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Abstract 

Polymer electrolyte membrane fuel cell (PEMFC), is considered a promising candidate for the 

next generation power sources in transportation, stationary and portable applications. However, 

oxygen reduction reaction (ORR), one of the key reactions occurring on PEMFC is kinetically 

slow; this has limited performance and further advancement in this kind of fuel cells. Thus, 

improving the PEMFC efficiency requires a thorough understanding of the ORR mechanism on 

the desired catalyst. To address the above-mentioned demands, the scope of this thesis is focused 

on the fundamental understanding of facet-controlled nanoparticles, metal-support interactions, 

and bimetallic platinum catalysts, utilizing synchrotron-based X-ray absorption, X-ray 

photoelectron spectroscopy, and electrochemical characterization methods. 

It is found that particle size, shape, composition (Pd and Co are the other metals), and the 

supporting material not only can act as momentous parameters in enhancing the catalytic activity 

of NPs but also are functioning as vital criteria in boosting the stability. 
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Summary for Lay Audience 

Climate change and deficiency of petroleum-based energy resources have risen concerns about the 

future of planet earth and have made scientist to be more focused on fuel cell technologies, due to 

their low emissions and high efficiencies. Low operation temperature, high power, and energy 

density have made the PEMFC, a promising candidate for the next generation power sources in 

transportation, stationary and portable applications. Low abundance, limited supply, and 

increasing demand have limited the commercial application of Pt, as a critical catalytic component 

in PEMFC. So finding out an efficient catalyst and substituting it with the current commercial ones 

can accelerate the utilization of this technology and can cease the current concerns about the 

climate change crises. DFAFCs as a subcategory of PEM fuel cells have also attracted lots of 

attentions in recent years due to their high energy conversion efficiency and non-toxic and safe 

fuel. The low stability of palladium, as a catalyst for DFAFC has also diminished its commercial 

applications and catalysts with higher stability will be required. This study will discuss more 

fundamentally the ways for satisfying the mentioned demands. 
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Chapter 1  

1 Introduction  

1.1 Fuel Cell Basics 

Fuel cell is an electrochemical cell that can produce energy through chemical reactions of supplied 

fuels and oxidants [1-3]. Fuel cell, which is first introduced by William Grove in 19th century, has 

various privileges over other common sources of energy [4]. Among all the fruitful characteristics 

of this renewable source of energy, having no specific pollution and producing water as the only 

waste have attracted lots of attentions [5].  Although the base of fuel cell is the same as battery, 

which is obtaining energy from the chemical energy of fuels, there will be no necessity for 

recharging in fuel cells and it will be working until the supplied fuel is used up [6]. In a world that 

all people are suffering from air pollutions and global warming, which are mainly occurring due 

to the high usage of fossil fuels, fuel cells with their environmentally-friendly structure and 

efficient energy conversion are known as the most promising substitute [7].  

1.1.1 Classification of Fuel Cells 

Fuel cells are usually categorized based on the fuel, electrolyte, and temperature that they are 

utilizing [8-10]. Polymer electrolyte membrane fuel cells (PEM fuel cells or PEMFCs), alkaline 

fuel cells (AFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs) and 

solid oxide fuel cells (SOFCs) can be mentioned as the most common known fuel cells. 

1.1.1.1 Proton Exchange Membrane Fuel Cells (PEMFC) 

Polymer exchange membrane fuel cells consist of an ion exchange membrane which is isolating 

the anode and cathode electrodes [2, 11, 12]. As water will be the only solution in this cell, 

corrosion and electrolyte management problems will be in the lowest level possible and this can 

assist to their commercialization [13]. Although the highest working temperature in this cell will 

be around 80°C, due to the aqueous solution, these cells are having the highest power density and 

can alter their output to as high as 250 kW [14]. Apart from their prodigious features, these cells 

are really sensitive to the impurities in the supplied fuel, and the employed catalysts in these cells 

can be easily poisoned [15]. In addition, the water level in the cell should be always monitored to 
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make sure evaporation is not happening more rapidly than the water production and the membrane 

is always being hydrated.  

1.1.1.2 Alkaline Fuel Cells (AFC) 

Alkaline fuel cells which are using alkaline electrolyte such as sodium hydroxide or potassium 

hydroxide, were first commercially employed by NASA in Apollo missions. Substitution of acid 

with alkaline have given numbers of advantageous to AFC compared to the other common fuel 

cells [16]. Due to the usage of alkaline electrolyte and higher boiling point of them, the temperature 

can be enhanced and this can promote AFC to the highest energy efficiency cell. In addition, 

oxygen reduction reaction with its sluggish kinetic will be more favorable in alkaline electrolyte 

compared to the acidic solutions [17]. Using wide variety of catalysts including noble and non-

noble catalysts, have made them to be the desirable cell for most applications. However, the main 

obstacle in their commercialization process is their electrolyte sensitivity to CO2 [18]. CO2 can 

react with the alkaline electrolyte and the by-product of this reaction can clog the electrolyte 

pathways and hinder the desired features.  

1.1.1.3 Phosphoric Acid Fuel Cells (PAFC) 

Unless the low temperature fuel cells, which are sensitive to CO poisoning, high temperature in 

phosphoric acid fuel cell has given the benefit of carbon monoxide and impurity tolerance in the 

working conditions [19, 20]. Due to the employed electrolyte and its thermal and chemical 

stability, PAFC can be used at the temperature of 150-200 °C. In addition, concentrated acid has 

minimized the water vapor in the system and this has reduced the concerns regarding water 

management [21]. All these features have made PAFC the first commercialized fuel cell until now.  

1.1.1.4 Molten Carbonate Fuel Cells (MCFC) 

Molten carbonate fuel cells were first developed in 20th century and are known for their high 

working temperature. Having high temperature can be advantageous in several aspects and can 

make MCFC a promising candidate for stationary power generation, with the possibility of using 

waste heat in other processes [22, 23]. High temperature is also fruitful in the employed catalyst 

and the high ORR kinetic in elevated temperatures will eliminate the necessity for noble materials 

as catalyst [24]. These cells will usually utilize alkali metal carbonate electrolyte, such as molten 



3 

 

 

 

lithium, sodium or potassium carbonates kept in a ceramic matrix. Due to the limited conductivity 

of molten carbonate electrolyte, enhanced temperature will be needed to promote carbonate ion 

for higher ion conductivity [25]. Although the elevated temperature can eventuate in cheaper 

catalysts and higher efficiency, it can be also detrimental to the cell in terms of corrosion and 

oxidation of cell components.  

1.1.1.5 Solid Oxide Fuel Cells (SOFC) 

Another promising candidate for the industrial applications is solid oxide fuel cell which is 

employing solid oxide materials, mainly ceramics, as electrolyte [26, 27]. This solid electrolyte 

has given the chance of enhancing temperature to as high as approximately 1000 °C, in which 

oxygen ions will provide the required ion conductivity. Similar to the other high temperature cells, 

SOFC operation will not entail noble metal catalysts and the high kinetic of ORR in these cells 

have reduced the final price due to the usage of non-noble electrocatalysts. Still, corrosion and 

chemical instability at elevated temperatures are the main hindrances to the commercialization 

process [28, 29]. 

1.1.2 Fuel Types 

Fuel cells are usually categorized by the type of fuels they are using. The most prevalent fuel is 

pure H2 now, which is mainly used in PEM fuel cells and its combination with oxygen can produce 

electricity and water, as the only waste. Although pure H2 can lead to the highest power density 

and efficiency, several difficulties regarding their storage and compression have limited its 

application [30, 31]. There can be also another possible pathway for supplying hydrogen to the 

cell by reforming methanol, ethanol or natural gas, but the CO produced in the reforming process 

as by-product can poison and deactivate the catalysts and alter the cell efficiency.  

To overcome this challenge, formic acid, methanol, or ethanol can be directly supplied to the cell 

for direct oxidation [32]. In this way, the mentioned obstacles related to pure H2 can be avoided 

and high open circuit potential and finite fuel crossover can be obtained [33, 34]. However, these 

fuels have their own operational impediments and their low oxidation kinetic on anode side and 

high oxidation on cathode side, which will lead to mixed potential, have limited their industrial 

applications [35].  
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1.2 Proton Exchange Membrane (PEM) Fuel Cell 

Among all these types of fuel cells, PEMFCs which have high power density, high energy 

conversion efficiency, low-temperature operation and, the ability for portable power applications 

have attracted more attention [36]. Since this research concerns with catalysts for PEM Fuel Cells, 

it will be described in some details below. 

1.2.1 Cell Components  

A schematic of a typical PEMFC is shown in Figure 1-1, in which anode and cathode are separated 

by Nafion®
, which is acting as the polymer electrolyte and is ion conductive and are electronically 

connected with an external circuit [37, 38]. The two electrodes will be supported with bipolar 

plates, which will be responsible for supplying fuels and oxidants to the electrodes. All these 

components will be hot-pressed to obtain Membrane Electrode Assembly, a sandwich structure 

which is the main part of fuel cell [39].  

 

Figure 1-1 A schematic of PEM fuel cell. 

As it is shown in the schematic, hydrogen will be supplied to the anode and will be decomposed 

to protons and electrons. The generated protons will travel along the PEM and the negatively 

charged electrons will pass through an external circuit to get to the cathode side. At the cathode 

side, these protons and electrons will react with the oxygen, that is being supplied from air, and 

will produce water.  

Cathode Anode 
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With having a look at the whole process of PEM fuel cell, water, heat and electricity current are 

the only results of the electrochemical reactions and there will be no specific pollution. The 

reactions in which energy is being produced by H2 and O2 are as follows [2]: 

Anode:            𝐻2(𝑔)  →  2𝐻+(𝑎𝑞) + 2𝑒−                  (1) 

Cathode:        
1

2
𝑂2(𝑔) +  2𝐻+(𝑎𝑞) + 2𝑒−  →𝐻2𝑂(𝑙)       (2) 

Overall:          𝐻2(𝑔)  +  
1

2
𝑂2(𝑔)  →  𝐻2𝑂(𝑙)  +  𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝑒𝑛𝑒𝑟𝑔𝑦 +  ℎ𝑒𝑎𝑡 (3) 

1.2.2 Thermodynamics and Electrochemical Kinetics 

Electrical energy is the outcome of chemical reactions in fuel cells. With the operation of chemical 

reactions in fuel cells, a maximum electrical work of We can be obtained. Using the following 

equation, electrical work of fuel cells, at a constant temperature and pressure, can be acquired [40]. 

𝑊𝑒 = 𝛥𝐺 = −𝑛𝐹𝐸          (4) 

n, F, and E are number of electrons involved in the reaction, Faraday’s constant, and the cell 

potential respectively.   

Using the enthalpy and entropy change, Gibbs free energy change which is required in electrical 

work calculation, can be obtained. The formula is mentioned as follows: 

𝛥𝐺 = 𝛥𝐻 − 𝑇𝛥𝑆          (5) 

In a general cell reaction, like the one in Equation 6, the Gibbs free energy change can be calculated 

for the reaction using the following equation. 

αA + 𝛽B =  νC + δD          (6) 

𝛥𝐺 = 𝛥𝐺0 + 𝑅𝑇 𝑙𝑛
[𝐶]𝜈[𝐷]𝛿

[𝐴]𝛼[𝐵]𝛽
           (7) 

∆G0 and [X] (X: A, B, C and D) are the Gibbs free energy change at standard temperature and 

pressure and concentration of species, respectively.  
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By substituting Equations 4 and 7, the Nernst’s equation will be obtained [41]. This equation can 

be employed to calculate the ideal cell voltage of a fuel cell. If we consider the overall reaction of 

PEM fuel cell like the one in Equation 9, the cell voltage can be calculated using the Nernst’s 

equation as shown in Equation 10.  

𝐸 = 𝐸0 −
𝑅𝑇

𝑛𝐹
𝑙𝑛

[𝐶]𝜈[𝐷]𝛿

[𝐴]𝛼[𝐵]𝛽          (8) 

𝐻2(𝑔)  +  
1

2
𝑂2(𝑔)  →  𝐻2𝑂(𝑙)       (9) 

𝐸 = 𝐸0 +
𝑅𝑇

𝑛𝐹
𝑙𝑛(𝑃𝐻2

𝑃𝑂2

0.5 )         (10) 

By following these calculations, it is obvious that the reaction of H2 and O2 is occurring in the 

ideal cell voltage of 1.23 V and this voltage can be reduced to 1.18 V if the product alters from 

liquid water to gaseous water. 

1.3 Direct formic acid fuel cells 

Obstacles in the commercialization of PEM fuel cells, because of the high cost and risk of 

storing hydrogen, and DMFCs, because of the high fuel crossover rate, have increased interest 

for specific types of PEMFCs called direct formic acid fuel cells [42, 43]. In these fuel cells, 

formic acid will not be reformed and will be fed directly to the anode. Due to their unique 

specifications such as high energy density and open circuit potential, utilization of non-

flammable and non-toxic fuel, and higher energy conversion efficiency, they are substituting 

the current common cells for portable applications [44]. The cathode, anode and overall 

reactions occurring in a direct formic acid fuel cell are mentioned as follows: 

Anode:        𝐻𝐶𝑂𝑂𝐻 →  𝐶𝑂2 + 2𝐻+ + 2𝑒−               𝐸0~ − 0.25 𝑉𝑅𝐻𝐸  (11) 

Cathode:    
1

2
𝑂2 + 2𝐻+ + 2𝑒− →  𝐻2𝑂                        𝐸0~ 1.23 𝑉𝑅𝐻𝐸  (12) 

Overall:      𝐻𝐶𝑂𝑂𝐻 +
1

2
𝑂2 →  𝐶𝑂2 + 𝐻2𝑂                 𝐸0~ 1.48 𝑉𝑅𝐻𝐸  (13) 
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1.4 PEMFC Cathode Catalysts 

1.4.1 Pure Pt Catalyst 

Although the tremendous role of platinum in oxygen reduction reaction rate is not deniable, still 

there is a big gap between platinum activity for ORR and the desired activity for commercialization 

[45, 46]. Other than the direct four-electron reduction, there are other parallel reactions occurring 

on the Pt surface which is leading to lower activity in the oxygen reduction reaction [47]. An ideal 

catalyst should have sufficient active sites on its surface and should be able to allow oxygen species 

to adsorb strongly enough on its surface [48]. On the other hand, the binding between catalyst and 

oxygen species should be weak enough to let the products (OH*) desorb from surface and provide 

free surface for further reactions. Having a weak interaction will cease the high reaction rate and 

the strong interaction will block the available surface for new reactants. This principle will bring 

us to the volcano plot which is comparing the ORR activity with adsorption energy [49]. As shown 

in Figure 1-2, platinum has the highest activity compared to the other bulk metals.  

 

 

Figure 1-2 Volcanic type dependence of oxygen reduction activity to the binding energy of 

oxygen to the metal surface [50].  

1.4.2 Pt Alloy Catalysts 

Although platinum is known as the best catalyst for Anode and Cathode reactions, PEM fuel cell 

commercialization is still in need of catalysts with higher activity [51-53]. Platinum can be used 

to split hydrogen molecule easily on the anode side but splitting of stronger oxygen molecule on 
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the cathode side is still a matter of concern [54]. Therefore, to overcome the sluggish kinetics of 

ORR and to enhance the performance of PEM fuel cell, we need to have more active and stable 

electrocatalysts. The kinetics of ORR on platinum-based catalysts is highly dependent on the 

dissociation energy of the O-O bond and the OH bonding energy on the platinum surface. 

Theoretical and experimental results have confirmed that Pt d-band vacancy (electronic structure) 

and Pt-Pt bonding length (geometric effect) can have a tremendous effect on these energies, so the 

most influential path toward further enhancing the electrocatalytic activity of platinum will be 

modifying its electronic and geometric structure. It is known that making a compressed strain in 

the platinum structure can lower its d-band center. This effect can lead to the formation of occupied 

antibonding orbitals and the outcome will be a surface which will bind to oxygen-containing 

intermediates weaker compared to the unaffected Pt. Having more available surface can be also 

advantageous for continuing the reaction and increasing its activity. Electronic interactions such 

as charge transfer can be also effective in determining the reaction activity. It is proved that 

platinum with lower d band vacancies can lower the Pt-O bond strength. This can make platinum 

surface be less covered by oxygen-containing intermediates and can provide more available active 

sites on its surface. Having all these features together have made us to utilize platinum alloys which 

can be effective in altering both geometric and electronic structure of Pt. Considering Pt-M alloys, 

it is proven that M (transition metals) not only can alter the electronic structure of platinum by 

their electron transfer with platinum but also can cause lattice contraction in Pt [55]. Therefore, 

Pt-based alloys can generate more desirable Pt-Pt distance for the dissociative adsorption of O2 

and can weaken the O-O bonds [56]. This phenomenon is occurring due to the transfer of transition 

metal d-electrons to unfilled d-orbital of platinum which can lead to a higher number of d-band 

occupancy in Pt [57]. Based on the electronegativity of the utilized base elements, distinct 

influence will be observed on the electronic structure of platinum. 

The correlation between ORR activity and the d-band center is shown in Figure 1-3. As it can be 

seen in Figure 1-3, which is famous as volcano-type behavior of Pt, two opposing features can 

influence Pt activity simultaneously [49]. For an optimum activity, Pt should have high absorption 

energy for O2 or oxygen intermediate species and its surface should have low coverage by oxygen 

species. Considering the densities of states of platinum diagram, the volcano-type behavior of Pt 

can be easily explained [51]. As it is shown in Figure 1-4, although the downward shift of d-band 

center can generate more d-band vacancies, the band center should be optimized for the highest 
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expected activity [58]. Based on Sabatier’s principle when d-band center is too close to the Fermi 

level, ORR will be constrained by the anion-free Pt sites because Pt will bond to oxygen, oxides 

or anions strongly [59]. On the other hand, when d-band center is too far from the Fermi level, the 

low absorption energy of O2 on platinum will limit the required ORR rate by the restriction in 

electron and proton transfer [60]. 

Considering all these issues and the need for the utilization of low abundant and expensive 

platinum, researches have been focused on Pt alloy, which can have the following advantages over 

pure Pt: 

a. Enhancement of electrochemical utilization of catalyst. 

b. Fine-tuning the surface chemistry and electronic properties of Pt. 

c. Reducing the final price of the obtained catalyst  

 

Figure 1-3. Volcanic type activity (A = kBTln(r), where r is the rate per surface atom per 

second at a cell potential of 0.9 V) of Pt and Pt alloyed with transition metals [61]. 

 

Figure 1-4 Hybridization of Pt d-band with the O2 σ orbital to form the bonding orbital (d-

σ) and anti-bonding orbital (d-σ)* on the Pt surface [62]. 
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1.4.3 Shape-Controlled Pt Alloy Catalyst 

Limited ORR activity of platinum has compelled us to modify its electronic structure through 

various methods such as facet-controlled synthesis which can alter the adsorption behavior of 

oxygen species and reaction intermediates [63, 64]. The activity dependence of ORR on diverse 

crystal facets of platinum have been investigated in recent years and its advancement with other 

techniques such as alloying has made a turning point in enhancing the overall performance of Pt 

catalysts [65]. 

In order to acquire a shape-controlled nanoparticle, colloidal chemistry will be utilized. In colloidal 

chemistry, organic agents and stabilizers will be employed and their selective adsorption on 

specific surfaces of Pt will lead to a nanoparticle with controlled morphology [66]. Organic 

compounds can be also fruitful for the aggregation prevention. These surfactants will usually 

adsorb on the platinum surface with their carbon chains and their hydrophobic feature will hinder 

the aggregation.  

1.5 Reaction Mechanism of the ORR 

1.5.1 ORR Basics and reaction pathways 

Oxygen reduction reaction which is important in various fields of research including biology and 

energy conversion, is the main reaction occurring in fuel cells. Oxygen reduction reaction (ORR) 

which is occurring on the cathode side, is the main obstacle in the commercialization process of 

PEM fuel cell [67]. Although the utilization of platinum as catalyst has enhanced the ORR activity 

compared to the other utilized bulk metals, slow kinetics of ORR is still recognized as the principal 

reason for high overpotential and low energy conversion efficiency of PEM fuel cells.  

ORR entails several individual reactions and intermediates which are shown in Figure 1-5 [68]. 

Although the production of water through a 4-electron pathway is the desired reaction, hydrogen 

peroxide may be produced through a two-electron pathway too [69]. This incomplete reduction of 

oxygen to hydrogen peroxide can lower the energy conversion efficiency and can poison the 

catalyst by the harmful free radical species. 
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Figure 1-5 Oxygen reduction mechanism on noble catalysts [70]. 

1.5.2 Electrochemical characterization and ORR activity measurements    

1.5.2.1 Cyclic Voltammetry 

Scanning potential between two specific points and recording the passing current between working 

and counter electrode, is known as cyclic voltammetry [55]. The observed current can be 

categorized to anodic and cathodic, in which anodic (cathodic) current will increase when potential 

sweeps to higher(lower) numbers. The position of anodic and cathodic currents can be also used 

to find out the reversibility or irreversibility of reactions. Scanning potential just in one direction 

is useful when there is no special information in the reverse reaction and is called linear sweep 

voltammetry. The main aim for conducting cyclic voltammetry is obtaining electrochemical active 

surface area (ECSA). ECSA is showing the catalyst surface area which is participating in reactions. 

Using integrate charge of hydrogen absorption/desorption peak area from CV or oxidative 

stripping of carbon monoxide, can provide mass-specific surface area. In this study, potential was 

cycled between 0.05 and 1.10 V with the sweep rate of 0.05 V/s in N2 purged 0.1 M HClO4 

solution. All the calculations were done by using the CV after 50 cycles, to clean the working 

electrode and obtain a stable CV curve. Following equation is used for obtaining ECSA in which 

LPt is the working electrode Pt loading (mgPt cm-2) and Ag (cm2) is the geometric surface area of 

the glassy carbon electrode (0.196 cm2). 

𝐸𝐶𝑆𝐴𝑃𝑡(𝑚2𝑔𝑃𝑡
−1) = [

𝑄𝐻−𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(𝐶)

210 µ𝐶 𝑐𝑚𝑝𝑡
−2𝐿𝑝𝑡(𝑚𝑔𝑝𝑡𝑐𝑚−2)𝐴𝑔(𝑐𝑚2)

] 105    (14) 
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1.5.2.2 Rotating (Ring) Disk electrode 

As it is mentioned before, one of the main steps in an in-process reaction is the transportation of 

reactants to and from the catalyst [71]. This transportation and the resultant reaction is proceeding 

through diffusion or convection, which diffusion always dominant [72, 73]. Rotating electrodes in 

some experiments can be used to make the convection, the dominant path for mass transport. In 

the rotating electrode, reactant will be dragged, and the product will be spun away from the surface 

and this can provide more reactant to the catalyst. Although there will be both convection and 

diffusion mass transport, there is still a stagnant layer on the surface of electrode which its 

thickness is dependent to the rotation rate of electrode.  

In some particular experiments, where we want to find out the product forming on the surface of 

electrode, Rotating Ring Disk Electrode will be beneficial. RRDE has the exact same structure as 

RDE but with an extra ring for probing the product forming on electrode. With having a constant 

potential for the ring, the product of oxidation (reduction) can be reduced (oxidized). By changing 

potential and observing the resultant current, different products with comparative quantities can 

be determined [74]. As it was mentioned before, ORR can be proceeded through different 

mechanism. To find out the mechanism and the products formed during the ORR, RRDE can be 

employed. RRDE can quantify the amount of produced H2O2 by evaluating the total number 

participated electrons and can distinguish the catalyst with peroxide generating tendency.  

1.5.2.3 Accelerated Durability Test 

The last step toward commercialization of a catalyst and making it a cost-effective choice for 

utilization in fuel cell is finding out its stability through accelerated durability test (ADT). An 

appropriate catalyst for an industrial usage should be able to tolerate a specific amount of operating 

time and this can be studied by ADT. Sweeping the potential under desired conditions and 

recording the resultant current before and after a specific amount of cycles can show the stability 

of catalysts in a particular time. In this study, ADT was conducted by applying CV in the potentials 

between 0.6-1.0 V with a scan rate of 0.1 V/s in O2 purged solution. In this potential range, 

oxidation and reduction of platinum will occur and will cause dissolution of Pt as Pt2+. 
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1.5.2.4 Electrochemical Impedance Spectroscopy 

EIS is basically used to track the electrical properties of materials and their interface with 

electrolyte. It can be also used to ascertain the double layer capacitance of the interface [75]. All 

this information can give a good perspective about kinetic, mass and charge transfer resistance and 

that is why it is highly utilized in optimization of MEA, which is simulating the real working 

condition of fuel cell setup. Charge transfer resistant, which can be related to the resistant between 

the electrode and adsorbed species, will be reduced in ORR due to an increase in oxygen 

concentration. This Kinetic parameter can be obtained using EIS and can be utilized to find out 

exchange current density of ORR on different samples [76]. Exchange current density can be 

calculated using the following equation: 

𝑅𝑐𝑡 =  − 
ƞ

𝑖
=

𝑅𝑇

𝑛𝐹𝑖𝑜
         (15) 

An overall picture of the whole electrochemical station is shown in Figure 1-6. 

 

 

Figure 1-6 Experimental setup for RRDE test: a) Rotator and bipotentiostat, b) RRDE, c) 

ORR Cell.  
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1.6 Synchrotron Radiation Overview  

As described above, ORR activity of Pt-based alloys is highly dependent to their electronic and 

geometric structure. In order to characterize the synthesized catalysts and compare their metallic 

d states occupancy and bonding distance, Synchrotron radiation is used in this work. The features 

and advantages of this powerful technique is explained below.   

1.6.1 The Generation of Synchrotron Radiation    

Synchrotron is an accelerator that generates electromagnetic radiation which will be emitted when 

electrons, at relativistic speed, are forced to alter their direction of motion under the influence of a 

magnetic field [77-79]. In synchrotron facilities, electrons are accelerated then directed to a storage 

ring and are driven by the magnetic field of bending magnets or other utilized supplies such as 

undulator or wigglers [80]. The implemented magnetic field, perpendicular to the electron motion, 

can generate electromagnetic radiation by bending the electrons [81]. Electrons will enter storage 

ring when they are accelerated by a linear accelerator or ‘linac’ to a desired energy, normally 

millions of electron volts (MeV) and then further accelerated by a booster ring that promotes their 

energy to billions or Giga electron volts (GeV). 

Those electrons which have obtained the specific energy, will pass through a circular path by the 

force of a magnetic field. By this circulation, electrons will lose part of their energy by emitting 

synchrotron radiation and they will need to reobtain the missed energy [82]. In this condition, 

electrons will pass through Radio Frequency (RF) cavities and will regain the lost energy [83]. A 

schematic of a synchrotron radiation facility is shown in Figure 1-7. 



15 

 

 

 

 

Figure 1-7 A schematic planar view of Left) synchrotron radiation Right) storage ring [84]. 

1.6.2 The Advantages of Synchrotron   

Unique features of Synchrotron radiation have made it a remarkable source for various materials 

characterizations. The advantageous of SR over laboratory X-ray sources are as follows: 

a. Its high photon energy tunability which can cover from IR to as far as hard X-ray. 

b. Its high intensity can also be beneficial in fast and statistic measurements. 

c. High collimation of SR, which is the result of small beam divergence, can be also helpful 

in high resolution measurements. 

d. The pulsed time structure of SR, with having pulse duration of nanoseconds to 

picoseconds, can be also utilized in investigation on properties of materials dynamics. 

e. High level of polarization and low emittance can be also mentioned as other strength 

points of SR over other techniques. 

These features have made SR a reliable source for X-ray absorption spectroscopy.   

1.6.3 X-ray Absorption Fine Structure    

One of the advantageous characteristic methods utilizing SR is known as X-ray Absorption Fine-

Structure (XAFS). XAFS can provide reliable information regarding chemical and physical 

properties of an atom and its surrounding which is being investigated [85]. In XAFS, SR will be 

used to tune the energy at and above a selected core-level binding energy of a specified element. 

Characterizing the local environment of different kinds of materials such as crystals, amorphous 

systems, glasses, quasicrystals, disordered films, membranes, solutions, liquids, metalloproteins, 
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and even molecular gases has further distinguished this element specific method [86]. The 

principle of XAFS is to find out how x-rays at different energies are being absorbed by the matter 

across a specific absorption edge, using X-ray absorption coefficient μ(E) [87].  

X-rays with energies ranges from 500 eV-500 keV can be absorbed by all matter through 

photoelectric effect. In this phenomenon, an electron at core level can absorb X-ray with higher 

energy compared to its binding energy and may be excited to continuum. So, X-ray will be 

absorbed, and the excess energy of the binding energy will be ejected as photoelectron according 

to conservation law (KE = hv - BE in gas phase) as shown in Figure 1-8. 

 

Figure 1-8 The photoelectric effect, in which an X-ray is absorbed by an atom and a core-

level electron is promoted out of the atom, creating a photoelectron and leaving behind a 

hole in the core electron level [88]. 

The first concern in XAFS is discussing the probability of absorption of X-rays based on Beer’s 

law: 

𝐼 = 𝐼0𝑒−𝜇𝑡           (16)   
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Figure 1-9 Schematic of an X-ray absorption measurement in transmission mode. 

In this equation I, as shown in Figure 1-9, is the incident X-ray, I0 is the transmitted x-ray and t is 

the thickness of homogeneous sample. The absorption coefficient, µ, can be obtained using the 

following equation: 

µ ≈  
𝜌𝑍4

𝐴𝐸3           (17) 

In which Z is the atomic number, A is atomic mass, ρ is sample density and E is the X-ray energy. 

As it is obvious in Equation 17, absorption coefficient will be highly dependent on Z and E and 

that’s the main reason for a good contrast between various materials in this technique. When an 

atom is placed in a chemical environment, the absorption coefficient will be modulated such that 

it exhibits modulation (oscillations) depending on the nature of the adjacent atoms and bonding. 

X-ray Absorption Fine Structure (XAFS) spectroscopy is the result of this modulation. 

Relaxation of an excited core-hole state, with the absorption of X-ray, can be accomplished 

through two different mechanisms which are Auger electron and X-ray fluorescence [88]. In X-

ray fluorescence, a core-hole will be filled with higher energy electron and an X-ray with specific 

energy will be released. In contrast, in Auger electron, an electron will be emitted to the continuum 

after filling the core-hole.  

The name XAFS entails two different but closely relating techniques: XANES, EXAFS 

Although the main concept of all these two techniques is the same, distinct approximation, 

terminology or theoretical approach may be used in each of them. 

X-ray Absorption Near Edge Structure (XANES) which will be within 30 eV of the main 

absorption edge, can give information as follows: 

Coordination chemistry (e.g., octahedral, tetrahedral coordination), Molecular orbitals, Band 

structure, and Multiple scattering.  
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All these interpretations can be obtained mostly semi-quantitatively by considering the shift and 

intensity of absorption edge, which is arising from the binding energy of the excited electron. 

Physically, electron excitation follows dipole selection rules and will be excited to the lowest 

unoccupied state at the threshold.  Thus the L3,2-edge of transition metals can provide advantageous 

information about their occupied and unoccupied d states which can be used for catalytic 

performance interpretation [89, 90].  

The shift in absorption edge can be interpreted to find out the corresponding oxidation state. In 

cations for example, higher oxidation state will result in a positive shift as much as several eV.  

Extended X-ray Absorption Fine Structure (EXAFS) is related to the oscillation occurring in the 

energies above the absorption edge. If the ejected photoelectron gets enough energy to escape the 

bound state, it may interact with the bound state of other electrons in the vicinity [91]. This 

interaction with other electrons in the vicinity can produce scattering. The interference of outgoing 

and backscattering waves in energies ranges 50-1000 eV above absorption edge, can generate 

some frequency oscillation in the absorption coefficient [92]. EXAFS is composed of these 

oscillations and can be quantitatively utilized for identifying type, number, and distribution of 

backscattering atoms [93]. 

EXAFS will be focused on oscillations above absorption edge and the following equation will be 

used to define EXAFS function χ(E) as the fractional modulation in the X-ray absorption 

modulation: 

𝜒(𝐸) =
µ(𝐸)−µ0(𝐸)

∆µ0(𝐸)
              (18) 

Where µ(E) is absorption coefficient, µ0(E) is absorption coefficient in the absence of EXAFS 

influence (free atom) and ∆µ0 in the measured jump in the absorption µ(E) at E0. 

It is obvious that EXAFS is usually known as the wave behavior of photoelectrons, so it is common 

to convert the energy of X-ray to k which is the wavenumber of the photoelectrons. This conversion 

can be accomplished through the following equation where m is the electron mass, h is Planck’s 

constant and E0 is the energy of absorption edge: 



19 

 

 

 

k=√
2𝑚(𝐸−𝐸0)

ℎ2
           (19) 

χ(E), which is usually known as “the EXAFS”, is oscillatory and will decay rapidly. So in order to 

display and emphasize oscillation in different k regions, χ(E) will be multiplied by a power of k 

(usually k2 or k3). 

EXAFS can demonstrate various features such as the number of scattering atoms by checking the 

oscillation amplitude, the absorber-scatter distance which can be determined by oscillation 

frequency and identity of the scatter atom which can be clarified using oscillation shape [94]. 

Equation 20 will be also utilized for quantitative analyses of EXAFS in which, f(k), the 

backscattering amplitude, and δ(k), the phase, are scattering properties of the atoms neighboring 

the excited atom; δ(k), in fact has both absorbing and backscattering atom contributions; N is the 

number of neighboring atoms, R is the distance to the neighboring atom, and σ2 is the disorder in 

the neighbor distance. 

With f(k) and δ(k), the EXAFS equation can be used to determine N, R, and σ2. 

𝜒(𝐸) = ∑
𝑁𝑗𝑓𝑗(𝑘)𝑒

−2𝑘2𝜎𝑗
2

𝑘𝑅𝑗
2 𝑠𝑖𝑛⌊2𝑘𝑅𝑗 + 𝛿𝑗(𝑘)⌋𝑗          (20) 

As it is presented in Figure 1-10, there are two main modes in measuring XAFS, transmission, and 

fluorescence. Unless the transmission mode which will measure the intensity of X-ray beam before 

and after its incident with the sample, secondary emission will be measured in fluorescence. 

 

Figure 1-10 Typical experimental apparatus for XAS measurements. 
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X-ray absorption coefficient will be measured distinctly in each mode and the related equation is 

mentioned as follows [95]: 

Transmission : µ(𝐸) = 𝑙𝑛 (
𝐼𝑜

𝐼
)        (21) 

Fluorescence : µ(𝐸) ∝  
𝐼𝑓

𝐼𝑜
         (22) 

1.7 Thesis Outline  

Climate change and deficiency of petroleum-based energy resources have risen concerns about the 

future of planet earth and have made scientist to be more focused on fuel cell technologies, due to 

their low emissions and high efficiencies. Low operation temperature, high power, and energy 

density have made the PEMFC, a promising candidate for the next generation power sources in 

transportation, stationary and portable applications. Low abundance, limited supply, and 

increasing demand have limited the commercial application of Pt, as a critical catalytic component 

in PEMFC. So finding an efficient catalyst and substituting it with the current commercial ones 

can accelerate the utilization of this technology and can mitigate the current concerns about the 

climate change crises. DFAFCs as a subcategory of PEM fuel cells have also attracted lots of 

attentions in recent years due to their high energy conversion efficiency and non-toxic and safe 

fuel. The low stability of palladium, as a catalyst for DFAFC has also diminished its commercial 

applications and catalysts with higher stability will be required.   

This study will discuss more fundamentally in 5 chapters for satisfying the mentioned demands. 

In chapter 1, anintroduction of platinum-based NPs as a required catalyst for fuel cell is described. 

Oxygen reduction reaction as a rate determining step in the whole fuel cell reactions is discussed, 

and X-ray absorption spectroscopy as an efficient way of studying electronic structure, is 

presented.  

In chapter 2, various methods are used to eliminate the surfactant which is blocking the NP surface 

and hindering the optimum catalytic activity of Pd nanocubes.  

In chapter 3, the influence of metal-support interactions on not only electronic structure but also 

electrochemical performance is reported.  
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In chapter 4, Pd@Pt core-shell NPs were surface doped with cobalt and the ORR activity and 

stability results are correlated with the acquired information about their electronic structure using 

XAS. 

Al the reported studies will be concluded in chapter 5 and it comprises a brief summary of the 

thesis and future research proposal. 
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Chapter 2  

2 Morphology and Catalytic Performance of Palladium 
Nanocubes  

2.1 Introduction   

High power density, lower fuel crossover through the Nafion® membrane and the feasibility of 

using less expensive catalysts have made direct formic acid fuel cell (DFAFC) a promising 

alternative for current energy resources [1-3].  

Palladium nanoparticles have shown to have an incredible activity for catalyzing the formic acid 

oxidation [4, 5]. Tuning the particle size, shape, and composition can further enhance the catalytic 

activity of these NPs and this can be achieved by the utilization of colloidal chemistry [6-8]. The 

capping agents and the surfactants that are being used for colloidal synthesis not only control the 

growth of NPs in the desired directions but also inhibit the NPs aggregation [9]. However, the 

adsorbed capping agents on NPs can be problematic in term of limiting the access of reactant 

molecules to the surface of the catalyst which can confine the catalyst activity [9, 10]. 

Although there are various implemented methods for removal of capping agents, their influence 

on the electrocatalytic activity of catalysts is still not obvious. So, developing an efficient way for 

eliminating the surfactant and capping agents from the surface of nanoparticles, with considering 

the catalytic activity, will be the matter of this study. In order to optimize the elimination of 

Poly(vinylpyrrolidone) (PVP) from Pd nanocube, different procedures such as calcination, acid 

washing, and UV-Ozone irradiation were utilized in this study. Monitoring the influences of 

cleaning processes on NPs has been conducted by the usage of transmission electron microscopy 

(TEM), X-ray diffraction (XRD), Raman, and X-ray absorption spectroscopy (XAS). Among all 

the studied cleaning procedures, low-temperature calcination (170 ֯C) is found to be 

simultaneously efficient in PVP elimination, catalytic activity enhancement, and morphology and 

size preserving. 
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2.2 Experimental Section  

2.2.1 Material Synthesis 

The first step in optimizing the surfactant cleaning procedures is synthesizing cubic palladium. To 

obtain the size-controlled palladium nanocubes, poly(vinylpyrrolidone) (105 mg), ascorbic acid 

(60 mg), and potassium bromide (600 mg) were all pre-heated in 8 mL of DI water at the 

temperature of 80 °C.  After 10 minutes of heating and stirring, an aqueous solution containing 

Na2PdCl4 (57 mg) was pipetted into the vial and the reaction was proceeded at the same 

temperature for another 3 hours [11]. Synthesized products were then collected by centrifugation 

and were dispersed in DI water for further utilization. SEM and TEM figures of the as-synthesized 

product confirm that they are palladium nanocubes as shown in Figure 2-1. 

As the as-synthesized catalysts are not sufficiently clean for electrochemical applications and their 

surface is blocked because of the surfactant utilization, various methods were employed in this 

study to eliminate the organic compounds from the catalysts surface. Removing surfactant and 

capping agents can make the synthesized catalysts agglomerated, so catalysts were first loaded on 

carbon support before performing any of the cleaning procedures [12]. To obtain 20% loading of 

palladium, a specific amount of carbon black was added to the palladium suspension, of which its 

concentration was known by ICP-MS, and the obtained mixture was ultrasonicated overnight. The 

obtained supported catalysts are shown in Figure 2-1-C. 

2.2.2 Characterization 

A wide variety of characterization methods is used to determine the features of these NPs. 

Fundamental and performance behavior of these catalysts is revealed utilizing Scanning Electron 

Microscope (SEM, Zeiss 1540XB), Transmission Electron Microscope (TEM, Phillips CM10), X-

ray Powder Diffraction (XRD), Inductively coupled plasma mass spectrometry (ICP-MS), Raman 

spectroscopy, and XAS at Canadian Light Source. All electrochemical measurements were carried 

out with CHI-610C potentiostat in a three-electrode cell. A Glassy carbon electrode, Ag/AgCl 

electrode and platinum wire were used as working, reference and counter electrode in the 

electrochemical measurements. 
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Figure 2-1 A) SEM and B) TEM images of as-synthesized cubic Pd nanoparticles. C) TEM 

image of Pd nanocubes loaded on carbon black. 

2.3 Results and Discussion  

It is well-known that synthesizing catalyst in some specific size, shape, and composition can 

enhance their catalytic activity and can make them get close to the desired requirements. One of 

the most recent ways in synthesizing nanoparticles in the desired facet is colloidal chemistry, 

which uses some specific organic compounds as surfactant [13]. Although colloidal chemistry with 

all its particular features can overcome the challenges of shape and size controlling, the necessity 

of utilizing organic compounds is still an obstacle in catalysis science [14]. These organic 

compounds which are mostly poly(vinylpyrrolidone) (PVP), oleylamine, or hexadecyl trimethyl 

ammonium bromide (CTAB) will adhere to the initial nuclei of the reduced metal and will hinder 

its growth to a favorable direction [15]. These organic compounds, with their high affinity to the 

metal surface, will also reduce the chance of aggregation in nanoparticles and will alter the surface 

energy of reduced metals. While having a strong adsorption will be the first requirement of these 

surfactants, their elimination after the synthesis procedure will have an equal importance [16]. 

Adsorbed surfactants on the surface of nanoparticles will block the active sites and they will be an 

impediment in the utilization of nanoparticles as catalysts, of which a clean surface with available 

active sites is critical [17].  

PVP, the most prevalent surfactant, is being used in our study. This organic compound will adhere 

to the surface of nanoparticles and will block their active sites from contacting the electrolyte [16, 

18]. This detrimental role of PVP, which is affecting the catalytic activity of synthesized 

nanoparticles, is shown in a schematic in Figure 2-2. As it is obvious in Figure 2-2, the surface of 

palladium is completely covered with PVP and its existence on the surface is hindering the faradaic 

reactions and the surface contact with reactants. So, it is necessary to find an efficient way for 
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removing these surfactants and capping agents and that the surface sites can enhance their 

electrochemical activity. 

In order to optimize the elimination of PVP from Pd nanocube, different procedures such as 

calcination, acid washing, and UV-Ozone irradiation were utilized in this study. While each 

cleaning procedure can be adequately efficient in surfactant elimination, their influence on 

nanoparticle morphology and catalytic performance is still unclear [19]. Herein, the acquired 

nanoparticles, after each cleaning method were used as a catalyst for formic acid oxidation to 

determine the most efficient surfactant removal method. 

 

Figure 2-2 Schematic picture of PVP capped palladium before and after cleaning and the 

possible reaction pathways of formic acid oxidation on Pd/C nanocubes. 

2.3.1 Calcination 

One of the most advantageous ways of removing PVP is using calcination procedure [16].  In this 

procedure the catalyst first will be heated up to the PVP decomposition temperature (170–450 °C) 

in a 20% O2/Ar atmosphere and then the heat-treated catalyst will be exposed to the 20% H2/Ar 

atmosphere at the same temperature to reduce the probable oxidized catalysts. This is an efficient 

way of removing PVP, however in high temperature, particle aggregation and shape change cannot 

be avoided [20]. So optimizing the temperature and the time of calcination is essential to not only 
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remove the maximum amount of PVP but also keep the initial shape and size. In order to find an 

efficient temperature for calcination, Pd nanocubes were exposed to a range of temperatures 

starting from 170 °C, which will be the initial temperature of PVP decomposition. Samples were 

then dispersed in a solution containing DI water, 2-propanol, and Nafion to obtain the required ink 

for electrochemical characterizations. The prepared ink was then loaded on glassy carbon electrode 

for obtaining their cyclic voltammetry curves in H2SO4 electrolyte, with and without formic acid. 

Employing ICP-MS, palladium loading on the electrode was controlled to be 30 µg.cm-2 for all the 

catalysts.  

As it is shown in Figure 2-5, CV of untreated sample is not showing any specific features of 

palladium nanoparticle and there is no underpotential deposited hydrogen (Hupd) region, which is 

representative of surface active sites. After calcination of samples at the temperature of 170-300 

°C, hydrogen adsorption/desorption region, which is in the potential range of 0.06–0.40 VRHE, will 

start to arise and surfactants will be oxidized from the surface. The CVs of these calcinated samples 

are shown in Figure 2-3 and their change based on temperature is vivid. Based on the obtained 

electrochemical surface active area and FAO activity, 170 °C will be the optimum temperature and 

higher temperature will oxidize the surface and further decrease the catalytic performance of Pd. 

It is also imperative to know the stability of these catalysts after cleaning procedures. By 

employing chronoamperometry method at a constant potential of 0.4 VRHE, HT-170 sample has 

kept a higher fraction of its initial current. Calculated ECSA, mass activity, and stability are all 

presented in Table 2-1.  

 

Figure 2-3 Cyclic voltammograms acquired on various calcinated Pd/C samples in the 

solution of A) 0.5 M H2SO4 at the scan rate of 50 mVs-1 B) 0.5 M HCOOH + 0.5 M H2SO4 
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at the scan rate of 10 mVs-1
. C) Chronoamperometric curves for the oxidation of 0.5 M 

HCOOH in 0.5 M H2SO4 solution at the constant potential of 0.4 VRHE. 

2.3.2 UV-Ozone Irradiation 

UV-Ozone has been widely used for cleaning purposes and it can decompose organic impurities 

to volatile materials such as water or carbon dioxide. UV-Ozone is composed of ultraviolet light, 

emitting wavelengths of 185 nm, which can produce ozone out of molecular oxygen, and 257 nm, 

which can be beneficial in the excitation of organic impurities [21]. All these features together can 

be an advantageous technique for the elimination of carbon-containing compounds from palladium 

surface [22]. In order to clean the synthesized Pd/C, samples were placed in a custom-made 

chamber with having a specific distance from ultraviolet lamp’s tube. These samples were 

irradiated for particular times under a Bulbtronics 16 W low-pressure mercury lamp and then were 

taken out of the chamber. Although this technique can maintain the morphology of Pd nanocubes 

because of its low employed temperature, the strong oxidizing environment of UV-Ozone chamber 

can change the catalysts surface [23]. The atomic oxygen, which will be produced in the process 

of ozone formation and decomposition, will have a high oxidizing capability and can even oxidize 

the catalysts surface in long exposure time. UV-Ozone treatment can be also unpredictable in 

producing some organic intermediates out of the initial organic impurity [24]. All these will lead 

us to that optimizing the exposure time to UV-Ozone is so essential to remove the maximum 

amount of PVP and increasing the catalytic activity, simultaneously. 

In order to compare the catalytic performance of palladium nanoparticles after UV-Ozone 

treatment, CVs of treated samples with and without formic acid is shown in Figure 2-4. Based on 

the presented CV in Figure 2-4, by starting from 10 minutes to 30 minutes of treatment, the ECSA 

is increasing and its mass activity towards FAO is maximized. By further increasing the exposure 

time of UV-Ozone, the active sites of Pd are again decreasing and this will lead to a limited mass 

activity for formic acid oxidation. Unless the previous references which were knowing the higher 

exposure time as an efficient way of surfactant removal, the high exposure time will partially 

oxidize the surface of the catalyst and can decompose PVP to some undesirable intermediates such 

as CO, which have high affinity to the Pd and can block its surface [25].  
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Figure 2-4 Cyclic voltammograms acquired on various UV-treated Pd/C samples in the 

solution of A) 0.5 M H2SO4 at the scan rate of 50 mVs-1 B) 0.5 M HCOOH + 0.5 M H2SO4 

at the scan rate of 10 mVs-1. C) Chronoamperometric curves for the oxidation of 0.5 M 

HCOOH in 0.5 M H2SO4 solution at the constant potential of 0.4 VRHE. 

2.3.3 Acid Washing 

Using acetic acid at the temperature of 60°C can be known as another efficient way for removing 

capping agent and is being used in recent research [16].  By utilizing acetic acid, the protonated 

amino groups of the surfactant will lose their strong affinity to the metal surface and will be much 

easier to wash surfactants by further ethanol/water washing.  

The disadvantage of using acetic acid is that although it removes PVP partly, you will introduce a 

large amount of oxygen functional groups to the carbon support and this will influence the stability 

and conductivity of the carbon support [26]. In addition, acid washing can leach out some of the 

metals from NPs and this can influence their shape and composition.  

By comparing their electrochemical performance, which is presented in Figure 2-5, it is shown 

that acid washing has enhanced the electrochemical surface-active area and mass activity of 

palladium catalyst. The chronoamperometry curve is also showing an enhancement in stability of 

the catalyst after acid washing. These CVs are confirming the positive influence of acetic acid in 

eliminating the PVP. However, by having a look at all cleaning methods, acid washing is still not 

the best cleaning procedure based on the measured catalytic performance.  
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Figure 2-5 Cyclic voltammograms acquired on acid-treated Pd/C sample in the solution of 

A) 0.5 M H2SO4 at the scan rate of 50 mVs-1 B) 0.5 M HCOOH + 0.5 M H2SO4 at the scan 

rate of 10 mVs-1
. C) Chronoamperometric curves for the oxidation of 0.5 M HCOOH in 0.5 

M H2SO4 solution at the constant potential of 0.4 VRHE. 

All these electrochemical performances are quantitatively presented in Table 2-1. The first shown 

parameter is ECSA which is showing electrochemical surface active area. An efficient PVP 

elimination method should provide more active sites on Pd surface and enhance its ECSA as a 

resultant. Among all the employed methods, HT-170 is showing to have the highest ratio of active 

sites compared to others. Having higher mass activity is also an imperative parameter for 

comparing the catalytic performance of catalysts. This parameter which is obtained by dividing 

the peak current of forming acid oxidation by the utilized amount of palladium, is confirming the 

efficiency of HT-170 treatment compared to other procedures. Lower onset potential of calcination 

method is also showing the facile pathway for the start of FAO on its surface. Comparing these 

vital parameters with catalysts stability, it is obvious that HT-170 sample will have the highest 

activity and stability towards formic acid oxidation (FAO). 

 

Table 2-1 Comparison of the electrocatalytic properties of treated Pd/C samples for formic 

acid oxidation (FAO). 

Sample 
ECSA 

(m2/g) 

Ip 

(A mg-1) 

Eonset 

(mV) 

𝒋 𝒕 = 𝟏𝟐𝟎𝟎 𝒔

𝒋 𝒕 = 𝟏𝟎 𝒔
 

Acid Treated 19.5 0.29 164 20.0 % 

HT-170 60.9 0.93 88 40.5 % 

HT-200 42.8 0.32 165 39.7 % 
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Figure 2-6 Relation of peak current density of treated samples with the square root of scan 

rates in 0.5 M H2SO4 solution containing 0.5 M HCOOH. The solid lines are based on a 

linear least-square fit of the data. 

Now the optimum condition of each cleaning method, HT-170 in calcination method, UV-30 in 

UV-Ozone treatment and acid washing, will be chosen and be compared with each other in terms 

of the reaction mechanism. As it can be seen in Figure 2-6, the peak current of FAO depends 

linearly on the square root of scan rate for these samples. This linear relation demonstrates that the 

FA oxidation on these samples is a diffusion-controlled process [27]. This is showing that the 

formic acid oxidation reaction is being controlled by the diffusion of reactant species to the 

electrode surface. The value of the diffusion coefficient (D), which is showing the charge transfer 

within the diffusion layer adjacent to the electrode, can be obtained by using the following equation 

and can assist in opting the best treated catalyst.  

HT-300 30.0 0.29 167 19.4 % 

UV-10 9.9 0.34 160 15.8 % 

UV-30 28.4 0.53 160 15.6 % 

UV-60 17.3 0.14 198 18.1 % 

UV-240 0.5 - - - 

Untreated - - - - 
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2⁄         (1) 

Where n, A, C0* are defining electron transfer number, electrode area, and initial concentration 

respectively. 

Considering the same number of n, A, C0* for all these catalysts, diffusion coefficient, D, can be 

obtained. The higher diffusion coefficient will confirm the existence of higher active surface sites 

and higher availability for oxidation on catalysts and the following equation is used to compare 

this important parameter. 

 

It is calculated that calcination at the temperature of 170°C can enhance the Pd diffusion coefficient 

to the highest value possible. 

Until now, the electrochemical characterizations have shown us the best cleaning methods for 

surfactant removal from Pd surface. However, the influence of these methods on surface of 

catalysts and the surface alteration resulted from these methods is still unclear. To further discuss 

these effects and to fundamentally investigate the morphology and structure of treated samples, X-

ray absorption spectroscopy, Raman Spectroscopy and XRD were utilized.  

 

 

 

 

D
HT‐170 

> D
UV‐30 

> D
Acid Treated
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Figure 2-7 X-ray diffraction patterns of palladium catalysts before and after removal of 

surfactant with various treatment methods. 

To further discuss on the morphology of these nanoparticles before and after treatment, XRD 

measurements were employed and are shown in Figure 2-7. XRD data is confirming the existence 

of metallic f.c.c Pd structure on almost all samples, even after a prolonged exposure to oxidizing 

environments. The only obvious oxidation is regarding to the HT-300 in which the high 

temperature calcination of the sample has oxidized the surface of Pd and has diminished its activity 

and a PdO peak appears. Some broad features could be also observed due to the presence of 

amorphous materials on the surface. Although there is no additional peak in other XRD patterns 

of treated samples, there is still a big chance that the surface change induced by cleaning methods 

is not identifiable by XRD, because of its low surface sensitivity and bulk measurement. So other 

techniques have been employed in this study to determine the surface alteration of these catalysts.  
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Figure 2-8 (A-C) Pd L3-edge TEY-XANES spectra of carbon supported palladium catalysts 

after cleaning treatments, compared to untreated sample and Pd foil. D) Scheme proposed 

for the Pd nanoparticle interaction with PVP. 

Because of the limited capability of previous techniques in probing the surface features of Pd 

nanocubes, after undergoing the treatments, XANES has been utilized in this study. X-ray 

absorption near edge structures, which can provide fundamental information about chemical 

bonding, electronic structure, and surface chemistry, has been acquired in surface-sensitive total 

electron yield (TEY) mode and has revealed the PVP/Pd interaction [28].  

The palladium L3-edge of carbon supported Pd nanocubes are shown in Figure 2-8. The first sharp 

peak in the data, which is the resultant of 2p3/2 to 4d5/2,3/2 transition, is called whiteline and is the 

main characteristic of unoccupied palladium densities of 4d state at the Fermi level [29]. The 

higher intensity of whiteline is confirming the higher number of d-band vacancies, which is 

allowing the transition of higher number of electrons to 4d5/2, 3/2 [30]. By having a look at XANES 
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data in Figure 2-8, it is obvious that samples are having lower whiteline intensity after the first 

steps of treatment. This is endorsing the PVP/Pd interaction which is a charge transfer from Pd to 

PVP [31] resulting in a threshold shift to higher photon energy and a sharper WL though narrower. 

By eliminating the PVP, lower numbers of electrons will be transferred to PVP and this will make 

palladium to have less unoccupied d state and this will lower its whiteline intensity in XANES 

measurements [32]. This can be a characteristic feature of PVP elimination for future studies, 

utilizing XAS measurement. Although the PVP removal should lower the whiteline intensity of 

palladium samples, calcination and UV-Ozone treatment are showing a distinct behavior after their 

employment. Thus, PVP removal is inevitably accompanied by surface oxidation but to a lesser 

extent than a fully oxidized PdO. These data are further confirming our assumption in previous 

sections that calcination at higher temperatures and UV irradiation for longer time can harmfully 

alter the catalyst surface and can partially oxidize it [33]. So, there will be an optimum time for 

UV treatment which is 30 minutes and after that with having more exposure time, although PVP 

is being removed, the surface is being oxidized simultaneously. There is a same situation for 

calcination and treating samples with higher temperature than 170°C can oxidize the catalyst and 

influence its electrochemical behavior. A partially oxidized surface is still more effective than a 

surface blocked by PVP and active sites can be regenerated with hydrogen.  

As shown in Figure 2-8, after cleaning treatments, the area under the whiteline is decreasing and 

this is confirming the decrease in the 4d unoccupied density of states. This feature is showing that 

Pd is donating an electron to the PVP and this is unveiling that PVP being adsorbed on Pd surface 

with its N atom in the ring, as O atom in PVP will have the electron donor feature [34]. Therefore, 

among the two common cases of PVP chemisorption on Pd surface with either O atom or N atom, 

PVP ligand is having an interaction through its N atom and this electron donation is being done by 

its nitrogen atom [35].  

It is obvious that the surface chemistry of the support will not only influence the catalytic activity 

of the catalyst but also will be imperative in its operational stability [36]. Raman spectroscopy 

with its specific features is a fruitful technique which can determine the graphitic and disordered 

structure of carbon materials and can analyze their surface chemistry [37]. In our study, Raman 

can be advantageous to show the surface modification of the carbon support after implementation 

of various cleaning procedures. The ratio of ID to IG bands, which are centered at 1350 cm-1 and 
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1600 cm-1 respectively, is mainly a characteristic parameter in this technique and is employed in 

this study to unveil the disordered structure of carbon material. Raman spectroscopy of supported 

palladium, which is shown in Figure 2-9, is confirming that each treatment can have different 

effects on the carbon support and can modify its crystal structure distinctly. Multiple Raman 

spectra were recorded for each sample and the averaged spectrum is shown in Figure 2-9. Based 

on the obtained ID/IG ratio, which is presented in Table 2-2, by calcinating the samples at high 

temperatures, carbon support will be oxidized and the defects will be increased. This enhancement 

in the defects ratio which is coming from oxidizing the surface and introducing oxygen functional 

groups to the support, is detrimental for the ultimate performance of the catalyst for formic acid 

oxidation [38, 39]. The evolution of Raman spectroscopy as a result of UV irradiation time is also 

showing an increase in defect peak compared to the G band. It can be concluded that UV-Ozone 

treatment can introduce a high level of functional groups to the surface of carbon even in the lowest 

exposure time and can generate defects sites through the graphitic crystal structure of carbon. Acid 

washed sample with its highest defect to graphitic ratio is also confirming the detrimental influence 

of acid washing on the carbon support and its role to adsorb a high ratio of oxygen functional 

groups on the surface [26].  

 

Figure 2-9 Raman spectra of Pd/C nanocubes before and after cleaning treatments. 
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The introduced defects to the carbon support through any of these cleaning techniques can be 

representative of the elimination of π-conjugated electron states near the Fermi level [40]. This 

alteration in the electronic structure of carbon support can lead to an enhanced electrical resistance 

which can be disadvantageous for the electrochemical outcome. It is also worth mentioning that 

the high oxidizing environment of UV-Ozone treatment is a result of the high reactive singlet 

oxygen atom which can have the role of oxidizing for the current defects or generating new defects. 

Table 2-2 Ratio of D-band and G-band peaks intensity, obtained from Raman spectra, 

after surfactant cleaning. 

 

 

 

 

 

 

 

 

 

 

 

 

2.4 Conclusions   

All the above-discussed results will lead us to the conclusion that surfactant removal procedures 

should be tried to be optimum in both temperature and time. By having an extended time for the 

cleaning, more features of the catalyst and its support will be changed and this will not be 

acceptable for their required electrochemical performance. Although increasing temperature for 

calcination and time for UV-Ozone treatment can remove a higher percentage of PVP, it can 

influence the surface of the catalyst and its carbon support as well. Oxidizing the catalyst in high 

temperature calcination, adsorption of oxygen-containing intermediates on catalyst and surface 

oxidizing the NPs in UV-Ozone treatment and influencing the catalyst support in acid washing, 

has made 170°C calcination a promising cleaning procedure for elimination of PVP surfactant 

from Pd nanoparticles. 

Treatment Method ID/IG 

Acid Treated 1.09 

HT-170 0.96 

HT-200 1.01 

HT-300 1.04 

UV-10 0.97 

UV-30 1.01 

UV-60 1.03 

UV-240 1.08 

Untreated 0.98 
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Chapter 3  

 

3 Controlled growth of palladium nanoparticles and the origin 
of enhanced electrocatalytic activity with metal-support 
interactions 

3.1 Introduction 

It is proved that the final catalytic activity of catalysts towards electrochemical catalytic reactions 

is highly dependent on their active surface area. Loading catalysts on supports can be an 

advantageous way of enhancing the mentioned demand. Supported catalysts can have higher 

stability in terms of agglomeration, better electric conductivity in terms of electron transfer from 

the catalyst to the external circuit and superior dispersion in terms of reagent to particle contact 

area, compared to the unsupported catalysts [1-3]. Currently, carbon supports have attracted a lot 

of attention due to their high surface area and electric conductivity; however, carbon corrosion is 

still an undeniable impediment through their utilization [4, 5]. Palladium catalyst isolation is the 

most prevalent result of carbon corrosion that is influencing the direct formic acid fuel cell 

stability. Considering the oxidation of amorphous carbon supports, substituting them with newer 

types of carbon substrates such as graphene or carbon nanotube which are having higher sp2 carbon 

content, are coming to matter of attention [6]. In addition to all these physical effects of supports 

on catalysts, it is recently revealed that they can modify the catalytic behavior of catalyst through 

their interaction. The strong metal-support interaction (SMSI) which was first introduced in 1978, 

is recognized as a fruitful path for tuning the electronic structure of catalysts [7]. The metal-support 

interaction not only will result in higher activity but also can enhance the stability of catalysts 

through encapsulation. 

Distinguishing the best support out of the common carbon supports is important and it can further 

enhance the activity of palladium. Determining a support with high conductivity, surface area, 

corrosion resistance, and metal support interaction is conducted in this study. Uniform palladium 

nanocubes were directly grown on carbon, graphene, carbon nanotube and nitrogen-doped carbon 

nanotube, using colloidal chemistry explained in chapter 2. As these catalysts were grown directly 

on carbon supports, instead of just loading on them, the MSI will be maximized. Different 
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characterization methods are used to find out the best support for obtaining the desired 

requirements. 

3.2 Experimental Section 

3.2.1 Material Synthesis 

In order to investigate metal-support interactions, palladium nanoparticles (NPs) with controllable 

shape were directly grown on different carbon supports. To synthesize these cubic Pd NPs, the 

same synthesis procedure as the one mentioned in chapter 2 was employed and 50.0 mL of an 

aqueous solution containing: 

Poly(vinyl pyrrolidone) (105 mg, acting as a stabilizer), ascorbic acid (60 mg), potassium bromide 

(600 mg, acting as capping agent), and a specific amount of the support was placed in a 100 mL 

vial and sonicated for an hour and then pre-heated in air under magnetic stirring at 80 °C for 10 

min. Then, 3.0 mL of an aqueous solution containing Na2PdCl4 (57 mg) was added to the solution 

and the reaction was allowed to proceed at the same temperature for 3 h [8].  Afterward, products 

were collected by centrifugation and they were washed 3 times with the mixture of ethanol and 

water to remove excess Polyvinylpyrrolidone (PVP). The final obtained supported catalysts are 

shown in Figure 3-1. 

3.2.2 Characterization 

A wide variety of characterization methods are used to determine the features of these NPs. 

Fundamental and performance behavior of these catalysts is revealed utilizing Scanning Electron 

Microscope (SEM, Zeiss 1540XB), Transmission Electron Microscope (TEM, Phillips CM10), X-

ray Powder Diffraction (XRD), Inductively coupled plasma mass spectrometry (ICP-MS), 

Brunauer-Emmett-Teller (BET) surface area analysis, and XAS at Canadian Light Source. 

3.2.3 Electrochemical Test 

Optimizing the performance of catalysts and correlating it with other influential parameters such 

as electronic structure is momentous. A simple electrochemical reaction on the catalyst entails 

different steps like reactant absorption on the surface catalyst, reduction or oxidation of reactant, 

and separation of product from the catalyst. All these steps can be tracked by performing 
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electrochemical testing and electrochemical surface active area, catalyst activity and catalyst long-

time stability can be derived from that. 

3.3 Results and Discussion  

Following the afore-mentioned procedure for synthesizing Pd nanocube and adding an appropriate 

amount of carbon support in the main solution will result in some size and shape controlled NPs which 

are shown in Figure 3-1. 

 

Figure 3-1 TEM images of Pd nanocubes on A) Carbon black (Vulcan XC-72B) Graphene 

C) CNT D) NCNT supports. 

To further confirm that synthesized Pd nanocubes are mostly enclosed by cubic {100} facets, XRD 

data are reported in Figure 3-2. XRD data are showing three distinct diffraction peaks which are 

assigned to (111), (200), and (220) planes of face-centered cubic Pd. Acquired XRD results are 
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used to determine the average particle size of Pd catalysts, based on Scherrer equation. The 

calculated average particle size are shown in Table 3-1. 

𝑡 =
0.9𝜆

𝛽 𝑐𝑜𝑠 𝛳
          (1) 

t is the mean size of the particles, λ is the X-ray wavelength, β is the line broadening at half the 

maximum intensity and θ is the Bragg angle in the Scherrer equation [9]. 

 

Figure 3-2 X-ray diffraction patterns of palladium catalysts grown on different carbon 

supports.  

As the chemical composition of each sample will be imperative in their electrochemical 

performance, inductively coupled plasma mass spectrometry was used to find out the weight 

percentage of palladium loaded on carbon supports in each sample. All samples showed almost 

similar metal mass loading and the obtained results by ICP-MS are shown in Table 3-1.  
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Figure 3-3 A) Nitrogen adsorption (closed symbol) and desorption (open symbol) isotherms 

and B) multi-point BET plots of the investigated carbon supports. 

Having higher surface area can be an undeniable parameter for enhancing the dispersion of 

catalysts and its exposure to electrolyte during electrochemical processes [10]. Therefore, choosing 

a substrate with higher surface area can be influential in the synthesis procedure and can be 

advantageous for obtaining the desirable supported catalyst. In this study, Brunauer-Emmett-Teller 

(BET) method has been employed to find out the surface area of the utilized carbon supports. In 

order to use this method, samples were first outgassed at the temperature of 250 °C overnight and 

then the temperature was reduced to as low as 77 K to obtain the nitrogen adsorption-desorption 

isotherms. BET graph which is 1/[Q(P/Po-1)] versus (P/Po) is then plotted using the obtained 

adsorption data [11]. Nitrogen adsorption-desorption isotherms and multi-point BET plots are 

shown in Figure 3-3. The straight line in BET graph is now having a slope (S) and an intercept 

(YInt) which can be employed in the following equation and the outcome will be the specific surface 

area [12].  

𝑆𝐵𝐸𝑇 =
0.1620 𝑛𝑚2.(6.023×1023)  

(22414 𝑐𝑚𝑆𝑇𝑃
3 ).(1018𝑛𝑚2

𝑚2 ).(𝑆+𝑌𝐼𝑛𝑡)
       (2) 

Carbon, Graphene, Carbon nanotube, and NCNT exhibit BET surface area values of 214.3, 672.1, 

43.6, and 49.7 m2·g−1, respectively. 

Considering both the carbon supports surface area and the ultimate palladium morphology, it is 

worth to mention that although surface area is an imperative parameter for enhancing the catalyst 
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dispersion, there are still some other key parameters which can influence the morphology of 

synthesized catalyst. In this study, carbon is having higher surface area compared to NCNT but 

the nitrogen defects on the surface of nanotubes and their anchoring role have been found to be 

more effective in dispersing the catalyst and enhancing their electrochemical performance [13, 

14]. These nitrogen defects have also made NCNT have higher surface area compared to the 

nitrogen-free carbon nanotube.  

 

Figure 3-4 Raman spectra of carbon Nanotube before and after doping with nitrogen. 

Raman spectroscopy is a powerful technique to show the graphitization and disorder of various 

carbon samples [15]. As it is shown in Figure 3-4, each Raman spectra show two characteristic 

peaks of D and G band. The first peak positioned at around 1350 cm-1 is D (defect) band and is 

showing the defects in an infinite perfect graphite structure. The second peak at around 1590 cm-1 

corresponds to G (graphite) band, which is related to sp2-hybridized carbon vibrations [16]. The 

ratio between D and G band intensities (ID/IG) is also an important parameter which is being used 

to quantify the graphitic and disorder properties of samples [17]. As shown in the Raman spectra, 

the intensity ratio (ID/IG) has increased after nitrogen doping and it is confirming the higher ratio 

of defects in the NCNT substrate.  

It is also obvious that D and G band in CNT is being broadened and shifted to higher frequency 

after doping with nitrogen. The shift is mainly related to the C-C expansion and electronic structure 

modification by nitrogen dopants [13, 18]. The broadening is also occurring due to an increase in 

defects after nitrogen doping, which is introducing disorder structure and defects to the crystals. 
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These defects on the surface of NCNT are a big assist for anchoring Pd nanoparticles and can be 

fruitful for formic acid oxidation performance. 

 

Figure 3-5 CV of supported Pd nanocubes electrode in A) 0.5 M H2SO4 and B) 0.5 M 

H2SO4 + 0.5 M HCOOH solution. 

Cyclic Voltammograms of Pd/C, Pd/G, Pd/CNT and, Pd/NCNT catalysts in 0.5 M H2SO4 at a scan 

rate of 50 mV s−1 with potential ranging from  0.05 to 1.1 V are shown in Figure 3-5. Using the 

charge related to hydrogen adsorption peaks, ECSA of these catalysts are calculated [19]. As Pd 

catalysts are showing a tremendous activity toward formic acid oxidation, their activities are 

determined in 0.5 M H2SO4 containing 0.5 M HCOOH electrolyte. As potential increase from 0.05 

V, an increase in the current will be observed which is indicating the initiation of HCOOH 

oxidation. By further increase in potential, more poisoning CO will be produced, and it will block 

the available surface for more oxidation. The main oxidation peaks in Figure 3-5, correspond to 

the oxidation of fresh HCOOH. Calculated peak current density which is relative to the utilized Pd 

is shown in Table 3-1. 

In general, formic acid oxidation can proceed through two main mechanisms of direct and indirect 

pathways of dehydrogenation and dehydration. Although the final product of both pathways is 

CO2, adsorbed CO intermediate in dehydration pathway, also known as poisoning route, can 

poison the metal surface and cease further reactions [20, 21]. CO can be adsorbed on the surface 

of catalyst with high affinity and can block the active sites on the metal surface and reduce their 

catalytic activity drastically [22].  
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Considering these reaction pathways, Equations 3 and 4, formic acid oxidation is proceeding 

through both dehydrogenation and dehydration pathways on Pd nanocubes.  

In the anodic scan, the first peak at the potential of approximately 0.4 V is corresponding to 

dehydrogenation and the second peak which is arising at the potential of 0.7 V is ascribed to 

dehydration pathways. The intensities ratio of the first and second peak in anodic scan can be used 

to determine the dominant pathway and the higher value of this ratio is mainly an indicator of its 

higher activity and lower CO intermediate production. It is obvious in Figure 3-5 that Pd/NCNT 

is having the highest ratio for direct to indirect FAO pathways and this is confirming that this 

catalyst is inhibiting the formation of poisonous CO.  

 

Figure 3-6 Relation of FAO peak current density of different samples with the square root 

of scan rates. 
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As it can be seen in Figure 3-6, the peak current density of different samples depends linearly on 

the square root of scan rate of the potential, v, and it is increasing with enhancing the potential. 

This linear relation is defining these reactions as a diffusion-controlled process and its positive 

slope is confirming its reversibility, which follows Randles–Sevcik formula (Equation 5) [23]. 

Considering the same number of n, A, C0* for all these catalysts, diffusion coefficient, D, can be 

obtained. The higher diffusion coefficient will confirm the existence of higher active surface sites 

and higher availability for oxidation on catalysts and the following equation is used to compare 

this important parameter. 

𝑖𝑝 = (2.69 × 105)𝑛
3

2⁄ 𝐴𝐷0

1
2⁄

𝐶0
∗𝑣

1
2⁄         (5) 

Where n, A, C0* are defining electron transfer number, electrode area, and initial concentration 

respectively. 

Using Equation 5, diffusion coefficient of supported nanocubes can be compared as follows: 

        (6) 

 

The higher value for diffusion coefficient of Pd/NCNT is endorsing the positive effect of nitrogen 

on catalytic activity of palladium nanocube and its influence on diffusion and removal of by-

products and providing more active site for further reactions.  

EIS is another advantageous technique which can characterize the kinetics of electrochemical 

reactions on the surface of catalysts and can disclose the mechanism of formic acid oxidation in 

our study [24]. As it is shown in Figure 3-7, EIS was done at the potential of 0.2 VRHE in the 

frequency range of 10 mHz to 100 kHz. To discuss each part of this plot in depth, acquired data 

were fitted utilizing ZVIEW software and the equivalent circuit is shown as an inset in Figure 3-

7. Based on the fitted data in all catalysts, the first semicircle raised at high frequency is 

corresponding to a resistant in parallel to a constant capacitive element. By going to lower 

frequencies, a straight line with a slope of 45° appears which is generally showing the Warburg 

diffusion resistance [25]. As it is explicit in the EIS data, all catalysts are having the same 

equivalent circuit, and this is confirming that all the synthesized catalysts are having the same 

D
NCNT 

> D
G
> D

C
 > D

CNT
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structure at the interface of catalyst and electrolyte and they are following the same mechanism 

for electrooxidation of formic acid. The diameter of the first semicircle can be used to determine 

the charge transfer resistance (RCT) and can show the resistance of charge transfer at the 

electrochemical interface of catalyst and electrolyte. Other parameters such as RS and CPE, which 

are shown in the equivalent circuit, are corresponding to the solution resistance and double layer 

capacitance respectively and all can be quantified by fitting data [26].  

By having a thorough consideration of the data, the difference between diameters is vivid. Charge 

transfer resistance which is RCT in the equivalent circuit is smaller in the Pd/NCNT and this lower 

resistance, which is derived from smaller diameter of a semicircle, has made the Pd/NCNT catalyst 

showing the highest catalytic activity towards formic acid oxidation. The larger diameter of Pd/C 

is also showing the difficulty in charge transferring and is confirming the obstacles in formic acid 

oxidation on its surface. The fitted parameters of these samples are all presented in Table 3-1. 

Therefore, NCNT with its lower charge transfer resistance is having higher electrical conductivity 

for electrochemical reactions on its surface and this correlation can be used for comparing other 

catalysts as well.  

 

Figure 3-7  Nyquist plots of supported Pd catalysts at 0.2 V (vs. RHE) in 0.5 M H2SO4 + 0.5 

M HCOOH solution. The inset is showing the equivalent circuit used to fit the impedance 

spectra. 
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Corrosion of carbon materials is the main obstacle in their utilization as support for catalysts. 

Therefore, chronoamperometry (i-t curve) is used in this study to evaluate the stability of these 

catalysts. As it is obvious in Figure 3-8, electrodes were kept at a constant potential of 0.4 V for 

5000 s and the effect of intermediate species such as CO on the catalyst and long-term exposure 

of Carbon to the corrosive environment is investigated. Each catalyst has kept a specific amount 

of its initial current density after 5000s of testing and the gradual decrease in current density is 

confirming the poisoning effects of intermediates on all catalysts. The initial point for this test is 

considered as 10 s, due to the double layer charging. The stability performances are shown in Table 

3-1. NCNT and Carbon showed to have the highest and lowest resistant to the stability test, 

respectively.  

 

Figure 3-8 Chronoamperometric curves of Pd nanocubes, supported with different carbon 

materials, at 0.4 V.  

One of the main reasons of conducting this research was determining the SMSI effect on the 

electronic structure of catalysts. An advantageous way of determining the interaction between two 

material and thoroughly determining the concept of interaction is X-ray Photoelectron 

Spectroscopy (XPS). The XPS profile of Pd nanocubes containing 3d3/2 and 3d5/2 electrons of 

palladium are shown in Figure 3-9 and they are calibrated via alignment of the C (sp2) peak 

position in the C1s spectrum to its reference value of 284.8 eV. The peak positions of these spectra 

are all mentioned in Table 3-2.  Peaks, Pd1 and Pd2 represent slightly different Pd site on the surface 

and Pd3, accounts for the asymmetry arising from many-body effects arising from a narrow 

unoccupied d band just above the Fermi level. It is obvious that Pd/NCNT is experiencing a shift 
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to lower energies compared to other samples, indicating more noticeable charge redistribution at 

the Pd site with the NCNT substrate [27, 28]. This is confirming that Pd gains d charge which has 

a larger coulombic interaction, F(3d, 4d) than F(3d, 5s), resulting in a shift in the binding energy. 

The two Pd1 and Pd2 peaks can be also assigned to metallic Pd, on the surface of nanoparticle and 

in its bulk. Due to the approximately large size of particles, the bulk is not experiencing the same 

interaction as surface and carbon-metal interaction on the near surface is producing two peaks for 

the nanoparticles.  

To determine the origin of the shift in Pd/NCNT, N1s XPS spectra of NCNT before and after 

growing Pd is acquired. As it is obvious in Figure 3-9, the N1s spectra can be assigned to five 

components of NP (pyridinic N), NPyr (pyrrolic N), NG (graphitic N), NOX (N-oxides), and Nads 

(chemisorbed N) from low to high energies [29]. Shift to higher energies after growing palladium 

NPs is obvious in N1s spectra and it is confirming that there is an electron transfer from nitrogen 

to palladium. 

 

Figure 3-9 XPS spectra of A) the Pd 3d region of the Pd nanocubes on different carbon 

supports and B) the N 1s region of NCNT before and after the catalyst growth. 

Confirming XPS results and tracking the electronic structure of these catalysts can be easily 

conducted using XAS. XANES data of L3-edge, which is collected in TEY mode in this study and 
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is more surface sensitive, are presented in Figure 3-10. Comparing their whitelines, the first sharp 

peak at the edge arising from 2p3/2 to 4d5/2,3/2 transition, which probes the unoccupied densities of 

states of Pd 4d character at the Fermi level, will show their interaction with carbon supports and 

change of their d-band vacancies above the Fermi level [30, 31, 32].  

As it is shown in Figure 3-10, the whiteline corresponding to palladium NPs grown on NCNT is 

having the lowest intensity and this is further confirming the electron transfer from nitrogen to 

palladium. By having an electron transfer from nitrogen to the catalyst, there will be lower d holes 

upper Fermi level so there will be lower vacancies for excited electrons and this will lower the 

whiteline intensity [28,30]. The trend in whiteline intensity is showing the same result as energy 

shifts in XPS data, as the highest shift to lower energies is having the lowest whiteline intensity 

and vice versa. A schematic displayed in Figure 3-11 is showing the interaction of palladium with 

nitrogen sites in NCNT. This interaction not only is assisting in anchoring Pd NPs on NCNT 

surface but also is altering palladium electronic structure by electron transfer from nitrogen sites 

to palladium. All these features together have made Pd/NCNT to have more active sites for formic 

acid oxidation and be more stable in encountering poisonous intermediates. 

 

Figure 3-10 X-ray absorption near-edge spectra of Pd samples grown on different carbon 

supports. 
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Figure 3-11 Schematic of the proposed interaction of Pd nanocubes with nitrogen sites in 

NCNT. 

 

Table 3-1 Comparison of the catalytic activities for formic acid oxidation, stability, 

Impedance components and nanoparticle size and composition of Pd NPs on different 

carbon supports. 

 

 

 

 

 

 

 

Sample Particle 

Size (nm) 

Palladium 

concentration  

RCT (Ω) ECSA 

(m2/g) 

Ip 

(A mg-1) 

Ep 

(mV) 

𝒋 𝒕=𝟓𝟎𝟎𝟎 𝒔

𝒋 𝒕=𝟏𝟎 𝒔

 

Pd/C 15.7 49 % 424.1 18.60 0.3992 0.50186 9.31 % 

Pd/G 14.2 47 % 309.9 21.97 0.49542 0.49011 18.18 % 

Pd/CNT 24.4 42 % 487.1 9.71 0.19089 0.44846 5.55 % 

Pd/NCNT 15.5 46 % 250.8 42.52 1.20021 0.57663 18.62 % 
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Table 3-2 X-ray photoelectron spectroscopy (XPS) peak positions of Pd on different carbon 

supports. 

 

 

 

3.4 Conclusions  

Cubic palladium catalysts were directly grown on different carbon supports and the influence of 

metal support interaction on performance and electronic structure of Pd was determined. It is 

apparent that doping carbon nanotube with nitrogen will not only enhance the catalyst distribution 

by generating surface defects on CNT but also enhance the catalytic activity by tuning electronic 

structure through electron transfer with Pd. An interesting point in XPS data is observing two 

slightly different chemical sites of Pd. As these catalysts are grown on carbon supports, the carbon-

palladium interactions have made this shift and the reason for the second peak is that the 

synthesized catalysts are approximately large so the part that does not have any interaction with 

support will not experience that interaction and shift. Normal carbon nanotube did not show a good 

activity, as it has low surface area and lacks active sites (defects), and most of the catalysts will 

agglomerate on each other. Nitrogen and nitrogen induced defects on the surface of carbon 

nanotubes have helped to anchor the nanoparticles and this will cease the nanoparticle detachment 

which will be necessary in enhancing the stability of catalysts. It is also determined that π sites on 

graphene structure have helped to have a strong interaction with nanoparticles and this has 

increased the electrochemical performance of graphene compared to carbon.  

 

 

Sample Pd1 (eV) Pd2 (eV) 

Pd/C 335.41 335.88 

Pd/G 335.39 335.96 

Pd/CNT 335.37 335.84 

Pd/NCNT 335.16 335.66 
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Chapter 4  

4 Co-doped Pd@Pt core-shell nanoparticles: correlation 
between the electronic structure and the catalytic activity of 
the catalysts in ORR 

4.1 Introduction  

Platinum (Pt) is a critical catalytic component used in polymer electrolyte membrane fuel cells 

(PEMFCs). However, its low abundance, limited supply, and increasing demand have limited the 

commercial application of this metal. One of the most recent ways to satisfy the mentioned 

demands is to utilize Pt-based bimetallic nanoparticles. Using Pt metal as the shell material of the 

catalyst not only increases the surface area but also make an interfacial interaction between the 

core metal and platinum, which will result in enhanced catalytic activity. Octahedral Pd@Pt 

nanoparticles with controllable Pt shell has recently shown to have greatly enhanced activity and 

durability compared to the commercial Pt/C. In this chapter, we describe a specific project in which 

Pd@Pt nanoparticle will be first synthesized by loading platinum on octahedral palladium NP, 

which was completely studied in chapter 2. Then the core-shell structure will be surface doped 

with cobalt to further boost its durability and activity. In this way, we will be capable of combining 

the two main strategies of synthesizing an efficient catalyst, alloying and core-shell structure. 

Characterizing the synthesized catalyst with XANES and EXAFS at Pt L3-edge and cobalt K-

edges, together with performance test, have revealed information about the effect of the dopants 

on the catalytic activity of catalysts. Results about the local and electronic structure of the catalyst 

are correlated with electrocatalytic activity of the electrocatalyst to optimize performance. Cobalt 

has been found to be simultaneously efficient in enhancing catalytic activity and reducing the 

platinum content in the catalyst. 
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4.2 Experimental Section  

4.2.1 Methodology  

The difference between the obtained NPs will be investigated through ICP-MS, XRD, XAS, TEM, 

SEM, HRTEM, and XPS, which will provide helpful information such as crystallinity, local and 

electronic structure, morphology, and composition of these bimetallic nanoparticles. These 

techniques have been described in chapter 1 and throughout chapters 2 and 3 as appropriate. 

Fundamental information about these NPs, their morphology, structure and electronic properties, 

will be correlated with their catalytic activity for ORR. 

4.2.2 Material Synthesis 

As properties of NPs highly depend on their size and shape, a previous explained colloidal 

chemistry method was used in this study to synthesize Pd nanoparticles with tunable size and shape 

[1]. To prepare the core-shell catalysts, the first step is to synthesize the Pd seed with different 

morphologies. To synthesize cubic Pd NP, as mentioned in chapter 2, 8.0 mL of an aqueous 

solution containing: Poly(vinyl pyrrolidone) (PVP, 105 mg, acting as a stabilizer), ascorbic acid 

(AA, 60 mg) and, potassium bromide (KBr, 600 mg, acting as capping agent) was placed in a 20 

mL vial and pre-heated for 10 min at the temperature of 80 °C. Then, 3.0 mL of an aqueous solution 

containing Na2PdCl4 (57 mg) was injected to the solution and the reaction was proceeded for 

another 3 h, at the same temperature [2]. Afterward, products were collected by centrifugation and 

they were washed at least 3 times with the mixture of ethanol and water for PVP elimination. The 

obtained cleaned product was finally dispersed in 10 ml of water. SEM figure of cubic Pd NPs is 

shown in Figure 4-1-A. 

To correlate the NP morphology with their performance, Pd octahedral NPs are synthesized as 

well. The procedure was almost the same and Pd NCs were used as seeds for octahedral ones. 

Heating the following solution: poly(vinyl pyrrolidone) (105 mg), formaldehyde (0.1 ml), pure 

water (8 ml), cubic seeds (0.3 ml) at the temperature of 60 °C for 5 min and adding 2.9 mL of an 

aqueous solution containing Na2PdCl4 (29 mg), will result in octahedral Pd NPs after 3 hours of 

reaction proceeding. It is necessary to wash samples with a mixture of water and ethanol for at 

least three times [3]. The final product was dispersed in EG. SEM images of the as-synthesized 

cubic and octahedral palladium NPs are shown in Figure 4-1. 
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Then Pd seeds were used to synthesize octahedral Pd@Pt core-shell nanoparticle. In order to have 

a smooth platinum shell covering the palladium core, water-based system is utilized [4]. Higher 

amount of acquired sample and significant lower reaction time, are the principal privileges of this 

water-based procedure over the other common methods [5]. To deposit four layers of Pt, 35 mg of 

PVP, 60 mg of citric acid and 10 mL of octahedral Pd (acquired in the first step) were pre-heated 

for 10 min at the temperature of 95°C. After heating the solution for the mentioned time, 3 mL of 

K2PtCl4 (1.4 mg mL-1) was added in one pot to the solution and the reaction was proceeded for a 

whole day under magnetic stirring. The samples were collected using a centrifuge and there were 

further doped with Co to determine its direct influence in ORR kinetics. Doping was done by 

dispersing the core-shell NPs and dopant precursor in DMF and heating the solution for 48 hours 

at 170 °C [6]. A schematic of the synthesis procedure is shown in Figure 4-2. Final doped NPs 

were then centrifuged, washed and loaded on carbon black to investigate on their electrochemical 

behavior. Using inductively coupled plasma mass spectrometry (ICP-MS), the metal loading 

(Pd+Pt) on carbon black was attempted to be 20%.  

4.3 Results and Discussion  

Depletion of petroleum-based energy resources and the severe climate change have made fuel cell 

technologies a reliable alternative for the current power sources [7, 8]. However, the necessity of 

using platinum-based catalysts and the sluggish kinetics of cathodic reactions in PEM fuel cells 

are still an obstacle in their largescale commercialization [9]. To overcome these challenges, 

surface active area and specific activity of the catalysts should be enhanced and this can be 

achieved through three main strategies. The first strategy would be tuning the Pt d-band center of 

catalysts, by alloying it with other 3d transition metal such as Ni, Co or Fe [10]. The second way 

of enhancing ORR activity of platinum would be hindering its shape to some specific facets [11]. 

In both cases, Pt d-band center will be downshifted and this will end in reduced oxygen binding 

energy on platinum [12]. It is proved by Stamenkovic et al. that d-band center will have an 

optimum value and the highest specific activity is following a volcano plot in relation to oxygen 

binding energy [13, 14]. The third strategy is reducing the platinum loading and enhancing its 

overall activity by coating a thin layer of platinum on a less-expensive core [15-17]. Although this 

core-shell structure will have the exact same surface active area as the same size pure platinum 

nanoparticle, its mass activity can be elevated due to the lower platinum usage. To maximize 
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platinum usage and activity, all these three strategies are combined together and a shape-controlled 

Pd@Pt-Co is synthesized in this study. The overall schematic of the obtained catalyst is shown in 

Figure 4-2 and the required steps in synthesizing these shape-controlled nanoparticles are shown 

as well.  

 

Figure 4-1 SEM images of A) Pd nanocubes and B) octahedrons that were used as seed for 

Pd@Pt core-shell synthesis. 

 

Figure 4-2 Snapshot of the whole particle, showing the schematic illustration of the 

synthesis procedure of Pd@Pt-Co nanoparticles which can be divided to three main steps. 
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Figure 4-3 (A-D) HAADF STEM image and EDX composition maps of Octahedral-shaped 

Pd@Pt nanoparticle. E) Elemental line-scanning profiles along the direction marked by a 

white line in “A”. 

High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) was 

used to characterize and study a single nanoparticle of Pd@Pt core-shell nanoparticle. It is shown 

in Figure 4-3 that core-shell structure is completely obtained and the contrast difference between 

Pd and Pt, which is arising from their different atomic number, is endorsing Pt loading on 

palladium core. It is also shown in both Figure 4-3 and Figure 4-4 that palladium is still preserving 

its octahedral shape after following the other required synthesis steps and even by loading four 

layers of a thin shell, either Pt or Pt-Co, the whole particle is still having {111} facets on the side 

faces and {100} facets on the rounded corners. STEM energy-dispersive X-ray (STEM-EDX) 

elemental mapping is also shown in Figure 4-3B-E, confirming the existence of Pd in the core and 
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its coverage by a dense and smooth shell of Pt. Cobalt signal in STEM energy-dispersive X-ray 

(STEM-EDX) elemental mapping of Figure 4-4 also confirms the successful doping method of 

Pd@Pt and its existence in the surface of nanoparticle. Elemental line scanning profiles in Figure 

4-3 and Figure 4-4 are also showing the distribution of platinum, cobalt, and palladium in a single 

nanoparticle.  

 

Figure 4-4 (A, B) Bright-field TEM image of octahedral Pd@Pt-Co core-shell nanocrystal 

C) The typical low-resolution STEM image of the octahedral cobalt doped Pd-Pt 

nanocrystals D) HAADF-STEM image of a single Pd@Pt-Co nanoparticle E) STEM-EDX 

elemental mapping images of Pd, Pt and Co and the merged image F) Elemental line-

scanning profiles along the direction marked by a white line in “D”. 
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Elemental mapping and line-scanning, presented in Figure 4-4, confirms the existence of platinum 

and cobalt just in the shell and the palladium core within this dense shell. The sharp peaks at the 

sides of Elemental line-scanning profiles are showing the existence of platinum shell, with the 

thickness of 0.8 nm which is equivalent to 4 atomic layers of Pt, on Pd core. The line scanning is 

also showing the less proportion of cobalt compared to platinum in the shell, which is in good 

consistency with the nanoparticle composition obtained using ICP-MS. As it is specified in Figure 

4-4-B, two lattice spacings of 2.24 Å and 1.93 Å, corresponding to {111} and {200} planes, can 

be determined. These are confirming that incorporation of cobalt, with smaller atomic radius,  in 

the platinum structure has shrunk the lattice of platinum compared to the pure Pt.  

 

Figure 4-5 HR-TEM image of the octahedral Pd@Pt core-shell nanoparticles before (A, C) 

and after (B, D) doping with cobalt. 

 

High-resolution transmission electron microscopy (HRTEM) images of a doped and undoped 

Pd@Pt nanoparticle are presented in Figure 4-5. It is shown that these carbon-supported 
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nanoparticles are consisted of single-crystal structure which has platinum as a shell covering 

palladium core.  

 

Figure 4-6 (A, C) HR-TEM image of the front and top view of the Pd@Pt octahedra 

nanocrystal. (B, D) The typical low-resolution STEM image of the Pd-Pt nanocrystals and 

their particle size distribution histogram. 

 

Cobalt doped Pd@Pt were loaded on carbon black for further electrochemical characterizations 

and the supported nanoparticles are shown in Figure 4-6.  It is obvious that these nanoparticles, 

which are having an average edge length of 54.5 ± 3.7 nm, are uniformly distributed on the support. 

As it is shown in Figure 4-6, the side and top view of the Pd@Pt-Co nanoparticle are further 

confirming the formation of octahedral shape.  
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Figure 4-7 XRD spectra of Pd@Pt/C and Pd@Pt-Co/C octahedra. 

The morphology of the Pd@Pt-Co/C powder was further characterized using X-ray diffraction 

(XRD). As presented in XRD patterns of core-shell nanoparticles before and after doping, all peaks 

can be assigned to face-centered cubic (f.c.c) structure [18]. Lattice structure information was also 

acquired via XRD analysis. Compared to pure platinum, the diffractions from both samples are 

shifted to higher 2θ angles due to the decreased lattice constant of the Pd@Pt core-shell NP both 

before and after doping with Co. The positive shift is attributed to the smaller radius of both Pd 

and Co compared to platinum and is supported by Vegard's law calculations [19, 20]. Bragg's law 

can be also employed to calculate the d-spacing and lattice parameter of these two samples [21]. 

Using Equation 1, Bragg's law, can help to obtain the quantitative parameters shown in Table 4-1. 

𝛌 = 𝟐𝐝 𝐬𝐢𝐧 𝜭            (1) 

Where λ is the wavelength of incident X-ray (0.154nm), d is the distance between two adjacent 

planes of atoms, and Ɵ is the diffraction angle. 

All these together are confirming the contraction in platinum structure due to Pd and Co influence.  
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Table 4-1 Summary of XRD results regarding (111) facet. 

Catalyst Lattice 

Parameter (nm) 

d-spacing 

(Å) 

Relative ε microstrain compared  

to Pt/C (%) 

 Pd@Pt 3.897 2.25 0.63 

Pd@Pt-Co 3.879 2.24 1.08 

 

 

Figure 4-8 A) CVs and B) ORR polarization curves for the Pd@Pt/C and cobalt doped 

Pd@Pt/C catalysts. The current densities (j) were normalized against the geometric area of 

RDE (0.196 cm2). C) Mass and D) Specific activities given as kinetic current densities (jk) 

normalized against the mass of Pt and the ECSA of the catalyst, respectively. (Inset is 

showing the specific activity of the two catalysts at 0.9 VRHE.). (E, F) linear sweep 

voltammetry of Pd@Pt-Co (E) and Pd@Pt (F) catalysts before and after 20,000 cycles 

between 0.6−1.0 VRHE in O2 saturated 0.1 M HClO4 electrolyte. (Insets are showing the 

mass activity (at 0.9 VRHE) of the catalysts before and after the accelerated durability tests. 
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To determine the kinetics of the ORR on the Pd@Pt electrocatalyst before and after doping, the 

rotating disk electrode was utilized [22]. A working electrode was prepared by loading 20 μL of 

ink (3 mg Pd@Pt/C + 1 mL DI water + 1 mL 2-propanol + 20 μL Nafion) on the glassy carbon 

rotating disk electrode. The first step was cycling the nanoparticles in the potential range of 0.05-

1.1 VRHE in N2 saturated 0.1 M HClO4. This cycling was continued until a constant CV was 

obtained and the surface of the catalyst was completely cleaned and stabilized [23]. By integrating 

the HUPD region, charge corresponding to the hydrogen adsorption/desorption on platinum surface 

will be acquired. Using ECSA formula shown in Equation 2 and assuming 210 μC/cm2 as a charge 

related to the full hydrogen coverage of Pt, electrochemical surface active area of these samples 

were calculated [24].  

𝐸𝐶𝑆𝐴𝑃𝑡(𝑚2𝑔𝑃𝑡
−1) = [

𝑄𝐻−𝑎𝑑𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛(𝐶)

210 µ𝐶 𝑐𝑚𝑃𝑡
−2 𝐿𝑃𝑡(𝑚𝑔𝑃𝑡 𝑐𝑚−2) 𝐴𝑔(𝑐𝑚2)

] 105     (2) 

 

In this formula, LPt is the platinum loading on RDE, Ag is the geometric surface area of the RDE 

which is 0.196 cm2 in this study, and Q (H-adsorption) is corresponding to the hydrogen adsorption 

charge.  

As shown in Figure 4-8 and Table 4-2, core-shell catalyst has higher ECSA compared to the 

commercial Pt/C catalyst. This is occurring due to the higher efficiency in usage of platinum and 

having more active sites compared to the commercial platinum [25]. It is also worth mentioning 

that Pd@Pt nanoparticles before and after doping are having an almost same active surface area 

and this is happening due to their identical facet, size, and structure [26].  

Figure 4-8 also shows the ORR polarization curves of core-shell and commercial platinum 

nanoparticles, measured in oxygen saturated 0.1 M HClO4 electrolyte using the potential scan rate 

of 10 mV s−1 and the rotation rate of 1600 rpm. Due to existence of mixed diffusion and activation 

processes on rotating disk electrode, Koutecky-Levich equation (Equation 3) was used to obtain 

kinetic current and compare ORR activity of these samples [10].  

1

𝐼
=

1

𝐼𝑘
+

1

𝐼𝑙𝑖𝑚
            (3) 
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Where Ik is the kinetic current (A) and Ilim is the limiting current measured at the potential of 0.4 

VRHE and I is the measured current. 

Calculated kinetic currents were further normalized by platinum loading and ECSA to determine 

the mass and surface specific activity. As shown in Tafel plots of Figure 4-8, mass and specific 

activity of Pd@Pt-Co shows the enhanced activity compared to the undoped Pd@Pt and the 

commercial Pt/C. Mass activity of ORR on Pd@Pt-Co nanoparticle is 1.1 (A mgPt
-1), which is 

approximately 11 and 2.3 times higher compared to the commercial platinum and the undoped 

Pd@Pt at 0.9 VRHE. All the calculated data are shown in Table 4-2. The superior activity of cobalt 

doped Pd@Pt is mainly induced by cobalt dopants interactions with Pt which can weaken the 

adsorption of oxygen species intermediates on Pt active sites after the reaction [14]. In addition, 

the geometric and electronic interaction between Pd and platinum shell has also further assisted, 

by shortening the Pt-Pt bonding distance through strain effects, in the enhanced activity of these 

core-shell nanoparticles [27].  

The durability test was carried out to evaluate the stability of the electrocatalysts. A total of 20,000 

cycles were scanned between 0.6 and 1.0 VRHE at the scan rate of 100 mV s-1 for each sample, and 

the ECSAs, specific and mass activities were determined after ADT. As presented in Figure 4-8, 

the stability of Pd@Pt has greatly improved after the introduction of cobalt. As mentioned in Table 

4-2, Pd@Pt has lost 19% of its initial mass activity after ADT which is much higher than the cobalt 

doped sample which its activity has dropped by only 2 % after 20k cycles. The substantial stability 

of cobalt doped nanoparticle is mainly originating from the beneficial role of cobalt which can 

help to enhance mass activity and preserve the nanoparticle octahedral shape simultaneously [28, 

29].  

Table 4-2 Electrochemical performance of cobalt doped Pd@Pt nanoparticles compared to 

Pd@Pt and commercial Pt/C. 

Catalyst ECSA (m2 gPt
-1) SA at 0.9 VRHE (mA 

cmPt
-2) 

MA at 0.9 VRHE (A 

mgPt
-1) 

Mass activity loss 

after ADT 

Pt/C 69 0.43 0.09 - 

Pd@Pt 73 1.49 0.48 19 % 

Pd@Pt-Co 74 2.28 1.10 2% 
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Figure 4-9 (A, C) LSV curves at different rotation rates recorded for ORR at Pd@Pt/C (A) 

and Pd@Pt-Co/C (C) catalysts in oxygen-saturated 0.1 M HClO4. Scan rate: 10 mV s -1. 

Rotation rate: 400, 600, 900, 1600. (B, D) Koutecky-Levich plots of Pd@Pt and Pd@Pt-Co 

catalysts at different electrode potentials. 

To find out the kinetics of ORR on core-shell nanoparticles, polarization curves at different 

rotation rates of 400 to 1600 were obtained [30]. Various ORR curves acquired at different rotation 

speeds are shown in the Koutecky–Levich (K–L) plots presented in Figure 4-9. The linear relation 

of j-1 and ω-0.5 is confirming the existence of first-order kinetics on these Pt-based nanoparticles 

and is endorsing the possibility of using Koutecky–Levich (K–L) equation (Equation 5) for 

calculations [31]. 

1

𝑗
=

1

𝑗𝑘
+

1

𝑗𝑙𝑖𝑚
=

1

𝑗𝑘
+

1

𝐵𝜔0.5
          (4) 

𝐵 = 0.62𝑛𝐹𝐷2/3𝜈−1/6𝐶0          (5) 
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In RDE, reactant species are being supplied to the electrode surface with convention and increasing 

the electrode rotation speed can enhance the supplied reactant species and increase the monitored 

current. In order to have some idea about the proportionality of the current and rotation speed, 

Koutecky–Levich (K–L) equation, is being used. In this equation (Equation 4, 5), j is the measured 

current density using rotating disk electrode (RDE), n is the number of electrons involved in the 

reaction, F is Faraday’s constant (96485 C/mol), D is the diffusion coefficient of O2 in 0.1 M 

HClO4 electrolyte, C0 is the oxygen concentration in 0.1 M HClO4 solution, and ν is the kinematic 

viscosity of the solution. 

It is clear in Figure 4-9 that fitted lines were plotted at different electrode potentials and each line 

is having a specific slope. As it is mentioned in Equation 4, slope of the fitted lines can be used to 

obtain B value and this parameter can be utilized to determine the number of participating electrons 

in ORR. The average number of transferred electrons was calculated to be 3.73 and 3.91 for Pd@Pt 

and cobalt doped Pd@Pt respectively. This result indicates that cobalt is assisting to the 

nanoparticle to get much closer to the desired four-electron pathway [32, 33]. 

 

Figure 4-10 Cyclic voltammetry (CVs) of methanol oxidation for Pd@Pt/C and Pd@Pt-

Co/C catalysts in 0.1 M HClO4 and 1 M CH3OH solution at 25 °C with a sweep rate of 10 

mV s−1. 
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Cobalt dopant has been also found to be advantageous in enhancing methanol oxidation activity 

of Pd@Pt NPs. Figure 4-10 shows the CV curves of Pd@Pt and Pd@Pt-Co nanoparticles in 0.1 M 

HClO4 + 1 M CH3OH electrolyte. The oxidation current density of the forward scan, which was 

recorded at the scan rate of 10 mV s−1, is showing a significant enhancement in MOR activity after 

cobalt doping. Cobalt doped Pd@Pt exhibited a mass activity of 1.42 A mgPt
−1, which is 2.6 and 

5.7 times higher than undoped Pd@Pt (0.53 A mgPt
−1 ) and commercial Pt/C (0.25 A mgPt

−1 ) 

respectively.  

To know the origin of this enhancement in methanol oxidation, the MOR mechanism on Pt surface 

should be discussed. The summary of the MOR is mentioned as follows:  

Pt + CH3OH → Pt‐COads + 4H+ + 4𝑒−       (6) 

Pt + H2O → Pt(OH)𝑎𝑑𝑠 + H+ + 𝑒−        (7) 

Pt‐COads + Pt(OH)𝑎𝑑𝑠  → CO2+ 2Pt  + H+ + 𝑒−      (8) 

The main problem in methanol oxidation is CO oxidation, via the Langmuir–Hinshelwood mechanism, 

which requires a neighboring surface OH (Pt–OH) as shown in Equation 8. Adsorbed OH on platinum 

surface is produced by water dissociation and low capability of Pt in water dissociation has limited its 

ability for CO oxidation. As platinum is not able to oxidize CO and clean its surface from poisonous 

carbon monoxide for further reactions, its MOR activity will be diminished by time. 

To overcome this challenge, cobalt is doped in platinum structure in this study. Cobalt which has high 

ability in water dissociation will enhance platinum activity in two strategies of bi-functional and 

electronic modification. In the first strategy, the required OH (Equation 7), for CO oxidation on Pt 

surface, will be adsorbed on cobalt surface and this will increase the platinum surface available active 

site by carbon monoxide elimination. In the second strategy, cobalt influence on platinum electronic 

structure modification and Pt-Pt bonding length contraction will be used to enhance Pt activity towards 

methanol oxidation.  

This idea can be endorsed by having a look at MOR oxidation peaks shown in Figure 4-10. It is shown 

that there are two distinct peaks in forward and backward scans. The peak currents seen in the forward 

and backward scans are corresponding to methanol oxidation and oxidation of residual carbon species 
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from forward scan, respectively. In this case, the ratio between forward and backward peak current 

densities can be employed to investigate the CO tolerance of the catalyst. It is obvious in Figure 4-10 

that cobalt doped Pd@Pt is having higher ratio of If/Ib and this is confirming that CO intermediates are 

mostly removed during forward scan and the lower oxidation peak in the backward scan is endorsing 

the existence of more fresh active site on its Pt surface.  

   

Figure 4-11 X-ray absorption studies of the Pd@Pt and cobalt doped Pd@Pt catalysts in 

comparison with Pt foil. A) The normalized XANES spectra at Pt L3 edge and B) The K3-

weighted Fourier transform spectra from EXAFS. Inset in (A) shows the enlarged spectra 

at Pt L3 edge. 

To correlate the catalytic activity and electronic structure of these nanoparticles, XAFS have been 

employed in this study. The characterization of the structure and behavior of the Pd@Pt-M 

(M=Transition metal dopant) system can be ideally carried out through ex-situ XAFS 

measurements. XAFS can probe the local and electronic structure of the absorbing atom by 

monitoring the absorption coefficient using tunable X-ray from a synchrotron light source and, can 

provide us information on the oxidation state, coordination number, and local symmetry of the 

atom of interest (Pt, dopant element, and Pd) before and after doping [34, 35].  In addition, the Pt 

L3,2 edge can be also investigated to track the unoccupied densities of states of 5d electrons which 

essentially determines the catalytic activity [36]. In the Pt L3 –edge XANES spectra, the whiteline 

(strong peak just above the threshold) intensity is associated with electronic transition from the Pt 

2p3/2 orbital to the unoccupied 5d orbitals and the degree of oxidation of Pt as well [37].  
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In this study, all XAS measurements were conducted under fluorescence mode and were extracted 

and fitted using Athena and Artemis software. As it is clear in Figure 4-11, cobalt doped Pd@Pt 

showed lower white line peak intensity, which indicates electron transfer from Co to Pt [38].  

Another imperative parameter in defining the catalytic activity of catalysts is the geometrical 

structure of nanoparticles which can be determined using EXAFS [39]. The EXAFS can be used 

to reveal the Pt−Pt distance in the Pd@Pt NPs before and after doping. The changes in the bond 

length and the interaction between Pt, dopant, and Pd atoms can affect the d-band structure of Pt 

and can be effective in optimizing the adsorption energy of intermediate oxygen species on Pt [14]. 

Fitting the presented EXAFS data in Figure 4-11, Fourier-transformed EXAFS shows that Co has 

slightly reduced the Pt-Pt bonding distance and this has assisted to weaken the Pt-O bond and 

further enhance its ORR activity [34]. This compressive strain is also observed by XRD pattern in 

Figure 4-7 and is reasonable based on the radius of cobalt atom. The platinum lattice contraction 

can be beneficial in terms of d-band center downshift and can diminish surface poisoning species 

and weaken hydroxyl adsorption energy.  

4.4 Conclusions 

We have demonstrated the synthesis of an advanced ORR catalyst based on Pd@Pt-Co octahedra 

by effectively combining three different strategies that involved utilization of transition metal, 

shape control, and the formation a core-shell. After 20k cycles of stability test, cobalt doped Pd@Pt 

have lost only 2 % of its initial activity and this is confirming that cobalt can be efficient in 

simultaneously enhancing catalytic activity and stabilizing the octahedral shape of Pd@Pt NPs by 

diminishing Pt dissolution. EXAFS results showed that the shorter Pt-Pt distance in Pd@Pt-Co 

NPs, is beneficial in weakening the Pt-O bond and enhancing the ORR activity. The lower 

whiteline intensity of Pd@Pt-Co XANES has also confirmed electron transfer from Co to Pt which 

can be beneficial in terms of catalytic activity. XRD patterns have also endorsed the lattice 

contraction in platinum with cobalt doping, which can be advantageous in terms of oxygen species 

adsorption on platinum surface.  
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Chapter 5  

5 Summary and Future Work   

5.1 Conclusions   

This thesis has focused on enhancing the activity and stability of proton exchange membrane fuel 

cell catalysts thorough various methods including metal-support interaction and use of facet-

controlled nanoparticles. A series of shape-controlled Pd and Pd@Pt samples, supported on diverse 

carbon supports, were synthesized and their electrochemical performance were correlated with 

their electronic structure using powerful tools such as XAFS and XPS. 

In chapter 2, uniform cubic Pd NPs were synthesized, using colloidal chemistry methods. Although 

there are various of studies focused on electrochemical performance of metal nanoparticles, the 

influence of outside organic layers, which is a vital component of colloidal chemistry, on the 

catalytic activity of nanoparticles is still unclear [1]. Various methods were used in this study to 

eliminate the surfactant, which is necessary to be used in colloidal chemistry synthesis and can 

hinder the optimum catalytic activity. The main objective in surfactant removal is to obtain a clean 

surface without altering the size, shape, and composition of the nanoparticle. To have an 

effectively clean catalyst, several methods were used and the influence of each method on both 

catalytic activity and surface features were discussed. It is found that the cleaning procedures such 

as UV-Ozone treatment and acid washing can passivate the metallic surface and leach out metal 

components respectively, while calcination can keep the nanoparticle perfectly unchanged and can 

enhance its activity to an incredibly high level compared to other methods [2]. The surface 

sensitive mode of X-ray absorption technique was also helpful to unveil the PVP-Pd interaction 

which involves electron transfer from PVP to Pd through N atom in the ring of capping agent [3].  

In chapter 3, the influence of metal support interactions on the acquired electrochemical 

performance is thoroughly investigated. The formic acid oxidation on palladium nanocubes, which 

were grown on different carbon supports, was showing the superior mass activity on nitrogen 

doped carbon nanotube (NCNT) support [4]. The enhanced activity of palladium grown on NCNT, 

was mainly originating from the nitrogen interaction with palladium nanoparticles. It is found that 

nitrogen is having an electron donor role in contact with palladium and this manipulation of Pd 
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electronic structure can end in electron-enriched nanoparticles with an elevated FAO activity [5]. 

The nitrogen-palladium interaction can be also helpful in anchoring nanocubes and is the reason 

of smaller particle size, higher dispersion, and better stability in Pd/NCNT sample. Thus, the 

features of nitrogen in NCNT can be a big asset for enhancing stability, performance and metal 

utilization and can make the cathode catalysts one step closer to commercialization.  

In chapter 4, Pd@Pt core-shell NPs were surface doped with cobalt and the ORR activity and 

stability results were correlated with the acquired information about their electronic structure using 

XAS. We have demonstrated the synthesis of an advanced ORR catalyst based on Pd@Pt-Co 

octahedra by effectively combining three different strategies that involved utilization of transition 

metal, shape control, and the formation of a core-shell structure [6]. The superior activity of cobalt 

doped Pd@Pt in acidic electrolyte was concluded to be resultant of electronic and geometrical 

modification of platinum. EXAFS results showed the shorter Pt-Pt distance in Pd@Pt-Co NPs, which 

can be beneficial in weakening the Pt-O bond, enhancing the ORR activity. XANES region of the XAS 

data also showed the electronic interaction between platinum and cobalt, which was an electron transfer 

from Co to Pt, determined from the lower whiteline intensity of Pd@Pt-Co in XAS data [7]. Having 

core-shell structure was also shown to be beneficial in reducing the utilized amount of platinum in the 

catalyst and this was determined to further enhance the mass activity of the catalyst with diminishing 

platinum loading. Accelerate durability test was also confirming the beneficial role of cobalt as a 

dopant in platinum structure which could simultaneously enhance catalytic activity and stabilize the 

octahedral shape of Pd@Pt NPs. 

5.2 Future Work  

As ORR is still known as an obstacle for commercialization of PEM fuel cell, a thorough 

fundamental study of ORR is necessary to overcome this challenge. In order to know the exact 

steps which are occurring in oxygen reduction reaction and distinguish the rate determining step, 

in-situ XAS can be used. Using in-situ XAS cell at the time of ORR can provide us information 

on the oxidation state, coordination number, and local symmetry of the atom of interest (Pt and 

Co) in a chemical environment as a function of electrode potential [8]. It can also show the active 

sites on the surface which will be vital in the synthesis of the future catalysts. For in situ 

measurements, by applying a specific potential in the double layer potential region, the electronic 

and geometric parameters of catalysts can be compared without interference of any type of ionic, 
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oxygen-containing intermediates, adsorption [9, 10]. By increasing the potential to the activation 

control region, absorbance of the oxygenated species and their influences on the catalyst can be 

compared with the results from double-layer region. Higher potential can be utilized to check the 

stability of the bimetal, e.g. Pt-Pd. Pt-Ni. This in-situ analysis will reveal information about the 

effect of the Pt thickness, catalysts facets, dopant element, and the inter-atomic distance of Pt-Pd 

and Pt-Pt on the catalytic activity of the synthesized catalysts at different potentials [11]. 

There is also another challenge in confirming the existence of core-shell nanoparticles using 

normal characterization methods. By utilizing the in-situ cell and applying various potentials, the 

position of palladium metal in the nanoparticle will be determined [12]. Having palladium metal 

just in the core will show palladium XAS data independent to the applied potential and platinum 

dense shell will preserve the palladium core from oxidation at high potentials. 
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