








 

xvi 

 

Figure 4-5: Influence of the wall temperature on the film thickness and boundary-layer 

heights for 0T̂ 278K=  and 2/3Ca Re 10=  in the super-critical region. Also indicated are the 

values of (rescaled) transition locations in light vertical lines for wT 1.05= . ..................... 166 

Figure 4-6: Influence of the wall temperature on the surface temperature and velocity in the 

super-critical region for 0T̂ 278K=  and 2/3Ca Re 10= . .................................................... 167 

Figure 4-7: Influence of the wall temperature on the wall shear stress and Marangoni stress 

(surface shear stress) in the super-critical region for 0T̂ 278K=  and 2/3Ca Re 10= . Vertical 

lines indicate second transition locations. ............................................................................. 168 

Figure 4-8: Influence of the wall temperature on the average Nusselt number (no surface 

tension effect). Also shown in the figure is the predictions of Chaudhury (1964) for water 

without surface tension effect. Here, Pr=3 corresponds to 0T̂ 329.45K=  and Pr=10 

corresponds to 0T̂ 279.15K= . ............................................................................................. 169 

Figure 4-9: Influence of the wall temperature on the Nusselt number (no surface tension 

effect). The data for constant fluid property is from Searle et al. (2017). The Reynolds 

number is maintained at Re 4300= , 0T̂ 278K= . .................................................................. 170 

Figure 4-10: Influence of the wall heat flux on the boundary-layer heights and the film 

thickness for 0T̂ 300K=  and 2/3Ca Re 10= . ...................................................................... 171 

Figure 4-11: Influence of the wall-heat flux on the effective Prandtl number along the wall 

and the free surface for super-critical flow for 0T̂ 300K=  and 2/3Ca Re 10= . ................. 172 

Figure 4-12: Influence of inertia and the wall heat flux on the transition locations for 

0T̂ 300K= . Inset shows the rescaled transition locations. ................................................... 173 

Figure 4-13: Influence of the Reynolds number on the local Nusselt number distribution). 

The comparison with the measurements and numerical results of Liu & Lienhard (1989) is 

also included. ........................................................................................................................ 175 



 

xviii 

 

List of Appendices 

Appendix A: The thin-film equations and boundary conditions .......................................... 200 

 



 

xxii 
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Chapter 1  

1 Introduction 

The circular impinging jet flow and hydraulic jump will be introduced including the 

applications, practical relevance and analogies to other physical phenomena. The major 

theoretical tools and theories are then introduced followed by an introduction to the 

existing literatures on the hydrodynamics and heat transfer of impinging jet flow and 

circular hydraulic jump. The objectives and thesis outline are given at the end of the 

chapter. 

1.1 Background and applications 

When a circular liquid jet impacts a solid surface, it spreads out radially as a thin film. 

The thickness of the liquid develops gradually until reaching a radial location where the 

height of the liquid rises abruptly as illustrated in Figure 1-1a. The sudden increase of the 

liquid depth is known as the circular hydraulic jump that can be daily observed when the 

tap water hits the bottom of a kitchen sink (Figure 1-1b). The region before the hydraulic 

jump is formally known as the supercritical region characterized by having high velocity. 

In the post-jump field, known as the subcritical region, the velocity of the liquid 

significantly drops due to the sudden increase of the liquid depth.  

 

Figure 1-1: Schematic illustration of impinging liquid jet and a circular hydraulic 

jump. 
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It is worth noting that the hydraulic jump can also occur on a much larger scale and non-

circular shape, which is generally known as planar jump. The planar hydraulic jump 

usually occurs when a fast discharging flow meets a slowly moving stream or an 

obstacle. Figure 1-2 illustrates a 2-D hydraulic jump in a discharging flow from a dam. 

For both circular and planar hydraulic jumps, a depth Froude number can be defined as 

h
V

Fr ,
ˆgh

=           (1.1.1) 

with V  being the flow velocity, g the gravitational acceleration and ĥ  the depth of the 

liquid. In the current thesis, a hat is used to denote a dimensional variable or parameter 

when necessary. The supercritical flow is characterized by having hFr 1  while the 

subcritical flow has hFr 1  (Crowe 2009). 

 

Figure 1-2: Planar hydraulic jump. 

Introductions to planar hydraulic jump can be found in undergraduate textbooks on fluid 

mechanics or open-channel flows. This type of hydraulic jump is often artificially created 

by engineers to dissipate energy below spillways and discharging outlets. A proper 

design can destruct large amounts of energy and reduce the scouring and damage to the 

channel bed. For this reason, there is extensive research on the planar hydraulic jump. 

However, the focus of the current thesis will be on the circular hydraulic jump. 

The circular hydraulic jump was first described by Leonardo da Vinci in the 1500s in one 

of his paintings and it is intriguing to find that such a common and simple-looking 
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phenomenon is still far from being fully understood today after such a long time of 

research and hundreds of publications. Based on the observation of Bush et al. (2006), 

there are three basic types of circular hydraulic jump as illustrated by Figure 1-3. In the 

absence of downstream obstacle, the height of the jump is relatively small and there is 

only a separation roller downstream of the jump. This is the standard hydraulic jump 

known as the type I jump (Figure 1-3a). If the downstream depth is increased by 

mounting an obstacle, a second roller near the free surface will appear as some of the 

liquid falls back on the coming flow from the supercritical region, which features a type 

IIa jump (Figure 1-3b). If the downstream depth increases further, the type IIa jump 

transforms into a type IIb jump (Figure 1-3c) marked by having a ‘double-jump’ 

structure. The current thesis focuses only on the standard type I jump. 

 

Figure 1-3: Different types of circular hydraulic jump. 

Before giving a detailed introduction and discussing outstanding issues, it is important to 

discuss first some of the many applications of impinging jet flow and heat transfer, and 

the practical relevance of the hydraulic jump to engineers and scientists. Apart from its 

common use as rinsing flow in many applications (Hsu et al. 2011; Walker et al. 2012), 
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the impinging jet flow is important in numerous industrial cooling applications. For 

example, liquid jet impingement is the major cooling method in machining process, 

where the cutting liquid (coolant) is directed to impinge at the target area to control the 

local temperature which affects significantly the mechanical properties of the product 

(DBMR 2019). Liquid oil jet cooling is also used in the car engine’s piston room 

(Melaniff 2003), on the other side of which is the combustion chamber where a large 

amount of heat is generated. A proper design of the cooling system helps to avoid the 

overheating the piston and its accessories. In addition, liquid jet impingement is always 

used in the jet quenching and jet cooling process in the heat treatment of steel and hot 

strip rolling production lines (Linz 2011). 

The impingement target can also be a rotating surface, for which a common application is 

the spinning disk reactor (SDR) for chemical reactions (Reay 2013). Usually one or more 

liquids can be fed at the centre of a rotating disk which can be either cooled or heated. 

The liquid spreads over the disc (and mixes if more than one liquid is present) and the 

produced liquids are collected from the outlet. The intensity of mixing, heat and mass 

transfer rate can be precisely controlled by adjusting the rotating speed. Moreover, by 

rotation, the liquid layer can be made ultra thin, providing good characteristics for iso-

thermal heating, chemical reaction and liquid atomization. 

Recently, micro electronic devices became increasingly popular and compact power 

modules are widely used in varieties of power control and conversion applications with 

increasing trends in the operating voltage and current (Bhunia et al. 2007). Consequently, 

temperature control of such high-thermal-density systems becomes quite challenging. In 

this case, traditional air fan cooling of electronic devices often falls short, begging more 

efficient liquid cooling systems. In recent decades, increasing attention has been drawn to 

the high performance of liquid jet cooling on electronic devices, making crucial the 

understanding of the hydrodynamics and heat transfer of liquid jet spreading. 

The hydraulic jump is a phenomenon often encountered in impinging jet flow, except for 

high-speed jets. The fast motion of a liquid inside the jump provides a high rate of heat 

and mass transfer as well as a large shear stress, whereas the low velocity in the 



5 

 

subcritical region (downstream of the jump), caused by the hydraulic jump, dramatically 

harms the performance (Mohajer & Li 2015). Consequently, the prediction of the jump 

location (radius) is crucial in the design of relevant processes. 

Apart from the direct relevance to practical applications, the problem is also of scientific 

interest, particularly the understanding of the transition from the supercritical to the 

subcritical flow along free surface flow. Due to its fundamental and practical importance, 

circular jet impingement and hydraulic jump has become the focuses of many studies in 

the recent decades. 

Before discussing existing theories and methodologies, there are two interesting 

analogies of the circular hydraulic jump worth discussing. The first one is the analogy to 

a white hole (the reverse of a black hole), which is a hypothetical region that light wave 

cannot enter but can always escape from. As mentioned above, hFr  is greater than 1 in 

the supercritical region so that ˆV gh , where ˆgh  is the speed of the shallow-water 

wave (Kundu et al. 2016). Consequently, the flow is faster than the shallow-water wave 

in the supercritical region. In this case, the wave can only travel downstream. In the 

subcritical region, however, the wave can travel in both directions as hFr  is smaller than 

1. In this sense, the region upstream of the hydraulic jump can be viewed as a 

hydrodynamic white hole since the wave is always trapped outside (Jannes et al. 2011).  

The second analogy of the circular hydraulic jump is the similarity to the transition from 

supersonic to subsonic flow in aerodynamics. The Mach number is defined by 

c

V
M ,

V
=           (1.1.2) 

with V being the velocity of an object and cV  being the speed of sound. If an object is 

traveling with a speed greater than the speed of sound (e.g. a supersonic jet), the air 

around the object will experience a transition from the supersonic (M > 1) to the subsonic 

state (M < 1). Therefore the circular hydraulic jump can be an important tool to study 

other problems involving transition effects. 
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1.2 Modeling of the flow and thermal fields of a spreading 
jet and a circular hydraulic jump 

The dimensionless numbers associated with the flow and thermal field in the impinging 

jet problem will be first introduced. The major theories and assumptions are then 

discussed followed by the introduction of the theoretical tools in the current thesis. 

1.2.1 Dimensionless numbers 

Dimensionless numbers are important parameters in the similarity analysis of 

hydrodynamic and thermal systems. We have already defined two dimensionless 

numbers as per Equations (1.1.1) and (1.1.2). In fact, for any problem of viscous flow, the 

first important dimensionless number is the Reynolds number, which is defined in the 

current thesis by 

0

Q
Re ,

a
=
 

          (1.2.1) 

with Q, a and 0  being the incoming volume flow rate, the jet radius and the kinematic 

viscosity, respectively. The Reynolds number reflects the strength of the inertial over the 

viscous effects or the strength of the convective momentum transfer to the diffusive 

momentum transfer. 

When heat transfer is involved, it is always convenient to introduce the Peclet number, 

defined by 

Q
Pe ,

a
=
 

          (1.2.2) 

where   is the thermal diffusivity, defined by 

p

k
,

C
 =


          (1.2.3) 
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with k,   and pC  being the thermal conductivity, density and specific heat respectively. 

By analogy, the Peclet number can be viewed as the counterpart of the Reynolds number 

as it reflects the strength of convective heat transfer over conductive heat transfer. The 

ratio of Peclet number to Reynolds number defines the Prandtl number, namely 

0Pr ,


=


          (1.2.4) 

which reflects the ratio of viscous diffusion to thermal diffusion. The Prandtl number is 

generally greater than 1 for non-metallic liquids but smaller than 1 for liquid metals. 

In thermal convection, another important dimensionless number characterising the heat 

transfer performance is the Nusselt number, defined by 

( )
w

w 0

q̂ a
Nu ,

ˆ ˆk T T
=

−
         (1.2.5) 

with wq̂  being the wall heat flux, wT̂  being the wall temperature and 0T̂  being the jet 

temperature. 

It should be noted that only some important dimensionless number are introduced here 

for convenience of discussion in the current chapter. Other dimensionless numbers will 

be introduced in later chapters when needed. 

1.2.2 Boundary layer theory and the thin-film approach 

The laminar boundary layer equations for axisymmetric flow and heat transfer can be 

written as 

ˆ ˆ ˆu u w
0,

ˆ ˆ ˆr r z

 
+ + =

 
        (1.2.6a) 

2

0 2

ˆˆ ˆ ˆu u 1 p u
ˆ ˆu v ,

ˆ ˆˆr z r ẑ

    
+ = − + 

     
      (1.2.6b) 
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2

0 2

ˆ ˆ ˆ ˆ ˆv v uv v
ˆ ˆu w ,

ˆ ˆˆr z r ẑ

  
+ + = 

  
       (1.2.6c) 

ˆ1 p
g 0,

ŷ


− + =
 

        (1.2.6d) 

2

2

ˆ ˆ ˆT T T
ˆ ˆu v ,

ˆ ˆr z ẑ

   
+ =  

   
       (1.2.6e) 

Here a hat denotes a dimensional variable. û , v̂  and ŵ  are the velocities in r̂ , ̂  and ẑ  

directions. p̂  and T̂  are the flow pressure and temperature. 0,g,   and   are physical 

parameters representing the density, gravitational acceleration, kinematic viscosity and 

thermal diffusivity respectively. As the flow is assumed to be axisymmetric, azimuthal 

dependence on the tangential coordinate is not involved. 

In fluid dynamics, the main idea behind the boundary layer theory is that the effect of 

viscosity is only important within a thin layer of fluid in the immediate vicinity of a solid 

boundary (Prandtl 1904), especially at moderate to large flow rate (i.e. a large Reynolds 

number). Therefore, the boundary layer is in nature a viscous layer, outside of which the 

fluid is of inviscid character as illustrated by Figure 1-4a. It is worth noting that there is 

no clear-cut border between the viscous and the inviscid regions. It is generally 

acceptable that the upper edge of the boundary layer can be defined at the position where 

the velocity approaches 99% of the free stream velocity (Schlichtling & Gersten 2000) 

where the velocity gradient is negligibly small. It is also noted that, even inside the 

boundary layer region, the velocity gradient is the largest at the wall and continuously 

decreases until it almost vanishes near the edge of the boundary layer. 

Particularly for the boundary layer on a flat plate, it is observed that the streamwise 

velocity varies much slower along the plate than in the direction normal to it according to 

a scaling analysis of the Navier-Stokes equations (Schlichtling & Gersten 2000, see also 

Appendix A). This theory in fact constitutes the leading order solution of a matched 

asymptotic expansion analysis for the whole flow field. Higher order boundary layers are 
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not of concern in the current thesis and interested readers are referred to the works of Van 

Dyke (1964) and Sobey (2000). 

While the general boundary layer is bounded by the same fluid, the thin-film theory is 

specifically applicable to the flow of a thin liquid layer on a solid surface, characterised 

by having a liquid-air interface, known as the free-surface thin-film flow, as shown in 

Figure 1-4b. The velocity distribution within the thin liquid film is also of the boundary-

layer type. As the air has a much smaller viscosity compared to the liquid, the velocity 

gradient and thus the shear stress of the liquid near the free surface is also negligible. A 

pressure boundary condition is generally obtained at the liquid-air interface based on the 

air pressure (and surface tension when a large surface curvature is present). In the present 

thesis, the boundary-layer equations and the thin-film theory constitute the major 

assumptions of the theoretical analysis. 

 

Figure 1-4: Boundary-layer and thin-film flow. 

1.2.3 The Kármán–Pohlhausen (K–P) approach 

One important observation regarding Equations (1.2.6) is that the partial derivatives with 

respect to the radial coordinate are of first order. This is not surprising since the large 

velocity (Reynolds number) makes the flow a one-way problem (i.e. only one boundary 

condition is needed) in the streamwise direction. The boundary-layer equations admit an 

exact solution in the absence of transverse pressure gradient (Watson 1964; Schlichtling 

& Gersten 2000). Therefore, it is also not surprising that an exact solution would not exist 

in the presence of a hydrostatic pressure. Consequently, the convenient Kármán–
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Pohlhausen (K–P) approach will be adopted due to its proven efficiency and accuracy 

(Schlichtling & Gersten 2000). 

The K-P approach is, to the best of the author’s knowledge, the earliest and still the most 

widely used method for solving the boundary layer equations, originally due to the works 

of Kármán (1921) and Pohlhausen (1921). It is essentially an integration of the boundary-

layer equations between the solid surface and the upper edge of the boundary layer or the 

free surface. By approximating the velocity profile, the boundary-layer thickness, film 

thickness and wall shear stress can be obtained. In fact, the K-P approach can also be 

understood from a numerical point of view as illustrated in Figure 1-5. 

 

Figure 1-5: A numerical view of the K-P approach. 

In a formal numerical method, the discretization (and meshing) in both the horizontal and 

the vertical direction are necessary. However, with the K-P approach, the discretization in 

the vertical direction is eliminated by imposing a certain profile for velocity distribution. 

The profile is designed as to satisfy the physical boundary conditions and mass 

conservation. This is equivalently to deploying one layer of mesh cells (Figure 1-5) with 

variable heights of each control volume. Then the solution can be obtained by an 

integration in the horizontal direction, which either admits an analytical solution or can 

be accurately obtained with a high-order Runge-Kutta method. It should be noted that the 
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boundary-layer equations and the K-P method are equally applicable to the energy 

equation and heat transfer problems as will be discussed in later chapters. 

1.2.4 Momentum-force relation across the hydraulic jump 

From many aspects in the studies of hydraulic jump, predicting its location is 

undoubtedly the most important aspect and is still an open issue due to its influence on 

the heat and mass transfer performance. Therefore, understanding the changes in velocity 

and pressure before and after the jump is crucial to compute the hydraulic jump profile 

and predict its location. The basic relation to use is derived from Newton’s second law 

that the rate of change of linear momentum equals to the total applied force in the 

direction of interest. In the current problem, the rate of destruction of momentum across 

the jump equals the reverse hydrostatic pressure force due to the jump in depth (Crowe 

2009). To demonstrate this method, a control volume of angle   across the jump is 

taken as shown in Figure 1-6a. Assuming inviscid flow for convenience for now, the 

relation per unit circumferential length between the velocity and pressure is given by 

( )2 2 2 1 1 1 1 1 2 2 0
ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆu h u u h u p h p h f , − = − +       (1.2.7) 

 

Figure 1-6: A schematic view of the control volume across the hydraulic jump: (a) 3-

dimensional view; (b) axisymmetric view. 
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where û , p̂  and ĥ  are the velocity, the average hydrostatic pressure and the height of the 

cross sections before and after the jump. It should be emphasized that for a viscous 

liquid, the left-hand-side of Equation (1.2.7) should be an integration over the cross 

section of the liquid as the velocity varies in the vertical direction. The viscous force at 

the bottom surface will be neglected anyway as the width of the jump is negligibly small 

(Watson 1964; Prince et al. 2012). Based on Equation (1.2.7), the hydrodynamic 

character on one side of the jump can be determined if the information on the other side 

is known. The additional term ( )0f   represents the force per unit circumferential length 

due to surface tension in the presence of large curvature (i.e. small jump radius) 

exclusively for circular jumps. We here give a brief derivation below for this additional 

term. 

Considering the shape of the jump in the axisymmetric plane as illustrated in Figure 1-6b, 

we write the force per unit circumferential length due to surface tension as 

( ) ( )( )0 0A
J

1
f dA,

r̂
 =  

 
n n r        (1.2.8) 

where Ĵr  is the radius of the jump, A is the area of the free surface within the control 

volume, 2ˆˆ ˆdA rd dr 1 h '=  +  and 1 2
ˆ ˆˆR r R  . Here a prime denotes a total 

differentiation. It should be noted that ĥ ' 0  at 1
ˆr̂ R=  and 2

ˆr̂ R= . The free surface is 

defined by ( ) ( )ˆˆ ˆˆ ˆH r,z z h r 0= − = , so that the outward unit surface normal can be written 

as 

2 2

ˆH h ' 1
, .

H ˆ ˆ1 h ' 1 h '

 
 − = =

  + + 

n        (1.2.9) 

Upon using Equation (1.2.9), the force due to surface tension, as per Equation (1.2.8), 

finally takes the following form 
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( )
R̂ˆ 2R2

2 20
0

R̂J ˆ1 R1

ˆ ˆˆ ˆf r 1 h ' 1 h ' dr .
r̂

 
   = + − +

  
 

     (1.2.10) 

It is not difficult to realize that the second term in Equation (1.2.10) represents the total 

arclength s of the free surface in the axisymmetric plane between 1
ˆr̂ R=  and 2

ˆr̂ R= . In 

this case, for a sharp jump, the first term vanishes since at 1 2
ˆ ˆR R= , and the second term 

becomes 2 1
ˆ ˆh h− . Therefore, 

( ) ( )0
0 2 1

J

ˆ ˆf h h ,
r̂


 = − −        (1.2.11) 

Equations (1.2.10) and (1.2.11) were first derived by Bush & Aristoff (2003). In fact, for 

a sharp jump, Equation (1.2.11) can be directly obtained by analysing the pressure jump 

across the cylindrical surface of radius Ĵr  and length ( )2 1
ˆ ˆh h−  . 

1.3 Literature review 

In this section, the existing studies relevant to the hydrodynamics and heat transfer of an 

impinging jet and hydraulic jump are introduced. The advantages and limitations of these 

works are also discussed. 

1.3.1 The hydrodynamics of the impinging jet and circular 
hydraulic jump 

Two major branches of studies exist on the circular impinging jet and hydraulic jump. To 

start with, it is natural to expect that the height after the jump should have a tangible 

effect on the location of the jump. In other words, a larger subcritical depth would result 

in a smaller jump radius due to the larger reverse hydrostatic pressure gradient at the 

jump. The first major contribution to the prediction of the circular hydraulic jump 

structure based on this idea is due to Watson (1964). In his work on the liquid jet 

spreading on a horizontal plate, Watson assumed that a boundary layer develops near the 

impingement point and grows until reaching the free surface at some transition location 
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(not the jump location) making the liquid layer fully-viscous. The thickness of the 

boundary layer is determined by the K-P approach and the fully-viscous region is solved 

by a similarity transformation method (Watson 1964). In the fully-viscous region, the 

film thickness continues to grow until reaching the hydraulic jump. Gravity was 

neglected in the supercritical region due to the small liquid thickness. Assuming the 

height of the liquid after the jump is known, the location of the jump was obtained using 

the force and momentum balance approach as discussed in Section 1.2.4. Watson (1964) 

made an approximation that the velocity is uniform across the subcritical depth due to the 

slow motion of the liquid. 

Watson’s (1964) approach yielded a reasonably good agreement with his own 

experiments on the location of the jump. In his experiment, the subcritical thickness is 

controlled by barrier downstream. Olsson & Turkdogan (1966) carried out experimental 

measurements on the free-surface velocity by dropping small corps on the surface of the 

liquid and taking photos using a high-speed camera. They found that the free-surface 

velocity is about 10% lower than the free stream velocity predicted by Watson (1964). In 

contrast, the experiments of Azuma & Hoshino (1984a,b) did support the theory of 

Watson (1964). It should be noted that, in the measurements of Olsson & Turkdogan 

(1966), it was not evident that those corps would accurately follow the speed of the free 

surface (Liu et al. 1991). Watson’s theory was later also tested by Errico (1986), Vasista 

(1989), Stevens & Webb (1992), Liu & Lienhard (1993), Bush & Aristoff (2003) and 

Baonga et al. (2006). It was observed that Watson’s prediction is generally satisfying for 

a large jump radius. Liu & Lienhard (1993) observed that Watson’s predictions are least 

satisfactory in the limit of relatively small jump radius for which surface tension effect 

becomes important. In this regard, Bush & Aristoff (2003) included the surface tension 

effect in the force and momentum balance relation, leading to a better agreement with 

experiment. 

Watson’s method laid out the foundation for numerous later extensions. Craik et al. 

(1981) observed a separation eddy precisely behind the hydraulic jump and attributed the 

cause of hydraulic jump to flow separation caused by the subcritical depth. Kate et al. 

(2007) experimentally studied the formation of the hydraulic jump on an inclined plane. 
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They observed that the hydraulic jump is bounded by a smooth curve or a curve with 

sharp corners depending on the inclination angle. Zhao & Khayat (2008) extended 

Watson’s theory to non-Newtonian liquids for both shear-thinning and shear-thickening 

fluids of the power-law type, and found that only the overall viscosity influences the 

location of the hydraulic jump. The influence of slip was examined by Dressaire et al. 

(2010) with a combination of experiment and theoretical analysis but no quantitative 

relation between the slip length and the hydraulic jump was given. Later the effect of slip 

was also examined by Prince et al. (2012, 2014) using a K-P approach, and by Khayat 

(2016) using a numerical approach. Both Prince et al. (2012, 2014) and Khayat (2016) 

observed that the location of the jump moves downstream for a larger slip length. The 

influence of the nozzle-to-disk distance on the hydraulic jump radius was investigated 

experimentally by Brechet & Neda (1999), who observed that the nozzle-to-disk distance 

has little influence on the jump location. Kuraan et al. (2017) however in their 

experiments found that when the ratio of nozzle-to-disk distance to the nozzle diameter is 

less than 0.4, the radius of the hydraulic jump increases. 

It is worth noting that the relation between the momentum and the force across the jump 

requires the knowledge of the height immediately downstream of the jump, which is 

usually artificially fixed by mounting a barrier downstream (Watson 1964; Bush & 

Aristoff 2003; Prince et al. 2012, 2014; Zhao & Khayat 2008; Khayat 2016). In fact, such 

barriers can give rise to both type I and type II jumps depending on the subcritical height 

(see Section 1.1). In practical applications, however, the target surface is often free of 

such controlled height and the flow is often allowed to drain freely at some edge far away 

from the impingement point. Therefore, the jump is most likely of type I. This constitutes 

the major drawback of Watson’s approach that the downstream depth has to be 

prescribed. Another consideration is that the velocity of the flow after the jump was 

assumed to be uniform (i.e. inviscid) across the liquid depth in most of these studies, but 

the fluid is viscous in reality (Duchesne et al. 2014). 

The other branch of studies initially began with the theoretical approach of Tani (1949), 

which assumes that the flow separation (and thus the hydraulic jump) is caused by the 

accumulating liquid thickness from the supercritical region, which explains the 
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occurrence of type I jump without a downstream confinement. Taking guidance from the 

pioneering work of Tani (1949), Bohr et al. (1993) incorporated the hydrostatic pressure 

in the shallow-water equations, and, by averaging the axisymmetric Navier–Stokes 

equations in the vertical direction, they obtained an ordinary differential equation for the 

average velocity. They found that the average velocity can exhibit a singularity at some 

finite distance, indicating a potential separation. They argued that the jump location is 

close to the singularity point of their averaged equation, and deduced that the jump radius 

scales as 5/8 3/8 1/8
0Q g− − , where Q is the flow rate, 0  is the kinematic viscosity and g 

is the acceleration due to gravity. The scaling constant depends on the velocity profile of 

choice. In their scaling law however, the radius of the jump depends only on the overall 

flow rate, not on the specific impinging velocity. The results of Bohr et al. (1993) predict 

well the trend from experiment but also shows some discrepancy quantitatively. In 

addition, their scaling cannot yield the shape of the jump. Later, Bohr et al. (1997) and 

Watanabe et al. (2003) adopted a non-self-similar velocity that allowed them to predict 

the shape of the jump. However, two experimental points are needed in their solution to 

fix the boundary conditions. Also, those two points must be close to the jump, otherwise 

would drive the solution to unstable states. Therefore, some prior knowledge of the jump 

location is required. More importantly, as the boundary-layer equations do not strictly 

hold across the jump, the validity of their solution is questionable. Kasimov (2008) 

modified the formulation of Bohr et al. (1993) by adding surface tension effect and 

incorporating a falling edge of the plate. However, no comparison against experiment 

was reported. 

Gajjar & Smith (1983) showed the relevance of hydraulic jump to the hypersonic 

separation/free interaction problem and concluded that viscous-inviscid interaction is the 

cause of hydraulic jump. They also showed that it is only in a viscous sub-sublayer where 

the flow reacts to the reverse hydrostatic pressure gradient and separates. Bowles & 

Smith (1992) analyzed the hydraulic jump caused by a bump using the ‘viscous-inviscid 

interaction’ theory and achieved a good agreement with the measured jump profile of 

Craik et al. (1981). They showed that the hydraulic jumps are due to the flow separation 

caused by a viscous-inviscid interaction resulted from downstream conditions (at locally 
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large but globally small Froude number). They also proposed that the hydraulic jump is 

governed by surface tension and viscosity upstream, and viscosity and hydrostatic 

pressure gradient downstream. Higuera (1994) numerically solved the location and 

structure of the planar jump using boundary-layer approach. The boundary condition was 

near the edge was fixed by matching the downstream flow with the flow that turns around 

the trailing edge under gravity. Later Higuera (1997) also extended his work to the 

circular case for the flow entering the jump for large values of Reynolds number and 

Froude number. The reader is also referred to the work of Scheichl (2018, 2019) for the 

case of a rotating disk using asymptotic and numerical analysis. 

The recent measurements of Duchesne et al. (2014) indicate that, for a steady hydraulic 

jump, the flow in the subcritical region is essentially of the lubrication type. More 

importantly, they found a constant jump Froude number based on the jump height and the 

depth-averaged velocity downstream of the jump. The constancy reflects the 

independence of the flow rate and a weak dependence on other parameters. With this 

jump Froude number, they deduced that the location of the hydraulic jump can be fully 

determined using the lubrication flow from downstream given the liquid thickness near 

the plate’s trailing edge. They also observed that the thickness near the trailing edge is 

almost constant with a weak dependence on the incoming flow rate. Therefore, its value 

can be taken from experiment for a given liquid. However, the mechanism behind the 

constant jump Froude number is unknown according to Duchesne et al. (2014). More 

recently, the measurements of Mohajer & Li (2015) indeed supported the claim of 

Duchesne et al. (2014), but they found that the jump Froude number is not independent 

of the surface tension. In the current thesis, the constancy of the jump Froude number 

will be justified in multiple ways for both low- and high-viscosity liquids. 

Most of the hydraulic jumps considered in the literature are steady, and the current thesis 

will also focus on the steady hydraulic jump. Nevertheless, the hydraulic jump can 

become unstable as well. Craik et al. (1981) reported the instability of circular hydraulic 

jump and showed that the jump becomes unstable once the Reynolds number 

immediately upstream of the jump exceeds a critical value. A growth of the separation 

eddy downstream of the jump was also observed prior to the instability. Ellegaard et al. 
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(1998) observed that the axial symmetry breaks after the jump becomes unstable. Stable 

polygonal jumps may form after the instability occurs. Bush et al. (2006) confirmed the 

findings of Ellegaard et al. (1998) with experiment and highlighted the influence of 

surface tension in causing the polygonal hydraulic jump. Kasimov (2008) also studied the 

influence of surface tension on the stability of the hydraulic jump, and found that a steady 

jump may not exist at high surface tension. The polygonal regime was recently examined 

theoretically by Martens et al. (2012) and numerically by Rojas & Tirapegui (2015). 

Experimental work was also reported by Teymourtash & Mokhlesi (2015). 

Numerical predictions on the formation of hydraulic jump were not so many in the 

literature. Ellegaard et al. (1996) studied the flow separation under the hydraulic jump. 

To circumvent the difficulties caused by the unknown free surface, they replaced the 

liquid-air interface by a fixed, but stress-free boundary at prescribed locations based on 

experiment. In other words, they imposed the free surface profile and only solved for the 

flow. As expected, the flow separation was captured behind the hydraulic jump due to the 

strong reverse pressure gradient. Passandideh-Fard et al. (2011) proposed a numerical 

approach to compute the hydraulic jump using the volume-of-fluid approach (Hirt & 

Nichols 1981). The location of the jump was accurately predicted. In their calculation 

domain however, the thickness near the trailing edge was artificially controlled. 

Passandideh-Fard et al. (2011) observed that, for high-viscosity liquids, the hydraulic 

jump is more stable and its location less sensitive to the subcritical thickness. Rojas et al. 

(2010, 2013, 2015) developed and implemented a spectral representation for the velocity 

profile in the vertical direction in their studies on the circular hydraulic jump. Both the 

location and the height of the jump were captured using their ‘inertia-lubrication theory’. 

The thickness of the liquid was imposed at the plate’s trailing edge based on experiment. 

In addition, two other parameters need to be artificially adjusted to match the 

experiments. Rohlfs et al. (2014) recently also investigated numerically the impinging jet 

flow. Their prediction of the shape of the free surface generally agrees with the prediction 

of Watson (1964). However, the hydraulic jump region is not included. 

As discussed earlier, it is generally agreed that the cause of the circular hydraulic jump is 

largely due to gravity. However, Bhagat et al. (2018) very recently observed that a 

hydraulic jump still forms when a horizontal jet impacts a vertical wall. They have also 
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proposed a scaling law using a surface energy approach in an approximate manner. Based 

on their scaling analysis, Bhagat et al. (2018) concluded that for a circular hydraulic 

jump, surface tension is the only dominant effect and gravity plays almost no role. Their 

findings seem to overthrow most of the existing studies. However, due to the nature of 

their approximate method, their findings are not conclusive. More recently, Duchesne et 

al. (2019) also pointed out that the approach of Bhagat et al. (2018) was “wrong”. Instead 

of using the approximate surface energy approach, Duchesne et al. (2019) rigorously 

derived a corrected energy equation based on the Laplace pressure and the effect of 

surface curvature, which reflects the only effect of surface tension. They showed that 

their corrected formulation reduces significantly the influence of surface tension, 

invalidating the conclusion of Bhagat et al. (2018). More rigorous analysis on the issue of 

Bhagat et al. (2018) can be found in Scheichl (2018, 2019). This recent dispute will also 

be addressed in the current thesis. 

1.3.2 The influence of a rotating surface on the impinging jet flow 
and hydraulic jump 

The influence of a rotating surface on impinging jet flow has also been explored in the 

literature. Dorfman (1967) investigated the boundary layer flow on a rotating surface 

using a similarity transformation. However, the flow field is infinite, without a free 

surface (see also Schlichtling & Gersten 2000). The early film thickness measurements of 

Charwat et al. (1972) for the flow on a rotating disk showed that the film thickness ĥ

decays with rotation speed   and radial distance r̂  like ( )
2/5

1 2
0

ˆ ˆh ~ r Q /−   . Charwat’s 

scaling law reflects the dominance of centrifugal effects over inertia to balance with the 

viscous effects. Rauscher et al. (1973) later proposed a similar scaling 

( )
1/3

2/3 2
0

ˆ ˆh ~ r Q /−    which also indicates a monotonic decay with radial distance. 

Miyasaka (1974) reported a maximum thickness at some location away from the 

impingement point, in contrast to the monotonic decay previously reported. The 

hydraulic jump was not involved in his work. Hung (1982) studied the impinging jet flow 

using an integral method. Both a radial and a tangential boundary layers are assumed. 

However, the physical origin of the tangential boundary layer development was not clear. 
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The hydraulic jump region was not included. Thomas et al. (1990) performed a numerical 

analysis on the axisymmetric film flow on a rotating surface and predicted a significant 

thinning of the film with increased speed of rotation. The radial velocity was assumed to 

be uniform across the thickness of the liquid. The hydraulic jump was found to disappear 

at a high rotating speed or in the absence of gravity. 

Later, Thomas et al. (1991) conducted thickness measurements of a film emerging from a 

collar on a rotating disk and found that the jump location depends on the rotation speed 

and the flow rate. However, no quantitative information was given for the rotating 

hydraulic jump. In addition, a local maximum in the film thickness was also observed in 

their experiments. They found that the local maximum moves downstream with 

increasing inertia but upstream with increasing rotation speed. They also identified three 

distinct flow regions: an inner inertia-dominated region near the centre of the disk, a 

transition region where inertia and rotation are of the same strength, and an outer 

rotation-dominated region near the perimeter of the disk. Rahman & Faghri (1992) 

investigated numerically the thin-film flow over a rotating disk using the same flow 

configuration of Thomas et al. (1991). The computed film thickness agreed reasonably 

with the measurements of Thomas et al. (1991). They also concluded that the flow is 

dominated by inertia near the collar and by rotation near the trailing edge of the disk 

confirming the findings of Thomas et al. (1990). But the hydraulic jump was not 

investigated in their numerical domain. Zhao et al. (2000) numerically simulated the flow 

field on a rotating surface downstream of the hydraulic jump in their study on liquid 

metal atomization. A monotonic decrease of the film surface was observed. Convective 

terms were not included in the governing equations. 

Ozar et al. (2003) examined experimentally again the radial spread of water emerging 

from a collar onto a rotating disk following the work of Thomas et al. (1991). They 

reported a similar behavior of the local maximum thickness as in the work of Thomas et 

al. (1991). Later, Rice et al. (2005) examined numerically the flow in a two-dimensional 

axisymmetric domain using the configuration of Ozar et al. (2003). The film thickness 

was determined using the volume-of-fluid method. Their results agreed reasonably with 

the measurements of Ozar et al. (2003). The formation of a hydraulic jump was not 
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included. An approximate approach for the emerging flow between a collar and rotating 

disk was also developed by Basu & Cetegen (2007) using a parabolic approximation for 

the velocity. The computed film thickness agreed with the numerical results of Rice et al. 

(2005). It should be noted that in most of these works, the thickness of the liquid is 

known at some upstream location since the flow is emitted from the gap between a collar 

and a rotating surface. Deng & Ouyang (2011) investigated the vibration of spinning 

disks and the powder formation in centrifugal atomization process. The information on 

hydraulic jump is not reported. Prieling & Steiner (2013) applied a transient integral 

approach in his study on axisymmetric flow over a rotating surface. Both an upstream 

maximum and a downstream waviness were observed. They also found that the 

difference between the steady and unsteady formulations is small. The results from their 

integral method generally agreed with the 2-D CFD model. Scheichl & Kluwick (2019) 

applied an asymptotic method to study the supercritical flow on a rotating disk with a 

large Reynolds number assumption. They captured a maximum film thickness that 

weakens with rotation, simultaneously with its location moving toward the center of the 

disk, confirming the findings of Thomas et al. (1991) and Ozar et al. (2003). 

In the works of both Thomas et al. (1991) and Ozar et al. (2003), waviness of the free 

surface was observed. Indeed, Surface waves of axisymmetric and non-axisymmetric 

shapes can form depending on the flow rate and rotation speed indicating the instability 

of the axisymmetric flow. Charwat et al. (1972) found that the smooth axisymmetric flow 

exists within a regime defined by the flow rate, rotation speed and surface tension of the 

liquid. Outside this regime, surface waves can form in concentric, spiral or irregular 

shapes depending the flow parameters. A linear stability analysis of the film was also 

given and found to agree with his experiment. Sisoev et al. (2003) developed a system of 

nonlinear evolution equations to model the axisymmetric capillary waves in rotating 

flow. Approximate solutions were presented and qualitative agreement with experiments 

was achieved with some quantitative discrepancies. Martar et al. (2005) numerically 

investigated the evolution equations for thin-film flow on a rotating surface. The 

formation of large finite-amplitude waves was observed and leads to deformations of the 

boundary layer. More aspects on the stability of rotating flow and wave formation can be 
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found in the work Sisoev et al. (2010) and the references therein. The current thesis will 

focus only on the smooth axisymmetric regime. 

1.3.3 Impinging jet heat transfer and its influence on the hydraulic 
jump 

For the heat transfer problem associated with a spreading jet, most existing studies 

focused only on the influence of the flow on the heat transfer. Chaudhury (1964) adopted 

Watson’s similarity approach for the impinging liquid jet on a heated wall. The 

temperature within the thermal boundary layer was approximated by a quartic profile. 

The convective heat transfer efficiency was found to exhibit a monotonic decrease with 

radial distance. As the stagnation zone was neglected, the solution is not valid near the 

impingement point. In fact, it leads to an infinite heat transfer rate (i.e. infinite Nusselt 

number). Chaudhury (1964) assumed that the fluid properties do not vary with 

temperature and there is no heat loss from the free surface due to the dominance of 

convection. These assumptions essentially lead to the independence of the Nusselt 

number of the temperature of the wall. Chaudhury’s (1964) work and assumptions 

became the basis for many later studies. Brdlik & Savin (1965) solved the thermal field 

of a liquid jet impinging on a solid surface at constant temperature using the K-P integral 

approach. In their model, it was assumed that the thickness ratio of the thermal and the 

hydrodynamic boundary layers remains equal to  1/3Pr−  so that the momentum equation 

was conveniently eliminated. Saad et al. (1977) numerically investigated a submerged jet 

impinging on a surface at constant temperature using an upwind finite-difference scheme. 

It was found that for a parabolic inlet velocity profile, the maximum Nusselt number is 

larger and closer to the center of the jet compared to a flat velocity profile. 

Wang et al. (1989a) considered the heat transfer in the stagnation zone and predicted a 

nearly constant Nusselt number. Later Wang et al. (1989b) also considered the heat 

transfer downstream of the stagnation region and extended their analysis to the case of 

distributed (varying with distance) wall temperature and heat flux condition using a series 

approach. Liu et al. (1993) numerically studied the effect of the surface tension on the 

stagnation heat transfer for inviscid liquids. They observed that at a very low flow rate, 

the inclusion of surface tension can slightly increase the Nusselt number. However, the 
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effect of surface tension is almost negligible for practical configurations. Gabour & 

Lienhard (1994) investigated experimentally the effect of surface roughness on the 

stagnation Nusselt number. The flow was found to be turbulent and the local Nusselt 

number could be increased by a maximum 50 percent compared to a smooth surface. 

Other studies on the stagnation zone heat transfer can be found in the review paper of 

Lienhard (2006). 

Baonga et al. (2006) showed that a smaller nozzle-to-disk distance slightly lowers the 

Nusselt number. In contrast, Kuraan et al. (2017) observed that at very low nozzle-to-disk 

spacing, the heat transfer can be enhanced due to the increase in the entrance velocity. 

Rohlfs et al. (2014) numerically investigated the heat transfer of an impinging free-

surface jet and found that a maximum Nusselt number can occur depending on the inlet 

velocity profile and the spacing between the nozzle the solid surface. Searle et al. (2017) 

studied impinging jet heat transfer of the axisymmetric flow over a slipping surface of 

constant temperature using a K-P approach. Their results suggested a drop in both the 

hydrodynamic and thermal boundary layers with increasing slip and temperature jump 

length. However, the effects of the temperature jump length was not conclusive since it 

was set equal to the slip length. 

The heat transfer of the thin film flow on a rotating disk was also explored. The effects of 

rotation were investigated by Ozar et al. (2004) experimentally, by Hung (1982), Thomas 

et al. (1990), Shevchuk (2003) and Basu & Cetegen (2006, 2007) using K-P methods, 

and by Rahman & Faghri (1992) by numerical simulation. In those studies, both the flow 

rate and rotation were found to increase the local heat transfer rate. Those works 

considered only the heat transfer of the flow field and assumed no heat loss from the free 

surface. The evaporation and conjugate effects (i.e. the heat transfer in the solid) were 

considered numerically by Rice et al. (2005) who observed that the conjugate effect can 

make 10% to 15% difference on the Nusselt number compared to the non-conjugated 

cases. 

For a large surface area or surface temperature, jet boiling may occur. In such cases, it is 

often necessary to deploy multiple jets to achieve the desired cooling performance. This 
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constitutes another hot area of research where most of the works are experimental and 

numerical due to the phase change in the physical domain. Such works can be found the 

in the review papers of Ma et al. (1993), Lienhard (2006), and Molana & Banooni 

(2013). They are not detailed here as the focus of the current thesis is on the single jet 

impingement without boiling effects. 

We emphasize that all the studies mentioned above assume constant fluid properties. 

Other theoretical and numerical works using such assumptions can also be found in the 

recent review paper of Jagtap et al. (2017). Nevertheless, it should be noted that even 

though the heat capacity and thermal conductivity do not change significantly with 

temperature for most liquids (Okhotin et al. 1992; Granato 2002), their viscosity 

decreases moderately or even significantly with temperature as a result of the decrease of 

the cohesive forces among liquid molecules (Kundu et al. 2016). For instance, water has 

a kinematic viscosity of 1.79 cSt at  0 C  which drops to 0.29 cSt when the temperature 

rises to 100 C  (Korson et al. 1969). The viscosity of other non-metallic liquids can have 

even larger variations of multiple orders of magnitude (Seeton 2006). It is therefore 

important to consider the dependence of viscosity on temperature, and consequently the 

influence of heat transfer on the flow. However, this two-way coupling consideration has 

largely been ignored in the existing theoretical and even in numerical works for jet 

impingement heat transfer problem. 

Currently the only known theoretical contribution to the two-way coupling for an 

impinging jet was carried out by Liu & Lienhard (1989). They adopted a K-P approach to 

solve the energy equation and obtained the thermal boundary layer thickness based on the 

established velocity and viscous boundary layer thickness. In their problem, the solid 

surface is heated by a uniform heat flux, and the Prandtl number is greater than unity. To 

account for the change of viscosity with temperature, they implemented a numerical 

iterative algorithm to solve the coupled problem. The viscosity was evaluated based on 

the locally averaged temperature. Later Liu et al. (1991) also extended their work to the 

regime where Prandtl number is smaller than unity. We note that the influence of heat 

transfer on the hydraulic jump region was not included in the work of Liu & Lienhard 

(1989) and Liu et al. (1991). In this regard, Sung et al. (1999), adopting a finite-element 
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implementation, solved the coupled problem and investigated the influence of heat 

transfer on the location and height of the hydraulic jump. The thickness of the liquid at 

the trailing edge was imposed with an empirical formula. The location of the hydraulic 

jump was found to move downstream with increasing wall temperature and heat flux. In 

addition, a sharp drop in the Nusselt number was reported in the hydraulic jump region. 

In the current thesis, a simple and efficient two-coupling method will be developed, 

allowing us to investigate the influence of heat transfer on the hydrodynamics of the 

spreading jet and the circular hydraulic jump. 

1.4 The objectives and the thesis outline 

1.4.1 The research gap 

First, as already discussed, the momentum and force balance approach across the jump 

requires the knowledge of the depth of the jump immediately after the jump. Previously it 

was usually taken from experimental measurements. Therefore a coherent theoretical 

model for the prediction of the jump without empirical input is still missing. In addition, 

the theoretical mechanism behind the constant jump Froude number (Duchesne et al. 

2014) is still not reported yet. 

Furthermore, the influence of surface rotation on a free impinging jet and hydraulic jump 

has rarely been reported even though there are works on the flow emerging from the slot 

between a collar and a rotational disk (Thomas et al. 1991; Ozar et al. 2003; Rice et al. 

2005). 

Recalling that the viscous force is neglected in momentum and force balance relation, one 

would anticipate that the accuracy of this method will drop if the width of the jump is not 

small. In other words, the viscous force at the bottom of the jump cannot be neglected if 

the jump is not steep. Indeed, the steep jump only occurs for low-viscosity liquid like 

water. For a high-viscosity liquid, the location of the jump is not always identifiable. The 

numerical simulation of Rojas et al. (2010) indeed depicts the ambiguity in the jump 

location. Their numerical film profiles illustrate how the abrupt jump ceases to exist with 

increasing viscosity, giving way to a smoother jump over a relatively large distance. It 

should also be noted that gravity is neglected before the jump in Watson’s (1964) method 



26 

 

and all the works following him. For a liquid with high viscosity however, gravity should 

not be omitted since the strong viscous effect often causes a large increase in the 

supercritical thickness, which in fact causes the smooth jump. Consequently, there should 

be a separate method specifically for high-viscosity liquids. But no such attempts have be 

made in the literature. 

For impinging jet heat transfer problem, extensive studies exist in literature. However, 

there is a lack in the consideration of the temperature-dependent viscosity as discussed. In 

the only couple of works where the two-way is considered, numerical iterations are 

unavoidable. In this case, the influence of the heat transfer on the hydraulic jump and the 

subcritical flow and thermal field are still missing theoretically. 

1.4.2 The objectives of the thesis 

The first objective of the thesis is to establish a theoretical model to determine the 

location of the jump without measuring the height of the jump. Consequently, the 

mechanism behind the constancy of the jump Froude number can also be justified. In 

addition, the influence of surface rotation on the flow and the hydraulic jump will also be 

investigated. 

A separated model for high-viscosity jump will be designed separately. And, since 

Bhagat et al. (2018) argued that surface tension is the dominant effect on formation of the 

circular hydraulic jump and gravity plays almost no role regardless of viscosity, it is 

desirable to isolate the effect of gravity (neglecting surface tension) to either validate or 

invalidate their arguments. 

For the thermal coupling problem, a simple iteration-free model will be developed to 

account for the temperature-dependent viscosity. Consequently, the influence of heat 

transfer on the flow and hydraulic jump will be quantified. 

1.4.3 Thesis outline 

In Chapter, to locate the hydraulic jump without empirical parameters, a theoretical 

model will be designed by directly connecting the inertia-dominated supercritical flow 

and the lubrication-type subcritical flow through a shock using the relation between the 
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momentum and pressure force. The mechanism behind the constancy of the jump Froude 

number will be investigated. The effects of rotation of the impingement surface will be 

also pursued. In Chapter 3, a specific model for high-viscosity hydraulic jump will be 

presented. We shall isolate the effects of gravity by neglecting surface tension so as to 

either validate or invalidate the recent arguments of Bhagat et al. (2018). In Chapter 4, a 

simple iteration-free model will be developed and tested. The influence of heating on the 

flow and hydraulic jump will be comprehensively explored. In Chapter 5, the overall 

concluding remarks and suggestions for future works will be given. 
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= 3 and 10) in the absence of Marangoni effect. While our results almost merge with the 

constant-viscosity prediction when the temperature of the wall is close to that of the 

incoming jet (corresponding to wT 1.01= ), the deviation grows significantly as the wall 

temperature departs from the jet temperature. This comparison suggests that the inclusion 

of the two-way coupling is crucial in the presence of large temperature change. 

 

Figure 4-8: Influence of the wall temperature on the average Nusselt number (no 

surface tension effect). Also shown in the figure is the predictions of Chaudhury 

(1964) for water without surface tension effect. Here, Pr=3 corresponds to 

0T̂ 329.45K=  and Pr=10 corresponds to 0T̂ 279.15K= . 

The influence of the wall temperature on the Nusselt number is illustrated in Figure 4-9 

where a monotonic decay with radial distance is observed as a result of the flow 

deceleration and thermal accumulation. Following Chaudhury’s approach, Searle et al. 

(2017) examined the heat transfer for a slipping flow of a fluid of constant viscosity and 
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the same properties as the incoming jet. Figure 4-9 shows the distribution of the Nusselt 

number for different wall temperatures, including the results of Searle et al. (2017) for 

the no-slip case, which we mimic here by taking wT 1.01= . The deviation again worsens 

when the wall temperature is increasingly different from that of the impinging jet. 

Therefore, we conclude that the constant viscosity assumption is only reasonable when 

the temperature of the wall is close to that of the incoming jet. 

 

Figure 4-9: Influence of the wall temperature on the Nusselt number (no surface 

tension effect). The data for constant fluid property is from Searle et al. (2017). The 

Reynolds number is maintained at Re 4300= , 0T̂ 278K= . 

4.3.3 The influence of constant wall heat flux on the flow 

We now consider the influence of heat transfer on the super-critical flow field when the 

heat flux is imposed at the wall. The constant wall heat flux condition is usually 

encountered when a constant heat load is specified in practical applications. In this case, 

the wall temperature is directly deduced using (4.3.20). We shall examine the influence 
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of a constant wall heat flux for a water jet impinging at 300 K (see Table 1 for the 

viscosity and surface tension parameters).  

For a constant wall heat flux, the hydrodynamic and thermal boundary layers, as well as 

the film thickness, all simultaneously decrease with increased wall heat flux, as reported 

in Figure 4-10. The response appears to be less sensitive to the variation of the heat flux 

compared to the influence of the wall temperature, especially near impingement. This 

congestion near the origin is expected since some accumulation distance is needed for the 

wall heat flux to cause a significant change in the wall temperature and hence the 

viscosity. 

 

Figure 4-10: Influence of the wall heat flux on the boundary-layer heights and the 

film thickness for 0T̂ 300K=  and 2/3Ca Re 10= . 

Figure 4-10 indicates that the thermal boundary layer appears to always reach the free 

surface as long as the disk is sufficiently large. This seems to contradict the finding of 

Liu & Lienhard (1989) that the thermal boundary layer cannot reach the free surface for a 
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Prandtl number greater than 4.859. However, this critical Prandtl number is based on the 

assumption of a constant viscosity. We report in Figure 4-11 the influence of the wall 

heat flux on the distribution of the effective Prandtl number ( )wT r Pr     at the wall and 

along the free surface ( )sT r Pr    . As the liquid travels downstream, the Prandtl number 

should continue to decrease due to the increase in the wall temperature, and hence 

decrease in viscosity and surface tension, and the thermal boundary layer will eventually 

reach the free surface (unless a hydraulic jump forms upstream of the transition location 

or the disk is not sufficiently large). Consequently, the critical Prandtl number criterion is 

only applicable when the heat flux is weak, with insignificant temperature variation. In 

fact, Figure 4-11 indicates that the Prandtl number at the wall can be less than 4.859. 

 

Figure 4-11: Influence of the wall-heat flux on the effective Prandtl number along 

the wall and the free surface for super-critical flow for 0T̂ 300K=  and 

2/3Ca Re 10= . 
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Interestingly, while both transition locations move downstream with increasing inertia 

(not obvious from Figures 4-5 and 4-10 because of the rescaling with respect to 1/3Re ), 

they move in opposite directions with increasing wall temperature and heat flux. Figure 

4-12 summarises the influence of the wall heat flux and inertia on the transition locations. 

The first transition location moves downstream with higher wall heat flux (or wall 

temperature in Figure 4-5), whereas the second transition location moves upstream 

towards the disk center. This is largely due to the dependence of the viscosity on the 

temperature. For common fluids, the viscosity can significantly decrease with 

temperature, while the thermal properties (thermal conductivity and heat capacity) remain 

relatively constant. This behaviour in turn causes an earlier second transition as the 

thermal boundary layer remains almost unchanged but the hydrodynamic boundary layer 

and the film thickness are moderately decreased. In other words, the free surface meets 

with the thermal boundary layer earlier. 

 

Figure 4-12: Influence of inertia and the wall heat flux on the transition locations for 

0T̂ 300K= . Inset shows the rescaled transition locations. 
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Figure 4-13: Influence of the Reynolds number on the local Nusselt number 

distribution). The comparison with the measurements and numerical results of Liu 

& Lienhard (1989) is also included. 

4.4 The influence of heat transfer on the hydraulic 
jump and subcritical flow 

In this section, we consider the flow in region (IV), the hydraulic-jump region. Although 

the flow field downstream of the jump may be assumed to be inviscid (Watson 1964) or 

viscous, only the viscous flow will be examined as it seems to represent better the real 

flow (Duchesne et al. 2014). In the absence of thermal coupling, the hydraulic jump can 

be examined using solely the discretized momentum equation with Watson’s method. In 

other words, the thermal field in the subcritical region can be obtained after the hydraulic 

jump and downstream flow field are fully determined. For a temperature-dependent 

viscosity, however, solving the momentum equation is not sufficient to yield the location 

of the jump. In this case, we resort to an energy balance across the jump as an additional 


