis in [36] is 

briefly summarized herein. For 𝑆 = 0.22, the vortex structure is single-cell, and it is subjected to 



58 
 

intensified wandering motion. For 𝑆 = 0.57, a recirculation bubble vortex breakdown occurres, 

and a single spiral is developed behind the bubble. When swirl ratio is increased to 𝑆 = 0.96, an 

intermitten transition from singe spiral to double spiral behind the bubble occurs. This is also refers 

to as transition from single-cell to double-cell structures. Figure 3.7 shows the presence of both 

single-cell and double-cell structures at different time snapshots in the horizontal PIV plane, see 

Ref. [36] for more information about coherent structures in tornado-like vortices. Here, we aim  to 

extract these patterns out of surface pressure fluctuations using modal analysis. 

    
(a) 

   
(b) 

 
Figure 3. 8: (a) Mean and (b) standard deviation of the normalized surface pressure field. 

Wandering effects are not removed. 

3.5.1 Basic statistical analyses 

  Figure 3.8-a shows the mean value and the standard deviation of the normalized pressure field; 

wandering effects are not removed. For 𝑆 = 0.22, the location of minimum pressure deficit is not 

on the geometric center of the test area. When the swirl ratio increases to 𝑆 = 0.57, the location 

of minimum pressure shifts to the geometric center. Besides, the intensity of pressure deficit is 

expanding as the swirl ratio increases from 0.22 to 0.57, while, afterwards (for 𝑆 = 0.96), it is 

reduced due to the transition from single-cell to double-cell structure [35,36]. A similar comment 
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applies to the intensity of the pressure fluctuation in Figure 3.8-b, expressed in terms of standard 

deviation.  

 
Figure 3. 9: Radial profile of mean surface pressure deficit for removed (corrected) and un-

removed (uncorrected) wandering effects, (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96. Radius (𝑟) 

is normalized with updraft radius. 

 

  Figure 3.9 provides a comparison between corrected (removed-wandering) and un-corrected 

(unremoved-wandering) mean surface pressure field. For 𝑆 = 0.22, the effects of vortex 

wandering motion is significant as it results in increase of minimum pressure deficit at center from 

-6.7 to -13.1. However, by increasing swirl ratio further (𝑆 = 0.57 and 0.96), the effects of 

wandering motion on the surface pressure field is reduced. Here, the pressure coefficients (𝐶𝑝) are 

normalized by the dynamic pressure calculated by average updraft velocity at the outlet, which is 

remained constant for the different swirl ratios [29].  

  Figure 3.10 shows power spectral density of pressure field fluctuations for the three considered 

swirl ratios and three values of radial position. The spectral values reported are averaged in the 

circumferential direction. For 𝑆 = 0.22 (a), the wide-band power content in the range 0 < 𝑓 < 5 

Hz is interpreted as a consequence of intense vortex wandering. The variance, i.e. the area under 



60 
 

the curve, reduces along the radius (𝑆𝑃,𝑟=0.025 > 𝑆𝑃,𝑟=0.15). When the swirl ratio is increased to 

𝑆 = 0.57 (b), the frequency peaks become restricted  to low frequencies; however, the variance at 

𝑟 = 0.15 is higher than that of 𝑟 = 0.025 (𝑆𝑃,𝑟=0.025 < 𝑆𝑃,𝑟=0.15). This suggests the expansion of 

vortex core at the swirl ratio, 𝑆 = 0.57. By increasing the swirl ratio further (𝑆 = 0.96) (c), some 

spectral peaks appear in a higher range of frequencies when 𝑟 = 0.025 which are due to the 

transition in the structure of vortex. However, these evolutions in the vortex structure cannot be 

clearly understood through statistical analysis alone, i.e. mean, standard deviation and spectral 

analysis.  

  
(a)                                                               (b) 

 
                                     (c) 

Figure 3. 10: Power spectral density along the radius for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 =

0.96. Wandering effects are not removed. 𝑟 is normalized with updraft radius. Note that the core 

radius (𝑟𝑐) for the three swirl ratios (a-c) are respectively 𝑟𝑐 = 0.14, 0.32, and 0.45. 
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Figure 3. 11: Cumulated energy of POD modes. 

 

 

3.5.2 Modal representation of the surface pressure fluctuations 

  Figure 3.11 shows the ratio of cumulated energy of the POD modes of the surface pressure. The 

first three POD modes contribute the most to the total energy, while the subsequent modes have 

quite comparable effects. To represent the 90% of the total energy, it is necessary to include at 

least 60 modes. The modes corresponding to 𝑆 = 0.22 deliver a ratio of energy that is higher than 

for other values of swirl ratio, which is due to the large fluctuations due to vortex wandering. Large 

contribution of the first few modes implies that we can characterize the large-scale fluctuations of 

the pressure field by looking into only five POD modes.  

3.5.2.1. Modal analysis for swirl ratio 0.22  

  Figure 3.12 shows the first five POD modes of the surface pressure for 𝑆 = 0.22. Negative 

(positive) values of surface pressure are shown in blue (red) color. Dipole-type modes 1 and 2 

represent the wandering motion of the vortex. It is interesting that the distance between dipoles is 

is around 2.9 cm which is very close to the vortex core radius observed in the PIV experiment [36]. 

Mode 3 shows a single vortex and modes 4 and 5 are due to the orthogonality constraint embedded 

in POD and thus are not physically meaningful.  
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  Figure 3.13 shows the ICA modes that are extracted from the data space defined by the fist five 

POD modes. The number associated to the ICA modes, unlike POD modes, 𝐚𝑘 (𝑘 = 1,… ,5) is 

not meaningful since it is determined by the initialization of the algorithm. Modes 1, 2, 3 and 4 

correspond the wandering motion of the vortex and mode 5 represents a single vortex. This last 

mode does not show a centered vortex but rather the interpretation is that the vortex has a 

pronounced bend near the surface which was also observed by Church et. al. [30] and commented 

in Ref. [36] for this low Swirl. Note that non-physical POD modes 4 and 5 are removed by ICA. 

  Figure 3.14 shows the power spectral density of the POD/ICA modes. For POD modes, or 

principal components in Figure 3.14-a, mode 1 has a wide band frequency roughly between 0.25 

and 5 Hz. Mode 2 has one dominant frequency at 1.36 Hz, and mode 3 has a wide band frequency 

in the range  0 < 𝑓 < 2 Hz. Modes 4 and 5 have noise-like distributions without dominant 

frequency peaks. For ICA modes, independent components in Figure 3.14-b, modes 1 and 2 as 

well as modes 3 and 4 have a broad band frequency between 0.25 and 5 Hz; modes 1 and 2 have 

also a dominant frequency peak around 1.36 Hz. Mode 5 has a wide band frequency in the range  

0 < 𝑓 < 2 Hz. 

  Spectral analysis shows that modes having the same circumferential shape tend to have similar 

spectral distribution. This identity, for instance, between dipole POD modes 1 and 2 is shown in 

Figure 3.15. The coherence function between 𝑥1 and 𝑥2 is very high (around 0.8), while the 

coherence function between other pairs are smaller. Moreover, the phase angle between 𝑥1 and 𝑥2 

is −𝜋/2, suggesting that modes 1 and 2 are rotating around each other. This rotation is also 

observable in the animated movie of D-ICA dipole mode �̅�2 in Figure 3.16. While the dipoles are 

rotating around each other at the differnet phase shifts, they have a global rotation toward the first 

quartile, and this global rotation is correlated with the location of minimum pressure deficit in the 

mean pressure field, see Figure 3.8-a.  

  Briefly, for swirl ratio 𝑆 = 0.22, the pressure field is characterized by a vortex which is subjected 

to Gaussian random wandering, and spectral analysis shows that wandering motion has a broad 

band frequency between 0.25 and 5 Hz. 
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Figure 3. 12: The first five POD modes of surface pressure for 𝑆 = 0.22. Positive (negative) values 

of surface pressure are shown in red (blue). Wandering effects are not removed. 

 

  
 

Figure 3. 13: ICA modes extracted from the data space defined from the first five POD modes for 

𝑆 = 0.22. Positive (negative) values of surface pressure are shown in red (blue). Wandering effects 

are not removed. 
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       (a) 

 
                       (b) 

 

Figure 3. 14: Power spectral density of (a) PCs and (b) ICs for 𝑆 = 0.22.  

 

   
                                       (a)                                                                 (b) 
Figure 3. 15: (a) Absolute value of the coherence, and (b) phase angle of coherence of PCs for 𝑆 =

0.22.  
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Figure 3. 16: D-ICA �̅�2 for 𝑆 = 0.22 at 𝑓𝑐 = 3.3 𝐻𝑧 with ∆𝑓 = 2.9 𝐻𝑧 at six different phase shifts 

(𝛼). Positive (negative) values of surface pressure are shown in red (blue). The Figure scale is 

doubled. Wandering effects are not removed. 

 

 
Figure 3. 17: The first five POD modes of surface pressure for 𝑆 = 0.57. Negative (positive) values 

of surface pressure are shown in red (blue). Wandering effects are not removed. 
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3.5.2.2 Modal analysis for swirl ratio 0.57 

  Figure 3.17 shows the POD modes of the surface pressure for 𝑆 = 0.57. Mode 1 corresponds to 

both wandering motion and size variation of the vortex; this suggestion is based on its time 

evolution obtained by D-ICA (see Figure 3.19-a) which is identical to the time history of the 

simulated vortex (see Figure 3.5). Dipole-type modes 2 and 3 represent the wandering motion. The 

distance between dipoles is around 6.4 cm representing the vortex core radius observed in the PIV 

experiment [36]. Mode 4 represents the variation in the vortex core size and associated to vortex 

breakdown recirculation bubble, see also Ref. [36], and mode 5 represents a single spiral. 

 

 
Figure 3. 18: ICA modes extracted from the  data space defined from the first five POD modes for 

𝑆 = 0.57. Positive (negative) values of surface pressure are shown in red (blue). Wandering effects 

are not removed. 
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          (a) 
 

   

   
 

 

 

 

(b) 
               (b) 

 

Figure 3. 19: D-ICA (a) �̅�1 and (b) ) �̅�2 for 𝑆 = 0.57 at 𝑓𝑐 = 3.3 𝐻𝑧 with ∆𝑓 = 2.9 𝐻𝑧 at six 

different phase shifts (𝛼). Positive (negative) values of surface pressure are shown in red (blue). 

Wandering effects are not removed. 

 

  Figure 3.18 shows the ICA modes from the data space defined from the first five POD modes. 

ICA mode 1 corresponds to POD mode 1 and presents the wandering motion and size variation of 

the vortex. ICA modes 2 and 3 correspond to POD modes 2 and 3 and show the wandering motion. 

ICA mode 4 corresponds to POD mode 5 and represents a single spiral. ICA mode 5 corresponds 

to asymmetric version of POD mode 4 and shows the size variation of the vortex.  
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  It is interesting to note that while ICA mode 1 is very similar to ICA mode 2 (or ICA mode 3) 

and tend to have dipole shape, they represent distinct physical phenomena. D-ICA provides the 

animated movies of the ICA modes 1 and 2, shown in Figure 3.19; D-ICA mode 3 is similar to 

mode 2 and thus not shown here. D-ICA mode 1 shows the variation in the vortex core size (or 

vortex breakdown phenomenon) plus wandering motion. This suggestion is based on the time 

history of fluctuating pressure field of the simulated vortex (Figure 3.5) which is very similar to 

the D-ICA mode 1 in Figure 3.19-a. D-ICA mode 2 (Figure 3.19-b) shows that the dipoles are 

rotating around each other, representing wandering motion.  

  Figure 3.20 shows the power spectral density of the POD/ICA modes. For POD modes, or 

principal components in Figure 3.20-a, mode 1 has a wide band frequency between 0.25 and 3 Hz 

with one dominant peak at 1.11 Hz. Dipole modes 2 and 3 tend to have similar content with 

frequency peaks approximately limited to low range 0 < 𝑓 < 2 Hz. Mode 4 has one dominant 

frequency peak at 0.43 Hz, and mode 5 has noise-like distribution without a clear dominant 

frequency. For ICA modes, or independent components in Figure 3.20-b, mode 1 has a dominant 

peak around 0.51 Hz, and modes 2 and 3 tend to have similar content with frequency peaks 

approximately limited to low range 0 < 𝑓 < 2 Hz. Mode 4 has low-energy oscillation and mode 

5 shows a dominant peak around 0.43 Hz.  

  Figure 3.21 shows the identity between the spectral distribution of POD modes, or principal 

components. The coherence function between 𝑥2 and 𝑥3 is very high (around 0.8), while the 

coherence function between other pairs are smaller. Moreover, the phase angle between 𝑥2 and 𝑥3 

is −𝜋/2 in almost the whole range of frequency, suggesting that modes 2 and 3 are rotating around 

each other. This rotation is also observable in the animated movie of D-ICA dipole mode �̅�2 in 

Figure 3.19-b. 

 
       (a) 
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       (b) 

Figure 3. 20: Power spectral density of (a) PCs and (b) ICs for 𝑆 = 0.57.  

 

 
(a) (b)  

Figure 3. 21: (a) Absolute value of the coherence, and (b) phase angle of coherence of PCs for 𝑆 =

0.57. 

  Briefly, for swirl ratio 𝑆 = 0.57, the pressure field is characterized by a vortex whose size is 

changing periodically and is also subjected to wandering motion. It is believed that size variation 

of the vortex is due to the vortex breakdown phenomenon [36]. Spectral analysis shows that peak 

frequencies of wandering motion (or dipole modes) with a dominant frequency around 1.2 Hz get 

narrower, revealing the mitigation of vortex wandering phenomenon. Moreover, the size variation 

of the vortex has a dominant peak frequency at 0.43 Hz, and spiral vortex breakdown has noise-

like spectral distribution without clear dominant peak. 

3.5.2.3 Modal analysis for swirl ratio 0.96 

  Figure 3.22 shows the POD modes of the surface pressure. Mode 1 corresponds to both wandering 

motion and size variation of the vortex; this suggestion is based on the same discussion provided 
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for 𝑆 = 0.57. Dipole-type modes 2 and 3 represent the wandering motion; the distance between 

dipoles is around 8.9 cm which is close to the vortex core radius observed in the PIV experiment 

[36]. Mode 4 corresponds to the size variation of the vortex which is attributed to the vortex 

breakdown, and mode 5 is a single spiral.  

  Figure 3.23 shows the ICA modes from the data space defined from the first five POD modes. 

ICA modes 1 and 2 correspond to POD mode 5 and show a single spiral. ICA modes 3 and 5 

correspond to POD modes 2 and 3 and represent the wandering motion. ICA mode 4 corresponds 

to POD mode 1 and show both wandering motion and size variation of the vortex.  

  Figure 3.24 shows the spectral distribution of POD/ICA modes. For POD modes, or principal 

components in Figure 3.24-a, the single-core mode 1 has two intense components: one is restricted 

in the low-frequency range around 0.43 Hz and another has a wide band range concentrated around 

the frequency 6.5 Hz. Dipole modes 2 and 3 tend to have similar content with one dominant 

frequency peak around 1.03 Hz. Mode 4 has a pronounced peak around 0.43 Hz, while mode 5 has 

a noise-like distribution. For ICA modes, or independent components in Figure 3.24-b, ICA modes 

1 and 2 have low-energy oscillation with one dominant peak frequency at 0.34 Hz. ICA Modes 3 

and 5 tend to have similar harmonic content with a dominant peak frequency around 1.11 Hz.  ICA 

mode 4 shows two frequency components around 0.43 Hz and 6.6 Hz. 

  Although the flow contains intermittent double-cell structure for this swirl ratio [36], POD and 

ICA modes have not extracted this pattern based on the surface pressure field. However, spectral 

analysis may give a clue to this characteristic of the vortex. Power spectral density of POD mode 

1 as well as ICA mode 4 in Figure 3.24 shows appearance of a new frequency peak around 6.6 Hz 

which is unique for this swirl ratio 𝑆 = 0.96 and is not observed for smaller swirl ratios (𝑆 = 0.22 

and 0.57).  

  Spectral analysis shows also that the frequency peak of vortex breakdown (or size variation of 

the vortex) is around 0.43 Hz, and wandering motion (POD modes 2 and 3 as well as ICA modes 

3 and 5) have a dominant peak frequency 1.1 Hz. The identity between POD modes 2 and 3 is also 

observable in the coherence function (Figure 3.25-a), which is very high (0.8) in the neighborhood 

of the spectral peaks. The phase angle of 𝑥2 and 𝑥3 is also 𝜋/2 (Figure 3.25-b), suggesting that 

modes 2 and 3 are rotating around each other. 
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Figure 3. 22: The first five POD modes for 𝑆 = 0.96. Positive (negative) values of surface pressure 

are shown in red (blue). Wandering effects are not removed. 

  

  
Figure 3. 23: ICA modes extracted from the data space defined from the firt seven POD modes 

for 𝑆 = 0.96. Positive (negative) values of surface pressure are shown in red (blue). Wandering 

effects are not removed. 
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        (a) 

 

 
                                                                                (b)  

 

Figure 3. 24: Power spectral density of (a) PCs and (b) ICs for 𝑆 = 0.96.  

 

  
(a)                                                                    (b) 

 

Figure 3. 25: (a) Absolute value of the coherence, and (b) phase angle of coherence of PCs for 

𝑆 = 0.96.  

3.6 Concluding remarks 
 

  Four decomposition methods (POD, ICA, D-POD, D-ICA) have been applied on a surface 

pressure fluctuation generated by tornado-like vortices. The physical interpretation of extracted 
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coherent structures as well as their spectral characteristics are provided. The major conclusions 

can be summarized as follows. 

  For 𝑆 = 0.22, the vortex structure is single-cell and subjected to intensified wandering motion, 

which has a broad band frequency between 0.25 and 5 Hz. For 𝑆 = 0.57, the vortex structure is 

single cell accompanied by vortex breakdown which leads to size variation of the vortex. Spectral 

analysis shows that peak frequencies of wandering motion with a dominant value around 1.2 Hz 

get narrower relative to what observed for 𝑆 = 0.22, revealing the mitigation of wandering 

phenomenon. Moreover, vortex breakdown has dominant frequency peak at 0.43 Hz. 

  For 𝑆 = 0.96, an intermittent transition between single-cell and double-cell structures occurs, 

based on the flow field analysis in [36]. While POD/ICA modes have not captured this pattern 

based on surface pressure analysis, the pressure spectral analysis show that the first POD mode (or 

the corresponding ICA mode) has two intense components: one is limited in the low-frequency 

range around 0.43 Hz and another component concentrated around 6.6 Hz. The second intense 

component is observed only for 𝑆 = 0.96, suggesting the presence of double-cell structure. 

Moreover, peak frequencies of vortex wandering are limited to low range with a dominant 

frequency around 1.11 Hz, and dominant peak frequency of vortex breakdown is around 0.43 Hz. 

References 

[1] A. Mariotti, G. Buresti, M.V. Salvetti, Connection between base drag, separating boundary 

layercharacteristics and wake mean recirculation lengthof an axisymmetric blunt-based body, 

Journal of Fluids and Structures 55 (2015) 191-203. 

[2] A. Mariotti, G. Buresti, Experimental investigation on the influence of boundary layer 

thickness on the base pressure and near-wake flow features of an axisymmetric blunt-based body, 

Exp Fluids (2013) 54:1612.  

[3] J. L. Lumley, Stochastic Tools in Turbulence. Academic Press, New York (1970). 

[4] H. Kikuchi, Y. Tamura, H. Ueda, K. Hibi, Dynamic wind pressure acting on a tall building 

model - Proper orthogonal decomposition, J. Wind Eng. Ind. Aerodyn. 69-71 (1997) 631-646. 



74 
 

[5] B. Bienkiewicz, Y. Tamura, H.J. Ham, H. Ueda, K. Hibi, Proper orthogonal decomposition 

and reconstruction of multi-channel roof pressure, J. Wind Eng. Ind. Aerodyn. 54-55 (1995) 369-

381. 

[6] Y. Tamura, H. Ueda, H. Kikuchi, K. Hibi, S. Suganuma,B. Bienkiewicz, Proper orthogonal 

decomposition study of approach wind-building pressure correlation, J. Wind Eng. Ind. Aerodyn. 

72 (1997) 421-432. 

[7] A. Kareem, J.E. Cermak, Pressure fluctuations on a square building model in boundary-layer 

flows, J. Wind Eng. Ind. Aerodyn. 16 (1984) 17-41. 

[8] J.D. Holmes, Analysis and synthesis of pressure fluctuations on bluff bodies using 

eigenvectors, J. Wind Eng. Ind. Aerodyn. 33 (1990) 219-230. 

[9] A. Kareem, C.M. Cheng, Pressure and force fluctuations on isolated roughened circular 

cylinders of finite height in boundary layer flows, J. Fluids and Structures, 13 (1999) 907-933. 

[10] C. J. Baker, Aspects of the use of proper orthogonal decomposition of surface pressure fields, 

Wind & Struct. 3 (2000) 97-115. 

[11] J.D. Holmes, R. Sankaran, K.C.S. Kwok, M.J. Syme, Eigenvector modes of fluctuating 

pressures on low-rise building models, J. Wind Eng. Ind. Aerodyn. 69-71 (1997) 697-707. 

[12] Y. Tamura, S. Suganuma, H. Kikuchi, K. Hibi, Proper orthogonal decomposition of random 

wind pressure field, J. Fluids Struct. 13 (1999) 1069-1095. 

[13] M. Sieber, C. O. Paschereit, K. Oberleithner, Advanced identification of coherent structures 

in swirl-stabilized combustors, J. of Eng. for Gas Turbines and Power 139 (2017) 021503-1 

[14] M. Sieber, C. O. Paschereit, K. Oberleithner, Spectral proper orthogonal decomposition, J. 

Fluid Mech. 792 (2016) 798-828. 

[15] L. Carassale, M. Brunenghi, Identification of meaningful coherent structures in the wind-

induced pressure on a prismatic body, J. Wind Eng. Ind. Aerodyn. 104–106 (2012) 216–226.  

[16] L. Carassale, Analysis of aerodynamic pressure measurements by dynamic coherent 

structures, Probabilistic Engineering Mechanics 28 (2012) 66–74. 



75 
 

[17] X. Gilliam, J. P. Dunyak, D. A. Smith, F. Wu, Using projection pursuit and proper orthogonal 

decomposition to identify independent flow mechanisms. J. Wind Eng. Ind Aerodyn 92 (2004) 

53–69. 

[18] H. He, D. Ruan, K. C. Metha, X. Gilliam, F. Wu, Nonparametric independent component 

analysis for detecting pressure fluctuation induced by roof corner vortex. J Wind Eng. Ind Aerodyn 

95 (2007) 429–43. 

[19] L. Carassale, M. Marre Brunenghi, Statistical analysis of wind-induced pressure fields: A 

methodological perspective, J. Wind Eng. Ind. Aerodyn. 99 (2011) 700–710. 

[20] E. T. de Grenet, F. Ricciardelli, Spectral proper transformation of wind pressure fluctuations: 

application to a square cylinder and a bridge deck, J. Wind Eng. Ind. Aerodyn. 92 (2004) 1281–

1297. 

[21] T. H. Le, Y. Tamura, M. Matsumoto, Spanwise pressure coherence on prisms using wavelet 

transform and spectral proper orthogonal decomposition based tools, J. Wind Eng. Ind. Aerodyn. 

99 (2011) 499–508. 

[22] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid 

Mech. 656 (2010) 5–28. 

[23] P. J. Schmid, Application of the dynamic mode decomposition to experimental data, Exp. 

Fluids 50 (2011) 1123–1130. 

[24] Q. Zhang, Y. Liu, S. Wang, The identification of coherent structures using proper orthogonal 

decomposition and dynamic mode decomposition, Journal of Fluids and Structures 49 (2014) 53–

72. 

[25] P. J. Schmid, K. E. Meyer, O. Pust, Dynamic mode decomposition and proper orthogonal 

decomposition of flow in a lid-driven cylindrical cavity, 8th international symposium on PIV 

Melbourne, Australia, August, 2009. 

[26] S. Mariappan, A. D. Gardner, K. Richter, and M. Raffel, Analysis of dynamic stall using 

dynamic mode decomposition technique, AIAA Journal 52  (2014) 2427-2439. 



76 
 

[27] T. W. Muld, G. Efraimsson, D. S. Henningson, Flow structures around a high-speed train 

extracted using proper orthogonal decomposition and dynamic mode decomposition, Computers 

& Fluids 57 (2012) 87–97. 

[28] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, and O. 

T. Schmidt, S. Gordeyev, V. Theofilis, L. S. Ukeiley, Modal Analysis of Fluid Flows: An 

Overview, AIAA Journal 55 (2017) 4013-4041. 

[29] M. Refan, H. Hangan, Characterization of tornado-like flow fields in a new model scale wind 

Testing chamber, Journal of Wind Engineering and Industrial Aerodynamic 151 (2016)107–121. 

[30] C. R. Church, J. T. Snow, G. L. Baker, E. M. Baker, E. M. Agee, Characteristics of tornado-

like vortices as a function of swirl ratio: a laboratory investigation. J. Atmos. Sci. 36 (1979) 1755–

1766. 

[31] M. Refan, H. Hangan, Near surface experimental exploration of tornado vortices, J. Wind 

Enging Industrial Aerody 175 (2018) 120–135.  

[32] L. Carassale, G. Solari, F. Tubino, Proper Orthogonal Decomposition in Wind Engineering: 

Part 2: Theoretical Aspects and Some Applications, Wind & Struct. 10 (2007) 177-208. 

[33] P. Comon, C. Jutten (Eds.), Handbook of blind source separation, Academic press, Oxford, 

UK, 2010. 

[34] A. Hyvärinen, J. Karhunen, E. Oja, Independent component analysis, John Wiley and Sons, 

New York, 2001. 

[35] A. Gairola, G. Bitsuamlak, Numerical tornado modeling for common interpretation of 

experimental simulators, J. Wind Eng. Ind. Aerodyn. 186 (2019) 32-48.  

[36] M. Karami, H. Hangan, L. Carassale, H. Peerhossaini, Coherent structures in tornado-like 

vortices, Physics of Fluids (2019), Accepted.  

 

 



77 
 

Chapter 4 

4  Analytical model for tornado-like vortices: mean and fluctuating flow 

fields 

 

  The evaluation of tornadic wind loads on structures highly depends on the accurate reconstruction 

of the tornado wind field. Besides, numerical and experimental simulations of tornado-like 

vortices, analytical modelling is attractive since it can be employed in standard codes. In this paper, 

the velocity field of tornado-like vortices with single-cell and double-cell structures is analytically 

modeled. Both the mean and fluctuating flow fields are considered. The mean flow field is modeled 

using a combination of Burgers-Rott model and stagnation flow. Modal analysis of experimentally 

generated tornado-like vortices (M. Karami et. al., 2018) has shown that the large-scale fluctuating 

flow field can be attributed to two phenomena: (i) random displacement of the vortex (wandering 

motion), and (ii) sub-vortex dynamics (coherent structures). Herein, the wandering motion of the 

vortex is modeled by a convolution integral approach. The sub-vortex dynamics is modeled based 

on the reduced vorticity field resulting from the modal analysis (Proper Orthogonal 

Decomposition).  

4.1 Introduction  
 

  In wind engineering the analytical modeling of tornado vortices is complementary to 

experimental or numerical simulations and is attractive due to its simpler form and its potential 

implementation in risk analysis [1,2].  

  The most well-known analytical model is the modified Rankine vortex model which is described 

as follows: 

𝑈𝜃 =
𝛤

𝜋

𝑟2

𝑟𝑐2+𝑟2                                                                                                                                 (4.1) 

where  𝛤 is the circulation (m2/s) considered as a constant and 𝑟𝑐 is the core radius.  

  Xu and Hangan [3] presented a vortex model by combining a jet model with a modified Rankine 

vortex. In their approach, the jet model characterizes the radial and axial motions, and the Rankine 

vortex describes the tangential component. They compared the analytical model with experimental 
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data at only small values of Swirl ratio (𝑆 =  0.28). The swirl ratio is defined as the ratio of 

tangential to radial velocity components at the inlet, and the variation of the structure of tornado-

like vortices with swirl ratio is crucial. Recently, Baker and Sterling [4] proposed a vortex model 

which is suitable for calculation of debris trajectories. Their tangential and axial velocity 

components increase with height which is not reflected by experimental data [5].  Kim and Matsui 

[5] provided a comprehensive review on the existing analytical models.  

  To the best of authors’ knowledge, no analytical model has been proposed for the fluctuating 

flow field. Herein, we propose for the first time an analytical model which combines the mean and 

large-scale fluctuations of tornado-like vortices over a range of swirl ratios. Based on recently 

conducted modal analysis of experimental tornado-like vortices [6], it is assumed that the large 

fluctuating flow field is mainly attributed to two phenomena: vortex wandering motion and 

coherent structures (sub-vortex) dynamics. The modeled velocity fields are compared with two 

experimental data sets from Western WindEEE Research Institute experiments Refan and Hangan 

[7] and [8] and from Iowa State University experiments Zhang and Sarkar [9]. Moreover, the 

current model is compared with Rankine, Xu and Hangan [3], Baker and Sterling [4], Wood and 

White [10], and Vatistas [11] models, see the Appendix A for the analytic expression of the 

existing models. 

4.2 Experimental setup of Mini-WindEEE Dome 
 

  The WindEEE Dome at Western university is a three-dimensional and dynamical wind testing 

chamber that provides a novel technique to physically simulate various types of flow fields 

included tornadoes and downburst [12]. A 1/11 scaled model of WindEEE Dome (MWD) was 

built to reproduce and verify the characteristics of WindEEE Dome. MWD uses 8 peripheral fans, 

except one wall that has an array of 4 rows×15 columns fans. MWD also uses 18 top fans, installed 

in an upper chamber and communicating with the main chamber through a bell-mouth. Figure 4.1 

shows a schematic of MWD facility. For a more detailed description of the MWD simulator please 

refer to [7]. 

  Particle Image Velocimetry (PIV) was used to measure the flow field in horizontal planes at 

heights of 3.5, 4.5, 7 and 8 cm above the surface. A pulsed Nd:YAG laser generator with a 

wavelength of 532 nm was used as a source of illumination. The laser can be run at pulse repetition 
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rates of up to 30 Hz with 120 mJ/pulse output energy. A CCD camera (VA-4M32, Vieworks) with 

a spatial resolution of 2336 × 1752 pixels was used to capture images. Using a calibration board, 

the field of view of the camera was set to 23.4 cm by 17.5 cm and pixel to meter conversion ratio 

was determined. The light sheet with uniform thickness of 2 mm was created using only a 

cylindrical lens. Since this thickness is small enough to avoid the out of plane motion errors, no 

spherical lens was used for these experiments. A maximum error of 7.2% was estimated for 

velocity measurements in horizontal planes. For more information about the experimental setup 

see [7]. 

  The random motion of the vortex (wandering phenomenon) can lead to large errors in evaluating 

the flow field. Thus, it is necessary to remove the effects of wandering from the flow field data. 

Herein, we removed the wandering effects by detecting the vortex center using the method 

suggested by Jiang et al. [13]. Then, the vortex domain is shifted to its mean center. For more 

information about re-centering the vortex, see Ref. [14].  

 
Figure 4. 1: Schematic drawing of WindEEE Dome [12].  
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4.3 Analytical model for the vortex flow 
 

  The current analytical model (mean and fluctuating flow fields) is proposed for a tornado-like 

vortex flow for three swirl ratios (𝑆 = 0.22, 0.57 and 0.96) as they represent distinct vortex flow 

structures. For 𝑆 = 0.22, the vortex flow is characterized by single-cell structure and the flow has 

a laminar aspect, and at this swirl the wandering motion is high [15]. For 𝑆 = 0.57, the flow 

becomes complex and a recirculation bubble vortex breakdown is formed with a single spiral 

rotating around the bubble [16]. For 𝑆 = 0.96, a double spiral is formed and is rotating around the 

recirculation bubble leading to a vortex flow with double-cell structure [16]. For more information 

about the vortex dynamics of tornado-like vortices, see Ref. [6].  

4.3.1 Mean flow field 

  The three-dimensional flow field in tornado vortices can be decomposed into a jet flow, or 

stagnation flow, to obtain the radial and axial velocity components and a swirl flow to obtain 

tangential velocity component. In addition, a boundary layer region can be considered to take into 

account the surface layer behaviour. 

4.3.1.1 Radial and axial velocity components 

  According to Xu and Hangan [3], the following stream function can be used to describe a 

stagnation flow:  

𝛹 = W 𝐴1 𝑧
𝐵1 (𝑒−𝐶1(

𝑟

𝑧
)  − 1 ) + (1 − W) 𝐴2 𝑧

𝐵2(𝑒−𝐶2(
𝑟

𝑧
)
2

 − 1 )                                            (4.2) 

where 𝑊 is weighted function and assumed as: 𝑊 = 1 − exp (−0.1 𝑟). 𝐴1, 𝐵1, 𝐶1, 𝐴2, 𝐵2, 𝐶2 are 

empirical constants. The radial and axial velocities can be obtained from the stream function as 

follows: 

𝑈𝑟

𝑈𝜃,𝑚𝑎𝑥
=  

1

𝑟
 
𝑑𝛹

𝑑𝑧
=  

1

𝑟
[𝐴1𝐶1 𝑟 𝑊 𝑧𝐵1−2 𝑒−

𝐶1𝑟

𝑧 + 𝐴1𝐵1 𝑊 𝑧𝐵1−1 ( 𝑒−
𝐶1𝑟

𝑧 − 1)   + 2𝐴2𝐶2 𝑟 
2(1 −

𝑊)𝑧𝐵2−3 𝑒−𝐶2(
𝑟

𝑧
)
2

+ 𝐴2𝐵2 (1 − 𝑊)𝑧𝐵2−1 (𝑒−𝐶2(
𝑟

𝑧
)
2

− 1)]                                           (4.3)      

 

𝑈𝑧

𝑈𝜃,𝑚𝑎𝑥
=  −

1

𝑟
 
𝑑𝛹

𝑑𝑟
=  

1

𝑟
 [𝐴1 𝐶1 𝑊 𝑧𝐵1−1  𝑒−

𝐶1𝑟

𝑧 + 2 𝐴2𝐶2(1 − 𝑊)𝑧𝐵2−2𝑟𝑒−𝐶2(
𝑟

𝑧
)
2

]                       (4.4) 
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The radial and axial velocities are normalized by the maximum mean tangential velocity 𝑈𝜃,𝑚𝑎𝑥. 

The radius (𝑟) and height (𝑧) are normalized by core radius at every height. 𝐴1, 𝐵1, 𝐶1, 𝐴2, 𝐵2 

and 𝐶2 are empirical constants.  

  To consider the effect of boundary layer region near the ground, we divide 𝑧 domain into two 

regions separated by 𝑧𝑈𝑟,𝑚𝑎𝑥
 or 𝑧𝑈𝑧,𝑚𝑎𝑥

 as a height corresponding to the maximum radial or axial 

velocity components. 𝑈𝑟 and 𝑈𝑧 within the boundary layer are defined as: 

𝑈𝑟

𝑈𝜃,𝑚𝑎𝑥
= (

𝑧

𝑧𝑈𝑟,𝑚𝑎𝑥

)𝛼𝑝                                                                                                                       (4.5) 

𝑈𝑧,𝑚𝑎𝑥

𝑈𝜃,𝑚𝑎𝑥
= (

𝑧

𝑧𝑈𝑧,𝑚𝑎𝑥

)𝛼𝑝                                                                                                                       (4.6) 

where 𝑧𝑈𝑟,𝑚𝑎𝑥
 and 𝑧𝑈𝑧,𝑚𝑎𝑥

 are respectively the height for which maximum radial and axial velocity 

components occur, and 𝛼𝑝 is power-law index. Based on WindEEE Dome (WD) experiment [8], 

𝑧𝑈𝑟,𝑚𝑎𝑥
/𝑟𝑐 for the three swirl ratios, 𝑆 = 0.22, 0.57 and 0.96 are respectively 0.22, 0.13 and 0.09. 

Using the WD experiment [8] 𝛼𝑝 was also determined for the three swirl ratios based on the 

tangential component as being, 𝛼𝑝 = 1/9, 1/7 and 1/4 for the three swirl ratios 𝑆 = 0.22, 0.57 

and 0.96. Note that these values for  𝛼𝑝 are assumed for the three velocity components. 

  Eqs. (4.3-4.4) define the velocity profiles above the surface layer, and Eqs. (4.5-4.6) define the 

velocity profiles within the surface layer. The empirical constants in Eqs. (4.3-4.4) were 

determined conducting regression analysis between the model and experimental data sets. The 

underlying behavior of velocity profiles in the experiments is considered to avoid overfitting in 

the regression analysis. For before-breakdown case (𝑆 = 0.22) these constants are [𝐴1, 𝐵1, 𝐶1, 𝐴2, 

𝐵2, 𝐶2] = [0.14,0.1,1.5,1.7,0.75,0.75]. For after-breakdown case (𝑆 = 0.57 and 0.96), the 

empirical constants are  [𝐴2, 𝐵2, 𝐶2] = [1.9,0.7,1.6,0.5,0.3], 𝐴1 = 3(𝑧𝑈𝑟,𝑚𝑎𝑥
/𝑟𝑐) , and 𝐵1 =

−2𝐴1. 

4.3.1.2 Tangential velocity component 

The swirl flow, or tangential velocity component, is originated from Burgers-Rott model [17,18]:  

 

𝑈𝜃 =  
Г 

2𝜋𝑟
[1 − exp (−

𝐶 𝑟2

2𝑣
)]                                                                                                        (4.7) 
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where 𝑣 is air kinematic viscosity, and 𝐶 is empirical constant. The circulation is equal to, Г =

2𝜋𝑟𝑐𝑈𝜃,𝑚𝑎𝑥 where 𝑟𝑐 is core radius and 𝑈𝜃,𝑚𝑎𝑥 is maximum tangential velocity at the core radius.  

  To implement the variations of 𝑈𝜃 with height as well as the effect of boundary layer region near 

the ground, we define 𝑈𝜃,𝑚𝑎𝑥 as follows: 

𝑈𝜃,𝑚𝑎𝑥 = {

𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 (
𝑧

𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 

)𝛼𝑝          (𝑧 ≤ 𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 
)

𝐷1 𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥  exp (−𝐷2  
𝑧

𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 

)                   (𝑧 > 𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 
)  

                         (4.8) 

where  𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥  is the maximum tangential velocity at 𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 
. 𝛼𝑝 is power-law index and 

determined to be 𝛼𝑝 = 1/9, 1/7 and 1/4 for the three swirl ratios 𝑆 = 0.22, 0.57 and 0.96, which 

are the values used for the other two velocity components. We used the function, 𝑓(𝑧) =

𝐷1 𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥  exp (−𝐷2  𝑧 𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 
⁄ ), to satisfy the following conditions: (i) 𝑧 =

𝑧𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥 
 →  𝑓(𝑧) =  𝑈𝜃,𝑚𝑎𝑥,𝑚𝑎𝑥  , and (ii) 𝑧 = ∞ →  𝑓(𝑧) = 0. Based on WindEEE Dome 

(WD) experiment [8], 𝑧𝑈𝜃,𝑚𝑎𝑥
/𝑟𝑐 for the three swirl ratios, 𝑆 = 0.22, 0.57 and 0.96 are respectively 

0.75, 0.47 and 0.29. The empirical constant for before-breakdown case (𝑆 = 0.22), [𝐷1, 𝐷2] =

[1.03, 0.03], and for after-breakdown case (𝑆 = 0.57 and 0.96),  [𝐷1, 𝐷2] = [1.11, 0.10]. 

4.3.2 Fluctuating flow field 

  Here, only fluctuation of tangential velocity component is considered as it is the dominant 

component compared to radial and vertical components. Zhang and Sarkar [9] reported that radial 

and vertical fluctuation vary between 8% and 23% of tangential component.  

  The fluctuating velocity can be decomposed into three components: 

𝑈𝜃,𝑓𝑙𝑢𝑐 = 𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 + 𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 + 𝑈𝜃,𝑟𝑎𝑛𝑑𝑜𝑚                                                                 (4.9) 

where 𝑈𝜃,𝑓𝑙𝑢𝑐 is the instantaneous fluctuating velocity and obtained by subtracting the mean 

tangential velocity from the instantaneous tangential velocity. 𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 is the fluctuations 

attributed to coherent structures (sub-vortex dynamics), 𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 is the fluctuations attributed 

to vortex wandering motion and 𝑈𝜃,𝑟𝑎𝑛𝑑𝑜𝑚 is the fluctuations attributed to random perturbations 

which is neglected here. For before-breakdown case (𝑆 = 0.22), only 𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 is significant, 
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and 𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 is negligible [6]. For after-breakdown case (𝑆 = 0.57 and 0.96) only 

𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 is significant, and 𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 is negligible [6].  

4.3.2.1 Fluctuations attributed to vortex wandering motions for swirl ratio S=0.22 

  In order to implement the effects of vortex wandering motions into the original Burgers-Rott 

model, Eq. (4.5), we used a convolution integral as follows [19]: 

𝑈𝜃,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥, 𝑦) = ∫ ∫ 𝑃𝐷𝐹𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑡𝑖𝑜𝑛    𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥, 𝑦)   𝑑𝑥 𝑑𝑦
+∞

−∞

+∞

−∞
               (4.10) 

 

Where 𝑈𝜃,un𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑(𝑥, 𝑦) is the original Burgers-Rott model, Eq. (4.7), and 𝑃𝐷𝐹𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑡𝑖𝑜𝑛 

is probability density function of the random displacement of the vortex with respect to its mean 

center which is assumed to be joint Gaussian distribution. Based on MWD experiment [7], for 𝑆 =

0.22, the values of skewness and kurtosis of vortex displacement are respectively 0.39 and 3.38. 

  Fourier-transform technique is used here to solve the convolution integral. Thus, we take Fourier 

Transform of Eq. (4.10) and then transforming back to tangential velocity field. The Fourier 

transform of the convolution integral, Eq. (4.10), is: 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 [𝑈𝜃,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  𝐹𝑜𝑢𝑟𝑖𝑒𝑟 [𝑃𝐷𝐹𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑡𝑖𝑜𝑛] ∗  𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑈𝜃,uncorrected(𝑥, 𝑦)]            (4.11) 

 

Before taking Fourier transform of Burgers-Rott model, Eq. (4.7), we convert it into cartesian 

form: 

 

𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  
Г 

2𝜋(𝑥2+ 𝑦2)
[1 − exp (−

𝐶 (𝑥2+ 𝑦2)

2𝑣
)]                                                               (4.12) 

 

Then, we take the Fourier transform as follows (see Ref. [20] for the operation): 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  ∫ ∫
Г 

2𝜋(𝑥2+ 𝑦2)
[1 − exp (−

𝐶 (𝑥2+ 𝑦2)

2𝑣
)] exp(−i(𝜔𝑥x + 𝜔𝑦y )) 𝑑𝑥 𝑑𝑦

+∞

−∞

+∞

−∞
             (4.13) 

 

We can simplify the integral by introducing new variables: 𝑦 = 𝑟 sin(θ) , 𝑥 = 𝑟 cos(θ) , 𝜔𝑦 =

𝐾 sin (𝛼), and 𝜔𝑥 = 𝐾 cos (𝛼): 
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𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  
Г 

2𝜋
∫ ∫ sin (θ) [1 −

2𝜋

0

+∞

0

exp (−
𝐶 𝑟2

2𝑣
)  ]  exp(−i 𝑘 𝑟( cos(𝛼) cos(𝜃) +  sin (𝛼) sin(θ)) 𝑑𝜃 𝑑𝑟                       (4.14) 

 

The term, cos(𝛼) cos(𝜃) +  sin (𝛼) sin(θ) , can be rewritten as cos (α −  θ). This leads us to 

introducing another variable, 𝛽 =  𝛼 −  𝜃, in the integral: 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  −
Г  sin (𝛼)

2𝜋
∫ ∫ cos (β) [1 −

2𝜋

0

+∞

0

exp (−
𝐶 𝑟2

2𝑣
)] exp(−i 𝑘 𝑟 cos (𝛽)) 𝑑𝛽 𝑑𝑟                                                                                                      (4.15) 

 

We know that: 

 

∫ cos(𝛽) exp(−𝑖 𝑘 𝑟 𝑐𝑜𝑠(𝛽)) =  
2𝜋

𝑖 𝑘 

2𝜋

0

𝑑

𝑑𝑟
𝐽0(𝑘 𝑟)                                                                         (4.16) 

Where 𝐽0(𝑘 𝑟) is first-order Bessel function. By substituting Eq. (4.16) into Eq. (4.15), we have 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  −
Г  sin (𝛼)

𝑖 𝑘
 ∫ [1 − exp (−

𝐶 𝑟2

2𝑣
)] 

𝑑

𝑑𝑟
𝐽0(𝑘 𝑟) 𝑑𝑟

+∞

0
                            (4.17) 

 

Thus, the final solution of the Fourier transform of Burgers-Rott model, Eq. (4.13), becomes: 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  
Г  sin (𝛼)

𝑖 𝑘
exp(−

𝜈𝑘2

2𝐶
)                                                                          (4.18) 

 

For Fourier transform of the Gaussian PDF, we have: 

 

𝑃𝐷𝐹𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑡𝑖𝑜𝑛 = 
1

2𝜋
exp (−

𝑥2+ 𝑦2

2𝜎2 )                                                                                   (4.19)             

 

Using the same procedure as for 𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑, we can find the Fourier transform of Eq. (4.19): 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟[𝑃𝐷𝐹𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 𝑚𝑜𝑡𝑖𝑜𝑛] =  
1

2𝜋
 exp (−

𝜎2 𝑘2

2
)                                                                   (4.20) 
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After computing the Fourier transform of the Gaussian distribution and Burgers-Rott model, we 

can substitute Eqs. (4.18) and (4.20) into Eq. (4.11): 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟 [𝑈𝜃,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  
Г  sin (𝛼)

𝑖 𝑘
 exp (−

𝑘2(𝜈+𝐶 𝜎2)

2 𝐶
)                                                                     (4.21) 

 

By taking inverse Fourier transform of Eq. (4.21): 

 

𝐹𝑜𝑢𝑟𝑖𝑒𝑟−1[𝑈𝜃,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑] =  ∫ ∫
Г  sin (𝛼)

𝑖 𝑘
 exp (−

𝑘2(𝜈+𝐶 𝜎2)

2 𝐶
) exp(i (𝜔𝑥x + 𝜔𝑦y )) 𝑑𝜔𝑥 𝑑𝜔𝑦

+∞

−∞

+∞

−∞
     

(4.22) 

 

We can solve the integral (22) using the same procedure used for the Eq. (4.13). Thus, the final 

solution of the Eq. (4.10) is: 

 

𝑈𝜃,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 
βГ

2𝜋𝑟
[1 − exp (

−𝐶𝑟2

2(𝑣+𝐶𝜎2)
)]                                                (4.23) 

 

where 𝜎 is standard deviation of the vortex wandering motion. β  and 𝐶 are empirical constants to 

control the shape of profile. Note that the variation of tangential velocity with height is 

implemented through Eq. 4.8. Based on the MWD experiment [7], for before-breakdown case (𝑆 =

0.22), β = 1, 𝐶 = 0.3 and 𝜎 = 0.28 𝑟𝑐. For after-breakdown case (𝑆 = 0.57 and 0.96), 𝐶 =

0.01/(𝑟𝑐 𝑈𝜃,𝑚𝑎𝑥), β is in the range of 1 to 1.5 and the effects of wandering motion is negligible, 

𝜎 = 0.  

  To obtain the fluctuations attributed to wandering motion, we can subtract the corrected velocity 

field from uncorrected velocity field as follows: 

 

𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 = 𝑈𝜃,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 − 𝑈𝜃,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑                                                                             (4.24)            

 

The effects of wandering motion on the velocity profile will be discussed in Section 3.1.  
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  (a)                                              (b)                                                 (c) 

 

Figure 4. 2: Schematic representation of vorticity field of coherent structures. (a) 𝑆 = 0.22, a single 

vortex subjected to random wandering motion. (b) 𝑆 = 0.57,  a recirculation bubble vortex at the 

center and a spiral vortex rotating around the bubble. (c) 𝑆 = 0.96, a recirculation bubble vortex 

at the center and a double spiral vortex rotating around the bubble.  

 
Figure 4. 3: The energy of POD modes for the three swirl ratios of MWD experiment. 

Wandering is included.   

 

4.3.2.2 Fluctuations attributed to sub-vortex dynamics for swirl ratio S=0.57 and 

0.96 

 

  Coherent structures are well-correlated regions of the fluctuating flow field that reflect the vortex 

dynamics and are responsible for large-scale fluctuations. The coherent structures are identified 

and extracted using proper orthogonal decomposition (POD) technique. POD was applied on the 

fluctuating flow field of MWD experiment, and based on the first two POD modes, the reduced 
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vorticity field, shown in Figure 4.2, was proposed [6].  For 𝑆 = 0.22 (a), the coherent structures 

consist of a single vortex which is subjected to highly intensified random motion. Thus, the effect 

of sub-vortex dynamics is negligible. For 𝑆 = 0.57 (b) the coherent structures are mainly 

representative of a recirculation bubble at the center and a spiral structure rotating around the 

bubble. For 𝑆 = 0.96 (c), the coherent structures are similar to 𝑆 = 0.57, except a double spiral 

was identified rotating around the recirculation bubble. A detailed description of the coherent 

structure identification and the associated simplified vortex field are presented in [6].    

  To approximate the ratio of the fluctuations from the sub-vortex dynamics to the total fluctuations 

(𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥/𝑈𝜃,𝑓𝑙𝑢𝑐), the distribution of energy of POD modes for the three swirl ratios of 

MWD experiment is presented in Figure 4.3. It reveals that the energy of the first two POD modes 

are quite comparable and their cumulative energy falls in the range of 35% to 60% of the total 

fluctuating energy. Their cumulative energy is approximately 60% for 𝑆 = 0.22, 50% for 𝑆 =

0.57 and 33% for 𝑆 = 0.96. The relative energy of the first two POD modes decreases with 

increasing swirl as at higher swirl the sub-vortex dynamics becomes more complex and at lower 

swirl the wandering motion is relatively more important.  

  Herein, we derive the fluctuating tangential velocity field from the simplified vorticity field 

shown in Figure 4.2. To achieve that, the following differential equation is assumed for the 

vorticity field [10,21]: 

𝜁𝑧 = 
𝑑𝑈𝜃

𝑑𝑟
+ 

𝑈𝜃

𝑟
                                                                                                                                (4.25) 

where 𝜁𝑧 is the vertical component of the vorticity and is assumed to be axisymmetric. For a single 

vortex, the vertical vorticity follows the Gaussian distribution: 

 

𝜁𝑧/𝜁𝑧,𝑚𝑎𝑥 = 
(𝜆 𝐼)

2𝜋(
𝛾

𝑟𝑐
)2

 𝑒𝑥𝑝 (− 
𝑟2

2 (
𝛾

𝑟𝑐
)2
)                                                                                                                                (4.26) 

where 𝜁𝑧 is normalized by maximum vertical component of the vorticity. 𝐼 is turbulence intensity 

of 𝑈𝜃,𝑚𝑎𝑥, 𝛾 is an empirical constant which controls the size of the vortex, and 𝜆 is an empirical 

constant to control the cumulated energy of coherent structures. By substituting Eq. (4.26) into Eq. 

(4.25), we can obtain the fluctuating tangential velocity for a single vortex: 



88 
 

𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥/𝑈𝜃,𝑚𝑎𝑥 = (𝜆 𝐼) [
1

𝑟
 −

exp(− 
𝑟2

2 (
𝛾
𝑟𝑐

)2
)

𝑟
]                                                                                         (4.27)     

where 𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 is normalized by maximum tangential velocity. 

 

  Based on the Eq. (4.27) for a single vortex, we can assume that 𝜁𝑧 follows a weighted combination 

of Gaussian distribution for after-breakdown cases (𝑆 = 0.57 and 0.96) since the flow consists of 

a bubble vortex at center and a spiral vortex rotating around the bubble: 

𝜁𝑧/𝜁𝑧,𝑚𝑎𝑥 = (𝜆 𝐼) 𝑊 [
1

2𝜋(
𝛾𝑏
𝑟𝑐

)
2  exp (− 

𝑟2

2 (
𝛾𝑏
𝑟𝑐

)
2)] + (𝜆 𝐼)(1 −

𝑊)   [
𝑟2

2𝜋(
𝛾𝑠
𝑟𝑐

)2
 𝑒𝑥𝑝 (− 

(𝑟−(𝑟0/𝑟𝑐))
2

2 (𝛾𝑠/𝑟𝑐)
2 )]  max(sin𝜔𝑡, 0)                                                                                     (4.28) 

 

where 𝛾𝑏 and 𝛾𝑠 are associated to the size of recirculation bubble and spiral respectively. Here, 

𝛾𝑏/𝑟𝑐 = 0.13 and 𝛾𝑠/𝛾𝑏 = 0.57. 𝜔 is the angular velocity of spiral and equals to 𝜔 =

2𝜋 𝑆𝑡 (𝑈𝜃,𝑚𝑎𝑥/𝑟𝑐). The Strouhal number (𝑆𝑡 = 𝑓 𝑟𝑐 𝑈𝜃,𝑚𝑎𝑥⁄ ) is based on the frequency of spiral(s) 

which was determined to be  𝑆𝑡 = 0.002 for single spiral and 𝑆𝑡 = 0.004 for double spiral. The 

frequency of spiral was obtained from the spectral analysis of surface pressure measurements in 

MWD experiment [7]. The constant 𝑟0 is the distance of spiral from the center which is chosen 

𝑟0/𝑟𝑐 = 0.55, and the empirical constant 𝜆 = 3.5, based on MWD experiment. 𝑡 is time variable 

and 𝑊 is the weighted function assumed as follows: 

𝑊 = exp (−0.6 𝑟)                                                                                                                            (4.29)                                                                 

  By substituting Eq. (4.28) into Eq. (4.25) and solving the first order differential equation, the 

fluctuating tangential velocity field for after-breakdown case (𝑆 = 0.57 and 0.96) is: 



89 
 

 𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥/𝑈𝜃,𝑚𝑎𝑥 = 𝜆𝐼𝑊

[
 
 
 
 

 
1

𝑟
 −

exp(− 
𝑟2

2 (
𝛾𝑏
𝑟𝑐

)
2)

𝑟

]
 
 
 
 

+ 𝜆𝐼(1 − 𝑊) 

[
 
 
 
 
√

𝜋

2 
 𝑟0

3 erf(
𝑟−𝑟0

√2 (𝛾𝑠/𝑟𝑐)
)

(
𝛾𝑠
𝑟𝑐

) 𝑟
−

𝑟0
2 𝑒𝑥𝑝(− 

(𝑟0−𝑟)2

2(
𝛾𝑠
𝑟𝑐

)
2 )

𝑟
 +  

3 √
𝜋

2 
 𝑟0(𝛾𝑠/𝑟𝑐) erf(

𝑟−𝑟0

√2  (
𝛾𝑠
𝑟𝑐

)
)

 𝑟
− (𝑟 + 𝑟0 +

2(
𝛾𝑠
𝑟𝑐

)
2

𝑟
)𝑒𝑥𝑝 (− 

(𝑟0−𝑟)2

2(
𝛾𝑠
𝑟𝑐

)
2 ) +

 
1

𝑟

]
 
 
 
 

  max(sin𝜔𝑡, 0)  (4.30) 

Where 𝑒𝑟𝑓() is error function. Note that the fluctuating profile (Eq. 4.30) for after-breakdown case 

is time dependent as the spiral(s) rotate around the vortex at the center. Thus, its standard deviation 

profile will be used for comparison with MWD experiment.  

4.4 Results and comparisons 
 

  In this section, we first look into the effects of vortex wandering on the velocity profiles for three 

swirl ratios. Then the current analytical model for the mean flow field is compared with two 

experimental data sets from Western WindEEE Research Institute experiments Refan and Hangan 

[7] and [8], referred to as MWD and WD, and from Iowa State University experiments Zhang and 

Sarkar [9], referred to as ISU. Moreover, the current model is compared with Rankine, Xu and 

Hangan [3], Baker and Sterling [4], Wood and White [10], and Vatistas [11] analytical models. 

The current analytical model for the fluctuating flow field (𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 in Eq. 4.24 and 

𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 in Eq. 4.30) is compared with standard deviation profile of 𝑈𝜃 in MWD experiment.  

 

4.4.1 Effects of vortex wandering motions  

  Figure 4.4 shows the effects of vortex wandering on the mean tangential velocity profile of MWD 

experiment for three different swirl ratios. For before-breakdown case, 𝑆 = 0.22 (a), the effect of 

wandering on the velocity profile is significant. At ℎ = 3.5 𝑐𝑚, wandering correction has resulted 

in an increase in maximum tangential velocity (𝑈𝜃,max ) from 9.3 (m/s) to 11.5 (m/s) as well as 

decrease of core radius (𝑟𝑐) from 2.9 cm to 2.2 cm. Moreover, the velocity profiles remain almost 
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constant with increasing height when wandering effects are removed, while this is not the case for 

un-removed wandering cases. For after-breakdown case, 𝑆 = 0.57 and 0.96 (b-c), the effect of 

wandering on the velocity profile is negligible, and the maximum tangential velocity is reduced 

rapidly near the ground. Note that due to the expanded core radius for 𝑆 = 0.96, a smaller area of 

the flow region is captured in PIV plane. 

 
                                     (a)                                                                            (b) 

 
                                      (c) 

 

Figure 4. 4: Mean tangential velocity (m/s) profile of MWD experiment for removed (corrected) 

and un-removed (uncorrected) wandering effects, (a) 𝑆 = 0.22, (b) 𝑆 = 0.57 and (c) 𝑆 = 0.96.  

 

4.4.2 Comparison of mean flow field model 

  Figure 4.5 compares the present model for radial profile of tangential velocity (Eq. 4.23) with 

experimental observations and existing models. For 𝑆 = 0.22 (a), the present model as well as 
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Vatistas model has a better agreement with WD and ISU experiments than the MWD experiment. 

Xu and Hangan model, Rankine model as well as Baker and Sterling model show similar behaviour 

while Wood and White model has the largest deviation from experimental observations. The same 

comments apply to the velocity profile for 𝑆 = 0.57 (b). For 𝑆 = 0.96 (c), neither model is able 

to capture experimental observations in the vortex core (𝑟 ≤ 𝑟𝑐) since the tangential velocity is not 

increasing linearly with radius. At the outer core (𝑟 > 𝑟𝑐), the present model and Vatistas model 

has a better agreement with experimental observations. Xu and Hangan model, Rankine model as 

well as Baker and Sterling model show similar results while Wood and White model has the largest 

deviation from experimental data. 

 

  Figure 4.6 provides a comparison for the vertical profile of tangential velocity (Eqs. 4.8 and 4.23) 

for the three swirl ratios. The present model and Xu and Hangan model capture the boundary layer 

effects, while Baker and Sterling model 𝑈𝜃 linearly increases with height which is not realistic. 

For 𝑆 = 0.22 (a), the variation of 𝑈𝜃 with height above the boundary layer is smooth. However, 

for 𝑆 = 0.57 and 0.96 (b-c), a sharp variation of 𝑈𝜃 with height can be observed. 

  Figure 4.7 compares the radial and vertical profiles of 𝑈𝑟 and 𝑈𝑧 for 𝑆 = 0.22 and its comparison 

with existing models and experimental observations. The radial profiles are plotted for 𝑧 = 0.4 𝑟𝑐 

and the axial profile is plotted for r =  𝑟𝑐.  Due to the lack of experimental data, the vertical profile 

of 𝑈𝑧 is not shown. The radial profile of 𝑈𝑟 (Figure 4.7-a) shows that the radial flow is convergent 

toward the center with minimum value at the center (𝑟 = 0). The present model and Baker and 

Sterling model provide a better agreement than Vatistas model as well as Xu and Hangan model.  

  The radial profile of 𝑈𝑧 (Figure 4.7-b) shows that axial velocity varies between 10% to 25% of 

𝑈𝜃,𝑚𝑎𝑥 and its maximum value occurs at the core radius. Vatistas model is the only model which 

predicts maximum value of 𝑈𝑧 at 𝑟 = 𝑟𝑐 while the other models predict the maximum value of 𝑈𝑧 

at the center 𝑟 = 0. Moreover, all the models, except Vatistas model, suggest that the maximum 

value of 𝑈𝑧 is more than 50% of 𝑈𝜃,𝑚𝑎𝑥 which is not consistent with experimental observations.  

  The vertical profile of 𝑈𝑟 (Figure 4.7-c) shows that the current model and Baker and Sterling 

model have a better agreement than the Xu and Hangan model. Moreover, Xu and Hangan model 

misses the no-slip boundary condition on the wall (𝑧 = 0).  
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                       (a)                                                                             (b) 

 

        (c) 

Figure 4. 5: The radial profile of normalized tangential velocity and its comparison with existing 

models  for (a) 𝑆 = 0.22  𝑎𝑡 𝑧 = 𝑟𝑐, (b) 𝑆 = 0.57 𝑎𝑡 𝑧 = 0.6 𝑟𝑐, and (c) 𝑆 = 0.96  𝑎𝑡 𝑧 = 0.4 𝑟𝑐. 
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                                    (a)                                                                         (b) 

 

     (c) 

Figure 4. 6: The vertical profile of normalized tangential velocity and its comparison with 

existing models at 𝑟 =  𝑟𝑐 for (a) 𝑆 = 0.22, (b) 𝑆 = 0.57, and (c) 𝑆 = 0.96. 

  

(a) (b) 
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      (c)                                                                           

 

Figure 4. 7: The radial (a-b) and vertical (c-d) profiles of normalized radial and axial velocity 

components and their comparison with existing models for 𝑆 = 0.22 (𝑧 = 𝑟𝑐 and 𝑟 = 𝑟𝑐). 

 

  Figure 4.8 shows the radial and vertical profiles of 𝑈𝑟 and 𝑈𝑧 for after-breakdown case (𝑆 = 0.57 

and 0.96). The radial profiles are plotted for 𝑧 = 0.4 𝑟𝑐 and the axial profile is plotted for r =  𝑟𝑐.  

It shows that vortex is leading to a downdraft vertical or divergent radial flow, and 𝑈𝑟 is almost 

negligible compared to 𝑈𝜃,𝑚𝑎𝑥. Moreover, maximum values of 𝑈𝑟 and 𝑈𝑧 occur at the core radius, 

𝑟 = 𝑟𝑐.  

  
      (a) 
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                                    (b) 

Figure 4. 8: The radial and vertical profiles of mean radial and axial velocity components (Eqs. 

4.3 and 4.4) at 𝑟 = 𝑟𝑐 for (a) 𝑆 = 0.57 𝑎𝑡 𝑧 = 0.6 𝑟𝑐, and (b) 𝑆 = 0.96 𝑎𝑡 𝑧 = 0.4 𝑟𝑐. 

 

4.4.3 Comparison of fluctuating flow field model 

  Based on recently conducted modal analysis of experimental tornado-like vortices [6], it is 

assumed that fluctuations from wandering motion (𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔) is significant for before-

breakdown case, 𝑆 = 0.22, leading to negligible effects of fluctuations from sub-vortex dynamics 

(𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥). However, for after-breakdown case, 𝑆 = 0.57 and 0.96, it is reverse; 

𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 is significant, and 𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 is negligible. 

  Figure 4.9 compares the analytical model of 𝑈𝜃,𝑤𝑎𝑛𝑑𝑒𝑟𝑖𝑛𝑔 (Eq. 4.24) with the standard deviation 

profile of 𝑈𝜃 in MWD experiment for the before-breakdown case (𝑆 = 0.22). A similar trend is 

observed between model and experimental results but MWD experiment shows that fluctuation is 

maximum at 𝑟 = 0.3 𝑟𝑐 and the analytical model suggests this value at 𝑟 = 0.6 𝑟𝑐.  

  Figure 4.10 compares the standard deviation of the model of 𝑈𝜃,𝑠𝑢𝑏−𝑣𝑜𝑟𝑡𝑒𝑥 (Eq. 4.30) with that 

of MWD experiment for after-breakdown cases (𝑆 = 0.57 and 0.96). It shows that the fluctuation 

is increased by swirl ratio and its maximum value occurs at 𝑟 = 0.7 𝑟𝑐. Reasonable similar trends 

are present in the model and the experimental data. Note that the analytical model has extremum 

point around 𝑟 = 0.55 𝑟𝑐, and thus the model is not shown around this point.  
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Figure 4. 9: Radial profile of the fluctuating tangential velocity based on wandering motion and 

its comparison with MWD experiment at 𝑧 =  𝑟𝑐 for 𝑆 =  0.22. 

 
 

 
   (a)                               (b) 

 

Figure 4. 10: Radial profile of the fluctuating tangential velocity based on sub-vortex dynamics 

and its comparison with MWD experiment for (a) 𝑆 = 0.57at 𝑧 = 0.6 𝑟𝑐 and (b) 𝑆 = 0.96 at 𝑧 =

0.4 𝑟𝑐. 

4.5 Concluding remarks 
 
 

  An analytical model is proposed for tornado-like vortex flows with both single-cell and double-

cell structures for a large range of swirl ratios (0.22 ≤ 𝑆 ≤ 0.96). The model addresses for the 

first time both the mean and the fluctuating flow fields. The mean flow field is modeled using a 
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combination of Burgers-Rott model, stagnation flow and boundary layer flow. The fluctuating 

flow field is simplified to the large fluctuations attributed to vortex wandering and sub-vortex 

dynamics. The model shows satisfactory agreement with experimental results obtained from two 

separate experimental facilities. The present model is a step forward in analytically describing the 

complex tornado-like vortex fields with application in wind engineering and risk analysis. 
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Chapter 5 

5  Conclusions and recommendations 

  The scope of the present research is three-folded. First, the three-dimensional structure of 

tornado-like vortices is re-constructed by extracting coherent structures out of the fluctuating 

velocity field using proper orthogonal decomposition (POD) technique as well as dynamic POD 

to provide the temporal evolutions of these coherent structures. The relationship between POD 

modes and physical mechanisms in tornado-like vortices is interpreted synthetic vortex simulations 

for various Swirl ratios. Second, statistical analysis of surface pressure fluctuations is also analysed 

by means of several modal decompositions such as POD, dynamic POD, Independent Component 

Analysis (ICA), dynamic ICA as well as spectral analysis of the extracted coherent structures. 

Third and finally, an analytical model is defined for both the mean and, for the first time, for the 

fluctuating flow field of tornado-like vortices with both single-cell and double-cell structures. The 

mean flow field is modeled using a combination of Burgers-Rott model and stagnation flow. The 

fluctuating field is modeled by solving the first order partial differential equation of the fluctuating 

velocity derived from the vorticity field of experimentally resolved coherent structures. 

Concluding remarks as well as recommendations for future work are provided at the end of this 

chapter. 

5.1  Summary 
 

  Chapter 2 of this thesis is dedicated to the investigation of the dynamics of tornado-like vortices 

through a set of novel physical experiments and modal analyses for a wide range of swirl ratios 

(0.22 ≤ 𝑆 ≤ 0.96). Various physical phenomena such as wandering, vortex breakdown or 

transition from one-cell to two-cell structures are observed. To investigate the coherent structure 

of the tornado vortices, two different decomposition methods are applied: (i) proper orthogonal 

decomposition (POD), also referred to as principle component analysis (PCA) and (ii) a novel 

dynamic proper orthogonal decomposition (D-POD) to provide time evolutions of the POD modes 

[1, 2]. To foster the physical interpretation of these POD modes, modal decomposition of a 

simulated synthetic vortex is also provided. The outcome of this Chapter 2 is the clear definition 
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of the sub-vortex dynamics (coherent structures) for each vortex regime from single cell before 

vortex break-down to vortex break down and the formation of double cells.  

  The following chapter, Chapter 3, presents statistical analysis of surface pressure fluctuations in 

tornado-like vortices. To overcome POD orthogonality constraint [3-5], an advanced method 

independent component analysis (ICA) is applied [6-8]. Furthermore, these two methods are 

generalized in the frequency domain, called dynamic POD and dynamic ICA, to provide the 

temporal evolutions of coherent structures over the spatial domain [2]. A comparison between 

modal decomposition techniques and some common statistical techniques is also provided. The 

outcome of this Chapter 3 is the first modal characterization of the surface pressure field in 

tornado-like vortices which provides the modal analysis frame for further interpreting bluff body 

aerodynamics in tornado vortices. Regardless of the reference to tornado-like vortices, the 

discussion of the present chapter can be helpful in the physical interpretation of swirling flows in 

general.   

  In the last paper, Chapter 4, the velocity field of tornado-like vortices with single-cell and double-

cell structures is analytically modeled. Both the mean and fluctuating flow fields are considered. 

The mean flow field is modeled using a combination of Burgers-Rott model and stagnation flow. 

Modal analysis of experimental observations has shown that the large-scale fluctuating flow field 

can be attributed to two phenomena: (i) random displacement of the vortex (wandering motion), 

and (ii) sub-vortex dynamics (coherent structures) which are well-correlated regions in the 

fluctuating flow field. The wandering motion of the vortex is modeled by a convolution integral 

approach. The sub-vortex dynamics is modeled by solving the first order partial differential 

equation of the fluctuating velocity derived from the vorticity field of experimentally resolved 

coherent structures. 

5.2  Conclusions 
 

Based on the overall findings of this thesis, the following major conclusions are stated 

below. Major findings from velocity field analysis in Chapter 2 are: 

• For 𝑆 = 0.22, the mean flow field shows a single vortex with convergent radial flow 

towards center. However, a divergent radial flow appears in the horizontal PIV planes at lower 
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heights due to the vortex tilting. The modal analysis, or coherent structures extracted by POD, 

shows a single vortex subjected to wandering motion. Streamlines in a snapshot of the horizontal 

PIV plane also reveals a single vortex.  Due to the absence of vortex breakdown at this swirl ratio, 

the coherent structures are quite persistent along the height and the flow looks laminar. The 

resulting schematics of the mean flow field and the vortex dynamics for this swirl ratio are also 

suggested.   

• For 𝑆 = 0.57, the mean flow field shows a recirculation bubble vortex breakdown 

accompanied with a divergent radial flow at the vortex center. The POD analysis shows a 

recirculation bubble with a single spiral rotating around it. Moreover, the coherent 

structures gradually disappear along the vortex height because of the presence of vortex 

breakdown. At this swirl ratio, a transition from single spiral to double spiral (or transition 

from one-cell to two-cell), resembling two intertwined sub-vortices, occurs, but it is very 

weak in terms of occurrences. Streamlines in a snapshot of the horizontal PIV plane 

revealing a double spiral pattern confirmed that the number of snapshots showing double 

spiral is 9 out of 2018 snapshots, and the ensemble average distance between the two sub-

vortices is 2.7 cm. The resulting schematics of the mean flow field and the vortex dynamics 

for this swirl ratio are also suggested.   

• For 𝑆 = 0.96, the mean flow field shows that the recirculation bubble is expanded into an 

annular form with a stagnant area (zero-value velocity) inside the core region. The modal 

analysis, or coherent structures extracted by POD, shows a recirculation bubble with a 

double spiral rotating around it. This structure refers also to two-cell structure. Rapid 

destruction of coherent structure along the vortex height can be observed because of the 

high turbulence in the flow. Streamlines in a snapshot of the horizontal PIV plane for 

revealing double spiral pattern confirmed that double spiral occurs more often compared 

to the 𝑆 = 0.57 case. 

 

Major findings from surface pressure analysis in Chapter 3 are: 

• For 𝑆 = 0.22, the pressure field is characterized by a vortex which is subjected to Gaussian 

random wandering, and spectral analysis shows that wandering motion has a broad band 

frequency. 
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• For 𝑆 = 0.57, the pressure field is characterized by a vortex whose size is changing 

periodically and is also subjected to wandering motion. It is believed that size variation of 

the vortex is due to the vortex breakdown phenomenon. Spectral analysis shows that peak 

frequencies of wandering motion become narrower compared to 𝑡ℎ𝑒 𝑆 = 0.22 case and the 

wandering is weaker. Moreover, a dominant frequency is identified for the size variation 

of the vortex. 

• For 𝑆 = 0.96, while the flow field (Chapter 3) contains intermittent double-cell structure, 

both POD and ICA modes have not extracted this pattern. However, spectral analysis may 

give a clue to this characteristic of the vortex. It shows that both POD and ICA modes have 

two intense frequency components which is a unique characteristic for this swirl ratio 𝑆 =

0.96 and is not observed for smaller swirl ratios (𝑆 = 0.22 and 0.57). 

• Spectral analysis shows that modes having the same circumferential shape tend to have 

similar spectral distribution. This identity, for instance, between dipole POD modes was 

observable. The coherence function between those modes is very high, while the coherence 

function between other pairs are smaller. Moreover, the phase angle between them is 

almost -π/2, suggesting that those modes are rotating around each other. This rotation is 

also observable in the animated movie of D-ICA of dipole modes.  

Major findings from analytical modeling in Chapter 4 are: 

• The mean radial and the mean vertical velocity components can be described by impinging 

jet flow. The mean tangential velocity component can be obtained based on a Burgers-Rott 

model.  

• The nature of turbulence characteristics is modeled for the first time. Based on the results 

of modal analysis from Chapter 2, it was assumed that large scale fluctuating flow field 

can be attributed to two phenomena: (i) random displacement of the vortex (wandering 

motion), and (ii) sub-vortex dynamics (coherent structures). 

• The wandering motion of the vortex is modeled by a convolution integral approach. The 

sub-vortex dynamics is modeled by solving the first order partial differential equation of 

the fluctuating velocity derived from the vorticity field of experimentally resolved coherent 

structures. 
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5.3  Recommendation and future work 
 

Despite the past and current progress on the topics related to this thesis, there are still areas for 

further development and improvement on the current body of knowledge. In this regard, the 

following recommendations for future work are suggested: 

 

• The underlying mechanism of wandering motion in tornado-like vortices is not discussed 

yet, and it’s not clear if the main source of wandering is attributed to simulators boundary 

conditions or they relate to vortex instability [9].  

• Identification of coherent structures out of full-scale data is of most interest. Comparing 

coherent structures from full-scale data with laboratory observations might help us to 

achieve a new fluctuating flow field similarity for tornado vortices. 

• Here, the analytical model has been defined for the case of stationary tornado vortices. It 

is of interest to investigate the effects of translation and roughness on the coherent 

structures and the modelling of tornado-like vortices. 

• To capture a large field of view, PIV has been done with low sampling frequency which 

prevented us to measure the flow in longitudinal plane. PIV with high sampling frequency 

using high speed camera and laser in vertical plane could provide detailed information on 

the vertical velocity component and three-dimensional structure of vortex. 
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Appendix A 

  Xu and Hangan [1] presented a vortex model by combining a jet model with the modified Rankine 

vortex. A weighted combination of the following equations has been used for comparison: 

𝑈𝑟 = (
1

𝑧
+

2𝑟

𝑧2) 𝑒−(
𝑟

𝑧
)2 −

1

𝑟
                                                                                                                              (A.1) 

𝑈𝑧 =
2

𝑧
𝑒−(

𝑟

𝑧
)2

                                                                                                                               (A.2)   

𝑈𝜃 = 2 𝑆 (𝑟𝑐
2 + 1)

𝑟

𝑟𝑐2+𝑟2                                                                                                                             (A.3) 

  Recently, Baker and Sterling [2] proposed the following model: 

𝑈𝑟 = −
4𝑟𝑧

(1+𝑟2)(1+𝑧2)
                              (A.4) 

𝑈𝑧 = 
4 (

𝑧𝑚
𝑟𝑚

) ln (1+𝑧2)

(1+𝑟2)2
                                                                                                                   (A.5) 

𝑈𝜃 =
𝐾𝑟𝛾−1[ln (1+𝑧2)]𝛾/2

(1+𝑟2)𝛾/2             (A.6) 

The velocity components are normalized by maximum radial velocity 𝑈𝑟,𝑚𝑎𝑥. 𝑟 and 𝑧 are 

normalized 𝑟𝑚 and 𝑧𝑚 as the radius and height for which maximum radial velocity occurs. 𝐾 and 

𝛾 are empirical constants. Here, it is assumed 𝛾 = 2 and 𝐾 = 2 𝑆/ln (2), and 𝑧𝑚 𝑟𝑚⁄ = 1. 

  Vatistas [3] proposed an empirical model for tangential velocity assuming that tangential velocity 

is only function of radius and vortex has solid-body rotation at the core:  

𝑈𝜃 =
𝑈𝜃,𝑚𝑎𝑥 𝑟 

(1+𝑟2𝛽)1/𝛽                                                                                                                             (A.7)         

𝑈𝑟 = −2(𝛽 + 1)(
𝜈𝑒

𝑟𝑐
)

𝑟2𝛽−1

1+𝑟2𝛽                                                (A.8) 

𝑈𝑧 = 4𝛽 (𝛽 + 1) (
𝜈𝑒

𝑟𝑐
) (𝑧)

𝑟2(𝛽−1)

(1+𝑟2𝛽)2
                                            (A.9) 

where 𝑈𝜃,𝑚𝑎𝑥 = Г 2𝜋𝑟𝑐⁄  and 𝛽 is a power-law index and assumed to be 𝛽 = 2. 𝜈𝑒 is eddy viscosity 

(m2/s). The radius (𝑟) and height (𝑧) are normalized by core radius (𝑟𝑐).  
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  Wood and White [4] modified the Vatistas model and proposed the following equation for 

tangential velocity: 

𝑈𝜃 = 𝜂𝜆 𝑈𝜃,𝑚𝑎𝑥
𝑟𝑐

(𝜂−𝑘+𝑘𝑟
𝜂
𝜆)𝜆

                                                                   (A.10) 

where 𝜆, η and 𝑘 are empirical constants (1 ≤ 𝑘 < 𝜂, 𝜆 > 0) to control the tangential velocity 

profile. Here, it is assumed 𝜆 = 1, 𝜂 = 2, and 𝑘 = 1.5. 
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