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Summary 
We live in an age with a constant demand for more out of less. For example, the growing use 

of digital electronic devices has fostered an expectation of perpetually faster, higher 

performing yet smaller device components. With growing concern for the environment, 

consumers expect green vehicles that can travel farther on less or alternative fuel than older 

models. While these tasks are daunting, scientists have discovered materials that show 

promise in accomplishing them. These materials are called ceramics. Ceramics can be 

composed of elements spanning the periodic table and can occur in many different forms. 

Some ceramics can be easily synthesized, while others can be difficult to access, especially in 

the context of using them in applications which have specific requirements. The research in 

this dissertation is targeted towards developing general methods for making ceramics. The 

work is based in using specialized plastic as a precursor. Throughout the thesis different 

types of plastic, with different chemical functionality, are explored for their ability to be 

functionalized with a diverse range of elements. Interestingly, if the element-containing 

plastic is pyrolyzed, it will leave an imprint of itself in the form of element-containing 

ceramic. While this research is targeted towards improving the production of useful ceramics, 

the focus in this early stage of the work is on understanding the fundamental structure and 

bonding in the new element-containing plastic and ultimately the effects that they have on the 

resulting ceramic materials. 

 Technical Abstract 
In light of the above discussion, photopolymer networks with phosphonium cation, alkyl 

phosphine and olefin functionality were designed, synthesized and functionalized with metals 

by metathesis, coordination and hydrometallation reactions, respectively. The materials were 

strategically designed so that the metal functionalization step could be monitored and 

quantified. In some cases, this involved characterization by IR, NMR, or X-ray spectroscopic 

techniques, or by comparison to molecular analogues. It was found that by using a bi-

functional photopolymer network, the material could be bi-metallized by orthogonal 

mechanisms. All metallized polymer networks were tested for their suitability as precursors 

to metal-containing ceramics. The polymers were pyrolyzed, and on analysis it was found 
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that this methodology mostly favors metal oxides, but metal phosphates and phosphides can 

also be achieved. Further findings showed that tuning the amount of metal in the polymer 

precursor has the effect of controlling the amount of metal in the ceramics after pyrolysis. 

Selected polymer networks were patterned before being metallized and pyrolyzed and this 

was found to be an effective way of forming patterned ceramics.  
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Chapter 1  

1 Introduction 

1.1 Synthetic Plastic: Applications from Fundamental 

Understanding 

From cooking breakfast in the morning to calling a friend on the phone, plastic – ever since its 

commercialization during World War II – has found a way to embed itself into every aspect of our 

lives.1 Its use has been an economic solution in preserving food, improving safety and is central to 

modern medicine, amongst many other application outlets .1 The problem is that when plastic is 

discarded at the end of its life cycle, it ends up in the environment, where the majority does not break 

down. With plastic islands and microplastics building up in our oceans and lakes, this has become a 

global issue in material science, supply chain, culture, public policy and psychology.2,3 The work of the 

material scientist is to understand as much as possible about plastic, from finding better, more 

sustainable ways of creating it, to how to deal with the plastic that we already have.3–5 Past innovations 

in the area have always come from understanding the fundamental aspects of structure and bonding in 

the material. With this in mind, it is important to continue exploratory research in the area as it can lead 

to new, unprecedented understanding and opportunities.6 

1.2 Polymer Synthesis 

All plastics are polymers which are macromolecules composed of repeating units of the same chemical 

composition and structure. They can be synthesized by condensation or addition reactions of one or 

more monomers, which will ultimately make up the backbone of the polymer by anionic, cationic, olefin 

metathesis or radical mechanisms.  

The most widely used method for creating polymers industrially is via free radical 

polymerization (FRP), which involves the catenation of the unsaturated units in olefins. FRP is typically 

classified as a chain growth polymerization, where there are three key reactions that occur in the 

transformation of monomer to polymer. These are initiation, propagation and termination. As outlined in 

Scheme 1.1, FRP begins with the thermal or photochemical cleavage of a radical initiator, which goes 

on to react with the monomer. This radical addition to monomers continues throughout the propagation 

step and allows the polymer chains to grow. As the concentration of monomer decreases, termination 

reactions become more likely than continued propagation. Termination can either arise from radical 

chains reacting with each other in combination or disproportionation reactions, or from radical chains 
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reacting with solvent or impurities. The process of combination versus disproportionation results in 

polymer chains with vastly different molecular weights. While these termination steps become more 

likely as the concentration of monomer decreases, that does not mean they do not occur earlier on in the 

reaction. The polymer chains can be terminated at different times and in different ways, resulting in a 

broad distribution of molecular weights.1  

 

Scheme 1.1: Initiation using azobisisobutyronitrile (AIBN) as an example initiator, propagation and 
termination steps in FRP. 
 

Polymers with narrow molecular weight distributions are desired for applications that require 

well-defined physical properties, and so polymer chemists sought to develop methods of mitigating 

undesired termination reactions to create what is known as living or controlled radical polymerization 

(CRP).1 There are several methods of CRP that have been develop since the mid-1980s which include, 

nitroxide mediated polymerization (NMP), organometallic mediated radical polymerization (OMRP), 

atom transfer radical polymerization (ATRP) and reversible addition fragmentation chain transfer 

(RAFT) polymerization (Scheme 1.2). While these all involve unique reagents and mechanisms, the 
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general idea of CRP is to decrease the  concentration of propagating polymer chains by reversibly 

quenching them in order to mitigate termination steps.7 An advantage of the living polymer chain ends 

is that they can be used to later continue the polymerization with a different monomer to make a block-

copolymer. These methods have proven effective and have allowed polymers to enter the arena of 

synthetic precision that was previously reserved for molecular species.8  

 

Scheme 1.2: Steps and mechanisms in RAFT polymerization featuring reversible reactivity of the 
growing polymer chains with the thiocarbonyl RAFT agent to create a dormant species. I ≡ radical 
initiator; M ≡ olefin monomer; Pn and Pm ≡ growing polymer chains.9 Radical propagation is denoted by 
the circular fishhook arrow. 

1.2.1 Photopolymerization 

Chemists originally pursued photochemical approaches to polymer synthesis in search of a method to 

perform polymerizations at ambient temperature.10 Photopolymers can be synthesized by cationic, 

anionic, FRP and CRP mechanisms.11,12 Using light as the polymerization stimulus adds the potential 

for spatial control which can be leveraged in selective surface chemistry by masking techniques and 3D 

printing.10,13–16  
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Polymers can be synthesized photochemically by irradiating a combination of monomers and 

light-absorbing compounds called photoinitiators. There are cationic, anionic and radical photoinitiators 

and amongst them, they can absorb in the UV, visible or near IR range. There are even some that absorb 

specific wavelengths and provide selectivity over product formation.10,11 Of the UV-absorbing initiators, 

there are Type I initiators, which cleave to generate radicals that initiate polymerization, and Type II 

initiators, which consist of electron and proton transfer between a light-absorbing molecule and a co-

initiating species to generate radicals (Scheme 1.3).11 

 

Scheme 1.3: Examples of Type I and Type II photoinitiation mechanisms. Top: radical cleavage of 2,2-
dimethoxy-2-phenylacetophenone (DMPA); bottom: photo-induced electron and proton transfer 
between benzophenone and a tertiary amine.11  
 

On irradiation of the photoinitiator, an electron is promoted from a filled bonding molecular 

orbital (MO) to an unfilled antibonding MO in a process called photoexcitation. From the excited state, 

the electron can relax back down to the ground state through internal conversion and fluorescence 

processes or can undergo intersystem crossing from the S1 to the T1 excited state. From the long-lived 

T1 state, the electron can relax to the ground state by phosphorescence, or the molecule can dissociate 

into radicals that can be used to initiate polymerization (Figure 1.1).17 
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Figure 1.1: A: Jablonski diagram; B: diagram depicting the photophysical and chemical pathways a 
molecule can undergo from the excited state. I ≡ radical initiator; M ≡ olefin monomer; Pn ≡ growing 
polymer chains.10,17 

1.2.2 Polymer Networks 

Monomers can have more than one polymerizable functional group. While those that have one 

polymerizable group can form linear polymers, monomers with higher functionality can be used to 

prepare branched, or crosslinked polymer networks, where polymer chains are covalently connected to 

each other by bridging chains in 3-dimensions (Scheme 1.4). The degree of crosslinking can be 

controlled by the degree of functionality in the monomer, or by co-polymerizing monomers of different 

functionality. Crosslinking can be used to increase the rigidity of a polymer and often has the effect of 
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decreasing its solubility.1 Although polymer networks are generally insoluble, some of them have an 

ability to be swelled by solvent, which makes them susceptible to solution-like chemistry and 

characterization.18–24 

 

Scheme 1.4: Crosslinking using examples of di- and tri-functional acrylates. M ≡ olefin monomer; P ≡ 
polymer chains. 

1.2.3 Shaping of Photopolymer Networks 

The most general photopolymer network formulation must contain a multifunctional monomer and a 

photoinitiator. The reaction can be performed neat, or in the presence of solvent, and can consist of 

other additives, all of which will influence the properties of the resulting photopolymer network. The 

most common photopolymer formulations are acrylate-based and follow a FRP mechanism, but other 

systems are also known.25 Because light is used as the reaction stimulus, photopolymer networks can be 

physically shaped at any step along the preparative pathway (Scheme 1.5).  

The first option for shaping is by casting the liquid formulation into a mold or thin film, by conveyor 

or spin coating techniques. The liquid easily takes on the shape of the mold and forms a solid in place 

after being irradiated. A common application of this technique is in dental fillings, where the use of 

photopolymer networks have nearly completely replaced amalgam fillings.25,26 Due to the fast curing 

time, photopolymerization can be integrated at the industrial scale to make polymer networks in roll-to-

roll production methods, such as in the coating of optical fiber at a rate of 1524 m/min.25,27 
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Photomasking techniques can be used to cover the formulation during irradiation to selectively form 

photopolymers on a surface.28,29 With recent advances in photolithography, this can be accomplished on 

millimeter to nano-length scales.30–33 Finally, the solid material can be shaped by selectively degrading 

the solid product using techniques such as electron beam lithography (EBL), which has proven to be a 

useful method in creating prototypes in the information technology (IT) industry.34 

 

Scheme 1.5: General preparation of a photopolymer network showing options to shape the material 
along the different synthetic steps.28,35 

1.2.4 Photo-Click Networks  

Click reactions are those that are highly selective, quantitative, inert towards other functional groups, do 

not produce by-products and can be done under mild conditions.36 The term was coined by Sharpless 

and coworkers in 2001, but the first reported click reaction was the cycloaddition between dienes and 

dienophiles discovered in 1928 by Otto Diels and Kirk Alder (Figure 1.2). A variety of cycloadditions 

are classified as click reactions, of particular note is the alkyne azide click reaction of strained alkynes 

which can be performed photochemically with no catalyst (Figure 1.2). Click chemistry is not exclusive 

to cycloadditions, for example, the radical photochemical initiation of thiol-ene and thiol-yne reactions 

also fall under the umbrella of click chemistry.37 These reactions involve the addition of an S-H 

functionality across an alkene or alkyne to make thioether linkages (Figure 1.2). Analogous chemistry 
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can be achieved by adding P-H functionality across olefins to generate alkyl phosphine environments. In 

the presence of a radical initiator, hydrogen abstraction from either the thiol or phosphine results in thiyl 

and phosphinyl radicals, which react with the olefin to give an alkyl radical; these subsequently abstract 

a hydrogen from a thiol or phosphine and can therefore propagate (Figure 1.2).38 These kinds of 

reactions have been used to click functional units to nanoparticles in biomolecular labeling and drug 

delivery applications and of course, to make photopolymer networks.38–42 

 

Figure 1.2: Diels-Alder, alkyne-azide, thiol-ene and phosphane-ene mechanisms.38 EDG = electron 
donating group; EWG = electron withdrawing group. 
 

Polymers and polymer networks can be generated by click chemistry. Since click chemistry is 

dependent on the addition of two different functional groups, the required degree of functionality in the 

monomer to make a linear polymer is two, while a functionality of at least three in at least one of the 

monomers is required to make polymer networks (Scheme 1.6). Photopolymer networks formed by the 

thiol-ene reaction have been established for some time, but in 2015 the analogous molecular phosphane-

ene chemistry was applied to form alkyl phosphine based photopolymer networks (Figure 1.2).38,41–43 
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Scheme 1.6: Left: Examples of linear and crosslinking monomers for thiol-ene and phosphane-ene 
chemistry; right: monomer functionality requirements for linear and network photo-click polymers. 

1.3 Functional Polymers 

Functional polymers are those that possess desired physical or chemical properties. These properties are 

dictated by the structure and chemistry of the repeating units. For example, the strength of the C-F 

bonds in polytetrafluoroethylene (PTFE) make it a robust material, while the sterics of the fluorine 

atoms prevent reactivity and solvent interactions with the polymer backbone, making the polymer 

hydrophobic (Scheme 1.7).6 Because of these properties, PTFE has found its way into countless 

applications with some examples in gas filtration, medicine, fishing lines and waterproof apparel.6 

Conjugated polymers are a good example of reactive functional polymers as their flexibility and ability 

to be either oxidized (positively (p)-doped) or reduced (negatively (n)-doped) has made them key 

players in the development of sensors, electrochemical devices, organic photovoltaics, organic light-

emitting diodes, field effect transistors and stretchable electronics (Scheme 1.7).44,45  

 

Scheme 1.7: Chemical and space-filling structures of PTFE.46 Examples of p- and n-doping of 
polythiophene and polyacetylene, respectively.44 
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Polyphosphonium cations are particularly interesting functional polymers, not only for their 

favorable antifouling properties, but also for their potential to be further functionalized by metathesis of 

their labile counterions.47 Polyphosphonium cations can be synthesized from phosphonium salts that are 

functionalized with a polymerizable group such as styrene, or acrylate (Scheme 1.8).48–50 

 

Scheme 1.8: General phosphonium salt monomer synthesis, demonstrating quaternization of a tertiary 
phosphine with a polymerizable group. 

1.3.1 Functional Polymer Networks  

In many applications, it is favorable for functional polymers to be insoluble so that they do not wash 

away. Functional polymer networks are useful in this way because while they are insoluble, they can be 

swelled by solvent, allowing for solution-like chemistry, which can be leveraged to tune the properties 

of the material. For example, matrixes of crosslinked polyferrocenylsilane (PFS) and ordered silica 

spheres have been leveraged in the commercialization of photonic ink. The polymer network can be 

swelled by solvent and undergo redox chemistry, reducing its swellability, resulting in contraction of the 

material. As the polymer matrix changes in size, so does the d-spacing between the opal spheres and the 

perceived colour of the material (Figure 1.3).51  

Although chemically useful, not all functional polymers can be easily crosslinked.52 In order to 

tune the physical properties, the functional polymer can be incorporated in an interpenetrating polymer 

network (IPN). There are two types of IPN, full-IPN (F-IPN), which involves two intertwined polymer 

networks, and semi-IPN (S-IPN), composed of a linear polymer entangled in a network. These materials 

can be synthesized by polymerization of a mixture of monomers that react by orthogonal mechanisms. 

Alternatively, S-IPN can be generated by incorporating a linear polymer into a polymer network 

formulation (Scheme 1.9).53 These methods have been used in making hydrophobic and antibacterial 

surfaces as well as tissue mimetic materials.54–56 
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Figure 1.3: Structure of crosslinked PFS; middle: redox chemistry of the functional ferrocene moieties 
in the polymer and effect of polymer expansion and contraction on d-spacing of the silica spheres.51 

 
When polyphosphonium cations have been incorporated into IPNs, they have shown an ability to 

be further functionalized by metathesis reactions to give metallized polymer networks.57 Of particular 

interest has been an ability to selectively chemically functionalize surfaces of this kind by stamping and 

masking techniques.28,58 As long as the materials are susceptible to solution chemistry, the 

functionalization of polymer networks is mainly governed by the types of functionality they possess. 

For example, thiol-ene and phosphane-ene polymers contain thioether and alkyl phosphine 

functionality, respectively, which can potentially be leveraged in coordination reactions.59 
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Scheme 1.9: General synthesis of F-IPN and S-IPN. 

1.4 Metal-Containing Polymers & Polymer Derived Ceramics 

Metallopolymers are structurally diverse and have found a role in numerous applications,60,61 one in 

particular is their role as precursors to prepare polymer-derived ceramics.62–65 Metal-containing 

ceramics have recently been investigated for a vast array of applications in the fields of 

electrochemistry, electrocatalysis and IT. In a quest to lower the carbon footprint of vehicles, chemists 

are striving to improve battery performance and develop efficient fuel cells for the clean generation of 

hydrogen as an alternative to fossil fuels.66–68 Meanwhile, with the faltering of Moore’s law, IT 

engineers are looking to room temperature ferromagnetic semiconductors that can be used to innovate 

the industry.69–73 Different types of metal-containing ceramics can be found at the forefront of the above 

innovations and metal-containing polymers can be a convenient way of accessing them.  

1.4.1 The Rise of Electric Vehicles 

There are currently many initiatives towards clean and cheap transportation in the form of electric 

vehicles (EV). The green vehicle market has come a long way since the release of the Toyota Prius 

hybrid in 1997 to the new and sleek, fully battery powered 2019 Tesla models. Despite the innovation in 

the field in the past twenty years, there is still room to improve the low power output in cold weather, 

high cost of the current market batteries and overall efficiency of the batteries themselves.  

The alternative to fully battery powered vehicles is to use a clean fuel source such as molecular 

hydrogen (H2). H2 itself is considered a clean fuel because in the context of the hydrogen evolution 

reaction (HER), the only emission is water. However, the two major industrial pathways in the 

formation of H2 – steam methane reforming and coal gasification – use non-renewable resources and 
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produce CO and CO2 as byproducts (Scheme 1.10).74,75 The electrolysis of water is considered a clean 

pathway to H2, but currently only accounts for 4% of industrial production. This accounts for one main 

obstacle that must be overcome in order for H2 to be considered a viable and sustainable fuel. Fuel cells 

that can replace the high emission and energy intensive methods for H2 production must be developed.66 

 

Scheme 1.10: Industrial pathways in H2 production. Both coal gasification and steam methane 
reforming produce CO as a byproduct, which can be used in the water gas shift reaction to produce 
additional H2 and CO2.66,74,75 

 

1.4.2 Ceramics in Batteries 

Li-ion batteries are currently the leaders in the field and are used in commercial electric vehicles that 

can travel 565 km without recharging. The industry is targeting electric vehicles with travel range up to 

800 km, while Li-ion batteries are approaching their performance limit, so new battery technologies 

must be investigated and developed.76  

Despite approaching their performance limit, Li-ion batteries far outpace other types of batteries for 

being the leaders in the field of EVs. Recent work in this area has been focused on improving the 

electric conductivity of LiFePO4 in battery cathodes by doping with other transition metals, which has 

the effect of lowering the calculated energy of the conduction band towards the Fermi level (0.05 – 0.07 

eV lower than LiFePO4; Figure 1.4).67,68 In terms of the anode, both transition metal and main group 

oxides, mixed metal oxides and metal alloys have been investigated as cheaper alternatives to the 

platinum standard.77 
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Figure 1.4: Band structure of LiFePO4 versus transition metal (TM) doped LiFePO4. 
 

Metal air batteries consist of a metal anode and use ambient oxygen as the cathode. The cell is 

constructed so that the anode and electrolyte are encased in an O2-permeable hydrophobic membrane 

(Figure 1.5). Since the oxygen reduction reaction (ORR) is slow, the membrane must be functionalized 

with an electrocatalyst. In order for metal air batteries to be rechargeable, they also need to be able to 

undergo the oxygen evolution reaction (OER) and possess either a bifunctional electrocatalyst, or a 

combination of both ORR and OER electrocatalysts.76 With the incentive of moving away from 

precious metal electrocatalysts, there is an effort to improve the activity of metal oxides and 

carbonaceous materials.76 In metal-air battery applications, the catalytic surface of platinum becomes 

saturated with [OH]- adspecies, which decreases its activity. This has inspired the investigation of 

nonprecious metal materials including manganese oxide and cobalt oxide which have promising 

electrocatalytic activity, while nickel and iron hydroxide have superior electrocatalytic activity to that of 

platinum.76 Mixed metal spinel oxides including CoxMn3-xO4, MnCo2O4, CuxCo3-xO4 and NiCo2O4 as 

well as CuCo2O4 and carbon nanotubes doped with Co3O4 have even shown promise in the bi-functional 

electrocatalysis of both the ORR and OER.76,78–81 

 

Figure 1.5: Diagram of a metal air battery.76 
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1.4.3 Ceramics in Fuel Cells 

Several types of materials have emerged as promising low-cost electrocatalysts for HER.66 Metal 

phosphides have garnered attention in particular because of their hydride and proton acceptor sites on 

the metal and phosphide sites, respectively.66,82–84 From this analogy, phosphides of Fe, Co, Ni, Cu, Mo 

and W have been found to be active HER catalysts.84 The HER activity of metal phosphides can be 

tuned by varying the metal to phosphorus ratio in nickel phosphide. The results show that a higher 

phosphorus content results in higher catalytic activity, but a material with low conductivity and so a 

balance between the two is desired.84 Another way of tuning HER activity is through using mixed metal 

phosphides, which has the effect of reducing the free energy of H2 adsorption to the catalyst surface 

(0.124 eV in Co2P to -0.148 eV in (Co0.4Fe0.6)2P), thus expediting the turnover.85,86 

1.4.4 General Structure and Electronic Requirements 

Despite their desired electrochemical properties, a major drawback of the above-mentioned ceramics in 

the context of batteries or fuel cells is that they lack conductivity. In either field there has been an effort 

to improve the electrochemical activity of these materials by incorporating them into carbon. Carbon 

has the advantage of being conductive, and it is a substrate that can be doped with heteroatoms to 

further enhance the inherent conductivity.66,77,87 A challenge in this field is finding a way to uniformly 

dope the carbon support with the active materials.88 This can be accomplished using different templating 

techniques and recent work in the pyrolysis of metal organic frameworks (MOFs) has been geared 

towards streamlining the process.77,89,90 MOFs possess advantageous characteristics such as high 

porosity and being homogenously functionalized with metals, which manifest in the resulting ceramics 

after pyrolysis. While MOFs provide a streamlined synthetic route to metal doped carbons, scalability 

remains a challenge that makes industrial implementation difficult.91 In this context, metal-

functionalized photopolymer networks may be a reasonable technology to develop as ceramic 

precursors because scalability has already been proven.27 

1.4.5 Patterned Ceramics in Upcoming Technology 

Moore’s law has governed the information technology (IT) industry since 1975 when Gordon Moore, 

cofounder of Intel Corporation, made the prediction. The law, which is more aptly a business model, 

states that the number of transistors in a microchip will double every two years. The IT industry has 

been able to maintain this demand of supplying faster devices but is on the threshold of reaching its 

limit. In a 2015 review, through his own commentary and interviews with industry experts, Mitchell 

Waldrop clearly pinpoints the issues with Moore’s law and the direction the industry is headed. More 
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transistors on a given chip mean detrimental heat buildup, and the electronic behaviour of transistors 

changes for the worse once the space between them reaches the atomic scale. Chip speed reached its 

limit in 2004, and IT engineers were able to meet performance demands by using more chips, but this 

modification is also now approaching its progress limit.69 

In order to continue innovation in the field, IT engineers are considering a move away from 

transistor-based devices toward those based on spintronics. Spintronic materials take advantage of 

different fundamental properties of the electron; charge and spin, respectively. Transistors are 

semiconductor materials that power digital computing by switching electron currents on and off to give 

binary 1’s and 0’s, respectively. Spintronic devices are being developed so that the spin (“up” or 

“down”) of the material can be controlled and harnessed into binary code. There are two main types of 

spintronic materials; the traditional metallic ferromagnetic materials, which are applied to memory 

storage, and those made from ferromagnetic semiconductors, which have the potential to reduce energy 

consumption in transistors and revolutionize the way that they function.70–73 

 

Figure 1.6: Band structures of a metal, semiconductor and half-metal. Half-metals are compounds that 
are selectively conductors to one spin, but insulators or semiconductors towards the opposite spin.92 

 
The search for spintronic semiconductor materials that are ferromagnetic at room temperature is 

ongoing and a broad range of materials are being investigated from organic semiconductors, to half-

metals, to doped ceramics that make use of elements spanning the periodic table (Figure 1.6).93–105 In 

order for these spintronic materials to function in a device, not only do they need to be composed of the 

right material, they must also take on a specific shape. It has been found that nanowires display superior 

spintronic properties to the same bulk materials. The main barrier to research on nanoscale spintronic 

materials has been that it is difficult to fabricate the desired materials into the appropriate shapes on an 

appropriate scale for testing. Further, for doped materials, it is difficult to achieve uniform doping in 
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small scale features.106 Since research on composition of these ferromagnetic semiconductors is ongoing 

and shaping them is a challenge, it would be wise to develop a method that can pattern a wide range of 

materials on nano- to micro-length scales.34,73 

1.4.6 Pyrolysis & shape retention of metal-containing polymers 

Amphiphilic block copolymers have an ability to self-assemble into nano-domains. Combining polymer 

derived ceramics with metallopolymer lithography and block copolymer self assembly has been an 

innovative approach to achieve spacial control on the nano scale.107–113 By pyrolyzing these assemblies, 

organic matter is volatilized, with the metal-containing ceramics occupying the same well-defined 

regions that were predetermined by the block copolymer assembly (Scheme 1.11). This approach to 

patterned metal containing ceramics is underscored by the pyrolysis of a range of different elements 

including main group polymers, PFS and cobalt-containing block copolymers, mainly targeting bit 

patterned media, which is applicable to data storage.111,112,114 

 

Scheme 1.11: Self-assembly of metal-containing ambiphilic block-copolymers and shape retention on 
pyrolysis. The morphology of the self-assembled nano-domains is dependent on the degree of 
incompatibility between the different blocks, the number of repeating units and the molecular weight of 
each block.115  
 

The disadvantage to block copolymer lithography in the context of forming patterned ceramics is 

that it requires precise polymerization techniques that require a skilled hand and the process is difficult 

to scale. While it is possible to synthesize new monomers for polymerization, incorporating elemental 

diversity and density into the polymer also remains a challenge using this method. There are countless 

molecular precursors with well-defined stoichiometric ratios of a wide range of element types, which in 

principle could be leveraged for obtaining precise control over ceramic composition. All that is required 

for post-polymerization functionalization is a mechanism of binding these molecular precursors to the 
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polymer scaffold. Coordination chemistry and ion exchange are the mechanisms that have been 

explored the most (Scheme 1.12).59,63,65,108,109,114,116–118 

 

Scheme 1.12: Recent examples of metal functionalization of polymers by coordination chemistry and 
ion exchange.109,116,118 

 
An underexplored area of metallopolymer chemistry has been metal functionalization of 

photopolymer networks. If polymer networks could be functionalized with inorganic elements, then they 

would be promising candidates to act as high technology ceramic precursors not only because of their 

enrichment with desired inorganic elements, but because of their ability to be shaped.  

1.5 Scope of Thesis 

In light of the above discussion, the work presented in this dissertation targets new methodologies for 

functionalizing photopolymer networks with metals so that they can act as polymer precursors for 

highly sought-after metal containing ceramics. Since these methodologies are in their infancy, the main 

focus of the work is on the synthesis and comprehensive characterization of the polymeric materials. 
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The idea being that control and understanding of the precursor will translate into control over the 

composition of the resulting ceramics.  

In Chapter 2, a phosphonium-functionalized interpenetrating polymer network was functionalized 

with an anionic molybdenum carbonyl complex by metathesis. The native polymer network was cast 

into thin films and patterned on the micron-scale. These patterns were shown to retain their shape after 

functionalization with metal and subsequent pyrolysis (Figure 1.7). 

 

Figure 1.7: Left: confocal microscope image of a patterned phosphonium-functionalized S-IPN thin 
film. Right: Scanning electron micrograph of molybdenum-containing ceramic, showing shape retention 
after metallization and pyrolysis of the original S-IPN. 
 

Chapter 3 features a necessary interlude to molecular chemistry, where XANES spectroscopy is 

used to characterize the electronic structure in donor-acceptor compounds. The reductive 

dehalogenation of a zwitterionic phosphine-supported Ge (II) complex yielded a rare, Ge(I) 1,2-

dication. With 1,2-dications being rare because of the repulsion of the adjacent charges, the root of the 

stability of this compound was investigated by probing the molecular and electronic structures through 

crystallographic, spectroscopic and computational methods. These findings, in particular the 

spectroscopic characterization method, was pivotal for characterizing the donor-acceptor 

macromolecules described in Chapter 4 (Figure 1.8). 

 

Figure 1.8: Artistic depiction of the donor-acceptor interactions observed for the adducts featured in 
Chapter 3. 
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In Chapter 4, crosslinked macromolecular phosphines were functionalized by coordination to 

different metal-containing Lewis acids (Figure 1.9). Not only were the materials found to be useful as 

precursors to shaped metal-containing ceramics, but the polymers were found to have interesting 

physical and electronic properties.  

 

Figure 1.9: Artistic representation of how Sb cations can be used to crosslink phosphane-ene polymer 
networks with the result of altering the physical properties and electronic structure of the material. 
 

In Chapter 5, the abovementioned crosslinked macromolecular phosphine was quaternized with allyl 

bromide. The bi-functional phosphonium cations could be bi-metallized orthogonally by reacting the 

allyl group with a germanium hydride species, and unaffected by this reactivity, the bromide anion 

could be used in an ion complexation reaction with copper bromide (Scheme 1.13). The doubly 

metallized photopolymer network can be pyrolyzed to yield carbon doped with copper and germanium.  

 

Scheme 1.13: Hydrometallation, followed by ion complexation of allyl functionalized phosphonium 
cationic networks. 
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Chapter 2  

2 Patterned Phosphonium-Functionalized Photopolymer Networks 
as Ceramic Precursors 

2.1 Introduction  
Metallopolymers are structurally diverse and have found a role in numerous applications,1 one in 

particular is their role as precursors to prepare polymer-derived ceramics.2–5 Ceramics can have 

magnetic, conductive, or semiconductive properties that are dictated by their chemical architecture, and 

act as components in a vast array of digital electronics. These high technology ceramics (HTC) must 

meet performance minima, but with growing demand for smaller, more compact devices, the ability to 

pattern these materials on smaller and smaller length scales is a key technical challenge. For example, 

bit patterned media and orientation-patterned semiconductors are emerging technologies that rely on the 

long range uniform, nano- and micro-patterning of magnetic and semiconductive materials, 

respectively.6–9 Despite the desire to push these and similar technologies forward, it is challenging to 

simultaneously achieve the desired composition, function and spacial control tolerances required for the 

devices to function. 

In this context, metallopolymers have been a field of interest for their ability to act as ceramic 

precursors where the inorganic elements of the metalloploymer dictate the resulting ceramic 

composition. Introducing the desired elemental composition into these ceramic precursors can be 

achieved by one of two general methods; either by polymerization of a metal-containing monomer, or 

by post-polymerization functionalization of a pre-existing polymer scaffold. To address the second 

requirement of HTC, the precursor must be patterned and retain its shape upon pyrolysis. This challenge 

can be addressed by self-assembly or lithography of the metallopolymer with the desired pre-ceramic 

composition. 10–15  

Combining polymer derived ceramics with metallopolymer lithography10–13 and block copolymer 

self assembly14–16 has been an innovative approach to achieve spatial control on the nano scale. By 

pyrolyzing these assemblies, organic matter is volatilized, with the metal-containing ceramics 

occupying the same well-defined regions that were predetermined by the block copolymer assembly. 

This approach to patterned metal containing ceramics is underscored by the pyrolysis of a range of 

different elements including main group polymers,14 polyferrocenylsilane (PFS)15 and cobalt-

containing17 block copolymers.  

While it is possible to synthesize new monomers for polymerization, incorporating elemental 

diversity and density into the polymer remains a challenge by this method. Further, post-polymerization 
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modification can degrade polymeric material before self-assembly/patterning. There are countless 

molecular precursors with well-defined stoichiometric ratios of a wide range of element types, which in 

principle could be leveraged for obtaining precise control over ceramic composition. All that is required 

for post-polymerization functionalization is a mechanism of binding these molecular precursors to the 

polymer scaffold. Coordination chemistry3,5,11,12,18–20 and ion exchange17,21 are the mechanisms that have 

been explored.  

An underexplored area of metallopolymer chemistry has been metal functionalization of 

photopolymer networks. Photopolymer networks can be synthesized by irradiating a 

crosslinker/photoinitiator mixture to make a crosslinked insoluble polymer network. These networks can 

be physically shaped at any step along the preparative pathway by spin coating the neat formulation, 

masking during irradiation or lithography of the final solid material (Scheme 2.1). If polymer networks 

could be functionalized with inorganic elements, then they would be promising candidates to act as 

HTC precursors because of their ability to be shaped.  

Our research group has recently worked on incorporating phosphonium functionalities into 

photopolymer networks.22–26 We have shown that not only can these networks be physically shaped, but 

they can also be patterned by ion exchange,22 lithography or stamping24 methodologies. While there are 

a handful of photopolymer networks that have been functionalized with metals, they have never been 

used in the context of shaped HTC precursors.  

 

Scheme 2.1: Routes for the preparation and patterning of photopolymer networks. 
 

In this context, we employ a phosphonium-containing semi-interpenetrating polymer network (S-

IPN)27  to act as a scaffold for the assembly of anionic metal complexes.  The S-IPN are insoluble, but 

solvent swellable, and given that the linear phosphonium polymer (2.1) from which the substrates are 
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constructed is a polyelectrolyte with labile chloride counterions, anion exchange is facile.28 We 

demonstrate that phosphonium-containing S-IPN can be prepared by UV-curing methodologies, which 

allows for spatial control of the bulk material. The bulk material can be patterned using electron beam 

lithography (EBL) where the inscribed pattern is retained by the polymer network after ion exchange 

with 2.2Mo and then even after pyrolysis. This is underscored by the preparation of uniformly 

amorphous ceramic material patterned as Sierpinski triangles and “microchips” with features on the 

micron scale (10-6m). These results represent a brand-new application of metallized photopolymer 

networks and a method that has the potential to be applied towards making patterned HTC ceramics 

using photopolymer networks and small molecules/ organometallics or main group compounds. This 

has the potential general method to patterned ceramics that employs simple to prepare, easy to shape, 

UV curable polymer precursors amenable to onwards functionalization after patterning. Results and 

Discussion 

2.2 Results and Discussion 
Polymer networks 2.4P+ and 2.5P+ (Scheme 2.2) consist of a linear homopolymer of phosphonum salt 

repeat units interlaced within a UV-cured network constructed from tetra(ethylene glycol) diacrylate 

(TEGDA) and 2-hydroxyethyl acrylate (HEA), to give a semi-interpenetrating polymer network.29 

Analysis by DSC revealed identical thermal behaviour between phosphonium-containing and 

phosphonium-free networks, indicative of a true semi-interpenetrating polymer network. 23,25  

 

Scheme 2.2: A) Showing the composition of formulation 2.3P+ followed by UV curing to form S-IPN 
networks 2.4P+ and 2.5P+. B) Functionalization with the metallic anion 2.2Mo by ion exchange. C) 
Cartoon S-IPN representation showing the polymer 2.1 is intercalated in the photopolymer network. 
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  This approach for phosphonium immobilization is simple and can be applied to virtually any UV-

curable system while still having access to the anion-exchange capabilities.22 A class of 

bis(phosphino)borate ligands that are anionic at the borate site and remain so once coordinated to a 

metal have been synthesized by Peters and coworkers.30 Benefits of this particular system include tight 

binding of a metal centre because of the bidentate nature of the ligand as well as the increased electron-

donation ability that arises from the anionic borate in the ligand backbone.30 Using the phosphonium S-

IPN as a platform for ion exchange, the bis(phosphino)borate ligand can be used as an anionic shuttle to 

bring different inorganic elements onto the polymeric support (e.g. 2.2Mo; Scheme 2.2).  

2.2.1 S-IPN Optimization and Characterization 
Polymer 2.1 was dissolved in a UV-curable formulation to make a freestanding semi-interpenetrating 

polymer network (2.4P+). The amount of 2.1 dissolved in the formulation was optimized so that 

delamination from the substrate did not occur during UV curing, anion exchange with 2.2Mo or 

pyrolysis. Formulations with 9.1 weight % of 2.1 was the optimal phosphonium content in this regard, 

however these formulations did not yield Mo-containing ceramics upon pyrolysis.  The optimized 

formulation of 38.4:38.4-weight % mixture of TEGDA, and HEA, an additive with 0.1 weight % 

photoinitiator, DMPA with the remainder being compound 2.1 (23.1 wt. %), yielded Mo-containing 

ceramics after pyrolysis. Formulations with the content of 2.1 greater than this easily delaminated and 

subsequent pyrolysis experiments were not successful in generating Mo-containing materials. 

 

Figure 2.1: Side and top view of the inert atmosphere curing cell. 
 

Networks 2.4C and 2.4P+ were prepared by sandwiching the UV-curable formulation (2.3C and 

2.3P+, respectively) between two glass slides followed by UV curing (Figure 2.8). Films 2.5P+ were 

prepared by spin coating 2.3P+ onto Si wafers, loaded into a UV curing cell, purged with N2 for 20 

seconds and cured (Figure 2.1). 2.4P+ was used for the bulk characterization of the S-IPN network, 

while 2.4C was used as a control (Scheme 2.3). Network 2.5P+ was used as a thin film platform to make 

patterned ceramic precursors.  
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Scheme 2.3: Photopolymerization of TEGDA and HEA using DMPA as a photoinitiator to make a 
crosslinked polymer network for use as a control against the S-IPN while testing for physical properties. 
 

While polymer networks can be swelled in a solvent thus promoting anion exchange within the 

bulk material, a drawback is that while this promotes anion exchange, small amounts of 2.1 can 

simultaneously leach out. Therefore, the swellability and degree of polymer leaching were assessed first.  

A THF solution of 2.2Mo was used for ion exchange, followed by workup of the functionalized 

film with water, then ethanol.  All three solvents promoted swelling of the network, which is necessary 

for uniform ion exchange and workup throughout the bulk film (Table 2.1). After swelling 2.4P+ in THF 

the Cl- test of the supernatant using AgNO3(aq) was negative, congruous with the fact that 2.1 is insoluble 

in THF. However, both the water and ethanol supernatants from 2.4P+ swelling experiments yielded a 

small amount of white precipitate, indicative of small amounts of 2.1 leaching from the bulk. Identical 

experiments performed on the control sample, 2.4C resulted in clear, colourless solutions.  

After swelling in each solvent, the films were vacuum dried, weighed and gel content was 

determined. Similar gel content values were obtained for 2.4C and 2.4P+ underscoring that 2.1 does not 

leach from the network in THF. 2.4P+ networks swelled in water or ethanol showed gel contents 6.8% 

and 8.5% lower than those for 2.4C, respectively. Nevertheless, this did not impose a negative impact 

on the formation of Mo-containing ceramics.  

 

Table 2.1: Mean Swell % and Gel Content % data for 2.4C and 2.4P+ in THF, H2O and ethanol. 
Solvent Sample Swell % Gel Content % 

THF 2.4C 19.86 ± 0.74 80.07 ± 0.09 
2.4P+ 19.37 ± 0.23 81.26 ± 0.17 

H2O 2.4C 24.76 ± 0.53 76.69 ± 0.20 
2.4P+ 36.53 ± 1.11 69.84 ± 0.42 

Ethanol 2.4C 19.69 ± 0.40 79.59 ± 0.15 
2.4P+ 32.22 ± 1.13 71.07 ± 0.62 
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2.2.2 Calibration 
While the ratio of Mo:P in the ion exchanged polymer networks (2.5Mo) were ultimately quantified by 

EDX, it was necessary to devise an efficient method to approximate the conversion of the anion 

exchange process with 2.2Mo. Given that 2.2Mo contains a carbonyl ligand, this functional group offers 

a convenient spectroscopic handle (IR), one that is already utilized to characterize cure percentage for 

the polymer networks. By dissolving different known amounts of 2.2Mo into 2.3P+ to form solutions of 

2.6Mo and recording the IR spectrum, a calibration curve of the ratio of 2.3P+ vs. concentration could 

be plotted (Figure 2.2). For simplicity, the concentration of 2.2Mo dissolved in 2.6Mo was converted to 

% conversion for the ion exchange reaction of 2.2Mo into 2.3P+.  

 A ratio of peak heights from the trans-carbonyl signal of 2.2Mo (2003 cm-1) versus the acrylate 

carbonyl signal (1724 cm-1) can be determined (Ratio 1). These signals were well-resolved and a 

calibration curve was generated by varying the concentration of 2.2Mo and the acrylate signal as an 

internal standard. 

2.2.3 Ion Exchange 

The initial IR spectrum collected immediately after ion exchange reveals a large excess of 2.2Mo.  The 

films were rinsed with water to selectively remove LiCl and excess 2.2Mo was washed away with 

ethanol, restoring film transparency. It is important to remove LiCl first in order to avoid reversing the 

salt metathesis.  

 

Figure 2.2: ATR-IR spectrum of 2.5Mo. % conversion was calculated to be 71% by using the peak 
intensities at νMo(CO) (orange) and ν(acrylate)C=O (blue) in Ratio 1 and the calibration curve equation from 
the SI. 



 

 33 

The results show a large drop in 2.2Mo concentration after the first ethanol wash, followed by a 

steady decline and ultimate leveling of 2.2Mo content after six washes (Figure 2.3). This work up 

procedure was applied to 2.5P+ exchanged with 2.2Mo, and revealed an ion exchange conversion of 

71% (Figure 2.2). For this exchange amount, the ratio of Mo:P in 2.5Mo should be 1:3.4. Network 

2.5Mo was analyzed by EDX spectroscopy, revealing a ratio of 1:5 for Mo:P and although this is not an 

exact match from the IR calibration curve, the method gives a close approximation for the degree of 

exchange. 

 

Figure 2.3: Conversion % data from the workup of 2.4Mo, “leveling out” is denoted by the orange 
dotted line. Network 2.4Mo before and after rinsing are pictured on the left and right, respectively. 

2.2.4 Ceramic Composition 
Network 2.5Mo was pyrolyzed at different temperatures and for different time durations and the atomic 

% data is outlined in Table 2.2. The composition did not yield the ratio of Mo:P that was present in 

parent films, it is clear from the data that at higher temperatures, the P content was much lower.  In 

order to rule out air oxidation, after pyrolysis the samples were sealed in the pyrolysis tube under N2, 

then subjected to analysis. There was no significant difference between the samples stored in the 

atmosphere or under N2, thus O arising from the network itself is the likely source.  

The EDX data shows that all of the ceramics contain more Mo than P and point to the presence 

of P-doped molybdenum oxide (Table 2.2). The missing P can be attributed to the fact that phosphorus 
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is oxophilic and acrylates are O-rich molecules and we hypothesize that at these elevated temperatures 

P4O10 is being generated (b.p. = 360 °C) and expelled during heating.  Similarly, it is likely that the 

acrylates are also the source of O in the resulting molybdenum oxide. 

Table 2.2: Atomic ratios of C, O, P and Mo acquired by EDX spectroscopy for ceramics formed at 
different temperatures and times. * = not detected. 

Time (h) Temp. (°C) Atomic Ratio (C:O:P:Mo) 
Elements 

C O P Mo 
3 800 61.0 33.7 3.5 1.8 

900 61.7 35.6 1.9 0.8 
1000 6.4 90.1 0.9 2.6 

4 800 19.8 71.1 7.4 1.7 
900 14.5 82.9 1.0 1.6 
1000 * 89.2 3.2 7.6 

 

The formation of P4O10 is corroborated by the XPS data, which revealed the oxidation states of P 

in the ceramics formed at different temperatures. The XPS data showed the presence of phosphate in the 

samples, which supports our above hypothesis as P4O10 reacts with water in air to form phosphoric acid, 

thus explaining the presence of the phosphate edge in the XPS data. It seems that at the elevated 

temperature of 1000 °C and in the presence of H2, the phosphate (P(V)) was reduced to phosphide (P3-) 

and therefore, these ceramics are best described as phosphide doped molybdenum oxide.  

 

Figure 2.4: Distribution of oxidation states of Mo for different pyrolysis temperatures and times 
determined by XPS. 
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The ceramics formed at 800 and 900 °C for 3 hours are relatively carbon rich, but there is a stark 

decrease in the carbon content when either the temperature is elevated to 1000 °C, or the pyrolysis time 

is increased to 4 hours. No carbon was detected in the sample that was pyrolyzed at 1000 °C for 4 hours 

(Table 2.2).  

The XPS results revealed that the ceramics are composed of a mixture of Mo(0), IV, V and VI, 

which is an established phenomenon for molybdenum oxide (Figure 2.4).31,32 It appears that while the 

reducing conditions at elevated temperatures are beneficial in removing unwanted carbon and reducing 

phosphate in favour of phosphide, it can also have the detrimental effect of decomposing the metal-

containing ceramic through the loss of H2O and CH4. 

The PXRD data is consistent with the composition and oxidation state data extracted from EDX 

and XPS and points to a mixture of amorphous materials in all ceramics. Those formed at 800 and 900 

°C for 4 hours and 1000 °C for 3 hours all show evidence for MoO3 and Mo(PO3)3, which accounts for 

the phosphate edge in the XPS.33,34 Ceramics formed at 1000°C for 3 hours also show that there is a 

mixture of phosphate and phosphide with the presence of the Mo-rich phosphide, Mo3P,35 while those 

held at 1000 °C for 4 hours show no phosphate, yet a mixture of Mo3P with MoO3. Only ceramics 

formed at 800 °C for 4 hours showed the presence of any Mo2C,36 likely due to the relatively high 

concentration of carbon in those samples, which was observed using EDX. All ceramics formed at 900 

°C or higher showed evidence for Mo metal (Figure 2.4).37  

2.2.5 Ceramic Morphology:  
In order to determine the necessity of the 2.5P+ as a platform to controllably deposit ceramics, 2.2Mo 

was dropcast onto a Si wafer and pyrolyzed. The morphology of the resulting ceramic was inconsistent 

across the surface. Meanwhile, the images of pyrolyzed 2.5Mo demonstrate a uniform amorphous 

ceramic (Figure 2.5). 

 

Figure 2.5: SEM images of different regions of dropcast and pyrolyzed 2.2Mo on Si: A) Amorphous 
ceramic  B) A flat, non-uniform region imaged at different magnifications. 
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The substrate containing 2.5Mo was pyrolyzed at 800, 900 or 1000 °C for either 3 or 4 hours. 

With increased temperature, the ceramic particles appear to remain amorphous and their presence is 

uniform over the bulk of the film, but they are spaced farther apart (Figure 2.6). This observation is 

consistent with the XPS data that reveals that the ceramic degrades at high temperature. Therefore, 

subsequent pyrolysis experiments on patterned ceramic precursors were conducted at 800 °C for 4 

hours. 

 

Figure 2.6: SEM images of 2.5Mo pyrolyzed at A) 800 °C, B) 900 °C and C) 1000 °C for 4 hours. 
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2.2.6 Patterning 
2.5P+ was patterned by EBL with an array of “W[ester]N CHEMISTRY microchip” and Sierpinski 

triangle images of different sizes (either 45x45, 70x70 or 95x95 μm) and with cross-sectional features as 

small as 1μm. The patterned polymer network (Figure 2.7A) was then functionalized with 2.2Mo using 

the same method for the preparation of 2.5Mo. This patterned metal-functionalized polymer network 

was then pyrolyzed to give patterned ceramics (Scheme 2.4). 

 

Figure 2.7: A) Dark field optical microscope pictures of patterned 2.5P+. B) Bright field optical 
microscope pictures of the patterned 2.5P+ that were functionalized with 2.2Mo and pyrolyzed. C) SEM 
images of pyrolyzed patterns. 
 
 Figure 2.7C2 shows how this method can result in deformities, which are thought to be the result 

of some degree of delamination in the polymer precursor during the processing steps. Nonetheless, this 

same image demonstrates the uniformity of the ceramic over the course of the bulk pattern. Figure 

2.7B1, B2 and C1 show how the outline of the microchip image is retained from the polymer precursor 

to the ceramic, and that the 95x95 μm ceramic microchip has retained the writing. Figure 2.7B3, C3 and 

C4 show that the Sierpinski triangle pattern has excellent shape retention in that the 1μm features from 

the polymer precursor are discernible in the ceramic.  
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Scheme 2.4: Processing method to make patterned ceramics using 2.5Mo as a precursor. 

2.3 Conclusion  
This work is the first example where the ease of shaping photopolymer networks has been exploited to 

make patterned ceramics. We have shown that the photopolymer network thin film 2.5P+ can be 

functionalized by salt metathesis with 2.2Mo to make a metallophotopolymer network. We have also 

shown that 2.5P+ can be first patterned, subsequently functionalized and ultimately pyrolyzed to make 

patterned Mo-containing ceramics with shape retention of the initial inscription. The true value of this 

work lies in the fact that the method has the potential to be generally applied to not only other ionic 

systems, but also different types of functional photopolymer networks. Some examples being thiol-ene 

and phosphane-ene networks38,39 where coordination chemistry20 can be used over ion exchange to 

introduce the inorganic elements. There are many different metallic anions that can be applied to our 

current system and the coordination chemistry of thioethers and alkylphosphines is rich. Expanding this 

work to other systems offers the possibility to prepare a wide breadth of metal containing ceramics.  

2.4 Instrumentation 
Nuclear magnetic resonance (NMR) spectroscopy was conducted on a Varian INOVA 400 MHz 

spectrometer (1H 400.09 MHz, 11B{1H} 128.2 MHz, 13C{1H} 100.5 MHz, 31P{1H} 161.82 MHz). All 1H 

and 13C{1H} spectra were referenced relative to residual solvent signal (CHCl3; 1H δ = 7.26 and 13C δ = 

77.2). The chemical shifts for 31P{1H} spectroscopy were referenced using an external standard (85% 

H3PO4; δP = 0). FT-IR spectra were recorded using a Bruker Tensor 27 spectrometer using attenuated 

total reflectance (ATR) with a ZnSe crystal. Photopolymerization was performed using a modified UV-

curing system purchased from UV Process and Supply Inc. equipped with a medium pressure mercury 

vapour lamp (λ = 200-600 nm). The thicknesses of 2.4C and 2.4P+ were determined using an IP65 

digital calliper. A PP2-H-U Power Puck II purchased from EIT Instrument Markets was used to 

determine light energy and power. The Power Puck was altered for the preparation of 2.4P+ and 2.4C. A 

glass slide was placed over the receiver of the power puck before it was passed under the UV-conveyer 

belt to determine the energy and power that passes through glass (402.352 mJ/cm2, 185.550 mW/cm2 

UVA). A SDT Q600 thermogravimetric analyzer (TGA) was used to determine char yields. A TA Q20 
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differential scanning calorimeter (DSC) was used to determine glass transition temperatures (Tg). All Tg 

values are reported using the onset temperature from the last heating cycle. Si wafers were cut into 

squares (ca. 1x1 cm), treated with Piranha solution, rinsed with deionized water and dried before use. 

Pyrolysis was performed under 5 % H2 (balance N2) in a Lindberg furnace equipped with a quartz tube. 

A Hitachi S4500 FESEM instrument with a 10 kV electron beam was used to collect scanning electron 

microscopy (SEM) images and energy dispersive X-ray (EDX) spectra. Samples were osmium coated 

before SEM and EDX analysis. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos 

AXIS Nova Spectrometer. An Intel CPS Powder Diffractometer was used with Cu K-α radiation to 

collect powder X-ray diffraction (PXRD) data. The diffraction patterns were assigned using the ICSD 

database and Match! software. Electron beam lithography (EBL) was performed using a LEO 1530 field 

emission scanning electron microscope (FE-SEM) fitted with a laser interferometer-controlled stage. 

EBL conditions consisted of 25 pA beam current, 30 keV electron acceleration and a 10 μm aperture. 

EBL-treated polymer films were rinsed in ethanol and imaged using a Zeiss Axioscop 2 MAT in dark 

field with a 50x objective lens. The same microscope was used in bright field mode to image the 

pyrolyzed patterns.  

2.5 Synthesis and Reagents  
The synthesis of all compounds and materials were performed on the bench top unless otherwise noted. 

When necessary, compounds were prepared in a nitrogen filled MBraun Labmaster dp glovebox or by 

using standard Schlenk techniques. All solvents were purchased from Caledon and dried using an 

MBraun controlled atmosphere solvent purification system and stored in Straus flasks under an N2 

atmosphere or over 4 Å molecular sieves. The synthesis of [PBu3(C9H9)][Cl], the corresponding 

polymer (2.1),40 and [Li(tmeda)2][(PPh2CH2)2BPh2] (2.2Mo) were prepared using modified literature 

procedures.30 Molybdenum hexacarbonyl (Strem Chemicals) was freshly sublimed under vacuum (-20 

°C cold finger; 40 °C oil bath) before use, while all other reagents were used without further 

purification.  

2.1. [PBu3(C7H9)][Cl] (3.233 g, 9.121 mol) was loaded into a 100 mL roundbottom flask equipped with 

a stir bar. A solution of the RAFT agent, benzyl dodecyl trithiocarbonate (42 mg, 0.11 mmol, 16 mL 

MeCN) and a solution (0.1 mL) of AIBN (31 mg, 0.19 mmol in 1 mL MeCN) were added to the round 

bottom, which was sealed and degassed for twenty minutes in an ice bath (0 °C). The vessel was placed 

in an oil bath at 80 °C for 6 hours. The flask was removed from the oil bath and cooled under running 

cold water to quench the reaction. The reaction mixture was concentrated on a rotovap and then added 

to a flask of stirring THF (500 mL) to give a large amount of fine white precipitate. The precipitate was 

separated by centrifugation and rinsed a second time before it was dried in vacuo to give a pale yellow 
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powder. Yield: 70%. An integration ratio of polymerizable groups to non-polymerizable groups in a 1H 

NMR spectrum of the reaction mixture were used to determine the conversion from monomer to 

polymer and the molecular weight of the polymer, MW: 22 000 g/mol. 1H NMR: δ 7.35-7.45 (m, 1.10 

H), 6.50 (dd, 1J1H-1H, cis = 12 Hz, 1J1H-1H, trans = 20 Hz, 0.22 H), 5.58 (d, 1J1H-1H trans = 20 Hz, 0.22 H), 

5.11 (d, 1J1H-1H cis = 12 Hz, 0.23 H), 4.10 (d, 2J1H-31P = 16 Hz, 0.44 H), 2.35-2.45 (m, 4.82 H), 1.28 (br, 

12.01 H), 0.74 (br, 9 H). Conversion: 78%, MW: 22000 g/mol. 1H NMR: δ 7.13 (br), 6.75 (br), 3.81 

(br), 2.26 (br), 1.87 (br), 1.25 (br), 1.01 (br), 0.98 (br), 0.70 (br). 13C{1H} NMR: δ 130.4 (br), 128.0 (br), 

23.8 (d, 3J31P-13C=27 Hz), 18.6 (d, 2J31P-13C=40 Hz). FT-IR (cm-1 (ranked intensity)), 718 (10), 847 (7), 

912 (3), 968 (11), 1010, (15), 1098 (5), 1235 (8), 1415 (12), 1457 (2), 1511 (4), 1627 (6), 2335 (13), 

2863 (9), 2910 (14), 2932 (15). Tg = 161.2 °C. 

2.2Mo. [Li(tmeda)(thf)]+ was used as the cation for the bis(phosphino) borate starting material instead 

of [C8H16N]+ (5-azaspiro[4,4]nona-2,7-dienium, ASN) due to the lack of availability of ASN. There is a 

solid state structure reported for the ASN counterion in the literature.4 A solution of 

[Li(tmeda)2][(PPh2CH2)BPh2] (1300 mg, 1.62 mmol; 10 mL THF) was added to a solution of 

molybdenum hexacarbonyl (450 mg, 1.70 mmol; 20 mL THF). The reaction mixture was set to reflux 

(78 °C) for 18 hours under N2 on the Schlenk line to give a bright yellow solution. Volatiles were 

removed in vacuo to give a yellow residue, which was triturated in diethyl ether (3 x 6 mL). The 

supernatant was decanted and the volatiles were removed from the precipitate in vacuo to give a white 

powder. Yield: 87%. Melting point: 158.9 – 165.0 °C, decomposition point: 198 °C. Single crystals 

suitable for X-ray diffraction were grown from the triturated ether supernatant and hexane in the freezer 

(18 hours, -30 °C). 1H NMR: δ 7.29-7.33 (m, 8H), 6.99-7.05 (m, 12H), 6.89-6.91 (m, 4H), 6.61-6.62 (m, 

4H), 6.56-6.57 (m, 2H), 3.70-3.72 (m, 4H), 2.33 (s, 4H), 2.17 (s, 12H), 2.03 (br, 4H), 1.84-1.87 (m, 4H). 
13C{1H} NMR: δ 218.5 (d, 2J31P-13C = 13 Hz), 212.4 (t, 2J31P-13C = 9 Hz), 142.6-142.9 (m), 132.7, 131.8-

131.9 (m), 126.7, 126.3-126.7 (m), 125.1, 121.0, 67.4, 56.4, 44.3, 37.8, 25.0. 31P{1H} NMR: δ 27.4. 
11B{1H} NMR: δ 13.8 (s). FT-IR (cm-1 (ranked intensity)), (νCO denoted with *) 619 (6), 692 (3), 736 

(4), 772 (15), 872 (7), 946 (13), 1033 (11), 1092 (9), 1432 (8), 1467 (10), 1480 (12), 1622 (14), 1847 

(2)*, 1876 (1)*, 2003 (5)*. Raman (cm-1 (ranked intensity)) 169 (14), 229 (9), 417 (12), 458 (7), 620 

(10), 1000 (1), 1030 (4), 1097 (11), 1186 (13), 1586 (3), 1892 (6), 2006 (5), 2802 (15), 2963 (8), 3055 

(2). ESI—MS: 771.1 m/z (C42H34BMoO4P2; [M-]), 743.1 m/z (C41H34BMoO3P2; [M--CO]) ESI+-MS: 

295.1 m/z (C16H32LiO4), 787.6 m/z (C42H34BLi2MoO4P2; [M-+2Li+], 759.1 m/z (C41H34BLi2MoO3P2; 

[M-+2Li+-CO]).  

Control Formulation (2.3C). 2-hydroxyethyl acrylate (HEA) (1.504 g, 12.95 mmol, 49.95 wt%) was 

mixed with tetra(ethylene glycol) diacrylate (TEGDA) (1.513 g, 5.005 mmol, 49.95 wt%) neat. Solid 
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2,2-dimethoxy-2-phenylacetophenone (DMPA) (67 mg, 0.26 mmol) was dissolved in HEA (10 mL) to 

make a 0.067 g/mL stock solution. The DMPA solution (45 μL, additional 0.1 wt%) was thoroughly 

mixed into the HEA-TEGDA mixture. The control films were made solely from the above formulation. 

The formulation was passed through a 0.22 μm syringe filter into a clean vial and cured as described 

below. Cure % = 84.48 ± 1.47 %. Thickness = 0.459 ± 0.015 mm. ATR-IR (cm-1) νC=O(acrylate) = 1724, 

νC=C(acrylate) = 1636, νC-O(acrylate) = 812. Tg = 21.7 °C. 

S-IPN Formulation (2.3P+): 2-hydroxyethyl acrylate (HEA) (1.504 g, 12.95 mmol, 38.4 wt%) was 

mixed with tetra(ethylene glycol) diacrylate (TEGDA) (1.513 g, 5.005 mmol, 38.4 wt%) neat. Solid 2,2-

dimethoxy-2-phenylacetophenone (DMPA) (67 mg, 0.26 mmol) was dissolved in HEA (10 mL) to 

make a 0.067 g/mL stock solution. The DMPA solution (45 μL, additional 0.1 wt%) was thoroughly 

mixed into the HEA-TEGDA mixture. 2.1 (473 mg, 23.1 wt%) was added to a measured amount of the 

above formulation (1.600 g) and sonicated for 40 minutes. Once dissolved, the formulation was passed 

through a 0.22 μm syringe filter into a clean vial. The formulation was cured as described below. 85.12 

± 0.91 %. Thickness = 0.347 ± 0.011 mm. ATR-IR (cm-1) νC=O(acrylate) = 1724, νC=C(acrylate) = 1636, νC-

O(acrylate) = 812. Tg = 24.0 °C. Char yield = 0.059 %.  

Freestanding S-IPN (2.4C and 2.4P+). The curable formulation (50 μL) was sandwiched between two 

glass slides with a spacer and subjected to UV irradiation. The assembly was flipped and passed under 

the lamp a second time to ensure a complete cure. The slides were pried apart with a razor blade and the 

Free Standing Film (FSF) was peeled away using clean tweezers (Figure 2.8).  

 

Figure 2.8: Curing process for 2.4C and 2.4P+: A) the curable formulation (50 μL) was dropped onto a 
glass slide and a second slide was placed on top to make a sandwich. B) The resulting sandwich was 
passed under the UV-conveyer belt; C) the sandwich was flipped over and passed under the lamp again, 
in order to cure the reverse side. D) The slides were pried apart with a razor blade and either 2.4C or 
2.4P+ was peeled off with clean tweezers. 
 
S-IPN Thin Film (2.5P+): Freshly prepared Si wafers were coated with the phosphonium UV-curable 

formulation and spun at 2000 rpm for 90 seconds, then ramped to 3000 rpm for 30 seconds. The 

samples were quickly transferred into a quartz-covered vessel that was purged with N2 for 15 seconds 

before being subjected to UV irradiation (399.028 mJ/cm2, 172.387 mW/cm2 x5). The resulting films 

were iridescent. Thickness as measured by SEM = 1.02 ± 0.15 μm.  
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Gel Content and Swelling: Three of each 2.4C and 2.4P+ were prepared, then dried in a vacuum oven 

for 18 hours. Each film was weighed to four decimal places and then placed in separate vials that were 

filled with 3 mL of solvent (either THF, H2O or ethanol), capped, sealed with electrical tape and left to 

swell for 12 hours. The films were removed from their vials and gently patted dry with a Kimwipe 

before being weighed to four decimal places in a clean weighing boat and placed in a clean tared vial. 

Swell % was calculated based on these data. The supernatant from each film was kept for a qualitative 

test for Cl- ions using an aqueous solution of AgNO3. Upon addition, the THF solutions remained 

transparent, while the water and ethanol samples became translucent for 2.4P+. The films were kept in 

the vacuum oven for 12 hours after which they were weighed in their respective vials; gel % was 

calculated based on these data. 

Freestanding S-IPN Metathesis (2.4Mo): 2.4P+ was soaked in a THF solution of 2.2Mo (124.7 mg in 

1.5 mL) for five minutes. The films were soaked in a fresh vial of water (x3), then ethanol (x6) for five 

minutes each. ATR-IR (cm-1) ν(Mo)CO = 2004, 1895, 1882, 1852, ν(acrylate)=O = 1724, ν(acrylate)C=C = 1636, 

ν(acrylate)C-C = 812. 28% conversion by ATR-IR. Tg = 26.0 °C. Char yield = 9.2%.  

S-IPN Thin Film Metathesis (2.5Mo): A THF solution of 2.2Mo (78.3 mg in 1mL) was used to cover 

the surface of a 2.5P+ and allowed to stand for 30 seconds. The excess solvent was removed from the 

side of the Si wafer to reveal a cloudy surface. The films were washed using D.I. water and removing 

the water from the sides with a pipette (x6). At this point the films appeared cloudy. The films were then 

rinsed in the same way with ethanol (x3), restoring the original iridescence of the film. The films were 

allowed to air dry before analysis and pyrolysis.  ATR-IR (cm-1) ν(Mo)CO = 2004, 1895, 1882, 1852, 

ν(acrylate)=O = 1724, ν(acrylate)C=C = 1636, ν(acrylate)C-C = 812. 71% conversion by ATR-IR. Composition by 

EDX (atomic %): C, 80.54%; O, 17.98%; Si, 0.13%; P, 0.93%; Cl, 0.26%; Mo, 0.17%. 

Calibration Curve (2.6Mo): HEA (3.505 g,  0.03184 mol, 38.5 wt%) was mixed with TEGDA (3.501 

g, 0.01158 mol, 38.5 wt%) neat. The DMPA stock solution (105 μL, additional 0.1 wt%) was 

thoroughly mixed into the HEA-TEGDA mixture. Polymer 2.1 (187 mg, 23 wt%) was sonicated into the 

above formulation, which was passed through a 0.22 μm syringe filter. Compound 2.2Mo (200 mg, 

1.93x10-1 mmol) was sonicated into the above formulation (313 mg, contains 2.03x10-1 mmol 

phosphonium sites) to make a solution representative of 95.0 % conversion of 2.2Mo into the 

formulation. The 95.0 % stock solution was diluted with the leftover curable formulation, in order to 

create samples that represent different degrees of ion exchange (8.9, 20.4, 29.6, 42.9, 47.7, 55.0, 63.0, 

73.6, 86.7 %). Ratio 1 was used in conjunction with the resulting ATR-IR data to generate a calibration 

curve (Figure 1). ATR-IR (cm-1) (varying intensities for each sample) ν(Mo)CO = 2004, ν(acrylate)C=O = 

1724, ν(acrylate)C=C = 1636, ν(acrylate)C-C = 812.  
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Ratio 1:  
  

 
Dropcasting: A THF solution of 2.2Mo (78.3 mg in 1mL) was used to cover a freshly prepared Si 

wafer. The solvent was allowed to air-dry before the sample was loaded into the tube furnace.  

Pyrolysis: Samples were loaded into a quartz tube, purged with 5% H2 (balanced with N2) for 20 

minutes and then ramped at 10 °C per minute to either 800, 900 or 1000 °C. The furnace was held at the 

prescribed temperature for either 3 or 4 hours before the tube furnace was turned off and allowed to cool 

to room temperature. Samples were unloaded from the tube either on the bench top and stored under air, 

or were unloaded in the glovebox and stored under N2 until analysis.  
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Chapter 3  

3 A Comprehensive Investigation of a Zwitterionic Ge(I) Dimer with 
a 1,2-Dicationic Core 

3.1 Introduction  
From gas phase diatomics to Group 13 through 16 compounds, 1,2-dications have garnered theoretical, 

spectroscopic and synthetic attention for decades.1 Chemists have been intrigued by balancing the 

threshold between Coulombic explosion from the proximal positive charges and the electronic nature of 

the bonds that overcome those repulsive forces. The stability of these compounds depends on the 

polarizability, electronegativity, bond order and the role of non-bonding electrons on the atoms 

involved, as well as substituent effects.2–6 

 

Scheme 3.1: Simplified molecular orbital diagram4 for the oxidation of lone pair bearing species to their 
respective 1,2-dications (E14 = heavy tetrel; Pn = pnictogen; Ch = chalcogen). 

1,2-dications are typically formed by the one-electron oxidation of a lone pair bearing species, 

where a common stabilizing factor is the increase in bond order from zero to one after the two-electron 

oxidation (Scheme 3.1). For this reason, 1,2-dications are well-established for the chalcogens and 

pnictogens.1,7–9 Despite the work that has been done with carbon1 and the long list of low valent, heavy 

tetrel(II) compounds that bear a lone pair of electrons,10–16 there are no reported heavy tetrel (III) 1,2-

dications. This is surprising considering the high polarizability and low electronegativity of the heavy 

tetrel elements that makes them good candidates to diffuse the repulsive electrostatic forces in a 1,2-



 

 47 

dication.2 This dearth in examples could be attributed to the fact that more electron density is necessary 

to help soften the repulsive Coulombic force. Instead of oxidation to tetrel (III), a tetrel (I) species could 

be targeted using L-type ligands, which has been a useful approach in accessing Ga(II) 1,2-

dications.17,18  

 

Figure 3.1: Structures of tetrel (I) compounds supported by monoanionic chelating ligands, 3.1GeCl 
and 3.1Ge from this work. 

There are a handful of compounds containing heavy tetrel elements with an oxidation state of (I). 

Aside from some exceptions,19–21 the field has been dominated by two main classes, the heavy alkyne 

analogues22–25 and  those supported by monoanionic chelating ligands (3.A-3.E in Figure 3.1). 26–29 Two 

outliers from this group are the Ge centered 1,2-dications 3.F and 3.G, supported by neutral donors with 

the anionic charge insulated in the ligand backbone. In the case of 3.F and 3.G, the remote anionic 

charge and use of a dative model are assets in making the Ge centers formally dicationic. They are both 

formed by the reduction of a Ge(II) precursor; 3.F by disproportionation, and 3.G by 

photodegradation.30,31 We now report the synthesis of a third member of this family of Ge(I) 1,2-

dications, 3.1Ge by the reductive dehalogenation of 3.1GeCl. 
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Figure 3.2: Lewis and dative bonding models for the bis-phosphine supported main group compounds 
used in Ge and P K-edge studies. Only the cations of compounds 3.2X and 3.4P are shown. 

It is instructive to examine the various canonical forms, where the validity of certain 

representations can be debated.  Nevertheless, Lewis structures have stood the test of time for nearly 

100 years and they remain the benchmark for understanding atom connectivity, especially for the p-

block elements.  Dative models are also instructive in some instances; the merits of each will not be 

discussed here as this has been done recently.32–34 Figure 3.2 underscores how the representation can 

impact the perceived charge on the central element for compounds 3.1GeCl, 3.2X and 3.1Ge, and can 

even impact oxidation state assignments in, for example, compounds 3.1P and 3.4P.   Experimentally 
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probing the electronic nature of functional materials and transition metal centers is common, but less so 

for main group compounds.35,36 With a strong computational argument in hand that a dative model is 

indeed appropriate to represent the interaction between phosphorus and germanium, we sought to 

characterize and describe the electronic structure in 3.1Ge using X-ray absorption near edge structure 

(XANES) spectroscopy. Our experimental data demonstrate that the charge transfer between the donor 

atom on the ligand and the acceptor site manifests differently for closed shell Ge compounds versus the 

triphosphenium compounds that have better orbital overlap. By shedding light on these different 

systems, we were able to glean a snapshot of insight on the fundamentals behind the spectrum of 

covalency in chemical bonds.  

3.2 Results & Discussion 

3.2.1 Synthesis 

The one-electron reduction of 3.1GeCl was first attempted using traditional reducing agents. Sodium 

amalgam resulted in free bis(phosphino)borate ligand (3.1) after stirring for twelve hours. Cobaltocene, 

sodium napthlenide and potassium graphite resulted in slow conversion to previously observed insertion 

products (Scheme 3.2).15 As an alternative to the more standard reducing agents, the Mg(I) b-

diketiminate dimer, 3.3Mg was employed. The reaction of 3.1GeCl with a 0.5 stoichiometric equivalent 

of 3.3Mg in toluene at room temperature gave a yellow solution with a white precipitate, where the 

reaction mixture contained a single phosphorus-containing product as indicated by the singlet in the 
31P{1H} NMR spectrum (dP = 19.4). Upon isolation of the product, single crystals were grown, and X-

ray diffraction studies revealed the reductive dehalogenation product (3.1Ge, 65 %; Scheme 3.2). 

Compound 3.1Ge maintains a twist boat conformation in the solid state with a trigonal pyramidal 

geometry about the trans-bent germanium centers (Figure 3.3). Compound 3.3Mg was also used in an 

analogous reaction for the Sn analogue of 3.1GeCl, resulting in the deposition of Sn metal and free 

ligand (dP = -8.8).15 

In an attempt at a two electron reduction of 3.1GeCl to synthesize a phosphine-supported 

allotrope of germanium, germadiphosphorane,37,38 one stoichiometric equivalent of 3.3Mg was used and 

immediately the formation of 3.1Ge was observed.  After stirring the reaction mixture for an extended 

period (10 h), it became dark orange and the free bis(phosphino)borate ligand ([3.1]) was observed in 

solution (dP = -8.8).  
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Scheme 3.2: One-electron reduction of 3.1GeCl to form 3.1Ge. 

In order to characterize the electronic structure of 3.1Ge using XANES, suitable standards were 

necessary. Compound 3.1Ge is pyramidal about Ge and chelated by a bis(phosphine) ligand, so a 

suitable standard should reflect these molecular parameters. Compound 3.1GeCl is ideal in this regard 

as it is structurally similar yet contains Ge in a different oxidation state. A stand out feature with 

compound 3.1Ge is the anionic borate in the backbone and whether this plays a significant role in the 

stabilization of the 1,2-dication is an important question.39 An analogue of 3.1GeCl was prepared using 

a neutral bis(phosphine) ligand (3.2X) via the reaction of GeCl2(dioxane) and 1,3-

bis(diphenylphosphino)propane (3.2). Single crystals for X-ray diffraction experiments of the only 

phosphorus-containing product (dP = -5.2) were grown from a toluene-cyclohexane vapor diffusion.  

Instead of displacement of the dioxane to form a neutral phosphine adduct of the GeCl2 fragment,13 the 

reaction resulted in the redistribution of the chlorine atoms to yield a trigonal pyramidal Ge cation 

supported by 3.2, partnered with a [GeCl3]- anion (3.2GeCl3) and again provided a pyramidal Ge center 

but with a neutral rather than charged bis-phosphine ligand.  
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Scheme 3.3: Synthesis and reductions of 3.2X (X = [GeCl3]- or [SO3CF3]-). 

The problem with 3.2GeCl3 as a XANES standard is that it contains two different Ge 

environments, creating the possibility for overlapping Ge K-edge signals and therefore, the 

redistribution reaction was attempted in the presence of Me3SiOSO2CF3 (3.2OTf; Scheme 3.3). 

Compound 3.2OTf has the same chemical shift as 3.2GeCl3 (dP = -5.2) and crystallizes in the 

monoclinic space group (P21/c). Comparison of the solid-state structures revealed that the cations in 

both salts adopt the same pyramidal geometry at Ge and with the 6-membered ring in the chair 

conformation (Figure 3.3).  An attempt was made to synthesize a neutral ligand analogue of 3.1Ge from 

the one electron reduction of either 3.2GeCl3 or 3.2OTf using 3.3Mg, resulting in the deposition of 

germanium metal and unbound 3.2 (dP = -17.1; Scheme 3.3). 

3.2.2 X-Ray Crystallography 

The Ge–Ge bond distance in 3.1Ge (2.5687(9) Å) is short relative to reported dimeric Ge (I) compounds 

featuring monoanionic ligands (2.569(5) – 2.6380(8) Å),29,40–42  and is comparable to the only other 

reported example of a phosphine-supported Ge 1,2-dicationic core (3.F) (2.540(1) Å).30 1,2-dications 

are known to have short E-E bonds despite the Coulombic repulsion, a phenomenon linked to the 

electronic structure of the compound.1,3,6,43 For 1,2-dications formed by oxidation, the short bond 

lengths have been attributed to the nuclear attraction that occurs on removal of non-bonding electrons 
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(Scheme 3.1),5 as well as the increase in effective nuclear charge that results in ion contraction.  

Substituents can also play a role in the E-E bond length of a 1,2-dication,6 and in this context, it is 

noteworthy that the Ge–Ge distance in the N-heterocyclic carbene (NHC) stabilized Ge 1,2-dicationic 

core (3.G) reported by Xiong et al. is the longest of the reported Ge (I) dimers (2.673(1) Å).31 This 

discrepancy is likely a hallmark of the inherent difference in electronic structure between phosphines 

and NHC ligands44 and further piqued our curiosity on the bonding in 3.1Ge.   

Table 3.1: Selected bond lengths and angles. 

 
 3.1Ge 3.1GeCl15 3.2GeCl3 3.2OTf 

 
Ge–P (Å) 2.4166(11) 

2.4431(10) 
2.3965(10) 
2.4233(10) 

2.4568(9) 
2.4566(10) 

2.4231(9) 
2.4309(6) 

2.4306(6) 
2.4308(6) 

 
Ge–Cl (Å) - 2.2895(9) 2.2490(6) 2.2654(7) 

 
Ge–Ge (Å) 2.5687(9) - - - 

 
B···Ge (Å) 4.056 

4.079 
3.713 
 

- - 

 
P–Ge–P (°) 88.58(3) 85.50(3) 87.923(10) 87.13(3) 

There is variation in the Ge–P bond distances in 3.1Ge (Table 3.1), where they are overall 

shorter than those in 3.1GeCl.45  The anionic phosphinoborate ligand is electronically insulated within 

the backbone, however a contraction of the boron-metal distance has been observed to occur for 

increasingly electron-poor metal centers and indicates a through space B···M interaction.46 The B···Ge 

distance elongates by 0.3 Å (from 3.1GeCl to 3.1Ge) and taken together, the contraction of the P–Ge 

bond lengths in 3.1Ge and the thru-space B···Ge interaction in 3.1GeCl indicates that the Ge atoms are 

electron poor. In the case of 3.1Ge, the metal binds tightly to the ligand donor atoms whereas in 

3.1GeCl, the electron poor Ge center garners additional electrostatic stability from a thru-space 

interaction with the borate backbone.  

It is established that bond angles have minimal impact on the P K-edge XANES of phosphines in 

transition metal complexes, while molecular geometry (i.e. square planar versus tetrahedral) has a much 

larger impact.47  While there is a variation in the P–Ge–P bond angle of more than 3° between 3.1Ge 

(88.58(3)°), 3.1GeCl (85.50(3)°) and 3.2OTf (87.13(3)°) they were deemed suitable standards, with 

3.1GeCl being a structural standard for a Ge(II) center bound to ligand [3.1], and compound 3.2OTf 

offering a probe for whether the anionic backbone in 3.1GeCl has an effect on the edge energy. Ge 
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metal, GeCl2(dioxane) and GeO2 were used as general standards to benchmark Ge(0), Ge(II), and Ge 

(IV), respectively. 

 

Figure 3.3: Solid-state structures (from top to bottom) of 3.1Ge (right: phenyl groups omitted), 
3.2GeCl3 and 3.2OTf. Thermal ellipsoids are drawn at 50% probability. Hydrogen atoms are omitted 
and only one PART of the disordered [GeCl3]- counterion is shown for clarity. See Table 3.1 for 
selected bond lengths (Å) and angles (degrees). 



 

 54 

3.2.3 XANES Spectroscopy 

In order to shed some light on the stability of 3.1Ge, the electronic structure of Ge and P were probed 

using XANES spectroscopy. XANES data can provide valuable information on the element contribution 

to the lowest unoccupied molecular orbital (LUMO) by inspection of the absorption threshold energy 

(E0) and the whiteline (WL) intensity due to dipole transition selection rules (e.g. Ge and P K-edge 

tracks 1s to 4p and 3p transitions, respectively).35,48  The E0 of an element, increases with its oxidation 

state as the core electrons become more tightly bound to the nucleus. It should be noted that a given 

oxidation state cannot be fixed to a specific E0 since E0 is also influenced by the ionic component of the 

E-E’ bond, the coordination number, substituent type(s) and geometry.36,47,48 

Phosphinoborate ligands are well documented as being superior σ-donors to their neutral 

analogues. This has typically been demonstrated by monitoring the behavior of charged versus neutral 

ligands in coordination compounds.39,46,49,50 Table 3.2 lists the P K-edge E0 of free ligand 

[Li(tmeda)2][3.1] (2146.65 eV) as being lower than 3.2 (2146.80 eV), an indication that 

[Li(tmeda)2][3.1] is more electron rich than 3.2 and is corroborated by [Li(tmeda)2][3.1] having a 

lower WL intensity (Figure 3.6). This ultimately translated to greater electron density for the 

phosphorus atoms to donate to Ge, and is direct spectroscopic evidence for the superior electron 

richness of uncoordinated [Li(tmeda)2][3.1] compared to its neutral analogue, 3.2.39 

The Ge K-edge XANES E0 of 3.1GeCl and 3.2OTf (both 11103.6 eV) is 0.6 eV higher than 

3.1Ge and 0.6 eV lower than that of GeCl2(dioxane) (11104.2 eV).  The Ge(II) atoms in 3.1GeCl and 

3.2OTf are therefore electron poor relative to Ge metal (11103.0 eV) and 3.1Ge, and electron rich 

relative to the Ge(II) in GeCl2(dioxane). These distinctions arise from differences in oxidation state, 

substituent types and geometry. 

In principle, the E0 for 3.1Ge (Ge(I)) is expected to fall between that of Ge(0) and Ge(II). 

However, given the electron rich anionic phosphinoborate ligand, the measured E0 of 3.1Ge aligns with 

that of Ge metal (11103.0 eV). Compound 3.1Ge was observed to be electron poor relative to the Ge(0) 

standard by its relatively high WL intensity (Figure 3.4). Put together with the relatively low E0, these 

data indicated that 3.1Ge was an electron-rich Ge(I) species. This observation is echoed by how the 

ligating P atoms displayed the opposite trend in the P K-edge E0 and were electron poor relative to the 

free ligand (2147.40 cf. 2146.65 eV, see below). This shift in energetically opposite directions for P and 

Ge is spectroscopic evidence of the charge transfer from P to Ge.  
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Table 3.2: P and Ge K-edge E0 values including the oxidation states of P and Ge in reference 
compounds using the dative bonding models. 

 
Compound Oxidation 

State 
P K-

edge E0 
(eV) 

Ge K-
edge E0 

(eV) 
 

P Ge 

 
Ge Powder - 0 - 11103.0 

 
Red P 0 - 2145.45 - 

 
Black P 0 - 2145.60 - 

 
3.1P I 

and 
III 

- 2145.45 
and 

2148.30 

- 

 
3.4P I 

and 
III 

- 2145.45 
and 

2148.00 

- 

 
PPh3 III - 2146.65 - 

 
[Li(tmeda)2][3.1] III - 2146.65 - 

 
3.2 III - 2146.80 - 

 
(PPh3)3RuCl III - 2147.10 - 

 
3.1GeCl III II 2147.25 11103.6 

 
3.1Ge III I 2147.40 11103.0 

 
3.2OTf III II 2147.40 11103.6 

 
OPPh3 V - 2148.60 - 

 
[P(C9H9)(C4H9)3][Cl] V - 2148.90 - 

 
P4O10 V - 2152.35 - 

 
GeCl2(dioxane) - II - 11104.2 

 
GeO2 - IV - 11108.6 

When 3.1GeCl was compared to 3.2OTf, it could be observed that the two compounds 

experience the same P K-edge E0 blue shift of 0.6 eV from their respective free ligands. This 

observation was on par with the comparable Ge–P distances between the two compounds (ca. 2.44 Å; 

Table 3.1). However, the absolute P K-edge E0 values reveal that the coordinated phosphine in 3.1GeCl 

(2147.25 eV) is more electron rich than that in 3.2OTf (2147.40 eV) and furthermore, while the 

compounds had the same Ge K-edge E0 (11103.6 eV), the Ge K-edge WL intensity for 3.1GeCl was 
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lower than that for 3.2OTf (Figure 3.4).  This ultimately translated to a more electron-rich Ge center in 

3.1GeCl and taken together, with the observed B···Ge interaction demonstrates the effectiveness of the 

remote anionic charge in the ligand backbone at increasing the electron-richness of the Ge center.  

 

Figure 3.4: Ge K-edge XANES (left) and first derivative (right) spectra. The first derivative is taken to 
visualize the E0, which is recorded at the point of inflection of the rising edge. 

The Ge K-edge WL intensity of 3.1Ge is even lower than that of 3.1GeCl (Figure 3.4). 

Combined with the relatively low E0 of 3.1Ge, these data point to relatively electron-rich Ge-centers in 

the 1,2-dication. This can be attributed to the difference in oxidation states and substituent types. The 

1,2-dication contains Ge in a lower oxidation state and therefore has more electron density than 

3.1GeCl. Further, the Ge in 3.1GeCl bears an electron-withdrawing Cl- ligand, which undoubtedly 

increases the E0. 

The coordinated phosphines in 3.1Ge and 3.1GeCl show a blue shift of 0.75 and 0.6 eV, 

respectively relative to the free ligand ([Li(tmeda)2][3.1]) (Figure 3.5). These results clearly indicate 

charge transfer from P to Ge, and are consistent for what has been reported for phosphine ligands bound 

to increasingly electron poor metals.51,52 In this context, the greater increase in E0 energy for 3.1Ge 

relative to 3.1GeCl points to a stronger σ-donation from ligand [3.1]. These data suggest that inductive 

through-bond effects allow the borate to increase the donor ability of the remote phosphine fragments. 

This corroborates the P-Ge bond length contraction observed in the solid-state structure of 3.1Ge and 
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supports the hypothesis that a sufficiently electron rich phosphine is necessary to stabilize the 1,2-

dicationic core.  

 

Figure 3.5: P K-edge XANES (left) and first derivative (right) spectra of 3.1Ge, 3.1GeCl, 3.2OTf and 
their respective free phosphine ligands. 

The superior electron-richness of [Li(tmeda)2][3.1] over 3.2, the subtle difference in electron 

density of the coordinated phosphines in 3.1GeCl and 3.2OTf combined with the extra charge transfer 

that the Ge atoms in 3.1Ge are able to draw from ligand [3.1] explain our inability to synthesize a 

neutral ligand analogue of 3.1Ge using 3.2. Ligand 3.2 simply does not have enough electron density to 

stabilize the 1,2-dication. 

The above results involving 3.1Ge prompted a study of the electronic structure in 

triphosphenium cations; a class of phosphine-supported P(I) compounds that also suffer from ambiguity 
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based on a Lewis or dative representation. In the triphosphenium cations the ambiguity is more extreme 

than for 3.1Ge given the representation not only dictates the charge, but also the oxidation state of the 

phosphanide-type center (Figure 3.2). The dative bonding model for compounds 3.1P and 3.4P has been 

corroborated through computational and reactivity studies, demonstrating 3.4P as a P(I) transfer 

reagent.53–59 Can the same charge transfer that was observed in 3.1Ge, 3.1GeCl and 3.2OTf be 

spectroscopically verified in 3.1P and 3.4P?  

 

Figure 3.6: P K-edge XANES (left) and first derivative (right) spectra of triphosphenium cations 3.1P 
and 3.4P and the respective free phosphine ligands. 

Since triphosphenium cations exhibit two P environments, the phosphanide-type center and the 

phosphines coordinated to it, the P K-edge XANES spectra correspondingly exhibit two absorption 

edges (Figure 3.6). The E0 for the phosphanide-type center in both 3.1P and 3.4P appears at 2145.45 eV 

and aligns exactly with the main feature of red phosphorus. Although this result gives veracity to the 

Lewis model where the oxidation state of the phosphanide-type center is zero, E0 values can vary within 

an oxidation state and given the electron rich phosphine supporting ligands, this edge value is congruous 

with an electron-rich P(I) center (Figure 3.2). This was echoed by the significant blue shift from free to 

coordinated phosphine ligands. Relative to free ligands [Li(tmeda)2][3.1] and 3.2, the E0 of 3.1P and 

3.4P experienced blue shifts of 1.65 and 1.35 eV, respectively. This noteworthy difference in charge 

transfer between charged and neutral ligands, is consistent with the electron richness of free ligands 

[Li(tmeda)2][3.1] and 3.2. This blue shift from free ligand resulted in the phosphines in 3.1P having a 
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higher E0 than in 3.4P (2148.30 and 2148.00 eV, respectively). These data demonstrate superior charge 

transfer from phosphine to phosphanide in 3.1P, and once again demonstrate the superior electronic 

stabilization ability of ligand [3.1] over its neutral analogue. 

The above triphosphenium data mark a distinction in the way that charge transfer is manifested 

spectroscopically compared to the Ge compounds. It is apparent that the triphosphenium compounds 

experience a greater charge transfer by the magnitude of the blue shift compared to the Ge compounds. 

Further, the distinction between charged and neutral ligands is manifested as a difference in WL 

intensity for the Ge compounds, where the same distinction is observed as a difference in magnitude of 

the blue shift for the triphosphenium compounds. These findings demonstrate that the bonding in these 

compounds is not as simple as a single drawn model can suggest and there is a continuum of covalency 

at play. 

3.2.4 Computational Calculations 

As illustrated in Figure 3.7, the LUMO and LUMO+1 of the model of [LGeCl] is localized almost 

exclusively on Ge and featuring π-type symmetry at the Ge atom.  The LUMO and LUMO+1 of the 

[LGeGeL] model are similarly almost entirely localized on the [Ge-Ge]2+ fragment, with the LUMO 

having in-phase π-type symmetry along the Ge-Ge bond and LUMO+1 being the out-of-phase π-type 

component. Correspondingly, the ADF SFO (symmetrized fragment orbital) analyses of the LUMO for 

[LGeCl] suggests that at least 78% of the orbital contribution to the LUMO can be attributable to the 3py 

(70%) and 4py (8%) orbitals on Ge.  For LUMO+1, the 3px and 3py orbitals on Ge contribute more than 

65% of the molecular orbital. Similarly, the ADF SFO analyses of the LUMO for [LGeGeL] suggests 

that at least 72% of the orbital contribution to the LUMO can be attributable to the 3py (60%) and 4py 

(12%) orbitals on the two Ge atoms.  For LUMO+1, the 3px and 3py orbitals on the pair of Ge atoms 

contribute more than 64% of the molecular orbital. With the majority of the LUMO being composed of 

Ge character, XANES experiments are an appropriate method to probe the electronic structure about Ge. 

 The NBO analysis does not indicate any particularly large delocalizations for any of the 

lone pairs in the Ge systems. This is consistent with the trigonal pyramidal geometry about Ge that is 

observed in the solid-state structures. This also means that the Lewis structures, where λ = 4 for Ge, can 

be counted as minor contributions to describe the bonding in 3.1Ge, 3.1GeCl and 3.2OTf (Figure 3.2). 

NRT analyses on the compounds revealed all of the multiple-bonded structures (λP = 5; Figure 

3.2) contribute less than 5% to the actual electronic distribution.  The dominant Lewis structure in every 

case (for 3.1GeCl, 3.1Ge, 3.1P) is always the single-bond only structure (λP = 4; Figure 3.2).  The 
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highest percentage of contribution following that, which was always under 5%, were ionic structures in 

which the P-H (modeling P-Ph) bond is cleaved to give a contact ion pair and a double bond between P 

and E. 

 

Figure 3.7: LUMO (left) and LUMO+1 (right) illustrations of [LGeCl] (top) and [LGeGeL] (bottom). 

The NBO charges were used as a simple proxy to assess the magnitude of charge transfer from 

the ligand (either charged 3.1 or neutral 3.2) to the germanium; the results suggest that approximately 

0.98 e are transferred from the putative L1- ligand to the [GeCl]1+ fragment in [LGeCl], whereas the 

magnitude of the analogous charge transfer (0.78 e) is notably smaller for the system derived from the 

neutral ligand, as one would perhaps anticipate. An alternative estimate of charge transfer gleaned from 

the Voronoi deformation densities is consistent with the anticipated trend: an additional ca. 0.2 e appear 

to be transferred to the [GeCl]+ fragment by the anionic ligand in comparison to the neutral ligand. This 

is consistent with the additional stabilization achieved from the thru-space B···Ge interaction in 

3.1GeCl. 

The Bader charge ascribes a positive charge of +0.32 to the Ge atoms in 3.1Ge and +0.86 for the 

Ge atom in 3.1GeCl.  This confirms that the adjacent Ge atoms in 3.1Ge bear a positive charge, albeit a 
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small one. Put together with the electron rich Ge centers observed by XANES spectroscopy and the 

short Ge–Ge distances observed in the solid-state for 3.1Ge, it appears that the 1,2-dication is stabilized 

by the attraction of the simultaneously electron rich, yet putatively positively charged Ge atoms.  

Table 3.3: Computed partial charges (au). 

ELn 
Partial Charge on Ge 

NBO Voronoi Bader 

E=[GeCl]+, n=1 
L=(PH2CH2)2BH2 

+0.55 +0.11 +0.86 

E=[GeCl]+, n=1 
L=3.2 

+0.72 +0.26 +1.00 

E=[Ge-Ge]2+, 
n=2, L=3.1 

-0.02 -0.13 +0.32 

 In the context of the series of compounds, it is perhaps noteworthy that the trends observed in all 

of the partial charge analyses (NBO, Voronoi, Bader; Table 3.3) are all consistent with each other and 

are all consistent with the experimental XANES results: the least positively charged Ge atoms are those 

in [LGeGeL] (least oxidized, shortest Ge-P bonds and strongest charge transfer by XANES 

spectroscopy), those in [LGeCl] are intermediate (stabilized by thru-space interaction, yet bound to 

electron-withdrawing Cl), and those in [(dHpe)GeCl]1+ are the most positively charged (no extra 

stabilization and bound to electron-withdrawing Cl). 

For the Ge systems, one can see that the HOMO-LUMO gap is considerably smaller for the [Ge-

Ge]2+ (0.224938 au) system than for either of the [GeCl]+ models (3.1GeCl: 0.278054; 3.2OTf: 0.28377 

au). The relatively high HOMO energies for the 3.1Ge and 3.1GeCl (-0.25215 and -0.29309 au, 

respectively) models, which can be ascribed to the stabilization achieved from coordination to the 

anionic ligand.  In contrast, the LUMO energies for models of 3.1Ge and 3.1GeCl (-0.02721 and -

0.01504 au, respectively) are comparable whereas the LUMO for model 3.2OTf (-0.16668 au) is much 

lower in energy (Table 3.4).  

Computational results confirm that the amount of P–P charge transfer in the triphosphenium 

compounds is significantly greater than the P–Ge charge transfer in the above compounds and suggests 

different degrees of covalency. With this in mind, it is interesting that the QT-AIM analysis60 of the 

model compounds reveals dramatic differences in the nature of the bonding between the bis(phosphine) 

ligands and the Ge or P atoms.  In particular, analysis of the bond critical points (BCPs) suggests that 

the electron distribution in the case of all of the germanium complexes is consistent with closed shell 
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binding between germanium and the phosphorus atoms whereas the topology of the electron density in 

the phosphorus complexes is more consistent with covalent binding. In particular, the small positive 

value of the Laplacian and the ellipticity of the BCP ca. 0 in the cases of the germanium complexes is in 

stark contrast to the negative Laplacian and large ellipticity (ca. 0.4) observed for both of the 

triphosphenium models.  

Table 3.4: HOMO and LUMO energies for the Kohn-Sham orbitals. 

 ELn Model K-S Orbital HOMO-
LUMO 

Gap  
HOMO LUMO 

 
E=[GeCl]+, n=1 
L=(PH2CH2)2BH2 

(au) -
0.29309 

-
0.01504 

0.278054 

 
(eV) -

7.97549 
-

0.40926 
7.566235 

 
E=[GeCl]+, n=1 
L=dppp 

(au) -
0.45045 

-
0.16668 

0.28377 

 
(eV) -

12.2573 
-

4.53554 
7.721775 

 
E=[Ge-Ge]2+, 
n=2, L=3.1 

(au) -
0.25215 

-
0.02721 

0.224938 

 
(eV) -

6.86122 
-

0.74034 
6.120875 

This revelation about the difference in bonding between the two groups of compounds helps to 

explain why the difference between charged and neutral ligands manifests differently in the XANES 

data. The closed shell Ge compounds indicate the difference between ligands by the WL intensity, while 

the triphosphenium compounds – with better orbital overlap – indicate this difference by the magnitude 

of the E0 blue shift. Further, the better orbital overlap in the triphosphenium compounds accounts for the 

greater charger transfer compared to the Ge compounds.  

3.3 Conclusion 
In this study a zwitterionic Ge(I) dimer with a 1,2-dicationic core was prepared and the factors that 

stabilize it were established. The short Ge–Ge distance, the relatively low E0 and WL intensity from the 

Ge K-edge data, and small Bader positive charge on Ge point to attractive ambiphilic Ge centers. The 

relatively short Ge–P distances and edge shifts in energetically opposite directions for P and Ge relative 

to standards suggests that the stability at the [Ge–Ge]2+ core arises from the (semi-insulated) borate 

backbone of ligand 3.1. 
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Phosphinoborate ligand [3.1] was observed to have two means of donating electron density – by 

through-bond inductive effect or by electrostatic interaction – due to the borate backbone. Although this 

has been previously observed in solid-state structures, in this work we were able to corroborate that 

these interactions have an impact on electronic structure.46 

In comparing the electronic structures of the Ge phosphine coordination compounds and 

triphosphenium compounds we deduced that although a dative representation is appropriate in either 

case, the electronic structures are markedly different. In this regard, the difference in bond critical point 

ellipticity suggests a continuum of covalency in which Lewis and dative models reside at the 

extremities. These differences in electronic structure can be spectroscopically probed by examining how 

the charge transfer is manifested in the XANES data.  Having a fundamental understanding of the 

electronic structure can be valuable in understanding stability, or lack thereof in a compound.  

3.4 Experimental Section 
3.1Ge. A toluene solution of 3.3Mg (78.7 mg, 0.089 mmol, 1 mL) was added to a toluene solution of 

3.1GeCl (100.1 mg, 0.149 mmol, 1 mL) at room temperature. Upon addition, the mixture remained 

yellow and a white precipitate formed. The mixture was filtered over Celite and the volume was reduced 

to half in vacuo. Pentane (15 mL) was added to the solution to afford a yellow precipitate. The 

supernatant was removed and the solids were recrystallized from a 1:5 THF:Et2O mixture at -30 °C 

overnight. Yield: 65 %. Single crystals suitable for X-ray diffraction studies were grown from a 

concentrated solution of toluene over the course of three days at -30 °C. Mp = 203.4 °C. 1H NMR (400 

MHz, C6D6): δ = 6.92-7.16 (m, 36H), 6.80-6.84 (m, 16H), 6.64-6.66 (m, 8H), 2.27 (br s, 8H) ppm; 
13C{1H} NMR (100.6 MHz, C6D6): δ = 133.6, 133.3, 132.9, 132.6, 132.2, 131.0, 130.4, 130.2, 122.9, 

122.8, 23.8 ppm; 31P{1H} NMR (161.8 MHz, C6D6): δ = 19.4 ppm; 11B{1H} NMR (128.3 MHz, C6D6): 

δ = -14.4 ppm; FT-IR (ranked intensity): ν = 86(4), 102(3), 174(7), 197(9), 237(8), 267(12), 509(20), 

617(14), 651(19), 688(17), 999(1), 1029(6), 1095(10), 1159(15), 1188(16), 1379(18), 2908(13), 

3054(2); FT-Raman (ranked intensity): ν = 693(1), 738(5), 768(11), 867(4), 932(17), 999(6), 1028(9), 

1055(19), 1097(3), 1140(15), 1186(20), 1262(10), 1308(14), 1381(14), 1434(15), 1483(16), 1586(17), 

2908(18), 3004(18), 3057(6); MALDI-MS (pyrene): m/z 637.2 [C38H34BP2Ge]+ ([M/2]+). Elemental 

analysis found (calculated) for C76H68B2P4Ge2: C 71.17 (71.75), H 5.80 (5.39) %. 

3.2GeCl3. A THF solution of 1,3-bis(diphenylphosphino)propane (dppp) (80.4 mg, 0.195 mmol, 3mL) 

was added to a THF solution of GeCl2(dioxane) (90.3, 0.390 mmol, 3 mL). Volatiles were removed 

from the reaction mixture in vacuo and the product was recrystallized by vapor diffusion of cyclohexane 
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into toluene at room temperature overnight, these crystals were suitable for single crystal X-ray 

diffraction studies. Yield: 38%. Mp = 148.3 °C. 1H NMR (400 MHz, methanol-d4): δ = 7.53-7.81 (m, 

8H), 7.46-7.53 (m, 4H), 7.44-7.46 (m, 8H), 3.07-3.11 (br m, 4H), 2.23 (br, 2H) ppm; 13C{1H} NMR 

(100.6 MHz, CD3CN): δ = 134.0, 133.2, 130.9, 18.8, 18.3 (br) ppm; 31P{1H} NMR (161.8 MHz, C6D6): 

δ = -5.2 ppm; FT-IR (ranked intensity): ν = 620.9 (2), 764.5 (1), 801.0 (3), 833.9 (4), 856.0 (6), 723.8 

(6), 912.7 (8), 931.0 (7), 981.7 (10), 1007.2 (11), 1054.8 (15), 1137.7 (16), 1174.4 (17), 1220.4 (14), 

1458.9 (18), 1496.0 (13), 2737.8 (20), 3149.9 (19), 3326.1 (10), 3406.9 (21). ESI-MS: m/z 521.0 

[C27H26P2ClGe]+ ([M]+), m/z 178.8 [GeCl3]- ([M]-). Elemental analysis found (calculated) for 

C27H26P2Cl4Ge2: C 45.92 (46.36), H 3.61 (3.75) %. 

3.2OTf. A diethyl ether solution of GeCl2(dioxane) (44.8 mg, 0.194 mmol) was added to a mixture of 

dppp (75.2 mg, 0.182 mmol, 3 mL) and Me3SiOSO2CF3 (66 μL, 0.36 mmol) in diethyl ether (7 mL) 

resulting in a white precipitate. The supernatant was decanted, the solids were washed with diethyl ether 

(2 x 2 mL) and dried in vacuo to afford analytically pure 3.2OTf. Single crystals suitable for X-ray 

diffraction studies were grown by vapor diffusion of diethyl ether into an acetonitrile solution of 3.2OTf 

over the course of three days at -30°C. Yield: 82%. Mp = 204.9 – 210.9 °C. 1H NMR (400 MHz, 

methanol-d4): δ = 7.57-7.62 (m, 8H), 7.47-7.54 (m, 4H), 7.44-7.46 (m, 8H), 3.03-3.09 (br m, 4H), 2.14-

2.24 (br m, 2H) ppm; 13C{1H} NMR (100.6 MHz, CD3CN): δ = 144.3, 143.6, 141.4, 29.2, 28.9 ppm; 
31P{1H} NMR (161.8 MHz, C6D6): δ = -5.2 ppm; 19F{1H} NMR (376.3 MHz, CD3CN): δ = -78.0 ppm; 

FT-IR (ranked intensity): ν = 651 (3), 722.8 (8), 773.3 (1), 801.7 (10), 834.0 (16), 870.9 (7), 980.6 (13), 

1004.9 (15), 1043.7 (4), 1200.4 (11), 1368.5 (2), 1410.2 (18), 1423.6 (19), 1464.8 (6), 1512.7 (9), 

1628.7 (14), 1862.9 (20), 2151.3 (5), 2775.5 (12), 3000.2 (17). ESI-MS: m/z 521.0 [C27H26P2ClGe]+ 

([M]+), m/z 149.0 [CO3F3S]- ([M]-). Elemental analysis found (calculated) for C28H26O3F3P2SClGe: C 

49.95 (50.22), H 3.59 (3.91), S 4.22 (4.79) %.  
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Chapter 4  

4 Coordination Chemistry of Phosphane-ene Polymer Networks 

4.1 Introduction  
Metal containing ceramics have been investigated for an array of applications including the fields of 

electrochemistry, electrocatalysis and information technology (IT).1–5 It can be challenging to prepare 

ceramic materials so that the composition and morphology simultaneously fit the application.  

In a quest to lower the carbon footprint of vehicles, scientists have been striving to improve 

battery performance and develop efficient hydrogen evolution reaction (HER) catalysts for the clean 

generation of H2 as an alternative to fossil fuels.6–8 The ceramics that currently show promise in battery 

development are transition metal doped LiFePO4 cathode materials and metal oxide electrocatalysts.7–12 

Other types of materials have emerged as promising, low-cost electrocatalysts for HER, namely 

phosphides of Fe, Co, Ni, Cu, Mo and W, whose activity can be tuned by varying the metal to 

phosphorus ratio.6,13  

Despite their desired electrochemical properties, a major drawback of the above-mentioned 

ceramics in the context of batteries or fuel cells is their lack of conductivity. To improve the 

electrochemical activity of these ceramics they have been incorporated into carbon supports, which have 

the advantage of being conductive and are amenable to doping with heteroatoms that further enhance 

conductivity.6,14,15 Recent work to address this issue has centered on the pyrolysis of metal organic 

frameworks (MOFs) to form carbon that is homogeneously doped with metals, however the scalability 

of MOFs remains a challenge.14,16,17,18 

The field of polymer derived ceramics has been dominated by metallopolymer self-assembly and 

lithography followed by pyrolysis.19–25 These systems provide spacial and compositional control via the 

polymer precursor through the presence of metals in the segregated domains. Upon pyrolysis, the 

composition and shape of the resulting ceramics are dictated by that of the polymer precursor. Recently 

we have shown that a similar effect can be achieved by metal functionalization of a patterned, 

phosphorus-based photopolymer network (Scheme 4.1).26 On top of being scalable, the main advantage 

to photopolymer networks in this context is that they can be shaped before, during and after irradiation, 

by molding, masking and lithographic techniques, respectively.26–28 This ability to be shaped at multiple 

points in a process opens several potential avenues to gain spacial control over the ceramic precursor. 
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Depending on the chemical functional groups present within the photopolymer network, it has been 

shown that the material can be metallized by salt metathesis or metal coordination reactions, giving 

them the potential to impart varied elemental composition of the resulting ceramic after pyrolysis.26,28–31 

These assets could be leveraged in IT applications as the industry currently faces a challenge in 

identifying room temperature ferromagnetic semiconductors that can be patterned on micro to nano 

length scales.32 The broad search for an appropriate composition is ongoing with candidates composed 

of elements spanning the periodic table.33,34,43–45,35–42  

 

Scheme 4.1: Shape retention on pyrolysis of patterned metal functionalized photopolymer networks. 
EBL = Electron Beam Lithography, M = Metallic species, Δ = heat. 

The coordination chemistry of phosphines is rich and the phosphine sites within phosphane-ene 

networks can be accessed using simple solution chemistry common to molecular phosphines.31,46 

Coordination chemistry is not restricted to the transition metals as there are now wide-ranging examples 

of electron rich, Lewis acidic, main group metals that can be coordinated by phosphorus donors.47 This 

rich coordination chemistry can be used to incorporate elemental diversity into a polymer network in a 

controlled fashion. For example, a mono-cationic Sb center can be bound by either one or two 

phosphines depending on the reaction conditions.48,49 These molecular complexes provide precise ratios 

of inorganic elements within a material and therefore, by merging this methodology of E-E bond 

formation with polymer network chemistry, it provides control over the stoichiometry of the inorganic 

elements in a precursor and in turn, control over the resulting ceramic composition.  

We now have merged stibino-phosphonium and stibino-bis(phosphonium) chemistry with 

phosphane-ene photopolymer networks with the result of controlling the stoichiometric ratios of P:Sb 

within the material. This was achieved by simply varying the coordination environment about Sb. In 

addition, we have observed that the variation in coordination environment about Sb gave us the ability 

to tune both the physical and electronic properties of the functionalized networks. These results have 

prompted us to take a deeper look into this as well as the electronic environment(s) around the main 

group elements.  We have employed XANES (X-ray Absorption Near Edge Structure) spectroscopy to 
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compare the macromolecular system to the comprehensively characterized small molecules, which gave 

us a unique and definitive window into the nature of the main group atoms in the material. 

We have extended this fundamental chemistry to phosphorus-based Lewis acids and explored 

the susceptibility of the material to be metallized through coordination with metallic Lewis acids 

containing germanium, aluminum and cobalt. The metallized networks were assessed as ceramic 

precursors and showed excellent shape retention on pyrolysis of patterns prescribed by electron beam 

lithography (EBL) prior to metallization. 

4.2 Polymer Network Synthesis 
Phosphane-ene polymer networks have been previously prepared by the photoinitiated 

hydrophosphination of primary phosphines and multi-functional olefins.50 In this work, the synthetic 

route was modified so that the resulting network contained only tertiary phosphines, with no further 

processing or reaction step. Monoisobutyl phosphine (iBuPH2) was combined in a 3:4 molar ratio with 

1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT) and irradiated in the presence of the 

photoinitiator Irgacure 819 to yield polymer network (4.1; Scheme 4.2). This stoichiometry provides a 

twofold excess of olefin relative to P-H bonds and all P-H functional groups were consumed as 

confirmed by the absence of P-H coupling in the 31P NMR spectrum and no evidence for P-H vibrations 

in the IR spectrum, indicative of 100 % cure (cf. iBuPH2 has n(P-H) = 2298 cm-1). Cure percentages were 

calculated using IR spectroscopic data based on the relative ratios of the peak intensities from the olefin 

(n(C=C) = 991 cm-1) and carbonyl ((n(C=O) =1675 cm-1) signals of TTT.  On average, cure percentages 

reached 47% and indicated that half of the olefins remained unreacted, while bound to the network 

(Figure 4.1). 

 

Figure 4.1: ATR-IR spectra of 4.1u (grey; u = uncured) and cured polymer network 4.1 (orange; 
cured).  



 

 71 

 

Scheme 4.2: Photopolymerization of neat liquid formulation 4.1u to make phosphane-ene network 4.1.  

Network 4.1 was insoluble, yet solvent swellable, which was advantageous as it allowed for the 

acquisition of solution-like 31P NMR spectra, enabling easy assessment of the material as well as 

solution-like chemistry.50,51 The swellability of 4.1 was measured for a variety of common laboratory 

solvents and were ranked in terms of molar swellability in the order H2O > MeCN > CH2Cl2 > THF > 

Toluene > Et2O > Pentane (Figure 4.3).  There was a clear qualitative relationship between line-width 

and the molar swellability of the network in a given solvent. With more solvation, the polymer chains 

were more mobile and thus gave a sharper signal. Water was an anomaly because while it gave the 

highest molar swellability for 4.1, the line-width remained broad and we hypothesize that given the 

organic nature of the phosphorus environment, the poor interaction of the solvent with the polymer 

chains limited mobility at the molecular level. Ultimately this implied that both swellability and 

solvation contribute to the solution NMR line-width and therefore, a suitable solvent for obtaining a 

strong signal is one that can both swell the network and interact with the polymer chains.52 

 

Scheme 4.3: Synthesis of 4.2H and 4.2 from hydrophosphination of 1,7-octadiene with PH3. 

An excess of phosphine gas was reacted with 1,7-octadiene in the presence of 

azobisisobutyronitrile (AIBN) as a thermal initiator (Scheme 4.3). Multinuclear NMR spectroscopic 

analysis of the reaction mixture revealed the disappearance of the olefin signals in the 13C{1H} NMR 
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spectrum, while the 31P NMR spectrum displayed the characteristic singlet, doublet, triplet and quartet, 

corresponding to a mixture of tertiary (-31.5 ppm), secondary (-68.7 ppm, 1JPH = 194.2 Hz), primary (-

137.7 ppm, 1JPH = 186.1 Hz) and unreacted (dissolved) PH3 (-241.7 ppm, 1JPH = 178 Hz), respectively. 

The volatiles were removed in vacuo to give a colourless oil (4.2H), which displayed a P-H vibration in 

the IR spectrum (νP-H = 2280 cm-1; Figure 4.2).  

 

Figure 4.2. Left: 31P NMR of 4.2H reaction mixture (top) and purified 4.2 (bottom). Right: IR spectrum 
of purified 4.2H (top) and 4.2 (bottom). 

Network 4.2H was subjected to a second hydrophosphination reaction with 1-hexene and AIBN as a 

thermal initiator in order to convert the primary and secondary phosphines to tertiary (Scheme 4.3). 

After workup, the resulting colourless oil showed no P-H stretches in the IR spectrum and only one 

singlet indicative of tertiary phosphine was observed in the 31P NMR spectrum (Figure 4.2). The broad, 

amorphous melting temperature centered at -90 °C, observed for 4.2H using DSC, could be justified by 

the mixture of chemical environments in the material. This broad feature transforms into a sharp glass 

transition onset temperature in 4.2. Leaching of low molecular weight oligomers and swelling 

experiments on 4.2 were impossible due to its solubility.  
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4.3 Preliminary Functionalization with Antimony Lewis Acids 
The swellability of 4.1 was not only important for the ease of material characterization, it also opened 

an avenue for monitoring changes at the tertiary phosphine sites in situ. As proof of principle, network 

4.1 was swelled in CH2Cl2 solutions of SbClPh2 and trimethylsilyl trifluoromethanesulfonate in 

different stoichiometric ratios to give new, polynuclear networks of 4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb 

(Scheme 4.4). The reaction stoichiometries were chosen to align with established molecular, model 

compounds [Ph2Sb(PMe3)2][OTf] and [Ph2Sb(PMe3)][OTf], for which 4.1(Sb)0.5 and 4.1Sb were the 

respective analogues.  The small molecule to network comparison was verified by the chemical shift 

difference (Dd) observed in the 31P{1H} NMR spectra and using XANES spectroscopy, measured 

relative to the uncoordinated phosphines, network 4.1 and PMe3, respectively (Table 4.1). 

 

Scheme 4.4: Synthetic route to stibino-phosphonium photopolymer networks, 4.1(Sb)0.5, 4.1(Sb)0.75 and 
4.1Sb, [X]- = [OTf]-. 
 

Both the small molecule model ([Ph2Sb(PMe3)][OTf]) (δP = -21.2 ppm)48 and polymer network 

4.1Sb (δP = 10.1 ppm) shifted by 40 ppm downfield relative to the uncoordinated phosphines (PMe3 and 

4.1; δP = -62 and -34.4 ppm, respectively). These data combined with the reaction stoichiometry 

indicated that 4.1Sb had a stibino-phosphonium structure. The more inductively donating 3° phosphine 

sites in 4.1 relative to PMe3 explained why the difference in chemical shift between 4.1(Sb)0.5 (δP = -3.5 
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ppm) and 4.1 was 10 ppm greater than the difference between [Ph2Sb(PMe3)2][OTf] (δP = -41.3 ppm)48 

and free PMe3. This discrepancy was however small and likely unimportant given the broad signal for 

4.1(Sb)0.5.  It was clear that the spectrum for 4.(Sb)0.75 was simply a mixed polymer containing the 

presence of both 4.1(Sb)0.5 and 4.1Sb (Figure 4.4). 

 

Figure 4.3: Stacked 31P{1H} NMR solution NMR spectra of 4.1, 4.1(Sb)0.5 and 4.1Sb in different 
solvents showing a qualitative relationship between molar swellability (mol/g) and line width. 
Exceptions are a result of limited solvation. 

The Tg of 4.1Sb decreased from that of 4.1 by 14 °C with the introduction of the stibino- 

fragment, which was expected as the presence of a [Ph2Sb+] fragment perturbed the network. However, 

the measured Tg of 4.1(Sb)0.5 increased by 25 °C relative to 4.1, and was consistent with increased 

crosslinking and a decreased mobility of polymer chains. This further corroborated that 4.1(Sb)0.5 

contains cationic stibino-bis(phosphonium) sites and also rationalized the broadened signals in the NMR 

spectra. The intermediate transition (43 °C) for 4.1(Sb)0.75 corroborated its hybrid composition. 

The swellability of 4.1(Sb)0.5 and 4.1Sb was measured for different solvents. The magnitudes 

were found to be significantly different from 4.1 with the following hierarchies:  

4.1(Sb)0.5: MeCN > CH2Cl2 > THF > Pentane > Et2O > Toluene 

4.1Sb: MeCN > CH2Cl2 > Pentane > THF > Et2O > Toluene 

The change in line-width for 4.1(Sb)0.5 was a hallmark of the added crosslinking within the material 

facilitated by the bis-coordination at Sb.  These molar swellability hierarchies qualitatively matched 
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with the observed line-width with one exception. The molar swellability for 4.1Sb is higher in pentane 

than THF, yet THF gives a solution NMR spectroscopic signal, while the pentane spectrum is silent 

(Figure 4.3). This observation is congruous with the solubility of the molecular model 

[Ph2Sb(PMe3)][OTf], which is soluble in THF, but not pentane and once again emphasized the 

importance of swellability combined with chain solvation in order to obtain a signal. 

Table 4.1: P K-edges for model compounds and stibino-phosphonium photopolymer networks. 

Compound Δδ (ppm) P K-edge (eV) ∆E (eV) 

4.1 
- 2145.50 - 

4.1(Sb)0.5 
30 2145.50 (4.1), 

2147.15 
1.65 

4.1(Sb)0.75 
30 (4.1(Sb)0.5) 

40 (1Sb) 
2145.50 (4.1), 

2147.45 
1.95 

4.1Sb 
40 2147.00 1.50 

[Ph2Sb(PMe3)2][OTf] 
20 2145.65 (PMe3), 

2147.00 
1.35 

[Ph2Sb(PMe3)][OTf] 
40 2145.65 (PMe3), 

2147.30 
1.65 

PPh3 
- 2145.05 - 

[Ph2Sb(PPh3)2][OTf] 
0 2145.50 0.45 

[Ph2Sb(PPh3)][OTf] 
0 2145.65 0.60 

Networks 4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb were pyrolyzed using optimized conditions at 800°C 

for 4 hours under reducing conditions (5% H2, balanced by N2). The amount of Sb in the bulk char 

material formed from 4.1Sb (2.6%) was twice that of 4.1(Sb)0.5 (1.3%), and char from 4.1(Sb)0.75 (2.3 

%) had an intermediate amount, consistent with the order of Sb in the polymer precursors. The char 

yields of the stibino-phosphonium networks were higher than that of 4.1 (9.16%) with values of 

13.70%, 13.39% and 17.30% for 4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb, respectively.  This was also an 

indication that the inorganic elements were retained in the char after pyrolysis and underscored the 

utility of coordination chemistry to introduce and control elemental diversity. 

XPS revealed that the char was composed from a mixture of metallic Sb and Sb2O3. Chars from 

4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb are also composed of C (86.1, 83.0 and 84.9%), N (4.6, 3.6 and 4.3%), 

O (7.1, 10.1 and 7.7%) and P (1.0, 0.7 and 0.4%), respectively. The C content was high despite the 

reducing conditions and the presence of N and O is attributed to the TTT backbone of the polymer 
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precursor. Interestingly, the presence of O also explained the low P content relative to Sb. Given the 

highly oxophilic nature of P, the formation of P4O10 and its sublimation (360 °C) during the pyrolysis 

experiment was likely.26 This was corroborated by the XPS data that showed the identity of P in the char 

to be phosphate. The PXRD patterns for all three materials matched that of Sb metal53 with no 

superimposed sharp signals, indicating all other components of the char were amorphous. The char 

could be characterized as doped carbon black with low crystallinity based on the high C content, broad 

low angle signals (<100° 2θ) in the PXRD pattern and the presence of carboxyl, ketone, alcohol and 

ether C XPS signals typical of carbon black.54  

 

Figure 4.4: A) DSC plots, for 4.1 and stibino-phosphonium polymer networks. Tg onset temperatures 
are marked in red. B) 31P{1H} NMR spectra for 4.1 and stibino-phosphonium networks (pictures inset) 
of 4.1(Sb)0.5 (yellow) and 4.1Sb (colourless) swelled with CH2Cl2 in NMR tubes. 

X-ray absorption near edge structure (XANES) spectroscopy was used to characterize the 

electronic structure of P in the model compounds and functionalized networks by measuring the P K-

edge. Given that the P atoms in [Ph2Sb(PMe3)2][OTf] were more electron rich compared to those in 

[Ph2Sb(PMe3)][OTf] the distinction was manifested in the XANES spectra of the materials as the edges 

shifted by 1.35 and 1.65 eV relative to PMe3, respectively. The PPh3 analogues of these two compounds 

showed the same trend, where [Ph2Sb(PPh3)2][OTf] had a lower edge energy than [Ph2Sb(PPh3)][OTf], 

however the magnitude of the edge shift was drastically lower at 0.45 eV and 0.60 eV relative to 

uncoordinated PPh3, respectively (Table 4.1). This followed the greater sigma donor strength of PMe3 

relative to PPh3, and therefore PMe3 became more electron poor than PPh3 upon coordination and is a 
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signpost that the donor ability of the phosphine must be considered when comparing model compounds 

to polymer networks.55 

Network 4.1Sb had an edge shift of 1.50 eV relative to 4.1, which was comparable to the 1.65 

eV edge shift of [Ph2Sb(PMe3)][OTf] from PMe3. Networks 4.1(Sb)0.5 and 4.1(Sb)0.75 had edge shifts of 

1.65 and 1.95 eV relative to 4.1, respectively. In this case, the edge shifts were higher than expected 

based on the observed trends in the model compounds and the macromolecular structure of the materials 

must be taken into account. Crosslinking inherently elongates the involved polymer chains. In the case 

of 4.1(Sb)0.5, the Sb coordination environment further crosslinked the network. As a result of these 

lengthened polymer chains, the phosphines in 4.1(Sb)0.5 became more inductively donating and 

therefore exhibited a larger than expected edge shift relative to 4.1. Since 4.1(Sb)0.75 was a hybrid 

material of 4.1(Sb)0.5 and 4.1Sb, the phosphines were more electron donating due to the crosslinked 

environments from stibino-bis(phosphonium) sites and consequently there was a greater sigma-donation 

at the stibino-mono(phosphonium) sites compared to 4.1Sb, where there was no additional crosslinking. 

It was likely that the edge energies for the stibino-mono and -bis(phosphonium) environments were 

energetically similar as indicated by the single broad edge feature in the first derivative XANES 

spectrum. 

4.4 Functionalization with Phosphorus Lewis Acids  
The ability to tune the physical properties and electronic structure of 4.1 by biasing the reaction 

stoichiometry with Sb was an unexpected result that piqued our curiosity. We wanted to see if similar 

results could be reproduced with other elements. Pnictino(phosphonium) chemistry is known from 

phosphorus through to bismuth.48,49,56,57 With the bismuth derivatives being light sensitive and there 

being no reports of arsino-bis(phosphonium) cations, we focused our efforts on targeting 

phosphino(phosphonium) cation functionalized photopolymer networks.  

The dimethyl analogue, 4.1PMe2 was synthesized by swelling 4.1 in a dichloromethane solution 

of trimethylsilyl trifluoromethanesulfonate and chloro(dimethyl)phosphine for one week (Scheme 4.5). 

After workup, the solution NMR spectrum of the gel revealed two doublets (δP = 26.0, -58.4 ppm; 1JPP = 

307.4 Hz) with comparable chemicals shifts to the small molecule analogue, [(PMe3)(PMe2)][OTf] (δP = 

18, -60 ppm; 1JPP = 275 Hz; Figure 4.5).56 The larger coupling constants in 4.1PMe2 could be attributed 

to the higher inductive effect from the longer alkyl chains that comprise the polymer network backbone.  
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Scheme 4.5: Synthesis of 4.1PMe2, 4.1PPh2 and 4.2P as well as attempted routes to phosphino-
bis(phosphonium) dicationic polymer networks. 

The same reaction was attempted with 4.1 combined with chloro(diphenyl)phosphine and 

trimethylsilyl trifluoromethanesulfonate but did not proceed cleanly and the resulting gel could not be 

purified. Network 4.1PPh2 was synthesized cleanly in a ligand exchange reaction of 4.1 with 

[(PPh3)(PPh2)][OTf] (Scheme 4.5). The PPh3 could be leached out and the 31P{1H} NMR spectrum of 

the clean material revealed two doublets (δP = 24.3, -27.1; 1JPP = 324.6 Hz) with chemicals shifts 

consistent with [(PMe3)(PPh2)][OTf] (δP = 15, -23 ppm; 1JPP = 289 Hz; Figure 4.5).57 Again, the larger 

coupling constant was an indication of the stronger P–P interaction brought on by the stronger inductive 

effect of the polymer network. The 19F{1H} NMR spectrum for both 4.1PMe2 and 4.1PPh2 (δF = -78.6 

ppm for both) was consistent with the non-coordinating triflate in the molecular analogues.   
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Figure 4.5: Stacked 31P{1H} NMR spectra of 4.1PMe2 (bottom left) and 4.1PPh2 (bottom right) with 
their respective molecular analogues. 

The glass transition onset temperatures of 4.1PMe2 and 4.1PPh2 (Tg = 82.7 and 96.7 °C, 

respectively) increased relative to native 4.1. This was contrary to the analogous network 4.1Sb, which 

showed a decrease. It is likely that the phosphino group imposes an ionic component on the material, 

decreasing chain mobility, whereas the much higher polarizability of Sb diffuses the positive charge 

enough to minimize these ionic forces.  

In order to crosslink the material we looked to the known phosphino-bis(phosphonium) 

dications.58 Both halide abstraction and ligand exchange reactions were attempted with 4.1 to no avail 

(Scheme 4.5). Any attempts to synthesize a phosphino-bis(phosphonium) functionalized network were 

met with futility as the reactions did not proceed cleanly and the nature of the crosslinked material 

prevented straight forward purification. Triphosphenium cations are another well-established form of 

cationic phosphorus supported by phosphine ligands and this functionality was also investigated for 

crosslinking the networks.59–61 

Triphosphenium cations can be synthesized by reduction of phosphorus (III) halides in the 

presence of two stoichiometric equivalents of tertiary phosphine and cyclohexene, where the latter acts 

as a scavenger for the elemental halogen byproduct.59,61 When 4.1, 4.2 and POct3 were reacted with 

PBr3 and cyclohexene, the result was an insoluble orange precipitate, usually attributed to red 

phosphorus and was a sign of over reduction. Reactivity studies of triphosphenium cations have shown 
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that they can act as a P(I) transfer reagent.36–39 The superior sigma donating alkyl phosphines, 4.1, 4.2 

and PMe3 were reacted with [P(dppe)][BPh4] to replace the aryl phosphines in 1,2-

bis(diphenylphosphino)ethane (dppe; Scheme 4.5). While the material changed from colourless to red 

overnight after addition, no significant change was observed by NMR spectroscopy for this reaction 

using 4.1. The reaction with 4.2 resulted in the formation of a gel, which could be probed using solution 

NMR spectroscopy. The 31P{1H} spectrum revealed the release of dppe and the formation of a new 

doublet (d, 33.2 ppm, 1JPP = 469.2 Hz; Figure 4.6). The coupling constant and chemical shift was 

consistent with those of the molecular analogue, [P(POct3)2][BPh4] (d, 33.2, t, -230.2 ppm, 1JPP = 477.3 

Hz). The newly formed network precipitated from solution during workup and became completely 

insoluble. The solid was analyzed by solid state NMR spectroscopy, which revealed two broad signals 

in the expected chemical shift range for both the supporting phosphines and phosphanide center (Figure 

4.6).  

 

Figure 4.6: Stacked NMR spectra of the reaction mixture for 4.2P (top), [P(POct3)2][BPh4] (middle) 
and isolated solid state 4.2P. 
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Despite the additional crosslinking in 4.2P (Tg = -114 °C) relative to 4.2 (Tg = -90 °C), the glass 

transition temperature decreased by 24 °C. This could be justified by the steric imposition of the 

tetraphenylborate anion and bent structure of the phosphanide center, which would both decrease the 

polymer chains’ ability to pack into a glassy state. An investigation on the electronic structure in the 

molecular [P(P(POct3)2][BPh4] and macromolecular 4.2P is currently underway.  

4.5 Functionalization with Metallic Lewis Acids 
In order to demonstrate the versatility of 4.1 and the potential for installing a highly versatile 

complement of elements, the network was reacted with different metallic Lewis acids namely, AlMe3, 

AlMe2Cl, GeCl2(dioxane) and CpCo(CO)2 (Scheme 4.6). Slight phosphorus chemical shift differences 

between free phosphine and aluminum adducts are typical,66 for example when 4.1 was reacted with 

trimethylaluminum and chlorodimethylaluminum, the 31P NMR spectroscopic signal shifted by 4 ppm 

to higher frequency and indicated successful adduct formation of networks 4.1AlMe3 and 4.1AlMe2Cl, 

respectively. The appearance of a low frequency singlet (δC ≈ -7 ppm) in the carbon NMR spectrum of 

both networks is characteristic of a methyl group bound to an electropositive main group center and 

corroborated adduct formation.66 The higher char yield of 4.1AlMe2Cl (52.8 %) relative to 4.1AlMe3 

(41.0 %) is consistent with the presence of the heavy chlorine atoms in the polymer precursor, which 

was confirmed by EDX spectroscopy. 

 

Scheme 4.6: Metal functionalization by coordination of phosphane-ene networks 4.1 and 4.2. 

Network 4.1 was reacted with GeCl2(dioxane) in 1:0.5, 1:1 and 1:5 stoichiometries, always with 

the complete conversion of the native phosphine and appearance of a single broad signal in the 31P 
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NMR spectrum (δP = -4.0 ppm; Figure 4.7) to give 4.1GeCl2. Complete conversion of the phosphine 

using only half an equivalent of the germanium starting material points to crosslinking at germanium as 

was previously observed in stibino-bis(phosphonium) networks.46 This was corroborated by the 43 °C 

increase in glass transition temperature from native to coordinated phosphine, which was indicative of 

the decreased mobility of the polymer chains crosslinked by germanium (Figure 4.7). The relatively low 

char yield of 26.2 % could be attributed to the low stoichiometry of Ge in the material. 

 

Figure 4.7: Stacked DSC plots (left) and 31P{1H} NMR spectra (right) of 4.1 (top) and 4.1GeCl2 
(bottom). 

Network 4.1 was refluxed in a THF solution with either half or one stoichiometric equivalent of 

cyclopentadienylcobalt dicarbonyl for one week to give a red polymer gel post work up 

(4.1(CpCoCO)0.5 and 4.1CpCoCO, respectively). Both materials displayed a single metal carbonyl 

stretch in the IR spectrum (νCoCO ≈ 1907 cm-1) as well as a singlet in the 31P{1H} NMR spectra (dP=51 

ppm). While this was the sole signal for 4.1CpCoCO, 4.1(CpCoCO)0.5 displayed a second singlet (δP = 

-35ppm) of approximately equal intensity, which corresponded to unreacted P sites within 4.1 (Figure 

4.8A). The 13C{1H} NMR spectra for both cobalt functionalized networks displayed signals that 

corresponded to the metal carbonyl and metal bound cyclopentadienyl groups (δC ≈ 208, 81 ppm, 

respectively). The EDX data for both networks confirmed the presence of cobalt. Together these data 

pointed to the addition of a [CpCoCO] moiety to 4.1, with all phosphines coordinated in 4.1CpCoCO 
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and approximately half coordinated in 4.1(CpCoCO)0.5, showing that the M:P ratio in the polymer 

precursor could be easily regulated by adjusting the reaction stoichiometry. These results were echoed 

by the thermal data, which showed a lower char yield for 4.1(CpCoCO)0.5 relative to 4.1CpCoCO 

(26.2 and 33.2 %, respectively), indicative of the lower concentration of cobalt in the polymer precursor. 

The glass transition temperatures of 4.1(CpCoCO)0.5 and 4.1CpCoCO decreased relative to 4.1 (30, 27 

and 48 °C, respectively), consistent with a disruption in polymer chain packing that would arise from 

the addition of a [CpCoCO] fragment. The glass transition temperature of 4.1CpCoCO was slightly 

more depressed than that of 4.1(CpCoCO)0.5, consistent with a larger amount of organometallic moiety. 

 

Figure 4.8: A) Stacked 31P{1H} NMR spectra of 4.1(CpCoCO)0.5 (top) and 4.1CpCoCO (bottom); B) 
IR spectrum of 4.2CpCoCO; C) Carbonyl region from the 13C{1H} NMR spectrum of 4.2CpCoCO 
showing P-C J coupling. 

An effort was made to crosslink the material at cobalt by ejecting carbon monoxide from 

4.1(CpCoCO)0.5. This was attempted thermally and photochemically, either in solution or the solid state 

with the result of either no reaction, or the deposition of cobalt metal.  

Previous work in using phosphorus-based photopolymer networks as ceramic precursors has 

shown utility in producing carbon doped with a mixture of metal phosphides and oxides, where the 

oxides result from a high portion of O in the network backbone.26,46 As the backbone degrades and 

releases oxygen, it reacts with the oxophilic elements to form phosphate and metal oxides. The obvious 
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solution to this problem was to eliminate heteroatoms from the polymer backbone. Since most 

photopolymerizable groups contain heteroatoms, thermally initiated hydrophosphination was used to 

make network 4.2 with an “all-alkyl” backbone 

In a similar fashion to the production of 4.1CpCoCO, network 4.2 was refluxed in a THF 

solution of cyclopentadienylcobalt dicarbonyl for one week to give 4.2CpCoCO. Removal of the 

volatiles from the reaction mixture resulted in a red oil, which after trituration with hexanes, yielded a 

red gel. The glass transition onset temperature of 4.2CpCoCO was -19 °C, more than 70 °C higher than 

that of 4.2. 

Network 4.2CpCoCO displayed similar spectroscopic handles to those in 4.1CpCoCO. There 

was one signal (νCoCO = 1903 cm-1, Figure 4.8B) in the metal carbonyl region of the IR spectrum, which 

confirmed the removal of excess CpCo(CO)2 and the presence of a single metal carbonyl functional 

group. The 31P{1H} NMR chemical shift (δP = 49.9 ppm) was consistent with that of 4.1CpCoCO and 

the carbon NMR spectrum revealed a doublet (δC = 207.3 ppm, 2JCP = 40.2 Hz; Figure 4.8C) consistent 

with the carbonyl carbon coupling with the phosphorus. The singlet at δC=80.5 ppm was consistent with 

the presence of a coordinated cyclopentadienyl ring and corroborates the IR data that indicated the 

addition of a CpCoCO fragment to the material. The char yield of 4.2CpCoCO (27.6 %) was low 

relative to 4.1CpCoCO (33.2 %), likely a result of the higher molecular weight of the alkyl backbone. 

4.6 Ceramic Morphology and Composition 
Networks 4.1AlMe3 and 4.1CpCoCO were selected for pyrolysis experiments because of their high 

char yields. The functionalized polymer networks were pyrolyzed at 800, 900 and 1000 °C for either 3 

or 4 hours under reducing conditions (5% H2, balanced by N2). The resulting char was analyzed using 

EDX and XPS to assess composition as well as SEM and PXRD to probe the morphology.  

Table 4.2. XPS composition data for char derived from the pyrolysis of 4.1AlMe3 at 800 °C for 4 hours. 
Area % is derived from the P XPS. 

Area % Atomic % 

Phosphate 
Al O C N P 

100.0 
20.0 40.0 37.0 2.5 0.5 

The black char that resulted from the pyrolysis of 4.1AlMe3 was amorphous given the broad 

PXRD signals observed as well as the porous, non-uniform structure noted in the SEM images (see SI). 

On average, the chars formed at different conditions were found to be composed of 20% aluminum, 
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40% oxygen, 37% carbon, 2.5% nitrogen and 0.5% phosphorus by XPS (Table 4.2). The low 

phosphorus content can be attributed to its oxophilic nature and conversion to volatile P4O10 upon 

reaction with the oxygen contained in the polymer backbone as it decomposes. This hypothesis was 

corroborated by the XPS data which revealed 100% of P in the material to be phosphate. The presence 

of Al(III), as Al2O3 was also a result of the oxophilicity of aluminum. These data best characterize the 

char as a mixture of aluminum oxide and carbon black doped with nitrogen and phosphate. 

Table 4.3. XPS composition data for char derived from the pyrolysis of 4.1CoCoCO and 4.2CpCoCO 
at 800 °C for 4 hours. Area % is derived from the Co XPS. 

 Component 4.1CpCoCO 4.2CpCoCO 

Area % 
Co2P 8.4 25.9 
Co3(PO4)2 94.0 74.0 

 
 
Atomic 
% 

C 79.1 68.5 
O 12.9 14.5 
N 1.8 3.0 
Co 2.5 6.9 
P 3.0 6.7 

Similarly, when 4.1CpCoCO was pyrolyzed, a black amorphous char resulted based on broad 

PXRD and SEM data. The chars formed at different conditions were similar, and on average were 

composed of 2.5% cobalt, 83.5% carbon, 10% oxygen, 2.5% phosphorus and 1.5% nitrogen by XPS 

(Table 4.3). The high carbon content in these samples pointed to doped carbon black. Interestingly, the 

oxygen content in this char was much lower than the aluminum functionalized samples however, no 

cobalt oxide was formed and the state of cobalt was found to be a mixture of ~90% cobalt (II) phosphate 

and ~10% cobalt (I/II) phosphide (Co2P; Table 4.3). The P 2p XPS revealed the presence of phosphate 

and phosphide binding energies at 132.9-133.5 and 129.0-129.6 eV, respectively. There was an 

additional binding energy at 131.2-132.0 eV, which was consistent with P(III) incorporated as a dopant 

in the carbon black.67,68 

The char from 4.1CpCoCO confirmed the possibility of making metal phosphides using these 

polymers as precursors, yet the oxygen contained in the polymer backbone was clearly detrimental as 

element oxidation was dominant. In contrast, pyrolysis of network 4.2CpCoCO showed that replacing 

the polymer backbone with alkyl chains was effective in increasing the amount of phosphide (25.9%) 

relative to phosphate (74.0%; Table 4.3). Despite the relatively low char yield, the char derived from 

4.2CpCoCO contained more than double the amount of P and Co than the char derived from 

4.1CpCoCO and the ratio of P to Co of 1:1 from the polymer precursor was manifested in the char after 

pyrolysis, showing retention of the desired inorganic elements and a degree of control over ceramic 

composition. 
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4.7 Patterning and Shape Retention 
Thin films of 4.1 were cast by spin coating the neat formulation, 4.1u onto silicon wafers in the 

glovebox and curing with UV irradiation in the inert cell from Figure 2.1 to give 4.1thin. The material 

was determined to have the same IR and 31P{1H} NMR spectroscopic signatures as the bulk material of 

4.1 as well as the same susceptibility to solution chemistry with trimethylaluminum.  

 

Scheme 4.7: Patterning, metal functionalization, workup and pyrolysis of phosphane-ene thin film, 
4.1thin. 

Network 4.1thin was tested as a positive resist for electron beam lithography (EBL), which is a 

good technique to use in prototyping small scale patterns.69 Arrays of squares were scribed onto 4.1thin 

using varied electron doses (1.00, 1.50, 2.25, 3.38, 5.06, 7.59, 11.39, 17.09 and 25.63 μC/cm2). 

Patterned 4.1thin was then functionalized with trimethylaluminum solution, followed by a toluene wash, 

then allowed to dry before being loaded into the tube furnace for pyrolysis (Scheme 4.7). Confocal 

microscopy and SEM Analysis of the patterned, metallized and pyrolyzed film showed excellent shape 

retention of the square array and definitive elemental segregation with Al present in the areas where the 

film was left intact and found in trace amounts where the beam wrote (Figure 4.9). Overall, the material 

was found to be sensitive to the electron beam relative to standard polymethylmethacrylate and the 

optimal dose was found to be between 3.38 and 5.06 μC/cm2. This dose range was effective at 

degrading the polymer network and resulted in well resolved square edges. 

In tribute to the indie rock band Tokyo Police Club (TPC), selected, modified album covers were 

chosen for EBL patterns (Figure 4.10). It was also necessary to pay tribute to the paradigm of shape 

retention, the fossil, and so a raptor fossil and primitive T-rex image were patterned onto a sample of 

4.1thin in order to explore the shape retention limits of the material upon pyrolysis. 
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Figure 4.9: Network 4.1thin after being patterned by EBL, functionalized with AlMe3 and pyrolyzed. A) 
Optical microscope image of bottom four rows; B) SEM image with highlighted EDX spectrum 1: 32.07 
% (C); 19.21 % (O); 5.67 % (Al); 42.44 % (Si), 0.61 % (P). EDX spectrum 2: 23.72 % (C); 53.63 % 
(O); 21.30 % (Al); 1.36 % (Si). C) SEM image; D) list of doses used for the 5x5 array of 4x4 squares. 
Zoom SEM images of 4x4 square arrays written at different doses: E) 1.000 μC/cm2; F) 3.375 μC/cm2; 
G) 5.062 μC/cm2; H) 25.629 μC/cm2. 
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Figure 4.10: Patterned, metallized and pyrolyzed 4.1thin. From left to right: “TPC,” “A Lesson in 
Crime” and “Elephant Shell” (5.00 μC/cm2) album covers, raptor fossil and T-rex (3.75 μC/cm2). From 
top to bottom: Patterns used for EBL, confocal microscope pictures, SEM images, EDX maps of Al 
(red), Si (yellow), O (pink) and C (blue). 

Once patterned, the film was functionalized as described above. After pyrolysis, the films were 

imaged, and aside from some areas of delamination, the inscribed shapes survived the solution 

chemistry modification and subsequent pyrolysis showing remarkable resilience. The confocal 

microscope images in Figure 4.10 reveal that the thin ceramic films reflected a wide spectrum of 
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colours, indicative of small variations in film thickness, which were present in the films before pyrolysis 

(1.41 ± 0.43 μm). This phenomenon was particularly exaggerated for the “TPC” album cover and 

primitive T-rex image. Overall the SEM images demonstrated good resolution of shape retention across 

all images. In particular, it is possible to read the fine text that is embedded in the circles on the 

“Elephant Shell” album cover and the raptor fossil is very nicely articulated. Figure 4.10 shows 

delamination of part of the “A Lesson in Crime” album cover, but otherwise good articulation of the 

wording, burning building, robot and blimp features! 

4.8 Conclusion 
We prepared stibino-phosphonium networks with varying stoichiometries by post 

polymerization functionalization of tertiary phosphane-ene photopolymer networks. The NMR and 

XANES spectroscopic data of the functionalized networks was compared to that of structurally 

characterized small molecules and was found to match closely to stibino-mono(phosphonium) and 

stibino-bis(phosphonium) environments. The thermal data not only corroborates these structures, but 

also demonstrates how the physical properties of the networks can be tuned by controlling the types and 

number of stibino-phosphonium environments in the network through simple coordination chemistry. 

Functionalized networks 4.1(Sb)0.5, 4.1(Sb)0.75, and 4.1Sb contain increasing amounts of Sb, which is 

manifested in the post-pyrolysis materials, showing that the composition of the polymer precursor 

influences the composition of the char.  

The phosphane-ene platform is a promising material to that allowed for diverse control over 

composition through coordination to low valent phosphorus-based cations as well as Al, Ge and Co 

Lewis acids and tested the suitability of the material as precursors to metal-containing ceramics. The 

resulting ceramics were found to be largely composed of carbon yet doped with the metals in question 

as well as N and P heteroatoms, which are attractive qualities of carbon in the field and battery and fuel 

cell development. It is noteworthy that the polymeric material used in this context can be made from 

neat, commercially available reagents and can be easily purified, putting phosphane-ene based ceramic 

precursors ahead of MOFs in terms of their scalability.  

The material also displays phenomenal shape retention properties after patterning, metallization 

and pyrolysis. Given the ease of incorporating different elements into phosphane-ene polymer networks 

and the many ways in which photopolymers can be patterned,70–72 this methodology could be useful to 

the IT industry’s search for new spintronic materials.  
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In the end we describe a polymeric material that can be easily shaped and functionalized through 

the rich coordination chemistry of alkyl phosphines. We are currently working on improving our control 

over ceramic composition through tuning of the polymer backbone in order to apply the methodology to 

a broader range of ceramics. 

4.9 Instrumentation  
Solution state nuclear magnetic resonance (NMR) spectroscopy was either conducted on a Varian 

INOVA 400 MHz spectrometer, or a Bruker AVANCEIII HD 400 spectrometer which utilizes an H/FX 

Bruker 5mm Smart Probe with automated tuning and matching (1H 400.09 MHz, 11B{1H} 128.25 MHz, 
13C{1H} 100.53 MHz, 19F{1H} 376.32 MHz, 31P{1H} 161.82 MHz). All 1H and 13C{1H} spectra were 

referenced relative to residual solvent signal. The chemical shifts for 19F{1H} and 31P{1H} spectra were 

referenced using external standards; α,α,α–trifluorotoluene (δF = -63.9 ppm) and 85% H3PO4 (δ = 0 

ppm), respectively. Solid state NMR experiments were conducted on a Varian Infinity Plus 400 MHz 

spectrometer (11B 128.00 MHz, 31P 160.73 MHz). ATR-IR experiments were conducted using a Perkin 

Elmer UATR Two spectrometer. A high intensity single arc mercury lamp (23.3 mW) was used as the 

light source for photopolymerization. A SDT Q600 thermogravimetric analyzer (TGA) was used to 

determine char yields. A TA Q20 differential scanning calorimeter (DSC) was used to determine glass 

transition temperatures (Tg) with a ramp rate of 40 °C per minute. All Tg values are reported using the 

onset temperature from the last heating cycle. P K-edge and Sb L-edge X-ray absorption near edge 

structure (XANES) experiments were performed at the soft X-ray microcharacterization beamline 

(SXRMB) at the Canadian Light Source (CLS) in Saskatoon, Canada. For XANES, two scans were 

recorded and averaged for each sample. A Hitachi 3400n SEM instrument was used to collect scanning 

electron microscopy (SEM) images and energy dispersive X-ray (EDX) spectra. X-ray photoelectron 

spectroscopy (XPS) was performed using a Kratos AXIS Nova Spectrometer. An Intel CPS Powder 

Diffractometer was used with Cu K-α radiation to collect powder X-ray diffraction (PXRD) data. The 

diffraction patterns were assigned using the ICSD database and Match! software. Network 4.1thin was 

patterned using a Zeiss 1530 e-beam Lithography instrument with a 5-axis stage. Pyrolyzed thin films 

were coated with Os using a STS PECVD instrument equipped with OsO4 before imaging by SEM. 

4.10 Reagents and Synthesis 
All manipulations were performed in a nitrogen filled MBraun Labmaster dp glovebox or by using 

standard Schlenk techniques. All solvents were purchased from Caledon and dried using an MBraun 

controlled atmosphere solvent purification system and stored in Straus flasks under an N2 atmosphere or 
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over 4 Å molecular sieves. Monoisobutylphosphine and phosphine gas were donated by Solvay and 

cyclopentadienylcobalt dicarbonyl (CpCo(CO)2) was donated by Digital Specialty Chemicals and were 

used as recieved. Irgacure 819 (Ciba Chemicals), 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione 

(TTT) (Sigma Aldrich), trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) (Sigma Aldrich), 

chloro(dimethyl)phosphine (Alfa Aesar), germanium(II) chloride dioxane complex (1:1) (GeCl2(diox)) 

(Gelest), 2.0 M trimethylaluminum (AlMe3) solution in toluene (Sigma Aldrich), 1.0 M 

chlorodimethylaluminum (AlMe2Cl) solution in hexanes (Sigma Aldrich), 1,7-octadiene (Sigma 

Aldrich) and 1-hexene (Alfa Aesar) were used as received. Azobisisobutyronitrile (AIBN, DuPont) was 

recrystallized from methanol before use. SbClPh2, [Ph2Sb(PMe3)][OTf], [Ph2Sb(PMe3)2][OTf], 

[(Ph2P)(PPh3)][OTf] and [P(dppe)][BPh4] were prepared by following literature procedures.48,57,59,73 

[Ph2SbPPh3][OTf] and  [Ph2Sb(PPh3)2][OTf] were prepared by a modification from the literature.49 The 

preparation of [Ph2Sb(PPh3)][OTf] and [Ph2Sb(PPh3)2][OTf] was modified from the literature to give a 

[OTf]- instead of a [PF6]- anion.49 

4.1: Monoisobutylphosphine (2.3521 g, 26.12 mmol) was combined with TTT (8.6803 g, 34.82 mmol) 

neat in a vial. Irgacure 819 (0.0552 g, 0.5 wt%) was dissolved into the mixture to give a pale yellow 

liquid (4.1u). The vial was sealed and irradiated with ultraviolet light for ten minutes and cycled back 

into the glovebox. The vial was broken apart to release one solid piece of polymer network 4.1 in the 

shape of the inside of the vial. Polymer network 4.1 was a transparent pale yellow brittle solid that could 

be broken down using a mortar and pestle (4.1c). The ground polymer was leached overnight using 

dichloromethane (20 mL). The supernatant was decanted and the leaching process was repeated twice 

before the solids were dried in vacuo to give a colourless transparent solid. The 31P{1H} NMR (161.8 

MHz): δ = -34.4 ppm; FT-IR (ranked intensity): ν = 733.3 (8), 763.0 (3), 930.3 (7), 992.3 (10), 1054.0 

(15), 1101.5 (13), 1165.7 (14), 1318.0 (5), 1368.3 (6), 1451.8 (2), 1678.0 (1), 2868.5 (12), 2953.7 (4), 

3596.4 (9), 3726.1 (11) cm-1; Char yield = 9.16 %; Decomposition onset = 316 °C; Tg onset = 48 °C. 

Stibino-phosphonium photopolymer network general procedure:  

Trimethylsilyl trifluoromethanesulfonate was added to a dichloromethane solution of SbClPh2. This 

solution was added to 4.1 and allowed to stand for seven days in the dark. The supernatant was decanted 

and unreacted material was leached overnight using dichloromethane (20 mL). The supernatant was 

decanted and the leaching process was repeated twice followed by drying the solids in vacuo. Dried 

solids were stored in the dark.  
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4.1(Sb)0.5: A dichloromethane solution (20 mL) of SbClPh2 (0.1713 g, 0.55 mmol, 1.0 equiv.) and 

Me3SiOSO2CF3 (0.157 mL, 0.87 mmol, 1.5 equiv.) was added to 4.1 (0.4867 g, ca. 1.15 mmol, ca. 2.0 

equiv.). After work up the network was transparent and yellow. 31P{1H} NMR (161.8 MHz): δ = -3.5, -

34.4 ppm; 19F{1H} NMR (376.3 MHz): δ = -78.8 ppm; FT-IR (ranked intensity): ν = 635.9 (2), 695.6 

(10), 732.4 (8), 764.6 (6), 925.4 (12), 1028.6 (4), 1151.6 (7), 1223.1 (9), 1255.4 (5), 1321.9 (11), 1375.0 

(14), 1454.1 (3), 1551.1 (15), 1675.4 (1), 2963.9 (13) cm-1; Char yield at 800 °C, t = 0 = 21.46 %; Char 

yield at 800 °C, t = 3 hours = 13.70 %; Decomposition onset = 180 °C; Tg onset = 73 °C. 

4.1(Sb)0.75: A dichloromethane solution (20 mL) of SbClPh2 (1.5573 g, 5.00 mmol, 2.0 equiv.) and 

Me3SiOSO2CF3 (1.3 mL, 7.4 mmol, 3.0 equiv.) was added to 4.1 (1.0378 g, ca. 2.46 mmol, ca. 1.0 

equiv.). After work up the network was transparent and colourless. 31P{1H} NMR (161.8 MHz): δ = 

10.9, -2.2 ppm; 19F{1H} NMR (376.3 MHz): δ = -78.8 ppm; FT-IR (ranked intensity): ν = 635.2 (2), 

693.9 (8), 736.4 (9), 764.5 (5), 925.6 (11), 1028.1 (4), 1154.5 (7), 1222.9 (13), 1252.4 (6), 1323.0 (15), 

1373.0 (12), 1457.4 (3), 1672.4 (10), 1676.1 (1), 2963.1 (14) cm-1; Char yield at 800 °C at t = 0 = 22.55 

%; Char yield at 800 °C, at t = 3 hours = 15.78 %; Decomposition onset = 176 °C; Tg onset = 43 °C. 

4.1Sb: A dichloromethane solution (20 mL) of SbClPh2 (2.5320 g, 8.13 mmol, 5.0 equiv.) and 

Me3SiOSO2CF3 (2.2 mL, 12 mmol, 7.5 equiv.) was added to 4.1 (0.6826 g, ca. 1.62 mmol, ca. 1.0 

equiv.). After work up the network was transparent and colourless. 31P{1H} NMR (161.8 MHz): δ = 

10.1 ppm; 19F{1H} NMR (376.3 MHz): δ = -78.6 ppm; FT-IR (ranked intensity): ν = 636.0 (2), 694.9 

(9), 733.0 (8), 764.4 (5), 1028.3 (4), 1152.4 (7), 1223.4 (14), 1254.9 (6), 1320.5 (13), 1455.8 (3), 1457.6 

(11), 1670.3 (15), 1674.0 (10), 1676.3 (1), 1685.8 (12) cm-1; Char yield at 800 °C at t = 0 = 22.29 %; 

Char yield at 800 °C, at t = 3 hours = 17.30 %; Decomposition onset = 178 °C; Tg onset = 34 °C. 

[Ph2SbPPh3][OTf]: Yield: 65%. Mp = 148.9-154.5 °C. 1H NMR (400 MHz, CDCl3): δ = 7.40-7.59 (m, 

3H), 7.38-7.39 (m, 12H), 7.27-7.30 (m, 4H), 6.99-7.03 (m, 6H) ppm; 13C{1H} NMR (100.6 MHz): δ = 

137.0 (s), 133.7 (d, 2JCP = 10.1 Hz), 132.7 (s), 132.6 (s), 130.5 (s), 129.9 (d, 2JCP = 10.1 Hz), 129.6 (s), 

125.0 (d, 1JCP = 40.2 Hz), ppm; 19F{1H} NMR (376.3 MHz): δ = -78.4 ppm; 31P{1H} NMR (161.8 

MHz): δ = -4.2 ppm; FT-IR (ranked intensity): ν = 636.3 (2), 691.1 (3), 713.6 (12), 729.2 (5), 736.9 

(13), 745.5 (9), 996.1 (11), 1016.9 (1), 1093.5 (10), 1156.0 (8), 1188.9 (15), 1215.9 (4), 1288.8 (7), 

1432.8 (6), 1479.4 (14); ESI-MS: m/z 537.1 [C30H25PSb]+ ([M]+), m/z 149.0 [CO3F3S]- ([M]-). 

Elemental analysis found (calculated) for C31H25O3F3PSSb: C 53.78 (54.17), H 3.53 (3.67), S 4.80 

(4.67) %. 
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[Ph2Sb(PPh3)2][OTf]: Yield: 57%. Mp = 134.5-140.6 °C. 1H NMR (400 MHz, CDCl3): δ = 7.35-7.49 

(m, 24H), 7.26-7.30 (m, 4H), 7.10-7.15 (m, 12H) ppm; 13C{1H} NMR (100.6 MHz): δ = 136.9, 133.9, 

133.8, 130.8, 130.6, 129.6, 129.3, 129.2 ppm; 19F{1H} NMR (376.3 MHz): δ = -78.4 ppm; 31P{1H} 

NMR (161.8 MHz): δ = -5.8 ppm; FT-IR (ranked intensity): ν = 634.2 (1), 691.6 (2), 727.1 (5), 741.4 

(9), 746.9 (14), 996.7 (13), 1032.5 (3), 1095.4 (10), 1134.5 (15), 1153.4 (7), 1224.2 (12), 1257.5 (4), 

1284.9 (8), 1434.3 (6), 1479.2 (11); ESI-MS: m/z 537.1 [C30H25PSb]+ ([M-C18H15P]+), m/z 148.9 

[CO3F3S]- ([M]-). Elemental analysis found (calculated) for C43H30O3F3P2SSb: C 61.03 (61.82), H 4.06 

(3.62), S 3.85 (3.84) %. 

4.1ox: A 579 mg sample of 4.1 was immersed in a 30% solution of hydrogen peroxide (10 mL) for 18 

hours. The supernatant was decanted and the remaining white solid was dried in vacuo. 31P{1H} NMR 

(161.8 MHz): δ = 55.5 ppm; FT-IR (ranked intensity): ν = 730.9 (10), 763.5 (3), 1153.6 (4), 1243.1 (8), 

1318.1 (5), 1373.1 (7), 1393.9 (12), 1436.4 (11), 1451.6 (2), 1652.6 (14), 1674.9 (1), 1686.6 (13), 

1718.0 (15), 2959.9 (6) cm-1; Char yield at 800 °C at t = 0 = 13.85 %; Char yield at 800 °C at t = 3 hours 

= 10.67 %; Decomposition onset = 252 °C; Tg onset = 82 °C. 

4.1PMe2: Network 4.1 (0.4907 g) was combined with a dichloromethane solution of P(CH3)2Cl (46 

microlitres) and trimethylsilyl trifluoromethanesulfonate (10x158 microlitres) and allowed to stand for 

seven days. The solution was decanted and the polymer was leached with dichloromethane (20 mL) 

over the course of 3 days. The solution was decanted and the functionalized network was dried in vacuo. 
19F{1H} NMR (376.3 MHz): δ = -78.6 ppm; 31P{1H} NMR (161.8 MHz): δ = 26.0 (d, 1JPP = 307.4 Hz), 

-58.4 (d, 1JPP = 307.4 Hz) ppm; FT-IR (ranked intensity): ν = 1674.8 (4), 1456.2 (5), 1252.8 (7), 1224.2 

(10), 1148.8 (9), 1028.2 (2), 765.0 (6) 635.2 (1), 572.5 (8), 515.75 (3) cm-1; decomposition onset = 

145.2 °C; Char yield at 800 °C at t = 0 = 12.39 %; Char yield at 800 °C, at t = 3 hours = 9.17 %; Tg 

onset = 82.7 °C. 

4.1PPh2: Network 4.1 (0.3397 g), diphenylphosphino tripehnylphosphonium triflate (0.5040 g, 0.84 

mmol), dichloromethane (20 mL). 19F{1H} NMR (376.3 MHz): δ = -78.6 ppm; 31P{1H} NMR (161.8 

MHz): δ = 24.3 (d, 1JPP = 324.6 Hz), -27.1 (d, 1JPP = 324.6 Hz) ppm; FT-IR (ranked intensity): ν = 

1677.5 (2), 1454.8 (4), 1255.8 (5), 1222.2 (9), 1150.0 (8), 1028.2 (3), 764.2 (7), 635.8 (1), 573.0 (10), 

516.2 (6) cm-1; decomposition onset = 238.6 °C; Char yield at 800 °C at t = 0 = 14.28 %; Char yield at 

800 °C, at t = 3 hours = 11.07 %; Tg onset = 96.7 °C. 

4.1AlMe3: Dichloromethane (17 mL) and trimethylaluminum solution (1.1 mL, 2.0M in toluene) were 

added to 4.1 (0.9633 g). After one week, the supernatant was decanted, and volatiles were removed in 



 

 94 

vacuo to give a transparent colourless solid. 13C{1H} NMR (100.6 MHz): δ = 149.2 (carbonyl, 

(R2N)2C=O), 131.1 (olefin, CH), 118.3 (olefin, CH2), 44.8 (alkyl), 34.9 (alkyl), 24.3 (alkyl), -7.9 ppm 

(R3PAl(CH3)3); 31P{1H} NMR (161.8 MHz): δ = -26.0 ppm; FT-IR (ranked intensity): ν = 5954 (8), 

2867 (9), 2368 (6), 2326 (7), 1676 (1), 1457 (2), 1362 (3), 1320 (5), 1165 (10), 765 (4) cm-1; elemental 

composition by EDX: C, 58.85 %; O, 36.19 %; Al, 3.05 %; P, 1.91 %; decomposition onset = 206 °C; 

Char yield at 800 °C at t = 0 = 42.1 %; Char yield at 800 °C, at t = 3 hours = 41.0 %; Tg onset = 70 °C. 

4.1AlMe2Cl: Dichloromethane (17 mL) and chlorodimethylaluminum solution (5.8 mL, 1.0M in 

hexanes) were added to 4.1 (0.4912 g). After one week, the supernatant was decanted and volatiles were 

removed in vacuo to give a transparent colourless solid. 13C{1H} NMR (100.6 MHz): δ = 149.1 

(carbonyl, (R2N)2C=O), 128.7 (olefin, CH), 120.4 (olefin, CH2), 46.1 (alkyl), 24.6 (alkyl), -6.4 

(R3PAl(CH3)2Cl) ppm; 31P{1H} NMR (161.8 MHz): δ = -26.1 ppm; FT-IR (ranked intensity): ν = 2957 

(3), 1676 (1), 1460 (2), 1375 (5), 1319 (6), 1251 (9), 1080 (10), 986 (8), 932 (7), 764 (4) cm-1; elemental 

composition by EDX: O, 42.93 %; C, 52.88 %; Al, 2.53 %; Cl, 1.08 %; P, 0.58 %; decomposition onset 

= 198 °C; Char yield at 800 °C at t = 0 = 55.5 %; Char yield at 800 °C, at t = 3 hours = 52.8 %; Tg onset 

is not observed below the decomposition temperature.  

4.1GeCl2: GeCl2(dioxane) (0.310 g, 1.3 mmol) was dissolved in acetonitrile (20 mL), the solution was 

filtered and added to network 4.1 (0.558 g). After one week, the supernatant was decanted and the solid 

polymer gel was leached with acetonitrile overnight (3x20 mL), decanted and dried in vacuo to give a 

transparent colourless brittle solid. 13C{1H} NMR (100.6 MHz): δ = 150.0 (carbonyl, (R2N)2C=O), 

132.7 (olefin, CH), 44.4 (alkyl), 25.0 (alkyl) ppm; 31P{1H} NMR (161.8 MHz): δ = -4.0 ppm; FT-IR 

(ranked intensity): ν = 2961 (10), 1674 (1), 1455 (2), 1373 (4), 1321 (5), 992 (7), 926 (8), 807 (9), 762 

(3), 531 (6) cm-1; elemental composition by EDX: C, 68.10 %; O, 29.67 %; Ge, 1.50 %; Cl, 0.40 %; P, 

0.32 %; decomposition onset = 227 °C; Char yield at 800 °C at t = 0 = 32.0 %; Char yield at 800 °C, at t 

= 3 hours = 26.2 %; Tg onset = 91 °C. 

4.1CpCoCO: A THF solution (20 mL) of cyclopentadienylcobalt dicarbonyl (0.507 g, 2.8 mmol) was 

added to 4.1 (0.555 g) in a pressure tube and refluxed for seven days. The supernatant was decanted and 

the insoluble red material was leached three times with tetrahydrofuran, or until the supernatant was 

completely colourless, decanted and dried in vacuo resulting in a brittle red solid. 13C{1H} NMR (100.6 

MHz): δ = 208.4 (CoCO), 148.9 (carbonyl, (R2N)2C=O), 132.0 (olefin, CH), 117.5 (olefin, CH2), 81.1 

(C5H5), 44.8 (alkyl), 38.0 (alkyl) ppm; 31P{1H} NMR (161.8 MHz): δ = 51.0 ppm; FT-IR (ranked 

intensity): ν = 2956 (10), 1906 (7; νCoCO), 1676 (1), 1449 (2), 1364 (4), 1317 (5), 1162 (9), 1062 (6), 763 

(3), 563 (8) cm-1; elemental composition by EDX: C, 70.09 %; O, 28.23 %; P, 1.58 %; Co, 0.11 %; 
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decomposition onset = 119 °C; Char yield at 800 °C at t = 0 = 36.6 %; Char yield at 800 °C, at t = 3 

hours = 33.2 %; Tg onset = 27 °C. 

4.1(CpCoCO)0.5: A THF solution (15 mL) of cyclopentadienylcobalt dicarbonyl (0.488 g, 2.7 mmol) 

was added to 4.1 (2.289 g) in a pressure tube and refluxed for seven days. The supernatant was decanted 

and the insoluble red material was leached three times with tetrahydrofuran, or until the supernatant was 

completely colourless, decanted and dried in vacuo resulting in a brittle red solid. 13C{1H} NMR (100.6 

MHz): δ = 207.3 (CoCO), 148.7 (carbonyl, (R2N)2C=O), 131.8 (olefin, CH), 117.4 (olefin, CH2), 81.0 

(C5H5), 44.3 (alkyl), 38.1 (alkyl) ppm; 31P{1H} NMR (161.8 MHz): δ = 50.8 (R3PCoCpCO), -34.9 (4.1) 

ppm; FT-IR (ranked intensity): ν = 2956 (7), 2869 (8), 1908 (10; νCoCO), 1675 (1), 1456 (2), 1366 (4), 

1320 (5), 1167 (9), 1064 (6), 764 (3) cm-1; elemental composition by EDX: C, 68.05 %; O, 31.07 %; P, 

0.86 %; Co, 0.03 %; decomposition onset = 123 °C; Char yield at 800 °C at t = 0 = 32.9 %; Char yield 

at 800 °C, at t = 3 hours = 26.2 %; Tg onset = 30 °C. 

4.2H: A toluene solution (40 mL) of 1,7-octadiene (6 mL) and AIBN (40 mg) was charged into a 

stainless-steel pressure reactor which was flushed with N2, charged with PH3 (80 psi) and heated to 60 

°C for 18 hours. After controllably burning off the excess PH3, volatiles were removed in vacuo to give 

a colourless oil. A small sample was set aside for analysis and the remainder of the oil was used to 

synthesize network 4.2. 13C{1H} NMR (100.6 MHz): δ = 33.3, 33.2, 32.0, 31.5, 30.9, 30.8, 29.8, 29.6, 

29.5, 29.4, 28.9, 28.4, 28.3, 26.8, 26.6, 21.1, 21.0, 14.0, 13.9 ppm; 31P NMR (161.8 MHz): δ = -137.7 (t, 
1JPH = 186.1 Hz; RPH2), -68.7 (d, 1JPH = 194.2 Hz; R2PH), -31.5 (s; PR3) ppm; FT-IR (ranked intensity): 

ν = 2918 (1), 2850 (2), 2280 (3; νPH), 1464 (4), 1418 (7), 1349 (12), 1342 (13), 1296 (15), 1197 (14), 

1079 (6), 992 (10), 836 (8), 812 (9), 720 (5), 634 (11) cm-1; decomposition onset = 160 °C; Char yield = 

0 %; Tm onset = -37 °C (broad and amorphous, see SI). 

4.2: Network 4.2H was redissolved in toluene (50 mL) and combined with 1-hexene (10 mL) and AIBN 

(44 mg). The reaction mixture was heated to 60 °C in a stainless-steel pressure reactor for 18 hours 

followed by removal of volatiles in vacuo to give a colourless oil. 13C{1H} NMR (100.6 MHz): δ = 

31.9, 31.6, 31.5, 29.8, 28.2, 28.0, 26.4, 22.9, 14.1 ppm; 31P{1H} NMR (161.8 MHz): δ = -31.6 ppm; FT-

IR (ranked intensity): ν = 2955 (5), 2921 (1), 2851 (2), 1464 (4), 1416 (6), 1378 (7), 1348 (10), 1010 

(9), 972 (8), 728 (3) cm-1; decomposition onset = 165 °C; Char yield at 800 °C at t = 0 = 1. 1 %; Tg 

onset = -90 °C. Network 4.2 was oxidized using excess hydrogen peroxide (20 wt% in water), extracted 

with CH2Cl2 and dried in vacuo to give a colourless oil that was analyzed by GPC and MALDI, using 

trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) as the matrix.  
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4.2P: A methylene chloride solution of [Pdppe][BPh4] (0.573 g, 0.768 mmol in 8 mL) was added to a 

methylene chloride solution of network 2 (0.299 g in 2 mL). Upon addition, the solution became viscous 

and an aliquot of the reaction mixture revealed the consumption of the PR3 network and appearance of 

dppe as well as a new doublet.  Hexanes (3 mL) was added to the reaction mixture and a precipitate 

formed. The precipitate was separated by centrifugation and washed with tetrahydrofuran (3x10 mL). 

The pale yellow insoluble solids were dried in vacuo. 11B SS NMR (128.00 MHz, 12.8 kHz spinning 

rate): δ = -6.7 (spinning side bands at 12.8 kHz) ppm; 31P{1H} SS NMR (160.73 MHz, 14 kHz spinning 

rate): δ = 32.7 (br, [P(2)]+, spinning side bands at 14 kHz), -241.7 (br, [P(2)]+) ppm; FT-IR (ranked 

intensity): ν = 3054 (15), 2926 (4), 2852 (5), 1479 (12), 1458 (7), 1426 (8), 1404 (10), 1066 (13), 1032 

(9), 998 (11), 843 (14), 730 (2), 700 (1), 612 (3), 516 (6) cm-1; decomposition onset = 118.9 °C; Char 

yield at 800 °C at t = 0 = 9.45 %; Tg onset = -114 °C. 

[P(POct3)2][BPh4]: Trioctylphosphine (540 μL, 1.21 mmol) was added neat to a dichloromethane (4 

mL) solution of [Pdppe][BPh4] (0.454 g, 0.61 mmol). The volatiles were removed in vacuo, the solids 

were extracted with hexanes and filtered. The hexanes solution was extracted three times with 

acetonitrile (3 mL). The acetonitrile extracts were combined, reduced to 2.5 mL in vacuo and cooled to -

35 °C overnight to precipitate the product. Yield: 26 %. Tm by DSC = 48 °C; 11B NMR (128.25 MHz): δ 

= -6.6 ppm; 1H NMR (599.15 MHz): δ = 7.32-7.35 (m, 8H, ortho), 7.02-7.05 (m, 8H, meta), 6.87-6.90 

(m, 4H, para), 1.83-1.84 (m, 12H, CH2), 1.50-1.53 (m, 12H, CH2), 1.41-1.43 (m, 12H, CH2), 1.27-1.34 

(m, 12H, CH2), 0.91 (t, 3JHH = 6 Hz, 18H, CH3) ppm; 11B NMR (128.25 MHz): δ = -6.6 ppm; 13C{1H} 

NMR (100.53 MHz): δ = 164.4 (q, 1JCB = 50 Hz, ipso), 136.3 (s, ortho), 126.0 (s, meta), 122.1 (s, para), 

32.2 (CH2), 31.2 (CH2), 31.1 (CH2), 29.5 (CH2), 27.4 (ddd, 1JCP = 22 Hz, 2JCP = 21 Hz, 3JCP = 9 Hz, 

CH2), 23.0 (CH2), 14.3 (CH3) ppm; 31P{1H} NMR (161.82 MHz): δ = 33.2 (d, 1JPP = 469.2 Hz), -230.2 

(t, 1JPP = 477.3 Hz) ppm; FT-IR (ranked intensity): ν = 2938 (10), 2922 (3), 2854 (5), 1472 (15), 1468 

(7), 1429 (11), 1032 (12), 848 (13), 738 (8), 734 (2), 712 (6), 704 (1), 617 (14), 612 (4), 518 (9) cm-1; 

ESI-MS: m/z 771.7 [C48H102P3]+ ([M]+), m/z 319.2 [C24H20B]- ([M]-); Elemental analysis found 

(calculated) for C72H122BP3: C 78.57 (79.23), H 11.27 (11.27) %; Decomposition onset by TGA = 175 

°C. 

4.2CpCoCO: Network 4.2 (0.444 g) was dissolved in a tetrahydrofuran solution of 

cyclopentadienylcobalt dicarbonyl (0.411 g, 2.28 mmol). The solution was transferred to a pressure tube 

and refluxed for two weeks. The solvent was removed under reduced pressure and the resulting residue 

was triturated with hexanes (10 mL) three times, or until the removed supernatant came off colourless. 

The resulting material was dried in vacuo to give a dark red tacky gel. 13C{1H} NMR (100.6 MHz): δ = 
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207.3 (CO, d, 2JPC = 40.2 Hz), 80.5 (Cp), 31.4, 29.2, 24.0, 22.5, 13.5 (alkyl) ppm; 31P{1H} NMR (161.8 

MHz): δ = 49.9 ppm; FT-IR (ranked intensity): ν = 2926 (3), 2852 (5), 1903 (1; νCoCO), 1456 (8), 1418 

(11), 1378 (14), 1352 (15), 1110 (13), 1014 (10), 985 (12), 791 (2), 720 (6), 592 (7), 561 (4), 493 (9) 

cm-1; elemental composition by EDX: C, 71.48 %; O, 22.94 %; Co, 2.16 %; P, 3.42 %; decomposition 

onset = 222 °C; Char yield at 800 °C at t = 0 = 29.7 %; Char yield at 800 °C, at t = 3 hours = 27.6 %; Tg 

onset = -19 °C. 

4.1thin: Piranha treated Si wafers were coated with uncured formulation 4.1u and spun at 2000 rpm for 

30 seconds, then ramped to 3000 rpm for 5 seconds in a N2 filled glovebox. The samples were 

transferred into a glass-covered vessel that was sealed, exported from the glovebox, subjected to UV 

irradiation (UVA: 331.794 mJ/cm2, 148.953 mW/cm2; UVV: 380.704 mJ/cm2, 175.336 mW/cm2 x5) 

and imported back into the glovebox. The resulting films were iridescent. 31P{1H} NMR (161.8 MHz): δ 

= -35.7 ppm; FT-IR (ranked intensity): ν = 1675 (1), 1645 (6), 1448 (2), 1411 (3), 1367 (8), 1345 (9), 

1317 (5), 992 (10), 930 (7), 764 (4) cm-1. Thickness measured by SEM = 1.41 ± 0.43 μm. 

4.1thinAlMe3: In a petri dish, 4.1thin was rinsed with a 2.0 M AlMe3 solution in toluene. The film was 

rinsed with dichloromethane (3x2mL) and left to stand and dry.  31P{1H} NMR (161.8 MHz): δ = -25.9 

ppm; FT-IR (ranked intensity): ν = 2928 (12), 2870 (14), 1676 (1), 1448 (2), 1324 (7), 1318 (6), 1192 

(13), 1168 (15), 941 (10), 930 (9), 762 (3), 697 (4), 676 (5), 540 (8), 498 (11) cm-1. 

Pyrolysis: Samples were loaded into a quartz boat and tube, purged with 5% H2 (balanced with N2) for 

20 minutes and then ramped at 10 °C per minute to either 800, 900 or 1000 °C. The furnace was held at 

the prescribed temperature for either 3 or 4 hours before the tube furnace was turned off and allowed to 

cool to room temperature. Ceramics from the boat were analyzed using EDX, XPS and XRD. 
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Chapter 5  

5 Orthogonally Bi-Metallized Photopolymer Networks 

5.1 Introduction  
In a quest to lower the carbon footprint of vehicles, chemists are striving to improve battery 

performance, and develop efficient hydrogen evolution reaction (HER) catalysts for the clean generation 

of H2 as an alternative to fossil fuels.1–3 Metal containing ceramics have recently been investigated for 

an array of applications in the above capacities. The ceramics that currently show promise in battery 

development are transition metal doped LiFePO4 cathode materials and metal oxide electrocatalysts.2–7 

Combinations of electrocatalysts, or bifunctional electrocatalysts are desired for rechargeable batteries,4 

where, several types of materials have emerged as promising low-cost HER electrocatalysts. Phosphides 

of Fe, Co, Ni, Cu, Mo, W and especially mixed metal phosphides have been found to be particularly 

active.1,8–10  

Despite their desired electrochemical properties, a major drawback of the above-mentioned 

ceramics in the context of batteries or fuel cells is that they lack conductivity. In either field there has 

been an effort to improve the electrochemical activity of these materials by incorporating them into a 

carbon support. Carbon has the advantage of being conductive, and it is a substrate that can be doped 

with heteroatoms to further enhance conductivity.1,11,12 A remaining challenge is finding a way to 

uniformly dope the active materials throughout the carbon support.13 Recent work to address this issue 

has been in the pyrolysis of metal organic frameworks (MOFs) to form carbon that is uniformly doped 

with metals, however the scalability of the MOF design remains a challenge.11,14,15 

Metallopolymers are structurally diverse and have found a role in numerous applications,16 one 

of particular interest is their role as precursors for the preparation of polymer derived ceramics.17–20 

Upon pyrolysis, the composition of the resulting ceramics are dictated by that of the polymer precursor. 

We have recently shown that metal functionalized photopolymer networks can be used as precursors to 

metal-doped carbon.21,22 Depending on the functionality within the photopolymer network, they can be 

chemically modified by simple salt metathesis or metal coordination, giving them the potential to impart 

varied composition of the resulting ceramic after pyrolysis.21,23–26 While polymer networks have been 

synthesized by hydrometallation,27 they have yet to be functionalized in this way post polymerization. 

Hydrides of Sc, Zr, B, Al, Si, P, S, Ge, Se, Sn, Pb and Te are able to undergo hydrometallation reactions 

with olefins.28–36 
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Figure 5.1: Photopolymer networks 5.1 and 5.2. 
 

To date, it has been feasible to controllably functionalize polymer networks with one metal at a 

time. In this work we present a method for functionalizing the network with two metals using 

orthogonal chemistries. In converting the phosphines in phosphane-ene polymer networks (Figure 5.1) 

to phosphonium salts by quaternization using allyl bromide, the allyl group can be further functionalized 

by hydrogermylation, while the bromide anion can subsequently coordinate transition metal halides to 

make complex counteranions (Scheme 5.1). In this way, bi-metallic ceramic precursors could be 

developed, which were comprehensively characterized. This new methodology for tailoring elemental 

composition in ceramic precursors is a fundamental step towards making diverse metal-doped carbon 

materials.  

 

Scheme 5.1: Synthetic scheme to make 5.2[Br], 5.2[Br]Ge and 5.2[Cu]Ge. 

5.2 Photopolymer Network Synthesis 
We have previously reported the synthesis of phosphane-ene polymer network (5.1) by combination 

of monoisobutyl phosphine (iBuPH2) with 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT) in 

a 3:4 ratio and irradiation in the presence of the photoinitiator Irgacure 819.22 Network 5.1 is a 

macromolecular tertiary phosphine, that is insoluble, yet solvent swellable, which allowed for the 

acquisition of solution-like 31P NMR spectra, enabling easy assessment of the material.22,37,38 
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Network 5.1 was quaternized using vinyl benzyl chloride and allyl bromide in stoichiometric 

reactions over the course of three days (Scheme 5.2). Samples from both reactions demonstrated the 

consumption of 3° phosphine (δP = -34.4 ppm) and appearance of phosphonium cation (δP ≈ 32 ppm) by 
31P{1H} NMR spectroscopy. However, based on the broadness of the signals in any given solvent, the 

materials were deemed to have low swellability and the starting phosphine network was redesigned to 

be more amenable to swelling and solution chemistry. To accomplish this, tetraethyleneglycol 

diallylether (TEGDAE) was incorporated as an additive in the photopolymerizable formulation to 

increase the flexibility of the polymer chains and to create sufficient interstitial space for subsequent 

reactions.  

 

Scheme 5.2: Quaternization reactions of 5.1 with vinyl benzyl chloride and allyl bromide. 
 

The new formulation was composed of a slight excess of iBuPH2, TTT crosslinker, TEGDAE linear 

additive in a 35:56:168 molar ratio, with Irgacure 819 as the photoinitiator (0.5 wt%; Scheme 5.3). 

Upon irradiation, the formulation changed from yellow to colourless – an indication of the photoinitiator 

being consumed. In the 31P NMR spectrum of the reaction mixture, unreacted iBuPH2 could be observed 

with new 2° and 3° phosphine signals (δP = -150.6; 1JPH = 202.2 Hz, -75.6; 1JPH = 194.2, -34.3, 

respectively; Figure 5.2), while the 13C{1H} NMR spectrum revealed the complete consumption of all 

olefin signals (δC = TTT: 131.0, 119.0; TEGDAE: 134.6, 116.8 ppm). The excess 1° phosphine was 

removed under reduced pressure to yield a tacky elastic material, 5.2H. Network 5.2H contains a 

mixture of 2° and 3° phosphines as confirmed by 31P NMR and IR spectroscopies (νPH = 2270 cm-1; 

Figure 5.2). In order to create a material with solely 3° phosphines, PH bonds in 5.2H were capped via 

hydrophosphination using 1-hexene to give network 5.2 (Scheme 5.3). The two materials, 5.2H and 5.2 

exhibit similar glass transition profiles, but the onset temperature of 5.2H (Tg = -83 °C) is low and broad 

because of the mixed composition, relative to 5.2 (Tg = -65 °C), which is solely composed of 3° 

phosphines (Figure 5.2). 
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Scheme 5.3: Synthetic scheme to make networks 5.2H and 5.2. 
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Figure 5.2: A) 31P NMR spectra from top to bottom for the reaction mixture of 5.2H (blue), purified 
5.2H (pink) and 5.2 (orange); B) DSC plots of 5.2H (pink) and 5.2 (orange); C) IR spectra of 5.2H 
(pink) and 5.2 (orange). 
 

5.3 Metal Functionalization of Polymer Networks 
The phosphines in 5.2 were quaternized using allyl bromide to create the corresponding allyl 

phosphonium cation centers (Scheme 5.1), the production of which was confirmed by the appearance of 

olefin signals in the 13C NMR spectrum (δC = 125.8, 124.2 ppm). The quaternized network, 5.2[Br] 

exhibits a cluster of three 31P{1H} NMR signals (δP = 34.1, 33.3, 32.6 ppm; Figure 5.3) which 

correspond to phosphorus bound to both or only TTT and TEGDAE. The glass transition temperature of 

5.2[Br] (Tg = -28 °C) is high relative to 5.2 because of the added ionic component.  
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Figure 5.3: Labeled 31P{1H} NMR spectrum of 5.2[Br]. 
 

Network 5.2[Br] was functionalized by hydrogermylation of the olefin functionality with a slight 

excess of triphenylgermanium hydride (Scheme 5.1). The new polymer gel, 5.2[Br]Ge was purified by 

Soxhlet extraction to remove excess triphenylgermanium hydride. Network 5.2[Br]Ge is distinguished 

by the absence of olefin signals (δC = 125.8, 124.2 ppm) and the appearance of aromatic carbon signals 

(δC = 137.5, 135.7, 130.1, 129.5 ppm; νGe-aryl = 1430 cm-1) in the 13C NMR and IR spectra (Figure 5.4). 

The presence of germanium in the purified gel was confirmed by EDX spectroscopy and the ratio of 

germanium to phosphorus was found to be approximately 1:1 (Table 5.1).  

Table 5.1: EDX data recorded from different areas of 5.2[Br]Ge. 

Atomic % 
C O Br Ge P 

74.90 22.56 0.94 0.82 0.77 
73.33 24.43 0.87 0.70 0.67 
54.91 41.42 1.56 0.88 1.23 
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Figure 5.4: Left: Aromatic region of the 13C{1H} NMR spectrum of crude (top) and purified (bottom) 
5.2[Br]Ge. Right: IR spectrum of 5.2[Br]Ge. 

 

The bromide anion in 5.2[Br]Ge can be utilized to functionalize the material with a second metal 

either by metathesis or ion coordination. Network 5.2[Br]Ge was swelled in 250 mL of a 5.0x10-5 M 

solution of copper (II) bromide in acetonitrile (Scheme 5.1). After one week, the green solution was 

decanted from the purple gel, 5.2[Cu]Ge, that was purified by Soxhlet extraction. After three days, a 

sample of the supernatant was removed from the Soxhlet apparatus and passed through a 0.22 μm PTFE 

syringe filter. Based on the flat line in the UV-vis absorption spectrum of the supernatant, all of the 

uncomplexed CuBr2 had been leached from the gel (Figure 5.5). The solvent was removed to give a 

dark purple solid. Network 5.2[Cu]Ge was swelled with acetonitrile in a cuvette to form a gel which 

could be analyzed by UV-vis spectroscopy. The spectrum for the purple gel revealed a yellow maximum 

absorption wavelength (λmax = 549 nm), which corresponded to the purple [CuBr4]2- anion and a red 

shoulder (λ = 628 nm), that corresponded to the green [CuBr3(MeCN)]- anion (Figure 5.5).39,40 Despite 

the paramagnetic anions, the 31P NMR chemical shift did not change from 5.2[Br]Ge and the IR 

spectrum confirmed that the aryl groups on germanium were still present. The presence of germanium 

and copper was confirmed by EDX spectroscopy and show a ration of approximately 6:6:1 for P:Cu:Ge 

(Table 5.2). The glass transition temperature of 5.2[Cu]Ge (Tg = 2 °C) decreased from 5.2[Br]Ge likely 

due to lower lattice energy of the complexed versus free bromide anions.  
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Figure 5.5: UV-vis spectrum for 5.2[Cu]Ge swelled in MeCN. 

Table 5.2: Atomic % by EDX from different areas of ceramics derived from 5.2[Cu]Ge by pyrolysis at 
800 °C for 4 hours. 

C 
 

O 
 

Cu 
 

P 
 

Ge 
 

Br 
77.41 15.85 2.99 2.81 0.65 0.29 
74.46 19.51 2.12 3.12 0.37 0.41 
78.58 14.89 2.90 2.79 0.55 0.30 

 

5.4 Pyrolysis of Metal Functionalized Polymer Networks 
Network 5.2[Cu]Ge was pyrolyzed at 800°C for 4 hours and the resulting grey char was found to be 

amorphous and speckled with metallic particles by SEM (Figure 5.6). The XPS reveal a material 

primarily composed of carbon and doped with copper (1.0%), germanium (0.8%) and phosphorus 

(2.1%). Copper was found the be in the mixed oxidation state form of Cu4O3 by the two binding 

energies at 934.0 and 933.0 eV.41 The char contains a mixture of metallic germanium (29.5 eV, Ge3/2) 

and germanium (II) oxide (32.0 eV).42 The majority of the phosphorus is phosphate (134.08 eV, 97.7%), 

with a small amount of P(III) (131.8 eV, 2.3%), which is likely incorporated covalently in the carbon 

black.43,44 

 

Figure 5.6: SEM images of ceramics derived from 5.2[Cu]Ge. Char formed at 800 °C for 4 hours. 
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5.5 Conclusion 
In this work we bi-metallized phosphane-ene polymer networks by quaternization with allyl 

bromide and subsequent metal functionalization by orthogonal mechanisms. The new material was 

tested for suitability as a precursor to metal-containing ceramics. The resulting ceramics were found to 

be largely composed of carbon yet doped with the metals in question as well as P heteroatoms. It is 

noteworthy that the polymeric material used in this context can be made from neat, commercially 

available reagents and can be easily purified, putting phosphane-ene based ceramic precursors ahead of 

MOFs in terms of their scalability.  

In the end we describe a polymeric material that can be easily bi-metallized through 

hydrometallation, ion complexation or even ion exchange. Although this work focuses on 

functionalization with Ge and Cu, we are exploring functionalization with other elements to showcase 

the versatility of the material and access a broader range of ceramics. 

5.6 Instrumentation 
Solution state nuclear magnetic resonance (NMR) spectroscopy was either conducted on a Varian 

INOVA 400 MHz spectrometer, or a Bruker AVANCEIII HD 400 spectrometer which utilizes an H/FX 

Bruker 5mm Smart Probe with automated tuning and matching (1H 400.09 MHz, 11B{1H} 128.25 MHz, 
13C{1H} 100.53 MHz, 19F{1H} 376.32 MHz, 31P{1H} 161.82 MHz). All 13C{1H} spectra were 

referenced relative to residual solvent signal. The chemical shifts for 19F{1H} and 31P{1H} spectra were 

referenced using external standards; α,α,α–trifluorotoluene (δF = -63.9 ppm) and 85% H3PO4 (δ = 0 

ppm), respectively. The chemical shifts for 31P{1H} spectroscopy were referenced using an external 

standard of 85% H3PO4; δP = 0. ATR-IR experiments were conducted using a Perkin Elmer UATR Two 

spectrometer. A UV-box from UV Process Supply Inc. (Chicago, IL, USA) equipped with a Mercury 

Bulb with an energy density of UVA (0.031 mJ cm−2) and UVV (164 mJ cm−2) was used for 

photopolymerization. These dose values were determined using a PP2-H-U Power Puck II purchased 

from EIT Instrument Markets (Sterling, VA, USA). UV-vis experiments were conducted using an 

Agilent Technologies Cary Series UV-vis-NIR Spectrophotometer. A SDT Q600 thermogravimetric 

analyzer (TGA) was used to determine char yields. A TA Q20 differential scanning calorimeter (DSC) 

was used to determine glass transition temperatures (Tg) with a ramp rate of 40 °C per minute. All Tg 

values are reported using the onset temperature from the last heating cycle. Pyrolysis was performed 

under 5 % H2 (balance N2) in a Lindberg furnace equipped with a quartz tube. A Hitachi 3400s SEM 

instrument was used to collect scanning electron microscopy (SEM) images and energy dispersive X-
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ray (EDX) spectra. Samples were osmium coated before SEM and EDX analysis. X-ray photoelectron 

spectroscopy (XPS) was performed using a Kratos AXIS Nova Spectrometer. 

5.7 Reagents and Synthesis 
All manipulations were performed in a nitrogen filled MBraun Labmaster dp glovebox or by using 

standard Schlenk techniques. All solvents were purchased from Caledon and dried using an MBraun 

controlled atmosphere solvent purification system and stored in Straus flasks under an N2 atmosphere or 

over 4 Å molecular sieves. Monoisobutylphosphine (iBuPH2) was donated by Solvay and used as 

received. Irgacure 819 (Ciba Chemicals), 1,3,5-triallyl-1,3,5-triazine-2,4,6(1H,3H,5H)-trione (TTT) 

(Sigma Aldrich), vinyl benzyl chloride (Aldrich), allyl bromide (Alfa Aesar), triphenylgermanium 

hydride (Aldrich) and copper (II) bromide (Aldrich) were used as received. The thermal initiator, 2,2’-

azobis(2-methylpropionitrile) (AIBN) (DuPont) was recrystallized from methanol before use. 

Tetraethyleneglycol diallylether (TEGDAE) was prepared by scaling a literature procedure to yield 100 

g.37 Briefly, polymer network 5.1 was synthesized as previously reported by combining and irradiating 
iBuPH2 (2.352 g, 26.1 mmol), TTT (8.680 g, 34.8 mmol) and BAPO (55 mg, 0.5 wt%).22 

5.1[Br]: An acetonitrile solution (20 mL) of allyl bromide (0.3 mL, 3.5 mmol) as added to 1 (1.122 g) in 

a pressure tube and heated to 65 °C for two days. The supernatant was decanted, the colourless gel was 

leached with acetonitrile overnight (3 x 20 mL), decanted and dried in vacuo. 13C{1H} NMR (100.6 

MHz): δ = 149.4 (carbonyl, (R2N)2C=O), 131.9 (allyl, CH), 125.1 (olefin, CH2), 117.5 (olefin, CH2), 

44.9 (alkyl), 24.5 (alkyl), 2.0 ppm (alkyl); 31P{1H} NMR (161.8 MHz): δ = 32.4 ppm; FT-IR (ranked 

intensity): ν = 1676.0 (1), 1457.2 (2), 1372.5 (5), 1320.0 (4), 993.5 (9), 931.2 (6), 849.5 (10), 762.0 (3), 

598.2 (8), 530.8 (7) cm-1; decomposition onset (2% mass loss) = 239.9 °C; Char yield at 800 °C at t = 0 

= 11.58 %; Char yield at 800 °C, at t = 3 hours = 8.72 %; Tg onset = 135.0 °C. 

5.1[Cl]: Network 1 (0.524 g), 4-vinylbenzylchloride (0.382 g, 2.5 mmol) was dissolved in acetonitrile 

(5 mL) and refluxed in a pressure tube for seven days. The supernatant was decanted and the polymer 

network was leached three times with dichloromethane (3 x 15 mL) over the course of three days. After 

decanting the leaching solvent, the network was dried in vacuo. 13C{1H} NMR (100.6 MHz): δ = 149.1 

(carbonyl, (R2N)2C=O), 136.3 (aryl), 131.6 (olefin, CH), 128.4 (aryl), 118.2 (olefin, CH2), 44.6 (alkyl), 

24.7 (alkyl); 31P{1H} NMR (161.8 MHz): δ = 32.3 ppm; FT-IR (ranked intensity): ν = 1676.0 (1), 

1511.5 (9), 1457.5 (2), 1373.0 (5), 1319.8 (4), 1265.5 (8), 909.5 (10), 858.0 (7), 762.8 (3), 729.0 (6) cm-

1; decomposition onset (2% mass loss) = 169.5 °C; Char yield at 800 °C at t = 0 = 16.83 %; Char yield 

at 800 °C, at t = 3 hours = 14.82 %; Tg onset = 97.0 °C. 

5.2H: TEGDAE (4.621 g, 16.8 mmol), TTT (1.401 g, 5.6 mmol) and iBuPH2 (3.160 g, 3.5 mmol) were 

combined neat. The photoinitiator, Irgacure 819 (46 mg, 0.5 wt%) was added, the pale yellow mixture 
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was sealed and irradiated with ultraviolet light for 30 minutes. Unreacted monomers were removed in 

vacuo from the resulting transparent, colourless, tacky, elastic gel. 13C{1H} NMR (100.6 MHz): δ = 

149.9 (carbonyl, (R2N)2C=O), 73.2, 73.1, 72.7, 72.6, 71.5, 71.1 (ethereal, CH2), 45.0, 39.2, 27.4, 27.3, 

27.1, 27.0, 25.9, 25.8, 25.1, 24.5, 18.3, 18.2 (alkyl, CH2) ppm; 31P NMR (161.8 MHz): δ = -34.3 (3° 

PR3, s), -75.6 (2° PHR2, d; 1JPH = 194.2 Hz) ppm; FT-IR (ranked intensity): ν = 2950 (6), 2866 (4), 2270 

(νPH), 1687 (1), 1460 (3), 1427 (8), 1365 (7), 1350 (9), 1333 (10), 1107 (2), 763 (5) cm-1; decomposition 

onset (2% mass loss) = 227 °C; Char yield = 1.349 %; Tg onset = -83.3 °C. 

5.2: AIBN (0.182 g, 1.1 mmol) was dissolved in toluene (75 mL) added to swell network 5.2H (5.975 

g). 1-Hexene (11 mL, 8.8 mmol) was added and the mixture was heated to 80°C on a sand bath in a 

pressure reactor for two days. After confirming the disappearance of P-H signals by 31P NMR 

spectroscopy, the material was decanted and dried in vacuo. 13C{1H} NMR (100.6 MHz): δ = 148.9 

(carbonyl, (R2N)2C=O), 72.2, 70.5, 70.1 (ethereal, CH2), 44.0, 38.2, 38.1, 31.6, 26.5, 26.4, 26.3, 26.0, 

25.0, 24.8, 24.1, 22.6, 22.3, 13.9 (alkyl, CH2) ppm; 31P{1H} NMR (161.8 MHz): δ = -35.6 ppm; FT-IR 

(ranked intensity): ν = 2952 (7), 2922 (6), 2866 (4), 1688 (2), 1461 (3), 1364 (9), 1350 (10), 1104 (1), 

1046 (8), 764 (5) cm-1; decomposition onset (2% mass loss) = 234 °C; Char yield = 4.59 %; Tg onset = -

65.4 °C. 

5.2[Br]: Network 5.2 (5.4963 g), was combined with allyl bromide (3.6 mL, 42 mmol) in acetonitrile 

(60 mL) and left to swell overnight. Any free solvent was decanted from the swollen polymer network 

and the rest of the volatiles were removed in vacuo to give a tacky, colourless, transparent material. 
13C{1H} NMR (100.6 MHz): δ = 150.5 (carbonyl, (R2N)2C=O), 125.8 (allyl, CH), 124.2 (allyl, CH2), 

70.7 (ethereal, CH2), 43.5, 31.2, 30.6, 27.6, 27.2, 25.8, 25.3, 24.5, 24.4, 23.6, 22.3, 20.9, 19.7, 18.7, 

18.2, 17.1, 16.6, 13.9, 10.2 (alkyl, CH2) ppm; 31P{1H} NMR (161.8 MHz): δ = 34.1, 33.3, 32.6 ppm; 

FT-IR (ranked intensity): ν = 2956 (10), 2924 (8), 2869 (4), 1682 (2), 1464 (3) 1107 (1), 998 (9), 934 

(6), 858 (7), 762 (5) cm-1; decomposition onset (2% mass loss) = 213 °C; Char yield at 800 °C at t = 0 = 

2.45 %; Tg onset = -28 °C. 

5.2[Br]Ge: An acetonitrile (20 mL) solution of triphenylgermanium hydride (0.332 g, 3.3 mmol) and 

AIBN (0.018 g, 0.1 mmol) was added to network 5.2[Br] (0.419 g) and heated at 65°C for six days. The 

resulting colourless, tacky network was purified by Soxhlet extraction with acetonitrile and then dried in 

vacuo. 13C{1H} NMR (100.6 MHz): δ = 137.5, 135.7, 130.1, 129.5 (Ge-aryl), 71.1 (ethereal, CH2), 28.1, 

24.9, 18.8, 9.4 (alkyl, CH2) ppm; 31P{1H} NMR (161.8 MHz): δ = 34.5, 33.9 ppm; FT-IR (ranked 

intensity): ν = 2958 (14), 2868 (9), 1682 (3), 1464 (4), 1430 (6; νGe-aryl), 1370 (13), 1090 (1), 1026 (7), 

998 (8), 940 (11), 856 (15), 751 (12), 736 (5), 699 (2), 467 (10) cm-1; decomposition onset (2% mass 
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loss) = 318.2 °C; Char yield at 800 °C at t = 0 = 22.53 %; Char yield at 800 °C, at t = 3 hours = 18.98 

%; Tg onset = 35 °C. 

5.2[Cu]Ge: CuBr2 (0.108 g, 0.482 mmol) was dissolved in 250 mL acetonitrile volumetrically. An 

aliquot of this solution was measured by UV-vis spectroscopy, recombined with the bulk solution, 

added to network 5.2[Br]Ge (0.324 g) in a 500 mL jar and sealed. After one week, the green solution 

was decanted from the violet gel and an aliquot of the reaction mixture solution was sampled by UV-vis 

spectroscopy. The gel was purified by Soxhlet extraction with acetonitrile and dried in vacuo to yield a 

dark purple brittle solid. 31P{1H} NMR (161.8 MHz): δ = 33.8 ppm; FT-IR (ranked intensity): ν = 2930 

(12), 2872 (9), 1683 (3), 1464 (4), 1430 (7; νGe-aryl), 1403 (15), 1108 (6), 1090 (2), 1026 (10), 998 (13), 

762 (14), 737 (5), 700 (1), 674 (11), 466 (8) cm-1; λmax = 549; decomposition onset (2% mass loss) = 

213.40 °C; Char yield at 800 °C at t = 0 = 19.44 %; Char yield at 800 °C, at t = 3 hours = 8.576 %; Tg 

onset = 2 °C. 
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Chapter 6  

6 Conclusions and Future Work 

6.1 Tailored Ceramic Precursors – “Alkyl in Chains” 
The target of this work was to generate metallized polymers that can be used as precursors for metal-

containing ceramics. Three general methods of incorporating elemental diversity into polymers were 

demonstrated by leveraging phosphonium cations, alkyl phosphines or olefins in metathesis, 

coordination, or hydrometallation reactions, respectively. It was demonstrated that these methods of 

deriving ceramics from photopolymer networks are effective ways of producing carbon doped with 

metal oxides. It was found that tuning the amount of metal in the polymer precursor has the effect of 

controlling the amount of metal in the ceramics after pyrolysis and that the composition of the ceramics 

can be tuned by altering the composition of the polymer backbone. With these findings in mind, it can 

be concluded that these general methodologies for creating polymer derived ceramics may be well-

suited for targeting materials for electrochemical applications. As mentions in Chapter 1, 

electrochemically active ceramics have shown an increase in activity when incorporated into carbon. On 

the other hand, due to the high carbon content of these materials, they may not be well-suited for 

applications in the IT industry as ceramics in the field generally require a high purity. The following 

proposals will outline possible routes towards tuning the carbon content of resulting ceramics, 

incorporating more metals into the materials and how the polymers themselves may become useful.  

The next steps in developing these methodologies will be to gain control over the ratio of metal 

to carbon in the ceramics, as well as targeting different types of ceramics, specifically metal phosphides. 

The issue in achieving these has been the high oxygen content in the polymer backbone, where on 

pyrolysis, reacts with the oxophilic phosphorus and metals. Using an alkyl backbone improves the 

amount of cobalt phosphide in the ceramic. In order to increase the amount of metal in the resulting 

ceramics, polymer precursors should be designed with minimal carbon and oxygen. A proposed way of 

doing this is by hydrophosphinating triallylphosphine with PH3 to make a crosslinked network (Scheme 

6.1). The 3° phosphine sites could be metallized by coordination chemistry and pyrolyzed to give metal 

containing ceramics.  

 

Scheme 6.1: Route to tripropylphosphine polymer networks. 
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Triallyl phosphine is synthesized by combination of PCl3 with allyl Grignard.1 In order to tune 

the amount of metal in the ceramics, it would be straight forward to generate tris(1-butene), tris(1-

pentene) and tris(1-hexene) substituted phosphines from the corresponding bromoalkenes, which are 

commercially available. The resulting metallized networks with a high percentage of carbon will yield 

ceramics with high carbon content and vice versa.  

The above method could be extended to the metallization by metathesis method in two different 

ways. The 3° phosphines in the final network of Scheme 1 could be quaternized to create phosphonium 

cations. Alternatively, by reacting a 1° phosphine with two stoichiometric equivalents of allyl bromide, 

the phosphine can hydrophosphinate and quaternize in one step to form a polyphosphonium cation 

network, where the phosphonium cations are linked by propyl groups (Scheme 6.2). The propyl linkers 

will give the material a relatively low carbon content compared to the networks described in this thesis. 

This could also be extended to other bromoalkenes to tune the carbon content of the polymer precursor 

as discussed above. 

 

Scheme 6.2: Route to polyphosphonium cation networks liked by propyl groups. 
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realistically produce a mixture of 2° and 3° phosphines, the remaining PH bonds could be used to 

hydrophosphinate a main group allyl compound, such as allyl cacodyl.2,3 This would provide the first of 

three metals, the subsequent metals could be incorporated by metathesis, or coordination to the anion or 

3° phosphine.  

 

Scheme 6.3: Options for orthogonally including up to three metals into 2[Br]. 
 

A less ambitious, yet still versatile method could be to hydrophosphinate the cationic 

phosphonium allyl network with a 2° phosphine and metallize by coordindination or ion exchange. 

While this method only metallizes twice, it expands the possible scope from what was presented in 

Chapter 5 because of the rich coordination chemistry of alkyl phosphines.4–6 

 

 

Scheme 6.4: Proposed route for selectively generating 2° cyclohexyl phosphine environments based on 
steric bulk. 
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In order to get around the potential selectivity issues with forming solely 2° phosphines in 

Scheme 6.3, an alternative method would be to quaternize the phosphine network with 3-

bromocyclohexene to create a cationic cyclohexene polyphosphonium network (Scheme 6.4). This 

would provide enough bulk to solely form 2° phosphines in the material and provide a reliable way of 

orthogonally metallizing three times.7 

6.3  “I’m the Only One” 
Free radical hydrophosphination of olefins using PH3 is the most economical way of making alkyl 

phosphines. While stoichiometry can be altered to favor 1° and 3° phosphines, 2° phosphines are 

difficult to access cleanly by this method as they are almost always formed in low abundance, mixed in 

with 1° and 3° phosphines and are isolated in low yields.7 However, it is well-established that singly 

deprotonating phosphines can be done selectively.8  

 

Scheme 6.5: Deprotonation, followed by hydrophosphination of a 1° phosphine to selectively 
synthesize a 2° phosphine after workup. 
 

Inspired by Melissa Etheridge’s 1993 hit, “I’m the Only One,” a proposed selective route 2° 

phosphines is to singly deprotonate a 1° phosphine, leaving only one PH bond to hydrophosphinate. The 

product could be protonated in the workup to give a 2° phosphine (Scheme 6.5). This method could be 

applied to make 2° phosphines with two different substituents or two of the same substituents if made 

from 1° phosphine, or PH3, respectively. 

 

Scheme 6.6: Proposed nucleophilic attack of Irgacure 819 by the 1° alkyl phosphide species. 
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After triggering the reaction with either heat or light, no significant change was observed by NMR 

spectroscopy. It is postulated that the nucleophilic 1° alkyl phosphine reacts with the azo or nitrile and 

carbonyl groups of the initiators, respectively, thus deactivating them (Scheme 6.6). With no radical 

initiator present, the hydrophosphination step cannot proceed.  

The majority of radical initiators contain either carbonyl, or azo functionality that will react 

unfavorably with the 1° alkyl phosphide species (Scheme 6.6).9 Irgacure 784 is an alkyl titanocene 

visible initiator (λmax = 473 nm), which should be robust to nucleophilic attack (Figure 6.1).9,10 If 

successful this route could provide a general “spot-to-spot” conversion of PH3 or 1° phosphines to 2° 

phosphines without the use of a catalyst.11,12  

 

Figure 6.1: Structure of Irgacure 784 also known as bis-(η5-2,3,-cyclopentadien-1-yl)-bis[2,6-difluoro-
3-(1H-pyrrol-1-yl)phenyl]titanium. 

6.4 Tuning Electronic Structure & Physical Properties 
In Chapter 4, the electronic structure and physical properties of the native phosphane-ene polymer 

network could be modified by crosslinking with Sb cations. We hypothesize that the change in 

electronic structure of the phosphines arises from an increased inductive effect that results from the 

relatively longer crosslinked chains.  

The gel property of phosphane-ene networks could be advantageous in the context of 

heterogeneous catalysis. This would allow substrates access to catalytic sites via swelling, but the 

catalyst would remain insoluble and could easily be removed from the reaction mixture. This, combined 

with the potential to tune electronic structure by crosslinking makes heterogeneous phosphane-ene 
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We are in the process of probing for this phenomenon in molecular versus macromolecular 
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interested in comparing the donation ability of molecular versus macromolecular phosphanide-type 

Ti
R

R

F

F

N

R =



 

 121 

centers on coordination to Lewis acids (Scheme 6.7). Triphosphenium cations are interesting because of 

their two lone pairs of electrons that can bind to one, or sometimes two metals in cases where the 

supporting phosphine ligands are sufficiently electron rich.13–18 Although they have never been used as 

ligands in catalysis, in learning to tune their electronic structure by crosslinking might be the first step 

towards their development as heterogeneous catalysts. 

 On top of triphosphenium cations, transition metal based catalysts that use chelating alkyl 

phosphine ligands can be used as inspiration for catalyst design within phosphane-ene networks. The 

network can be used, not only as a heterogeneous platform for catalysis, but also a means of tuning 

electron-richness at the metal center.  

 

Scheme 6.7: Proposed coordination chemistry of alkyl phosphine supported phosphanide-type centers, 
analogous to what is reported in the literature.15 

 
If successful, it would be interesting to delve into a study on the effect of different polymer chain 
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and comparing their electronic structure. Although there is no established method of controlling radical 
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samples could be probed for differences in electronic structure (Scheme 6.8). 
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crosslinkers is that they are sensitive to degradation, unlike the irreversible industrial method of 

vulcanization.21 While phosphines are sensitive to O2, they are otherwise robust compounds. If the low 

valent main group center could be degraded with acid for example, it should leave the phosphine 

functionality intact and reusable. The ultimate goal would be to make a plastic chair from a balloon, and 

then once we no longer require the chair, degrade it back into a balloon, which can now be used as a 

feedstock material to make the different types of plastic that we use every day. Although this may not be 

feasible using air sensitive plastic, the idea may inspire similar work that could work more practically, 

underscoring the importance of this fundamental research.  

 

Scheme 6.8: Route towards triphosphenium-functionalized rubber. 
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waiver of either party's right to enforce each and every term and condition of this Agreement. No breach 

under this agreement shall be deemed waived or excused by either party unless such waiver or consent 

is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to 

a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent 

to any other or subsequent breach by such other party. 

This Agreement may not be assigned (including by operation of law or otherwise) by you without 

WILEY's prior written consent. 

Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the 

CCC. 

These terms and conditions together with CCC's Billing and Payment terms and conditions (which are 

incorporated herein) form the entire agreement between you and WILEY concerning this licensing 

transaction and (in the absence of fraud) supersedes all prior agreements and representations of the 

parties, oral or written. This Agreement may not be amended except in writing signed by both parties. 

This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal 

representatives, and authorized assigns. 

In the event of any conflict between your obligations established by these terms and conditions and 

those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall 

prevail. 
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WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details 

provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions 

and (iii) CCC's Billing and Payment terms and conditions. 

This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was 

misrepresented during the licensing process. 

This Agreement shall be governed by and construed in accordance with the laws of the State of New 

York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding 

arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a 

court of competent jurisdiction in New York County in the State of New York in the United States of 

America and each party hereby consents and submits to the personal jurisdiction of such court, waives 

any objection to venue in such court and consents to service of process by registered or certified mail, 

return receipt requested, at the last known address of such party. 

WILEY OPEN ACCESS TERMS AND CONDITIONS 

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals 

offering Online Open. Although most of the fully Open Access journals publish open access articles 

under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals 

and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type 

is clearly identified on the article.  

The Creative Commons Attribution License  

The Creative Commons Attribution License (CC-BY) allows users to copy, distribute and transmit an 

article, adapt the article and make commercial use of the article. The CC-BY license permits 

commercial and non-  

Creative Commons Attribution Non-Commercial License  

The Creative Commons Attribution Non-Commercial (CC-BY-NC)License permits use, distribution 

and reproduction in any medium, provided the original work is properly cited and is not used for 

commercial purposes.(see below)  

Creative Commons Attribution-Non-Commercial-NoDerivs License 



 

 130 

The Creative Commons Attribution Non-Commercial-NoDerivs License (CC-BY-NC-ND) permits use, 

distribution and reproduction in any medium, provided the original work is properly cited, is not used 

for commercial purposes and no modifications or adaptations are made. (see below) 

Use by commercial "for-profit" organizations 

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further 

explicit permission from Wiley and will be subject to a fee.  

Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-

410895.html 

Other Terms and Conditions: v1.10 Last updated September 2015 

Questions? customercare@copyright.com or +18552393415 (toll free in the US) or +19786462777.
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7.2 Appendix to Chapter 2 
Table 7.1: Important structural data for compound 2.2Mo. 

Formula C56H66BLiMoN2O6P2 
Formula Weight (g/mol) 1038.73 

Crystal Dimensions (mm) 0.108 x 0.112x 0.380 
Crystal Colour and Habit Colourless prism 

Crystal System Monoclinic 
Space Group P21/n 

Temperature, K 150 
a, Å 17.18(2) 
b, Å 19.51(2) 
c, Å 18.25(2) 
a,° 90 
b,° 117.88(2) 
G,° 90 

V (Å3) 5411(11) 
Z 4 

F(000) 2176 
r (g/cm3) 1.275 

l, Å, (MoKa) 0.71073 
µ, (cm-1) 0.351 

Max 2q for data collection, ° 52.85 
Measured fraction of data 0.996 

Number of reflections 
measured 

87747 

Unique reflections measured 11090 
Rmerge 0.0454 

Number of reflections 
included in refinement 

11090 

Number of parameters in 
least-squares 

759 

R1, wR2 0.0465, 0.1076 
R1 (all data), wR2 (all data) 0.0812, 0.1281 

GOF 1.023 
Min & Max peak heights on 

final DF Map (e-Å-3) 
-0.663, 0.631 

 

WHERE: R1 = S(|FO| - |FC|)/S FO, WR2 = [S(W(FO
2 - FC

2)2)/S(W FO
4)]½, GOF = [S(W(FO

2 - FC
2)2)/(NO. OF REFLNS. - 

NO. OF PARAMS.)]½ 
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Figure 7.1: Solid State structure of 2.2Mo. The unit cell is P21/n, monoclinic. The anion is a distorted 
twist boat. The cation is disordered and was given an 80:20 fit for the occupation of the highly 
disordered THF molecule. 
 

 

Figure 7.2: 1H NMR spectrum of dissolved crystals of 2.2Mo, This spectrum reinforces the evidence 
for the solid state structure that the cation is not well-defined. Based on the integration of the THF 
protons, there is no well-defined number of THF protons for this spectrum to match the solid state 
structure. As the cation is disordered in the solid state and had to be modeled as described above, it is 
possible that there are more components to the disorder than were selected to be fit during the structure 
solving process. As it is the cation, and not the anion, that exhibits the disorder, this result does not 
affect the onward chemistry with this compound in the context of this work.  
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7.3 Appendix to Chapter 3 

7.3.1 Instrumentation.  

Nuclear magnetic resonance (NMR) spectroscopy was conducted on a Varian INOVA 400 MHz 

spectrometer (1H 400.09 MHz, 11B{1H} 128.25 MHz, 13C{1H} 100.53 MHz, 19F{1H} 376.32 MHz, 
31P{1H} 161.82 MHz). All 1H and 13C{1H} spectra were referenced relative to residual solvent signal. 

The chemical shifts for 19F{1H} and 31P{1H} spectra were referenced using external standards; α,α,α–

trifluorotoluene (δF = -63.9 ppm) and 85% H3PO4 (δ = 0 ppm), respectively. FT-IR spectra were 

recorded using a Bruker Tensor 27 spectrometer. P K-edge X-ray absorption near edge structure 

(XANES) experiments were performed at the soft X-ray microcharacterization beamline (SXRMB) at 

the Canadian Light Source (CLS) in Saskatoon, Canada. Ge K-edge XANES experiments were 

performed at beamline 20-BM-B at the Advance Photon Source (APS) in Lemont, Illinois, USA. For 

XANES, 3 scans were used to acquire each spectrum except for the Ge K-edge of 1Ge where only one 

scan was used due to evident decomposition in the post-edge features of subsequent scans, presumably 

from decomposition by X-ray exposure. Elemental analysis was performed at the Université de 

Montréal in Montreal, Canada.  

7.3.2 Reagents.  

The synthesis of all compounds was performed in a nitrogen filled MBraun Labmaster dp glovebox or 

by using standard Schlenk techniques. All solvents were purchased from Caledon, dried using an 

MBraun controlled atmosphere solvent purification system. Toluene, tetrahydrofuran and diethylether 

were stored in Straus flasks over a potassium mirror. 1GeCl, 3Mg, 1P and 4P were synthesized 

following literature procedures.1–4 GeCl2(dioxane) (Sigma Aldrich), 1,3-bis(diphenylphosphino)propane 

(dppp) (Sigma Aldrich), trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) (Alfa Aesar) were 

used as received.  

7.3.3 X-ray Crystallography.  

Single crystal diffraction studies were performed at the Western University X-ray facility. Single 

crystals for X-ray diffraction studies were grown by vapor diffusion or cooling of a saturated solution at 

-30 °C. Crystals were selected under Paratone-N oil using a MiTeGen polyimide micromount and 

immediately placed under a stream of cold nitrogen gas (110 K). All X-ray measurements were made on 

a Bruker Kappa Axis Apex II diffractometer using Mo-Kα radiation (λ = 0.71073 angstroms operating a 

SMART and COLLECT software. For 1Ge, 2GeCl and 2OTf the unit cell dimensions were determined 

from a symmetry constrained fit of 8097, 9455 and 9893 reflections with 4.7° < 2q < 51.84°, 4.9° < 2q < 
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76.54° and 4.8° < 2q < 58.16°, respectively. The data collection strategy was a number of w and j scans 

which collected data up to 59.27° (2q), 80.894° (2q) and 59.152° (2q), respectively. The frame 

integration was performed using SAINT.5 The resulting raw data was scaled and absorption corrected 

using a multi-scan averaging of symmetry equivalent data using SADABS.6 The SHELXTL program 

was used to solve the structure by direct methods. Subsequent difference Fourier synthesis allowed the 

remaining atoms to be located while hydrogen atoms were placed in the calculated positions and 

allowed to ride on the parent atom. The structural model was fit to the data using full matrix least-

squares based on F2. The calculated structure factors included corrections for anomalous dispersion 

from the usual tabulation. The structure was refined using the SHELXL-2014 program from the 

SHELXTL suite of crystallographic software.7  

7.3.4 Computational Calculations.  

All of the computational investigations were performed using the Compute Canada Shared 

Hierarchical Academic Research Computing Network (SHARCNET) facilities (www.sharcnet.ca) with 

the Gaussian09 program suites.8 Geometry optimizations have been calculated using density functional 

theory (DFT), specifically implementing the M062X method9 ENREF 60 in conjunction with the TZVP 

basis set10 for all atoms.  The geometry optimizations were not subjected to any symmetry restrictions 

and each stationary point was confirmed to be a minimum having zero imaginary vibrational 

frequencies.  Single point calculations were conducted at the same level using on models in which the 

heavy atom positions were those observed in the solid state structures and hydrogen atoms were placed 

in appropriate geometrically-calculated positions (with C-H bond lengths set to 1.07 Å) using 

Gaussview 3.0.11 Population analyses were conducted using the Natural Bond Orbital 6.0 (NBO6)12 

implementation included with the Gaussian package.  MO energies, Voronoi charges, and plots of 

molecular orbitals were obtained using the geometry optimized structures generated at the 

M062X/TZ2P level of theory and examined using ADF2017.13–15 QT-AIM analyses were performed on 

the geometry optimized structures using the AIMAll suite of software.16 

The geometrical features for model compounds of [LGeCl], [(dHpe)GeCl]1+ and [LGeGeL], in which 

all substituents were modeled with hydrogen atoms for clarity, were fully optimized in the absence of 

any symmetry constraints.  Both twist-boat and chair conformations for the 6-membered rings were 

computed and the chair conformations were determined to be the lowest energy conformations in each 

instance.  The metrical parameters for the optimized geometries are consistent with those of the 

experimental observations and justify the use of the model compounds.  Similar calculations were 
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conducted on models of the related triphosphenium species [LP] and [(dHpe)P]1+ for further 

comparison. 

Calculations on the geometry-optimized models ELn (E = [GeCl]+, n = 1, L = (PH2CH2)2BH2; E = 

[GeCl]+, n = 1, L = 2; E = [Ge-Ge]2+, n = 2, L = 1) were used to obtain information regarding the 

composition and energy of the highest occupied molecular orbital (HOMO) and the lowest unoccupied 

molecular orbital (LUMO) for each system.  The HOMO and LUMO energies for the Kohn-Sham (K-S) 

orbitals are presented in Table 3. 

7.3.5 Summary of Model [LGeCl] 
1\1\GINC-ORC315\FOpt\RM062X\TZVP\C2H10B1Cl1Ge1P2\CMACD\03-Apr-2017\0\\ 
 # M062x/TZVP scf=tight opt freq pop=(full,nbo6read) test\\Optimization of ClGe(PH2CH2)2BH2 
chair\\0, 1\P, -0.166403121, -0.0600554649, 0.0256046084\P, 2.2335301293, 2.343179879,-
0.0174293401\C, 1.2055856031, 2.9291650829, 1.3447784791\B, -0.3816253538, 2.5733332122, 
1.0054251689\C, -0.7284762913, 0.99192732, 1.3795180125\H, 1.5629314936, 2.4363220049, 
2.252105485\H, 1.3717724497, 4.0027524887, 1.4444873339\H, -0.6035808823, 2.7737138243, -
0.1858084369\H, -1.0855604459, 3.2881194241, 1.6794361553\H, -1.7997076481, 0.8261694217, 
1.5025327461\H, -0.2181164212, 0.6516064828, 2.2837043741\H, -0.9336123498, 0.2792581617, -
1.1019242138\H, -0.5205080846, -1.4179790453, 0.1888442952\H, 1.8711600502, 3.0880982871, -
1.1527317776\H, 3.5934890278, 2.7030345642, 0.1130628497\Cl, 2.6851899246, -0.4795311828, 
1.6947184551\Ge, 2.2428295195, -0.0751712305, -0.5022763247\\Version=EM64L-G09RevD.01\ 
 State=1-A\HF=-3326.9677471\RMSD=4.663e-09\RMSF=1.386e-05\Dipole=0.34774, -0.3683366, -
1.2042563\Quadrupole=-0.3668743, -0.358306, 0.7251803, 11.7340358, 0.3433675, -
0.5299165\PG=C01 [X(C2H10B1Cl1Ge1P2)]\\@ 
Zero-point correction=                           0.118494 (Hartree/Particle) 
Thermal correction to Energy=                    0.129190 
Thermal correction to Enthalpy=                  0.130134 
Thermal correction to Gibbs Free Energy=         0.081525 
Sum of electronic and zero-point Energies=          -3326.849253 
Sum of electronic and thermal Energies=             -3326.838557 
Sum of electronic and thermal Enthalpies=           -3326.837613 
Sum of electronic and thermal Free Energies=        -3326.886222 

7.3.6 Summary of model [(dppp)GeCl]+ 
1\1\GINC-ORC39\FOpt\RM062X\TZVP\C3H10Cl1Ge1P2(1+)\CMACD\11-Apr-2017\0\ 
 \# M062x/TZVP scf=tight opt freq pop=(full,nbo6read) test\\Optimization of ClGe(PH2CH2)2CH2 
cation chair\\1, 1\P, -0.1139630876, -0.0581919461, -0.0675445852\P, 2.2339494291, 2.2892950845, -
0.1016935191\C, 1.1498676445,2.8755876895, 1.2681769886\C, -0.3305520284, 2.5232515621, 
1.0813326974\C, -0.6791378409, 1.0456235351, 1.2954700983\H, 1.5417694239, 2.4292877964, 
2.1844929499\H, 1.2773198472, 3.9558169272, 1.340439943\H, -0.6896184158, 2.8676615481, 
0.1067242447\H, -0.8909806674, 3.0945357852, 1.8227117289\H, -1.7580083453, 0.9189361932, 
1.3867578743\H, -0.2181060775, 0.6673481493, 2.2102100934\H, -0.8894698015, 0.3062488741, -
1.1848149868\H, -0.6349935931, -1.3265210893, 0.241293387\H, 1.8528860464, 3.0468126127, -
1.2257497161\H, 3.5063968518, 2.81551678, 0.1801969289\Cl, 2.5774626819, -0.374570197, 
1.8252295397\Ge, 2.3940755325, -0.222696075, -0.409185797\\Version=EM64L-G09RevD.01\ 
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State=1-A\HF=-3340.0066271\RMSD=4.174e-09\RMSF=1.082e-05\Dipole= -1.4827604, 1.4717195, -
0.8426421\Quadrupole=2.8730053, 2.9424956, -5.8155009, 3.2158851, -2.5233236, 
2.3498217\PG=C01 [X(C3H10Cl1Ge1P2)]\\@ 
Zero-point correction=                           0.126064 (Hartree/Particle) 
Thermal correction to Energy=                    0.136651 
Thermal correction to Enthalpy=                  0.137596 
Thermal correction to Gibbs Free Energy=         0.088873 
Sum of electronic and zero-point Energies=          -3339.880563 
Sum of electronic and thermal Energies=             -3339.869976 
Sum of electronic and thermal Enthalpies=           -3339.869032 
Sum of electronic and thermal Free Energies=        -3339.917754 

7.3.7 Summary of model [LGeGeL] 
1\1\GINC-ORC39\FOpt\RM062X\TZVP\C4H20B2Ge2P4\CMACD\11-Apr-2017\0\\# M062x/TZVP 
scf=tight opt freq pop=(full,nbo6read) test\\Optimization of [Ge(PH2CH2)2BH2] dimer from xrd\\0, 
1\Ge, 11.3121602114, 13.4484196096, 11.7859014368\Ge, 10.1068416684, 11.6839305642, 
13.2768299701\P, 10.3628639171, 15.2350754299, 13.1529189362\P, 9.2510927616, 13.6956812788, 
10.4852112203\P, 11.7709675078, 12.0430860818, 15.0271832607\P, 11.686267955, 9.9908261197, 
12.4769895015\C, 9.5596530288, 16.4537869773, 12.0873413597\C, 7.8410305155, 14.3175836526, 
11.4278667441\C, 12.4507800439, 10.4538261113, 15.5544022347\C, 13.4110226786, 
10.3136137035, 12.9067131898\B, 8.0073201853, 15.9550144564, 11.707720318\B, 13.6789363994, 
9.9795318291, 14.5203314168\H, 9.516721968, 17.4185745789, 12.5916438428\H, 10.2159219416, 
16.5567352629, 11.2178430235\H, 6.9182020624, 14.1363896737, 10.8768378787\H, 7.8076428542, 
13.715649322, 12.341183131\H, 12.8418388639, 10.5339846476, 16.5681213929\H, 11.5997886283, 
9.7662831402, 15.574678385\H, 14.0672470143, 9.6944869259, 12.2950528352\H, 13.5920197118, 
11.3586840741, 12.6371725575\H, 13.800645541, 8.7797430532, 14.6529020749\H, 11.1658555802, 
12.764090838, 16.0789674307\H, 12.8744180144, 12.8780585803, 14.7483904417\H, 11.3952413852, 
8.6914568804, 12.9318146272\H, 11.4845962408, 9.8240754214, 11.0888727294\H, 14.6882917988, 
10.5750812896, 14.8352264246\H, 8.9873107204, 12.4652326398, 9.8435252601\H, 9.390017506, 
14.5383861826, 9.3669656474\H, 11.3913935992, 15.7851624737, 13.9477687754\H, 9.4243232373, 
14.8952539387, 14.1510012233\H, 7.2852883615, 16.2219682537, 12.645825305\H, 7.6857111182, 
16.5546879192, 10.7033096449\\Version=EM64L-G09RevD.01\State=1-A\HF=-
5733.4573447\RMSD=8.415e-09\RMSF=1.836e-06\Dipole=-0.0978366, -0.2936577, -
0.426578\Quadrupole=-14.5300351, -1.7185057, 16.2485407, 19.9582282,-4.8256439, 
13.3583284\PG=C01 [X(C4H20B2Ge2P4)]\\@ 
Zero-point correction=                           0.234636 (Hartree/Particle) 
Thermal correction to Energy=                    0.254178 
Thermal correction to Enthalpy=                  0.255122 
Thermal correction to Gibbs Free Energy=         0.185673 
Sum of electronic and zero-point Energies=          -5733.222708 
Sum of electronic and thermal Energies=             -5733.203167 
Sum of electronic and thermal Enthalpies=           -5733.202223 
Sum of electronic and thermal Free Energies=        -5733.271672 

7.3.8 Summary of model [LP] 
1\1\GINC-ORC312\FOpt\RM062X\TZVP\C2H10B1P3\CMACD\26-Apr-2017\0\\# M062x/TZVP 
scf=tight opt freq pop=(full,nbo6read) test\\Optimization of P(PH2CH2)2BH2 chair\\0,1\P,-
0.0121009776, -0.0074291929, 0.0940457227\P, 2.1289402408, 0.0639495118, -0.1219731029\P, 
2.1793914141, 2.2097278337, 0.0484919635\C, 1.1823431754, 2.9586796555, 1.3380255942\B, -
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0.4144558384, 2.6018051686, 1.0380423697\C, -0.7466646546, 1.007791143, 1.3777194455\H, 
1.533697632, 2.5777004229, 2.2993203682\H, 1.3519573131, 4.0368113148, 1.2988973124\H, -
0.6605871591, 2.8210758226, -0.1425705979\H, -1.1055950611, 3.2996539666, 1.7415323131\H, -
1.8233374544, 0.8253664794, 1.3634060295\H, -0.3429844791, 0.6805553555, 2.3382533401\H, -
0.7401155495, 0.2902322872, -1.0744061913\H, -0.2645535329, -1.3871313065, 0.2343288978\H, 
1.8488290133, 2.9098857161, -1.1280960973\H, 3.558654088, 2.4807251417, 
0.1544280928\\Version=EM64L-G09RevD.01\State=1-A\HF=-1131.0299359\RMSD=8.705e-
09\RMSF=9.775e-06\Dipole=0.5531335, -0.5539065, -0.3396508\Quadrupole=0.2010898, 0.3653927, 
-0.5664825, 10.2789332, 1.6761916, -1.8863104\PG=C01 [X(C2H10B1P3)]\\@ 
Zero-point correction=                           0.119018 (Hartree/Particle) 
Thermal correction to Energy=                    0.127056 
Thermal correction to Enthalpy=                  0.128000 
Thermal correction to Gibbs Free Energy=         0.086626 
Sum of electronic and zero-point Energies=          -1130.910918 
Sum of electronic and thermal Energies=             -1130.902880 
Sum of electronic and thermal Enthalpies=           -1130.901936 
Sum of electronic and thermal Free Energies=        -1130.943310 

7.3.9 Summary of model [dpppP]+ 
1\1\GINC-ORC312\FOpt\RM062X\TZVP\C3H10P3(1+)\CMACD\26-Apr-2017\0\\# M062x/TZVP 
scf=tight opt freq pop=(full,nbo6read) test\\Optimization of P(PH2CH2)2CH2 cat chair\\1, 1\P, 
0.0417789742, -0.0037674513,0.0437517405\P, 2.1876487061, 0.005564141, -0.0699967111\P, 
2.1778500262, 2.1532329154, 0.0049430557\C, 1.1037366394, 2.9170493985, 1.2789951354\C, -
0.3768013003,  2.5664581647, 1.0839364295\C, -0.7104598816, 1.0865268387, 1.3110494862\H, 
1.4657019806, 2.5689111135, 2.2482003263\H, 1.2503011903, 3.997167488, 1.2253006413\H, -
0.7146111739, 2.8838991837, 0.0926468411\H, -0.9551879643, 3.1520790687, 1.798937578\H, -
1.7899036482, 0.9292695922, 1.2781413159\H, -0.3428378417, 0.7450722303, 2.2805173267\H, -
0.6740718839, 0.2871067542, -1.1361139185\H, -0.3438099473, -1.321281302, 0.3355884062\H, 
1.8574899285, 2.845217865, -1.1815424043\H, 3.4965943659, 2.5568933193, 
0.2650902109\\Version=EM64L-G09RevD.01\State=1-A\HF=-1144.0641605\RMSD=4.725e-
09\RMSF=4.855e-05\Dipole=-0.7754738, 0.7707902,0.1537867\Quadrupole=2.3587286, 2.5110077, -
4.8697363, 6.0277442, -1.1415339, 0.8903101\PG=C01 [X(C3H10P3)]\\@ 
Zero-point correction=                           0.127377 (Hartree/Particle) 
Thermal correction to Energy=                    0.134995 
Thermal correction to Enthalpy=                  0.135939 
Thermal correction to Gibbs Free Energy=         0.095258 
Sum of electronic and zero-point Energies=          -1143.936784 
Sum of electronic and thermal Energies=             -1143.929165 
Sum of electronic and thermal Enthalpies=           -1143.928221 
Sum of electronic and thermal Free Energies=        -1143.968902 
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7.3.10 Supplemental Crystallographic Data 

Table 7.2: Important structural data for compounds 3.1Ge, 3.2GeCl3, and 3.2OTf. 

Compound 1Ge 2GeCl3 2OTf 
Formula C90H84B2Ge2P4 C27H27C14Ge2P2 C68H52F6Ge2O6P4S2 
Formula Weight 
(g/mol) 

1456.25 700.40 1339.05 

Crystal Dimensions 
(mm) 

0.147 x 0.137 x 0.089 0.325 x 0.315 x 0.256 0.179 x 0.157 x 0.134 

Crystal Color and Habit Yellow Prism Colourless Prism Colourless Prism 
Crystal System Triclinic Monoclinic Monoclinic 
Space Group P-1 P21/n P21/c 
Temperature (K) 110 110 110 
a (Å) 12.532(3) 9.712(2) 17.730(6) 
b (Å) 17.119(6) 16.596(6) 15.761(4) 
c (Å) 18.328(7) 18.414(6) 21.414(6) 
α (°) 87.937(11) 90 90 
β (°) 71.093(10) 101.170(9) 106.819(12) 
γ (°) 83.926(9) 90 90 
V (Å3) 3699(2) 2911.7(15) 5728(3) 
Z 2 4 4 
F(000) 1516 1404 2720 
ρ (g/cm3) 1.307 1.598 1.553 
λ (Å) MoKα 0.71073 0.71073 0.71073 
μ (cm-1) 0.946 2.558 1.397 
Max 2θ for data 
collection (°) 

25.92 38.27 29.08 

Measured fraction of 
data 

0.998 0.998 0.998 

Number of reflections 
measured  

20633 18426 16008 

Number of reflections 
included in refinement 

12370 13964 12749 

Number of parameters 
in least-squares 

883 335 703 

R1, wR2 0.0580, 0.1275 0.0333, 0.0737 0.0301, 0.0617 
R1 (all data), wR2 (all 
data) 

0.1164, 0.1506 0.0538, 0.0806 0.0463, 0.0663 

GOF 1.032 0.997 1.036 
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7.4 Appendix to Chapter 4 

7.4.1 Swelling Experiments 

 

Figure 7.3: Demonstration of swellability for network 4.1 in CH2Cl2 during the leaching process. 
Notice how the slight yellow colour the crude material disappears after leaching. (A) Initial addition of 
CH2Cl2; (B) swelled overnight; (C) Dried material after three rounds of leaching. 

Swelling experiments were performed in triplicate on ca. 100 mg samples of 4.1c, 4.1(Sb)0.5 and 4.1Sb. 

The samples were vacuum dried overnight in vacuo at 95 °C and weighed (m1). The samples were 

swelled in solvent overnight and the solvent decanted three times and weighed (m2). They were dried in 

vacuo for four nights at 80 °C and weighed (m3). Sb-containing samples were kept in the dark for the 

entire process.  

Equation 7.1: Equation to determine % swelling. 
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Equation 7.2: Equation to determine swelling (mL/g). Note: ρsolvent = solvent density. 

 

Equation 7.3: Equation to determine swelling (mol/g). Note: MWsolvent = solvent 

molecular weight. 

 

Equation 7.4: Equation to determine gel content. 

 

Table 7.3: Swelling and Gel content data for 4.1 different solvents. 

Solvent 
Swell % by 

mass 
Swelling 
(mL/g) 

Swelling 
(mol/g) 

Gel Content 
(%) 

CH2Cl2 205.5 ± 13.9 2.30 ± 0.10 3.60x10-2 ± 1.6x10-3 73.5 ± 3.2 
Toluene 81.9 ± 3.5 2.10 ± 0.04 1.97x10-2 ± 4x10-3 78.8 ± 1.8 

THF 88.2 ± 3.7 2.12 ± 0.04 2.61x10-2 ± 5x10-4 78.6 ± 5.2 
MeCN 47.9 ± 8.1 1.88 ± 0.10 3.60x10-2 ± 2.0x10-3 82.5 ± 2.3 
H2O 10.0 ± 1.6 1.12 ± 0.05 6.24x10-2 ± 2.8x10-3 96.8 ± 0.7 
Et2O 24.8 ± 5.2 1.75 ± 0.07 1.68x10-2 ± 7x10-4 90.9 ± 2.8 

Pentane 15.8 ± 1.0 1.85 ± 0.02 1.60x10-2 ± 1x10-4 97.8 ± 1.4 
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Table 7.4: Swelling data for 4.1(Sb)0.5 in different solvents. 

Solvent Swell % by mass Swelling (mL/g) Swelling (mol/g) 
MeCN 86.0 ± 3.1 3.01 ± 0.05 5.77x10-2 ± 1.0x10-3 
CH2Cl2 148.0 ± 8.5 1.40 ± 0.05 2.20x10-2 ± 8x10-4 

THF 65.3 ± 6.1 2.09 ± 0.08 2.58x10-2 ± 1.0x10-3 
Toluene 44.2 ± 7.0 1.92 ± 0.09 1.80x10-2 ± 9x10-4 

Et2O 34.8 ± 4.0 2.65 ± 0.08 2.55x10-2 ± 8x10-4 
Pentane 24.0 ± 5.9 3.16 ± 0.15 2.74x10-2 ± 1.3x10-3 

 

Table 7.5: Swelling data for 4.1Sb in different solvents. 

Solvent Swell % by mass Swelling (mL/g) Swelling (mol/g) 
MeCN 113.7 ± 6.5 3.46 ± 0.10 2.95x10-2 ± 9x10-4 
CH2Cl2 97.4 ± 5.9 1.12 ± 0.03 1.61x10-2 ± 5x10-4 

THF 56.5 ± 6.9 1.98 ± 0.09 1.91x10-2 ± 8x10-4 
Toluene 31.1 ± 5.4 1.74 ± 0.07 1.64x10-2 ± 7x10-4 
Pentane 12.6 ± 5.4 2.87 ± 0.14 1.95x10-2 ± 9x10-4 

Et2O 23.9 ± 3.0 2.44 ± 0.06 1.89x10-2 ± 4x10-4 

 

7.4.2 XANES Spectra 

 

Figure 7.4: P K-edge XANES spectra of [Ph2Sb(PMe3)2][OTf] and [Ph2Sb(PMe3)][OTf]. The shoulder 
at low energy is attributed to adventitious PMe3. 
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Figure 7.5: First derivative P K-edge XANES spectra of [Ph2Sb(PMe3)2][OTf] and 
[Ph2Sb(PMe3)][OTf]. These signals from adventitious PMe3 in each spectrum provide an internal 
standard with which to compare the coordination compounds. 
 

 

Figure 7.6: P K-edge XANES spectra of PPh3, [Ph2Sb(PPh3)2][OTf] and [Ph2Sb(PPh3)][OTf]. 
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Figure 7.7: First derivative P K-edge XANES spectra of PPh3, [Ph2Sb(PPh3)2][OTf] and 
[Ph2Sb(PPh3)][OTf]. These residual signals provide an internal standard with which to compare the 
coordination compounds. 
 
 

 

Figure 7.8: P K-edge XANES spectra for 4.1, 4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb. 



 

 144 

 

Figure 7.9: First derivative P K-edge XANES spectra for 4.1, 4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb. The 
31P{1H} NMR spectra for 4.1(Sb)0.5 and 4.1(Sb)0.75 reveal that they contain a small amount of unreacted 
4.1. This is also apparent in the XANES spectra, which exhibit two edges. The first edge at 2145.50 eV 
corresponds to 4.1. 
 
 

 

Figure 7.10: Sb L3-edge XANES spectra. 
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Figure 7.11: First derivative Sb L3-edge XANES spectra. 
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7.4.3 XPS Data 

Table 7.6: Summarized XPS data for atomic % of char derived from polymer networks 4.1(Sb)0.5, 
4.1(Sb)0.75 and 4.1Sb. 

 Atomic % 
Photoelectron Peaks Ceramics 4.1(Sb)0.5 Ceramics 4.1(Sb)0.75 Ceramics 4.1Sb 
Sb 3d3/2 1.3 2.3 2.6 
O 1s 7.1 10.1 7.7 
N 1s 4.6 3.6 4.3 
C 1s 86.1 83.0 84.9 
P 2p 1.0 0.7 0.4 

Table 7.7: Summarized XPS data for the oxidation states of Sb, C and P of char derived from polymer 
networks 4.1(Sb)0.5, 4.1(Sb)0.75 and 4.1Sb. 

  % Area 
Element Photoelectron Peaks Ceramics 4.1(Sb)0.5 Ceramics 4.1(Sb)0.75 Ceramics 4.1Sb 
Sb 3d3/2 Sb2O3 0.0 0.0 0.0 

3d3/2 Sb(0) 0.0 0.0 0.0 
3d5/2 Sb2O3 88.8 93.8 89.7 
3d5/2 Sb(0) 11.2 6.2 10.3 

C p-p* 0.0 0.0 0.0 
O-C=O 2.3 3.6 2.3 
C=O 2.9 2.5 3.4 
C-OH, C-O- 9.3 13.3 10.3 
C-C, C-H 34.4 42.2 47.9 
C=C 51.1 38.4 36.2 

P 2p1/2 Phosphate 0.0 0.0 0.0 
2p3/2 Phosphate 100.0 100.0 100.0 

Table 7.8: Summarized XPS data for atomic % of ceramics derived from 4.1AlMe3 by pyrolysis at 800, 
900 and 1000 °C for 3 or 4 hours. 

 Atomic % 
 800°C 900°C 1000°C 
Photoelectron Peaks 3 h 4 h 3 h 4 h 3 h 4 h 
Al 2p 18.3 18.7 8.0 20.3 20.3 20.8 
O 1s 37.0 39.5 16.4 41.4 37.6 36.7 
N 1s 3.6 2.4 2.8 1.2 1.7 2.9 
C 1s 39.6 37.9 72.4 36.2 40.0 39.4 
P 2p 0.9 1.3 0.4 0.8 0.2 0.1 
Cl 2p 0.6 0.2 - - 0.1 - 
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Table 7.9: Summarized XPS data for the oxidation states of Al, C and P of ceramics derived from 
4.1AlMe3 by pyrolysis at 800, 900 and 1000 °C for 3 hours. 

  % Area 
  800° 900°C 1000°C 
Element Photoelectron Peaks 3 h 4 h 3 h 4 h 3 h 4 h 
Al 2p – Al(III) 100.0 100.0 100.0 100.0 100.0 100.0 
C p-p* 0.0 0.0 0.0 0.0 0.0 0.0 

O-C=O 4.3 4.0 2.9 4.4 3.8 3.5 
C=O 5.3 4.8 4.0 4.5 4.5 4.0 
C-OH, C-O-C 14.8 13.4 11.5 12.5 11.8 11.2 
C-C, C-H 63.5 60.5 32.5 51.6 38.7 39.8 
C=C 12.0 17.3 49.1 27.1 41.2 41.4 

P 2p1/2 Phosphate 0.0 0.0 0.0 0.0 0.0 0.0 
2p3/2 Phosphate 100.0 100.0 100.0 100.0 100.0 100.0 

Table 7.10: Summarized XPS data for atomic % of ceramics derived from 4.1CpCoCO by pyrolysis at 
800, 900 and 1000 °C for 3 or 4 hours. Optimized amount of P and Co seems to be 800°C for 4 hours. 

 Atomic % 
 800°C 900°C 1000°C 
Photoelectron Peaks 3 h 4 h 3 h 4 h 3 h 4 h 
Co 2.0 2.5 2.7 2.4 2.3 1.7 
O 1s 12.3 12.9 10.4 10.1 10.2 8.8 
N 1s 1.7 1.8 1.3 1.3 0.7 1.0 
C 1s 80.7 79.1 82.9 83.4 84.4 86.3 
P 2p 2.9 3.0 2.8 2.8 2.3 2.2 
Si 2s 0.4 0.7 - - - - 
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Table 7.11: Summarized XPS data for the oxidation states of Sb, C and P of ceramics derived from 
4.1CpCoCO by pyrolysis at 800, 900 and 1000 °C for 3 hours. 

  % Area 
  800° 900°C 1000°C 
Element Photoelectron Peaks 3 h 4 h 3 h 4 h 3 h 4 h 
Co Co3(PO4)2 - 2 47.9 49.1 47.3 48.0 47.6 47.3 

CoP – 3 0.8 0.6 0.9 0.8 0.9 0.9 
Co3(PO4)2 - 3 28.8 29.6 28.5 28.9 28.6 28.5 
Co3(PO4)2 - 1 14.9 15.3 14.7 14.9 14.8 14.7 
CoP – 2 0.6 0.4 0.7 0.6 0.6 0.7 
CoP – 1 7.0 5.1 7.9 6.9 7.5 8.0 
Co3(PO4)2 - total 91.6 94.0 90.5 91.8 91.0 90.5 
CoP - total 8.4 6.1 9.5 8.3 9.0 9.6 

C p-p* 0.0 0.0 0.0 0.0 0.0 0.0 
O-C=O 3.9 3.4 3.7 4.1 3.6 4.0 
C=O 4.9 4.6 4.2 4.1 3.8 3.6 
C-OH, C-O-C 14.0 13.7 12.3 12.3 11.4 11.5 
C-C, C-H 38.3 40.6 29.4 29.1 22.6 21.1 
C=C 38.9 37.7 50.4 50.4 58.6 59.8 

P 2p1/2 Phosphate 0.0 0.0 0.0 0.0 0.0 0.0 
2p3/2 Phosphate 38.9 47.3 40.2 45.1 43.3 42.7 
2p1/2 Intermediate 0.0 0.0 0.0 0.0 0.0 0.0 
2p3/2 Intermediate 33.9 27.2 25.4 21.6 19.9 19.4 
2p1/2 Phosphide 0.0 0.0 0.0 0.0 0.0 0.0 
2p3/2 Phosphide 27.2 25.5 34.4 33.2 36.8 38.0 
Phosphate total 38.9 47.3 40.2 45.1 43.3 42.7 
Intermediate total 33.9 27.2 25.4 21.6 19.9 19.4 
Phosphide total 27.2 25.5 34.4 33.2 36.8 38.0 

Table 7.12: Summarized XPS data for atomic % of ceramics derived from 4.2CpCoCO by pyrolysis at 
800 °C 4 hours. 

Photoelectron Peaks Atomic % 
Co 2p 6.9 
O 1s 14.5 
N 1s 3.0 
C 1s 68.5 
P 2p 6.7 
Zn 2p 3/2 0.4 
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Table 7.13: Summarized XPS data for the oxidation states of Sb, C and P of ceramics derived from 
4.2CpCoCO by pyrolysis at 800 °C for 4 hours. 

Element Photoelectron Peaks Area % 
Co Co3(PO4)2 - 2 38.7 

CoP – 3 2.5 
Co3(PO4)2 - 3 23.3 
Co3(PO4)2 - 1 12.0 
CoP – 2 1.8 
CoP – 1 21.6 
Co3(PO4)2 - total 74.0 
CoP - total 25.9 

C p-p* 0.0 
O-C=O 4.2 
C=O 4.9 
C-OH, C-O-C 10.0 
C-C, C-H 21.8 
C=C 59.3 

P 2p1/2 Phosphate 0.0 
2p3/2 Phosphate 35.3 
2p1/2 Intermediate 0.0 
2p3/2 Intermediate 10.2 
2p1/2 Phosphide 0.0 
2p3/2 Phosphide 54.5 
Phosphate total 35.3 
Intermediate total 10.2 
Phosphide total 54.5 
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7.4.4 SEM Images 

 

Figure 7.12: SEM images of ceramics derived from 4.1(Sb)0.75. Char formed at 800 °C for 4 hours. 
 
 
 

 
Figure 7.13: SEM images of ceramics derived from 4.1AlMe3. Char formed at 800, 900 and 1000 °C 
(left to right); char pyrolyzed for 3 hours (top); char pyrolyzed for 4 hours (bottom). 
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Figure 7.14: SEM images of ceramics derived from 4.1CpCoCO. Char formed at 800, 900 and 1000 
°C (left to right); char pyrolyzed for 3 hours (top); char pyrolyzed for 4 hours (bottom). 
 
 
 

 

Figure 7.15: SEM images of ceramics derived from 4.2CpCoCO. Char formed at 800 °C for 4 hours. 
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7.4.5 PXRD Data 

 

Figure 7.16: XRD data for 4.1(Sb)0.5 pyrolyzed at 800 °C for 4 h. Matches with powder pattern for Sb 
metal.17 

 
 
 

 

Figure 7.17: XRD data for 4.1(Sb)0.75 pyrolyzed at 800 °C for 4 h. Matches with powder pattern for Sb 
metal.17 
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Figure 7.18: XRD data for 4.1Sb pyrolyzed at 800 °C for 4 h. Matches with powder pattern for Sb 
metal.17 

 
 

 

Figure 7.19: Low angle PXRD data for 4.1 pyrolyzed at 800 °C for 4 hours. 
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Figure 7.20: XRD diffractogram for 4.1AlMe3 pyrolyzed at 800 °C for 3 h. 

 
 

 

Figure 7.21: XRD diffractogram for 4.1AlMe3 pyrolyzed at 900 °C for 3 h. 
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Figure 7.22: XRD diffractogram for 4.1AlMe3 pyrolyzed at 1000 °C for 3 h. 
 
 
 

 

Figure 7.23: XRD diffractogram for 4.1AlMe3 pyrolyzed at 800 °C for 4 h. 
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Figure 7.24: XRD diffractogram for 4.1AlMe3 pyrolyzed at 900 °C for 4 h. 
 
 

 

Figure 7.25: XRD diffractogram for 4.1AlMe3 pyrolyzed at 1000 °C for 4 h. 
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Figure 7.26: XRD diffractogram for 4.1CpCoCO pyrolyzed at 800 °C for 3 h. 
 
 

 

Figure 7.27: XRD diffractogram for 4.1CpCoCO pyrolyzed at 900 °C for 3 h. 
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Figure 7.28: XRD diffractogram for 4.1CpCoCO pyrolyzed at 1000 °C for 3 h. 
 
 

 

Figure 7.29: XRD diffractogram for 4.1CpCoCO pyrolyzed at 800 °C for 4 h. 
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Figure 7.30: XRD diffractogram for 4.1CpCoCO pyrolyzed at 900 °C for 4 h. 
 
 

 

Figure 7.31: XRD diffractogram for 4.1CpCoCO pyrolyzed at 1000 °C for 4 h. 
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Figure 7.32: XRD diffractogram for 4.2CpCoCO pyrolyzed at 800 °C for 4 h. 
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