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Abstract 

A striking way that humans differ from other species is our unique ability to represent and 

manipulate symbols. This ability to process numerical magnitudes symbolically (e.g., ‘three’, 

‘3’) is widely thought to be supported by an ancient system that evolved to process 

nonsymbolic numerical magnitudes (i.e., quantities).  In this thesis, I present four empirical 

studies to uncover whether symbolic representations are indeed supported by the system that 

evolved to process quantities, or if symbolic representations are sub-served by a similar but 

ultimately distinct system.  

In experiments 1 and 2, I investigate how the adult brain processes symbols and quantities 

using quantitative neuroimaging meta-analytic techniques (Experiment 1), and a tightly 

controlled fMRI paradigm (experiment 2). Results from the meta-analysis indicate that 

symbols and quantities are sub-served by both common and distinct brain regions along the 

frontal-parietal lobes. However, using a tightly controlled adaptation paradigm to isolate 

brain regions that underpin symbols and quantities reveal that regions supporting symbols are 

quite distinct from those supporting quantities, spatially and representationally. Thus, 

symbols might not be processed using the system that evolved to process quantities. 

In experiment 3, I examine whether the processing of symbols is similar to quantities under 

different attentional conditions.  I discover that in addition to participants being more 

efficient at effortfully comparing symbols than quantities, embedding distracting symbols 

into stimuli during a quantity comparison task affected performance more than embedding 

quantities into a symbolic comparison task. This indicates that symbols and quantities are 

processed differently, under different attentional conditions, and therefore are likely sub-

served by different representational systems. 

In experiment 4, I investigate the origin of the difference between how humans process 

symbols and quantities by exploring whether children’s symbolic number knowledge relates 

to their spontaneous attending to quantities. I find that children are more likely to attend to 

quantity if they know the number word that corresponds to the quantity, suggesting that 

learning symbols may influence how children conceptualize quantities. 



 

 

 

In summary, while there are some similarities in how humans process symbols and 

quantities, there are many important differences both behaviourally, and the neural level of 

organization. Consequently, these findings challenge the longstanding belief that the 

culturally acquired ability to conceptualize numbers symbolically is grounded in the ancient 

system that evolved to estimate quantities. 

Keywords 

Symbolic numerical magnitude, nonsymbolic numerical magnitude, non-numerical 

magnitude, functional magnetic resonance imaging (fMRI), human uniqueness, cognitive 

development,  

 

  



 

 

 

Summary for Lay Audience 

The uniquely human ability to think about numbers as symbols sets us apart from other 

species that can only think about numbers nonsymbolically (i.e., quantities, such as 

collections of dots). How does the human brain support this exceptional ability to 

conceptualize numbers symbolically?  Are the ancient systems that evolved to estimate 

quantities repurposed for symbolic thinking? I examine similarities and differences in how 

humans think about symbolic numbers compared to quantities.   

I explore whether the parts of the adult human brain that are activated in response to 

symbolic numbers are also activated in response to quantities. Specifically, I 1) synthesize 

previous research that examines brain responses to symbols and quantities to identify 

consistencies across these studies and 2) collect measures of brain activation while 

participants passively view symbols, quantities, and physical sizes.  I discover that brain 

regions that are associated with thinking about numbers symbolically are quite distinct from 

brain regions that evolved to understand quantities.  

Subsequently, I examine whether the similarities and differences between thinking about 

symbols and quantities depend on what participants are instructed to pay attention to.  I 

discover that participants are faster and more accurate, comparing two symbols than two 

quantities.  Additionally, when participants compare quantities, they perform more poorly if 

there is a distracting symbol present.  Interestingly, the presence of a quantity when 

comparing symbols is less distracting.  Together, this work shows that how human adults 

think about symbols and quantities is quite different.  

To understand the origin of this difference I explore the relationship between how humans 

think about symbols and quantities in children, while these systems are developing. I 

examine whether having knowledge of symbolic numbers influences the degree to which 

children notice quantities in their environment. I find that children are more likely to notice 

and use quantities to solve a problem if they have learned the verbal number word that 

corresponds to the quantity.  

Discoveries from this thesis reveal that humans conceptualize symbolic numbers in a way 

that is quite distinct from nonsymbolic quantities. This indicates that humans possess a 



 

 

 

system used to process symbols that is distinct from the evolutionarily ancient system used to 

estimate quantities. Future investigations are needed to understand better how we learn 

numerical symbols over the course of our development. 
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Chapter 1  

1 General Introduction 

Contemporary society could not function without numbers. We would be unable to draft 

architectural plans, calculate the value of a currency, design engines and motors, identify 

how many calories we need to maintain a healthy weight, or even tabulate votes in a 

democratic election. Since basic number processing is a cognitive foundation that 

supports mathematical thinking, understanding the development of the behavioural and 

neural signatures of number processing provides insight into how the brain manages the 

critical and distinctly human task of understanding complex math. Moreover, as 

mathematical ability is a learned skill that builds on related, previously acquired 

knowledge, the study of numerical and mathematical processing serves as a model for 

understanding learning more broadly, across multiple domains. The examination of 

numerical processing also has important practical implications. Indeed, early 

mathematical competence is the single strongest predictor of later academic achievement 

and financial stability (Duncan et al., 2007; Romano, Babchishin, Pagani, & Kohen, 

2010). At the societal level, improving math scores is tightly linked with cross-national 

GPD growth (OECD, 2010). In direct contrast, low mathematical ability is related to 

higher rates of mental and physical illness, unemployment, and incarceration (Bynner & 

Parsons, 1996; Parsons & Bynner, 2005).   

Critically, mathematical performance of Canadian students on international math 

assessments has been on a steady decline since 2003 (Stokke, 2015). As recently as last 

year, half of grade 6 students in Ontario failed to meet provincial standards for 

mathematics (Alphonso, 2018). Thus, the study of the neuropsychological underpinnings 

of numerical processing is not only intellectually fascinating but also practically relevant 

– and urgently needed – in understanding and improving the world-wide debilitating 

effects linked to low math achievement.   

In what follows, I will introduce you as the reader to the field of numerical cognition.  As 

such, I will provide a brief overview of dominant theories relating to basic number 
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processing across developmental time.  Following this, I will summarize the current state 

of the field and present outstanding questions.  Finally, I will outline the four empirical 

studies that address these outstanding questions and comprise the body of this thesis.  

Following the conclusion of chapter 1, the four empirical studies and their results will be 

described in detail within their own chapters.  The thesis will conclude with a sixth 

chapter that integrates findings from the four empirical studies and outlines future 

directions for the field of numerical cognition.  

1.1 Nonsymbolic Numerical Magnitudes 

Humans share with other animals, such as non-human primates, birds, bears, amphibians, 

and fish, the ability to process the quantities of nonsymbolic numerical magnitudes such 

as set of objects or an array of dots (For review see: Cantlon, 2012; Dehaene, Dehaene-

Lambertz, & Cohen, 1998; Nieder & Miller, 2004). This capacity to estimate and 

discriminate between nonsymbolic numerical magnitudes often referred to as ‘number 

sense,’ has been quantified and delineated across a large body of research (Cantlon, 2012; 

Dehaene, 2007; Dehaene et al., 1998; Nieder & Dehaene, 2009). This research has 

revealed that the ability to process nonsymbolic numerical magnitudes is conserved 

across species (Brannon, 2006; Cantlon, 2012; Dehaene et al., 1998; Nieder & Dehaene, 

2009) and that it emerges early in development (Izard, Dehaene-Lambertz, & Dehaene, 

2008; Starr, Libertus, & Brannon, 2013; Xu, 2003; Xu, Spelke, & Goddard, 2005).  This 

suggests that the ability to estimate nonsymbolic numerical magnitudes has a long 

evolutionary history. One potential explanation for the phylogenetic and ontogenetic 

continuity of this ability, to process nonsymbolic numerical magnitudes, is that the 

capacity to estimate quantities supports functions that have been and are currently critical 

for survival, such as identifying regions with an abundance of food or approximating the 

number of approaching predators (Cantlon, 2012; Geary, Berch, Mann Koepke, 2015; 

McComb, Packer, & Pusey, 1994; Vonk & Beran, 2012).  Critically, it has been 

suggested that the evolutionarily ancient ability to process nonsymbolic numerical 

magnitudes may be a necessary element of the foundation that supports the capacity to 

understand numerical information.  However, humans also have developed the ability to 

represent numbers symbolically. 
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1.2 Symbolic Numerical Magnitudes 

Relatively recently in human history, a broad set of capabilities emerged that resulted in 

the uniquely human capacity for symbolic abstraction (Ansari, 2008; Coolidge & 

Overmann, 2012). In view of this, in addition to having an ancient, nonsymbolic ‘number 

sense’ that is shared among non-human species and emerges early in development, 

humans have a unique ability to represent numerical magnitudes symbolically such as 

with the verbal word ‘three’ or the Arabic digit ‘3’ (Ansari, 2007, 2008; Coolidge & 

Overmann, 2012; Kersey & Cantlon, 2017; Núñez, 2017). In direct contrast to the 

evolutionarily ancient system that evolved to support the processing of nonsymbolic 

numerical magnitudes, the uniquely human capacity to represent numbers symbolically 

emerged as a result of enculturation (Ansari, 2008; Núñez, 2017). This culturally 

acquired capacity to understand and manipulate symbolic numerical magnitudes is 

foundational for later, more advanced mathematical abilities (De Smedt, Noël, Gilmore, 

& Ansari, 2013).  

The striking way that humans differ from non-human animals in our ability to represent 

and process numerical magnitudes symbolically is undoubtedly a core element of our 

unique human capacity for higher-level mathematical thinking. A key question in the 

field of numerical cognition has been whether the ancient system(s) that evolved to 

process nonsymbolic numerical magnitudes are repurposed for symbolic thinking in 

humans (Dehaene & Cohen, 2007).  Researchers hypothesized that if the ancient systems 

that evolved to process nonsymbolic numerical magnitudes are indeed repurposed for 

symbolic thinking, then different number formats (i.e., ‘3’, ‘three’, and ‘•••’) would be 

processed in the same way (i.e., abstractly). Therefore, researchers have examined 

whether numerical magnitudes are processed abstractly, using a single format-

independent number processing system, or if the underlying representations that support 

symbolic and nonsymbolic numerical magnitude processing are format-dependent 

(Ansari, 2016; Cohen Kadosh & Walsh, 2009; Coolidge & Overmann, 2012; Dehaene et 

al., 1998).  Despite years of research, it remains hotly debated whether symbolic 

numerical thinking is rooted in the evolutionarily ancient system used to process 

nonsymbolic numerical magnitudes. 
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1.3 Number Processing is Abstract 

For decades, the dominant perspective in the field of numerical cognition has been that 

symbolic and nonsymbolic numerical quantities are processed using an evolutionarily 

ancient abstract number processing system that supports numerical magnitude processing, 

regardless of number format  (Brannon, 2006; Dehaene, 2007; Dehaene, Piazza, Pinel, & 

Cohen, 2003; Halberda, Mazzocco, & Feigenson, 2008; Nieder & Dehaene, 2009). This 

idea has been supported by findings from both behavioural and neuroimaging research in 

adult and child populations. 

This dominant view, that symbolic and nonsymbolic numbers are processed using the 

same abstract number processing system, was first supported by the finding that similar 

behavioural effects are obtained for symbolic and nonsymbolic numerical stimuli when 

participants make comparative judgements between two numerical magnitudes (Dehaene 

et al., 1998; Fias, Lammertyn, Reynvoet, Dupont, & Orban, 2003; Fulbright, Manson, 

Skudlarski, Lacadie, & Gore, 2003; Holloway & Ansari, 2009; Holloway & Ansari, 

2008; Moyer & Landauer, 1967).  Two examples of behavioural effects that have been 

reported during both symbolic and nonsymbolic numerical magnitude comparison tasks 

are the distance effect and the size effect.  The distance effect refers to the finding that 

participants are faster and more accurate when comparing numbers – be they symbolic or 

nonsymbolic – if the distance between the two numbers being compared is relatively 

large (Buckley & Gillman, 1974; Krajcsi, 2017; Moyer & Landauer, 1967). For example, 

participants are typically faster and more accurate when comparing the numerical 

magnitudes ‘2’ and ‘8’ (a distance of 6) compared to ‘2’ and ‘3’ (a distance of 1). 

Complementary, the size effect is the finding that participants are faster and more 

accurate at comparing numerical magnitudes, again both symbolic and nonsymbolic, 

when the magnitudes are smaller (e.g., 1 vs. 2) compared to larger magnitudes (e.g., 8 vs. 

9), when holding distance constant (Krajcsi, 2017; Moyer & Landauer, 1967).  Distance 

and size effects (i.e., the effects that number comparisons are easier with large distances 

or small sizes) often combined into a single effect thought to reflect both distance and 

size, referred to as the ratio effect (Krajcsi, 2017). Distance, size and ratio effects have 

often interpreted to be a measure of representational precision (Nieder & Dehaene, 2009; 
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Verguts & Fias, 2004). These reports of similar behavioural signatures for the processing 

of symbolic and nonsymbolic numerical magnitudes that have been replicated across 

many studies (Buckley & Gillman, 1974; Holloway & Ansari, 2008; Holloway, Price, & 

Ansari, 2010; Krajcsi, Lengyel, & Kojouharova, 2016; Moyer & Landauer, 1967), 

including developmental samples (e.g., Holloway & Ansari, 2008, 2009), have ultimately 

been taken as evidence of shared underlying representations (Dehaene, 2007; Dehaene et 

al., 1998).   

In addition to behavioural data in both adults and children suggesting that symbolic and 

nonsymbolic numerical magnitudes produce similar behavioural effects, researchers have 

canvassed the human brain, using neuroimaging methodologies, in search of brain 

regions that support both symbolic and nonsymbolic numerical magnitude processing 

(For review see: Sokolowski & Ansari, 2016).  Many neuroimaging studies have reported 

overlapping neural activation during symbolic and nonsymbolic numerical magnitude 

processing in adults (e.g., Holloway, Price, & Ansari, 2010; Piazza, Pinel, Le Bihan, & 

Dehaene, 2007; Pinel, Piazza, Le Bihan, & Dehaene, 2004) as well as children (e.g., 

Cantlon, Libertus, et al., 2009; Holloway & Ansari, 2010).  Regions of overlap are 

typically found along the bilateral intraparietal sulcus (hIPS). In view of this, the hIPS 

has been identified as an abstract number processing region (Cantlon, Brannon, Carter, & 

Pelphrey, 2006; Dehaene, 2007; Dehaene et al., 2003; Fias et al., 2003; Piazza et al., 

2007; Santens, Roggeman, Fias, & Verguts, 2010). Researchers have taken the finding 

that the same brain regions support different formats of numerical magnitudes to suggest 

that symbolic numerical magnitudes are processed using the ancient system that evolved 

to process nonsymbolic numerical magnitudes.  In other words, the evolutionarily ancient 

system used to process nonsymbolic numerical magnitudes has been repurposed to be an 

abstract number processing system that is used to process numerical magnitudes of all 

formats.  Together, these behavioural and neuroimaging findings in adults and children 

have led researchers to conclude that symbolic and nonsymbolic numerical magnitudes 

are represented using the same abstract number processing system.  
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1.4 Number Processing is Format-Dependent 

Although many have argued, against the background of evidence reviewed above, that 

symbolic and nonsymbolic numerical magnitudes have the same underlying 

representations, recent evidence has suggested otherwise. Indeed, a growing body of data 

has accumulated that suggests that symbolic and nonsymbolic numerical magnitude 

processing is more distinct than previously assumed (Ansari, 2007; Bulthé, De Smedt, & 

Op de Beeck, 2014; Cohen Kadosh & Walsh, 2009; Lyons, Ansari, & Beilock, 2012, 

2014; Lyons & Beilock, 2013; Sokolowski & Ansari, 2016). Here, I outline several 

important behavioural and neuroimaging findings that support this claim.  

A key study that supports the idea that symbolic and nonsymbolic numerical magnitudes 

are supported by distinct systems, examined participant’s performance on a number 

comparison task when the two stimuli being compared were either the same format (i.e., 

both symbolic or both nonsymbolic) or different formats (i.e., comparing a symbolic 

numerical magnitude to a nonsymbolic numerical magnitude) (Lyons et al., 2012). 

Critically, if symbolic and nonsymbolic numerical magnitudes are indeed supported by 

an abstract number processing system, one would predict that there would be no cost of 

mixing.  In other words, conditions during which participants compared symbolic 

numerical magnitudes to nonsymbolic numerical magnitudes should not differ 

significantly from conditions where participants compared numerical magnitudes within 

the same format.  However, results revealed that when participants directly compared a 

symbolic numerical magnitude to a nonsymbolic numerical magnitude they were slower 

and less accurate than when they compared two numerical magnitudes that were the same 

format (i.e., two symbolic numerical magnitudes or two nonsymbolic numerical 

magnitudes) (Lyons et al., 2012).  This suggests that the way that humans process 

symbolic and nonsymbolic numerical magnitudes may be more distinct than has been 

assumed. Converging recent behavioural evidence has revealed that the similar 

behavioural effects (namely the distance, size, and ratio effects) observed during 

comparison tasks for symbolic and nonsymbolic numerical magnitudes do not correlate 

with each other, and may, in fact, be produced by two distinct systems (Krajcsi, 2017; 

Krajcsi et al., 2016). Notably, the finding that ratio effects (i.e., the single effect thought 
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to encompass both distance and size effects) for symbolic and nonsymbolic numerical 

magnitude processing are not as related to each other as has been assumed has also been 

reported in a cross-sectional developmental sample (Lyons, Nuerk, & Ansari, 2015). 

Specifically, in a longitudinal sample of almost 2000 children, researchers revealed that 

the whether a child’s nonsymbolic ratio effect was significant was not predictive whether 

the same was true of that child’s symbolic ratio effect. In other words, the presence of a 

nonsymbolic ratio effect is not related to the presence of a symbolic ratio effect at the 

individual level. These findings converge with data from human adults (e.g., Krajcsi, 

2017; Krajcsi et al., 2016; Lyons et al., 2012) to suggest that perhaps symbolic and 

nonsymbolic numerical magnitudes are supported by distinct, systems that have some 

similarities that lead to similar behavioural signatures.  Krajsci and colleagues 

hypothesize that while nonsymbolic numerical magnitudes are likely represented using an 

evolutionarily ancient approximate magnitude system, symbolic numerical magnitudes 

may be supported by a discrete semantic system.  Here, the term ‘discrete’ refers to a set 

of items where each item is distinct (i.e., the quantity of an array of dots).  This is in 

contrast to the term continuous, which refers to a set that can take on any value within a 

finite or infinite interval (e.g., the amount of physical space taken up by an array of dots). 

In a discrete semantic system, representations of symbolic numerical magnitudes are 

stored as values in a semantic network, that operates similarly to a mental lexicon or a 

conceptual network (Krajcsi, 2017; Krajcsi et al., 2016). Together, these findings 

contribute to a growing body of behavioural research that suggests that symbols and 

quantities are not processed as similarly as had previously been concluded.  

In addition to the behavioural evidence, discussed above, neuroimaging studies  have 

revealed distinct neural activity supporting the processing of symbolic and nonsymbolic 

magnitudes using both traditional univariate analysis techniques as well as newer cutting-

edge multivariate approaches (Ansari, 2007; Bulthé et al., 2014; Cohen Kadosh et al., 

2011; Fias et al., 2003; Holloway et al., 2010; Lyons et al., 2014; Lyons & Beilock, 2018; 

Santens et al., 2010).  In traditional univariate analyses, a General Linear Model (GLM) 

is used to fit a model to the time course of each voxel independently within a region of 

interest or at the whole-brain level. Notably, a voxel is a 3D pixel within the brain. 

Univariate analyses provide insight into whether a set of voxels in a particular area of the 
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brain are significantly activated in relation to a particular stimulus. When using a 

multivariate analytic approach, the patterns of activation that would normally be averaged 

are analyzed and compared between conditions. More specifically, using multivariate 

analytic techniques allows for the examination and comparison of distributed patterns of 

activity within a region of interest or at the whole-brain level. Indeed, studies that include 

univariate analyses (i.e., analyses where each voxel is examined independently) reveal 

spatially distinct patterns of activation for symbolic compared to nonsymbolic numerical 

magnitudes (e.g., Bulthé et al., 2014; Lyons & Beilock, 2013).  Relatedly, studies that 

used multivariate analyses (i.e., analyses that explore patterns of activation within 

regions)  indicate that the patterns of brain activation differ greatly between symbolic and 

nonsymbolic numerical magnitude processing both within the hIPS and at the whole-

brain level (e.g., Bulthé, De Smedt, & Op de Beeck, 2014; Lyons et al., 2015). Taken 

together, these neuroimaging data indicate that there are many brain regions along the 

frontal and parietal lobes that represent numerical magnitude processing in a format-

dependent way (For review see: Sokolowski & Ansari, 2016).  Moreover, even the 

regions that exhibit spatial overlap at the univariate level typically have distinct patterns 

of activation at the multivariate level.  This more recent body of evidence highlights that 

the extent to which symbolic and nonsymbolic numerical magnitudes are processed using 

common representations should be more carefully examined.  Additional research is 

needed to unravel whether the similarities between symbolic and nonsymbolic numerical 

magnitude processing are due to the fact that these distinct formats of numerical 

magnitudes are processed using a shared abstract number processing system, or if instead 

symbolic and nonsymbolic numerical magnitudes are processed using two distinct 

systems that have some similarities. 

1.5 The Role of Non-Numerical Magnitudes 

To complicate matters further, the processing of non-numerical magnitudes (such as 

physical size, duration, and luminance) have been reported to exhibit similar effects to 

the processing of symbolic and nonsymbolic numerical magnitudes, both at the 

behavioural and the neural level (Cantlon, Platt, & Brannon, 2009; Cohen Kadosh, 

Lammertyn, & Izard, 2008; Sokolowski, Fias, Bosah Ononye, & Ansari, 2017). 
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In addition to the similarities between symbolic, nonsymbolic and non-numerical 

magnitude processing, research has shown that the stimuli that are commonly used to 

assess nonsymbolic numerical magnitude processing are inherently confounded by non-

numerical magnitudes such as the size of the dots, and density of the dots (For review 

see: Leibovich & Henik, 2013). For example, if there are four dots in one array and three 

dots in another array and all the dots are of the same size, the four dots have a greater 

total surface area than the three dots. To control for surface area, the size of the dots can 

be adjusted to equate the total surface area. However, doing this changes the density and 

the average size of the dots. Therefore, when judging which of three or four dots is 

greater, participants can use either nonsymbolic numerical magnitude, a non-numerical 

magnitude (such as surface area), or a combination thereof. Researchers have interpreted 

this data to suggest that the processing of numerical quantities is sub-served by a general 

magnitude system, rather than a system (or systems) that are specific to discrete 

numerical stimuli (Henik, Leibovich, Naparstek, Diesendruck, & Rubinsten, 2011; 

Sokolowski, Fias, Bosah Ononye, et al., 2017).  Therefore, in addition to a lack of 

conclusive evidence regarding whether symbolic and nonsymbolic numerical magnitudes 

are sub-served by a single abstract number processing system or distinct format-

dependent systems, it is also of great importance to examine how numerical the 

processing of nonsymbolic stimuli (e.g., arrays of dots) actually is, and consequently 

examine the extent to which the processing of non-numerical variables plays a central 

role in nonsymbolic numerical magnitude processing.  

1.6 The Acquisition of Symbolic Number Knowledge 

The data reviewed above suggest that representing numerical magnitudes symbolically 

involves processes that are at distinct from the way that nonsymbolic numerical 

magnitudes are processed in human adults.  These conclusions contradict the dominant 

perspective in the field of numerical cognition: that symbolic and nonsymbolic numerical 

magnitudes are processed using a single abstract number processing system.  From a 

developmental perspective, the dominant assumption in the field of numerical cognition 

would support the idea that symbolic representations are formed by mapping arbitrary 

labels onto pre-existing representations of nonsymbolic numerical magnitudes (Cantlon, 
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2012; Dehaene, 2007; Nieder & Dehaene, 2009; Piazza, 2010). However, a plausible 

alternative mechanism is that symbolic and nonsymbolic numerical magnitude processing 

are supported with similar but distinct mechanisms (Ansari, 2008; Leibovich & Ansari, 

2016). A key question that follows is: what would be the best developmental approach to 

investigating the relationship between symbolic and nonsymbolic numerical magnitude 

processing across developmental time?  

The majority of the research that has measured symbolic and nonsymbolic numerical 

magnitude processing across developmental time has compared symbolic and 

nonsymbolic numerical magnitude processing within a sample of older child participants 

who have already acquired comprehensive knowledge of the symbolic number system 

(e.g., Bartelet, Vaessen, Blomert, & Ansari, 2014; Holloway & Ansari, 2009; Holloway 

& Ansari, 2008; Lyons & Ansari, 2015; Lyons et al., 2015; Reynvoet & Sasanguie, 2016; 

Sasanguie, Defever, Maertens, & Reynvoet, 2013). As with the adult data, this data 

seems to suggest that symbolic and nonsymbolic numerical magnitudes are not as linked 

as has been previously assumed and may, in fact, be supported by distinct mechanisms.  

However, a key developmental approach for investigating the relation between symbolic 

and nonsymbolic representations of numerical magnitudes is to probe at the link between 

symbolic and nonsymbolic numerical magnitude processing during the developmental 

window where children are in the process of acquiring symbolic number knowledge 

(Batchelor, Keeble, & Gilmore, 2015; Dehaene, 2007; Gunderson et al., 2015; Le Corre 

& Carey, 2007; Mix, 1999, 2008; Mussolin, Nys, Leybaert, & Content, 2014; Negen & 

Sarnecka, 2015; Shusterman et al., 2016, 2017; Slusser & Sarnecka, 2011; Slusser, Ditta, 

& Sarnecka, 2013; Wagner & Johnson, 2011).  Before I describe the findings from 

research examining the link between learning the meaning of symbolic numerical 

magnitudes and nonsymbolic numerical magnitude processing I will briefly outline the 

developmental process of acquiring symbolic number knowledge.  

Learning the meaning of symbolic numerical magnitudes is a slow process that typically 

takes children several years to master.  Children acquire the ability to recite the count 

sequence, procedurally, before understanding the semantic meaning of number words and 

Arabic digits (Karen Wynn, 1990, 1992).  Typically, it takes children two to three years 
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from the time they master the count sequence to master the principle of cardinality (often 

referred to as the cardinal principle (CP)): that the last number word that is stated when 

counting a set refers to the total quantity of objects within that set (Gelman & Gallistel, 

1978). The gradual process of acquiring the cardinal principle (i.e., becoming a cardinal 

principle knower) is as follows. First, children do not know the cardinal meaning of any 

number words and are consequently referred to as “pre-knowers.” Following this, 

children learn the meaning of small number words (i.e., numbers one to four) in a step-

wise manner (Wynn, 1992).  Children who know the meaning of the word ‘one’ and are 

referred to as “one-knowers.”  Several months later, children learn the meaning of the 

word ‘two’ and therefore have progressed to being “two-knowers”.  Subsequently, over 

time children become “three-knowers,” and some studies report the presence of “four-

knowers.”  This set of children who know the meaning of some small verbal number 

words (i.e., words one to four), but have not yet mastered the principle of cardinality (i.e., 

they do not understand that all number words in their count sequence refer to specific 

numerical magnitudes and that the last number counted refers to the total quantity of 

items in a set) are collectively referred to as “subset-knowers.’  Children who have 

learned the cardinal principle (i.e., CP-knowers) are qualitatively different from subset-

knowers in that they can generate cardinality for all numbers using their knowledge of the 

cardinal principle (Le Corre & Carey, 2007).  It is only once children have learned the 

cardinal principle that they are considered to have a preliminary understanding of the 

meaning of symbolic numerical magnitudes. 

Research exploring the link between learning the semantic meaning of symbolic 

numerical magnitudes and the ability to process nonsymbolic numerical magnitudes has 

resulted in mixed findings (e.g., Batchelor, Keeble, & Gilmore, 2015; Dehaene, 2007; 

Gunderson et al., 2015; Le Corre & Carey, 2007; Mix, 1999, 2008; Mussolin, Nys, 

Leybaert, & Content, 2014; Negen & Sarnecka, 2015; Shusterman et al., 2016, 2017; 

Slusser & Sarnecka, 2011; Slusser, Ditta, & Sarnecka, 2013; Wagner & Johnson, 2011). 

Indeed, some research indicates there is a link between children’s symbolic number 

knowledge and their ability to discriminate between nonsymbolic numerical magnitudes 

(e.g., Wagner & Johnson, 2011) whereas other research has indicated that children’s 

ability to process nonsymbolic numerical magnitudes is independent of that child’s 
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developing understanding of the meaning of symbolic numbers (Le Corre & Carey, 2007; 

Negen & Sarnecka, 2015).   

This body of research that has examined the link between symbolic and nonsymbolic 

numerical magnitudes during the developmental window where children are acquiring 

symbolic number knowledge (i.e., learning verbal number words) does not entirely 

support the assumption, based on the dominant perspective in the field of numerical 

cognition, that symbols are learned by mapping arbitrary labels onto a pre-existing 

evolutionarily ancient system used to processing nonsymbolic numerical magnitudes 

(Dehaene, 2007, 2008; Shusterman et al., 2016; Wagner & Johnson, 2011). More 

specifically, findings that suggest that preschool-age children’s nonsymbolic numerical 

magnitude processing abilities correlate with early symbolic number abilities (e.g., 

Mussolin et al., 2014; Wagner & Johnson, 2011) have been taken as support for the idea 

that children learn abstract number symbols by attaching the arbitrary number symbol 

onto a pre-existing nonsymbolic numerical magnitude representation. However, there is a 

growing body of evidence that contradicts this dominant assumption (For a 

comprehensive review see: Leibovich & Ansari, 2016; Merkley & Ansari, 2016). For 

example, research has reported that some children can count out an exact number of 

objects when asked to do so but did not use the corresponding number words when asked 

to map verbal number words onto nonsymbolic numerical magnitudes (Le Corre & 

Carey, 2007). Relatedly, when the nonsymbolic numerical magnitude processing task is 

modified to make sure that children respond on the basis of numerical magnitude (rather 

than correlated non-numerical magnitude cues), the correlation between verbal number 

knowledge and nonsymbolic numerical magnitude processing abilities in typically 

developing children disappears (Negen & Sarnecka, 2015). These data suggest that the 

link between symbolic and nonsymbolic numerical magnitude processing is not as 

straightforward as previously assumed. Consequently, these data have driven researchers 

to question whether there is indeed a causal, developmental relationship between 

nonsymbolic numerical magnitude processing and the acquisition of the capacity to 

conceptualize numbers symbolically (Barner, 2017; Merkley & Ansari, 2016).  
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An alternative explanation that may explain the link between nonsymbolic number 

processing and the acquisition of the cardinal principle in young children is that learning 

the cardinality of symbols may facilitate and even constrain children’s understanding of 

discrete nonsymbolic numerical magnitudes. This idea is supported by evidence showing 

that children’s verbal number knowledge was a stronger predictor of nonsymbolic 

numerical magnitude processing seven months later than the reverse relationship between 

nonsymbolic numerical magnitude processing acuity and subsequent verbal number 

knowledge (Mussolin, Nys, Leybaert, et al., 2014).  This finding, in conjunction with 

other data suggesting that CP-knowers outperform subset knowers on a variety of 

nonsymbolic numerical magnitude tasks (e.g., Batchelor, Keeble, & Gilmore, 2015; Mix, 

Sandhofer, Moore, & Russell, 2012; Slusser & Sarnecka, 2011; Slusser, Ditta, & 

Sarnecka, 2013), suggests that the relationship between symbolic and nonsymbolic 

numerical magnitude processing in children who are in the process of learning symbolic 

numbers may be bidirectional, rather than unidirectional (Goffin & Ansari, 2019).  More 

research is needed to unravel whether acquiring the ability to represent numbers 

symbolically influences how children conceptualize discrete nonsymbolic numerical 

magnitudes. 

1.7 Summary and Outstanding Questions 

The field of numerical cognition has been dominated by the question of how numerical 

symbols are connected to evolutionarily ancient, pre-existing, representations of 

nonsymbolic numerical magnitudes (Dehaene, 2007). However, despite decades of 

research, it remains fiercely contested whether the uniquely human capacity to process 

numerical magnitudes symbolically is underpinned by mechanisms that are overlapping 

or distinct from the evolutionarily ancient system used to process nonsymbolic numerical 

magnitudes (for review see: (Ansari, 2008; Cohen Kadosh & Walsh, 2009; Sokolowski & 

Ansari, 2016).  Moreover, additional research is needed to understand how the system(s) 

that support symbolic and nonsymbolic numerical magnitudes emerge over the course of 

development (for review see: Leibovich & Ansari, 2016; Merkley & Ansari, 2016).  

One potential explanation for these contradictory findings is that the relation between 

symbolic and nonsymbolic numerical magnitude processing may not be static.  Indeed, 
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perhaps numbers can be processed both abstractly and in a format-dependent way 

depending on the cognitive demands of the task and the individual’s developmental stage. 

Testing this idea requires an examination of whether the association between symbolic 

and nonsymbolic numerical magnitude processing changes when cognitive demands of 

the task change. For example, one could examine whether the processing of symbolic and 

nonsymbolic numerical magnitudes differ depending on whether the task requires 

participants to estimate, manipulate or ignore the magnitude of the stimuli.   

The key goal of the current thesis is to explore the link between symbolic and 

nonsymbolic numerical magnitude processing, both behaviourally and at the neural level, 

as well as examine how this relationship can be influenced by task factors. Specifically, 

in adults, I explore the relationship between symbolic and nonsymbolic numerical 

magnitude processing in the brain by extracting regularities across a large set of studies 

with various task tasks demands; and by examining processing of symbolic and 

nonsymbolic numerical magnitude processing in the absence of task demands; and 

manipulating task conditions intended to make the numerical magnitude more or less 

salient.  In children, I explore the link between the acquisition of symbolic number 

knowledge and spontaneously attending to nonsymbolic numerical magnitudes. Together, 

these different approaches provide novel insights into the way humans process symbolic 

and nonsymbolic numerical magnitudes, both behaviourally and at the neural level, under 

different attentional conditions and at different points in development.   

1.8 Overview of the Current Thesis 

Many researchers have canvassed the brain in search of brain systems that support 

symbolic and nonsymbolic numerical magnitude processing.  Although researchers have 

probed at this question using cutting-edge neuroimaging techniques for nearly two 

decades, there is a lack of convergence among these neuroimaging studies regarding 

which brain regions support symbolic and nonsymbolic numerical magnitude processing.  

Consequently, it remains unclear whether the human brain represents numerical 

magnitudes abstractly, or if representations of numerical magnitudes in the human brain 

are format-dependent.  In chapter 2 of this thesis, I quantitatively evaluate available 

neuroimaging evidence to examine whether symbolic and nonsymbolic numerical 
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magnitudes are supported by common or distinct brain regions at the meta-analytic level.   

Specifically, I use activation likelihood estimation (ALE) to conduct the first quantitative 

meta-analysis of 57 empirical neuroimaging papers examining neural activation during 

symbolic and nonsymbolic numerical magnitude processing. This method is a necessary 

first step to quantify previous research that has examined symbolic and nonsymbolic 

numerical magnitude processing in order to identify whether the adult human brain hosts 

abstract and/or format-dependent representations of numerical magnitudes.  This study 

has been published journal Neuroimage (Sokolowski, Fias, Mousa, & Ansari, 2017).  

As revealed in chapter 2, a large body of research has examined the neural correlates of 

symbolic and nonsymbolic numerical magnitude processing (Sokolowski, Fias, Mousa, et 

al., 2017). Critically, the majority of these studies use active tasks, and do not adequately 

control for non-numerical magnitudes that are inherently correlated with nonsymbolic 

numerical stimuli. In active tasks, it is notoriously difficult to discern whether neural 

activation is associated with processing the magnitude of the stimulus or with decision 

making, motor processing, and task difficulty (Göbel, Johansen-Berg, Behrens, & 

Rushworth, 2004). To overcome the major limitations of active tasks, a small subset of 

research has used functional Magnetic Resonance Imaging adaptation (fMR-A) 

paradigms. fMR-A is a passive design that measures the neural correlates associated with 

a stimulus of interest without requiring participants to make a decision or motor response.  

This task relies on the principle that neural populations habituate (i.e., adapt) their 

activity following repeated presentations of the same stimulus (Grill-Spector, Henson, & 

Martin, 2006).  In fMR-A paradigms, a particular stimulus (i.e., the habituation stimulus) 

is repeatedly presented to evoke adaptation of brain regions associated with encoding this 

stimulus. Following this period of adaptation, a stimulus that differs in some way from 

the habituation stimulus (i.e., a deviant stimulus) is presented. The presentation of the 

deviant stimulus results in a rebound of activation in regions that are associated with the 

attributes of the particular deviant compared to the habituation stimulus. This rebound of 

activation in response to a deviant stimulus is referred to as the ‘neural rebound effect’. 

The extent of the neural rebound effect in response to a deviant is a function of the 

difference between the adapted stimulus and the deviant. 
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Despite the large body of research that has examined symbolic and nonsymbolic 

numerical magnitude processing, no single study has examined the neural underpinnings 

of both symbolic and nonsymbolic numerical magnitude processing within-subjects, 

while accounting for the confounds of general magnitude processing (e.g., physical size) 

and decision making.  In chapter 3 of this thesis, I develop and use a method I refer to as 

parallel fMR-A, to investigate which brain regions specifically support the processing of 

symbolic numerical magnitudes (symbol), nonsymbolic numerical magnitudes (quantity), 

and physical size (size).  In the parallel adaptation task, participants are repeatedly 

presented with a specific quantity of the same symbol in a white font of a specific 

size.  Following this, one aspect of the stimulus is changed (symbol, quantity, or 

size) while the other aspects remain constant.  Using this design, I examine whether 

symbolic and nonsymbolic numerical magnitudes as well as non-numerical magnitudes 

are sub-served by similar or distinct systems in the human adult brain. 

In chapter 2 and 3, I explore the way that the human brain represents symbolic and 

nonsymbolic numerical magnitudes by extracting regularities across a large set of 

attentional task demands (chapter 2) and by using a paradigm that removes confounds 

associated with active task demands (chapter 3).  Critically, although these two 

methodologies are useful for developing our understanding of the way the human brain 

represents symbolic and nonsymbolic numerical magnitudes in the absence of a task, they 

do not identify the attentional conditions under which symbolic and nonsymbolic 

numerical magnitudes are either linked or separate.  Chapter 4 of this thesis addresses the 

question of whether the similarities and differences between symbolic and nonsymbolic 

numerical magnitude processing depend on whether the magnitudes are being processed 

effortfully or automatically/unintentionally. Specifically, in chapter 4 I develop and 

implement a Symbolic-Nonsymbolic Stroop Task that assesses the effortful and automatic 

processing of symbolic and nonsymbolic numerical magnitudes.  In the Symbolic-

Nonsymbolic Stroop task, participants are presented with two adjacent arrays of digits 

(e.g., 333 vs. 4444) and asked to either indicate the side containing the greater quantity of 

symbols (i.e., the nonsymbolic task) or the side containing the symbol associated with the 

greater numerical magnitude (i.e., the symbolic tasks). The task includes congruent trials, 

where the larger symbolic and nonsymbolic numerical magnitude appeared on the same 
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side of the screen (e.g., 22 vs. 66666), incongruent trials, where the larger symbolic and 

nonsymbolic numerical magnitude appeared on opposite sides of the screen (e.g., 222222 

vs. 66), and neutral trials, where the irrelevant dimension was the same across both sides 

of the screen (e.g., 22 vs. 66 for nonsymbolic; 22 vs. 222222 for symbolic). Additionally, 

the numerical distance between the numerical quantities being compared is systematically 

varied across trials as a way of manipulating the salience of the numerical magnitudes. 

This manipulation is based on the finding that numerical information is more likely to be 

processed (i.e., more salient) when the numerical distance between the stimuli being 

compared is relatively large. Examining whether numerical distance interacts with the 

effortful and automatic processing of symbols compared to quantities provides additional 

insight into the structure of the underlying representations supporting symbolic compared 

to nonsymbolic numerical magnitude processing.  Using this task, I examine the effortful 

and automatic processing of symbolic and nonsymbolic numerical magnitudes to assess if 

there is an asymmetry in the way that adults attend to these different formats of numerical 

magnitudes.  Identifying 1) whether there is an asymmetry in the way that human adults 

process symbolic and nonsymbolic numerical magnitudes and 2) if this asymmetry exists 

during effortful and/or automatic processing of the numerical magnitudes is essential to 

gain insight into the representational structure of the underlying mechanisms that support 

symbolic and nonsymbolic numerical magnitude processing. 

The findings from chapters 2, 3 and 4 assess whether there is an asymmetry in the way 

that human adults represent and process symbolic compared to nonsymbolic numerical 

magnitudes. To understand the origin of the asymmetry between symbolic and 

nonsymbolic numerical magnitude processing in adults it is critical to examine the 

relation between these different formats of numerical magnitudes while these systems are 

developing.  

As discussed above, learning the meaning of verbal number words is a major milestone 

for young children’s numerical thinking. Although a large body of research has examined 

how number words are mapped onto representations of nonsymbolic numerical 

magnitudes (e.g., Le Corre & Carey, 2007; Wagner & Johnson, 2011), no study to date 

has examined how the acquisition of verbal number words relates to the degree to which 
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children spontaneously attend to nonsymbolic numerical magnitudes in the world. In 

Chapter 5 of this thesis, I develop and use The Train Task to examine the degree to which 

preschool-aged children attended to discrete numerical magnitudes over and above 

attending to physical size.  The train task is an un-cued matching task that measures 

whether children use a number strategy or physical size strategy when being asked to 

make a train that is the same as the experimenter’s train.  The study in Chapter 5 

identifies whether verbal number word knowledge relates to the degree to which 

preschool-aged children attend to discrete numerical magnitudes of varied quantities. 

This final empirical chapter is essential to unravel how learning the association between 

symbolic and nonsymbolic numerical magnitudes effects how children spontaneously 

attend to numerical information in their environment.  

In summary, the four empirical chapters that follow will present the data that investigates 

similarities and differences in the way that the human brain processes symbolic and 

nonsymbolic numerical magnitude, under different attentional conditions.  Specifically, 

the data presented will address the four areas our inquiry described above. Together, they 

will provide insight into the attentional conditions under which symbolic and 

nonsymbolic numerical magnitudes are processed similarly and distinctly both 

behaviorally and at the neural level in adults and young children.  
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Chapter 2  

2 Common and Distinct Brain Regions in both Parietal 
and Frontal Cortex Support Symbolic and Nonsymbolic 
Number Processing in Humans: A Functional 
Neuroimaging Meta-Analysis 

2.1 Introduction 

The question of how the human brain represents numbers has been addressed through a 

multitude of neuroimaging experiments.  The overarching results from this rapidly 

growing body of research are consistent with a large body of neuropsychological 

evidence (Cipolotti, Butterworth, & Denes, 1991; Dehaene, Piazza, Pinel, & Cohen, 

2003). Specifically, neuroimaging research, like preceding neuropsychological studies, 

has suggested the bilateral parietal lobes, and specifically the bilateral intraparietal sulci, 

are important brain regions for processing the quantity of a discrete set of items (i.e., 

number) (for review see: Dehaene et al. 2003; Nieder 2005; Brannon 2006; Ansari 2008).  

Humans have the unique ability to represent numbers either symbolically, such as with 

Arabic symbols (2) or number words (two), or nonsymbolically, appearing as an array of 

items (••). The system used to process nonsymbolic numbers (e.g.,••), often referred to as 

the approximate number system, is thought to be innate, meaning that infants are born 

with the ability to process nonsymbolic numbers (Cantlon, Libertus, et al., 2009) and has 

a long evolutionary history (Brannon, 2006; Dehaene, Dehaene-Lambertz, & Cohen, 

1998).  In contrast, the acquisition of the culturally acquired, uniquely human ability to 

process abstract numerical symbols (e.g., 2 or two) is a product of learning and 

development and has emerged recently in human evolution (e.g., Ansari 2008; Coolidge 

and Overmann 2012). Because different stimulus formats can be used to represent the 

same quantity, numbers are said to have an abstract (i.e., format-independent) quality. As 

a result, one of the most dominant theories in the cognitive neuroscience of number 

processing, namely the three parietal circuits model, states that symbolic and 

nonsymbolic numbers are sub-served by the same underlying neuronal circuitry (Dehaene 

et al., 1998, 2003).  More specifically, the three parietal circuits model (Dehaene et al., 



 

 

31 

2003) predicts that three distinct neural systems support different aspects of basic number 

processing.  Importantly, the model was based on a qualitative synthesis of previous 

literature (Dehaene et al., 2003). This qualitative meta-analysis suggests that the bilateral 

intraparietal sulci support the processing of abstract numerical magnitudes, the left 

angular gyrus supports verbal aspects of basic number processing, and the bilateral 

posterior superior parietal lobules support visual attentional aspects of number 

processing. To empirically evaluate the parietal circuits model, researchers have 

canvassed the brain in search of neural responses associated with abstract representations 

of numbers (e.g., Dehaene et al. 1998, 2003; Brannon 2006; Piazza et al. 2007; Cantlon, 

Libertus, et al. 2009). 

Such efforts have generated a large body of research which has identified bilateral 

inferior parietal regions as brain regions that respond to numbers across stimulus formats 

(Dehaene et al., 2003).  Specifically, this research revealed that the intraparietal sulcus 

was activated by numbers when the numerical information was presented symbolically, 

either as Arabic digits (Ansari, Garcia, Lucas, Hamon, & Dhital, 2005; Chochon, Cohen, 

van de Moortele, & Dehaene, 1999; Holloway, Price, & Ansari, 2010; Pesenti, Thioux, 

Seron, & De Volder, 2000), number words (Ansari, Fugelsang, Dhital, & Venkatraman, 

2006), or nonsymbolically, such as dot arrays (Ansari & Dhital, 2006; Holloway et al., 

2010; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004; Piazza et al., 2007; Venkatraman, 

Ansari, & Chee, 2005). This activation in the intraparietal sulcus during number 

processing was also found when the stimuli were presented visually (Arabic numerals) or 

auditorily (Eger, Sterzer, Russ, Giraud, & Kleinschmidt, 2003). Together, these results 

suggest that the intraparietal sulcus hosts a format and modality independent 

representation of number. However, the finding that the intraparietal sulcus is 

consistently activated across varying task types and methodologies do not necessarily 

imply that number is represented using only an abstract format-independent system.  

In recent years, there has been a growing interest in the distinction between the neural 

correlates of symbolic processing and nonsymbolic processing (Holloway & Ansari, 

2010; Lyons, Ansari, & Beilock, 2014; Shuman & Kanwisher, 2004; Venkatraman et al., 

2005).  Recent empirical research has highlighted striking differences in the brain 
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activation patterns of numerical stimuli based on stimulus format (Ansari, 2007; Cantlon, 

Libertus, et al., 2009; Holloway et al., 2010; Piazza et al., 2007; Venkatraman et al., 

2005). Right-lateralized parietal and frontal regions have been found to show greater 

activation for nonsymbolic addition compared to symbolic addition (Venkatraman et al., 

2005). However, brain regions in the left intraparietal sulcus have been shown to be more 

finely tuned to numbers presented as Arabic symbols compared to nonsymbolic dot 

arrays (Piazza et al., 2007). Holloway et al., (2010) directly tested whether the functional 

neuroanatomy underlying symbolic and nonsymbolic processing is overlapping or 

distinct.  They found overlapping activation for symbolic and nonsymbolic stimuli in the 

right inferior parietal lobule. They also found that distinct brain regions responded to 

symbolic compared to nonsymbolic numbers. Specifically, symbolic number processing 

recruited the left angular gyrus and left superior temporal gyrus while nonsymbolic 

number processing recruited regions in the right posterior superior parietal lobule 

(Holloway et al., 2010). These findings imply that distinct brain regions support format-

general and format-specific processing of numbers.   

This converging evidence that showed that distinct brain regions support format-specific 

processing led Cohen Kadosh and Walsh, (2009) to mount a significant challenge to the 

predominant view in the field that number is represented abstractly in the brain.  These 

authors highlighted caveats associated with studies that conclude that number is 

processed abstractly. For example, Cohen Kadosh and Walsh, (2009) called attention to 

the fact that many of the conclusions of these studies are based on null results and point 

out that shared neural representations may be driven by general task-related processing 

rather than by shared magnitude representations. The authors subsequently proposed the 

format-dependent processing hypothesis, postulating that the human brain possesses 

format-specific semantic representations of number.   

Although the primary focus in the field of numerical cognition has been on the 

relationship between activation in the parietal cortex and number processing, converging 

evidence has shown that brain regions in the bilateral prefrontal and precentral cortex are 

also consistently activated during numerical processing (Ansari et al., 2005; P Pinel, 

Dehaene, Rivière, & LeBihan, 2001).  The frontal cortex has been identified as important 
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for number processing in single-cell recordings from neurons in non-human primates 

(Nieder, Freedman, & Miller, 2002; Nieder & Miller, 2004).  Additionally, 

developmental imaging studies have documented that brain activation during numerical 

processing shifts from the frontal cortex to the parietal cortex across development (Ansari 

et al., 2005; Cantlon et al., 2006; Kaufmann et al., 2006). A quantitative meta-analysis 

that synthesized studies examining brain regions that are correlated with basic number 

processing and calculation tasks in adults further supported the idea that the frontal cortex 

is important for number processing in adults (Arsalidou & Taylor, 2011).  This meta-

analysis revealed that large regions of activation in both the parietal and frontal cortex 

support basic number and calculation tasks.  Results showed that calculation tasks 

elicited greater activation in the prefrontal cortex compared to basic number tasks. 

Consequently, these authors concluded that the prefrontal cortices are essential in number 

and computational tasks (Arsalidou & Taylor, 2011).  Together, these studies suggest that 

a frontoparietal network may support the processing of numerical information. Although 

the large body of research examining numerical processing in adults concluded that the 

parietal lobes support numerical processing, it remains unclear whether frontal activation 

is as consistent as parietal activation during numerical processing.  One potential 

explanation that parietal activation is more consistently reported than frontal activation 

during number processing tasks is that frontal activation may vary more than parietal 

activation between individuals. Since fMRI methodology cannot measure individual 

neural firing and requires averaging across many participants (Scott & Wise, 2003), it is 

possible that frontal activation varies more strongly than parietal activation between 

individuals. An alternative explanation is that perhaps parietal regions are selected more 

often than frontal regions in analyses involving regions of interest (ROI).  This selection 

bias could perpetuate an erroneous impression that the parietal lobe is more important 

than the frontal lobe for processing numbers. Consequently, quantitative meta-analytic 

tools are needed to overcome this potential unintentional bias within the field of 

numerical cognition.  

While converging evidence supports the notion that the processing of symbolic and 

nonsymbolic numbers relies on both common and distinct brain regions, this evidence 

has never been quantitatively synthesized.  Previous meta-analyses by Dehaene et al. 
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(2003), Cohen Kadosh et al. (2008) and Cantlon, Platt, et al. (2009)  examining brain 

activation patterns underlying number processing in adults did not investigate how the 

brain activation patterns during number processing differ based on number format (i.e., 

symbolic vs. nonsymbolic).  Instead, these qualitative meta-analyses grouped symbolic 

and nonsymbolic numerical stimuli into a general term: number (See also, Arsalidou & 

Taylor, 2011; Dehaene et al., 2003; Houdé, Rossi, Lubin, & Joliot, 2010; Kaufmann, 

Wood, Rubinsten, & Henik, 2011).  However, it is critical to examine symbolic and 

nonsymbolic numerical stimuli separately since a large body of empirical research has 

highlighted striking differences in the brain activation patterns of symbolic compared to 

nonsymbolic number processing (Ansari, 2007; Cantlon, Libertus, et al., 2009; Holloway 

et al., 2010; Piazza et al., 2007; Venkatraman et al., 2005).  Additionally, despite 

converging evidence revealing consistent activation in frontal brain regions (such as the 

medial frontal gyrus, inferior frontal gyrus and precentral gyrus) during number 

processing tasks (Ansari et al., 2005; Pinel et al., 2001), previous qualitative analyses 

focused exclusively on parietal regions (Cantlon, Platt, et al., 2009; Cohen Kadosh et al., 

2008; Dehaene et al., 2003). Moreover, these previous meta-analyses used Caret software 

(Cohen Kadosh et al. 2008; Cantlon, Platt et al. 2009), a tool that is widely used to 

visualize neuroimaging data by projecting the spatial mappings of brain activation 

patterns onto a population-averaged brain (Van Essen, 2012; Van Essen et al., 2001).   

This method of merging foci from several contrasts into a single figure or table has been 

the most common approach that researchers have used to combine data across studies 

(Turkeltaub, Eden, Jones, & Zeffiro, 2002).  Visualization-based methods like Caret may 

be safely used for presenting the results of a few studies but should not be used for large 

sets of studies. The use of this technique requires judgments of convergence or 

divergence across studies that are largely subjective. This subjectivity is undesirable for 

rigorous evaluation of the convergence of neuroimaging findings.  Therefore, quantitative 

meta-analytic tools, such as activation likelihood estimation (ALE) are critical for 

synthesizing studies with varying methodologies and inconsistent findings (Eickhoff et 

al., 2009; Turkeltaub et al., 2002, 2012).  
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2.1.1 The Present Meta-analysis 

There has been an emergence of quantitative meta-analytic techniques that use 

coordinate-based approaches to statistically determine concordance across functional 

imaging studies (Eickhoff et al., 2009; Turkeltaub et al., 2002, 2012). These methods 

minimize the subjectivity of meta-analyses by using statistical models to determine inter-

study trends. The present study uses activation likelihood estimation (ALE) to examine 

brain activation patterns underlying symbolic and nonsymbolic number processing. The 

aim of an ALE meta-analysis is to quantify the spatial reproducibility of a set of 

independent functional magnetic resonance imaging (fMRI) studies. ALE identifies 3D-

coordinates (foci) from independent studies and models probability distributions that are 

centred around foci.  The unification of these probability distributions produces statistical 

whole-brain maps (ALE maps) that show statistically reliable activity across independent 

studies (Eickhoff, Bzdok, Laird, Kurth, & Fox, 2012; Eickhoff et al., 2009; Laird, 

Lancaster, & Fox, 2005; Turkeltaub et al., 2002, 2012). The current study is the first 

study to use ALE to objectively examine brain activity that is overlapping and distinct for 

symbolic and nonsymbolic numbers.  This study aims to reveal which brain regions 

support abstract and format dependent number processing.  

2.2 Materials and Methods 

2.2.1 Literature Search and Article Selection 

A stepwise procedure was used to identify all relevant research articles.  First, the 

literature was searched using a standard search in the PubMed (http://www.pubmed.gov) 

and PsychInfo (http://www.apa.org/psychinfo/) databases. Combinations of the key terms 

“magnitude”, “number*”, “symbol*”, “nonsymbolic”, “PET”, “positron emission”, 

“fMRI”, “functional magnetic resonance imaging”, “neuroimaging” and “imaging” were 

entered into these databases.  Second, the reference list of all relevant papers found in the 

first step and all relevant review papers were reviewed.  A study was considered for 

inclusion if it included a passive or active symbolic number task, a passive or active 

nonsymbolic number task or both symbolic and nonsymbolic number passive or active 

http://www.pubmed.gov/
http://www.apa.org/psychinfo/
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tasks.  The term ‘study’ refers to a paper and the term ‘contrast’ is defined as an 

individual contrast reported within a paper. 

2.2.2 Additional Inclusion/Exclusion Criteria: 

1. Studies had to use at least one of the following tasks: comparison, ordering, 

passive viewing, numerical estimation, numerosity categorization, counting, 

matching, size congruity, naming or target detection.  

• These studies were chosen to include both explicit and automatic 

magnitude processing. Studies with tasks that required cognitive 

processing (such as calculation) were excluded in order to have activation 

that is specifically related to format-independent or format-dependent 

magnitude processing. 

2. Studies had to include a sample of healthy human adults. 

3. Brain imaging had to be done using fMRI or PET.   

• PET and fMRI studies were included because these imaging methods have 

comparable spatial uncertainty (Eickhoff et al., 2009). 

4. Studies had to use whole-brain group analyses with stereotaxic coordinates in 

Talairach/Tournoux or Montreal Neurological Institute (MNI) space. 

• Contrasts that used only region of interest analyses were excluded. 

• Contrasts that used only multivariate statistical approaches were excluded. 

5. Studies had to have a sample size of > 5 participants. 

6. Studies had to be written in English. 

Fifty-seven studies met the inclusion criteria, providing data on 877 healthy subjects. All 

of these studies included at least one symbolic and one nonsymbolic number task. See 

tables 2.1 and 2.2 for a detailed description of the main characteristics of each selected 
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study.  Together, these studies reported 575 activation foci obtained from 121 contrasts. 

The studies were reported in either Talairach or MNI spaces.  Studies that reported data 

in MNI space were transformed into Talairach space using the Lancaster transformation 

tool (icbm2tal) (Laird et al., 2010; Lancaster et al., 2007).  

2.2.3 Analysis Procedure 

Quantitative, coordinate-based meta-analyses were conducted using the revised version 

of the ALE method (Eickhoff et al., 2012, 2009; Turkeltaub et al., 2012). ALE analyses 

were conducted using GingerALE, a freely available application by Brainmap 

(http://www.brainmap.org). ALE assesses the overlap between contrast coordinates (i.e., 

foci) by modelling the coordinates as probability distributions centred on coordinates to 

create probabilistic maps of activation related to the construct of interest.  Specifically, 

foci reported from contrasts were combined for each voxel to create a modelled 

activation (MA) map. An ALE null-distribution is created by randomly redistributing the 

same number of foci as in the experimental analysis throughout the brain. To differentiate 

meaningful convergence of foci from random clustering (i.e., noise), an ALE algorithm 

empirically determines whether the clustering of converging areas of activity across 

contrasts is greater than chance as shown in the ALE null-distribution. In most empirical 

studies, a single group of subjects perform multiple similar tasks.  Therefore, as most 

studies report many different contrasts, these contrasts use the same participants in the 

same scanning session.  Consequently, the activation patterns produced by different 

contrasts do not represent independent observations. The ALE algorithm was modified to 

address this issue (Eickhoff et al., 2009; Turkeltaub et al., 2012).  Additionally, an 

alternative approach of organizing datasets according to subject group (rather than by 

contrasts) was implemented (Turkeltaub et al., 2012). The current study used the 

modified ALE algorithm and organizational approach to prevent subject groups with 

multiple contrasts from influencing the data more than studies in which only a few 

contrasts are reported from the same group of participants (Turkeltaub et al., 2012). 

Two separate ALE maps were created: One for symbolic numbers and one for 

nonsymbolic numbers. The current study examined brain regions that were active during 

each of symbolic (both Arabic and verbal) number processing and nonsymbolic number 
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processing.  A conjunction ALE analysis was then computed to examine brain regions 

that were active during both symbolic and nonsymbolic number processing.  Contrast 

analyses were computed between the symbolic number map of activation and the 

nonsymbolic number map of activation to determine which regions symbolic and 

nonsymbolic numbers specifically activated.  

2.2.4 Single Dataset ALE Maps 

Two separate ALE meta-analyses were conducted to examine the convergence of foci for 

1) symbolic number processing and 2) nonsymbolic number processing.  These two ALE 

maps used both active and passive contrasts. In addition, three separate ALE meta-

analyses were conducted to examine convergent foci for passive number processing: 1) 

all passive number processing (passive), 2) passive symbolic number processing (passive 

symbolic), 3) passive nonsymbolic number processing (passive nonsymbolic).  All papers 

were coded using Scribe (either version 2.3 or version 3.0.8).  Coordinates were compiled 

using Sleuth (version 2.4b). ALE meta-analyses were conducted using GingerALE 

(version 2.3.6). Of the 57 studies, 31 were used to create the symbolic map of activation 

(477 subjects, 69 contrasts, 265 foci) (cf. Table 2.1) and 26 were used to create the 

nonsymbolic map of activation (400 subjects, 52 contrasts, 310 foci) (cf. Table 2.2). 13 

studies were used to create the passive map of activation (184 subjects, 30 contrasts, 139 

foci) (cf. Table 2.3), of which 5 were used to create the passive symbolic map of 

activation (cf. Table 2.3), and 7 to create the passive nonsymbolic map of activation (cf. 

Table 2.3). One of the studies only included a conjunction analysis with both symbolic 

and nonsymbolic stimuli and therefore was not used to create the passive symbolic or 

passive nonsymbolic map. All ALE analyses were performed in GingerALE using a 

cluster-level correction that compared significant cluster sizes in the original data to 

cluster sizes in the ALE maps that were generated from 1000 threshold permutations. 

This was in order to correct for false-positive clusters that could arise as a result of 

multiple comparisons within the same voxel. Specifically, these maps had a cluster-level 

threshold of p<.05 and a cluster-forming (uncorrected) threshold of p<.001. The ALE 

maps were transformed into z-scores for display. This recently developed thresholding 

technique provides a faster, more rigorous analytical solution for producing the null-
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distribution and addresses the issue of multiple-comparison corrections (Eickhoff et al., 

2012). All single dataset ALE maps (symbolic, nonsymbolic and passive) were created 

using this correction.
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Table 2.1 Studies Included in the Symbolic Meta-Analysis 

1st 

Author Year Journal N 

Imaging 

Method 

Mean 

Age Gender Task(s) Contrast Name Loc 

Ansari D 2005 NeuroReport 12 fMRI 19 
 

Comparison Distance effect (small>large) adults 12 

Ansari D 2006 NeuroImage 14 fMRI 21 8F 6M 
Size 

Congruity 
Main effect: distance (small > large) 10 

  
       Main effect of distance in the 

neutral condition (small>large) 
7 

Ansari D 2007 

Journal of 

Cognitive 

Neuroscience 

13 fMRI 21.5 
 

Comparison 
Conjunction of Small and Large 

symbolic number 
8 

Attout L 2014 PLoS ONE 26 fMRI 21 
15F, 

11M 

Order 

Judgment  
Distance effect of numerical order 7 

Chassy P 2012 Cerebral Cortex 16 fMRI 28 16M Comparison Positive Integers<Negative Integers 1 
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Chen C 2007 NeuroReport 20 fMRI 22.7 
10F, 

10M 

Delayed-

number-

matching 

Unmatched Numbers > Matched 

Numbers 
8 

Chochon 

F 
1999 

Journal of 

Cognitive 

Neuroscience 

8 fMRI 
 

4F, 4M 
Naming, 

Comparison 
Digit Naming vs. Control 2 

  
       

Comparison vs. Control 13 

  
       

Comparison vs. Digit Naming 1 

Damarla 

S R 
2013 

Human Brain 

Mapping 
10 fMRI 25.5 7F, 3M 

Passive 

Viewing 

Stable Parietal lobe voxels in Digit-

object mode 
2 

Eger E 2003 Neuron 9 fMRI 27.9 5F, 4M 
Target-

detection 

Modality-related effects: Auditory 

Numbers >Visual Numbers (fixed-

effect) 

2 

  
       

Modality-related effects: Auditory 

Numbers >Visual Numbers 

(random-effect) 

4 

  
       Modality-related effects: Auditory 

Numbers >Visual Numbers 
5 
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Modality-related effects: Auditory 

Numbers >Visual Numbers 

(random-effect) 

4 

  
       Numbers > Letters and Colours 

(fixed-effect) 
4 

  
       Numbers > Letters and Colours 

(random-effect) 
2 

  
       

Numbers > Letters (fixed-effect) 2 

  
       

Numbers > Letters (random-effect) 2 

  
       

Numbers > Colours (fixed-effect) 4 

  
       

Numbers > Colours (random-effect) 3 

Fias W 2003 

Journal of 

Cognitive 

Neuroscience 

18 PET 23 18M Comparison  
Number comparison vs 

Nonsymbolic Stimuli Comparison 
13 

Fias W 2007 
Journal of 

Neuroscience 
17 fMRI 

 
9F, 8M Comparison 

(Number comparison-number 

dimming) - (letter comparison-letter 

dimming) 

3 
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Franklin 

M S 
2009 

Journal of 

Cognitive 

Neuroscience 

17 fMRI 21.8 10F, 7M 
Ordering 

Task 

Magnitude Near>Far (common 

regions with Order Near>Far) 
1 

  
       Order Far>Near (common regions 

with Magnitude Near>Far) 
1 

  
       Magnitude Near>Far (Unique 

regions) 
3 

  
       

Order Far>Near (Unique regions) 1 

Fulbright 

R K 
2003 

American 

Journal of 

Neuroradiology 

19 fMRI 24 8F, 11M 
Order, 

Identification  
Number vs Shapes 0 

He L 2013 Cerebral Cortex 20 fMRI 21 8F, 12M Comparison Symbolic > Nonsymbolic 2 

  
       

Digit-digit > cross notation trials 1 

  
       

Overlap between 

(Symbolic>nonsymbolic) and 

(small>large) 

2 

Holloway I 

D 
2010 Neuroimage 19 fMRI 23.5 10F, 9M Comparison 

(symbolic - control) - (nonsymbolic - 

control) 
2 
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Holloway I 

D 
2013 

Journal of 

Cognitive 

Neuroscience 

26 fMRI 25 22F, 4M 
Passive 

Viewing 

Adaptation to Hindu-Arabic 

Numerals for both groups 
2 

Kadosh R 2005 
Neuro-

psychologia 
15 fMRI 28 7F, 8M Comparison Numerical vs. Size 7 

  
       

Numerical vs. Luminance 8 

  
       

Numerical Distance 3 

  
       

Numerical Distance (IPS) 2 

Kadosh R 

C 
2007 NeuroImage 17 fMRI 31 7F, 10M Stroop Notation Adaptation 2 

  
       

Quantity Adaptation 1 

  
       

Notation x Adaptation 1 

Kadosh R 

C 
2011 

Frontiers in 

Human 

Neuroscience 

19 fMRI 26.3 12F, 7M 
Passive 

Viewing 
Magnitude Change Digits 10 

  
       

Magnitude Change Digits>Dots 3 
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Kaufmann 

L 
2005 Neuroimage 17 fMRI 31 7F, 10M Stroop 

Numerical comparison > physical 

comparison 
5 

  
       Numerical comparison (Distance 1 

> Distance 4, only neutral trials) 
5 

Le Clec'H 

G 
2000 Neuroimage 5 fMRI 37 5M 

Compare to 

12 
Numbers > Body Parts (Block) 4 

  
  

6 fMRI 27 3F, 3M 
Compare to 

12 
Numbers > Body Parts (Error) 3 

Liu X 2006 

Journal of 

Cognitive 

Neuroscience 

23 fMRI 
 

7 F, 5M Stroop Distance of 18 vs. Distance of 27 6 

Lyons I M 2013 

Journal of 

Cognitive 

Neuroscience 

35 fMRI 
 16F, 

17M 
Comparison 

Symbolic: Number Ordinal > 

Luminance Ordinal 
3 

  
       

Symbolic: Number Ordinal > 

Luminance Ordinal and Number 

Cardinal >Luminance Cardinal 

10 
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Notebaert 

K 
2011 

Journal of 

Cognitive 

Neuroscience 

13 fMRI 
 

6F,7M 
Passive 

Viewing 
Ratio 1.25 Below > Ratio 1  1 

  
       

Ratio 1.5 Below > Ratio 1  1 

  
       

Ratio 2 Below > Ratio 1  1 

  
       

Ratio 2 Below > Ratio 1.25 Below 1 

  
       

Ratio 1.5 Above > Ratio 1  1 

  
       

Ratio 2 Above > Ratio 1  1 

  
       

Ratio 2 Above > Ratio 1.25 Above 1 

Park J 2012 

Journal of 

Cognitive 

Neuroscience 

20 fMRI 23.4 11F, 9M 

Visual 

matching 

task 

Number > Letter 1 

Pesenti M 2000 

Journal of 

Cognitive 

Neuroscience 

8 PET 
 

8M Comparison Comparison vs. Orientation, Digits 7 

Pinel P 1999 NeuroReport 11 fMRI 26 2F, 9M 
Compare to 

5 
Arabic Number > Verbal Number 1 
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Close Distance > Far Distance 1 

  
       

Far Distance > Close Distance 1 

Pinel P 2001 Neuroimage 13 fMRI 
  

Comparison Verbal vs. Arabic 3 

  
       

Arabic vs. Verbal 6 

  
       

Distance Effect 7 

Pinel P 2004 Neuron 15 fMRI 24 
18 F, 

6M 
Stroop 

Number Comparison vs. Size 

Comparison 
5 

  
       

Number Comparison Small 

Distance vs. Number Comparison 

Large Distance 

3 

Price G R 2011 Neuroimage 19 fMRI 22.17 6F, 13M 
Passive 

Viewing  

(Conjunction) Arabic digits>Letters 

and Arabic digits>Scrambled digits 
1 

Vogel S E 2013 
Neuro-

psychologia 
14 fMRI 25 7F, 7M 

Number line 

estimation  
Number > Control 10 

                Number Specific Activation 5 

Loc, number of locations reported in contrast; fMRI, functional magnetic resonance imaging; PET, positron emission tomography; N, 

sample size of each study; M – Male, F – Female. 
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Table 2.2 Studies Included in the Nonsymbolic Meta-Analysis 

1st 

Author Year Journal N 

Imaging 

Method 

Mean 

Age 

Gende

r Task(s) Contrast Name Loc 

Ansari D 2006 
Brain 

Research 
16 fMRI 20.4 16M 

Passive 

Viewing 
Number Change Effect 4 

Ansari D 2006 

Journal of 

Cognitive 

Neuroscience 

9 fMRI 19.8 6M, 3F Comparison Distance Effect in Adults 7 

Ansari D 2007 

Journal of 

Cognitive 

Neuroscience 

13 fMRI 21.5 
 

Comparison Small Nonsymbolic > Large Nonsymbolic 1 

  
       

Large Nonsymbolic > Small Nonsymbolic 2 

  
       Conjunction of small nonsymbolic and large 

nonsymbolic 
3 

Cantlon J 

F 
2006 PLoS Biology 12 fMRI 25 5F, 7M 

Passive 

viewing 
Number > Shape (Adults) 2 

Castelli F 2006 PNAS 12 fMRI 24 4F, 8M Comparison Estimating Numerosity: In space and time 7 

  
       

Difficulty Effect Estimating Numerosity: Space 2 
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Difficulty Effect Estimating Numerosity: Time 2 

Chassy P 2012 
Cerebral 

Cortex 
16 fMRI 28 16M Comparison Disk > Dots 1 

Damarla S 

R 
2013 

Human Brain 

Mapping 
10 fMRI 25.5 7F, 3M 

Passive 

Viewing 
Stable Parietal lobe voxels in Pictoral Mode 6 

Demeyere 

N 
2014 

Human Brain 

Mapping 
12 fMRI 26 9F, 3M 

Passive 

Viewing 

Adaptation to categories (repeated pairs vs. 

different pairs) 
4 

  
       Repetition of small category versus large 

category (large < small) 
1 

  
       Repetition of small category versus large 

category (small < large) 
9 

  
       

Numerosity specific repetition [Repetition-

Category > (Repetition-numerosity + 

Repetition-Exact)] 

14 

  
       Interaction Small/Large with 

Category/Numerosity/Exact 
3 

  
       

Small numerosity < Small category 4 
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Dormal V 2009 
Human Brain 

Mapping 
14 fMRI 21 14M  

Numerosity 

Categorization 

Numerosity Processing - Reference for 

Numerosity 
9 

Dormal V 2012 
Human Brain 

Mapping 
15 fMRI 21 15M 

Numerosity 

Categorization 
Numerosity - Reference for Numerosity 5 

  
       (Numerosity - Reference for Numerosity) - 

(Duration vs Reference for Duration) 
1 

Dormal V 2010 Neuroimage 15 fMRI 21 15M 
Numerosity 

Categorization 

[Simultaneous Numerosity]-[Reference 

Simultaneous Numerosity] 
6 

  
       [Sequential Numerosity]-[Reference 

Sequential Numerosity] 
6 

  
       

[Simultaneous Numerosity–Reference for 

Simultaneous Numerosity]-[Sequential 

Numerosity–Reference Sequential 

Numerosity] 

4 

  
       

[Sequential Numerosity-Reference Sequential 

Numerosity]-[Simultaneous Numerosity-

Reference Simultaneous Numerosity] 

3 
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[Sequential Numerosity]-[Reference 

Sequential Numerosity] and [Simultaneous 

Numerosity]-[Reference Simultaneous] 

3 

Eger E 2009 
Current 

Biology 
10 fMRI 23 5F, 5M Comparison Number Comparison Same List 8 

  
       

Number Comparison Different List 10 

Hayashi M 

J 
2013 

Journal of 

Neuroscience 
27 fMRI 

 14F, 

12M 
Comparison Main Effect of Numerosity Task 13 

He L 2013 
Cerebral 

Cortex 
20 fMRI 21 

8F, 

12M 
Comparison Nonsymbolic > Symbolic 8 

  
       

Dot-dot > cross-notation trials 4 

  
       Overlap between (nonsymbolic>symbolic) 

and (large>small) 
6 

Holloway I 

D 
2010 Neuroimage 19 fMRI 23.5 

10F, 

9M 
Comparison (nonsymbolic-control)-(symbolic-control) 7 

Holloway I 

D 
2013 

Journal of 

Cognitive 

Neuroscience 

26 fMRI 25 
22F, 

4M 

Passive 

Viewing 
Nonsymbolic Comparison 6 
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Jacob S N 2009 

European 

Journal of 

Neuroscience 

15 fMRI 
  Passive 

Viewing 
Dot Proportion full brain analysis 1 

  
       

Adaptation to Dot Proportion 27 

  
       

Numerosity full brain analysis 1 

Kadosh R 

C 
2011 

Frontiers in 

Human 

Neuroscience 

19 fMRI 26.3 
12F, 

7M 

Passive 

Viewing 
Magnitude Change Dots 10 

  
       

Magnitude Change Dots>Digits 6 

Leroux G 2009 
Developmenta

l Science 
9 fMRI 23 9M 

Number-length 

interference   

(Interference-reference interference ) AND 

(Covariation-Reference covariation) 
10 

Lyons I M 2013 

Journal of 

Cognitive 

Neuroscience 

33 fMRI 
 16F, 

17M 
Comparison 

Nonsymbolic: Number ordinal>Luminance 

Ordinal 
7 

  
       Dot Ordinal >Luminance Ordinal (dot) and 

Dot Cardinal >Luminance Cardinal (dot) 
10 

Piazza M 2002 Neuroimage 9 PET 29 9M Count All 6-9 > All 1-4 8 

  
       

6-9 Random > 1-4 Random 6 
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6-9 Canonical > 1-4 Canonical 5 

Piazza M 2004 Neuron 12 fMRI 23 
 Passive 

Viewing 
Regions Responding to Deviations in Number 7 

Piazza M 2006 
Brain 

Research 
10 fMRI  3F, 7M 

Estimation, 

Counting 
Estimation > Matching 9 

         Counting > Matching 14 

         Counting > Estimation 7 

Roggeman 

C 
2011 

Journal of 

Neuroscience 
23 fMRI 25.8 23M 

Passive 

Viewing 
Large vs. Small Numerical Deviants 2 

  
       

Far vs. Close Numerical Deviants 1 

Santens S 2010 
Cerebral 

Cortex 
16 fMRI 22.2 

13M, 

1F 

Match-to-

numerosity 

conjunction: (Numerosity large > Numerosity 

medium) and (Numerosity medium > 

Numerosity small) 

6 

Shuman M 2004 Neuron 9 fMRI   2F, 7M Comparison 

Experiment 1: Nonsymbolic number 

comparison > Nonsymbolic colour 

comparison 

2 

Loc, number of locations reported in contrast; fMRI, functional magnetic resonance imaging; PET, positron emission tomography; N, 

Sample size of each study; M – Male, F – Female.  
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Table 2.3 Studies Included in the Passive Meta-Analyses 

1st Author Year Journal N 

Imaging 

Method 

Mean 

Age Gender 

*Symbolic or 

Nonsymbolic Contrast Name Loc 

Ansari D 2006 Brain Research 16 fMRI 20.4 16M Nonsymbolic Number Change Effect 4 

Cantlon J 

F 
2006 PLoS Biology 12 fMRI 25 5F, 7M Nonsymbolic Number > Shape (Adults) 2 

Damarla S 

R 
2013 

Human Brain 

Mapping 
10 fMRI 25.5 7F, 3M Nonsymbolic 

Stable Parietal lobe voxels in Pictoral 

Mode 
6 

  
      

Symbolic 
Stable Parietal lobe voxels in Digit-

object mode 
2 

Demeyere 

N 
2014 

Human Brain 

Mapping 
12 fMRI 26 9F, 3M Nonsymbolic 

Adaptation to categories (repeated 

categories pairs vs. different 

categories pairs) 

4 

  
       Repetition of small category versus 

large category (large < small) 
1 

  
       Repetition of small category versus 

large category (small < large) 
9 
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Numerosity specific repetition 

[Repetition-Category > (Repetition-

numerosity + Repetition-Exact)] 

14 

  
       Interaction Small/Large with 

Category/Numerosity/Exact 
3 

  
       

Small numerosity < Small category 4 

Holloway I 

D 
2013 

Journal of 

Cognitive 

Neuroscience 

26 fMRI 25 
22F, 

4M 
Symbolic 

Adaptation to Hindu-Arabic Numerals 

for both groups 
2 

Jacob S N 2009 

European 

Journal of 

Neuroscience 

15 fMRI 
  

Nonsymbolic Line Proportion full brain analysis 1 

  
       

Adaptation to Dot Proportion 27 

  
       

Numerosity full brain analysis 1 

Kadosh R 

C 
2007 NeuroImage 17 fMRI 31 

7F, 

10M 
Symbolic Notation Adaptation 2 

  
       

Quantity Adaptation 1 

  
       

Notation x Adaptation 1 
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Notebaert 

K 
2011 

Journal of 

Cognitive 

Neuroscience 

13 fMRI 
 

6F,7M Symbolic Ratio 1.25 Below > Ratio 1 1 

  
       

Ratio 1.5 Below > Ratio 1 1 

  
       

Ratio 2 Below > Ratio 1 1 

  
       

Ratio 2 Below > Ratio 1.25 Below 1 

  
       

Ratio 1.5 Above > Ratio 1 1 

  
       

Ratio 2 Above > Ratio 1 1 

  
       

Ratio 2 Above > Ratio 1.25 Above 1 

Piazza M 2004 Neuron 12 fMRI 23 
 

Nonsymbolic 
Regions Responding to Deviations in 

Number 
7 

Piazza M 2007 Neuron 14 fMRI 
  **Symbolic & 

Nonsymbolic 

Overall fMRI Adaptation Effect 

(Activation decrease with repetition of 

same approximate quantity) 

16 

  
       

Distance-Dependent Recovery from 

Adaptation across conditions 

(Far>Close) 

21 
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Price G R 2011 Neuroimage 19 fMRI 22.17 
6F, 

13M 
Symbolic 

(conjunction) Arabic digits>Letters and 

Arabic digits>Scrambled digits 
1 

Roggeman 

C 
2011 

Journal of 

Neuroscience 
23 fMRI 25.8 23M Nonsymbolic Large vs. Small Numerical Deviants 2 

                Far vs. Close Numerical Deviants 1 

Loc, number of locations reported in contrast; fMRI, functional magnetic resonance imaging; PET, positron emission tomography 

*Symbolic vs. Nonsymbolic column shows whether contrast was used in symbolic or nonsymbolic map for format-specific passive 

viewing maps. 

**Study used in the full passive map but not in symbolic or nonsymbolic
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2.2.5 Conjunction and Contrast Analyses 

Conjunction and contrast analyses were computed to examine overlapping and distinct 

brain regions for the two ALE maps that included both active and passive tasks for 

symbolic and nonsymbolic number processing (Eickhoff et al., 2011). All conjunction 

and contrast ALE analyses were performed in GingerALE and used an uncorrected 

threshold of p<.01 with 5000 threshold permutations and a minimum volume of 50mm3.   

Although the cluster-level correction used to produce the single file ALE maps is the 

optimal thresholding technique available (Eickhoff et al., 2012), this correction is not yet 

available for conjunction and contrast analysis. The only available correction available to 

date for conjunction and contrast analysis is false discovery rate (FDR) thresholding.  

However, because ALE models the foci as 3D Gaussian distributions and FDR is not 

recommended to be used with Gaussian data (Chumbley & Friston, 2009), an uncorrected 

threshold of .01 was used for the conjunction and contrast analyses. Therefore, due to 

methodological constraints, a cluster-level correction was used for the single file maps 

and uncorrected thresholding for the conjunction and contrast analyses1,2.  An 

uncorrected threshold of .01 was appropriate for the conjunction and contrast analyses 

because the algorithm used by these analyses only includes clusters that have already 

passed the strict threshold of cluster-level .05 and uncorrected .001, used to create the 

single file maps.  Therefore, this threshold is ideal to ensure that the threshold is stringent 

 

1
 Leading experts on ALE are recommending against using FDR and thus, for the use of uncorrected 

thresholds when doing conjunction and contrast analyses.  

Discussions on the GingerALE forum: 

http://www.brainmap.org/forum/viewtopic.php?f=3&t=499&sid=6c3ba03dfecbce73933a22acbd6fe2c1 

http://brainmap.org/forum/viewtopic.php?f=3&t=320#p1012 

http://brainmap.org/forum/viewtopic.php?f=3&t=485#p1505 

2
 The main findings do not change when using an FDR correction of .05 to calculate the conjunction and 

contrast analyses comparing symbolic and nonsymbolic single file ALE maps with a cluster-level threshold 

of p<.05 and a cluster-forming (uncorrected) threshold of p<.05.   

 

http://www.brainmap.org/forum/viewtopic.php?f=3&t=499&sid=6c3ba03dfecbce73933a22acbd6fe2c1
http://brainmap.org/forum/viewtopic.php?f=3&t=320#p1012
http://brainmap.org/forum/viewtopic.php?f=3&t=485#p1505
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without masking any important regions.  This threshold was combined with an extent 

threshold, which suppressed clusters that were smaller than 50 mm3. 

A conjunction analysis was computed to examine the similarity of activation between the 

ALE maps generated by symbolic number processing and nonsymbolic number 

processing.  The voxel-wise minimum value of the input ALE images was used to create 

the conjunction map. The conjunction was considered to be significant for each voxel if 

all contributing ALE maps showed significant activation in that voxel at the thresholds 

described. A conjunction ALE map was created to determine overlapping activation of 

symbolic and nonsymbolic numbers. 

Contrast analyses were computed to compare activation between the ALE maps 

generated for symbolic and nonsymbolic number processing.  ALE contrast images are 

created by directly subtracting one input image from the other.  GingerALE creates 

simulated null data to correct for unequal sample sizes by pooling foci and randomly 

dividing the foci into two groupings that are equal in size to the original data sets. One 

simulation dataset is subtracted from the other and compared to the true data.  This 

produces voxel-wise p-value images that show where the true data sit in relation to the 

distribution of values within that voxel. The p-value images are converted to Z scores.  

The following ALE contrasts were computed: 1) symbolic > nonsymbolic, 2) 

nonsymbolic > symbolic. 

It is possible that the activation commonly found across studies is related to top-down 

task-related brain activations during the explicit processing of number tasks.  Although 

the majority of neuroimaging studies investigating number processing have used active 

paradigms in which participants have to make a decision about numerical stimuli being 

presented, there is a growing body of research that has examined the neural processing of 

symbolic and nonsymbolic numbers in the absence of an explicit numerical processing 

task (e.g., Piazza et al. 2004, 2007; Ansari, Dhital, et al. 2006; Holloway et al. 2013; 

Vogel et al. 2014).  In order to determine which brain regions support symbolic and 

nonsymbolic number processing in the absence of task demands, ALE maps were created 

included papers which exclusively used passive viewing paradigms.  Specifically, an 
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ALE map was computed to examine convergent activation of all papers that used a 

passive viewing paradigm (symbolic and nonsymbolic). Additionally, two separate ALE 

maps were created using papers that employed passive viewing paradigms: One for 

passive viewing of symbolic numbers and one for passive viewing of nonsymbolic 

numbers.  

There were not enough papers to conduct conjunction and contrast analyses to examine 

the overlapping and distinct activation for the passive symbolic and passive nonsymbolic 

single file ALE maps. Therefore, these maps were compared qualitatively.  

2.2.6 Anatomical Labeling 

Anatomical labels from the Talairach Daemon (talairach.org) were determined 

automatically using GingerALE software for each of the automatically generated peak 

ALE locations within all clusters. All (x, y, z) coordinates and anatomical labels of peak 

ALE values are reported in Table 2.4, Table 2.5 and Table 2.6. 

2.3 Results 

This section is organized in the following manner.  First, the results are presented for the 

two meta-analyses that include active and passive tasks: 1) symbolic number processing, 

2) nonsymbolic number processing.  This is followed by the results of the conjunction 

analysis for symbolic and nonsymbolic magnitude processing. Following this, the brain 

regions active for the following contrasts are shown for symbolic>nonsymbolic, 

nonsymbolic>symbolic. These contrast analyses are repeated using a symbolic map that 

only includes Arabic digits.  Subsequently, the results are presented for the three ALE 

maps that include only passive tasks: 1) passive (both symbolic and nonsymbolic), 2) 

passive symbolic and 3) passive nonsymbolic. Finally, reliability analyses for the 

symbolic and nonsymbolic ALE maps are presented. 

2.3.1 Single Dataset Meta-Analyses (Passive and Active) 

Two separate single dataset ALE meta-analyses were conducted to examine the 

convergence of foci for symbolic number processing and nonsymbolic number 

processing. 
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2.3.1.1 Symbolic ALE Map   

The symbolic number processing single dataset meta-analysis revealed activation in a 

widespread frontoparietal network of brain areas during symbolic number processing 

(Fig. 2.1 and Table 2.4). The largest clusters of converging brain activation across 31 

studies (Table 2.1) were in the left superior parietal lobule, inferior parietal lobule and the 

precuneus, as well as the right inferior parietal lobule and precuneus. In addition to the 

parietal lobes, there was convergent activation in the left lingual gyrus and the left middle 

occipital gyrus as well as in the right superior frontal gyrus. 

2.3.1.2 Nonsymbolic ALE map 

The nonsymbolic number processing single dataset meta-analysis also revealed activation 

in a widespread frontoparietal network of brain areas during nonsymbolic number 

processing (Fig. 2.2 and Table 2.4). Convergent brain activation across 26 studies (Table 

2.2) was found in a region spanning the right inferior parietal lobule, superior parietal 

lobule, precuneus and middle occipital gyrus, as well as a region spanning the left 

superior parietal lobule and the precuneus.  Convergent activation was also found in the, 

right medial frontal gyrus and cingulate gyrus, the right insula, right precentral gyrus, and 

left middle occipital gyrus.  
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Table 2.4 Single Dataset Analyses (Active and Passive) 

Hemisphere Brain Area BA X Y Z ALE Vol/mm 

Symbolic 
 

      

L Superior Parietal Lobule 7 -28 -58 42 0.026 8944 

L Superior Parietal Lobule 7 -26 -54 44 0.026  

L Inferior Parietal Lobule 40 -38 -48 48 0.022  

L Inferior Parietal Lobule 40 -40 -44 38 0.021  

L Inferior Parietal Lobule 40 -34 -52 36 0.020  

L Precuneus 31 -20 -72 30 0.014  

R Inferior Parietal Lobule 40 34 -44 40 0.031 6208 

R Precuneus 19 30 -64 38 0.028  

R Precuneus 7 22 -52 46 0.021  

L Lingual Gyrus 18 -22 -74 -4 0.017 1096 

L Middle Occipital Gyrus 18 -26 -86 2 0.014  

R Superior Frontal Gyrus 6 2 10 48 0.021 768 

Nonsymbolic 
       

R Inferior Parietal Lobule 40 44 -40 46 0.032 10448 

R Precuneus 7 28 -50 48 0.030 
 

R Superior Parietal Lobule 7 28 -58 46 0.026 
 

R Precuneus 7 18 -64 50 0.026 
 

R Middle Occipital Gyrus 19 30 -78 18 0.020 
 

R Precuneus 31 28 -72 24 0.018 
 

R Middle Occipital Gyrus 18 34 -84 4 0.013 
 

L Superior Parietal Lobule 7 -30 -54 46 0.032 5472 

L Precuneus 19 -26 -70 30 0.019 
 

L Precuneus 7 -22 -64 36 0.018 
 

L Precuneus 7 -20 -58 54 0.017 
 

L Precuneus 7 -20 -62 44 0.016 
 

L Superior Parietal Lobule 7 -26 -52 60 0.012 
 

R Medial Frontal Gyrus 32 4 10 46 0.032 3464 

L Cingulate Gyrus 32 -6 12 40 0.013 
 

R Insula 13 32 20 8 0.034 1888 

R Precentral Gyrus 6 42 2 28 0.036 1704 

L Middle Occipital Gyrus 19 -26 -88 18 0.020 824 

X, Y and Z – x,y,z values of the location of the maximum ALE value  
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ALE - maximum ALE value observed in the cluster 

Vol/mm3 - volume of cluster in mm3 

 

 

Figure 2.1 Single dataset ALE map of symbolic number processing. The ALE analysis 

revealed significant clusters of convergent brain clusters (cf., table 2.4).  Activations were 

identified using a cluster-level threshold of p<.05 with 1000 threshold permutations and 

an uncorrected p<.001 Brain slices are shown at coordinates (x, y, z) in Talairach space. 

 

Figure 2.2 Single dataset ALE map of nonsymbolic number processing. The ALE 

analysis revealed significant clusters of convergent brain clusters (cf., table 2.4).  

Activations were identified using a cluster-level threshold of p<.05 with 1000 threshold 

permutations and an uncorrected p<.001 Brain slices are shown at coordinates (x, y, z) in 

Talairach space. 
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2.3.2 Conjunction and Contrast Analyses 

2.3.2.1 Conjunction ALE Map 

A conjunction analysis was conducted to reveal brain regions with convergent clusters of 

activation between the symbolic and nonsymbolic single dataset ALE maps.  Significant 

clusters of activation for symbolic and nonsymbolic number processing converged in the 

bilateral inferior parietal lobules, bilateral precuneus, left superior parietal lobule, as well 

as the right superior frontal gyrus (Table 2.5 Figure 2.3). 

2.3.2.2 Contrast ALE Maps 

To assess which brain regions were specifically activated for symbolic and nonsymbolic 

number processing, contrast analyses were conducted to compare the symbolic and 

nonsymbolic single dataset ALE maps.  These contrast analyses revealed significant 

clusters of activation in the right supramarginal gyrus and inferior parietal lobule, as well 

as the left angular gyrus, for symbolic>nonsymbolic (Table 2.5, Figure 2.3).  There were 

significant clusters of activation in a right-lateralized frontoparietal network including the 

superior parietal lobule, inferior parietal lobule, precuneus, insula, superior frontal gyrus, 

and middle occipital gyrus for nonsymbolic>symbolic (Table 2.5, Figure 2.3). 
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Table 2.5 Conjunction and Contrast Analyses 

Hemisphere Brain Area BA X Y Z ALE Vol/mm 

Symbolic and Nonsymbolic 
      

L Superior Parietal Lobule 7 -26 -54 44 0.026 2544 

L Inferior Parietal Lobule 40 -34 -48 44 0.016 
 

R Precuneus 7 22 -52 46 0.021 2464 

R Inferior Parietal Lobule 40 36 -46 44 0.020 
 

R Inferior Parietal Lobule 40 38 -42 42 0.020 
 

R Inferior Parietal Lobule 40 32 -46 44 0.019 
 

R Precuneus 19 30 -62 42 0.017 
 

R Superior Frontal Gyrus 6 2 10 48 0.021 728 

L Precuneus 7 -28 -66 32 0.014 184 

L Precuneus 7 -26 -64 36 0.013 
 

L Precuneus 19 -24 -72 30 0.012 
 

R Precuneus 7 22 -66 38 0.012 24 

R Precuneus 7 24 -66 36 0.012 8 

Symbolic > Nonsymbolic 
      

R Supramarginal Gyrus 40 36 -48 32 2.911 304 

R Inferior Parietal Lobule 40 34 -52 34 2.820 
 

L Angular Gyrus 39 -36 -60 36 2.878 240 

Nonsymbolic > Symbolic 
      

R Precuneus 7 18 -61 51 2.848 1128 

R Precuneus 7 15.5 -64.5 52 2.820 
 

R Superior Parietal Lobule 7 21.3 -66.7 51.3 2.794 
 

R Insula 13 38 20 11 3.156 648 

R Insula 13 32 20 14 2.636 
 

R Inferior Parietal Lobule 7 34 -56 46 3.156 440 

R Inferior Parietal Lobule 40 34 -48 54 2.794 
 

R Superior Frontal Gyrus 6 8 22 50 3.156 408 

R Inferior Parietal Lobule 40 46 -44 49 2.652 328 

R Middle Occipital Gyrus 19 34 -80 12 2.687 200 

 X, Y and Z – x,y,z values of the location of the maximum ALE value  

ALE – conjunction analysis: maximum ALE value observed in the cluster, contrast 

analyses: maximum z-score observed in the cluster 
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Vol/mm3 - volume of cluster in mm3. 

 

Figure 2.3 ALE maps of the conjunction and contrasts between the symbolic and 

nonsymbolic single dataset ALE maps.  The ALE conjunction analysis revealed 

significant clusters of convergence between symbolic and nonsymbolic (blue). ALE 

contrast analyses reveal specific activation for symbolic>nonsymbolic (orange) and 

nonsymbolic>symbolic (green). Conjunction and contrast analyses were conducted using 

an uncorrected p<.01 with a minimum volume of 50mm3. Brain slices are shown at 

coordinates (x, y, z) in Talairach space. 

2.3.2.3 Contrast ALE Maps (Arabic Digits Only) 

Of the 31 studies, which were included in the symbolic single file ALE map, 24 studies 

visually presented Arabic digits.  Of the remaining 8 studies, 2 visually presented either 

number words or a combination of number words and Arabic digits, and 6 studies used 

both visual and auditory presentations of numbers. In order to determine whether the 

significant clusters of activation revealed by the symbolic vs. nonsymbolic contrast 

analyses were driven by the diversity of the symbolic number formats, a single dataset 

ALE map was created containing papers that contrasted Arabic digits (24 papers, 399 

subjects, 43 contrasts, 172 foci). To assess which brain regions were specifically 

activated for Arabic digits and nonsymbolic number processing, contrast analyses were 

conducted to compare the Arabic digit and nonsymbolic single dataset ALE maps. 
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These contrast analyses revealed significant clusters of activation in the left inferior 

parietal lobule and precuneus for Arabic digits>nonsymbolic (Table 2.6, Figure 2.4).  

There were significant clusters of activation in a right-lateralized frontal-parietal network 

including the superior parietal lobule, insula, and medial frontal gyrus, 

nonsymbolic>Arabic digits (Table 2.6, Figure 2.4).   

Table 2.6 Contrast Analyses: Arabic Digits vs. Nonsymbolic 

Hemisphere Brain Area BA X Y Z ALE Vol/mm 

Arabic Digits > Nonsymbolic 
      

L Inferior Parietal Lobule 39 -35 -62 40 2.590 152 

L Precuneus 19 -30 -62 40 2.576 
 

Nonsymbolic > Arabic Digits 
      

R Superior Parietal Lobule 7 23.1 -62.5 53.3 3.719 2064 

R Superior Parietal Lobule 7 38 -57 48 3.540 
 

R Inferior Frontal Gyrus 13 38 24 8 2.948 416 

R Insula 13 38 20 12 2.911 
 

R Insula 13 36 24 12 2.848 
 

R Medial Frontal Gyrus 8 9.3 21.3 48.7 2.794 208 

X, Y and Z – x,y,z values of the location of the maximum ALE value  

ALE – conjunction analysis: maximum ALE value observed in the cluster, contrast 

analyses: maximum z-score observed in the cluster 

Vol/mm3 - volume of cluster in mm3 
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Figure 2.4 ALE maps of contrasts between the Arabic digits and nonsymbolic single 

dataset ALE maps. ALE contrast analyses reveal specific activation for Arabic 

digits>nonsymbolic (orange) and nonsymbolic>Arabic digits (green). Contrast analyses 

were conducted using an uncorrected p<.01 with a minimum volume of 50mm3. Brain 

slices are shown at coordinates (x, y, z) in Talairach space. 

2.3.3 Single Dataset ALE Maps (Passive only) 

In order to determine which brain regions support symbolic and nonsymbolic number 

processing in the absence of task demands, ALE maps were created that only included 

papers that used passive viewing paradigms (Table 2.7, Figure 2.5).  

2.3.3.1 Passive (symbolic and nonsymbolic) ALE Map 

The passive single dataset meta-analysis revealed a frontoparietal network of brain areas 

that qualitatively overlaps with many of the regions that were found in the ALE maps 

from the conjunction and contrast analyses (Table 2.7, Figure 2.5, Figure 2.6).  

Specifically, the single dataset ALE map for passive symbolic and nonsymbolic revealed 

convergence of activation in the left superior parietal lobule, precuneus and middle 

temporal gyrus, the right inferior parietal lobule and precuneus, and left cingulate gyrus. 
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2.3.3.2 Passive Symbolic ALE Map 

The single dataset meta-analysis for passive symbolic revealed a large cluster of brain 

activation in the left precuneus and in the left fusiform gyrus (Table 2.7, Figure 2.6). 

2.3.3.3 Passive Nonsymbolic ALE Map 

The single dataset meta-analysis for passive nonsymbolic revealed brain activation in the 

right precuneus, superior parietal lobule, and middle occipital gyrus (Table 2.7, Figure 

2.6). 

Table 2.7 Passive Single Dataset Analyses 

Hemisphere Brain Area BA X Y Z ALE Vol/mm 

Symbolic and Nonsymbolic 
      

L Precuneus 19 -30 -66 36 0.022 3736 

L Precuneus 7 -22 -66 36 0.015 
 

L Superior Parietal Lobule 7 -26 -62 48 0.014 
 

L Superior Parietal Lobule 7 -32 -66 52 0.014 
 

L Middle Temporal Gyrus 39 -26 -52 34 0.014 
 

L Superior Parietal Lobule 7 -30 -54 44 0.012 
 

R Precuneus 7 24 -52 48 0.017 2128 

R Inferior Parietal Lobule 40 36 -48 48 0.013 
 

L Cingulate Gyrus 24 -8 6 46 0.015 640 

Symbolic 
       

L Precuneus 19 -30 -66 36 0.014 1016 

L Fusiform Gyrus 37 -46 -48 -12 0.014 560 

Nonsymbolic 
       

R Precuneus 7 26 -50 50 0.014 1272 

L Superior Parietal Lobule 7 -28 -54 44 0.011 688 

L Superior Parietal Lobule 7 -28 -62 48 0.010 
 

L Middle Occipital Gyrus 18 -24 -88 2 0.013 608 

X, Y and Z – x,y,z values of the location of the maximum ALE value  

ALE - maximum ALE value observed in the cluster 

Vol/mm3 - volume of cluster in mm3 
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Figure 2.5 Single dataset ALE map using only studies with a passive design (purple) 

overlaid on top of Figure 2.3. Activations of passive ALE map were identified using a 

cluster-level threshold of p<.05 with 1000 threshold permutations and an uncorrected 

p<.001 Brain slices are shown at coordinates (x, y, z) in Talairach space. 
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Figure 2.6 Single dataset ALE map of all studies (symbolic and nonsymbolic) that used a 

passive design (purple).  Single file ALE maps of studies using passive designs with 

symbolic stimuli (orange) and nonsymbolic stimuli (yellow) are overlaid.  Activations of 

passive ALE maps were identified using a cluster-level threshold of p<.05 with 1000 

threshold permutations and an uncorrected p<.001 Brain slices are shown at coordinates 

(x, y, z) in Talairach space. 

2.3.4 Split Half Reliability Analyses 

The contrast analyses between symbolic and nonsymbolic ALE maps of activation 

revealed significant differences between symbolic and nonsymbolic number processing at 

the meta-analytic level (Table 2.5, Figure 2.3).  Follow-up reliability analyses were 

conducted in order to determine the extent to which the noise in the data can account for 

some of the between symbolic versus nonsymbolic activations.  Specifically, the 

contrasts that comprise the symbolic and nonsymbolic number processing ALE maps 

were each split into two random halves (an ALE map of activation was created for each 

half). A contrast analysis was run in order to determine regions that were significantly 

more activated for half one>half two and for half two>half one. This analysis was 

repeated three times for each symbolic and nonsymbolic ALE map. These analyses 

revealed that for the symbolic ALE reliability analysis, only one of the six contrasts 
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showed a significant difference between half one and half two. However, for the 

nonsymbolic ALE reliability analysis, five of the six contrasts showed a significant 

difference between half one and half two (Table 2.8). See Table 2.9 for a description of 

which brain regions showed significant differences.  Table 2.9 reports the random regions 

that come out when contrasting half of the map against the other half.  The regions 

reported in this table are small and random.  The purpose of this table is to detail the 

regions that came out as significant in the reliability analyses in order to highlight that the 

regions that were different between the two halves are small and span many different 

regions across the brain.  

Table 2.8 Reliability Analyses: Number of Significant Regions 

Run Contrast Number of Regions 

Symbolic  

Run 1 Half 1 > Half 2 0 

 Half 2 > Half 1 1 

Run 2 Half 1 > Half 2 0 

 Half 2 > Half 1 0 

Run 3 Half 1 > Half 2 0 

 Half 2 > Half 1 0 

Nonsymbolic   

Run 1 Half 1 > Half 2 1 

 Half 2 > Half 1 1 

Run 2 Half 1 > Half 2 3 

 Half 2 > Half 1 1 

Run 3 Half 1 > Half 2 1 

  Half 2 > Half 1 0 
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Table 2.9 Reliability Analyses: Location of Significant Clusters 

Hemisphere Brain Area BA X Y Z ALE Vol/mm 

Symbolic 
       

L Inferior Parietal Lobule 40 -39 -55 36 2.652 216 

L Inferior Parietal Lobule 40 -34 -56 36 2.501 
 

Nonsymbolic 
       

L Middle Occipital Gyrus 18 -36 -86 -2 2.794 464 

L Middle Occipital Gyrus 18 -35 -85 2 2.652 
 

L Middle Occipital Gyrus 18 -29 -85 2 2.605 
 

L Inferior Occipital Gyrus 18 -25 -89 1 2.382 
 

L Precuneus 31 -18 -48 39 3.156 504 

L Superior Parietal Lobule 7 -32 -52 52 2.652 512 

R Precuneus 7 28 -54 50 2.794 144 

R Superior Parietal Lobule 7 26 -52 42 2.468 
 

R Precuneus 7 20 -60 42 2.727 120 

L Cingulate Gyrus 32 1 16 39 3.719 640 

R Medial Frontal Gyrus 6 8 16 44 2.418 
 

L Superior Parietal Lobule 7 -26 -58 56 2.848 120 

X, Y and Z – x,y,z values of the location of the maximum ALE value  

ALE – conjunction analysis: maximum ALE value observed in the cluster, contrast 

analyses: maximum z-score observed in the cluster  

Vol/mm3 - volume of cluster in mm3  

 

2.4 Discussion 

The current meta-analysis examined the neural bases of the ability to process symbolic 

and nonsymbolic numbers. Quantitative meta-analytic techniques were used to address 

two important questions.  First, the study examined whether neural representations of 

numbers are represented abstractly or if the human brain hosts format-dependent 

representations for number. This question was addressed by identifying both overlapping 

and distinct brain regions that are activated by symbolic and nonsymbolic numbers.  

Second, the study examined whether these converging regions of activation were related 

to magnitude processing rather than top-down task demands.  
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The current study represents the first quantitative meta-analysis examining the neural 

correlates of symbolic and nonsymbolic magnitude processing. Specifically, two ALE 

meta-analyses were computed to identify the neural correlates of symbolic and 

nonsymbolic number processing. These meta-analyses revealed that brain regions in the 

frontoparietal network were associated with symbolic and nonsymbolic number 

processing across studies. Activation in regions within the bilateral parietal and frontal 

cortex was correlated with both symbolic and nonsymbolic number processing. The left 

middle occipital gyrus was activated during symbolic number processing and the bilateral 

middle occipital gyri were activated during nonsymbolic number processing. The spatial 

distributions of the single dataset quantitative ALE maps that were generated for 

symbolic and nonsymbolic numbers suggest that both overlapping and distinct brain 

regions are associated with symbolic and nonsymbolic numbers. 

2.4.1 Symbolic vs. Nonsymbolic 

In order to quantitatively address whether numbers are represented abstractly or if the 

human brain hosts format-dependent representations for number, conjunction and 

contrast analyses were conducted to compare symbolic and nonsymbolic ALE maps.  

Conjunction analyses revealed that regions along the bilateral inferior parietal lobules and 

precuneus, as well as the left superior parietal lobule, and right superior frontal gyrus, 

were specifically activated by the conjunction of symbolic and nonsymbolic numbers.  

Contrast analyses revealed that the right supramarginal gyrus and inferior parietal lobule, 

as well as the left angular gyrus, were specifically activated for symbolic compared to the 

nonsymbolic numbers. Notably, only the left inferior parietal lobule was significant 

specifically for Arabic digits compared to nonsymbolic numbers. A right-lateralized 

frontoparietal network including the right superior parietal lobule, inferior parietal lobule, 

precuneus, superior frontal gyrus and insula as well as the middle occipital gyrus were 

specifically activated for nonsymbolic compared to symbolic numbers. These findings 

are consistent with empirical research suggesting that symbolic and nonsymbolic 

numbers are processed using both overlapping and distinct neural mechanisms (e.g., 

Holloway et al., 2010; Lyons and Beilock, 2013; Piazza et al., 2007).   
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In addition to quantitatively replicating the finding that overlapping and distinct neural 

populations support different number formats, these conjunction and contrast analyses 

provide valuable insights into the highly debated question of whether number is 

processed abstractly (e.g., Ansari, 2007; Cohen Kadosh and Walsh, 2009; Cohen Kadosh 

et al., 2007; Dehaene et al., 1998; Nieder and Dehaene, 2009; Piazza et al., 2007).  The 

finding that several neural regions were activated by the conjunction of symbolic and 

nonsymbolic number maps supports the notion that the human brain represents numbers 

abstractly. This finding implicates the bilateral inferior parietal lobules and precuneus, as 

well as the left superior parietal lobule, and right superior frontal gyrus, as candidate 

regions that may support abstract number processing. However, the nature of the overlap 

between symbolic and nonsymbolic numerical maps is unclear because the statistical 

algorithms that underlie ALE do not evaluate patterns of activation within overlapping 

regions.  Therefore, while it is possible that the overlap could represent common 

semantic processing, the overlap could also represent common task demands such as 

attention or response-selection. In empirical studies, researchers addressed this limitation 

of coarse spatial resolution by implementing multi-voxel pattern analysis (MVPA) to 

examine patterns of activation for symbolic and nonsymbolic numbers in the intraparietal 

sulcus (Damarla & Just, 2013; Eger et al., 2009; Lyons et al., 2014) and at the whole-

brain level (Bulthé et al., 2014). These studies consistently reported a lack of association 

between patterns of activation for symbolic and nonsymbolic number processing. Such 

findings challenge the idea that overlapping activation for symbolic and nonsymbolic 

numerical processing implies that numbers are processed abstractly. It is important to 

interpret overlapping activation with caution until data-analysis techniques become 

available that can analyze patterns of activation across multiple studies.  

Meta-analytic contrast analyses revealed that distinct neural mechanisms are activated by 

symbolic compared to nonsymbolic numbers and supported the theory that numerical 

representations are dependent on format (Cohen Kadosh et al., 2011, 2007; Cohen 

Kadosh & Walsh, 2009). In particular, the contrast symbolic>nonsymbolic revealed 

activation in the right supramarginal gyrus and the inferior parietal lobule, as well as the 

left angular gyrus. Conversely, the contrast nonsymbolic>symbolic showed that 

nonsymbolic numbers correlate with activation in the right superior parietal lobule, 
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inferior parietal lobule, and precuneus (as well as right-lateralized regions not in the 

parietal cortex including the insula, superior frontal gyrus, and middle occipital gyrus). 

Interestingly, regions specifically activated by either symbolic or nonsymbolic stimulus 

formats seemed to be lateralized within the parietal cortex.  Specifically, the right parietal 

lobule supported both symbolic and nonsymbolic specific processing, while activation in 

the left parietal lobule was specific to symbolic number processing.  However, even 

though symbolic and nonsymbolic maps both show activation in the right parietal cortex, 

the localization in the right parietal lobe is different.  Specifically, activation 

nonsymbolic>symbolic activation is more superior, while symbolic>nonsymbolic 

activation more inferior. In other words, the contrast analyses comparing symbolic and 

nonsymbolic ALE maps suggest that within the right parietal cortex, symbolic and 

nonsymbolic number processing are associated with different spatial patterns of 

activation.  

The symbolic ALE map included several symbolic number formats: Arabic digits, written 

number words, and verbal number words. In contrast, the nonsymbolic ALE map 

included only visual displays of arrays of objects.  One potential explanation for the 

significant activation revealed by the contrast analyses is that the symbolic number map 

consists of not only of visual but also written and auditory stimuli.  To test this, a single 

file ALE map with only Arabic digits was created and compared to the nonsymbolic map.  

This contrast analysis revealed that the processing of Arabic digits correlated with 

activity in only the left inferior parietal lobule while processing nonsymbolic numbers 

correlated with activity in the right superior parietal lobule, insula and medial frontal 

gyrus.  Therefore, the left inferior parietal lobule may be specific to the processing of 

Arabic digits, while the right supramarginal gyrus and inferior parietal lobule may host 

more abstract symbolic number representations. The finding that the symbolic passive 

map reveals left-lateralized parietal activation provides converging evidence supporting 

the notion that the left inferior parietal lobe is important for symbolic number 

representations. 

Significantly, a majority of the papers that were included in the ALE meta-analyses used 

visual stimuli.  Analyzing overlapping and distinct activation for number processing 
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tasks, measured using different modalities at the meta-analytic level, would aid in 

evaluating abstract number representations. To date, there are not enough studies that 

measure number in the verbal, or tactile domains to form an ALE map that can be 

contrasted against a visual number processing map. Consequently, additional empirical 

research is necessary to investigate the neural correlates of number processing in non-

visual domains. 

In addition to these differences in brain activation, a reliability analyses revealed that the 

nonsymbolic ALE map has more variability than the symbolic ALE map.  More 

specifically, we examined the extent to which there were significant differences within 

formats, by randomly splitting the included contrasts in half and contrasting the two 

halves.  One would predict that if the activations are highly consistent, then no 

differences in such an analysis should be observed.  While we found this to be the case 

for symbolic number processing, the analyses of the nonsymbolic data revealed some 

significant variability. Specifically, the split half analysis of the nonsymbolic data 

revealed that in five out of the six contrasts revealed greater activation in one half of the 

nonsymbolic dataset compared to the other half.  Given that the data were randomly split, 

conclusions regarding the potential processing differences between the two halves of the 

data cannot be made.  However, it should be noted that the significant regions within the 

reliability analyses did not reveal systematic locations (i.e., there were regions across the 

frontal, parietal, and occipital lobes). This suggests that the lack of reliability in the 

nonsymbolic map was due to variable data across studies rather than systematic 

variability within specific brain regions. 

The finding from the reliability analyses indicate, that the symbolic ALE map is more 

reliable than the nonsymbolic ALE map when using equivalent numbers of papers, and 

the same thresholds suggest that this distinction is a predicament of the data in the field 

rather than the methodology of the meta-analyses. This finding of differences in the 

reliability of the symbolic and nonsymbolic map should be taken into account when 

considering the results of contrast analyses contrasting symbolic and nonsymbolic ALE 

maps. Specifically, regions that are more activated by nonsymbolic numbers compared to 

symbolic numbers should be interpreted with caution within the context of the current 
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meta-analysis. Additionally, this finding should be considered when evaluating brain 

regions that correlate with nonsymbolic number processing within empirical studies.  

Overall, these reliability data provide valuable insights into underlying differences 

between format-dependent neural responses and set the foundation for future empirical 

research which needed to disentangle the difference in variability between symbolic and 

nonsymbolic number processing at the meta-analytic level.  

The findings that symbolic numbers activated the bilateral inferior regions of the parietal 

lobe while nonsymbolic numbers activated right-lateralized superior regions of the 

parietal lobe conflicts with the notion that the brain processes numbers using only a 

number module that is indifferent to number format.  Instead, regions that are format-

specific may imply differential semantic processing of symbolic and nonsymbolic 

numbers. However, as meta-analyses do not include experimental manipulations, they 

cannot determine what brain regions sub-serve specific processes.  This is important to 

consider with respect to the current meta-analytic contrasts because these contrasts alone 

cannot confirm that the areas revealed are really engaging in format-specific semantic 

processing.  These regions of activation may reflect other processes that differ between 

formats.  Although it is possible that specific regions activated by symbolic>nonsymbolic 

and nonsymbolic>symbolic reflect something other than format-specific processing, there 

are several aspects of the analysis that speak against this.  First, all contrasts that were 

entered into the single file ALE maps contrast basic number processing against a control 

task that was matched in terms of perceptual and other non-semantic processing 

dimensions. Second, the symbolic and nonsymbolic passive ALE maps show similar 

differences.  This suggests that the regions that are specifically activated by symbolic and 

nonsymbolic number processing are likely related to semantic differences between 

symbolic and nonsymbolic number processing. Ultimately, this question of format 

specificity in the human brain calls for further experimental investigation in order to 

understand the process of how the brain represents symbols compared to nonsymbolic 

numbers. In this way, the present meta-analysis may pave the way for new investigations 

into the specific nature of format-specific processing in the parietal cortex.  
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The concept of format-specific hemispheric specialization within the parietal lobes has 

previously been supported by developmental studies (e.g., Holloway and Ansari 2010).  

For example, researchers revealed increasing specialization of the left intraparietal sulcus 

for processing of symbolic numbers across development (e.g., Vogel et al. 2014) but 

consistent activation across children and adults in the right intraparietal sulcus for 

nonsymbolic numbers (e.g., Cantlon et al., 2006).  The idea that this hemispheric 

asymmetry in the parietal cortex is a result of developmental specialization is further 

supported by a developmental quantitative meta-analysis that identified brain regions 

supporting symbolic and nonsymbolic number processing in children (Kaufmann et al. 

2011).  The results of this meta-analysis showed that the notation of the number 

(symbolic vs. nonsymbolic) influenced the location of neural activation patterns both 

within and outside the parietal lobes (Kaufmann et al. 2011).  In accordance with the 

current meta-analyses, Kaufmann et al., (2011) showed that symbolic number magnitude 

processing was correlated with bilateral parietal activation while activation during 

nonsymbolic number processing was lateralized to the right parietal lobe. Together, these 

findings challenge the notion that the parietal cortex hosts a single system that processes 

number abstractly. Instead, it is probable that hemispheric specialization for number 

formats in the parietal cortex emerges over the course of development.   

Beyond the parietal cortex, it has long been predicted that the ventral visual stream might 

house a number form area  (NFA, Dehaene and Cohen 1995). In support of this 

prediction, the ALE passive symbolic map revealed activation in the ventral stream. 

However, contrary to this prediction, the contrast of symbolic > nonsymbolic in the 

present meta-analysis did not reveal regions in the ventral visual stream that were more 

active for symbolic than nonsymbolic processing of number. Therefore, this meta-

analysis does not lend strong support to the NFA as no contrasts were able to reveal 

symbolic-specific activation. Recently, the existence of an NFA in the ventral stream was 

revealed using intracranial electrophysiological recording (Shum et al., 2013). This study 

also reported evidence to suggest that the region that was shown to exhibit category-

selectivity for numerals is located within or near a zone in which there is a drop-out of 

the fMRI signal due to the auditory canal and venous sinus artifacts. Indeed, a recent 

study in which this fMRI signal drop out was reduced revealed category selectivity for 
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numerals in bilateral regions of the inferior temporal gyri (Grotheer, Herrmann, & 

Kovacs, 2016). It is possible, therefore, that the absence of evidence for an NFA in the 

current meta-analysis stems from an fMRI signal drop out masking category-selective 

activation for numerals in the ventral stream. Having said that, the evidence for the 

existence of an NFA is, to date, sparse and there is a need for more evidence using 

methods that control for the fMRI signal drop out in the inferior temporal gyrus. Once 

sufficient evidence has been accumulated, a meta-analytic approach, such as the one used 

in the present paper could be employed to quantify the consistency of evidence for the 

existence of the NFA.  

2.4.2 The Three Parietal Circuits Model 

Several different theories of numerical cognition propose potential mechanisms that may 

underlie mathematical abilities (Campbell, 1994; Dehaene et al., 2003; McCloskey, 

1992). Among these theories is the three parietal circuits model (Dehaene et al., 2003) 

which is distinct from other theories because it makes specific predictions about the 

neuroanatomical underlying number processing. This is an influential, highly cited model 

that is often claimed to be predictive of empirical data (e.g., Neumärker 2000; 

Schmithorst and Brown 2004).  The current meta-analysis has the potential to further 

constrain existing theories, such as the three parietal circuits model, that propose potential 

mechanisms that underlie basic number processing. The three parietal circuits model 

(Dehaene et al., 2003), predicts that three distinct systems of representation are recruited 

for basic numerical processing and calculation tasks.  These systems include a quantity 

system (which processes abstract numerical representations that are not related to number 

format), a verbal system (which represents numbers as words) and a visual system (which 

encodes numbers as strings of Arabic digits).  Dehaene et al., (2003) used three-

dimensional visualization software to examine how parietal activation related to this 

model.  Using these qualitative meta-analytic data, they proposed that three distinct, but 

functionally related networks coexist in the parietal lobes and that these networks are 

used to support numerical processing. Briefly, the three parietal circuits model suggests 

that the bilateral horizontal segments of the intraparietal sulci are related to the quantity 

system, the left angular gyrus is related to the verbal system, and the posterior superior 
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parietal lobules are related to the visual system, and specifically, attention processes.  For 

over a decade, this model has driven researchers to examine the neural underpinnings of 

basic number processing and calculation. This influential model has been both supported 

and challenged by empirical research (Chassy & Grodd, 2012; Eger et al., 2003; Piazza et 

al., 2004, 2007; Price & Ansari, 2011). Results of the current quantitative meta-analysis 

challenge several aspects of the three parietal circuits model. First, the finding from the 

conjunction analysis that reveals that both symbolic and nonsymbolic number processing 

activate the regions in the bilateral inferior parietal lobules and precuneus, and left 

superior parietal lobule challenges the notion put forward by Dehaene et al., (2003) that 

“the horizontal segment of the intraparietal sulcus (HIPS) appears as a plausible 

candidate for domain specificity” (p.487). Second, the finding that the left angular gyrus 

was specifically activated for symbolic numbers supports the idea that the left angular 

gyrus is related to the verbal system.  This was supported by the contrast analysis from 

the current meta-analyses. However, the right supramarginal gyrus and inferior parietal 

lobule were also activated by symbolic>nonsymbolic number processing. Therefore, 

although it is possible that the activation in the left angular gyrus is related to the verbal 

system, which is likely used more by symbolic compared to nonsymbolic number 

processing, the activation in the right parietal lobe does not fit with this account.  An 

alternative explanation is that these bilateral parietal regions are part of a format-specific 

number-processing region for symbolic number processing. Specifically, perhaps the left 

angular gyrus supports the verbal aspects of number processing while the right 

supramarginal gyrus and inferior parietal lobule support other aspects of symbolic 

number processing. In lieu of these results, perhaps the left angular gyrus supports the 

verbal processing and reading of symbols whereas the right supramarginal gyrus and 

inferior parietal lobule support processes that use this verbal symbolic knowledge and 

attentional processes to perform higher-level tasks such as calculation.  This suggestion is 

consistent with results from the calculation meta-analysis (Arsalidou & Taylor, 2011), 

which report that the right angular gyrus is activated during calculation.  Third, findings 

from the current meta-analysis both support and challenge the idea that activation in the 

superior parietal lobules is a consequence of attending to visual dimensions of numbers. 

Evidence from the conjunction analyses of the current meta-analyses showed that the left 
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superior parietal lobule was activated for the conjunction of symbolic and nonsymbolic 

magnitude processing.  Therefore, based on these findings, the left superior parietal 

lobule is an equally plausible candidate for domain specificity of number processing. 

Although, this convergence of activation could be due to a visual attention orienting 

response as proposed by Dehaene et al., (2003), the left superior parietal lobule was also 

found in the passive meta-analysis.  Thus, there is superior parietal lobule activation even 

when the task demands, and therefore the attentional demands, are reduced. Importantly, 

the fact that nonsymbolic>symbolic was correlated with activation in the right superior 

parietal lobule conflicts with the idea that the superior parietal lobule supports only visual 

attention processes. Instead, these findings reveal hemispheric asymmetry in the bilateral 

superior parietal lobules that might suggest that the right superior parietal lobule hosts 

format-dependent representations of nonsymbolic numbers and the left superior parietal 

lobule hosts and abstract number processing region. One possible explanation for this 

finding is that the right superior parietal lobule is specifically correlated with visual 

attentional processes associated with nonsymbolic number tasks. Another possible 

explanation for the format-specific activation of the right intraparietal sulcus is that this 

region is associated with processes that are specific to nonsymbolic numerical magnitude 

processing. Using a computational model, Verguts and Fias (2004) trained a neural 

network to map a symbolic or nonsymbolic numerical visual input onto a place-coded 

representation. Place-coding is a way of representing the cardinal value of the total 

number of items in a set by representing the quantity of the set as a place on a number 

line.  In the computational model, symbolic inputs are mapped directly onto a place-

coding representation. However, nonsymbolic inputs undergo an intermediate step 

between the nonsymbolic visual input and a place-coding representation. This 

intermediate step is referred to as summation coding.  In summation coding, the size of 

the neural representation monotonically varies with the number of objects being 

presented. During this intermediate step, neurons accumulate proportionally to the 

number of objects that were visually processed. A large body of neuroscience evidence 

converges with these computational models suggesting that place-coded neurons exist 

within the primate brain (for review see, Nieder and Dehaene, 2009 or Nieder, 2013).  

These studies typically use single-cell recordings, monitoring individual neurons, while 
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non-human primates discriminate between nonsymbolic arrays (e.g., Nieder and Miller, 

2004; Nieder and Miller, 2003; Tudusciuc and Nieder, 2007).  Overwhelming evidence 

indicates that the primate brain place codes numerosity (Nieder & Miller, 2004; 

Okuyama, Kuki, & Mushiake, 2015) even in monkeys that were never trained to 

discriminate numbers (Viswanathan & Nieder, 2013). Converging evidence from human 

fMRI adaptation studies revealed that tuned number neurons respond to dot arrays (Jacob 

& Nieder, 2009; Piazza et al., 2004).  These tuned number neurons mirror place-coding 

neurons within the non-human primate brain (Jacob & Nieder, 2009). 

Additionally, the existence of this type of summation coding has been found in humans 

both behaviourally (Roggeman, Verguts, Fias, Vergutsa, & Fias, 2007) and at the 

neuronal level (Roggeman, Santens, Fias, & Verguts, 2011; Santens et al., 2010).  In 

particular, neuroimaging studies have identified the right superior parietal lobule as a 

potential region that might support the process of accumulation during summation coding 

(Roggeman et al., 2011; Santens et al., 2010). Therefore, one possible explanation for 

activation in the right superior parietal lobule relating specifically to nonsymbolic 

number processing is that this region supports summation coding. Ultimately, these meta-

analytic findings question the idea that the intraparietal sulcus hosts a system that 

processes numbers abstractly and the superior parietal lobule solely supports visual 

attentional processing.  

It has been over a decade since the initial proposal of the three parietal circuits model.  

The results of the current quantitative meta-analysis do not converge with the data that 

support the three parietal circuits model (Dehaene et al., 2003). On the basis of these 

discrepancies, it is recommended that the three parietal circuits model should be updated. 

The parietal lobules should be canvased in search of regions that support both format-

dependent and format-independent numerical representations. This will illuminate the 

extent to which format-specific regions reflect various components of format-specific 

processing including semantic, perceptual and decision-making processing. Furthermore, 

the examination of brain regions that support format-dependent and format-independent 

numerical representations will clarify which regions in the intraparietal sulcus, inferior 

parietal lobule and superior parietal lobule are associated with various aspects of basic 
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magnitude processing. This should ultimately illuminate the mechanism underlying 

magnitude processing in the parietal lobes.  

2.4.3 Frontal vs. Parietal 

During the last decade, there has been an intense focus on the parietal lobes as brain 

regions involved in number processing (e.g., Dehaene et al. 2003; Eger et al. 2003; Fias 

et al. 2003; Cohen Kadosh et al. 2007; Cohen Kadosh and Walsh 2009).  However, many 

neuroimaging studies reported activation in regions of the frontal cortex during number 

processing (e.g., Eger et al. 2003; Cohen Kadosh et al. 2007; Franklin and Jonides 2008; 

Cohen Kadosh and Walsh 2009; Dormal and Pesenti 2009; Dormal et al. 2012; Hayashi 

et al. 2013).  The importance of the frontal cortex in number processing was revealed in 

research that used single-cell recordings in animals as well as in pediatric neuroimaging 

studies. Specifically, invasive single-cell recordings in non-human primates identified 

putative ‘number neurons’ in the parietal as well as the prefrontal cortex; these neurons 

responded to specific quantities (such as two dots) while animals performed a numerical 

discrimination task (Nieder, 2013; Nieder et al., 2002).  These findings suggested that 

regions of the frontal cortex may host pure magnitude representations.  Similarly, 

pediatric neuroimaging studies showed that young children recruited the prefrontal cortex 

more than adults during number discrimination tasks. In contrast, intraparietal sulcus 

activation during number comparison increased across development (Ansari et al., 2005; 

Kaufmann et al., 2006). Researchers suggested that this frontal to parietal shift from 

childhood to adulthood may reflect a decrease in the need for domain-general cognitive 

resources such as working memory and attention as children begin to process number 

symbols automatically (Cantlon et al., 2006; Cantlon, Libertus, et al., 2009; Venkatraman 

et al., 2005). The notion that regions in the frontal cortex are still important for number 

and calculation tasks among adults is further supported by a quantitative meta-analysis 

that identified brain regions supporting number processing and calculation in adults 

(Arsalidou & Taylor, 2011). Unlike the current meta-analysis, Arsalidou and Taylor, 

(2011) focused on calculation tasks such as arithmetic and subtraction tasks.  Their meta-

analysis showed that prefrontal regions are essential for number and calculation.  

Moreover, they revealed that activation in regions along the prefrontal cortex was related 
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to the difficulty of the task.  Specifically, IFG was activated during the processing of 

simple numerical tasks while the MFG and superior frontal gyrus were involved in more 

complex calculation problems (Arsalidou & Taylor, 2011).   In view of this, Arsalidou 

and Taylor, (2011) suggested that this activation in the prefrontal cortex was a result of 

domain-general processes, such as working memory, that are essential for number and 

calculation tasks. A common explanation for the consistent activation reported in the 

frontal cortex during number and calculation tasks was that the frontal cortex is activated 

in response to general cognitive processes associated with the task (e.g., Cantlon et al. 

2006; Arsalidou and Taylor 2011). However, it has also been argued that frontal 

activation is supporting number representations rather than general cognitive processes 

(for a review see: Nieder and Dehaene, 2009).   

The current meta-analysis lends additional support to the idea that frontal activation is 

important for number processing during basic number tasks. Results revealed consistent 

activation in frontal regions during symbolic and nonsymbolic number processing.  

Moreover, results showed that neural activation in response to number processing is no 

less consistent in the frontal cortex than in the parietal cortex.  In particular, the single 

dataset ALE maps revealed that the superior frontal gyrus was consistently activated 

during symbolic magnitude processing and the right medial frontal gyrus and cingulate 

gyrus were activated during nonsymbolic magnitude processing.  The right superior 

frontal gyrus was also activated in the conjunction analysis of symbolic and nonsymbolic 

and specifically for nonsymbolic number processing the contrast analyses comparing 

nonsymbolic>symbolic. The current meta-analysis deliberately included only basic 

magnitude processing tasks in order to minimize the recruitment of additional cognitive 

resources typically needed for complex calculation tasks. Additionally, all contrasts 

included in the current meta-analysis were contrasted against control conditions. These 

attributes make it likely that the activation revealed in the current meta-analyses is 

related, at least in part, to magnitude representations. The superior frontal gyrus was also 

found to activate to complex calculation tasks (Arsalidou & Taylor, 2011), however the 

location of activity differs such that complex calculations elicit activity in anterior parts 

of the superior frontal gyrus (BA 10), whereas basic number tasks elicit activity in 

superior frontal gyrus (BA 6), a region often associated with the premotor cortex. Further 
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evidence for the idea that the frontal cortex may support magnitude representations 

comes from the contrast analyses, which revealed that the right superior frontal gyrus was 

specifically activated by nonsymbolic numbers but not by symbolic numbers. The 

specificity of frontal activation for nonsymbolic numbers suggests that this right-

lateralized frontal region may be essential for identifying the number of objects within a 

set. Therefore, similarly to activation in the parietal cortex, the activation patterns within 

the frontal cortex vary as a function of format (symbolic vs. nonsymbolic). Together, the 

data from the current meta-analysis offer no reason to think that the parietal cortex is 

more specialized for number than the frontal cortex.  

Although the pattern of frontal activation suggests that the superior frontal gyrus may 

support basic number processing, the fact that many of the studies included in the 

symbolic and nonsymbolic meta-analyses were active tasks, and therefore had general 

cognitive processes such as decision-making, precludes the conclusion that the superior 

frontal gyrus supports magnitude representations rather than general cognitive processes.  

To overcome this limitation, single file ALE meta-analyses were computed to examine 

converging activation of studies that used passive tasks.  These single file passive maps 

are essential to illuminate which brain regions are activated by responding to a task.  The 

brain activation that was associated with passive symbolic and nonsymbolic numerical 

tasks was consistent with activation revealed in the ALE contrast maps comparing 

symbolic and nonsymbolic maps of activation that included both passive and active tasks.  

Specifically, both the active and passive maps and passive only maps revealed bilateral 

activation in the left superior parietal lobule and precuneus and the right inferior parietal 

lobule and precuneus as well as the left cingulate gyrus for symbolic and nonsymbolic 

number processing.  Although the current study did not have enough power to 

statistically contrast the passive symbolic and passive nonsymbolic maps, the qualitative 

comparison of the passive symbolic and passive nonsymbolic single file ALE maps 

depicted in Figure 2.6 is consistent with the contrast analyses symbolic>nonsymbolic and 

nonsymbolic>symbolic.  Specifically, the passive symbolic map reveals activation in the 

left precuneus and the left fusiform gyrus and the passive nonsymbolic ALE map reveals 

activation in the right precuneus, left superior parietal lobule, and left middle occipital 

gyrus. The cluster of activation is larger in the right parietal lobule compared to the left 
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parietal lobule.  Therefore, similarly to the contrast analyses that included both passive 

and active conditions, a qualitative comparison of passive symbolic and passive 

nonsymbolic single file ALE maps reveals trends of lateralization. Specifically, passive 

single file ALE meta-analyses suggest that symbolic numbers activate the left parietal 

lobe and nonsymbolic numbers activate a larger region in the right parietal lobe.  

Therefore, the passive maps reflect similar patterns of activation to the active and passive 

single dataset maps as well as the contrasts for both symbolic and nonsymbolic number 

processing.  Together, these passive maps suggest that activation in the bilateral parietal 

cortex and the left cingulate gyrus may be related to format-dependent and independent 

magnitude processing, rather than task demands. 

Taken together, the present meta-analysis does not support the argument that frontal 

regions are involved in task demands while parietal regions are involved in semantic 

processing. Instead, these data indicate that both the frontal cortex and the parietal cortex 

may be involved in general cognitive processes associated with number tasks and 

magnitude representations. Ultimately, the field of numerical cognition needs to 

acknowledge that frontal regions are consistently engaged, even during basic number 

processing, and in accordance with this, reduce biases towards parietal activation.  

2.4.4 Limitations and Advantages of ALE 

As the present study used ALE methodology, it is important to note several specific 

limitations with ALE such as difficulty accounting for differences in statistical 

thresholding approaches across studies and difficulty determining the spatial extent and 

magnitude of the activation for each focus (for a more detailed discussion of these 

limitations: Ellison-Wright et al. 2008; Christ et al. 2009; Di Martino et al. 2009; 

Arsalidou and Taylor 2011). Additionally, as ALE uses data from fMRI and PET studies, 

it is important to consider that the blood-oxygen-level-dependent (BOLD) signal and the 

PET signal are indirect signals.  Specifically, the PET signal and BOLD response 

estimate brain activity by detecting changes associated with blood flow (Logothetis, 

2003). Moreover, these indirect signals are typically corrected for motion, smoothed, and 

averaged across participants.  Therefore, at best, these signals only reveal mass activation 

of a brain region, and not individual neuronal firing (see Scott and Wise, (2003) for a 
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more detailed critical appraisal of functional imaging).  Since fMRI and PET detect an 

indirect mass signal that is smoothed across a large number of neurons in the brain and 

averaged across subjects, it is likely that one region of activation within a single 

empirical study, represents several neural networks (Nieder, 2004).  This idea is 

supported by data in primates that revealed that less than 20% of neurons in the 

intraparietal sulcus responded to numbers (Nieder and Miller, 2004).  This is particularly 

important to consider when examining which brain regions support numbers abstractly 

versus a format-dependent manner.  Therefore, when interpreting the results of the 

current meta-analysis, it is perhaps more accurate to argue that regions which seem to 

process numbers abstractly contain a larger number of “abstract number-selective 

neurons,” whereas regions that are sensitive to number format have a larger number of 

“format-dependent number-selective neurons.” As the field of functioning imaging 

develops, future research will be needed to more precisely examine abstract and format-

dependent regions at the neuronal level in humans.  

Despite these limitations, ALE has several important advantages as a tool for 

synthesizing neuroimaging data. Particularly, the algorithms that underlie ALE allow for 

the quantification of foci among empirical papers with varying methodologies. For 

example, this method can account for differences in the number of runs, the duration of 

the presentation of the stimuli and the type of design (e.g., block vs. event-related). It is 

likely that this diversity in methodologies is one of the main drivers of conflicting 

findings often reported between studies. Additionally, because neuroimaging research is 

so costly, the majority of empirical studies have small sample sizes. ALE groups different 

studies with varying methodologies by domains in order to increase sample sizes and 

ultimately address broader theoretical questions. Overall, ALE is a valuable meta-analytic 

tool that can quantitatively integrate large amounts of neuroimaging data to reveal 

converging patterns of findings. 

2.4.5 Conclusions 

In conclusion, this meta-analysis has reaffirmed the body of research suggesting that the 

ability to process numbers relies on a large number of brain regions. This quantitative 

meta-analysis shows that overlapping and distinct regions in the frontal and parietal lobes 



89 

 

are activated by symbolic and nonsymbolic numbers, revealing the specific roles of 

parietal and frontal regions in supporting number processing. The finding that several 

neural regions were activated by the conjunction of symbolic and nonsymbolic number 

maps supports the notion that the human brain represents numbers abstractly. This study 

also illuminates the lateralization of symbolic compared to nonsymbolic number 

processing within the parietal lobes. Specifically, the left angular gyrus is potentially 

important for the mapping of symbols onto quantities (nonsymbolic numbers) while the 

right superior parietal lobule may be important for processing nonsymbolic sets of items. 

The lateralization of symbolic and nonsymbolic number is an intriguing avenue for future 

research. Additionally, this research highlights the consistency of activation within the 

frontal cortex during number processing. Ultimately, the current meta-analysis extends 

our understanding of the brain regions associated with basic number processing and 

initiates future research on the neural mechanisms that underlie our essential ability to 

comprehend numbers. 
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Chapter 3  

3 Symbols are Special: An fMRI Adaptation Study of 
Symbolic, Nonsymbolic and Non-numerical Magnitude 
Processing in the Human Brain 

3.1 Introduction 

Humans have the exceptional ability that emerged over the course of human cultural 

history, to represent numbers symbolically (e.g.,‘3’ or ‘three’). This capacity to represent 

numbers symbolically is necessary for mathematical thinking, which is a major pillar of 

contemporary civilization. The uniquely human ability to process these symbolic 

numerical magnitudes is thought to be supported by the same brain regions that are 

associated with a pre-existing, innate and evolutionarily ancient abstract number 

processing system used to process nonsymbolic numerical magnitudes (e.g., three dots 

‘•••’), in human adults (Brannon, 2006; Dehaene, 2007; Dehaene et al., 2003; Nieder & 

Dehaene, 2009). However, a growing body of recent evidence suggests that the neural 

systems used to process symbolic and nonsymbolic numerical magnitudes are more 

distinct than has been previously assumed (Ansari, 2007; Bulthé, De Smedt, & Op de 

Beeck, 2014; Cohen Kadosh & Walsh, 2009; Lyons, Ansari, & Beilock, 2012, 2014; 

Lyons & Beilock, 2013; Sokolowski & Ansari, 2016), thus conflicting with the notion 

that numbers are processed entirely abstractly. Despite years of research, and a recent 

meta-analysis of neuroimaging papers, presented in Chapter 2 of the current thesis 

(Sokolowski, Fias, Mousa, & Ansari, 2017), there remains no clear conclusion about 

whether symbolic and nonsymbolic numerical magnitudes are supported by the same or 

distinct brain regions.  

Research examining whether symbolic and nonsymbolic numerical magnitudes are 

represented in the same way in the adult human brain is further complicated by the fact 

that nonsymbolic numerical magnitudes are inherently confounded by non-numerical 

magnitudes. For example, physical size is related to nonsymbolic magnitude processing 

because more objects take up more space.  More specifically, a set of six objects takes up 

more physical space than a set of five of the same sized objects (For review see: 
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Leibovich & Henik, 2013). Additionally, brain regions associated with numerical 

magnitude processing are also activated during the processing of non-numerical 

magnitudes such as physical size, duration, and luminance (Cantlon, Platt, & Brannon, 

2009; Cohen Kadosh, Lammertyn, & Izard, 2008; Sokolowski, Fias, Bosah Ononye, & 

Ansari, 2017; Walsh, 2003). This finding of common brain regions supporting numerical 

and non-numerical magnitude processing has been taken to suggest that the neural system 

that has been identified as an abstract number processing system (used to process both 

symbolic and nonsymbolic numerical magnitudes) may, in fact, be a general system used 

to process both numerical and non-numerical magnitudes. However, it is clear that 

previous studies have not sufficiently controlled for continuous properties of the 

nonsymbolic stimuli.  Therefore, the question of whether symbolic and nonsymbolic 

numerical magnitudes are processed using the same system while controlling for brain 

regions associated with non-numerical magnitude processing, must still be addressed.  

More problematic still is the use of active tasks in the vast majority of studies that 

compare the neural correlates of symbolic and nonsymbolic numerical thinking.  In active 

tasks, it is notoriously difficult to discern whether neural activation is associated with 

processing the magnitude of the stimulus or with decision making and motor processing 

required to complete the active task (Göbel et al., 2004). Additionally, it is challenging to 

equate difficulty levels on active tasks, which means that a comparison of task effects of 

active tasks may reflect relative levels of difficulty rather than representational 

differences between the tasks.  To overcome these limitations of active tasks, a small 

subset of research has used functional Magnetic Resonance Imaging adaptation (fMR-A). 

fMR-A is a passive design that measures the neural correlates associated with stimuli of 

interest without requiring participants to make a decision or motor response.  This task 

relies on the principle that neural populations habituate (i.e., adapt) their activity 

following repeated presentations of the same stimulus (Grill-Spector et al., 2006).  In 

fMR-A paradigms, a particular stimulus (i.e., the habituation stimulus) is repeatedly 

presented to evoke adaptation of brain regions associated with encoding this stimulus. 

Following this period of adaptation, a stimulus that differs in some way from the 

habituation stimulus (i.e., a deviant stimulus) is presented. The presentation of the deviant 

stimulus results in a rebound of activation in regions that are associated with the 
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attributes of the particular deviant compared to the habituation stimulus. This rebound of 

activation in response to a deviant stimulus is referred to as the ‘neural rebound effect’. 

The extent of the neural rebound effect in response to a deviant is a function of the 

difference between the adapted stimulus and the deviant. For example, within the number 

domain, if a participant is adapted to symbolic number ‘6’ the neural rebound effect will 

be greater for a symbolic number deviant stimulus that is farther from the adapted 

stimulus (e.g.,‘9’) compared to a symbolic number that is closer to the adapted stimulus 

(e.g.,‘7’). The use of fMR-A is necessary to identify whether symbolic and nonsymbolic 

numerical magnitudes are sub-served by the same neural systems, in human adults. 

Using fMR-A, researchers have found that the left inferior parietal lobule responds to 

processing the magnitude of number symbols (Cohen Kadosh, Cohen Kadosh, Kaas, 

Henik, & Goebel, 2007; Damarla & Just, 2013; Holloway, Battista, Vogel, & Ansari, 

2013; Notebaert, Nelis, & Reynvoet, 2011; Piazza, Pinel, Le Bihan, & Dehaene, 2007; 

Vogel et al., 2017), whereas bilateral regions in the parietal lobes respond more to 

nonsymbolic numerical magnitudes (Damarla & Just, 2013; Demeyere, Rotshtein, & 

Humphreys, 2014; Piazza et al., 2004; Roggeman et al., 2007).  Problematically, most 

previous research only includes a symbolic or a nonsymbolic condition, but not both 

conditions.  In the few studies that examined the passive processing of both symbolic and 

a nonsymbolic numerical magnitudes using fMR-A (Damarla & Just, 2013; Piazza et al., 

2007; Roggeman et al., 2007), participants were adapted to either symbolic numbers and 

then presented with nonsymbolic deviants, or were adapted to nonsymbolic numbers and 

then presented with symbolic deviants. This cross-format adaptation can allow 

researchers to make inferences about whether representations of one format is 

generalizable to another.  For example, the finding that the neural distance effect of one 

format is also activated by a cross-format deviant might suggest a reliance on the same 

underlying representations. However, this cross-notation adaptation paradigm cannot 

reveal whether similar brain regions are adapted to symbolic and nonsymbolic stimuli. 

This is because in the two conditions compared (symbolic vs. nonsymbolic), the stimuli 

to which the participant is adapted to are different. Consequently, the finding of 

overlapping representations using cross-format effects may be driven by a common 

representation or by the activation of a mechanism that allows for the translation of 
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representations. To directly compare the passive processing of symbolic and nonsymbolic 

numerical magnitudes using an fMR-A paradigm, it is necessary to adapt the brain to 

both symbolic and nonsymbolic stimuli, simultaneously. To do this, the habituation 

stimuli for symbolic and nonsymbolic number processing must be identical. 

In this study, we address the fundamental question of whether the culturally acquired, 

uniquely human, ability to process numbers symbolically is underpinned by the same 

brain regions that are activated during the processing of nonsymbolic quantities and 

physical size. This will identify whether different number formats are processed 

abstractly, using a single system, or in a format-dependent way in the human adult brain.  

In the present preregistered study 

(https://osf.io/jrmpf/register/5771ca429ad5a1020de2872e), we develop and implement 

parallel fMR-A to isolate and directly compare the neural representations of symbols, 

quantities, and physical size. Importantly, our design controls for brain activations 

associated with other conditions in the paradigm, as well as inherent confounds 

associated with active tasks (Grill-Spector et al., 2006).  Specifically, in our parallel 

fMR-A design, participants are repeatedly presented with a specific quantity of the same 

symbolic number in a white coloured font of a specific size. This set of symbols will be 

referred to as an ‘array’. Following this, one aspect of the array is changed (either the 

symbol, the quantity, or the size) while the other aspects remain constant.  This design 

allows us to identify whether the culturally acquired ability to process symbolic 

numerical magnitudes activates the same brain regions that are activated during the 

processing of nonsymbolic numerical magnitudes and/or non-numerical magnitudes, in 

the adult brain.  

3.2 Methods 

3.2.1 Participants 

Fifty-two healthy adult participants from London, Ontario, Canada participated in the 

fMR-A experiment. Our final sample included 45 participants (MeanAge = 23.6, Standard 

DeviationAge = 4.3, Age Range = 18-39; 30 women and 22 men), all of whom did not 

exceed our motion cut-offs (i.e., no overall deviation greater than 3 mm from the 1st 

https://osf.io/jrmpf/register/5771ca429ad5a1020de2872e
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volume acquired within a run, and no deviation greater than 1.5 mm between subsequent 

volumes) and our accuracy cut-offs (Vogel et al., 2015).  Accuracy was determined by 

asking participants to press a predefined button with their right index finger when the 

numbers appeared in blue font.  These trials are referred to as “catch trials”.  The scanner 

runs where the participant did not “catch” at least five out of seven trials were excluded 

from analyses. Participants with fewer than two out of three usable runs were excluded 

from the study.  All included participants were right-handed, spoke fluent English, 

reported no known history of psychiatric or neurological disorders, and had normal or 

corrected to normal vision. The procedures of this study were approved by the Health 

Sciences Research Ethics Board for human subjects at the University of Western Ontario 

(See Appendix A and https://osf.io/ru4xb/).  

3.2.2 Stimuli 

Stimuli were created using MATLAB (Figure 3.1A). The code to create the stimuli is 

available on the OSF at (https://osf.io/9gfj4/).  Habituation stimuli contained white ‘6’s in 

the font size 60 on a grey background (see Fig 3.1A for example of a habituation array). 

Participants were simultaneously adapted to three aspects of the array: the numerical 

symbol, the quantity, and the physical size of the digits. Deviant stimuli (i.e., stimuli that 

differed from the habituation stimuli in a particular way) were variations of an array of 

white Arabic digits randomly positioned on a grey background. Catch trials (i.e., trials for 

which participants were instructed to press a button) contained Arabic digits printed in 

blue on the same grey background. As previously stated, to meet our accuracy cut-offs, 

participants were required to “catch” at least 5 out of the 7 trials per run (Vogel et al., 

2015). Multiple versions of the array for each condition were generated to ensure that 

participants did not learn the position of the Arabic digits within the array. E-prime 2.0 

presentation software (Schneider, Eschman, & Zuccolotto, 2002) was used to project the 

stimuli onto a computer screen (resolution=800x600 pixels; colour bit depth = 16). The 

paradigm is available at (https://osf.io/gx63r/). The participants viewed the computer 

screen using a mirror system that was attached to the magnetic resonance imaging (MRI) 

head-coil.   

https://osf.io/ru4xb/
https://osf.io/9gfj4/
https://osf.io/gx63r/
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3.2.3 Experimental Procedure 

The fMR-A task was modelled after previous adaptation studies ( Holloway et al., 2013; 

Vogel et al., 2015, 2017). Participants were instructed to attend to the screen and press a 

button when the digits on the screen turned blue (i.e., catch trials).  The experiment 

included three fMR-A runs, each consisting of a stream of arrays of Arabic digits in 

Helvetica font punctuated by blank grey screens that were the same colour as the 

background of the arrays. The arrays were presented for 200 milliseconds and the blank 

grey screen for 1200 milliseconds (Figure 3.1A). During habituation, participants were 

presented with the digit '6' in four random locations of the screen in size 60 font between 

5 and 9 times (average of 7 repeats).  This allowed for a natural oversampling of the 

hemodynamic response function as the presentation of one trial (1400ms) was not 

synchronized with the scan repetition time (TR=1000ms).  At jittered intervals (i.e., after 

5-9 habituation trials), participants were presented with either a deviant trial (48 total 

trials across 6 conditions), a null trial (9 total), or a catch trial (7 total). In deviant trials, 

one aspect of the array of sixes was changed a small amount or a large amount.  There 

were six conditions of deviant trial types (8 trials per deviant).  Specifically, there were 

three types of deviants (symbolic, nonsymbolic, physical size), and each type changed a 

large amount or a small amount (small change, large change).  In the symbolic condition, 

the numerical symbols changed from ‘6’s to '7's (small change), or to '2's (large change), 

while the quantity and physical size were held constant. In the nonsymbolic condition, 

the quantity changed from four to three (small change) or eight (large change) ‘6’s, but 

the symbol and physical size were held constant. For symbolic and nonsymbolic deviant 

conditions, the small change was a distance of 1 and the large change was a distance of 4.  

In the physical size condition, the size of the symbols decreased to font size 51 (small 

change) or increased to font size 86 (large change), but the symbol and quantity (i.e., four 

‘6’s) remained unchanged.  Critically, for the physical size condition, the area of the four 

digits was matched to the area taken up by the three digits in the quantity small change 

condition or the eight digits in the quantity large change condition.  Specifically, the 

number of white pixels in the physical size condition was matched to the corresponding 

nonsymbolic deviant conditions using MATLAB.  The code is available at 

(https://osf.io/rncv7/).  In null trials, the participant was presented with another 

https://osf.io/rncv7/
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habituation trial array (i.e., four ‘6’s in size 60 font). In the catch trials, participants were 

presented with one of the 6 deviant trials, or a null trial in blue font. Participants pressed 

a button with the index finger of their right hand when the digits on the screen turned 

blue (i.e., catch trials).  Catch trials were pseudo-randomly dispersed throughout each 

run. Participants had to push the button for at least five of the seven catch trials for the 

run to be included in the statistical analyses. See Figure 3.1B for an illustration of the 

adaptation, deviant, null, and catch trials.  

 

 

Figure 3.1 A) Example of the parallel adaptation paradigm: including the continuous 

presentation of the adapted stimulus (habituation period) followed by a deviant stimulus 

(in this case a symbolic deviant). B) Illustrations of examples of the adaptation stimulus, 

six deviant stimuli types (symbolic distance 1, symbolic distance 4, nonsymbolic distance 

1, nonsymbolic distance 4, physical size small change, and physical size large change), 

and catch trial types (i.e., trials for which participants were instructed to press a button, to 

assure a minimum degree of attentiveness towards the stimuli presentation in the 

scanner). 
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3.2.4 fMRI Data Acquisition 

Structural and functional images were acquired using a 3T Siemens Prisma Fit whole-

body MRI scanner, using a 32-channel receive-only head-coil (Siemens, Erlangen 

Germany).  A whole-brain high resolution T1-weighted anatomical scan was collected 

using an MPRAGE sequence with 192 slices, and a scan duration of 5 minutes and 21 

seconds (isovoxel resolution = 1 × 1 × 1; TR = 2300 ms; TE 2.98 = ms; TI = 900 ms; 

FOV = 256 mm; flip angle = 9).  Functional MRI data were acquired using a blood 

oxygen level dependent (BOLD) sensitive T2* echo-planar (EPI) sequence.  Forty-eight 

slices were acquired in a sequential multi-slice interleaved series with a multi-band 

accelerator factor of 4 (slice thickness = 2.5 mm; TR = 1000 ms; TE 30.00 = ms; FOV = 

208 mm; flip angle = 40).  All data are publicly available at 

(https://openneuro.org/datasets/ds001848/versions/1.0.1). 

3.2.5 fMRI Data Preprocessing 

Structural and functional data were pre-processed and analyzed in Brain Voyager 20.6 

(Brain Innovation, Maastricht, The Netherlands) using the software’s preprocessing 

workflow (For workflow see: https://osf.io/3hr2g/). The structural brain data was 

extracted from the head tissue and intensity inhomogeneities were corrected to reduce the 

spatial intensity of the 3D volumes. Functional data were corrected for slice-scan time 

acquisition (cubic-spline interpolation algorithm), high-pass filtered (Fourier; cut off 

value of 2 sines/cosines cycles) and corrected for in-scanner head motion (Trilinear/sinc 

interpolation).  A Gaussian smoothing kernel of 6-mm Full-Width-of-Half Maximum 

(FWHM) was applied to smooth the images.  Structural and functional images were co-

registered using a header-based initial alignment followed by a gradient-driven fine-

tuning adjustment and normalized to MNI-152 space.  A two gamma hemodynamic 

response function was used to model the expected bold signal (Friston, Josephs, Rees, & 

Turner, 1998). Baseline was calculated using the adaptation period as well as the between 

trial fixation periods. Catch trials were modelled as a predictor of no interest.  

https://openneuro.org/datasets/ds001848/versions/1.0.1
https://osf.io/3hr2g/
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3.2.6 Data Analysis 

3.2.6.1 Statistical Threshold 

All of the statistical maps reported in the current study were first thresholded with an 

uncorrected p-value of .005. This statistical threshold was chosen based on reports from 

recent symbolic fMR-A studies (Vogel et al., 2015, 2017).  The statistical whole-brain 

maps were corrected then for multiple comparisons at a statistical level of p<.05 using the 

cluster-level correction plugin in BrainVoyager (for review of this approach see Forman 

et al., 1995). The full width at half maximum (FWHM) in units of functional voxels (i.e., 

the smoothness) as well as the minimum cluster size (p=.05) based on the log-linear 

intra/extrapolation in millimeters (i.e., the cluster extent) are reported for each contrast 

with clusters of activation that reached a minimum threshold of p < 0.005, uncorrected 

and p < 0.05 cluster corrected at on whole-brain level.  

3.2.6.2 Whole-brain Analyses 

Whole-brain random-effects analyses were conducted using a general linear model 

(GLM) to examine overlapping and distinct BOLD responses to symbolic numerical 

magnitudes, nonsymbolic numerical magnitudes and the magnitude of physical size.  All 

primary analyses were preregistered on the open science framework (OSF) (see 

https://osf.io/jrmpf/register/5771ca429ad5a1020de2872e for preregistration).   

3.3 Results  

3.3.1 Preplanned Analyses 

3.3.1.1 Change Detection 

Preliminary contrast analyses were run to examine what brain regions responded to 

changes in different stimulus dimensions. Regions that were associated with stimulus 

change detection were identified as regions associated with the change of one stimulus 

type (at both distances) over the change of the other two stimulus types (at both 

distances) (e.g., the symbolic change effect is calculated as [(symbolic distance 1 + 

symbolic distance 4) > (nonsymbolic distance 1 + nonsymbolic distance 4 + physical size 

distance 1 + physical size distance 4)]).  

https://osf.io/jrmpf/register/5771ca429ad5a1020de2872e
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Results revealed that symbolic change detection (Cluster-Level: smoothing = 2.49; extent 

= 920 mm) was associated with activation in a widespread frontal-parietal-occipital 

network (Table 3.1, Figure 3.2).  There were no brain regions that were activated above 

threshold in response to nonsymbolic change detection (Table 3.1, Figure 3.2).  Physical 

size change detection (Cluster-Level: smoothing = 2.25; extent = 688 mm) was 

associated with activation in the right premotor cortex, right superior temporal gyrus, and 

left occipital region (Table 3.1, Figure 3.2).  Critically, although these preliminary 

analyses highlight regions that are associated with the passive perception of change 

detection, these brain regions are not specifically associated with magnitude processing 

of symbols, quantities, and physical size. 

 

 

Figure 3.2 Change detection signal recovery from adaptation in the three deviant 

conditions (green = symbolic change detection, blue = nonsymbolic change detection, red 

= physical size change detection). 
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Table 3.1 Brain Regions Associated with Change Detection Signal Recovery from 

Adaptation 

Hemi-

sphere 
Brain Region   

Peak 

Coordinate 
t p 

Cluster 

Size  

  

Juelich 

Histological 

Atlas 

Harvard-Oxford 

Structural Atlas 
x y z     

(Number 

of 

Voxels) 

    
Symbolic Change 

Detection 
          

R 

Anterior 

Intraparietal 

Sulcus 

Superior Parietal 

Lobule, Angular 

Gyrus 

33 -52 43 5.46 0.000002 9264 

R  

Frontal Pole, 

Middle Frontal 

Gyrus 

42 38 25 3.70 0.0006 1286 

R 
Lateral Occipital 

Cortex 
Visual Cortex 42 -88 -2 4.69 0.00003 1095 

R Thalamus 
Corticospinal 

Tract 
12 -10 4 4.80 0.00002 1563 

R  

Paracingulate 

Gyrus, Cingulate 

Gyrus 

6 32 31 4.36 0.00008 2060 

R 
Callosal Body, 

Cingulum 
Cingulate Gyrus 3 -34 28 4.46 0.00006 2754 

R 
Premotor 

Cortex 

Superior Frontal 

Gyrus, 

Paracingulate 

Gyrus 

0 26 52 4.37 0.00008 2573 

L  Cerebellum -6 -89 -32 4.45 0.00006 2322 

L 
Visual Cortex 

V4 

Lateral Occipital 

Cortex, Occipital 

Fusiform Gyrus 

-45 -76 -17 5.80 0.000001 6928 

L 

Anterior 

Intraparietal 

Sulcus, 

Lateral Occipital 

Cortex, Superior 

Parietal Lobule, 

Angular Gyrus 

-30 -61 46 4.44 0.00006 5670 
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Superior 

Parietal Lobule 

L  Frontal Pole -42 53 4 3.97 0.0003 1298 

    
Nonsymbolic Change 

Detection 
        

- - - - - - - - - 

    
Physical Size Change 

Detection 
        

R 
Inferior Parietal 

Lobule 

Supramarginal 

Gyrus 
60 -37 22 4.46 0.00006 3008 

R 
Inferior Parietal 

Lobule 

Angular Gyrus 

and Middle 

Temporal Gyrus 

48 -49 13 4.27 0.0001 1098 

L Visual Cortex 

Lateral Occipital 

Cortex, Occipital 

Pole 

-30 -88 -2 4.51 0.00005 2538 

 

3.3.1.2 Neural Distance Effects 

We examined neural distance effects (i.e., distance 4>distance 1) to isolate brain regions 

associated with magnitude processing, of each deviant stimulus type (symbolic, 

nonsymbolic, physical size). To reveal neural correlates of the distance effects for each 

condition, we statistically compared distance four to distance one for the symbolic 

condition (symbolic distance 4 > symbolic distance 1), the nonsymbolic condition 

(nonsymbolic distance 4 > nonsymbolic distance 1) and the physical size condition 

(physical size large change > physical size small change). This analysis revealed that 

symbolic magnitude processing (Cluster-Level: smoothing = 2.10; extent = 571 mm) was 

associated with activation in the left inferior parietal lobule (Peak MNI Coordinate: -57, -

64, 22; Cluster Size = 878 voxels) and the left orbitofrontal cortex (Peak MNI 

Coordinate: -36, 35, -14; Cluster Size = 944 voxels) (Figure 3.3A).  Distinct from this, 

nonsymbolic magnitude processing (Cluster-Level: smoothing = 2.26; extent = 693 mm) 

was associated with activation in the right intraparietal sulcus (Peak MNI Coordinate: 27, 
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-67, 49; Cluster Size = 2381 voxels) (Figure 3.3B).  Finally, physical size magnitude 

processing (Cluster-Level: smoothing = 2.45; extent = 836 mm) correlated with 

widespread activation spanning right parietal and occipital lobes (Peak MNI Coordinate: 

42, -61, -11; Cluster Size = 25418 voxels), and a smaller region in the left occipital cortex 

(Peak MNI Coordinate: -45, -67, -11; Cluster Size = 5086 voxels) (Figure 3.3C).  These 

results demonstrate that the processing of symbolic numerical magnitudes is left-

lateralized, whereas the processing of nonsymbolic numerical magnitudes and physical 

size is right-lateralized. These data demonstrate that the brain regions that support 

symbolic and nonsymbolic number processing are potentially quite distinct. Furthermore, 

nonsymbolic numerical magnitude processing may actually be supported by brain regions 

used to process non-numerical magnitudes, such as physical size.  
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Figure 3.3 The neural rebound effects for: A) symbolic numerical magnitude processing 

defined as the degree of neural rebound for symbolic distance 4 deviant > symbolic 

distance 1 deviant, shown in green, B) nonsymbolic numerical magnitude processing, 

defined as the degree of neural rebound for nonsymbolic distance 4 deviant > 

nonsymbolic distance 1 deviant, shown in blue, C) physical size magnitude processing, 

defined as the degree of neural rebound for physical size large change deviant > physical 

size small change deviant, shown in red. This reveals that symbolic numerical 
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magnitudes are represented using distinct brain regions from those that support 

nonsymbolic and nonnumerical magnitude processing. 

Following our pre-registered analysis plan, we next used a conjunction () analysis to 

assess whether the brain regions associated with symbolic, nonsymbolic and physical size 

magnitude processing overlapped.  This analysis [(Symbolic Distance 4 > Symbolic 

Distance 1)  (Nonsymbolic Distance 4 > Nonsymbolic Distance 1)   (Physical Size 

Large Change > Physical Size Small Change)] revealed that there are no brain regions 

commonly activated by symbolic, nonsymbolic and physical size magnitude processing.   

To identify which brain regions support numerical magnitude processing specifically, the 

conjunction of the symbolic and nonsymbolic distance effects was contrasted against the 

physical size distance effect [((Symbolic Distance 4 > Symbolic Distance 1)  

(Nonsymbolic Distance 4 > Nonsymbolic Distance 1)) > (Physical Size Large Change > 

Physical Size Small Change)].  No brain regions that were significantly activated for 

numerical magnitude processing (symbolic and nonsymbolic) over and above brain 

regions associated with physical size processing were found.   

The final set of preplanned analyses were included to identify whether the brain regions 

associated with symbolic, nonsymbolic and physical size magnitudes were format-

specific.  To do this, the neural distance effect of each format-specific magnitude was 

contrasted against the other two distance effects.  The contrast examining symbolic 

specific activation [(Symbolic Distance 4 > Symbolic Distance 1) > ((Nonsymbolic 

Distance 4 > Nonsymbolic Distance 1)  (Physical Size Large Change > Physical Size 

Small Change))] (Cluster-Level: smoothing = 2.21; extent = 654 mm) revealed that the 

left inferior parietal lobule supports symbolic magnitude processing over and above 

nonsymbolic and physical size (Peak MNI Coordinate: -57, -64, 22; Cluster Size = 1195 

voxels) (Figure 3.4). In contrast, no brain region was specifically activated by 

nonsymbolic magnitude processing (i.e., the contrast [(Nonsymbolic Distance 4 > 

Nonsymbolic Distance 1) > ((Symbolic Distance 4 > Symbolic Distance 1)  (Physical 

Size Large Change > Physical Size Small Change))]).  The contrast examining which 

brain regions were specifically associated with physical size over and above numerical 



115 

 

magnitude processing [(Physical Size Large Change > Physical Size Small Change) > 

((Symbolic Distance 4 > Symbolic Distance 1)  (Nonsymbolic Distance 4 > 

Nonsymbolic Distance 1))] (Cluster-Level: smoothing = 1.98; extent = 510 mm) 

implicated the right fusiform gyrus (Peak MNI Coordinate: 42, -67, -17; Cluster Size = 

687 voxels). Together these analyses provide further evidence to support our key finding 

that the symbolic numerical magnitudes are processed using brain regions that are distinct 

from the regions that support the processing of nonsymbolic numerical magnitudes and 

physical size. In other words, the brain regions used to process culturally acquired 

symbols seem to be spatially distinct from the evolutionarily ancient systems that support 

nonsymbolic numerical magnitude processing and non-numerical magnitude processing, 

in human adults.   

3.3.2 Post-Hoc Analyses 

The findings from the pre-registered contrasts reveal that the neural correlates associated 

with the magnitude processing of symbolic numbers are spatially distinct from brain 

regions that support nonsymbolic and non-numerical magnitude processing. Critically, 

these pre-registered contrasts revealed that nonsymbolic magnitude processing and 

physical size magnitude processing both activated the right intraparietal sulcus, a region 

typically associated with number processing. Furthermore, although symbolic magnitude 

processing was specifically associated with activation in the left parietal lobe, no region 

in the parietal or frontal cortex was specifically activated by nonsymbolic or physical size 

processing.  In view of this, a post-hoc conjunction analysis was run examining 

overlapping activation between nonsymbolic magnitude processing and physical size 

magnitude processing [(Nonsymbolic Distance 4 > Nonsymbolic Distance 1)  (Physical 

Size Large Change > Physical Size Small Change)], (Cluster-Level: smoothing = 2.06; 

extent = 565 mm).  Results revealed that one cluster in the right intraparietal sulcus was 

activated by the conjunction of nonsymbolic and physical size magnitude processing 

(Peak MNI Coordinate: 30, -67, 40; Cluster Size = 1412 voxels) (Figure 3.4). This post-

hoc analysis suggests the right-lateralized parietal region is used to process both 

nonsymbolic and non-numerical magnitudes. Therefore, the brain regions that support 

nonsymbolic numerical magnitude processing may reflect a general magnitude system 



116 

 

that processes both numerical and non-numerical, nonsymbolic information, rather than 

an abstract number processing system, that specifically supports the processing of 

numerical magnitudes. 

To identify whether the brain region related to the conjunction of nonsymbolic and 

physical size processing was significant over and above symbolic number processing, the 

conjunction of the nonsymbolic and physical size distance effects was contrasted against 

the symbolic distance effect [(Nonsymbolic Distance 4 > Nonsymbolic Distance 1)  

(Physical Size Large Change > Physical Size Small Change) > (Symbolic Distance 4 > 

Symbolic Distance 1)].  There were no brain regions that were significantly activated for 

nonsymbolic numerical and non-numerical magnitude processing over and above brain 

regions supported by symbolic numerical magnitude processing. This post-hoc analysis 

indicates that while there is evidence that symbolic numerical magnitude processing is 

spatially distinct from nonsymbolic numerical magnitude processing and the processing 

of physical size, there is no strong spatial evidence for unique representations of 

nonsymbolic and physical size when contrasted to symbolic. 
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Figure 3.4 Symbolic specific rebound effect depicted in green. The conjunction between 

the rebound effects for nonsymbolic deviants and physical size deviants is depicted in 

purple. 

Together, the preplanned combined with post-hoc univariate analyses indicate that 

nonsymbolic magnitudes are processed in the same brain region that is used to process 

physical size magnitude, namely the right intraparietal sulcus.  In contrast, symbolic 

numerical magnitude processing is specifically associated with activation in the left 

inferior parietal lobule.  However, though these univariate analyses suggest some spatial 

distinction between symbolic and nonsymbolic numerical magnitude processing, the 

conjunction of nonsymbolic and physical size processing was not significant over and 

above symbolic numerical magnitude processing.  This suggests that while symbolic and 

nonsymbolic numerical magnitude processing seems to be lateralized in the parietal 

cortex both formats may still activate overlapping regions.  Additionally, univariate 

analyses do not allow us to conclude that the underlying representations are unrelated. To 
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address this outstanding issue, we used a multivariate approach to identify similarities 

and differences in the spatial patterns of neural activity for symbolic numerical 

magnitude processing, nonsymbolic numerical magnitude processing and the processing 

of physical size. More specifically, we used the multivariate method representational 

similarity analysis (RSA), to extract information about distributed patterns of 

representations within regions of interest in the brain.  This method is valuable in 

advancing our understanding of similarities and differences in the underlying 

representations of symbolic, nonsymbolic and non-numerical magnitudes, rather than 

coarsely estimating spatial overlap. 

3.3.2.1 Representational Similarity Analyses 

We implemented RSA using Brain Voyager 20.6 (Brain Innovation, Maastricht, The 

Netherlands), to analyze the similarity between evoked fMRI responses for the symbolic 

distance effect, the nonsymbolic distance effect and the physical size distance effect in 

select regions-of-interest (ROIs).  The ROIs were constructed by creating a sphere with a 

radius of 10mm around the weighted centre of the bilateral parietal clusters in the 

numerical passive viewing map from chapter 2 (Sokolowski, Fias, Mousa, & Ansari, 

2017). The coordinates for the weighted centre of the parietal clusters are: 1) right 

hemisphere: MNI coordinates (x, y, z): 26, -55, 53) 2) left hemisphere: MNI coordinates 

(x, y, z): -28, -67, 43).  For each ROI, a representational distance (or dissimilarity) matrix 

(RDM) was computed to assess the dissimilarity between the symbolic distance effect, 

the nonsymbolic distance effect, and the physical size distance effect (Figure 3.5). Note 

that the correlation calculated between patterns is a reflection of the similarity of the 

spatial patterns since this measure abstracts from the mean (and standard deviation) of the 

original values. The RDM contains a cell for each pair of experimental conditions. The 

colour of each cell represents a number that reflects the dissimilarities between the 

activity patterns associated with the two experimental conditions. Specifically, a Pearson 

correlation coefficient was calculated and subsequently transformed to a distance 

measure using the equation: d = 1 – r. These calculated d values, thus, range from 0.0 

(minimum distance) to 2.0 (maximum distance) with value 1.0 in the middle representing 

no correlation. This data is further visualized using a multi-dimensional scaling (MDS) 
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plot, which depicts the similarity between the conditions in a two-dimensional 

representation (Figure 3.5).  Specifically, the conditions that are positioned closer 

together on the MDS plot have more similar neural activation patterns. Notably, results 

from this multivariate analysis revealed that nonsymbolic magnitude processing and 

physical size processing correlate more strongly at the multivariate level than either does 

with symbolic magnitude processing in both the right and the left hemispheres. Notably, 

this pattern of greater similarity between nonsymbolic and physical size compared to 

symbols is especially strong in the right hemisphere.  In sum, these multivariate results 

revealed a dissimilar normalized pattern of activation for symbolic compared to 

nonsymbolic numerical magnitude processing in both the left and right parietal lobes. 

Together the converging evidence from the univariate and multivariate analyses show 

that, in the adult human brain, symbols are processed using distinct brain regions, and 

distinct patterns of activation, compared to nonsymbolic and non-numerical magnitudes. 

 

 

Figure 3.5 The left side of this figure illustrates the representational distance matrices 

(RDM) between the symbolic distance effect, the nonsymbolic distance effect, and the 

physical size distance effect in the left (top) and right (bottom) hemispheres.  The 

numerical values that correspond to colours in the RDM refer to the distance measure 
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calculated using the equation: d = 1 – r. Therefore, the values can range from 0.0 

(minimum distance) to 2.0 (maximum distance) with value 1.0 in the middle representing 

no correlation. The right side of this figure depicts the multi-dimensional scaling (MDS) 

plots, which are visualizations of the similarity between the three distance effects 

(symbolic, nonsymbolic, physical size) in two-dimensional space. The MDS plot is a 

visualization of the distances between conditions in a two-dimensional space that 

maximally satisfies the pairwise distances to all other conditions. 

3.4 Discussion 

The goal of the current study was to examine whether the uniquely human capacity to 

process symbolic numerical magnitudes relies on the same brain regions that support the 

processing of nonsymbolic numerical magnitudes (i.e., quantities).  Parallel fMRI 

adaptation was developed and used to isolate and directly compare the semantic 

representations of symbols, quantities, and physical size while controlling for neural 

activation associated with other conditions, as well as inherent confounds of active tasks 

(Grill-Spector et al., 2006). Results revealed that the neural correlates of symbolic 

numerical magnitude processing are more distinct from nonsymbolic magnitude 

processing than has been assumed, at both the univariate and multivariate levels. At the 

univariate level, symbolic numerical magnitudes are represented in the left inferior 

parietal lobule, whereas both nonsymbolic numerical magnitudes and non-numerical 

magnitudes (i.e., physical size) are represented in the right intraparietal sulcus. These 

findings align with previous research indicating that different number formats (symbolic 

and nonsymbolic) are lateralized within the parietal cortex (For review see: Sokolowski 

& Ansari, 2016). Specifically, activation in the left parietal lobule is specific to symbolic 

number processing, whereas the right parietal lobule is more activated during 

nonsymbolic magnitude processing (Sokolowski, Fias, Mousa, et al., 2017). At the 

multivariate level, normalized patterns of activation for symbolic numerical magnitude 

processing in both the left and right parietal lobes were different compared to patterns of 

activation for nonsymbolic magnitude processing; this also converges with previous 

research (Bulthé et al., 2014; Eger et al., 2009; Lyons et al., 2014). This suggests that in 

the adult human brain, symbolic numerical magnitudes are processed in a way that is 
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spatially and representationally distinct from the processing of nonsymbolic numerical 

magnitudes. 

The findings from the current study suggest that adult humans possess two distinct 

systems to support magnitudes: 1) a symbolic system used specifically to represent 

symbolic numerical magnitudes, and 2) a general magnitude system used to represent 

both discrete and continuous magnitudes. These findings directly contrast the findings 

from Chapter 2 of this thesis, as well as the predominant view in the field of numerical 

cognition, namely that symbolic and nonsymbolic numbers are processed using both 

overlapping as well as distinct neural mechanisms (For review see: Cohen Kadosh, 2008; 

Sokolowski, Fias, Mousa, et al., 2017; Sokolowski & Ansari, 2016). The parallel 

adaptation paradigm developed and employed in the present study overcomes major 

confounds of previous research that use active tasks such as decision making, and motor 

processing for these active tasks (Grill-Spector et al., 2006). Indeed, previously reported 

overlapping activation during the processing of symbolic and nonsymbolic numerical 

magnitudes likely resulted from overlapping task demands, or the effortful process of 

mapping symbols onto quantities in the case of cross-format designs. Using our parallel 

adaptation approach, we discovered that the underlying brain regions supporting 

symbolic number processing are quite distinct from the regions that correlate with 

processing nonsymbolic magnitude processing in human adults.  

Results from the current study also show that the neural representations of nonsymbolic 

numerical magnitudes are nearly indistinguishable from the neural correlates that support 

the processing of non-numerical magnitudes, specifically physical size. This aligns with 

the growing body of research highlighting that nonsymbolic numbers are inherently 

confounded by non-numerical magnitudes, such as physical size (Leibovich & Henik, 

2013).  Additionally, our finding that nonsymbolic numerical magnitudes and non-

numerical magnitudes are supported by the same neural substrates directly contradicts the 

dominant view in numerical cognition, that symbolic and nonsymbolic numerical 

magnitudes are supported using an abstract number processing system that is specifically 

attuned to the processing of discrete quantities (Brannon, 2006; Cantlon, 2012; Dehaene 

et al., 1998, 2003; Nieder & Dehaene, 2009). Our findings also show that the system used 
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to process nonsymbolic numbers may, in fact, be part of a general magnitude processing 

system used to process both discrete as well as continuous magnitudes (Cohen Kadosh et 

al., 2008; Lyons et al., 2012, 2014; Sokolowski, Fias, Bosah Ononye, et al., 2017; Walsh, 

2003).   

A key finding from our study, that symbols are processed using different brain regions 

and produce different patterns of activation compared to nonsymbolic and non-numerical 

magnitudes, highlights the need to consider what is actually special about symbols. One 

key way in which symbols differ from the quantities that they represent is that symbols 

are processed exactly rather than approximately, regardless of magnitude (Hyde, 2011; 

Negen & Sarnecka, 2015; Núñez, 2017; Pica, Lemer, Izard, & Dehaene, 2004). This 

means that to understand the meaning of a large symbolic number, an adult does not need 

to map that symbol onto a pre-existing representation for the corresponding nonsymbolic 

numerical magnitude. Instead, learning counting principles that underlie symbolic 

numbers is a sufficient condition for understanding any symbolic number (Gallistel & 

Gelman, 1992; Gelman & Gallistel, 1978; Le Corre & Carey, 2014).  The idea that 

symbols can be represented exactly, whereas nonsymbolic and non-numerical magnitudes 

can only be processed approximately, provides a potential explanation for why the 

passive processing of symbolic and nonsymbolic numerical magnitudes are associated 

with separate brain regions. 

The multivariate results of this study provide very clear evidence for representational 

dissimilarity between symbolic numerical magnitude processing compared to 

nonsymbolic and non-numerical magnitude processing.  However, the univariate results 

indicate that the neural correlates of symbolic number processing are spatially distinct, 

but the brain region associated with the conjunction between nonsymbolic and non-

numerical magnitude processing is not significantly activated over and above symbolic 

numerical magnitude processing.  This suggests that although there is evidence that 

symbolic number processing is spatially distinct from nonsymbolic and non-numerical 

magnitude processing, there is no strong spatial evidence for unique representations of 

nonsymbolic and physical size. In other words, the brain region that supports 

nonsymbolic and non-numerical magnitude processing is also at least partially activated 
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by symbolic number processing. Therefore, the data from the current study provides 

some evidence that the brain regions that are activated during the passive processing of 

nonsymbolic and non-numerical magnitudes are also activated by symbolic numerical 

magnitudes. However, the neural correlates the support the uniquely human, culturally 

acquired, ability to represent numbers symbolically is supported by a set of brain regions 

that is quite distinct from the brain regions that support nonsymbolic numerical 

magnitude processing and non-numerical magnitude processing. 

3.4.1 Limitations 

There are several important limitations to the current study.  First, as the stimuli consist 

of arrays that include both symbolic and nonsymbolic numerical magnitudes, the 

possibility that these different formats automatically influence each other during 

processing (e.g., Morton, 1969; Naparstek & Henik, 2010; Pansky & Algom, 2002) 

cannot be ruled out.  However, the fact that a neural distance effect was found for both 

symbolic and nonsymbolic deviants, in distinct brain regions, suggests that the paradigm 

captured elements of magnitude processing that were specific to each format.  In chapter 

4, of the current thesis, I address this question by empirically evaluating the automatic 

influence of symbols and quantities on each other at the behavioural level.  A second 

limitation of the current study is that, due to attentional time constraints of the 

participants, it was not possible to include multiple numerical values for the habituation 

stimulus and within deviant categories. In other words, only one symbolic and 

nonsymbolic numerical magnitude was included for the habituation array and each 

change condition.  In view of this, the results from this study are specific to the particular 

magnitudes we included and should not be generalized to all numerical magnitudes. 

Future research is needed to examine whether these effects hold across multiple different 

symbols and quantities for both habituation and deviant stimuli.  

3.4.2 Conclusions 

This study provides evidence in support of the notion that the human adult brain 

processes symbolic numerical magnitudes and nonsymbolic numerical magnitudes using 

regions that are more distinct than has been assumed. Indeed, these findings directly 
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conflict with the dominant view in the field that symbolic and nonsymbolic numerical 

magnitudes are supported by a single abstract number processing system (Cantlon, 2012; 

Dehaene, 2007; Dehaene et al., 1998; Nieder & Dehaene, 2009).  Instead, data from the 

current study suggest that in human adults, culturally acquired symbolic representations 

and evolutionarily ancient nonsymbolic representations may be represented by two 

distinct systems. Our data highlight the need for the field of numerical cognition to move 

away conducting research with the goal of canvassing the brain in search of an abstract 

number processing system. Instead, efforts should be shifted towards uncovering the 

multifaceted behavioural and neural consequences of learning the complex, uniquely 

human skill of symbolic abstraction. 
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Chapter 4  

4 Number Symbols are Processed More Automatically 
than Nonsymbolic Numerical Magnitudes: Findings 
from a Symbolic-Nonsymbolic Stroop Task  

4.1 Introduction 

Basic number processing is a cognitive foundation that supports mathematical thinking.  

Basic number processing is defined as the ability to understand, estimate, and/or 

discriminate between numerical magnitudes.  From very early in development humans 

have the ability to process nonsymbolic numerical magnitudes (often referred to as 

quantities) (e.g.,‘•••’  vs. ‘••’) (Brannon, 2006).  This capacity to process nonsymbolic 

numerical magnitudes is shared with non-human primates as well as other species (For 

reviews see: Cantlon, 2012; Dehaene, 2007). This suggests that the ability to process 

nonsymbolic numerical magnitudes has a long evolutionary history. Critically, unlike 

non-human species and infants, human adults, in cultures that teach math symbolically, 

have the unique, culturally acquired ability to process numbers symbolically (e.g.,‘3’).  

The dominant assumption in the field of numerical cognition has been that this culturally 

acquired ability to represent numbers symbolically is linked to an evolutionarily ancient 

system used to process nonsymbolic numerical magnitudes (Brannon, 2006; Dehaene, 

2007; Dehaene, Piazza, Pinel, & Cohen, 2003; Halberda, Mazzocco, & Feigenson, 2008; 

Nieder & Dehaene, 2009).  However, a growing body of research, including data from 

Chapter 2 and 3 of this thesis, has revealed that symbolic and nonsymbolic numerical 

magnitudes are processed more distinctly than has been assumed (Cohen Kadosh et al., 

2011; Cohen Kadosh, Kaas, Henik, & Goebel, 2007; Cohen Kadosh & Walsh, 2009; De 

Smedt et al., 2013; Holloway et al., 2010; Lyons, Ansari, Beilock, 2012; Sokolowski et 

al., 2016).  Previous research has used effortful number processing tasks (e.g., Ansari, 

2008; Dehaene, Dehaene-Lambertz, & Cohen, 1998; Fias, Lammertyn, Reynvoet, 

Dupont, & Orban, 2003; Fulbright, Manson, Skudlarski, Lacadie, & Gore, 2003; 

Holloway & Ansari, 2008, 2009; Moyer & Landauer, 1967) and automatic number 

processing tasks (e.g., Furman & Rubinsten, 2012; Naparstek & Henik, 2010, 2012; 
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Naparstek, Safadi, Lichtenstein-Vidne, & Henik, 2015; Pansky & Algom, 2002; Pavese 

& Umiltà, 1998, 1999; Windes, 1968) to attempt to unravel how human adults process 

symbols and quantities. Effortful processing tasks require participants to actively attend 

to the presented stimuli and typically, make a decision based on these stimuli. For 

example, a number comparison task where participants are presented with two numerical 

magnitudes and asked to indicate which of the two numerical magnitudes has more items 

is an example of an effortful number processing task (e.g., Buckley & Gillman, 1974; 

Holloway & Ansari, 2009; Moyer & Landauer, 1967). Automatic processing refers to 

information processing that occurs in situations where the information is not task-

relevant. An example of an automatic number processing task is the Numerical Stroop 

Task. In a Numerical Stroop Task a participant is presented with two digits that differ 

both in numerical magnitude and in physical size (e.g., 3 and 4) and are asked to indicate 

which digit is numerically or physically larger (Henik & Tzelgov, 1982; Leibovich, 

Diesendruck, Rubinsten, & Henik, 2013). When participants complete this task a so-

called size congruity effect (SCE) is obtained. The SCE reflects the finding that the 

dimension to which the participant does not need to attend automatically influences speed 

and accuracy on the comparison task. For example, when making a physical size 

judgment, on a Numerical Stroop task that includes two different Arabic numerals in 

different size fonts, the numerical magnitude of the symbols being compared 

automatically influences judgments of the physical size. This finding, that the semantic 

meaning of a symbols affects physical size judgments, despite the fact that the 

participants do not need to process the semantic meaning of the number to succeed at the 

task, has been taken to suggest that the system used to process the physical size of an 

Arabic numeral is overlapping with the system used to process the semantic meaning of 

the Arabic numeral. Critically, although this task is useful in revealing the way humans 

automatically process symbolic numerical magnitudes in relation to the non-numerical 

magnitude, physical size, this paradigm cannot be used to address questions pertaining to 

the difference and similarities in processing symbolic and nonsymbolic numerical 

magnitudes.  

An important way to advance our understanding of how (or whether) symbolic and 

nonsymbolic numerical magnitudes are connected is to study the degree to which one 
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automatically influences the other during processing. Currently, there is a limited 

understanding of the connection between symbolic and nonsymbolic numerical 

magnitudes at different levels of processing. An automatic processing (i.e., Stroop-like) 

task is an ideal way to explore the link between symbolic and nonsymbolic numerical 

magnitudes. If symbols and quantities are processed using the same system, then they 

should automatically activate each other, but if they are not closely connected then the 

processing of one format (i.e., symbol or quantity) should not activate or influence the 

processing of the other format.  Notably, in line with research suggesting that symbols 

and quantities are not as connected as has been assumed (including chapter 2 and 3 from 

the current thesis and reviewed here: Cohen Kadosh & Walsh, 2009; Sokolowski & 

Ansari, 2016), it is possible that there will be an asymmetry in activation, namely that 

only one of the formats will automatically activate the other.  Despite years of research, 

the question of whether symbolic (i.e., Arabic digits) and nonsymbolic numerical 

magnitudes (i.e., quantities) influence each other in the same or an asymmetrical way has 

not been examined. The current study will identify whether symbols and quantities are 

processed similarly during effortful and automatic, processing.   

Amongst the most frequently cited evidence to support the notion that symbols are 

fundamentally linked to nonsymbolic numerical magnitudes is the finding that human 

adults produce a ‘distance effect’ when making comparative judgements of both 

symbolic and nonsymbolic numerical magnitudes (e.g., Dehaene, Dehaene-Lambertz, & 

Cohen, 1998; Holloway & Ansari, 2008, 2009; Krajcsi, Lengyel, & Kojouharova, 2016; 

Moyer & Landauer, 1967; Pavese & Umiltà, 1998; van Opstal & Verguts, 2011).  The 

distance effect is the highly replicable finding that humans are faster and more accurate at 

judging which of two numerical magnitudes is numerically greater when those 

magnitudes are numerically close together, rather than far apart.  There have been many 

reports of similar distance effects during the processing of symbolic and nonsymbolic 

numerical magnitudes that have been replicated across many studies (Buckley & 

Gillman, 1974; Holloway & Ansari, 2008; Holloway, Price, & Ansari, 2010; Krajcsi, 

Lengyel, & Kojouharova, 2016; Moyer & Landauer, 1967) and taken as evidence that 

symbolic and nonsymbolic numerical magnitudes are represented using a shared 

analogue magnitude system (Dehaene, 2007; Dehaene et al., 1998).  Numerical distance 
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has been shown to affect effortful (Buckley & Gillman, 1974; Holloway & Ansari, 2009; 

Moyer & Landauer, 1967) as well as the automatic processing of symbols and quantities 

(Henik & Tzelgov, 1982; Pavese & Umiltà, 1998, 1999).  The finding that numerical 

distance influences automatic processing of numerical magnitudes has been taken to 

suggest that the presence of a numerical distance effect is a general property of activating 

a numerical magnitude, rather than a consequence of attention when processing 

magnitudes. More generally, the effect of numerical distance has been used to assess the 

degree to which the underlying representations that support the processing of numerical 

magnitudes are overlapping and thus have been interpreted to be a measure of 

representational precision (Nieder & Dehaene, 2009; Verguts & Fias, 2004).  Therefore, 

assessing the whether the influence of symbols and quantities on each other is modulated 

by numerical distance will add to the current understanding of the connection between 

symbols and quantities by identifying not only whether symbols and quantities are 

processed in parallel, but also whether the representational precision of this influence is 

symmetrical.  In other words, we will explore whether numerical distance influences 

symbols and quantities differently during effortful and automatic processing to 

understand whether the representational structures supporting symbolic and nonsymbolic 

numerical magnitude processing are the same or distinct. 

In the current study, we assess whether symbolic and nonsymbolic numerical magnitudes 

are processed similarly by examining whether the processing of one format activates the 

processing of the other format. We will conclude that symbols and quantities are 

processed in parallel if the automatic processing of both symbols and quantities do indeed 

influence the effortful processing each other.  Additionally, we will conclude that 

symbolic and nonsymbolic numerical magnitudes are processed using the same 

representational structure if the automatic influence of symbols and quantities on each 

other are modulated by numerical distance in the same way. However, finding that 

symbols and nonsymbolic numerical magnitudes do not influence each other will be 

taken to suggest that symbols and quantities are processed by distinct systems. Moreover, 

the finding of an asymmetry between the processing of symbols and quantities, namely 

that only one of the two dimensions automatically influences the other, or that the 

automatic influence of symbols and quantities are differentially modulated by numerical 
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distance will be taken as support for the idea that similar but ultimately distinct 

representational systems support the processing of symbols and quantities. In the 

following experiments, we examine the effortful and automatic processing of symbolic 

and nonsymbolic numerical magnitudes (i.e., symbols vs. quantities).  Additionally, we 

examine how numerical distance influences the effortful and automatic processing of 

symbols compared to quantities. This study will reveal whether there is an asymmetry in 

the automaticity of the processing magnitudes of different number formats. 

. 

4.2 Experiment 1 

4.2.1 Experiment 1: Introduction  

In the current study, we adapt the famous colour Stroop paradigm (Stroop, 1935), to 

measure both the effortful and automatic processing of symbolic and nonsymbolic 

numerical magnitudes within the same task.  Stroop paradigms have been widely used in 

psychology to examine the degree to which an irrelevant stimulus influences the 

processing of a relevant stimulus. The original Stroop effect revealed that participants are 

slower and less accurate at naming a font colour of a printed word if the meaning of the 

word and font colour conflict (Stroop, 1935). For example, participants were slower and 

less accurate at identifying that the font colour of a word if the font colour is different 

from the semantic meaning of the printed word (i.e., red).   

Previous research studies have used Stroop-like tasks to assess the automatic processing 

of symbolic numbers (Henik & Tzelgov, 1982; Naparstek et al., 2015; Pansky & Algom, 

2002). As discussed above, the Numerical Stroop Task, a task that requires participants to 

judge which of two digits (e.g., 3 vs 5) was larger either in physical size or in numerical 

magnitude, is the most widely used assessment of the automatic processing of symbolic 

numerical magnitudes (Henik & Tzelgov, 1982). Results revealed that judgments of 

physical size were faster than judgments of symbolic magnitude, suggesting that 

participants are more efficient at effortfully processing size compared to the numerical 

magnitude represented symbolically. However, physical size judgments were affected by 

the numerical magnitude of the digit. Moreover, the degree to which the numerical 
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magnitude of the symbol influenced the processing of the physical size was associated 

with numerical distance. Specifically, physical size judgments were more influenced by 

Arabic numeral pairs with relatively larger numerical distances. Therefore, in the same 

way that larger numerical magnitude is more obvious when comparing two magnitudes 

with a large numerical distance, larger numerical distances between two irrelevant 

numerical magnitudes make the automatic influence of the irrelevant dimension more 

salient. This indicates that numerical distance is automatically processed even when it is 

irrelevant to form the judgment of which of two symbols is physically larger. This 

finding, that numerical distance of the symbols is automatically computed during the 

effortful processing of physical size, has been taken to suggest that physical size and 

semantic meaning of the numerals are processed in parallel.  Other research that has 

examined the automatic processing of symbols and quantities presented participants with 

a single array containing a quantity of symbolic digits (e.g., a single array containing six 

of the Arabic digit ‘7’). Participants were instructed to compare either the symbolic or 

nonsymbolic numerical magnitude in the array to the number five (comparison task), or 

to indicate if the numerical quantity was an even or odd number (parity task) (Naparstek 

& Henik, 2010). Results revealed that symbols influenced the processing of quantities for 

both the comparison and parity tasks, whereas quantities only influenced the processing 

of symbols on the comparison task. This suggests that symbols may be processed more 

automatically than quantities. Critically, Naparstek and colleagues included a single array 

of symbols (e.g., six of the symbol ‘7’), and asked participants to compare either the 

symbol or the quantity to the number five.  Therefore, in these tasks, both symbols and 

quantities were being compared to a symbolic referent held in mind. Consequently, it is 

possible that the asymmetry between the symbolic and nonsymbolic numerical 

magnitudes is due to the fact that, for the nonsymbolic task, the participants were 

comparing between formats (i.e., nonsymbolic to symbolic), whereas in the symbolic 

task, participants were comparing a symbol to a symbolic referent.  Consequently, in the 

current study, we create a Symbolic-Nonsymbolic Stroop paradigm which allows us to 

examine how symbols and quantities influence each other, without requiring a 

transformation between formats, and also assess whether the influence of symbols and 

quantities on each other is symmetrically modulated by numerical distance. Findings 
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from the current study will illuminate whether the influence of symbols and quantities on 

each other is symmetrical and will, therefore, allow us to identify whether symbols and 

quantities processed separately or in parallel, and with the similar to distinct 

representational precision. These findings are important to identify whether symbols are 

processed using the ancient system that evolved to process nonsymbolic numerical 

magnitudes, or if symbols are supported by a similar but ultimately distinct 

representational system. 

4.2.1.1 The Symbolic-Nonsymbolic Stroop Paradigm 

In the current study, we examined whether the effortful and automatic processing of 

symbolic numerical magnitudes (e.g., 3) is distinct from effortful and automatic 

processing of the nonsymbolic numerical magnitudes they represent (e.g., •••) using a 

Symbolic-Nonsymbolic Stroop paradigm.  Critically, the stimuli in this paradigm 

consisted of two quantities of symbols (e.g., 3333 vs. 444). The inclusion of two sets of 

symbols and quantities in all stimuli meant that we were able to not only assess effortful 

and automatic processing of symbols and quantities independently but also the influence 

that symbols and quantities have on each other.  During this paradigm, participants were 

asked to compare adjacent arrays of number symbols (e.g., 4444 vs 333) and indicate the 

side containing either the greater quantity of symbols (nonsymbolic task) or the side 

containing the numerically larger symbol (symbolic task). This means that symbolic and 

nonsymbolic numerical magnitude acted as both the relevant dimension (i.e., the 

dimension that the participant was instructed to attend to) and the irrelevant dimension 

(i.e., the dimension that the participant needed to ignore). There were congruent trials, 

where the larger symbolic and nonsymbolic numerical magnitude appeared on the same 

side of the screen (e.g., 333 vs. 4444), incongruent trials, where the larger symbolic and 

nonsymbolic numerical magnitude appeared on opposite sides of the screen (e.g., 3333 

vs. 444), and neutral trials, where the irrelevant dimension was the same across both sides 

of the screen (e.g., 3333 vs. 333 for nonsymbolic; 333 vs. 444 for symbolic). In this task, 

the numerical distance between the numerical magnitudes being compared was 

systematically varied across trials. The use of the Symbolic-Nonsymbolic Stroop 

paradigm is optimal to test the following predictions and ultimately assess whether 
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symbolic numerical magnitudes are processed in the same way as the nonsymbolic 

numerical magnitudes under different attentional conditions. 

We anticipate several possible outcomes for the effortful and automatic processing of 

symbols compared to quantities. The first of these is that symbolic and nonsymbolic 

numerical magnitudes will be processed in the same way both effortfully and 

automatically. Specifically, this would mean that no difference will be observed in 

participants ability to compare symbols and quantities, and symbols and quantities will 

automatically influence each other in the same way.  This idea is supported by research 

suggesting that symbolic and nonsymbolic numerical magnitudes are processed by the 

same analogue magnitude processing system (e.g., Cantlon et al., 2009; Dehaene, 2007; 

Dehaene et al., 1998; Nieder & Dehaene, 2009; Piazza et al., 2007).  In view of research 

that reports an asymmetry of the processing of symbolic and nonsymbolic numerical 

magnitudes, including chapter 2 and 3 of the current thesis, (Krajcsi et al., 2016; Krajcsi, 

Lengyel, & Kojouharova, 2018; Lyons et al., 2012; Lyons, Nuerk, & Ansari, 2015; 

Sokolowski, Fias, Mousa, & Ansari, 2017; Vogel, Grabner, Schneider, Siegler, & Ansari, 

2013) we also predict a second possible outcome.  The second possible outcome is that 

results will reveal an asymmetry in the processing of symbols and quantities either during 

effortful processing, automatic processing, or both. For this potential outcome, we predict 

that symbols will be processed more efficiently than quantities during effortful 

processing and automatic processing. This prediction runs in contrast to the finding that 

symbols are processed less automatically than physical size (Henik & Tzelgov, 1982). 

However, we argue that enumerating a large set of discrete objects (rather than focussing 

on the size of a single object) requires a greater degree of processing, and therefore will 

be less efficient and less automatic.  In view of this, we also predict that if there is an 

asymmetry between the processing of symbolic and nonsymbolic numerical magnitudes 

it will be due to the fact that symbols influence the processing of quantities more than 

quantities will influence the processing of symbols. Finally, based on research reporting 

an asymmetry in the distance effects of symbolic and nonsymbolic numerical magnitudes 

(Buckley & Gillman, 1974; Furman & Rubinsten, 2012; Holloway et al., 2010; Moyer & 

Landauer, 1967; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002) we predict that the 

effortful processing of quantities will produce a larger distance effect than the effortful 
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processing of symbols.  In summary, this study uses a novel task to compare the effortful 

and automatic processing of symbolic and nonsymbolic numerical magnitudes.  

4.2.2 Experiment 1: Method 

4.2.2.1 Participants 

Eighty healthy adult participants (Mage=21.4, SDage=3.01; 31 males, 49 females) were 

recruited at the University of Western Ontario in London, Ontario.  Participants provided 

written consent before participating in the study. The session took approximately two 

hours and participants were compensated $5 CAD per half-hour (average $20 CAD 

total).  All procedures were approved by the University of Western Ontario Non-medical 

Research Ethics Board (See Appendix A).  

4.2.2.2 Materials 

4.2.2.2.1 Symbolic-Nonsymbolic Stroop Task. 

Each participant performed two kinds of magnitude comparisons on the same set of 

stimuli.  Stimuli were composed of two arrays of Arabic numerals (numbers 1 to 9) in a 

four by four array (see Fig 1).  An array contained a certain quantity of Arabic numerals 

(e.g., six “6’s).  The remaining spaces in the array were filled with the star symbol (*) as 

has been done in previous research (Naparstek et al., 2015; Pansky & Algom, 2002), to 

control for continuous properties such as area (Leibovich & Henik, 2013).  Specifically, 

including ‘*’ in all spaces that did not contain a symbol allowed us to keep the total area 

of the numerical displays constant throughout all trials.  Although this does not remove 

all associations between continuous properties and quantities (i.e., the proportion of spots 

filled by digits still changes based on quantity) it does control for salient continuous 

magnitudes that have been reported to significantly influence the processing of 

nonsymbolic numerical magnitudes, such as area, density, and convex hull (For review 

see: Henik, Gliksman, Kallai, & Leibovich, 2017; Henik, Leibovich, Naparstek, 

Diesendruck, & Rubinsten, 2011; Leibovich & Henik, 2013; Leibovich, Katzin, Harel, & 

Henik, 2016). Twenty different versions of each array were generated using MATLAB to 

ensure that participants did not learn the position of the Arabic digits within the arrays. 

See figure 4.1 for an example of two arrays.  The stimuli were presented using 
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OpenSesame (Mathôt, Schreij, & Theeuwes, 2012), with a resolution of 800 x 600. The 

stimuli, code to create the stimuli, and the OpenSesame experiments (which include trial 

lists), are publicly available at on the Open Science Framework (OSF) at 

https://osf.io/qyczk/. 

 

Figure 4.1 An example of two arrays presented to participants the contain quantities of 

Arabic numerals.  The array on the left contains six of the Arabic numeral ‘6’, and the 

array on the right contains two of the Arabic numeral ‘2’. 

The participant performed both a symbolic comparison task and a nonsymbolic 

comparison task on all pairs of arrays.  In the symbolic task, the participant had to 

indicate which array contained the numerical symbol with the larger magnitude.  In the 

nonsymbolic task, the participant had to indicate which array contained the greater 

quantity of numerical symbols (five ‘3’s vs. two ‘2’s). In the congruent condition, the 

larger symbol and the greater quantity appeared on the same side of the screen. In the 

incongruent condition, the side with larger symbol appeared opposite to the side with the 

greater quantity. Importantly, the participant was presented with the same set of stimuli 

for the symbolic task and the nonsymbolic task for both the congruent and incongruent 

conditions.  In the neutral condition, the irrelevant dimension was the same across both 

sides of the screen and depended on the condition. In the symbolic neutral condition, the 

two arrays contained different symbolic numbers, but the quantity of symbolic numbers 
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was held constant between the stimuli and matched one of the two symbolic numbers.  In 

the nonsymbolic neutral condition, the quantity of the symbolic numbers in the two 

arrays was different, but both arrays contained the same symbolic numbers that were the 

same as one of the two quantities. In the congruent and incongruent conditions, the 

distance between the relevant dimension (i.e., what the participant is told to compare) and 

the irrelevant dimension (i.e., what the participant must ignore) was the same and ranged 

from 1-6, with 12 trials per distance. The distance between the relevant dimension in 

neutral condition was matched to the congruent and incongruent conditions, and the 

irrelevant dimension in the neutral condition was always 0. See Figure 4.2 for examples 

of stimuli for congruent, incongruent, and neutral conditions for both the symbolic and 

nonsymbolic comparison task.  

Participants were randomly presented with two blocks of 216 trials (432 total trials) on 

the symbolic task and on the nonsymbolic task. Of the 216 trials, 72 stimulus pairs were 

congruent, 72 were incongruent, and the remaining 72 trials were neutral. Each of the 72 

trials consisted of 12 trials at each of distance 1-6. Notably, only 108 of the 216 trials had 

unique number pairs.  The other 108 trials had the same numbers as the original 108 

trials, but the numbers appeared on opposite sides of the screen. The stimuli in the 

congruent and incongruent conditions were identical for the symbolic and the 

nonsymbolic comparison tasks. The stimuli for the neutral conditions differed between 

tasks because in the neutral condition, the irrelevant dimension was controlled to have a 

distance of zero. Within a single trial, participants were presented with a fixation for 500 

milliseconds (ms), then a blank screen for 300 ms. Following this, participants were 

presented with two arrays (Figure 4.1) for 2000 ms or until a key response was made.  

Once the participant either made a key response or the 2000 ms was up a blank screen 

was presented for 500 ms.  See the OSF page at https://osf.io/qyczk/.F for a list of the 

trials. 
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Figure 4.2 Examples of types of stimuli presented. For congruent and incongruent, the 

same stimuli were used for both the symbolic and the nonsymbolic comparisons. The 

stimuli for the neutral condition differed for the symbolic and the nonsymbolic 

comparison conditions. 

4.2.2.3 Procedure 

All included measures were obtained during a single session that took approximately two 

hours. During the session, participants completed a series of cognitive tasks including the 

Symbolic-Nonsymbolic Stroop tasks. The symbolic-nonsymbolic Stroop tasks were 

always given at the beginning of the session. Only the results from the Symbolic-

Nonsymbolic Stroop task are reported here. Participants viewed the stimuli on one of two 

identical Dell desktop machines that run Windows 8.1. Participants were seated roughly 

60-70 cm from the screen, which was an 18.6 by 12.1 inch flat-screen LCD monitor with 

1680 x 1050 resolution. All participants first completed both the symbolic and 

nonsymbolic comparison task, but the order that the participant completed the task was 

counterbalanced between participants. Each task (symbolic and nonsymbolic) began with 

a practice block that randomly presented 5 of the 216 stimuli. Feedback was given at the 
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end of the practice block.  Participants continued to the actual experiment if they 

correctly answered 4 out of 5 practice trials (i.e., 80% correct).  If the participant did not 

get at least 80% of the practice block correct the participant redid the practice block. The 

actual experiment for each task was composed of two blocks.  In each block, all 216 

stimuli were randomly presented once.  The participants got one break between the two 

blocks.  

4.2.3 Experiment 1: Results 

Trials with an RT that were + or – 3SD from the mean of the trial type within an 

individual were considered outliers and removed. This resulted in less than 1% of the RT 

data being removed. Following this, the RTs for each trial were adjusted to reflect both 

the speed and accuracy of performance.  RTs and error rates were combined to produce 

an efficiency score using the following formula. 

𝐸𝑓𝑓𝑖𝑐𝑒𝑛𝑐𝑦 𝑆𝑐𝑜𝑟𝑒 =  
𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇𝑖𝑚𝑒

1 − 𝐸𝑟𝑟𝑜𝑟𝑠
 

An efficiency score allows for the RTs to remain unchanged on correct trials and increase 

proportionally with the number of errors. Efficiency scores are often used in the literature 

(e.g., Sasanguie, Van den Bussche, & Reynvoet, 2012; Simon et al., 2008) as they 

account for both speed and accuracy. Recently, it has been noted that although efficiency 

scores do provide a better summary of the findings, these scores increase the variance of 

the measure, and therefore, it is necessary to further check the data to ensure that the 

pattern of results for the RT and accuracy is the same (Bruyer & Brysbaert, 2011). In the 

current study, each of the RT and accuracy produce the same pattern of results as the 

efficiency score. Consequently, all results will be reported as efficiency scores. The raw 

data files are publicly available on the Open Science Framework (OSF) at 

https://osf.io/qyczk/. 

A three-way repeated-measures analyses of variance (ANOVA) was conducted to 

examine the influence of three independent variables (task, congruency, distance) on 

efficiency scores from the Symbolic-Nonsymbolic Stroop task. Task included two levels 

(symbolic, nonsymbolic), congruity included three levels (congruent, neutral, 
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incongruent), and distance included six levels (1, 2, 3, 4, 5, 6).  All statistical tests were 

carried out using a two-tailed test with an alpha of .05.  Effect sizes were estimated using 

partial 2. Mauchly’s Test of Sphericity was significant for all main effects and 

interactions.  Therefore, the Greenhouse-Geisser correction was used for all analyses.  

4.2.3.1 Effortful Processing 

The main effect of task and the interaction between task and distance was used to assess 

similarities and differences in the effortful processing of symbolic and nonsymbolic 

numerical magnitudes. These results assess effortful processing because these effects 

collapse across conditions of congruity, functionally controlling for variability that is 

attributable to the automatic processing of the irrelevant dimension. Results revealed a 

significant main effect of task, F(1, 79) = 49.97, p <.001, η² = 0.39.  Specifically, 

participants were more efficient on the symbolic compared to the nonsymbolic task. 

There was also a significant two-way interaction between task and distance F(2, 172) = 

373.66, p <.001, η² = 0.83 (Figure 4.3). Post-hoc pairwise comparisons with a Bonferroni 

correction for multiple comparisons with a critical p-value <.05 revealed that distance 

had a stronger effect on performance on the nonsymbolic task compared to the symbolic 

task.  Specifically, in the nonsymbolic task, all distances were significantly different from 

each other (p<.001).  In the symbolic task, distances 1, 2 and 3 were significantly 

different from all other distances (p<.001), distance 4 differed from distance 5 at a 

threshold of p<.05 and from distance 6 at a threshold of p<.01.  However, in the symbolic 

task, distance 5 and distance 6 were not significantly different. Notably, there was a 

significant main effect of numerical distance F(2, 190) = 1006.90, p<.001, η² = 0.93, 

indicating that participants were more efficient at comparing trials with large distances 

across tasks.  However, this main effect should be interpreted with caution due to the 

significant interaction effects. In sum, these results suggest that the effortful processing of 

symbols is more efficient and less influenced by numerical distance than the effortful 

processing on nonsymbolic numerical magnitudes.  
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Figure 4.3 This figure depicts the effortful processing of symbols compared to quantities 

across six numerical distances. Efficiency scores for the symbolic (orange) and 

nonsymbolic (blue) tasks, collapsing across congruent, neutral and incongruent trials are 

plotted at all six distances. Error bars represent standard error. This figure highlights the 

task by distance interaction, which indicates participants are more efficient and less 

influenced by numerical distance when processing symbolic compared to nonsymbolic 

numerical magnitudes. 

4.2.3.2 Automatic Processing 

The main effect of congruity was used to assess whether symbols and quantities 

influenced each other across tasks. By collapsing across conditions of task and distance, 

we are controlling for differences in the effortful processing of the relevant dimension 

and consequently, evaluating only the automatic influence of the irrelevant dimension. 

Results revealed a significant main effect of congruity F(1, 106) = 297.64, p <.001, η² = 

0.79. Post-hoc pairwise comparisons with a Bonferroni correction for multiple 

comparisons with a critical p-value <.05 showed that congruent, neutral, and incongruent 

trials all differed significantly from one another. Specifically, participant’s performance 
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was strongest on congruent trials and weakest on incongruent trials. This main effect 

reveals that, regardless of condition (i.e., making symbolic or nonsymbolic comparisons), 

participants were more efficient at making comparisons when the relevant and irrelevant 

stimulus dimensions were congruent compared to when they were incongruent with each 

other.  The fact that participants were fastest on the congruent trials suggests that the 

alignment of magnitude between the relevant and irrelevant dimension improved or 

facilitated performance. In contrast, the magnitude irrelevant dimension conflicting with 

the magnitude of the relevant dimension was related to weaker performance. This is 

evidence of an interference effect. Therefore, it follows to consider whether symbolic and 

nonsymbolic numerical magnitudes influence each other in the same or distinct ways.   

The two-way interaction between task and congruity, and the three-way interaction 

between task, congruity, and distance were used to examine whether there were 

differences in the congruity effects between tasks and whether this was modulated by 

numerical distance.  Results revealed that the two-way interaction between task and 

congruity was not significant, F(1, 107) = 0.19, ns, η² = 0.002. However, there was a 

significant three-way interaction between task, congruity, and distance, F(5, 357) = 

34.51, p <.001, η² = 0.30 (Figure 4.4). Descriptive statistics for the three-way interaction 

are reported in Table 4.1.  These results suggest that there is a distance-dependent 

asymmetry in the automatic influence of symbols and quantities. Post-hoc pairwise 

comparisons with a Bonferroni correction for multiple comparisons with a critical p-

value <.05 revealed that at symbols interfered with quantities across all distances, but 

nonsymbolic interference was distance-dependent. Specifically, nonsymbolic interference 

was significant for distances 2-6, but not for distance 1 (Figure 4.4, Table 4.2).  Related 

post-hoc pairwise comparisons examining the difference between distances for each 

condition revealed that in the nonsymbolic task all six distances were significantly 

different from each other at all congruity levels (p<.001).  In contrast, for the symbolic 

task the distance 5 and 6, did not significantly differ in the congruent condition, distance 

4 and 5, as well as 5 and 6, did not significantly differ from each other in the neutral 

condition, and distance 2, 3, 4, 5, and 6 did not significantly differ from each other in the 

incongruent condition.  All other conditions differed significantly from each other at a 

threshold of p<.05.  This reveals that in addition to the nonsymbolic distance effect being 
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stronger than the symbolic distance effect across congruity conditions, the symbolic 

distance effects were weakest for the incongruent condition, followed by the neutral 

condition, and strongest for the congruent. This suggests that the subtle distance effect in 

the symbolic condition may actually be driven by the automatic influence of quantities.  

Table 4.1 Descriptive Statistics for each Condition in Experiment 1. 

  Nonsymbolic Task Symbolic Task 

Congruity Distance Mean SD Mean SD 

Congruent 

1 928.0 195.8 715.8 153.3 

2 761.6 164.9 651.6 132.7 

3 676.7 136.5 618.0 141.9 

4 620.8 128.4 590.8 136.5 

5 597.4 122.1 569.8 124.0 

6 575.9 104.1 561.6 123.5 

Neutral 

1 1004.2 196.9 739.3 152.0 

2 815.8 161.5 680.1 140.6 

3 707.0 145.2 655.3 143.3 

4 650.6 125.0 627.4 134.8 

5 618.7 106.7 614.1 138.5 

6 594.9 109.3 603.9 126.0 

Incongruent 

1 1174.3 264.3 762.5 155.1 

2 881.5 156.2 731.8 160.6 

3 777.5 140.0 718.6 151.7 

4 694.8 129.2 712.6 171.2 

5 662.1 127.8 699.4 164.8 

6 628.5 115.9 705.4 177.8 
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Figure 4.4 This figure depicts efficiency scores for symbolic (orange) and nonsymbolic 

(blue) tasks at each congruity condition (congruent (darkest), neutral (medium) and 

incongruent (lightest) across all six distances. Error bars represent standard error of the 

mean. This figure highlights that at large distances, efficiency scores for congruent, 

neutral and incongruent conditions differ significantly for both the symbolic and 

nonsymbolic tasks.  However, at small distances, participants have higher efficiency 

scores (i.e., poorer performance) on the nonsymbolic task than the symbolic task and the 

difference between congruent, neutral, and incongruent is larger on the nonsymbolic than 

the symbolic task. 
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Table 4.2 Bonferroni Corrected Post-hoc Pairwise Comparisons for 3-way 

Interaction (Task*Congruity*Distance) for Experiment 1. 

Task Distance Congruity Mean Dif SE P-Value 
N

o
n
s
y
m

b
o

lic
 

1 

Neutral vs Congruent 76.21* 15.28 <.001 

Incongruent vs Congruent 246.39* 27.24 <.001 

Incongruent vs Neutral 170.18* 26.47 <.001 

2 

Neutral vs Congruent 54.18* 9.70 <.001 

Incongruent vs Congruent 119.90* 13.55 <.001 

Incongruent vs Neutral 65.71* 12.64 <.001 

3 

Neutral vs Congruent 30.27* 5.98 <.001 

Incongruent vs Congruent 100.83* 9.91 <.001 

Incongruent vs Neutral 70.56* 10.57 <.001 

4 

Neutral vs Congruent 29.83* 5.87 <.001 

Incongruent vs Congruent 73.98* 8.46 <.001 

Incongruent vs Neutral 44.15* 6.74 <.001 

5 

Neutral vs Congruent 21.37* 5.44 <.001 

Incongruent vs Congruent 64.70* 7.57 <.001 

Incongruent vs Neutral 43.33* 7.26 <.001 

6 

Neutral vs Congruent 18.99* 3.59 <.001 

Incongruent vs Congruent 52.66* 5.08 <.001 

Incongruent vs Neutral 33.67* 4.33 <.001 

S
y
m

b
o

lic
 

1 

Neutral vs Congruent 23.50 10.61 0.089 

Incongruent vs Congruent 46.70* 9.60 <.001 

Incongruent vs Neutral 23.20 10.16 0.075 

2 

Neutral vs Congruent 28.49* 6.27 <.001 

Incongruent vs Congruent 80.21* 7.89 <.001 

Incongruent vs Neutral 51.72* 9.81 <.001 

3 

Neutral vs Congruent 37.33* 4.86 <.001 

Incongruent vs Congruent 100.61* 8.50 <.001 

Incongruent vs Neutral 63.28* 7.90 <.001 

4 

Neutral vs Congruent 36.62* 6.30 <.001 

Incongruent vs Congruent 121.81* 10.95 <.001 

Incongruent vs Neutral 85.19* 9.03 <.001 

5 Neutral vs Congruent 44.33* 5.31 <.001 
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Incongruent vs Congruent 129.60* 13.18 <.001 

Incongruent vs Neutral 85.27* 12.25 <.001 

6 

Neutral vs Congruent 42.29* 5.61 <.001 

Incongruent vs Congruent 143.79* 14.30 <.001 

Incongruent vs Neutral 101.50* 12.43 <.001 

 

Notably, the two-way interaction between congruity and distance from Experiment 1 was 

also significant, F(4, 333) = 4.12, p <.01, η² = 0.05. However, these findings are not 

informative as they collapse across symbolic and nonsymbolic number processing, 

thereby combining effects of the relevant and irrelevant dimensions for this interaction.  

In summary, the results from experiment 1 produce several key findings.  First, findings 

reveal that the effortful processing of symbolic numerical magnitudes is more efficient 

and less affected by numerical distance compared to the effortful processing of 

nonsymbolic numerical magnitudes. Second, the results from experiment 1 reveal that 

symbolic and nonsymbolic numerical magnitudes are both processed automatically.  

Moreover, the automatic processing of symbolic and nonsymbolic numerical magnitudes 

influence each other.  However, this automatic influence is not symmetrical.  Indeed, we 

find that symbolic numerical magnitudes are processed more automatically than 

nonsymbolic numerical magnitudes.  Specifically, irrelevant symbols influence the 

processing of quantities more than irrelevant quantities influence the processing of 

symbols.  Additionally, in the nonsymbolic task, numerical distance affects the 

processing of quantities across all levels of congruity. However, in the symbolic task, the 

distance effect is greatest for congruent conditions, followed by neutral conditions, and 

there is barely an effect of distance on incongruent trials.  Together, these findings 

provide evidence to suggest that the systems used to process symbols and quantities are 

overlapping, as there is evidence that the automatic processing of one format 

asymmetrically influences the effortful processing of the other format.   

The findings from this study included numbers from 1-9.  While this is helpful to 

understand these effects across the full range of single-digit numbers, small and large 

nonsymbolic numerical magnitudes are thought to be processed using distinct systems 
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(Hyde, 2011), with small nonsymbolic numerical quantities being processed more 

similarly to symbols.  In view of this, it is necessary to examine whether these results can 

be replicated when including only large nonsymbolic numerical magnitudes, that the 

visual system cannot process exactly. 

4.3 Experiment 2 

4.3.1 Experiment 2: Introduction  

Subitizing is a cognitive ability that allows for the fast, automatic, and accurate 

identification of the quantity of a small set of items (i.e., sets containing 1-4 items) 

(Mandler & Shebo, 1982; Trick & Pylyshyn, 1994).  Large sets (i.e., sets containing 5 or 

more items) are considered to be in the ‘counting range,’ as these sets are evaluated 

through the effortful process of counting, or approximate estimation. The quantity of a set 

of items in the subitizing range is named more quickly and accurately than the quantity of 

a set of items in the counting range (Kaufman, Lord, Reese, & Volkmann, 1949; Trick & 

Pylyshyn, 1993).  Prior research has refuted the idea that there is a single estimation 

system used to process quantities in both the subitizing and counting range and instead 

supported the notion that humans possess a dedicated mechanism for processing small 

subitizable quantities (Revkin, Piazza, Izard, Cohen, & Dehaene, 2008).  Research has 

revealed that the processing of small quantities (i.e., 1-4) is supported by a parallel 

individuation system, used to track objects in order to identify the exact number of items 

in small sets.  In contrast, research suggests that an analogue magnitude system (often 

referred to as an approximate number system (ANS)) supports the processing of 

quantities with five or more objects. The analogue magnitude system uses approximate 

estimation to process larger quantities (For review see: Hyde, 2011).  We predict that 

quantities in the subitizing range, that are processed using the PI system are processed in 

a way that is more similar to symbols.  Consequently, we predict that the differences 

between the effortful automatic processing of symbols and quantities will be more 

extreme for quantities in counting range, processed using analogue magnitude system.  

In view of the fact that humans automatically perceive the exact quantity of a set in the 

subitizing range, it is conceivable that nonsymbolic quantities in the subitizing range are 
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more likely to activate exact representations of symbolic numerical magnitudes compared 

to nonsymbolic numerical magnitudes in the counting range. The stimuli in experiment 1 

included all single-digit numerical magnitudes (i.e., quantities one to nine). 

Consequently, results from experiment 1, suggesting that symbolic and nonsymbolic 

numerical magnitudes influence each other during the Stroop task, could be driven by 

quantities in the subitizing range. In order to confirm that the Stroop effect (i.e., the 

finding that symbolic and nonsymbolic numerical magnitudes influence each other) is not 

simply due to the fact that quantities in the subitizing range are activating exact symbolic 

representations it is critical to replicate this paradigm using only numbers in the counting 

range. Therefore, in experiment 2, an independent sample of participants completed a 

modified version of the Symbolic-Nonsymbolic Stroop task that included only numbers 

in the counting range (i.e., 5-9). 

4.3.2 Experiment 2: Method 

4.3.2.1 Participants 

Sixty-three healthy adult participants were recruited at the University of Western Ontario 

in London, Ontario. Four participants were excluded from analyses due to poor accuracy 

(< 70% on at least one trial type).  Therefore, all analyses for experiment two include 59 

participants (Mage=23.86, SDage=3.79; 20 males, 39 females). Participants provided 

written consent before participating in the study. The session took approximately one 

hour and participants were compensated $5 CAD per half-hour (average $10 CAD total).  

All procedures were approved by the University of Western Ontario Non-medical 

Research Ethics Board (See Appendix A).  

4.3.2.2 Materials 

4.3.2.2.1 Symbolic-Nonsymbolic Stroop Task 

Each participant completed both the symbolic and nonsymbolic version of the Symbolic-

Nonsymbolic Stroop task with all the same parameters described in experiment one.  The 

trial list for experiment two differed from experiment one. Namely, the task only 

included both symbols and quantities in the counting range (5-9). As with experiment 1, 

the stimuli, code to create the stimuli, and the OpenSesame experiments, which include 
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the trial lists, are available at on the Open Science Framework (OSF) at 

https://osf.io/qyczk/. 

Participants were randomly presented with two blocks of 36 trials repeated twice each 

(144 total trials) on the symbolic task and on the nonsymbolic task. Of the 36 trials, 12 

stimulus pairs were congruent, 12 were incongruent, and the remaining 12 trials were 

neutral. Each of the 12 trials consisted of 4 trials at each of distance 1-3. Notably, half of 

the 36 trials, had the same numbers as the other half, but the numbers appeared on 

opposite sides of the screen. The stimuli in the congruent and incongruent conditions 

were identical for the symbolic and the nonsymbolic tasks. The stimuli for the neutral 

conditions differed between tasks because in the neural condition, the irrelevant 

dimension was controlled to have a distance of zero. There were two versions of the task 

that used different magnitudes for the trials.  The versions were counterbalanced between 

participants. Notably, both version A and version B of the paradigm are available on the 

Open Science Framework (OSF) at https://osf.io/qyczk/. 

4.3.2.3 Procedure 

All included measures were obtained during a single session that took approximately one 

hour, where participants completed a series of basic number processing tasks including 

the Symbolic-Nonsymbolic Stroop tasks with numbers only on the counting range. Only 

the results from the counting Symbolic-Nonsymbolic Stroop task are reported here. The 

procedure is the same as for experiment one with the exception that participants were 

randomly presented with two blocks containing the same 36 trials for each task.  The 

participants got one break between the two blocks.  

4.3.3 Experiment 2: Results 

As reported in experiment 1, the RT and accuracy produce the same pattern of results as 

the efficiency score for experiment 2. Consequently, all results will be reported as 

efficiency scores. As with experiment 1, the raw data files for experiment 2 are publicly 

available on the Open Science Framework (OSF) at https://osf.io/qyczk/. 
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A three-way repeated-measures analyses of variance (ANOVA) was conducted to 

examine the influence of three independent variables (task, congruency, distance) on 

efficiency scores from the Symbolic-Nonsymbolic Stroop task. Task included two levels 

(symbolic, nonsymbolic), and congruity included two levels (congruent, neutral, 

incongruent), and distance included three levels (1, 2, 3).  Descriptive statistics for each 

condition are reported in Table 4.3. All statistical tests were carried out using a two-tailed 

test with an alpha of .05.  Effect sizes were estimated using partial 2. Mauchly’s Test of 

Sphericity was significant for the main effect of distance, and the following interactions: 

task*distance, congruity*distance, task*congruity*distance. The Greenhouse-Geisser 

correction was used for all analyses that violated the assumption of sphericity.  As with 

experiment 1, the main effect of task and interaction between task and distance was used 

as a measure of effortful processing, as these analyses collapse across congruity 

conditions, therefore controlling for the effect of the irrelevant dimension.  The main 

effect of congruity was used to assess the automatic effect of processing, as this effect 

collapses across variability associated with effortful processing and distance. Finally, the 

two-way interaction between congruity and task, and the three-way interaction between 

congruity, task and distance were used to assess whether there are asymmetries in the 

automatic processing of symbolic and nonsymbolic numerical magnitudes. 

Table 4.3 Descriptive Statistics for each Condition in Experiment 2 

  Nonsymbolic Task Symbolic Task 

Congruity Distance Mean SD Mean SD 

Congruent 

1 1324.8 336.5 666.0 144.9 

2 1000.8 243.6 619.1 136.0 

3 880.8 170.9 606.8 113.7 

Neutral 

1 1421.7 441.5 689.4 149.1 

2 1054.4 212.7 642.2 133.8 

3 932.2 181.3 620.3 126.0 

Incongruent 

1 1604.1 406.6 699.7 152.0 

2 1159.7 258.7 663.8 186.5 

3 1031.1 176.0 649.8 135.1 
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4.3.3.1 Effortful Processing 

The main effect of task and the interaction between task and distance was used to assess 

similarities and differences in the effortful processing of symbols and quantities. The 

significant main effect of task indicated that participants were more efficient on the 

symbolic compared to the nonsymbolic task F(1, 58) = 553.52, p <.001, η² = 0.91. There 

was also significant two-way interaction between task and distance, F(1, 84) = 213.72, p 

<.001, η² = 0.79 (Figure 4.5). Post-hoc pairwise comparisons with a Bonferroni 

correction for multiple comparisons with a critical p-value <.05 revealed that distance 

had a stronger effect on performance on the nonsymbolic task compared to the symbolic 

task, as discovered in experiment 1.  Specifically, the distances in the nonsymbolic task 

were all significantly different from each other with at a p<.001. In the symbolic task, 

distance 1 was significantly different from distance 2 and distance 3 (p<.001), but there 

was no significant difference between distance 2 and distance 3. Notably, the main effect 

of numerical distance was also significant F(2, 94) = 297.73, p <.001, η² = 0.84, with 

participants most efficient at distance 3 and least efficient at distance 1 across tasks, but 

this main effect should be interpreted with caution in view of the significant interactions. 

Together, these results converge with results from experiment 1 to suggest that symbolic 

numerical magnitudes are processed more efficiently and are less affected by numerical 

distance, compared to nonsymbolic numerical magnitudes.  
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Figure 4.5 This figure depicts the effortful processing of symbols compared to quantities 

in the counting range across three numerical distances. Efficiency scores for symbolic 

(orange) and nonsymbolic (blue) task, collapsing across congruent, neutral and 

incongruent trials are plotted across all three distances. Error bars represent standard 

error. This figure highlights the task by distance interaction, which indicates that 

participants are more efficient and less influenced by numerical distance when processing 

symbolic compared to nonsymbolic numerical magnitudes. 

4.3.3.2 Automatic Processing 

The main effect of congruity was analyzed to examine whether symbols and quantities 

influenced each other across tasks.  The significant main effect of congruity revealed that 

congruent, neutral, and incongruent trials differed significantly from one another, F(2, 

116) = 59.18, p <.001, η² = 0.51. Post-hoc pairwise comparisons with a Bonferroni 

correction for multiple comparisons and a critical p-value <.05 showed that congruent, 

neutral, and incongruent trials all differed significantly from one another. Specifically, 

participant’s performance was strongest on congruent trials and weakest on incongruent 

trials. This main effect indicates that at some level of processing symbolic and 
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nonsymbolic numerical magnitudes influence each other, even when only including 

numbers in the counting range. Therefore, we examine whether this influence of 

symbolic and nonsymbolic numerical magnitudes on each other is symmetrical for 

numbers in the counting range.   

The two-way interaction between task and congruity, and the three-way interaction 

between task, congruity, and distance were used to examine whether there were 

differences in the congruity effects between tasks and whether these differences were 

modulated by numerical distance. In experiment 2, the two-way interaction between task 

and congruity was significant, F(2, 116) = 26.09, p = <.001, η² = 0.31. Post-hoc pairwise 

comparisons with a Bonferroni correction for multiple comparisons with a critical p-

value <.05 revealed that symbols influence the processing of quantities more than 

quantities influence processing of symbols, across all distances (Figure 4.6, Table 4.4).  

Unlike the results from experiment 1, the three-way interaction between task, congruity, 

and distance, was not significant in experiment 2 F(2, 136) = 2.36, ns, η² = 0.04.  
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Figure 4.6 This figure depicts efficiency scores for symbolic (orange) and nonsymbolic 

(blue) Stroop tasks when the symbolic and nonsymbolic stimuli are congruent (darkest), 

neutral (medium) and incongruent (lightest) across all three distances. Error bars 

represent standard error. This figure highlights that participants have higher efficiency 

scores (i.e., poorer performance) on the nonsymbolic task than the symbolic task and the 

difference between congruent, neutral, and incongruent is larger on the nonsymbolic than 

the symbolic task, across all numerical distances. 
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Table 4.4 Bonferroni Corrected Post-hoc Pairwise Comparisons with a 2-way 

Interaction between Task and Congruity for Experiment 2 

Task Congruity Mean Dif SE P-Value 

Nonsymbolic 

Neutral vs Congruent 67.267* 19.35 <.01 

Incongruent vs Congruent 196.158* 23.35 <.001 

Incongruent vs Neutral 128.891* 21.40 <.001 

Symbolic 

Neutral vs Congruent 20.012* 4.06 <.001 

Incongruent vs Congruent 40.455* 5.95 <.001 

Incongruent vs Neutral 20.442* 5.38 <.01 

 

The two-way interaction between congruity and distance was not significant in 

experiment 2, F(2, 135) = 1.33, ns, η² = 0.02. Critically, as with experiment 1, these 

findings are not informative as they collapse across symbolic and nonsymbolic number 

processing and congruity, thereby combining effects of the relevant and irrelevant 

dimensions. 

4.4 Discussion  

A fundamental question in the field of numerical cognition is: are symbolic numbers 

processed in the same way as nonsymbolic numerical magnitudes? To address this 

question, we developed and used a Symbolic-Nonsymbolic Stroop paradigm to assess 

effortful and automatic processing of symbolic and nonsymbolic numbers. By examining 

whether nonsymbolic and symbolic representations automatically influence one another 

we can probe how strongly they are linked. If they are strongly linked, then processing 

one should activate the other. If, however, they are disconnected then they should not 

influence each other, or the influence should be asymmetrical. In the Symbolic-

Nonsymbolic Stroop paradigm we used to probe these possibilities, participants were 

asked to compare adjacent arrays of symbols (e.g., 4444 vs 333) and instructed to 

indicate the side containing either the greater quantity of symbols (nonsymbolic task) or 

the side containing the symbol with the greater numerical magnitude (symbolic task). 

This paradigm evaluates both processing of the relevant dimension (i.e., the dimension 
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the participant is instructed to attend to) as well as the degree to which the irrelevant 

stimulus condition influences judgments being made on the relevant condition. For 

example, when comparing which side contains the numerically larger symbol (i.e., the 

relevant dimension), does the actual number of symbols present (i.e., the irrelevant 

dimension) influence performance? Using this approach, we found that symbolic 

numerical magnitudes were processed more automatically than nonsymbolic numerical 

magnitudes as both the relevant and the irrelevant dimensions.  

Indeed, across conditions, participants performed better (i.e., responded faster and more 

accurately) on the symbolic task compared to the nonsymbolic task. This suggests that as 

the relevant dimension, symbols are processed more automatically. Additional 

asymmetries were observed through much stronger distance effects during nonsymbolic 

judgments compared to symbolic judgments, especially when comparisons were made in 

the counting range. Critically, unlike other paradigms, this task has the capacity to 

examine automaticity of processing symbolic and nonsymbolic numerical magnitudes 

when these number formats act as the irrelevant dimensions. By including a neutral 

condition in our task, we were able to measure the extent to which the irrelevant 

dimension either helped (facilitated) or hindered (interfered) task performance on the 

relevant dimension. Our findings revealed an asymmetry in the interference and 

facilitation patterns of symbolic compared to nonsymbolic numerical judgments. 

Symbols, as compared to nonsymbolic numerical magnitudes, led to both greater 

facilitation and interference effects. Notably, when including trials in both the subitizing 

and counting range, as was the case in experiment 1, this asymmetry in the congruity 

effects between the symbolic and nonsymbolic task is stronger for trials with small 

distances.  Taken together, our findings demonstrate that symbolic numerical magnitudes 

are processed more automatically than nonsymbolic numerical magnitudes as both the 

relevant and irrelevant dimensions. In what follows, we discuss how this finding indicates 

asymmetric processing of symbolic and nonsymbolic numerical magnitudes and suggest 

differences in the ways in which each format is processed and potentially represented.  
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4.4.1 Congruity Effects 

Regardless of condition (i.e., making symbolic or nonsymbolic comparisons), 

participants were more efficient at making comparisons when the two stimulus 

dimensions were congruent compared to when they were incongruent with each other. 

Furthermore, in the neutral condition, participants’ performance was in between that 

obtained from the other two conditions, suggesting that congruent conditions facilitate 

performance and incongruent conditions interfere with performance. These findings are 

noteworthy in that they show the powerful effect of the irrelevant stimulus on one’s 

ability to make basic numerical judgments. One interpretation of these findings is that 

symbolic and nonsymbolic numerical magnitudes are processed in parallel and 

potentially under the same regulatory system (e.g., see Henik & Tzelgov, 1982). 

Applying this line of reasoning to the current study, if symbolic and nonsymbolic 

numerical magnitudes bore no relation to one another and were processed by independent 

systems entirely, one would not expect to find evidence of facilitation or interference 

effects.  In other words, if symbolic and nonsymbolic numbers were processed using two 

entirely distinct systems there would not be a Stroop-effect. Therefore, our findings 

provide some evidence of parallel or simultaneous processing of symbolic and 

nonsymbolic magnitudes. However, these findings should be interpreted with caution in 

light of the many significant interactions discussed below.  Nonetheless, these findings 

align with a large body of theory and empirical findings demonstrating a close relation 

between number symbols and the nonsymbolic numerical magnitudes they represent 

(e.g., Cantlon et al., 2009; Dehaene, 2007; Dehaene et al., 1998; Nieder & Dehaene, 

2009; Piazza et al., 2007).  

However, our findings also challenge this line of research and instead suggest that 

perhaps there are key differences in the ways symbolic and nonsymbolic numerical 

magnitudes are processed. Indeed, our results revealed that in comparison to nonsymbolic 

numerical magnitudes, number symbols (i) were processed more efficiently (i.e., faster 

and more accurately) as the relevant dimension, (ii) had a greater influence on task 

performance as the irrelevant dimension, and (ii) were less influenced by numerical 

distance between magnitudes as the relevant and irrelevant dimension. Notably, distance 
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only moderated the relationship between task and congruity when including all numbers 

from 1-9, but not when only examining numbers in the counting range. We now address 

each one of these points in turn and discuss the findings in terms of evidence of 

asymmetrical processing of symbolic and nonsymbolic numerical magnitudes.   

4.4.2 Effortful processing: Effects of the Relevant Dimension 

Overall, participants performed better (i.e., were more efficient) comparing symbolic 

compared to nonsymbolic numerical magnitudes. Although other researchers have 

reported similar findings (e.g., see Buckley & Gillman, 1974; Lyons & Beilock, 2009), 

this is the first study to do so within the context of a Symbolic-Nonsymbolic Stroop 

paradigm, where the task-irrelevant influence of one dimension on the other (e.g., 

symbolic on nonsymbolic) can be measured. In fact, our results run counter to findings 

from the standard Numerical Stroop paradigm produces a size-congruity effect. Recall 

that the standard paradigm has participants compare Hindu-Arabic digits based on either 

the physical size of the numerals (e.g., 3 vs. 5) or the numerical value. Results from this 

paradigm show that participants are faster at judging physical size and are less influenced 

by the symbolic value of the digits than the size. The most straightforward explanation 

for the discrepancy in findings is that in our task the nonsymbolic condition involves 

serial processing of discrete units (i.e., the total number of number symbols present). 

Conversely, the symbolic task can be approached by attending to a single unit (i.e., any 

given symbol present). Thus, both the physical size and symbolic task within the 

traditional Numerical Stroop paradigm is more akin to our symbolic task in which 

comparisons can be made by attending to a single stimulus.  This discrepancy between 

the current study and previous Numerical Stroop paradigms that produce a size congruity 

effect provides evidence in support of the notion that the quantity discrimination task in 

the Symbolic-Nonsymbolic Stroop paradigm is capturing more than processing of 

continuous magnitudes (e.g., area), an inherent confound of nonsymbolic number 

comparison tasks (For review see, Leibovich & Henik, 2013). If participants were solving 

the nonsymbolic task in the current study using purely a physical size strategy, one would 

predict that the results would closely mirror the Size Congruity Effect, namely that like 

participants are better at processing size than symbols, participants would be more 
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efficient at processing nonsymbolic numerical magnitudes compared to symbols. Instead, 

we find the reverse pattern of results, namely that as the relevant dimension, symbols are 

processed more efficiently than nonsymbolic numerical magnitudes.  Although the 

finding that humans are better at effortfully processing symbols compared to quantities is 

neither new (e.g, Buckley & Gillman, 1974; Lyons & Ansari, 2009), nor surprising, it 

highlights the general efficiency and cultural utility of symbols and number symbols 

more specifically (see Núñez, 2017).  

4.4.3 Automatic Processing: Effects of the Irrelevant Dimension  

As previously discussed, results revealed a congruity effect (i.e., greater efficiency in 

processing congruent compared to incongruent trials) in both the symbolic and 

nonsymbolic comparison conditions.  Indeed, participant’s performance on comparisons 

in both the symbolic task and the nonsymbolic task was most efficient when the two 

stimulus dimensions were congruent, followed by when they were neutral, and 

participants performance was worst on incongruent conditions. Therefore, both symbols 

and the nonsymbolic numerical magnitudes that they represent are processed as the 

irrelevant dimension and influence number processing of the relevant dimension. A 

discussed above, the finding that the irrelevant stimulus influences the relevant stimulus 

provides support for the idea that there is some parallel processing of symbols and 

quantities, as there would be no effect of the irrelevant stimulus on the relevant stimulus 

(i.e., no Symbolic-Nonsymbolic Stroop effect) if symbolic and nonsymbolic numerical 

magnitudes were processed in serial or using two entirely distinct systems. Therefore, the 

presence of a Stroop effect in the current study supports the idea that symbolic and 

nonsymbolic numerical magnitudes are processed simultaneously at some stage of 

processing.  

Critically, however, our results also revealed important differences in how symbols 

influenced and interfered with judgments of nonsymbolic numerical magnitudes 

compared to the way that nonsymbolic numerical magnitudes influenced and interfered 

with symbolic judgments. That is, irrelevant number symbols were found to have a much 

larger impact on performance compared to when nonsymbolic numerical magnitudes 

acted as the irrelevant dimension. Although many studies have reported that symbols 
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influence the processing of quantities (Bush et al., 1998; Francolini & Egeth, 1980; 

Morton, 1969; Pavese & Umiltà, 1998, 1999; Windes, 1968), relatively few have 

examined whether quantities interfere with symbolic processing (Flowers, Warner, & 

Polanski, 1979; Furman & Rubinsten, 2012; Naparstek & Henik, 2010, 2012; Naparstek 

et al., 2015; Pansky & Algom, 2002). The only other study to quantify both symbolic and 

nonsymbolic interference required participants to compare a quantity to a symbolic 

referent (Naparstek & Henik, 2010). This study revealed that symbols interfered with 

quantity processing regardless of task demands, whereas the interference of quantity 

depended on the task.  Results from the current study extend finding this to reveal that 

this asymmetry in the automatic processing of symbols and quantities is present even in a 

task that does not require participants to compare the nonsymbolic numerical magnitude 

to a symbolic referent. Therefore, findings from the current study align with previous 

research to suggest that while there is some overlap in the way that symbolic and 

nonsymbolic numerical magnitudes are processed, symbols seem to more consistently 

influence the processing of nonsymbolic numerical magnitudes.   

4.4.4 Influence of Numerical Distance 

As discussed above, participants perform better on comparative judgments of symbolic 

compared to nonsymbolic numerical magnitudes across all distances. However, results 

from the current study also highlight that in addition to symbols being processed more 

efficiently than nonsymbolic numerical magnitudes, the effortful processing of symbols 

is less influenced by numerical distance.  This finding from the current study, namely, 

that nonsymbolic processing is more influenced by distance than symbolic number 

processing is has been previously reported in the literature in both adults and children 

(e.g., Buckley & Gillman, 1974; Butterworth, 2005; Furman & Rubinsten, 2012; 

Holloway & Ansari, 2010; Holloway & Ansari, 2008, 2009; Holloway et al., 2010; 

Moyer & Landauer, 1967; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002).   

Several models for this discrepancy of the effect of numerical distance on effortful 

symbolic and nonsymbolic number processing have been proposed.  A seminal 

computational model was put forward that suggests that symbolic and nonsymbolic 

numerical magnitudes are transformed into cardinal representation (i.e., place-coded) by 
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different pathways (Verguts & Fias, 2004).  Specifically, nonsymbolic numbers are 

transformed into cardinal representations through a noisy process referred to as 

‘summation coding.’ The noise in this process proportionally relates to the number of 

inputs being “summed.”   In contrast, the summation step of this model is not required for 

processing symbolic numbers, leading to sharper representations for symbolic numbers 

(Verguts & Fias, 2004). This computational model, which has been supported with 

empirical neuroimaging data (Holloway et al., 2010; Lyons et al., 2014; Piazza et al., 

2007; Roggeman et al., 2007), provides a compelling explanation for the discrepancies 

found in the current data between the way that distance modulates the effortful 

processing of symbolic compared to nonsymbolic numerical magnitudes. Notably, there 

are other explanations for the differences between the processing of symbolic and 

nonsymbolic numerical magnitudes. Converging recent behavioural data has indicated 

that the similar behavioural effects observed in different formats of numerical magnitudes 

(i.e., symbolic and nonsymbolic) do not correlate with each other (Holloway & Ansari, 

2009; Krajcsi et al., 2016; Lyons, Nuerk, & Ansari, 2015), and may, in fact, be supported 

by two similar, but distinct representational systems. Indeed, while nonsymbolic 

numerical magnitudes are likely processed using an evolutionarily ancient analogue 

magnitude system, where the ratio of the stimuli’s intensity affects performance (Weber’s 

law) (Moyer & Landauer, 1967) the processing of symbols is likely supported by a 

different more exact system.  A proposed system that may support symbolic numerical 

magnitudes is the discrete semantic system (DSS) (Krajcsi et al., 2016). In a DSS, 

symbolic numerical magnitudes are stored within a large semantic network, with each 

symbolic numerical magnitude acting as a node within that network.  A DSS would 

produce a ‘distance effect’ because the strength of the associations between symbolic 

numerical magnitudes (i.e., nodes) would correlate with the strength of the semantic 

relations between the numbers (Krajcsi, 2017; Krajcsi et al., 2016). Evidence that 

symbolic numerical magnitudes may be supported by a DSS rather than an approximate 

magnitude system has accumulated both behaviourally (Krajcsi et al., 2016, 2018) and at 

the neural level of analysis (Lyons & Beilock, 2018). Data from the current study cannot 

discern between various theories predicting what representations might underpin 

symbolic compared to nonsymbolic numerical magnitudes. However, these data do 
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provide support for the growing body of evidence indicating that there are striking 

differences in the way that symbols and nonsymbolic numerical magnitudes are 

effortfully processed. 

The results from the current study provide some evidence to suggest that there may be an 

asymmetry between symbolic and nonsymbolic numerical magnitudes in the way that 

distance modulates the influence of the irrelevant dimension. In experiment 1, distance 

affects the influence of irrelevant quantities during the symbolic comparison more than 

distance modulates the influence of irrelevant symbols during the nonsymbolic 

comparison task. More specifically, numerical distance most strongly affects the 

processing of symbolic numerical magnitudes when the magnitude of the symbol and the 

quantity are congruent, suggesting that the influence of the congruent quantity may, in 

fact, be responsible for the distance effect.  Interestingly, previous research that has 

examined whether distance influences the performance on nonsymbolic naming tasks and 

tasks that require participant to refer to a symbolic referent revealed that when the 

symbols were numerically close to the quantity that the participants had to verbally name, 

there was a larger interference effect (Furman & Rubinsten, 2012; Naparstek & Henik, 

2010, 2012; Pavese & Umiltà, 1998, 1999).  Critically, in experiment 2, where only 

numbers in the counting range were included, distance does not significantly modulate 

the automatic processing of symbols or nonsymbolic numerical magnitudes. Instead, 

symbols influenced the processing of quantities more than quantities influenced the 

processing of symbols across all distances.  In view of this, the current data suggest that 

numerical distance does not influence the automatic processing of magnitude, for 

numbers in the counting range. This null effect of distance on the automatic processing of 

magnitude in the counting range may be due to the fact that by reducing the range of 

numbers included, we removed conditions where the effect of distance on the automatic 

processing of symbols and quantities diverged. Indeed, the three-way interaction from 

experiment 1 was driven by the difference between automatic processing of symbols and 

quantities at distance 4, 5 and 6. This suggests that distance may differentially relate to 

automatic processing of symbols compared to quantities, but only in conditions where the 

two numbers being compared have a large numerical distance and include magnitudes 

both in the subitizing and counting range.  This finding, that distance did not modulate 
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the degree to which quantities influence the processing of symbols, in the counting range, 

provides further evidence that nonsymbolic numerical magnitudes do not influence the 

processing of numerical symbols. Indeed, even quantities with the strongest salience (i.e., 

quantities with large distances), in the counting range, do not influence effortful symbolic 

number processing. Together, this research provides compelling evidence that symbols 

and quantities are processed using similar, but ultimately distinct processing systems. 

4.4.5 Interpretations and Future Directions 

Taken together, our results provide strong evidence for asymmetrical processing of 

symbolic and nonsymbolic numerical magnitudes. Specifically, when we process 

nonsymbolic numerical magnitudes, symbolic representations have an influence. 

However, when we process symbolic magnitudes, nonsymbolic representations of 

numerical magnitudes have a negligible effect.   A predominant view in the field of 

numerical cognition has been that symbolic number representations are formed by simply 

attaching symbols to analogue nonsymbolic quantity representations (e.g., Cantlon, 2012; 

Dehaene, 2007, 2008; Feigenson, 2007; Lyons & Ansari, 2009; Nieder & Dehaene, 2009; 

Piazza, Pinel, Le Bihan, & Dehaene, 2007).  In recent years, it has been suggested that 

number symbols constitute a separate system in which processing symbols can be done 

independently from accessing nonsymbolic representations of the quantities the symbols 

represent.  Instead, symbols may be understood based on their associations with other 

symbols (For a comprehensive review see, Núñez, 2017).  This view has been supported 

by recent behavioural and neuroimaging research, including chapters 2 and 3 of the 

current thesis, that reports that processing of symbolic numbers is at least somewhat 

distinct from processing quantities (Bulthé et al., 2014; Cohen Kadosh, 2008; Lyons et 

al., 2012, 2014; Lyons & Beilock, 2018). The finding from the current study, that 

symbols are processed more automatically than the quantities that they represent provides 

evidence that supports the notion that symbols may not simply be labels for pre-existing 

representations of quantities.  Indeed, the findings from the current study suggest that the 

human mind does not need to access a representation of a nonsymbolic numerical 

magnitude to automatically process the semantic meaning of a number symbol.  Instead, 

data from the current study provides evidence in support of the theory that symbols may 
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themselves be supported by culturally acquired automatic semantic representations 

(Lyons & Beilock, 2018; Núñez, 2017).  This convergent body of evidence that suggests 

that adults process symbols more automatically than nonsymbolic numerical magnitudes, 

introduces an important developmental question.  Namely, it is of great importance to 

learn how symbols are learned, and when in development symbols become automatic.  A 

longstanding question in the field of numerical cognition has been, ‘how do symbols 

acquire meaning?’ However, based on this data, an equally important follow-up question 

is ‘when does the symbolic system become independent?’ The use of the Symbolic-

Nonsymbolic Stroop task in a developmental sample is ideally suited to answer this 

question, as it can be used to illuminate how the representational precision (i.e., distance 

effects) of symbols and quantities at different levels of processing (i.e., effortful and 

automatic) change, and likely diverge, across developmental time.  

4.4.6 Conclusions 

In order to further our understanding of the association between evolutionary ancient, 

nonsymbolic representations of numerical magnitudes and culturally constructed 

symbolic representations, the current study examined whether the effortful and the 

automatic processing of symbolic and nonsymbolic numerical magnitudes are the same 

or distinct using a Symbolic-Nonsymbolic Stroop paradigm. Results revealed that 

regardless of the task, participants were more efficient at making comparisons when the 

two stimulus dimensions were congruent compared to incongruent. This is could be taken 

to suggest that at some stage of processing symbolic and nonsymbolic numbers are 

processed in parallel; however, due to the fact that the interaction terms are significant, 

this finding should be interpreted with caution. Interaction effects from the current study 

revealed asymmetries in both the automatic and effortful processing of symbolic and 

nonsymbolic numerical magnitudes. The key finding from the current study is that 

symbols influenced nonsymbolic numerical magnitude processing more than 

nonsymbolic numerical magnitudes influenced the processing of numerical symbols.  

This highlights that there is an asymmetry in the way that the human mind processes 

symbols and quantities. Further support for this idea that symbols and quantities are 

processed distinctly is that the effortful processing of symbols was more efficient and less 
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affected by numerical distance than quantities. Additionally, numerical distance 

modulated nonsymbolic interference more than it modulated symbolic interference when 

including all numbers (1-9). However, numerical distance did not influence the automatic 

interference of symbols or quantities for numbers in the counting range. These data 

provide support for the idea that there is an asymmetry in the way that humans process 

symbolic compared to nonsymbolic numerical magnitudes, even during non-effortful, 

automatic processing. Together, these findings, that symbols are processed more 

automatically than numerically equivalent nonsymbolic numerical magnitudes, suggests 

that processing symbols do not require accessing a representation of quantity. Instead, it 

seems that the human mind has the capacity to automatically process the semantic 

meaning of a number symbol.  These findings contribute to efforts to forge a deeper 

understanding of how the mind forms a symbolic number processing system that is 

independent of the approximate, analogue magnitudes that the symbols represent.  
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Chapter 5  

5 Children’s Verbal Number Knowledge Influences Their 
Attention to Numerical Quantity 

5.1 Introduction 

5.1.1 Learning Verbal Number Words 

The ability to count a set of objects is a foundational skill that supports many 

mathematical concepts and procedures. The process of learning to count involves 

learning the number words sequence (Fuson, Richards, & Briars, 1982) and acquiring 

several key principles of counting (Gelman & Gallistel, 1978). It typically takes children 

several years to master counting skills. At roughly two years of age, children have 

learned the count sequence by rote, but do not yet understand the meaning of these verbal 

number words (Wynn, 1990; Wynn, 1992). It typically takes children two to three years 

from the time they master the count list to acquire the cardinal principle, namely the 

understanding that the last number counted when counting a set, refers to the total 

number of objects within that set (Gelman & Gallistel, 1978). Children who do not know 

the cardinal meaning of any number words are referred to as “pre-knowers.” Following 

this, children learn the exact number word meanings of small numbers (i.e., numbers 1-4) 

in predictable stages before they acquire the cardinal principle (Wynn, 1992).  Children 

who know the meaning of the word one are referred to as “one-knowers.” Several months 

later, children progress to being “two-knowers”.  Over time, children become “three-

knowers” and some studies report the presence of “four-knowers.” Children who know 

the meaning of the verbal number words one to four, but not the cardinal principle, are 

collectively referred to as “subset-knowers”. Cardinal Principle knowers (CP-knowers) 

are qualitatively different from subset knowers in that they can generate cardinality for all 

numbers using their knowledge of the cardinal principle (Le Corre & Carey, 2007). It is 

only once children have acquired the cardinal principle that they are considered to 

understand the meaning of number words. The acquisition of the cardinal principle is a 

major milestone in forming numerical understanding and predicts later mathematical 

abilities (Geary et al., 2018). 
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5.1.2 Linking Number Words to Quantities 

It has been heavily debated whether acquiring the cardinal principle is a cause or a 

consequence of the ability to process nonsymbolic quantities (e.g., Batchelor, Keeble, & 

Gilmore, 2015; Dehaene, 2007; Gunderson et al., 2015; Le Corre & Carey, 2007; Mix, 

1999, 2008; Mussolin, Nys, Leybaert, & Content, 2014; Negen & Sarnecka, 2015; 

Shusterman et al., 2016, 2017; Slusser & Sarnecka, 2011; Slusser, Ditta, & Sarnecka, 

2013; Wagner & Johnson, 2011). Previous studies have shown that children who have 

acquired the cardinal principle are more successful than pre-knowers and subset-knowers 

in several nonsymbolic number tasks (Abreu-Mendoza, Soto-Alba, & Arias-Trejo, 2013; 

Mussolin, Nys, Content, Leybaert, & Leybaert, 2014; Shusterman et al., 2016; Wagner & 

Johnson, 2011).  For example, pre-school aged children’s knowledge of the cardinal 

principle related to their ability to discriminate between arrays of quantities (Wagner & 

Johnson, 2011). Similarly, when asked to sort cards based on colour, shape and 

quantities, all children could sort based on colour and shape, but only CP-knowers were 

able to sort based on quantity (Slusser & Sarnecka, 2011). Critically, other research has 

hinted at the idea that some children are able to link verbal number words onto small sets, 

even before they have acquired the cardinal principle (Le Corre & Carey, 2007). 

Specifically, some children are able to map between nonsymbolic quantities and the 

number words that they stood for, even if they do not yet grasp the cardinal principle 

more generally (Batchelor, Keeble, et al., 2015; Mix, 1999, 2008). Notably, due to small 

sample sizes, the majority of studies that assess the relation between verbal number 

knowledge and nonsymbolic quantity processing collapse across knower-level groups 

(Batchelor et al., 2015; Le Corre & Carey, 2007; Mix, 2008; Negen & Sarnecka, 2015; 

Sarnecka & Wright, 2013; Shusterman et al., 2017; Slusser et al., 2013). This solution 

may mask important differences within a heterogeneous group. Despite this, researchers 

have concluded that there is indeed a link between verbal number knowledge and 

nonsymbolic quantity processing, but it remains unknown whether it is learning 

individual verbal number words or acquiring knowledge of the cardinal principle that 

drives this link.  
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Regardless, the existence of the link between verbal number knowledge and nonsymbolic 

quantity processing has recently been questioned.  Tightly controlled experimental 

studies indicate that verbal number word knowledge and nonsymbolic numerical abilities 

may be correlated because some experimental designs inadvertently allow children to 

correctly identify which of two arrays of two dots is more numerous by estimating the 

amount of surface area the dots take up rather than identifying the quantity of dots 

(Negen & Sarnecka, 2015; Rousselle, 2004). Indeed, the correlation between verbal 

number knowledge and nonsymbolic quantity processing disappears when the task 

includes a control that does not allow children to rely on cues from non-numerical 

magnitudes (such as the amount of surface area taken up by the dots) (Negen & Sarnecka, 

2015). An example of a task that controls for non-numerical magnitudes in a task with 

nonsymbolic stimuli that includes conditions where a relatively smaller quantity of dots 

occupies a greater amount of surface area. In view of this, it is conceivable that non-

numerical magnitudes, such as physical size, may be more salient features of sets than 

quantity for young children. In the current study, we aim to address the questions: ‘do 

young children attend to quantity or size?’ and ‘does children’s learning of number words 

affect whether children attend to number or size?’ 

Importantly, this finding, that forcing children to compare dots using quantity (rather than 

non-numerical cues) leads to chance performance across knower-levels, suggests that 

preschool-aged children may not yet have a clear concept of what ‘quantity’ is, and 

therefore may not understand the instruction to ‘choose the side with more dots’.  This is 

concerning because the vast majority of studies that have examined the link between 

verbal number knowledge and nonsymbolic number processing in young children have 

used tasks in which children are explicitly asked to compare quantities (e.g., Abreu-

Mendoza et al., 2013; Batchelor et al., 2015; Dehaene, 2007; Gunderson et al., 2015; Le 

Corre & Carey, 2007; Mix, 1999, 2008; Mussolin, Nys, Leybaert, et al., 2014; Negen & 

Sarnecka, 2015; Shusterman et al., 2016, 2017; Slusser & Sarnecka, 2011; Slusser et al., 

2013; Wagner & Johnson, 2011).  A relatively smaller body of research has developed 

and used non-directive number tasks to assess individual differences in the degree to 

which children spontaneously focus their attention on quantities (SFON) (Baroody & Li, 

2016; Baroody, Li, & Lai, 2008; Hannula & Lehtinen, 2005; Hannula, Räsänen, & 
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Lehtinen, 2007). In these studies, the term “spontaneous” refers to the idea that the 

process of focusing on quantity is un-cued by an experimenter and therefore self-

initiated. The use of SFON-like paradigms overcomes a key limitation within this large 

body of literature, namely that experimenters cannot know for certain whether a child 

understands the instruction to choose the array with the greater numerosity. Additionally, 

SFON-style tasks have the advantage that it is possible to compare the degree to which 

children attend to quantity, to related dimensions (such as physical size). Consequently, 

the use of a SFON-like paradigm is ideal to assess 1) whether children spontaneously 

attend to quantity or physical size, and 2) evaluate whether verbal number knowledge 

affects the degree to which children attend to quantity vs. physical size. 

5.1.3 The Current Study 

Recent theories predict that acquiring verbal number knowledge may change the way 

children attend to discrete quantities in their environment (Barner, 2017; Merkley & 

Ansari, 2016), but this has not yet been tested empirically. Therefore, the goal of the 

current study is to investigate how number word knowledge relates to the way children 

spontaneously attend to number and size. To do so, we developed the train task, a task 

that can be used to investigate whether preschool-aged children attend to discrete quantity 

or physical size, without being cued to either. The train task is a SFON-like paradigm that 

requires a child to build a train that is the “same” as a train built by the experimenter. In 

the train task, the child and the experimenter have sets of blocks that differ in length. 

These blocks are used to build trains with varied numbers of cars. Therefore, the child is 

only able to make a train that matches the experimenter’s train based on either the 

number of cars or the length of the train, but not both. The train task was developed and 

used to measure whether children use a number strategy or a physical size strategy on a 

matching task when they are not explicitly cued to either strategy. The second question 

that the current study examines is how verbal number word knowledge relates to the use 

of number and size strategies on the train task. Examining the relation between verbal 

number knowledge and use of a number, compared to a size strategy on the train task, 

addresses the key question of whether having a symbolic referent in a child’s mind 

affects the degree to which he or she attends to number. 
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We anticipated four distinct possible outcomes for the way that children may respond to 

the train task. The first is that all children will use a number strategy, regardless of verbal 

number knowledge. This idea is supported by research suggesting that children are born 

with an innate number sense and automatically perceive discrete numerosity (Dehaene, 

2007).  In direct contrast is the prediction that all children will use a size strategy 

regardless of verbal number knowledge. This is supported by the notion that non-

numerical magnitudes may be more salient to young children than discrete quantities 

(Henik, Leibovich, Naparstek, Diesendruck, & Rubinsten, 2011; Leibovich et al., 2017; 

Merkley, Thompson, & Scerif, 2016; Negen & Sarnecka, 2015; Szűcs, Nobes, Devine, 

Gabriel, & Gebuis, 2013). The third potential outcome is that CP-knowers will attend to 

number, whereas subset-knowers will attend either to size or neither number nor size. 

This is supported by research suggesting that the acquisition of the cardinal principle 

fundamentally changes the way that children process quantities (Abreu-Mendoza et al., 

2013; Mussolin, Nys, Content, et al., 2014; Wagner & Johnson, 2011). Finally, it is 

possible that acquiring knowledge of each individual number word changes the way that 

children process that particular quantity. For example, a child who knows the meaning of 

the verbal number words one and two might use a number strategy for trains that have 

one or two cars, but not trains with three or more cars. This hypothesis is supported by 

data that suggests that knowing individual symbolic numbers relates to children’s ability 

to attend to those numbers (Batchelor et al., 2015; Slusser & Sarnecka, 2011). In 

summary, this study uses a novel task to investigate the degree that children use number 

and size strategies during an un-cued matching task, and how the acquisition of verbal 

number words affect the degree to which children used these strategies. 

5.2 Methods 

5.2.1 Participants 

One hundred forty children between the ages of 2-2 and 6-0 (years-months) were 

recruited to participate in this study. Of the 140 children whose parents consented for 

their child to participate, three children were excluded because they refused to participate, 

thirteen children were excluded due to failing at least one out of the two practice trials on 

the train task, four children were excluded because their parent or teacher explicitly told 
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them to “count” or “use numbers” while completing the train task, and one child was 

excluded due to being the only pre-knower remaining in the sample. The final dataset 

consisted of 119 children (Meanage = 4.05, SDevage = 0.84; Females = 51, Males = 68; 

Age Range = 2-2-6-0 years).  The non-medical research ethics board at the University of 

Western Ontario approved all procedures (See Appendix A). Written consent and assent 

were obtained from all legal guardians and children. 

This sample size was based on an a priori power analysis, calculated using G*Power 3.1, 

for a split-plot three-way ANOVA examining the effect of knower-level, train length, and 

strategy type on the proportion of strategy use. The parameters used to calculate the 

required sample size include an effect size of 0.25, an alpha error probability of .05, and a 

power of 0.99. This a priori power analysis revealed that the required sample size was 

n=50 with a minimum of 10 participants per knower-level group (1-knower, 2-knower, 3-

knower, 4-knower, CP-knower). One hundred and nineteen participants were collected as 

this was how many children were needed to ensure the smallest group (1-knowers) had 

ten usable participants. 

5.2.2 Materials 

5.2.2.1 The Train Task 

The train task is a novel paradigm that measures whether children choose to use a number 

or a size strategy on a matching task when it is not possible to match on both. This task 

required a child to build a train that “matches” a train built by an experimenter. The task 

was played on a premade board, with a premade engine block leading the row of blocks 

for every example. The board contained two parallel train tracks with an engine at the 

front (see Figure 5.1A). There were three sizes of blocks for this task; small (3cm x 3cm 

x 4cm), medium (3cm x 3cm x 6cm) and large (3cm x 3cm x 9cm). All three block sizes 

were the same height and width. The small blocks were two thirds the length of the 

medium blocks and the medium blocks were two thirds the length of the large blocks (see 

Figure 5.1B). During the experiment, the child was given nine medium-sized blocks, and 

the experimenter had two medium-sized blocks, five small blocks, and five large blocks.  
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Figure 5.1 A) Dimensions of the board used for the train task. B) Dimensions of the three 

sizes of blocks used for the train task. 

To begin the task, the experimenter built a train using two medium blocks on his or her 

own side of the board. The experimenter then said “I want you to make your train the 

same as mine. I will show you using your blocks.” The experimenter used two of the 

child’s medium blocks to build the same train (with two blocks behind the engine) on the 

child’s side of the board. The child was then asked, “is your train the same as my train”? 

Once the child acknowledged that the experimenter’s train and their train were the same, 

the experimenter conducted two practice trials. In the first practice trial, the experimenter 

built a train using a single medium block and said, “make your train the same as mine”. 

The child then used his or her blocks to build a train with one block. If the child did not 
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understand the instructions, the experimenter tried one or both of the phrases “make your 

train match mine,” or “make your train just like mine.” In the second practice trial, this 

was repeated using two medium blocks. Subsequently, the experimenter began 

experimental trials. Children who failed one or both practice trials (i.e., did not put one 

block down for the first practice trial and two blocks down for the second practice trial) 

completed the experimental trials but were excluded from analyses.  

The experiment included 20 experimental trials. In each trial, the experimenter made a 

train using one to five blocks that were either all small blocks or all large blocks. The 

experimenter said, “make your train the same as mine.” The child tried to match their 

train to the experimenter’s, using their medium-sized blocks. The child completed the 

task by 1) making his or her train have the same number of blocks as the experimenter’s 

train (i.e., number strategy), 2) making his or her train the same length as the 

experimenter’s train (i.e., size strategy), or 3) making his or her train in a way that does 

not match on number or on length (i.e., incorrect). Once a child finished building each 

train, the experimenter confirmed that the child believed that the trains matched. The 

experimenter did not provide feedback and then began the next trial. 

The 20 trials in the experiment were grouped into four blocks of five trials. Within a 

single block, the five trials included the experimenter building each of five different train 

lengths (one-five). Therefore, there were four trials (one in each block) for each of the 

five train lengths, meaning that a trial with each train length was built once in a block for 

a total of four times in the task. For train length one (i.e., building a train with a single 

block), the experimenter always used the large block. However, trials that include trains 

with a single block (i.e., train length 1) were excluded from analyses because it is not 

possible to tell whether a child is matching based on number or size for this train length.  

For all other train lengths (two-five), experimenters presented two trials using small 

blocks and two trials using large blocks. For example, a train made of four blocks was 

built twice using the small blocks and twice using the large blocks in a completed data 

set. There were four versions of the trial lists in which the order of blocks and the trials 

within the blocks were randomized. Children who completed fewer than 10 trials were 

excluded from analyses. 
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The following formula was used to compute a score to determine the normalized 

frequency of trials a child used a number strategy, and a size strategy for each train length 

(two to five).  

1) 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 =

 ( 
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑
) ×

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡)  

2) 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑆𝑖𝑧𝑒 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = (
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑆𝑖𝑧𝑒 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑈𝑠𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑
 ) ×

(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡) 

Below is an example of a calculation to compute the proportion that a child used a 

number strategy for train length of two if he or she completed all four trials and used a 

number strategy on two of the trials. 

=  (
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑁𝑢𝑚𝑏𝑒𝑟 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 𝑈𝑠𝑒𝑑 𝑓𝑜𝑟 𝑇𝑟𝑎𝑖𝑛 𝐿𝑒𝑛𝑔𝑡ℎ 2

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑖𝑎𝑙𝑠 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 𝑓𝑜𝑟 𝑇𝑟𝑎𝑖𝑛 𝐿𝑒𝑛𝑔𝑡ℎ 2
 )

× (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 𝑓𝑜𝑟 𝑡𝑟𝑎𝑖𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 2 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡)

=  (
2

4
) ×  4 = 2 

Critically, if a child uses a number strategy for half of the trials, it does not mean that the 

child was at chance. For each trial, children have nine blocks with which to build their 

train. Therefore, the probability of a child using a number strategy by chance for a single 

trial is 1/9.  

5.2.2.2 Give-a-Number Task 

The give-a-number task (Give-N) is a widely used instrument that measures verbal 

symbolic number knowledge (Wynn, 1990). In the current study, the child was presented 

with 10 blocks and was asked to feed some number of these blocks to a finger puppet 

named Dino (who likes to eat blocks), by placing them on a plate. Typically, the 

experimenter says to the child, “can you feed Dino n blocks?” After the child finished 

placing the blocks on the plate the experimenter asked the child a single question: “is that 

n blocks?” If the child said no, the experimenter responded, “Dino really wants n blocks, 
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can you make it n?” This is continued until the child confirmed that he or she believed n 

blocks to be on the plate. The experimenter initiated the trials by asking for one block. If 

the child was successful in feeding Dino one block, then the experimenter asked for three 

blocks. If the child was successful, the experimenter asked for one more block.  If the 

child was unsuccessful, the experimenter asked for one fewer block. The experimenter 

increased or decreased the number of blocks in this way until the child correctly gave a 

certain number of blocks (n blocks) twice, and incorrectly n + 1 blocks twice. The 

knower-level of the child was inferred as the highest number that the child correctly gave 

twice. For example, a child who correctly fed Dino three blocks twice and incorrectly fed 

Dino when asked for four blocks twice was considered a three-knower. Children who 

correctly gave five or more blocks at least twice were considered cardinal-principle 

knowers.  

5.2.3 Procedure   

All participants were recruited through preschools, daycares, schools and family care 

centres in London, Ontario. The participants worked individually with an experimenter to 

complete the tasks. All participants first completed the train task to avoid any potential 

biases or priming of numbers that were present in the Give-N task. Participants were 

randomly assigned the trial order version for the train task. Following the completion of 

the train task, experimenters performed the Give-N task with the participant to assess 

knower-level of a child. The participants completed an additional two short assessments 

that were not analyzed for the current study. These two tasks included 1) children were 

asked to count as high as they could, and 2) children completed a basic instruction 

following task where the experimenter asked the children to touch their head or their toes 

eight times in a random order. The entire session took approximately 30 minutes. All 

participants received a certificate and stickers at the end of the testing session.  

5.3 Results 

The present study examined whether verbal symbolic number knowledge is related to the 

type of strategy used in the train task across four of the five different train lengths. 

Notably, for train length one, responding with a single block means that the participant 
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and experimenter’s trains matched in both size and number. Therefore, trials with train 

length “one” were excluded from all analyses. The give-N task was used to determine 

each participant’s verbal symbolic number knowledge (i.e., knower-level). Of the 119 

children who participated in the study, 10 children were one-knowers, 14 were two-

knowers, 19 were three-knowers, 13 were four-knowers, and 63 were cardinal principle 

knowers (CP-knowers). The train task was used to determine the degree to which 

children spontaneously used a number strategy and size strategy. Each participant had 10 

scores from the train task.  Specifically, five scores were given for the proportion of a 

number strategy used for each of five train lengths, and five scores were given for the 

proportion of a size strategy used for each of five train lengths.  

A three-way split-plot analysis of variance (ANOVA) was computed to examine how the 

proportion of number and size strategies used at different train lengths relates to knower-

level. The within-subject variables were strategy (number vs. size) and train length (2 

blocks, 3 blocks, 4 blocks, 5 blocks). The between-subject variable was knower-level (1-

knower, 2-knower, 3-knower, 4-knower, CP-knower).  

Levene’s test of homogeneity of variance was performed on each level of the between-

subjects factor to assess the equality of variances between the means of the groups. The 

Levene’s test for the proportion of number used at train length three F(4, 114) = 3.96, p = 

.005, and four F(4, 114) = 3.74, p = .007 and proportion of size used at train length two 

F(4, 114) = 4.44, p = .002, were significant. The Levene’s test of equality of variance for 

the proportion of number used at train lengths 2, and 5, and for the proportion of size 

used at train lengths 3, 4, and 5, were not significant. Mauchly’s test of sphericity 

revealed that the current data violated the assumption of sphericity for both train-length, 

W = .79, X2 = 26.09, p = <001, Greenhouse-Geisser = .89, and the interaction between 

strategy and train-length W = .79, X2 =26.73, p = <.001, Greenhouse-Geisser = .86. 

Therefore, all subsequent analyses are reported using Greenhouse-Geisser adjusted 

values. 

An examination of the main effect of strategy is used to distinguish between hypothesis 1 

and 2, namely whether children are more likely to use a number strategy or a size strategy 
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across train lengths and knower-levels. Results revealed a significant main effect of 

strategy, F(1, 114) = 4.87, p = 0.03, partial η2 = 0.04, that indicated that children of all 

knower-levels used a number strategy (Mean = 1.53, Standard Error = 1.08) more often 

than they used a size strategy (Mean = 1.10, Standard Error = 0.10) across all train 

length trials (Figure 5.2). This supports the idea that in general children are more likely to 

use a number strategy over a size strategy.   

 

Figure 5.2 A) Main effect of strategy.  Children use a number strategy significantly more 

than a size strategy *p<.05. 

The two-way interaction examining whether the use of a number strategy over a size 

strategy is modulated by knower-level was used to measure whether verbal number 

knowledge related to strategy use (hypothesis 3).  Results revealed that the interaction 

between strategy and knower-level was not significant F(4, 114) = 1.55, ns. This suggests 

that across train lengths, there is no effect of knower-level on strategy use.   

Therefore, an examination of the three-way interaction was used to assess whether the 

use of a number strategy over a size strategy at different train lengths differs as a function 

of knowledge of each individual number word (hypothesis 3).  The 3-way interaction 

*
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between strategy, train length and knower-level was significant F(10, 293) = 4.56, p = 

<.001, η2 = 0.138, (Figure 5.3). This finding reveals that train length influenced whether 

children were more likely to use a number strategy or a size strategy differently at each 

knower-level. Post-hoc pairwise comparisons with a Bonferroni correction for multiple 

comparisons were included to examine simple main effects. For one-knowers, there was 

no significant difference between the use of a number strategy and length strategy at any 

train length. Two-knowers used a number strategy more than a size strategy for train 

length two (p = .001), but there was no significant difference for train lengths three, or 

four. Two-knowers used a size strategy more than a number strategy for train length five 

(p = 0.018). Three-knowers used a number strategy more than a size strategy at train 

lengths two (p <.001), and three (p = .008) but there was no significant difference in 

strategy use for train length four or five. Four-knowers also used a number strategy more 

than a size strategy at train lengths two (p <.001), and three (p = .024), but not train 

length four. Four-knowers used a size strategy significantly more than a number strategy 

for train length five (p < .001). CP-knowers used a number strategy more than a size 

strategy at train lengths two (p < .001), and three (p < .001). There was no significant 

difference in strategy use for CP-knowers on train length four. CP-knowers used a size 

strategy significantly more than a number strategy for train length five (p < .001). These 

results suggest that children who are one-knowers, two-knowers and three-knowers were 

more likely to use a number strategy for train lengths within their knower-level. 

Additionally, all children except 1-knowers and 3-knowers used a size strategy 

significantly more than a number strategy for train length five. Notably, four-knowers 

and CP-knowers displayed similar patterns of strategy use to three-knowers in that they 

were more likely to use a number strategy than a size strategy for train lengths two and 

three.  

Therefore, this significant three-way interaction indicates that acquiring knowledge of 

each individual number word changes the way that a child processes that particular 

number, particularly for small numbers (two and three).  For example, two-knowers are 

more likely to use a number strategy for trains that have two blocks but not trains with 

three or more blocks.  
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Figure 5.3 Three-way interaction of strategy by knower-level by train-length. Children 

are more likely to use a number strategy when building a train where the length of the 

train is within their knower-level.  *p<.05, **p<.001.  

There were several main effects and two-way interactions that did not correspond to the 

hypotheses presented in the introduction but are reported here for completeness. 

Specifically, there was a significant main effect of knower-level, F(4, 114) = 29.30, p = 

0

1

2

3

4

2 3 4 5N
o

rm
a
liz

e
d
 F

re
q
u

e
n
c
y

Train Length

CP-Knowers

Number

Size

0

1

2

3

4

2 3 4 5

N
o

rm
a
liz

e
d
 F

re
q
u

e
n
c
y

Train Length

Three-Knowers

0

1

2

3

4

2 3 4 5

N
o
rm

a
liz

e
d

 F
re

q
u
e

n
c
y

Train Length

Four-Knowers

0

1

2

3

4

2 3 4 5N
o

rm
a
liz

e
d
 F

re
q
u

e
n
c
y

Train Length

One-Knowers

0

1

2

3

4

2 3 4 5

N
o
rm

a
liz

e
d
 F

re
q
u

e
n
c
y

Train Length

Two-Knowers

*

*

*
* *

*
* *
* *
*

*
* * *

*



192 

 

<.001, partial η2 = 0.51, which showed that use of a strategy (number or size) increased 

as knower-level increased. The main effect for the length of train was also significant 

F(3, 305) = 28.24, p <.001, partial η2 = 0.20, revealing that the use of any strategy 

(number and size) decreased as train lengths increased. The two-way interaction between 

train length and knower-level was not significant F(11, 275) = 1.33, ns, indicating that 

there is no difference in the degree to which children use either strategy (number or size) 

across train lengths and between knower-levels.  Finally, the two-way interaction 

between strategy and train length was significant F(3, 293) = 68.29, p <.001, partial η2 = 

0.38, revealing that the use of a number strategy compared to a size strategy differed 

depending on the length of the train being built across all children. Post-hoc pairwise 

comparisons with a Bonferroni correction for multiple comparisons revealed that children 

used a number strategy significantly more than a size strategy for train length 2 (p <.001), 

and 3 (p = .001). There was no difference in the use of a number vs. a size strategy for 

train length 4. Children used a size strategy significantly more than a number strategy for 

train length 5 (p <.001) (Figure 5.4). This finding suggests that children’s strategy use is 

dependent on the length of the train they are matching, across all knower-levels. 
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Figure 5.4 Two-way interaction of strategy by train-length. Children are more likely to 

use a number strategy when building a train with a length of two or three blocks. 

Children and are more likely to use a size strategy when building a train with a length of 

five blocks.  *p<.05, **p<.001. 

As knower-level is often correlated with age, an additional control analysis was 

computed to determine whether the effects from the previous analysis were driven by 

knower-level and not by age. A three-way split-plot analysis of covariance (ANCOVA) 

was computed to examine how the proportion of number and size strategies used at 

different train lengths relates to knower-level while controlling for age. The within and 

between-subject variables were the same as the ANOVA reported above for strategy 

(number vs. size), train length (2 blocks, 3 blocks, 4 blocks, 5 blocks), and knower-level 

(1-knower, 2-knower, 3-knower, 4-knower, CP-knower). The covariate was age. Results 

from this control analysis revealed that all effects from the original three-way split-plot 

ANOVA were unchanged when age was included as a covariate.  
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In sum, the results from experiment 1 support those proposed in outcome four, namely 

that learning verbal number words changes the way that children engage with numerical 

quantities in the environment, but only for small quantities (i.e., train length two and 

three).  For trains with five cars, most participants used a size strategy more than a 

number strategy.  

5.4 Discussion 

The current study examined a) whether children attend to number or physical size when 

not explicitly cued to either and b) whether verbal number knowledge influences strategy 

choice on a novel matching task. In view of previous research, we anticipated four 

distinct potential outcomes for how children would respond to the train task. First, as 

supported by research suggesting that children are born with an innate number sense 

(e.g., Dehaene, 2007), it was possible that all children would use a number strategy, 

regardless of verbal number knowledge. In direct contrast, research highlighting the 

salience of continuous magnitudes to young children (e.g., Leibovich et al., 2017) 

supports the outcome that all children would use a size strategy, regardless of verbal 

number knowledge. It was also possible that children who have acquired the cardinal 

principle would attend to number, whereas children who have not yet acquired the 

cardinal principle would attend either to size or neither number nor size.  Indeed, this 

prediction was supported by the replicable finding that the acquisition of the cardinal 

principle fundamentally changes the way that children process quantities (Abreu-

Mendoza et al., 2013; Mussolin, Nys, Content, et al., 2014; Wagner & Johnson, 2011). 

Our fourth and final anticipated outcome was that verbal number knowledge of each 

individual number word would change how a child processed that particular quantity.  

Results broadly aligned with outcome one, namely, that children used a number strategy 

more than a size strategy (with the exception of trains with five cars, where children used 

a size strategy more than a number strategy). However, the degree to which children used 

a number strategy more than a size strategy increased as a function of children’s 

knowledge of the cardinality of the count word that corresponded to the number of blocks 

in the train that they were instructed to match, specifically for small quantities. This 

suggests that, as proposed in outcome four, learning verbal number words that correspond 
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to small quantities changes the way that children engage with numerical quantities in the 

environment. Specifically, number symbols may be a tool for guiding children’s 

behaviour on a task in which number and size are in conflict.  

5.4.1 Learning Verbal Number Words Changes Attention and 
Behaviour 

 Although there is a main effect demonstrating that children use a number strategy 

more than a size strategy to complete the train task, this effect is further modulated by the 

individual child’s number word knowledge. In particular, children’s use of a number 

strategy over a size strategy increased as knower-level increased, particularly for small 

numbers (i.e., quantities two and three). This highlights that greater knowledge of verbal 

number words corresponds to greater use of a number strategy, particularly for small 

numbers. The current study uses a SFON-like task to examine the effect of verbal number 

knowledge on spontaneously attending to numerical quantities. Previous research has 

shown that children’s verbal number knowledge relates to explicit nonsymbolic number 

processing abilities (e.g., Le Corre & Carey, 2007; Mix, 1999, 2008). Indeed, when 

explicitly cued, subset-knowers (i.e., children with some verbal number word knowledge, 

but who have not yet learned the cardinal principle), can map small numbers (e.g., 1-4) to 

quantities (Le Corre & Carey, 2007). Relatedly, subset-knowers were able to make 

magnitude comparisons between dot arrays and verbal number words if they understood 

the meaning of those verbal number words (Batchelor, Keeble, et al., 2015). Subset-

knowers can also successfully judge numerical equivalence of small quantities (Mix, 

1999, 2008), and have some basic understanding that number words pertain to discrete, 

but not continuous quantities (Slusser et al., 2013). This research suggests that children 

can link small number words to the quantities before they have acquired the cardinal 

principle. The present findings build on this research, to evaluate whether children who 

can link verbal number words to quantities actually use this knowledge in a non-directed 

task.  

Findings from the SFON literature reveal that spontaneously attending to quantities 

correlates with symbolic number abilities. Specifically, individual differences in SFON 

predict counting ability (Hannula et al., 2007) as well as subsequent mathematical 
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knowledge (Batchelor, Inglis, & Gilmore, 2015; Hannula & Lehtinen, 2005; Nanu, 

McMullen, Munck, Hannula-Sormunen, & Hannula-Sormunen, 2018).  Critically, 

previous SFON research has assessed counting using measures of procedural abilities.  

Moreover, while previous SFON studies include dimensions aside from number (such as 

colour or shape), these dimensions are not inherently correlated with quantity processing 

like size.  By using a SFON-like task where participants can use number or size, and 

including a measure of conceptual verbal number knowledge, rather than procedural 

verbal number knowledge, we discovered that children who have verbal number 

knowledge, choose to use a strategy that relies on this knowledge for small numbers. This 

finding suggests that children use their number word knowledge even when they have not 

been cued to use it and when there is another strategy (size) available to solve the 

problem. Specifically, the findings revealed that one-knowers, two-knowers and three-

knowers are more likely to use a number strategy than a size strategy if the child knows 

the verbal number word that corresponds to the number of blocks in the train. For 

example, a two-knower was more likely to use a number strategy than a size strategy for 

trains with one block or two blocks, but not for trains with three, four or five blocks. 

However, This finding significantly extends previous research that has highlighted that 

children can link quantities to verbal number words for which they have learned the 

meaning (Batchelor, Keeble, et al., 2015). Specifically, the present data reveal that 

children are more likely to use a number strategy when building a train where the length 

of the train is within their knower level.   

 As previously discussed, the null finding that children do not use a number 

strategy for trains with quantities above their knower-level does not necessarily mean that 

children are unable to process quantities for which they do not yet know the label. In 

other words, the current data cannot speak to whether children perceive number. Indeed, 

it has been reported that infants have the ability to track one to three objects using the 

parallel individuation (PI) system (Feigenson & Carey, 2003, 2005; Xu, 2003). This data 

suggests that preschool-aged children who do not yet know their number words could 

complete the task by matching quantity using the PI system, but they do not do so. The 

current study measured children’s behaviour, and specifically, the frequency with which 

children use number to guide their behaviour. Consequently, the term ‘attends’, in this 
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context, refers to the degree to which children use a number strategy. Therefore, the 

results from the current study align with outcome four to suggest that the acquisition of a 

semantic label (i.e., a verbal number word) strengthens the degree to which a child 

accesses and uses their conceptual knowledge of exact quantity to guide their behaviour 

in a situation that does not explicitly require them to integrate that knowledge into their 

behaviour. 

5.4.2 Acquisition of the Cardinal Principle 

The third potential outcome predicted for the current study was that children who have 

acquired the cardinal principle would attend to number, whereas children who have not 

yet acquired the cardinal principle would attend either to size or neither number nor size. 

This hypothesis is supported by research suggesting that the acquisition of the cardinal 

principle fundamentally changes the way that children process quantities (Abreu-

Mendoza et al., 2013; Mussolin, Nys, Content, et al., 2014; Slusser & Sarnecka, 2011; 

Wagner & Johnson, 2011). For example, ability to approximately estimate which of two 

quantities has more dots on an ‘approximate number task’ has been linked to the 

acquisition of the cardinal principle (Mussolin, Nys, Content, et al., 2014; Wagner & 

Johnson, 2011). Knowledge of the cardinal principle has also been associated with 

children’s ability to be fair (i.e., share equally) (Chernyak, Harris, & Cordes, 2018) and 

successfully extend number words from one set to another based on quantity.  This body 

of research suggests that the acquisition of the cardinal principle fundamentally changes 

the way children conceptualize quantities. Results from the current study conflict with 

this conclusion. Indeed, our findings suggest that it is not becoming a cardinal principle-

knower that changes the way children attend to quantity, but instead, learning individual 

numbers (i.e., shifting from a 1-knower to a 2-knower) relates to changes in the way 

children approach the train task. Moreover, children who know some numbers (e.g., four-

knowers) but have not yet acquired the cardinal principle, produce a pattern of results that 

aligns more closely with CP-knowers than children who are just beginning to learn 

number words (i.e., one-knowers). Thus, the current study indicates that it is the process 

of acquiring labels for representations of quantities (i.e., verbal number words), rather 
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than acquiring knowledge of the cardinal principle, that relates to changes the way that 

children attend to quantity in the absence of explicit cues.   

Many previous studies that examined verbal number knowledge had small sample sizes 

in each knower-level group (Batchelor, Keeble, et al., 2015; Le Corre & Carey, 2007; 

Mix, 2008; Negen & Sarnecka, 2015; Sarnecka & Carey, 2008; Sarnecka & Wright, 

2013; Shusterman et al., 2017, 2016; Wagner & Johnson, 2011). To overcome power 

issues, researchers grouped together knower-level groups in several small groups (e.g., 1 

and 2-knowers vs. 3 and 4-knowers)  (Batchelor et al., 2015; Le Corre & Carey, 2007; 

Sarnecka & Carey, 2008) or one large group (i.e., subset-knowers vs. CP-knowers) (Mix, 

2008; Negen & Sarnecka, 2015; Sarnecka & Wright, 2013; Shusterman et al., 2017) for 

statistical analyses. Results from the current study highlight that learning each verbal 

number word influences the way that children attend to quantities. This indicates that a 

group of “subset-knowers” is a heterogeneous group. In view of this, future research that 

explores differences between knower-level groups should acquire a large enough sample 

size to analyze each knower-level group separately.   

5.4.3 Two-Systems of Nonsymbolic Cognition 

When examining the patterns of results from the current study, it is important to note that 

most children use a size strategy more than a number strategy on trains with five blocks. 

Indeed, the complete pattern of results from the current study reveal that children use a 

number strategy more than a size strategy for small quantities (i.e., up to three) if they 

know the corresponding verbal number word, number and size strategies are used equally 

frequently for trains with four blocks, and a size strategy is used more than a number 

strategy on trains with five blocks.  

A possible explanation for why children might consistently be using a size strategy more 

than a number strategy for trains with longer lengths (i.e., five blocks), is that children 

may be using two distinct systems to process small and large train lengths. It has been 

suggested that humans have two systems that represent nonsymbolic quantities (for 

review see, Hyde, 2011). These systems include 1) the parallel individuation system (PI), 

used to track objects in order to process the exact amount of small sets of objects (i.e., 
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quantities of one-four), and 2) the approximate number system (ANS), which uses 

approximate estimation to process larger quantities (i.e., quantities greater than four). 

Here we speculate that perhaps children are more likely to use a number strategy for 

trains with a small number of cars because they can track the exact number of cars in the 

train using parallel individuation. In contrast, a size strategy is perhaps the more salient 

strategy for trains with a greater number of blocks because these trains are processed 

using approximate estimation. Indeed, as trains with larger lengths have more items than 

can be processed using the PI system, the quantity of blocks in the trains can be 

processed using either automatic estimation or effortful counting. Therefore, we speculate 

that perhaps CP-knowers do not use a number strategy for long train lengths because an 

approximate size-based strategy aligns more closely with the system used to process the 

train.  

5.4.4 Flexibility of Strategy 

The finding that CP-knowers use a size strategy for trains with five cars, even when they 

know the verbal number word for five aligns with a related body of work that reveals that 

young children are more exploratory in their behaviour than are adults (Gopnik, 1996; 

Gopnik, Griffiths, & Lucas, 2015; Gopnik et al., 2017; Gopnik & Wellman, 2012; 

Plebanek & Sloutsky, 2017). Younger children outperform older children on learning 

tasks such as remembering information that the experimenter did not cue the participant 

to attend to, (Plebanek & Sloutsky, 2017; Sloutsky & Fisher, 2004) and learning atypical 

abstract causal principles from patterns of evidence (Gopnik et al., 2015). Authors of 

these studies have suggested that younger minds are intrinsically more flexible, and 

consequently more exploratory. It is perhaps for this reason that data from the current 

study revealed that children use a size strategy for a particular trial type when they likely 

have the ability to use a number strategy for that trial type.  

In view of this, it is logical that children who know their verbal number words will be 

able to flexibly switch between a number strategy and size strategy, depending on which 

strategy is optimal to solve the problem.  We discuss above that a number strategy may 

be more challenging to use for trains with five cars, as quantities with five or more 

objects are supported by the ANS, rather than the PI system.  However, a size strategy 
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may also be a less cognitively demanding strategy to solve the problem for trains with 

five cars because trains number and size are correlated.  This means that, in order to 

match a train on quantity, the participant must inhibit the fact that the two trains are 

different lengths and trains with more cars differ more in length. Critically, size has been 

reported to influence attention even when it is the irrelevant dimension (i.e., when 

participants are told to ignore the size of an object) (Henik & Tzelgov, 1982; Henik, 

Gliksman, Kallai, & Leibovich, 2017; Leibovich, Diesendruck, Rubinsten, & Henik, 

2013).  In the train task, although the size of the child’s individual blocks consistently 

differs from the experimenter’s blocks at a ratio of 2 cm to 3 cm, the absolute length of 

the train is inherently related to the number of blocks included in the train (Leibovich & 

Henik, 2013). For example, in a trial where the experimenter uses large blocks (length 9 

cm) and the child uses medium blocks (length 6cm), the absolute length of a train with 

two blocks would be 12 cm for the child and 18 cm for the experimenter (i.e., the 

absolute length difference is 6 cm). In contrast, if the experimenter uses large blocks 

(length 9 cm) and the child uses medium blocks (length 6cm) to build a train with five 

blocks, the absolute length of the child’s train would be 30 cm and the absolute length of 

the experimenter’s train would be 45 cm (i.e., the absolute length difference is 15 cm). 

Therefore, to match based on number requires a child to inhibit the difference of the 

absolute length of the two trains to a greater degree for trains with more blocks. In view 

of this, it is conceivable that on trials with more blocks, less effort is required for a child 

to use a size strategy compared to inhibiting the absolute length difference between the 

two cars, in order to use a number strategy.  

The key pattern of results from the current study (that children are more likely to use a 

number strategy if they know the verbal number word corresponding to the train length) 

is driven by one-knowers, two-knowers, and three-knowers. Four-knowers and CP-

knowers produce the same pattern of results as three-knowers. A potential explanation for 

this finding is that children flexibly shift to a size strategy on trains with four or five 

blocks to avoid the challenging task of inhibiting absolute length. Critically, future 

research should examine whether adjusting the absolute length of the trains, for those 

with more blocks, affects whether children use a number or a size strategy. 
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5.4.5 Conclusions 

Learning the meaning of verbal number words is a slow process that sets a critical 

foundation for young children’s numerical thinking. The key finding of the current study 

is that preschool-aged children were more likely to use a number strategy than a size 

strategy if they knew the verbal number word that corresponded to the number of cars 

comprising the train they were asked to match, particularly for small numbers. Results 

also revealed that children are more likely to use a size strategy than a number strategy 

for trains with five cars. Together, this study revealed that acquiring verbal number word 

knowledge may fundamentally affect the way that young children attend to quantities. In 

summary, this research provides a concrete example of how learning symbols influence 

behaviour within the domain of early number processing.   
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Chapter 6  

6 General Discussion 

The capacity to estimate and discriminate between nonsymbolic numerical magnitudes 

(e.g., the number of objects in a set) emerges early in development and is shared with 

non-human species (Cantlon, 2012; Dehaene, 2007; Dehaene et al., 1998; Nieder & 

Miller, 2004). Consequently, this ability to represent and process nonsymbolic numerical 

magnitudes is assumed to be evolutionarily ancient and biologically endowed. In 

contrast, the uniquely human capacity to process numbers symbolically has emerged 

relatively recently in human history and is acquired through enculturation (Ansari, 2008; 

Coolidge & Overmann, 2012).  The ability to conceptualize and use symbolic numbers is 

a necessary foundation for higher-level mathematical thinking, which is essential to a 

successful society (Bynner & Parsons, 1996; Duncan et al., 2007; Romano et al., 2010). 

The culturally mediated process of learning symbolic numbers is thought to be rooted in a 

pre-existing, innate and evolutionarily ancient abstract number processing system that 

evolved to process nonsymbolic numerical magnitudes (Brannon, 2006; Dehaene, 2007; 

Dehaene et al., 2003; Nieder & Dehaene, 2009).  

However, a growing body of recent evidence suggests that systems used to process 

symbolic and nonsymbolic numerical magnitudes may be more distinct than previously 

assumed (Ansari, 2007; Bulthé, De Smedt, & Op de Beeck, 2014; Cohen Kadosh & 

Walsh, 2009; Lyons, Ansari, & Beilock, 2012, 2014; Lyons & Beilock, 2013; 

Sokolowski & Ansari, 2016). These data conflict with the notion that numbers are 

processed entirely abstractly. Despite years of research, the question of whether symbolic 

numerical magnitudes are processed using the evolutionarily ancient system that evolved 

to process nonsymbolic numerical magnitudes remains unanswered.  To address this 

question, this thesis examined the relationship between symbolic and nonsymbolic 

numerical magnitude processing at the neural level in human adults.  Additionally, this 

thesis explored how symbolic and nonsymbolic numerical magnitude processing is 

influenced by the participant’s attentional state, and how the relationship between 

symbolic and nonsymbolic numerical magnitude processing changes across 

developmental time.  In the following sections, I will discuss the results of the four 
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empirical chapters presented in this thesis and relate these findings to other data and 

theories in the field.  Following this, I will discuss the general limitations of these studies, 

implications of the findings, and future directions. 

6.1 The Neural Correlates of Symbolic and 
Nonsymbolic Numerical Magnitude Processing 

In recent years, there has been substantial growth in neuroimaging studies investigating 

the neural correlates of symbolic (e.g., Arabic numerals) and nonsymbolic (e.g., dot 

arrays) numerical magnitude processing. At present, it remains contested whether 

numbers are represented abstractly, or if number representations in the human brain are 

format-dependent (for review see: Cohen Kadosh, 2008). In chapter 2 of the current 

thesis (Sokolowski, Fias, Mousa, & Ansari, 2017), I used activation likelihood estimation 

(ALE) to conduct the first quantitative meta-analysis to synthesize all neuroimaging 

papers that examined symbolic and/or nonsymbolic numerical magnitude processing in 

the human adult brain.  Results of this empirical chapter revealed that across all 

neuroimaging papers there are convergent areas of activation that are common to 

symbolic and nonsymbolic numerical magnitude processing. More specifically, 

conjunction analyses intended to quantify brain regions that supported both symbolic and 

nonsymbolic numerical magnitude processing revealed overlapping activation for 

symbolic and nonsymbolic numerical magnitude processing in regions along the frontal 

and parietal lobes.  This finding of overlapping activation for symbolic and nonsymbolic 

numerical magnitude processing is consistent with the idea that there are regions in the 

human brain that process numerical magnitudes abstractly (Cantlon, 2012; Dehaene, 

2007; Dehaene et al., 1998; Piazza et al., 2007). However, there were also brain regions 

that were specifically associated with either symbolic or with nonsymbolic numerical 

magnitude processing. Specifically, contrast analyses revealed anatomically distinct 

frontoparietal activation associated with symbolic and with nonsymbolic numerical 

magnitude processing. These findings that symbolic and nonsymbolic numerical 

magnitudes are supported by distinct brain regions are consistent with the notion that 

regions within the human brain processes numbers in a format-dependent way (Bulthé et 

al., 2014; Cohen Kadosh, 2008; Holloway et al., 2010; Lyons et al., 2014; Lyons & 
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Beilock, 2013; Sokolowski & Ansari, 2016). Specifically, these contrast analyses 

revealed that the representations supporting symbolic and nonsymbolic numerical 

magnitudes may be lateralized within the partial cortex. Indeed, the meta-analysis 

reported in chapter 2, implicated the left angular gyrus as potentially important for 

supporting symbolic numerical magnitude processing, whereas the right superior parietal 

lobule may be important for processing nonsymbolic numerical magnitudes (Sokolowski 

et al., 2017). Unsurprisingly, this finding of lateralization of symbolic compared to 

nonsymbolic numerical magnitudes in the parietal cortex at the meta-analytic level aligns 

with findings reported in many individual empirical studies (For review see: Sokolowski 

and Ansari, 2016). Together, data from this chapter reveals that symbolic and 

nonsymbolic numerical magnitudes are sub-served by both format-dependent and 

abstract neural systems, thus suggesting that some components of the evolutionarily 

ancient system used to process nonsymbolic magnitudes may be repurposed for the 

processing of symbols. However, due to several key inherent methodological limitations 

of meta-analyses that are discussed in the following paragraph, even the findings of 

overlapping activation for symbolic and nonsymbolic numerical magnitudes, reported in 

chapter 2, cannot be used to conclude that symbolic and nonsymbolic numerical 

magnitudes are processed in the same way, using a single evolutionarily ancient system.  

The use of ALE methodology in chapter 2 is valuable because the algorithm can be used 

to extract regularities across a large set of empirical studies with vastly different 

methodologies. However, when using meta-analytic techniques, it is challenging to 

account for differences in statistical thresholding, spatial extent, and magnitude of 

activations across regions of activation both within and between studies (Arsalidou & 

Taylor, 2011; Christ et al., 2009; Di Martino et al., 2009; Ellison-Wright et al., 2008). 

Additionally, there are many limitations within the empirical studies that comprise the 

meta-analysis in chapter 2.  For example, the majority of the studies included in the meta-

analysis 1) did not adequately control for non-numerical magnitudes and 2) used active 

task designs. The lack of control for non-numerical magnitude processing means that the 

system being examined, that is assumed to be an abstract number processing system, 

may, in fact, be a general magnitude processing system used to processing both 

numerical and non-numerical magnitudes (Cantlon, Platt, & Brannon, 2009; Sokolowski, 
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Fias, Ononye, & Ansari, 2017; Van Opstal & Verguts, 2013; Walsh, 2003). Relatedly, the 

use of these active tasks makes it impossible to conclude whether the overlapping brain 

regions that support symbolic and nonsymbolic numerical magnitudes is a consequence 

of abstractly processing the magnitude or if this overlapping activation relates to decision 

making, motor processing or task difficulty (Göbel et al., 2004).  In view of these 

limitations, it was critical to identify the neural correlates of symbolic and nonsymbolic 

numerical magnitude processing in a single set of participants using a paradigm that 

controls for non-numerical magnitude processing and activations associated with active 

tasks.   

In chapter 3 of the current thesis, I presented data from an experimental fMRI study in 

which I assessed whether symbolic and nonsymbolic numerical magnitude processing is 

supported by overlapping neural activation when controlling for confounds associated 

with active tasks and non-numerical magnitudes.  Specifically, I developed and used an 

fMRI adaptation paradigm that isolated the representations of symbolic numerical 

magnitudes, nonsymbolic numerical magnitudes, and physical size (a non-numerical 

magnitude), in forty-five human adults. Results from this chapter indicated that the neural 

correlates associated with the passive viewing of numerical symbols were distinct from 

the neural correlates that were associated with the passive viewing of nonsymbolic 

numerical magnitudes and physical size.  Surprisingly, no brain region was significantly 

activated by the passive viewing of both symbolic and nonsymbolic numerical 

magnitudes. Passive processing of symbolic numerical magnitudes correlated with 

activation in the left superior parietal lobule, whereas the processing of both nonsymbolic 

numerical magnitudes and physical size correlated with activation in the right 

intraparietal sulcus. This finding aligns with results from chapter 2 as well as previous 

research that reports hemispheric lateralization of symbolic and nonsymbolic numerical 

magnitude processing within the parietal cortex.  Data from chapter 3 also provide novel 

evidence to suggest that the overlapping brain regions that support symbolic and 

nonsymbolic numerical magnitude processing, reported in chapter 2, as well as previous 

studies (e.g., Dehaene et al., 1998; Dehaene, 2007; Cohen Kadosh, 2008; Sokolowski and 

Ansari, 2016), may be due to overlapping task demands, and consequently may not be 

indicative of an abstract number processing region.  Notably, results from chapter 3 also 
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revealed that symbolic and nonsymbolic numerical magnitudes are distinct at the 

representational level, in addition to spatially. Specifically, representational similarity 

analyses (RSA) were conducted within regions of interest derived from regions that 

exhibited overlapping activation for symbolic and nonsymbolic numerical magnitude 

processing in chapter 2.  These RSA analyses revealed that the passive processing 

symbolic numerical magnitudes exhibited dissimilar normalized patterns of activation 

compared to the passive processing of nonsymbolic numerical magnitudes in the regions 

of interest in both the left and right parietal lobes. Notably, the patterns of activation 

associated with nonsymbolic numerical magnitudes and were practically 

indistinguishable from the patterns of activation associated with the non-numerical 

magnitude, physical size.  Therefore, the results from chapter 3 suggest the system used 

to process symbolic numerical magnitudes are quite distinct from the system that is used 

to process nonsymbolic numerical magnitudes in human adults. Additionally, these 

results provide evidence in support of the idea that the evolutionarily ancient system used 

to process nonsymbolic numerical magnitudes may be a general magnitude processing 

system rather than a specific abstract number processing system (For other research 

supporting the idea that numbers are processed using a general magnitude system see: 

Cantlon, Platt, et al., 2009; Cohen Kadosh et al., 2008; Sokolowski, Fias, Bosah Ononye, 

et al., 2017; Walsh, 2003). 

In summary, the results from chapter 2, revealed overlapping and distinct regions of 

activation for symbolic and nonsymbolic numerical magnitude processing when 

extracting regularities across a large set of attentional task demands.  However, using a 

paradigm that removed confounds associated with active task demands (i.e., chapter 3) 

revealed that symbolic and nonsymbolic numerical magnitude processing may be even 

more distinct than previously assumed.  These findings challenge the longstanding belief 

that the culturally acquired ability to conceptualize symbolic numbers is rooted in an 

evolutionarily ancient system that evolved to support nonsymbolic numerical magnitude 

processing. Moreover, these data revealed that the system used to process nonsymbolic 

numerical magnitudes may actually be a general magnitude processing system used to 

process nonsymbolic numerical magnitudes and non-numerical magnitudes.  
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6.2 Attentional Conditions Affect the Processing of 
Symbolic and Nonsymbolic Numerical Magnitudes 

Although the two methodologies reported in chapter 2 and chapter 3 are useful for 

developing our understanding of the way the human brain represents symbolic and 

nonsymbolic numerical magnitudes across multiple methodologies, and in the absence of 

task demands, they do not identify how different attentional conditions affect symbolic 

and nonsymbolic numerical magnitude processing.  Key findings from research exploring 

symbolic and nonsymbolic numerical magnitude processing reveal that although both 

symbolic and nonsymbolic magnitudes can be processed automatically, whether or not 

they are processed automatically depends upon their relevance to the task at hand 

(Furman & Rubinsten, 2012; Naparstek & Henik, 2010, 2012; Naparstek et al., 2015; 

Pansky & Algom, 2002). In other words, the degree to which a task requires a participant 

to attend to a symbolic and a nonsymbolic numerical magnitude affects the processing of 

the stimuli. In Chapter 4 of the current thesis, I explore the degree to which symbolic 

compared to nonsymbolic numerical magnitude processing is influenced by attentional 

demands of the task.  

In chapter 4, I developed and used a Stroop-like paradigm to assesses the effortful and the 

automatic processing of symbolic numerical magnitudes compared to nonsymbolic 

numerical magnitudes.  In this paradigm, participants (NStudy1 = 80, NStudy2 = 63) 

compared adjacent arrays of number symbols (e.g., 4444 vs 333). Participants were 

instructed to indicate which side contained either the greater quantity of symbols 

(nonsymbolic task) or the numerically larger symbol (symbolic task). This manipulation 

allowed for both symbolic and nonsymbolic numerical magnitudes to act as the relevant 

dimension and the irrelevant dimension.  The aspect of the stimulus that the participant 

was instructed to focus on was considered the relevant dimension and was used to assess 

effortful processing, whereas the aspect of the stimulus that participant could ignore 

when making the comparison was referred to as the irrelevant dimension and was used as 

a measure of automatic processing. Results revealed that the effortful processing of 

symbolic numerical magnitudes is more efficient (i.e., faster and more accurate) and less 

affected by numerical distance than the effortful processing of nonsymbolic numerical 



214 

 

magnitudes.  These results converge with findings from previous research that examined 

the effortful processing of symbolic compared to nonsymbolic numerical magnitudes 

using tasks that did not include an irrelevant dimension Holloway & Ansari, 2009; 

Holloway et al., 2010; Lyons & Ansari, 2009; Moyer & Landauer, 1967). Results from 

chapter 4 also provided novel evidence that, as the irrelevant dimension, symbolic and 

nonsymbolic numerical magnitudes both automatically influenced processing, but 

symbolic numerical magnitudes influenced the processing of nonsymbolic numerical 

magnitudes more than nonsymbolic numerical magnitudes influenced the processing of 

symbolic numerical magnitudes. Moreover, numerical distance influenced the automatic 

processing of nonsymbolic numerical magnitudes more than it influenced the processing 

of symbolic numerical magnitudes. Together, these findings indicate that symbolic 

numerical magnitudes are processed more automatically that nonsymbolic numerical 

magnitudes.   

The finding that symbolic and nonsymbolic numerical magnitude processing influence 

each other aligns with the dominant perspective in the field of numerical cognition that 

the same system is used to process symbolic and nonsymbolic numerical magnitudes 

(e.g., Cantlon et al., 2009; Dehaene, 2007; Dehaene et al., 1998; Nieder & Dehaene, 

2009; Piazza et al., 2007).  However, taken together, the results from chapter 4 provide 

strong evidence that the processing of symbolic and nonsymbolic numerical magnitudes 

is asymmetrical.  Indeed, symbolic numerical magnitudes are processed more 

automatically than nonsymbolic numerical magnitudes. This finding could be taken to 

suggest that symbols may not simply be labels for pre-existing representations of 

nonsymbolic numerical magnitudes. Moreover, these data suggest that a representation of 

a nonsymbolic numerical magnitude does not need to be accessed to automatically 

process the semantic meaning of a symbolic numerical magnitude.  In view of this, it 

should be considered that symbols may not be supported by a system that evolved to 

process nonsymbolic numerical magnitudes, but instead, by a superficially similar but 

ultimately distinct system (Lyons & Beilock, 2018; Núñez, 2017).  
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6.3 A Symbolic Number System 

The predominant view in the field of numerical cognition is that symbolic numerical 

magnitudes are processed using the system that evolved to process nonsymbolic 

numerical magnitudes (e.g., Cantlon, 2012; Dehaene, 2007, 2008; Feigenson, 2007; 

Lyons & Ansari, 2009; Nieder & Dehaene, 2009; Piazza, Pinel, Le Bihan, & Dehaene, 

2007).  However, the findings presented in chapter’s 2, 3 and 4 of the current thesis align 

with the growing body of data that indicate that symbolic numerical magnitudes are 

processed using a system that is distinct from the evolutionarily ancient system that is 

thought to support nonsymbolic numerical magnitude processing in the adult human 

brain (e.g., Krajcsi et al., 2016; Lyons et al., 2012, 2014).  In view of this, it has been 

suggested that number symbols constitute a separate system in which the processing of 

symbols can be performed independently from accessing nonsymbolic representations of 

the quantities the symbols represent (Krajcsi, 2017; Krajcsi et al., 2018; Lyons et al., 

2014; Lyons & Beilock, 2018; Núñez, 2017). This idea, that symbols constitute their own 

system and can be conceptualized without accessing representations of associated 

nonsymbolic numerical magnitudes motivations the question: what is the representational 

structure of the symbolic number system? In the following two paragraphs I speculate on 

the representational structure of the symbolic number system. 

A key element of numerical symbols that differentiates them from the nonsymbolic 

numerical magnitudes that the symbols represent is that while nonsymbolic numerical 

magnitudes can only be represented approximately, symbols can and in fact must be 

represented exactly.  Therefore, while nonsymbolic numerical magnitudes may be 

processed using an analogue number system (ANS), in which the representations are 

noisy or approximate (Cantlon, 2012; Dehaene, 2007; Dehaene et al., 1998; Moyer & 

Landauer, 1967) the processing of symbols is likely supported by a different more exact 

system. Broadly, it has been suggested that symbols are understood based on their 

associations with other symbols (For a comprehensive review see, Núñez, 2017).  A 

discrete semantic system (DSS) has been proposed as a potential candidate for a system 

that represents symbolic numbers (Krajcsi et al., 2016).  The DSS operates using a 

network that resembles a conceptual network or mental lexicon.  In the DDS system, 
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symbolic numerical magnitudes are stored within a network with each symbolic 

numerical magnitude acting as a node.  The strength of the connections between the 

nodes (i.e., the symbolic numerical magnitudes) would be proportional to the strength of 

the semantic relations between the numbers, thus producing a distance effect. Recent 

behavioural data assessed whether symbolic and nonsymbolic numerical magnitude 

processing is more likely to be sub-served by a single system or two distinct systems 

(Krajcsi, 2017). Krajcsi and colleagues argued that if nonsymbolic and symbolic 

numerical magnitudes are supported by the same system, the distance and size effects 

should correlate with each other within formats, and the symbolic distance and size 

effects should correlate with the nonsymbolic distance and size effects.  Results revealed 

that while distance and size effects correlate with each other for nonsymbolic numerical 

magnitude processing, the distance and size effects did not correlate with each other for 

symbolic numerical magnitude processing. Moreover, the nonsymbolic effects (distance 

and size) did not correlate with the symbolic effects (Krajcsi, 2017).   In view of this, it is 

more likely that nonsymbolic and symbolic distance effects are sub-served by distinct 

systems.  This data converges with other related research to support the finding that 

nonsymbolic numerical magnitudes are supported by an approximate number system, 

whereas symbolic numerical magnitudes are supported by the DSS (Krajcsi, 2017; 

Krajcsi et al., 2016, 2018; Lyons et al., 2015).  This growing body of research supports 

the idea that a semantic network model may be a better candidate than the evolutionarily 

ancient approximate number system to explain the processing of symbolic numerical 

magnitudes in human adults.  

At the neural level, the representational patterns of activation that underpin symbolic 

numerical magnitude processing is dissimilar to the representational patterns of activation 

that support nonsymbolic numerical magnitude processing (Bulthé et al., 2014; Damarla 

& Just, 2013; Lyons et al., 2014). Indeed, the representational structure of the neural 

activity that supports the processing of nonsymbolic numerical magnitude aligns with 

predictions of representational structures that would arise from nonsymbolic numerical 

magnitude processing being supported by an analogue approximate number system. 

Specifically, the representation patterns of activation associated with the nonsymbolic 

numerical magnitudes relate to each other as a function of ratio (Bulthé et al., 2014; 
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Damarla & Just, 2013; Lyons et al., 2014).  In contrast, the patterns of neural 

representations supporting symbolic numerical magnitude processing do not vary 

systematically as a function of ratio (Bulthé et al., 2014; Damarla & Just, 2013; Lyons et 

al., 2014).  Instead, the representational structure of symbolic numerical magnitude 

processing aligns with a semantic network model in which symbolic numerical 

magnitudes operate like discrete categories that relate to one another based on lexical 

frequency (Lyons & Beilock, 2018).  Although this work is in its infancy, the 

combination of this behavioural and neuroimaging data provides compelling evidence 

that symbolic numerical magnitude processing is supported by a semantic 

representational system rather than the evolutionarily ancient approximate number 

system that supports nonsymbolic numerical magnitude processing in human adults. The 

findings from the current thesis, that symbols are processed more distinctly from 

nonsymbolic numerical magnitudes both at the neural and behavioural level in adult and 

children lends further support to this account.  

6.4 The Emergence of Symbolic Thinking 

The majority of research reviewed above indicating that symbolic and nonsymbolic 

numerical magnitudes are supported by two distinct systems has been conducted in 

human adults and older children, who have already learned the semantic meaning of 

symbolic numerals.  However, in order to have a comprehensive understanding of the 

system that supports the processing of symbolic numerical magnitudes, it is necessary to 

explore how children acquire an understanding of the semantic meaning of these arbitrary 

symbols. Indeed, this question of how children acquire the semantic meaning of a symbol 

(such as a number word), often referred to as the “symbol-grounding problem,” is a key 

problem within the field of numerical cognition (Leibovich & Ansari, 2016), and 

cognition more broadly (Coolidge & Overmann, 2012; Harnad, 1990). 

Based on the dominant theory in the field of numerical cognition (Dehaene et al., 1998; 

Dehaene, 2007; Cantlon, 2012), that an evolutionarily ancient approximate number 

system supports the processing of both symbolic and nonsymbolic numerical magnitudes, 

it has been predicted that children learn the meaning of symbolic numerical magnitudes 

by mapping an arbitrary symbolic label onto the pre-existing representation supporting 
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the corresponding nonsymbolic numerical magnitude (For review see: Leibovich and 

Ansari, 2016). However, the growing body of evidence, including from chapters 2-4 of 

this thesis, reveal that symbolic and nonsymbolic numerical magnitudes are likely 

supported by distinct systems suggests that the acquisition of symbolic number 

processing may not be a straightforward mapping of symbols onto pre-existing 

representations.  

Indeed, based on the finding that symbolic and nonsymbolic numerical magnitudes are 

supported with distinct systems, it is conceivable that the acquisition of the semantic 

meaning of symbolic numerical magnitudes actually constrains the pre-existing 

representations that support nonsymbolic numerical magnitudes (Barner, 2017; Merkley 

& Ansari, 2016). More specifically, it can be hypothesized the process of learning the 

semantic meanings of number words influences how salient the property of quantity is to 

a child when interacting with a nonsymbolic numerical magnitude (Barner, 2017; 

Merkley & Ansari, 2016).  In other words, learning the semantic meaning of number 

words may direct children’s attention toward discrete quantities as a relevant dimension 

to attend to when examining and interacting with a set of objects that contains a variety of 

other non-numerical dimensions, such as non-numerical magnitudes, colours, and object 

types (Merkley, Scerif, & Ansari, 2017; Mix, Levine, & Newcombe, 2016).  Taking a 

developmental approach to explore how acquiring knowledge of symbolic numerical 

magnitudes relates to the processing of nonsymbolic numerical magnitudes is a key 

avenue to enhance our understanding of how humans process symbolic and nonsymbolic 

numerical magnitudes across developmental time. 

Consequently, in chapter 5 of the current thesis, I used a developmental approach to 

explore whether the acquisition of verbal number words relates to the degree to which 

children spontaneously attend to nonsymbolic numerical magnitudes in the world. 

Specifically, I developed and used a matching task called, “The Train Task,” to measure 

whether children spontaneously used a number strategy or physical size strategy to build 

a train that “matched” a train built by an experimenter.  During this task, an experimenter 

built a train using five or fewer blocks using sets of blocks where the length of the child’s 

blocks differed from the length of the experimenter’s blocks. The experimenter then said 
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to the child “make your train the same as mine”. Results revealed that for small numbers 

(i.e., train’s that were made of two and three blocks) preschool-aged children used a 

number strategy on trials for which they knew the verbal number word that corresponded 

to the number of blocks that made up the train.  However, children used a size strategy 

more than a number strategy on trials with five blocks, regardless of verbal number 

knowledge.  These data indicate that verbal number word knowledge relates to the degree 

to which preschool-aged children attend to nonsymbolic numerical magnitudes, 

specifically for small numbers. Together, this suggests that when children learn the 

semantic meaning symbolic numerical magnitudes, it changes the way that they attend to 

small nonsymbolic numerical magnitudes in the world.  

This finding from chapter 5, that children’s performance on a nonsymbolic numerical 

magnitude matching task is be limited by their knowledge of the meaning of number 

words provides support for developmental theories (Barner, 2017; Merkley & Ansari, 

2016; Mussolin, Nys, Leybaert, et al., 2014) suggesting that learning the semantic 

meaning of symbols might affect the processing of nonsymbolic numerical magnitudes.  

Moreover, while this data cannot speak to whether children can conceptualize 

nonsymbolic numerical magnitudes prior to acquiring knowledge of symbolic numerical 

magnitudes, it certainly suggests that children who do not have knowledge of symbolic 

numerals do not spontaneously attend to nonsymbolic numerical magnitudes. In 

summary, the findings from this study relate to previous research in the field to support 

the idea that the evolutionarily ancient capacity to process nonsymbolic numerical 

magnitudes and the culturally acquired capacity to process symbolic numerical 

magnitudes are related across development (For review see: Mussolin et al., 2014).  

However, the findings from the current study also provide novel evidence for the less 

explored idea that learning the semantic meaning of symbolic numerical magnitudes, 

(i.e., forming a symbolic number system) may actually refine approximate 

representations of nonsymbolic numerical magnitudes.  

6.5 Implications 

Together, the four studies reported in this thesis provide novel insights into the 

relationship between symbolic and nonsymbolic numerical magnitudes in both children 
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and adults.  Several of the studies in this thesis identify how this relationship between 

symbolic and nonsymbolic numerical magnitudes can be influenced by an attentional 

state.  The key finding from the data presented in the current thesis is that the way 

humans process symbolic numerical magnitudes is quite distinct from the way humans 

process nonsymbolic numerical magnitudes.  Specifically, the behavioural and neural 

signatures associated with processing symbolic numerical magnitudes diverge from those 

that are associated with the processing of nonsymbolic magnitudes across methodologies, 

attentional conditions, and developmental periods.  These findings, namely that the 

culturally acquired symbolic number system is more distinct from the evolutionarily 

ancient nonsymbolic numerical magnitude system than previously assumed has several 

important implications for how to support children’s learning of early mathematical 

concepts.  

The dominant assumption in the field, that symbols are learned by mapping arbitrary 

symbolic labels onto pre-existing representations of quantities has led researchers to 

attempt to improve symbolic numerical abilities by training students on nonsymbolic 

numerical magnitude processing (Hyde, Khanum, & Spelke, 2014; Kuhn & Holling, 

2014; Obersteiner, Reiss, & Ufer, 2013; Park & Brannon, 2013; Sasanguie et al., 2013). 

Overall, there is no conclusive evidence that training nonsymbolic numerical magnitude 

processing improves symbolic mathematical competence (For review see: Szűcs & 

Myers, 2017).  The findings reported in the current thesis supporting the idea that 

symbolic and nonsymbolic numerical magnitudes are processed using distinct systems 

help illuminate why these nonsymbolic numerical magnitude training programs do not 

lead to significant improvements in symbolic math.  Indeed, training nonsymbolic 

numerical magnitude processing likely does not lead to improvements in symbolic math 

because the system that is being trained (i.e., the evolutionarily ancient nonsymbolic 

number processing system) is a similar but ultimately separate from the system that 

supports symbolic mathematical thinking (i.e., the symbolic number system).  In view of 

this, it is not surprising that these training studies have resulted in null findings.  

Consequently, the findings from the current thesis can be taken to suggest that efforts to 

train early numerical concepts should be focussed on training the symbolic number 
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system, rather than the system that evolved to process approximate nonsymbolic 

numerical magnitudes.  

Relatedly, a focus of early mathematical learning has been on teaching children the link 

between symbolic and nonsymbolic numerical magnitudes, often referred to as mapping 

(Barth, Starr, & Sullivan, 2009; Huang, Spelke, & Snedeker, 2010; Le Corre & Carey, 

2007; Lipton & Spelke, 2005, 2006; Odic, Le Corre, & Halberda, 2015).  Recent research 

has implicated this ability to map symbols onto nonsymbolic numerical magnitudes as 

being important for later mathematical achievement (Libertus, Odic, Feigenson, & 

Halberda, 2016).  Although mapping for small numbers is likely an important skill for 

children to master at a particular point during development, findings from the current 

thesis imply that the ability to map symbols onto their corresponding nonsymbolic 

numerical magnitudes is a necessary but not a sufficient condition for children to form a 

symbolic number processing system.  In other words, in order for humans to develop a 

system that processes exact symbolic numerical magnitudes, children need to acquire 

knowledge of the structure of the symbolic number system, such as the learning that 

symbolic numerical magnitudes have an order and a lexical frequency, in addition to 

learning the semantic meaning of a symbolic numerical magnitude.  Together, findings 

from the current thesis can be used to inform our understanding of what basic number 

processing abilities must be learned to facilitate a child’s development of a 

comprehensive semantic system that can be used to support the higher-level processing of 

symbolic numerical magnitudes.  

6.6 Limitations and Future Directions 

The limitations associated with each specific study are reported in the discussion sections 

of each individual empirical chapter.  However, in addition to the specific limitations 

discussed in the individual chapters, there are several broad limitations.  In what follows, 

I will present and discuss these broad limitations and outline future directions that arise 

from these limitations, as well as provide future directions that go beyond simply 

addressing limitations.  
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As outlined in the introduction of this thesis, the processing of nonsymbolic numerical 

magnitudes is inherently confounded by non-numerical magnitudes such a physical size 

(For review see: Leibovich and Henik, 2013).  It was not possible to control for non-

numerical magnitudes in the meta-analysis, as this methodology requires using 

previously collected data.  There was a large amount of variability in the degree to which 

the empirical studies included in the meta-analysis controlled for non-numerical 

magnitude processing. However, in the three other empirical chapters presented in the 

current thesis (chapters 3-5), I included controls for the effect of non-numerical 

magnitudes.  In chapter 3 and 5, I included physical size as a variable of interest in order 

examine the neural representations supporting nonsymbolic numerical magnitudes 

(chapter 3) and degree of attention directed toward nonsymbolic numerical magnitudes 

(chapter 5), compared to physical size.  In chapter 4, I included ‘*’s rather than blank 

spaces in the arrays with the goal of ensuring that arrays with more symbols did not take 

up more physical space.  Critically, although I was cognizant of this need to account for 

the effect of non-numerical magnitudes on nonsymbolic numerical magnitude processing 

in some way, and included the optimal control variables whenever possible, there is no 

way to create stimuli where at least one non-numerical magnitude (e.g., size, density, 

convex hull) does not correlate with nonsymbolic numerical magnitude (Leibovich & 

Henik, 2013).  Indeed, the natural correlation between nonsymbolic numerical 

magnitudes and non-numerical magnitudes makes it nearly impossible to study 

nonsymbolic numerical magnitude processing in isolation from non-numerical 

magnitudes.  This tight link between the processing of nonsymbolic numerical 

magnitudes and non-numerical magnitudes is reflected in the findings from the parallel 

adaptation study reported chapter 3, showing that the brain region in the right 

intraparietal sulcus that is associated with nonsymbolic numerical magnitude processing 

is completely overlapping with the region associated with non-numerical magnitude 

processing. Therefore, a key limitation of the current thesis is that the results associated 

with nonsymbolic numerical magnitude processing may be influenced by correlated non-

numerical magnitudes. This interesting inherent limitation with studying nonsymbolic 

numerical magnitude processing leads to an important future direction. Namely, future 

research should not rest upon the assumption that nonsymbolic numerical magnitudes are 
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processed using a specific system that only processes discrete magnitudes.  Instead, 

future research should explore the link between the processing of symbolic numerical 

magnitudes, compared to the processing of nonsymbolic numerical magnitudes as well as 

non-numerical magnitudes.  Additionally, future research should test the role of non-

numerical magnitude processing in the formation of the symbolic number system 

(Leibovich et al., 2017). 

Another limitation associated with the experimental empirical studies included in this 

thesis is that, due to time constraints within the testing sessions, we were unable to 

include trial types that were of interest.  Specifically, in the fMRI adaptation study 

(chapter 3), we were only able to include a single deviant type within each condition.  For 

example, symbolic distance 1 only included the condition where the symbol six became 

the symbol seven.  This is because within a habituation paradigm each deviant trial must 

be preceded by five to nine habituation trials.  Including a small and large change of a 

symbolic, nonsymbolic and physical size condition required participants to remain still 

and attentive during a passive viewing task in an fMRI scanner for an hour. For this 

chapter, the decision was made to use fewer than optimal different trial types in order to 

increase the proportion of participants were able to remain still and attentive.  

Additionally, it was important to make this paradigm as concise as possible in order to 

have to option to implement this paradigm in a sample of children in the future. 

Critically, with the included number of trial types, only 45 of the 52 adult participants 

successfully passed the criteria for attention and motion.  Relatedly, in chapter 4, all trials 

included in the study used the same two symbolic and nonsymbolic numerical 

magnitudes within each trial.  For example, in a condition where the symbol was ‘2’ and 

‘4’ the quantities were also two and four either congruently (i.e., two ‘2’s vs. four ‘4’s) or 

incongruently (i.e., two ‘4’s vs. four ‘2’s).  It would have been ideal to include all 

combinations of symbolic and nonsymbolic numerical magnitudes (as has been done with 

the original Numerical Stroop task: Leibovich, Diesendruck, Rubinsten, & Henik, 2013).  

However, as this was the first study to implement a Symbolic-Nonsymbolic Stroop task, I 

included more trial types within conditions, rather than fewer trial types across many 

conditions.  In view of this, I was unable to examine the effect of differentially varying 

the distance of the relevant dimension compared to the irrelevant dimension. In a future 
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study, it would be ideal to compare participant’s speed and accuracy for trials where the 

distance of the relevant condition is different from the distance in the irrelevant condition.  

Finally, in chapter 5, there were many additional conditions that I was interested in 

examining. For example, I could have included conditions where I changed the colours of 

the trains, manipulated the ratio between the experimenter’s block size and the child’s 

block size, built the trains behind a screen, included longer train lengths (beyond five 

cars), and/or adjust the language of the instructions.  However, as the sample of 

participants in this study were between the ages of three and six years, the maximum 

duration that the participants were able to remain attentive was approximately 30 

minutes. Therefore, I chose a single set of conditions that best supported my key research 

questions. Future studies should examine whether verbal number knowledge continues to 

relate to the degree to which young children spontaneously attend to nonsymbolic 

numerical magnitudes under different experimental conditions. 

A final limitation that is specific to the neuroimaging studies is the fact that the vast 

majority of the participants in the meta-analysis (>98%), and all participants in chapter 3 

of the current thesis are right-handed.  Recent research indicated that association between 

the passive processing of symbolic numerical magnitudes and activation in the left 

parietal lobule was significant in a sample of right, but not left-handed individuals 

(Goffin, Sokolowski, Slipenski & Ansari, accepted 2019).  Future research is needed to 

further examine similarities and differences in the neural correlates of symbolic 

compared to nonsymbolic numerical magnitude processing in left-handed compared to 

right-handed individuals. 

There are several additional future directions that are unrelated to the limitations of the 

current chapters. Specifically, the possible co-existence of domain-specific neural 

processes underlying numerical magnitude processing adults (reported in chapters 2-4), 

raises questions about developmental trajectories of the systems underlying basic number 

processing. An important avenue for future research is to conduct follow-up studies 

where children complete the Symbolic-Nonsymbolic Stroop task and the Parallel 

Adaptation task, to study developmental specialization of the symbolic number system. 

More specifically, the paradigms developed for this thesis can be used cross-sectionally 
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and/or longitudinally to examine age-related changes in the systems that support 

symbolic, nonsymbolic and non-numerical magnitudes.   

Moving forward, a fundamental goal for the field of numerical cognition should be to 

understand individual differences in the way children learn symbolic numbers and to use 

this knowledge in pursuit of optimized learning processes across development.  Once we 

as a field have reached a foundational understanding of the basic neuropsychological 

mechanisms supporting symbolic number learning, it will be of critical importance to 

focus on individual differences.  A large body of future research is needed to unravel the 

key question of why learning math is easy for some children and so challenging for 

others. 

6.7 General Conclusion 

In conclusion, the body of research presented above has identified and described the 

behavioural and neural signatures of symbolic compared to nonsymbolic numerical 

magnitude processing.  I identified converging brain activation associated with symbolic 

and nonsymbolic numerical magnitude processing across all previously conducted 

neuroimaging research (chapter 2) and examined the neural correlates of symbolic and 

nonsymbolic numerical magnitude processing in the absence of task demands (chapter 3).  

Additionally, I explored the role of attention on behavioural signatures of symbolic 

compared to nonsymbolic numerical magnitude processing in human adults (chapter 4). 

Finally, I investigated how learning symbolic numerical magnitudes relates to attending 

to nonsymbolic numerical magnitudes in young children (chapter 5).  

Studying the neurobiology of numeral magnitude processing is necessary to elevate our 

understanding of how culturally-mediated information interacts with and potentially even 

shapes biologically endowed systems in the human brain. This enhanced understanding 

of the neuropsychological foundation that supports the uniquely human capacity for 

symbolic thinking could simultaneously inform and inspire critical developments to math 

education practices and policy and illuminate the multifaceted and dynamic interplay 

underlying the uniquely human capacity for complex learning. 
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