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ABSTRACT 

The CSA A23.3 code provisions compute the long-term deflection of reinforced concrete 
flexural members by applying a multiplier to the short-term deflection, essentially ignoring the 
creep and shrinkage characteristics of concrete. The CAC Concrete Design Handbook presents 
more elaborate methods, but fails to account for the factors that influence the creep and 
shrinkage of concrete. 

The four widely recognized models for computing creep and shrinkage strains yield predictions 
that differ by up to 30%. Studies by others to assess the accuracy of the models apply different 
of statistical analyses do different datasets and so yield contradicting outcomes, making it 
difficult to quantify the prediction error. 

Mechanics-Based Methods for computing long-term deflections are proposed and used to 
derive Alternative Simplified Methods. The accuracy of existing and proposed methods is 
assessed by quantifying test/predicted ratios. The CAC Handbook Method yields mean 
test/predicted ratios ranging from 0.97 (conservative) to 1.34 (unconservative). The mean 
test/predicted ratio for the Mechanics-Based Method and the Alternative Simplified Method 

range from 0.92 to 0.94, and from 0.97 to 1.05, respectively. The A23.3 Multiplier Method 
overestimates the deflection of lightly-reinforced members.  

 

 

 

 

 

Keywords: Reinforced concrete; Long-term deflection; Time-dependent analysis of concrete; 
Concrete creep; Concrete shrinkage Short-term deflection; Bischoff’s Equation; Effective 
moment of inertia; Sustained loads 
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SUMMARY FOR LAY AUDIENCE  

Serviceability, or functionality, is an important structural design criterion. Structures that 
exhibit excessive deflections may become unusable. Methods for checking deflections during 
the design of reinforced concrete structures must account for the instantaneous deflection and 
the additional long-term deflection due to concrete creep and shrinkage. The research reported 
in this thesis presents enhanced methods for computing creep and shrinkage deflections that 
may replace existing methods that have remained static since the mid 1970s. 
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NOMENCLATURE 

A Regression coefficient quantifying the contribution of the creep coefficient to 
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A’s Area of compression steel reinforcement 
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c Correlation factor 
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f’c Specified compressive strength of concrete 
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Ie Effective moment of inertia 

Ig Gross moment of inertia 

Icr#  Time-dependent cracked moment of inertia 

Ksh coefficient that accounts for the displacement boundary conditions in 
shrinkage deflection calculations 
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kr Creep strain reduction factor 

ksh Gilbert and Kilpatrick’s empirical shrinkage factor  

kd""" time-dependent neutral axis depth 
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Ma Maximum applied service moment  
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wij Weight assigned to the ith data point in the jth dataset 
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Chapter 1  

1 Background and Research Objectives 

1.1 Deflection of Reinforced Concrete Flexural Members 
Structural members must be designed to meet ultimate and serviceability limit states 
requirements. Ultimate limit states dictate the required strength of flexural members, which 
can be accurately quantified using the well-understood, mechanically sound equations of 
equilibrium. In fact, the flexural strength design of reinforced concrete members is further 
optimized using widely available high-strength steel (e.g., 650MPa yield strength), which 
implies that smaller cross-sections are needed to satisfy strength requirements. The major 
serviceability limit states in concrete structures are: excessive deflection; excessive 
cracking; and, excessive vibration (MacGregor and Bartlett, 2000). Building codes impose 
upper limits on the allowable deflection of concrete members to preserve the functionality 
of the structure (e.g., prevent damage to non-structural elements or aesthetic discomfort). 
Therefore, the design of reinforced concrete members is often governed by the deflection 

serviceability requirements. The total deflection is computed as the summation of the short-
term deflection due to the applied load, and long-term deflections due to the sustained 
portion of the applied load and to warping due to restrained shrinkage. 

Short-term deflections are computed using conventional structural analysis methods. The 

short-term deflection, ∆i, of a cracked, simply supported concrete member carrying a 

uniformly distributed load is: ∆i = 5Maℓn
2 48EcIe0  where Ma is the magnitude of the applied 

service moment, ℓn is the clear span length, Ec is the Young’s Modulus of concrete, and Ie 

is the effective moment of inertia of the cracked concrete cross-section. The method for 
computing Ie presented in the ACI 318-14 (ACI, 2014) and the CSA A23.3-14 (CSA, 2014) 
code provisions was initially proposed by Branson (1965). Bischoff (2007) showed that 
Branson’s (1965) Equation is based on an incorrect mechanical model and proposed a new 
equation based on a correct mechanical model. The CSA A23.3-14 code provisions also 
require computing Ie based on half the modulus of rupture of concrete to account for the 
error in the equation and the effect of restrained shrinkage, which reduces the moment 
required to initiate cracking in a member. Scanlon and Bischoff (2008) recommend using 
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the Bischoff Equation based on two-thirds the modulus of rupture. Mancuso and Bartlett 
(2016) showed that using the Branson Equation based on half the modulus of rupture or 
the Bischoff Equation based on two-thirds the modulus of rupture yields very similar 
results.  

The long-term deflection of steel-reinforced concrete members under sustained loads is 
due to the time-dependent effects of creep and shrinkage of concrete. Both creep and 
shrinkage are intrinsic material properties that are significantly influenced by the concrete 
mix design and ambient environmental conditions. However, unlike shrinkage, creep is 
load-dependent and is therefore influenced by factors pertaining to the loading conditions 

(e.g., age at loading and the magnitude of the applied compression stress). There are four 
widely recognized mathematical models for computing creep and shrinkage strains in plain 
concrete, that account for different factors and are at least partly empirical.  

The long-term deflections are computed using ACI 318-14 or CSA A23.3-14 by simply 
applying a multiplier to the short-term deflection and are based on empirical methods 
proposed by Branson (1977). The A23.3 Multiplier Method implies that the magnitude of 
the long-term deflection is twice the short-term deflection for members with a sustained 
load duration greater than 60 months. Other design aids such as ACI 435-95 (ACI 435, 
1995) and the Cement Association of Canada’s Concrete Design Handbook (CAC, 2016) 
present a more detailed method for computing incremental deflections due to creep and 
shrinkage, also based on empirical methods proposed by Branson (1977). Using this 
method, creep deflections are computed as a direct function of the short-term deflection, 
and shrinkage deflections based on the thickness of the member and the tension and 
compression reinforcement ratios. These design aid and code provisions have not been 
modified since their introduction more than four decades ago (with the exception of the 
requirement that the effective moment of inertia be computed based on a reduced modulus 
of rupture introduced in 2009 (CSA, 2009)).   

Computing long-term deflections using a single multiplier ignores the creep and shrinkage 

characteristics of concrete and is therefore fundamentally wrong (Gilbert, 2001). It does 
not explicitly account for: the change in the location of the neutral axis caused by creep; 
the residual strains at the top and bottom fibers due to restrained shrinkage (which can 
cause significant deflections even in unloaded members (Miller, 1958)); ambient 
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environmental conditions; and, age at loading. A note to Clause 9.8.2.5 in CSA A23.3-14 
(CSA, 2014) notes that the Multiplier Method may yield unconservative deflections for 
members loaded at ages less than 28 days and recommends applying an additional 
multiplier to the total (immediate plus long-term) deflection. The additional multiplier is a 
function of the age at loading and ranges from 1.0 for members loaded at 28 days to 1.6 for 
members loaded at 7 days. However, the theoretical background and techniques used to 
derive this multiplier remain unclear.  

Several studies including Large (1957), Yu & Winter (1960), Pauw and Meyers (1964), 
and Branson (1977) attempted to calculate the long-term deflection of cracked reinforced 

concrete members by analytically computing incremental deflections due to creep and 
shrinkage but failed to achieve satisfactory agreement with experimental data (Branson, 
1977). This was primarily caused by difficulties in calculating the cracked moment of 
inertia and the associated elastic neutral axis location of doubly reinforced members. 
Further, these studies computed the effective moment of inertia of cracked sections based 
on empirical methods and did not account for the effect of restrained shrinkage on the 
short-term deflection. Other studies that were primarily focused on prestressed concrete, 
including Neville et al. (1983) and Dilger (1988), presented analytical methods for 
computing incremental deflections due to creep and shrinkage in uncracked sections 
(because prestressed concrete is typically uncracked at service loads). However reinforced 
concrete members are typically cracked at service loads and these methods must be refined 
to be applicable for use in the analysis and design of reinforced concrete members. 

Thus, it is necessary to reevaluate the existing provisions for computing long-term 
deflections using the most recent methods for computing the short-term deflection since 
Branson’s (1977) methods are strongly dependent on the short-term deflection. Further, 
analytical methods for computing long-term deflections can be derived based on 
procedures by others (e.g. Pauw and Meyers (1964) and Dilger (1988)) while accounting 
for the effects of restrained shrinkage on the effective moment of inertia and using 

mechanics-based methods for computing the neutral axis depth of singly and doubly 
reinforced members presented in Chapter 6 of the CAC Concrete Design Handbook (CAC, 
2016). 
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1.2 Research Objectives 
The primary objectives of this research are to:  

1. Investigate factors that influence creep and shrinkage of concrete and evaluate 
existing mathematical models for computing creep and shrinkage strains using the 
most recent studies.  

2. Critically evaluate existing empirical methods for computing incremental 
deflections due to creep and shrinkage (e.g., methods presented in the CAC 
Concrete Design Handbook (CAC, 2016)) and, if necessary, propose improved, 
Mechanics-Based Methods. The accuracy of the existing and proposed methods 
should be quantified using test/predicted ratios.  

3. Critically evaluate the A23.3 Multiplier Method for computing the long-term 
deflections and, if necessary, present alternative simplified methods for computing 
long-term deflections based on short-term deflections. 

1.3 Thesis Outline 
Chapter 2 presents an overview of the factors that influence the creep and shrinkage of 
concrete as well as the widely recognized mathematical models for computing creep and 
shrinkage strains. It presents a review of the most recent studies that evaluate the accuracy 

of the prediction models and provides an overview comparison of the accuracy of the 
models based on the different studies. 

Chapter 3 presents the existing methods for computing long-term deflections due to creep 
and shrinkage including a detailed description of their derivation. It also presents 
Mechanics-Based detailed methods for computing incremental deflections due to creep and 
shrinkage. The relevant experimental data on the long-term deflection of reinforced 
concrete beams were investigated and used to assess the accuracy of the existing and 
proposed methods for computing creep and shrinkage deflections. The proposed 
Mechanics-Based Methods are somewhat laborious but account for the necessary factors 
that influence creep and shrinkage deflections and are therefore the most accurate.  
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Chapter 4 presents a critique of the A23.3 Multiplier Method and identifies several 
shortcomings. It also presents an Alternative Simplified Method for computing the long-
term deflections that is calibrated using the aforementioned Mechanic-Based Methods. A 
comparison between the A23.3 Multiplier Method and the Alternative Simplified Method 
is also presented. 

Chapter 5 presents the summary, conclusions, and recommendations for future work. 
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Chapter 2  

2 Comparison of Models for Computing Creep and Shrinkage 
Strains 

As a first step towards assessing criteria for computing long-term deflections of reinforced 
concrete beams, it is appropriate to review the state of the knowledge concerning shrinkage 
and the creep of axially loaded specimens. in particular, the critiques by others of the four 
methods presented in ACI 209 (ACI 209, 2008) will be assessed. The details of these 
methods are clearly described in Appendix A of the ACI 209 Guide of Modeling and 
Calculating Shrinkage and Creep in Hardened Concrete (ACI 209, 2008). While some 
conclusions are drawn about the relative accuracy of these methods it will also be 
demonstrated that the various comparisons by others are inconsistent and yield uncertain 
conclusions.  

2.1 Behavior of Plain Concrete in a Drying Environment 
Deformation of concrete in a drying environment is attributed to two phenomena, creep 
and shrinkage. The former is a time-dependent deformation that occurs under sustained 
load, whereas the latter is independent of the applied stresses. Creep can be further 
categorized into basic creep, an intrinsic material property that is independent of factors 
relating to dissipation of water from the mix, and drying creep, which is defined as 

additional creep that occurs due to drying, but in excess of shrinkage (ACI 209, 2008). 
Similarly, shrinkage can be divided into drying and chemical (autogenous) shrinkage. 
Drying shrinkage occurs over a longer time span and is the most significant when 
considering long-term deformations of normal-strength concrete (Gilbert, 1988). High-
strength concretes tend to undergo significant autogenous shrinkage (ACI 209, 2008; FIB, 
2012) that therefore must be accounted for. However, it is unnecessary to differentiate 
between the various types of shrinkage when considering normal-strength concretes, and 
unless otherwise stated, the term shrinkage will hereafter refer to drying shrinkage.  

Creep and shrinkage are affected to various degrees by (ACI 209, 2008): environmental 
factors including humidity and temperature; cement matrix properties including 
water/cement ratio and aggregate stiffness; and, factors pertaining to casting, curing, 
handling, and loading of the concrete. Models for calculating the creep and shrinkage 
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strains tend to account for different parameters, as will be discussed in the following 
subsections.  

Table 2-1 indicates some factors considered to have the greatest impact on creep and 
shrinkage in concentrically loaded specimens, including their influence on the ultimate 
creep and shrinkage strains. Arrows pointing upwards indicate an increase of a particular 
parameter or the associated creep or shrinkage response phenomenon, and the opposite 
convention holds true. Apart from the aggregate stiffness, ACI 209 suggests that these are 
the most basic parameters that need to be included in any creep and shrinkage model (ACI 
209, 2008). Creep is a load-dependent deformation and is often quantified using a 

compliance function. Compliance is defined as the sum of elastic and creep strains 
produced by a unit stress and so is usually reported in microstrains/MPa (ACI 209, 2008). 
The terms creep strain and compliance strains will be used interchangeably in the 
remainder of this chapter. Both basic and drying creep are greatly influenced by the age at 
loading, magnitude of the applied load, and compressive strength of the concrete. 
Additionally, drying creep is greatly affected by factors that contribute to the loss of 
moisture from the concrete, such as the water/cement ratio, size of the member, drying 
period before loading, and the ambient relative humidity. Shrinkage is also a drying 
property and is therefore influenced by the same factors.  

Table 2-1: Effect of Different Parameters on Creep and Shrinkage Strains 

Parameter Shrinkage Basic Creep 
 

Drying Creep 

Aggregate stiffness and 
content ­ ¯ ¯ ¯ 

Age at loading ­ - ¯ ¯ 

Relative humidity ­ ¯ - ¯ 

Volume/Surface area ­ ¯ - ¯ 

Water/Cement (or 1/f’c) ¯ ¯ ¯ ¯ 

Magnitude of applied load ¯ - ¯ ¯ 

Drying period before loading ­ ¯ - ¯ 
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Increased stiffness of both the fine and coarse aggregates has been shown to play an 
important role in reducing shrinkage and creep of concrete (Brooks, 2005; ACI 209, 2008). 
This is intuitive because creep and shrinkage originate in the cement paste, and aggregates 
are normally significantly stiffer than the cement paste. Therefore, stiffer aggregates are 
expected to provide a considerable restraint to creep and shrinkage. Brooks (2015) showed 
that creep of concrete is highly sensitive to values of elastic modulus of aggregate less than 
70 GPa, but is relatively intensive to the aggregate stiffness for higher elastic moduli. 
Moreover, shrinkage is an intrinsic material property of cement paste and concrete mixtures 
with a high volume of aggregate will shrink less than those with high volumes of cement. 

2.2 Experimental Data on Creep and Shrinkage 
A database containing results from numerous experimental programs that studied the long-
term behavior of plain concrete was created by Bazant and Panula (1978). It has since been 
further developed by other researchers and named the RILEM Databank (Mija, Roman, & 

Bazant, 2015). As of 2008, the RILEM Databank consisted of 426 shrinkage and 518 creep 
data sets. In 2015, a group of researchers led by Bazant presented a major expansion to the 
RILEM Databank and named it the NU (Northwestern University) Database (Mija, Roman, 
& Bazant, 2015). This expansion was primarily intended to include more data on modern 
high-performance concretes that are significantly influenced by chemical reactions other 
than hydration. The most recent test results in the database are from 2017. 

Existing creep and shrinkage models have been validated against and/or fitted to data in 
the RILEM Databank. Therefore, unless subclassifications have been made, such as 
dividing shrinkage into chemical and drying shrinkage, most models are applicable to 
normal-weight concretes. A table showing the range of applicability of each model in ACI 
209R-08 (2008) indicates that models that do not account for chemical shrinkage are 
applicable to concretes with compressive strengths up to 80 MPa. 

2.3 Creep and Shrinkage Models 
There are four widely recognized mathematical models for calculating ultimate strains due 
to creep and shrinkage: CEB-FIP MC90-99 (Comité Europeen du Béton, 1993), ACI 209 
(ACI 209, 2008), GL2000 (Gardner & Lockman, 2001), and B3 (Bazant and Baweja, 1995, 
2000). Some models, such as ACI 209 and GL2000, are entirely empirical. Others, 
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although based on mathematical derivations that attempt to evaluate physical phenomena, 
do not necessarily provide more accurate predictions, as will be demonstrated. Irrespective 
of the basis of the model, all were calibrated to fit experimental data and are therefore at 
least partly empirical. The CEB-FIP MC90-99, GL2000, and B3 models were all calibrated 
using data sets selected from the RILEM Databank.  

2.3.1 Scope of Models 

Each model was developed by a different group of researchers and accounts for different 
factors that are considered to influence creep and shrinkage. Table 2-2 summarizes the 
parameters explicitly accounted for in each model. All models account for the basic 
parameters that affect creep and shrinkage, as outlined in Section 2.1 and Table 2-1. 
However, they do not consistently account for other critical parameters such as: specimen 
shape; compressive strength at age of loading; Young’s Modulus at age of loading; cement 
type; water/cement ratio; aggregate/cement ratio; and, curing type. Models B3 and ACI 
209 require the largest number of parameters (15 and 14 parameters, respectively), and 
GL2000 requires the least (10 parameters). The most significant shortcoming of all 
methods is their failure to account directly for the influence of the stiffness of aggregate, 
which was shown to have a substantial impact on the creep and shrinkage of concrete 

(Brooks, 2005). 

The accuracy of models is inherently limited by the difficulties in defining strength 
development of cementitious materials and assumptions used to relate concrete strength to 
modulus of elasticity (Gardner & Lockman, 2001). Therefore, it is unrealsitic for models 
to predict creep and shrinkage strains within plus or minus 20% of test data (ACI 209, 
2008). 
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Table 2-2: Variables Explicitly Considered in Models 

 Creep Shrinkage 

MC90-99 ACI 209 B3 GL2000 MC90-99 ACI 209 B3 GL2000 

Relative Humidity ✔ ✔ ✔ - ✔ ✔ ✔ ✔ 

Volume/Surface 
Area 

✔ ✔ - ✔ ✔ ✔ ✔ ✔ 

Specimen Shape - - - - - - ✔ - 

28-day 
Compressive 

Strength 

✔ ✔ ✔ ✔ ✔ - ✔ ✔ 

28-day Young’s 
Modulus 

✔ ✔ ✔ ✔ - - - - 

Compressive 
Strength at Age of 

Loading 

- ✔ - ✔ - - - - 

Young’s Modulus 
at Age of Loading 

✔ ✔  ✔ - - - - 

Cement Type ✔ ✔ ✔ - - - ✔ ✔ 

Water/Cement - - ✔ - - - - - 

Aggregate/Cement - - ✔ - - - - - 

Curing Types - ✔ ✔ - - ✔ ✔ - 

Curing Period - - - - ✔ ✔ ✔ ✔ 

Age at Loading ✔ ✔ ✔ ✔ - - - - 

 

2.3.2 CEB-FIP MC90, MC90-99, & FIB MC2010 

The first Commité European du Béton – Federation Internationale de la Précontrainte 
(CEB-FIP) model was published in 1970 and used multipliers obtained from both charts 
and equations to account for some of the parameters shown in Table 2-1 (Comité Euro-
International du Béton, 1970). A 1978 revision divided creep into reversible and 
irreversible creep (Comité Euro-International du Béton, 1978). The CEB -FIP model code, 
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CEB-FIP MC90, abandoned the division of creep into components, replaced charts with 
mathematical equations, and was calibrated using the RILEM Databank (ACI 209, 2008). 
The MC90 version contains the current form of the model and, as it is still based on 
laboratory tests, is mostly empirical.  

The CEB-FIP MC90 model for shrinkage does not differentiate between drying and 
autogenous shrinkage and is therefore only applicable to ordinary concretes with 
compressive strengths between 12 and 80 MPa(Comité Euro-International du Béton, 
1993). The 1999 version of CEB-FIP model distinguishes between drying and autogenous 
shrinkage and so is suitable for normal and high-strength concretes with compressive 

strength ranging from 15 to 120 MPa (Comité Euro-International du Béton, 1999). This 
version was named the CEB-FIP MC90-99 model due to its close resemblance to its 
predecessor. Moreover, the slightly less complex CEB-FIP MC90 is still applicable to 
concretes with ordinary compressive strengths and it is the basis of some widely used 
analytical procedures such as those presented in the Canadian Highway Bridge Design 
Code (CHBDC) (CSA, 2014). As shown in Table 2-2, CEB models do not explicitly 
account for the curing period and conditions, which may impact the ultimate creep and 
shrinkage strains.  

The CEB and FIP associations merged in 1998 to create a unified organization, Federation 
Internationale du Béton (FIB). FIB developed a model in 2012 that was based on CEB-FIP 
MC90-99, but with creep classified as basic and drying creep (International Federation for 
Structural Concrete (fib), 2012). The model also introduced a correction factor for the creep 
coefficient to account for sustained compressive concrete stress levels between 0.4 f’c and 
0.6f’c. However, the relationships to calculate creep remain empirical and the shrinkage 
equation remained unchanged from that in CEB-FIP MC90-99. Figure 2-1 shows the 
minimal differences between compliance strain of normal-strength concrete calculated 
using MC90-99 (that is similar to MC90) and FIB MC2010. The FIB model has not been 
adopted by Canadian or American standards and few studies have explored its performance 

in comparison to other models using available test data. For this reason, and because it is 
very similar to MC90-99, it will not be considered further in the current study.   
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Figure 2-1: CEB-FIP MC90-99 & FIB MC2010 Compliance 

2.3.3 ACI209R-92 Model 

The ACI 209R-92 model is an empirical model originally created by Branson and 
Christianson in 1971, before the development of the RILEM Databank, and has undergone 
minor changes in 1978, 1982, and most recently 1992 (ACI 209, 1992). It was initially 

designed for the precast industry and was subsequently modified to be applicable to cast-
in-place concretes, so its current form is applicable to both. Moreover, the model can be 
tuned based on any available data. At its most basic level, it only requires information on: 
age of concrete when drying starts; age at loading; curing method; relative humidity; 
element size; and, cement type. However, factors such as concrete slump, aggregate 
content, air content, and cement content can also be accounted for if such information is 
available. The impact of size and shape of the member on the time functions for creep and 
shrinkage can also be accounted for, which is necessary because larger members undergo 
drying at a slower rate. Unlike concrete composition correction factors, which are normally 
not excessively large and tend to offset each other (ACI 209, 2008), the effects of size and 
shape are believed to have an influence on the ultimate shrinkage strain and the early-age 
compliance strain (Gardner & Lockman, 2001). Figures 2-2 and 2-3 show that using the 
values recommended in ACI 209R-92 for the size and shape factor is a slightly more 
conservative approach than calculating the factor using equations provided in the same 
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standard. However, the discrepancy of the ultimate shrinkage strain, Figure 2-2, is minimal, 
and the compliance discrepancy, Figure 2-3, is negligible.  

 

Figure 2-2: ACI 209 Shrinkage Strain 

 

Figure 2-3: ACI 209 Creep Strain 

There are many shortcomings associated with the ACI 209R-92 model. Its empirical nature 
makes it incapable of modelling the actual physical phenomena of creep and shrinkage. It 
fails to distinguish between drying and autogenous shrinkage, and between basic and 
drying creep. Instead, creep and shrinkage are predicted by calculating asymptotic ultimate 
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strain values and multiplying them by hyperbolic functions that approximate the temporal 
development of creep and shrinkage strains. 

2.3.4 Bazant and Baweja Model B3 

The Bazant-Baweja model, commonly referred to as B3, was initiated by Bazant (1978), 
and subsequently revised to account for additional factors that were believed to impact 
creep and shrinkage. The current (2000) model is based on the mathematical description of 
over ten physical phenomena including: effect of microcracking; linear and non-linear 
diffusion theory; solidification theory; desorption isotherm; activation energy theorem; 
and, spatial average of pore relative humidity over the cross section (Bazant and Kim, 
1991; Bazant and Panula, 1978). More details on the physical phenomena considered in 
the B3 model are reported in Bazant and Panula (1978). The classification of creep as either 
basic or drying creep entails using two different compliance functions and taking their sum 
to obtain the overall creep coefficient. This allows the user to account for the physical 
phenomena responsible for basic and drying creep separately. The B3 Model is also the 
only model to account for water/cement ratio, aggregate/cement ratio, and specimen shape, 
as shown in Table 2-2. The compliance function for basic creep is composed of three 
empirical parameters to define aging: viscoelasticity; nonaging viscoelasticity; and, aging 

flow. These parameters are a function of the compressive strength and water/cement ratio 
of the mix. The compliance function defining drying creep is a function of the relative 
humidity, ultimate shrinkage, and compressive strength. Once compliance functions for 
basic and drying creep have been determined, they are added to an empirical function 
representing the instantaneous strain due to the applied stress to determine the average 
compliance.  

The procedure in the B3 Model for calculating shrinkage strains accounts for size, shape, 
and relative humidity, and uses a time function that is based on the ratio of the 600-day 
Young’s modulus to the Young’s modulus at a given age. The initial form of this model 
(1995) did not account for autogenous shrinkage that mostly occurs before stripping the 
form and subsequently occurs only in the core (Bazant and Baweja, 2000). However, an 
extension to the model (Bazant and Baweja, 2000) allows calculation of autogenous 
shrinkage and so makes it applicable to a wider range of concretes.  
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2.3.5 GL2000 Model 

The GL 2000 procedure was proposed by Garner and Lockman (2001, 2004) as a simplified 
design-office procedure for calculating creep and shrinkage strains. It requires basic 
information that is generally available at the time of design including: age of the concrete 
when drying starts; age at loading; relative humidity; size; and, cement type. Methods for 
calculating the mean compressive strength given only the specified design strength are 
provided. However, Gardner and Lockman suggest that higher accuracy could be achieved 
by using experimental values for mean compressive strengths. The aggregate stiffness, if 
available, can also be accounted for by using the average of the experimental cylinder 
strength and that back-calculated from the measured modulus of elasticity of the concrete 
in equations for creep and shrinkage.  

2.4 Investigation of Model Accuracy by Others 

2.4.1 Challenges in Investigating the Accuracy of Models 

An analytical comparison between prediction models for a given set of parameters (i.e. not 
obtained from test data), such as that reported in Appendix C of ACI 209 (2008), indicates 
that their predicted creep and shrinkage strains differ by up to 30%. A comprehensive 
analysis would ideally compare strains obtained from these prediction models to those 
measured in actual structures. However, there is a lack of accurate long-term data to make 
such a comparison and the next best alternative is to use laboratory test data.  

The RILEM Databank and the NU Database are valuable resources to facilitate a realistic 
comparison between models. However, there is a great deal of uncertainty associated with 
data they contain. First, the type of cement used in different datasets is not adequately 
described, which is problematic since cement properties can vary between countries. For 
example, Cement Types I-IV in America do not correspond to identically labelled cement 
types in Europe. While the manufacturing processes are similar, the standard test methods 
are different. For instance, ASTM C109 (American Society for Testing and Materials, 
2016) specifies the use of 50mm cubes to measure the compressive strength of hydraulic 
mortars, whereas its European counterpart, EN 196 (British Standards Institute, 2016), 
utilizes 40x40x160mm prisms. Moreover, the RILEM Databank lacks: test results on the 

creep and shrinkage for large members that are representative of real structural elements; 
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creep data for drying before loading or loading before drying; and, long-term creep and 
shrinkage results (Brooks, 2015). Another source of uncertainty is ambiguity in interpreting 
the actual duration meant by authors when referring to “initial elastic” and instantaneous” 
strains that are subtracted from strain measurements to obtain creep strains (Bazant and 
Panula, 1978).  

In addition to uncertainties in the data, researchers do not agree on which of the datasets 
are relevant for model development (ACI 209, 2008). Since all models are mostly 
empirical, using parameters that are strongly correlated to the data selected, discrepancy 
between models is inevitable.  

2.4.2 Statistical Assessment of Models Presented in ACI 209R-08 

A direct assessment of the accuracy of models can be carried out from test/predicted ratios 
using statistical indicators such as coefficient of variation, mean deviation, and mean 
square error, obtained using the method of least squares. The coefficient of variation, a 
dimensionless quantity equal to the sample standard deviation divided by the sample mean, 
is commonly used to quantify scatter, and so indicate the accuracy of the predicted strains 
compared to the measured values. An analytical method that yields a low coefficient of 
variation is desirable, whereas a high value implies greater variability of the test/predicted 

ratios.  

Table 2-3 was extracted from ACI 209 (2008) and presents the results of statistical 
assessments of predictions models carried out by Gardner (2004) and Al-Manaseer and 
Lam (2005). It shows the coefficients of variation (COV) for test/predicted ratios as defined 
using test values obtained from the RILEM Databank and values predicted using each 
model. GL2000 and B3 yielded the lowest coefficients of variation according to both 
studies and are therefore deemed most accurate. The study by Gardner (2004) offers a 
comparison of the performance of the models when all the required data are available, as 
well as when only the average compressive strength (which is often the only information 
available at the time of design) is known. GL2000 yielded the most accurate results when 
only the compressive strength, f’c, is known. Since studies by Al-Manaseer and Lam (2005) 
and Gardner (2004) were based on different data sets, the coefficients of variation shown 
can only be compared across a row but not along a column. 
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Table 2-3: Statistical Comparison of Models Using Coefficient of Variation as 

Reported in ACI 209 (2008) 

 Overall Coefficient of Variation 

Study COV 
Method 

MC90-99 ACI 209 B3 GL2000 

Available 
Data 

  All f’c 
Only 

All f’c 
Only 

All f’c 
Only 

All f’c 
Only 

Shrinkage Al-
Manaseer 

& Lam 

CEB 37% - 46% - 41% - 37% - 

BP 48% - 102% - 55% - 46% - 

Gardner Gardner 25% 32% 41% 34% 20% 31% 19% 25% 

Creep Al-
Manaseer 

& Lam 

CEB 38% - 48% - 36% - 38% - 

BP 80% - 87% - 61% - 47% - 

Gardner Gardner 39% 37% 30% - 27% 29% 22% 26% 

 

2.4.2.1 Al-Manaseer and Lam (2005) 

Al-Manaseer and Lam (2005) assessed the accuracy of models using five statistical 
indicators: the residual method; the coefficient of variation as computed by Bazant and 
Panula (BP) (1978), VBP; the coefficient of variation as computed by CEB, VCEB; mean 
square error as computed by CEB, FCEB; and, the mean deviation as computed by CEB, 
MCEB. Moreover, points beyond the range of applicability of an individual model were 

excluded from the study. Table 2-4 was extracted from ACI 209 (2008), as reported by Al-
Manaseer and Lam (2005), and shows the ranges of applicability of the four models. Table 
2-5 shows the number of data points used in the statistical analysis of test/predicted ratios 
for each model. The original publication by Al-Manaseer and Lam (2005) did not include 
a statistical analysis of the test/predicted ratios from the CEB-FIPMC90-99 model, even 
though it is included in the analysis by the same authors presented in ACI 209 (2008). Since 
the number of data points used to calibrate each model is presented in Al-Manaseer and 
Lam (2005) but not in ACI 209 (2008), the exact number of points used to analyze the 
test/predicted ratios for the CEB-FIP MC90-99 model is unknown.   



18 

 

Table 2-4: Range of Applicability of Prediction Models 

 Model 

 ACI 209 B3 MC90-99 GL2000 

fc
' (28 days), MPa - 17-70 15-120 16 -82 

Aggregate/Cement - 2.5-13.5 - - 

Cement Content 
(kg/m3) 

279-446 160-720 - - 

Water/Cement - 0.35-0.85 - 0.4-0.6 

Relative Humidity 
(%) 

40-100 40-100 40-100 20-100 

Type of Cement I, III I, II, III I, II, III I, II, III 

Curing Period, tc 
(days) 

³ 1 ³ 1 < 14 ³ 1 

Loading Age, to 
(days) 

£ 7 to ³  tc > 1 to ³  tc ³ 1 

 

Table 2-5: Number of Data Points used by Al-Manaseer and Lam (2005) 

 Model 

 ACI 209 B3 MC90-99 GL2000 

Shrinkage 2642 2388 Not Reported 1677 

Creep 4795 5894 Not Reported  4166 

 

Al-Manaseer and Lam (2005) computed the coefficient of variation using the different 
methods proposed by the CEB (1990), Bazant and Panula (1978), and Gardner (2004). All 
involve dividing the data into time intervals to account for the varying rates of change of 
creep and shrinkage strains. The CEB method (CEB-FIP, 1990) requires grouping the data 
considered in the study into 6 time intervals: 0-10, 11-100,101-365, 366-730, 731-1095, 
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and >1095 days and computing a mean coefficient of variation, VCEB, for each interval 
separately. Since the RILEM Databank is comprised of data from studies by different 
researchers (referred to as data sets hereafter), VCEB for a single time interval is computed 
by taking the root mean square of the individual coefficients of variation for each data set: 

VCEB=11
N
∑ (Vj)

2N
j=1 (2-1)

where N is the number of data sets considered within each interval and Vj is the coefficient 
of variation of the test/predicted ratio for the jth data set, computed as 

Vj=	
Sj

Yj
(2-2)

where Yj is the mean of “n” experimental creep or shrinkage strain data points, Yij, in data 
set j: 

Yj=
6
n
∑ (n

i=1 Yij)	 (2-3) 
Sj is the standard error of the creep or shrinkage strain obtained from test j,  and is computed 
using the difference between the observed, Yij and predicted, yij, values: 

Sj=1 1
n-1
∑ (n

i=1 Yij-yij)
2 (2-4)

Al-Manaseer and Lam (2005) rank the various prediction models based on VCEB values for 
the time interval t > 1095 days. VCEB values for early-age intervals are not reported or 
considered in ranking models, presumably because only the ultimate creep or shrinkage 
strains are typically of practical importance in deflection calculations.  

The VCEB values reported in ACI 209 (2008) as shown in Table 2-3 are similar to those 
presented in Al-Manaseer and Lam (2005), but the two documents present different 
methods for computing VCEB. Al-Manaseer and Lam (2005) compute unique VCEB values 
for each time interval using Vj computed for individual data sets within that interval, which 
results in six unique VCEB values. However, the method reported in Appendix B of ACI 
209 (2008) requires computing Vj for all time intervals (as opposed to data sets), which 
would yield a single overall VCEB value representing all six time intervals.  
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The Bazant and Panula (BP) method requires dividing the data in a particular data set into 
4 time intervals or “decades” (0-10, 10-100 101-1000, and 1001-10000 days) and assigning 
each data point a weight based on the decade in which it falls and number of data points in 
that decade. Moreover, all data points in a decade are assigned equal weights. The COV 
for each data set is computed using Equation (2-3). However, Yj, the mean of “n” creep or 
shrinkage strain data points, Yij, in data set j and is given as 

Yj=
6

nw
∑ (n

i=1 wijYij
)	 (2-5) 

where nw is the sum of the weights assigned to each data point in a data set. Since all the 
data points in a data set are assigned equal weights, wij/nw is equal to 1/n. The weight 
assigned to each data point, wij, is based on the decade in which it falls and is given as  

wij=
nij

ndnik
(2-6)

where nij is the number of data points in data set j, nd is the number of decades on the 
logarithmic scale spanned by the measured data in data set j, and nik is the number of data 

points in one decade. 

The COV of a single data set is computed as 

VBPj=
1
Yj
1 1

nw-1
∑ (n

j=1 wij(Yij
-yij))

2 (2-7)

The overall coefficient of variation of a prediction model, VBP, is computed as 

VBP=11
N
∑ (VBPj)

2N
j=1 (2-8)

where N is the number of data sets considered in the study and VBPj is the COV of each 
data set. 

Weighing the data points in a data set based on the decade in which they fall allows 
computing a single COV for each data set that is inclusive of all the time ranges and the 
overall COV computed using the individual coefficients of variation is representative of all 
the time intervals and data sets. Therefore, this approach will yield a single coefficient of 
variation that is representative of data in all four time intervals.  
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Other statistical indicators used by Al-Manaseer and Lam (2005) to rank models are the 
mean square error and the mean deviation. The mean deviation is a measure of variability 
that quantifies the average deviation of the predicted values from test values. Like the mean 
coefficient of variation, the data are divided into six time intervals and the mean deviation 
of a single data set within an interval, Mj, is computed using the mean predicted/test ratio 
(note, not test/predicted) as 

Mj=
1
n
∑ yij

Yij

n
j=1 	 (2-9)

The mean deviation of multiple data sets within a single interval, MCEB, is computed as 

MCEB= 1
N
∑ Mj

n
j=1 	 (2-10)

where N is the number of data sets within that interval. 

The mean square error provides an indication of the accuracy of various models in 
predicting test values. It involves dividing data into six time intervals and computing the 
percent difference between test and predicted data points, fij, as 

fij=
yij-Yij

Yij
*100 (2-11)

The mean square error of the data points within a data set in an interval is computed as 

Fj=1 1
n-1
∑ (n

i=1 fij)
2 (2-12)

The mean square error of data sets within a single time interval is computed as 

FCEB=11
N
∑ (Fj)

2N
j=1 (2-13)

The mean deviation and mean square error values reported in ACI 209 (2008) are extracted 
from Al-Manaseer and Lam (2005) and represent the mean deviation of the last time 
interval (t > 1095 days). 

Table 2-6 shows the mean deviation and mean square error for each model as presented in 
ACI 209 (2008), based on Al-Manaseer and Lam (2005). If the predicted values are, on 
average, greater than the test values the model is overestimating the test results, with a 
mean deviation greater than 1. Similarly, an underestimating model has a mean deviation 
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less than 1. The mean square error is an indication of the scatter of the predicted-to-test 
ratios: lower values indicate less scatter and so a better fit. Table 2-6 shows that all models 
are nearly equally accurate in predicting creep strains, and the CEB-FIP M90-99 Model 
provides the most accurate predictions of shrinkage strains. It also shows that based on the 
mean square error, the ACI 209 Model is generally as accurate as the B3 and GL2000 
Models in predicting shrinkage strains. However, it appears to be inferior to the B3 Model 
based on the mean deviation. These conclusions are clearly different than the ones made 
based on the coefficients of variation shown in Table 2-3.  

Table 2-6: Mean Deviation and Mean Square Error in ACI 209 (2008) based on Al-

Manaseer and Lam (2005) 

 Mean Deviation Mean Square Error 

 MC90-99 ACI 
209 

B3 GL2000 MC90-99 ACI 
209 

B3 GL2000 

Creep 0.89 0.86 0.93 0.92 32% 32% 35% 34% 

Rank 3 4 1 2 1 1 3 2 

Shrinkage 0.99 1.22 1.07 1.26 65% 83% 84% 84% 

Rank 1 3 2 4 1 2 3 3 

 

2.4.2.2 Gardner (2004) 

Gardner (2004) assessed the accuracy of the models based only on the coefficients of 
variation. His method for computing the coefficient of variation involves dividing data into 

seven sets of half-logarithmic intervals (3-9.9, 10-31.5, 31.6-99, 100-315, 316-999, and 
1000-3159 days) and computing the average experimental creep or shrinkage strain within 
the kth time interval, Yk, as 

Yk= 1
n
∑ Yik

n
i=1 (2-14)

where Yik is the observed creep or shrinkage strain for the ith data point in interval k. The 
root mean square error within each interval as 
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RMSk=1 1
n-1
∑ (n

i=1 yik-Yik)2 (2-15)

where yik is the predicted creep or shrinkage strain for the ith data point in interval k. The 
average test creep or shrinkage strain of all time intervals (without accounting for the 

number of data sets in each times interval) is computed as 

Y#=
1

Nk
7Yk

N

k=1

(2-16) 

 

where Nk is the number of time intervals. 

The root mean square error for all the time intervals is computed as 

RMS"""""""= 1
Nk
∑ (RMSk)Nk

k=1 (2-17)

Finally, the overall coefficient of variation is computed as 

VG= RMS"""""""
Y# (2-18)  

The methods proposed by Bazant and Panula (1978) and CEB are slightly different yet 
share the same fundamental mathematical principles. However, Gardner does not use the 
conventional definition of coefficient of variation (ACI 209, 2008). The average root mean 

square error, RMS""""""", is computed as a linear average and not the average of the squared 

individual root mean square errors, (i.e., RMSk instead of RMSk2). This approach will 
always yield COV values smaller than those calculated using the CEB and BP methods, as 
shown in Table 2-3. 

2.4.3 Statistical Assessment by Bazant and Li (2008) 

Bazant and Li (2008) suggest that although the mean coefficient of variation is a rational 
method for investigating problems concerning structural safety, it is irrelevant when 
dealing with the central range of a distribution of errors. Existing methods for conducting 
statistical assessment of prediction models require dividing the overall dataset into time 
intervals or data sub-sets, computing the COV within each subset, and finally computing a 
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mean or overall COV. Therefore, data subsets are treated as separate, unrelated groups of 
data. However, these subsets are not independent because each value in a dataset is 
correlated to the next value, obtained at a later time, in the same data subset. They argue 
that ignoring this correlation could result in a misleading comparison of models. 
Additionally, factors other than age, such as size and relative humidity have a substantial 
effect on creep and shrinkage, and so must be considered in a comprehensive analysis. 
Therefore, the Bazant and Li divide the creep data into groups with similar loading ages 
and relative humidities, and shrinkage data into groups with similar drying periods and 
specimen sizes. These groups can be represented on a 3-dimensional histogram with 

loading age or drying age on one axis and size or relative humidity on another axis and 
frequency on the third axis: these groups are referred to as boxes (i.e. histogram boxes) and 
denoted by the subscript b hereafter. Although these are not the only factors affecting creep 
and shrinkage, the authors argue that introducing more variables could result in boxes 
containing fewer data points than needed to provide a meaningful statistical assessment. 

Bazant and Li suggest that a comprehensive statistical analysis must be carried out with 
respect to the common trends, and not simply the data mean. Predictions from each model 
are plotted on a logarithmic scale and the least square regression line is fitted to the data. 
The residual errors (also called the band width) are computed as the vertical distance from 
the regression line to each test data point. The scatter of the test data is then analyzed based 
on two distinct dimensionless indicators of scatter that can be derived from the regression 
analysis. The first is the coefficient of variation of the residual errors, which characterizes 
the ratio of the scatter band width to the mean values, and therefore should be minimized. 
It is obtained by first computing the standard error, s, representing the standard error of 
regression as 

s =1 n
n-p
∑ wb

Nb
b=1 *∑ (yib-Yib)2n

i=1 (2-19)

where p is the number of input parameters and Nb is the number of boxes. The statistical 
weight, wib, assigned to data points in each box (all the points in a single box are assigned 
the same weight i.e., wib = wb), is computed as 
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wib= 1
nibw# (2-20)

where nib is the number of data points in box b and  

wi""" 	= ∑ 1
nib

Nb
b=1 (2-21)

Next, the weighted mean of the observed value, y", is computed as 

y"= w#
n
∑ wib

Nb
b=1 ∑ Yib

nib
i=1 (2-21)

I   

The coefficient of variation of regression errors is computed as 

VBL= s
y" (2-22)  

The second step is to compute the correlation factor, which characterizes the ratio of the 
scatter band width to the overall standard deviation and should be maximized. It is 
computed as 

c = 11- s2

s̅2 (2-23)

where s the standard error of regression as defined by Equation (2-19) and s̅2 is computed 

as 

s̅2 =∑ wb
Nb
b=1 ∑ (Yib-y")2nib

i=1 (2-24)
Table 2-7 shows the results of a statistical comparison of the different models by Bazant 

and Li (2008). The models were compared using the two dimensionless indicators of scatter 
previously mentioned, the coefficient of variation of residual errors and the correlation 
coefficient. Moreover, a single set of data was used to compare all models. B3 and GL2000 
were found to be the most accurate because they yielded the lowest coefficients of variation 
of residual errors and the highest correlation coefficients. These results, however, are not 
included in ACI 209 (2008). 
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Table 2-7: Statistical Comparison of Models by Bazant and Li (2008) 

 COV of Regression of Errors Correlation Coefficient 

 MC90-
99 

ACI 
209 B3 GL2000 MC90-

99 
ACI 
209 B3 GL2000 

Creep 31.0% 42.6% 27.3% 30.2% 0.78 0.51 0.84 0.79 

Rank 3 4 1 2 3 4 1 2 

Shrinkage 47.4% 42.3% 28.5% 31.0% 0.70 0.77 0.90 0.89 

Rank 4 3 1 2 4 3 1 2 

 

2.4.4 Statistical Assessment by Al-Manaseer and Prado (2015) 

Al-Manaseer and Prado (2015) conducted a statistical analysis to evaluate the accuracy of 
various prediction models based on the extended RILEM and NU databases. Five different 
statistical indicators were used to rank prediction models: the residual method; the 
coefficient of variation as computed using CEB method, VCEB; mean square error as 
computed using CEB method, FCEB; the mean deviation as computed using CEB method, 
MCEB; and Vm, a coefficient of variation method based on the one proposed by Bazant and 
Li (2008).  

Al-Manaseer and Prado (2015) suggest that the method proposed by Bazant and Li (2008) 
may provide misleading results because weights are applied to individual points rather than 
groups of data or boxes. They use a modified equation for computing the standard error, s, 
using the average of residuals for each box and a weight, wb, assigned to each average 

value. Equation 2-19 for computing the standard error is rewritten as 

sm =1∑ wb
Nb
b=1 * 1

nb
∑ (yib-Yib)2n

i=1 (2-25)

and compute the weighted mean of the measured value as 

ym"""=∑ wib
Nb
b=1 ∗ 1

nb
∑ Yib

ni
i=1 (2-26)

The modified coefficient of variation, Vm, is computed as 
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Vm= sm
ym""""

(2-27)

the quantities VCEB, FCEB, and MCEB values are computed using Equations 2-1, 2-10, and 
2-14, respectively. However, Vk, Fk, and Mk are computed for all the data within a time 
interval rather than for a single data set. Vk for time interval k is computed as  

Vk= 1
Yk
1 1

n-1
∑ ;yik-Yik<

2n
i=1 (2-28)

where Yk is the mean shrinkage or creep strain in data set k computed as 

Yk = 6
n
∑ (=

i=1 Yik) (2-29)
Fk for a time interval is computed as 

Fk=1 1
n-1
∑ (n

i=1 fik)2 (2-30)

where fik is the percent difference between test and predicted values computed using 
Equation 2-11. 

Similarly, Mk for a time interval is computed as 

Mk= 1
n
∑ yki

Yki

n
i=1 (2-31)

Therefore, only a single value of VCEB, FCEB, and MCEB is computed, unlike Al-Manaseer 
and Lam (2005) where six values, one for each time interval, were computed for each set 
of test/predicted creep or shrinkage values.  

The analysis of residual error is a basic statistical analysis tool that indicate bias and 

dispersion. Residual errors are computed by subtracting experimentally measured creep or 
shrinkage strains from those predicted using the various models: a positive value indicates 
an overestimating model and a negative value indicates an underestimating model. 

Al-Manaseer and Prado (2015) assessed the sensitivity of prediction models to the data 
chosen from the RILEM and NU Databanks using a three-phase screening process and 
ranked the performance of the models at each stage using the aforementioned statistical 
indicators. The first screening stage applied general elimination criteria followed by 
specific elimination criteria. Data points were eliminated if they reported zero creep or 
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shrinkage strain or swelling instead of shrinkage (i.e. positive shrinkage strain), or if 28-
day concrete compressive strength values were not reported. The remaining data points 
were further filtered to exclude points beyond the application of individual models as 
reported in Table 2-3. The second screening stage excluded data with square of percent 
difference between test and predicted values (i.e. (predicted-test)/test) greater than 50. The 
third screening stage excluded points that appeared to be consistent outliers in all prediction 
models. 

Table 2-8 shows the number of creep and shrinkage data points from the RILEM and NU 
Databanks analyzed by Al-Manaseer and Prado (2015) to evaluate the models at different 

phases. These numbers are significantly larger than those considered in the previous study 
(Al-Manaseer and Lam, 2005), shown in Table 2-5. The accuracy of models as concluded 
from VCEB, FCEB, and MCEB was generally improved by eliminating data points using the 
three-phase screening process. The impact was more pronounced in the larger NU 
Databank than in the RILEM Databank. This is expected since Phases 2 and 3 involve 
excluding outliers and data points with excessively large normalized differences. However, 
excluding these points also means that models are assessed for their ability to predict only 
data points that are within their range of application and with no extreme or unforeseen 
values. This results in mild discrepancies between statistical indicators for the various 
models, which make the model ranking rather futile. For example, CEB-FIP MC90-99, 
ACI 209, and GL2000 ranked as the second, third and fourth most accurate despite their 
very similar VCEB values of 44%, 45%, and 46%, respectively. Moreover, VCEB for 
shrinkage strains after Phase 3 ranged from 39% to 46%. Similarly, VCEB values for creep 
strains ranged from 37 to 44% at Phase 3 and the models were assigned different ranks 
despite the negligible discrepancy of VCEB values. Ranking models based on such relatively 
small discrepancies is deceiving, especially considering the wide spectrum of uncertainties 
associated with the nature of the creep and shrinkage phenomena. Therefore, it may be 
more reasonable to rank models based on Phase 1. Details of the ranking of the models 

after each phase are shown in Appendix A. 

The modified coefficient of variation method, Vm, provided consistent results for all the 
screening phases. This is likely due to the consistency produced by assigning the data 
points to boxes and assigning the same weight to all the data points within each box. This 
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method also yielded significantly larger coefficients of variation for creep than for 
shrinkage. This is expected because experimental creep strains are calculated by 
subtracting two experimentally measured values, initial strain due to applied load and final 
strain, and are therefore expected to have larger uncertainty.  

Al-Manaseer and Prado (2015) ranked the models based on Phase 3 of the screening 
process and concluded that the ACI 209 model provided the most accurate shrinkage strain 
predictions, followed by the B3, CEB-FIP MC90-99, and GL2000 models respectively. 
ACI 209 also provided the most accurate predictions for creep strains, followed by B3, 
GL2000, and CEB-FIP MC90-99 models respectively. This contradicts the findings of Al-

Manaseer and Lam (2005), Gardner (2004), and Bazant and Li (2008), where the either the 
B3 or GL2000 models were the most accurate models and ACI 209 consistently ranked as 
the least accurate model.   

Table 2-9 shows the percentages of overestimating or underestimating residuals, which can 
be used to assess the tendency of models to overestimate or underestimate predictions. The 
majority of overestimating residual percentages are between 45 and 55%, indicating that 
no model should be deemed to be overestimating or underestimating. However, the 
distribution of residuals was also shown to be heavily dependent on the databank used. For 
instance, the B3 and GL2000 Models were found to be overestimating models in predicting 
creep using the RILEM Databank, but underestimating models based on the NU Databank. 
Furthermore, the B3 Model is underestimating for shrinkage, and the CEB-FIP MC90-99 
Model is underestimating for creep irrespective of the dataset considered. 
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Table 2-8: Number of Data Points used by Al-Manaseer and Prado (2015)

 RILEM NU 

 Shrinkage Creep Shrinkage Creep 

Phase 1 2 3 1 2 3 1 2 3 1 2 3 

ACI 209 4360 4348 4250 9184 9184 9090 4531 4518 4344 5485 5485 5390 

B3 4134 4067 3926 9944 9944 9870 4327 4260 4000 6178 6178 6140 

GL2000 4394 4338 4197 11306 11306 11212 4593 4537 4271 7149 7147 7053 

MC90-99 4307 4167 4026 11640 11640 11546 4506 4358 4093 8354 7982 7637 

Total 
Points 

Available 
7153 13769 8326 11825 
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Table 2-9: Summary of Residuals 

  RILEM NU 

  Shrinkage Creep Shrinkage Creep 

 Phase 1 2 3 1 2 3 1 2 3 1 2 3 

ACI 209 Overestimating % 54 54 55 45 45 46 53 53 55 33 33 33 

Underestimating % 46 46 45 55 55 54 47 47 45 67 67 67 

B3 Overestimating % 36 35 36 57 57 57 34 33 35 40 40 40 

Underestimating % 64 65 64 43 43 43 66 67 65 60 60 60 

GL2000 Overestimating % 44 43 45 59 59 60 42 42 44 46 46 47 

Underestimating % 56 57 55 41 41 40 58 58 56 54 54 53 

MC90-99 Overestimating % 53 52 53 37 37 37 52 50 53 33 29 30 

Underestimating % 47 48 47 63 63 63 48 50 47 67 71 70 
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2.4.5 Overall Comparison of Models  

Tables 2-10 and 2-11 summarize the ranking of the accuracy of the models, using various 

statistical indicators, according to each of the aforementioned studies. It can be concluded 

that the ranking of the models is strongly dependent on 1) the data set subjectively chosen 

by the analyst and 2) the statistical indicator used to assess the performance of the models. 

The choice of data sets in each study is drastically different yet seemingly justifiable. For 

example, Bazant and Li (2008) choose to evaluate all the models based on the same set of 

data, which may be a more objective approach. However, Al-Manaseer and Prado (2015) 

and Al-Manaseer and Lam (2005) discard data beyond the application of individual models 

because it would be unfair to evaluate models based on data points that are outside their 

limitations. Both studies present a strong argument in favor of their choice of data and 

neither can be considered superior or more credible. 

Most statistical indicators (with the exception of Gardner’s COV method, Equation 2-17) 

are mathematically sound and so present a meaningful comparison of the models. 

However, the same statistical indicator can be applied in different ways to potentially yield 

different results. For instance, Al-Manaseer and Lam (2005) computed VCEB based on time 

intervals whereas Al-Manaseer and Prado (2015) compute the same statistical indicators 

based on data sets. Although both studies use the same mathematical formulation for 

computing VCEB, the former will yield a VCEB value for each time interval, whereas the 

latter will yield one value for all time intervals. Arguments can be made to support either 

method. Computing VCEB for each time interval allows for assessing the models based on 

the long-term time intervals (e.g. t > 1095 days when computing VCEB), which are of most 

importance to designers. On the other hand, computing a single VCEB value that is inclusive 

of all time intervals may provide a better understanding of the overall accuracy of the 

models.  

Each statistical analysis technique can have its advantages and must be considered when 

comparing models. Tables 2-10 and 2-11 show the weighted mean ranking of each model 

based on the ranking it received in each of the four studies considered in this chapter. All 

four studies were considered equally credible and assigned an equal weight of 0.25 (i.e., 

the sum of the weights of all four studies is 1). Al-Manaseer and Lam (2015) included 
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separate analyses for the RILEM and NU Databanks and so each was assigned a weight of 

0.125. Moreover, all statistical indicators within a study were considered of equal 

importance and assigned equal weights. The mean ranking is the ranking of the model out 

of 4 and the closer the mean ranking is to 1, the better the relative accuracy of the model. 

The CEB-FIP MC90-99 Model received a mean ranking of 2.84 for shrinkage and 3.15 for 

creep and is therefore the worst-performing model. B3 was the best performing model for 

predicting shrinkage with a weighted mean rating of 1.75 and the second best for predicting 

creep with a mean rating of 1.78. GL2000 was the best preforming model for creep with a 

mean ranking of 1.69 and the second best for shrinkage with a mean ranking of 2.25. ACI 

209 was the third-best performing model for both creep and shrinkage.  

The B3 Model is the most theoretically-justified model and Table 2-10 shows that it is 

superior to the other models in predicting shrinkage strains. However, Table 2-11 shows 

that the strictly empirical GL2000 Model is more effective in predicting creep strains. 

Creep of concrete is a complex mechanism that is not yet fully understood (Gilbert and 

Ranzi, 2011). Therefore, an empirical model may be more effective than a theoretical 

model.  
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Table 2-10: Summary of Ranking of Shrinkage Prediction Models 

 

 

 

  Ranking 

Study Criterion ACI 209 B3 GL2000 MC90-99 

Al-Manaseer and Lam (2005) 

VCEB 3 2 1 1 

VBP 4 3 1 2 

MCEB 3 2 4 1 

FCEB 1 3 3 4 

Gardner (2004) VG 3 1 2 2 

Bazant and Li (2008) 
VBL 3 1 2 4 

c 3 1 2 4 

Al-Manaseer and Prado 
(2015) – RILEM 

VCEB 2 1 3 3 

Vm 1 3 4 2 

MCEB 1 3 2 4 

FCEB 1 3 2 4 

Al-Manaseer and Prado 
(2015) – NU 

VCEB 2 1 3 4 

Vm 1 3 4 2 

MCEB 1 3 2 4 

FCEB 1 3 2 4 

Mean Ranking 2.50 1.75 2.25 2.84 

Standard Deviation 1.03 0.91 0.96 1.15 



35 

 

Table 2-11: Summary of Ranking of Creep Prediction Models 

 Rankings 

Study Criterion ACI 209 B3 GL2000 MC90-99 

Al-Manaseer and Lam 
(2005) 

VCEB 3 1 2 2 

VBP 3 2 1 3 

MCEB 4 1 2 3 

FCEB 1 3 2 1 

Gardner (2004) VG 3 2 1 4 

Bazant and Li (2008) VBL 4 1 2 3 

c 4 1 2 3 

Al-Manaseer and Prado 
(2015) – RILEM 

VCEB 3 1 2 4 

Vm 2 4 3 1 

MCEB 1 4 2 3 

FCEB 1 3 2 4 

Al-Manaseer and Prado 
(2015) – NU 

VCEB 3 1 2 4 

Vm 3 1 2 3 

MCEB 3 2 1 4 

FCEB 1 3 2 4 

Mean Ranking 2.97 1.78 1.69 3.15 

Standard Deviation 1.08 1.10 0.50 1.00 
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2.5 Conclusions  
This chapter presented an overview of the phenomena and the factors affecting creep and 

shrinkage of concentrically loaded plain concrete. It also described the available models 

for predicting creep and shrinkage strains, namely the ACI 209, B3, GL2000, and CEB-

FIP MC90-99 models and evaluated the relative accuracy of prediction models using 

analyses presented by others. The conclusions of this chapter are: 

1. Increased aggregate stiffness is effective in reducing shrinkage and creep of 

concrete because creep and shrinkage originate in the cement paste. Shrinkage is 

an intrinsic material property of cement paste so concrete mixtures with a high 

volume of aggregate will shrink less than those with high volumes of cement. 

Moreover, stiffer aggregates are expected to provide a considerable restraint to both 

shrinkage and creep. The most significant shortcoming of creep and shrinkage 

prediction models is their failure to account for the effect of aggregate stiffness.  

2. All creep and shrinkage prediction models have been calibrated using experimental 

data forom the RILEM or NU Databanks and are therefore at least partly empirical.  

3. Creep and shrinkage predictions obtained using the various models for a given set 

of parameters can differ by up to 30%. 

4. A comparison of the effectiveness of the various models in predicting experimental 

creep and shrinkage strains is facilitated using the RILEM and the NU Databanks. 

However, these databanks lack: test results on the creep and shrinkage for large 

members that are representative of real structural elements; creep data for drying 

before loading or loading before drying; and, long-term creep and shrinkage results. 

Moreover, there is a great deal of uncertainty regarding the interpretation the actual 

duration meant by authors when referring to “initial elastic” and instantaneous” 

strains associated with data presented in these databanks. Furthermore, the type of 

cement used in different datasets is not adequately described. All of these 

uncertainties cast doubt on the validity of the outcomes of any comparison. 
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5. Researchers do not agree on which data subsets to use from the RILEM and NU 

Databanks when evaluating and comparing models. Al-Manaseer and Lam (2005) 

and Al-Manaseer and Prado (2015) argue that models should only be evaluated 

based on data points that lie within their range of application. Bazant and Panula 

(2000) and Bazant and Li (2008) counter that a fair comparison entails using the 

same set of data to compare all models. 

6. Another questionable aspect of model comparison is the appropriate use of 

statistical indicators. Al-Manaseer and Lam (2005) compute statistical indicators 

such as VCEB, MCEB, and FCEB for time intervals, while Al-Manaseer and Prado 

(2015) compute the same indicators for data sets. The former method will evaluate 

the performance of the models during each time interval separately, which is useful 

for designers who are generally interested in the long-term deflections of concrete. 

The latter, on the other hand, will provide an assessment of the overall performance 

of the models, which could provide a better assessment of the overall accuracy of 

the models. Bazant and Li (2008) evaluate models based on a regression analysis 

(instead of the population analysis used by Al-Manaseer and Lam and Al-Manaseer 

and Prado) to capture the common trend between the data points used in the 

analysis. 

7. A number of studies, such as Gardner (2004), Al-Manaseer and Lam (2005), Bazant 

and Li (2008), and Al-Manaseer and Prado (2015), have compared the models using 

various methods of statistical analysis. However, despite the mathematical 

soundness of these studies, they yield contradicting outcomes. This makes it 

difficult to quantify the prediction error.  

8. A mean ranking of the models where each of the four statistical analyses presented 

in this chapter was considered of equal importance showed that B3 is the most 

effective model in predicting shrinkage strains. The strictly empirical GL2000 is 

the more effective than the mostly theoretical B3 Model in predicting creep strains.  

9. The CEB-FIP MC90-99 Model received a mean ranking of 2.84 for shrinkage and 

3.15 for creep and is therefore the worst-performing model. This model forms the 
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basis of the method presented in the Canadian Highway Bridge Design Code 

(CHBDC, 2016). 

10. The percentage of overestimating residual errors typically falls between 45 and 55%, 

which means that no model should be explicitly labelled as an overestimating or 

underestimating model. However, these percentages were also shown to be 

dependent on the databank used. The B3 Model mostly underestimated shrinkage, 

and the CEB-FIP MC90-99 Model mostly underestimates creep, irrespective of the 

database considered. 
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Chapter 3  

3 Long-Term Deflections of Reinforced Concrete Beams 
The long-term deflection of reinforced concrete flexural members subjected to a sustained 

load is primarily attributed to creep and shrinkage. Chapter 2 outlined the various factors 

that contribute to the development of creep and shrinkage strains, as well as the 

uncertainties associated with computing these values. Methods for computing short-term 

deflections described in the 4th Edition of the Cement Association of Canada Concrete 

Design Handbook (CAC, 2016) account for the effect of restrained shrinkage on the 

effective moment of inertia, but are based on simplifying assumptions. However, methods 

for computing long-term deflections due to creep and shrinkage presented in the same 

source are empirically based and utilize simplified equations for computing creep 

coefficients and shrinkage strains that could result in the underestimation of long-term 

deflections. Gilbert and Kilpatrick (2017) present another method for computing 

incremental deflections due to creep and shrinkage, based on a method proposed by Gilbert 

(2001). This method provides improvements to the provisions of AS3600-2009 (AS, 2009).  

The aforementioned methods are all empirical. However, analytical methods for computing 

incremental deflections due to creep and shrinkage based on the principles of mechanics 

are not excessively complex by comparison.  Therefore, the objectives of this chapter are 

to: 

1. Critically evaluate existing methods for computing long-term deflection increments 

due to creep and shrinkage. 

2. Present mechanics-based methods for calculating long-term deflection increments 

due to creep and shrinkage. 

3. Assess the accuracies of existing and proposed methods by investigating 

test/predicted ratios for the total (i.e. immediate plus long-term) deflections. 

4. Outline any shortcomings with existing methods and propose improvements. 

3.1 Restrained Shrinkage and Tension Stiffening  
The ultimate shrinkage strain is inversely proportional to the length of the moist-curing 

period, meaning that members exposed to prolonged drying exhibit significant shrinkage 

strains. Unlike plain concrete members that are free to shrink without restraint, reinforced 
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concrete members subject to shrinkage strains develop tensile stresses in the concrete due 

to restraint of shrinkage by the reinforcing steel. As concrete shrinks, it imposes a 

compressive force on the reinforcing steel, which in turn imposes an equal tensile force on, 

and associated tensile stresses in, the concrete. These tensile stresses, which occur in 

addition to tensile stresses due to the applied load, have the following effects on short-term 

and long-term deflection of reinforced concrete members: 

1. They reduce the applied moment, Mcr, necessary to initiate flexural cracking (e.g. 

Bischoff, 2007). Since cracked members experience larger curvature (and hence 

deflection) than uncracked members, the reduction of Mcr causes an increased 

short-term deflection due to the applied load. 

2. They may result in a non-uniform distribution of residual strains, particularly for 

the common case where the compression reinforcement area is much less than the 

tensile reinforcement area, and therefore causes additional time-dependent 

deflection due to warping. 

The deformation of a concrete flexural member is affected by the rigidity, EcI, where Ec is 

Young’s Modulus of the concrete and I is the moment of inertia. The moment of inertia at 

the location of a crack, Icr, is significantly smaller than the gross moment of inertia, Ig, 

away from the crack. Additionally, the concrete is assumed to carry no tension at the 

location of the crack, but has a capacity assumed equal to the modulus of rupture away 

from the crack. The contribution of the tension carried by the uncracked concrete, between 

adjacent cracks, to the stiffness and corresponding deformation of a concrete member is 

known as tension stiffening (Bischoff, 2007). The Canadian design standard, CSA A23.3 

(CAC 2016), and American concrete design code, ACI318 (ACI, 2014), use an effective 

moment of inertia, Ie, to account for the impact of tension stiffening on the flexural 

stiffness, where Ie is typically larger than Icr but smaller than Ig.  

3.2 Review of Short-Term Deflection by Others 
Mechanics-based methods for computing the short-term deflection are well-established. 

The procedure involves calculating the depth of the neutral axis, kd, using conventional 

mechanically derived equations (e.g., CAC, 2016) and subsequently calculating the 
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effective moment of inertia, Ie. The deflection of a simply supported concrete member 

carrying a uniformly distributed load is 

∆i=
5Maℓn

2

48EcIe
(3-1) 

where ℓn is the clear span length and Ma is the maximum applied moment at midspan. Two 

equations for calculating Ie are described in the Concrete Design Handbook (CAC, 2016). 

The empirical equation proposed by Branson is based on an incorrect mechanical model 

that overestimates the effect of tension-stiffening in lightly reinforced members and 

therefore underestimates deflection (Bischoff, 2007). It is given as 

Ie=Icr+$Ig-Icr% &
Mcr

Ma
'

3

≤ Ig (3-2) 

Scanlon and Bischoff (2008) showed that the effect of restrained shrinkage is most 

pronounced in members with reinforcement ratio less than 1%, and less pronounced in 

members with higher reinforcement ratios. The equation proposed by Bischoff (2007) is 

based on a correct mechanical model and is given as 

Ie=
Icr

1- (Mcr
Ma

)

*

+1- Icr
Ig
,

≤ Ig (3-3)
 

Moreover, the flexural rigidity of the cracked member, EcIe, must not exceed the flexural 

rigidity of the uncracked member, EcIg (hence Ie ≤ Ig). 

Scanlon and Bischoff (2008) recommended that the cracking moment, Mcr, be calculated 

based on two-thirds the modulus of rupture, fr, when using the Bischoff Equation to 

account for the effect of restrained shrinkage. Using the Branson Equation with Mcr based 

on 0.5fr  yields similar results to using the Bischoff Equation with 0.67fr (CAC, 2016). 

Additionally, Mancuso and Bartlett (2016) showed that the short-term deflection computed 

using the Branson Equation with Mcr based on 1.0fr  yields test/predicted ratios greater than 

1 (unconservative) with a high coefficient of variation. They also showed that using either 

the Branson Equation with Mcr based on 0.5fr  or the Bischoff Equation with Mcr based on 
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0.67fr provides conservative results with a mean test/predicted ratio between 0.82 to 0.84 

and a significantly lower coefficient of variation. Gilbert (2012) recommended that Ie be 

calculated based on 0.7Mcr for computing the short-term deflection of members where 

shrinkage has occurred before loading, and 1.0Mcr if shrinkage has not occurred prior to 

loading. 

3.3 Long-Term Deflection due to Creep  

3.3.1 Mechanics-Based Approach 

Creep of concrete at time t is quantified in terms of a creep coefficient, ∅(t,to), where to is 

the age at initial loading. The creep coefficient can be obtained experimentally as the ratio 

of creep strain to initial strain or computed using the various prediction models described 

in Chapter 2. It increases as the concrete ages and as the age at loading decreases. The 

effect of creep on a flexural member is treated as a delayed elastic strain and is analogous 

to a gradual reduction of Young’s Modulus of concrete, Ec(t) (Gilbert and Ranzi 2011, ACI 

209, 1992). The time-dependent Young’s Modulus, Ec///, at time t > to is quantified using the 

Age-Adjusted Effective Modulus Method (ACI 209, 1992) as  

Ec/// =
Ec(t)

[1+χ(t,to)∅(t,to)]
(3-4) 

where χ(t,to) is an aging coefficient that generally ranges between 0.4 and 1.0 and is 

commonly taken as 0.8 for practical cases (e.g., Scanlon and Bischoff (2008); Gilbert 

(1988); Dilger (1982)). This is consistent with the recommendations of ACI 209 (1992), 

where a value of approximately 0.8 is assumed for concretes loaded at ages less than 10 

days and with a creep coefficient of 3. Equations derived theoretically for computing χ(t,to) 

are reported by Gilbert and Ranzi (2011) and Bazant (1972). 

The change in Young’s modulus of the concrete will result in a change in the modular ratio, 

n = Es/Ec, where Es is the Young’s Modulus of the reinforcing steel. The age-adjusted 

modular ratio, n/, is therefore 

n/=Es/ Ec/// = n[1+ χ(t,to)∅(t,to)] (3-5) 
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The time-dependent neutral axis depth after creep, kd///, can be computed using the age-

adjusted modular ratio, n/, in place of n in conventional mechanics-based equations for 

calculating kd reported in the CAC Concrete Design Handbook. The change of the depth 

of the neural axis requires computing the associated Icr, denoted as Icr3 . 

Section 3.2 showed that short-term deflection computations are based on an effective 

moment of inertia, Ie, to account for the contribution of the uncracked regions the overall 

flexural rigidity of a member (i.e., tension stiffening). However, the effect of creep is more 

significant in tension than in compression (Brooks and Neville, 1977; Orta, 2009). Further, 

Equation 3-4 shows that creep significantly reduces Young’s Modulus of the Concrete. 

This will cause the long-term effect of tension stiffening to dissipate and so the long-term 

effective moment of inertia essentially equals Icr3 . Therefore, the effective maximum 

compressive stress in the concrete due to a sustained load, Ms, after creep has taken place 

can be calculated as 

σ(t,to)///////=
Mskd///

Icr3  
(3-6) 

Since the creep coefficient is defined as ∅(t,to)= εcr/εi, the creep strain at time t is given as 

εcr(t,to)/////////= ∅(t,to)
σ(to)//////

Ec(to)
(3-7) 

where Ec(to) is Young’s Modulus at the age of loading to. The average curvature due to 

creep at time t after loading is therefore   

ψcr(t,to)/////////=
εcr(t,to)///////// 

kd///
(3-8) 

The incremental deflection due to creep for a simply supported beam subjected to a 

uniformly distributed load can be calculated from standard deflection equations as 

∆cr=
5Msℓn

2

48 Ec/// Icr3
=

5ψcr(t,to)/////////ℓn
2

48
(3-9) 
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where M is the maximum midspan moment and  Ec///  is age-adjusted Young’s Modulus for 

concrete. 

3.3.2 Branson/CAC Concrete Design Handbook 

The current empirically based methods for computing long-term deflections due to creep 

and shrinkage, referenced in ACI318 (ACI 2014) and presented in the Concrete Design 

Handbook (CAC 2016), were originally proposed by Branson (1977). The creep deflection 

is proportional to the short-term deflection, and therefore inversely proportional to Ie. On 

the other hand, shrinkage deflection depends only on the ultimate shrinkage strain, the 

compression and tension reinforcement areas, and the overall depth of the member. Several 

researchers including Branson have developed analytical tools to calculate deflection due 

to shrinkage. However, these methods have been criticized due to uncertainties in 

quantifying the impact of creep on Young’s Modulus of concrete and uncertainties in 

computing Ie (Branson 1977).  

The equation for computing creep deflection is founded on the fundamental assumption 

that the increase in curvature due to creep is smaller than the increase in external fiber 

compressive strain due to creep. This assumption is appropriate because the depth of the 

neutral axis and hence the compression region increases when creep occurs. It is formulated 

as 

ψcr
ψi

=	kr
εcr

εi
(3-10) 

where kr is a dimensionless factor less than 1, εcr is the creep strain, εi is the instantaneous 

strain, ψcr is the curvature due to creep, and ψi is the instantaneous curvature. An equation 

for calculating kr for partially prestressed beams was derived theoretically by Shaikh and 

Branson (1970) and was later modified to fit test data for non-prestressed beams (Branson 

1977). This modified empirical equation for kr is 

kr=
0.85

1+50ρ'
(3-11) 
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where ρ' is the compression steel reinforcement ratio. Moreover, the creep coefficient, Ct, 

is defined as the ratio of the creep strain εcr to the initial strain εi (ACI 2008). The ratio of 

incremental creep deflection to initial deflection, ∆cr ∆i⁄ , is given by  

∆cr

∆i
= kr

εcr

εi
(3-12) 

Thus, combining Equations (3-19) and (3-20) and accounting for Ct yields: 

∆cr= +
0.85Ct

1+50ρ'
,∆i (3-13) 

The Concrete Design Handbook (CAC, 2016) proposes Ct=0.8St, where St, the long-term 

deflection factor under sustained loads specified in A23.3 (CSA 2014), has a maximum 

value of 2.0. The associated maximum value of Ct is therefore 1.6.  

3.3.3 Gilbert and Kilpatrick (2017) 

Gilbert and Kilpatrick (2017) proposed an empirical method form computing incremental 

deflections due to creep and shrinkage. The incremental deflection due to creep, ∆cr, is 

computed as 

∆cr= +
∅(t,to)
6

,∆i (3-14) 

where 6 for a cracked section is 

α=[0.48ρ-0.5] +
Icr

Ie
,

0.33

71+(125ρ+0.1)8
As

'

As
9

1.2

: (3-15) 

and for an uncracked section is 

α=[1-15ρ] 71+(140ρ-0.1)8
As

'

As
9

1.2

: (3-16) 

Figure 3-1 shows the variation of a with r for As
' /As = 0.5 and Icr/Ie = 1. Since Equation 3-

14 implies that the deflection due to creep increases with a decrease in a, Figure 3-1 



46 

 

suggests that the creep deflection increases with r, ultimately reaching a constant value at 

r ³ 0.015. 

 

Figure 3-1: Variation of a with r  

3.4 Long-Term Deflection Due to Shrinkage 

3.4.1 Mechanics-Based Approach 

Shrinkage-induced curvature in reinforced concrete beams is primarily due to the restraint 

of shrinkage by the reinforcing steel. Figure 3-2 (b) shows an unreinforced concrete section 

that, due to the absence of reinforcing steel, experiences a uniform shrinkage strain 

distribution, over the depth of the section. This does not result in curvature, warping, or 

vertical deflection. Figures 3-2 (c) and (d) show the impact of various reinforcing steel 

layouts on the shrinkage strain distribution and hence curvature due to shrinkage. Singly 

reinforced sections, as shown in Figure 3-2 (c), experience significant restrained shrinkage 

and therefore a considerable tensile force in the concrete at the level of the reinforcement. 

This force produces tensile strains at the bottom fiber and compressive strains at the top 

fiber, and this non-uniform strain distribution causes curvature and vertical deflection.  

Adding a second layer of reinforcement near the top fiber produces an additional tensile 

force in the concrete at the level of the top reinforcement. Figure 3-2 (d) shows a doubly 

reinforced section where the area of the top steel is less than the area of bottom steel and 
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so the associated tensile force is smaller. The top and bottom extreme fibers experience 

unequal tensile strains, resulting in a non-uniform strain distribution that is less pronounced 

than that of a singly reinforced section. As a result, providing double reinforcement near 

both the top and bottom beam faces are equal, and equally spaced from the section mid-

height, markedly reduces the curvature and associated deflection due to restrained 

shrinkage. 

If the areas of the top and bottom reinforcement are equal and the distance from the 

reinforcement centroids to the adjacent extreme fibers are equal, the extreme fiber strains 

are also equal. A more uniform strain distribution is produced, as shown in Figure 3-2 (e). 

In this case, the extreme fiber strains due to restrained shrinkage result in a uniform strain 

distribution over the depth of the member, which does not induce curvature or vertical 

deflection. Moreover, the net concrete strain due to restrained shrinkage is markedly 

smaller than the free shrinkage strain so the axial shortening is reduced. 

 

Figure 3-2: Strains due to Restrained Shrinkage in Concrete Beams 
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(b) Strain in Plain Concrete due to Unrestrained Shrinkage 
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(d) Strain due to Restrained Shrinkage (A’s < As) 

(a) Beam Elevation 
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(e) Strain due to Restrained Shrinkage (A’s = As) 
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The tensile force in the concrete at the level of the steel due shrinkage strains in an 

uncracked section can be calculated using fundamental principles of mechanics as 

described in Scanlon and Bischoff (2008). For a rectangular section, the force at the level 

of the bottom reinforcement at time t, Fc,t, is 

Fc,t=
-EsAsεsh,t

1+n/ρ (d
h) 81+12 (d

h -0.5)
2
9

(3-17)
 

where εsh,t is the shrinkage strain at time t, As is the area of the bottom steel, ρ is the 

reinforcement ratio, d is the effective depth, h is the overall depth of the member and n/, the 

age-adjusted modular ratio, is as defined in Equation 3-5. The sign convention adopted is 

compression positive. 

Similarly, the force at the level of the top reinforcement, F'c,t, is 

Fc,t
' =

-EsA'sεsh,t

1+n/ρ' (
d
h) ;1+12 80.5 - d'

h9
2

<

(3-18)
 

where A's is the area of the top steel, and d' is the depth of the top reinforcement from the 

top fiber and ρ' is the reinforcement ratio of the top steel. Equations 3-17 and 3-18 are 

based on the effective modular ratio, n/, instead of n because shrinkage is a time-dependent 

deformation and the effect of the change in the Young’s Modulus of concrete must be 

accounted for.  

The residual stresses at the top and bottom fibers,	σsh,t,T, and σsh,t,B, respectively, can be 

calculated as 

σsh,t,T=
Fc,t

Ag
-
Fc,t(d-0.5h)(0.5h)

Ig
+

F'c,t

Ag
-
F'c,t(0.5h-d')(0.5h)

Ig
(3-19) 

and  
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σsh,t,B=
Fc,t

Ag
+

Fc,t(d-0.5h)(0.5h)
Ig

+
F'c,t

Ag
+

F'c,t(0.5h-d')(0.5h)
Ig

(3-20) 

where Ag is the gross area of the cross-section. The strain at the top fiber and bottom fibers 

at time t, εsh,t,T and εsh,t,B, respectively, are therefore  

εsh,t,T=
σsh,t,T

Ec/// 
(3-21) 

and   

εsh,t,B=
σsh,t,B

Ec/// 
(3-22) 

and the net curvature (i.e., the curvature that causes warping) is 

ψsh,t=
 εsh,t,B	- εsh,t,T

h
(3-23) 

The curvature due to restrained shrinkage,	ψsh,t,is constant along the length of the beam 

and therefore the beam deforms as an arc of a circle with radius of curvature, R, of 1 ψsh,t? . 

From the geometry of the circle: 

∆sh,t=R-@R2- &
ℓn

2 '
2

(3-24) 

where ∆sh,t is the maximum deflection due to restrained shrinkage at time t at the center of 

the span. 

Most available methods, including Branson’s (1977) and Gilbert’s (1999) empirical 

methods, compute shrinkage curvature assuming the section to be uncracked. This is 

justifiable because the curvature caused by shrinkage restraint depends on the size of the 

uncracked section (Gilbert and Ranzi 2011) since shrinkage shortening occurs only in the 

uncracked regions (Branson 1977). Therefore, the effect of restrained shrinkage may not 

be significantly influenced by the presence of cracks. Moreover, Branson (1977) suggests 
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that the majority of shrinkage occurs in the first few weeks after casting, before the 

application of the design live loads and before cracking. However, this may be questionable 

because construction loading can often exceed twice the self-weight of the member (Zhou 

and Kokai, 2010).  

3.4.2 Branson/CAC Concrete Design Handbook 

Branson (1977) recommends computing shrinkage deflection from the curvature due to 

shrinkage, which is assumed to be directly proportional to the free shrinkage strain and an 

inversely proportional to the overall member depth. Branson’s Method uses the equation 

∆sh,t= Kshψsh,tℓn
2 (3-25) 

where, Ksh is a coefficient that accounts for the displacement boundary conditions of the 

member, and ψsh,t is defined as 

ψsh,t= Ash
εsh,t

h
(3-26) 

where Ash is a factor to account for the ratio of top to bottom reinforcement and is obtained 

from tables created by Branson (1977) that are reproduced in the CAC Concrete Design 

Handbook (CAC, 2016).  

Branson recommended that the ultimate free shrinkage strain be taken as εsh,u=400με in 

the absence of information on free shrinkage under local conditions. The Concrete Design 

Handbook recommends that εsh,u be computed as  

εsh,u=
St

2.0 400με (3-27) 

Since St £ 2.0, εsh,u computed using Equation 3-27 cannot exceed 400με. 

3.4.3 Gilbert & Kilpatrick (2017) 
Gilbert and Kilpatrick’s (2017) method for computing long-term shrinkage deflections 

involves computing the shrinkage curvature using empirical methods, and subsequently 

computing the shrinkage deflection using mechanics-based methods. The curvature due to 

restrained shrinkage is given as 
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ψsh,t=
kshεsh,t

h
(3-28) 

where ksh for a cracked section is 

ksh=1.2 &
Icr

Ie
'

0.67

81-0.5
As

'

As
9 &

h
d'

(3-29) 

and for an uncracked section with reinforcement ratio, ρ, greater then 1% is 

ksh=(100ρ-2500ρ2) &
d

0.5h -1' 81-
As

'

As
9

1.3

(3-30) 

or ksh for an uncracked section with ρ, less than 1% is 

ksh=(40ρ+0.35) &
d

0.5h -1' 81-
As

'

As
9

1.3

(3-31) 

Figure 3-3 shows the variation of ksh with reinforcement ratio, ρ, and was derived based on 

effective depth to total depth ratio, d/h = 0.9, and tension to compression reinforcement 

ratio, As
' /As = 0.5 and Ie/Icr = 1. Since ksh for a cracked section is independent of ρ, the 

curvature due shrinkage, as computed using Equation (3-28), is also independent of ρ. On 

the other hand, ksh for an uncracked section increases linearly with ρ for ρ < 1% and 

increases at a decreasing rate for 0.01 < ρ < 0.02. However, ksh begins to decrease for an 

uncracked section with ρ > 0.02. This is contrary to findings presented in Section 3.4.1 

where it was shown that the curvature of an uncracked section increases with ρ, regardless 

of its magnitude.  
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Figure 3-3: Variation of ksh with r 

The deflection due to restrained shrinkage for a simply-supported member is computed as  

∆sh =
ℓn
*

96 (ψsh,L+10ψsh,M+ψsh,R) (3-32) 

where ψsh,M is the shrinkage curvature computed at the midspan, and ψsh,L and ψsh,R are 

the shrinkage curvatures at the left and right supports respectively. Equation (3-32) was 

derived using double integration for a parabolic curvature diagram (Gilbert, 2008). Since 

simply-supported members are likely uncracked near the supports and cracked at midspan, 

ψsh,L and ψsh,R are computed based on an uncracked ksh, while the ψsh,M is computed based 

on a cracked ksh.  

3.5 Comparison Between Prediction Models and Experimental Data 
There is a lack of long-term tests on beams and slabs under sustained loading, and few 

studies report all data needed to carry out a comprehensive analysis (Kilpatrick and Gilbert 

2017). Two sources of experimental data on the long-term behavior of simply supported 

concrete members is available, namely Washa and Fluck (1952) and Gilbert and Nejadi 

(2004).  
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3.5.1 Washa and Fluck (1952) 

The empirically-derived Branson (1977) Equation was partly based on an experimental 

study by Washa and Fluck (1952), among others. Washa and Fluck (1952) explored the 

behavior of singly and doubly reinforced simply supported beams with span-to-depth ratios 

ranging from 20 to 70 and tension reinforcement ratios of approximately 1.5%. The 

specimens were moist cured for 5 days (tc = 5 days) and a load, sustained for 915/ days 

(nearly 5 years), was applied at 14 days after casting (to = 14 days). The midspan moment 

due to the sustained load was 40-50% of the ultimate capacity of the beam.  

Washa and Fluck’s (1952) test specimens were classified into five groups: A; B; C; D; and, 

E, based on their dimensions. Each group included a total of six specimens; Specimens 3 

and 6 were singly reinforced, Specimens 2 and 5 were doubly reinforced with the area of 

the top steel equal to half the area of the bottom steel, and Specimens 1 and 4 were doubly 

reinforced with equal areas of top and bottom steel. As a result, Specimens 3/6, 2/5, and 

1/4 were reported to have the same deflection (for example, the deflection of B3 is equal 

to the deflection of B6, and the deflection of C2 is equal to the deflection of C5, etc.). 

Washa and Fluck reported an error in the initial reading of Group A specimens. Moreover, 

Group D specimens had an identical cross-section to those belonging to Group C and 

included specimens made of low-density and air-entrained concretes.  

Concrete properties such as the compressive strength at age of loading, f’c(to), and Young’s 

Modulus at age of loading, Ec(to), were obtained from cylinder test. Although Specimens 

3/6, 2/5, and 1/4 were reported to have the same deflection, they each had a unique f’c(to) 

(details of test specimens are shown in Appendix B). Since the deflection is dependent on 

f’c it will be computed for each specimen separately based on the reported f’c(to) and Ec(to). 

Washa and Fluck (1952) also reported test results for companion loaded and unloaded 

cylinders that are used to determine experimental values for creep coefficients and 

shrinkage strains. The test specimens were found to have a creep coefficient of 4.5 and 

shrinkage strain of 720µe. 

3.5.2 Gilbert and Nejadi (2004) 

The most recent experimental study on the behavior of concrete members under sustained 

loading was conducted by Gilbert and Nejadi (2004), where twelve singly-reinforced, 
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simply supported concrete members with spans of 3.5 meters and reinforcement ratios less 

than 1% were subjected to sustained loads for periods of 400 days. Of the twelve 

specimens, six had a width to effective depth ratio of 1.2 to represent beams (indicated by 

the prefix B). The other six specimens were representative of slab elements (indicated by 

the prefix S) and had a width to effective depth ratio of 0.3. Specimens within each series 

were designed using a different combination of parameters (indicated by the number beside 

the uppercase letter) such as the thickness of the cover and the spacing between reinforcing 

steel bars. Two load ratios were applied to each set of specimens and indicated by the 

lower-case letters “a” and “b”. Type “a” specimens were subjected to a sustained load at 

midspan equal to 50% of the ultimate moment capacity of the beam, and “b” specimens 

were loaded to 30% of their capacity. For example, B1a and B1b had identical dimensions 

and parameters, but subjected to two different loads, while B1a and B3a were subjected to 

similar loads but had different reinforcement ratios. Gilbert and Nejadi (2004) also reported 

an experimental creep coefficient of 1.7 and shrinkage strain of 825µe.  

3.5.3 Quantification of Test/Predicted Ratios 

Table 3-1 shows the overall mean values and coefficients of variation for ratios of 

experimental and predicted long-term deflections as computed using the Mechanics-Based 

Method, the Branson/CAC Design Handbook Method, and Gilbert and Kilpatrick (2017) 

Method, respectively. The Mechanics-Based Method was found to yield conservative 

results (i.e., test/predicted ratios less than 1) for both sets of test results. Short-term 

deflections were computed using the Branson Equation with Mcr based on 0.5fr to maintain 

consistency with the requirements of CSA A23.3-14 the and recommendations in the 

Concrete Design Handbook (CAC 2016). Analytical predictions were carried out using the 

reported experimental creep coefficients and shrinkage strains, while predictions based on 

the Concrete Design Handbook were conducted using values recommended therein. 

The Branson Method, as presented in the CAC Concrete Design Handbook, yields 

unconservative test/predicted ratios for Washa and Fluck’s (1952) test specimens, with a 

mean test/predicted ratio of 1.32, and a slightly conservative ratios for Gilbert and Nejadi’s 

(2004) test specimens with a mean test/predicted ratio of 0.96. The Gilbert and Kilpatrick 

(2017) Method was also found to follow the same trend, yielding a mean-test/predicted 

ratio of 1.05 for Washa and Fluck’s specimens and a conservative ratio of 0.89 for Gilbert 
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and Nejadi’s specimens. The Mechanics-Based Method was found to be conservative for 

both sets of experimental data, yielding a mean test/predicted ratio of 0.94 for Washa and 

Fluck’s specimens and 0.92 for Gilbert and Nejadi’s Specimens. 

Table 3-1: Statistical Parameters of Test/Predicted Ratios 

Method Mechanics-Based CAC Handbook Gilbert & Kilpatrick  

 Washa & 
Fluck  

Gilbert & 
Nejadi  

Washa & 
Fluck  

Gilbert & 
Nejadi  

Washa & 
Fluck  

Gilbert & 
Nejadi  

Mean 0.94 0.92 1.34 0.96 1.06 0.89 

COV (%) 10.30 4.98 9.78 5.14 10.01 8.13 

Table 3-2 further breaks down these data by showing unique mean test/predicted ratios for 

singly reinforced members (A’s = 0) and doubly reinforced members with As
'  = 0.5As and 

with As
' = As. The Mechanics-Based method yields accurate and conservative results for 

singly reinforced members, with a mean test/predicted ratio of 0.92-0.93. The Branson 

Method and the method presented by Gilbert and Kilpatrick (2017) yielded conservative 

results for Gilbert and Nejadi’s test data (mean test/predicted ratio of 0.96 and 0.89, 

respectively), and unconservative results for Washa and Fluck’s data (mean test/predicted 

ratio of 1.40 and 1.08, respectively). 

The Mechanics-Based Method also yields a conservative mean test/predicted ratio of 0.92 

for the doubly reinforced members with As
'  = 0.5As. The other two methods yield 

unconservative results with mean test/predicted ratios of 1.27 and 1.01 for the Branson and 

Gilbert and Kilpatrick (2017) Methods respectively. 

A total of eight symmetrically-reinforced members (As
'
 = As) with equal areas of top and 

bottom reinforcement, reported by Washa and Fluck (1952), are considered in the present 

study. Specimens E1 and E4 yielded test/predicted ratios that are inconsistent with the 

range of ratios obtained, using all three methods investigated herein, for the other six 

specimens and therefore appear to be outliers. Beams E1 and E4 were impractically slender 

with span-to-depth ratios of 70. The mechanics-based method provided test/predicted 

ratios of 1.12 and 1.09 for E1 and E4 respectively, while the other two methods provided 
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unconservative test/predicted ratios between 1.28 and 1.62. Table 3-2 shows unique 

analyses of the test/predicted ratios for the eight specimens with Specimens E1 and E4 

either included or excluded. Naturally, the ratios for all three methods have a relatively 

high coefficient of variation (COV) when the suspected outliers are included in the 

analysis, and a significantly lower COV when they are excluded. For example, the COV 

for the Mechanics-Based Method decreases from 15.1% to 3.5% after the suspected 

outliers are removed. The associated mean test/predicted ratios reduced from 0.94 to 0.86 

when the suspected outliers were excluded. The Branson Method yielded unconservative 

mean test/predicted ratios of 1.35 and 1.27 when the suspected outliers were included or 

excluded, respectively. The method presented by Gilbert and Kilpatrick (2017) yielded 

more accurate ratios of 1.10 and 1.06 when the suspected outliers were included or 

excluded, respectively, which are slightly unconservative. 

Table 3-2: Mean Test/Predicted Ratios for Various A’s/As Fractions 

  As
'  = 0 As

'  = 0.5As As
' = As 

Method  Washa & 
Fluck  

Gilbert & 
Nejadi  

Washa & 
Fluck  

Washa & 
Fluck  

Washa & 
Fluck 

Excluding 
Outliers 

Mechanics-
Based 

Mean 0.93 0.92 0.95 0.94 0.86 

COV (%) 7.8 5.0 5.9 15.1 3.5 

CSA 
Handbook 

Mean 1.40 0.96 1.27 1.35 1.21 

COV (%) 6.1 5.1 4.1 14.3 4.0 

Gilbert & 
Kilpatrick 

(2017) 

Mean 1.08 0.89 1.01 1.10 1.06 

COV (%) 6.5 8.1 4.6 14.5 4.2 
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3.6 Discussion of Proposed and Existing Methods 

3.6.1 Branson/CAC Design Handbook 

The method presented in the Concrete Design Handbook yields a high mean test/predicted 

ratio of 1.4 for the results reported by Washa and Fluck (1952), but a significantly more 

accurate and slightly conservative ratio of 0.96 for the results reported by Gilbert and 

Nejadi (2004). The discrepancy can be attributed, in varying degrees, to: 

1. Degree of conservatism of Ie computed based on a reduced modulus of rupture. 

2. Oversimplification of Branson’s creep coefficient, Ct. 

3. Underestimation of ultimate shrinkage strains, εsh,u. 

Short-term deflections predicted using Ie based on a reduced modulus of rupture 

overestimate Gilbert and Nejadi’s (2004) observed deflections, with a mean test-predicted 

ratio of 0.67. On the other hand, the same method provided significantly more accurate, 

yet slightly unconservative ratios for the results of Washa and Fluck (1952), where the 

mean test/predicted ratio is 1.09. This inconsistency may be due to Gilbert and Nejadi’s 

specimens not being exposed to drying, and consequently not shrinking significantly before 

loading (to=tc). In this case, using one-half the modulus of rupture to account for reduction 

of the cracking moment due to restrained shrinkage is overly conservative. Conversely, 

Washa and Fluck’s (1952) test specimens were left to dry in the laboratory environment 

for nine days prior to loading and therefore were likely to have experienced significant 

shrinkage. Using a reduced modulus of rupture is clearly appropriate in this case. The 

overestimation of short-term deflections for Gilbert and Nejadi’s specimens compensated 

for shortcomings in methods for predicting creep and shrinkage deflections to provide 

accurate predictions of total deflections. On the other hand, the predicted short-term 

deflections for Washa and Fluck’s specimens were reasonably accurate, which emphasized 

the deficiencies in methods for computing incremental deflections. 

Moreover, the creep coefficient is oversimplified. The experimental creep coefficient 

(∅(t,to) = 1.71) reported by Gilbert and Nejadi (2004) is relatively close to the creep 

coefficient computed using equations provided in the CAC Handbook (∅(t,to) = 1.15). 

This, combined with the overestimated short-term deflection, yielded accurate creep 

deflections. On the other hand, the experimental creep coefficient of approximately 4.4 
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reported by Washa and Fluck (1952) was significantly larger than the creep coefficient of 

1.4 computed using the CAC Handbook (CAC, 2016) equations, which mean that the creep 

deflection was significantly underestimated. Additionally, the experimental shrinkage 

strains reported by Gilbert and Nejadi (2004) and Washa and Fluck (1952) were 

approximately twice as large as those computed using equations provided in the CAC 

Handbook, which led to the underestimation of shrinkage deflections.  

 

In summary, the CAC Concrete Design Handbook Method underestimated shrinkage 

deflection for both Gilbert and Nejadi’s (2004) and Washa and Fluck’s (1952) test 

specimens. It overestimated the short-term deflection for Gilbert and Nejadi’s specimens, 

thereby yielding relatively accurate creep and total deflections. However, since it 

accurately predicted the short-term deflection for Washa and Fluck’s specimens, the creep 

deflection and total deflection were markedly underestimated. 

 

Table 3-3 shows values recommended by Branson (1977) for computing creep and 

shrinkage deflections. For a typical concrete member in the interior of a building where the 

age at loading is between 3 and 14 days and relative humidity is approximately 50% (ACI 

209, 2008), Ct has a minimum value of 2.00. Similarly, εsh,u varies between 506 and 795με. 

However, the Concrete Design Handbook recommends simplified methods for computing 

Ct and εsh that yield maximum values of 1.6 and 400με, respectively.  Ct and εsh were 

computed, using this technique, to be 1.4 and 349 με for Washa and Fluck’s test specimens 

and 1.15 and 287 με for Gilbert and Nejadi’s specimens respectively. These values are all 

smaller than those shown in Table 3-3, and so the associated creep and shrinkage 

deflections are therefore likely to be underestimated. Unfortunately, neither Gilbert and 

Nejadi (2004) nor Washa and Fluck (1952) reported the relative humidities in their test 

data, and therefore deflections cannot be computed using the Branson (1977) Method with 

the appropriate Ct and εsh values.  
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Table 3-3: Creep Coefficients and Ultimate Shrinkage Strains Proposed by Branson 

(1977) 

Age at 
Loading 

(days) 

Average Relative Humidity, Ultimate Creep Coefficient or Shrinkage Strain 

³90% 80% 70% 60% 50% £ 40% 

Ct 
εsh,u 
(µe) Ct 

εsh,u 
(µe) Ct 

εsh,u 
(µe) Ct 

εsh,u 
(µe) Ct 

εsh,u 
(µe) Ct 

εsh,u 
(µe) 

1 - 281 - 562 - 655 - 749 - 842 - 936 

7 1.57 234 1.72 468 1.88 546 2.04 624 2.21 702 2.35 780 

10 1.50 182 1.63 364 1.79 425 1.94 485 2.10 546 2.23 607 

20 1.37 149 1.49 298 1.64 347 1.78 397 1.92 447 2.05 496 

28 1.32 130 1.44 260 1.58 303 1.72 347 1.86 390 1.97 433 

60 1.21 86 1.32 172 1.45 201 1.57 230 1.70 259 1.81 287 

90 1.17 66 1.27 131 1.39 153 1.51 175 1.63 197 1.74 218 
 

3.6.2 Consideration of Mechanics-Based Method by Others 

The proposed mechanics-Based Method for computing long-term deflections due to creep 

is inspired by the “increased ‘n’” approach described in numerous references, including 

Pauw and Meyers (1964), Yu and Winter (1960) and Branson (1977), where creep 

deflections are obtained by computing a neutral axis depth based on an age-adjusted 

modular ratio. Branson pursued the “increased ‘n’” approach with great interest but was 

unsuccessful in obtaining satisfactory agreement with experimental data, including that 

reported by Washa and Fluck (1952), likely due to difficulties in computing kd and Ie. 

Methods then available for computing kd for doubly reinforced beams were iterative and 

fairly complex, which created room for uncertainties (e.g., Pauw and Meyers (1964)). 

Additionally, Branson computed Ie using an empirical equation based on an incorrect 

mechanical model (Equation 3-2) and did not account for the effect of restrained shrinkage 

on the magnitude of Mcr used to compute Ie. The “increased ‘n’” approach when 
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implemented in the current study using appropriate, mechanics-based methods to compute 

kd and Ie yields satisfactory test/predicted ratios, and the effect of compression 

reinforcement, creep coefficients, and shrinkage strains on the total deflection can be 

accurately represented.  

Final creep deflections were computed based on the concrete stress at time t, after creep 

has taken place. Since creep causes a lowering of the neutral axis (i.e., kd/// > kd), the 

maximum compressive concrete stress at time t is smaller in magnitude than the short-term 

maximum compressive stress at time to. More conservative creep deflections could be 

obtained by computing creep deflections based on the short-term concrete stress. This 

might be a practical consideration if creep deflections at time young and intermediate are 

of interest but appears to be overly conservative when only the final deflection is of interest. 

Deflections due to shrinkage were computed for an uncracked section as justified in Section 

3.3.2. The net curvature was computed based on residual strains at the top and bottom fibers 

caused by shrinkage restraint by the top and bottom steel areas. This reflects the efficiency 

of compression reinforcement in markedly reducing the deflection due to shrinkage 

warping.  

The effect of restrained shrinkage is most pronounced in singly reinforced members and 

achieving a satisfactory prediction is necessary to assure the serviceability of structures. 

The Mechanics-Based Method provided a mean test/predicted ratio of 0.92 (COV = 7.2%) 

for Gilbert and Nejadi’s (2004) and 0.93 (COV = 5.0%) Washa and Fluck’s (1952) singly-

reinforced specimens. The similarity of these two values may be an indication of the 

accuracy and consistency of this method in predicting long-term deflections, despite 

differences in reinforcement ratio, concrete strength, Young’s Modulus and other factors 

unique to each experimental study.  

3.7 Conclusions 
This chapter has critically evaluated two existing methods for computing the incremental 

deflections due to creep and shrinkage. The first is the method described in the CAC 

Concrete Design Handbook (CAC, 2016), which is based on an empirical method proposed 

by Branson (1977). The second is an empirical method proposed by Gilbert and Kilpatrick 
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(2017), which presents an improvement to the method in the AS3600-2009 code 

provisions. It also presented a Mechanics-Based Method for computing the incremental 

deflections due to creep and shrinkage, and outlined discrepancies between the three 

methods. Moreover, the accuracy of these methods in predicting long-term deflections was 

quantified using test/predicted ratios.  

The conclusions of this chapter are as follows:  

1. Short-term deflections computed using Ie based on a reduced modulus of rupture 

were overestimated for Gilbert and Nejadi’s (2004) test specimens because they 

were not exposed to drying before loading and so any effects of restrained shrinkage 

were likely slight. On the other hand, short-term deflections were more accurately 

predicted for Washa and Fluck’s (1952) test specimens that were exposed to drying 

prior to loading and so experienced restrained shrinkage.  

2. Methods for computing incremental deflections due to creep and shrinkage 

described in the CAC Concrete Design Handbook are based on empirical methods 

proposed by Branson (1977). However, the Concrete Design Handbook provisions 

for computing ultimate shrinkage strains and creep coefficients are simplifications 

of the values tabulated by Branson (1977). The CAC Concrete Design Handbook 

Method yielded an unconservative mean test/predicted ratio of 1.34 for the total 

deflection of Washa and Fluck’s (1952) test specimens. More accurate and slightly 

conservative test/predicted ratios were obtained for the total deflection of Gilbert 

and Nejadi’s (2004) test specimens, with a mean test/predicted ratio of 0.97. This 

is due to the overestimation of the short-term deflection for Gilbert and Nejadi’s 

test specimens, which compensated for the underestimation of incremental 

deflections due to creep and shrinkage.  

3. Incremental deflections due to creep and shrinkage can be more accurately 

predicted using the method described in the Concrete Design Handbook using creep 

coefficients and ultimate shrinkage strains recommended by Branson (1977). 

4. The Mechanics-Based Method for computing creep deflection based on an age-

adjusted modular ratio and a lowered neutral axis, and shrinkage deflection based 

on strains due to forces imposed by the top and bottom reinforcing steel on the 

concrete, was found to yield accurate and slightly conservative predictions. The 
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mean test/predicted ratio computed using this approach is 0.94 for Washa and 

Fluck’s (1952) specimens and 0.92 for Gilbert and Nejadi’s (2004) specimens. The 

coefficients of variation of test/predicted ratios are 5.0% for Gilbert and Nejadi’s 

(2004) specimens and 10.3% for Washa and Fluck’s (1952) specimens. 

5. Gilbert and Kilpatrick’s (2017) method provided a slightly unconservative mean 

test/predicted ratio of 1.06 for Washa and Fluck’s (1952) test specimens, but a 

slightly conservative ratio of 0.89 for Gilbert and Nejadi’s (2004) specimens
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Chapter 4  

4 Simplified Methods for Computing Long-Term Deflections 
The Mechanics-Based Method for computing incremental deflections due to creep and 

shrinkage described in Chapter 3 provides consistent and slightly conservative predictions 

of long-term deflections. It is also straightforward, using familiar equations readily 

available in the CAC Concrete Design Handbook (CAC, 2016). However, its somewhat 

laborious nature makes it time-consuming for designers, who often estimate the initial 

depth of a member based on deflection criteria. The CSA A23.3 design standard (CSA, 

2014) presents a simplified method for computing long-term deflections based on the short-

term deflection using a single multiplier that accounts for the effects of creep and 

shrinkage. The unified multiplier is independent of the magnitude of the applied load. 

However, the long-term deflection, particularly due to creep, was shown in previous 

chapters to be heavily dependent on the maximum concrete compressive strains and so on 

the magnitude of the applied load. The unified multiplier is also independent of the creep 

coefficient and shrinkage strains. Chapter 2 showed that accurate predictions of creep 

coefficients and shrinkage strains difficult and including them as independent variables is 

desirable. Therefore, this chapter will: 

1. Critically evaluate the sustained load deflection multiplier in A23.3. 

2. Assess the accuracy of the A23.3 Multiplier in comparison to the Mechanics-based 

Method described in Chapter 3. 

3. Present an Alternative Simplified Method for computing long-term deflections 

based on short-term deflections. 

4. Compare the results obtained using the A23.3 Multiplier with the Mechanics-Based 

and Alternative Simplified Methods 
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4.1 A23.3 Multiplier for Computing Long-Term Deflections 

4.1.1 Background of Sustained Load Multiplier in A23.3 

The CSA A23.3 design standard (CSA, 2014) presents a simplified method for computing 

long-term deflections, ∆LT, using a multiplier applied to the short-term deflection, ∆i, 

intended to account for the combined effect of creep and shrinkage. The total deflection, 

∆T, can then be computed as ∆T =	∆LT + ∆i. The long-term deflection is computed as 

∆LT= +
St

1+50ρ'
,∆i (4-1) 

where ρ' is the compression reinforcement ratio, A’s/bd, and St, a factor that accounts for 

the duration of the sustained load, has a maximum value of 2.0 for load durations greater 

than 60 months.  

This approach is based on an empirical method proposed by Branson (1977) and has an 

identical form to Branson’s Equation for computing creep deflection discussed in Section 

3.3.2 (Equation 3-13). Branson’s Empirical Method computes the combined creep and 

shrinkage deflection as 

∆LT= +
T

1+50ρ'
,∆i (4-2) 

where T, the combined creep and shrinkage coefficient, is recommended by Branson 

(1977) to be taken as 2.5. This value is similar to the creep coefficient of 2.5, commonly 

assumed by designers and researchers when parameters such as relative humidity and age 

at loading are not known (e.g. Scanlon and Bischoff, 2008; Gilbert, 1999; Dilger, 1982). 

Figure 4-1 was extracted from a revision proposed by ACI Committee 435 to ACI 318-71 

building code committee (ACI 435, 1978), based on figures presented in Branson (1977). 

The vertical axis is the ratio of the sustained load deflection factor (i.e., the ratio of long-

term to short-term deflection) for a member with tension and compression reinforcement 

to the sustained load deflection factor for a member with the same area of tension 

reinforcement. The variation of this ratio with the compression reinforcement ratio for three 
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experimental programs (Washa & Fluck, 1952; Yu & Winter, 1960; and Hollington, 1970) 

is shown. The figure was used to demonstrate the adequacy of Equation (4-2). 

 

Figure 4-1: Fit of Branson’s Empirical Method to Test Data (ACI 435, 1978) 

Inspection of Figure 4-1 shows that Branson’s Empirical Method is unconservative for a 

number of experimental data points. Yu & Winter (1960) applied a sustained load for six 

months, whereas Washa & Fluck (1952) and Hollington (1970), according to ACI 

Committee 435 (ACI 435, 1978), applied a sustained load for 26-30 months. However, 

figures in Branson (1977) and the CAC Concrete Design Handbook (2016) imply that the 

long-term deflection at six months is approximately 70% of the long-term deflection at 30 

months, and so deriving an empirical equation based on the ratio of long-term to short-term 

deflection may be inappropriate. Furthermore, the Branson Empirical Method was 

developed based on the combined results of experimental programs by Yu & Winter 

(1960), who tested T-beams exclusively, and Washa & Fluck (1952), who only conducted 

tests on rectangular beams. This may be problematic since the long-term deflection is 

attributable to creep and shrinkage, which are intrinsic material properties, while the short-

term deflection is dependent on the geometry of the cross-section as reflected by the 

moment of inertia and so is independent of the creep and shrinkage properties of concrete. 

It is also common for T-beams to have a neutral axis depth less than the thickness of the 

flange and, in some cases, less than the depth of the cover (MacGregor and Bartlett, 2000), 

which would imply that any compression reinforcement may not be particularly effective 

in reducing the long-term deflections. Moreover, parameters pertaining to ambient 
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environmental conditions and testing practice such as creep coefficients, shrinkage strains 

and age at loading were likely to have varied between the different experimental programs 

but were not considered in deriving Branson’s Empirical Equation. Previous chapters have 

demonstrated the substantial impact of these factors on the long-term deflections and 

neglecting them in deriving an empirical method for computing long-term deflections may 

yield an unsatisfactory result. However, experimental creep coefficients and shrinkage 

strains were not reported in the studies by Yu & Winter (1960) and Hollington (1970) and 

therefore a direct comparison cannot be made. 

4.1.2 Variation of Deflection with Reinforcement Ratio 

The A23.3 Multiplier (Equation 4-1) is independent of the magnitude of the applied service 

load relative to the reinforcement ratio, ρ. In practice, the magnitude of the applied load 

increases with ρ. For a typical concrete flexural member where the ultimate limit state 

design load is Mf = 1.25MD+1.5ML, and the ratio of live load to dead load, k = MD/ML, is 

between 0.5 and 1.5, the magnitude of MD can be calculated for any given ρ. The magnitude 

of the service load, Ms, can subsequently be computed to quantify the expected maximum 

concrete strain.  

Figure 4-2, derived on this basis, shows the essentially linear increase of Ms/Mcr with ρ for 

k = 1.5. Members with ρ = 0.002 were found to have Ms/Mcr less than 1.0, even for Mcr 

computed using a reduced modulus of rupture, and therefore remain uncracked. 

 

Figure 4-2: Variation of Applied Load with Reinforcement Ratio 
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Figure 4-3 shows the variation of the short-term deflection, ∆i, with ρ and Ms/Mcr for 

various ρ’/ρ ratios. It is derived based on a concrete compressive strength, f’c = 30MPa; 

reinforcement steel yield strength, fy = 400MPa; span-to-depth ratio, ℓ/h = 14; aspect ratio, 

b/h = 0.67; effective depth to overall depth, d/h = 0.9; and, k = 1.5. The short-term 

deflection is proportional to Ms/EcIe, where Ie, the effective moment of inertia essentially 

increases linearly with ρ (CAC 2016). Moreover, Ms, was shown in Figure 4-2 to be 

approximately proportional to ρ. As a result, the short-term deflection does not change 

significantly with Ms and ρ for ρ > 0.01. Members with ρ < 0.004 are uncracked and the 

short-term deflection computations are based on the gross moment of inertia, Ig, which 

yields identical short-term deflections for all members regardless of the compression 

reinforcement ratio. Figure 4-3 also shows that the short-term deflection does not vary 

greatly with the ratio of ρ′/ρ. This is intuitive since compression reinforcement does not 

have a significant contribution to the moment capacity of a flexural member (MacGregor 

& Bartlett, 2000). The relatively slight decrease in short-term deflection is due to the 

increase in Icr caused by adding compression reinforcement (CAC, 2016).   

 

Figure 4-3: Variation of Short-Term Deflection with Reinforcement Ratio 

4.1.3 Practical Compression/Tension Reinforcement Ratios 

There are four main reasons for using compression reinforcement in concrete beams: 

reducing sustained load deflection; increasing ductility; changing the mode of failure from 
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compression-initiated to tension-initiated; and, fabrication ease (MacGregor & Bartlett, 

2000). The amount of steel is primarily governed by the requirements for changing the 

mode of failure and fabrication ease (e.g., to support stirrups). Designers often add 

compression steel so that (ρ-ρ′) £ 0.5ρb, where ρb is the balanced reinforcement ratio, to 

ensure ductile failure (MacGregor & Bartlett, 2000). For example, a flexural member made 

of 30 MPa concrete with ρ = 2% would require a ρ'/ρ ratio less than 0.35. Similarly, 

members with lower reinforcement ratios would have a smaller ρ′/ρ upper limit. Designers 

also frequently use 2-15M reinforcing bars to support stirrups (i.e. A‘s = 400 mm2). 

Table 4-1 shows ρ′/ ρ ratios for single-span and continuous beam examples presented in 

the CSA Concrete Design Handbook (CAC, 2004) and MacGregor & Bartlett (2000). 

Beams were found to trypically have a ρ′/ρ ratio of 0.2-0.35. On the other hand, one-way 

slabs have a ρ′/ρ ratio of zero in positive moment regions but may have ρ′/ρ ratios as high 

as 1 in negative moment regions due to detailing requirements for the bottom steel 

reinforcement.  

Table 4-1: Typical ρ′/ρ Ratios for Practical Applications 

Source As (mm2) A’
s (mm2) ρ′/ ρ 

CSA 
Concrete 
Design 

Handbook 
(2016) 

Example 2.1 1200 400 0.33 

Example 2.2 2500 400 0.16 

Example 2.3 4000 1400 0.35 

Example 2.4 7000 1400 0.2 

MacGregor 
and 

Bartlett 
(2000) 

Example 4-3 1500 400 0.27 

Example 5-5 2000 600 0.3 

Example 10-2 1300 to 2600 400 0.16 

Example 10-1 

(One-way Slab) 

10M @ 275mm 

 

10M @ 275mm 

(Exterior Support) 
1.0 

10M @ 275mm 

 

0 

(Interior Support) 
0 
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4.1.4 Long-Term Deflections Computed According to A23.3 

Figure 4-4 shows the variation of long-term deflection, ∆LT, computed using the A23.3 

Multiplier, normalized by the short-term deflection, with ρ and Ms/Mcr. The ratio of ∆LT/∆i 

decreases with ρ and Ms for members with compression reinforcement and remains 

constant for members with only tension reinforcement. This trend is unrealistic since the 

warping due to restrained shrinkage in singly reinforced members is expected to increase 

with ρ. Further, the long-term deflection of beams with compression reinforcement is 

mostly attributable to the load-dependent creep deflection (Chapter 3 demonstrated that 

deflections due to restrained shrinkage are significantly reduced by adding compression 

reinforcement). The ratio of ∆LT/∆i is therefore expected to follow the same trend as the 

short-term deflection (i.e., remain nearly constant) for higher ρ′/ρ ratios.  

 

Figure 4-4: Variation of ∆LT/∆i Computed Using A23.3 Multiplier with Reinforcement 

Ratio 

Figure 4-5 shows the variation of the long-term deflection computed using the A23.3 

Multiplier with ρ and Ms/Mcr based on the same material and geometric properties used to 

derive Figure 4-3. The long-term deflection of doubly reinforced members decreases with 

an increase in ρ and Ms/Mcr. The long-term deflection of singly reinforced members is 

similar to the short-term deflection curve because the A23.3 Multiplier is constant when 

ρ'/ρ = 0, as shown in Figure 4-4, and so the long-term deflection of singly reinforced 
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members is proportional to the short-term deflection. Therefore, conclusions similar to 

those discussed previously can be drawn: the A23.3 Multiplier results in an illogical trend 

where the long-term deflection decreases as the applied load increases and so does not 

accurately represent the impact of the reinforcement ratio on the shrinkage deflection of 

doubly reinforced members. 

 

Figure 4-5: Variation of Long-Term Deflection Computed Using A23.3 Multiplier  

These discrepancies can be traced back to the form of Equation (4-1), particularly the 
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denominator. The short-term deflection was shown in Figure 4-3 to be essentially 
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ratio of ρ’/ρ, the long-term deflection computed using Equation (4-1) decreases. 
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those by Washa and Fluck (1952) used to derive the A23.3 Unified Multiplier (Equation 

4-1). Therefore, the Mechanics-Based Method is the most accurate method for computing 

long-term deflections. 

Using the Mechanics-Based Method, the load-dependent creep deflection is computed 

based on the magnitude of the time-dependent applied stress relative to the depth of the 

time-dependent neutral axis, which are both strongly correlated to the creep coefficient. 

The proven effectiveness of compression reinforcement in reducing the long-term creep 

deflection (Washa & Fluck (1952), Branson (1977), MacGregor & Bartlett (2000), Gilbert 

& Ranzi (2011)) is captured by the change in the neutral axis depth computed for single 

and double reinforced members. The creep deflection is not, however, a direct function of 

the short-term deflection. The shrinkage deflection is independent of the applied load and 

is strongly dependent on the ratio of top to bottom reinforcement. Singly reinforced 

members experience the largest deflection due to shrinkage, whereas symmetrically 

reinforced members do not exhibit shrinkage deflection. 

4.2.2 Implications of mechanics-Based Method 

Figure 4-6 shows the variation of the long-term deflection computed using the Mechanics-

Based Method, normalized by the short-term deflection, with ρ and Ms/Mcr. The ratio of 

long-term to short-term deflection of a cracked section (i.e., Ms/Mcr > 1) was found to 

continuously increase with ρ and Ms/Mcr for single reinforced members ρ′/ρ = 0. This is 

intuitive because singly reinforced members experience the largest deformation due to 

restrained shrinkage, which is proportional to the area of tension reinforcement. 

Additionally, the magnitude of creep deflection relative to the short-term deflection is more 

pronounced due to the absence of compression reinforcement. Similarly, the ∆LT/∆i 

gradient continues to decrease as ρ’/ρ increases since warping due to restrained shrinkage 

and creep deflection both decrease as the amount of compression steel increases. The long-

term deflection ultimately reaches a limiting value of ∆LT = ∆i for symmetrically reinforced 

members with ρ’/ρ = 1.  

Figure 4-6 also shows that ∆LT/∆i is significantly larger for uncracked members than than 

for cracked members. For example, when ρ′ = 0, ∆LT/∆i = 3.5 for ρ = 0.002 and ∆LT/∆i = 

1.8 for ρ = 0.026. This is because the short-term deflection of uncracked sections is 
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relatively small, while creep and shrinkage, both intrinsic material properties, cause at least 

some time-dependent deflections.  

 

Figure 4-6: Variation of ∆LT/∆i with Reinforcement Ratio 

Figure 4-7 shows the variation of the long-term deflection computed using the Mechanics-

Based Method with ρ and Ms/Mcr for the same geometric and material parameters used to 

derive Figure 4-3. It depicts a similar trend to that of Figure 4-6, where the long-term 
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constant for members with ρ′/ρ ³ 0.5. The decrease in the gradient of the long-term 
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Figure 4-7: Variation of Long-Term Deflection with Reinforcement Ratio 

Figures 4-8 and 4-9 show the contribution of creep and shrinkage to the total long-term 

deflection, respectively. Creep deflection contributes 75-100%, i.e., the majority, of the 

long-term deflection. Similarly, shrinkage deflection contributes 0-25% of the long-term 

deflection, assuming equal top and bottom concrete cover. These calculations were based 

on a shrinkage strain of 800µe, and a creep coefficient of 2.5, commonly used by designers 

and researchers and also consistent with Branson’s (1977) recommendations for members 

existing in an environment with 50% average relative humidity and loaded at an age of 

seven days (Table 3-3).  

 

Figure 4-8: Contribution of Creep to Long-Term Deflection 
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Figure 4-9: Contribution of Shrinkage to Long-Term Deflection 

4.2.3 Comparison between A23.3 Multiplier and Mechanics-Based 
Method 

Figures 4-10 (a) through (e) show a direct comparison between long-term deflections 
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the A23.3 Multiplier underestimates the effectiveness of compression reinforcement in 

reducing long-term deflections. This observation is expected because Branson’s Empirical 
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(a) ρ' = 0 (b) ρ' = 0.2ρ 

  
(c) ρ' = 0.5ρ (d) ρ' = 0.8ρ 

  
(e) ρ' = ρ

 

Figure 4-10: Comparison between Mechanics-Based and A23.3 Methods for 

Computing Long-Term Deflections 
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The use of compression reinforcement to support stirrups means that the areas of 

compression and tension reinforcement are often uncorrelated. Although Table 4-1 shows 

that the use of 2-15M bars in compression (A‘s = 400 mm2) typically entails a ρ′/ρ ratio 

between 0.2 and 0.3, other ratios are possible. Figure 4-10 showed that the A23.3 Multiplier 

is most conservative for low reinforcement ratios and small ρ′/ρ ratios. Therefore, if ρ′ is 

fixed at a certain value, say that corresponding to A‘s = 400 mm2, the A23.3 Multiplier is 

expected to be most conservative for low reinforcement ratios and least conservative for 

high reinforcement ratios. 

4.3 Alternative Simplified Method for Computing Long-Term 
Deflections 

Sections 4.1 and 4.2 showed that the A23.3 Multiplier Method is conservative for many 

practical applications, which may be uneconomical. This section will present a simplified 

equation for computing long-term deflections based on the short-term deflection, which 

accounts for the factors that have the largest influence on the long-term deflection. 

4.3.1 Selection of Variables for Simplified Deflection Equations 

The sensitivity of the long-term to short-term deflection, ∆LT/∆i, was evaluated using a 

parametric study considering: creep coefficient; ultimate shrinkage strain; dead to live load 

ratio; effective depth to overall depth ratio; and, concrete compressive strength. The ∆LT/∆i 

ratio was found to be mostly influenced by the creep coefficient and ultimate shrinkage 

strain. It will be further assumed that 100% of the live load is sustained to maintain 

consistency with the existing A23.3 Multiplier Method. 

Figure 4-11 shows the variation of ∆LT/∆i with ρ′/ρ for various creep coefficients, ∅, and a 

given reinforcement ratio of 0.014. The ∆LT/∆i ratio increases with the creep coefficient by 

approximately 40% for all ρ′/ρ ratios. The creep coefficient was shown in Figure 4-7 to 

have the most significant impact on the long-term deflection and is therefore integral to the 

derivation of accurate simplified methods for computing long-term deflections.  
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Figure 4-11: Impact of Creep Coefficient on Long-Term Deflection 

Figure 4-12 shows the variation of ∆LT/∆i with ρ′/ρ for various shrinkage strains, εsh,u and 

a given reinforcement ratio of 0.014 (hence constant Ms and ∆i values) and creep coefficient 

of 2.5. The sensitivity of ∆LT/∆i to εsh,u is most pronounced in singly reinforced members, 

where ∆LT/∆i ratio was found to increase with εsh,u by approximately 15%, and becomes 

less significant as ρ′/ρ increases. Symmetrically reinforced members (i.e., ρ′/ρ = 1) do not 

undergo deflection due to restrained shrinkage and the long-term deflection, exclusively 

due to creep, is identical to that shown in Figure 4-11 for ∅ = 2.5.  

 

Figure 4-12: Impact of Ultimate Shrinkage Strain on Long-Term Deflection 
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Members located in the interior of a building typically experience an average relative 

humidity of approximately 50% (ACI 209, 1992), while exterior members often experience 

a spectrum of high and low relative humidities, depending on the geographic location. 

Figure A3.1.3 in the Canadian Highway Bridge Design Code (CSA, 2014) shows annual 

mean relative humidities based on geographic location. Mean relative humidities were 

found to range from 50% in the driest Canadian cities, such as Calgary and Edmonton, to 

90% in the most humid cities, such as St. John’s. Cities in south-western Ontario typically 

experience a a mean annual relative humidity of 60-70%. The contribution of the shrinkage 

strain to the long-term deflection decreases with εsh,u, which is inversely related to the 

relative humidity (as shown in Chapter 2). Figure 4-8 showed that the shrinkage strain 

contributes to no more than 25% of the long-term deflection based on εsh,u of 800µe, and 

would therefore have a smaller contribution in environments with higher relative 

humidities. For instance, the contribution of shrinkage deflection to the total deflection 

based on a shrinkage 400µe, which corresponds to a relative humidity of 70% (Branson, 

1977), was found to not exceed 10%. Furthermore, ambient conditions were shown in 

Chapter 2 to have similar influences on both creep and shrinkage. Therefore, a low creep 

coefficient is likely to be associated with low ultimate shrinkage strain and vice versa. 

The introduction of shrinkage strains as a variable in a simplified equation for computing 

long-term deflections based on short-term deflection adds unnecessary complexity in the 

derivation and introduces a source of uncertainty for designers. In return, it will not result 

in a significant improvement in the overall accuracy of the equation. This is also suggested 

by the A23.3 Multiplier Method (Equation 4-1) since it is based on Branson’s (1977) 

Method for computing creep deflection (Equation 3-13), but not shrinkage deflection. 

Therefore, the proposed simplified method for computing long-term deflections will be 

based on εsh,u = 800µe, an upper-bound value that corresponds to a relative humidity of 

50%.  

4.3.2 Alternative Multiplier for Deflection of Doubly Reinforced 
Members 

The previous sections, as well as the experimental program by Washa & Fluck (1952) 

demonstrated the effectiveness of compression reinforcement in reducing the long-term 
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deflection. Furthermore, singly reinforced members were shown to experience the largest 

deformations due to creep and shrinkage. Therefore, two unique equations for long-term 

deflection multipliers will be investigated: one for beams with tension and compression 

reinforcement and the other for beams with only tension reinforcement.  

Simplified methods for computing long-term deflections of doubly reinforced members 

based on short-term deflections must account for the creep coefficient and ρ′/ρ. Figure 4-

13 shows the variation of ∆LT/∆i with ρ′/ρ and ∅ for a given reinforcement ratio (e.g. ρ = 

0.014), which can be used to obtain a relationship between  ∆LT/∆i, ρ′/ρ, and ∅ using a 

multiple regression analysis.  

 

Figure 4-13: Variation of Long-Term Deflection of Double Reinforced Members with 

Creep Coefficient and ρ′/ρ 
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ΔLT

Δi
=A(∅)+B &ρ'

ρ? ' + C + Error (4-3) 

Table 4-2 shows the coefficients obtained by regression for beams with different 

reinforcement ratios. The coefficient “A” corresponding to the contribution of the creep 

coefficient to the long-term deflection is independent of r. However, coefficients “B” and 

“C” vary with r. Therefore, r must be included in the regression analysis.  

Table 4-2: Coefficients of Regression for Different Reinforcement Ratios 

ρ A B C 

0.018 0.22 -0.41 0.82 

0.014 0.22 -0.36 0.78 

0.01 0.22 -0.30 0.72 

0.008 0.22 -0.26 0.69 

0.006 0.22 -0.21 0.66 

 

Figure 4-14 shows that “B” and “C” vary linearly with r, and therefore could be replaced 

by linear equations such as 

B = B'(1+Dr) (4-4) 

C = C'(1+Er) (4-5) 
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Figure 4-14: Variation of Regression Coefficients with Reinforcement Ratio 

Combining Equations 4-4 and 4-5 with Equation 4-3 yields the following form for a 

linear regression equation 
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A multiple regression analysis yields the following simplified equation for computing the 

long-term deflection of doubly reinforced members based on the short-term deflection: 

ΔLT

Δi
=0.23(∅)-0.2 &ρ'

ρ? ' -21.8 (ρ') + 13.4 (ρ) +0.7 (4-7) 

All parameters are statistically significant, and the standard error of regression is 0.045. 

This implies that the error of Equation 4-7 is roughly ± 10% 

Assuming a creep coefficient of 2.5 corresponding to a relative humidity of 50% and age 

at loading of 7 days, and ρ’/ρ = 0.3 for beams (as determined in Section 4.1.3), Equation 

4-4 can be simplified to yield: 

ΔLT=[1.22-21.8 (ρ') + 13.4 (ρ)]Δi (4-8) 

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018 0.020

r

B C



82 

 

4.3.3 Alternative Multiplier for Deflection of Singly Reinforced 
Members 

Figure 4-14 shows the variation of ∆LT/∆i with ρ and ∅ for single reinforced members. A 

multiple regression analysis (considering ∅ and ρ as the independent variables) is sufficient 

to obtain a simplified equation for computing long-term deflections based on short-term 

deflections.  

 

Figure 4-15: Variation of Long-Term Deflection of Single Reinforced Members with 

Creep Coefficient and ρ’/ρ 
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Figure 4-16 shows variation in the long-term deflection of singly reinforced members 

computed using Equation 4-7 for doubly reinforced members with ρ' = 0, and Equation 4-

8 for singly reinforced members (both based on a creep coefficient of 2.5). Equation 4-7 

underestimates the long-term deflection by up to 14% and becomes increasingly 

unconservative as ρ increases. The discrepancy is likely due to the effect of restrained 

shrinkage, which is most significant in singly reinforced members and increases with ρ. 

This also reinforces the necessity of deriving unique equations for singly and doubly 

reinforced members.  

 

Figure 4-16: Comparison Between ΔLT Computed Using Equations 4-7 and 4-8 

4.3.4 Comparison Between A23.3 and Alternative Methods  

Figure 4-17 (a) through (e) shows a comparison between long-term deflections computed 

using the Mechanics-Based Method, ΔLT, the Unified Multiplier Method, ΔLT (A23.3), and 

the Simplified Alternative Method (Equations 4-7 and 4-9), ΔLT (Simplified). The 

Simplified Alternative Method is clearly in good agreement with the Mechanics-Based 

Method and can therefore be used to obtain a good approximation of the long-term 

deflections. 
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(a) ρ' = 0 (b) ρ' = 0.2ρ 

  
(c) ρ' = 0.5ρ (d) ρ' = 0.8ρ 

  

 

  

(e) ρ' = ρ 

  Figure 4-17: Comparison between Mechanics-Based, A23.3, and Alternative 

Methods for Computing Long-Term Deflections 
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long-term deflections of cracked concrete members, and therefore do not significantly 

influence the long-term to short-term deflection ratio. Moreover, Tang and Lubell (2008) 

showed that the flexural rigidity is essentially insensitive to fy  ³ 400MPa because Es 

remains constant for steel with higher yield strengths. Therefore, the Alternative Simplified 

Method is applicable to most practical cases. 

The universality of the Alternative Simplified Method was verified using a parametric 

study based on long-term deflections computed using the Mechanics-Based Method and 

those computed using the Alternative Simplified Method, and by quantifying test/predicted 

ratios for experimental programs by Washa and Fluck’s (1952) and Gilbert and Nejadi’s 

(2004). Table 4-3 shows a comparison between dimensional and material properties used 

in the derivation of the Alternative Simplified Method, and those belonging to Washa & 

Fluck’s (1952) and Gilbert and Nejadi’s (2004) test specimens. It also shows the mean 

test/predicted ratios computed for Washa and Fluck’s and Gilbert and Nejadi’s specimens 

based on the Alternative Simplified Method. The Alternative Simplified Methods yielded 

accurate mean test/predicted ratios of 0.97 for Washa and Fluck’s (1952) specimens and 

1.05 for Gilbert and Nejadi’s (2004) specimens, despite their dimensional and material 

properties being different than those used to develop the Alternative Simplified Method. 

Gilbert and Nejadi’s specimens with an applied moment to cracking moment ratio (Ms/Mcr) 

less than 1.8 were excluded from this analysis for reasons that will be discussed in the next 

section. 

Table 4-3: Test/Predicted Ratios Based on the Alternative Simplified Method 

 f'c (MPa) fy (MPa) M/h b/h d/h Mean 
Test/Predicted 

COV 
(%) 

Alternative 
Method 30 400 14 0.67 0.9 - - 

Washa & 
Fluck (1952) 18 - 23 320 - 380 30 - 70 0.75 - 4 0.8 - 0.85 0.97 13.8 

Gilbert & 
Nejadi (2004) 18 500 10 - 20 0.75 - 2.5 0.8 - 0.9 1.05 4.2 
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4.4 Considerations for Lightly Loaded Members 
The effect of tension stiffening, as quantified using the effective moment of inertia, is most 

significant when the service moment, Ms is close in magnitude to the design cracking 

moment, Mcr, where Mcr is based on the reduced or full modulus of rupture depending on 

the drying period before loading as discussed in Chapter 3. Figure 4-18 shows that the 

variation of ∆LT/∆i with increasing ρ′/ρ for various reinforcement ratios. The ∆LT/∆i ratio is 

generally shown to decrease with ρ′/ρ for all reinforcement ratios and increase with ρ for 

ρ′/ρ < 0.5. However, the curve representing ρ = 0.004 (corresponding to Ms/Mcr = 1.35, as 

shown in Figure 4-2) appears to be an outlier. The ∆LT/∆i ratio for ρ = 0.004 is greater than 

∆LT/∆i for ρ = 0.006 (Ms/Mcr = 2.0) when ρ′/ρ < 0.4 and greater than ∆LT/∆i for all other 

reinforcement ratios when ρ′/ρ < 0.4. The ratio of Ie/Icr = 1.20 for ρ = 0.004 and 1.05 when 

ρ = 0.006, which indicates that the effect of tension stiffening is greater for ρ = 0.004 than 

for ρ = 0.006.  

 

Figure 4-18: Variation of Long-Term Deflection with ρ′/ρ 
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observed in Gilbert and Nejadi’s (2004) test specimens where members with low Ms/Mcr 

ratios were found to experience significantly larger ∆LT/∆i ratios than those with high 

Ms/Mcr ratios. 

Figure 4-19 shows the variation of ∆LT/∆i with Ms/Mcr for Gilbert and Nejadi’s (2004) and 

Washa and Fluck’s (1952) test specimens. Experimental values for ∆LT/∆i were reported in 

both studies, while experimental Ms/Mcr values were reported by Gilbert and Nejadi (2004) 

only. A reduced modulus of rupture was used to compute Ms/Mcr for Washa and Fluck’s 

(1952) specimens since they were exposed to drying for 14 days prior to loading and 

therefore experienced significant restrained shrinkage. Chapter 3 showed that this approach 

yields accurate short-term deflections for Washa and Fluck’s (1952) specimens and is 

therefore appropriate. Members with Ms/Mcr > 1.75 experience ∆LT/∆i ratios clustered in 

the range of 1.0-2.0. On the other hand, members with Ms/Mcr < 1.75 exhibit a widely 

dispersed ∆LT/∆i ratios, ranging from 2.5 to 4.4. The A23.3 Multiplier (which was found in 

Section 4.3.2 to be conservative for lightly reinforced members and therefore is expected 

to be conservative for Gilbert and Nejadi’s (2004) test specimens) implies that ∆LT/∆i has 

a maximum value of 2.0, and so is unconservative in this case. 

 

Figure 4-19: Variation of ∆LT/∆i with Ms/Mcr 

Quantifying the impact of tension stiffening on the short-term deflection, and consequently 

∆LT/∆i, is beyond the scope of this study. However, based on parametric studies and 
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experimental data analyses, ∆LT/∆i seems inconsistent for Ms/Mcr ratios less than 1.75, and 

excessive reliance on the Alternative Simplified Method based on the long-term to short-

term deflection ratio is not preferred. Using the Mechanics-Based Method as reported in 

Chapter 3 yields accurate long-term deflections regardless of the Ms/Mcr and is therefore 

more appropriate in these cases. The ∆LT/∆i ratio was found using a parametric study, such 

as the one shown in Figure 4-13, to be stable and consistent for Ms/Mcr ³ 2, corresponding 

to ρ ³ 0.006, and the simplified analysis to determine the long-term deflection based on the 

short-term deflection is appropriate. 

4.5 Conclusions  
This chapter presented a critique of the A23.3 Multiplier Method for computing the long-

term deflection based on the short-term deflection. It also presented a comparison between 

the A23.3 Multiplier and the Mechanics-Based Method presented in Chapter 3 for 

computing long-term deflections. An Alternative Simplified Method for computing long-

term deflections based on short-term deflections was proposed for singly and doubly 

reinforced members. The conclusions of this chapter are as follows: 

1. The A23.3 Multiplier is very similar to Branson’s (1977) Empirical Method derived 

using three different experimental studies. The studies had unique load durations, 

ages at loading, cross-section geometry, and ambient environmental conditions. 

These factors have a significant impact on the long-term deflection and deriving an 

empirical equation based on the combination of these data sets may be 

inappropriate.  

2. The long-term deflection computed using the A23.3 Multiplier decreases with an 

increase in the reinforcement ratio, ρ, and the maximum concrete compressive 

strain, hence the ratio of service to cracking moment Ms/Mcr. In fact, it should 

increase with increasing ρ because the long-term deflection is strongly dependent 

on the magnitude of the applied load. It also approaches a constant value in 

members with tension to compression reinforcement ratio greater than 

approximately 0.4 since compression reinforcement is effective in reducing long-

term deflections. 
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3. The A23.3 Multiplier was found to consistently overestimate the long-term 

deflection of lightly reinforced members where Mcr is computed based on a reduced 

modulus of rupture. For example, for ρ = 0.006 and a compression reinforcement 

ratio, ρ′/ρ = 0.5, the Mechanics-Based Method predicts a long-term deflection that 

is only 67% of that computed using the A23.3 Multiplier. 

4. The creep deflection contributes 75-100% of the long-term deflection, while 

shrinkage contributes only 0-25%. These results are based on a shrinkage strain, 

εsh,u, of 800µe, and a creep coefficient, ∅, of 2.5, corresponding to a relative 

humidity of 50% and age at loading of 7 days. These conditions are typical interior 

members in a building, as well as exterior members in the least humid cities in 

Canada. Shrinkage contributes to no more than 10% of the long-term deflections in 

environments where the annual mean relative humidity is 70% (e.g., exterior 

members in south-western Ontario). 

5. Simplified methods for computing long-term deflections based on short-term 

deflections must account for the creep coefficient, ρ’/ρ for doubly reinforced 

members, and ρ for single-reinforced members. 

6. Equations for computing the long-term deflection, ΔLT, based on the short-term 

deflection, Δi, can be derived using multiple regression analysis. The long-term 

deflection for singly reinforced members is 

ΔLT

Δi
=0.35(∅) + 23.4 (ρ) +0.4 (4-9) 

with a standard error of 0.038. The long-term deflection of doubly reinforced 

members is given as 

ΔLT

Δi
=0.23(∅)-0.2 &ρ'

ρ? ' - 21.8 (ρ')+ 13.4 (ρ)+0.7 (4-7) 

with a standard error of 0.045. 
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7. Members with low service moment to cracking moment ratios, Ms/Mcr, are likely 

to experience reduced short-term deflections due to applied loads, while the long-

term deflections due to creep and shrinkage will be similar to those for more heavily 

loaded members. This will result in large and inconsistent ∆LT/∆i ratios. The 

inconsistency is most pronounced for Ms/Mcr ratios less than 1.75 or ρ < 0.006 and 

use of Equations 4-7 and 4-9 to compute long to short-term deflection ratio is not 

preferred. The long-term deflection of these members can be accurately and 

conservatively predicted using the Mechanics-Based Method described in Chapter 

3. 
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Chapter 5  

5 Summary, Conclusions, and Future Work 

5.1 Summary 
The time-dependent deflection of reinforced concrete flexural members due to creep and 

shrinkage can cause severe serviceability problems (especially if deflection-sensitive 

elements are present) if not adequately accounted for. Creep is a load-dependent, intrinsic 

material property that causes time-dependent strain increments in the concrete, hence 

additional curvature and deflection. It also results in a reduction in the effective Young’s 

Modulus of the concrete, which causes a lowering of the neutral axis and therefore a 

reduction in the maximum compression stress. Creep of concrete is quantified using the 

creep coefficient, which is the ratio of strain increments due to creep to the immediate 

strain due to the applied load. Shrinkage is a drying property and is characterized using 

only the ultimate shrinkage strain. ACI 209 (2008) recognizes four models for computing 

creep coefficients and ultimate shrinkage strains. Several studies attempt to quantify the 

accuracy of these models based on experimental data from the RILEM and NU Databanks. 

Designers and researchers often assume a creep coefficient of 2.5 in long-term deflection 

calculations (e.g. Scanlon and Bischoff, 2008; Gilbert, 1999; Dilger, 1982). Branson (1977) 

proposes a creep coefficient of 2.2 and a shrinkage strain of 700µe for members loaded at 

7 days and exposed to a relative humidity of 50% (typical of members in the interior of a 

building, or exterior members in the least humid Canadian cities such as Calgary and 

Edmonton).    

Various methods for computing incremental deflections due to creep and shrinkage are 

reported in the literature. The Cement Association of Canada’s (CAC) Concrete Design 

Handbook (CAC, 2016) presents a Mechanics-Based method based on empirical methods 

proposed by Branson (1977). Creep deflection is computed by applying a multiplier, that 

is a function of the creep coefficient, to the short-term deflection. This method accounts 

for the increase in strain and due to creep but does not accurately account for the lowering 

of the neutral axis. The shrinkage deformation of a flexural member is primarily due to 

restraint from the reinforcing steel, which causes residual stresses in the top and bottom 

fibers and hence additional strains, curvature, and deflection. Shrinkage deflection is 
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computed by applying an empirical multiplier, that is a function of the ratio of tension and 

compression reinforcement, to the ultimate shrinkage strain to obtain shrinkage curvatures 

and hence deflections. Branson (1977) recommended creep coefficients and ultimate 

shrinkage strain values, based on the relative humidity and age at loading, to facilitate creep 

and shrinkage deflection computations. Other empirical methods include the method 

proposed by Gilbert and Kilpatrick (2017), which presents an improvement to the method 

in the AS3600-2009 (AS, 2009) code provisions.   

Analytical methods for computing long-term deflections due to creep and shrinkage can be 

derived using fundamental principles of mechanics. Creep deflections are computed by 

first calculating the location of the long-term neutral axis using mechanics-based equations 

readily available in the Concrete Design Handbook (CAC, 2016), but replacing the 

modular ratio with a time-dependent modular ratio. Subsequently, the magnitude of the 

maximum compressive stress in the concrete is computed based on the long-term neutral 

axis depth and the cracked moment of inertia. Finally, creep strains and curvatures are 

computed to obtain creep deflections. Shrinkage deflections are computed by calculating 

the force in the reinforcing steel due to restrained shrinkage, and subsequently computing 

residual stresses and strains in the top and bottom fibers. The shrinkage curvature and 

deflection are then computed based on these residual strains. 

The A23.3 design standard (CSA, 2014) presents a simplified method for computing the 

long-term deflection by applying a multiplier, that is a function of the sustained load 

duration and the compression reinforcement ratio, to the short-term deflection. This method 

was empirically derived by Branson (1977) based on the results of three experimental 

studies (Washa and Fluck, 1952; Hollington, 1970; Yu and Winter, 1960), each with a 

unique load duration, ages at loading, cross-section geometry, and ambient environmental 

conditions.  

Chapter 2 presented an overview of the four widely used models for predicting creep 

coefficients and ultimate shrinkage strains, namely ACI 209 (ACI 209, 2008); B3 (Bazant 

and Baweja, 1995, 2000); GL2000 (Gardner and Lockman, 2000); and, CEB-FIP MC90-

99 (Comite Europeen du Beton, 1999). All prediction models have been calibrated using 

experimental data from the RILEM and NU Databanks and are at least partly empirical. It 

also presents an overview of five studies (Gardner, 2004; Al-Manaseer and Lam, 2005; 
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Bazant and Panula, 2000; Bazant and Li, 2008; and, Al-Manaseer and Prado, 2015) that 

assess the accuracy of the models by quantifying and statistically evaluating test/predicted 

ratios based on data from the RILEM and NU Databanks  

Chapter 3 presented an investigation of the accuracy of Branson’s (1977) Method as 

described in the Concrete Design Handbook (CAC, 2016), the Mechanics-Based 

Mechanics-Based Method, and Gilbert and Kilpatrick’s (2017) Method in predicting the 

long-term deflection of 30 simply supported test specimens by Washa and Fluck (1952) 

and Gilbert and Nejadi (2004). The accuracy of the methods was assessed by quantifying 

test/predicted ratios and the consistency by quantifying their coefficient of variation. The 

tested specimens by Washa and Fluck (1952) had a reinforcement ratio of 1.6-1.7% and a 

sustained load duration of 900 days. They also featured a range of compression to tension 

reinforcement ratios to demonstrate the efficiency of compression reinforcement in 

reducing the long-term deflection. These specimens were used in the derivation of 

Branson’s (1977) and Gilbert and Kilpatrick’s (2017) empirical methods. The tested 

specimens by Gilbert and Nejadi (2004) were singly reinforced with reinforcement ratios 

between 0.5 and 0.8% and had a sustained load duration of 400 days. These specimens 

were used in the derivation of Gilbert and Kilpatrick’s (2017) Method. 

Chapter 4 presented a critique of the existing A23.3 Multiplier Method and proposed an 

Alternative Simplified Method for computing long-term deflections based on short-term 

deflections. Unique equations were derived for singly and doubly reinforced members 

using multiple regression analyses. It also presented a comparison between the Mechanics-

Based Method, the A23.3 Multiplier Method, and the Alternative Simplified Method. 

Special considerations for lightly-loaded members were also discussed. 

5.2 Conclusions 
The conclusions of this study are as follows: 

1. Creep and shrinkage predictions obtained using the four widely used prediction 

models for a given set of parameters can differ by up to 30%. 

2. Each of the studies that by others to evaluate the accuracy of prediction models uses 

a unique data subset from the RILEM and NU Databanks and/or unique statistical 
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indicators and therefore yield contradicting outcomes, despite their theoretical and 

mathematical soundness. This makes it difficult to quantify the prediction error. 

3. A mean ranking of the models where each of the aforementioned studies was 

considered of equal importance showed that B3 (Bazant and Baweja, 1995, 2000) 

is the most effective model in predicting the ultimate shrinkage strain, and GL2000 

(Gardner and Lockman, 2000) is the most effective in predicting creep. The CEB-

FIP (Comite Europeen du Beton, 1999) method, which forms the basis of the 

method presented in the Canadian Highway Bridge Design Code (CSA, 2014) was 

found to be the least accurate for predicting the creep coefficients and ultimate 

shrinkage strains. 

4. A23.3 code provisions (CSA, 2014) recommend computing short-term deflections 

using an effective moment of inertia based on reduced modulus of rupture to 

account for the effect of restrained shrinkage. This may overestimate the short-term 

deflection of members not exposed to drying prior to loading since the effects of 

restrained shrinkage are likely slight. 

5. The Concrete Design Handbook provisions (CAC, 2016) for computing ultimate 

shrinkage strains and creep coefficients are simplifications of the values tabulated 

by Branson (1977) and are unconservative for members exposed to a relative 

humidity less than 70% and age at loading less than 28 days. This may ultimately 

result in the underestimation of long-term deflections, such as in the case of Washa 

and Fluck’s (1952) test specimens where the mean test/predicted ratio is 1.34. 

Incremental deflections due to creep and shrinkage can be more accurately 

predicted using the method described in the Concrete Design Handbook using creep 

coefficients and shrinkage strains tabulated by Branson (1977). 

6. The Mehcnaics-based Mechanics-Based Method yields accurate and slightly 

conservative mean test/predicted ratios of 0.94 and 0.92 for Wash and Fluck’s 

(1952) and Gilbert and Nejadi’s (2004) test specimens, respectively. The associated 

coefficients of variation are 10.3% for Washa and Fluck’s (1952) specimens and 

5.0% for Gilbert and Nejadi’s (2004) specimens.  



95 

 

7. The Mechanics-Based Method shows that the creep deflection contributes 75-100% 

of the total long-term deflection while shrinkage contributes only 0-25%. These 

values are based on a creep coefficient of 2.5 and an ultimate shrinkage strain of 

800µe, corresponding to a relative humidity of 50% and age at loading of 7 days. 

The contribution of shrinkage decreases as the relative humidity increases. 

8. The A23.3 Multiplier Method produces an illogical trend where the long-term 

deflection decreases with an increase in the reinforcement ratio, ρ, hence the ratio 

of service to cracking moment Ms/Mcr and the maximum concrete compressive 

strain. It also overestimates the long-term deflection of lightly reinforced members 

where Mcr is computed based on the specified reduced modulus of rupture. 

9. Alternative Simplified Methods for computing the long-term deflection, ΔLT, of 

singly and doubly reinforced members based on the short-term deflection, Δi, can 

be derived from the Mechanics-Based Method using multiple regression analysis. 

The long-term deflection multiplier for singly reinforced members is 

ΔLT

Δi
=0.35(∅) + 23.4 (ρ) +0.4 

with a standard error of 0.038. The long-term deflection multiplier for doubly 

reinforced members is 

ΔLT

Δi
=0.23(∅)-0.2 &ρ'

ρ? ' - 21.8 (ρ')+ 13.4 (ρ)+0.7 

with a standard error of 0.045. 

10. Members with low Ms/Mcr ratios (e.g., less than 1.75 or ρ < 0.006) are likely to 

experience reduced short-term deflections due to applied loads. This will result in 

large and inconsistent ∆LT/∆i ratios and the use of the Alternative Simplified 

Method to compute long- to short-term deflection ratio is not preferred. The long-

term deflection of these members can be accurately and conservatively predicted 

using the Mechanics-Based Method. 
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5.3 Recommendations for Future Work 
Recommendations for future work are as follows: 

1. There is a surprising dearth of experimental studies on the long-term deflection of 

steel reinforced concrete beams under sustained loads. The majority of existing 

studies are at least three decades old and do not consider concretes loaded at young 

ages or lightly-reinforced members. The use of now common high-strength steel 

(e.g.,650MPa yield strength) implies that a smaller reinforcement ratio is required 

to satisfy ultimate limit states and current construction practice often requires 

members to be loaded at three days. Moreover, existing experimental studies often 

fail to report information on environmental ambient conditions, which are crucial 

in the time-dependent analysis of concrete structures. Therefore, state-of-the-art 

experimental studies that account for the requirements of current construction 

practice and that report all the necessary information needed to conduct a 

comprehensive time-dependent analysis are necessary. These studies must also 

examine the impact of restrained shrinkage and lightly-loaded members on the 

short-term and long-term deflections.  

2. The effect of tension stiffening is of particular significance in members with 

reduced Ms/Mcr ratios. Parametric studies show that members with Ms/Mcr ratios 

less than 1.75 (corresponding to ρ < 0.006, typical of two-way slabs) have an 

effective to cracked moment of inertia ratio greater than 1.05 and therefore 

experience reduced short-term deflections. This phenomenon was observed in 

Gilbert and Nejadi’s (2004) test specimens with Ms/Mcr less than 1.72. Hollington 

(1970) also observed reduced cracking in test specimens where Ms was sufficiently 

close to Mcr compared to their companion specimens with larger Ms/Mcr Therefore, 

a study that quantifies the impact of tension stiffening on the short and long-term 

deflection of lightly loaded members is necessary. 

3. Continue efforts to develop models that can accurately predict creep coefficients 

and shrinkage strains to further enhance the accuracy long-term deflection 

predictions, particularly for concretes subjected to early loadings. 
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Appendix A: Ranking of Models by Al-Manaseer and Prado (2015) 
Tables A-1 and A-2 show the ranking of the models by Al-Manaseer and Prado (2015), 

after each phase of the screening process, using the various statistical indicators and the 

two available databanks. These Tables are essentially reproductions of similar tables in Al-

Manaseer and Prado (2015). 

Table A-1: Comparison of Shrinkage Strains (Al-Manaseer and Prado, 2015) 

 ACI 209 B3 GL2000 MC90-99 
 RILEM NU RILEM NU RILEM NU RILEM NU 
 VCEB (%) 

Phase 1 47 50 43 48 49 53 49 54 
Rank 2 2 1 1 3 3 3 4 

Phase 2 47 50 41 47 48 52 45 50 
Rank 3 2 1 1 4 3 2 2 

Phase 3 45 45 39 39 46 46 44 44 
Rank 3 3 1 1 4 4 2 2 

 Vm(%) 
Phase 1 71 71 79 78 88 87 76 76 
Rank 1 1 3 3 4 4 2 2 

Phase 2 71 71 77 78 87 87 74 74 
Rank 1 1 3 3 4 4 2 2 

Phase 3 71 71 77 78 87 87 74 74 
Rank 1 1 3 3 4 4 2 2 

 FCEB (%) 
Phase 1 102 100 421 411 319 312 1015 994 
Rank 1 1 3 3 2 2 4 4 

Phase 2 73 72 81 81 86 86 102 101 
 1 1 2 2 3 3 4 4 

Phase 3 72 71 81 81 85 85 103 103 
Rank 1 1 2 2 3 3 4 4 

 MCEB 
Phase 1 1.05 1.07 1.31 1.27 1.27 1.22 2.05 2.01 
Rank 1 1 3 3 2 2 4 4 

Phase 2 1.03 1.05 1.03 1.00 1.05 1.02 1.21 1.18 
Rank 1 3 1 1 2 2 3 4 

Phase 3 1.04 1.07 1.04 1.04 1.07 1.06 1.23 1.23 
Rank 1 3 1 1 2 2 3 4 



103 

 

Table A-2: Comparison of Creep Strains (Al-Manaseer and Prado, 2015) 

 ACI 209 B3 GL2000 MC90-99 
 RILEM NU RILEM NU RILEM NU RILEM NU 
 VCEB (%) 

Phase 1 45 47 43 42 44 44 48 61 
Rank 3 3 1 1 2 2 4 4 

Phase 2 45 47 43 42 44 44 48 57 
Rank 3 3 1 1 2 2 4 4 

Phase 3 39 40 39 36 40 37 44 42 
Rank 1 3 1 1 2 2 3 4 

 Vm(%) 
Phase 1 41 39 46 31 45 36 38 39 
Rank 2 3 4 1 3 2 1 3 

Phase 2 41 39 46 31 45 36 38 35 
Rank 2 4 4 1 3 3 1 2 

Phase 3 40 37 45 30 44 35 37 31 
Rank 2 4 4 1 3 3 1 2 

 FCEB (%) 
Phase 1 33 36 44 34 34 39 33 1677 
Rank 1 1 3 3 2 2 4 4 

Phase 2 33 35 44 34 43 36 33 49 
 1 2 3 1 2 3 1 4 

Phase 3 32 34 44 34 43 36 33 48 
Rank 1 1 4 1 3 2 2 3 

 MCEB 
Phase 1 0.98 0.90 1.13 0.97 1.10 0.99 0.89 3.30 
Rank 1 3 4 2 2 1 3 4 

Phase 2 0.98 0.90 1.13 0.97 1.10 0.99 0.89 0.99 
Rank 1 3 4 2 2 1 3 1 

Phase 3 0.98 0.91 1.14 0.97 1.10 0.99 0.89 0.91 
Rank 1 3 4 2 2 1 3 3 
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Appendix B: Test and Predicted Short- and Long-Term Deflections 
for Individual Test Specimens 
Tables B1 and B3 show the test and predicted short and long-term deflections using the 

Mechanics-Based Method and Gilbert and Kilpatrick’s (2017) Method. The long-term 

deflection computations were based on the experimental creep coefficient, ∅(t,to), and 

shrinkage strain, εsh,u, values shown. 

Table B2 shows the test and predicted short and long-term deflections using the CAC 

Concrete Design Handbook (CAC, 2016) Method. The long-term deflection computations 

were based on methods for computing the creep coefficients, Ct, and ultimate shrinkage 

strains εsh,u, described in the Concrete Design Handbook. 

Table B4 shows the geometric and material properties for Washa and Fluck’s (1952) and 

Gilbert and Nejadi’s (2004) test specimens. 
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Table B-1: Test and Predicted Deflections Based on the Mechanics-Based Method 

Spec. 
Test Predicted: Mechanics-Based Method Test/ 

Pred. ∆i 
(mm) 

∆LT 
(mm) 

∆Total 
(mm) 

εsh,u 
(×10-6

) 
∅(t,to) ∆i 

(mm) 
∆cr 

(mm) 
∆sh 

(mm) 
∆LT 

(mm) 
∆Total 
(mm) 

Washa & Fluck (1952) 
B3 26.4 60.0 86.4 720 4.45 26.7 54.0 16.7 70.7 97.4 0.89 
B6 26.4 60.0 86.4 720 4.45 25.8 51.5 16.1 67.6 93.4 0.93 
C3 47.8 92.9 140.7 720 4.40 43.6 91.4 30.3 121.7 165.3 0.87 
C6 47.8 92.9 140.7 720 4.40 42.8 88.0 29.7 117.8 160.5 0.89 
E3 63.0 121.9 184.9 720 4.35 49.3 95.3 32.7 128.0 177.3 1.04 
E6 63.0 121.9 184.9 720 4.35 51.6 102.2 34.2 136.4 188.0 0.99 
B2 24.9 40.1 65.0 720 4.45 25.4 52.0 4.5 56.5 81.9 0.95 
B5 24.9 40.1 65.0 720 4.45 24.8 48.8 4.5 53.3 78.0 0.97 
C2 43.4 57.2 100.6 720 4.40 41.9 91.9 9.5 101.4 143.3 0.87 
C5 43.4 57.2 100.6 720 4.40 40.9 86.3 9.5 95.9 136.8 0.89 
E2 55.9 72.9 128.8 720 4.35 47.2 92.3 9.3 101.6 148.8 1.02 
E5 55.9 72.9 128.8 720 4.35 48.9 100.8 9.3 110.0 158.9 0.99 
B1 23.4 27.6 51.0 720 4.45 24.5 49.0 0.0 49.0 73.5 0.89 
B4 23.4 27.6 51.0 720 4.45 23.9 46.2 0.0 46.2 70.1 0.91 
C1 40.1 39.9 80.0 720 4.40 40.6 87.8 0.0 88.8 129.4 0.83 
C4 40.1 39.9 80.0 720 4.40 40.0 84.8 0.0 85.8 125.8 0.84 
D1 11.9 15.8 27.7 720 4.30 14.3 18.4 0.0 18.4 32.7 0.85 
D4 11.9 15.8 27.7 720 4.30 14.0 18.2 0.0 18.2 32.2 0.86 
E1 59.4 64.6 124.0 720 4.35 45.3 64.1 0.0 64.1 109.4 1.12 
E4 59.4 64.6 124.0 720 4.35 46.8 65.0 0.0 65.0 108.8 1.09 

Mean 0.94 
COV (%) 10.30 

Gilbert & Nejadi (2004) 
B1a 4.9 7.2 12.1 825 1.71 6.2 5.7 1.2 6.9 13.0 0.93 
B1b 2.0 5.4 7.4 825 1.71 3.7 3.7 1.2 4.9 8.5 0.87 
B2a 5.0 7.4 12.4 825 1.71 6.2 5.7 1.4 7.1 13.3 0.93 
B2b 2.0 5.9 7.9 825 1.71 3.8 3.7 1.4 5.1 8.9 0.88 
B3a 5.8 7.5 13.3 825 1.71 6.4 5.9 1.9 7.8 14.2 0.94 
B3b 2.0 5.9 7.9 825 1.71 3.7 3.6 1.9 5.5 9.2 0.86 
S1a 7.1 18.0 25.1 825 1.71 13.7 13.1 1.8 14.9 28.7 0.88 
S1b 3.7 16.2 19.9 825 1.71 9.0 9.4 1.8 11.2 20.1 0.99 
S2a 10.6 19.2 29.8 825 1.71 16.3 15.0 2.6 17.6 33.9 0.88 
S2b 4.4 17.5 21.9 825 1.71 10.3 10.0 2.6 12.6 22.9 0.96 
S3a 11.8 20.7 32.5 825 1.71 15.3 14.4 3.2 17.6 33.0 0.99 
S3b 5.0 17.9 22.9 825 1.71 10.8 10.4 3.2 13.6 24.5 0.94 

Mean 0.92 
COV (%) 4.98 
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Table B-2: Test and Predicted Deflections Based on Concrete Design Handbook 

Method 

Spec

. 

Test Predicted: CAC Concrete Design Handbook Test/ 
Pred. ∆i 

(mm) 
∆LT 

(mm) 
∆Total 
(mm) 

εsh,u 
(×10-6

) 

Ct ∆i+∆cr 
(mm) 

∆cr 
(mm) 

∆sh 
(mm) 

∆LT 
(mm) 

∆Total 
(mm) 

Washa & Fluck (1952) 
B3 26.4 60.0 86.4 349 1.40 58.3 31.6 6.5 38.1 64.8 1.33 
B6 26.4 60.0 86.4 349 1.40 56.3 30.6 6.5 37.1 62.8 1.37 
C3 47.8 92.9 140.7 349 1.40 95.4 51.7 11.3 63.0 106.6 1.32 
C6 47.8 92.9 140.7 349 1.40 93.5 50.7 11.3 62.0 104.8 1.34 
E3 63.0 121.9 184.9 349 1.40 107.8 58.5 13.0 71.5 120.8 1.53 
E6 63.0 121.9 184.9 349 1.40 112.7 61.1 13.0 74.2 125.7 1.47 
B2 24.9 40.1 65.0 349 1.40 47.0 21.6 4.0 25.6 51.0 1.27 
B5 24.9 40.1 65.0 349 1.40 45.8 21.0 4.0 25.0 49.7 1.31 
C2 43.4 57.2 100.6 349 1.40 77.7 35.7 6.9 42.6 84.6 1.19 
C5 43.4 57.2 100.6 349 1.40 75.7 34.8 6.9 41.7 82.6 1.22 
E2 55.9 72.9 128.8 349 1.40 88.1 40.9 9.3 50.2 97.4 1.32 
E5 55.9 72.9 128.8 349 1.40 91.3 42.4 9.3 51.7 100.6 1.28 
B1 23.4 27.6 51.0 349 1.40 40.6 16.2 0.0 16.2 40.6 1.26 
B4 23.4 27.6 51.0 349 1.40 39.6 15.8 0.0 15.8 39.6 1.29 
C1 40.1 39.9 80.0 349 1.40 67.6 27.0 0.0 27.0 67.6 1.18 
C4 40.1 39.9 80.0 349 1.40 66.6 26.6 0.0 26.6 66.6 1.20 
D1 11.9 15.8 27.7 349 1.40 23.9 9.5 0.0 9.5 23.9 1.16 
D4 11.9 15.8 27.7 349 1.40 23.4 9.4 0.0 9.4 23.4 1.18 
E1 59.4 64.6 124.0 349 1.40 76.3 31.0 0.0 31.0 76.3 1.62 
E4 59.4 64.6 124.0 349 1.40 78.8 32.0 0.0 32.0 78.8 1.57 

Mean 1.32 
COV (%) 10.13 

Gilbert & Nejadi (2004) 
B1a 4.9 7.2 12.1 287 1.15 12.2 6.0 0.7 6.7 12.9 0.94 
B1b 2.0 5.4 7.4 287 1.15 7.3 3.6 0.7 4.3 8.0 0.93 
B2a 5.0 7.4 12.4 287 1.15 12.3 6.1 0.7 6.8 13.0 0.95 
B2b 2.0 5.9 7.9 287 1.15 7.6 3.7 0.7 4.5 8.3 0.95 
B3a 5.8 7.5 13.3 287 1.15 12.5 6.2 0.9 7.1 13.4 0.99 
B3b 2.0 5.9 7.9 287 1.15 7.4 3.7 0.9 4.5 8.3 0.96 
S1a 7.1 18.0 25.1 287 1.15 27.1 13.4 1.4 14.8 28.5 0.88 
S1b 3.7 16.2 19.9 287 1.15 17.7 8.7 1.4 10.1 19.1 1.04 
S2a 10.6 19.2 29.8 287 1.15 32.2 15.9 1.5 17.4 33.7 0.88 
S2b 4.4 17.5 21.9 287 1.15 20.4 10.1 1.5 11.6 21.9 1.00 
S3a 11.8 20.7 32.5 287 1.15 30.3 15.0 1.8 16.8 32.1 1.01 
S3b 5.0 17.9 22.9 287 1.15 21.4 10.6 1.8 12.4 23.2 0.99 

Mean 0.96 
COV (%) 5.14 
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Table B-3: Test and Predicted Deflections Based on Gilbert and Kilpatrick (2017) 

Spec. 
Test Predicted: Gilbert & Kilpatrick (2017) Test/ 

Pred. ∆i 
(mm) 

∆LT 
(mm) 

∆Total 
(mm) 

εsh,u 
(×10-6

) 
∅(t,to) ∆i 

(mm) 
∆cr 

(mm) 
∆sh 

(mm) 
∆LT 

(mm) 
∆Total 
(mm) 

Washa & Fluck (1952) 
B3 26.4 60.0 86.4 720 4.45 26.7 31.1 26.6 57.7 84.4 1.02 
B6 26.4 60.0 86.4 720 4.45 25.8 30.1 26.6 56.7 82.5 1.05 
C3 47.8 92.9 140.7 720 4.40 43.6 50.1 44.1 94.1 137.8 1.02 
C6 47.8 92.9 140.7 720 4.40 42.8 49.1 43.8 92.9 135.7 1.04 
E3 63.0 121.9 184.9 720 4.35 49.3 54.1 51.9 106.0 155.3 1.19 
E6 63.0 121.9 184.9 720 4.35 51.6 56.6 52.0 108.6 160.1 1.15 
B2 24.9 40.1 65.0 720 4.45 25.4 15.6 23.5 39.1 64.6 1.01 
B5 24.9 40.1 65.0 720 4.45 24.8 15.2 22.9 38.1 62.8 1.03 
C2 43.4 57.2 100.6 720 4.40 41.9 25.4 39.2 64.6 106.6 0.94 
C5 43.4 57.2 100.6 720 4.40 40.9 24.8 38.2 63.0 103.9 0.97 
E2 55.9 72.9 128.8 720 4.35 47.2 28.1 45.1 73.2 120.4 1.07 
E5 55.9 72.9 128.8 720 4.35 48.9 29.1 46.9 76.0 124.9 1.03 
B1 23.4 27.6 51.0 720 4.45 24.5 9.3 16.4 25.7 50.1 1.02 
B4 23.4 27.6 51.0 720 4.45 23.9 9.0 15.9 24.9 48.8 1.05 
C1 40.1 39.9 80.0 720 4.40 40.6 15.2 27.3 42.5 83.1 0.96 
C4 40.1 39.9 80.0 720 4.40 40.0 15.0 26.8 41.8 81.8 0.98 
D1 11.9 15.8 27.7 720 4.30 14.3 5.3 7.1 12.4 26.7 1.04 
D4 11.9 15.8 27.7 720 4.30 14.0 5.1 7.2 12.3 26.3 1.05 
E1 59.4 64.6 124.0 720 4.35 45.3 17.0 31.2 48.2 93.5 1.33 
E4 59.4 64.6 124.0 720 4.35 46.8 17.5 32.0 50.1 96.9 1.28 

Mean 1.05 
COV (%) 10.19 

Gilbert & Nejadi (2004) 
B1a 4.9 7.2 12.1 825 1.71 6.2 1.6 5.1 6.6 12.8 0.94 
B1b 2.0 5.4 7.4 825 1.71 3.7 0.9 4.9 5.8 9.5 0.78 
B2a 5.0 7.4 12.4 825 1.71 6.2 1.6 4.9 6.5 12.8 0.97 
B2b 2.0 5.9 7.9 825 1.71 3.8 1.0 4.8 5.8 9.6 0.82 
B3a 5.8 7.5 13.3 825 1.71 6.4 2.0 5.2 7.2 13.6 0.98 
B3b 2.0 5.9 7.9 825 1.71 3.7 1.2 5.1 6.3 10.0 0.79 
S1a 7.1 18.0 25.1 825 1.71 13.7 3.2 11.8 15.0 28.7 0.87 
S1b 3.7 16.2 19.9 825 1.71 9.0 2.1 11.2 13.3 22.2 0.90 
S2a 10.6 19.2 29.8 825 1.71 16.3 4.7 12.5 17.2 33.5 0.89 
S2b 4.4 17.5 21.9 825 1.71 10.3 2.9 12.2 15.2 25.5 0.86 
S3a 11.8 20.7 32.5 825 1.71 15.3 5.1 12.8 17.9 33.2 0.98 
S3b 5.0 17.9 22.9 825 1.71 10.8 3.6 12.7 16.3 27.1 0.84 

Mean 0.89 
COV (%) 8.13 
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Table B-4: Details of Washa and Fluck’s (1952) and Gilbert and Nejadi’s (2004) Test Specimens 

Spec. b 

(mm) 

h 

(mm) 

d 

(mm) 

d' 

(mm) 

!n 

(mm) 

As 

(mm
2
) 

As

'
 

(mm
2
) 

fc

'
(to) 

(MPa) 

Ec(to) 

(MPa) 

∅(t,to) εsh,u 

(×10
-6) 

tc 

(days) 

to 

(days) 

t 

(days) 

Ma 

(kNm) 

Washa & Fluck (1952) 

B3 152 203 165 0 6096 400 0 18.8 17995 4.45 720 5 14 912 7.25 

B6 152 203 165 0 6096 400 0 22.8 19512 4.45 720 5 14 912 7.25 

C3 305 127 108 0 6350 516 0 18.8 17995 4.40 720 5 14 912 6.03 

C6 305 127 108 0 6350 516 0 21.8 18891 4.40 720 5 14 912 6.03 

E3 305 76 64 0 5334 284 0 22.8 19512 4.35 720 5 14 912 1.96 

E6 305 76 64 0 5334 284 0 18.4 17444 4.35 720 5 14 912 1.96 

B2 152 203 165 34 6096 400 200 18.8 17995 4.45 720 5 14 912 7.25 

B5 152 203 165 34 6096 400 200 22.8 19512 4.45 720 5 14 912 7.25 

C2 305 127 108 24 6350 516 258 18.8 17995 4.40 720 5 14 912 6.03 

C5 305 127 108 24 6350 516 258 21.8 19512 4.40 720 5 14 912 6.03 

E2 305 76 64 11 5334 284 142 22.8 19512 4.35 720 5 14 912 1.96 

E5 305 76 64 11 5334 284 142 18.4 17444 4.35 720 5 14 912 1.96 

B1 152 203 165 34 6096 400 400 18.8 17995 4.45 720 5 14 912 7.25 

B4 152 203 165 34 6096 400 400 22.8 19512 4.45 720 5 14 912 7.25 

C1 305 127 108 24 6350 516 516 18.8 17995 4.40 720 5 14 912 6.03 

C4 305 127 108 24 6350 516 516 21.8 18891 4.40 720 5 14 912 6.03 

E1 305 76 64 11 5334 284 284 22.8 19512 4.35 720 5 14 912 1.96 

E4 305 76 64 11 5334 284 284 18.4 17444 4.35 720 5 14 912 1.96 
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Gilbert & Nejadi (2004) 

B1a 250 348 300 0 3500 398 0 18.3 22820 1.70 825 14 14 380 24.90 

B1b 250 348 300 0 3500 398 0 18.3 22820 1.70 825 14 14 380 17.00 

B2a 250 333 300 0 3500 400 0 18.3 22820 1.70 825 14 14 380 24.80 

B2b 250 333 300 0 3500 398 0 18.3 22820 1.70 825 14 14 380 16.80 

B3a 250 333 300 0 3500 623 0 18.3 22820 1.70 825 14 14 380 34.60 

B3b 250 333 300 0 3500 600 0 18.3 22820 1.70 825 14 14 380 20.80 

S1a 400 161 130 0 3500 224 0 18.3 22820 1.70 825 14 14 380 6.81 

S1b 400 161 130 0 3500 224 0 18.3 22820 1.70 825 14 14 380 5.28 

S2a 400 161 130 0 3500 338 0 18.3 22820 1.70 825 14 14 380 9.87 

S2b 400 161 130 0 3500 338 0 18.3 22820 1.70 825 14 14 380 6.81 

S3a 400 161 130 0 3500 452 0 18.3 22820 1.70 825 14 14 380 11.40 

S3b 400 161 130 0 3500 452 0 18.3 22820 1.70 825 14 14 380 8.34 
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Appendix C: Example Calculation Using Mechanics-Based 
Method 

This appendix shows a detailed calculation of the short- and long-term deflections 

computed using the Mechanics-Based Method for Washa and Fluck’s (1952) Specimen 

B5. The member was loaded at 14 days and the load was sustained for 915 days (i.e., to = 

14 and t = 915).  

 

Material Properties 

f’
c,14 = 22.8 MPa Ec,14 = 19510 MPa 

∅(t,to)= 4.45 εsh,t = 720 με 

fy = 320 MPa Es = 200 GPa 

fr = 2.9 MPa 
(calculated) 

n = 10.2 
(calculated) 

Geometric Properties 

b = 152.4 mm h = 203.2 mm 

d = 165.2 mm d' = 33.8 mm 

As = 400 mm2 ρ = 0.016  

As
'  = 200 mm2 ρ' = 0.008 

ℓn = 6096 mm Ma=Ms = 7.25 kNm 

Ig = 106 x 106 mm4 
(calculated) 

EcIg = 2068.3 kNm2 
(calculated)  

Figure C-1: Geometric and Material Properties of Specimen B5 (Washa and Fluck, 
1952) 

1. Short-term deflection 

(a) Compute the depth of the neutral axis, kd: 

From the CAC Concrete Design Handbook:  
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kd=	
'2dB(1+

rd'

d ) +(1+r)2-(1+r)

B
(3-33)

 

where  

r=
(n-1)As

'

As
(3-34) 

and  

B = 
b

nAs
(3-35) 

Substituting the values shown in Figure C-1 into Equations (3-33) to (3-35) 

yields:  

kd = 69.9 mm 

(b) Compute the cracked moment of inertia, Icr: 

Icr= 
1

3
b(kd)3+nAs(d-kd)2+(n-1)As

' (kd-d')
2 (3-36) 

Icr = 56.8 x 106  mm4 

The flexural rigidity of the cracked section is therefore: 

EcIc = 2068 kNm2 

(c) Compute the effective moment of inertia, Ie, using the Branson Equation (Equation 

3-2) based on 0.5Mcr or the Bischoff Equation (Equation 3-3) based on 0.67Mcr 

where Mcr is the cracking moment based on the full modulus of rupture, fr. Using 

the Branson Equation based on 0.5Mcr (to maintain consistency with A23.3-14 

provisions): 
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Ie=Icr+,Ig-Icr- .
0.5Mcr

Ma
/

3

 

Ie = 58.1 x 106 mm4 

EcIe = 1134 kNm2 < EcIg \ok 

(d) Compute the short-term deflection using Equation (3-1) as 

∆i=
5(7.25x106)(61002)

48(19512)(58.1 x 106)
= 	24.8mm 

2. Creep Deflection 

(e) Compute the depth of the time-dependent neutral axis, kd000, and corresponding time-

dependent cracked moment of inertia, Icr1 , using Equations (3-33) to (3-36) based 

on the age-adjusted modular ratio: 

n0=Es/ Ec000 = n[1+ χ(t,to)∅(t,to)] 

Assuming χ(t,to) = 0.8 for reasons outlined in Section 3.3.1 and ∅(t,to)= 4.45 from 

Figure C-1 yields: 

n0 = 46.5 

Ec000 = 4278.9 MPa 

kd000 = 96.5 mm (i.e., kd000 = 4.6kd) 

Icr1  = 169.8 x 106 mm4  

The corresponding time-dependent flexural rigidity is 

Ec000Icr1  = 726.6 kNm2 < EcIg \ok 

This is roughly one-third of the instantaneous rigidity computed in Step (b). 
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(f) Compute the stress in the concrete after creep has taken place, σ(t,to)0000000, using 

Equation (3-6): 

σ(t,to)0000000= Mskd000
Icr1  

 

σ(t,to)0000000 = 4.2 MPa 

(g) Compute the creep strain, εcr(t,to)000000000, using Equation (3-7): 

εcr(t,to)000000000= ∅(t,to)
σ(to)000000
Ec(to)

 

εcr(t,to)000000000 = 9.43 x 10-4 mm/mm 

(h) Compute the average curvature due to creep, ψcr(t,to)000000000, using Equation (3-8): 

ψcr(t,to)000000000= εcr(t,to)000000000 
kd000  

ψcr(t,to)000000000 = 9.77 x 10-6 mm-1 

(i) Compute the creep deflection, ∆cr, using Equation (3-9) as: 

∆cr=
5(9.77 x 10-6)(6096)2

48
= 38.2mm 

3. Shrinkage Deflection 

(j) Compute the force in the concrete at the level of the top reinforcement, Fc,t and 

the bottom reinforcement, F’c,t: 

Fc,t=
-EsAsεsh,t

1+n0ρ 2d
h3 (1+12 2d

h -0.53
2

)
 

Fc,t = 24.9 kN (tension) 
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F'c,t=
-EsA'sεsh,t

1+n0ρ' 2d
h3 (1+12 20.5 - 

d'
h3

2

)
 

F'c,t = 16.9 kN (tension) 

(k) Compute the residual stress at the top fiber, σsh,t,T, and the bottom fiber, σsh,t,B: 

σsh,t,T=
Fc,t

Ag
+

Fc,t(d-0.5h)(-0.5h)

Ig
+

F'c,t

Ag
-
Fc,t

' (d'-0.5h)(0.5h)

Ig
 

σsh,t,T = 0.93 MPa 

σsh,t,B=
Fc,t

Ag
-
Fc,t(d-0.5h)(0.5h)

Ig
+

F'c,t

Ag
+

F'c,t(d'-0.5h)(0.5h)

Ig
 

σsh,t,B = 1.77MPa 

(l)  Compute the residual strain at top fiber εsh,t,T, and the bottom fiber εsh,t,B: 

εsh,t,T=
σsh,t,T

Ec000 
 

εsh,t,T = 217.6 με 

εsh,t,B=
σsh,t,B

Ec000 
 

εsh,t,T = 313.2 με 

(m) Compute the shrinkage curvature, ψsh,t, and the radius of curvature, R:  

ψsh,t=
 εsh,t,B	- εsh,t,T

h
 

ψsh,t = 0.96 x 10-6 mm-1  

R = 1039000 mm 
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(n)  Compute the shrinkage deflection, ∆sh,t: 

∆sh,t=1039000 -'(1039000 )2- .6096
2

/
2

= 4.5 mm 

(o) Compute the total long-term deflection,  ∆LT:  

∆LT= ∆cr+ ∆sh,t = 38.2 mm+4.5 mm=42.7 mm 

(p) Compute the total deflection at 915 days, ∆T:  

∆T= ∆i+ ∆LT = 24.8 mm+42.7 mm=67.5 mm 

 

Table C-1: Test and Predicted Long-Term Deflections for Beam B5 (Washa and 
Fluck, 1952)  

 Test Predicted Test/Predicted 

∆7 (mm) 24.9 24.8 1.00 

∆LT (mm) 40.1 42.7 0.94 

∆T (mm) 65.0 67.5 0.96 
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Appendix D: Regression Analysis Input Data 

Tables D-1 shows the long- to short-term deflection ratios (obtained from the Mechanics-

Based Method described in Chapter 3), ∆LT/∆i, of doubly reinforced members 

corresponding to various combinations of creep coefficients, ∅, compression reinforcement 

ratio, ρ′, and tension reinforcement ratio, ρ.  Table D-2 shows the variation of ∆LT/∆i with 

∅ and ρ for singly reinforced members. These data points were used in the regression 

analyses to derive the Alternative Simplified Equations for computing long-term 

deflections based on short-term deflections, presented in Chapter 4. 

Table D-1: Doubly Reinforced Members 

∆LT/∆i ∅ ρ:/ρ ρ ρ′ 
1.11 1.50 0.20 0.018 0.0036 
0.95 1.50 0.50 0.018 0.009 
0.83 1.50 0.80 0.018 0.0144 
0.77 1.50 1.00 0.018 0.018 
1.29 2.00 0.20 0.018 0.0036 
1.10 2.00 0.50 0.018 0.009 
0.96 2.00 0.80 0.018 0.0144 
0.89 2.00 1.00 0.018 0.018 
1.45 2.50 0.20 0.018 0.0036 
1.21 2.50 0.50 0.018 0.009 
1.06 2.50 0.80 0.018 0.0144 
0.99 2.50 1.00 0.018 0.018 
1.58 3.00 0.20 0.018 0.0036 
1.31 3.00 0.50 0.018 0.009 
1.14 3.00 0.80 0.018 0.0144 
1.06 3.00 1.00 0.018 0.018 
1.71 3.50 0.20 0.018 0.0036 
1.40 3.50 0.50 0.018 0.009 
1.21 3.50 0.80 0.018 0.0144 
1.12 3.50 1.00 0.018 0.018 
1.07 1.50 0.20 0.014 0.0028 
0.94 1.50 0.50 0.014 0.007 
0.83 1.50 0.80 0.014 0.0112 
0.78 1.50 1.00 0.014 0.014 
1.25 2.00 0.20 0.014 0.0028 
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1.09 2.00 0.50 0.014 0.007 
0.96 2.00 0.80 0.014 0.0112 
0.90 2.00 1.00 0.014 0.014 
1.41 2.50 0.20 0.014 0.0028 
1.21 2.50 0.50 0.014 0.007 
1.07 2.50 0.80 0.014 0.0112 
1.00 2.50 1.00 0.014 0.014 
1.54 3.00 0.20 0.014 0.0028 
1.31 3.00 0.50 0.014 0.007 
1.15 3.00 0.80 0.014 0.0112 
1.07 3.00 1.00 0.014 0.014 
1.66 3.50 0.20 0.014 0.0028 
1.39 3.50 0.50 0.014 0.007 
1.22 3.50 0.80 0.014 0.0112 
1.14 3.50 1.00 0.014 0.014 
1.03 1.50 0.20 0.01 0.002 
0.92 1.50 0.50 0.01 0.005 
0.83 1.50 0.80 0.01 0.008 
0.78 1.50 1.00 0.01 0.01 
1.20 2.00 0.20 0.01 0.002 
1.07 2.00 0.50 0.01 0.005 
0.96 2.00 0.80 0.01 0.008 
0.90 2.00 1.00 0.01 0.01 
1.35 2.50 0.20 0.01 0.002 
1.19 2.50 0.50 0.01 0.005 
1.07 2.50 0.80 0.01 0.008 
1.00 2.50 1.00 0.01 0.01 
1.48 3.00 0.20 0.01 0.002 
1.29 3.00 0.50 0.01 0.005 
1.16 3.00 0.80 0.01 0.008 
1.08 3.00 1.00 0.01 0.01 
1.60 3.50 0.20 0.01 0.002 
1.38 3.50 0.50 0.01 0.005 
1.23 3.50 0.80 0.01 0.008 
1.15 3.50 1.00 0.01 0.01 
1.00 1.50 0.20 0.008 0.0016 
0.91 1.50 0.50 0.008 0.004 
0.83 1.50 0.80 0.008 0.0064 
0.78 1.50 1.00 0.008 0.008 
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1.17 2.00 0.20 0.008 0.0016 
1.05 2.00 0.50 0.008 0.004 
0.96 2.00 0.80 0.008 0.0064 
0.91 2.00 1.00 0.008 0.008 
1.31 2.50 0.20 0.008 0.0016 
1.18 2.50 0.50 0.008 0.004 
1.07 2.50 0.80 0.008 0.0064 
1.01 2.50 1.00 0.008 0.008 
1.44 3.00 0.20 0.008 0.0016 
1.28 3.00 0.50 0.008 0.004 
1.16 3.00 0.80 0.008 0.0064 
1.09 3.00 1.00 0.008 0.008 
1.55 3.50 0.20 0.008 0.0016 
1.37 3.50 0.50 0.008 0.004 
1.23 3.50 0.80 0.008 0.0064 
1.16 3.50 1.00 0.008 0.008 
0.97 1.50 0.20 0.006 0.0012 
0.90 1.50 0.50 0.006 0.003 
0.83 1.50 0.80 0.006 0.0048 
0.79 1.50 1.00 0.006 0.006 
1.14 2.00 0.20 0.006 0.0012 
1.05 2.00 0.50 0.006 0.003 
0.97 2.00 0.80 0.006 0.0048 
0.92 2.00 1.00 0.006 0.006 
1.28 2.50 0.20 0.006 0.0012 
1.17 2.50 0.50 0.006 0.003 
1.08 2.50 0.80 0.006 0.0048 
1.03 2.50 1.00 0.006 0.006 
1.41 3.00 0.20 0.006 0.0012 
1.28 3.00 0.50 0.006 0.003 
1.17 3.00 0.80 0.006 0.0048 
1.11 3.00 1.00 0.006 0.006 
1.52 3.50 0.20 0.006 0.0012 
1.37 3.50 0.50 0.006 0.003 
1.25 3.50 0.80 0.006 0.0048 
1.18 3.50 1.00 0.006 0.006 
1.00 1.50 0.20 0.004 0.0008 
0.94 1.50 0.50 0.004 0.002 
0.88 1.50 0.80 0.004 0.0032 
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0.85 1.50 1.00 0.004 0.004 
1.18 2.00 0.20 0.004 0.0008 
1.10 2.00 0.50 0.004 0.002 
1.04 2.00 0.80 0.004 0.0032 
1.00 2.00 1.00 0.004 0.004 
1.33 2.50 0.20 0.004 0.0008 
1.24 2.50 0.50 0.004 0.002 
1.16 2.50 0.80 0.004 0.0032 
1.12 2.50 1.00 0.004 0.004 
1.47 3.00 0.20 0.004 0.0008 
1.36 3.00 0.50 0.004 0.002 
1.27 3.00 0.80 0.004 0.0032 
1.22 3.00 1.00 0.004 0.004 
1.58 3.50 0.20 0.004 0.0008 
1.46 3.50 0.50 0.004 0.002 
1.36 3.50 0.80 0.004 0.0032 
1.30 3.50 1.00 0.004 0.004 

 

Table D-2: Singly Reinforced Members 

∆LT/∆i ∅ ρ 
1.25 1.50 0.018 
1.48 2.00 0.018 
1.69 2.50 0.018 
1.88 3.00 0.018 
2.06 3.50 0.018 
1.19 1.50 0.014 
1.41 2.00 0.014 
1.60 2.50 0.014 
1.78 3.00 0.014 
1.94 3.50 0.014 
1.11 1.50 0.01 
1.32 2.00 0.01 
1.49 2.50 0.01 
1.65 3.00 0.01 
1.80 3.50 0.01 
1.07 1.50 0.008 
1.26 2.00 0.008 
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1.43 2.50 0.008 
1.58 3.00 0.008 
1.72 3.50 0.008 
1.03 1.50 0.006 
1.21 2.00 0.006 
1.37 2.50 0.006 
1.52 3.00 0.006 
1.64 3.50 0.006 
1.04 1.50 0.004 
1.23 2.00 0.004 
1.40 2.50 0.004 
1.55 3.00 0.004 
1.68 3.50 0.004 
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