
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

9-9-2019 11:30 AM

High Multiplicity Strip Packing High Multiplicity Strip Packing

Andrew Bloch-Hansen, The University of Western Ontario

Supervisor: Solis-Oba, Roberto, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Science degree in

Computer Science

© Andrew Bloch-Hansen 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Bloch-Hansen, Andrew, "High Multiplicity Strip Packing" (2019). Electronic Thesis and Dissertation
Repository. 6559.
https://ir.lib.uwo.ca/etd/6559

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6559&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ir.lib.uwo.ca%2Fetd%2F6559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6559?utm_source=ir.lib.uwo.ca%2Fetd%2F6559&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
In the two-dimensional high multiplicity strip packing problem (HMSPP), we are given k

distinct rectangle types, where each rectangle type Ti has ni rectangles each with width 0 <
wi ≤ 1 and height 0 < hi ≤ 1. The goal is to pack these rectangles into a strip of width
1, without rotating or overlapping the rectangles, such that the total height of the packing is
minimized.

Let OPT(I) be the optimal height of HMSPP on input I. In this thesis, we consider HMSPP
for the case when k = 3 and present an OPT(I) + 5

3 polynomial time approximation algorithm
for it. Additionally, we consider HMSPP for the case when k = 4 and present an OPT(I) + 5

2
polynomial time approximation algorithm for it.

Keywords: Approximation algorithms, geometric packing problems, high multiplicity
strip packing, linear program rounding, analysis of algorithms

ii

Summary for Lay Audience
Packing problems typically involve maximizing the number of objects that can be placed

into a container or minimizing the number of containers needed to hold a set of objects. Many
industrial problems can be modeled as packing problems involving rectangles and squares.

Solutions for rectangle packing problems are useful, for example, for loading pallets and
shipping containers for storage and transport, for designing transistor layouts for computer
chips, and for optimizing workflow in a workplace. There is a quantifiable difference between
good and bad solutions in the industrial environment. Wasted space during storage and trans-
port costs companies resources: time might need to be spent re-packing containers, additional
containers might need to be shipped, or product might be lost if certain weight restrictions
are not satisfied. Many companies still use trial-and-error approaches while packing items for
storage and transport.

In this thesis we consider the two-dimensional high multiplicity strip packing problem.
In this problem we are given k distinct rectangle types, where each rectangle type Ti has ni

rectangles each with width 0 < wi ≤ 1 and height 0 < hi ≤ 1. The goal is to pack these
rectangles into a strip of width 1, without rotating or overlapping the rectangles, such that the
total height of the packing is minimized. We consider the problem for the cases when there are
3 different rectangle types and 4 different rectangle types.

Efficient algorithms for packing problems translate into improved industrial practices that
reduce company expenses and improve product delivery. Furthermore, algorithm design tech-
niques specifically developed for rectangle and square packing problems contribute to the de-
sign of efficient algorithms for other types of optimization problems. As research into packing
problems expands, more industrial problems will be solved using these algorithms and more
packing and optimization problems will be able to leverage the algorithmic techniques that are
discovered.

iii

Co-Authorship Statement
This work was made possible by the mentorship of Professor Roberto Solis-Oba. The algo-
rithm for the high multiplicity strip packing problem for the case when k = 3 was designed
in collaboration with Professor Roberto Solis-Oba’s master’s student Andy Yu. The algorithm
for the high multiplicity strip packing problem for the case when k = 4 is a new algorithm that
extends the first algorithm.

iv

Contents

Abstract ii

Summary for Lay Audience iii

Co-Authorship Statement iv

List of Algorithms vii

List of Figures viii

1 Introduction 1
1.1 Fundamental Concepts . 2
1.2 Applications . 4
1.3 Related Work . 5
1.4 Our Contributions . 5

2 Related Problems 7
2.1 The Bin Packing Problem . 7
2.2 The Cutting Stock Problem . 8
2.3 The Rectangle Packing Problem . 9
2.4 The Strip Packing Problem . 10
2.5 High Multiplicity Problems . 11

3 High Multiplicity Strip Packing 13
3.1 Linear Program Rounding . 13
3.2 Rounding a Solution for the Linear Program for HMSPP 14
3.3 A Simple Approximation Algorithm for HMSPP 17

4 Strip Packing with Three Rectangle Types 19
4.1 Overview of the Algorithm . 19

4.1.1 The Common Portion of the Packing 20
4.1.2 The Uncommon Portion of the Packing 22
4.1.3 Sorting the Configurations . 22
4.1.4 Rounding Fractional Rectangles . 23

4.2 Three Configurations . 25
4.2.1 Notation . 26
4.2.2 Shifting Rectangles . 26

v

4.2.3 Case 1. fTop(i) ≤
1
3 , fMid(i) ≤

1
3 , and fBot(i) ≤

1
3 28

4.2.4 Case 2. fBot(i) >
1
3 and fTop(i) + fMid(i) ≤ 1 31

4.2.5 Case 3. fBot(i) >
1
3 and fTop(i) + fMid(i) > 1 36

4.3 Two Configurations . 42
4.3.1 Case 1. fTop(i) + fBot(i) ≤ 1 . 44
4.3.2 Case 2. fTop + fBot > 1 . 45

4.4 One Configuration . 46
4.5 Approximation Ratio . 47
4.6 Running Time . 48

5 Strip Packing with Four Rectangle Types 53
5.1 Overview of the Algorithm . 53

5.1.1 Rounding Fractional Rectangles . 54
5.2 Four Configurations . 56

5.2.1 Case 1. f1(i) + f2(i) ≤
1
2 and f3(i) + f4(i) ≤

1
2 58

5.2.2 Case 2. f1(i) + f2(i) ≤ 1 and f3(i) + f4(i) >
1
2 60

5.2.3 Case 3. f1(i) + f2(i) > 1 and f3(i) + f4(i) >
1
2 64

5.3 Three Configurations . 71
5.4 Two Configurations . 71
5.5 One Configuration . 71
5.6 Approximation Ratio . 71
5.7 Running Time . 72

6 Conclusion 74
6.1 Future Work . 75

Bibliography 77

Curriculum Vitae 81

vi

List of Algorithms

4.1 3TypeRounding(FractionalSolution) . 24
4.2 3ConfigurationRounding(FractionalSolution) . 25
4.3 2ConfigurationRounding(FractionalSolution) . 44
4.4 1ConfigurationRounding(FractionalSolution) . 46
5.1 4TypeRounding(FractionalSolution) . 55
5.2 4ConfigurationRounding(FractionalSolution) . 57

vii

List of Figures

1.1 An instance of HMSPP where k = 3. There are 3 type 1 rectangles, 4 type 2 rectangles,
and 6 type 3 rectangles. The total height of the packing is measured from the top of
the topmost rectangle to the base of the strip. 1

1.2 Scheduling the processing of a set of tasks by a group of processors can be encoded
into a packing problem: the number of contiguous processors required by a task can
be represented by the width of a rectangle, and the time needed to process the task
can be represented by the length of the rectangle. Note that in this example we have
assumed that the processors are indexed and that a process being scheduled on multiple
processors is assigned to a contigous block of the processors. 3

2.1 a) In a bin packing problem n sizes of items must be given in the input. b) In a cutting
stock problem only d sizes of items and d multiplicites must be given in the input.
Even when the value of n is very large, if the value of d is small the size of the input
for the cutting stock problem is small. 9

3.1 An instance of HMSPP (left) compared to an instance of FSPP (right). Rectangles in
FSPP might be sliced horizontally to form smaller pieces; a solution to FSPP might
have a lower height due to packing fractional pieces in regions where whole rectangles
cannot fit. The darker shaded rectangles from the left have been sliced horizontally
into the darker shaded smaller fractional pieces on the right. 15

3.2 A configuration is a horizontal strip of a packing where any horizontal line (red dashed
line) parallel to the base of the packing drawn through the configuration intersects the
same multiset of rectangle types. The fractional rectangles are shaded in a darker color. 15

3.3 The configurations are stacked one on top of the other to form a packing. The vector x
represents the height of each configuration as determined by the solution of the linear
program. 16

3.4 A simple approximation algorithm for HSMPP replaces each fractional rectangle by a
whole rectangle of the corresponding type, shifting rectangles upwards in the packing
to make space as needed. 17

4.1 The three configurations are packed one on top of the other. Fractional rectangles are
shaded in a darker color. 19

4.2 Common and uncommon portions of the packing. 20

4.3 For every section si ∈ S Common, the fractional rectangles in RTop(i) are replaced by
whole rectangles. 21

viii

4.4 After the fractional rectangles in S Common have been replaced by whole rectangles, the
height of the packing has increased by at most 1. The newly packed whole rectangles
are shaded. 21

4.5 The rectangles in each configuration are sorted according to fi. 22
4.6 A vertical division is created between rectangles of different types within a configura-

tion. The horizontally adjacent rectangles that are responsible for creating a vertical
division are shaded. 23

4.7 Fractions fTop(4), fMid(4), and fBot(4) are labeled for section s4. 24
4.8 CTop is flipped upside down. Recall that we sometimes simplify the figures by not

showing all of the rectangles in each configuration. 26
4.9 Notation used when referring to the uncommong portion of the packing. 27
4.10 CMid(4) and CTop(4) are shifted upwards by a distance of 2

3 27
4.11 For every section si ∈ S Case1 the fractional rectangles in RTop(i), RMid(i), and RBot(i)

are removed, re-shaped, and packed side-by-side in CA; a whole rectangle is formed
whenever a sufficient number of fractional pieces of the same type have been packed
in CA. All rectangles in CTop are shifted upwards until there is empty space of height
1 between CTop and CMid. 28

4.12 (a) CA is created by shifting all rectangles in CTop upwards, including rectangles in
S Case2 and S Case3, until there is empty space of height 1 between CTop and CMid. (b)
For every section si ∈ S Case1 the fractional rectangles from RTop(i), RMid(i), and RBot(i)

are removed, re-shaped, and packed side-by-side in CA within S Case1. 29
4.13 When S = S Case1, there will be no leftover fractional rectangles after the process

described in Corollary 4.2.4. 30
4.14 For every section si ∈ S Case2 the fractional rectangles in RTop(i) and RMid(i) are re-

moved, re-shaped, and packed side-by-side in CA; a whole rectangle is formed when-
ever a sufficient number of fractional pieces of the same type have been packed in CA.
The fractional rectangles in RBot(i) are rounded up. All rectangles in CTop ∪ CMid are
shifted upwards until there is empty space of height 1 between CTop and CMid and until
the rounded up rectangles in RBot(i) fit between CMid(i) and CBot(i). 31

4.15 (a) All rectangles in CTop ∪ CMid are shifted upwards, including rectangles in S Case1

and S Case3, until there is empty space of height 1 between CTop and CMid and the
rounded up rectangles in RBot(i) fit. (b) For every section si ∈ S Case2, the fractional
rectangles from RTop(i) and RMid(i) are removed, re-shaped, and packed side-by-side in
CA. The fractional rectangles in RBot(i) are rounded up. 32

4.16 (a) A fractional rectangle r ∈ S Case1 ∩ S Case2 located in CBot in the solution of the
linear program. (b) The rounded up part rCase2. (c) The fractional part rCase2 can be
replaced by a whole rectangle without further increasing the height of the packing and
without overlapping any other rectangles. 34

4.17 When S = S Case2, there will be no leftover fractional rectangles after the process
described in Corollary 4.2.6. 35

4.18 For every section si ∈ S Case3 the fractional rectangles in RTop(i), RMid(i), and RBot(i) are
rounded up. All rectangles in CTop ∪ CMid are shifted upwards until the rounded up
rectangles fit between CTop and CMid and between CMid and CBot. 36

ix

4.19 After the fractional rectangles in RTop(i), RMid(i), and RBot(i) are rounded up, all rect-
angles in CTop ∪ CMid are shifted upwards, incuding rectangles in S Case1 and S Case2,
until the rounded up rectangles fit. 37

4.20 (a) A fractional rectangle r ∈ S Case1 ∩ S Case3 ∩ CTop was packed by the solution of
the linear program. (b) A fractional rectangle r′ ∈ F of the same type as the rounded
up rCase3 can form a whole rectangle with the rounded up rCase3. (c) The fractional
rectangle r′ is shifted rightwards until it is side-by-side with the rounded up rCase3. (d)
The fractional rectangle r′ is shifted upwards until it forms a whole rectangle with the
rounded up rCase3. 39

4.21 When S = S Case3, there will be no leftover fractional rectangles after processing Case 3. 40
4.22 CTop is flipped upside down. 43
4.23 (a) CA is created by shifting all rectangles in CTop upwards, including rectangles in

S Case2, until there is empty space of height 1 between CTop and CBot. (b) The fractional
rectangles from RTop(i) and RBot(i) are removed, re-shaped, and packed side-by-side in
CA. 45

4.24 After the fractional rectangles in RTop(i) and RBot(i) are rounded up, all rectangles in
CTop are shifted upwards, including rectangles in S Case1, until the rounded up rectan-
gles fit. 45

4.25 One configuration. 47
4.26 The above input to HMSP is specified as a list of 3k = 9 numbers: {(4, 6, 3), (4, 14, 4), (8, 6, 6)}.

There are 3 type T1 rectangles, each with width 4 and height 6; there are 4 type T2 rect-
angles, each with width 4 and height 14; and there are 6 type T3 rectangles, each with
width 8 and height 6. 48

4.27 The above configuration of a fractional solution is specified as a list of O(k) numbers:
{(1, 4, 1.33), (2, 2, 1.71), (3, 3, 2)}. For example, the first rectangle is of type T1, there
are 4 type T1 rectangles packed side-by-side, and there are 1.33 type T1 rectangles
packed one on top of the other. That is, there is 1 whole rectangle and one fractional
rectangle with height equal to 1

3 of the height of a whole rectangle of type T1 packed
one on top of the other. 49

4.28 The common portion of the above packing is specified as a list of O(k) numbers:
{(2, 4, 4), (3, 2, 6), (1, 1, 6)}. For example, the first rectangle is of type T1, there are
4 type T1 rectangles packed side-by-side, and there are 4 type T1 rectangles packed
one on top of the other. 49

4.29 The part of a configuration in the uncommon portion of the packing is specified as a
list of O(k) numbers: {(2, 6, 2), (3, 5, 1), (3, 4, 2), (1, 2, 2)}. Note how rectangle type T2

is repeated in this list; the fractional rectangles in S Case1 are removed, re-shaped, and
packed in CA and so there is only 1 rectangle of type T2 packed one on top of the other
in CBot, but the rectangles in S Case2 located in CBot are rounded up and so there are 2
rectangles of type T2 packed one on top of the other in CBot. 50

4.30 A compact representation of the above packing uses O(k2) numbers, broken down
into sections for easier reading. The common portion of the packing is specified as
{(2, 4, 5), (3, 2, 6), (1, 1, 6)}. For the uncommon portion of the packing, the rectangles in
each configuration are as follows: CTop is specified as {(2, 9, 1), (3, 2, 1), (3, 2, 2)}, CA is
specified as {(2, 3, 1), (3, 3, 1), (1, 1, 1)}, CMid is specified as {(2, 4, 1), (3, 5, 1), (1, 1, 2)},
and CBot is specified as {(1, 2, 1), (1, 3, 2)}. 50

x

1

5.1 The four configurations are packed one on top of the other. 53
5.2 Fractions f1(3), f2(3), f3(3), and f4(3) for section s3. 54
5.3 C1 and C3 are flipped upside down. 56
5.4 For every section si ∈ S Case1 the fractional rectangles in R1(i), R2(i), R3(i), and R4(i)

are removed, re-shaped, and packed side-by-side in CA1; a whole rectangle is formed
whenever a sufficient number of fractional pieces of the same type have been packed
in CA1. All rectangles in C1 are shifted upwards until there is empty space of height 1
between C1 and C2. 58

5.5 (a) CA1 is created by shifting all rectangles in C1 upwards, including rectangles in
S Case2 and S Case3, until there is empty space of height 1 between C1 and C2. (b) For
every section si ∈ S Case1 the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are
removed, re-shaped, and packed side-by-side in CA1 within S Case1. 59

5.6 For every section si ∈ S Case2 the fractional rectangles in R1(i) and R2(i) are removed,
reshaped, and packed side-by-side in CA1; a whole rectangle is formed whenever a
sufficient number of fractional pieces of the same type have been packed in CA1. The
fractional rectangles in R3(i) and R4(i) are rounded up. All rectangles in C1 ∪ C2 ∪ C3

are shifted upwards until there is empty space of height 1 between C1 and C2 and until
the rounded up rectangles in R3(i) and R4(i) fit between C3(i) and C4(i). 60

5.7 (a) After the fractional rectangles in R1(i) and R2(i) are removed and the fractional rect-
angles in R3(i) and R4(i) are rounded up, all rectangles in C1 ∪ C2 ∪ C3 are shifted
upwards, including rectangles in S Case1, S Case3, and S Case4, until there is empty space
of height 1 between C1 and C2 and the rounded up rectangles in R3(i) and R4(i) fit. (b)
For every section si ∈ S Case2, the fractional rectangles from R1(i) and R2(i) are re-shaped
and packed side-by-side in CA1. 61

5.8 (a) A fractional rectangle r ∈ S Case1 ∩ S Case2 located in C3 in the solution of the linear
program. (b) The rounded up part rCase2. (c) The fractional part rCase2 can be replaced
by a whole rectangle without further increasing the height of the packing and without
overlapping any other rectangles. 63

5.9 For every section si ∈ S Case3, the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are
rounded up. All rectangles in C1 ∪ C2 ∪ C3 are shifted upwards until the rounded up
rectangles fit between C1 and C2 and between C3 and C4. 64

5.10 After the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are rounded up, all rectan-
gles in C1 ∪ C2 ∪ C3 are shifted upwards, including rectangles in S Case1 and S Case2,
until the rounded up rectangles fit. 65

5.11 (a) A fractional rectangle r ∈ S Case1 ∩ S Case3 ∩ C2 was packed by the solution of the
linear program. (b) A fractional rectangle r′ ∈ F of the same type as the rounded
up rCase3 can form a whole rectangle with the rounded up rCase3. (c) The fractional
rectangle r′ is shifted rightwards until it is side-by-side with the rounded up rCase3. (d)
The fractional rectangle r′ is shifted downwards until it forms a whole rectangle with
the rounded up rCase3. 67

6.1 When k = 5 and the solution to the linear program contains five configurations, C1, C2,
C3, and C4 can be processed using an unmodified version of algorithm 4TypeRound-
ing. Each fractional rectangle in C5 is rounded up. 75

Chapter 1

Introduction

The problem that we study in this thesis is the two-dimensional high multiplicity strip packing
problem (HMSPP): given k distinct rectangle types, where each rectangle type Ti has ni rect-
angles each with width 0 < wi ≤ 1 and height 0 < hi ≤ 1, the goal is to pack these rectangles
into a strip of width 1, without rotating or overlapping the rectangles, such that the total height
of the packing is minimized (see Figure 1.1).

Height
of the

packing

T1
T2

T3

T1 T1

T3 T3 T3

T3 T3

T2 T2 T2

1

T1 T1 T1

T2 T2 T2 T2

T3 T3 T3

T3 T3 T3

3 x Type 1 6 x Type 34 x Type 2

Figure 1.1: An instance of HMSPP where k = 3. There are 3 type 1 rectangles, 4 type 2 rectangles, and
6 type 3 rectangles. The total height of the packing is measured from the top of the topmost rectangle
to the base of the strip.

The thesis is organized in the following manner. In this chapter we introduce the back-
ground concepts needed to understand our research and state our contributions. In Chapter 2
we highlight some related problems and methodologies to solve them. In Chapter 3 we give
a formal definition of the high multiplicity strip packing problem and we describe how to use

1

2 Chapter 1. Introduction

LP-rounding to find solutions for it. In Chapter 4 we describe an algorithm for the case when
k = 3, and in Chapter 5 we describe an algorithm for the case when k = 4. In Chapter 6 we
summarize our findings and describe future research possibilities.

1.1 Fundamental Concepts
In an optimization problem the goal is to find the best solution from all feasible or possible
solutions. A feasible solution for a problem satisfies all the constraints of the problem. An
optimization problem can either be continuous or discrete. The standard form of a continuous
optimization problem is:

minimize f (x)
subject to gi(x) ≤ 0, for all i = 1, ...,m

h j(x) = 0, for all j = 1, ..., p
and x ∈ Rn

where x is a vector of variables, f is an objective function1, gi(x) ≤ 0 is an inequality constraint,
and h j(x) = 0 is an equality constraint. Finding the best solution from all feasible solutions
is equivalent to minimizing the objective function. Maximization problems can be solved by
negating the objective function.

A combinatorial optimization problem is a discrete optimization problem in which the vari-
ables used to express a feasible solution take on values from a discrete set. Finding an optimal
solution to a combinatorial optimization problem might involve selecting an optimal combina-
tion, ordering, arrangement, or set of variables. Many researchers in the fields of mathematics,
computer science, and operations research study combinatorial optimization problems due to
their theoretical and practical importance.

A special kind of combinatorial optimization problems are packing problems2. Some pack-
ing problems involve maximizing the number of objects that can be placed into a container,
while some others involve minimizing the number of containers needed to hold a set of ob-
jects. In geometric packing problems, the objects being packed are regular geometric shapes.
Many problems that do not involve regular geometric shapes or containers, such as schedul-
ing tasks on processors, can be represented as packing problems by encoding their input into
geometric shapes. For example, in a scheduling problem requiring the processing of a set of
tasks by a group of processors where each task needs to be processed by a contiguous subset
of processors, the number of processors required by a task can be represented by the width
of a rectangle and the time needed to process the task can be represented by the length of the
rectangle. A schedule of the tasks on the processors then corresponds to a packing of the corre-
sponding set of rectangles into a container of the same width as the number of processors (see
Figure 1.2).

Many optimization problems, including geometric packing problems, are considered to
be very complex computer science problems. An entire field of research, called computa-

1Sometimes referred to as a loss function, reward function, or cost function.
2Without loss of generality we can assume that there is not an infinite number of possible positions for the

objects being packed as we can assume that we minimize space between adjacent objects. That makes the problem
discrete.

1.1. Fundamental Concepts 3

Length of
the

Schedule

8

Tasks require 1 unit of
time and 1 processor

Tasks require 2 units of time
and 2 contiguous processors

Tasks require 2 units of
time and 1 processor

Figure 1.2: Scheduling the processing of a set of tasks by a group of processors can be encoded into
a packing problem: the number of contiguous processors required by a task can be represented by the
width of a rectangle, and the time needed to process the task can be represented by the length of the
rectangle. Note that in this example we have assumed that the processors are indexed and that a process
being scheduled on multiple processors is assigned to a contigous block of the processors.

tional complexity theory, aims to group problems into classes according to their complexity,
or difficulty to solve them. The difficulty of a problem can be measured by the amount of
computational resources required to solve it, such as the amount of storage or the time needed
to compute a solution. The time complexity function measures the number of computational
operations performed by an algorithm. The space complexity function measures the amount of
memory required by an algorithm.

In this thesis we are most interested in these complexity classes:
• P
• NP
• NP-hard
• APX
The complexity class P contains all problems that can be solved by algorithms with time

complexity functions that are polynomial in the size of the input (hereafter described as in
polynomial time). The class NP contains all problems for which there are algorithms that when
provided a potential answer can verify the answer’s correctness in polynomial time. Problems
in the class NP-hard are considered at least as hard as the hardest problems in NP. A problem
H is NP-hard if every other problem in NP can be transformed into H in polynomial time:
therefore, if H were solvable in polynomial time, then by the polynomial time transformation
from every problem in NP to H, all problems in NP would be solvable in polynomial time.
Currently, there are no known polynomial time algorithms to compute exact solutions for any

4 Chapter 1. Introduction

problems in the complexity class NP-hard.
Computational resources commonly need to be restricted when developing practical al-

gorithms. A computer does not have infinite storage capacity and an algorithm is probably
intended to finish during the lifetime of its designer. Algorithms are called efficient if their
time complexity is a polynomial function of the size of the input. The complexity class APX
is the set of NP-hard optimization problems for which there are efficient algorithms that can
produce solutions that are within a constant factor of the optimal solutions.

Many important practical and theoretical problems belong to the complexity class NP-hard;
therefore, we do not know any efficient algorithms to compute exact solutions to these prob-
lems. To overcome this, some researchers design approximation algorithms for these problems.
Instead of computing exact solutions, approximation algorithms aim to compute in polynomial
time solutions that are provably within a certain factor of the optimal solutions. Algorithms
that compute approximate solutions but do not provide a guarantee on the maximum differ-
ence between the solutions that they compute and optimum solutions are commonly called
heuristics.

Let OPT(I) be an optimal solution for a problem on instance I, and let SOL(I) be a solution
output by an approximation algorithm for the same instance I. The approximation ratio of an
approximation algorithm measures how close the solution output by the algorithm is to an op-
timal solution. For minimization problems, approximation ratio =

SOL(I)
OPT(I) and for maximization

problems, approximation ratio =
OPT(I)
SOL(I) . For some problems, a polynomial time approximation

scheme can be constructed, which is an algorithm that accepts as input the parameter ε > 0 such
that SOL(I)−OPT(I)

OPT(I) ≤ ε (minimization problems) or OPT(I)−SOL(I)
OPT(I) ≤ ε (maximization problems) and

has a time complexity that is a polynomial function of both the size of the input and 1
ε
.

Asymptotic analysis describes the quality of an approximation algorithm as the value of
an optimal solution becomes very large. Many approximation ratios have the form A + C

OPT(I) ,
where A is factor not dependent on OPT(I) called the asymptotic approximation ratio and C is
an additive constant. When OPT(I) is small, the additive constant of the approximation ratio
might be significant; however, in the asymptotic setting, additive constants are insignificant.

1.2 Applications

Many industrial problems can be modeled as geometric packing problems. One of the most fa-
mous packing problems, the cutting-stock problem, can model the industrial practice of cutting
raw material such as paper, wood, and metal into smaller units [23]. Solutions for rectangle
packing problems can be applied, for instance, to loading pallets and shipping containers for
storage and transport, to designing transistor layouts for computer chips, and to optimizing
workflow in a workplace [11].

Many practical applications require a combination of packing algorithms to produce a use-
ful solution. For example, a company that creates many products and ships them might have
to a) pick a subset of product to be included in a specific shipment, b) pack products onto
wooden skids while respecting weight restrictions and product fragility and minimizing wasted
space on the skid, c) pack wooden skids of various sizes into metal shipping containers while
maximizing the number of skids that are placed in a container, and (d) pack metal shipping

1.3. RelatedWork 5

containers onto large shipping vessels while minimizing the number of vessels needed to ship
all containers.

There is a quantifiable difference between good and bad solutions in the industrial environ-
ment. Wasted space during storage and transport costs companies resources: time might be
spent re-packing containers, additional containers might need to be shipped, or product might
be lost if weight restrictions are not satisfied. Many companies still use trial-and-error ap-
proaches while packing items for storage and transport [4]. Improved algorithms for packing
gates onto microchips and scheduling processes among processors lead to better performing
computers [30]; better algorithms for scheduling tasks to employees or to machines allows an
optimized workflow in factories [54]; and efficient algorithms for cutting units out of stock
material creates less wasted materials[55].

Efficient algorithms for geometric packing problems translate into improved industrial
practices that reduce company expenses and improve product delivery. Furthermore, algo-
rithm design techniques specifically developed for geometric packing problems contribute to
the design of efficient algorithms for other types of optimization problems. As research into
packing problems expands, more industrial problems will be solved using these algorithms and
more packing and optimization problems will be able to leverage the algorithmic techniques
that are discovered.

1.3 Related Work

In [47] an approximation algorithm is presented for HMSPP using linear program rounding
which they prove can be done in polynomial time. They introduce the concepts of a fractional
packing, configurations, parititioning a packing into common and uncommon portions, and
rounding up fractional rectangles. As these are concepts that we use in our algorithm, we will
explain each of these in detail in Chapters 3 and 4.

Given an instance I of HMSPP we denote with OPT(I) the height of an optimal solution for
instance I, and we denote with SOL(I) the height of the solution output by some algorithm for
the same instance I; the algorithm that SOL(I) refers to will be clear from the context. In [47]
an algorithm for HMSPP is presented for the case when k = 2 for which SOL(I) ≤ OPT(I) + 1
and a second algorithm is also given that for any fixed value k it computes a solution of value
SOL(I) ≤ OPT(I) + (k − 1).

1.4 Our Contributions

The algorithms that we present in this thesis divide a fractional packing into vertical sections
and examine one vertical section at a time from left to right. Depending on the sizes of the
fractional rectangles in each vertical section, we use different rounding techniques to trans-
form fractional rectangles into whole rectangles. This approach is explained in more detail in
Chapters 4 and 5.

In this thesis we present an algorithm designed in collaboration with Yu and Solis-Oba for
HMSPP when k = 3 for which SOL(I) ≤ OPT(I) + 5

3 . This algorithm can be generalized

6 Chapter 1. Introduction

for any fixed value k to get SOL(I) ≤ OPT(I) + k − 4
3 . Note that this algorithm has a better

approximation ratio than the algorithm in [47] for all k > 2.
Additionally, in this thesis we present a new algorithm for HMSPP when k = 4 for which

SOL(I) ≤ OPT(I) + 5
2 . This algorithm can be generalized for any fixed value k to get SOL(I) ≤

OPT(I) + k − 3
2 .

Chapter 2

Related Problems

Packing problems come in many shapes and sizes, and small variations in the definition of a
packing problem can produce many seemingly similar but many times very different problems.
In this chapter we describe several classic packing problems: the bin packing problem, the
cutting stock problem, the rectangle packing problem, and the strip packing problem.

The rectangle packing and strip packing problems are very similar to HMSPP; each of
these problems involves packing rectangles into a rectangular container. The bin packing and
cutting stock problems are widely known, and the relationship between them is similar to the
relationship between the strip packing problem and HMSPP; in each case, the latter problem is
a high multiplicity version of the former. We describe the term high multiplicity in more detail
later on in this chapter.

2.1 The Bin Packing Problem

One of the earliest packing problems considered in the literature is the one-dimensional bin
packing problem. In this problem the goal is to pack a set A = {a1, a2, ..., an} of n items, each
of size 0 < size(ai) ≤ 1, into the smallest possible number of unit capacity bins [37]. The
one-dimensional bin packing problem is NP-hard [19].

A practical application of this problem encodes transport trucks as bins and products as
items. In this model, the size of an item is the product’s weight, and the capacity of a bin is the
truck’s carrying capacity. By minimizing the total number of bins needed to hold all the items,
we also minimize the number of transport trucks needed to carry all of the product; therefore,
algorithms that minimize the number of required bins can help a transport company minimize
its delivery expenses.

The one-dimensional bin packing problem is also theoretically significant: as one of the
earlier NP-hard problems studied, many of the classical approaches that are used to evaluate the
performance of approximation algorithms (approximation ratios and average-case behaviour)
were first designed for algorithms for the one-dimensional bin packing problem [8].

Johnson et al. [37] presented a simple algorithm for this problem called first-fit decreasing
(FFD). FFD first sorts the items A = {a1, a2, ..., an} by non-increasing values of size(ai). Then,
FFD repeatedly takes the largest un-packed item and packs it into the first bin where it fits.
Johnson et al. proved that FFD(I) ≤ 11

9 OPT(I) + 2, where FFD(I) is the number of bins used

7

8 Chapter 2. Related Problems

by the algorithm FFD. Other researchers have further analyzed this algorithm, and it has been
proven that FFD(I) ≤ 3

2OPT(I), which is the best possible approximation ratio for this problem
unless P = NP [50].

When the one-dimensional bin packing problem is considered in the asymptotic setting,
which involves instances of the problem with very large optimal values, algorithms have been
designed with better approximation ratios. In 2007, Dósa [10] proved that FFD(I) ≤ 11

9 OPT(I)+
6
9 . In 1980, Yao [56] presented the refined first-fit decreasing algorithm, that produces solutions
of value RFFD(I) ≤ 11

9 OPT(I) − 10−7. In 1985, Garey and Johnson [38] presented the mod-
ified first-fit decreasing algorithm, with asymptotic approximation ratio 71

60 . In 1991, Friesen
and Langson [18] presented an algorithm combining the best two-fit algorithm and the first fit
decreasing algorithm, with asymptotic approximation ratio that matches that of the modified
first-fit descreasing algorithm. Each of these algorithms attempts to enhance FFD by identify-
ing bins containing large items and pairing these large items with small items to fill each bin
as much as possible.

In 1981, Fernandez de la Vega and Lueker [53] presented an asymptotic PTAS where
SOL(I) ≤ (1 + ε)OPT(I) for any ε > 0. In 1982, Karmarkar and Karp [40] presented an algo-
rithm that computes solutions of values at most OPT(I) + O(log2 OPT(I)). In 2013, Rothvoß
[48] presented an algorithm that computes solutions of values at most OPT(I)+O(log OPT(I)∗
log log OPT(I)).

2.2 The Cutting Stock Problem
In the one-dimensional cutting stock problem we are given a set A = {A1, A2, ..., Ad} of d item
types and a set N = {n1, n2, ..., nd} of d item multiplicities. All ni items of type Ai have size
0 < size(Ai) ≤ 1. In this problem the goal is to pack the items into the smallest number of unit
capacity bins. The cutting stock problem is NP-hard [20].

This problem can model many industrial challenges of cutting raw materials into smaller
units for customers. For example, a business might stock standard length pieces of wood, but
customers might request non-standard lengths of wood. The business wants to minimize the
cost of cutting their standard material to the requested size. A solution to the cutting stock
problem is equivalent to selecting the minimum number of standard-length materials needed to
fulfill the customers orders.

Note that the one-dimensional cutting stock problem is the one-dimensional bin packing
problem where the input objects are partitioned into d types. However, there is a significant
difference between the cutting stock problem and the bin packing problem; while the input
to the bin packing problem consists of a vector of n item sizes, the input to the cutting stock
problem consists of a vector of d item sizes and a vector of d item multiplicities. Thus, even
when the value of n is very large, if the value of d is small the size of the input for the cutting
stock problem is small (see Figure 2.1).

Recall that an algorithm is efficient if its time complexity is polynomial in its input size.
Algorithms for the bin packing problem that consider individually each item would not run
in polynomial time if applied to the cutting stock problem. Bin packing algorithms are given
n items as input, so considering each item individually incurs a number of operations that
depends on the value of n, the size of the input; however, cutting stock algorithms are given d

2.3. The Rectangle Packing Problem 9

T1 T1 T1

T3 T3 T3 T3

A = { }, , , , , ,

T2

,

T2

,

T2

,

T2

,
size1 size2 size3 size4 size5 size6 size7 size8 size9 size10 size11

(a)

T1

T3

A = { },

T2

,
size1 size2 size3

, N = { 3, 4, 4}

(b)

Figure 2.1: a) In a bin packing problem n sizes of items must be given in the input. b) In a cutting stock
problem only d sizes of items and d multiplicites must be given in the input. Even when the value of n
is very large, if the value of d is small the size of the input for the cutting stock problem is small.

item types as input, so when the total number of items is larger than d, considering each item
individually incurs a number of operations that depends on the value of n, but a polynomial
time cutting stock algorithm must incur a number of operations that polynomially depends on
the value of d, the size of the input. When n is much larger than d, the time complexities of bin
packing algorithms applied to the cutting stock problem can be exponential in their input sizes.
Polynomial time algorithms for the cutting stock problem must consider each object type and
not individual objects.

The cutting stock problem first appeared under the name of the trim problem in 1957 [12]
and some of the first work on solving this problem was done by Gilmore and Gomory [21, 22,
23], who formulated this problem as an integer program. In 2005, Filippi and Agnetis [14]
presented a polynomial-time algorithm that computes solutions of values at most OPT(I) +

(d − 2) bins, where d is a fixed number of object types. Note that when there are only 2 object
types, this algorithm solves the cutting stock problem exactly. In 2007, Filippi and Agnetis
[13] improved their algorithm to use at most OPT(I) + 1 bins for the case when 2 < d ≤ 6 and
at most OPT(I) + 1 + b d−1

3 c bins for the case when d > 6. In 2010, Jansen and Solis-Oba [34]
presented a polynomial-time algorithm that computes solutions of values at most OPT(I) + 1,
for any fixed value of d. In 2013, Goemans and Rothvoß [24] presented a polynomial-time
algorithm that solves the cutting stock problem exactly for any fixed value of d.

In 1982, Karmarkar and Karp [40] presented an algorithm that computes solutions of values
at most OPT(I) + O(log2 d), for arbitrary values of d. In 2013, Rothvoß [48] presented an
algorithm that computes solutions of values at most OPT(I) + O(log d ∗ log log d), for arbitrary
values of d. Similarly to the bin packing problem, no approximation algorithm for the cutting
stock problem can have an approximation ratio smaller than 3

2 unless P = NP [34].

2.3 The Rectangle Packing Problem

In the two-dimensional rectangle packing problem, we are given a set R = {r1, r2, ..., rn} of n
rectangles, where each rectangle ri has width wi and height hi, and a rectangular container of
width W and height H. The goal is to determine the maximum subset of rectangles from R
that can be packed within the rectangular container, without rotating or overlapping any of the
rectangles [3]. The two-dimensional rectangle packing problem is NP-hard [2].

10 Chapter 2. Related Problems

This problem is very useful in modeling the problem of cutting patterns out of raw material.
Consider a rectangular piece of fabric of width W and height H, and a set R = {r1, r2, ..., rn} of
n rectangular cutting patterns, where each cutting pattern ri has width wi and height hi. Solving
the rectangle packing problem is equivalent to maximizing the number of patterns that can
be cut from the rectangular piece of fabric, which in turn leads to a cost-effective strategy of
cutting the fabric.

Similarly to the bin packing problem, algorithms such as FFD can be modified to work on
the two-dimensional rectangle packing problem. When FFD is applied to the two-dimensional
rectangle packing problem, it is considered to be a level oriented algorithm. In a level oriented
algorithm, the bottom of the rectangular container is considered the first level of the packing.
Rectangles are packed in the first level until a rectangle r is found that is too wide to be packed
in the remaining space at the bottom of the container. The bottom of the second level of the
packing is defined by a horizontal line drawn from the top of the tallest rectangle packed in
the first level. Subsequent levels are defined in the same way. When FFD is applied to the
two-dimensional rectangle packing problem, it has an approximation ratio of 1.7 [7].

In 1983, Baker et al. [2] presented an algorithm that computes solutions of values at most
4
3OPT(I) for packing unit-weight squares into a rectangle. In 2004, Caprara and Monaci [6]
considered the problem when rectangles have profits and the goal is to maximize the profit of
the rectangles packed in the rectangular container; they presented an algorithm that computes
solutions of values at most (3 + ε)OPT(I) for any ε > 0. In 2007, Jansen and Zhang [36]
improved this result by presenting an algorithm that computes solutions of values at most
(2 + ε)OPT(I) for any ε > 0. In 2009, Harren [27] presented an algorithm for packing squares
with profits into a rectangular container that computes solutions of values at most (5

4 +ε)OPT(I)
for any ε > 0. In 2008, Jansen and Solis-Oba [33] presented a PTAS for packing squares with
profits that computes solutions of values at most (1 + ε)OPT(I) for any ε > 0.

In 2005, Fishkin et al. [16] considered two special cases of the problem of packing a set of
rectangles with profits into a unit size square frame. They presented a PTAS for the case when
each square has profit equal to its area. Additionally, they presented a PTAS for the square
packing problem with augmentation [15], in which the size of the container can be increased
by a small factor ε > 0. In 2012, Lan et al. [44] presented an algorithm for the case when
the rectangles have side lengths at most 1

k , where k ≥ 1 is an integer, that computes solutions
of values at most k2+3k+2

k2 OPT(I). Additionally, Lan et al. gave a PTAS for the square packing
problem without profits.

2.4 The Strip Packing Problem
In the two-dimensional strip packing problem we are given a set R = {r1, r2, ..., rn} of n rect-
angles, where each rectangle ri has width wi and height hi, and a rectangular strip with a fixed
width and infinite height. The goal is to pack all of the rectangles within the strip while mini-
mizing the total height of the packing [3]. Rectangles cannot be rotated and rectangles cannot
overlap with other rectangles. Note that this problem is different than the two-dimensional
rectangle packing problem; in the rectangle packing problem, the input rectangles are not all
guaranteed to fit within the container, but in the strip packing problem, all of the input rectan-
gles must fit within the container and the total height of the packing must be minimized. The

2.5. HighMultiplicity Problems 11

two-dimensional strip packing problem is NP-hard [19].
A simple application of the two-dimensional strip packing problem involves scheduling

computer processes to be run on a multi-core computer. Computer processes that require dif-
ferent amounts of time can be encoded as rectangles that have different heights. Processes
that require a single computer core can be encoded as rectangles of width 1 and processes that
require multiple cores can be encoded as rectangles of width equal to the number of cores.
The width of the strip represents the number of computer cores available. Therefore, finding
an optimal solution for the two-dimensional strip packing problem is equivalent to scheduling
computer processes to CPU cores to minimize the total time needed to complete every process.

Baker et al. [3] designed a class of algorithms for the two-dimensional strip packing prob-
lem called bottom-up left-justified algorithms (BL). BL algorithms pack rectangles one-by-one
into the lowest possible location in the packing where they fit, and then rectangles are left-
justified within the packing. Baker et al. proved that this approach achieves a 3-approximation
algorithm when the rectangles are sorted by decreasing width.

Coffman et al. [9] presented an 2.7-approximation algorithm, Sleator [51] designed a 2.5-
approximation algorithm, Schiermeyer [49] and Steinberg [52] independently presented 2-
approximation algorithms, and Harren and van Stee [29] gave a 1.9396-approximation algo-
rithm. Harren et al. [28] presented the best known approximation algorithm for this problem in
2014 with an approximation ratio of 5

3 + ε. There is no approximation algorithm for the two-
dimensional strip packing problem with an approximation ratio better than 3

2 unless P = NP
[28].

When the two-dimensional strip packing problem is considered in the asymptotic setting,
Golan [25] proved that the BL algorithm has asymptotic approximation ratio 4

3 , and Baker et
al. [1] proved that it has asymptotic approximation ratio 5

4 . Kenyon and Rémila [42] gave an
FPTAS for the problem where SOL(I) ≤ (1 + ε)OPT(I) + O(1

ε2) for any ε > 0 and Jansen and
Solis-Oba [32] gave a PTAS for the problem where S OL(I) ≤ (1 + ε)OPT(I) + 1 for any ε > 0.

2.5 High Multiplicity Problems
Practical problems that can be solved using packing algorithms often include a small number
of different types of items. For example, a company might have a shipment containing only
a few different products, but they ship these products in bulk. Therefore, a packing algorithm
can group identical products together and pack the groups, instead of packing individual items.

As defined by Hochbaum and Shamir [31], a high multiplicity problem has its input ”par-
titioned into relatively few groups (or types), and in each group all the [inputs] are identical.”
The number of items within a type is called the multiplicity of that type. Note that high mul-
tiplicity problems represent the input of a problem very compactly, as we only need a list of
types and a list of multiplicities and not a list of the individual items in the input. For example,
consider the difference between the bin packing and cutting stock problems described above:
the bin packing problem takes as input a list of n items, while the cutting stock problem takes as
input a list of d types and a list of d multiplicities. Ideally, an algorithm for a high multiplicity
problem takes advantage of the fact that there are many items with identical dimensions to find
a better solution than a general algorithm that considers every item to be unique.

Each of the problems listed above has high multiplicity variants. In general, it seems that

12 Chapter 2. Related Problems

approximation algorithms for high multiplicity problems produce solutions closer to the opti-
mal ones than approximation algorithms for their respective general problems.

In 2014, Goemans and Rothvoß [24] presented an algorithm for solving the one-dimensional
cutting stock problem in polynomial time for a constant number of item types. Recall that bin
packing can also be considered as a scheduling problem where the processing times correspond
to the item sizes. Goemans and Rothvoß also solved the high multiplicity variant of minimizing
the makespan for unrelated machines with machine-dependent release dates for a fixed number
of job types and machine types.

In 2001 McCormick et al. [45] presented a polynomial-time algorithm to solve the mul-
tiprocessor scheduling problem with 2 job lengths. In this problem, each job has one of two
possible processing times. In 2018, Fitzsimmons and Hemaspaandra [17] proved that the mul-
tiprocessor scheduling problem with C job lengths is solvable in polynomial time for any fixed
value of C.

Chapter 3

High Multiplicity Strip Packing

Given k distinct rectangle types, where each rectangle type Ti has ni rectangles with width
0 < wi ≤ 1 and height 0 < hi ≤ 1, we wish to pack all of the rectangles into a strip of width 1
in such a way that the height of the packing is minimized (see Figure 1.1). The height of the
packing is measured from the top of the topmost rectangle to the base of the strip.

Rectangles must be packed such that they are fully contained within the strip, rectangles
cannot overlap with other rectangles, and rectangles cannot be rotated. The rectangles are ori-
ented; that is, each rectangle has a top, bottom, left, and right side. When packing a rectangle,
the bottom side must be parallel to the base of the strip. This restriction applies to practical
scenarios such as cutting wood with or against the grain.

3.1 Linear Program Rounding
A useful approach for designing approximation algorithms for NP-hard problems uses a strat-
egy called linear program rounding (LP-rounding). To understand LP-rounding, we must first
introduce the notions of linear programs and integer programs.

A linear program is an encoding of a mathematical model, and can be expressed in the
general form:

maximize cT x
subject to Ax ≤ b,
and x ≥ 0

where x is a vector of variables, c and b are vectors of coefficients, and A is a matrix of coeffi-
cients. The expression cT x is known as the objective function. We can use a linear program to
solve minimization problems by negating the objective function. The inequalities Ax ≤ b and
x ≥ 0 are constraints on the mathematical model.

The set of solutions that satisfy a linear program’s constraints, called feasible solutions,
form an n-polytope, which is an n-dimensional geometric shape where n is the number of
variables in the linear program. This n-polytope is a convex set of points, which means that a
line segment joining any two points from the set is completely contained within the n-polytope.
The problem of solving a linear program is equivalent to finding a point within the n-polytope
that optimizes the objective function.

13

14 Chapter 3. HighMultiplicity Strip Packing

Solutions to the linear program that correspond to vertices of the n-polytope are known as
basic feasible solutions. If a linear program has an optimal solution, then it has at least one
basic feasible solution that optimizes the objective function; this is important, as basic feasi-
ble solutions have a valuable property: in any basic feasible solution, the number of nonzero
variables is at most the lesser of the number of constraints and the number of variables [39].
This property can be used to bound the number of non-zero variables in a solution of a linear
program.

An integer program is a linear program where all the variables are restricted to be inte-
gers. The problem of finding optimal solutions for integer programs is NP-hard [41]; however,
solutions for linear programs can be computed in polynomial time [43].

Now we can describe the process of LP-rounding:
1. Formulate an NP-hard problem that we wish to solve as an integer program and then

relax the integrality constraints of the integer program to obtain a linear program
2. Solve the linear program
3. Transform the solution of the linear program into a feasible solution for the NP-hard

problem by rounding the values of non-integral variables to integer values

3.2 Rounding a Solution for the Linear Program for HMSPP
Consider the version of the strip packing problem where rectangles can be sliced horizontally:
this is the fractional strip packing problem (FSPP). Since rectangles in FSPP can be cut into
smaller pieces called fractional rectangles, which are rectangles that do not have the full height
of a whole rectangle of its type, these fractional rectangles can be packed into regions of the
strip that otherwise might have been left empty if slicing rectangles were not allowed (see
Figure 3.1). Note that we shade rectangles in a darker color either when they are fractional
rectangles or when those rectangles will be transformed.

A configuration C j consists of a group of rectangles packed side-by-side whose total width
is at most 1. Rectangles can be packed one-on-top of another within a configuration from
the base of the configuration until they reach the configuration’s height. Any horizontal line
parallel to the base of the packing drawn through the configuration intersects the same multiset
of rectangle types (see Figure 3.2). In other words, within a configuration, two rectangles
that are packed one-on-top-of-another must be of the same rectangle type, but two rectangles
that are packed side-by-side can be of different rectangle types. The fractional packing in
Figure 3.1 consists of two configurations: C1 contains rectangles of types T2 and C2 contains
rectangles of types T1 and T3.

A fractional packing consists of a finite number of configurations stacked one on top of the
other (see Figure 3.3). Within a packing, a configuration C j is only used once; for example,
you would not find a packing consisting of C j, C j+1, and C j again. We index the configurations
such that the top configuration is C1, the configuration beneath C1 is C2, and so on (see Figure
3.3). The total height of a packing is equal to the sum of the heights of its configurations.

3.2. Rounding a Solution for the Linear Program for HMSPP 15

T1 T1

T1 T1

T2 T2T2 T2

T3

T3

T3

Height
of the

packing

T1 T1

T1 T1

T3

High Multiplicity Strip Packing Problem Fractional Strip Packing Problem

1 1

T3

T3

C1

C2

Figure 3.1: An instance of HMSPP (left) compared to an instance of FSPP (right). Rectangles in FSPP
might be sliced horizontally to form smaller pieces; a solution to FSPP might have a lower height due
to packing fractional pieces in regions where whole rectangles cannot fit. The darker shaded rectangles
from the left have been sliced horizontally into the darker shaded smaller fractional pieces on the right.

1

T1 T1 T1 T1 T2 T2 T3

T3 T3

T3

T3

T3

Configuration

T1 T1 T1 T1 T2 T2
Height of the
configuration

Figure 3.2: A configuration is a horizontal strip of a packing where any horizontal line (red dashed
line) parallel to the base of the packing drawn through the configuration intersects the same multiset of
rectangle types. The fractional rectangles are shaded in a darker color.

A linear program formulation for FSPP can be obtained in the following manner:
• Let a solution to FSPP be expressed using a vector x with J dimensions, where J is

the set of all possible configurations. Each vector coordinate x j represents the height
of configuration C j. Configurations that are used in a solution to FSPP should have a
positive height and configurations that are not used in a solution to FSPP should have a
height of 0.

• Let ni be the total number of rectangles of type Ti and let hi be the height of each rectangle
of type Ti.

• Let ni, j be the number of rectangles of type Ti in configuration C j.

16 Chapter 3. HighMultiplicity Strip Packing

C3

C2

C1

1

T1 T1 T1 T1

T1

T1 T1 T1

T2 T2

T2

T2 T2

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

= 3�1

= 3�2

= 3�3

T1 T1 T1 T1

T1 T1 T1 T1

T2 T2

T2 T2

Figure 3.3: The configurations are stacked one on top of the other to form a packing. The vector x
represents the height of each configuration as determined by the solution of the linear program.

The following linear program defines FSPP:

Minimize
∑
j∈J

x j

Subject to:
∑
j∈J

x jni, j ≥ nihi, for each rectangle type i

x j ≥ 0, for each j ∈ J

(3.1)

where the objective function aims to minimize the total height of the packing, the first constraint
ensures that all input rectangles are included in the fractional packing, and the second constraint
ensures that no configurations have negative height.

A solution to linear program (3.1) is stored in the vector x. Each coordinate x j with a
positive value indicates that configuration C j is used in the solution of FSPP (see Figure 3.3).
The value of x j is the height of configuration C j. Therefore, the sum of x’s coordinates is the
total height of the fractional packing.

In [47] it is proven that a basic feasible solution to this linear program uses at most k
configurations, i.e., at most k of the variables x j have positive value, and it can be found in
polynomial time. The process involves using the Grötschel-Lovász-Schrijver [26] algorithm
to find an optimal solution to the dual linear program corresponding to (3.1) and using the

3.3. A Simple Approximation Algorithm for HMSPP 17

algorithm of Karmarkar and Karp [40] to transform this solution into an optimal basic feasible
solution for (3.1). The basic feasible solution obtained from this process is used as the input
for our approximation algorithms described below.

3.3 A Simple Approximation Algorithm for HMSPP
Transforming a basic feasible solution S of FSPP into a feasible solution for HMSPP requires
transforming fractional rectangles, rectangles that do not have the full width or the full height
of whole rectangles of their same types, into whole ones. Perhaps the simplest way to do this is
to replace each fractional rectangle by a whole rectangle of its type, shifting rectangles upwards
in the packing to make space as needed (see Figure 3.4). Clearly, after this transformation, all
rectangles must be whole. Since the height of any rectangle is at most 1, there is at most one
layer of fractional rectangles in each configuration, and there are at most k configurations in
S , the total height of the packing produced in this manner is at most k plus the height of the
fractional packing produced by solving the linear program.

C3

C2

C1

1

T1 T1 T1 T1

T1

T1 T1 T1

T2 T2

T2

T2 T2

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T1 T1 T1 T1

T1 T1 T1 T1

T2 T2

T2 T2

≤ 1

≤ 1

≤ 1

Figure 3.4: A simple approximation algorithm for HSMPP replaces each fractional rectangle by a
whole rectangle of the corresponding type, shifting rectangles upwards in the packing to make space as
needed.

Note that the height of an optimal solution for FSPP is a lower bound on the height of an
optimal solution for HMSPP; a solution using whole rectangles cannot achieve a lower total
height than a solution using fractional rectangles, as those fractional rectangles can potentially
be packed in regions where whole rectangles would not fit. We use the height of an optimal

18 Chapter 3. HighMultiplicity Strip Packing

fractional packing as a lower bound for the height of an optimal solution for HMSPP when
evaluating the performance of our approximation algorithms.

The simple approximation algorithm described above produces a solution where SOL(I) ≤
OPT(I) + k. Note that the above algorithm which transforms fractional rectangles into whole
rectangles runs in polynomial time: for each rectangle type, fractional rectangles have their
fractions changed to 1. As proven in [47], solving the linear program (3.1) can be done in
polynomial time; therefore, this approximation algorithm runs in polynomial time.

However, algorithms with better approximation ratios can be designed for HMSPP; intu-
ition suggests that while replacing fractional rectangles with whole rectangles is a good strategy
when the size of a fractional rectangle is almost the size of a whole rectangle of its type, re-
placing small fractional rectangles with whole rectangles probably increases the height of the
packing more than it needs to. We show two algorithms in the next two chapters that improve
upon the simple algorithm described above.

Chapter 4

Strip Packing with Three Rectangle Types

4.1 Overview of the Algorithm
As discussed in Chapter 3, when k = 3 there can be either three configurations, two configura-
tions, or only one configuration in the solution obtained from the linear program. Our algorithm
must correctly round all these possible cases to integer solutions in polynomial time. In this
section we assume that there are three configurations in the fractional solution. We consider
the cases when the fractional solution has two configurations and one configuration in Sections
4.3 and 4.4.

The three configurations are packed one on top of the other as shown in Figure 4.1; frac-
tional rectangles are shaded in a darker color. Let the configuration packed at the top be called
CTop, the configuration packed in the middle be called CMid, and the configuration packed at
the bottom be called CBot. Note that we can change the order of the configurations if necessary.

CBot

CMid

CTop

T1 T1 T1 T1

T1

T1 T1 T1

T2 T2

T2

T2 T2

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T1 T1 T1 T1

T1 T1 T1 T1

T2 T2

T2 T2

1

Figure 4.1: The three configurations are packed one on top of the other. Fractional rectangles are
shaded in a darker color.

19

20 Chapter 4. Strip Packing with Three Rectangle Types

4.1.1 The Common Portion of the Packing
Rectangles can be rearranged horizontally within the configurations so that rectangles of the
same type appearing in all three configurations are packed together; these rectangles appear
to the left of the packing, and we label this section of the packing the common portion of
the packing. In the common portion of the packing, the fractional rectangles in CBot can be
combined with rectangles in CMid of the same type to form either larger fractional rectangles
or whole rectangles, and the same can be done for the fractional rectangles in CMid and the
rectangles in CTop of the same type.

In Figure 4.2 a solid vertical line has been drawn between the common portion and the
uncommon portion. Note that in the common portion of the packing, fractional rectangles
must be the topmost rectangles in CTop, as fractional rectangles lower in the packing have bee
combined together (see Figure 4.2).

CBot

CMid

CTop

SUncommon

T1 T1 T1 T1

T1 T1 T1 T1

T1 T1 T1 T1

T1 T1 T1T1

T1

T1 T1 T1

T2 T2

T2 T2

T2 T2

T2 T2

T2 T2

T2

T2 T2

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

Common Portion of the Packing

Figure 4.2: Common and uncommon portions of the packing.

Recall that the height of any rectangle r is at most 1; therefore, we can replace the fractional
rectangles in the common portion of the packing with whole rectangles of the same type (see
Figure 4.3), similar to the process used in the simple algorithm presented in Chapter 3. This
process increases the height of the common portion of the packing by at most 1 (see Figure
4.4).

Corollary 4.1.1. If all rectangles are packed in the common portion of the packing, then there
will be no leftover fractional rectangles after processing the common portion of the packing as
described above. Therefore, in this case our algorithm produces an integer packing of height at
most 1 plus the height of the fractional packing produced by the solution of the linear program.

Proof. All fractional rectangles in the common portion of the packing, which must be located
in CTop, are replaced by whole rectangles of the corresponding type. Therefore, there will be no
leftover fractional rectangles. Recall that the height of any rectangle is at most 1; therefore, the

4.1. Overview of the Algorithm 21

CBot(i)

CMid(i)

CTop(i)
T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

WCommon Fractional Rectangles
from CTop(i)

Rounded-up Rectangles

Si

T2 T2

T2 T2

CBot(i)

CMid(i)

CTop(i)
T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

WCommon

Si

T2 T2 ≤ 1

Common Portion of the Packing Common Portion of the Packing

Figure 4.3: For every section si ∈ S Common, the fractional rectangles in RTop(i) are replaced by whole
rectangles.

CBot

CMid

CTop

SUncommon

T1 T1 T1 T1

T1 T1 T1 T1

T1 T1 T1 T1

T1 T1 T1T1

T1

T1 T1 T1

T2 T2

T2 T2

T2 T2

T2 T2

T2 T2

T2

T2 T2

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T3

T2 T2 ≤ 1

Common Portion of the Packing

Figure 4.4: After the fractional rectangles in S Common have been replaced by whole rectangles, the
height of the packing has increased by at most 1. The newly packed whole rectangles are shaded.

total increase in height from replacing the fractional rectangles in CTop with whole rectangles
is at most 1. �

Note that the common portion of the packing can be rounded independently of the un-
common portion of the packing, because there is no rectangle r that spans both the common
portion of the packing and the uncommon portion of the packing. For the rest of this chapter,

22 Chapter 4. Strip Packing with Three Rectangle Types

we discuss how to round the uncommon portion of the packing.

4.1.2 The Uncommon Portion of the Packing

After horizontally rearranging rectangles in each configuration to create the common portion
of the packing, the uncommon portion of the packing does not contain a single rectangle type
that appears in all three configurations (see Figure 4.2). Therefore, fractional pieces at the top
of CBot might not be of the same type as the rectangles at the bottom of CMid.

The algorithm in this chapter describes how to transform fractional rectangles located in
the uncommon portion of the packing into whole rectangles.

4.1.3 Sorting the Configurations

Within a configuration C at most k distinct rectangle types are packed. Let fi represent the
fraction of each rectangle of type Ti that appears at the top of C. Fraction fi is calculated by
dividing the height of a fractional rectangle of type Ti in C by the height of that rectangle type
(see Figure 4.5a). Within each configuration, the rectangles in the uncommon portion of the
packing will be packed left to right in non-decreasing value of fi. Figure 4.5 shows how the
rectangles are sorted in the configurations.

C
T1 T1 T1 T1 T1 T1 T1 T2 T2 T2 T2T3

T3

=�1

1

3
=�2

3

5
= 0�3

SUncommon

s1 s2 s3

(a)

T1

T1
T2

T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2 T2 T2 T2

T3 T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T3

T2 T2 T2 T2 T2 T2

T2 T2 T2 T3

T3 T3 T3

T2

T2

T3

CBot

CMid

CTop

T3

s1 s2 s3 s4

SUncommon

(b)

Figure 4.5: The rectangles in each configuration are sorted according to fi.

For configurations that have more than one type of rectangle, draw a solid vertical line at the
point where the rectangle type changes. This vertical line will extend through all of the other
configurations and may divide rectangles in other configurations into two or more pieces. In the
figures we draw a dashed vertical line to show the extension of a vertical division into the other
configurations (see Figure 4.6). We say that a configuration creates a vertical division where it
changes rectangle type. Vertical divisions separate the uncommon portion of the packing into
multiple vertical sections. Sections in the uncommon portion of the packing are indexed from
left to right starting at index 1 (see Figure 4.6).

4.1. Overview of the Algorithm 23

s1 s3

T1

T1
T2

T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2 T2 T2 T2

T3 T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T3

T2 T2 T2 T2 T2 T2

T2 T2 T2 T3

T3 T3 T3

T2

T2

T3

CBot

CMid

CTop

SUncommon

s2 s4

Figure 4.6: A vertical division is created between rectangles of different types within a configuration.
The horizontally adjacent rectangles that are responsible for creating a vertical division are shaded.

4.1.4 Rounding Fractional Rectangles
To transform the fractional rectangles into whole rectangles we consider each vertical section
in the uncommon portion of the packing one at a time from left to right. Within a section si,
each configuration only has a single rectangle type. Let fTop(i), fMid(i), and fBot(i) represent the
fraction of the rectangles packed in si at the top of CTop, CMid, and CBot, respectively. Figure
4.7 shows fractions fTop(4), fMid(4), and fBot(4) within section s4; note that we sometimes simplify
the figures by not showing all of the rectangles in each configuration.

Algorithm 3TypeRounding, described below, transforms a fractional packing obtained by
solving the linear program into an integer packing. This transformation increases the total
height of the packing by at most 5

3 , as we show later. Since the fractional packing obtained by
the GLS algorithm may have three configurations, two configurations, or only one configura-
tion, we use different algorithms depending on the number of configurations in the fractional
solution.

24 Chapter 4. Strip Packing with Three Rectangle Types

s1

=����(4)

1

2

T1

T2

T3

T2

T2

T3

s2 s3 s4

SUncommon

CBot

CMid

CTop

T3T3

T1

T1

T3

=����(4)

1

2

T2T2T2T2

=����(4)

1

2

Figure 4.7: Fractions fTop(4), fMid(4), and fBot(4) are labeled for section s4.

Algorithm 4.1 3TypeRounding(FractionalSolution)
1: Input: Optimal fractional packing FractionalSolution.
2: Output: The height of the integer packing h obtained from FractionalSolution.
3: Divide FractionalSolution into common and uncommon portions by horizontally rearrang-

ing rectangles as described in Section 4.2.1.
4: Round up the fractional rectangles of the common portion of the packing as described in

Section 4.2.1.
5: for each configuration C in FractionalSolution do
6: Sort the uncommon portion of C by non-decreasing value of fi.
7: end for
8: if number of configurations in FractionalSolution = 3 then
9: return 3ConfigurationRounding(FractionalSolution).

10: else if number of configurations in FractionalSolution = 2 then
11: return 2ConfigurationRounding(FractionalSolution).
12: else
13: return 1ConfigurationRounding(FractionalSolution).
14: end if

4.2. Three Configurations 25

4.2 Three Configurations
When the solution to the linear program has three configurations, our algorithm considers three
cases, depending on the values of the three fractions fTop(i), fMid(i), and fBot(i) for each section
si:
• Case 1: fTop(i) ≤

1
3 , fMid(i) ≤

1
3 , and fBot(i) ≤

1
3 .

Let i be the smallest index for which fBot(i) >
1
3 , fTop(i) >

1
3 , or fMid(i) >

1
3 . If such an index

does not exist then Case 2 and Case 3 do not need to be considered; otherwise, we (re)-order
the configurations so that fBot(i) >

1
3 for all j > i. Now we can define Case 2 and Case 3:

• Case 2: fBot(i) >
1
3 and fTop(i) + fMid(i) ≤ 1, and

• Case 3: fBot(i) >
1
3 and fTop(i) + fMid(i) > 1.

We first flip CTop upside down as shown in Figure 4.8. The algorithm for rounding frac-
tional rectangles into whole ones when there are three configurations is shown below.

Algorithm 4.2 3ConfigurationRounding(FractionalSolution)
1: Input: An optimal fractional packing FractionalSolution with three configurations CTop,

CMid, and CBot.
2: Output: The height of an integer packing h obtained from FractionalSolution.
3: Order the configurations as described above.
4: Flip CTop upside down.
5: Initialize set S to contain all the vertical sections in the uncommon portion of

FractionalSolution.
6: Initialize sets S Case1, S Case2, and S Case3 to be empty sets.
7: for si ∈ S do
8: if f1(i) ≤

1
3 , f2(i) ≤

1
3 , and f3(i) ≤

1
3 then

9: S Case1 = S Case1 ∪ si.
10: else if f1(i) >

1
3 and f2(i) + f3(i) ≤ 1 then

11: S Case2 = S Case2 ∪ si.
12: else
13: S Case3 = S Case3 ∪ si.
14: end if
15: end for
16: h0 = height of FractionalSolution.
17: h1 = height increase after processing S Case1 according to Section 4.2.3.
18: h2 = height increase after processing S Case2 according to Section 4.2.4.
19: h3 = height increase after processing S Case3 according to Section 4.2.5.
20: return h0 + max(h1, h2, h3).

Note that this algorithm only depends on the number of configurations and not on the
number of rectangle types.

Theorem 4.2.1. Algorithm 3ConfigurationRounding produces an integer packing of height at
most 5

3 plus the height of the fractional packing produced by the solution of the linear program.

We prove this theorem in the Sections 4.2.3 - 4.2.5.

26 Chapter 4. Strip Packing with Three Rectangle Types

s1

CBot

CMid

CTop
T1

T2

T3

T2

T2

T3

T2

T3

T3

s2 s3 s4

SUncommon

T1

T1

T3

Figure 4.8: CTop is flipped upside down. Recall that we sometimes simplify the figures by not showing
all of the rectangles in each configuration.

4.2.1 Notation

Let S be the set of all vertical sections in the uncommon portion of the packing. We use S Case1,
S Case2, and S Case3 to represent the sets of all sections classified as Case 1, Case 2, and Case 3,
respectively (see Figure 4.9). Additionally, when we write “rectangle r ∈ S Case1” we mean
that rectangle r is packed in a section within S Case1.

Within some section si, let CTop(i), CMid(i), and CBot(i) refer to the part of CTop, CMid, and CBot

that is located within si, respectively. Also, let RTop(i), RMid(i), and RBot(i) represent the fractional
rectangles packed at the top of CTop(i), CMid(i), and CBot(i), respectively. When we write “RTop”,
“RMid”, and RBot”, without including a section, we are referring to the fractional rectangles
packed at the top of CTop, CMid, and CBot, respectively.

A rectangle r might belong to two or more sections. We say, for example, that r ∈ RTop ∩

S Case2 ∩ S Case3 if r is a fractional rectangle packed at the top of CTop and has been split by
a vertical division that separates Case 2 and Case 3. Hereafter, we call such a rectangle a
vertically split fractional rectangle. We use rCase2 to refer to the part of r that is packed within
S Case2 and rCase3 to refer to the part of r that is packed within S Case3. Figure 4.9 shows an
example of this notation. A fractional rectangle r ∈ RTop ∩ S Case2 ∩ S Case3 has been highlighted
in sections s2 and s3. Note that we actually cut rectangle r into the parts rCase2 and rCase3 so that
the parts can be packed independently of each other.

4.2.2 Shifting Rectangles

Within a section si, we say that a rectangle r1 is packed below a rectangle r2 if the distance from
the bottom of the packing to the top of r1 is less than or equal to the distance from the bottom of
the packing to the bottom of r2. Similarly, we say that r1 is packed above r2 if the distance from

4.2. Three Configurations 27

T1

T1
T2

T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2 T2 T2 T2

T3 T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T3

T2 T2 T2 T2 T2 T2

T2 T2 T2 T3

T3 T3 T3

CBot

CMid

CTop

SCase1

s3

SCase2 SCase3

s1 s2 s4

RMid(4)

S = Set of all vertical sections in SUncommon

� ∈ ∩ ∩���� �����2 �����3

CBot(4)

RTop(2)CTop(1)

Figure 4.9: Notation used when referring to the uncommong portion of the packing.

the bottom of the packing to the bottom of r1 is greater than or equal to the distance from the
bottom of the packing to the top of r2. We use these same definitions of “above” and “below”
when referring to configurations.

Assume that for some section si we want to shift all the rectangles in CMid(i) upwards by
a distance of 2

3 . To do this we must move all the rectangles in CMid(i) and in CTop(i) a distance
of 2

3 higher than their original locations. This leaves empty space of height 2
3 between the top

of RBot(i) and the bottom of CMid(i). Figure 4.10 shows how CMid(4) is shifted upwards by a
distance of 2

3 . Note that a vertically split rectangle must be cut along the vertical division so
that its parts can move independently.

T1

T1
T2

T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2 T2 T2 T2

T3 T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T3

T2 T2 T2 T2 T2 T2

T2 T2 T2 T3

T3 T3 T3

T2

T2

T3

CBot

CMid

CTop

T3

S

s3 s1 s2 s4

(a)

=⇒

T1

T1
T2

T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2 T2 T2 T2

T3 T3

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T3

T2 T2

T2 T2 T2 T2

T2 T2 T2

T3

T3 T3 T3

T2

T3

CBot

CMid

CTop

T3

S

s3s1 s2 s4

2

3

2

3

(b)

Figure 4.10: CMid(4) and CTop(4) are shifted upwards by a distance of 2
3 .

28 Chapter 4. Strip Packing with Three Rectangle Types

4.2.3 Case 1. fTop(i) ≤
1
3 , fMid(i) ≤

1
3 , and fBot(i) ≤

1
3

Let the width of S Case1 be W1. For every section si ∈ S Case1 we remove the fractional rectangles
in RTop(i), RMid(i), and RBot(i), including the parts rCase1 for vertically split fractional rectangles
r; re-shape them so that they have the full height of a rectangle of the same type but only a
fraction of its width; and pack them side-by-side in a region of width W1 and height 1. This
region, hereafter referred to as CA (see Figure 4.11), is created by shifting all rectangles in
CTop upwards, including rectangles in S Case2 and S Case3, until there is empty space of height 1
between CTop and CMid (see Figure 4.12). After shifting the rectangles the tops of the topmost
rectangles in CTop must lie on a common line.

si

T1 T1 T1

T3

T1

CA(i)

CBot(i)

CMid(i)

CTop(i)

CBot(i)

CMid(i)

CTop(i)

SCase1

si

SCase1

Re-shape to Full Height

T1

empty

empty

T3

T2

T2

T2

T2

T2 T2

T1 T1 T1 T1

T3 T3

T2

T2

Rectangles
vertically cut at
the boundary

of SCase1 empty

Merge Pieces of Same Type

Fractional Rectangles from
CTop(i), CMid(i), and CBot(i)

W1

T3 T3

T1
T3

T1
T2

T1
T3

T1 T1 T1 T1

T3 T3

T3 T3

W1

T1T1 T1T1
T3T3

1

Figure 4.11: For every section si ∈ S Case1 the fractional rectangles in RTop(i), RMid(i), and RBot(i) are
removed, re-shaped, and packed side-by-side in CA; a whole rectangle is formed whenever a sufficient
number of fractional pieces of the same type have been packed in CA. All rectangles in CTop are shifted
upwards until there is empty space of height 1 between CTop and CMid.

Lemma 4.2.2. Let section si ∈ S Case1 have width Wi, and let CA(i) be the portion of CA con-
tained within si. The fractional rectangles in RTop(i), RMid(i), and RBot(i) can be packed in CA(i)

using at most height 1 and width Wi.

Proof. The total available area Ai in CA(i) is Ai = Wi ∗ 1 = Wi. Since each of CTop(i), CMid(i), and
CBot(i) has only one rectangle type, the total area ai of RTop(i), RMid(i), and RBot(i) is

ai ≤ (Wi ∗ fTop(i)) + (Wi ∗ fMid(i)) + (Wi ∗ fBot(i)) ≤ Wi = Ai,

as the height of each rectangle is at most 1 and fTop(i) ≤
1
3 , fMid(i) ≤

1
3 , and fBot(i) ≤

1
3 .

In order to pack the fractional rectangles from RTop(i), RMid(i), and RBot(i) in CA(i), we reshape
them so that they have the full height of a rectangle of the same type but only a fraction of its

4.2. Three Configurations 29

T1 T1
T2 T2

T1 T2 T2 T3

T3 T3 T3 T3

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1

CA 1

(a)

=⇒

T1 T1
T2 T2

T1 T2 T2 T3

T3 T3 T3 T3

empty empty

empty

empty

empty

empty

CA

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1

1

(b)

Figure 4.12: (a) CA is created by shifting all rectangles in CTop upwards, including rectangles in
S Case2 and S Case3, until there is empty space of height 1 between CTop and CMid. (b) For every section
si ∈ S Case1 the fractional rectangles from RTop(i), RMid(i), and RBot(i) are removed, re-shaped, and packed
side-by-side in CA within S Case1.

width. This does not change the total area of the fractional rectangles and it ensures that all of
the reshaped fractional rectangles when packed side-by-side will fit in CA(i), because the total
width of these reshaped rectangles is Wi ∗ fTop(i) + Wi ∗ fMid(i) + Wi ∗ fBot(i) ≤ Wi, and the height
of each rectangle is at most 1 and fTop(i) ≤

1
3 , fMid(i) ≤

1
3 , and fBot(i) ≤

1
3 . �

By Lemma 4.2.2, the fractional rectangles from S Case1 that were removed, reshaped, and
packed in CA have total width at most W1. Since the width of CA within S Case1 is W1, the
re-shaped rectangles can be packed in CA.

Lemma 4.2.3. After processing the fractional rectangles from S Case1 as explained in Lemma
4.2.2 there is at most one fractional rectangle of each type in CA.

Proof. For each si ∈ S Case1, we pack the fractional rectangles of si in CA such that a whole
rectangle is formed whenever a sufficient number of pieces of the same type have been packed.
When fractional rectangles of the same type do not form a whole rectangle, they merge to
become one larger fractional rectangle. Therefore, at most one fractional rectangle of each
type may remain in CA. �

Corollary 4.2.4. If S = S Case1, then any leftover fractional rectangles after processing Case
1 as described in this section can be discarded. Therefore, in this case algorithm 3Configura-
tionRounding produces an integer packing of height at most 1 plus the height of the fractional
packing produced by the solution of the linear program.

Proof. For every section si ∈ S Case1 the fractional rectangles in RTop(i), RMid(i), and RBot(i) are
reshaped and packed side-by-side in CA. By Lemma 4.2.3 there can be at most one fractional
rectangle of each type in CA. Let F be the set of these fractional rectangles.

The fractional rectangles in the solution of the linear program must sum to an integer num-
ber of whole rectangles. Therefore, for each rectangle r ∈ F there must have been more

30 Chapter 4. Strip Packing with Three Rectangle Types

fractional rectangles in the solution of the linear program of the same type as r in the common
portion of the packing of sufficient size to form an integer number of whole rectangles. Recall
that any fractional rectangles in the common portion of the packing were rounded up. There-
fore, fractions of rectangles of the same type as the rectangles in F and of total area equal to the
area of F have been added when rounding up the fractional rectangles in the common portion
of the packing. Thus, the fractional rectangles in F can be discarded.

Therefore, if S = S Case1, there are no leftover fractional rectangles after processing Case 1
as described in this section. Algorithm 3ConfigurationRounding produces an integer packing
of height at most 1 plus the height of the fractional packing produced by the solution of the
linear program. �

T1 T1

T2 T2

T1 T2 T2 T3

T3 T3 T3 T3

empty

empty

empty

empty

empty

empty

empty empty

empty empty

empty empty

CA

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

W2

Figure 4.13: When S = S Case1, there will be no leftover fractional rectangles after the process de-
scribed in Corollary 4.2.4.

4.2. Three Configurations 31

4.2.4 Case 2. fBot(i) >
1
3 and fTop(i) + fMid(i) ≤ 1

Let the width of S Case2 be W2. For every section si ∈ S Case2 we remove the fractional rectangles
in RTop(i) and RMid(i), including the parts rCase2 for vertically split fractional rectangles r; re-
shape them so that they have the full height of a rectangle of the same type but only a fraction
of its width; and pack them side-by-side in a region of width W2 and height 1 in CA. Each
fractional rectangle fully contained within RBot(i) is replaced by a whole rectangle of the same
type (see Figure 4.14); the parts rCase2 for vertically split fractional rectangles r ∈ RBot(i) are
replaced by fractional rectangles that have the full height of a rectangle of the same type but the
same width as rCase2. Hereafter the process of replacing a fractional rectangle r with a rectangle
that has the full height as rectangles of the same type as r and shifting other rectangles as needed
to make room for the larger rectangle will simply be called rounding up a fractional rectangle
r.

T2T2

T2T2

T2T2

T2 T2

CA(i)

CBot(i)

CMid(i)

CTop(i)

CBot(i)

CMid(i)

CTop(i)

si

SCase2

si

SCase2

Fractional Rectangles
from CTop(i) and CMid(i)

Re-shape to Full Height and
Merge Pieces of the Same Type

Fractional Rectangles
from CBot(i)

T2 T2

Rounded-up Rectangles

T2 T2

T3

T3

T2 T2

empty

empty

W2

T2T2

T2

T3 T2

W2

1

T3
T3

≤
2

3

Figure 4.14: For every section si ∈ S Case2 the fractional rectangles in RTop(i) and RMid(i) are removed,
re-shaped, and packed side-by-side in CA; a whole rectangle is formed whenever a sufficient number
of fractional pieces of the same type have been packed in CA. The fractional rectangles in RBot(i) are
rounded up. All rectangles in CTop ∪ CMid are shifted upwards until there is empty space of height 1
between CTop and CMid and until the rounded up rectangles in RBot(i) fit between CMid(i) and CBot(i).

All rectangles in CTop∪CMid are shifted upwards, including rectangles in S Case1 and S Case3,
until there is empty space of height 1 between CTop and CMid and the rounded up rectangles in
RBot(i) fit between CMid(i) and CBot(i) (see Figure 4.15). After shifting the rectangles the bottoms
of the bottommost rectangles in CMid must lie on a common line and the tops of the topmost
rectangles in CTop must also lie on a common line.

Recall that the height of any rectangle is at most 1, therefore, the height increase caused by
rounding up for the fractional rectangles in RBot(i) is at most 2

3 , as fBot(i) >
1
3 . Combining this

32 Chapter 4. Strip Packing with Three Rectangle Types

T1 T1
T2 T2

T1 T2 T2 T3

T3 T3 T3 T3

empty empty

empty empty

empty empty empty

empty

CA

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1 W2

1

(a)

T1 T1
T2 T2

T1
T2 T2 T3

T3 T3 T3 T3

empty empty

empty empty

empty empty empty

empty

CA

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1 W2

1

≤
2

3
empty

(b)

Figure 4.15: (a) All rectangles in CTop ∪ CMid are shifted upwards, including rectangles in S Case1 and
S Case3, until there is empty space of height 1 between CTop and CMid and the rounded up rectangles
in RBot(i) fit. (b) For every section si ∈ S Case2, the fractional rectangles from RTop(i) and RMid(i) are
removed, re-shaped, and packed side-by-side in CA. The fractional rectangles in RBot(i) are rounded up.

with the height increase caused by leaving space of height 1 between CTop and CMid, the total
increase in height of each si ∈ S Case2 is at most 5

3 .
In order to pack in CA the fractional rectangles from RTop(i) and RMid(i), we first reshape them

so that they have the full height of a rectangle of the corresponding type but only a fraction of
its width, similar to the process in Section 4.2.3. Recall that by Lemma 4.2.2 these re-shaped
rectangles have total width at most W2. Since the width of CA within S Case2 is W2, the re-shaped
rectangles can be packed in CA.

Lemma 4.2.5. If there is a fractional rectangle r ∈ S Case1∩S Case2 located in CBot in the solution
of the linear program, after processing the fractional rectangles as described above at most one
whole rectangle of the same type as r can be formed using the fractional rectangles within CA

and the fractional part rCase2. This whole rectangle can be packed without further increasing
the height of the packing and without overlapping any other rectangles.

Proof. Recall that within CA when sufficient fractional rectangles of the same type are packed,
they merge to become whole rectangles. By Lemma 4.2.3 there can be at most one fractional
rectangle of each type leftover in CA after merging fractional pieces. Let F be the set of
fractional rectangles in CA.

There is empty space within S Case1 right beside rCase2 of sufficient width to extend the width
of rCase2 to the width of a whole rectangle of the same type as rCase2, because the fractional
rectangle r was originally packed in both S Case1 and S Case2 in the solution of the linear program
(see Figure 4.16a). Furthermore, there is empty space between CMid and CBot within S Case1

and S Case2 of sufficient height to pack a whole rectangle of the same type as rCase2, because the
fractional part rCase2 was rounded up so that it had the full height of a rectangle of its type (see
Figure 4.16b). If there is a fractional rectangle r′ ∈ F of the same type as rCase2 such that r′

and the rounded up rCase2 form a whole rectangle, then r′ is removed from F and from CA and

4.2. Three Configurations 33

rCase2 is replaced by a whole rectangle of its same type. Therefore, the fractional part rCase2

can be replaced by a whole rectangle without further increasing the height of the packing and
without overlapping any other rectangles (see Figure 4.16c).

If S Case3 = ∅, then the remaining rectangles in F are discarded because fractional rectangles
of the same type in the solution of the linear program sum to an integer number of whole
rectangles. Therefore, for each rectangle r ∈ F, there must be more fractional rectangles of the
same type as r in either RBot or the common portion of the packing of sufficient size to form an
integer number of whole rectangles. Since all fractional rectangles in RBot(i) and in the common
portion of the packing are rounded up, then it must be the case that fractions of rectangles of
the same type as the rectangles in F and of total area at least the area of F have been added
when rounding up the fractional rectangles in RBot and the common portion of the packing.
Thus, the fractional rectangles in F can be discarded.

Note that if S Case3 , ∅, then we do not discard any leftover fractional rectangles yet as we
might need to use them later. �

Corollary 4.2.6. If S = S Case2, then any leftover fractional rectangles after processing Case
2 as described in this section can be discarded. Therefore, in this case algorithm 3Configura-
tionRounding produces an integer packing of height at most 5

3 plus the height of the fractional
packing produced by the solution of the linear program.

Proof. For every section si ∈ S Case2 the fractional rectangles in RBot(i) are rounded up and the
fractional rectangles in RTop(i) and RMid(i) are re-shaped and rectangles of the same type are
packed side-by-side in CA. By Lemma 4.2.3 there can be at most one fractional rectangle of
each type leftover after this merging. Let F be the set of these leftover fractional rectangles.

Recall that the fractional rectangles of the same type in the solution of the linear program
sum to an integer number of whole rectangles. Therefore, for each rectangle r ∈ F, there must
be more fractional rectangles of the same type as r in either RBot or the common portion of the
packing of sufficient size to form an integer number of whole rectangles. Since all fractional
rectangles in RBot(i) and in the common portion of the packing are rounded up, then it must be
the case that fractions of rectangles of the same type as the rectangles in F and of total area at
least the area of F have been added when rounding up the fractional rectangles in RBot and the
common portion of the packing. Thus, the fractional rectangles in F can be discarded.

Therefore, if S = S Case2, there are no leftover fractional rectangles after processing Case 2
as described in this section (see Figure 4.17). Algorithm 3ConfigurationRounding produces
an integer packing of height at most 5

3 plus the height of the fractional packing produced by the
solution of the linear program. �

34 Chapter 4. Strip Packing with Three Rectangle Types

CBot

CMid

s1

SCase1

W1 W2

s2

SCase2

T4

T4

T4

T4

T4

T4

r

T4

T4

T4

T4

T4

T4

T4

T4

T4

T4

(a)

CBot

CMid

s1

SCase1

W1 W2

s2

SCase2

T4

T4

T4

T4

T4

T4

rCase2

T4

T4

T4

T4

T4

T4

T4

T4

T4

T4

empty empty

empty

(b)

CBot

CMid

s1

SCase1

W1 W2

s2

SCase2

T4

T4

T4

T4

T4

T4

rCase2

T4

T4

T4

T4

T4

T4

T4

T4

T4

T4

empty empty

empty

(c)

Figure 4.16: (a) A fractional rectangle r ∈ S Case1 ∩ S Case2 located in CBot in the solution of the
linear program. (b) The rounded up part rCase2. (c) The fractional part rCase2 can be replaced by a
whole rectangle without further increasing the height of the packing and without overlapping any other
rectangles.

4.2. Three Configurations 35

T2 T2 T2 T2

T1 T2 T2 T3

T3 T3 T3 T3

empty

empty

empty

empty

empty empty

empty empty

CA

CBot

CMid

CTop

s1

SCase2

s2 s3 s4

1

≤
2

3

W2

Figure 4.17: When S = S Case2, there will be no leftover fractional rectangles after the process de-
scribed in Corollary 4.2.6.

36 Chapter 4. Strip Packing with Three Rectangle Types

4.2.5 Case 3. fBot(i) >
1
3 and fTop(i) + fMid(i) > 1

For every section si ∈ S Case3 the fractional rectangles in RTop(i), RMid(i), and RBot(i) are rounded
up, including the parts rCase3 for vertically split fractional rectangles r (see Figure 4.18). After
the fractional rectangles in RTop(i), RMid(i), and RBot(i) are rounded up, all rectangles in CTop∪CMid

are shifted upwards, including rectangles in S Case1 and S Case2, until the rounded up rectangles
fit between CTop and CMid and between CMid and CBot (see Figure 4.19). After shifting the
rectangles the bottoms of the bottommost rectangles in CMid must lie on a common line and the
tops of the topmost rectangles in CTop must also lie on a common line. Since the height of any
rectangle is at most 1, this process increases the height of the packing by at most 5

3 .

Si

T3

Si

T3

CBot(i)

CMid(i)

CTop(i)

CBot(i)

CMid(i)

CTop(i)

SCase3 SCase3

Fractional Rectangles
from CTop(i) and CMid(i)

Fractional Rectangles
from CBot(i)

Rounded-up Rectangles

Rounded-up Rectangles

T2T2

T3

T2 T2

T2 T2

T2T2
T2T2

T2T2

T2T2

T2T2

T2T2

T2T2

≤ 1

≤
2

3

T2

T3

CA(i)

Figure 4.18: For every section si ∈ S Case3 the fractional rectangles in RTop(i), RMid(i), and RBot(i) are
rounded up. All rectangles in CTop∪CMid are shifted upwards until the rounded up rectangles fit between
CTop and CMid and between CMid and CBot.

Lemma 4.2.7. If S Case2 , ∅ and S Case3 , ∅ then the rectangles in CMid create a vertical division
separating Case 2 and Case 3.

Proof. Let si ∈ S Case2 and s j ∈ S Case3, then fBot(i) >
1
3 , fTop(i) + fMid(i) ≤ 1, fBot(j) >

1
3 , and

fTop(j) + fMid(j) > 1. Therefore, either fTop(j) > fTop(i) holds or fMid(j) > fMid(i) holds.
Recall that a vertical division is created at the point where a configuration has packed

adjacent rectangles that are not of the same type. This is important; in order for fTop(j) > fTop(i)

to hold, the rectangles packed in CTop(j) must be of a different type than the ones packed in
CTop(i), and for fMid(j) > fMid(i) to hold, the same must be true of the rectangles packed in CMid(j)

and CMid(i). Therefore, the rectangles in CTop or CMid must create a vertical division separating
Case 2 and Case 3. If needed, we swap CTop and CMid so that the rectangles in CMid create a
vertical division separating Case 2 and Case 3. �

4.2. Three Configurations 37

T1 T1
T2 T2

T1
T2 T2 T3

T3 T3 T3 T3

empty empty

empty empty

empty empty empty

empty

CA

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1 W2

1

≤
2

3
empty

(a)

T1 T1
T2 T2

T1 T2 T2 T3

T3 T3 T3 T3

empty empty

empty empty

empty empty empty

empty

CA

CBot

CMid

CTop

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1 W2

1

≤
2

3
empty

(b)

Figure 4.19: After the fractional rectangles in RTop(i), RMid(i), and RBot(i) are rounded up, all rectangles
in CTop ∪ CMid are shifted upwards, incuding rectangles in S Case1 and S Case2, until the rounded up
rectangles fit.

Lemma 4.2.8. If S Case1 , ∅, S Case3 , ∅, and S Case2 = ∅, then the rectangles in both CMid and
CBot create a common vertical division separating Case 1 and Case 3.

Proof. Let si ∈ S Case1 and s j ∈ S Case3, then fTop(i) ≤
1
3 , fMid(i) ≤

1
3 , fBot(i) ≤

1
3 , fBot(j) >

1
3 , and

fTop(j) + fMid(j) > 1. Therefore, the rectangles in CBot create a vertical division separating Case
1 and Case 3. Moreover, since fTop(i) ≤

1
3 and fMid(i) ≤

1
3 , then fTop(j) + fBot(j) < 1; therefore,

the rectangles in CTop or CMid must also create a vertical division separating Case 1 and Case
3. If needed, we swap CTop and CMid so that the rectangles in CMid create a vertical division
separating Case 1 and Case 3. �

Lemma 4.2.9. Let S Case2 = ∅. If there is a fractional rectangle r ∈ S Case1 ∩ S Case3 in the
solution of the linear program, after processing the fractional rectangles as described above at
most one whole rectangle of the same type as r can be formed using the fractional rectangles
within CA and the fractional part rCase3. This whole rectangle can be packed without further
increasing the height of the packing and without overlapping any other rectangles.

Proof. By Lemma 4.2.8 rectangle r must be located in CTop. Recall that within CA when suffi-
cient fractional rectangles of the same type are packed, they merge to become whole rectangles.
By Lemma 4.2.3 there can be at most one fractional rectangle of each type leftover in CA after
this merging. Let F be the set of these leftover fractional rectangles.

The part rCase3 was rounded up so that it has the full height of a rectangle of its type but
only a fraction of its width (see Figure 4.20b). If there is a fractional rectangle r′ ∈ F of the
same type as rCase3 such that r′ and the rounded up rCase3 form a whole rectangle, then r′ is
removed from F; then r′ is shifted rightwards until it is side-by-side with the rounded up rCase3

(see Figure 4.20c). Next, r′ is shifted upwards to form a whole rectangle with the rounded up
rCase3 (see Figure 4.20d). Note that r′ can be shifted upwards because the fractional rectangle r
was packed by the solution of the linear program between S Case1 and S Case3 so there is enough

38 Chapter 4. Strip Packing with Three Rectangle Types

empty space beside rCase3 to put r′ (see Figure 4.20a). Therefore, r′ and the rounded up
rCase3 form a whole rectangle without further increasing the height of the packing and without
overlapping any other rectangles.

The remaining rectangles in F are discarded because fractional rectangles of the same type
in the solution of the linear program sum to an integer number of whole rectangles. Therefore,
for each fractional rectangle r ∈ F, there must be other fractional rectangles of the same
type elsewhere in the packing that were rounded up by at least the same area as r. Thus, the
fractional rectangles in F can be discarded. Note that if the rounded up rCase3 and r′ do not
form a whole rectangle, then rCase3 is discarded as well. �

Lemma 4.2.10. If there is a fractional rectangle r ∈ S Case2 ∩ S Case3 located in CTop in the
solution of the linear program, after processing the fractional rectangles as described above at
most one whole rectangle of the same type as r can be formed using the fractional rectangles
within CA and the fractional part rCase3. This whole rectangle can be packed without further
increasing the height of the packing and without overlapping any other rectangles.

Proof. A similar proof as that of Lemma 4.2.9 can be used. By Lemma 4.2.3 there can be at
most one fractional rectangle of each type leftover in CA after merging fractional pieces. Let F
be the set of fractional rectangles in CA.

If there is a fractional rectangle r′ ∈ F of the same type as rCase3 such that r′ and the rounded
up rCase3 form a whole rectangle, then r′ is removed from F; then r′ is shifted rightwards until
it is side-by-side with the rounded up rCase3, and finally r′ is shifted upwards to form a whole
rectangle with the rounded up rCase3 (see Figure 4.20). Refer to Lemma 4.2.9 for an explanation
on why there must be sufficient empty space beside rCase3 to form a whole rectangle. Therefore,
r′ and the rounded up rCase3 form a whole rectangle without further increasing the height of the
packing and without overlapping any other rectangles.

As shown in the proof of Lemma 4.2.9, the remaining rectangles in F can be discarded. If
the rounded up rCase3 and r′ do not form a whole rectangle, then rCase3 is discarded as well. �

Corollary 4.2.11. If there are fractional rectangles r ∈ S Case1 ∩ S Case2 ∩ S Case3, then they must
be located in CTop or CBot in the solution of the linear program. After processing the fractional
rectangles as described above, at most two whole rectangles of the same types as r can be
formed. These whole rectangles can be packed without further increasing the height of the
packing and without overlapping any other rectangles.

Proof. By Lemma 4.2.7, the rectangles in CMid create a vertical division separating Case 2 and
Case 3; therefore, a fractional rectangle r ∈ S Case1∩S Case2∩S Case3 cannot be located in CMid, as
the rectangles in S Case2 and S Case3 of CMid are of different types. There is at most one vertically
split fractional rectangle r ∈ S Case1 ∩ S Case2 ∩ S Case3 ∩ CTop and at most one vertically split
fractional rectangle r′ ∈ S Case1 ∩ S Case2 ∩ S Case3 ∩CBot.

Recall that the fractional rectangles from S Case1 and S Case2 ∩ (RTop ∪ RMid) were packed in
CA. By Lemma 4.2.3 there can be at most one fractional rectangle of each type in CA. Let F be
the set of these fractional rectangles.

Note that Lemma 4.2.10 holds even if r ∈ S Case1 ∩ S Case2 ∩ S Case3 ∩CTop, because the frac-
tional parts rCase1 and rCase2 were both re-shaped and packed in CA; hence, the same argument
used to prove Lemma 4.2.10 shows that either rCase3 can be replaced by a whole rectangle of

4.2. Three Configurations 39

CMid

CTop

s1

SCase1

W1 W3

s2

SCase3

T4

T4

T4

T4

T4

T4

T1

T1 T4

T4

T4

T4

T4

T4

r

(a)

CMid

CTop

s1

SCase1

W1 W3

s2

SCase3

T4

T4

T4

T4

T4

T4

T1

T1

empty

T4

T4

T4

T4

T4

T4

empty

CA
r'

rCase3

(b)

CMid

CTop

s1

SCase1

W1 W3

s2

SCase3

T4

T4

T4

T4

T4

T4

T1

T1

empty

T4

T4

T4

T4

T4

T4

empty

CA

rCase3

r'

(c)

CMid

CTop

s1

SCase1

W1 W3

s2

SCase3

T4

T4

T4

T4

T4

T4

T1

T1

empty

T4

T4

T4

T4

T4

T4

empty

CA

rCase3
r'

(d)

Figure 4.20: (a) A fractional rectangle r ∈ S Case1 ∩ S Case3 ∩ CTop was packed by the solution of the
linear program. (b) A fractional rectangle r′ ∈ F of the same type as the rounded up rCase3 can form
a whole rectangle with the rounded up rCase3. (c) The fractional rectangle r′ is shifted rightwards until
it is side-by-side with the rounded up rCase3. (d) The fractional rectangle r′ is shifted upwards until it
forms a whole rectangle with the rounded up rCase3.

its same type without further increasing the height of the packing and without overlapping any
other rectangles, or the rounded up rCase3 and the rectangles in F of the same type as rCase3 can
be discarded.

40 Chapter 4. Strip Packing with Three Rectangle Types

Note that Lemma 4.2.5 holds even if r ∈ S Case1∩S Case2∩S Case3∩CBot, because the fractional
parts rCase2 and rCase3 are both rounded up and are essentially one larger fractional rectangle;
hence, the same argument used to prove Lemma 4.2.5 shows that rCase2 and rCase3 can be be
replaced by a whole rectangle of its same type without further increasing the height of the
packing and without overlapping any other rectangles. If the rounded up parts rCase2, rCase3,
and a fractional rectangle from F do not form a whole rectangle, then rCase2, rCase3, and the
fractional rectangle of the same type as rCase2 and rCase3 can be discarded. �

Corollary 4.2.12. If S = S Case3, then there will be no leftover fractional rectangles after
processing Case 3 as described in this section. Therefore, in this case algorithm 3Configura-
tionRounding produces an integer packing of height at most 5

3 plus the height of the fractional
packing produced by the solution of the linear program.

Proof. For every section si ∈ S Case3 the fractional rectangles in RTop(i), RMid(i), and RBot(i) are
rounded up to become whole rectangles; therefore, there will be no leftover fractional rectan-
gles (see Figure 4.21). Recall that the height of any rectangle is at most 1; therefore, the total
increase in height from rounding up the fractional rectangles in RTop(i), RMid(i), and RBot(i) is at
most 5

3 . �

T1 T1 T2 T2

T1 T2 T2 T3

T3 T3 T3 T3
CBot

CMid

CTop

s1

SCase3

s2 s3 s4

≤ 1

≤
2

3

CA

Figure 4.21: When S = S Case3, there will be no leftover fractional rectangles after processing Case 3.

4.2. Three Configurations 41

We can now prove Theorem 4.2.1.

Proof. By Corollary 4.1.1, if all rectangles are packed in the common portion of the packing,
algorithm 3ConfigurationRounding produces an integer packing of height at most 1 plus the
height of the fractional packing produced by the solution of the linear program.

Recall that the common portion of the packing can be rounded independently of the un-
common portion of the packing. For the rest of the proof we assume that the common portion
of the packing has been processed so it does not have any fractional rectangles and we already
know how much the height of the packing in this portion has increased.

By Corollary 4.2.4, if S = S Case1, algorithm 3ConfigurationRounding produces an integer
packing of height at most 1 plus the height of the fractional packing produced by the solution
of the linear program. By Corollary 4.2.6, if S = S Case2, algorithm 3ConfigurationRounding
produces an integer packing of height at most 5

3 plus the height of the fractional packing pro-
duced by the solution of the linear program. By Corollary 4.2.12, if S = S Case3, algorithm
3ConfigurationRounding produces an integer packing of height at most 5

3 plus the height of the
fractional packing produced by the solution of the linear program.

If S Case1 , ∅, S Case2 , ∅, and S Case3 = ∅, then after processing Case 1 and Case 2 as
described in this section, the height increase caused by leaving space of height 1 between CTop

and CMid is 1, and the height increase caused by rounding up for the fractional rectangles in
RBot within S Case2 is at most 2

3 . By Lemma 4.2.5, any fractional rectangle r ∈ S Case1 ∩ S Case2 ∩

CBot in the solution of the linear program is either replaced by a whole rectangle of the same
type without further increasing the height of the packing and without overlapping any other
rectangles or it is discarded. Note that for fractional rectangles r ∈ S Case1 ∩ S Case2 in CTop or
CMid, the parts rCase1 and rCase2 are both removed, re-shaped, and packed side-by-side in CA. For
any whole rectangle r′ ∈ S Case1 ∩ S Case2 the parts rCase1 and rCase2 remain side-by-side and thus
still form a whole rectangle in the final packing. Using the same proof as in Corollary 4.2.6, it
can be shown that any leftover fractional rectangles at this point can be discarded. Therefore,
in this case algorithm 3ConfigurationRounding produces an integer packing of height at most
5
3 plus the height of the fractional packing produced by the solution of the linear program.

If S Case1 , ∅, S Case2 = ∅, and S Case3 , ∅, then after processing Case 1 and Case 3 as
described in this section, the height increase caused by leaving space of height 1 between CTop

and CMid is 1, and fractional rectangles in RTop and RMid within S Case3 can be rounded up
without further increasing the height of the packing. Rounding up the fractional rectangles in
RBot within S Case3 further increases the height of the packing by at most 2

3 . By Lemma 4.2.9,
any fractional rectangle r ∈ S Case1 ∩ S Case3 ∩ CTop in the solution of the linear program is ei-
ther transformed into a whole rectangle without further increasing the height of the packing or
overlapping any other rectangles or it is discarded. By Lemma 4.2.8, there can be no fractional
rectangle r ∈ S Case1 ∩ S Case3 in CMid or CBot. For any whole rectangle r′ ∈ S Case1 ∩ S Case3

the parts rCase1 and rCase3 remain side-by-side and thus still form a whole rectangle in the fi-
nal packing. Using the same proof as in Corollary 4.2.6, it can be shown that any leftover
fractional rectangles at this point can be discarded. Therefore, in this case algorithm 3Configu-
rationRounding produces an integer packing of height at most 5

3 plus the height of the fractional
packing produced by the solution of the linear program.

If S Case1 = ∅, S Case2 , ∅, and S Case3 , ∅, then after processing Case 2 and Case 3 as
described in this section, the height increase caused by leaving space of height 1 between CTop

42 Chapter 4. Strip Packing with Three Rectangle Types

and CMid is 1, and fractional rectangles in RTop and RMid within S Case3 can be rounded up
without further increasing the height of the packing. Rounding up the fractional rectangles in
RBot within S Case3 further increases the height of the packing by at most 2

3 . By Lemma 4.2.9,
any fractional rectangle r ∈ S Case2∩S Case3∩CTop in the solution of the linear program is either
transformed into a whole rectangle without further increasing the height of the packing or
overlapping any other rectangles or it is discarded. By Lemma 4.2.7, there can be no fractional
rectangle r ∈ S Case2∩S Case3∩CMid. Note that for a fractional rectangle r ∈ S Case2∩S Case3∩CBot,
the parts rCase2 and rCase3 are both rounded up and form a whole rectangle. For any whole
rectangle r′ ∈ S Case2 ∩ S Case3 the parts rCase2 and rCase3 remain side-by-side and thus still form
a whole rectangle in the final packing. Using the same proof as in Corollary 4.2.6, it can be
shown that any leftover fractional rectangles at this point can be discarded. Therefore, in this
case algorithm 3ConfigurationRounding produces an integer packing of height at most 5

3 plus
the height of the fractional packing produced by the solution of the linear program.

If S Case1 , ∅, S Case2 , ∅, and S Case3 , ∅, then after processing Case 1, Case 2, and
Case 3 as described in this section, the height increase caused by leaving space of height 1
between CTop and CMid is 1, and fractional rectangles in RTop and RMid within S Case3 can be
rounded up without further increasing the height of the packing. Rounding up the fractional
rectangles in RBot within S Case2 and S Case3 further increases the height of the packing by at
most 2

3 . By Lemma 4.2.5, a fractional rectangle r ∈ S Case1 ∩ S Case2 ∩ CBot in the solution of
the linear program can be transformed into a whole rectangle without further increasing the
height of the packing and without overlapping any other rectangles. By Lemma 4.2.9, any
fractional rectangle r ∈ S Case2 ∩ S Case3 ∩ CTop in the solution of the linear program is either
transformed into a whole rectangle without further increasing the height of the packing or
overlapping any other rectangles or it is discarded. By Corollary 4.2.11, a fractional rectangle
r ∈ S Case1 ∩ S Case2 ∩ S Case3 located in CTop or CBot in the solution of the linear program
can either be transformed into a whole rectangle without further increasing the height of the
packing or overlapping any other rectangles or it can be discarded. Note that for fractional
rectangles r ∈ S Case1 ∩ S Case2 ∩ (CTop ∪ CMid), the parts rCase1 and rCase2 are both removed,
re-shaped, and packed side-by-side in CA. Additionally, note that for a fractional rectangles
r ∈ S Case2 ∩ S Case3 ∩ CBot, the parts rCase2 and rCase3 are both rounded up and form a whole
rectangle. By Lemma 4.2.7, there can be no fractional rectangle r ∈ S Case2 ∩ S Case3 ∩CMid. For
any vertically split whole rectangle r′ its parts remain side-by-side and thus still form a whole
rectangle in the final packing. Using the same proof as in Corollary 4.2.6, it can be shown
that any leftover fractional rectangles at this point can be discarded. Therefore, in this case
algorithm 3ConfigurationRounding produces an integer packing of height at most 5

3 plus the
height of the fractional packing produced by the solution of the linear program.

Therefore, algorithm 3ConfigurationRounding produces an integer packing of height at
most 5

3 plus the height of the fractional packing produced by the solution of the linear program.
�

4.3 Two Configurations
When the solution to the linear program has two configurations we refer to them as CTop and
CBot. The two configurations are packed one on top of the other (see Figure 4.22); note that

4.3. Two Configurations 43

CTop has again been flipped upside down. Our algorithm considers two cases, depending on
the values of the two fractions fTop(i) and fBot(i) for each section si:
• Case 1: fTop(i) + fBot(i) ≤ 1, and
• Case 2: fTop(i) + fBot(i) > 1.

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T3

T2 T2 T2 T2 T2 T2

T3

T2

CBot

CTop

SCase1

s1 s2

T2 T2 T2 T2 T2 T2 T2 T2 T2

T3T3

T2

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

SCase2

Figure 4.22: CTop is flipped upside down.

If needed, we change the order of the configurations so that if there is at least one section
si ∈ S Case1 and at least one section s j ∈ S Case2, then the rectangles in CBot create a vertical
division separating Case 1 and Case 2 (see Figure 4.22). The algorithm for rounding fractional
rectangles into whole ones when there are two configurations is shown below.

Note that this algorithm only depends on the number of configurations and not on the
number of rectangle types.

Theorem 4.3.1. Algorithm 2ConfigurationRounding produces an integer packing of height at
most 1 plus the height of the fractional packing produced by the solution of the linear program.

We prove this theorem in the following two subsections.

44 Chapter 4. Strip Packing with Three Rectangle Types

Algorithm 4.3 2ConfigurationRounding(FractionalSolution)
1: Input: An optimal fractional packing FractionalSolution with two configurations CTop

and CBot.
2: Output: The height of an integer packing h obtained from FractionalSolution.
3: S Case1 = ∅.
4: S Case2 = ∅.
5: for si ∈ S do
6: if fTop(i) + fBot(i) ≤ 1 then
7: S Case1 = S Case1 ∪ si.
8: else
9: S Case2 = S Case2 ∪ si.

10: end if
11: end for
12: Order the configurations so that if there is at least one section si ∈ S Case1 and at least one

section s j ∈ S Case2, then the rectangles in CBot create a vertical division separating Case 1
and Case 2.

13: h0 = height of FractionalSolution.
14: h1 = height increase after processing S Case1 according to Section 4.3.1.
15: h2 = height increase after processing S Case2 according to Section 4.3.2.
16: return h0 + max(h1, h2).

4.3.1 Case 1. fTop(i) + fBot(i) ≤ 1

Let the width of S Case1 be W1. For every section si ∈ S Case1 we remove the fractional rectangles
in RTop(i) and RBot(i), including the parts rCase1 for vertically split fractional rectangles; re-shape
them so that they have the full height of a rectangle of the same type but only a fraction of its
width; and pack them side-by-side in a region of width W1 and height 1. This region, hereafter
is referred to as CA (see Figure 4.23), is created by shifting all rectangles in CTop upwards,
including rectangles in S Case2, until there is empty space of height 1 between CTop and CBot.
After shifting the rectangles the tops of the topmost rectangles in CTop must lie on a common
line.

In order to pack in CA the fractional rectangles from RTop(i) and RBot(i), we first reshape them
so that they have the full height of a rectangle of the corresponding type but only a fraction of
its width. Recall that by Lemma 4.2.2 these re-shaped rectangles have total width at most W1.
Since the width of CA within S Case1 is W1, the re-shaped rectangles can be packed in CA.

4.3. Two Configurations 45

T2 T2

T1 T3

CBot

CTop

s1

SCase1

s2

SCase2

W1

CA 1

(a)

=⇒

T2 T2

T1 T3

CBot

CTop

s1
SCase1

s2
SCase2

CA

empty

empty

1

W1

(b)

Figure 4.23: (a) CA is created by shifting all rectangles in CTop upwards, including rectangles in S Case2,
until there is empty space of height 1 between CTop and CBot. (b) The fractional rectangles from RTop(i)
and RBot(i) are removed, re-shaped, and packed side-by-side in CA.

4.3.2 Case 2. fTop + fBot > 1

For every section si ∈ S Case2 the fractional rectangles in RTop(i) and RBot(i) are rounded up, in-
cluding the parts rCase2 for vertically split fractional rectangles. After the fractional rectangles
in RTop(i) and RBot(i) are rounded up, all rectangles in CTop are shifted upwards, including rect-
angles in S Case1, until the rounded up rectangles fit between CTop and CBot (see Figure 4.24).
After shifting the rectangles the tops of the topmost rectangles in CTop must lie on a common
line. Since the height of any rectangle is at most 1, this process increases the height of the
packing by at most 1.

T2 T2

T1 T3

CBot

CTop

s1

SCase1

s2

SCase2

CA

empty

empty

1

W1 W2

(a)

=⇒

T2 T2

T1 T3

CBot

CTop

s1
SCase1

s2
SCase2

CA

empty

empty

1

W1 W2

(b)

Figure 4.24: After the fractional rectangles in RTop(i) and RBot(i) are rounded up, all rectangles in CTop

are shifted upwards, including rectangles in S Case1, until the rounded up rectangles fit.

We can now prove Theorem 4.3.1.

Proof. By Corollary 4.1.1, if all rectangles are packed in the common portion of the packing,
algorithm 2ConfigurationRounding produces an integer packing of height at most 1 plus the

46 Chapter 4. Strip Packing with Three Rectangle Types

height of the fractional packing produced by the solution of the linear program.
Recall that the common portion of the packing can be rounded independently of the un-

common portion of the packing. For the rest of the proof we assume that the common portion
of the packing has been processed so it does not have any fractional rectangles and we already
know how much the height of the packing in this portion has increased.

By Corollary 4.2.4, if S = S Case1, algorithm 2ConfigurationRounding produces an integer
packing of height at most 1 plus the height of the fractional packing produced by the solution
of the linear program. By Corollary 4.2.12, if S = S Case2, algorithm 2ConfigurationRound-
ing produces an integer packing of height at most 1 plus the height of the fractional packing
produced by the solution of the linear program.

If S Case1 , ∅ and S Case2 , ∅, the height increase caused by leaving space between CTop and
CBot is 1, and fractional rectangles within S Case2 can be rounded up without further increasing
the height of the packing. If there is a fractional rectangle r ∈ S Case1 ∩ S Case2 located in CTop in
the solution of the linear program, after processing the fractional rectangles as described above
at most one whole rectangle of the same type as r can be formed using fractional rectangles
within CA and the fractional part rCase2. By Lemma 4.2.9, either this whole rectangle is packed
without further increasing the height of the packing and without overlapping any other rectan-
gles, or the rounded up rCase2 and the remaining fractional rectangles are discarded. For any
whole rectangle r′ ∈ S Case1 ∩ S Case2 the parts rCase1 and rCase2 remain side-by-side and thus still
form a whole rectangle in the final packing. Using the same proof as in Corollary 4.2.6, it can
be shown that any leftover fractional rectangles at this point can be discarded. Therefore, in
this case algorithm 2ConfigurationRounding produces an integer packing of height at most 1
plus the height of the fractional packing produced by the solution of the linear program.

Therefore, algorithm 2ConfigurationRounding produces an integer packing of height at
most 1 plus the height of the fractional packing produced by the solution of the linear program.

�

4.4 One Configuration
When the solution to the linear program has one configuration we refer to it as C (see Figure
4.25). Note that fi ≤ 1 for each section si.

The algorithm for rounding fractional rectangles into whole ones when there is one config-
uration is shown below.

Algorithm 4.4 1ConfigurationRounding(FractionalSolution)
1: Input: An optimal fractional solution FractionalSolution with one configuration C.
2: Output: The height of an integer packing h obtained from FractionalSolution.
3: S = the set of all sections in FractionalSolution.
4: h0 = height of FractionalSolution.
5: h1 = height increase after processing S according to Theorem 4.4.1.
6: return h0 + h1.

Note that this algorithm only depends on the number of configurations and not on the
number of rectangle types.

4.5. Approximation Ratio 47

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T3 T3
C

SCase1

s1 s2

T3 T3 T1

T1

T1

T1

T2 T2 T2 T2

s2

Figure 4.25: One configuration.

Theorem 4.4.1. Algorithm 1ConfigurationRounding produces an integer packing of height at
most 1 plus the height of the fractional packing produced by the solution of the linear program.

Proof. For every section si ∈ S the fractional rectangles in R are rounded up. Since the height
of any rectangle is at most 1, this process increases the height of the packing by at most 1.

By Corollary 4.2.12, algorithm 1ConfigurationRounding produces an integer packing of
height at most 1 plus the height of the fractional packing produced by the solution of the linear
program. �

4.5 Approximation Ratio
As described above, when there are k = 3 rectangle types in the fractional solution computed
by the GLS algorithm there can be either three configurations, two configurations, or only one
configuration.

By Theorems 4.2.1, 4.3.1, and 4.4.1, when there are three configurations, two configu-
rations, or only one configuration, algorithm 3TypeRounding increases the height of the frac-
tional packing produced by the solution of the linear program by at most 5

3 , 1, or 1, respectively.
Therefore, when there are k = 3 rectangle types, algorithm 3TypeRounding produces an

integer packing of height at most 5
3 plus the height of the fractional packing produced by the

solution of the linear program. Since the height of the fractional packing obtained by solving
the linear program is no larger than the height OPT of an optimum solution for HMSP, then
algorithm 3TypeRounding produces a packing of height at most OPT + 5

3 .

48 Chapter 4. Strip Packing with Three Rectangle Types

4.6 Running Time
Throughout the thesis we have provided many figures describing the structure of the packings
computed by algorithm 3TypeRounding. We now show that these packings can be represented
in a very compact manner. Recall that the input to HMSP is represented as a list of 3k numbers:
the input contains, for 1 ≤ i ≤ k, the width of a rectangle of type Ti, the height of a rectangle
of type Ti, and the number of rectangles of type Ti (see Figure 4.26).

T1 T1 T1

T2 T2 T2 T2

T3 T3 T3

T3 T3 T3

3 x Type 1 6 x Type 34 x Type 2

Figure 4.26: The above input to HMSP is specified as a list of 3k = 9 numbers:
{(4, 6, 3), (4, 14, 4), (8, 6, 6)}. There are 3 type T1 rectangles, each with width 4 and height 6; there
are 4 type T2 rectangles, each with width 4 and height 14; and there are 6 type T3 rectangles, each with
width 8 and height 6.

The input of algorithm 3TypeRounding is different than the input of HMSP. The vector
output from the linear program is transformed into a list of numbers that specifies the rectangles
that are packed in the configurations of the fractional solution. A configuration is specified
using O(k) numbers: for 1 ≤ i ≤ k, we specify the rectangle type Ti, the number of rectangles
of type Ti packed side-by-side, and the number of rectangles of type Ti packed one on top of
the other (see Figure 4.27). Note that the number of rectangles packed one on top of the other
is a rational number; for example, if 2.5 rectangles are packed one on top of the other, then two
whole rectangles and one fractional rectangle with height equal to 1

2 of the height of a whole
rectangle of the corresponding type are packed one on top of the other, with the fractional
rectangle packed on top.

Therefore, since the fractional solution determined by the linear program has at most k
configurations, and since each configuration uses O(k) numbers, then the input to algorithm
3TypeRounding uses O(k2) numbers to specify all the configurations.

The output of algorithm 3TypeRounding is also specified in a compact manner. The com-
mon portion of the packing is specified as a list of O(k) numbers: for 1 ≤ i ≤ k, we specify the
rectangle type Ti, the number of rectangles of type Ti packed side-by-side, and the number of
rectangles of type Ti packed one on top of the other (see Figure 4.28).

The part of a configuration in the uncommon portion of the packing is specified as a list
of O(k) numbers: we specify the rectangle type Ti, the number of rectangles of type Ti packed
side-by-side, and the number of rectangles of type Ti packed one on top of the other (see Figure
4.29). Note that the order of the rectangle types in the uncommon portion of the packing does
not need to be 1, 2, 3. Additionally, at most one rectangle type might be repeated in the list if
some rectangles of that type are rounded up and some others are not (see Figure 4.29).

4.6. Running Time 49

T1 T1 T1 T1 T2 T2 T3

T3 T3

T3

T3

T3

C

T1 T1 T1 T1 T2 T2

Figure 4.27: The above configuration of a fractional solution is specified as a list of O(k) numbers:
{(1, 4, 1.33), (2, 2, 1.71), (3, 3, 2)}. For example, the first rectangle is of type T1, there are 4 type T1
rectangles packed side-by-side, and there are 1.33 type T1 rectangles packed one on top of the other.
That is, there is 1 whole rectangle and one fractional rectangle with height equal to 1

3 of the height of a
whole rectangle of type T1 packed one on top of the other.

CBot

CMid

CTop

Common Portion of the Packing

T2 T2 T2 T2

T2 T2 T2 T2

T2 T2 T2 T2

T2 T2 T2T2 T3 T3

T3 T3

T3 T3

T3 T3

T3 T3 T1

T1

T1

T1

T1

T1

T3 T3

Figure 4.28: The common portion of the above packing is specified as a list of O(k) numbers:
{(2, 4, 4), (3, 2, 6), (1, 1, 6)}. For example, the first rectangle is of type T1, there are 4 type T1 rectan-
gles packed side-by-side, and there are 4 type T1 rectangles packed one on top of the other.

Therefore, since the fractional solution determined by the linear program has at most k con-
figurations, we only add a single configuration CA, and each configuration uses O(k) numbers,
then the output produced by algorithm 3TypeRounding uses O(k2) numbers to specify all the
configurations (see Figure 4.30).

Algorithm 3TypeRounding transforms a fractional solution into an integral one by perform-
ing operations on the list of numbers given as input.

50 Chapter 4. Strip Packing with Three Rectangle Types

T2
T3

T2

T3 T3 T3 T3T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T1T3 T3 T3 T1

CBot

SCase1

s3

SCase2 SCase3

s1 s2 s4

T1 T1

T3

empty empty
T3 T3 T3T3

Figure 4.29: The part of a configuration in the uncommon portion of the packing is specified as a list
of O(k) numbers: {(2, 6, 2), (3, 5, 1), (3, 4, 2), (1, 2, 2)}. Note how rectangle type T2 is repeated in this
list; the fractional rectangles in S Case1 are removed, re-shaped, and packed in CA and so there is only 1
rectangle of type T2 packed one on top of the other in CBot, but the rectangles in S Case2 located in CBot

are rounded up and so there are 2 rectangles of type T2 packed one on top of the other in CBot.

CBot

CMid

CTop

Common Portion of the Packing

T2 T2 T2 T2

T2 T2 T2 T2

T2 T2 T2 T2

T2 T2 T2T2

T3 T3

T3 T3

T3 T3

T3 T3

T3 T3 T1

empty empty

empty empty

empty empty empty

empty

s1

SCase1

s2 s3 s4

SCase2 SCase3

W1 W2

empty

T3 T3

Height
of the

packing

T2 T2 T2 T2 T2 T2 T2 T2 T2 T3 T3 T3 T3

T3 T3

T2 T2 T2 T3 T3 T3

T2 T2 T2 T2 T3 T3 T3 T3 T3

T2 T2 T2T2

T1

T1

T1

T1

T1

T1

T1

T1 T1 T1 T1 T1

T1 T1 T1

CAT1

CTop

CMid

CBot

Figure 4.30: A compact representation of the above packing uses O(k2) numbers, broken down into sec-
tions for easier reading. The common portion of the packing is specified as {(2, 4, 5), (3, 2, 6), (1, 1, 6)}.
For the uncommon portion of the packing, the rectangles in each configuration are as follows: CTop is
specified as {(2, 9, 1), (3, 2, 1), (3, 2, 2)}, CA is specified as {(2, 3, 1), (3, 3, 1), (1, 1, 1)}, CMid is specified
as {(2, 4, 1), (3, 5, 1), (1, 1, 2)}, and CBot is specified as {(1, 2, 1), (1, 3, 2)}.

4.6. Running Time 51

Theorem 4.6.1. Algorithm 3TypeRounding produces an integer packing of height at most 5
3

plus the height of the fractional packing produced by the solution of the linear program using
at most O(k3) operations plus the time needed to compute the solution of the linear program.

Proof. Algorithm 3TypeRounding first partitions the list of numbers specifying the fractional
solution into common and uncommon portions. Identifying the number of rectangles of type T1

that belong in the common portion of the packing requires identifying the number of rectangles
of type T1 that are packed side-by-side and one on top of the other in each of CTop, CMid, and
CBot.

The number of rectangles of type T1 that should be packed side-by-side in the common
portion of the packing is equal to the minimum of the number of rectangles of type T1 that
are packed side-by-side in each of CTop, CMid, and CBot. The number of rectangles of type T1

that should be packed one on top of the other in the common portion of the packing is equal
to the sum of the number of rectangles of type T1 that are packed one on top of the other in
each of CTop, CMid, and CBot. Hence, finding the number of rectangles of type T1 that belong
in the common portion of the packing requires O(k) operations. Therefore, finding the number
of rectangles of each type that belong in the common portion of the packing requires O(k2)
operations.

Processing the common portion of the packing according to Section 4.1.1 requires O(k)
operations as for 1 ≤ i ≤ k, algorithm 3TypeRounding only needs to round up the fractional
numbers for each rectangle type Ti.

Sorting the rectangles in each configuration in the uncommon portion of the packing by
the fractions fi requires at most k comparisons per configuration. Since this needs to be done
for each configuration, sorting the rectangles in the uncommon portion of the packing requires
O(k2) operations.

Processing a section si ∈ S Case1 according to Lemma 4.2.2 requires O(k) operations: the
number of fractional rectangles from CTop(i) is computed by multiplying the corresponding
number of rectangles packed side-by-side by the decimal part of the number of rectangles
packed one on top of the other. This is repeated for CMid(i) and CBot(i). Products corresponding
to the same rectangle types are added together.

Processing a section si ∈ S Case2 according to Section 4.2.4 requires O(k) operations: CTop(i)

and CMid(i are processed as described above; fractional numbers specifying the number of rect-
angles packed one on top of the other in CBot(i) are rounded up.

Processing a section si ∈ S Case3 according to Section 4.2.5 also requires O(k) operations:
for each of CTop(i), CMid(i), and CBot(i), fractional numbers specifying the number of rectangles
packed one on top of the other are rounded up.

Note that for the vertically split fractional rectangles only a constant number of operations
are needed to check whether one part needs to be re-shaped and the other part rounded up.
When a rounded up fractional rectangle is combined with a fractional rectangle from CA to
form a whole rectangle, a constant number of numbers in the list need to be changed to reflect
the additional rectangle.

Recall that in the uncommon portion of the packing, for configurations that contain more
than one type of rectangle, a new section is created at the point where the rectangle type changes
in the configuration. Also recall that in the uncommon portion of the packing, within a config-
uration at most k distinct rectangle types are packed. Therefore, one configuration can contain

52 Chapter 4. Strip Packing with Three Rectangle Types

at most k sections, one for each rectangle type. Since there are at most k configurations, and
each configuration can contain at most k sections, there are O(k2) sections in the uncommon
portion of the packing.

Note that processing a section requires O(k) operations, regardless of which case that sec-
tion belongs to. In the worst case, O(k2) sections need to be processed, each requiring O(k)
operations, for a total of O(k3) operations. Partitioning the fractional packing into common
and uncommon sections and sorting the rectangles in the uncommon portion of the packing
each require O(k2) operations. Processing the common portion of the packing requires O(k)
operations. Therefore, algorithm 3TypeRounding requires O(k3 + k2 + k) = O(k3) operations
plus the time needed to compute the solution of the linear program, which was proven in [47]
to be polynomial. �

Chapter 5

Strip Packing with Four Rectangle Types

5.1 Overview of the Algorithm
As discussed in Chapter 3, when k = 4 there can be either four configurations, three configu-
rations, two configurations, or only one configuration in the solution obtained from the linear
program. Our algorithm must correctly round all these possible cases to integer solutions in
polynomial time. We consider the cases when the fractional solution has three configurations,
two configurations, and only one configuration in Sections 5.3-5.5.

The configurations are packed one on top of the other as shown in Figure 5.1; recall that
we sometimes simplify the figures by not showing all of the rectangles in each configuration.
Let the configuration packed at the top be called C1, the configuration packed beneath C1 be
called C2, and so on. Note that we can change the order of the configurations if necessary.

C4

C3

C2

s1 s2 s3

T1 T3 T4

C1

T1 T1 T4

T2 T2 T3

SUncommon

T4 T4 T4

Figure 5.1: The four configurations are packed one on top of the other.

53

54 Chapter 5. Strip Packing with Four Rectangle Types

5.1.1 Rounding Fractional Rectangles
We divide the fractional solution obtained from the linear program into common and uncom-
mon sections by horizontally rearranging the rectangles within each configuration, as described
in Chapter 4. The fractional rectangles in the common section are rounded up, increasing the
height of the fractional solution by at most 1.

The uncommon portion of the packing is divided into vertical sections, as described in
Chapter 4, and again we consider one vertical section at a time from left to right. Recall that
within a section si, each configuration will only have a single rectangle type. For each section
si let f1(i), f2(i), f3(i), and f4(i) represent the fraction of the rectangle packed at the top of C1(i),
C2(i), C3(i), and C4(i), respectively (see Figure 5.2).

T4

C4

C3

C2

s1 s2 s3

T3
C1

T1

T2

SUncommon

=�1(3)

5

7

T1

T1

T2

T4

T4

T4

T4

=�2(3)

5

7

=�4(3)

5

7

T3 T3

=�3(3)

1

2

Figure 5.2: Fractions f1(3), f2(3), f3(3), and f4(3) for section s3.

Algorithm 4TypeRounding, described below, transforms a fractional packing obtained by
solving the linear program into an integer packing. This transformation increases the total
height of the packing by at most 5

2 , as we show later.

5.1. Overview of the Algorithm 55

Algorithm 5.1 4TypeRounding(FractionalSolution)
1: Input: An optimal fractional packing FractionalSolution.
2: Output: The height of the integer packing h obtained from FractionalSolution.
3: Divide FractionalSolution into common and uncommon portions by horizontally rearrang-

ing rectangles as described in Chapter 4.
4: Round up the fractional rectangles of the common portion of the packing.
5: for each configuration C in FractionalSolution do
6: Sort the uncommon portion of C by non-decreasing value of fi.
7: end for
8: if number of configurations in FractionalSolution = 4 then
9: return 4Con f igurationRounding(FractionalSolution).

10: else if number of configurations in FractionalSolution = 3 then
11: return 3Con f igurationRounding(FractionalSolution).
12: else if number of configurations in FractionalSolution= 2 then
13: return 2Con f igurationRounding(FractionalSolution).
14: else
15: return 1Con f igurationRounding(FractionalSolution).
16: end if

56 Chapter 5. Strip Packing with Four Rectangle Types

5.2 Four Configurations
When the solution to the linear program has four configurations, our algorithm considers three
cases, depending on the values of the four fractions f1(i), f2(i), f3(i), and f4(i) for each section
si ∈ S :
• Case 1: f1(i) + f2(i) ≤

1
2 and f3(i) + f4(i) ≤

1
2 .

Let i be the smallest index for which f1(i) + f2(i) >
1
2 or f3(i) + f4(i) >

1
2 . If such an index

does not exist then Case 2 and Case 3 do not need to be considered; otherwise, we (re)order
the configurations so that f3(j) + f4(j) >

1
2 for all j ≥ i. Now we can define Case 2 and Case 3:

• Case 2: f1(i) + f2(i) ≤ 1 and f3(i) + f4(i) >
1
2 , and

• Case 3: f1(i) + f2(i) > 1 and f3(i) + f4(i) >
1
2 .

Note that for a section si ∈ S Case1, f3(i)+ f4(i) ≤
1
2 , but for a section s j ∈ S Case2, f3(j)+ f4(j) >

1
2 .

Therefore, the rectangles in either C3 or C4 create a vertical division separating Case 1 and Case
2. We (re)order C3 and C4 so that the rectangles in C4 create a vertical division separating Case
1 and Case 2. Similarly, for a section si ∈ S Case2 and a section s j ∈ S Case3, we (re)order C1

and C2 to ensure that the rectangles in C1 create a vertical division between Case 2 and Case
3. Finally, for a packing with a section si ∈ S Case1 and an adjacent section s j ∈ S Case3, we
(re)order C1 and C2 to ensure that the rectangles in C1 create a vertical division between Case
1 and Case 3, and we (re)order C3 and C4 to ensure that the rectangles in C4 create a vertical
division between Case 1 and Case 3.

We flip C1 and C3 upside down as shown in Figure 5.3. The algorithm for rounding
fractional rectangles into whole ones when there are four configurations is shown below.

C4

C3

C2

s1 s2 s3

T2 T2 T3

C1

T1 T4 T4

T1 T3 T3

SUncommon

T4 T4 T4

(a)

=⇒

C4

C3

C2

s1 s2 s3

T2 T2 T3
C1

T1 T4 T4

T1 T3 T3

SUncommon

T4 T4 T4

(b)

Figure 5.3: C1 and C3 are flipped upside down.

Note that this algorithm only depends on the number of configurations and not on the
number of rectangle types.

5.2. Four Configurations 57

Algorithm 5.2 4ConfigurationRounding(FractionalSolution)
1: Input: An optimal fractional solution FractionalSolution with 4 configurations C1, C2, C3,

and C4.
2: Output: The height of an integer packing h obtained from FractionalS olution.
3: Flip C1 and C3 upside down.
4: Initialize set S to contain all the vertical sections in the uncommon portion of

FractionalS olution.
5: Initialize sets S Case1, S Case2, and S Case3 to be empty sets.
6: for si ∈ S do
7: if f1(i) + f2(i) ≤

1
2 and f3(i) + f4(i) ≤

1
2 then

8: S Case1 = S Case1 ∪ si.
9: else if f1(i) + f2(i) ≤ 1 and f3(i) + f4(i) >

1
2 then

10: S Case2 = S Case2 ∪ si.
11: else if f1(i) + f2(i) > 1 and f3(i) + f4(i) >

1
2 then

12: S Case3 = S Case3 ∪ si.
13: end if
14: end for
15: h0 = height of FractionalSolution.
16: h1 = height increase after processing S Case1 according to Section 5.2.1.
17: h2 = height increase after processing S Case2 according to Section 5.2.2.
18: h3 = height increase after processing S Case3 according to Section 5.2.3.
19: return h0 + max(h1, h2, h3).

Theorem 5.2.1. Algorithm 4ConfigurationRounding produces an integer packing of height at
most 5

2 plus the height of the fractional packing produced by the solution of the linear program.

We prove this theorem in the following sections of this chapter.

58 Chapter 5. Strip Packing with Four Rectangle Types

5.2.1 Case 1. f1(i) + f2(i) ≤
1
2 and f3(i) + f4(i) ≤

1
2

Let the width of S Case1 be W1. For every section si ∈ S Case1 we remove the fractional rectangles
in R1(i), R2(i), R3(i), and R4(i), including the parts rCase1 for vertically split fractional rectangles
r; re-shape them so that they have the full height of a rectangle of the same type but only a
fraction of its width; and pack them side-by-side in a region of width W1 and height 1. This
region, hereafter referred to as CA1 (see Figure 5.4), is created by shifting all rectangles in
C1 upwards, including rectangles in S Case2 and S Case3, until there is empty space of height 1
between C1 and C2 (see Figure 5.5). After shifting the rectangles the tops of the topmost
rectangles in C1 must lie on a common line.

C4(i)

C3(i)

C2(i)

si

C1(i)

SCase1

C4(i)

C3(i)

C2(i)

si

C1(i)

SCase1

1

T4

Fractional Rectangles from
C1(i), C2(i), C3(i), and C4(i)

Re-shape to Full Height
T2 CA1(i)

T1

T1

T1

T1

empty

empty
empty

Merge Pieces of Same Type

Rectangles
vertically
cut at the
boundary
of SCase1

T4

T4

T4

T2

T2

T2

T2

T2

T2

T2

T3

T2

T2

T4 T4 T4

T3 T3 T4 T4

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T4

T4

T4

T4

W1

W1

T2 T2 T2 T2 T2

T1

T2 T2 T2 T2 T2T4T1

T3

T1 T3 T4T2 T2

T1 T3 T4T2 T2

T3 T3

T3

T3

empty

Figure 5.4: For every section si ∈ S Case1 the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are
removed, re-shaped, and packed side-by-side in CA1; a whole rectangle is formed whenever a sufficient
number of fractional pieces of the same type have been packed in CA1. All rectangles in C1 are shifted
upwards until there is empty space of height 1 between C1 and C2.

In order to pack the fractional rectangles from R1(i), R2(i), R3(i), and R4(i) in CA1, we first
reshape them so that they have the full height of a rectangle of the corresponding type but only
a fraction of its width, similar to Chapter 4 (see Figure 5.4). By Lemma 4.2.2, the fractional
rectangles from S Case1 that were removed, reshaped, and packed in CA1 have total width at most
W1. Since the width of CA1 within S Case1 is W1, the re-shaped rectangles can be packed in CA1.

Corollary 5.2.2. If S = S Case1, then any leftover fractional rectangles after processing Case
1 as described in this section can be discarded. Therefore, in this case algorithm 4Configura-
tionRounding produces an integer packing of height at most 1 plus the height of the fractional
packing produced by the solution of the linear program.

5.2. Four Configurations 59

C4

C3

C2

s1 s2

T2 T2C1

T1 T1

SCase1 SCase3

T4 T4

CA1 1

T1 T3 T3

s3

SCase2

T4

T1

T3

W1

(a)

C4

C3

C2

s1 s2

T2 T2C1

T1 T1

SCase1 SCase3

T4 T4

CA1

empty

empty

empty

empty

1

T1 T3 T3

s3

SCase2

T4

T1

T3

W1

T1 T3 T4T2 T2

(b)

Figure 5.5: (a) CA1 is created by shifting all rectangles in C1 upwards, including rectangles in S Case2
and S Case3, until there is empty space of height 1 between C1 and C2. (b) For every section si ∈ S Case1
the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are removed, re-shaped, and packed side-by-side
in CA1 within S Case1.

Proof. For every section si ∈ S Case1 the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are
reshaped and packed side-by-side in CA1. By Lemma 4.2.3 there can be at most one fractional
rectangle of each type in CA1. Let F be the set of these fractional rectangles.

The fractional rectangles in the solution of the linear program must sum to an integer num-
ber of whole rectangles. Therefore, for each rectangle r ∈ F there must have been more
fractional rectangles in the solution of the linear program of the same type as r in the common
portion of the packing of sufficient size to form an integer number of whole rectangles. Recall
that any fractional rectangles in the common portion of the packing were rounded up. There-
fore, fractions of rectangles of the same type as the rectangles in F and of total area equal to the
area of F have been added when rounding up the fractional rectangles in the common portion
of the packing. Thus, the fractional rectangles in F can be discarded.

Therefore, if S = S Case1, there are no leftover fractional rectangles after processing Case 1
as described in this section. Algorithm 4ConfigurationRounding produces an integer packing
of height at most 1 plus the height of the fractional packing produced by the solution of the
linear program. �

60 Chapter 5. Strip Packing with Four Rectangle Types

5.2.2 Case 2. f1(i) + f2(i) ≤ 1 and f3(i) + f4(i) >
1
2

Let the width of S Case2 be W2. For every section si ∈ S Case2 we remove the fractional rectangles
in R1(i) and R2(i), including the parts rCase2 for vertically split fractional rectangles r; re-shape
them so that they have the full height of a rectangle of the same type but only a fraction of its
width; and pack them side-by-side in a region of width W2 and height 1 in CA1. The fractional
rectangles in R3(i) and R4(i), including the parts rCase2 for vertically split fractional rectangles,
are rounded up; hereafter the region of the packing created to fit the rounded up rectangles is
referred to as CA2 (see Figure 5.6).

C4(i)

C3(i)

C2(i)

si

C1(i)

SCase2

C4(i)

C3(i)

C2(i)

si

C1(i)

SCase2

1

≤
3

2

Rectangles
vertically
cut at the
boundary
of SCase2

Fractional Rectangles
from C1(i) and C2(i)

Re-shape to Full Height and
Merge Pieces of the Same Type

Fractional Rectangles
from C3(i) and C4(i)

Rounded-up Rectangles

CA1

T4

T4

T2

T2

T4

T4

T4

T4

T3 T3 T3T2

T2

T2

T2

T2

T2

T3

T4

T4

T4

T4

empty

T3

empty

T4

T4

T2

T2

T2

T2 T2

T2

T2

T2

T4 T4 T4

T4 T4 T4

T4 T4 T4

T2 T2 T2 T2T2

T4 T4

T4 T4 T4

T4 T4

T2

CA2

W2

W2

T3

T3

T2 T2

Figure 5.6: For every section si ∈ S Case2 the fractional rectangles in R1(i) and R2(i) are removed,
reshaped, and packed side-by-side in CA1; a whole rectangle is formed whenever a sufficient number of
fractional pieces of the same type have been packed in CA1. The fractional rectangles in R3(i) and R4(i)
are rounded up. All rectangles in C1 ∪C2 ∪C3 are shifted upwards until there is empty space of height
1 between C1 and C2 and until the rounded up rectangles in R3(i) and R4(i) fit between C3(i) and C4(i).

After the fractional rectangles in R1(i) and R2(i) are removed and the fractional rectangles
in R3(i) and R4(i) are rounded up, all rectangles in C1 ∪ C2 ∪ C3 are shifted upwards, including
rectangles in S Case1 and S Case3, until there is empty space of height 1 between C1 and C2 and
the rounded up rectangles in R3(i) and R4(i) fit between C3(i) and C4(i) (see Figure 5.7). After
shifting the rectangles the tops of the topmost rectangles in C1 must lie on a common line, the
bottoms of the bottommost rectangles in C2 must lie on a common line, and the tops of the
topmost rectangles in C3 must also lie on a common line.

Recall that the height of any rectangle is at most 1; therefore, the height increase caused by
rounding up for the fractional rectangles in R3(i) and R4(i) is at most 3

2 . Combining this with the

5.2. Four Configurations 61

C4

C3

C2

s1 s3

T2 T3
C1

T1 T1

SCase1

T4 T4

CA1

empty

empty

empty

empty

1

T1 T3

SCase3

W1 W2

s2

SCase2

T3

T2

T1

T4

T1 T3 T4T2 T2

(a)

C4

C3

C2

s1 s3

T2 T3
C1

T1 T1

SCase1

T4 T4

CA1

empty

empty

empty

empty

1

T1 T3

SCase3

W1 W2

s2

SCase2

T3

T2

empty

T1

empty

T4

T1T3 T4T2 T2

CA2 ≤
3

2

T2 T3

(b)

Figure 5.7: (a) After the fractional rectangles in R1(i) and R2(i) are removed and the fractional rectangles
in R3(i) and R4(i) are rounded up, all rectangles in C1 ∪C2 ∪C3 are shifted upwards, including rectangles
in S Case1, S Case3, and S Case4, until there is empty space of height 1 between C1 and C2 and the rounded
up rectangles in R3(i) and R4(i) fit. (b) For every section si ∈ S Case2, the fractional rectangles from R1(i)
and R2(i) are re-shaped and packed side-by-side in CA1.

height increase caused by leaving space of height 1 between C1 and C2, the total increase in
height of each si ∈ S Case2 is at most 5

2 .
In order to pack in CA1 the fractional rectangles from R1(i) and R2(i), we first reshape them

so that they have the full height of a rectangle of the corresponding type but only a fraction of
its width. Recall that by Lemma 4.2.2 these re-shaped rectangles have total width at most W2.
Since the width of CA1 within S Case2 is W2, the re-shaped rectangles can be packed in CA1.

Lemma 5.2.3. If there is a fractional rectangle r ∈ S Case1 ∩ S Case2 located in C3 or C4 in the
solution of the linear program, after processing the fractional rectangles as described above at
most one whole rectangle of the same type as r can be formed using the fractional rectangles
within CA1 and the fractional part rCase2. This whole rectangle can be packed without further
increasing the height of the packing and without overlapping any other rectangles.

Proof. Recall that we ordered the configurations so that the rectangles in C4 create a vertical
division separating Case 1 and Case 2. Therefore, there is at most one vertically split fractional
rectangle r ∈ S Case1 ∩ S Case2 and it must be located in C3.

The fractional rectangles from S Case1 were packed in CA1 within S Case1 and CA2 within
S Case1 is empty. Recall that within CA1 when sufficient fractional rectangles of the same type

62 Chapter 5. Strip Packing with Four Rectangle Types

are packed, they merge to become whole rectangles. By Lemma 4.2.3 there can be at most one
fractional rectangle of each type leftover in CA1 after merging fractional pieces. Let F be the
set of fractional rectangles in CA1.

There is empty space in CA2 within S Case1 right beside rCase2 of sufficient width to extend
the width of rCase2 to the width of a whole rectangle of the same type as rCase2, because the
fractional rectangle r was originally packed in both S Case1 and S Case2 in the solution of the
linear program (see Figure 5.8a). Furthermore, there is empty space between C3 and C4 within
S Case1 and S Case2 of sufficient height to pack a whole rectangle of the same type as rCase2,
because the fractional part rCase2 was rounded up so that it has the full height of a rectangle of
its type (see Figure 5.8b). If there is a fractional rectangle r′ ∈ F of the same type as rCase2

such that r′ and the rounded up rCase2 form a whole rectangle, then r′ is removed from F and
from CA1 and rCase2 is replaced by a whole rectangle of its same type. Therefore, the fractional
part rCase2 can be replaced by a whole rectangle without further increasing the height of the
packing and without overlapping any other rectangles. (see Figure 5.8c).

If S Case3 = ∅, then the remaining rectangles in F are discarded because fractional rectangles
of the same type in the solution of the linear program sum to an integer number of whole
rectangles. Therefore, for each rectangle r ∈ F, there must be more fractional rectangles of the
same type as r in either R3(i), R4(i), or the common portion of the packing of sufficient size to
form an integer number of whole rectangles. Since all fractional rectangles in R3(i), in R4(i), and
in the common portion of the packing are rounded up, then it must be the case that fractions of
rectangles of the same type as the rectangles in F and of total area at least the area of F have
been added when rounding up the fractional rectangles in R3(i), R4(i), and the common portion
of the packing. Thus, the fractional rectangles in F can be discarded.

Note that if S Case3 , ∅, then we do not discard any leftover fractional rectangles yet as we
might need to use them later. �

Corollary 5.2.4. If S = S Case2, then any leftover fractional rectangles after processing Case
2 as described in this section can be discarded. Therefore, in this case algorithm 4Configura-
tionRounding produces an integer packing of height at most 5

2 plus the height of the fractional
packing produced by the solution of the linear program.

Proof. For every section si ∈ S Case2 the fractional rectangles in R3(i) and R4(i) are rounded up
and the fractional rectangles in R1(i) and R2(i) are re-shaped and rectangles of the same type are
packed side-by-side in CA1. By Lemma 4.2.3 there can be at most one fractional rectangle of
each type leftover after this merging. Let F be the set of these leftover fractional rectangles.

Recall that the fractional rectangles of the same type in the solution of the linear program
sum to an integer number of whole rectangles. Therefore, for each rectangle r ∈ F, there
must be more fractional rectangles of the same type as r in either R3(i), R4(i), or the common
portion of the packing of sufficient size to form an integer number of whole rectangles. Since
all fractional rectangles in R3(i), R4(i), and in the common portion of the packing are rounded up,
then it must be the case that fractions of rectangles of the same type as the rectangles in F and
of total area at least the area of F have been added when rounding up the fractional rectangles
in R3(i), R4(i), and the common portion of the packing. Thus, the fractional rectangles in F can
be discarded.

5.2. Four Configurations 63

C4

C3

s1

SCase1

W1 W2

s2

SCase2

T4

T4

T4

T4

T4

T4

T4

T4

T1

T1

T4

T4

T4

T4

T4

T4

r

(a)

C4

C3

s1

SCase1

W1 W2

s2

SCase2

T4

T4

T4

T4

T4

T4T4

T1

T1

T4

T4

T4

T4

T4

rCase2
CA2

empty

empty

(b)

C4

C3

s1

SCase1

W1 W2

s2

SCase2

T4

T4

T4

T4

T4

T4T4

T1

T1

T4

T4

T4

T4

T4

rCase2
CA2

empty

empty

(c)

Figure 5.8: (a) A fractional rectangle r ∈ S Case1 ∩ S Case2 located in C3 in the solution of the linear pro-
gram. (b) The rounded up part rCase2. (c) The fractional part rCase2 can be replaced by a whole rectangle
without further increasing the height of the packing and without overlapping any other rectangles.

Therefore, if S = S Case2, there are no leftover fractional rectangles after processing Case 2
as described in this section (see Figure 4.17). Algorithm 4ConfigurationRounding produces
an integer packing of height at most 5

2 plus the height of the fractional packing produced by the
solution of the linear program. �

64 Chapter 5. Strip Packing with Four Rectangle Types

5.2.3 Case 3. f1(i) + f2(i) > 1 and f3(i) + f4(i) >
1
2

For every section si ∈ S Case3 the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are rounded
up, including the parts rCase3 for vertically split fractional rectangles r (see Figure 5.9). After
the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are rounded up, all rectangles in C1∪C2∪C3

are shifted upwards, including rectangles in S Case1 and S Case2, until the rounded up rectangles fit
between C1 and C2 and between C3 and C4 (see Figure 5.10). After shifting the rectangles the
tops of the topmost rectangles in C1 must lie on a common line, the bottoms of the bottommost
rectangles in C2 must lie on a common line, and the tops of the topmost rectangles in C3 must
lie on a common line. Recall that the height of any rectangle is at most 1; therefore, this process
increases the height of the packing by at most 5

2 .

C4(i)

C3(i)

C2(i)

si

C1(i)

SCase3

C4(i)

C3(i)

C2(i)

si

C1(i)

SCase3

≤ 1

≤
3

2

Fractional Rectangles
from C1(i) and C2(i)

Fractional Rectangles
from C3(i) and C4(i)

Rounded-up Rectangles

CA1

T3

T4

T4

T2

T4

T4

T4

T4

T3 T3

T2 T2 T2

T4

T4

T4

T4

T3

T4

T4

T4

T4 T4 T4
T2 T2 T2 T2T2

T4 T4

T4 T4 T4

T2

T2T2 T2 T2T2

T2T2 T2 T2T2

T2T2 T2 T2T2

T3

T3

T4 T4

T3

CA2

Rounded-up Rectangles

T4

T2T2 T2 T2T2

T4

T2T2 T2 T2T2

T4 T4

Rectangles
vertically
cut at the
boundary
of SCase3

Figure 5.9: For every section si ∈ S Case3, the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are
rounded up. All rectangles in C1 ∪ C2 ∪ C3 are shifted upwards until the rounded up rectangles fit
between C1 and C2 and between C3 and C4.

Lemma 5.2.5. Let S Case2 = ∅. If there is a fractional rectangle r ∈ S Case1∩S Case3 located in C3

or C4 in the solution of the linear program, or a fractional rectangle r ∈ S Case1∩S Case3 located
in C1 or C2 in the solution of the linear program, after processing the fractional rectangles as
described above at most two whole rectangles of the same type as r can be formed using the
fractional rectangles within CA1 and the fractional parts rCase3. These whole rectangles can be
packed without further increasing the height of the packing and without overlapping any other
rectangles.

5.2. Four Configurations 65

C4

C3

C2

s1 s3

T2 T3
C1

T1 T1

SCase1

T4 T4

CA1

empty

empty

empty

empty

1

T1 T3

SCase3

W1 W2

s2

SCase2

T3

T2

empty

T1

empty

T4

T1T3 T4T2 T2

CA2 ≤
3

2

T2 T3

(a)

C4

C3

C2

s1 s3

T2 T3
C1

T1 T1

SCase1

T4 T4

CA1

empty

empty

empty

empty

1

T1 T3

SCase3

W1 W2

s2

SCase2

T3

T2

empty

T1

empty

T4

T1T3 T4T2 T2

CA2 ≤
3

2

T2 T3

(b)

Figure 5.10: After the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) are rounded up, all rectangles
in C1 ∪ C2 ∪ C3 are shifted upwards, including rectangles in S Case1 and S Case2, until the rounded up
rectangles fit.

Proof. Recall that we ordered the configurations so that the rectangles in C4 create a vertical
division separating Case 1 and Case 3. Therefore, there is at most one vertically split fractional
rectangle r ∈ S Case1 ∩ S Case3 in C3 or C4 and it must be located in C3. Additionally, recall
that the fractional rectangles from S Case1 were packed in CA1 within S Case1 and that CA2 within
S Case1 is empty.

Note that a similar lemma as Lemma 5.2.3 holds for r ∈ S Case1 ∩ S Case3 ∩ C3, because
the fractional part rCase1 was re-shaped and packed in CA1 and the fractional part rCase3 was
rounded up; hence, the same argument used to prove Lemma 5.2.3 shows that rCase3 can either
be replaced by a whole rectangle of its same type without further increasing the height of the
packing and without overlapping any other rectangles or it can be discarded.

Recall that we ordered the configurations so that the rectangles in C1 create a vertical di-
vision separating Case 1 and Case 3. Therefore, there is at most one vertically split fractional
rectangle r ∈ S Case1 ∩ S Case3 in C1 or C2 and it must be located in C2. Additionally, recall
that within CA1 when sufficient fractional rectangles of the same type are packed, they merge
to become whole rectangles. By Lemma 4.2.3, there can be at most one fractional rectangle
of each type leftover in CA1 after this merging. Let F be the set of these leftover fractional
rectangles.

The part rCase3 was rounded up so that it has the full height of a rectangle of its type but

66 Chapter 5. Strip Packing with Four Rectangle Types

only a fraction of its width (see Figure 5.11b). If there is a fractional rectangle r′ ∈ F of the
same type as rCase3 such that r′ and the rounded up rCase3 form a whole rectangle, then r′ is
removed from F; then r′ is shifted rightwards until it is side-by-side with the rounded up rCase3

(see Figure 5.11c). Next, r′ is shifted downwards to form a whole rectangle with the rounded
up rCase3 (see Figure 5.11d). Note that r′ can be shifted downwards because the fractional
rectangle r was packed by the solution of the linear program between S Case1 and S Case3 so
there is enough empty space beside rCase3 to put r′ (see Figure 5.11a). Therefore, r′ and the
rounded up rCase3 form a whole rectangle without further increasing the height of the packing
and without overlapping any other rectangles. �

Note that rectangles r ∈ S Case1∩S Case3∩C2 and r′ ∈ S Case1∩S Case3∩C3 can be present at the
same time. Together, at most two whole rectangles can be formed that must be packed. Only
after attempting to pack both of these whole rectangles can the remaining fractional rectangles
from F and the unused fractional parts rCase3 be discarded.

Corollary 5.2.6. If there is a fractional rectangle r ∈ S Case2 ∩ S Case3 located in C1 or C2 in the
solution of the linear program, after processing the fractional rectangles as described above at
most one whole rectangle of the same type as r can be formed using the fractional rectangles
within CA1 and the fractional part rCase3. This whole rectangle can be packed without further
increasing the height of the packing and without overlapping any other rectangles.

Proof. A similar proof as that of Lemma 5.2.5 can be used. Recall that we ordered the con-
figurations so that the rectangles in C1 create a vertical division separating Case 2 and Case 3.
Therefore, there is at most one vertically split fractional rectangle r ∈ S Case2 ∩ S Case3 in C1 or
C2 and it must be located in C2. By Lemma 4.2.3 there can be at most one fractional rectan-
gle of each type leftover in CA1 after merging fractional pieces. Let F be the set of fractional
rectangles in CA1.

If there is a fractional rectangle r′ ∈ F of the same type as rCase3 such that r′ and the rounded
up rCase3 form a whole rectangle, then r′ is removed from F; then r′ is shifted rightwards until it
is side-by-side with the rounded up rCase3, and finally r′ is shifted downwards to form a whole
rectangle with the rounded up rCase3 (see Figure 5.11). Refer to Lemma 5.2.5 for an explanation
on why there must be sufficient empty space beside rCase3 to form a whole rectangle. Therefore,
r′ and the rounded up rCase3 form a whole rectangle without further increasing the height of the
packing and without overlapping any other rectangles.

The remaining rectangles in F are discarded because fractional rectangles of the same type
in the solution of the linear program sum to an integer number of whole rectangles. Therefore,
for each fractional rectangle r ∈ F, there must be other fractional rectangles of the same
type elsewhere in the packing that were rounded up by at least the same area as r. Thus, the
fractional rectangles in F can be discarded. Note that if the rounded up rCase3 and r′ do not
form a whole rectangle, then rCase3 is discarded as well. �

Corollary 5.2.7. If there are fractional rectangles r ∈ S Case1 ∩ S Case2 ∩ S Case3, then they must
be located in C2 or C3 in the solution of the linear program. After processing the fractional
rectangles as described above, at most two whole rectangles of the same types as r can be
formed. These whole rectangles can be packed without further increasing the height of the
packing and without overlapping any other rectangles.

5.2. Four Configurations 67

C2

C1

s1

SCase1

W1

s2

SCase3

T4

T4

T4

T4

T4

T4T4

T1

T1

T4

T4 T4

T4T4

r

(a)

C2

C1

s1

SCase1

W1

s2

SCase3

T4

T4

T4

T4

T4

T4T4

T1

T1

T4

T4

T4

T4

T4

rCase3

CA1

empty

empty

r'

(b)

C2

C1

s1

SCase1

W1

s2

SCase3

T4

T4

T4

T4

T4

T4T4

T1

T1

T4

T4

T4

T4

T4

rCase3

CA1

empty

empty

r'

(c)

C2

C1

s1

SCase1

W1

s2

SCase3

T4

T4

T4

T4

T4

T4T4

T1

T1

T4

T4

T4

T4

T4

rCase3

CA1

empty

empty

r'

(d)

Figure 5.11: (a) A fractional rectangle r ∈ S Case1 ∩ S Case3 ∩ C2 was packed by the solution of the
linear program. (b) A fractional rectangle r′ ∈ F of the same type as the rounded up rCase3 can form a
whole rectangle with the rounded up rCase3. (c) The fractional rectangle r′ is shifted rightwards until it
is side-by-side with the rounded up rCase3. (d) The fractional rectangle r′ is shifted downwards until it
forms a whole rectangle with the rounded up rCase3.

Proof. Recall that we ordered the configurations so that the rectangles in C4 create a vertical
division separating Case 1 and Case 2. Additionally, recall that we ordered the configurations
so that the rectangles in C1 create a vertical division separating Case 2 and Case 3. Therefore, a

68 Chapter 5. Strip Packing with Four Rectangle Types

fractional rectangle r ∈ S Case1 ∩ S Case2 ∩ S Case3 cannot be located in C1 or C4, as the rectangles
in S Case1 and S Case2 of C4 are of different types and the rectangles in S Case2 and S Case3 of C1 are
of different types. There is at most one vertically split fractional rectangle r ∈ S Case1 ∩ S Case2 ∩

S Case3∩C2 and at most one vertically split fractional rectangle r′ ∈ S Case1∩S Case2∩S Case3∩C2.
Also recall that the fractional rectangles from S Case1 and the fractional rectangles from

S Case2 in C1 or C2 were packed in CA1. By Lemma 4.2.3 there can be at most one fractional
rectangle of each type in CA1. Let F be the set of these fractional rectangles.

Note that Lemma 5.2.5 holds even if r ∈ S Case1∩S Case2∩S Case3∩C2, because the fractional
parts rCase1 and rCase2 were both re-shaped and packed in CA1; hence, the same argument used
to prove Lemma 5.2.5 shows that either rCase3 can be replaced by a whole rectangle of its same
type without further increasing the height of the packing and without overlapping any other
rectangles, or the rounded up rCase3 and the rectangles in F of the same type as rCase3 can be
discarded.

Note that Lemma 5.2.3 holds even if r ∈ S Case1∩S Case2∩S Case3∩C3, because the fractional
parts rCase2 and rCase3 are both rounded up and are essentially one larger fractional rectangle;
hence, the same argument used to prove Lemma 5.2.3 shows that either rCase2 and rCase3 can
be be replaced by a whole rectangle of its same type without further increasing the height
of the packing and without overlapping any other rectangles, or the rounded up rCase2, the
rounded up rCase3, and the fractional rectangles in F of the same type as rCase2 and rCase3 can be
discarded. �

Lemma 5.2.8. If S = S Case3, then there will be no leftover fractional rectangles after process-
ing Case 3 as described in this section. Therefore, in this case algorithm 4ConfigurationRound-
ing produces an integer packing of height at most 5

2 plus the height of the fractional packing
produced by the solution of the linear program.

Proof. For every section si ∈ S Case3, the fractional rectangles in R1(i), R2(i), R3(i), and R4(i)

are rounded up to become whole rectangles; therefore, there will be no leftover fractional
rectangles. Recall that the height of any rectangle is at most 1; therefore, the total increase in
height from rounding up the fractional rectangles in R1(i), R2(i), R3(i), and R4(i) is at most 5

2 . �

We can now prove Theorem 5.2.1.

Proof. By Corollary 4.1.1, if all rectangles are packed in the common portion of the packing,
algorithm 4ConfigurationRounding produces an integer packing of height at most 1 plus the
height of the fractional packing produced by the solution of the linear program.

Recall that the common portion of the packing can be rounded independently of the un-
common portion of the packing. For the rest of the proof we assume that the common portion
of the packing has been processed so it does not have any fractional rectangles and we already
know how much the height of the packing in this portion has increased.

By Corollary 5.2.2, if S = S Case1, algorithm 4ConfigurationRounding produces an integer
packing of height at most 1 plus the height of the fractional packing produced by the solution
of the linear program. By Corollary 5.2.4, if S = S Case2, algorithm 4ConfigurationRound-
ing produces an integer packing of height at most 5

2 plus the height of the fractional packing
produced by the solution of the linear program. By Corollary 5.2.8, if S = S Case3, algorithm
4ConfigurationRounding produces an integer packing of height at most 5

2 plus the height of the
fractional packing produced by the solution of the linear program.

5.2. Four Configurations 69

If S Case1 , ∅, S Case2 , ∅, and S Case3 = ∅, then after processing Case 1 and Case 2 as
described in this section, the height increase caused by leaving space of height 1 between C1

and C2 is 1, and the height increase caused by rounding up for the fractional rectangles in R3

and R4 within S Case2 is at most 3
2 . By Lemma 5.2.3, any fractional rectangle r ∈ S Case1 ∩

S Case2 ∩ C3 in the solution of the linear program is either replaced by a whole rectangle of
the same type without further increasing the height of the packing and without overlapping any
other rectangles or it is discarded. Note that for fractional rectangles r ∈ S Case1∩S Case2 in C1 or
C2, the parts rCase1 and rCase2 are both removed, re-shaped, and packed side-by-side in CA1. For
any whole rectangle r′ ∈ S Case1 ∩ S Case2 the parts rCase1 and rCase2 remain side-by-side and thus
still form a whole rectangle in the final packing. Using the same proof as in Corollary 5.2.4, it
can be shown that any leftover fractional rectangles at this point can be discarded. Therefore,
in this case algorithm 4ConfigurationRounding produces an integer packing of height at most
5
2 plus the height of the fractional packing produced by the solution of the linear program.

If S Case1 , ∅, S Case2 = ∅, and S Case3 , ∅, then after processing Case 1 and Case 3 as de-
scribed in this section, the height increase caused by leaving space of height 1 between C1 and
C2 is 1, and fractional rectangles in R1 and R2 within S Case3 can be rounded up without further
increasing the height of the packing. Rounding up the fractional rectangles in R3 and R4 within
S Case3 further increases the height of the packing by at most 3

2 . By Lemma 5.2.5, any frac-
tional rectangle r ∈ S Case1 ∩ S Case3 ∩C2 in the solution of the linear program is either replaced
by a whole rectangle of the same type without further increasing the height of the packing or
overlapping any other rectangles or it is discarded. By Lemma 5.2.5, any fractional rectangle
r ∈ S Case1 ∩ S Case3 ∩ C3 in the solution of the linear program is either replaced by a whole
rectangle of the same type without further increasing the height of the packing or overlapping
any other rectangles or it is discarded. Recall that we ordered the configurations such that there
can be no fractional rectangle r ∈ S Case1 ∩ S Case3 ∩ C1 or r ∈ S Case1 ∩ S Case3 ∩ C4. For any
whole rectangle r′ ∈ S Case1 ∩ S Case3 the parts rCase1 and rCase3 remain side-by-side and thus still
form a whole rectangle in the final packing. Using the same proof as in Corollary 5.2.4, it can
be shown that any leftover fractional rectangles at this point can be discarded. Therefore, in
this case algorithm 4ConfigurationRounding produces an integer packing of height at most 5

2
plus the height of the fractional packing produced by the solution of the linear program.

If S Case1 = ∅, S Case2 , ∅, and S Case3 , ∅, then after processing Case 2 and Case 3 as de-
scribed in this section, the height increase caused by leaving space of height 1 between C1 and
C2 is 1, and fractional rectangles in R1 and R2 within S Case3 can be rounded up without further
increasing the height of the packing. Rounding up the fractional rectangles in R3 and R4 within
S Case3 further increases the height of the packing by at most 3

2 . By Lemma 5.2.6, any fractional
rectangle r ∈ S Case2 ∩ S Case3 ∩ C2 in the solution of the linear program is either transformed
into a whole rectangle without further increasing the height of the packing or overlapping any
other rectangles or it is discarded. Recall that we ordered the configurations such that there
can be no fractional rectangle r ∈ S Case2 ∩ S Case3 ∩ C1 or r ∈ S Case2 ∩ S Case3 ∩ C4. Note that
for a fractional rectangle r ∈ S Case2 ∩ S Case3 ∩ C3, the parts rCase2 and rCase3 are both rounded
up form a whole rectangle. For any whole rectangle r′ ∈ S Case2 ∩ S Case3 the parts rCase2 and
rCase3 remain side-by-side and thus still form a whole rectangle in the final packing. Using the
same proof as in Corollary 5.2.4, it can be shown that any leftover fractional rectangles at this
point can be discarded. Therefore, in this case algorithm 4ConfigurationRounding produces an
integer packing of height at most 5

2 plus the height of the fractional packing produced by the

70 Chapter 5. Strip Packing with Four Rectangle Types

solution of the linear program.
If S Case1 , ∅, S Case2 , ∅, and S Case3 , ∅, then after processing Case 1, Case 2, and

Case 3 as described in this section, the height increase caused by leaving space of height 1
between C1 and C2 is 1, and fractional rectangles in R1 and R2 within S Case3 can be rounded
up without further increasing the height of the packing. Rounding up the fractional rectangles
in R3 and R4 within S Case2 and S Case3 further increases the height of the packing by at most
3
2 . By Lemma 5.2.3, any fractional rectangle r ∈ S Case1 ∩ S Case2 ∩ C3 in the solution of the
linear program is transformed into a whole rectangle without further increasing the height of
the packing and without overlapping any other rectangles. By Lemma 5.2.6, any fractional
rectangle r ∈ S Case2 ∩ S Case3 ∩ C2 in the solution of the linear program is either transformed
into a whole rectangle without further increasing the height of the packing or overlapping any
other rectangles or it is discarded. By Corollary 5.2.7, any fractional rectangle r ∈ S Case1 ∩

S Case2 ∩ S Case3 located in C2 or C3 in the solution of the linear program is either transformed
into a whole rectangle without further increasing the height of the packing or overlapping any
other rectangles or it is discarded. Note that for fractional rectangles r ∈ S Case1 ∩ S Case2 in C1

or C2, the parts rCase1 and rCase2 are both removed, re-shaped, and packed side-by-side in CA1.
Additionally, note that for fractional rectangles r ∈ S Case2∩S Case3∩C3, the parts rCase2 and rCase3

are both rounded up and form a whole rectangle. Recall that we ordered the configurations such
that there can be no fractional rectangle r ∈ S Case2∩S Case3∩C1 or r ∈ S Case2∩S Case3∩C4. For
any whole rectangle r′ ∈ S Case2 ∩ S Case3 the parts rCase2 and rCase3 remain side-by-side and thus
still form a whole rectangle in the final packing. Using the same proof as in Corollary 5.2.4, it
can be shown that any leftover fractional rectangles at this point can be discarded. Therefore,
in this case algorithm 4ConfigurationRounding produces an integer packing of height at most
5
2 plus the height of the fractional packing produced by the solution of the linear program.

Therefore, algorithm 4ConfigurationRounding produces an integer packing of height at
most 5

2 plus the height of the fractional packing produced by the solution of the linear program.
�

5.3. Three Configurations 71

5.3 Three Configurations
When the solution to the linear program has three configurations, we use algorithm 3Configura-
tionRounding described in Chapter 4. By Theorem 4.2.1, when there are three configurations,
algorithm 3ConfigurationRounding produces an integer packing of height at most 5

3 plus the
height of the fractional packing produced by the solution of the linear program.

Note that the presence of four distinct rectangle types does not have any impact on the algo-
rithms described in Chapter 4. Algorithms 3ConfigurationRounding, 2ConfigurationRounding,
and 1ConfigurationRounding each consider one section si at a time such that only a single rect-
angle type is packed in that portion of the configuration; it does not make a difference to any of
these algorithms which rectangle type is currently being considered, these algorithms simply
consider the value of the fractions and apply a particular rounding technique. The increase in
height caused by these rounding techniques also does not depend on the number of rectangle
types.

5.4 Two Configurations
When the solution to the linear program has two configurations, we use algorithm 2Configura-
tionRounding described in Chapter 4. By Theorem 4.3.1, when there are two configurations,
algorithm 2ConfigurationRounding produces an integer packing of height at most 1 plus the
height of the fractional packing produced by the solution of the linear program. Note that the
presence of four distinct rectangle types does not have any impact on the algorithms described
in Chapter 4.

5.5 One Configuration
When the solution to the linear program has only one configuration, we use algorithm 1Con-
figurationRounding described in Chapter 4. By Theorem 4.4.1, when there is only one con-
figuration, algorithm 1ConfigurationRounding produces an integer packing of height at most 1
plus the height of the fractional packing produced by the solution of the linear program. Note
that the presence of four distinct rectangle types does not have any impact on the algorithms
described in Chapter 4.

5.6 Approximation Ratio
As described above, when there are k = 4 rectangle types in the fractional solution computed
by the GLD algorithm there can be either four configurations, three configurations, two con-
figurations, or only one configuration.

By Theorems 5.2.1, 4.2.1, 4.3.1, and 4.4.1, when there are four configurations, three con-
figurations, two configurations, or only one configuration, algorithm 4TypeRounding increases
the height of the fractional packing produced by the solution of the linear program by at most
5
2 , 5

3 , 1, or 1, respectively.

72 Chapter 5. Strip Packing with Four Rectangle Types

Therefore, when there are k = 4 rectangles types, algorithm 4TypeRounding produces an
integer packing of height at most 5

2 plus the height of the fractional packing produced by the
solution of the linear program. Since the height of the fractional packing obtained by solving
the linear program is no larger than the height OPT of an optimum solution for HSMP, then
algorithm 4TypeRounding produces a packing of height at most OPT + 5

2 .

5.7 Running Time
The vector output from the linear program is transformed into a list of numbers that specifies
the rectangles that are packed in the configurations of the fractional solution. A configuration
is specified using O(k) numbers: for 1 ≤ i ≤ k, we specify the rectangle type Ti, the number of
rectangles of type Ti packed side-by-side, and the number of rectangles of type Ti packed one
on top of the other (see Chapter 4, Figure 4.27).

Therefore, since the fractional solution determined by the linear program has at most k
configurations, and since each configuration uses O(k) numbers, then the input to algorithm
4TypeRounding uses O(k2) numbers to specify all the configurations.

The output of algorithm 4TypeRounding first specifies the common portion of the packing
as a list of O(k) numbers: for 1 ≤ i ≤ k, we specify the rectangle type Ti, the number of
rectangles of type Ti packed side-by-side, and the number of rectangles of type Ti packed one
on top of the other (see Chapter 4, Figure 4.28).

The part of a configuration in the uncommon portion of the packing is specified as a list
of O(k) numbers: we specify the rectangle type Ti, the number of rectangles of type Ti packed
side-by-side, and the number of rectangles of type Ti packed one on top of the other (see
Chapter 4, Figure 4.29).

Therefore, since the fractional solution determined by the linear program has at most k
configurations, we only add two configurations CA1 and CA2, and each configuration uses O(k)
numbers, then the output produced by algorithm 4TypeRounding uses O(k2) numbers to specify
all the configurations (see Chapter 4, Figure 4.30).

Algorithm 4TypeRounding transforms a fractional solution into an integral one by perform-
ing operations on the list of numbers given as input.

Theorem 5.7.1. Algorithm 4TypeRounding produces an integer packing of height at most 5
2

plus the height of the fractional packing produced by the solution of the linear program using
at most O(k3) operations plus the time needed to compute the solution of the linear program.

Proof. A similar proof as that of Theorem 4.6.1 can be used. Partitioning the list of numbers
specifying the fractional solution into common and uncommon portions requires identifying
the number of rectangles of type T1, T2, T3, and T4 that belong in the common portion of the
packing.

The number of rectangles of type T1 that should be packed side-by-side in the common
portion of the packing is equal to the minimum of the number of rectangles of type T1 that are
packed side-by-side in each of C1, C2, C3, and C4. The number of rectangles of type T1 that
should be packed one on top of the other in the common portion of the packing is equal to the
sum of the number of rectangles of type T1 that are packed one on top of the other in each of C1,
C2, C3, and C4. Hence, finding the number of rectangles of type T1 that belong in the common

5.7. Running Time 73

portion of the packing requires O(k) operations. Therefore, finding the number of rectangles
of each type that belong in the common portion of the packing requires O(k2) operations.

Processing the common portion of the packing according to Section 4.1.1 requires O(k)
operations as for 1 ≤ i ≤ k, algorithm 4TypeRounding only needs to round up the fractional
numbers for each rectangle type Ti.

Sorting the rectangles in each configuration in the uncommon portion of the packing by
the fractions fi requires at most k comparisons per configuration. Since this needs to be done
for each configuration, sorting the rectangles in the uncommon portion of the packing requires
O(k2) operations.

Processing a section si ∈ S Case1 according to Lemma 4.2.2 requires O(k) operations: the
number of fractional rectangles from C1(i) is computed by multiplying the corresponding num-
ber of rectangles packed side-by-side by the decimal part of the number of rectangles packed
one on top of the other. This is repeated for C2(i), C3(i), and C4(i). Products corresponding to the
same rectangle types are added together.

Processing a section si ∈ S Case2 according to Section 5.2.2 requires O(k) operations: C1(i)

and C2(i are processed as described above; fractional numbers specifying the number of rect-
angles packed one on top of the other in each of C3(i) and C4(i) are rounded up.

Processing a section si ∈ S Case3 according to Section 5.2.3 also requires O(k) operations:
for each of C1(i), C2(i), C3(i), and C4(i), fractional numbers specifying the number of rectangles
packed one on top of the other are rounded up.

Note that for the vertically split fractional rectangles only a constant number of operations
are needed to check whether one part needs to be re-shaped and the other part rounded up.
When a rounded up fractional rectangle is combined with a fractional rectangle from CA1 to
form a whole rectangle, a constant number of numbers in the list need to be changed to reflect
the additional rectangle.

Recall that in the uncommon portion of the packing, for configurations that contain more
than one type of rectangle, a new section is created at the point where the rectangle type changes
in the configuration. Also recall that in the uncommon portion of the packing, within a config-
uration at most k distinct rectangle types are packed. Therefore, one configuration can contain
at most k sections, one for each rectangle type. Since there are at most k configurations, and
each configuration can contain at most k sections, there are O(k2) sections in the uncommon
portion of the packing.

Note that processing a section requires O(k) operations, regardless of which case that sec-
tion belongs to. In the worst case, O(k2) sections need to be processed, each requiring O(k)
operations, for a total of O(k3) operations. Partitioning the fractional packing into common
and uncommon sections and sorting the rectangles in the uncommon portion of the packing
each require O(k2) operations. Processing the common portion of the packing requires O(k)
operations. Therefore, algorithm 3TypeRounding requires O(k3 + k2 + k) = O(k3) operations
plus the time needed to compute the solution of the linear program, which was proven in [47]
to be polynomial. �

Chapter 6

Conclusion

In this thesis we considered the two-dimensional high multiplicity strip packing problem: given
k distinct rectangle types, where each rectangle type Ti has ni rectangles each with width 0 <
wi ≤ 1 and height 0 < hi ≤ 1, the goal is to pack these rectangles into a strip of width 1, without
rotating or overlapping the rectangles, such that the total height of the packing is minimized.

We presented algorithm 3TypeRounding designed in collaboration with Yu for HMSPP
when k = 3 for which SOL(I) ≤ OPT(I) + 5

3 . Algorithm 3TypeRounding can be generalized
for any fixed value k to get SOL(I) ≤ OPT(I) + k − 4

3 .
Additionally, we presented algorithm 4TypeRounding for HMSPP when k = 4 for which

SOL(I) ≤ OPT(I) + 5
2 . Algorithm 4TypeRounding can be generalized for any fixed value k to

get SOL(I) ≤ OPT(I) + k − 3
2 .

Algorithms 3TypeRounding and 4TypeRounding run in polynomial time; these algorithms
compute their solutions using at most O(k3) operations plus the time needed to compute the
solution to the linear program, which was proven in [47] to be polynomial.

Modifying these algorithms to work for any fixed value of k is simple. For example, when
k = 5 and the solution to the linear program contains five configurations, C1, C2, C3, and
C4 can be processed using an unmodified version of algorithm 4TypeRounding producing a
height of at most 5

2 plus the height of the fractional packing produced by the solution of the
linear program. Each fractional rectangle in C5 is rounded up, further increasing the height by
at most 1 (see Figure 6.1). Therefore, the above algorithm for HMSPP when k = 5 produces
solutions of value SOL(I) ≤ OPT(I) + 7

2 .
Each additional configuration beyond C1, C2, C3, and C4 has its fractional rectangles

rounded up and further increases the height of the packing by at most 1.

74

6.1. FutureWork 75

C4

C3

C2

s1 s3

T2 T3
C1

T1 T1

SCase1

T4 T4

CA1

empty

empty

empty

empty

1

T1 T3

SCase3

W1 W2

s2

SCase2

T3

T2

empty

T1

empty

T4

CA1 ≤
3

2

C5 T2 T2 T3

≤ 1

Figure 6.1: When k = 5 and the solution to the linear program contains five configurations, C1, C2,
C3, and C4 can be processed using an unmodified version of algorithm 4TypeRounding. Each fractional
rectangle in C5 is rounded up.

6.1 Future Work

In Chapter 2 we discussed some classic packing problems such as the bin packing problem
and the cutting stock problem. Algorithms designed for the cutting stock problem, which
is the high multiplicity version of the bin packing problem, produce solutions that are much
closer to the optimal solutions. In fact, in [24] an algorithm was presented that solves the
cutting stock problem exactly for a fixed value of d. Our future work includes determining
whether we can decrease the heights of the packings producted by algorithms 3TypeRounding
and 4TypeRounding and whether we can design an algorithm that solves HMSPP exactly for a
fixed value of k.

Many variants of packing problems exist that permit rotations of the objects. This distinc-
tion is important in certain application such as cutting wood with the grain or against the grain,
or in other applications where the material is featureless and its orientation does not matter.
Since many applications require cuts along vertical or horizontal lines, many packing prob-
lems allow only 90 degree rotations. Allowing a rectangle to be rotated might allow a better
solution to be found, as there might not have been an ideal location to pack a tall and skinny
rectangle but there could be a perfect location to pack a short and wide rectangle. However,

76 Chapter 6. Conclusion

allowing rotations also increases the total number of possible packings.
Jansen and van Stee [35] presented a PTAS for the strip packing problem with 90 degree

rotations that produces solutions of value SOL(I) ≤ (1 + ε)OPT(I) + O(1
ε2) for any ε > 0. In

contrast, recall that Jansen and Solis-Oba [32] presented a PTAS for the strip packing prob-
lem with no rotations that produces solutions of value S OL(I) ≤ (1 + ε)OPT(I) + 1 for any
ε > 0. The algorithm designed for the strip packing problem that permits rotations has a better
asymptotic approximation ratio. Our future work includes determining whether an approxima-
tion algorithm or a PTAS can be designed for HMSPP that permits 90 degree rotations.

Variants of packing problems also exist in more than just two dimensions. Bortfeldt and
Mack [5] presented a heuristic for the three dimensional strip packing problem, which has ap-
plications in the steel industry. Their algorithm uses a layer-building approach; a layer of a
packing consists of several cubes packed side-by-side, much like our configurations, and they
stack layers one on top of the other to fill their container. Additionally, Miyazawa and Wak-
abayashi [46] presented an algorithm for the three dimensional strip packing problem with an
approximation ratio of 2.76. Our future work includes designing an approximation algorithm
for the three dimensional version of HMSPP.

Bibliography

[1] B. Baker, D. Brown, and H. Katseff. A 5
4 algorithm for two-dimensional packing. Journal

of Algorithms, 2(4):348–368, 1981.

[2] B. Baker, R. Calderbank, E. Coffman, and J. Lagarias. Approximation algorithms for
maximizing the number of squares packed into a rectangle. SIAM Journal on Algebraic
Discrete Methods, 4(3):383–397, 1983.

[3] B. Baker, E. Coffman, and R. Rivest. Orthogonal packings in two dimensions. SIAM
Journal on Computing, 9(4):846–855, 1980.

[4] J. Beirão. Packing Problems in Industrial Environments: Application to the Expedition
Problem at INDASA. PhD thesis, Universidade Technica de Lisboa, 2009.

[5] A. Bortfeldt and D. Mack. A heuristic for the three-dimensional strip packing problem.
European Journal of Operational Research, 183(3):1267–1279, 2007.

[6] A. Caprara and M. Monaci. On the two-dimensional knapsack problem. Operations
Research Letters, 32(1):5–14, 2004.

[7] P. Chen, Y. Chen, M. Goel, and F. Mang. Approximation of two-dimensional rectangle
packing. CS270 Project Report, 1999.

[8] E. Coffman, M. Garey, and D. Johnson. Approximation algorithms for bin packing: a
survey. Approximation Algorithms for NP-hard Problems, pages 46–93, 1996.

[9] E. Coffman, M. Garey, D. Johnson, and R. Tarjan. Performance bounds for level-oriented
two-dimensional packing algorithms. SIAM Journal on Computing, 9(4):808–826, 1980.

[10] G. Dósa. The tight bound of first fit decreasing bin-packing algorithm is f f d(i) ≤
11
9 opt(i) + 6

9 . In International Symposium on Combinatorics, Algorithms, Probabilistic
and Experimental Methodologies, pages 1–11. Springer, 2007.

[11] H. Dyckhoff. A typology of cutting and packing problems. European Journal of Opera-
tional Research, 44(2):145–159, 1990.

[12] K. Eisemann. The trim problem. Management Science, 3(3):279–284, 1957.

[13] C. Filippi. On the bin packing problem with a fixed number of object weights. European
Journal of Operational Research, 181(1):117–126, 2007.

77

78 BIBLIOGRAPHY

[14] C. Filippi and A. Agnetis. An asymptotically exact algorithm for the high-multiplicity
bin packing problem. Mathematical Programming, 104(1):21–37, 2005.

[15] A. Fishkin, O. Gerber, K. Jansen, and R. Solis-Oba. On packing squares with resource
augmentation: Maximizing the profit. In Proceedings of the 2005 Australasian Sympo-
sium on Theory of Computing-Volume 41, pages 61–67. Australian Computer Society,
Inc., 2005.

[16] A. Fishkin, O. Gerber, K. Jansen, and R. Solis-Oba. Packing weighted rectangles into a
square. In International Symposium on Mathematical Foundations of Computer Science,
pages 352–363. Springer, 2005.

[17] Z. Fitzsimmons and E. Hemaspaandra. High-multiplicity election problems. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, pages 1558–1566. International Foundation for Autonomous Agents and Multi-
agent Systems, 2018.

[18] D. Friesen and M. Langston. Analysis of a compound bin packing algorithm. SIAM
Journal on Discrete Mathematics, 4(1):61–79, 1991.

[19] M. Garey and D. Johnson. “strong”np-completeness results: Motivation, examples, and
implications. Journal of the ACM (JACM), 25(3):499–508, 1978.

[20] M. Gary and D. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. WH Freeman and Company, New York, 1979.

[21] P. Gilmore and R. Gomory. A linear programming approach to the cutting-stock problem.
Operations Research, 9(6):849–859, 1961.

[22] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock prob-
lem—part ii. Operations Research, 11(6):863–888, 1963.

[23] P. Gilmore and R. Gomory. Multistage cutting stock problems of two and more dimen-
sions. Operations Research, 13(1):94–120, 1965.

[24] M. Goemans and T. Rothvoß. Polynomiality for bin packing with a constant number
of item types. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 830–839. SIAM, 2014.

[25] I. Golan. Performance bounds for orthogonal oriented two-dimensional packing algo-
rithms. SIAM Journal on Computing, 10(3):571–582, 1981.

[26] M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its consequences in
combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

[27] R. Harren. Approximation algorithms for orthogonal packing problems for hypercubes.
Theoretical Computer Science, 410(44):4504–4532, 2009.

[28] R. Harren, K. Jansen, L. Prädel, and R. Van Stee. A (5
3 + ε)-approximation for strip

packing. Computational Geometry, 47(2):248–267, 2014.

BIBLIOGRAPHY 79

[29] R. Harren and R. Van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, pages 177–189. Springer, 2009.

[30] D. Hochbaum and W. Maass. Approximation schemes for covering and packing problems
in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

[31] D. Hochbaum and R. Shamir. Strongly polynomial algorithms for the high multiplicity
scheduling problem. Operations Research, 39(4):648–653, 1991.

[32] K. Jansen and R. Solis-Oba. New approximability results for 2-dimensional packing prob-
lems. In International Symposium on Mathematical Foundations of Computer Science,
pages 103–114. Springer, 2007.

[33] K. Jansen and R. Solis-Oba. A polynomial time approximation scheme for the square
packing problem. In International Conference on Integer Programming and Combinato-
rial Optimization, pages 184–198. Springer, 2008.

[34] K. Jansen and R. Solis-Oba. An opt + 1 algorithm for the cutting stock problem with
constant number of object lengths. In International Conference on Integer Programming
and Combinatorial Optimization, pages 438–449. Springer, 2010.

[35] K. Jansen and R. van Stee. On strip packing with rotations. In Proceedings of the Thirty-
Seventh Annual ACM Symposium on Theory of computing, pages 755–761. ACM, 2005.

[36] K. Jansen and G. Zhang. Maximizing the total profit of rectangles packed into a rectangle.
Algorithmica, 47(3):323–342, 2007.

[37] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham. Worst-case performance
bounds for simple one-dimensional packing algorithms. SIAM Journal on Computing,
3(4):299–325, 1974.

[38] D. Johnson and M. Garey. A 71
60 theorem for bin packing. Journal of Complexity, 1(1):65–

106, 1985.

[39] H. Karloff. Linear programming. Springer Science & Business Media, 2008.

[40] N. Karmarkar and R. Karp. An efficient approximation scheme for the one-dimensional
bin-packing problem. In 23rd Annual Symposium on Foundations of Computer Science
(sfcs 1982), pages 312–320. IEEE, 1982.

[41] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-
putations, pages 85–103. Springer, 1972.

[42] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[43] L. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

80 BIBLIOGRAPHY

[44] Y. Lan, G. Dósa, X. Han, C. Zhou, and A. Benko. 2d knapsack: Packing squares. Theo-
retical Computer Science, 508:35–40, 2013.

[45] S. McCormick, S. Smallwood, and F. Spieksma. A polynomial algorithm for multiproces-
sor scheduling with two job lengths. Mathematics of Operations Research, 26(1):31–49,
2001.

[46] F. Miyazawa and Y. Wakabayashi. Packing problems with orthogonal rotations. In Latin
American Symposium on Theoretical Informatics, pages 359–368. Springer, 2004.

[47] D. Price. High multiplicity strip packing. Master’s thesis, Western University, 2014.

[48] T. Rothvoß. Approximating bin packing within o(logopt ∗ loglogopt) bins. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages 20–29. IEEE, 2013.

[49] I. Schiermeyer. Reverse-fit a 2-optimal algorithm for packing rectangles. In European
Symposium on Algorithms, pages 290–299. Springer, 1994.

[50] D. Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research
Logistics (NRL), 41(4):579–585, 1994.

[51] D. Sleator. A 2.5 times optimal algorithm for packing in two dimensions. Information
Processing Letters, 10(1):37–40, 1980.

[52] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing, 26(2):401–409, 1997.

[53] F. De La Vega and G. Lueker. Bin packing can be solved within 1 + ε in linear time.
Combinatorica, 1(4):349–355, 1981.

[54] L. Wang, R. Duan, X. Li, S. Lu, T. Hung, R. Calheiros, and R. Buyya. An iterative
optimization framework for adaptive workflow management in computational clouds. In
2013 12th IEEE International Conference on Trust, Security and Privacy in Computing
and Communications, pages 1049–1056. IEEE, 2013.

[55] P. Wang. Two algorithms for constrained two-dimensional cutting stock problems. Op-
erations Research, 31(3):573–586, 1983.

[56] A. Yao. New algorithms for bin packing. Journal of the ACM (JACM), 27(2):207–227,
1980.

Curriculum Vitae

Name: Andrew Bloch-Hansen

Post-Secondary Western University
Education and Ontario, Canada
Degrees: 2013 - 2017 Honors Specialization in Computer Science

University of Western Ontario
London, ON
2017 - 2019 M.Sc. in Theoretical Computer Science

Related Work Teaching Assistant
Experience: Western University

2017 - 2019

Research Assistant
University of Western Ontario
2017 - 2019

81

	High Multiplicity Strip Packing
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Co-Authorship Statement
	List of Algorithms
	List of Figures
	Introduction
	Fundamental Concepts
	Applications
	Related Work
	Our Contributions

	Related Problems
	The Bin Packing Problem
	The Cutting Stock Problem
	The Rectangle Packing Problem
	The Strip Packing Problem
	High Multiplicity Problems

	High Multiplicity Strip Packing
	Linear Program Rounding
	Rounding a Solution for the Linear Program for HMSPP
	A Simple Approximation Algorithm for HMSPP

	Strip Packing with Three Rectangle Types
	Overview of the Algorithm
	The Common Portion of the Packing
	The Uncommon Portion of the Packing
	Sorting the Configurations
	Rounding Fractional Rectangles

	Three Configurations
	Notation
	Shifting Rectangles
	Case 1. fTop(i) 13, fMid(i) 13, and fBot(i) 13
	Case 2. fBot(i) > 13 and fTop(i) + fMid(i) 1
	Case 3. fBot(i) > 13 and fTop(i) + fMid(i) > 1

	Two Configurations
	Case 1. fTop(i) + fBot(i) 1
	Case 2. fTop + fBot > 1

	One Configuration
	Approximation Ratio
	Running Time

	Strip Packing with Four Rectangle Types
	Overview of the Algorithm
	Rounding Fractional Rectangles

	Four Configurations
	Case 1. f1(i) + f2(i) 12 and f3(i) + f4(i) 12
	Case 2. f1(i) + f2(i) 1 and f3(i) + f4(i) > 12
	Case 3. f1(i) + f2(i) > 1 and f3(i) + f4(i) > 12

	Three Configurations
	Two Configurations
	One Configuration
	Approximation Ratio
	Running Time

	Conclusion
	Future Work

	Bibliography
	Curriculum Vitae

