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Abstract

With the growing demand for data connectivity, network service providers are faced with the task

of reducing their capital and operational expenses while simultaneously improving network perfor-

mance and addressing the increased connectivity demand. Although Network Function Virtualiza-

tion has been identified as a potential solution, several challenges must be addressed to ensure its

feasibility. The work presented in this thesis addresses the Virtual Network Function (VNF) place-

ment problem through the development of a machine learning-based Delay-Aware Tree (DAT)

which learns from the previous placement of VNF instances forming a Service Function Chain.

The DAT is able to predict VNF instance placements with an average 34μs of additional delay

when compared to the near-optimal BACON heuristic VNF placement algorithm. The DAT’s max

depth hyperparameter is then optimized using Particle Swarm Optimization (PSO) and its per-

formance is improved by an average of 44μs through the introduction of the Depth-Optimized

Delay-Aware Tree (DO-DAT).

Keywords: Network Function Virtualization, NFV, Virtual Network Functions, VNF, Service

Function Chain, SFC, VNF Placement, Machine Learning, Optimization, Decision Tree, Particle

Swarm Optimization, PSO
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Summary for Lay Audience

The past two decades have seen an incredible increase in the number of devices producing network

traffic including: smartphones, tablets, wearable smart devices, and smart home accessories. This

surge in network traffic puts a major burden on service providers world-wide. In order to keep up

with the demand, these providers must make significant upgrades on their network infrastructure.

This proves to be a challenging task as there are several functionalities (e.g. firewalls) offered by

the network which require infrastructure specific to those functions. Upgrading these specific in-

frastructural components and increasing the number of each present in the network is an extremely

costly endeavour which results in significant capital expenditures incurred by the service providers.

As a way to mitigate these costs as well as improve system performance and network strength, Net-

work Function Virtualization (NFV) has been proposed as a solution. This technology essentially

isolates the functionality of each of these specific infrastructural components and turns them into

software applications which can be run on generic infrastructure such as datacenter servers. There

are several issues which arise from this technology which must be addressed to ensure its feasi-

bility. One of these includes the placement of these software applications in the network. While

traditionally this placement task has been achieved through optimization models and approximate

solutions, these can often require significant time and resources to solve. This is inadequate for

network systems as there are several time critical applications using the network. As an alternative,

this work outlines the use of machine learning to make a model which predicts the placement of

each of these software applications based on previous placements. Quantitative results show that

the machine learning model can predict a placement which produces a slightly higher delay be-
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tween applications compared to a current approximate solution. To mitigate this, a domain based

optimization model is presented to optimize the parameters of the previous machine learning model

such that the placement results in reduced delay between applications. Results show a significant

improvement once optimized and confirm that the work presented is a significant step towards a

fully automated placement strategy.
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Chapter 1

Introduction

With network connectivity demands at an all-time high and continuing to increase, Network Ser-

vice Providers (NSPs) are tasked with the challenge of accommodating additional bandwidth re-

quests on their networks while concurrently maintaining or improving their Quality of Service

(QoS). When considering the massive growth in Internet Protocol (IP) traffic due to the spike in

IP-connected devices, coupled with the imminent introduction of 5G networks, this task can be

quite cumbersome. It is estimated that during the five year period from 2017-2022 the global IP

traffic will increase by a factor of three, the number of IP connected devices will be three times

greater than the global population, and the average mobile connection speed will triple [1]. In order

to meet these unprecedented and growing demands, NSPs should enhance the portability, interop-

erability, performance, reliability, security, and management of their networks while reducing their

Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) [2]. One way to address

these needs is through Network Function Virtualization (NFV).

1.1 Network Function Virtualization (NFV)

NFV is a technology proposed by the European Telecommunications Standards Institute (ETSI) in

2012 to solve the challenges mentioned above as well as those associated with service availability,

scalability, and resilience of current networks [3]. The goal of NFV technology is to isolate the

1



CHAPTER 1. INTRODUCTION

network functions from their underlying hardware and execute them as software-based applications

known as Virtual Network Functions (VNFs) on servers and in datacenters. There are several

benefits which arise from the implementation of NFV architecture including: reduction in capital

and operational expenditures, decreased time to market for new technologies, service testing and

implementation efficiencies, network topology optimization, optimized energy consumption, and

increased operational efficiencies [2]. However, there are challenges associated with these benefits

that must be solved in order to experience the full potential and power of this technology.

Fig. 1.1 illustrates the traditional networks of today. In this figure it can be seen that the net-

work is very static with a rigid structure. All network functions are located on function-specific

hardware. It is difficult to add additionaly functionality and scale this network due to the reconfig-

urations and CAPEX investments required.

Figure 1.1: Current Networks [4]
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Fig. 1.2 illustrates the networks of tomorrow. These networks incorporate concepts of NFV. In

contrast with the previous network, the depicted network has one unified platform for all network

functions and services. These virtualized functions are available to all end users, and the scaling

of network size and functionality does not require rigid network reconfigurations as this is a highly

dynamic environment.

Figure 1.2: Future Networks [4]

NPSs world-wide are held to certain standards when providing a service to a customer. QoS

guarantees are a set of standards which describe the required performance of a NSPs delivered

service. QoS requirements take into consideration metrics such as: packet loss, jitter, transmis-

sion delay, availability, amongst others. The QoS guarantee is a NSPs acknowledgement of and

adherence to these requirements. When considering the implementation of NFV architecture, QoS

3



CHAPTER 1. INTRODUCTION

guarantees are of paramount importance and consideration and without meeting them, the imple-

mentation of NFV technology in current networks would not be feasible.

Performance, being a key metric of QoS, plays a major role in the successful implementation of

NFV architecture. Furthermore, automation has been identified as one of the key factors behind the

successful scalability of NFV-enabled networks and is listed as being paramount to the successful

implementation of this technology [3].

1.2 Research Contributions

The work outlined in the subsequent chapters introduces several research contributions namely:

• Chapter 3

1. The implementation of the Delay-Aware Tree (DAT) machine learning-based model to pre-

dict the placement of dependent VNF instances forming a SFC.

2. The implementation of a machine learning model which learns from previous near-optimal

placements when deciding the servers for future placements.

3. The implementation of a machine learning model which learns operational constraints when

selecting the best server out of a list of candidate servers to ensure QoS agreements are met.

• Chapter 4

1. An optimization model for the DAT to optimize its performance through the reduction of in-

valid placement predictions and the delay between interconnected instances forming a SFC.

2. The creation of the Depth-Optimized Delay-Aware Tree (DO-DAT) which exhibits improved

performance compared to the DAT.

3. An analysis into the generalization and transferability of DO-DAT to different system con-

figurations.
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Chapter 2

Background

The following section give some background information pertinent to the understanding of the

contributions outlined in subsequent chapters of this thesis.

2.1 Service Function Chain (SFC)

While the performance of an individual VNF instance is important, the performance of an inter-

connected and interdependent group of VNF instances known as a Service Function Chain (SFC)

is paramount. SFCs are the end goal of NFV enabled networks; In order to provide an end-to-end

service, several VNF instances of differing types will need to be accessed in a specific order, thus

creating a SFC.

An example of a SFC is the Evolved Packet Core (EPC) which is a network infrastructure

which supports the converging on licensed and unlicensed radio access technologies through IP,

commonly refered to as Long Term Evolution Advanced (LTE-A) [1]. Virtual EPC (vEPC) is a

solution introduced by 3GPP to harness the full potential of radio access technologies [2]. In this

technology there are four main types of VNFs: the Home Subscriber Service (HSS), the Mobility

Management Entity (MME), the Serving Gateway (SGW), and the Packet Data Network Gateway

(PGW). Fig 2.1 outlines the architecture of this technology. As with any SFC, vEPC is subject to

QoS guarantees including performance. When considering a VNF-enable network, the placement
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of each of the VNF instances forming the SFC directly impacts performance.

Figure 2.1: Evolved Packet Core (EPC) Architecture

2.2 NFV Management and Orchestration

There are three key functional components which make up the ETSI Management And Orchestra-

tion (MANO) framework including the Virtualized Infrastructure Manager (VIM), the VNF Man-

ager (VNFM) and the VNF Orchestrator (VNFO). Combined, the three aforementioned compo-

nents are responsible for several key operational services in NFV enabled networks including: car-

rier grade requirements, performance, service availability, management, and VNF placement. Fig.

2.2 outlines the NFV Architecture Framework as proposed by ETSI including the NFV MANO.
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Figure 2.2: NFV Architecture Framework [3]

2.2.1 Virtualized Infrastructure Manager (VIM)

In the ETSI MANO framework, the VIM is responsible for the management of VNF interactions

with both physical and virtualized resources [4]. To this end, its responsibilities include aware-

ness of the existence and quantity of resources, resource allocation, and resource management.

Furthermore, the VIM provides the network with insights into VNF infrastructure management,

performance analysis, fault information, and network metrics to enhance capacity planning and

optimization.
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2.2.2 VNF Manager (VNFM)

In the ETSI MANO framework, the VNFM is responsible for managing the VNF from a lifecycle

perspective. This includes critical functions such as the commencement of a service through VNF

instantiation, the expansion of a service through VNF scaling, the recovery of a service through

VNF migration, and the ending of a service through VNF termination. By handling the various

stages of a VNF lifecycle, the VNFM is also responsible for maintaining the function’s perfor-

mance throughout the duration of its lifecycle using the functions previously mentioned [5].

2.2.3 VNF Orchestrator (NFVO)

The main role and priority of the orchestrator in the ETSI MANO framework is to realize network

services on the infrastructure of the NFV-enabled network. By managing resources across several

VIMs and performing several orchestration functions through the VNFM, the VNFO is able to

allow VNF instances to access and share resources. Having the ability to communicate and direct

both the VIM and VNFM makes the orchestrator the prime candidate for the deployment of the

solution presented in this thesis.

2.2.4 Key Functionalities of NFV MANO

The following outlines some of the key functionalities of the ETSI NFV MANO framework and

their impact on the network as a whole.

2.2.4.1 Instantiation

VNF instantiation is the first step in the NFV lifecycle. In order to instantiate a VNF several aspects

must be considered. Initially, the feasibility of the VNF instantiation is considered. This process

begins when an instantiation request is received by the NFVO. The goal of this stage is to ensure

that the resources required for the instantiation can be reserved before the actual processing of the

request is complete. Furthermore, this step ensures that the request formatting is practical through
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validation as any illogical or ill-formatted request will be deemed in-feasible. Once received, the

NFVO communicates with the VNFM to assess the feasibility of the request. Once processed,

the VNFM provides a response to the NFVO effectively requesting the allocation of resources (if

feasibility was successful). Once received, the NFVO proceeds to initiate the pre-allocation of

resources.

The processing of the pre-allocation of resources is one of the most crucial functions executed

by the NFVO. This function begins firstly with the validation of policy adherence when the allo-

cation request is received by the NFVO. Once validated, the NFVO is tasked with the selecting a

location for the instantiation of the VNF instance. This specific stage is the industrial implemen-

tation of the formulated VNF placement problem. The NFVO must consider available resources,

VNF type, SFC chains, and operational policies when selecting the placement of the function

[6]. Furthermore, additional consideration must be made to ensure that all QoS requirements and

external dependencies can be realized and preserved.

If needed, the pre-allocation step can entail communication with the VIM for the requesting

of current resource capacities in the case that additional resources (internal connectivity, virtual

machines, storage) are required for the pre-allocation phase. If such a request is received by the

VIM, it evaluates the current resource allocation and capacity and proceeds to reserve them. Once

complete, the VIM interacts with the NFVO to communicate the success or failure of the reser-

vation. Once the additional allocation of resources has been completed (if required) the NFVO

communicates with the VNFM to receive the final configuration information required to finalize

the VNF instantiation. If successfully completed, the NFVO communicates with the sender of the

original instantiation request and outlines that the request has been completed successfully.

2.2.4.2 Scaling

VNF scaling is an important functionality in NFV-enabled networks as it enables increasing flex-

ibility in the system. There are several instances which can be deemed as scaling operations in-

cluding: the re-configuration of resources, the addition of new resources, the de-activation and
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elimination of running virtual machines, and the de-allocation previously allocated resource [6].

The first stage in executing the scaling functionality is realizing when there is a need for scaling.

Several instances can trigger the need for a scaling event including: the degradation of service per-

formance, requirement of additional resource allocation, underutilization, and over-provisioning.

Scaling can be invoked by several components of the NFV MANO framework depending on

the situation. For example, the VNFM can trigger scaling while monitoring the state of a VNF,

or the NFVO can trigger scaling due to an external request. In any case, the general procedure

for handling the scaling request is the same. Firstly, the nature of the scaling action required

must be determined. This can prove to be a complicated step due to the interconnection and

interdependence of various VNF instances. If for instance, the performance of a given VNF is

being negatively impacted by a second VNF, before any scaling event can be executed, the impact

of the scaling of either of these VNFs on the remaining network instances must be considered.

In general, when the NFVO receives a scaling event request, the first stage in processing request

is validating it through the evaluation of policy adherence. Once validated, the NFVO communi-

cates with the appropriate VNFM to handle this request. Upon receiving this request the VNFM

prepares the ground work for the scaling event by addressing the validation of the request and once

validated, responds to the NFVO with a request to change resources. This resource change request

is processed by the NFVO and delegated to the VIM. As with instantiation, the VIM begins the

modification of the internal network and reserves additional (or fewer) resources as required by the

scaling event. The VIM proceeds to communicate the completion of this resource allocation back

to the NFVO which goes on to transfer this acknowledgement to the VNFM. Having received the

acknowledgement, the VNFM is in a position to begin the configuration of the VNFs according to

the designated scaling event. Once configured, acknowledgement is sent back to the NFVO which

is transferred to the original entity requesting the scaling event.
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2.2.4.3 Termination

The function of VNF termination is the final stage in the lifecycle of a VNF. The process by which

the NFVO proceeds to terminate a VNF begins with the request for termination targeting an in-

stantiated and active VNF instance. Once received, the NFVO is responsible for the validation

of the request. Special care must be taken when validating the termination request to ensure the

author behind the request has the proper authority to make such a request. Once validated, the

NFVO communicates with the VNFM which proceeds to terminate this VNF. Once terminated,

the VNFM reports back to the NFVO with an acknowledgement of the termination. Upon suc-

cessful acknowledgement of a VNF termination, the NFVO proceeds to request the deletion of the

resources previously allocated to the now terminated VNF. This entails a deletion of the internal

network, as well as the deletion of the computational and storage resources by the VIM. Acknowl-

edgement of the resource deletion is then passed back to the NFVO which relays the information

back to the initial entity initially requesting the VNF termination.

2.2.4.4 Fault and Failure Management

Fault management is a critical and important functionality provided by NFV MANO. Fault man-

agement describes the ability of the network to identify the occurrence of a fault and mitigate its

impact. Faults in an NFV-enabled network can occur due to internal or external factors. Impacts of

these faults can be devastating on the overall performance of the network. In order for a network

to be considered strong, it must be able to respond to faults in a timely and appropriate manner as

to not escalate them to severe system failures.

Fig. 2.3 displays a basic failure management system by which a network can recover from

faults. Initially, the network is in state S 0. This state is where optimal operation is achieved as the

delivered service quality is normal and the service parameter metrics (jitter, packet loss, etc.) are

well within the acceptable thresholds. During the event of a failure, the delivered service quality

and the service parameter metrics are severely degraded and the resulting state S 1 is observed. In

this state the network considered to have failed and the appropriate mechanisms must be invoked

12



CHAPTER 2. BACKGROUND

to detect the failure. This detection is completed by several different network entities by observing

the behaviour of their subordinate entities and components.

Figure 2.3: Stages of Failure Management

Once the fault has been detected, the remediation process beings. This process entails the

propagation of the fault detection information through the various entities of the NFV MANO.

Depending on the type of fault observed, different entities of the NFV MANO may be required to

intervene for its mitigation. For example, the VNFM has the ability to address the correction of

certain faults such as those associated with a specific VNF instance. If the VNFM is unable to ad-

equately address the fault, various other entities including the NFVO can be required to intervene.
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The NFVO receives a variety of different fault notifications from a variety of different entities.

Once received, the NFVO is responsible for either directly applying fault correction techniques

with the goal of further examining the cause of the fault, or delegating the task to the appropriate

network entity.

Once action has been taken to remediate the observed fault or failure, the network is in an

intermediate phase where service is restored; however, the network operation is not optimal as

represented by state S 2. Once full fault recovery has been achieved and the root cause of the

fault has been addressed, the system reverts back to the initial state S 0 and optimal operation is

re-established.

By examining the fault and failure system presented, it is evident that ideally, preventative

measures would be occurring during stage S 0 to pro-actively prevent the occurrence of a fault

or failure in the network. These preventative measures can manifest themselves through many

different functions of the NFV MANO including the initial placement of instantiated VNFs as well

as the injection of resilience to the network.

2.3 SFC Computational Paths

Within a given network topology, SFCs must be placed such that the QoS requirements are met.

Ideally, any system will have built in mechanisms or best practices which improve its resilience

and reduce its susceptibility to faults or failures. When considering an SFC the way to do this

is by introducing the concept of computational paths whereby several instantiations of the main

VNF instances forming a SFC are present throughout the network [7]. This means that should a

particular instance fail for any reason, there is a backup and alternate path available for the SFC to

be executed. This concept is further illustrated in Fig. 2.4 where the various computational paths

for a vEPC SFC with multiple VNF instances are shown.
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Figure 2.4: Computational Paths for vEPC SFC

When considering the resilience of a system, the overall minimization of the end-to-end delay

across all computational paths must be addressed.

2.4 VNF Placement Problem

The VNF Placement problem can be defined as the problem by which a set of VNF instances are

placed on a set of network servers while adhering to QoS guarantees and minimizing resource con-

sumption. The VNF placement problem has been defined as NP-Hard, therefore, the use of various

different methods and techniques has been suggested as solutions. Since the objectives, needs, and

priorities of NSPs can vary over time, there are multiple solutions addressing various operational
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aspects of a NSP when considering VNF-enabled networks. The solutions are presented in three

categories: optimization models, heuristics and meta-heuristics, and machine learning.

2.4.1 Optimization Models

The most common type of solution addressing the VNF placement and chaining problem is Integer

Linear Programming (ILP). In this type of problem formulation all variables are restricted to being

integers during the optimization process. Some of the optimization objectives found in literature

include: the minimization of cost for all links across a network [8], the minimization of the number

of servers used [9][10], the minimization of the number of cores used [9], the minimization of the

resource cost of placement [11][12][13], the minimization of the number of instances placed in the

network [14], the minimization of the service response time [15], as well as the minimization of

the resource utilization [15]. Extending on the formulation of the VNF placement and chaining

problem though ILP, Mixed-Integer Linear Programming (MILP) has been suggested in several

works. A MILP problem can be defined as an optimization problem where only certain variables

are constrained to being integers. Some of the objectives considered through MILP formulations

include: core minimization [16], utilization minimization [17], resource allocation minimization

[17], QoS violation minimization [17], and the minimization of delay between interdependent VNF

instances forming a SFC [18].

2.4.2 Heuristic and Meta-Heuristic Solutions

Due to the NP-Hardness of the VNF placement problem, several works propose the implemen-

tation of heuristic solutions achieving near-optimal placements with reduced time complexities.

Heuristic solutions implemented to solve the VNF placement problem include: greedy algorithms

[19], Eigen decomposition [19], Markov approximation [20], set formation [13], graph-based [14],

and betweenness centrality-based [18]. Additionally, the use of nature-inspired, population-based,

meta-heuristics has become increasingly popular due to their ability to converge to a solution ef-

fectively through population mutations. The two most popular meta-heuristic algorithm observed

16



CHAPTER 2. BACKGROUND

are the genetic algorithm and the particle swarm optimization algorithm. The genetic algorithm

has been used with the objective of minimizing network link costs [8] and minimizing the number

of servers used [21], whereas the particle swarm optimization has been used to minimize the cost

of placement of VNF components [17].

2.4.3 Machine Learning

Recently, the use of machine learning has become increasingly popular in the field due to the

increasing requirements for network automation with the impending 5G networks. Currently, sev-

eral solutions have been proposed which either incorporate machine learning or are solely based

upon machine learning techniques however, significant progress must still be made before a fully

autonomous VNFO is achieved. By addressing the various functionalities of a VNFO through sim-

plified machine learning problems, a solid foundation is built towards a fully implementable and

operational NFVO which meets the requirements of NSPs.

2.5 Supervised Machine Learning Classification

Supervised machine learning classification describes the set of algorithms which take labelled data

and build a model which is used to predict the class given a set of features [22]. When considering

the effectiveness of a classification algorithm, the predictive accuracy, is generally the standard

metric used for evaluation. However, depending on the nature of the dataset and problem at hand,

the use of predictive accuracy may not be an effective metric. In the case of a highly skewed

distribution between classes, or the existence of several classes and multiple outputs, additional

metrics must be considered. Ideally, these metrics will directly relate to the domain of the problem

and therefore lead to an acceptable solution. The following presents an overview of some of the

prevalent methods of supervised machine learning classificaiton.
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2.5.1 Support Vector Machine (SVM)

Support Vector Machines (SVM) are one of the most popular supervised machine learning clas-

sification techniques due to their simplicity and understandability. The goal of SVM is the max-

imization of the hyperplane separating the labelled classes in the data. The training data points

which fall on the boundaries of the hyperplane are referred to as support vectors. These support

vectors are generally considered the hardest points to classify as they are the closest in term of

proximity to the other points of differing classes. The algorithm operates by formulating an opti-

mization function which maximizes the distance between the support vectors of the various classes

and solving it through the Lagrangian multiplier technique. The premise of this method is that

through the maximization of the distance from each of the classes’ respective support vectors to

the hyperplane, the greater the predictive performance of the model due to the minimization of the

generalization error.

Fig. 2.5 illustrates the concept of separating the classes thought the optimal hyperplane. In this

figure, there are two features, X1 and X2 represented. There are also two classes present, class 1

denoted by the blue circles, and class 2 denoted by the green triangles. The optimized hyperplane

is displayed as the solid red line. The support vectors are the points in both classes which are

shaded darker and are equidistant from the optimized hyperplane and separated by the maximum

distance. There is one support vector from class 1 and two support vectors from class 2.
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Figure 2.5: SVM Optimized Hyperplane

There are several advantages associated with the use of SVM. Firstly, this method is very ef-

fective in high dimensional spaces. This is extremely advantageous when considering the growing

data demand and the emergence of numerous big data applications. Additionally, this method is

additionally efficient as it only requires the support vectors to create the model. This has incredible

benefits as it can reduce a massive quantity of data to a much smaller and more feasible subset thus

saving computational and memory resources in the process. Furthermore, SVMs are capable of

incorporating the use of kernels to address non-linear decision boundaries and hyperplanes, thus

making them suitable for non-linear and multi-class classification problems.

Unfortunately, there are a few drawbacks to the use of SVM which must be considered. Firstly,

while SVM is able to address the multi-class classification problem, it is much less efficient when
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considering a multi-class, multi-output classification problem due to the inherent complexity of the

problem. Additionally, the ratio between the number of features and the number of input training

data points can lead to over-under fitting if not addressed through properkernel manipulation.

2.5.2 Statistical Learning

Statistical learning models are a set of machine learning models which heavily rely on the proba-

bilistic models and structure of the data. These models in general predict a probability by which

a certain point belongs to a given class in contrast to other models which may simply output a

prediction. These methods are effective when considering risk assessment as the strength of the

prediction can be determined. An example of this is when considering the predictions listed in

Table 2.1 with their associated probabilities.

Table 2.1: Statistical Learning Probability Strength

Prediction Class Probability
1 1 0.86
2 2 0.65
3 2 0.96
4 1 0.54

Assuming the above results were obtained when considering the classification of points be-

tween two classes several observations can be made in terms of prediction strength. By examining

the probability associated with each prediction, it can be stated that predictions 1 and 3 are strong

predictions and specifically prediction 3 is the strongest prediction. Conversely, when considering

the prediction probability of predictions 2 and 4, these are much weaker and prediction 4 especially,

is the weakest. This comes into consideration when stating the confidence of a prediction. When

machine learning models are implemented to solve problems where misclassification has signifi-

cant consequences, the prediction strength becomes crucial as it translates to a certain confidence
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level which can be used when performing risk mitigation and risk analysis.

There are several statistical learning algorithms however, the most recognizable one is the naïve

Bayes classifier. This algorithm makes one significant assumption when making a prediction and

determining the associated probability which can be extremely detrimental to the performance of

the system. The naïve Bayes classifier assumes full independence between features with respect to

the output variable. This however, is generally untrue and can significantly hinder the performance

of the algorithm. Despite this assumption, naïve Bayes has performed well when applied to com-

plex problems however it still underperforms when compared to other algorithms and approaches.

2.5.3 Instance-Based Learning

Instance-based learning is a set of learning algorithms which are generally less computationally

intensive during training, however, more computationally intensive during prediction when com-

pared to other families of algorithms. These algorithms by definition do not construct complex

models of the system but rather store certain instances which were observed throughout the train-

ing process. The most notable algorithm stemming from the class of all instance-based learning al-

gorithms is the nearest neighbour algorithm commonly refered to as k-Nearest Neighbours (kNN).

In essence, this family of algorithms posits the hypothesis that data points of a specific class will

be in close proximity to other data points of the same class. When predicting the label of a data

point, this algorithm attempts to find a predefined number of neighbours closest to the point in

question and predict its class based on the class of its neighbours. One of the main advantages of

this family of algorithms is its ability to address multi-class, multi-output problems as well as the

ability of this algorithm to suppress noise through the tuning of the number of neighbours consid-

ered. The tuning of the number of neighbours considered however, can have a significant impact on

the predictive performance of the model as considering too many neighbours can result in weaker

boundaries between classes. This concept is displayed in the following figures where the impact

of changing the number of neighbours on the boundaries between the classes is clearly visible.

Fig 2.6 represents a model which only considers the single closest neighbour when deciding
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the class label of the point to be predicted. Through the boundaries presented in this figure we

can see that there are several misclassified points (coloured points appearing in the wrong coloured

boundary) especially in the green boundary. This is caused by a noisy point which has caused the

green boundary to roughly project into the blue boundary.

Figure 2.6: kNN 3-Class Classification k=1

Fig 2.7 represents the class boundaries upon increasing the number of neighbours considered

by a factor of 2. In this figure we can see the previously observed sharp interjections of the green

boundary into the blue boundary begin to be smoothed. Furthermore, this model shows a more

generalized solution as certain outliers (most notably the isolated blue point) is not impacting the

expansion of the entire blue class boundary as previously observed with one neighbour.
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Figure 2.7: kNN 3-Class Classification k=2

Fig 2.8 displays the results when further increasing the number of neighbours considered by

a factor of 2. In this figure we see the boundaries between the green and blue class be further

smoother and the elimination of a significant protrusion of the green class boundary into the blue

class boundary previously observed.
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Figure 2.8: kNN 3-Class Classification k=4

Fig. 2.9 displays the result of increasing the number of neighbours considered by a factor of 2

again. In this figure we see the continual smoothing of the class boundaries and the mitigation of

noise.
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Figure 2.9: kNN 3-Class Classification k=8

However, this process of increasing the number of neighbours considered for the mitigation of

noise has a serious tradeoff which is seen in Fig 2.10 . In this figure, the number of neighbours

considered has increased substantially to 100. Due to the layout of the data points and the distri-

bution of the classes, we can see that the class boundaries have been greatly distorted and the blue

boundary has almost been completely eliminated. This is the manifestation of overfitting as this

model is not generalizable and is severely hindered by poor predictive performance. Care must be

taken when optimizing the number of neighbours selected for consideration in this algorithm as

the noise suppression vs. generalization tradeoff is of paramount consideration.
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Figure 2.10: kNN 3-Class Classification k=100

2.5.4 Perceptron-Based

The perceptron is the fundamental building block of an Artificial Neural Network (ANN). Each

perceptron can individually address linearly separable data however, an individual perceptron is

unable to handle non-linearly separable data. To mitigate this problem, the grouping of multiple

perceptrons in a single layer and the stacking of multiple layers of these perceptrons has been

proposed thus forming an ANN. The basic structure of an ANN consists of an input layer, a number

of hidden layers, and an output layer as shown in Fig. 2.11. As seen in this figure, each perceptron

is fully connected with every perceptron in the adjecent layers. These connections are know as

links.
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Figure 2.11: ANN Architecture

During the training of these networks, a set of weights associated with each link between

perceptrons is adjusted such that the mapping between inputs and outputs is made. Throughout the

training phase, certain perceptrons are given greater weight indicating that they are significant in

the mapping of input to output. This network mimics the human brain in the sense that perceptrons

which are weighted higher correlate to neurons firing in the brain. As such, these networks are

commonly referred to simply as neural networks.

The main advantages associated with the use of ANNs is the ability to model both linear and

non-linear relationships between the data. This enables the ability of being able to address prob-

lems of increasing complexity. Due to the way these models are trained, they can often generalize

well during the building of the model. Additionally several techniques including L1 and L2 reg-
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ularization are available during training to further improve the generalization of the model and

reduce the amount of under and over fitting.

The main disadvantage of ANNs is the lack of explainability when assessing the behaviour of

the network. Since the network is composed of weights and perceptrons, explaining why certain

perceptrons are given higher weights in an intuitive way can be quite a daunting task. Additionally,

the training of ANNs, depending on the amount of data and nature of the problem, can take a long

time and is very hardware dependent. The training of this type of network is often ineffective for

implementation in time-sensitive operations especially in the event of a fault or failure requiring

the retraining of the entire network.

2.5.5 Logic-Based

The set of logic-based machine learning algorithms includes the popular tree family algorithms.

These algorithms attempt to create rules based on the features of the dataset. When predicting

the label of a new point, these rules are tested and a label which satisfies all the rules tested is

returned. These algorithms have been extremely successful due to their simplicity, understandabil-

ity, and their ability to be visualized. Further advantages of decision trees are realized though the

low cost of building the tree and its ability to address multi-output, multi-class classification prob-

lems. Unfortunately, there are several disadvantages associated with decision trees which must be

considered during implementation. Firstly, decision trees are subject to overfitting which can be

detrimental to the predictive performance of the model. Additionally, if there is a significant class

imbalance, the trees often exhibit bias towards the majority class thereby hindering the overall per-

formance of the model. Being the main algorithm used in this work, decision trees will be further

examined in greater detail throughout the duration of this work.
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Chapter 3

Delay-Aware Tree (DAT) for VNF

Placement

3.1 Introduction

The work outlined in this chapter presents the use of machine learning algorithms in the NFV

orchestrator to predict initial VNF instance placement in a network while taking into consideration

QoS guarantees.

3.2 Related Works

The following outlines some of the work being done in the field related to the use of machine

learning in VNF provisioning, allocation, and function placement.

Khezri, et al. [1] propose a dynamic NFV service provisioning solution which incorporates

deep Q-learning network and is reliability-aware. Their combined objective was the minimization

of the NFV placement cost and the maximization of admitted services. Simulation results demon-

strate the model’s ability to learn during the training phase through a constant increase in service

admission ratio.

Zhang et al. [2] propose an intelligent cloud resource management framework which encom-
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passes both deep and reinforcement learning. In the proposed framework the mapping and alloca-

tion of resources is made by passing the application demand through a neural network which has

been trained using a combination of a stacked auto encoder and reinforcement learning. The two

constraints considered for allocation are QoS requirements and overall resource consumption.

Xu et al. [3] propose an application aware VNF deployed on a GPU server which analyzed

packets and using deep learning classifies their application type using a deep neural network.

Initially, when an application request is received the placement is made using the shortest path

algorithm however, once information about the application type is received, the DFS algorithm is

executed to identify a placement which meets the application requirements including acceptable

delay and minimum bandwidth requirement.

Sun, et al. [4] propose a dynamic SFC deployment strategy using Q-learning. The goal of this

algorithm is to maximize a profit function which is related to the number of successfully deployed

SFCs. Their implementation suggests several paths which meet the SFC requirements and a load

balancing algorithm ultimately selects the final path.

Riera et al. [5] suggest the use of reinforcement learning to solve the service mapping problem.

Several reward functions could have been implemented to maximize different objectives including:

acceptance rate, cost reduction, revenue generation, etc. however, this work decided to implement

a reward function based on the number of successfully mapped VNF instances. Simulation suggest

the reinforcement learning approach was able to learn network dynamics and improve allocation

while still working within resource and service constraint.

Martin et al. [6] propose a resource allocator which uses machine learning for demand pre-

diction for 5G networks. Their model takes into consideration QoS and QoE requirements when

determining the most efficient resource allocation scheme given the predicted demand by means of

a simulated annealing optimizer which selects the best topology given the demand forecast from

the machine learning algorithm.

Mijumbi, et al. [7] propose a predictive framework which used machine learning to estimate

the future resource requirements of a given VNF component. Their work implements a graph
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neural network and uses previous information about the VNF component to predict the future

resource utilization. Their work only considers the scaling in and out of resources post-placement

and assumes initial component placement has already occurred.

Wang et al. [8] propose a framework to enable dynamic service chain deployment and scaling

through the use of online learning techniques. The main objective of their work is the minimization

of the total cost of VNF deployment and operation. The framework uses a combination of the ski-

rental algorithm for VNF provisioning and a multi-armed bandit learning technique for the actual

placement.

3.3 Motivation

This section outlines the motivation behind this work specifically, the need for intelligence and

machine learning, the paradigm shift from conventional to data-driven networks, as well as the

benefits experienced through the use of machine learning.

3.3.1 The Need for Intelligence

As connectivity demands and network functions and capabilities increase, so does the amount of

network-generated data. This rate at which this data grows and continues to grow demonstrates

that it is high volume. Furthermore, this data must be processed faster and faster as new networking

technologies are introduced, indicating high velocity. Finally, with many different applications and

services, as well as the introduction of 5G nodes which will have in excess of 2000 configurable

parameters [9], representing a significant increase from the current number of parameters, suggests

that this network data also possesses high variety. These three attributes: volume, velocity, and

variety unequivocally posit that network data generated from future networks will be ‘Big Data’

[10].

The need for intelligence however, is not solely manifested in the large quantity of generated

data of future networks, it is also attributed to the increased service and functionality of said net-
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works. In order to meet QoS guarantees and service requirements, future networks will need to

observe the network environment, understand and adapt to unplanned scenarios, as well as optimize

configurations [11]. These functionalities will be achieved by creating a network which is capable

of automatic network optimization and provisioning through self-configuration, self-optimization,

and self-healing [11][12].

The massive amounts of data generated coupled with the increasing network demands and

functionality require the imminent implementation and leveraging of intelligence in existing and

future networking technologies.

3.3.2 Why Machine Learning?

The term artificial intelligence has been broadly used throughout industry and academia to dis-

cuss the ability of a machine to sense, mine, predict, and reason with a given environment [11].

Machine learning specifically, is the first stage in this all-encompassing artificial entity as it gives

a system the ability to make real-time decisions and predictions given previous conditions and

data. In the realm of networking, there are several instances where functionalities can be decom-

posed into smaller subsets of prediction and classification including but not limited to: demand

forecasting, network scheduling, and VNF placement. Such functionalities are candidates for the

implementation of machine learning techniques.

Perhaps the greatest advantage and need for machine learning comes from its ability to create

a general, transferrable model. Traditionally, there have been various network scenarios each with

its own parameters, requirements, and attributes which requires a unique and independent solution

[9]. This poses a certain limitation since creating individual models is quite intensive and ineffi-

cient. Machine learning on the other hand can create general models which are transferrable and

adaptable to many scenarios.

Traditionally, when considering the modelling and analysis of a given system, a full system

model is required. When considering this type of approach in a complex and dynamic networking

environment, it is evident that the development of a full and complete analytical model would be
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incredibly difficult to the point of impossible due to the great volume of system parameters and

uncertainties. Machine learning has excelled across all fields recently due to its ability to provide

model estimations which perform within acceptable thresholds without the need exact analytical

modelling of the system’s behaviour [9]. This paradigm shift is known as data-driven networking

and has been discussed as being a method of considering future networks.

3.3.3 Data-Driven Networks

As previously mentioned, traditional mathematical modelling of complex system behaviour can be

quite difficult. This is especially true in the case of networking as system complexity constantly

increases and NSPs are tasked with solving problems such as NFV resource allocation and VNF

placement which are categorized as NP-Hard [13]. Solving these problems are computationally ex-

pensive and often require the use of near-optimal heuristic models. Furthermore, when considering

networking problems, the use of problem decomposition where a large problem is decomposed into

several smaller child problems which are then independently solved is quite problematic as the op-

timal solution of these sub-problems does not inherently result in the optimal solution of the initial

problem [14].

By shifting from the notion of model-based networking to the paradigm of data-based network-

ing several benefits arise. Firstly, an exact analytical network model is not required as the network

parameters are directly learned from the data. Furthermore, this paradigm scales well with increas-

ing network size and complexity as the generated data will provide the necessary foundation for

the extraction of the updated system characteristics and behaviour.

3.3.4 Benefits of Machine Learning

As previously mentioned, with the exponential increase in demand and data, NSPs world-wide

are facing challenges in terms of network operation including: performance, security, efficiency,

management, and resilience [12]. Conventionally, these challenges have been addressed through

analytical modelling, optimization problem formulations, heuristic solutions, time-series analyses,
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and statistical approaches [9]. These methods provide great insight and interpretability into how the

system is viewed and how these results are obtained, something which has been a key criticism of

machine learning models as they are commonly considered to be ‘black boxes’ and opaque. How-

ever, despite their interpretability they have several limitations which can be addressed through the

use of machine learning.

Firstly, machine learning models have an incredible ability to reduce the complexity of a sys-

tem due to their offline/online training and prediction capabilities. When considering most ma-

chine learning models, their most computationally intensive part is training of the model. This

however, can be completed offline such that the much less complicated prediction stage is the only

requirement during run-time. This enables many machine learning models to be implemented in

real-time as this reduction in complexity overcomes the inability of conventional analytical models

to achieve a solution in acceptable time.

Furthermore, the ability of machine learning to develop models which are robust and dynamic

which can adapt to changing environments and conditions prove to be advantageous as model-

based networking would require the development of a new system model and the creation of a new

solution. This point can be extended to include the ability of a machine learning model to develop

a generalizable solution capable of applying to many different topologies and situations.

3.3.5 Why Decision Trees?

There are three main reasons motivating the use of decision trees in this work. Firstly, machine

learning models, as previously stated, have receive a lot of criticism for their opacity and ‘black-

box’ quality. This however, is not the case when considering decision trees as the construction

of the trees is a visible and interpretable group of binary decisions which lead to a predictive

outcome. Second, the end goal of autonomous networking is a unified entity capable of sensing,

observing, managing, and reason with a networking environment. Constructing this entity using

a top-down approach however, is infeasible; by considering a bottom-up approach starting with

simple models and specific tasks and gradually increasing model complexity through architecture
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and functionality is a sound approach to meet this end goal. Finally, the task of placing a given

number of instances (multi-output) on a given number of network servers (multi-class) presents

a prime opportunity for tree-based algorithms as they are able to address the family of complex

multi-class, multi-output problems [15].

3.4 Methodology

This section outlines the various steps taken to design and implement the Delay Aware Tree.

3.4.1 Dataset Generation

The dataset used to train the machine learning model is generated by using an adaptation of the

BACON algorithm presented by Hawilo et al. [13] to place VNF instances. This algorithm is

selected for its ability to achieve near-optimal placement with significantly decreased computa-

tional complexity compared to the Mixed Integer Linear Programming model. The objective of

the optimization model is to minimize the delay between two dependent VNF instances forming a

SFC. The dataset contains placements from two network layouts. Below is a high-level formula-

tion of the MILP optimization problem and a simplified pseudocode representation of the BACON

algorithm as proposed in [13].

Objective:

minimize (Delay between dependent VNF instances f orming a S FC)

Subject to:

1. Availability Constraints

• The placement of a given instance on a given server is constrained to a binary integer value

• Each individual instance can only be instantiated on one server

• Dependent VNFs should be placed on separate servers given that the delay tolerences are

not violated
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• VNFs of the same type should be placed as far away from each other as permitted by the

delay tolerence

2. Capacity Constraints

• The placement of a VNF instance on a given server should meet the VNF instance’s CPU

demand and not exceed the candidate server’s CPU capacity

• The placement of a VNF instance on a given server should meet the VNF instance’s memory

demand and not exceed the candidate server’s memory capacity

3. Network Delay Constraints

• Candidate servers must satisfy VNF latency requirements

Algorithm 3.1 BACON [9]
1: Rank VNF component criticality
2: Divide components into sub-groups
3: Associate criticality with sub-group
4: Build network graph
5: Calculate betweeness centrality of servers
6: Sort servers in descending order with respect to betweenness centrality
7: Sort sub-groups in descending order with respect to criticality
8: Identify mediator VNF and median nodes
9: Place components on servers based on descending criticality and betweenness centrality

The first network generated represents a small scale network with 15 servers and 6 VNF in-

stances while the second network represents a medium scale network with 30 servers and 10 VNF

instances to place. The parameters of the network include server-to-server delay, server resources,

VNF instance resource requirements, and VNF instance delay tolerances. They are all generated

following the structure of a three-tier data center. The instances are then placed using the afore-

mentioned BACON algorithm yielding the near-optimal placement [13]. This is conducted 10,000

times for each network, resulting in the placement of the VNF instances given the respective trial’s

network conditions. Table 2.1 lists the components of the two network models evaluated.
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Table 3.1: Network Components

Component Network 1 Network 2
Total Available Servers 15 30

MME VNF Instance 2 2
HSS VNF Instance 1 3
SGW VNF Instance 1 3
PGW VNF Instance 2 2

3.4.1.1 Dataset Distribution

The following figures will illustrate the distribution observed across the various features present in

the dataset as well as the distribution of the output labels. These distributions were generated using

the small-scale server network however, the same distribution is observed across the medium-scale

network.

Fig. 3.1 illustrates the distribution of the first server resource as observed accross all 10,000

trials and across all 15 servers.

Figure 3.1: Server RAM Resource Distribution
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Fig. 3.2 illustrates the distribution of the second server resource as observed accross all 10,000

trials and across all 15 servers.

Figure 3.2: Server CPU Resource Distribution

Fig. 3.3 illustrates the distribution of the delay between servers as observed accross all 10,000

trials and across all 15 servers.

Figure 3.3: Server-Server Distribution
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Fig. 3.4 illustrates the distribution of the delay tolerance of each instance as observed accross

all 10,000 trials and across all 6 instances.

Figure 3.4: Instance Delay Tolerance Distribution

Fig. 3.5 illustrates the distribution of the first resource of each instance as observed accross all

10,000 trials and across all 6 instances.

Figure 3.5: Instance RAM Resource Distribution

42



CHAPTER 3. DELAY-AWARE TREE (DAT) FOR VNF PLACEMENT

Fig. 3.6 illustrates the distribution of the second resource of each instance as observed accross

all 10,000 trials and across all 6 instances.

Figure 3.6: Instance CPU Resource Distribution

Fig. 3.7 illustrates the distribution of the output through the placement of each instance as

observed accross all 10,000 trials and across all 6 instances.

Figure 3.7: Instance Placement Distribution
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3.4.2 Machine Learning Model

The features extracted from the previous dataset generation stage include: resource requirements

for the VNF instances, resource capacity of the network servers, delay between servers, delay

tolerance between dependent VNF instances, and component dependence. These features are used

to predict the placement of each of the VNF instances on one of the network’s servers. The machine

learning model here can be treated as a multi-output, multi-class classification problem as there is

a prediction for each of the VNF instances (multi-output) and each prediction selects a server from

the set of network servers (multi-class).

Due to the nature of the problem, two approaches are evaluated, neighbour-based algorithms

and tree-based algorithms. These two families of algorithms are selected for their ability to address

the multi-class, multi-output requirement, something which many learning algorithms are unable

to do due to the inherent complexity of the solution [15]. After training the model and performing a

10-fold cross validation test, it is determined that the tree based algorithms are the best performing

family of algorithms specifically the decision tree algorithm.

The building of the decision tree follows a top-down approach starting with the root node. The

goal of the tree is to purify the nodes by increasing the homogeneity of their associated samples.

There are two main metrics used to assess the purity of the node, Gini index (1) and entropy (2)

where the probability pmk is the proportion of class observations at a given node [15]. The proposed

decision tree uses the optimized Classification And Regression Tree (CART) algorithm [15]. This

algorithm uses the Gini index by default for evaluating node purity.

Gini(Xm) =

k∑
i=1

pmk(1 − pmk) (3.1)

H(Xm) = −

k∑
i=1

pmk(log2 pmk) (3.2)

When initially constructing the tree, the Gini index of all features with respect to the output

label is calculated. The feature with the lowest Gini index has the most purity and therefore is
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selected as a root node. Once the root node is selected the dataset is split into subsets depending

on the feature values using thresholding. The Gini index of each of the features in each respec-

tive subset is then calculated and the lowest is selected as a branching attribute. This process is

completed until homogenous leaf nodes (pure) are achieved or the maximum depth of the tree is

reached. Since decision trees are prone to overfitting when dealing with large quantities of data,

the maximum depth of the tree is set, essentially limiting the tree’s ability to expand vertically,

and 10-fold cross validation is used to further ensure overfitting does not occur during the training

phase.

By using the data generated from the previous placement of VNF instances we create a data-

driven network model whereby the algorithm is responsible for determining and extracting the

inherent relationships from the data. Using this method, the complex mathematical modelling of

the system is bypassed however, as demonstrated in the results section, the algorithm has learned

from the training phase and is able to predict placement that approaches and outperforms the results

obtained from the heuristic.

3.4.3 Time Complexity

When comparing the computational complexity of the two methods, the Delay Aware Tree (DAT)

method exhibits a computational complexity O(n f eatures · nsamples · log nsamples) when creating the

tree and O(log nsamples) when executing a query [15]. The original algorithm has a computational

complexity of O( s3−s2

2 ) where s denotes the number of available servers in the network [13]. Com-

paring these two complexities, we can see that during runtime, the DAT method would operate at a

lower complexity since its initial training phase would have already been completed and it would

simply need to execute the query request.
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3.5 Algorithm Performance Comparisson

In order to evaluate the results of the machine learning model it is compared to the BACON algo-

rithm [13]. The performance is measured by calculating the delays between interconnected VNF

instances once the placement is made. Furthermore, the overall delay of each computational path

is also calculated.

3.5.1 Implementation Setup

The generation of the dataset is executed in Java while the data processing and machine learning

models are implemented using Python. Both the generation of the dataset and the model imple-

mentation are run on a PC with an Intel® Core™ i7-8700 CPU @ 3.20 GHz CPU, 32 GB RAM,

and an NVIDIA GeForce GTX 1050 Ti GPU.

3.5.2 Results

The results of the simulations are displayed below. In terms of the small scale 15 server network

Fig. 3.8 displays the delay between the various interdependent VNF instances.

Figure 3.8: Delay between Interconnected VNF Instances

Fig. 3.9 presents the overall SFC delay across the 4 computational paths previously discussed.
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As seen from these results, it is clear that the Delay Aware Tree (DAT) placement model has

learned well from the near-optimal placement of the BACON algorithm. When comparing the

delay between the interconnected VNF instances, DAT shows very good performance as the delays

observed are very close to the delays observed through BACON’s placement. In this case, it can

be seen that DAT performs slightly better than BACON for the first two paths and slightly worse

for the last two paths.

Figure 3.9: SFC End-to-End Delay

Fig. 3.10 shows the PDF of the difference between the delay of the computational paths using

BACON and DAT. The mean of the distribution suggests that across all computational paths, BA-

CON has on average 34μs less delay compared to DAT. However, the left tail of the distribution

greatly skews the mean through outliers. These outliers can be labeled as invalid placement predic-

tions and are caused by the fitting of the tree on the data. This problem can by mitigated through

the optimization of hyperparameters associated with the mitigation of over and under fitting of a

decision tree such as the max depth parameter. By optimizing the model hyperparameters the over-
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all performance of a machine learning algorithm improves [16]. By improving the performance of

DAT through hyperparameter optimization, the mean of the distribution will shift further towards

the positive side and the tails of the distribution will be suppressed.

Figure 3.10: Delay Difference between Bacon and DAT per Computational Path

Fig. 3.11 displays the delay across the 36 computational paths in the medium 30 server net-

work. As seen in the figure, DAT continues to perform well despite the increase in network size.

Assuming a maximum allowable delay is imposed at 2000μs we can see that DAT successfully pro-

duces more computational paths that do not violate this threshold thereby increasing the resiliency

of the network.
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Figure 3.11: Computational Path Delay – 30 Server Layout

3.6 Conclusion

The work presented in this chapter describes the first step towards an implementable, intelligent,

and delay-aware VNF placement strategy for the NFV Orchestrator. The Delay Aware Tree pre-

sented is able to predict the placement of VNF instances forming an SFC based on previous effec-

tive placements while considering operational constraints and ensuring QoS guarantees are met.

On average, the DAT resulted in 34μs of added delay per computational path when compared to

the BACON heuristic solution. Further work will aim to improve the predictive performance by

reducing the average delay observed across all computational paths as well as the minimization of

invalid placement predictions.
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Chapter 4

Depth-Optimized Delay-Aware Tree

(DO-DAT) for VNF Placement

4.1 Introduction

With the incoming introduction of 5G technologies, automation in network management and or-

chestration is essential to meet requirements and connectivity demands. Machine Learning (ML) is

a trending field which encompasses the use of various families of algorithms, both supervised and

unsupervised, which learn from a given set of input (training) data and predict an output. Increas-

ingly, ML has been adopted across many fields of research due to its ability to extract meaningful

relationships from data, its ability to develop a general solution to a given problem, as well as its

ability to adapt to changing environments.

The set of all machine learning algorithms exhibits a large range of functionality and complex-

ity. When considering very basic algorithms, there are few parameters which affect the training

and performance of a model; conversely, when considering more complicated algorithms, there

are many parameters which affect the training and performance of a model. These parameters,

referred to as hyperparameters, are extremely important when conducting the initial training phase

of a model as they can influence the predictive performance of the model and introduce (or elim-
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inate) unwanted qualities inherently present during the training phase including under-fitting and

overfitting which hinder the model’s performance.

When considering the decision trees, specifically CART, there are several hyperparameters

which can be optimized to improve model performance. Table 4.1 outlines four critical hyper-

parameters related to the CART decision trees, a brief description of what each hyperparameter

controls, as well as the type of values which they can assume.

Table 4.1: Main Hyperparameters for CART Decision Trees

Hyperparameter Description Value Type

max_depth maximum depth of tree integer

min_samples_split the minimum number of samples to split a node
integer
float

min_samples_leaf the minimum number of samples required to form a leaf node
integer
float

max_features the number of input features to use when building the tree
integer
float
string

The work presented in this chapter is an extension of the work presented in Chapter 2 deal-

ing with the use of machine learning for the delay-aware prediction of VNF instances forming a

SFC. In the previous chapter, the Delay Aware Tree (DAT) which shows promising results when

compared to current heuristic solutions was proposed. When considering the predicted placements

exhibited by the DAT, some invalid placement predictions were observed. These invalid placement

predictions are manifestations of the fitting of the machine learning model on the training data.

The predictions were deemed invalid due to their violation of the constraints outlined in the initial

MILP optimization problem formulation, namely the violation of the availability and delay con-

straints. In order to mitigate this, the maximum depth of the tree, a key hyperparameter in terms of

the under and overfitting of a decision tree has been selected as the target for improving the perfor-

mance of the DAT placement strategy through the minimization of invalid placement predictions

and the continual minimization of the delay between interdependent VNF instances forming a SFC.

In this chapter, the DAT model is further considered by optimizing the tree depth hyperparameter

53



CHAPTER 4. DEPTH-OPTIMIZED DELAY-AWARE TREE (DO-DAT) FOR VNF PLACEMENT

and proposing the Depth-Optimized Delay-Aware Tree (DO-DAT) placement strategy. The opti-

mization presented in this work was done using the meta-heuristic Particle Swarm Optimization

(PSO) algorithm.

4.2 Related Works

The tuning of machine learning model hyperparameters has been proven to increase the model

performance.

The work of Mantovani, et al. [1] deals with the tuning of hyperparameters in decision tree

algorithms. Their work uses several techniques including: random searches, heuristics and meta-

heuristics. They evaluate the performance of each algorithm comparatively using accuracy as their

main objective. Furthermore, they identify that when using the CART decision tree, the minimum

bucket and the minimum split are the two most important hyperparameters.

Sureka and Indukuri [2] explore the optimization of both tree-based model selection and hy-

perparameter tuning of machine learning models using the meta-heuristic genetic algorithm. Their

setup uses the predictive accuracy of the model as a metric of fitness to be maximized. Their work

concludes that the genetic algorithm functions well as a meta-heuristic optimization method for

both model type and hyperparameter setting however, it does not guarantee a convergence to a

global optimum in the search space.

Stiglic, et al. [3] apply a method of virtual tuning to optimize the hyperparameters of deci-

sion tree algorithms based on the visual interpretability of the resulting model. Their study does

not use any predictive performance metric as a basis of model fitness. Their methodology was

implemented on various bioinformatics datasets and results show that the construction of simple,

visually constrained models achieved comparable predictive performance to the default setting of

a visually unconstrained decision tree.

Thornton, et al. [4] suggest the use of Bayesian optimization for the combined model selection

and hyperparameter optimization problem. Their method was evaluated across several benchmark-
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ing datasets and their work evaluated the results of various classification models in terms of predic-

tive accuracy. Results suggest their methodology outperforms traditional methods of individually

considering model selection and hyperparameter optimization. Furthermore, their analysis shows

significant overall improvement when compared to exhaustive grid-based search methods.

4.3 Methodology

The following section will outline the various stages which lead to the development of the DO-

DAT including: problem formulation, data generation and analysis, as well as model construction

and validation.

4.3.1 Problem Formulation

The problem formulation for this work was conducted in a two-fold manner; the first dealing with

the problem formulation of the DAT and the second dealing with the problem formulation of the

PSO depth optimization.

4.3.1.1 Delay-Aware Tree (DAT)

The methodology behind the construction of the DAT as defined by the previous work outlined in

Chapter 2 and in [5], takes the previous placements made by the near-optimal heuristic BACON

algorithm. Inherently, the problem formulation for the DAT follows the problem formulation for

the BACON algorithm outlined in the work of Hawilo et al. [6].

4.3.1.2 PSO Optimization

The PSO optimization algorithm belongs to the set of meta-heuristic bio-inspired algorithms which

converge to a solution based on the creation and updating of populations. Just as in nature, in order

for a population to progress it must be fit, the same applies for this optimization method. With

PSO, the population is formed by particles which move throughout the predefined search space
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with a given velocity. Initially, each particle is given a random position and velocity. Through

each iteration, the position of each particle is revaluated based on its associated velocity in con-

junction with the best observed position of the population. This continues based on the predefined

number of iterations and the historical optimum is reported [7][8]. The following is a pseudocode

representation of the PSO algorithm.

Algorithm 4.1 Particle Swarm Optimization
1: initialize particle position
2: initialize particle best known position
3: while end criterion not met do
4: calculate fitness value of each particle
5: compare with best fitness value and update if necessary
6: identify particle with best fitness value as swarm’s best position
7: update particle velocity
8: update particle position
9: end while

The PSO is part of the evolutionary meta-heuristic family of algorithms which also contains the

popular Genetic Algorithm (GA). Both PSO and GA converge to a solution through the evolution

of populations across function iterations. Despite the similarities between these two algorithms,

PSO was selected due to its parallelized nature. The work of Hassan, et al. has suggested that while

both the PSO and GA converge to a solution with a very quality index (proximity to known op-

timal solution) when evaluated across several different optimization problems, the PSO algorithm

significantly outperforms the GA in terms of efficiency as it generally converges to a solution with

fewer iterations [9].

4.3.1.3 PSO Depth Optimization

The PSO depth optimization was conducted through the development of a unique optimization

function related to the domain of the NFV-enabled network and irrespective of the predictive ac-

curacy of the model. By adopting this process, it is possible to move past the point of matching

the performance of the BACON algorithm and instead focus on the continual development of the

predictive placement model as a whole.
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When considering the construction of a decision tree, the maximum depth of the tree has been

identified as a key hyperparameter in the overall fitting of the model. In an effort to prevent over

and underfitting, this work presents a joint optimization objective which considers both the average

delay across all computational paths of a predicted placement as well as a penalty factor related to

fitting. In the previous construction of the DAT improper model fitting manifested itself through

invalid predictive placements which violate certain constraints outlined in the initial BACON op-

timization problem. The penalty factor term operates like a regularization term in the objective

function penalizing invalid predicted placements during the training phase of the model.

The generic formulation of a multi objective optimization problem consolidated into a single

objective function is defined below.

Given the set of hyperparameters h , the set of objectives f , and the importance vector of each

objective expressed through the set of weights w, we can consolidate the multi-objective optimiza-

tion problem into a single objective function O [10]. The evaluation criteria E is an expression

of the consolidated objective function, the model trained with the set of hyperparameters h, the

training set Ts and the validation set Vs [1]. Assuming E is formulated as a cost function, the

optimization problem when implementing a b-fold cross validation is the minimization of P(h).

h = {h1, h2, ..., hn}

f = { f1, f2, ..., fn}

w = {w1,w2, ...,wn}

O = w1 f1 + w2 f2 + ... + wn fn
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E(O,model(h),Ts,Vs)

P(h) =
1
b

b∑
i=1

E(O,model(h),T (i)
s ,V

(i)
s )

Objective:

minimize P(h)

Taking the above into consideration, our PSO optimization problem can be formulated as fol-

lows:

The hyperparameter to be minimized is the max depth of the tree.

h = {maxDepth}

The main goal of the optimization is to minimize the delay across all computational paths and

to minimize the number of invalid predicted placements during the training phase. Let i represent

the trial number and j represent the computational path; the average delay across all computational

paths can be defined as:

avgdelay,CP =

∑n
i=1

[∑k
j=1 delayCP j

k

]
n

(4.1)

Where n is the total number of trials and k is the total number of computational paths. Addi-

tionally the regularization term follows the form:

α ∗ logβ(γ + 1)

Where α represents the penalty factor, β represents the penalty magnitude and γ represents the

quality. In this case, the α value was set to 1000 to match the scale of the delay, the β value was set
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to 2 to have a higher penalty magnitude, and the γ value was set as the number of invalid predicted

placements (ip). Taking this into consideration, the following holds true:

regTerm = 1000 ∗ log2(ip + 1) (4.2)

By inspection, it is evident that as the number of invalid predictions approaches 0 so does this

regularization term suggesting that in the ideal case where there are zero invalid predictions, the

effect of this regularization term is 0 as illustrated bellow.

lim
ip→0

1000 ∗ log2(ip + 1) = 0

Fig. 4.1 illustrates the effect of the regularization term as a function of the number of invalid

predictions.

Figure 4.1: Effect of Invalid Predictions on Regularization Term

By combining the two expressions above we get the following as our functions:

f =
{
avgdelay,CP, regTerm

}
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Since the weights of each function are already expressed through the penalty factor of the

regularization term, the weights are set to 1.

w = {1, 1}

Combining the above into a single objective function the following is obtained:

OPS O = avgdelay,CP + regTerm (4.3)

The above objective is expressed through the evaluation criterion which considers the objective,

the training, and the validation set.

E(OPS O,model(h),Ts,Vs)

After performing cross validation where b represents the number of folds the following is the

resulting function requiring optimization.

P(h)PS O =
1
b

b∑
i=1

E(OPS O,model(h),T (i)
s ,V

(i)
s )

Finally, since this is a cost function the optimization problem objective should be as follows:

Objective:

minimize P(h)PS O (4.4)

When considering the above optimization problem the possible range of hyperparameter values

is constrained to the functional range of the system. In this problem, the functional range is de-

fined as the range where the number of invalid placement predictions falls below a specified error

threshold and when it achieves steady state across 10 depth iterations. Effectively, the constraints

on the hyperparameter values can be defined by:
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Constraints:

a1 ≤ h ≤ a2

where the functional range is defined on the interval [a1, a2].

4.3.2 Data Generation

In order to generate the training and testing datasets initial network topologies were constructed.

These topologies were structured as 3-tier datacenters and the various network parameters were cal-

culated according to the findings of Microsoft Corporation [11]. In order to generate the topology,

an initial number of network servers and VNF instances were selected. For each server-instance

permutation, 10,000 topologies were generated with differing network conditions and the respec-

tive VNF instances were placed using the BACON algorithm.

In this work, there were 4 different server-instance permutations considered and therefore,

40,000 topologies with varying conditions were generated. The first permutation contained 6 VNF

instances to be placed on 15 network servers. Taking into consideration the distribution of VNF

instance, there were a total of 4 different computational paths available for this topology. The

second permutation considered the placement of 10 VNF instances to be placed on 30 network

servers. 36 computational paths resulted from this permutation due to the distribution of instances.

The final two permutations were used to assess the effect of topology on optimal tree depth.

In order to support the scalability of this design, the hypothesis that the max depth of the tree is

irrespective of the number of instances and servers is proposed. To test this hypothesis we created

the final two instance-server permutations such that in one the number of servers remains constant

but the number of instances changes and in the second, the opposite holds true. The first of these

server-instance permutations had 15 instances placed on 30 servers. Due to the distribution of

instances, a total of 192 computational paths were present in this topology. The final permutation

we evaluated had 10 instances placed on 45 network servers. As per the previous permutation with
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10 instances, given their distribution, a total of 36 computational paths were present. Table 4.3 lists

all of the server-instance permutation along with the distribution of instances and computational

paths (CP).

Table 4.2: VNF Instances and Computational Paths per Topology

Topology Total Servers HSS MME SGW PGW CP

1 15 1 2 1 2 4
2 30 3 2 2 3 36
3 30 4 4 4 3 192
4 45 3 2 2 3 36

4.3.3 Data Analysis

Upon the creation of the various topologies through the data generation and initial placements

using the BACON algorithm, the next stage in the methodology relates to the feature extraction.

In order to predict the placement of VNF instances on network servers, a snapshot of the network

conditions is taken and used as input features to the model. The output labels are the placements

of the components on the network servers; as previously stated, this is a multi-class, multi-output

problem, therefore there is a set of outputs predictions each with their respective set of possible

labels. Given that s represents a network server and v represents an instance to be placed the

following holds true:

outputs = {v1, v2, ..., vn}

labels = {s1, s2, ..., sn}

Table 4.3 lists the various input features which were extracted from a snapshot of the current

network conditions along with their respective size where i is the number of instances and s is the
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number of servers:

Table 4.3: Feature Set Dimensionality

Feature Dimension
Resource Requirements (instance) (i x 2)

Resource Capacity (server) (s x 2)
Interdependent instance delay tolerance (3 x 2)

Delay between servers (s x s)
Instance interdependence (i x i)

4.3.4 Model Construction

The construction of the DO-DAT follows a 3 step process. The first stage involves the determi-

nation of the range of under/overfitting with respect to the tree depth. To evaluate this, PSO op-

timization is run given a range of [2,100] for the maximum depth hyperparameter. As previously

mentioned, the evidence of under/overfitting in the DAT was evident through the number of invalid

placement predictions; knowing this, the goal of this PSO optimization stage is to determine the

depth at which the number of invalid placement predictions are minimized.

The result from the first stage are then used to determine the range of values to be further con-

sidered. The range of values is determined by considering when the number of invalid placement

predictions falls below a pre-defined error threshold arbitrarily set at 7.5% and when steady state

is reached meaning that there is no further improvement observed. The optimization performed in

the second stage considers the entire objective function (6) evaluated across the previously deter-

mined range. The result of this optimization will show the effect of the range of depths on the joint

consideration of invalid predictions and delay.

The final stage of the construction of the DO-DAT is to identify the optimal tree depth obtained

from the previous stage and construct the model using this value as the initialized value of the

max-depth hyperparameter.
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4.4 Results and Analysis

The following is an a presentation of the results obtained as well as an analysis of their implication

on the DO-DAT.

4.4.1 Implementation

The generation of the dataset was executed in Java while the data processing and machine learning

models were implemented using Python. Both the generation of the dataset and the model imple-

mentation were run on a PC with an Intel® Core™ i7-8700 CPU @ 3.20 GHz CPU, 32 GB RAM,

and an NVIDIA GeForce GTX 1050 Ti GPU.

4.4.2 Functional Range

The first set of results pertains to the PSO optimization and its effectiveness in presenting the

optimizal value of the tree depth. Fig. 4.2 displays the effect of varying the depth of the tree on the

number of invalid placement predictions.

Figure 4.2: Effect of Max Depth on Invalid Predictions
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As seen, the number of invalid placement predictions decreases while the tree depth is less

than 25 and stabilizes at this minimum value of 0 while the tree depth is greater than 25. At a

max depth of 20, the number of invalid placement predictions (error rate) is 7.5%. The range of

tree depths spanning [20,35] is selected as the functional range of the first stage and will be further

evaluated while taking into consideration the full objective function (6) as previously oulined in

the methodlogy.

Fig. 4.3 presents the values of the max depth of the DAT evaluated during each iteration of

the PSO spanning the range of interest previously identified. This figure accurately illustrates the

search space coverage of the optimization process. Due to this coverage, it can be stated that the

optimimal value obtained from the PSO optimization is a global optimum in the search space as

the coverage of possible values is extensive.

Figure 4.3: PSO Search Space Coverage
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4.4.3 Optimal Depth

Results from the optimization of the functional range of interest are presented in Fig. 4.4. From

this figure we can see the objective function P(h) is decreasing on the interval [20,28] and plateaus

on the interval [29,35]. The interval [28,30] represents the interface between under and overfitting

of the DAT and therefore, since there is no further significant improvement on the interval [29,35],

the optimal depth is 29.

Figure 4.4: Effect of Depth on P(h)

4.4.4 Performance Comparisson

Taking this into consideration, the following figures will compare the placement of BACON, DAT,

and DO-DAT. Fig. 4.5 illustrates the delay across the various computational paths in the small

scale network.
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Figure 4.5: Delay Across Computational Paths of Small Network

As observed in this figure, DO-DAT exhibits improved performance when compared to its

predecessor DAT; while the delay across CP1 and CP3 remains constant, the delay across CP2

and CP4 has slightly decreased. Furthermore, when comparing DO-DAT to BACON, it can be

seen that CP1 and CP2 exhibit a lower delay by DO-DAT, whereas CP3 and CP4 exhibit a lower

delay by BACON. However, it must be noted that the delay difference across CP1 and CP2 is

significantly greater than that observed across CP3 and CP4 suggesting that overall, across all

computational paths, the average delay observed through the DO-DAT placement is less than that

observed through the DAT and BACON placements.

This result can be further extended to the second network topology as expressed in Fig. 4.6.

From this figure it is evident that DO-DAT, when considered across all computations paths, pro-

duces more paths with less delay when compared to the other two placement methods. Further-

more, the success of the DO-DAT in minimizing the number of invalid placement predictions is

observed. Visually, it is evident that the DAT produced invalid placement predictions on CP5,
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CP17, and CP29 due to the uncharacteristically low delays attributed to a violation of the avail-

ability constraints. When considering the performance of DO-DAT across these aforementioned

paths, it is evident that the invalid predictions have been mitigated and the predicted placements

produce a lower delay than those observed through the BACON placements.

Figure 4.6: Delay Across Computational Paths Medium Network

A further clarification of this point is evident when considering Fig. 4.7. This figure shows

a PDF of the difference between the DO-DAT and BACON algorithms in terms of placement

delay. By calculating the difference in delay between the DO-DAT across every computational

path placement, we can determine the probability of DO-DAT performing better than BACON.
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Figure 4.7: Delay Difference between DO-DAT and BACON

The mean in the above figure is -10μs meaning that on average, DO-DAT provides a com-

putational path 10μs less of a delay when compared to BACON. This is an improvement on our

previous work related to DAT which on average had 34μs more delay. The work presented in this

chapter effectively improved the placement of VNF instances by 44μs on average. This is a very

significant feat when considering the time-sensitive nature of NFV-enabled networks.

4.4.5 Scalability of Solution

Fig. 4.8 and Fig. 4.9 display the effect of server-instance permutations on the optimal depth of

the DO-DAT. In order to prove scalability, the depth of the tree should remain constant across the

various server-instance permutations. As seen through these figures, this is in fact the case as all

permutations result in a maximum depth of 29.
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Figure 4.8: Depth Optimization Instance Permutation

Figure 4.9: Depth Optimization Server Permutation
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The confirmation that the DO-DAT is scalable across both the instance and server permutation

topologies further reinforces the value of using a light-weight machine learning algorithm for the

placement of VNF instances on network servers. However, in order to fully prove the added benefit

of the DO-DAT a time complexity analysis must be completed.

4.4.6 Time Complexity Analysis

One of the benefits of the use of machine learning in networks is the reduction of system complex-

ity. This is evident through the time complexity analysis of our proposed model. When considering

the BACON algorithm, it has a computational complexity of O( s3−s2

2 )where S denotes the number

of available servers in the network [6]. Our previous work outlined the complexity of constructing

a decision tree denoted by complexity O(n f eatures ∗ nsamples ∗ log nsamples) when creating the tree and

O(log nsamples)when executing a query [12]. Additionally, the DO-DAT has an additional offline op-

timization component with the complexity defined by O(n2t) where n denotes the population and

t the iteration [13]. Since we have proven the scalability of the DO-DAT, the impact of the PSO

stage is greatly minimized since the depth of the tree remains constant across various topologies.

4.5 Conclusion

The work presented in this chapter describes a key step towards an implementable, intelligent,

and delay-aware VNF placement strategy for the NFV Orchestrator. This work has demonstrated

not only an improvement upon the previously suggested DAT model but also a scalable solution

capable of operating on various different network layouts and topologies. Through the optimization

of the max tree depth, we have addressed the under/overfitting phenomenon which plagues large

decision trees and negatively impacts performance.
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Chapter 5

Conclusion

As a way of dealing with rising costs and connectivity demands, network operators have turned

to NFV as a viable solution. By abstracting network functions and executing them as software

applications irrespective of the underlying hardware several benefits arise including network porta-

bility, flexibility, and scalability. Unfortunately, these benefits give rise to new challenges which

must be addressed for the continual feasibility of this solution. The work presented in this thesis

describes the first step towards an implementable, intelligent, and delay-aware VNF placement

strategy for the NFV Orchestrator. This work addresses the NP-hard VNF palcement problem

successfully through the implementation and training of a Delay-Aware Tree machine learning

model, DAT, which is able to learn the near optimal placement of VNF instances forming a SFC.

Further improvements are presented with the introduction of the Depth-Optimized Delay-Aware

Tree (DO-DAT) which uses machine learning and an offline Particle Swarm Optimization (PSO)

optimization to provide an effective, real-time placement solution. Results suggest that there is a

significant reduction in time complexity achieved by using the DAT and DO-DAT as the majority

of the computationally intensive training is completed online. While the DAT on average produced

placements with an average additional delay of 34μs per computational path when compared to the

current heuristic solution BACON, the DO-DAT exhibited an average reduced delay of 10μs per

computational path. The overall improvement of the DAT throught the optimization of the depth
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hyperparameter has therfore resulted in an average delay reduction of 44 μs per computational

path, a result which is significant given the delay-sensitive nature of the problem.

Future work in the field will address the following topics:

1. A full scalability analysis of the DO-DAT taking into consideration additional server-instance

permutations

• This scalability analysis will consider the scalability of the DO-DAT by observing the time

required to train, optimize, and predict the placements of VNF instances using the DO-DAT,

as well as the memory and computational resources required during each of those stages.

• Based on the current work, and the time-complexity analysis performed, it is hypothesized

that the results of this scalability analysis will further solidify the benefit of the DO-DAT

as the time and resources required for the prediction of a placement using DO-DAT will

be compared to that of BACON and the solution of the MILP model obtained through a

commercial optimizer such as CPLEX

2. The optimization of additional hyperparameters and an insight into their impact on overall

performance

• As previously mentioned, there were 3 additional key hyperparameters (min_samples_split,

min_samples_leaf, and max_features) which contribute to the performance of CART deci-

sion trees. As a next step, the optimization of the DAT hyperparameters will be expanded to

include these three hyperparameters

• There are two potential options for optimizing these hyperparameters, sequential or joint

optimization

• Sequential optimization is the process by which each hyperparameter is optimized individ-

ually. This method reduces the search space however doesn’t necessarily provide a global

optimum when considering the configuration of all four aforementioned hyperparameters
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• Joint optimization on the other hand greatly increases the search space as all four hyperpa-

rameters are considered simultaneously however, the solution obtained from this optimiza-

tion will be the global optimum

3. The feature reduction of network data and the ranking of feature importance

• Considering the increasing complexity and network size, feature reduction techniques such

as principal component analysis and auto encoders will be considered

• The objective of this work will be the isolation of the key features related to the prediction

of VNF instance placement

• By knowing the key features required to make a prediction, the remaining features can be

discarded thus reducing the time and resourced required during the training phase of the

DO-DAT

4. The expansion of functionalities offered by the DO-DAT to address additional requirements

of an NFV Orchestrator

• As previously mentioned, the work described in this thesis is the first step towards a fully

automated intelligent orchestrator; as such, the functionalities offered by the DO-DAT must

be expanded to address the other services provided by the NFVO including:

• VNF scaling

• VNF migration

• VNF re-instantiation

• Additionally, with the imminent introduction of 5G networks additional functionalities must

be addressed such as:

• Network sensing

• Self-healing
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