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Abstract 

Radiation therapy is a main component of treatment for many lung cancer patients. However, 

the respiratory motion can cause inaccuracies in radiation delivery that can lead to treatment 

complications. In addition, the radiation-induced damage to healthy tissue limits the 

effectiveness of radiation treatment. Motion management methods have been developed to 

increase the accuracy of radiation delivery, and functional avoidance treatment planning has 

emerged to help reduce the chances of radiation-induced toxicity. In this work, we have 

developed biomechanical model-based techniques for tumor motion estimation, as well as 

lung functional imaging. The proposed biomechanical model accurately estimates lung and 

tumor motion/deformation by mimicking the physiology of respiration, while accounting for 

heterogeneous changes in the lung mechanics caused by COPD, a common lung cancer 

comorbidity. A biomechanics-based image registration algorithm is developed and is 

combined with an air segmentation algorithm to develop a 4DCT-based ventilation imaging 

technique, with potential applications in functional avoidance therapies.  
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Summary for Lay Audience 

Lung cancer is the leading cause of cancer-related death in Canada. Radiation therapy is a 

main component of treatment for many lung cancer patients, in which high-energy beams are 

planned to target the tumor cells and destroy them.  

Both the lung and the tumor can move and deform during the radiation therapy as the patient 

breathes. If not accounted for, the motion of the tumor can considerably reduce the 

effectiveness of treatment. An ideal solution is to develop a system that can track the tumor 

in real-time and guide the radiation delivery accordingly. This tracking system requires 

accurate estimation of the tumor’s location and shape. Currently, four-dimensional computed 

tomography (4DCT) scans of the patients are used to plan the radiation delivery. We have 

developed a technique for estimating tumor motion/deformation by modeling the breathing 

mechanics using 4DCT scans. Our biomechanical model mimics lung physiology and is 

driven by the pressure and diaphragm motion present during a breathing cycle. Chronic 

obstructive pulmonary disease (COPD), is a progressive lung disease that commonly coexists 

with lung cancer and affects the lung mechanics in a heterogeneous manner. By 

incorporating these heterogeneous changes in the lung mechanics into our model, we 

achieved high accuracies for tumor motion/deformation estimation.  

Radiation treatment planning aims at maximizing the tumor dose while minimizing the 

healthy lung tissue exposure to radiation. Considering the heterogeneity in the lung function 

present in cancer patients (due to COPD and/or smoking), the outcome of radiation therapy 

can be improved by planning the radiation beam to deliberately avoid the well-functioning 

regions in the lung and instead pass through the already poorly-functioning regions. This 

method of planning is called functional avoidance and requires regional information on lung 

function that is usually obtained using magnetic resonance (MR) or nuclear medicine 

imaging. We have developed a 4DCT-based technique for imaging the regional ventilation, 

as a surrogate for lung function. 4DCT is a cost effective and accessible alternative to the 

current modalities. Our ventilation imaging method utilizes our accurate lung biomechanical 

model to find the regional change in the air volume, i.e. ventilation. Results show good 

agreement with MR-based functional images. 
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Chapter 1  

1 « Introduction» 

Lung cancer remains the leading cause of cancer-related deaths among men and women 

in Canada (1). Effectiveness of radiation therapy, as a main component of lung cancer 

treatment in many patients, may be reduced by uncertainties caused by respiratory motion 

and damage to healthy tissues. Respiratory motion compensation methods have emerged 

as potential solution for the former (2,3), and functional avoidance techniques have been 

developed to alleviate the latter (4,5). In this thesis, we describe biomechanical model-

based techniques for motion estimation and functional imaging to help improving the 

effectiveness of radiation therapy.  

1.1 « Lung Cancer » 

1.1.1 Statistics 

Cancer is the leading cause of death in Canada, with approximately 1 in 2 men and 1 in 

2.2 women expected to develop cancer in their lifetime (1). Lung and bronchus (referred 

to as lung for brevity), colorectal, breast, and prostate cancers are the most commonly 

diagnosed cancer types in Canada. They are responsible for about 50% of all cancer 

deaths in 2017 (Figure 1-1) (6). As shown in Figure 1-1, with incidence rates higher than 

all other cancer types, lung cancer kills more people than colorectal, breast, and prostate 

cancers combined (1). The World Health Organization estimates that lung cancer is the 

cause of 1.59 million deaths globally per year, with 71% of them caused by smoking (7). 

The 5-year survival rate of lung cancer is only 19% (Figure 1-1).  
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This rate is dependent on the type of the lung cancer (small cell lung cancer (SCLC) or 

non-small cell lung cancer (NSCLC)) and the stage at which it is detected (1).  For 

example, estimates of five-year survival rates range from 1% to 10% across the substages 

of stage IV, and from 68% to 92% for the substages of stage I. Five-year survival 

estimates are lower for SCLC: 2% for stage IV and 31% for stage I (1). NSCLC accounts 

for more than 80% of lung cancer cases and has three major histologic subtypes that are 

categorized by the cell type from which the disease originates (8). 1) Adenocarcinoma 

starts in glandular cells, is usually located along the outer edges of the lung and is more 

common among women and non-smokers. 2) Squamous cell (or epidermoid) carcinoma 

starts from squamous cells, usually occurs in one of the main airways or in the central 

part of the lung and is strongly associated with smoking. 3) Large cell lung cancer is 

distinguished from SCLC by the large cancer cells size, and is often found in the 

periphery, and are more commonly diagnosed in men (8). Figure 1-2 shows the incidence 

of different lung cancer types (8,9). 

Figure 1-1. Lung cancer annual incidence, annual deaths, and 5-yeas survival rate 

statistics (1). 
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Figure 1-2. Relative incidence of different lung cancer types (9). 

1.1.2 Comorbidities: Chronic Obstructive Pulmonary Disease  

Chronic obstructive pulmonary disease (COPD), is a progressive lung disease that fatally 

deteriorates the lung function over time. COPD is the 4th most common cause of 

hospitalization among men and the 6th most common cause of hospitalization among 

women in Canada. COPD is the only chronic disease with increasing mortality and is 

estimated that it will be the 3rd leading cause of death worldwide by 2020 (10,11).  

The damage to the lungs in COPD is caused by exogeneous (caused by smoking) or 

endogenous oxidative stress, protease activity, autoantibody expression, and 

inflammatory cytokine release. These will cause several pulmonary manifestations, 

including alveoli wall damage (emphysema) and small airways disease (SAD), which 

will in turn cause air trapping and lung hyperinflation (12).  

Emphysema is pathologically described as permanent destruction of the alveoli walls, 

resulting in abnormal permanent enlargement of the air spaces distal to the terminal 

bronchioles (Figure 1-3). The destruction of the alveoli walls results in a decrease in the 

surface area available for exchange of O2 and CO2 to and from the capillaries (Figure 

1-3) (12). As shown in Figure 1-3 emphysema can be detected on computed tomography 

(CT) scans taken at full inspiration. The extent of emphysema can also be quantified 

using information derived from CT scan (13). 



4 

 

 

The patterns of emphysema observed in COPD are classified to centrilobular (airways 

destruction observed around the terminal bronchioles) and panlobular or panacinar 

(homogeneous airways destruction) (12,14). 

The airways with internal diameter smaller than 2 mm that extend from the 8th generation 

airways to the alveoli are classified as “small airways” (Figure 1-4). The cross-sectional 

surface area of the small airways is far greater than that of the large airways; however, 

they are responsible for only about 10% of the total airways’ resistance. Therefore, 

conventional pulmonary function tests may fail to detect abnormalities even when 

extensive disease is present in the small airways. In COPD, SAD mostly involves 

remodeling of the small airways, along with an increase in airways smooth muscle, 

destruction of alveolar attachments, and airway wall fibrosis (12,15). Assessment of SAD 

is challenging. A number of invasive and non-invasive methods have been reported for 

diagnosis and assessment of SAD. The invasive methods are based on histological 

analysis on transbronchial biopsy samples or surgically resected specimens(16).  

Figure 1-3. Emphysema. (a) Schematic comparing the alveoli structure in healthy and 

emphysematous tissues. The breakdown of the airway walls enlarges the alveoli and 

decreases the effective surface area for O2 and CO2 exchange. Reproduced with 

permission. Copyright 2019, Mayo Foundation for Medical Education and Research. (b) 

Regions affected by emphysema can be detected on CT scans as low attenuation areas 

(sample regions enclosed in red ellipses).  

(a) (b) 
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The non-invasive methods are based on imaging or physiological assessments (15). 

Imaging is an attractive option for assessment of SAD, and COPD in general, especially 

in the case of lung cancer patients where imaging of the lungs is part of the routine care 

in most centers. Standard CT, high resolution CT, and hyperpolarized gas magnetic 

resonance imaging (MRI) are widely used for diagnosis, and assessment of disease 

progression and treatment response (16). Single-proton emission computed tomography 

(SPECT) and proton emission tomography (PET) can also be used for characterization of 

COPD, as they provide more insight into ventilation-perfusion relationships in the 

peripheral lung regions (17,18).  

1.1.3 Lung Cancer and COPD 

More than 65% of lung cancer patients also suffer from COPD (11,19). Beside the fact 

that smoking has proven to be a cause for both COPD and lung cancer, there is increasing 

evidence that links these two diseases beyond the one common etiology. Lung cancer is 

Figure 1-4. The classification of airways to large and small airways based on branching 

and diameter. The acinar zone is where the gas exchange happens, and it starts from 

terminal bronchioles. Reproduced with permission (15). Copyright 2012, Taylor & 

Francis.   
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up to 5 times more likely to affect smokers with COPD than smokers with normal lung 

function (20). A 2- to 6-fold higher risk of lung cancer in COPD patients have been 

reported to be regardless of smoking habits (21,22). Common mechanisms in COPD and 

lung cancer, such as premature aging in the lungs, common pathogenic factors, or genetic 

predispositions to either disease was explored as possible explanations for the high 

coexistence of lung cancer and COPD (21). COPD is known as an independent risk factor 

for lung cancer, respiratory-related complications, and postoperative recurrence of 

NSCLC (19). A number of previous studies have reported that coexisting COPD leads to 

poor prognosis for lung cancer (11,19).  

1.2 « Lung Cancer Treatment » 

The treatment strategy for lung cancer depends on factors such as the subtype and stage 

of the malignancy, histology, patient’s age, comorbidities, and patient’s preference. 

Comprehensive guidelines for diagnosis, staging, risk assessment, and treatment have 

been developed and are used in clinical practice for optimal outcome (23,24). Stage 

grouping of the malignant tumors according to the TNM guide is based on the extent of 

the primary tumor (denoted by T), regional lymph node metastasis (N), and distant 

metastasis (M) (Table 1-1). Treatment can be either or a combination of surgery, 

immunotherapy, chemotherapy, targeted therapy, and radiation therapy. Some treatment 

strategies are preferred over the others for different stages. A summary of recommended 

treatment strategies based on stage grouping and guidelines for diagnosis and pathology 

can be found in (23,24). 

1.2.1 External Beam Radiation Therapy 

External beam radiation therapy (EBRT) with curative intent is a main component in the 

current standard of care as primary or adjuvant treatment for early stage NSCLC and 

unresectable locally advanced NSCLC (23,25).  In addition, radiation therapy is used for 

palliative purposes for alleviating bronchial obstruction or to relieve symptoms such as 

pain, cough, or bleeding (8,23,26). 
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In EBRT, high-energy particles or waves such as x-rays, protons, gamma rays, or 

electron beams are planned to target the tumor cells and damage their DNA. Radiation-

induced damage to the DNA kills malignant cells or impairs their proliferation (8). 

Table 1-1 Summary of lung cancer staging guideline. Adapted from (99). 
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The amount of energy per unit mass that is deposited (or planned to be delivered) is 

measured as “dose” of radiation in Gray (Gy) (27). Radiation therapy generally ranges 

from static beams to multiple rotating beams all exploiting the concept of superposition 

to deposit the prescribed doses in the tumor volume while sparing surrounding normal 

tissue within the human body. The primary goal of radiotherapy is to maximize tumor 

control probability (TCP) while minimizing normal tissue complication probability 

(NTCP) (28). Therefore, the mitigation of high dose to organs at risk (OARs) and healthy 

tissue is crucial to the success of radiotherapy and avoiding negative radiation-related 

side effects. A treatment planning system is used for radiotherapy treatment planning, 

optimization and 3-dimensional dose calculation (29). For radiotherapy planning, a total 

prescribed dose is typically broken down into multiple treatment sessions or treatment 

fractions. Modern radiotherapy employs the use of 4-dimensional computed tomography 

(4DCT) imaging of the patient's body to target the tumor volume and guide the high-

energy radiation beams (29). Within the CT dataset, a physician segments the gross 

tumor volume (GTV), based on his or her own clinical experiences, as well as clinical 

guidelines on disease specific characteristics such as pattern specific progression and 

staging. Two additional margins are added on top of the GTV to account for different 

types of uncertainty in radiation delivery. The first supplementary margin is added to 

create the clinical target volume (CTV), which accounts for uncertainty related to 

microscopic spread of disease that is not visible to the physician in the CT dataset. A 

second margin is subsequently added on top of the CTV to account for uncertainties that 

arise from both inter- and intra-fractional motion, resulting in the internal target volume 

(ITV). The planning target volume (PTV) encompasses the ITV and is larger by margins 

to account for set-up variations, geometric uncertainties, and machine tolerances (29, 33). 

Subsequently, OARs and critical structures are also segmented. OAR segmentations are 

necessary, as they serve as dose limiting structures during treatment plan optimization. 

They need to be spared for successful treatment with minimal toxicities to ensure suitable 

long-term quality of life for patients.  

The radiation dose distribution and hence TCP and NTCP depend on the radiation 

therapy technology used. Modern radiation therapy techniques such as stereotactic body 

radiation therapy (SBRT) have been developed to provide better control over dose 
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distribution, compared to conventional techniques such as three-dimensional conformal 

radiation therapy (3D-CRT) (30). 3D-CRT uses multiple co-planar fields to maximize 

tumor dose coverage and minimize normal tissue exposure. In 3D-CRT, the prescribed 

dose is usually delivered over the course of four to eight weeks, in 20 to 40 daily 

fractions. The basic idea of CRT is based on tailoring the apertures of the beam to the 

shape of the PTV in 3D, while masking nearby OARs (Error! Reference source not 

found.) (31). A more complex beam configuration might be required when the PTV is 

close to an OAR, and to achieve an acceptable dose distribution a higher number of 

beams are often used. However, conventional 3D-CRT may fail in cases of concave-

shaped target volumes and moving targets. In addition, in 3D-CRT, beam margins by 

which the tumor is expanded to account for tumor and organ motion, and the planning 

and setup inaccuracies are large (on the order of centimeters) (31).  

SBRT refers to an emerging radiotherapy procedure that has been reported to be highly 

effective in controlling early stage primary and oligometastatic cancers at locations 

throughout the abdominopelvic and thoracic cavities, and at spinal and paraspinal sites. In 

SBRT, the PTV contains a much smaller margin together with the target tumor, 

compared to when 3D-CRT is used. The major feature that separates SBRT from 

conventional radiation treatment is the possibility of delivering large doses in a few 

Figure 1-5. Schematic of the 3D conformal radiation therapy. 

Reproduced with permission (31). Copyright 2008, SNMMI.  
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fractions, which results in a high biologically effective dose (32,33). Conformation of the 

ablative dose to the target shape and rapid decrease in the dose outside the target is 

critical for minimizing the normal tissue toxicity and hence the safe delivery of the high 

dose. Therefore, effective use of SBRT requires a high level of confidence in the 

accuracy of the radiation delivery process. To achieve this accuracy, SBRT is 

characterized by target localization using imaging (e.g. 4DCT, MR), patient 

immobilization, sophisticated planning software, accurate treatment delivery 

technologies, and the ability to produce a steep dose gradient outside the target volume 

(33). In addition to these major features, there are other characteristics that distinguish 

SBRT from conventional radiation therapy (30) (Table 1-2). These include a general 

increase in the number of beams used for treatment, the frequent use of noncoplanar 

beam arrangements, and the use of inhomogeneous dose distributions techniques such as 

Table 1-2 Comparison of some characteristics of 3D-CRT and SBRT. Reproduced with 

permission (30). Copyright 2010, John Wiley and Sons. 
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intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy 

(VMAT) (30). IMRT utilizes forward or inverse radiation treatment planning to 

determine and deliver the necessary dose distribution through the use of multileaf 

collimators (Figure 1-6) (34). VMAT is a more advanced type of IMRT that decreases 

the delivery time by applying the dose in a single gantry arc and improves the dose 

conformality by using the full 360° range of gantry rotation (35).  

Accurate delivery of ablative radiation is challenging for extracranial lesions due to inter- 

and intra-fraction tumor and organs motion. Respiration-induced motions of the target 

and OAR renders the treatment delivery even more challenging for lung tumors (33). 

This motion can cause inaccuracies and uncertainties in radiation therapy, and artifacts in 

imaging of the thoracic tumors resulting in higher probabilities of treatment 

complications such as irradiating normal tissue (increase in NTCP) and undesirable dose 

distribution in target tumor (decline in TCP) (36,37). Therefore, motion compensation 

methods are highly essential for safe delivery of large fractions of radiation therapy. 

Section 1.3 describes current motion management methods as well as an overview of the 

real-time tumor tracking workflow previously proposed by our group.  

Current methods of radiation therapy treatment planning assume a homogeneous 

Figure 1-6. 3D CRT vs. IMRT. (a) in 3D CRT, dose conformality is limited to the 

open/close aperture configuration, while (b) IMRT, offers higher dose conformality 

resulting in smaller margins and higher potential for less toxicity to OAR. Reproduced 

with permission (100). Copyright 2006, Springer-Verlag Berlin Heidelberg.  
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distribution of lung function (38). However, as mentioned in section 1.1.2, pulmonary 

abnormalities such as COPD and asthma commonly coexist with lung cancer, leading to 

pulmonary function heterogeneity. To limit high radiation dose delivery to healthy tissue, 

functional avoidance treatment planning has been proposed (5,38,39). This method 

preferentially spares the functional lung tissue from radiation dose during treatment 

planning. Section 1.4 provides more information on functional avoidance planning, the 

current functional imaging methods and an overview of our proposed ventilation imaging 

technique that can be used for functional avoidance planning.   

1.3 «Motion Management Methods» 

Accounting for inter- and intra-fraction motions of the target and OAR are critical for the 

safe delivery of radiation dose. The location of the target and OAR may be different from 

their location at the radiation treatment planning and simulation. Accurate positioning of 

the target lesion in the isocenter of the radiation therapy machine requires that the body 

geometry during the treatment session is almost identical to the body geometry during 

treatment planning simulation. In addition, it is required to suppress or, if possible, 

eliminate the voluntary motion of the body during treatment (33). Henrik Blomgren and 

Ingmar Lax designed a body frame to minimize the inter-fraction motion. This body 

frame allows comfortable repositioning of the patient’s body relative to the frame. The 

frame is equipped with fiducial markers that determine the coordinates system relative to 

the frame geometry, and hence enable an accurate localization of the body relative to the 

simulator and the treatment accelerator (40). Vacuum systems have also been developed 

for enforcing patient immobilization and are used in some centers (33). Although the 

body frames or the vacuum systems largely resolves the inter-fraction motion issues, the 

intra-fraction motion and deformation of the lungs and the tumor caused by respiration 

can significantly increase the uncertainties in radiation treatment and compromise its 

accuracy and effectiveness. To account for respiratory motion, several motion 

compensation methods have been proposed.  
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1.3.1 Motion Encompassing 

In motion encompassing treatment planning, the PTV includes the target volume at end-

exhalation phase, or GTV (obtained from treatment planning 4DCT), along with a large 

margin that encompasses the entire path of the tumor motion/deformation (Figure 1-7) 

(41). In this method, the PTV which is irradiated with high dose radiation is larger than 

the GTV and may include a significant volume of the healthy lung tissue (42). This may 

lead to higher chances of radiation-induced toxicities and higher NTCP. The motion 

encompassing method can only be used when the amplitude of the target motion is less 

than 5mm, because otherwise the potential damage extent to the healthy tissue is deemed 

unacceptable (3). Several studies have investigated the amplitude of the motion of the 

tumor in different directions (43–46), and a few others studied the range of motion during 

diaphragm contraction (47,48). According to Table 1-3, on average the range of lung 

tumor motion/deformation is larger than 5 mm (3). Therefore, other motion compensation 

methods with better accuracy for sparing of normal tissue are required.  

1.3.2 Gated Methods 

Gated radiation therapy methods for lung cancer are developed based on the assumption 

that during the respiratory cycle there is a particular span of time where the amplitude of 

the respiratory motion is small (Figure 1-8). To decrease the treatment field margins (for 

PTV), in gated procedures, the radiation beam is only applied during the portion of the 

Figure 1-7. Motion encompassing. PTV includes the entire path of tumor’s motion from 

expiration to inspiration, along with extra safety margins. 
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breathing cycle with the smallest target motion (the gating phase). The gating phase of 

the breathing cycle has to be identified and verified positionally for each patient and the 

beam has to be switched on and off accordingly during the treatment session (49). Real-

time information on the breathing cycle is required for this method to enable 

synchronizing the on and off turning of the beam. Breathing monitoring devices for 

respiratory gating most often rely on surrogates for the actual motion of the target, such 

as an external optical skin marker or a pressure sensor. 

The variability and irregularity of breathing patterns results in a lack of predictability of 

breathing motion. Therefore, as shown by Korreman et al. (50), image guidance is of 

utmost importance for respiratory gated treatments. The correspondence between the 

breathing motion recorded from the external surrogate and the breathing motion of the 

target can change, not only from fraction to fraction but also within each treatment 

fraction. Therefore, when external surrogates are used for motion monitoring, the 

correspondence between the motion of the surrogate and target motion needs to be 

Table 1-3 Respiratory-induced motion of the lung tumor and diaphragm in different 

directions. Reproduced with permission (3). Copyright 2006, John Wiley and Sons.  
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updated and verified regularly. Otherwise, the target may not receive the effective dose 

while the normal tissue receives toxic radiation (49).  

Several imaging techniques can be used during radiation therapy and for treatment 

planning of gated procedures. During treatment, radiographic and fluoroscopic kV 

imaging are now standard for new machines. Imaging equipment can either be mounted 

on the linear accelerator gantry, which is mostly orthogonal to the treatment beam, or can 

be independently mounted on the ceiling or floor of the treatment room, orthogonally. 

Two orthogonal imaging setups can be combined to provide semi-3D information. 

Imaging units mounted on the gantry can also be used for cone-beam CT imaging. 

Because the acquisition time of cone-beam CT (CBCT) is long compared to the breathing 

cycle, the target position image may appear blurred in the image. 4D CBCT has also been 

developed that acquires phase-resolved CBCT(49,51). 

Respiratory gated methods do not completely abolish the need for margins when 

assigning the PTV. Breathing motion patterns are not stable (especially among lung 

Figure 1-8. Gated Radiation therapy. The motion of the tumor is smallest at certain 

windows of time (gates) during respiration. The radiation is applied only during these 

gates. Reproduced with permission (49). Copyright 2015, British Journal of Radiology. 
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cancer patients), and hence not completely reproducible in the spatial domain. If not 

accounted for, irregularities in the breathing cycle can render the gated procedures 

unreliable. Therefore, treatment margins are required to account for the uncertainties 

caused by the residual motion. The uncertainties (and hence the margins) can be reduced 

by combining the gated procedures with motion limiting methods. This increases the 

chance of delivering the dose to the target as prescribed by the treatment plan (33,52). 

Although the modern gated methods can improve the confidence in the accuracy required 

for an effective SBRT, they come with shortcomings. The gated sessions inevitably take 

longer and this increase in the treatment time can cause inconvenience for the patient that 

can lead to body dislocation relative to the treatment frame, and hence a decrease in the 

accuracy of treatment delivery. In addition, longer treatment times can have potential 

radiobiological consequences caused by the decreased average dose ratio during 

treatment (33).  

1.3.3 Motion Limiting Methods 

Motion limiting methods aim at controlling the respiratory motion amplitude by limiting 

the breathing volume. Abdominal compression devices can be used along with the body 

frames during SBRT to decrease the respiration-induced tumor motion and hence the 

treatment margins. These devices, however, can cause discomfort or even anxiety for 

some patients, that may lead to an increased variability in tumor motion. In addition, the 

abdominal compression does not eliminate the tumor motion, and this method is not 

practical for obese patients (53).  

Breath-hold techniques attempt to eliminate respiratory motion either voluntarily or by 

using occlusion valves. The holding of the breath allows for a temporary immobilization 

of the target tumor when the radiation is planned to be applied. Figure 1-9 illustrates 

typical respiratory motion amplitude variation as a function of time where this motion 

limiting method is utilized. Patients must be trained on the required breathing maneuver 

for both treatment planning CT and radiation therapy session. The patients are required to 

hold their breath for 10-20 seconds in each iteration. While relatively effective for target 

immobilization, breath-hold techniques are not very commonly used because most lung 
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cancer patients have poor pulmonary function and cannot undergo breath-hold procedures 

(54).  

 

1.3.4 Real-time Tracking Methods 

Real-time tumor tracking has been proposed as an alternative motion management 

technique in which the radiation beam dynamically follows the target throughout the 

treatment. A real-time tumor tracking system ideally follows the motion and deformation 

of the tumor during the entire respiratory cycle, allowing a continuous radiation 

treatment. There are certain requirements that need to be met for achieving a radiation 

therapy system with real-time tracking as the motion management technique, including 

(but not limited to): 1) an accurate estimation of the tumor location and geometry in real-

time, 2) in advance prediction of the tumor motion/deformation to account for the delays, 

3) an adaptive radiation dose planning system, and 4) a beam alignment system (55,56).  

Figure 1-9. Breath-hold methods. The respiratory motion amplitude decreases during the 

breath-hold span. The radiation is applied during this span to reduce uncertainties caused 

by tumor motion. Reproduced with permission (49). Copyright 2015, British Journal of 

Radiology. 
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Although imaging techniques are available for use during treatment, for high precision 

tumor tracking purposes in real-time, markers implanted in the tumor have been proposed 

to increase visibility. This technique has been developed by SynchronyTM Respiratory 

Tracking system (Accuray, Sunnyvale, CA). In this system, gold fiducials are implanted 

inside the tumor and their motion is monitored by a pair of orthogonal X-ray images. In 

addition to the image data, a correlation model used as a location predictor is developed 

with an optical monitoring system tracking light emitting markers placed on a vest worn 

by the patient. The correlation model compensates for the time delay between data 

acquisition and the repositioning of the accelerator. The accelerator is robotically 

controlled and allows for non-isocentric beam delivery within a solid angle of over 2π. 

The position of the external markers is continuously monitored while the X-ray imaging 

of the internal fiducials is performed every 3–5 beams (a flexible parameter). Apart from 

accuracy, another major advantage of this method is that the patient breathes freely 

during the treatment (57). Tracking the tumor without the need for simultaneous imaging 

by implantation of radiofrequency beacons has also been reported, e.g. using the Calypso 

system (58). Similar to other tracking systems that are based on implanted fiducials, with 

these tracking systems, the translational movement of the tumor can be captured and 

compensated for, while the rotation and deformation is not accounted for. As a result, 

treatment margins of up to 5 mm may be required depending on the case (33,59). Recent 

studies indicate that, during respiration, the size of the target tumor can vary by up to 62% 

(60). As such, an effective tumor tracking method should be able to estimate the tumor 

deformations as well as translation and deformation. In addition, marker implantation is an 

invasive procedure and can be associated with side effects. Risks of pneumothorax for 

percutaneous implantation is reported to be as high as 30%, with 10% of the cases 

requiring intervention (61,62). To avoid marker implantation, an improved tracking 

method, X-sight Lung (Accuracy, Sunnyvale, CA) has been developed that can 

dynamically track tumor motion based on the radiograph images for certain lung cases (in 

some centers, about 30% of patients). Concurrent X-ray imaging and radiation therapy, 

however, has raised some concerns about the additional imaging dose (33).  
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1.3.5 Tumor Tracking Workflow  

A real-time tumor tracking workflow has been previously proposed by our group (63). 

This tumor tracking scheme will not require simultaneous imaging during the treatment, 

can also estimate motion and deformation of the tumor, and will only use external 

markers. In addition, this method is potentially less sensitive to irregularities in the 

breathing pattern. An overview of this method is shown in Figure 1-10.  During the pre-

treatment step, an optical tracking system is incorporated into the treatment planning 

4DCT acquisition. A tumor motion and deformation estimation algorithm based on an 

accurate patient-specific biomechanical model of the lung is developed using the 

treatment planning 4DCT data. The chest surface motion data is acquired simultaneously 

with the treatment planning 4DCT using optical tracking of the external markers. The 

chest surface motion data can be correlated to the tumor motion/deformation obtained 

from the finite element (FE) model.  

The information from chest motion data is considered as input parameters while the 

parameters of the biomechanical model (in a compact form) will be used as the output for 

training a predictive model (e.g. an artificial neural network). After training the predictive 

model, a relationship is established between the chest surface motion data and the 

parameters of the FE model that directly provides the tumor motion/deformation. For 

more detailed information on the proposed real-time tracking workflow, see (63).  

The accuracy of the biomechanical model used in this method is critical to the successful 

development of the real-time tracking. The second chapter of this thesis explains 

development of an accurate biomechanical model for tumor motion and deformation 

estimation.  
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1.3.6 Biomechanical model-based tumor motion/deformation 
estimation 

Lung motion/deformation estimation using information from 4DCT scans has been 

widely studied for different applications including tumor motion tracking. Although 

intensity-based deformable image registration (DIR) methods have been employed to find 

the motion/deformation fields of the lungs and the tumor for dose calculation and 

treatment planning purposes, their application in real-time tumor tracking is limited to a 

few studies (56,64–66). In addition, intensity-based DIR methods are solely based on 

Figure 1-10. The biomechanics-based real-time tumor tracking workflow.  
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4DCT image data, and they do not take into account the physical properties or 

physiological mechanisms involved in breathing. Therefore, they are prone to errors 

associated with non-uniqueness of the resulting displacement field, and registration errors 

in areas with low image contrast. Handling the sliding motion of the lungs can also be 

challenging for motion estimation using intensity-based DIR methods. Biomechanical 

models can be adapted to address these limitations; they are widely used alone or in 

combination with intensity-based methods. In contrast to intensity-based DIR, 

biomechanics-based computational models encompass certain aspects of breathing 

dynamics rendering this approach more robust and realistic. Patient-specific lung 

biomechanical models that use the thoracic image data to extract the lung’s geometry and 

boundary conditions have previously been proposed. Several studies investigated the 

effects of model parameters, including tissue mechanical properties (67–69), and 

boundary conditions (70) on modeling accuracy. Recently, hybrid hierarchical 

approaches have been proposed, in which finite element (FE)-based models are used in 

conjunction with intensity-based DIR methods to predict deformation field of the lung in 

a respiratory cycle, and to register lung CT image pairs. For example, Han L. et al., 

proposed a hybrid biomechanical model-based DIR for lung peak CT pairs, and showed 

that the resulting deformation field can more realistically describe the underlying 

physiology to improve the registration accuracy compared to the intensity-based DIR 

algorithm (71). 

In chapter 2, we describe a heterogeneous biomechanical model of the lung for accurate 

estimation of the tumor motion and deformation. This biomechanical model takes into 

account the heterogeneity in the mechanical behavior of the lung tissue that is caused by 

co-existing COPD phenotypes. 

1.4 «Functional Avoidance Treatment Planning» 

As mentioned in section 1.2.1, EBRT is the main method of treatment for many lung 

cancer patients. However, EBRT is associated with increased risk of radiation-induced 

toxicities such as radiation pneumonitis or radiation fibrosis. Radiation pneumonitis with 

clinical symptoms occurs in 30-40% of lung cancer patients after receiving concurrent 
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chemoradiotherapy and can have an adverse impact on their quality of life. This adverse 

effect sometimes results in oxygen dependence and is fatal in severe cases (25).  

Current radiation therapy treatment planning methods used in many centers assume that 

the lung function is homogeneous, and do not take into account regional differences in 

pulmonary function. Therefore, the goal in treatment planning is to minimize the 

radiation dose to the total lung volume. However, as mentioned in section 1.1.3, many 

lung cancer patients suffer from comorbidities such as COPD, which affect the regional 

distribution of lung function. Functional avoidance-based treatment planning has 

emerged as a new treatment planning approach, aiming to overcome the limitations 

caused by the assumption of homogeneous function (25). Ideally, the radiation therapy 

dose should be planned based on minimizing the radiation dose to the well-functioning 

volumes of the lung while favoring radiation deposition in the lower functioning 

volumes.  

Regional information on lung function is a requirement for functional avoidance 

planning. Over the last decade, functional imaging maps have been investigated for lung 

cancer treatment planning. Positron emission tomography (PET) and single-photon 

emission computed tomography (SPECT) scans can be used to obtain functional 

information in terms of ventilation and perfusion (72,73). Some researchers have used 

PET or SPECT for functional avoidance planning and assessment of the radiation 

treatment response (39,74). Nuclear medicine imaging approaches have a relatively low 

resolution compared to other imaging modalities. Hyperpolarized 3He MR imaging can 

provide information on regional ventilation, and hyperpolarized 129Xe MRI can be used 

to obtain information on ventilation, perfusion, or gas exchange (75–77). Although 

hyperpolarized gas MRI has enough temporal resolution for ventilation imaging, it is 

relatively costly and require tracer gases and additional equipment. Xe-enhanced CT can 

be used to provide direct assessment of ventilation distribution (78). Xe (Xenon) gas is 

also relatively costly and requires associated hardware to control the delivery. In addition, 

this method is limited to axial coverage of about 12-15cm, which may not be sufficient 

for thoracic imaging. Using any of the abovementioned modalities for a functional 

imaging would also require an extra step of multi-modal image registration with the 
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radiation therapy treatment planning CT scans that may introduce errors in lung function 

mapping. 

4DCT-based ventilation imaging (CTVI) has recently emerged as a cost-effective and 

accessible alternative for functional avoidance planning. The CTVI can be considered as 

“free information” for functional avoidance planning because 4DCT scans are part of the 

routine care for lung cancer patients in many centers. Therefore, acquiring CTVI only 

involves additional computational steps, e.g. image processing and analysis.  

CTVI-based functional avoidance planning is currently investigated in a number of 

clinical trials (79–81). Attempts have been made to validate different CTVI techniques 

against a wide range of clinical and experimental modalities for ventilation imaging, 

including 99mTc-labelled diethylenetriamine pentaacetate (DTPA) V-SPECT (82), 68Ga 

(Galligas) PET (83), 3He MRI (84), 129Xe MRI (85), 81m-Kr (86) and Technegas V-

SPECT (87). 

1.5 «4DCT Ventilation Imaging Methods» 

Different approaches have been proposed for CTVI where most of them rely on a 

deformable image registration (DIR) algorithm, combined with a ventilation metric. 

Some groups used off-the-shelf DIR algorithms while others utilized in-house DIR 

methods. The accuracy of the DIR algorithm is critical to the accuracy of the generated 

CTVI, however, there has not been a consensus on which algorithm should be used. For a 

comprehensive review on different DIR algorithms that have been used for CTVI, see 

(88). As for the ventilation metric, current CTVI methods are generally classified as 

either Hounsfield units (HU)-based or Jacobian-based algorithms. A few studies have 

investigated the combination of the two (88). In the HU-based approaches, the change in 

the amount of air in the voxels is considered the surrogate for ventilation. Simon et al. 

proposed a relationship between manually registered CT values in Hounsfield units (HU), 

HUinhale and HUexhale, and the regional volume change. They assume that the fraction of 

air in a CT region is given by:  

 
𝐹𝑎𝑖𝑟 = −

𝐻𝑈

1000
 , (1) 
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where 𝐻𝑈 is the image intensity of each voxel (89). The fractional change in air content 

within a specified volume is then given by:  

 ∆𝑉

𝑉𝑒𝑥
= 

(𝐹2 − 𝐹1)

𝐹1(1 − 𝐹2)
 , (2) 

where ∆𝑉 is the local volume change due to inspiration, 𝑉𝑒𝑥 is the volume of air within 

the exhale CT volume of interest, 𝐹1 is the fraction of air in the exhale CT volume of 

interest and 𝐹2 is the corresponding fraction of air in the inhale CT volume of interest. If 

we consider the initial exhale volume as a discretized CT voxel, and assume that a three-

dimensional vector transformation exists to map the set of inhale lung CT voxels into the 

exhale image domain, one can derive the following expression for local ventilation in 

terms of registered CT numbers corresponding to inhalation and exhalation breathing 

states: 

 ∆𝑉

𝑉𝑒𝑥
= 1000 

(�̅�𝑖𝑛ℎ𝑎𝑙𝑒
𝑉𝑂𝐼 − 𝐻𝑈𝑒𝑥ℎ𝑎𝑙𝑒)

𝐻𝑈𝑒𝑥ℎ𝑎𝑙𝑒(1000 + �̅�𝑖𝑛ℎ𝑎𝑙𝑒
𝑉𝑂𝐼 )

 , (3) 

where �̅�𝑖𝑛ℎ𝑎𝑙𝑒
𝑉𝑂𝐼  is the average of all the HU corresponding to the set of inhale voxels that 

map into the exhale voxel under consideration (90). 

Concerns due to physiological violation of the ventilation model given by this equation, 

as well as uncertainty resulting from image noise, data acquisition and image 

reconstruction artifacts have led others to investigate alternative methods for quantifying 

lung function that are independent of the image CT values. Regional volume can be 

measured using the Jacobian of the DIR deformation field, Φ (�⃗�), alone (91,92). The 

Jacobian is defined as the determinant:  

𝐽Φ(�⃗�) = det

[
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which calculates the differential expansion (or contraction) at position �⃗� in the image. 

Consider 𝐵�⃗� as a small box around �⃗� in the exhale image such that Φ (𝐵�⃗�) is the 

corresponding deformed box in the inhale image. The Jacobian determinant of the 

deformation Φ (�⃗�) at �⃗� is  

 
𝐽Φ(�⃗�) =  

𝑣𝑜𝑙(Φ(𝐵�⃗�))

𝑣𝑜𝑙(𝐵�⃗�)
 , (4) 

where 𝑣𝑜𝑙(𝐵�⃗�) is the volume of the small box centered at �⃗� and 𝑣𝑜𝑙(Φ (𝐵�⃗�)) is the 

volume of the corresponding deformed box. Note that the fractional change in volume 

equals the Jacobian determinant of the deformation field at that location. The Jacobian 

calculation is independent of the CT values and only depends on the DIR transformation 

Φ. 

In Chapter 3 we describe our proposed CTVI method that combines a biomechanical 

model-based DIR with an accurate air segmentation algorithm. The proposed CTVI 

method has qualitatively and quantitatively been compared against the patients’ 

hyperpolarized 3He MR.  

Next sections (1.6 to 1.9) present the theoretical background required for developing the 

proposed methods for tumor motion/deformation estimation using the lung 

biomechanical model, and the proposed 4DCT ventilation imaging technique. 

1.6 «Image Segmentation» 

 Image segmentation is defined as partitioning a two-dimensional (2D) or 3D image into 

multiple classes. Each class is called a segment and includes voxels that share a property, 

hence belong to that class. Image segmentation has various applications in the field of 

computer vision, including object recognition, image database look-up, or image 

compression. In medical image analysis, image segmentation is usually used to outline an 

object or organ of interest manually or automatically. For example, before a tumor is 

analyzed in a CT image, it must be detected and isolated from the rest of the image. This 

task is performed using image segmentation. Segmentation of medical images also allows 

comparison of object/organ of interest between different datasets or modalities and 
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monitoring changes in the object/organ of interest (e.g. in treatment response 

assessment). It also enables extracting useful quantitative information from images.  

1.6.1 Region Growing Algorithm 

Region growing is an iterative algorithm used for image segmentation that has a similar 

concept to clustering algorithms such as k-means clustering (93). Initially, one or more 

points (seeds) are assigned in each of the segments either manually or automatically. In 

each iteration, the pixels around a seed point are examined and determined whether each 

pixel belongs to the segmentation class (segment). If yes, this pixel is added to the seeds 

of that segment. The choice of criterion by which a pixel is allocated to a segment has an 

impact on the final result of segmentation. For example, one criterion is to choose a pixel 

as a member if its grayscale value is close to the average grayscale values of the region. 

The definition of “closeness” can also influence the results. In many applications, 

closeness is defined as a distance smaller than 1-3 times the standard deviation of the 

pixels’ intensity values in the region. This process continues until all the pixels in the 

image are allocated to one and only one of the growing regions (93).  

1.7 «Image Registration»  

Image registration is defined as the process of aligning two or more images taken from 

the same scene under different conditions, e.g. images taken from a landscape from 

slightly different angles or viewpoints, CT images taken from a tumor before and after 

the course of treatment, the MR and the CT taken from a patient’s brain, etc. Image 

registration involves designating one of the images as the fixed (reference) image, while 

the other image is assigned as the moving image. The geometric transformations and/or 

local displacement fields are applied to the moving image so that it aligns with the fixed 

image (94,95). Usually, image registration is performed as a preliminary step to prepare 

the images for another image processing algorithm. For example, the CT images acquired 

from the patient’s lung at end-exhalation phase is registered to the image of the same 

patient’s lung at end-inhalation phase to extract and quantify certain pathophysiological 

conditions (96).  
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Based on the process that was involved between the acquisition of the two images, a 

combination of different transformations might be required to register the images. The 

transformation can be rigid (translation and rotation), affine (rigid + scaling and 

shearing), or deformable registration (2-3 degrees of freedom for each pixel). Figure 1-11 

shows the flowchart of a registration algorithm. There are essential components to any 

image registration algorithm (97). A metric is used to compare the closeness of the 

moving and the fixed image after a transformation. Proper choice of the metric can have a 

significant impact on the performance and the results of the registration. Commonly used 

metrics include: mean squared errors, normalized cross correlation, and normalized 

mutual information. The latter is the best choice for multi-modality image registration 

(e.g. between MR and CT).  An optimizer is required to find the minimum (or maximum, 

based on the choice of metric) of the metric that will result in the best alignment of the 

two images. Choosing the proper optimizer and its parameters (e.g. step size, relaxation 

factor, etc.) can be very important for performance of the registration algorithm. The 

interpolators are used for calculating the pixels grayscale values after transformation. 

When the image is transformed, the pixels may land on non-integer locations (i.e. not on 

the fixed image grid). Therefore, an interpolator is required to reconstruct the transformed 

image.  



28 

 

 

1.8 «Theory of Elasticity» 

Elasticity is a property of solid materials to regain their original shape after an external 

force is removed. Theory of elasticity describes the mechanical behavior (i.e. deformation 

and failure) of the elastic materials under the application of external force. Continuum 

mechanics deals with the mechanical behavior of materials that can be considered as a 

continuous mass rather than discrete parts or particles and is therefore based on the 

continuum hypothesis: “matter is continuously distributed, and regardless of how small 

volume elements the matter is subdivided into, every element will contain matter. The 

matter may have a finite number of discontinuous surfaces, for instance fracture surfaces 

or yield surfaces, but material curves that do not intersect such surfaces, retain their 

continuity during the motion and deformation of the matter” (98). 

Virtual Image 

Figure 1-11. Flow chart of a general registration algorithm. A metric is used to compare 

the fixed image with the moving image after each time the moving transform is updated. 

The optimization stops when the metric or changes in the metric are smaller than a 

predefined limit. The virtual image is reconstructed after the optimization is completed. 

Adapted from The ITK Software Guide Book 2 Fourth Edition, by Johnson H.J., 

McCormick M.M., Ibáñez L., and the Insight Software Consortium.  
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A continuum is characterized by a mass 𝑑𝑚, contained in an elementary volume 𝑑𝜏 =

 
𝑑𝑚

𝜌
. 𝜌 is referred to as the mass density. A material continuum occupying a volume 𝑣 

with a surface 𝑜 (initial state), will reach a new equilibrium state with the volume 𝑉 and 

the surface 𝑂 (final state). The position of the material particle is defined in a Cartesian 

coordinate as (the summation over the dummy index 𝑠 is omitted for brevity):  

 𝑿 =  𝑎1𝒊1 + 𝑎2𝒊2 + 𝑎3𝒊3 = 𝑎𝑠𝒊𝑠, (5) 

where 𝒊𝑠 is the base unit vector of the coordinate axes. Similarly, the final state of the 

material particle is:  

 𝒙 =  𝑥1𝒊1 + 𝑥2𝒊2 + 𝑥3𝒊3 = 𝑥𝑠𝒊𝑠. (6) 

The displacement vector moving the material particle from the initial state to the final 

state is: 

 𝒖 (𝑿, 𝑡) =  𝒙(𝑿, 𝑡) − 𝑿,   (7) 

which can be written as:  

 𝒖 (𝑿, 𝑡) = 𝑢1𝒊1 + 𝑢2𝒊2 + 𝑢3𝒊3 = 𝑢𝑠𝒊𝑠, (8) 

and therefore:  

 𝑢𝑠 = 𝑥𝑠 − 𝑎𝑠. (9) 

See Figure 1-12.  
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Figure 1-12. A particle in the elastic geometry at its initial state (𝑿), displaced by 

𝒖 (𝑿, 𝒕) to its final state (𝒙(𝑿, 𝒕)). 

The displacements, i.e. the projections of the displacement vector (i.e. 𝑢𝑠), are functions 

of the initial position of the material particle (𝑎𝑠), and hence the dependence of  𝒖 on 𝑿 in 

Eq. 7. For the equation to have a unique solution, the Jacobian (Eq. 10) must not vanish 

in the closed domain 𝑣 +  𝑜. 

 

𝐽 (𝑎1, 𝑎2¸𝑎3) =  | 
𝜕𝑥𝑠

𝜕𝑎𝑘
 | =  | 𝛿𝑠𝑘 + 

𝜕𝑢𝑠

𝜕𝑎𝑘
 | =  

|

|
1 + 

𝜕𝑢1

𝜕𝑎1

𝜕𝑢1

𝜕𝑎2

𝜕𝑢1

𝜕𝑎3

𝜕𝑢2

𝜕𝑎1
1 + 

𝜕𝑢2

𝜕𝑎2

𝜕𝑢2

𝜕𝑎3

𝜕𝑢3

𝜕𝑎1

𝜕𝑢3

𝜕𝑎2
1 + 

𝜕𝑢3

𝜕𝑎3
 
|

|

.  (10) 

The Jacobian (𝐽) is the deformation gradient tensor, also denoted by 𝑭. 𝑭 can be re-

written as:  

 𝑭 = 𝑰 + ∇𝒖,  (11) 

where ∇𝒖 is the displacement gradient, and 𝑰 is the identity tensor. The following 

equation is derived from Eq. 7 and Eq. 11 using differential calculus principles:  

 𝑑𝒙 = 𝑑𝑿 + (∇𝒖)𝑑𝑿 = 𝑭𝑑𝑿,  (12) 
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where 𝑑𝒙 and 𝑑𝑿 are the distance between two infinitesimally close points in the final 

and initial volumes. Therefore, the square of the linear elements (i.e. the inner product of 

the distance 𝑑𝒙 with itself) in the final volumes becomes:  

 𝑑𝑠2 =  𝑑𝒙. 𝑑𝒙 = 𝑑𝑿𝑭𝑻𝑭𝑑𝑿.  (13) 

We substitute 𝑪 =  𝑭𝑻𝑭, and obtain 

 𝑑𝑠2 = 𝑑𝑿𝑪𝑑𝑿,  (14) 

where 𝑪 is called the right Cauchy-Green deformation tensor. In distance-preserving 

transformations (e.g. rigid body motion), 𝑑𝑠2 = 𝑑𝑿. 𝑑𝑿 and therefore 𝑪 = 𝐼.  Substituting 

Eq. 11 in Eq. 13 we can find the relationship between the right Cauchy-Green 

deformation tensor and the displacement gradient: 

 𝑪 = (𝑰 +  𝛻𝒖)𝑇(𝑰 +  𝛻𝒖) = 𝑰 +  𝛻𝒖 + (𝛻𝒖)𝑻 + (𝛻𝒖)𝑻(𝛻𝒖). (15) 

𝑬 is the Green-Lagrange strain tensor and is calculated from the displacement as: 

 
𝑬 = 

1

2
[𝛻𝒖 + (𝛻𝒖)𝑻 + (𝛻𝒖)𝑻(𝛻𝒖)]. (16) 

Therefore: 

 𝑪 = 𝑰 + 2𝑬.  (17) 

To obtain the Green-Lagrange strain tensor from the deformation gradient tensor F, we 

can use 𝑪 =  𝑭𝑻𝑭 and Eq. 17: 

 
𝐸 =  

1

2
 [𝑭𝑻𝑭 − 𝑰]. (18) 

The advantage of using this formulation to calculate the Green-Lagrange strain tensor is 

that it uses the reference body configuration instead of the deformed (final) state.  

To obtain the strain values in all directions at each point from displacements, we start 

with the simple case and assume that the displacements (and their partial derivatives) are 
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small. In this case, in Eq. 16 the higher order term (𝛻𝒖)𝑻(𝛻𝒖) becomes negligible, and 

we can simplify the strain tensor to the infinitesimal strain tensor:  

 
𝜺 =  

1

2
[𝛻𝒖 + (𝛻𝒖)𝑻]. (19) 

Now the strain values can be obtained from displacements in the Cartesian coordinate as:  

 
𝜀𝑖𝑗 =

1

2
(
𝜕𝑢𝑖

𝜕𝑿𝑗
+ 

𝜕𝑢𝑗

𝜕𝑿𝑖
). (20) 

This formulation can be used to calculate strains from displacement when the 

deformation of the elastic material under the external force is infinitesimal, and no 

intrinsically nonlinear elastic behavior is expected from the material. 

In cases where the material undergoes large deformations, we can no longer ignore the 

higher order terms in the calculation of the strain tensor. The strain components can 

therefore be calculated as:  

 
𝐸𝑖𝑗 = 

1

2
(
𝜕𝑢𝑖

𝜕𝑿𝑗
+ 

𝜕𝑢𝑗

𝜕𝑿𝑖
) + 

1

2

𝜕𝑢𝑚

𝜕𝑿𝑖

𝜕𝑢𝑚

𝜕𝑿𝑗
, 𝑚 = 1,2,3. (21) 

To formulate the mechanical behavior of the material under external forces, the 

relationship between the stress tensor and the strain tensor should be described. In this 

regard, the internal traction vector 𝒕 of a force 𝑭 that acts on a plane is defined as: 

 
𝒕 =  

𝑑𝑭

𝑑𝐴
 (22) 

where 𝑑𝐴 is a very small differential area on the plane where the force 𝑑𝑭 is applied. The 

vector 𝒕 can be expressed in terms of components of true (Cauchy) stress. For each 

component of 𝒕 normal to each face of the infinitesimal cube (𝒕𝑵𝟏
, 𝒕𝑵𝟐

, 𝒕𝑵𝟑
) (Figure 1-13), 

the corresponding stress components are used:  
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{

𝒕𝑵𝟏
= 𝜎11𝑵𝟏 + 𝜎12𝑵𝟐 + 𝜎13𝑵𝟑

𝒕𝑵𝟐
= 𝜎21𝑵𝟏 + 𝜎22𝑵𝟐 + 𝜎23𝑵𝟑

 𝒕𝑵𝟑
= 𝜎31𝑵𝟏 + 𝜎32𝑵𝟐 + 𝜎33𝑵𝟑

, (23) 

Or in a compact form: 

 𝒕𝑵𝒊
= 𝜎𝑖𝑗𝑵𝑗 , 𝑖 ∈ {1,2,3} 𝑎𝑛𝑑 𝑗 ∈ {1,2,3}. (24) 

In these equations, 𝑵𝑗 is the unit vector normal to the corresponding face of the 

infinitesimal cube (Figure 1-13).  

 

Figure 1-13. The infinitesimal cube and the unit vectors normal to its surfaces, used for 

calculating internal traction.  

Having the relationship between the internal traction vector for each particle (cube as in 

Figure 1-13) and the components of the Cauchy stress, we can write the equilibrium of 

force for the cube, that is the infinitesimal volume of the continuum material. Newton’s 

second law must be satisfied for the infinitesimal cube, hence the following equation 

shows the equilibrium per unit volume of the cube: 
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 𝜕𝒕𝑁1

𝜕𝑥1
+ 

𝜕𝒕𝑁2

𝜕𝑥2
+

𝜕𝒕𝑁3

𝜕𝑥3
+  𝜌𝑩 =  𝜌𝒂,  (25) 

 
𝑜𝑟 ∶  

𝜕𝒕𝑁𝑗

𝜕𝑥𝑗
+  𝜌𝐵𝑗𝑁𝑗 =  𝜌𝑎𝑗𝑁𝑗 , 𝑗 𝜖 {1,2,3}, (26) 

Where B is the body force per unit mass through the continuum. We use the Cauchy 

stress representation of 𝒕𝑁𝑗
, and we can write the equilibrium equation as follows:  

 𝜕𝜎𝑖𝑗

𝜕𝑥𝑗
+  𝜌𝐵𝑖 =  𝜌𝑎𝑖,   𝑖 𝜖 {1,2,3}  𝑎𝑛𝑑   𝑗 𝜖 {1,2,3}.  (27) 

The above equation in the tensor form is:  

 𝑑𝑖𝑣 𝝈 +  𝜌𝑩 =  𝜌𝒂. (28) 

The above equation is called the Cauchy’s equation of motion that describes the 

deformation of the continuum body.  

To find the mechanical behavior of an elastic material under external forces, we need 

information about the mechanical properties of the material, e.g. its stiffness and 

incompressibility that define its active deformation pattern due to specific loading 

conditions. Typically, the intrinsic mechanical behavior of the material is represented by 

a relationship between the generated stresses and the strains in the continuum body. This 

relationship is known as a constitutive law.  

1.8.1 Linear Elasticity 

 The constitutive law for linear elastic materials is given by the Hook’s law. Hook’s law 

defines the relationship between the components of Cauchy stress (𝜎𝑖𝑗), and the 

components of the strain tensor (𝜀𝑘𝑙) for continuum material particles as: 

 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, (29) 
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where 𝐶 is known as the elasticity tensor and is of order 4. The elasticity tensor has 34 =

81 entries, however, 21 of which are enough to fully characterize the elastic behavior of 

the material. When the material is isotropic and linear elastic, Hook’s law is simplified to 

(in tensor form):  

 𝝈 =  𝜆𝜀𝑘𝑘𝑰 + 2𝜇𝜺, (30) 

where 𝜆 and 𝜇 are Lame’s constants. The Lame’s constants are defined in terms of the 

stiffness (Young’s modulus, 𝐸) and the incompressibility (Poisson’s ratio, 𝜐): 

 
𝜆 =  

𝜐𝐸

(1 +  𝜐)(1 − 2𝜐)
, 𝜇 =  

𝐸

2(1 + 𝜐)
. (31) 

Equations 29 and 30 can fully describe the mechanical behavior of an isotropic linear 

elastic material under external forces. 

1.8.2 Hyperelasticity 

Many of the materials do not exhibit linear elastic response under external loading 

conditions. The nonlinear behavior of materials can be attributed to either or a 

combination of two mechanisms: intrinsic nonlinearity, and geometric nonlinearity. 

Hyperelasticity is used to explain the mechanical behavior of materials involving both 

mechanisms. Intrinsic nonlinearity, as the name suggests, is due to intrinsic mechanical 

properties that are defined by the properties of the material constituents. Materials with 

intrinsic nonlinearity are described by a nonlinear relationship between the Cauchy 

stresses and the strain tensor components under loading. Geometric nonlinearity arises 

from the change in the mechanical response caused by a force equilibrium alteration 

resulting from change in the material geometry. The change in the material geometry 

typically occurs when the material undergoes large deformations (strains > 5%) due to 

external loading, and results in a redistribution of forces within the material.  

In hyperelastic materials, the mechanical behavior is characterized in terms of a strain 

energy function, because hyperelastic materials may store deformation work as elastic 

energy (strain energy). The strain energy function is therefore defined in the deformation 
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gradients (𝐹) space, as energy per unit volume. The constitutive law of the material is 

derived according to the strain energy function, and for that purpose we can write the 

equation that relates the Cauchy stress tensor (𝝈) to the density energy function (𝑈(𝑭)) 

and the deformation gradient tensor (𝑭) and its determinant (𝐽): 

 
𝝈 = 𝐽−1𝑭

𝑑𝑈(𝑭)

𝑑𝑭
. (32) 

When the hyperelastic material is isotropic, the determinant of deformation gradient is 

one, and the above equation in this case becomes:  

 
𝝈 =  −𝑝𝑰 +  𝑭

𝑑𝑈(𝑭)

𝑑𝑭
, (33) 

where 𝑝 is an indeterminate Lagrange multiplier. The constitutive law for the isotropic 

hyperelastic materials can be derived from the above equation in terms of the strain 

energy function as:  

 
𝝈 = 2𝐽−1 [𝐼3

𝜕𝑈

𝜕𝐼3
𝑰 + (

𝜕𝑈

𝜕𝐼1
+ 𝐼1

𝜕𝑈

𝜕𝐼2
)𝑩 − 

𝜕𝑈

𝜕𝐼2
𝑩2], (34) 

where B (not to be confused with B in Eq. 25) is the left Cauchy-Green deformation 

tensor, defined in terms of the deformation gradient tensor as:  

 𝑩 = 𝑭𝑭𝑇 . (35) 

The strain energy function (𝑈) is a function of 𝐼1, 𝐼2, and 𝐼3, i.e. the strain invariants of 

the Cauchy-Green deformation tensors: 

 𝐼1 = 𝑡𝑟(𝑩) =  𝜆1
2 + 𝜆2

2 + 𝜆3
2 (36) 

 𝐼2 = 0.5 [(𝑡𝑟(𝑩))
2
− 𝑡𝑟(𝑩𝟐)] =  𝜆1

2𝜆2
2 + 𝜆1

2𝜆3
2 + 𝜆2

2𝜆3
2 (37) 

 𝐼3 = det(𝑩) =  𝐽2 = 𝜆1
2𝜆2

2𝜆3
2. (38) 

In the above equations, 𝜆𝑖 , 𝑖 ∈ {1,2,3}, are the principal stretches.   
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Using Eq. 34, the constitutive law for a material can be derived for a given strain energy 

function. There are several different hyperelastic models that are represented by different 

strain energy functions. These different hyperelastic models are used to characterize the 

various mechanical behaviors of nonlinear elastic materials. In ABAQUS (the finite 

element solver that we used in this project), several hyperelastic forms are implemented, 

including: Arruda-Boyce, Marlow, Mooney-Rivlin, Neo-Hookean, Ogden, polynomial, 

reduced polynomial, Van der Waals, and Yeoh. The appropriate strain energy form for a 

material must be chosen based on mechanical test data. In this project, the Yeoh 

hyperelastic form was chosen to model the mechanical behavior of the lung tissue under 

deformation. The Yeoh strain energy function is described as:  

 

𝑈 = ∑(𝐶𝑖0(𝐼1 − 3)𝑖 + 
1

𝐷𝑖
 (𝐽 − 1)2𝑖) ,

3

𝑖=1

 (39) 

where 𝐶10, 𝐶20, and 𝐶30 are the hyperelastic parameters and 𝐷1, 𝐷2, and 𝐷3 are the 

incompressibility coefficients. From the strain energy function and Eqs. 34 to 38, the 

stress-strain relationship can be obtained for the Yeoh hyperelastic form. 

1.9 «Inverse Problem» 

Using the complete description of a system from the governing physical theories, we can 

make predictions of the outcome of measurements. Predicting the measurement results of 

a system is known as the forward problem. On the other hand, using the results of 

measurements of a system to infer the values of parameters that describe the system is 

referred to as inverse problem. Unlike the forward problem, the inverse problem does not 

typically have a unique solution. In this work, to develop the biomechanical model of the 

lung based on the information from 4DCT, we have designed and implemented an 

inverse problem formulation. The parameters of the lung biomechanical model (the 

forward model) are found based on the information from 4DCT (results of 

measurements). For more detailed information on the inverse problem, see Section 2.2.3. 
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1.10 «Research Objectives»  

The work presented in this thesis is mainly focused on two objectives: 

1. Development of an accurate lung biomechanical model for tumor motion and 

deformation estimation by incorporating pathology-induced heterogeneity. 

2. Development of a 4DCT-based ventilation imaging technique using a 

biomechanical model-based image registration and an accurate air segmentation 

algorithm, as well as validation of the proposed ventilation imaging technique 

using hyperpolarized 3He MR. 

1.11 «Thesis Outline»  

This thesis is organized to include four chapters. The current chapter is dedicated to 

introduction and background, while the following two chapters describe the details of the 

work towards achieving the two main objectives mentioned in the above section, 

followed by the final chapter which is dedicated to summary and concluding remarks.  

1.11.1 Chapter 2: A Patient-Specific Heterogeneous Biomechanical 
Model of the Lung for Accurate Tumor Motion Estimation  

In this chapter, we describe details of the work towards achieving the first objective of 

the thesis. A patient-specific lung biomechanical model is developed from 4DCT scans. 

This lung biomechanical model is patho-physiologically realistic as it incorporates the 

heterogeneity in the lung tissue mechanics caused by co-existing chronic obstructive 

pulmonary disease (COPD). Advanced image processing methodologies such as semi-

automated segmentation of the lung images, free-form deformation image registration 

algorithm, semi-automated boundary conditions extraction, and COPD phenotypes 

quantification algorithm were designed and implemented and/or employed to extract the 

information from 4DCT scans, required to build the biomechanical model. An inverse 

problem formulation was designed and employed to obtain the parameters of the 

biomechanical model, e.g. the coefficients determining the amplitude of the pressure that 

inflates the lungs, and the mechanical properties of the lung tissue affected by COPD 

phenotypes. The lung biomechanical model is used to estimate the motion and 
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deformation of the tumor. The simulation results were compared against the actual 

location and shape of the tumor extracted from 4DCT using measures of similarity and 

distance. The high accuracy of the model for tumor motion and deformation estimation 

indicates successful achievement of the first objective of the thesis.   

1.11.2 Chapter 3: 4DCT Ventilation Imaging Using Biomechanical 
Model-based Deformable Registration 

In this chapter, we explain the details of the work towards achieving the second objective 

of the thesis. We developed a 4DCT-based ventilation imaging technique using a novel 

method that utilizes a biomechanical model-based DIR along with an accurate air 

segmentation algorithm. 4DCT scans of patients diagnosed with NSCLC and planned for 

RT were used to build patient-specific biomechanical models of the lungs. In this model, 

the lung geometry used for finite element (FE) meshing was acquired from segmenting 

the CT volume at end-exhalation. Loading was defined in terms of the transpulmonary 

pressure expanding the lungs. Boundary conditions consisted of the diaphragm motion 

and anatomical fixed points for each patient. The pressure amplitude and mechanical 

properties of various tissue volumes of the lung were found through an optimization 

algorithm designed to maximize the accuracy of the biomechanical model. The 

biomechanical model was used to deformably register the end-exhale scans to the end-

inhale ones. The biomechanical model-based DIR tracks air motion in the lung. The air 

segmentation algorithm, previously developed in our lab and enhanced in this work, 

found subject-specific thresholds for the inhalation and exhalation CT scans. This air 

segmentation algorithm also accounts for the partial volume effect, hence providing 

accurate estimations of the air volume inside the voxels. Having the air motion from DIR, 

and the air volume in each voxel, we can calculate the ventilation. To have a more 

accurate estimate of ventilation, we also took into account the regional volume expansion 

due to the inflow of air. We used the change in the volume of the mesh elements during 

finite element analysis to obtain the volume expansion at voxel level. The final 4DCT 

ventilation images were qualitatively and quantitatively compared against 3He MR 

images for validation.  
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1.11.3 Chapter 4: Discussion and Conclusion 

In the final chapter, we summarize the findings of the thesis, and discuss the limitations 

of the proposed algorithms. We also discuss possible future directions and suggestions 

for further studies. This section lastly concludes this dissertation.  
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Chapter 2  

2 « A Patient-Specific Heterogeneous Biomechanical 
Model of the Lung for Accurate Tumor Motion 
Estimation  » 

Currently, one of the main components of lung cancer treatment is radiation therapy (RT) 

which suffers from inaccuracies caused by the complex intrafraction respiratory motions. 

One potential solution towards addressing this challenge is to develop a lung 

biomechanical model capable of predicting the tumor’s motion/deformation. Chronic 

obstructive pulmonary disease (COPD) commonly coexists with lung cancer and is 

associated with extensive heterogeneity in the lung parenchyma; however, current 

methods lack this key component. In this work, we have developed an accurate lung 

biomechanical model that accounts for COPD-induced heterogeneities in the lung 

structure. Four-dimensional computed tomography (4DCT) images were used to build a 

patient-specific finite element (FE) model, and to identify inhomogeneity inside the 

model. Mechanical properties of pathological volumes inside the lung, and the maximum 

amplitude of the pressure driving the respiratory motion are determined through an 

optimization algorithm that aims at maximizing the similarity between the actual and 

simulated tumor and lung volume images. Results obtained in this work suggest that the 

accuracy of the tumor motion estimation model increases considerably when 

incorporating the patho-physiological heterogeneity, compared to the homogeneous 

model counterpart. 

2.1 « Introduction » 

Lung cancer remains the most common type of cancer affecting men and women, both in 

terms of incidence and mortality (1). Concurrent chemotherapy and radiation therapy 

(RT) is the current standard treatment for inoperable non-small cell lung cancer 

(NSCLC)(1–3). Stereotactic body radiation therapy (SBRT) is a high-precision treatment 

technique for extracranial tumors that delivers potent doses of highly focused radiation 

beams during a single or a few radiation fractions (4). Recently developed advanced 

SBRT methods such as intensity modulated RT (IMRT) and volumetric modulated arc 
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therapy (VMAT), aim at increasing the tumor control probability (TCP), and lowering 

normal tissue complication probability (NTCP) by delivering a more accurate and highly 

conformal radiation dose (5,6). IMRT utilizes forward or inverse radiation treatment 

planning to determine and deliver the necessary dose distribution through the use of 

multileaf collimators (7). VMAT is a more advanced type of IMRT that decreases the 

delivery time by applying the dose in a single gantry arc movement and improves the 

dose conformality by using the full 360° range of gantry rotation (8,9).  However, 

respiratory motion can cause inaccuracies in RT, resulting in higher probabilities of 

treatment complications such as irradiating normal tissue and undesirable dose 

distribution in the target tumor (7,10). Methods have been proposed to reduce such 

inaccuracies in RT, including: motion encompassing (11), breath-hold techniques (12), 

and gating the radiation beam with the breathing cycle (13,14). Each of these methods 

suffer from inherent limitations. In motion encompassing, the planning target volume is 

expanded to encompass the entire clinical target volume, resulting in a higher radiation 

dose delivery to normal tissue. Breath-hold methods are not usually well tolerated by 

lung cancer patients. Gated radiotherapy procedures are intrinsically associated with a 

conflict between the gating efficiency and gating window time, and longer radiation 

sessions. This problem is particularly of importance in IMRT systems where the 

treatment times are inevitably longer. 

An alternative solution to improve the precision in radiation delivery is to synchronize 

the radiation beam with the tumor motion. Accordingly, strategies to account for 

respiratory motion that provide accurate information regarding real-time shape and 

location of the target tumor are in demand. Intensity-based deformable image registration 

(DIR) methods have been employed to estimate the deformation field of the lung and the 

respiratory tumor motion for dose calculation and treatment planning purposes (15–17). 

However, the application of DIR methods in real-time tumor tracking is limited to a few 

studies. Li R. et al. adapted deformable image registration (DIR) in conjunction with 

simultaneous x-ray imaging to estimate the lung tumor motion and deformation (18); 

however, the extra radiation dose imposed to the patient due to the x-ray imaging in these 

methods has raised some concerns (19). In addition, intensity-based DIR methods are 

solely based on four-dimensional computed tomography (4DCT) image data. These 
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methods do not take into account the physical properties or physiological mechanisms 

involved in breathing. Therefore, they are prone to errors associated with non-uniqueness 

of the resulting displacement field, and registration errors in areas with low image 

contrast. Handling the sliding motion of the lungs can also be challenging for motion 

estimation using intensity-based DIR methods (20,21). 

Biomechanics-based computational modelling is another commonly used approach for 

respiratory tumor motion estimation. In contrast to DIR, biomechanics-based 

computational models encompass certain aspects of breathing dynamics, rendering this 

approach more robust and realistic (22–26). Patient-specific biomechanical models of the 

lung that use thoracic image data to extract the geometry and boundary conditions have 

previously been proposed (22,23,26,27). Several studies investigated the effects of model 

parameters including the mechanical properties (27–29), and boundary conditions (25) on 

modeling accuracy. Recently, hybrid hierarchical approaches have been proposed, in 

which finite element (FE)-based biomechanical models are used in conjunction with 

intensity-based DIR methods to predict deformation field of the lung in a respiratory 

cycle (21,30,31). 

Biomechanical modeling of the lung is capable of respiratory tumor motion estimation 

without requiring simultaneous imaging during RT or implanting invasive fiducial 

markers inside the tumor. Our group recently proposed a hybrid motion model for real-

time estimation of tumor location/geometry during respiration (32). The proposed method 

translates the chest surface motion data obtained by optical tracking markers to the tumor 

location/geometry, using the patient-specific biomechanical model of the lung and a 

predictive function. A realistic and accurate biomechanical model of the lung is, 

however, required in this method for real-time tracking of the tumor with a desired 

precision. 

Tissue mechanical properties including tissue stiffness and incompressibility, are 

important features of a biomechanical model determining its behavior under loadings. 

The air volume inside the lungs varies significantly during a respiration cycle, therefore, 

changes in tissue incompressibility is expected. Shirzadi et al. were first to investigate the 
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variations of incompressibility of the lung throughout respiration (29).  Their results 

demonstrated that accounting for variable incompressibility throughout respiration in a 

biomechanical model of the lung leads to higher accuracy of tumor motion estimation.  

More than 65% of lung cancer patients also suffer from chronic obstructive pulmonary 

disease (COPD) (33,34). COPD is a heterogeneous disease, characterized by multiple 

phenotypes including small airways disease (SAD) and parenchymal destruction 

(emphysema) that cause changes in the structure and mechanical properties of the 

affected lung tissue (35–38). A characteristic manifestation of emphysema is the 

interactions that occur between the immune system and the mechanical properties of the 

lung parenchyma at the microstructure level. The former causes inflammatory responses 

resulting in tissue remodeling, and therefore alterations in the mechanical properties of 

the affected areas in the lung tissue under repeated breathing cycles. A biomechanical 

model that accounts for local changes in tissue material properties potentially results in a 

more realistic motion estimation. Although few studies have been conducted to measure 

mechanical parameters of the lung tissue (39,40) or to evaluate the effect of changes in 

tissue mechanical properties on the model accuracy (23,41,42), to our knowledge, a 

tumor motion/deformation estimation model accounting for pathology-induced local 

changes in mechanical properties of the lung has not been reported. 

In this study, we propose a novel biomechanical model of the lung for respiratory tumor 

motion prediction that accounts for pathology-induced heterogeneities within the lung 

tissue. For this purpose, a patient-specific FE model of the lung was developed using 

4DCT image data. The pathological regions pertaining to COPD phenotypes were 

quantified using the CT image data. Tissue sub-types pertaining to healthy and various 

pathological phenotypes were considered in the model. The CT image of the lung at end-

exhalation (EE) was registered to the CT image of all phases of respiration (e.g. end-

inhalation: EI) using the FE model by optimizing the parameters of loading and 

mechanical properties of the tissue sub-types.  

The effect of incorporating pathology-induced heterogeneity on the model performance is 

investigated by comparing the accuracy of the tumor motion estimation of the 
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heterogeneous model with that of a homogeneous counterpart. Results of the similarity 

measures between the simulated and actual tumor volumes, as well as the average 

landmark error demonstrated that incorporating the pathology-induced tissue 

inhomogeneities can improve the model accuracy and reliability considerably. 

2.2 « Materials and Methods » 

2.2.1 Data Acquisition 

This research was performed in accordance with the institutional research ethics board 

approval. 4DCT respiratory image sequences of 5 patients were acquired as part of the 

FLAIR trial (10). Patients were diagnosed with NSCLC and planned for IMRT or 

volumetric-modulated arc therapy (VMAT) using PINNACLE (v9.6) Radiation Therapy 

Planning System (Philips Medical Systems, Fitchburg, WI). Patients were scanned using 

a 16-slice Philips Brilliance Big Bore CT scanner (Philips Medical Systems) operating in 

helical mode. The scan parameters were: 120kVp and 400mAs/slice for tube potential 

and current, respectively. The intra-slice pixel size of the data varied from 1.0 mm × 1.0 

mm to 1.1 mm × 1.1 mm, and the slice thickness was 3 mm for all scans.  

The 4DCT images were sorted into 10 respiratory phases using the Real-time Position 

ManagementTM system. The phases were labeled as: 0%, 10%, 20%, etc. to 90%, with 

0% denoting the EI phase and 50% denoting the EE phase. In this study, efforts were 

made to include patients with various tumor sizes and locations inside the lungs to 

explore the reliability and robustness of the biomechanical model. The average tumor 

size was 18.1 cm2, ranging from 4.1 cm2 to 61.9 cm2. In addition, the extent of COPD-

related phenotypes including gas trapping and airway wall destruction varied between the 

patients. 

2.2.2 Patient-specific Biomechanical Model 

To develop the patient-specific biomechanical model, the lung geometry, tissue 

mechanical properties, loadings, and boundary conditions are required. The 

heterogeneous and homogeneous models were similar in terms of the procedures 

involved in obtaining the model geometry, boundary conditions, and spatial pattern of the 



57 

 

loading. In the heterogeneous model, areas affected by either of the COPD phenotypes, 

the tumor, and the healthy lung parenchyma were assigned different mechanical 

properties. In the homogeneous model the entire lung parenchyma was modeled with one 

set of mechanical properties, with only the tumor assigned a separate set of properties. 

Further details on each model have been provided below. 

2.2.2.1 Patient-specific Model Geometry 

The 3D CT volume at EE (50%) phase was used to obtain the model geometry for each 

patient. The lungs were segmented using a region growing-based segmentation method 

followed by opening and closing operations for smoothing purposes. The automatic 

segmentation was an extension to the semi-automatic algorithm previously developed by 

our group (29,43). The 3D model of the lung was created from the closed lung 

segmentation mask using the open source 3D Slicer software package (44). The IA-

FEMesh software package (MIMX, Iowa city, IA, USA) was used to generate volumetric 

FE mesh of the lung with 8-node hexahedral elements. The FE analysis was performed 

using the ABAQUS/Standard software (ABAQUS Inc., Pawtucket, RI). 

2.2.2.2 Loadings and Boundary Conditions  

In a respiratory cycle, the lungs start to expand from EE in response to 1) contraction of 

the diaphragm, and 2) contraction of external intercostal muscles that expands the chest 

cavity, consequently resulting in a drop in the transpulmonary pressure, PT. At EI, the 

respiratory muscles (diaphragm and external intercostal) relax, causing the diaphragm to 

return and the ribcage to fall. This leads to an increase in the PT, forcing the air out of the 

lungs. The extent of expansion, and therefore the PT varies for different phases of 

respiration. In addition, PT is not spatially uniform on the lung surface. Accordingly, in 

the biomechanical model, the loadings were defined in terms of the net pressure required 

to expand the lungs from relaxed phase (EE), to the target phase of respiration, i.e. the PT. 

The PT was applied with a linearly increasing gradient in the posterior to anterior 

direction.  For each patient, the maximum pressure amplitude for each phase of 

respiration was estimated through an optimization algorithm. Details on the optimization 

process, the cost function, and the evaluation criteria are described in Section 2.2.3. 
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The drop in the PT mainly enlarges the lungs in the medial-lateral (ML) and anterior-

posterior (AP) directions whereas the diaphragm is known to cause 60-80% of the 

thoracic cavity enlargement (60), and hence playing an important role in the lung 

expansion during inspiration. In this study, the displacement of the diaphragm resulting 

from its contraction was estimated through a non-rigid registration algorithm. A multi-

resolution free form deformation (FFD) algorithm was used to register the relaxed 

diaphragm at EE to the contracted diaphragm at other respiration phases. The resulting 

displacement field was then applied in the FE model as prescribed boundary condition at 

the bottom surface of the lung. Considering the fact that the diaphragm motion is a main 

source of the lung deformation in the superior-inferior (SI) direction, the precision of the 

diaphragm-driven prescribed boundary conditions is crucial. However, clinical 4DCT 

image data acquired for radiation therapy planning are often low contrast and include 

breathing-induced artifacts that affects image interpretation, especially within the areas 

close to the diaphragm surface as shown in Figure 2-1(45,46). Yamamoto T. et al. have 

investigated and classified the different types of artifacts attributed to internal motion of 

the organs during the 4DCT acquisition, and explained the complications such artifacts 

can cause in RT procedures (46). 

 

To evaluate the robustness of the proposed biomechanical model, cases with considerable 

artifacts on and near the diaphragm were included in this study. Although the FFD 

algorithm fails to register the EE diaphragm to that of another target phases (see Section 

(a) (b) (c) 

Figure 2-1. Examples of motion-induced artifacts in the dataset. The images show 

different types of artifacts as classified by Yamamoto et al. (a) Overlapping structure, (b) 

incomplete structure, and (c) duplicate structure. 



59 

 

2.3.2), it captures the relative spatial pattern of deformation. The major component of the 

diaphragm displacement is in the SI direction. To compensate for the partial registration 

due to image artifacts, the diaphragm displacement field was modified using an adaptive 

correction factor (𝐾𝐶𝐹) for the SI component of the estimated deformation field. The 𝐾𝐶𝐹 

was optimized for each target phase of respiration. Details of the applied optimization 

framework has been provided in Section 2.2.3.  

The respiratory lung motion in the chest cavity is constrained within regions of the lung 

apex and the lung-ribcage interface. To model such constraints and incorporate them as 

boundary conditions in the biomechanical model, a semi-automatic image segmentation 

algorithm that uses information on lungs sliding motion was developed. The algorithm 

inputs the 3D CT volumes at extremities of respiration (50%, 0%, and 90%) and outputs 

3 label maps representing areas corresponding to fixed boundary conditions (constrained 

in all directions), ML-AP constrained, and SI constrained. 

2.2.2.3 Mechanical Properties 

To investigate the effects of incorporating pathology-induced heterogeneities on the 

model performance, both homogeneous and heterogeneous models were developed for 

each patient. The model geometry, loading configuration, and boundary conditions were 

similar for both models. 

2.2.2.3.1 Homogeneous Biomechanical Model 

As for the mechanical properties of the homogeneous model, two material types were 

defined: lung parenchyma, and the tumor. The tumor was modeled as a linear elastic 

material. Taking into account the large deformation of the lungs during respiration the 

lung tissue was modeled as hyperelastic, described by Yeoh strain energy density 

function (47): 

𝑈 =  ∑𝐶𝑖0(𝐼1̅ − 3)𝑖 + ∑
1

𝐷𝑘

(𝐽𝑒𝑙 − 1)2𝑘

3

𝑘=1

 

3

𝑖=1

, (1) 
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where 𝑈 is the strain energy potential, 𝐼1, 𝐼2, and 𝐼3 are strain invariants (invariants of left 

Cauchy‐Green strain tensor), and 𝐽𝑒𝑙 is the elastic volume ratio (a fraction of the total 

volume ratio 𝐽 in constant temperature conditions). The model parameters 𝐶𝑖0(𝑖 = 1: 3) 

and 𝐷𝑘  (𝑘 = 1: 3) determine the material’s mechanical response and its variations with 

respect to strain. The coefficients 𝐶𝑖0(𝑖 = 1: 3) for the lung tissue were calculated by 

fitting the experimental stress-strain data found in the literature (40). 𝐷𝑘 parameters 

mainly describe the material incompressibility and its dependence on deformation. The 

tissue incompressibility modeling is described in Section 2.2.2.3.3. 

2.2.2.3.2 Heterogeneous Biomechanical Model 

To model the pathology-induced heterogeneities inside the lung parenchyma, the extent 

of each COPD phenotype was first quantified in the 4DCT images, using a well-known 

attenuation-based method. In this method, the image voxels in the EI scan with 

attenuation values lower than -950 Hounsfield Units (HU), denote emphysema (48–52). 

Similarly, areas in the EE image with attenuation values lower than -856 HU represent air 

trapping. A deformable image registration was used to register the EI scan to the EE 

counterpart. The registration transformation was applied to map the emphysematous 

voxels to the EE image. Finally, the areas affected by SAD were determined as the air 

trapping voxels that are not caused by emphysema as illustrated in Figure 2-2.  

The diseased volumes were subsequently incorporated in the FE analysis by assigning 

different mechanical properties. The lung parenchyma was classified into 4 material sub-

types: healthy, emphysematous, affected by SAD, and the tumor. The Yeoh hyperelastic 

model was used to model the mechanical properties of healthy and diseased tissues 

except the tumor. The elasticity coefficients (𝐶10, 𝐶20, and 𝐶30) for the healthy tissue 

were the same as that of the lung parenchyma in the homogeneous model. The Yeoh 

hyperelastic coefficients for each of the emphysema and SAD tissue sub-types were 

optimized using an algorithm described in Section 2.2.3. 



61 

 

 

2.2.2.3.3 Incompressibility Variation during Respiration 

As previously described in the studies conducted by our group (29,43), lung tissue 

incompressibility varies throughout respiration as the air content within the tissue 

changes substantially between the inhalation and exhalation phases. In the previous 

studies the variations in incompressibility of lung tissue was modeled by optimizing 

Poisson’s ratio for each phase of respiration. Alternatively, the Yeoh hyperelastic model 

applied in this study can describe the mechanical behavior of the lung at all respiration 

phases with one set of 𝐶𝑖0 and 𝐷𝑘  parameters. Specifically, the 𝐷𝑘  parameters describe 

the changes in tissue incompressibility with respect to variations in deformation during 

respiration that are proportional to the air content of the lung. Therefore, optimizing the 

Figure 2-2. Axial view of slices from 4DCT data showing emphysema (green), SAD 

(yellow), and the tumor (red). Healthy lung parenchyma is represented by blue. (a) 

Patient #1, with extensive SAD, less emphysema. (b) Patient #2, with extensive SAD, 

less emphysema, very large tumor. (c) Patient #3, the tumor is located further from 

COPD-affected volumes. (d) Patient #4, very less SAD and no emphysema. (e) Patient 

#5, with extensive SAD and emphysema, tumor in proximity of affected areas. 

(a-1) (b-1) (c-1) (d-1) (e-1) 

(a-2) (b-2) (c-2) (d-2) (e-2) 
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𝐷𝑘 parameters in the model accounts for the variable tissue incompressibility as a result 

of changes in air volume of the lung during respiration. 

2.2.3 Optimization Framework 

A number of the biomechanical model parameters including maximum pressure 

amplitude, diaphragm registration correction factor and the tissue mechanical properties 

were optimized for each patient. The maximum pressure amplitude and the diaphragm 

registration correction factor are parameters that depend on the phase of respiration and 

should be optimized for each target phase separately. However, some of the mechanical 

properties are phase-independent and must hold a consistent value throughout all phases 

for each patient. The phase-independent mechanical properties include: the elasticity 

parameters (𝐶𝑖0s) for diseased sub-types in the heterogeneous model, and the 

incompressibility parameters of the lung tissue for both the homogeneous and 

heterogeneous models. On this basis, two optimization algorithms, one for the phase-

dependent and another for the phase-independent parameters were developed and used in 

turn for both the homogeneous and heterogeneous models.  

The first optimization algorithm was implemented in MATLAB (MathWorks, USA) for 

computing the phase-dependent parameters; it is shown in Figure 2-3.The 4DCT scans 

were segmented to obtain the lung and tumor geometries at 50% (𝜙50) and each target 

phase (𝜙𝑖 , 𝑖 ∈ {0, 10,20,30,40,60,70,80,90}). Lung geometry at 𝜙50 was used as the 

reference geometry to generate FE mesh for the analysis. The iterative FE analysis was 

started using initial values for the transpulmonary pressure (𝑃𝑖 = −1.8 𝑐𝑚𝐻2𝑂) and the 

diaphragm registration correction factor (𝐾𝐶𝐹𝑖
= 1) for each phase (𝜙𝑖). Since the 

mechanical properties for the heterogeneous tissue sub-types are unknown at this point, 

we started with the homogeneous material properties, simulating the deformation of the 

lungs expanding from 𝜙50 to 𝜙𝑖, and generating registered images, to 𝜙𝑖. The 

optimization cost function was formulated to minimize the Hausdorff surface-to-surface 

distance (𝐻𝐷) between the actual (𝑇𝑟𝐴𝑗
) and simulated (𝑇𝑟𝑆𝑗

) tumor images, while 

maximizing the Normalized Mutual Information (𝑁𝑀𝐼) within the lung in the actual 

(𝐿𝑔𝐴𝑗
) and simulated (𝐿𝑔𝑆𝑗

) images: 
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𝑓𝐶(𝑃𝑖 , 𝐾𝐶𝐹𝑖
) = 𝜆 × 𝐻𝐷 (𝑇𝑟𝐴𝑗

, 𝑇𝑟𝑆𝑗
) + 

𝛾

𝑁𝑀𝐼(𝐿𝑔𝐴𝑗
, 𝐿𝑔𝑆𝑗

)
, (2) 

where 𝜆 and 𝛾 are constants used as weight factors and were chosen to regulate the 

relative effect of each measure (𝐻𝐷 and 𝑁𝑀𝐼) on the optimization based on their 

importance and the range by which they vary.  

After conducting this optimization step on the homogeneous model for all phases of 

respiration individually, we can utilize the resulting pressure values in the second 

optimization step for computing the phase-independent parameters, i.e. elasticity 

properties and incompressibility. However, in determining the deformation, the pressure 

and the mechanical properties are interrelated. Accordingly, fixing the pressure values to 

what is obtained from the first step of the optimization when optimizing for mechanical 

properties in the second step may lead to complications such as falling into local minima. 

To account for the interrelation of pressure and mechanical properties, we must allow for 

Figure 2-3. Flowchart showing the first optimization step. The 4DCT data is used to 

segment the lung and the tumor at phase EE (𝝓𝟓𝟎) and the target phase, for which the 

maximum pressure amplitude (𝑷𝒊) and the diaphragm registration correction factor 

(𝑲𝑪𝑭𝒊
) are optimized. The homogeneous finite element model is used in this step to 

deform the reference geometry to the target counterpart. The cost function 𝒇𝑪 regulates 

the updating of the parameters to ensure the best registration. 
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the pressure to adjust during the second optimization process. In this regard, the pressure 

values resulting from the first optimization are employed to form a parametric 

representation of the pressure using Fourier series (Eq. 3). The Fourier representation 

serves as a proper estimation of the pressure at each phase. This parametric representation 

allows for optimization of the pressure through optimizing for the Fourier coefficients 𝑐1 

and 𝑐2. Therefore, amplitude of the pressure can be optimized in the second optimization 

step as a function of time (i.e. respiration phase): 

 

𝑃𝑇(𝑡, 𝑐1, 𝑐2) = 𝑐1 ∑(𝑎𝑛 𝑐𝑜𝑠 𝑛𝜔𝑡) + 𝑐2 ∑(𝑏𝑛 𝑠𝑖𝑛 𝑛𝜔𝑡),

3

𝑛=0

3

𝑛=0

 (3) 

where 𝑡 is time (respiration phase), 𝜔 represents base frequency, and 𝑎𝑛 and 𝑏𝑛 are the 

relative amplitudes of different frequency components of sine and cosine functions.  

The second optimization step was developed and utilized to compute the phase-

independent parameters in both homogeneous and heterogeneous models. In both cases, 

𝑐1 and 𝑐2 (used to adjust the pressure) and the incompressibility parameters (𝐷𝑖) are 

optimized. In the heterogeneous model the hyperelasticity coefficients for different tissue 

material sub-types including 𝐶𝑖0𝐸𝑚𝑝ℎ𝑦𝑠𝑒𝑚𝑎
 and 𝐶𝑖0𝑆𝐴𝐷

are also optimized. Information from 

all phases of respiration are incorporated in each optimization iteration to accommodate 

for optimization of phase-independent parameters. The cost function used for 

optimization is consistent between the homogeneous and heterogeneous models. In each 

iteration of optimization, the HD between the tumor images, and the NMI between actual 

and simulated lung images for all target phases are calculated and combined as shown in 

Eq. 4:  

 𝑓𝐶(𝑐1, 𝑐2, 𝐷𝑖 , 𝐶𝑖0𝑘
) 𝑖∈{1:3},
𝑘∈{𝐸𝑚𝑝ℎ𝑦𝑠𝑒𝑚𝑎, 𝑆𝐴𝐷}

=  𝜆 × √∑𝐻𝐷2 (𝑇𝑟𝐴𝑗
, 𝑇𝑟𝑆𝑗

)

𝑗

 +   
𝛾

√∑ 𝑁𝑀𝐼2 (𝐿𝑔𝐴𝑗
, 𝐿𝑔𝑆𝑗

)𝑗

 (4) 



65 

 

2.3 « Results » 

The heterogeneous and homogeneous models were implemented using 4DCT data of 5 

patients. The model parameters were computed through the two-step optimization 

algorithm. The optimized models were used to register the EE scan to other respiration 

phases. The proposed algorithm is evaluated, and the accuracy of the homogeneous and 

heterogeneous models for registration are compared. 

2.3.1 Two-step Optimization Algorithm 

The Fourier parametric representation of the maximum pressure amplitude obtained from 

the first optimization step was evaluated in the first step. The coefficient of determination 

(𝑅2) and the normalized root mean square deviation (𝑁𝑅𝑀𝑆𝐷) of the Fourier estimation 

of pressure for each patient are given in Table 2-1. The accuracy of the Fourier fitting is 

reasonable for this application, because the estimated representation is used to assign 

initial values for the second step of optimization. 

Table 2-1 Evaluation results for the Fourier representation of optimized pressure. 

Patient # 𝑅2 𝑁𝑅𝑀𝑆𝐷 

1 0.9794 0.1845 

2 1 0 

3 0.9791 0.1233 

4 0.9672 0.1312 

5 0.9932 0.0621 

2.3.2 Diaphragm FFD Registration Algorithm  

Considering the important role of displacement boundary conditions determined by the 

diaphragm registration on the modelling accuracy, we assessed the functionality of the 

proposed method for correcting the diaphragm FFD registration. The registration 

correction factor (𝐾𝐶𝐹) is optimized for each respiration phase during the first 

optimization step. In some patients, the artifacts are more prominent than the others. 

Figure 2-4 shows an example of the substantial improvement in diaphragm registration. 

Figure 2-4(a) is the difference image between the source (EE phase) and target images 
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before registration, Figure 2-4(b) illustrates the same after registration with FFD 

algorithm, and Figure 2-4(c) shows the same after applying the 𝐾𝐶𝐹 to the deformation 

field.  

 

2.3.3 Tumor motion/deformation estimation and Registration 
Accuracy 

The accuracy of the image registration using the heterogeneous and homogeneous 

biomechanical models were evaluated using various criteria. To evaluate the accuracy of 

tumor registration, the tumor volumes from the actual and registered CT images were 

compared for each target phase of respiration using the Dice similarity coefficient, and 

Hausdorff surface-to-surface distance (HD). Figure 2-5 demonstrates the evaluation 

results of tumor registration for each patient.  

In all cases, the average Dice coefficient increased, and the HD decreased when the 

heterogeneous model was used, which shows the positive impact of incorporating the 

patho-physiological changes of the lung structure in the model. The extent to which the 

accuracy of tumor motion/deformation estimation improved by using the heterogeneous 

model was different among cases.  We calculated the percentage volume (%V) of COPD 

phenotypes (emphysema and SAD) in each case, as shown in Table 2-2. We also 

calculated the percentage improvement in the average measures of tumor 

motion/deformation accuracy (Dice and HD) when the heterogeneous model is used 

instead of the homogeneous model for each case. As show in Table 2-2, more tangible 

(a) (b) (c) 

Figure 2-4. Difference image between diaphragm at EE (50%) and EI (0%), (a) before 

registration, (b) after registration using FFD image registration, (c) after registration 

using the optimized 𝑲𝑪𝑭 parameter applied to the deformation field. 
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improvement in Dice and HD is observed with increased COPD severity. Patients #2, #3 

and #5 showed highest improvements in Dice coefficient, whereas Patients #1 and #4 did 

not benefit tangibly (<5% increase in Dice and <10% decrease in HD) from incorporating 

COPD-induced heterogeneity in mechanical properties.  Even though Patient #2 has a 

higher COPD severity compared to Patient #3 (emphysema and SAD combined), the % 

increase in Dice is lower for Patient #2. This is particularly attributed to the sensitivity of 

Dice coefficient to the size of the compared volumes. 

 

Figure 2-5. Comparing the results of tumor motion/deformation estimation between 

homogeneous and heterogeneous models. (a) Average Dice similarity coefficient and 

(b) average Hausdorff distance (HD) between actual and simulated tumors over all 

target phases.  

Table 2-2 The extent of COPD phenotypes represented in their percentage volume 

(%V), and the percentage improvement in measures of tumor motion/deformation 

estimation for each case.  
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The larger the tumor size, the less sensitive the Dice is to variations in the compared 

volumes. Patient #2’s tumor size is considerably larger than the Patient #3’s (4.2 cm3 vs 

61.9 cm3), and therefore the %increase in Dice smaller. The % decrease in HD is largest 

for Patient #2 with the highest COPD severity (emphysema and SAD combined), and is 

smallest for Patients #1 and #4 for with lowest COPD-affected %V.  

The accuracy of the tumor motion estimation during respiration was evaluated by 

comparing the displacement of the center of mass (CoM) of tumor in 4DCT scans with 

that obtained after registration using the homogeneous and heterogeneous FE models 

(Figure 2-6). The magnitude of tumor CoM motion during respiration is plotted 

separately for each case. The AP and ML components of tumors’ CoM motion were 

relatively small (compared to the SI component) and showed similar results for 

homogeneous and heterogeneous models. As shown in Figure 2-6 both homogeneous and 

heterogeneous models follow the magnitude of tumor’s CoM displacement, however, 

heterogeneous model shows superior performance. 

To assess the functionality of the proposed biomechanics-based method for lung image 

registration, we calculated landmarks registration error (LRE), as a standard measure of 

registration error (23,53) for 3 of the patients. LRE was defined as mean Euclidean 

distance between 30-40 pairs of landmarks throughout the lung, identified using 

bifurcation points in the source (EE, 50%) and the target images. Because manual 

landmarks identification is a time-consuming task, we used Patients #2, #3, and #5 as 

proof of concept. Table 2-3 shows the LRE before and after registration using the 

homogeneous and heterogeneous models for each patient.  

Comparing the LRE before and after the registration with either of the homogeneous or 

heterogeneous models shows the high accuracy of the biomechanical model-based 

registration proposed in this work.  
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Table 2-3 Average LRE for all patients before and after registration with homogeneous 

and heterogeneous models 

Patient # LREbefore (mm) 
After Registration 

LREHomogeneous(mm) LREHeterogeneous(mm) 

2 7.67 ± 3.32 2.77 ± 0.93 1.85 ± 0.91 

3 6.9 ± 4.28 2.55 ± 1.06 2.23 ± 1.10 

5 6.77 ± 4.12 2.51 ± 0.88 1.52 ± 0.90 

 

Figure 2-6. Actual tumor CoM motion magnitude and the simulated tumor CoM motion 

magnitude using homogeneous and heterogeneous models. 
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2.4 «Discussion» 

In this work a patient-specific biomechanical model-based image registration algorithm 

was proposed for lung cancer patients that mimics the breathing physiology and 

incorporates the pathophysiology of lung in patients with COPD. Specifically, changes in 

the structure of lung parenchyma as a result of different COPD phenotypes were 

considered in the biomechanical model. The results demonstrated that changes in the 

mechanical properties of the lung parenchyma due to COPD have considerable effects on 

the accuracy of biomechanics-based image registration algorithm. Particularly, the 

heterogeneous FE model resulted in higher accuracies for tumor motion/deformation 

estimation compared to its homogeneous counterpart in all patients, regardless of the 

variations in size and/or location of the tumor. In addition to the increase in average 

accuracy, the error bars are considerably smaller when the heterogeneous model is used 

for registration (Figure 2-5). Our method registers the CT image acquired at the EE phase 

to other phases of respiration by deforming the EE geometry. As one would expect, the 

lowest registration accuracies are observed when the required deformation is the largest, 

which is when the target phase for registration is the furthest respiration phase from EE 

(the source phase), i.e. the peak-inhale phases.  Therefore, the reductions observed in the 

error bars along with the increase in the average of the accuracy measures when the 

heterogeneous model is used implies increased accuracy of the model, especially for 

estimation of large deformation. Considering that lungs undergo large deformation during 

respiration, this observation highlights the impact of using optimized hyperelastic 

mechanical properties for healthy and pathological tissue sub-types in the FE model. 

The estimation of tumor displacement using either of the models closely followed the 

actual magnitude of tumor’s CoM displacement, and its components in all directions. 

This characteristic of the model is very important in the radiation therapy application 

because the model is capable of estimating the location of the tumor during all phases of 

respiration, as well as its shape. This is essential for developing intrafracture and 

interfracture tumor motion compensation systems.  

The proposed image registration technique can also be used for lung image registration in 

addition to tumor motion prediction. The proposed lung image registration shows similar 
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accuracy (as represented by LRE) to the current intensity-based DIR algorithms (54,55) 

and biomechanics-based image registration methods proposed elsewhere (53). For 

example, Han L. et al. proposed a hybrid DIR for lung peak CT pairs that combines a 

biomechanical of the lungs with a BSpline-based DIR (56). They showed that the 

resulting motion field describes the underlying physiology more realistically, and the 

accuracy of registration is improved compared to the intensity-based DIR algorithm (56). 

They reported an average target registration accuracy of 1.37 ± 0.89 mm for registering 

peak-inspiration CT pairs with 2.5 mm slice thickness and in-plane resolutions ranging 

from 0.97 mm × 0.97 mm to 1.16 mm × 1.16 mm.  

Respiration motion-induced artifacts cause inaccuracies in current thoracic image 

registration methods (57). The quality of the low-dose clinical CT scans including the RT 

treatment planning CTs are commonly limited by these artifacts. In this work, the 

physiology-inspired biomechanical model performance is not affected by the motion 

artifacts present in the dataset, suggesting the capability of the model to be used to 

process clinical CT data.  

The optimization algorithm maximizes the registration accuracy by finding the proper 

mechanical properties of the emphysematous and SAD-affected tissue, located based on 

the CT intensity values (HU). This method can potentially be used to provide in-vivo 

estimates of tissue mechanical properties of different regions of the lung characterized by 

different CT intensities. The estimated mechanical properties possibly provide 

supplementary information for tissue characterization in diagnostic and prognostic 

applications.  

One limitation of the current study is that in all investigated cases, the tumor is in the 

right lung. Modeling the motion of the tumors located in the left lung can be more 

challenging due to complexities caused by the interactions with the heart mechanics. Our 

group has developed and investigated a number of FE models for the heart (58,59). 

Future research directions may include integrating the heart and the lung FE models to 

obtain realistic biomechanics-based image registration for the left lung. 
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Chapter 3  

3 « 4DCT Ventilation Imaging Using Biomechanical 
Model-based Deformable Registration » 

3.1 « Introduction » 

Assessment of the lungs regional function represented by either or a combination of 

perfusion, diffusion, and ventilation has proven useful in many applications including 

lung cancer radiation therapy (1) and diagnosis of pulmonary abnormalities such as 

asthma and chronic obstructive pulmonary disease (COPD) phenotypes (2). Current 

radiation therapy treatment planning methods assume a homogeneous distribution of lung 

function and hence a homogeneous treatment response characterized by radiation dose 

distribution. However, many lung cancer patients have co-existing pulmonary 

dysfunctions that give rise to pulmonary function heterogeneity (3,4). Functional 

avoidance treatment planning that preferentially spares the functional lung tissue from 

radiation dose, has been tested in clinical trials, and has shown to 1) help reduce the 

incidence and the severity of radiation-induced lung injuries (e.g. radiation pneumonitis 

and pulmonary fibrosis) (5–8), and 2) enable target dose escalation for more effective 

treatments (9,10). In addition, monitoring changes in the lungs’ regional function during 

the course of radiation therapy can be used for evaluating treatment response (11). 

Regional function information has also shown to be useful in applications other than 

radiation oncology. For example information pertaining to regional distribution and 

severity of pulmonary diseases such as asthma and COPD phenotypes can be used to 

develop new therapies and improve existing therapeutic methods (12–14).  

Information on regional variations of the lung function can be found non-invasively by 

various imaging methods. Functional images can be directly generated using positron 

emission tomography (PET) (15) and single photon emission computed tomography 

(SPECT) (16). Hyperpolarized 3He magnetic resonance (MR) imaging has been used for 

imaging ventilation (2,17), 129Xe MR imaging can be used to obtain information on 

ventilation, perfusion, or gas exchange (18), and Xenon-enhanced computed tomography 

(CT) can provide a direct assessment of pulmonary ventilation(19). Four dimensional CT 
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(4DCT)-based ventilation imaging (CTVI) has recently emerged as a cost-effective and 

accessible alternative to the abovementioned modalities, with potentially higher spatial 

resolution compared to nuclear medicine ventilation imaging. CTVI is especially 

attractive in radiation therapy applications because it can be achieved using treatment 

planning 4DCT images acquired as part of the routine care in most centers (20). Clinical 

trials on CTVI-based functional avoidance planning are on-going, with the goal of 

reducing radiation toxicities (10,21). CTVI has also been used to improve the prediction 

of radiation pneumonitis and clinical toxicity. For example, Vinogradskiy et al. found a 

potential reduction in radiation induced toxicities (grade 2+ and 3+ pneumonitis) when 

CTVI-based functional avoidance planning was used instead of conventional anatomical 

planning (8). Moreover, dose-response assessment studies have been conducted by 

evaluating changes in the lung ventilation (as mapped by CTVI) between radiation 

therapy fractions (22,23) and after radiation therapy (11,24–26).  

Different methods have been proposed for CTVI, most of which consist of a “deformable 

image registration (DIR)” between the peak respiration CT pairs, and a “ventilation 

metric” (27,28). The accuracy of the DIR method used is a major determining factor in 

the CTVI accuracy, and hence its clinical benefits (29). Almost all previously proposed 

CTVI methods are founded on intensity-based DIR algorithms (27,28). Despite advances 

made in DIR methods, they are based solely on 4DCT image data, and are sensitive to 

motion artifacts that are frequently encountered in treatment planning 4DCT scans (30). 

There exist a few commercial DIR methods including Velocity (Varian Medical Systems, 

Palo Alto, CA, USA) and RayStation (RaySearch Laboratories, Stockholm, Sweden), 

some open DIR software packages such as Plastimatch (see www.plastimatch.org, last 

accessed on August. 2019) and Elastix (see http://elastix.isi.uu.nl/, last accessed on 

August 2019), and different in-house methods developed by research labs (27). Intensity-

based DIR algorithms do not take into account the physical properties or physiological 

mechanisms involved in breathing, hence are prone to errors associated with non-

uniqueness of the resulting displacement field and registration errors in areas with low 

image gradients. In addition, handling the sliding motion of the lungs can be challenging 

for motion estimation using intensity-based DIR methods (31,32).  

http://www.plastimatch.org/
http://elastix.isi.uu.nl/
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Biomechanical models have been widely used alone or in combination with intensity-

based methods as alternative to DIR approaches (33,34). In contrast to intensity-based 

DIR, biomechanics-based computational models encompass certain physiological aspects 

of breathing dynamics rendering this approach more robust and realistic (35–38). Patient-

specific lung biomechanical models that use the thoracic image data to extract the lung’s 

geometry and boundary conditions have been previously proposed (34,39,40). Several 

studies investigated the effects of model parameters including the mechanical properties 

(39,41,42), and boundary conditions (38) on modeling accuracy. Recently, hybrid 

hierarchical approaches have been proposed, in which finite element (FE)-based 

biomechanical models are used in conjunction with intensity-based DIR methods to 

predict deformation fields of the lung in a respiratory cycle, and to register lung CT 

image pairs (43,44). For example, Han L. et al. proposed a hybrid biomechanical model-

based DIR for lung peak CT pairs, and showed that the resulting motion field describes 

the underlying physiology more realistically while the accuracy of registration was 

improved compared to the intensity-based DIR algorithm (43). In this study, we are 

proposing an accurate biomechanics-based DIR algorithm in conjunction with a 

sophisticated lung air segmentation algorithm for CTVI. To our knowledge, we are the 

first group to utilize biomechanical models in a CTVI application.  

With respect to a ventilation metric, the current CTVI methods are generally classified as 

either Hounsfield unit-based (DIR-HU) or Jacobian-based (DIR-Jac) methods, with a few 

studies reporting a combination of the two (27). The DIR-HU methods use changes in 

voxels intensity between the end-inhale and end-exhale breathing phases to calculate 

ventilation. The assumption for calculating ventilation based on DIR-HU is that the lung 

CT voxels intensity (CT numbers) comprise a linear combination of the CT number of 

water and that of air, both assumed to be constant (0 HU and -1000 HU, respectively) and 

therefore the fraction of air within each voxel can be described by a simple linear 

function (45). Uncertainties resulting from image noise, beam hardening, scanner 

calibration, and acquisition and reconstruction artifact, can render the assumption of 

constant CT numbers for tissue and air unreliable (46,47). Using a fixed linear 

relationship for all patients may lead to inaccurate estimation of the air volume, and 

hence the ventilation. Therefore, we are proposing the incorporation of an accurate air 
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volume calculation method that finds patient’s scan-specific values for air and tissue 

intensities based on an advanced thresholding algorithm (48,49).  

In addition, the DIR-HU methods do not take into consideration the respiratory changes 

in the lung volume. On the other hand, the DIR-Jac methods calculate ventilation based 

on the determinant of Jacobian of the transformation obtained from DIR of the lung CT at 

the end-inhalation phase to the end-exhalation phase image (50). This approach assumes 

that local partial derivatives of the deformation field are related to the volume changes of 

the corresponding voxel. It does not consider changes in the voxels’ intensity that can be 

indicative of changes in the fractional air volume. A CTVI that accounts for both changes 

in voxels’ intensity and regional expansion can provide more realistic information on 

ventilation.  

We are proposing a CTVI technique that combines an accurate biomechanical model-

based DIR, with an advanced patient-specific air volume estimation algorithm. In this 

CTVI technique, we also correct for regional volume expansion based on information 

obtained from the lung biomechanical model. We evaluate the clinical utility of the 

proposed CTVI technique by qualitatively and quantitatively comparing the ventilation 

images with hyperpolarizd 3He MRI of the same patients, used in a clinical trial for 

functional avoidance planning (3).  

3.2 « Materials and Methods » 

An overview of the proposed CTVI algorithm is shown in Figure 3-1. Treatment planning 

4DCT scans of three patients (see Section 3.2.1.1 for details on data acquisition) are used 

in this CTVI study. Using a lung biomechanical model, we deformably register the end-

exhale (EE) lung CT image to the end-inhale (EI) image. The biomechanical model-

based DIR involves reconstruction of the deformed EE image. After the registration step, 

each voxel in the EI image corresponds to a voxel in the deformed EE image. These two 

images are fed into an air segmentation algorithm where the distribution of air within 

each image is found using an advanced thresholding method that incorporates the partial 

volume effect. The air distribution in the deformed EE image is then corrected with 

respect to the regional volume expansion information, obtained from the volume change 
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of corresponding finite elements calculated using finite-element (FE) analysis. The CTVI 

is then calculated as the difference between the amount of air in the EI voxels and the 

corrected amount of air in the corresponding EE voxels. In the following sections, each of 

the abovementioned steps are described in detail.  

3.2.1 Data Acquisition 

This research was performed in accordance with the institutional research ethics board 

approval. Three patients from the FLAIR trial were included in this study (3). Patients 

were diagnosed with non-small-cell lung cancer. Treatment planning 4DCT image 

sequences, 3He and 1H MR, and 3DCT scans of the patients were used in this study.  

3.2.1.1 Treatment Planning 4DCT 

A 16-slice Philips Brilliance Big Bore CT scanner (Philips Medical Systems) operating in 

helical mode was used with scan parameters: 120kVp and 400mAs/slice for tube 

potential and current, respectively. The intra-slice pixel size of the data varied from 0.98 

mm × 0.98 mm to 1.11 mm × 1.11 mm among patients, and the slice thickness was 3 

Figure 3-1. The proposed CTVI workflow. The peak-inspiration CT scans are registered 

using the biomechanics-based DIR. The air segmentation algorithm finds the partial 

volume of air in each scan after registration. The regional volume expansion is corrected 

for before the CTVI is calculated as the difference between air volumes in end-inhale and 

end-exhale voxels.  
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mm for all scans. The 4DCT images were sorted into 10 respiratory phases using the 

Real-time Position ManagementTM system. 

3.2.1.2 MR Image Data Acquisition 

MR imaging was performed using a whole body 3.0 T MR750 system (GE Health Care, 

Milwaukee, WI) using a gradient amplitude of 1.94 G/cm and a single channel, rigid 

elliptical transmit/receive chest coil (Rapid Biomedical GmbH, Wuerzburg, Germany). 

3He gas was prepared using a polarizer system (HeliSpin, Polarean, Durham, NC, USA) 

where polarization levels of approximately 40% were achieved. Hyperpolarized 3He was 

diluted with medical-grade N2 gas. Subjects were instructed to inhale the 3He/N2 gas from 

functional residual capacity (FRC), from a 1L Tedlar® bag (Jensen Inert Products, FL, 

USA), and images were acquired during a 16-second breath hold. Coronal (anatomical) 

1H MRI was performed using the whole-body radiofrequency coil and 1H fast-spoiled, 

gradient-recalled echo sequence using a partial echo (16 s total data acquisition, 

repetition time [TR] =4.7 ms, echo time [TE] =1.2 ms, flip angle =30°, field of view =40 

cm, bandwidth =24.4 kHz, matrix =128 × 80, 15-17 slices, 15 mm slice thickness). 3He 

MRI static ventilation images were acquired using a fast gradient echo method using a 

partial echo (14 s total data acquisition, TR/TE/flip angle =4.3 ms/1.4 ms/7°, field of 

view =40 cm, bandwidth =48.8 kHz, matrix =128 × 80, 15- 17 slices, 15 mm slice 

thickness). More details on MRI acquisition are provided in (3). 

3.2.1.3 3DCT Scan 

Thoracic multi-detector CT images were acquired with the same breath-hold volume and 

maneuver used for MRI. Patients were scanned in the supine position during inspiration 

breath-hold from FRC after inhaling 1L of N2 gas, using a multi-detector, 64-slice 

Lightspeed VCT scanner (General Electric Health Care, Milwaukee, WI) (64 mm × 0.625 

mm collimation, 120 kVp, 100 effective mA, tube rotation time = 500 ms, pitch = 1.0). A 

spiral acquisition was used and images were reconstructed using a standard convolution 

kernel to 1.25 mm slice thickness (3). 
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3.2.2 Biomechanical Model-based DIR 

The first step of the proposed CTVI is the deformable registration of the peak-respiration 

CT image pairs. We developed a patient-specific biomechanical model of the lung to 

simulate the lung motion and deformation. Reconstruction of the moving image was 

carried out using an FE-based algorithm that finds the deformation field on voxel-level 

based on nodal displacements of the FE model.  

3.2.2.1 Patient-specific Biomechanical Model of the Lung 

A biomechanical model was developed for each patient using data of their 4DCT image 

sequence. In the following, major components of the biomechanical model are described.  

The geometry of the lung at the relaxed state, i.e. at the EE phase, was used to generate 

the reference geometry. For this purpose, an automated segmentation algorithm was 

developed based on a Fast-Marching algorithm. The segmentation was validated using 

the radiation treatment planning contours provided by the radiation oncologist. The lung 

FE meshes with 8-node hexahedral elements (Figure 3-2) were generated using the IA-

FEMesh software package (Musculoskeletal Imaging, Modeling, and EXperimentation: 

MIMX, the University of Iowa, Iowa city, IA, USA) from the 3D lung model obtained 

from segmentation at the EE phase.  

The lung expansion from the reference geometry (at EE) to EI is attributed to 1) a drop in 

the transpulmonary pressure (originally caused by an expansion in the chest cavity), and 

2) the diaphragm contraction. Accordingly, to simulate the lung motion/deformation 

during respiration in a physiologically-realistic manner, we model these two mechanisms. 

To model the transpulmonary pressure, we are applying a negative pressure gradient on 

the surface of the mesh, with its amplitude described by:  

 𝑃(𝑦) = 𝑃1 + 𝑃2 × 𝑦, (1) 

where 𝑦 is the normalized anterior-posterior (AP) location of each surface element’s 

center of mass (0 ≤ 𝑦 ≤ 1). The parameters 𝑃2 and 𝑃1 are the linear gradient’s slope and 

the minimum pressure at the posterior-most location on the lung surface, respectively. 
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The assumption of having increasing pressure amplitude in the anterior direction is made 

to simulate patient’s breathing condition in supine position when the CT is acquired. 

Because accurate values for 𝑃1 and 𝑃2 are unknown for each patient (unless measured 

invasively), they are found through an inverse-problem formulation which aims at 

maximizing the modelling accuracy (the inverse problem is explained at the end of this 

section). To model the effect of the diaphragm contraction on the expansion of the lung, 

we extracted the deformation of the diaphragm-lung interface using a free-form 

deformable image registration algorithm. The displacement field at the diaphragm-lung 

interface is then applied to the bottom surface of the FE mesh as prescribed displacement 

Figure 3-2. Models geometry. The top row figures (a-1, b-1, and c-1) show the lung 

finite element meshes for the three patients at the end-exhale phase. The bottom row 

figures (a-2, b-2, and c-2) show the deformed geometries of the same cases after FE 

analysis. The mesh elements are color-coded according to the magnitude of 

displacements in mm.  

(a-1) (b-1) (c-1) 

(c-2) (b-2) 
(a-2) 
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boundary conditions (BCs) to model the lung expansion caused by the diaphragm 

activity. The quality of the treatment planning 4DCT is usually impaired by motion 

artifacts, especially around the diaphragm surface. To make sure our model is robust to 

changes in the image quality, we used our previously described method to correct for the 

underestimated diaphragm displacement field caused by motion artifacts (explained in 

Chapter 2).  Briefly, a correction factor, 𝜅𝐶𝐹(𝑦), was multiplied by the superior-inferior 

component of the displacement vectors obtained from free-form registration. 𝜅𝐶𝐹(𝑦) 

depends on the AP coordinate (𝑦) of the node where the displacement is applied, and it 

increases quadratically in the posterior direction. The minimum value of 𝜅𝐶𝐹 is 1, and its 

maximum value is optimized using the inverse-problem formulation described later in 

this section.  

The degree of freedom of the lung motion is limited in some surface areas (e.g. near the 

apex and in some areas of lung-ribs interfaces). We use a semi-automatic segmentation 

algorithm that extracts such surface areas that have very limited motion and constrain 

their degrees of freedom from the 4DCT image information for each patient (for more 

information, see Section 2.2.2.2). Fixed BCs were applied to the FE nodal points of those 

areas.  

As for the mechanical properties, taking into account the large deformation of the lungs 

during respiration and based on the results published in previous studies on lung 

parenchyma mechanical testing and material properties modeling (42,51,52), the lung 

tissue was modeled as hyperelastic, described by Yeoh strain energy density function 

(53). Where applicable, we segmented the tumor from the CT image at the EE phase, and 

identified the location of the tumor in the lung mesh. We modeled the tumor as linear 

elastic material. 

To estimate the patient-specific parameters of the lung biomechanical model that are not 

directly measured, i.e. the parameters defining the pressure (𝑃1 and 𝑃2) and 𝜅𝐶𝐹, an 

inverse-problem formulation was developed. This optimization step aims at maximizing 

the normalized mutual information (NMI) between the deformed image after the FE 

analysis and the target image (segmented lung at the EI phase), as well as minimizing the 
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distance between the simulated and actual lung surfaces. The same lung segmentation 

algorithm used for EE CT image was employed to segment the lung from the CT image 

at the EI phase. Details on the cost function, the initial values, and the convergence 

criteria are provided in Section 2.2.3. The optimized parameters are used to obtain the 

final displacement field for the FE mesh nodes. The optimization framework was 

developed in MATLAB (MathWorks, USA), and ABAQUS/Standard 6.14 (Dassault 

Systèmes Simulia Corp., Providence, RI, USA) was used as the FE solver.  

3.2.2.2 Image Reconstruction 

To calculate NMI during optimization and to reconstruct the deformed moving image 

(deformed EE image) after final FE analysis, we need to calculate the deformation field 

at the voxel-level from the displacement field defined at the FE mesh nodes. There exist 

interpolation techniques such as spline-based methods (thin plate spline, cubic spline, 

etc.) that can interpolate values at any point (voxels) from known function values at the 

control points (FE nodal points) (54–56). However, these methods can generate 

unrealistic and/or unphysical displacement fields (57). As an alternative approach, we 

utilized the FE shape functions defined for 8-node hexahedral elements to find the 

displacement of any voxel inside a given element from the displacements at the nodes of 

the element. The shape functions are defined as Lagrange interpolation in the element’s 

natural coordinates. This implies that to find the displacement of each voxel within an 

element from the nodal displacements, the location of the voxel in the corresponding iso-

parametric representation of the encompassing element is required. Although the 

transformation from the iso-parametric representation to the physical coordinates is 

known, the inverse mapping that is required to find the voxel’s natural coordinates is not 

trivial. We used a novel method designed and implemented by our group that finds the 

mapping from physical space to iso-parametric (natural) coordinates through an inverse-

problem formulation.  

3.2.2.3 Evaluation of the Biomechanical Model-based DIR 

The high accuracy of the biomechanical model for lung and tumor motion/deformation 

estimation was previously reported in Chapter 2 (see Section 2.3). To further evaluate the 
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performance of the proposed biomechanical model-based DIR algorithm for the patients 

included in this study, we identified approximately 40 landmark pairs at the bifurcation 

points on the EE and EI images. These landmarks were used to calculate the landmarks 

registration error (LRE). We also measured the Hausdorff surface-to-surface distance 

between the reconstructed and target lung surfaces.  

We compared the performance of our biomechanics-based registration with intensity-

based DIR. We used an off-the-shelf free form deformable registration algorithm to 

register the EE scan to the EI scan.  

3.2.3 Air Segmentation Algorithm 

In the proposed CTVI algorithm, the ventilation metric is defined as the change in the air 

volume at each voxel between EI and EE. After the registration step where the 

correspondence between the voxels in the EE and EI images is found, the amount of air 

in each voxel at both phases is required. For this purpose, we used a slightly modified 

version of an advanced thresholding algorithm previously developed in our lab (48). The 

accuracy of the air volume estimation is highly dependent on the values denoting air and 

tissue intensities. Therefore, instead of using fixed values of -1000 HU and 0 HU for air 

and tissue intensities, this algorithm finds patient-specific values to reduce the 

uncertainties associated with variable CT scanner parameters or image artifacts.  Firstly, 

two threshold values are initialized based on the combined histogram of EI and EE lung 

images (Figure 3-3) and are used to classify the voxels in the segmented lung images into 

3 groups: 1) entirely air voxels, 2) voxels containing air and soft tissue, and 3) entirely 

tissue voxels (Figure 3-3(a)). The threshold values were then optimized based on mass 

conservation law and soft tissue (e.g. alveoli wall tissue) incompressibility assumption. 

More details on the threshold initialization and optimization can be found in (48). The air 

volume in voxels in class #1 is the same as the voxel volume and is zero in class #3 

voxels. For voxels in the class #2, the partial volume of air (𝑃𝑉𝐴) in each voxel is 

calculated as:  

 
𝑃𝑉𝐴 = 

𝐼𝑡𝑖𝑠 − 𝐼𝑣𝑜𝑥

𝐼𝑡𝑖𝑠 − 𝐼𝑎𝑖𝑟
 ,  (2) 
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where 𝐼𝑎𝑖𝑟 and 𝐼𝑡𝑖𝑠 are the average intensity of the voxels in class #1 and #3, respectively. 

Multiplying 𝑃𝑉𝐴 with the voxel volume yields the air volume inside the voxel.  

We generate the air distribution maps for the segmented lung image at the EI phase, and 

the deformed EE image after registration using the air segmentation algorithm (Figure 

3-1). The high accuracy of the air segmentation algorithm has been demonstrated using 

both in-vivo and ex-vivo studies (48). 

3.2.4 Correcting for Regional Volume Expansion 

The air ventilation in the lungs is driven by two mechanisms, the regional volume 

expansion and the consequent increase in the amount of air. To obtain a physiologically 

relevant surrogate of ventilation using CT images, it is important to include the effect of 

both mechanisms. In the proposed CTVI algorithm, for the purpose of registration and to 

enable calculation of the change in the air volume, we reconstruct the deformed EE 

image with voxels corresponding to that of the EI image. Because the lung volume at the 

EI phase is larger, the deformed EE image is expanded to match that of the EI. Therefore, 

Figure 3-3. Finding initial thresholds for air segmentation. (a) The combined histogram 

of end-inhale and end-exhale histograms. The two initial thresholds divide the histogram 

to 3 regions, air only voxels, air combined with tissue voxels, and tissue only voxels. (b)  

The initial thresholds are found as points where the end-inhale and end-exhale 

histograms cross. 

(b) (a) 
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to obtain a more accurate estimation of the air volume at the EE phase, the amount of air 

found from the deformed EE image at each voxel using the air segmentation algorithm 

must be corrected by the ratio by which the volume was regionally expanded to match the 

EI image. We obtain the regional expansion ratio from the change in the volume of the 

mesh elements after analysis. As described in Section 3.2.2.2, we can locate the voxels 

inside the FE mesh by inversely mapping physical coordinates to the iso-parametric 

space. When the corresponding mesh element is found for a voxel, the regional expansion 

at that voxel is defined by: 

 
𝛼𝑣𝑜𝑥 = 

𝑉𝑜𝑙𝐸,𝑑𝑒𝑓

𝑉𝑜𝑙𝐸,𝑜𝑟𝑖𝑔
 ,  (3) 

where the 𝛼𝑣𝑜𝑥 is the volume expansion ratio for the voxel 𝑣𝑜𝑥, 𝑉𝑜𝑙𝐸,𝑑𝑒𝑓 is the volume of 

the mesh element 𝐸 after the FE analysis, and the 𝑉𝑜𝑙𝐸,𝑜𝑟𝑖𝑔 is the original volume of the 

mesh element 𝐸.  

3.2.5 Generating the CTVI 

Having the corrected air distribution map at the EE phase, and the corresponding air 

distribution map at the EI phase, we can obtain the CTVI from the difference in the air 

volume distribution. We also generated refined ventilation maps by lowpass filtering 

(Gaussian, 𝜎 = 1) and/or binning (3 × 3 × 3, full binning) the air distribution maps (both 

at EI and EE), to rectify the uncertainties caused by the small registration errors. 

3.2.6 Comparison of the CTVI with Hyperpolarized Gas MRI 

We used the 1H and 3He MR images available in the FLAIR dataset to compare our 

proposed CTVI with the MR ventilation. As described in Section 3.2.1, the breathing 

maneuver during image acquisition is different for treatment planning 4DCT and 3He 

MRI. The MR images were acquired during breath-hold at FRC + 1L, while the 4DCT 

scans were acquired at free breathing condition. To reduce the impact of the differences 

in the breathing maneuver and hence facilitate the comparison between the CTVI 

generated at the EI phase of 4DCT and the MRI, we used the breath-hold 3DCT 

(performed at the same volume as the 3He MR) to co-register the CTVI to MR images. 
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An off-the-shelf free-form deformable registration was used in Insight Toolkit (ITK; 

https://itk.org). 

To compare the CTVI with the 3He MRI quantitatively, we considered two categories of 

well-ventilated (> 25th percentile) and poorly ventilated (0th – 25th percentile) (58). We 

calculated the Dice similarity coefficient between the co-registered 3He MRI and CTVI 

for each of the poorly and well-ventilated regions.  

3.3 « Results » 

3.3.1 Biomechanical Model-based DIR Accuracy  

The accuracy of the proposed biomechanical model for lung and tumor 

motion/deformation has been previously validated (see Section 2.3). The FE-based 

reconstruction algorithm was evaluated by comparing the absolute difference image 

between the segmented lung images at EE and EI before, and after registration. The 

deformed EE images were reconstructed using the FE-based method described in Section 

3.2.2.2. Figure 3-4 illustrates the accuracy of the registration qualitatively, showing the 

EE image, EI image, reconstructed EE image, and difference images before and after 

registration for an arbitrary axial slice for one of the cases. We qualitatively compared the 

difference image after registration using our biomechanical model-based method and an 

off-the-shelf intensity-based DIR algorithm. Our biomechanical model-based DIR shows 

considerably higher performance.  

The deformed EE image was also reconstructed using thin plate spline (TPS) to compare 

its performance with that of the FE-based reconstruction. Beside the superior 

performance of the FE-based reconstruction over TPS closer to the lung peripheries 

where the TPS extrapolation generated unrealistic and non-physical deformation fields, 

the results were almost identical elsewhere. This highlights the importance of using the 

mechanics-based methods if a more accurate and finer displacement field at the voxel-

level from the FE mesh nodal displacements are desired. For quantitative assessment of 

the accuracy of the DIR method, LRE was calculated for each subject before and after 

registration using ~40 pairs of landmarks identified at bifurcation points (Table 3-1).  

https://itk.org/
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Table 3-1 Target registration error between EE and EI scans using ~40 landmarks, before 

and after FE-based registration. 

Patient # Before Registration (mm) After Registration (mm) 

1 8.30 ± 4.80 1.97 ± 0.58 

2 7.01 ± 4.50 2.35 ± 0.75 

3 8.81 ± 5.07 2.44 ± 1.05 

Figure 3-4. An example of the registration. (a) Moving image (EI), (b) target image 

(EE), (c) Resampled image (deformed EI image, to match EE), (d) difference image 

before registration, (e) difference image after registration using intensity-based DIR, and 

(f) the difference image after registration using biomechanical model-based DIR.  

(a) (b) (c) 

(d) (e) (f) 
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3.3.2 CTVI and Qualitative Comparison with 3He MRI 

The proposed CTVI algorithm was used to generate ventilation images for the 3 subjects. 

Figure 3-5 shows the 3He MRI overlaid on the proton MR (blue) and the corresponding 

CTVI overlaid on CT (heatmap). The coronal slices were chosen arbitrarily. As explained 

in Section 3.2.6, the MR scans are co-registered to the 4DCT and the figure shows the 

closest CTVI coronal slices to the MR slices after co-registration. The 3He MR images 

show the distribution of inhaled 3He gas in the lung and the CTVIs show distribution of 

air exchanged from EI to EE (i.e. ventilation). As shown in the Figure 3-5, the 3He MRI 

agrees well with the corresponding CTVI slices for all cases, while some discrepancies 

exist between them. The extent to which the 3He MR agrees with the CTVI appears to be 

(a-1) (a-2) (a-3) (a-4) (a-5) (a-6) 

(b-1) (b-2) (b-3) (b-4) (b-5) (b-6) 

(c-1) (c-2) (c-3) (c-4) (c-5) (c-6) 

Figure 3-5. Comparison of the 3He MR and CTVI, both overlaid on CT. Each row 

compares 3 coronal slices of one patient, (a) patient #1, (b) patient #2, and (c) patient #3.   
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different for each patient. For example, in patient #1 the agreement between the two 

modalities appear to be higher than that in patient #2. In addition, in all patients, the 

discrepancies mostly occurred in points closer to the inferior regions closer to the 

diaphragm, and in some cases at the top right. The disagreement between hyper polarized 

MR and CTVI in these lower regions has been shown to be attributed to differences in the 

breathing maneuver exercised when the images are acquired (58). The co-registration 

between the MR and 4DCT is conducted using an off-the-shelf intensity-based DIR, and 

therefore introduces some uncertainties to the 3He MR-CTVI comparison. The MR-

4DCT is responsible to reduce the impact of the difference in the breathing maneuver 

(a-1) (a-2) (a-3) 

(b-1) (b-2) (b-3) 

(c-3) (c-2) (c-1) 

Figure 3-6. Comparing the breathing maneuver. Rows (a), (b), and (c) correspond to 

patients #1, #2, and #3, respectively. The first column shows a slice of the 3DCT, taken 

at the same inspiration volume as MR, second column shows the corresponding slice on 

4DCT, acquired at tidal volume, and the third column is the absolute difference image of 

the two.  
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between the two modalities. Figure 3-6 shows the difference image between the 4DCT 

and the 3DCT (obtained at the same inspiration volume as MR). We can see some 

expansion at the top of the lung while the difference is the most predominant at and close 

to the diaphragm. Comparing the difference images of the patients, we can see that 

patient #3 shows the highest difference between the 4DCT inspiration volume and 3DCT 

(or MR) inspiration volume.  

3.3.3 Quantitative Comparison with 3He MRI 

The Dice similarity coefficients between the 3He MR and CTVI for each of the well- and 

poorly ventilated regions were calculated, as shown in Figure 3-7. Patient #1 shows the 

best agreement between the two modalities in both well-ventilated and poorly ventilated 

regions, while patient #3 shows the lowest agreement. The lower agreement for patient 

#3 compared to the other two cases can be attributed to the highest difference in the 

inspiration volumes of 4DCT and 3He MR. 

3.3.4 Discussion and Conclusions  

Lung ventilation imaging is of growing interest in the biomedical community for its 

potential to improve radiation therapy treatment planning, and hence the effectiveness 

Figure 3-7. The Dice similarity coefficient between 3He MR and CTVI for poorly 

ventilated and well-ventilated regions for the three patients. 
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and safety of radiation therapy for lung cancer patients. Due to the widespread use of 

4DCT for lung cancer therapy, incorporation of CTVI to radiation therapy treatment 

planning has become feasible. In this study, we proposed a novel CTVI technique that 

combines an accurate biomechanical model-based DIR with an advanced air 

segmentation algorithm. We validated the CTVI images generated using our proposed 

technique by comparing them with their hyperpolarized gas distribution map counterparts 

obtained using 3He MR imaging, both qualitatively and quantitatively.  

Firstly, we demonstrated good spatial agreement between the CTVI and 3He MR by 

comparing the images qualitatively. We observed some disagreements between the two, 

which can be attributed to the difference in the breathing maneuver that has been shown 

to largely impact the generated CTVI (58). In addition, it is noteworthy that 3He MR and 

CTVI are representatives of different surrogates of ventilation; 3He MR shows the 

distribution of 1L of hyperpolarized gas in the lungs that is inhaled from functional 

residual capacity (and held for 15 seconds) while CTVI maps the change in the local 

volume of air during tidal breathing. Considering that the 4DCT images and the MR 

images were taken approximately a week apart, the discrepancies are not expected to be 

related to disease progression.  

Unlike the CTVI algorithms that rely on intensity-based DIR, our algorithm was not 

sensitive to 4DCT image artifacts that happen near or on the diaphragm surface. This is 

because of the robustness of the biomechanical model-based DIR to the 4DCT artifacts, 

as explained in 2.3.2.  

This study is a proof of concept, performed on a small number of patients. The results of 

the study are promising and suggest that a larger scale study is required to further validate 

the outcome of this study. Furthermore, comparison of our CTVI algorithm against other 

available CTVI methods is an important step for validation. Until recently, there has not 

been a common validation tool for different CTVI techniques. Kipritidis et al. (27) 

recently published the results of a multi-institutional study for validation of CTVI 

methods (VAMPIRE study) using different reference modalities that are clinically 

accepted for ventilation imaging. Various CTVI methods from seven research groups 
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were included in this study, most of which used intensity-based DIR for registration of 

peak-respiration CT scans. The ventilation metrics included DIR-Jac, DIR-HU, and two 

hybrid ones.  The results of this study demonstrated that the extent of agreement 

(represented by measures of correlation or overlap) between different ventilation imaging 

modalities are not only dependent on the CTVI technique used, but also highly on the 

reference modality and the imaging subject (27). In this study, a biomechanics-based DIR 

that used the maximum principle stress as the ventilation metric showed highest 

correlation with nuclear medicine modalities (Galligas PET and DTPA-SPECT). The 

Dice similarity coefficients were reported as: median Dicelow = 0.52, range Dicelow = 

0.36-0.67, for low ventilation regions, and median Dicehigh = 0.45, range Dicehigh = 0.28-

0.62 (27). Although these values cannot be directly compared to the results of our study 

(different reference modality, different subjects and sample size, etc.), they demonstrate 

that the accuracy of our CTVI algorithm is similar to some of the best current CTVI 

algorithms and encourages future studies using our proposed CTVI technique. Finally, 

these findings highlight the promise of biomechanical models in DIR applications and 

their importance in advancing CTVI methods.  
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Chapter 4  

4 « Conclusion and Future Work » 

In this thesis, we described the development of an accurate lung biomechanical model 

and its applications towards improving radiation therapy for lung cancer treatment. Two 

major applications of the model are tackled, including tumor motion/deformation 

compensation and CT based ventilation imaging. These applications were presented in 

Chapters 2 and 3 of this thesis. A summary and concluding remarks for each chapter are 

given below as closure.  

4.1 Chapter 2 

In Chapter 2, we described the development of a heterogeneous lung biomechanical 

model for motion and deformation estimation of the lung and the tumor. The accuracy of 

the proposed lung biomechanical model for tumor tracking was validated using measures 

of similarity and distance. In this study, we investigated the effect of incorporating the 

heterogeneities in the lung mechanics caused by COPD phenotypes on the tumor motion 

and deformation estimation accuracy. While the lung tissue homogeneity assumption for 

lung mechanics demonstrated fairly good performance for cases with less COPD severity, 

the heterogeneous tissue modeling alternative proved necessary to achieve high tumor 

motion/deformation estimation accuracies for cases that suffered from moderate to severe 

COPD. Another factor that influenced the accuracy gain achieved through utilizing the 

heterogeneous lung model is the proximity of pathological tissue to the tumor. The closer 

the pathological tissue to the tumor the higher the impact of utilizing the heterogeneous 

lung model. The results of the heterogeneous model for all cases showed promise of this 

biomechanical model for incorporation into radiation therapy applications, including but 

not limited to the biomechanics-based real time tumor tracking workflow designed by our 

group and explained in Section 1.3.5. 

The impact of incorporating COPD-induced heterogeneity on tumor motion and 

deformation accuracy was shown to be dependent on the extent and distribution of COPD 

phenotypes. Considering the higher computation time and cost of developing a 
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heterogeneous model compared to a homogeneous one for a patient, this observation 

encourages a study that aims at predicting whether a patient is likely to benefit from a 

heterogenous tissue model, or a homogeneous tissue model would provide sufficiently 

high accuracy, based on pertinent information from 4DCT.  

We acknowledge a number of limitations of this study. The number of patients included 

in this study was small. A larger scale study has to be carried out to further validate the 

observations of this study and more importantly to enable statistical analysis on the 

results (e.g. whether or not the improvement resulting from incorporating the tissue 

heterogeneous mechanical properties are statistically significant). To incorporate this 

model into a biomechanics-based real time tracking system, the FE analysis needs to be 

accelerated. This can be achieved through parallel processing using GPU architecture or 

by employing reduced FE model strategies to speed up the computation model 

processing. The training of a predictive model that facilitates tumor tracking using the 

information from chest surface motion data requires representation of the loading and 

boundary conditions in a compact form as explained in (1).  

4.2 Chapter 3 

In Chapter 3, we described the application of the heterogeneous lung biomechanical 

model in combination with an advanced air segmentation algorithm in generating 4DCT-

based ventilation maps. Since 4DCT has become part of the standard of care for lung 

cancer treatment in many centers, the proposed ventilation imaging algorithm has 

potential clinical applications for treatment planning. The potential higher resolution of 

CTVI compared to other ventilation imaging modalities can have clinical impacts for 

patients who are scheduled for intensity modulated radiation therapies and/or radiation 

therapy with ablative doses (SBRT) (2). The accuracy of the 4DCT ventilation maps were 

evaluated by comparison with 3He MR scans taken from the same patients. Results of 

qualitative and quantitative comparison of the 3He MR with our proposed CTVI 

technique are promising and warrant further investigation into improving its performance 

before carrying out a larger scale study.  
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We hereby acknowledge a number of the study limitations. Firstly, the small number of 

patients limits the statistical power of the study. A larger scale study that includes 

patients with different cancer stages, tumor locations/sizes, and comorbidity severities is 

required to further validate the findings of this study. In addition, SPECT is one of the 

reference modalities that is widely used for ventilation and it is important to compare our 

proposed CTVI and the acquired 3He MR against the SPECT scans of the same patients 

(3–8). The choice of the CTVI algorithm has also been shown to impact the results of 

comparison with the reference modalities (9–12). Therefore, different CTVI algorithms 

should be used and compared against each other and the reference modalities (such as He 

MR or SPECT) to determine which CTVI method offers better physiological 

correspondence with SPECT or He MR scans.  

Ventilation is only one surrogate for lung function. In functional avoidance planning 

applications, it is important to also consider other representations of lung function, 

including perfusion and diffusion (4,13–18). Ventilation to perfusion ratio in particular is 

an important representation of lung function that can be used to improve functional 

avoidance planning (13,19). Therefore, for functional avoidance therapies it is important 

to complement the information obtainable from ventilation imaging (e.g. from CTVI) 

with maps of distribution of perfusion and/or diffusion to have a more accurate and 

realistic assessment of lung regional function.  
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