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Abstract 

Non-motor Parkinson’s Disease (PD) symptoms are substantial factors of PD arising 

throughout disease stages, yet their diagnosis and monitoring remain a challenge. Sensory 

abnormalities in PD occur across sensory systems and disease stages, contributing to disease-

related impairments. However, the extent of symptoms is unknown, with inadequate 

monitoring and treatment options furthering disease management difficulties. The current work 

studies movement-independent visual perceptions of time, displacement and velocity in PD 

patients across disease stages using levodopa, deep brain stimulation (DBS), or no PD therapy. 

Perceptual tasks were conducted using a computer-generated graphical device designed with a 

focus on simplicity and flexibility. Perception of all tested visual modalities was impaired in 

PD (often extending to early PD stages), with negligible levodopa and DBS induced 

improvement. The observations help explain visuospatial, visual recognition and timing 

deficits occurring in PD while providing potential disease markers, and validates the graphical 

tool’s usefulness for disease diagnosis and monitoring.      
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Lay Summary 

Parkinson’s disease (PD) is one of the most common movement disorders in Canada, affecting 

over 100, 000 Canadian residents, leading to an economic burden of over $120 million a year. 

Although the movement-related symptoms are the most commonly known, non-motor 

symptoms are also widely present in the disease throughout all stages, and are commonly 

reported to be the more significant contributors to deficits in patient quality of life. The primary 

focus of treatment however is still directed at the motor symptoms, with available therapies 

and diagnostic procedures primarily targeting these motor symptoms. Furthermore, the extent 

of non-motor symptoms has yet to be discovered. Due to the disease symptoms presenting 

themselves differently on an individual basis, and numerous non-motor symptoms arising early 

in the disease (sometimes before motor symptoms) optimized patient treatment does not occur 

in many cases. Based on the above, this thesis aims to study select visual non-motor 

phenomena, to examine their potential dysfunction in PD, as well as their potential use for 

disease monitoring and diagnostic procedures. This thesis analyzes the visual perception of 

time, displacement and velocity in individuals with PD, the effect of common pharmaceutical 

(levodopa) and non-pharmaceutical (deep brain stimulation) therapies on these perceptions, 

and the use of a computer-generated graphical tool to analyze the said perceptions. It was found 

that all of the studied perceptions were abnormal in PD, even at the early stages of the disease. 

Furthermore, the tested therapies did not appear to improve these perceptions, with levodopa 

potentially having a detrimental effect on temporal and velocity perceptions.  The use of the 

graphical software was validated throughout the studies and was shown to be a potential 

disease monitoring and diagnostic tool that can be easily implemented in clinical and non-

clinical settings to aid disease management. Furthermore, the findings regarding the studied 

perceptual dysfunction occurring independently of movement provides further insight into 

non-motor PD abnormalities, while helping to explain the phenomena of timing, spatial, and 

object recognition deficits occurring in PD. 
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Tell me and I forget. Teach me and I remember. Involve me and I learn. 
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Chapter 1  

1  Introduction  

This chapter will provide an overview of the Parkinson's Disease (PD) symptoms, 

with a focus on non-motor abnormalities occurring in PD. A specific focus will be on visual 

perceptions of time, displacement and velocity, reviewing what is currently known 

regarding the effect of PD on these symptoms. Furthermore, this section will provide a 

brief outline of levodopa (L-dihydroxyphenylalanine) and deep brain stimulation (DBS) 

therapies, and their effect on non-motor symptoms of PD. 

1.1 Background 

PD is the second most common neurodegenerative disorder in Canada, affecting over 

100,000 residents and leading to an annual economic burden over $120 million [1]. The 

incidence of PD in Canada is growing (projected to affect 164,000 individuals by 2031) 

[1], the lack of prevention methods and long-term management treatments emphasize the 

significance of this neurological puzzle for Canadians and the country as a whole [2]. PD 

has been considered a movement abnormality since its 19th century description by James 

Parkinson, in which he specified motor symptoms such as bradykinesia, resting tremor, 

muscular rigidity and impairments of posture and gait [3].  However, Dr.  Parkinson also 

noted that non-motor abnormalities including sensory, mood, autonomic and sleep 

disorders commonly affect those with PD [4]. It was later determined that many major PD 

symptoms are rooted in the death of dopaminergic neurons in the substantia nigra pars 

compacta (SNc), leading to abnormal basal ganglia (BG) functioning [5]. Although a 

greater focus has been given to motor symptoms of the disease in the past, non-motor 

symptoms substantially contribute to decreased quality of life (often to a greater extent than 

motor symptoms) [6–8], increased economic burden [9, 10] and increasing the rate of 

patient institutionalization [11]. 

Current approaches to PD treatment focus on alleviating motor symptoms, 

appearing to be inadequate for treating many non-motor disease symptoms [12]. Levodopa, 

a first line pharmaceutical PD therapy, appears to have a variable effect on non-motor 
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symptoms, though beneficial effects are often seen with regard to motor impairments [4]. 

Subthalamic DBS, a promising late-stage PD treatment involving electrical stimulation of 

the BG generally elicits similar therapeutic effects as levodopa; however, its effect on non-

motor symptoms are still relatively unknown [13]. Although the burden of the non-motor 

symptoms of PD are substantial there is a current lack of adequate treatment methods. 

However, there is growing evidence that many non-motor symptoms arise before the 

development of motor symptoms—sometimes by years [14]—making them promising 

targets for early diagnosis of PD or helping to identify at risk populations. We have 

conducted perceptual analysis of three visual modalities (time, displacement, and velocity), 

and designed a computer-generated graphical tool to assess individual ability for these 

perceptions. It is our hope that the work in this thesis will lead to the development of 

software capable of assessing some non-motor aspects of PD to help provide better 

treatment to those suffering, while also assessing certain perceptions and how they are 

affected by PD as well as levodopa/DBS. 

1.2 Parkinson’s Disease Epidemiology and Pathophysiology 

This subsection will provide an outline of the scope of PD and how great of an influence 

it has on humanity, as well as a summary of the neural basis for PD to improve 

understanding of the neurophysiological concepts discussed in later chapters.   

1.2.1 Prevalence and Incidence 

PD is the most common movement disorder involving progressive neurodegeneration of 

the central nervous system [15]. There is currently no method to cure or stop the disease 

progression [2]. General estimations regarding PD’s prevalence is 1–2 cases per 1000 

people in unselected populations [16], with approximately 1% of people over the age of 60 

suffering from the disease [17]. There prevalence of PD in North America is between 111–

329 cases per 100 000 [18]. There is large variance seen in the reported PD incidence, 

which may be due to methodological differences in the diagnostic criteria and means of 

attaining PD status; most reports however show around 10–20 individuals per 100,000 to 

develop PD [15]. Early-onset development of PD (before the age of 50) is rare, only 

occurring in 4% of cases [19]. Studies focusing on the incidence of "at risk" populations 
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(individuals above 55 or 65) showed PD incidence rates to be 410–529 persons per 100,000 

[24]. Age is the greatest risk factor for PD development, as the diseases incidence increases 

in an exponential fashion, peaking at 80 years of age [20].  

1.2.2 General Pathology 

The primary pathological symptom of PD is the progressive loss of dopaminergic neurons 

in the SNc, which project to the putamen through the dopaminergic nigrostriatal pathway 

[21], with past work showing an approximate 75–95% post-mortem reduction in SNc 

neurons in PD patients compared to age-matched controls [22]. However, degeneration of 

SNc neurons occurs in substantial volumes early in the disease as well [23]. The moderate 

to severe loss of dopaminergic neurons in the SNc likely leads to the motor symptoms 

typical in PD, especially those involved with reduced movement [24]. Neural degeneration 

occurring in PD is not contained to the SNc, with cellular degeneration occurring in regions 

such as the hypothalamus, amygdala, raphe nucleus, locus coeruleus, and the dorsal motor 

nucleus of the vagus [21]. 

Another hallmark of PD is Lewy pathology, where mutations to the SNCA gene 

lead to misfolded α-synuclein proteins [2]. The misfolded α-synuclein proteins are 

insoluble, causing aggregation and the formation of inclusions in the neuronal cell body or 

cell processes (Lewy bodies and Lewy neurites respectively) [21].  Lewy body pathology 

is not limited to the neurons of the brain, with protein aggregations occurring in the spinal 

cord and peripheral nerves as well [2, 25, 26]. It has been suggested via the Braak model 

that PD occurs in 6 stages involving Lewy pathology, with the peripheral nervous system 

being affected first (pre-motor stages 1–2), followed by caudal (brain stem, olfactory bulb) 

brain regions (stage 3: motor features caused by nigrostriatal dopamine deficiency), and 

lastly the rostral (frontal) portions of the brain being affected (stage 4 - 6: advanced disease 

with increased non-motor symptoms arising) [27]. Although the Braak model provides a 

good explanation for the development of non-motor symptoms related to cognitive 

impairment occurring in late stage PD [28, 29] and other non-motor abnormalities 

occurring at early PD stages such as olfaction and constipation [30], further studies are still 

needed to confirm the Braak model for other non-motor symptoms [2]. Furthermore, not 

all PD patients display Lewy pathology, suggesting PD neurodegeneration to be more 
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complex than simple Lewy pathology involving protein mutations beyond those affecting 

α-synuclein [31, 32]. 

1.2.3 Classical Model of Basal Ganglia Function in Parkinson’s 
Disease 

The BG is a group of interconnected neuronal nuclei primarily consisting of the striatum, 

globus pallidus pars interna (GPi), globus pallidus pars externa (GPe), substantia nigra pars 

reticulata (SNr), the subthalamic nucleus (STN) and the SNc [33]. The neurotransmitter 

released from the projections of the GPi, GPe, striatal and SNr neurons is the inhibitory 

gamma-aminobutyric acid (GABA), whereas the STN projections release the excitatory 

neurotransmitter glutamate [34]. The motor cortical areas involved in BG circuits also 

release excitatory neurotransmitter (glutamate) which acts on other regions of the BG [35]. 

Lastly, the SNc neurons release the neurotransmitter dopamine, which can have either 

excitatory or inhibitory effects based on the nuclei it acts on [33]. There are other 

neurotransmitters released in the BG, however they are of little importance to the study of 

BG function in PD. The BG projects to the thalamus, where further projections to the higher 

neural areas of the cortex occur [36]. Although the BG has great importance with motor 

behaviour, it is involved in many other processes ranging from timing to learning and 

memory [37, 38]. 

The classical model used to describe BG neuronal pathway loops generally refers 

to the BG’s motor function and involves both a direct and an indirect pathway. This motor 

circuit best describes the BG’s function and dysfunction in relation to movement disorders 

[35].  As can be seen in Figure 1.1, motor areas of the cortex project to dorsal parts of the 

striatum (i.e. the putamen) via excitatory connections using glutamate. The neurons of the 

striatum enact an inhibitory response on the output nuclei of the BG (primarily the GPi and 

SNr) via a direct and indirect pathway. Striatal neurons involved in the direct pathway 

project GABA directly to the GPi and SNr, inhibiting their projections (which are also 

inhibitory) to the thalamus (which has connections with the cortex), thus closing the loop 

[35]. The striatal neurons involved in the indirect pathway elicit an inhibitory response on 

the GPe, which in turn has inhibitory projections to the STN. The connections from the 

STN however are excitatory, and project to the GPi and SNr which project to the thalamus 
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and finally back to the cortex. Thus, the direct pathway leads to an inhibition of GPi and 

SNr activity, while the indirect pathway is excitatory for these nuclei [35]. The balance of 

activity from the direct and indirect pathways are modulated by dopamine, released by SNc 

neurons projecting onto the thalamus. Striatal neurons involved in the direct pathway 

contain dopamine D1 receptors, where-as those involved in the indirect pathway have 

dopamine D2 receptors, leading to striatum neuronal excitation and inhibition respectively 

[35]. Direct glutaminergic connections from the cortex to the striatum also exist, causing 

excitation of the striatum and providing further central influence on the BG loop (Fig. 1.1). 

 

Figure 1.1: BG circuitry in normal and PD states 

Summary of the current motor circuitry model of the cortico-BG-thalamus loop. Pointed 

arrows signify excitatory projections and blunted arrows inhibitory, with the thickness of 

the line being proportional to the projection’s strength. a) represents the circuits 

functionality in normal states, with b) showing alterations that occur during PD. For both 

a) & b), the direct pathway involves dopaminergic modulation (from SNc projections) of 

the D1 receptor to the output nuclei, with the indirect pathway involving dopaminergic 

modulation (from SNc projections) of the D2 receptors to the GPe. In the Parkinsonian 

state reduced SNc neurons lead to reduced dopaminergic attenuation of both indirect and 

direct pathway, causing hyperactivity of the STN and the output nuclei. 
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PD causes large quantities of neuronal death to occur in the SNc, leading to depleted 

amounts of dopamine modulating the striatum over time. This in turn leads to increased 

activity of the GPi and SNr, causing increased inhibition of the thalamo-cortical and 

brainstem motor systems (Fig. 1.1) [35]. This BG model accounts for the occurrence of 

bradykinesia (slow movements), akinesia (lack of movement), and difficulties in 

movement that occurs in PD. The use of levodopa or dopamine agonist pharmaceuticals 

(which act to restore neural dopamine levels) help to restore normal BG function to 

effectively reduce movement abnormalities occurring in PD patients. An undesirable side 

effect of levodopa medication however is sporadic movements known as dyskinesia. The 

classical BG model explains that this phenomenon is caused by excessive inhibition of 

striatal neurons projecting to the GPe, causing less inhibition of the GPe, then over-

inhibition of the STN (reducing its activity), in turn decreasing the activity of the GPi and 

SNr output neurons.  This leads to excessive activity in the cortical motor areas, and 

sporadic dyskinetic movements [35]. The outcome of DBS to the STN is also accurately 

described by the classical BG model. As DBS causes an ablation effect on the neural region 

it acts on, using it on the STN reduces this nuclei’s activity which is overexcited in PD, 

thus helping to restore proper activity levels of the GPi and SNr and improving the 

movement symptoms of PD [35, 39]. DBS of the GPi works in a similar fashion as STN 

stimulation [36]. Though the classical model of the BG is not perfect, it does a good job of 

simply and elegantly providing a basis for BG function in healthy and disease states, as 

well as the effect of different therapies [36]. 

1.3 Current Parkinson’s Disease Treatment 

A major complication of PD treatment is that there are currently no therapy options 

available that significantly slow or stop the progression of PD. Due to the heterogeneous 

nature of the disease it appears that no given singular treatment will be capable of "curing" 

PD; however, it is likely that future treatments will offer individualized therapies based on 

the symptoms and needs of a given patient [2]. Although there are yet to be preventative 

treatments or cures for PD, there are still methods for treating the symptoms of PD, with 

the aim of improving the lives of the patients suffering from the disease. 
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1.3.1 Pharmacological PD Treatment 

The first-line treatment for PD has classically been, and continues to be drugs which 

enhance intracerebral dopamine concentrations or activate dopaminergic receptors, such as 

levodopa (which is capable of crossing the blood-brain barrier (unlike dopamine) before 

being converted to dopamine),  dopamine agonists,  monoamine oxidase type B inhibitors 

and amantadine [40, 42]. Due to the current inability of PD therapies to cure or slow the 

progression of the disease not all patients begin treatment right away. Therapeutic 

intervention typically begins as soon as symptoms become problematic for the patient to 

attempt to improve quality of life [2]. Many movement related abnormalities arising early 

in the disease progression like bradykinesia and muscular rigidity are treated well with 

dopaminergic treatments, while monoamine oxidase type B inhibitors only cause marginal 

improvements, making dopaminergic drugs the primary pharmaceutical intervention when 

symptoms are more severe. The effect of dopaminergic treatments is more variable for 

disease related tremors; however anti-cholinergic drugs can be effective for this symptom 

[2]. 

 Use of dopaminergic drugs (especially dopamine agonists) is however not without 

cost, with adverse reactions such as nausea, daytime sleepiness and excessive fluid 

retention in parts of the body. Furthermore, dopaminergic medications can lead to impulse 

control issues, seen through excessive gambling, eating, spending, and hypersexuality.  The 

occurrence of visual hallucinations is also a common side effect of dopaminergic treatment 

[2].  As dopaminergic therapies generally are the most successful at alleviating motor 

complications in PD, and levodopa has a lower risk of side effect development, it is 

generally used as a first-line PD treatment [2, 41]. Levodopa use is not without fault 

however, as prolonged use can lead to motor complications involving motor fluctuations 

while using the medication (ON periods: levodopa is functioning as intended; OFF periods, 

levodopa is not functioning as intended, leading to severe motor symptoms) as well as 

sporadic "dyskinetic" movements [2]. Due to these complications, levodopa use is often 

refrained until necessary, or used sparingly while coupled with monoamine oxidase type B 

inhibitors or dopamine agonists (though the believed benefits are not yet validated) [42, 

43]. Some non-dopaminergic pharmaceuticals are used to treat specific non-motor 
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symptoms of PD. Clozapine is commonly used to treat psychosis. However, there is a 

minute risk of a deadly adverse drug reaction (affecting 0.38% of patients) necessitating 

regular monitoring or the use of the much less effective Quetiapine [44]. Interestingly, the 

use of cholinesterase inhibitors by PD patients with dementia can lead to reductions in 

visual hallucinations and delusions, with specific selective serotonin agonists appearing to 

reduce psychotic symptoms without altering motor function [45, 46]. 

Motor fluctuations, dyskinesia and psychosis associated with long term use of 

dopaminergic medication signifies the progression of PD to advanced stages, further 

reducing patient quality of life.  It is believed that motor fluctuations and dyskinesia might 

be caused by the late stage occurrence of pulsatile stimulation of striatal dopamine 

receptors, brought on by decreased striatal dopamine levels [2].  Combining previously 

mentioned pharmaceutical compounds with levodopa are common means to reduce the 

side effects of such treatments, with slow releasing dopaminergic medication currently 

being developed with hopes to reduce OFF motor fluctuations [40, 47]. An alternative 

method of achieving consistent blood-levodopa levels is to inject a concentrated levodopa-

carbidopa gel into the small intestine via a portable pump, which shortened OFF duration 

(lengthening ON durations) in late stage PD patients without dyskinesia [47]. Treatments 

that elicit effects on multiple neurotransmitter systems such as amantadine and clozapine 

often effectively treat dyskinesia, with pharmaceuticals containing nicotinic or 

serotonergic properties potentially acting as treatments for drug induced motor 

complications as well [40, 48]. The efficacy levodopa has towards late-stage PD symptoms 

(motor and non-motor) is generally poor, suggesting these symptoms are caused by 

abnormalities in other neurotransmitter systems [48]. Accordingly, some cholinesterase 

inhibitors have been shown to be effective in the treatment of dementia and reductions in 

falls [49, 50]. As can be gathered from the above, the optimal treatment of PD using 

pharmacological agents is a difficult task requiring personalized therapeutic approaches. 

1.3.2 Deep Brain Stimulation 

The discovery of lesion-like effects occurring from high-frequency DBS led to its clinical 

use in treating neurological disorders through selective neural targeting (Fig. 1.2).  High-

frequency DBS of the STN (and less frequently the GPi) significantly improves 
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bradykinesia, rigidity, and tremor, decreasing the patient’s average levodopa dose use by 

60% [39, 51]. This reduction in levodopa use in turn reduces its undesirable side-effects, 

further improving patient quality of life [52]. Surgical teams use magnetic resonance  

 

Figure 1.2: DBS of the Subthalamic Nucleus 

Pictorial representation of DBS to the STN. A generator located sub-dermally at the chest 

generates electrical pulses which are transferred to the electrode which is in contact with 

the STN. The electrode is at the tip of a lead that was surgically implanted into the brain. 

The electrical pulses alter neuronal activity, and when controlled properly (based on 

location that the pulses are received, and the electrical current being used) provides 

therapeutic effects to the receiving individual. 

 

imaging (MRI) localization to choose the implantation target, although errors can occur 

due to MRI distortion and brain expansion (due to reduced intracranial pressure from the 

drill hole). DBS can be administered unilaterally (to one side of the brain only) or 

bilaterally, depending on the patient’s affected neural areas. Although it is not fully 

understood, it is believed DBS functions as an ablation by jamming neural messaging, 

inhibiting neural firing, and through inhibition of some neurotransmitters and hormones 

[53–55]. Patients are considered for surgery based on what stage of the disease they are at 

(with late stage patients being prioritized in Canada) and if the symptoms DBS successfully 

improves are present. DBS is not an effective treatment for cognitive deficits and dementia, 
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and in fact often worsens it due to the trauma occurring during surgery.  Furthermore, DBS 

typically functions in a similar fashion to Levodopa when considering the efficacy of the 

therapy on an individual [56]. 

When comparing PD symptom severity with the DBS turned ON vs. OFF there was 

substantial improvements seen ON DBS, analyzed using the Unified PD Rating Scale 

(UPDRS) [39]. The UPDRS is made up of 4 examinations; section I– mental and cognitive 

changes (including mood); section II– changes in daily living activities; section III– motor 

symptoms; section IV– therapeutic complications, sensory systems, fluctuations and 

dyskinesia [39]. The UPDRS is the current gold standard diagnostic examination for the 

assessment of PD symptom severity and quality of life and has been validated through 

countless studies [39, 57].  Patients in a DBS ON, Drug OFF state had 50% and 52% 

increases in section II and section III UPDRS scores respectively compared to their pre-

operation scores, with DBS additionally providing a 23% improvement in PD symptoms 

compared to ON medication patients [58, 59].  The efficacy of STN DBS experiences 

modest reductions over time, in contrast to levodopa’s significant efficacy deterioration 

[60–62]. Tremor improvements were seen with up to 70% reductions, along with a 50% 

improvement in akinesia [63]. Reductions in dystonia, improved postural stability and gait 

are other positive outcomes of DBS use [39]. DBS induced neural plasticity and reduced 

levodopa use leads to major dyskinesia reductions (with reported reductions as great as 

70%), substantially improving patient quality of life [39, 63, 64]. Motor symptoms are 

however only mildly improved (or not at all improved) when using DBS compared to ON 

medication states, however reductions in medication use leads to the previously discussed 

benefits, compounded by stable therapy [39]. Long-term DBS use sees PD symptoms 

progressing in a "natural" way, suggesting that extended use does not have side effects 

[65]. 

The use of DBS is not without risk and side effects, many of which arise from 

surgical complications. Although reported data differs considerably between reports, one 

study analyzing 526 patients saw that 3.4% of DBS implantation surgery resulted in 

asymptomatic hemorrhages, 4.4% in transient symptoms, and 0.6% caused permanent 

symptoms in patients. As 2–4% of cases have severe adverse effects from surgery (mainly 
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due to intracranial hemorrhage) pre-operative MRI’s are critical for operation success 

through planning the implantation around blood vessels and non-targeted neural regions 

[59]. Non-permanent complications such as post-operative confusion (in around 10% of 

patients) can arise due to small intracranial contusion (bruising), minimal bleeding, or 

uncontrollable factors like prolonged open brain surgery and dopaminergic drug 

withdrawal [63, 66]. Although surgery related infections and complications sometimes 

occurring, as well as complications with the receiving of DBS, these are generally non-

severe and treatable [39]. Cognitive impairments such as sadness, (hypo)mania, hilarity, 

impulse aggressive behaviour disorder can develop in the post-operative stage, however 

they tend not to persist [39].  Although apathy and depression might be associated with 

receiving DBS surgery, the most common chronic cognitive change is declines in word 

fluency [67–68]. It should be noted that these cognitive alterations were not seen in younger 

and non-demented patients [39]. Cognitive decline does generally occur over time (or is 

accelerated) with DBS-STN use, which can lead to impulsive decisions and dementia [96, 

71]. There are many advantages to DBS over medication alone, and both appear to have 

the same occurrence of adverse events. However, it seems there is a greater occurrence of 

serious adverse events in those receiving DBS (though most are related to incorrect 

implantation or hardware failure) [58, 72].  Although there are risks involved with DBS 

use, they are typically not severe, and stimulation generally provides large improvements 

over medications for appropriate patients. 

1.4 Symptoms of Parkinson’s Disease 

Although some symptoms are commonly attributed to PD, such as tremor, bradykinesia, 

and freezing of gait (FOG), the extent of abnormalities that could arise in patients with PD 

is vast, with no patient displaying every phenotypic trait of the disease. However, 

regardless of the symptoms occurring in a given PD patient, overtime these symptoms 

usually worsen, with many posing substantial detriment to patient health and quality of life. 

1.4.1 Parkinson’s Disease Motor Symptoms 

Although PD was not truly defined until work conducted by James Parkinson’s in the 19th 

century, the classic motor symptoms were described much earlier in Indian and Chinese 
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texts dating back to approximately 1000 BC [3]. These classical symptoms include rest 

tremor, muscular rigidity, bradykinesia, akinesia and postural and gait impairments [2]. 

Further motor symptoms such as softness of speech, impairments in handwriting and 

difficulties with swallowing are examples of other symptoms that could arise in the disease 

[3, 73]. These motor symptoms present in an asymmetrical or heterogeneous manner, 

leading to two major PD subtypes: tremor-dominant PD (generally with other motor 

symptoms being mild) and non-tremor-dominant PD (generally involving akinetic or rigid 

movements and impairments of gait and posture) [2]. Additionally, a hybrid or 

indeterminate subgroup exists where patients display several motor disease phenotypes of 

similar severity [2]. Interestingly, the disease subgroups might have different pathogenesis 

and causes, as well as the tremor-dominant subtype of the disease often progressing slower 

and causing less functional disability compared to non-tremor subtypes [74, 75]. 

As PD motor features are typically linked to dopaminergic disorder, typical first 

line treatment of PD involves the use of dopamine replacement agents such as levodopa. 

When initially used in proper doses, levodopa elicits large improvements over the classical 

motor symptoms of PD. However, after 5 years of levodopa use 75% of PD patients no 

longer receive stable and effective treatment from the medication [76]. Although from a 

clinical standpoint levodopa appears to slow the progression of PD motor symptoms, 

neuro-imaging studies show its use led to accelerated decay of nigrostriatal nerve terminals, 

further questioning the drugs long term use [77].  DBS of the STN has become the gold 

standard for advanced-stage PD surgical procedures. However, as previously discussed, 

DBS use is not without flaws as post-surgery complications as well as stimulation of non-

targeted neural regions can have negative side effects for the patient receiving the therapy 

[39]. 

1.4.2 Parkinson’ Disease Non-Motor Symptoms 

Though motor abnormalities and reduced dopamine levels are typical clinical markers of 

PD disease, non-motor PD symptoms arise at all disease stages with some frequently 

arising prior to motor symptoms [78].  Unlike motor symptoms, many non-motor disease 

symptoms are not caused by dopamine deficiency, and instead are related to deficiencies 

of different neurotransmitters [78]. Accordingly, most non-motor symptoms do not 
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respond well to current PD treatment methods, making the management of these symptoms 

a major challenge in the treatment of PD. The non-motor features of PD are widespread, 

and (like motor features) asymmetrical, ranging over multiple classes of impairment. Here 

we will describe some of the non-motor features of PD, however it should be noted that 

this is not a comprehensive review, with notable abnormalities such as sleep disorders and 

autonomic dysfunction not being reported.  

1.4.2.1 Neuropsychiatric Features 

The neuropsychiatric features of PD can be present early in the disease’s progression (at 

the pre-motor phase), persisting into late stages, fluctuating with the ON-OFF motor states 

[4]. A common neuropsychiatric feature of PD is anxiety, affecting up to 60% of patients 

[79]. These anxieties include general anxiety, social phobias, panic attacks, and are 

frequently (but not always) accompanied by depression [80, 82]. Anxiety is associated with 

low dopamine levels, accordingly, pharmaceutical dopamine replacement and DBS both 

reduce depressive symptoms, however this is not necessarily entirely due to reduced 

anxieties as improvements in motor functions may also play a role [82, 83]. As anxiety 

(and the associated depression) often arise before motor symptoms, these symptoms may 

encompass pathologies beyond SNc degeneration [84]. 

As previously mentioned, depression commonly affects individuals with PD, being 

clinically significant in 35% of patients. Although PD related depression is generally a 

milder form than depression in non-PD individuals, it is more commonly accompanied by 

apathy and anhedonia [85].  Although depression can arise at all stages of PD, it displays 

correlations with duration of disease, motor severity, motor fluctuations and dosage of 

dopaminergic replacement medication [86]. Depression in those with PD may be a 

symptom of PD pathology, reactionary to PD related disabilities, an individual 

phenomenon or a combination of the three, making it a complex problem and explaining 

why only some benefit from dopaminergic therapy [87]. Both individuals with and without 

PD suffering from depression show alterations to the dopaminergic, serotonergic and 

noradrenergic systems [88]. Although there is considerable evidence for alterations to the 

dopaminergic and noradrenergic systems in those with PD depression compared to PD non-

depressed patients, there are confounding results regarding serotonergic function being a 
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factor in depression development in PD [88–101]. Anti-depressive medication targeting 

the noradrenergic system appears to be the most effective medication for the treatment of 

PD related depression [92]. 

Dementia and cognitive dysfunction commonly affect individuals with late stage 

PD; though this may be caused by natural aging processes, up to 83% of late stage PD 

patients suffer from some form of cognitive decline [93]. Individuals with tremor-dominant 

PD are less susceptible to the development dementia than individuals with non-tremor-

dominant PD [94]. Late-stage PD dementia does not have a BG origin, but is related to 

Lewy body pathology of the cortical regions, with increased Lewy body/neurite mass 

correlating to increased severity of dementia [95]. Dopaminergic treatment poses little 

benefit and often worsens psychosis and hallucinations associated with PD dementia, 

however early cognitive impairments (such as impaired executive function) arising in 

early-stage PD appears to be dopamine dependent and may be improved by dopaminergic 

drugs [96–98]. Other symptoms of cognitive decline such as recognition and memory do 

not respond to these drugs, suggesting multiple neural pathways using different 

neurotransmitters are affected in PD [97]. Furthermore, too much or too little dopamine 

can lead to cognitive impairments, explaining why cognitive function varies throughout 

the stages of the disease and when using dopaminergic therapy [99]. 

Similarly to dementia, psychosis (generally presented through visual hallucinations 

and delusions) often arises in late stage PD, affecting 40% of patients [100]. MRI studies 

have revealed little difference in cortical structure between PD patients with and without 

psychosis. There are however alterations seen in the processing of visual stimuli, which 

may be further affected by reduced retinal dopamine levels caused by PD [101]. The use 

of dopamine therapies can lead to the development of psychosis in PD, and dopamine 

antagonists are in fact sometimes used to reduce the symptoms of psychosis [98].  

Processes utilizing acetylcholine are also implicated in the development of psychosis, with 

anticholinergic drug use aiding in the development of psychosis due to further impairments 

to cortical cholinergic transmission [102]. 
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1.4.2.2 Sensory Features 

Pain and somatosensory dysfunction are common sensory abnormalities of PD, affecting 

up to 80% of the patient population [103, 104].  Pain in PD can present as either nociceptive 

(occurring at peripheral pain receptors), or neuropathic (neurologically rooted) pain, and 

often fluctuates based on motor fluctuations (with it being worse in the OFF state) [103, 

105–107]. Nociceptive pain occurs in PD due to musculoskeletal dysfunction (for example, 

dysfunctions that lead to stiffness), with neurological pain having central origin and 

developing due to neurodegeneration [4]. Reduced levels of dopamine at the BG alter pain 

thresholds in PD patients, with dopaminergic medication increasing pain thresholds during 

ON periods [108]. However, since dopamine replacement therapy does not eliminate pain 

in PD there are likely other non-dopaminergic mechanisms involved in PD induced pain. 

As both the serotonergic raphe nuclei and the noradrenergic locus coeruleus brain regions 

are involved in the tuning of pain sensations and are pathologically altered in PD, they 

likely contribute to abnormal pain perception in PD [88]. Treatment primarily focuses on 

alleviating pain in the OFF periods with dopaminergic medications and other pain 

modulating drugs if needed. If painful dystonia is present and not aided by dopamine use 

then botulinum toxin injections may be used where the dystonia is present [4, 109]. 

One of the classical non-motor symptoms of PD is olfactory disturbances 

(presenting as hyposmia and anosmia), which develops in over 90% of PD patients and 

often arising before motor symptoms of the disease [88]. Hyposmia has often been 

considered a promising early biomarker of PD and is sometimes paired with other disease 

markers to assist in diagnosis [88].  As previously mentioned, early dysfunction of smell 

could be due to the spread pattern of Lewy bodies/neurites in PD starting at the medulla.  

However, olfactory dysfunction in late stage PD may be linked to cholinergic denervation 

and the onset of dementia and other cognitive deficits as well [88, 110]. Due olfactory cells 

being unchanged and reductions in the volume of the olfactory bulb neural region in PD, it 

appears that the abnormality has a central origin [111, 112]. There appears to be little to no 

disturbance of the dopaminergic and serotonergic neurons in the olfactory bulb and its 

associated nuclei, which corresponds to the lack of effect caused by dopaminergic 

medications [88, 113]. Although olfactory function appears to have promise in assisting in 
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clinical diagnosis of PD, our lack of understanding its pathological model impairs the 

understanding of olfaction’s relationship to PD progression [88]. 

1.4.2.3 Visual features 

Although a perceptual abnormality, visual disturbances occurring in PD are of particular 

importance to the work described in this thesis. Disturbances to visual processes are a 

common phenomenon in PD, affecting up to 78% of individuals with the disease [114]. 

Poor vision in PD often stems from poor visual acuity (especially low contrast acuity) as 

well as impairments in colour discrimination [115, 116].  Death of dopaminergic neurons 

in the retina may be the cause of poor visual acuity, however dopaminergic therapy has 

only moderate effects, suggesting other factors such as abnormal eye movements or 

blinking [117].  24% of patients also suffered from reduced visual fields (in the same 

fashion as glaucoma patients), suggesting PD causes reduced visual field size or increased 

risk of glaucoma development [118]. Deficits in oculomotor function (namely saccadic and 

smooth pursuit eye movement) are common visual symptoms of PD, affecting 75% of 

patients [119]. The maximum saccadic speed (rapid eye movement used to shift visual 

attention) in the horizontal plane and reaction times are slowed in PD, and patients often 

under-reaching their target. Furthermore, smooth pursuits sometimes involving choppy 

mini saccades as opposed to smooth movements [119, 120]. Smooth pursuit movements 

have been shown to be impaired at early stages of the diseases with evidence supporting 

the same trend for saccades. The dopamine reductions occurring at the BG are believed to 

be the cause of oculomotor deficiency [121, 122].  Patients sometimes suffer from 

nystagmus (repetitive uncontrolled eye movements) and difficulties with convergence for 

changing depth, which can result in blurriness and double vision [119, 123, 124].  

Furthermore, reductions in the frequency of blinking occurs during PD, leading to a staring, 

"mask face" appearance [125]. 

Visual impairments in PD extend to complex visual processes involving brain 

regions extending beyond the retina. Individuals with PD show deficits in visuospatial 

orientation, extending to difficulties determining what is vertical, proper positioning of 

body parts in space (proprioception), and conducting route-based walking tasks [126, 127].  

Deficits have also been seen in visuospatial working memory (which is selectively 
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impaired early in PD), possibly indicating the degeneration of the BG, dorsal visual stream 

and/or the frontal/prefrontal cortex [128]. The conduction of memory tasks involving 

specific spatial orientations, as well as orientation and motion discrimination is impaired 

in PD [128]. These task deficits in PD suggest that abnormalities in visual processing lie 

beyond retinal abnormalities due to involvement of higher visual centres [140]. The 

perception of face discrimination, as well as the ability to imagine a certain face is also 

abnormal in some PD cases [129]. Furthermore, perceiving certain emotions through facial 

recognition (especially negative emotions like anger) is disrupted in PD [130]. Patients 

with PD also can display difficulties staying focused on relevant goals for problem solving 

tasks involving visual stimuli [114].  Visual hallucinations can also arise chronically in PD, 

especially among individuals using levodopa or dopamine agonists [140]. One study saw 

40% of PD patients suffer from hallucinations within the last 3 months, with chronic visual 

hallucinations occurring in 22% of patients [131]. Severe cognitive dysfunction, disease 

duration and excessive daytime sleepiness are all predictors for the development of visual 

hallucinations, with even minor hallucinations increasing the risk of depression [114]. 

Numerous pathological changes affect the visual system of PD patients [114]. 

There are a few alterations when considering direct changes to the eye, with the most 

notable being the loss of neurons and dopamine in the retina, leading to reductions in retinal 

dopamine levels [132]. Dopamine is an important neurotransmitter in the retina, as it assists 

in the organization of cell receptor fields and modulates the activity of photoreceptors 

(which are responsible for converting light information to electrical information) [133, 

134]. Cell loss of the retina is the most severe in the peripheral regions; however, thinning 

of the optic nerve also occurs at the retinal fibre layer [132, 135]. In addition to retinal 

alterations, it has been shown in vitro that the iris is not able to contract to the same degree 

as the iris’ of healthy individuals [136].  Central visual abnormalities include abnormal 

energy availability of the primary visual cortex, as individuals with PD see glucose 

metabolism rates reduced by up to 23% [132, 137]. This compounded with reduced 

dopamine levels at the visual cortex, BG, and possibly superior colliculus could be the root 

of abnormal saccade production [138]. Furthermore, the BG is directly involved in saccadic 

eye movements which in turn have anatomical overlapping with smooth pursuits, possibly 

explaining why both are abnormal in PD [114]. Functional changes also occur at the fronto-
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striatal neural network and the temporal-occipital cortex which, can present early in PD, 

leading to impairment in memory tasks and problems [139, 140]. 

1.5 Perception of Displacement, Time, and Velocity 

A primary focus of this thesis is to analyze temporal, displacement and velocity visual 

perceptions in PD patients. The following section will look into the processing of these 

perceptions in healthy individuals, and what is known about their alterations in PD. 

1.5.1 The Perception of Time and Parkinson’s Disease 

The perception of time is a vital component of human life, necessary for navigation through 

space in today's fast paced world. Be it engaging in everyday activities from kicking a 

soccer ball to playing the piano or remembering to pick up a friend from the airport, 

accurate timing is necessary for many aspects of life. However, unlike other biological 

sensory systems, there are numerous neural mechanisms that function together and interact 

with other physiological systems. Here we will discuss neural timing mechanisms, as well 

as the known timing deficits present in PD. 

1.5.1.1 Functional and Neural Timing Mechanisms 

The perception of time does not occur uniformly across all magnitudes of time, with 

multiple systems being used to perceive various timing magnitudes and achieve different 

timing goals [141].  Circadian rhythms are timing mechanisms functioning over the range 

of 24 hours and are largely influenced by the daily light/dark cycles and the control of sleep 

and metabolic cycles [142].  Interval timing of the seconds-to-minutes range is involved in 

decision making, foraging and arithmetic involving multiple steps [141]. Millisecond 

timing is necessary for the accurate control of movements, as well as speech 

generation/recognition, and playing or dancing along to music [141]. These timing 

mechanisms of different magnitudes involve different neural mechanisms to achieve their 

separate goals. The suprachiasmatic nucleus of the hypothalamus being used for the 

circadian clock, coordinating the tissue-specific rhythms through mechanisms such as light 

input and social information (often used for mating periods) [143, 144]. Work investigating 

the neural mechanisms of timing appear to indicate two individual timing circuits. The first 
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being an automatic, discontinuous timing system working in the range of milliseconds that 

is processed by the cerebellum. The second timing system is continuous, controlled by 

conscious thought (requiring the individual’s attention), and is controlled by the BG and 

other interconnected neural regions [141]. Millisecond timing operations at the cerebellum 

are believed to be controlled through long term potentiation/depression and possibly 

intrinsic neural firing properties [141]. However, changes in the cellular activity during 

timing activities of monkeys were also found in the BG, thalamus, prefrontal cortex, and 

the premotor cortex [145]. Although this appears to indicate millisecond timing involves 

the use of many neural systems beyond the cerebellum, the involvement of the oculomotor 

and skeleton-motor effector systems are likely the cause for much of the observed 

involvement from other neural centres [145]. Interval timing uses a wider range of neural 

components, with it necessitating an intact striatum, but not cerebellum or suprachiasmatic 

nucleus; however, both the striatum and cerebellum may be activated simultaneously to 

control different performance aspects [141, 146, 147].  It should be noted that interval 

timing displays a scalar property in that time estimation errors are proportional to the 

magnitude of the estimated time (via a linear relationship) [146]. 

When considering the neuronal method for interval timing (which is the most 

focused physiological timing process), the most common classic internal clock model 

comes from the pacemaker-accumulator model (Fig. 1.3) [141, 149]. In this model, pulses 

are emitted at regular intervals by a pacemaker to be temporarily stored in the working 

memory via an accumulator [150, 151]. During the feedback (reward) stage, the number of 

pulses received from the accumulator for a given time duration is moved from the working 

memory to the reference memory [141, 152].  The number of pulses accumulated for the 

current subjective time are compared to the pulses stored from a past, remembered event 

to estimate the amount of time that has passed in a given situation. The pacemaker-

accumulator model has several advantages to its use: its simplicity encourages its use 

across many species and tasks; it separates clock, memory and decision stages (allowing 

for the mapping of each stage to a neural region and transmitter system); and its success in 

predicting testable timing hypotheses [152–154]. Pharmacological testing was the first to 

demonstrate that the clock stage (which is modulated by dopaminergic agents) and the 

memory stage (which is modulated by cholinergic agents) are separate neural entities [141, 
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152]. Although the pacemaker-accumulator model succeeds in many ways as an internal 

clock model, it is still unclear if it holds much relevance to the brain structures and neural 

mechanisms involved in interval timing. This is exemplified by the model’s implications 

of direct/exclusive connections between the speed of the internal clock and the dopamine 

system, which has been questioned by PD studies and inconsistencies seen in the effect of 

dopaminergic drugs, and dopamine’s involvement in processes beyond internal clock 

speed that affect temporal perception (such as attention) [141, 155–158]. 

 

Figure 1.3: Pacemaker-Accumulator Timing Model 

Summary of the pacemaker-accumulator timing model, in which a pacemaker is constantly 

emitting pulses at a constant rate. When a signal is given or attention is focused on timing 

tasks the switch is turned ON, after which the pulses for the time duration of interest are 

counted by the accumulator and stored in the short-term working memory. This 

information is compared to known time durations that have been stored in the reference 

memory, after which a decision is made regarding the length of the timing duration, 

allowing for its perception. 

 

 

Although the pacemaker-accumulator timing model has been very useful towards 

understanding the neural mechanisms underlying timing, it currently appears to have 

inaccuracies, namely the fact that the BG does not have an exclusive temporal processing 
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role. More current work shows the BG’s role in temporal processing is to monitor the 

thalamo-cortico-striatal circuit’s activity, and to detect certain working memory patterns 

[159–161]. To account for this, the striatal beat-frequency (SBF) model was designed to 

describe timing through the activity of thalamo-cortico-striatal loops, where timing 

depends on the coincidental activation of neurons of the dorsal striatum (which are believed 

to contribute to executive function and decision making) and cortical neural oscillators 

[145, 161, 162]. In this model cortical oscillators are synchronized to a particular timing 

task, changing cortico-striatal transmissions (through long-term potentiation/depression) 

and increasing striatal neuron sensitivity towards the detection of cortical oscillators of the 

specific pattern [163–166]. In the SBF model the dopaminergic neurons of the SNc and 

ventral tegmental area are responsible for the cortical oscillation synchronization and task-

dependent cortico-striatal transmission changes [141, 167]. It was shown that when a 

reward is expected at a certain time, the dopaminergic neurons display characteristic signal 

burst patterns at the time of the expected award, along with sustained activity throughout 

the timing interval [168]. Thus, the SBF model postulates that cortical oscillator 

synchronization is initiated through a dopaminergic burst at the beginning of the timing 

trial, with the sustained activity being caused by an attentional activation of the cortico-

striatal circuits. In this model, updates to the cortico-striatal transmission causes the 

dopaminergic activity burst which occurs at the time of expected reward (i.e. when the 

desired timing is completed) [169]. The SBF model of timing currently appears to an 

adequate model due to its mechanisms being consistent with the postulated neural regions 

involved with timing (frontal cortex and striatum), along with it importantly reproducing 

the scalar property of timing (necessary for accurately predicting human interval timing) 

[145]. Though there are still properties of the model that need to be addressed (namely 

similarities seen between counting and timing [141, 170]), it (alongside the imperfect 

striatal beat-frequency model) still shows great value in interval timing predictions for 

certain timing tasks and pharmacological (namely dopaminergic and cholinergic) 

intervention. 
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1.5.1.2 Basal ganglia and Dopaminergic Involvement in Timing, and 
the Effect of Parkinson’s Disease 

Although the exact neurological mechanisms of time perception are yet to be fully 

understood, it is clear that both the BG and dopamine play a substantial role in interval 

timing [145]. Past pharmacological and animal studies have shown dopamine agonists and 

antagonists to respectively speed up and slow down judgments of time [171]. Furthermore, 

animal studies indicate lesions to the SNc lead to improper timing that can be corrected to 

some degrees through levodopa use, implying the dopaminergic pathway’s importance in 

subjective timing [171, 172]. Animal studies also point to the BG as being a primary 

contributor to interval timing [172]. As PD leads to decreased neural dopamine levels and 

abnormal BG functioning studies regarding PD’s effect on timing have been used to 

increase knowledge on dopamine and the BG’s role in temporal perception. In 50% of time 

estimation studies and 67% of time production studies there were reported deficits in PD 

patients compared to control participants [172]. Levodopa appeared to improve temporal 

perception in some work; although this implies a role of dopamine in timing [172], there 

have been notable discrepancies in which PD patients perform the time perception tasks 

better when OFF levodopa [171, 173]. This might be caused by "dopamine overdose" in 

the frontal-striatal circuits involved in temporal processing as they may not be severely 

affected in early stages of PD. Thus, while the levodopa doses are optimal for correcting 

movement abnormalities, they are detrimental towards timing operations [174, 275]. 

Again, with time reproduction studies, there was not a uniform disruption seen in temporal 

reproduction for PD patients, with 67% of the studies showing PD related abnormalities 

(with the 71% of the studies that show timing differences in the PD also showing 

improvements from levodopa use) [172]. An interesting phenomenon that has been 

observed in PD patients during time reproduction tasks is the "migration effect", in which 

smalltime intervals are overestimated, and smaller intervals are underestimated [173]. With 

regards to temporal discrimination studies (the ability to differentiate stimuli from one 

another), 60% of the studies showed abnormalities in PD patients, with no studies showing 

improvements from levodopa, and one in fact showing medication-based impairments [38, 

172]. Based on past work PD appears to affect timing processes, however these temporal 

dysfunctions are not present in all timing tasks or for certain patient groups. Furthermore, 
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the majority of past work studying temporal perception in PD patients involves the use of 

the motor system, leading to confounding results regarding the observed dysfunction being 

potentially caused by motor or timing deficits. It is very likely that the BG and dopamine 

are involved in timing, as they are key components of the previously described models 

which best describe and predict timing currently, and due to the observed timing deficits 

in PD patients. The positive effect subthalamic DBS has towards improvements in timing 

tasks for PD patients further provides evidence for the BG’s role in temporal processing 

[172]. However, due to the deficits in attention, working memory and motor function 

occurring in PD [2, 176, 177], it is not fully understood what the root cause of timing 

impairment affecting PD patients is. 

1.5.2 The Perception of Displacement and Parkinson’s Disease 

Unlike temporal perception, there have been few studies focusing on visual displacement 

and velocity perception in relation to PD. The neural and visual processes involved in the 

perception of these modalities will be discussed in the following subsections, along with 

the few observations made for velocity and displacement perception in PD.  

1.5.2.1 The Visual System 

Humans have the ability to recognize a specific object in milliseconds, a mechanism that 

is neurally processed via the ventral visual stream [178]. However, the specific 

mechanisms regarding human object recognition is still largely unknown. Before 

discussing the ventral visual processing stream (which is responsible for processing visual 

representations of objects and object features [179]) a brief outline of the visual system and 

how light information is processed will be presented. When light enters the eye, it is 

focused by the cornea and lenses of the eye onto the retina where the light-sensitive cells 

are located [179, 180]. These retinal cells convert light information to electrical 

information, which is then sent to central neural regions and eventually higher visual 

centres [179, 181]. The information is first transferred through the lateral geniculate 

nucleus (LGN), and from thereto the primary visual cortex (V1) where processing occurs 

[179]. It should be noted that atrophy of the LGN was observed in non-demented PD 

patients suffering from visual hallucinations, indicating potential alterations occurring in 
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the early stages of visual processing for some PD patients [182]. Furthermore, some cells 

of the retina are dopaminergic, with decreased dopamine levels being observed in the fovea 

(most neuronally dense portion of the retina) [183].  

The receptive fields of the V1 neurons organize input from groups of retinal cells 

correlating to a patch of the retina (i.e. retinotopic representation). Each of the V1 cells is 

tuned to a specific, simple visual stimulus (such as a line) from a particular portion of the 

retina.  Neuron groups representing a patch of retina compose a hypercolumn, which are 

organized in a grid structure [179]. These hypercolumns are responsible for extracting 

stereopsis (depth using visual information from both eyes), colour, and line orientation 

information for the specific retinal patch it encodes [179]. Although there are no visible 

pathological changes to the V1 of PD patients, there were observed abnormalities in lipid 

metabolism at the V1 of PD patients [184]. Further primary visual dysfunctions in PD 

include impairments in colour discrimination and contrast sensitivity. 

After information is processed by the V1, it will be sent to the higher visual areas 

where it is continued to be processed. The information is initially sent to the V2 and V3, 

which also display a retinotopic representation. It is in these higher visual areas that the 

simple visual features extracted by the V1 are grouped together into objects. Beyond visual 

feature extraction, an individual’s interpretation of the object plays an important role in 

visual perception (via top-down interpretations), with the higher visual areas being 

responsible for relating images to memories of familiar objects [179]. Beyond the V2 and 

V3, there are many more visual processing centres responsible for the interpretation of 

certain attributes of the image that is being perceived. These higher visual centres are 

mainly part of two streams, the dorsal "where" stream along the intra parietal sulcus 

(involved with perceiving where an object is in space and producing movement to a 

particular location in space), and the ventral "what" stream projecting to the inferior 

temporal lobe (which is responsible for the accurate identification of objects) (Fig. 1.4) 

[179]. The complex processing of visual stimuli allows for simple image features to be 

grouped together and accurately perceived by the individual to achieve detailed vision. 
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1.5.2.2 The Ventral Visual Stream, Object Recognition and 
Parkinson’s Disease 

Current evidence points to the ventral visual stream projecting to the inferior temporal lobe 

as the primary neural component involved in object identification [185]. The neurons of 

this stream encoding certain objects use a sparse strategy, in which there are very few 

neurons coding (and firing upon recognition) very particular objects (such as a known face) 

[185].  The inferotemporal (IT) cortex (comprised of V2 and V3 neurons) is composed of 

neurons which recognize patterns of complex visual features, causing a strong, precise 

neuronal response to specific groups of objects (e.g. neurons that excite to images of a 

specific body part). This information is then sent to the lateral occipital complex (LOC), 

which has specific neuron groups that respond to particular object classes (i.e. horses), or 

specific objects of an object class (e.g. neuron(s) of the fusiform face area which respond 

to a particular individuals face) (Fig. 1.4) [179]. Perceptual learning leads to a "filling in" 

of object features by the LOC, so that familiar objects can be viewed in different 

orientations, or with portions visually occluded and still be accurately perceived [186].  

Through the collecting and compiling of simple visual features of an object, the 

ventral visual stream displays selective neuronal firing (with as few as one neuron) to 

accurately identify an object [185]. In this regard, visual displacement information between 

multiple object features is one of the simple visual features that is neurally extracted and 

utilized in perceiving a certain object. The independent features of the object are patched 

together using cues based on displacements between notable object features measured an 

allocentric manner (using external objects as reference points) as well as feature orientation 

[179]. It should be noted that abnormalities in object recognition as well as specific object 

feature recognition (such as facial emotions) have been observed in PD, although 

attentional deficits and working memory deficits question if these findings signify 

abnormalities in the ventral visual stream [187–191]. In this regard, testing simple 

perceptions that are neurally computed earlier in the ventral visual pathway might aid in 

resolving the confounding observations. The IT cortex is implicated in the perception of 

length and orientation through lesion and fMRI studies [292–294]. To accurately perceive 

displacement, one must perceive both the length and the orientation of the displacement. 
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This provides motivation for the current work which looks to analyze simple linear 

displacements in PD, to observe potential deficits, which might indicate abnormalities in 

the IT cortex of PD patients. 

 

 

Figure 1.4: Visual Processing Pathways of the Brain 

Simple visualization of the dorsal “where” and temporal “what” visual processing 

streams responsible for the processing of visual spatial and visual recognition of objects 

respectively. The primary visual cortex (V1) initially receives information from the retina 

and begins to extract visual features from this light information. This information is 

moved to the V2 and V3 where image processing continues, before continuing on one of 

the two predominant visual processing streams for detailed representation of visual 

stimuli. 

 

 

1.5.3 Visual Spatial perception, Velocity perception and Parkinson’s 
Disease 

In order for an individual to move their body or a limb to a certain location in space, they 

must utilize visual information to accurately perceive their surroundings. The visual 

processing pathway involved visually perceiving space and positioning the body 
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accordingly is the dorsal stream, which follows the intraparietal sulcus (Fig. 1.4) [179]. 

There are several neural regions that are involved in the perception of motion, the primary 

contributor being the area MT+ (containing the MT and MSTl/d areas) situated around the 

ascending limb of the inferior temporal sulcus (ITS). Without the MT+ area moving objects 

would appear as still images transporting through space, making accurate perception of 

velocity very difficult [179, 195]. Unlike the ventral visual stream, the dorsal stream 

neurons have large receptor fields, and visual information is distributed across large 

populations of neurons [185]. Although this means the MT+ has poor visual acuity, it has 

great ability to determine object direction and speed and produces efferent motor signals 

capable of eliciting accurate limb movements [179, 185]. Furthermore, the dorsal and 

ventral visual streams share information, allowing for rapid identification and localization 

of objects [196]. However, the reference point used for measuring the spatial location of 

an object differs from that used in object perception, with spatial processing using one’s 

self as the egocentric reference [197]. These egocentric representations allow us to visually 

map space around ourselves for navigation of the body, which has been shown to be 

abnormal in PD [198, 199]. The LGN cells involved in the dorsal visual stream are sensitive 

to low acuity visual motion in a particular direction, sending this information for further 

processing directly to the MT and indirectly through the V2/3 [179]. 

Similar to the lower visual processing centres, the MT is organized in a grid of 

columns that receive input from a patch of retina. The current model of this neural region 

shows the columns further dividing into mini-columns tuned to a particular direction and 

depth of motion, with each cell of the mini column being tuned to a particular velocity 

[179]. Although this neuronal layout has been proven in monkeys, fMRI work on humans 

has not yet proven that the columnar organization further subdivides to specify motion 

direction [200, 201]. From the MT the visual information is sent to the lateral MSTl or 

dorsal MSTd where it is sued to perceive when an object moves (allowing for object 

pursuit) or when the visual background moves (to sense when the perceiving individual 

moves) respectively [201, 202].  The MSTl utilizes smooth pursuits to persistently remain 

focused on the object being tracked.  Oculomotor impairments in PD cause smooth pursuit 

and saccadic dysfunction, which is improved by dopaminergic medication [119, 203]. This 

could however be due to motor dysfunction as opposed to improper saccade efferent 



28 

 

firings. Individuals with PD also display abnormalities in the visual tracking of objects 

[204], which again further provides evidence for impairments in the dorsal visual 

processing stream or instead be caused by motor dysfunction.  Thus, past clinical work has 

shown that processes involving the dorsal visual stream are abnormal in PD, however due 

to movement abnormalities confounding results it is not yet resolved if perceptual 

dysfunction does occur. Evidence for perceptual impairment has been observed in motion 

and orientation perception of moving gradients in PD [128, 205]. These perceptions 

however utilize MSTd information by mimicking the sensation of environmental shift as 

opposed to perceptions involving the movement parameters of an object (processed by the 

MSTl). The accurate perception of object speed is not only important for recreational 

activities, but also for ensuring safety in circumstances using heavy machinery such as 

driving. Findings of driving impairments occurring in PD are potential indicators of dorsal 

stream abnormalities [199, 206, 207], however as this is a complex process involving many 

neural components beyond accurate speed perception of an object further analysis should 

be done to reduce confounding findings. 

1.6 Diagnosis and Monitoring of Parkinson’s Disease 

Though An essay on the shaking palsy by James Parkinson was released in 1817 it was not 

until 1960 that clinical trials began for the use of levodopa in treating PD [208]. Further 

advancements in treating PD symptoms have been made which greatly improve motor 

function, but the outcomes are unreliable for PD non-motor symptoms. Though increased 

knowledge regarding non-motor PD symptoms reveals its significance towards detriments 

in patient quality of life, there are still no therapies aimed at directly alleviating these 

symptoms, and very few clinical evaluations for non-motor symptoms exist. Still, the four 

PD features that are key clinical markers for the diagnosis of PD are resting tremor, rigidity, 

akinesia/bradykinesia and postural instability, even though certain non-motor symptoms 

are recognized as early disease markers [208]. There are numerous PD rating scales that 

provide an evaluation of the motor severity of an individual’s PD. The Hoehn and Yahr 

scale for example provides non-specific assessments of PD progression ranging from a 

score of 0 (non-Parkinsonian) to 5 (immobile unless assisted) [209]. However, the most 

common rating scale used to monitor PD and assess patient impairment is the UPDRS, 
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which is commonly used by clinicians to track disease progression [210].  The UPDRS 

consists of numerous sections; I – Mentation, Behaviour and Mood (assess the presence of 

intellectual and thought impairments, as well as depression); II – Activities of Daily Living 

(analyzes the ability to perform daily activities such as speech, hygiene, walking and 

tremor); III – Motor Examination (examines patient movement ability); IV – complications 

in Therapy (such as dyskinesias and fluctuations), as well as sections relating disease 

severity to modified Hoehn and Yahr staging, and the Schwab and England Activities of 

Daily Living scale (rating out of 100% the patients ability to perform daily activities) [235]. 

Although non-motor symptoms are understood to be significant disease factors 

arising across disease stages, clinical diagnosis primarily uses the cardinal motor symptoms 

of the disease, their response to levodopa, and the exclusion of non-PD motor abnormalities 

[208, 211].  Although the clinical diagnosis of PD is rather straightforward when the 

classical symptoms present early in the disease, many cases arise where current diagnostic 

practices have difficulty (and often fail) with accurate diagnosis [209]. Although 

neuroimaging techniques to assess PD are being explored, there is yet to be enough 

evidence regarding their results to warrant use in clinical applications for the foreseeable 

future [208, 212]. PD diagnosis is currently hindered due to there being vast disease 

phenotypes, while still predominantly focuses on the core motor symptoms, with the 

insufficiencies greatly affecting diagnosis and monitoring of non-motor symptoms. 

Although the UPDRS (the current PD monitoring gold standard) does analyze some non-

motor features of the disease it does not encompass the wide range of symptoms. A non-

motor symptom questionnaire was created to help address these concerns, allowing for 

patients to report their non-motor symptoms which can allow for their monitoring [4].  

Other questionnaires and scales such as the PDQ-39 scale display effectiveness in 

monitoring non-motor symptoms but have little efficacy regarding disease diagnosis [4]. 

Scales such as the Hamilton Depression Score and Epworth Sleepiness Scale are able to 

assess non-motor dysfunction that occur in PD, but are not specific to PD, again limiting 

their effectiveness with disease diagnosis. As the sensory symptoms of PD have been 

shown to appear across disease stages (sometime arising before motor symptoms), it seems 

that they would be rational targets for the diagnosis and monitoring of PD. Unfortunately, 

there are yet to be reliable clinical evaluations of PD sensory symptoms that aid in disease 
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diagnosis and monitoring [213]. As optimized patient treatment occurs when accurate 

symptom diagnosis and management takes place as early as possible, there are clear needs 

for improved clinical diagnostic techniques to account for the heterogeneous nature of PD. 

1.7 Rationale 

PD presents itself in different manners for different individuals, leading to different 

pathologies and difficulties that the patients must manage. Although the non-motor 

symptoms of PD are not as visible as the motor symptoms, they have been shown to have 

at least as substantial an impact on patient quality of life. However, the breadth of non-

motor symptoms is not fully known, elevating difficulties with diagnosis, monitoring and 

treatment of the disease. This is observed through use of dopaminergic medications and 

DBS therapy to treat PD symptoms, as the marked improvements seen on motor 

functionality are not carried over to the non-motor symptoms that display a much more 

varied therapy response. Perceptual deficits, including those involving visual systems have 

been observed in PD across all stages, often predating motor symptoms. Accurate 

processing of visual information is a fundamental component of countless day to day 

activities and is necessary for the accurate perception of the world around us. Accordingly, 

visual time, speed, and displacement perceptions are used to safely operate machinery, 

navigate space, carry out daily tasks such as driving, and accurately identify objects. 

Abnormalities in processes utilizing these visual modalities suggests perceptual 

impairment, however these deficits could be due to the known sensorimotor integration or 

motor impairments occurring in PD, warranting further analysis. 

Although past decades have seen great increases in known information of non-

motor PD symptoms, there are still no adequate methods of diagnosing and monitoring 

many of the symptoms. However, this should be a priority of disease management as it will 

not only lead to improved treatment, but also could assist in the early diagnosis and 

monitoring of PD as a whole. Since some perceptual symptoms such as olfactory 

disturbances are known often arise before motor symptoms, diagnostic procedures based 

on these perceptual modalities show promise in assisting with PD diagnosis and 

monitoring. As access to technology becomes more wide-spread and cost effective, the 

development of disease monitoring software would come at a time allowing for it to be 
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accessible to vast amounts of individuals, allowing for more convenient, cost effective 

neurological assessment. Considering visual stimuli, designing computer-based diagnostic 

software for these perceptual modalities (should they be affected in PD) would prove a 

much simpler task than diagnostic tools for perceptions such as olfaction, further increasing 

usage potential and accessibility for those in need. Furthermore, due to the heterogeneous 

nature of PD, assessment of the disease from multiple perspectives would lead to 

improvements with its clinical analysis, and thus the patient group as a whole. Based on 

the literature review given above for PD and PD related therapies and clinical assessments, 

as well as the neural basis of visual time, displacement and velocity perception, this thesis 

explores the following hypothesis. 

1.8 Hypothesis 

It is hypothesized that the visual perception of velocity, time, and displacement is abnormal 

in PD patients compared to non-PD individuals, and that the use of levodopa medication 

or DBS therapy for treating PD alters the patients’ perceptual abilities for these tested 

modalities. 

1.9 Objectives 

1.9.1 Objective 1: Are movement-independent visual perceptions 
abnormal in Parkinson’s Disease? 

As discussed throughout this chapter, perceptual abnormalities commonly occur in PD 

across disease stages, however the extent of impairment is not known. We have conducted 

various studies which analyze visual temporal, displacement, and velocity perceptual 

abilities of PD patients. These visual modalities are important contributors to the accurate 

perception of the world visually, and impairments in any would substantially degrade 

patient quality of life and help explain certain phenomena occurring in PD. This work 

aimed to analyze base visual perception abilities independent from any movements that 

could confound results, allowing for the study of visual perceptual ability as opposed to 

motor functioning. Two-alternative forced choice experiments were conducted for visual 

temporal, displacement, and velocity perception. The methodology and outcomes of these 

studies are presented in Chapters 2, 3, and 4 respectively. 
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1.9.2 Objective 2: What is the effect of common PD treatments on 
visual perception ability?  

Previous discussions in this chapter have noted the inconsistent effect of levodopa and DBS 

therapies in the treatment of non-motor PD symptoms, with the current therapies often 

having no beneficial or detrimental effects on these symptoms. To study how popular 

current PD treatments affect the studied perceptions, both levodopa pharmaceuticals and 

DBS were examined in terms of efficacy towards improving visual temporal, displacement, 

and velocity perception. PD patients using these therapies conducted the experiment twice, 

both ON and OFF of their respective treatments. Furthermore, early stage de novo PD 

patients who were not using any PD therapy at the time of testing also conducted the 

experiments, providing insight on how these visual perceptions are affected early in the 

disease progression. 

1.9.3 Objective 3: Development of a computer-generated 
graphical tool for analysis of visual perceptions 

As previously noted, there is a lack of diagnostic methods that address the non-motor 

symptoms of PD disease. Due to the heterogeneous nature of PD and some non-motor 

(including sensory) symptoms presenting before motor symptoms, diagnostic tools 

assessing non-motor PD symptoms would provide valuable clinical tools to assist in the 

accurate diagnosis and monitoring of the disease. In the current work, a computer-

generated graphical tool was designed using the Matlab/Simulink environment to analyze 

and quantify visual perceptions. In this platform, the toolbox was designed to recreate 

specified times visually, as well as use information on the amount of pixels on the testing 

monitor that correlate to certain distances in cm, allowing accurate displacement distances 

and velocities (in terms of the quantity of pixels being displaced and pixels per second 

respectively) to be achieved. Through this, it was possible to display on the computer 

monitor accurate measurements for the specific perceptual, allowing for the design of 

perceptual tests and clinical applications (described in subsequent chapters). Furthermore, 

the ability to present successive stimuli based on experimenter input (for example by 

clicking the left mouse button) was a necessary feature of the tool as it allowed the 

experiments to progress with customized rates, based on the patient’s response rate and 
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desired frequency and duration of break periods. Our goal was to validate the use of the 

graphical tool (or a similar tool) for the assessment of visual perceptions, so that it can be 

successfully used in the assessment of perceptual ability and be further developed into a 

clinical tool for use in assessing visual perceptions.   

 

 

1.10   Thesis Outline 

The chapters are as follows: 

• Chapter 2 assesses the visual temporal perception abilities of PD patients using 

time magnitudes in the range of seconds and milliseconds 

• Chapter 3 assesses the visual allocentric displacement perception abilities of PD 

patients  

• Chapter 4 assesses the visual object velocity perception abilities of PD patients  

• Chapter 5 provides conclusive statements for the thesis, as well as an insight into 

the continuation of the work in the future. 

Each of chapters 2, 3, and 4 analyzes the therapeutic effect of levodopa and DBS on the 

respective perceptual modality and use the computer-generated graphical tool to assess 

perception. 
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Chapter 2  

2 Differential Temporal Perception Abilities in Parkinson’s 
Disease Patients Based on Timing Magnitude 

This chapter contains the text of a paper (with the same title) that is currently being 

considered for journal publication. This work has been published in its preliminary form 

in the 9th International IEEE EMBS Conference on Neural Engineering, San Francisco, 

USA, 2019 conference proceedings, titled “Visual Temporal Perception in Parkinson’s 

Disease Analyzed Using a Computer-Generated Graphical Tool”. 

2.1 Introduction 

Parkinson’s Disease is a progressive neuro-degenerative disease generally characterized 

by neuronal death in the BG, leading to heterogeneous motor abnormalities [1, 2]. Non-

motor symptoms are also present in the vast majority of PD patients throughout all disease 

stages [3, 4]. Although these non-motor symptoms were classically not considered 

substantial factors of PD, they are increasingly being shown to contribute to decreased 

patient quality of life, in many cases to a greater degree than motor-symptoms [3–7]. 

Numerous common PD non-motor symptoms such as olfaction disturbances and rapid eye 

movement sleep behaviour disorder frequently predate the appearance of motor symptoms 

[8, 9]. Accordingly, extensive work has studied the use of non-motor symptoms as early 

disease markers; however, this has not yet lead to reliable methods for the early detection 

of PD [10, 11]. Although non-motor symptoms are known to be both important factors of 

PD and in some cases potential disease markers, accurate diagnosis and treatment of these 

symptoms remains a challenge [12]. Further shortcomings in effective treatment and 

monitoring of non-motor features arise from gaps in knowledge regarding the extent of 

these symptoms. 

Of the studied non-motor deficits occurring in PD, abnormalities in some 

perceptual processes have been observed [4]. One of the perceptual abnormalities that has 

been noted in PD is the disruption of temporal perception and temporal processing [13–

17]. However, like many studies analyzing perceptions in PD, past assessments of timing 

have often required patient movement. As movements are impaired in PD, the timing 
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aspects of these studies are confounded and the main source of the observed deficits is 

unknown [14, 18–20]. It is not clear whether the reported deficits in perceiving the fabric 

of time affecting PD patients arise due to impaired temporal processing, impairments in 

motor timing, or both. The current study sought to address these issues by isolating 

temporal perception from related motor actions allowing for its independent analysis. To 

do this, a novel computer-generated graphical tool was developed and utilized to 

quantitatively assess visual temporal discrimination independent of participation 

movement in patients with PD. As sensory symptoms like olfaction deficits (which arise 

in up to 90% of PD patients) are noted as potential biomarkers for PD [4], there is the 

possibility of other perceptual PD biomarkers. Furthermore, past work has shown abnormal 

neural connectivity occurring during attention-demanding temporal perception tasks is a 

distinguishing factor between PD patients with no clinically significant cognitive 

impairments and control participants [21]. Thus, temporal perception can potentially be 

used in the assessment and tracking of PD. Accordingly, a visual computer-based graphical 

tool was designed to help track and diagnose PD, providing a simple assessment that can 

be used in any setting. 

Further shortcomings of work studying temporal perception in PD are seen in few 

perceptual discrimination (ability to discern between two stimuli differing in magnitude) 

studies in favour of detection (ability to detect stimuli apart from a baseline) tasks, with 

many past discrimination work involving goal-directed movements and one neural timing 

mechanism (i.e. interval timing in the range of seconds) [21, 22]. This is exemplified in 

research conducted by Artieda et al. that concluded those with PD display deficits in both 

motor timing tasks and time estimation tasks across multiple sensory modalities [14, 19]. 

Temporal discrimination is used daily in everyday activities as it is involved in processing 

subjective timing (an individual’s perception of the amount of time that has passed since a 

certain event) [23, 24]. Based on current subjective timing models, different neural regions 

are responsible for timing operations depending on the timing scale [24, 25].  The BG for 

example is believed to be an important component in the perception of time in the range of 

seconds to minutes, while little evidence points to its involvement at the millisecond timing 

range [24]. As PD does not cause dysfunction at all neural regions—but substantial 

abnormalities in some regions such as the BG—it is possible that timing processes of scales 
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utilizing neural regions heavily affected by PD will be affected, whereas other timing scales 

will not be heavily affected in PD. For the reasons discussed above, the computer-generated 

graphical tool was designed to test visual temporal discrimination abilities of PD patients 

in the range of milliseconds and seconds to address these knowledge gaps. 

The primary patient group for the study consisted of mid-stage PD patients using 

levodopa oral medication (half-life: 0.5 - 1.5 hours) to restore neural dopamine levels.  

Levodopa’s reported effect on temporal perception of PD patients has confounding results, 

with some work suggesting levodopa improves internal clock function of PD patients [19], 

and others suggesting its use leads to temporal impairments [26, 27].  Levodopa generally 

produces positive outcomes for the movement abnormalities of PD (such as tremor and 

bradykinesia), however recent MRI work suggests that it also enhances the weakened 

connectivity between the cortico-striatal-thalamo-cortical (CSTC) motor circuit that is 

involved in the control of timing and movement [28, 29]. Dopamine’s influence on timing 

events extends to internal time keeping allowing for accurate and precise time estimations, 

reproductions, and perceptions, as well as direct modulation of CSTC connections involved 

in motor timing [18, 30–32]. Furthermore, the ideal dosage of dopamine for treating PD 

motor symptoms contributes to the "migration effect" occurring in PD, in which small time 

frames are overestimated and large time frames are underestimated [33]. Levodopa in 

general has a variable effect for non-motor PD symptoms, often eliciting no effect or 

detrimental effects [5, 34]. Due to levodopa’s confounding outcomes in past work and the 

inclusion of movements in past PD temporal studies, the effect of levodopa on visual 

temporal perception is still not known. An additional two PD patient groups consisting of 

fewer patients were also tested as case study groups. One of these groups consisted of early-

stage de novo patients (patients who are not yet using any PD therapies [35]). The third 

patient group that was studied had mid- to late-stage PD and exclusively utilized DBS of 

the subthalamic nucleus. The outcome of DBS use is similar to that achieved from levodopa 

use, leading to substantial motor improvement [36]. Also, like levodopa, the non-motor 

effects of DBS therapy are variable and, in many cases, unknown (such is the case with 

temporal perception).  Considering the above, the effect of levodopa and DBS therapy on 

visual temporal perception is still not fully understood, even though this perception is 

critical for interacting in dynamic environments. Patients who were using a PD therapy 
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were studied ON and OFF their respective treatments to analyze their efficacy regarding 

temporal perception. 

The main unit used to quantify an individual’s perceptual abilities was the 

difference threshold (DL; minimum magnitude change needed to differentiate a stimulus 

from a standard stimulus). Two standard stimuli (0.5 seconds and 1 second) were used to 

test temporal perception for timing magnitudes in the range of milliseconds and seconds 

(via interval timing) respectively. These standards were chosen as millisecond and interval 

timing utilize different neural regions and mechanisms [24], we wanted to analyze 

perception of PD patients at both of these timing magnitudes. Furthermore, attentional and 

memory deficits that often affect PD patients would be exacerbated by the testing of greater 

time magnitudes [37–39]). Longer durations would also substantially increase testing 

times, further risking invalid data due to patients experiencing increased fatigue leading to 

attentional slips. 

 In addition to perceptual sensitivity (via DL), this study sought to analyze visual 

temporal perception coherency in PD patients according to Weber’s Law. Work done by 

Weber and Fechner [40, 41] led to Weber’s Law, stating that a person’s difference 

threshold (DL) is directly related to the magnitude of the standard stimulus for a given 

sensory modality. The ratio of DL to a standard stimulus is constant across different 

magnitudes of stimuli, displayed through the Weber’s Fraction (WF; defined as WF = 

DL/S, where S represents the standard stimulus magnitude). The majority of perceptions 

analyzed using WF have validated Weber’s Law, with exceptions seen at extremely low 

stimuli magnitudes [40, 41]. The effect of PD on temporal perception coherency has not 

yet been observed, motivating this study component. Many past works have shown timing 

abnormalities to occur in PD, although several involve motor timing or perceptions linked 

to movements. Furthermore, the BG appears to have a central role in timekeeping (in the 

seconds to minutes range) that is directly modulated by dopamine [24, 42–44]. The BG is 

theorized to increase the frequency of pulsator pulses that are collected and measured to 

determine time durations [30, 32]. Increased dopamine levels in the CSTC circuit also 

reduces uncertainties in time estimations [32]. Alterations in BG activity (due in part to 

dopamine deficiency) appear to cause disruptions in the internal clock’s ’core timer’, motor 
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timing, and decision making involved in time perception [13, 22, 45, 46]. The above 

mentioned notes lead to our primary chapter hypotheses that (A) Visual temporal 

perception (including perceptual coherency) of PD patients is impaired compared to 

control participants, and (B) levodopa will reduce the visual timing disturbances in PD 

patients by restoring BG function, thus tightening the boundaries of temporal function. 

Case studies involving small patient groups were also conducted to see the effect that DBS 

has on temporal perception, as well as to analyze if visual temporal perception is abnormal 

in early-stage de novo PD patients. As DBS improves BG function (acting similarly to 

levodopa), it is also hypothesized that it will provide benefits to a PD patient’s visual 

temporal perception.  Due to the BG still being impaired to some extent in de novo patients, 

it is hypothesized that they will display impairments in visual temporal perception. This 

chapter systematically analyzes visual temporal discrimination at different timescales in 

PD patients independent of goal directed movements that could influence participant 

timing ability, while evaluating the effect of the two common PD therapies and analyzing 

the coherency of the perceptual capability being studied. 

2.2 Results 

2.2.1 Demographic Data and PD-Related Clinical Characteristics 

A total of 37 PD patients were tested: 25 (22 male, 3 female) who use Levodopa, 6 (4 male, 

2 female) who use DBS, and 6 (4 male, 2 female) de novo patients not currently using any 

medication for their PD; as well as 17 control participants (14 female,3 male). All 

participants were residing in the Southern Ontario region at the time of testing. Clinical 

and demographic data related to the PD patients are shown in Table 2.1. Oculomotor 

examination was conducted on all patients by an experienced clinician, and only those 

without deficits were recruited.  

2.2.2 Temporal Perception: Healthy vs. PD 

DL was used to quantify perceptual abilities, with smaller DLs signifying better perceptual 

acuity (and thus ability) (Fig. 2.1). Each participant had two cumulative Gaussian 

distribution functions produced, one for each of the standard stimuli. The slope of the 

function is inversely proportional to DL, with steeper slopes indicating smaller DLs, and 
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thus increased perceptual abilities (Fig. 2.2). The unpaired (independent samples) t-test 

was used to compare DLs of control and PD participants both ON and OFF of levodopa. 

Table 2.1: Demographic and clinical data for PD patients.  

Abbreviations: MoCA - Montreal Cognitive Assessment; UPDRS -Unified Parkinson’s 

Disease Rating Scale 

Demographic Data Levodopa DBS De Novo Control 

Number  25 6 6 17 

Age (years) 70.04 ± 6.80 55.16 ± 8.99 74.17 ± 3.97 67.71 ± 8.82 

Sex (m/f) 22/3 4/2 4/2 3/14 

Years Since Diagnosis 6.88 ± 4.36 11.5 ± 4.04 3.12 ± 2.0 N/A 

Clinical Data 

MoCA (out of 30) 26.68 ± 2.17 26.67 ± 3.08 27.83 ± 2.14 27.23 ± 1.59 

UPDRS motor sub-scale 

OFF Therapy 

23.92 ± 6.69 34 ± 10.51 22.33 ± 7.91 N/A 

UPDRS motor sub-scale 

ON Therapy 

14.72 ± 6.07 22.33 ± 7.91 N/A N/A 

UPDRS motor sub-scale 

OFF vs. ON Difference 

9.20 ± 5.09 21 ± 5.62 N/A N/A 

 

Statistical significance was achieved with values of p ≤ 0.005. A datum point was 

considered an outlier and not considered for statistical evaluation if it was greater than 1.5∗ 

Inter−Quartile Range (IQR) above the third quartile, or less than 1.5 ∗ IQR below the first 

quartile.  

When comparing the DLs for the standard stimulus of 0.5 seconds for all individuals 

with PD (n = 37) to the control subjects, there were no significant differences in temporal 

perception between control subjects (average DL: 0.1867 ± 0.11) and both PD patients 

OFF their respective therapies (average DL: 0.2150 ± 0.076; p-value = 0.280) and ON their 

therapies (average DL: 0.2181 ± 0.086; p-value = 0.259) (Fig.  2.3). However, 
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Figure 2.1: Example Cumulative Gaussian Distribution functions regarding temporal 

perception used for subject analysis. Subject DL was analyzed by subtracting the Point 

of Subjective Equality (PSE) from the Upper Threshold (UT; or subtracting the Lower 

Threshold [LT] from the PSE). UT and LT are the points of the function which the subject 

answered correctly 75% of the time for a given standard stimulus. Larger DLs signify 

decreased perceptual sensitivity. 
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Figure 2.2: Gaussian distributions of temporal perception showing perceptual 

performance of individual participants. Categorized via disease state and standard 

stimulus. Curves are colour coded based on the participants DL (which is inversely 

proportional to function slope) for a certain condition. Curves that are more blue belong to 

participants displaying lower DL’s (greater slopes) and thus having better perceptual 

abilities, with red/orange curves signifying the opposite 

 

when comparing the DLs of control participants for the standard stimulus of 1 second 

(average DL: 0.2233 ± 0.068) to all PD patients, the PD patients OFF their respective 

therapies (average DL: 0.3678 ± 0.130 had significantly greater DLs (p-value < 0.001). 

When PD patients were ON their therapies (average DL: 0.3789 ± 0.14) they also displayed 

significant increases (p-value < 0.001) in DLs for the standard stimulus of 1 second 

compared to control participants (Fig. 2.3). A note on figure 2.3 and subsequent figures 

presented in this thesis, in some cases the y-axis of sub-figures differ from one another. 

The sub-figures with differing y-axis do not have data that is compared to one another, 

instead they contain data from a specific participant group with a certain therapeutic 

condition while providing focus on values of interest. 

As can be seen in Fig. 2.4A), PD participants using levodopa as their PD therapy 

showed insignificant (p-value = 0.434) differences of DLs (average DL: 0.2101 ± 0.083) 

compared to control participants (average DL: 0.1867) when OFF levodopa at the standard 

stimulus of 0.5 seconds. When ON levodopa, PD participants again showed insignificantly 
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(p-value = 0.345) differing DLs (average DL: 0.2176 ± 0.098) compared to control 

participants at the standard stimulus of 0.5 seconds (Fig. 2.4A). For the standard stimulus 

of 1 second, PD participants OFF levodopa displayed significantly greater (p-value = 

0.003)  

 
Figure 2.3: Temporal perception difference thresholds of all PD patients (n = 37) 

regardless of treatment state compared to control participants. The standard stimulus 

of 0.5 seconds is displayed on the left, and 1 second on the right; with boxplots related to 

PD patients OFF and ON their respective therapies. The red lines are the median DL for 

each group. The bars represent the data spectrum. PD patients did not show any 

impairments in temporal perception at the standard stimulus of 0.5 seconds ON or OFF of 

PD therapies. However, there were significant impairments seen at the standard stimulus 

of 1 second OFF PD therapies (p-value <0.001) and ON PD therapies (p-value < 0.001). 

 

 DL’s (average DL: 0.3351 ± 0.024) compared to the control participants (average DL: 

0.2233). Again, when using levodopa, similar results were seen, with PD participants ON 

levodopa displaying significantly greater (p-value < 0.001) DL’s (average DL: 0.3806 ± 

0.14) compared to the control participants (Fig. 2.4B). 

 It should be noted that both the DBS and de novo PD groups have relatively small 

n-values (n = 6 each). Thus, the statistical evaluation that was conducted on these groups 

should serve as observations of interest for these particular groups. The statistics do not 

necessarily represent these patient populations, however the trends seen do provide insight 
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to the temporal perception abilities of these groups, providing interesting case studies and 

rationale to further expand testing to support larger patient groups. Participants with PD 

who were utilizing DBS therapy in general displayed similar results to PD participants 

using levodopa.  At the standard stimulus of 0.5 second PD participants OFF DBS 

 

Figure 2.4: The difference thresholds separated by individual therapies obtained 

through temporal perception examination The standard stimulus of 0.5 seconds is 
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displayed on the left, and that of 1 second on the right. The redlines are the median DL for 

each group. The bars represent the data spectrum. Regarding the standard stimulus of 0.5 

seconds, there were no significant differences in DLs observed between PD patients OFF 

and ON levodopa and DBS compared to controls. De Novo PD patients did not display 

significant differences in DL compared to controls as well. Use of levodopa and DBS 

therapies did not lead to significant changes in the DLs of PD patients. For the standard 

stimulus of 1 second, significant differences in DL were observed between PD patients 

OFF and controls (p-value = 0.003), as well when ON levodopa and controls (p-value < 

0.001) were also seen. PD patients using DBS displayed significant increases in DL when 

OFF DBS (p-value < 0.001), however when ON DBS no significant DL increases were 

seen when compared to controls. De Novo PD patients also displayed significantly greater 

DLs than controls (p-value = 0.002) at the standard stimulus of 1 second. No significant 

differences were seen when PD patients were administered their respective therapies at the 

larger standard stimulus of 1 second. 

 

displayed insignificant (p-value = 0.276) DL differences (average DL: 0.2460 ± 0.076) 

compared to control participants (average DL: 0.1867). When ON DBS, the PD 

participants also displayed insignificant (p-value = 0.393) DL differences (average DL: 

0.2290 ± 0.071) at the 0.5 second standard stimulus compared to controls (average DL: 

0.1867) (Fig. 2.4C). Like participants using levodopa, at the larger tested standard stimulus 

magnitude (of 1 second) PD participants OFF DBS displayed significantly greater (p-value 

< 0.001) DLs (average DL: 0.5062 ± 0.14) compared to the control participants (average 

DL: 0.2233). However, when ON DBS, no significant differences (p-value = 0.018) were 

seen between the means of PD participants ON DBS (average DL: 0.3873 ± 0.22) 

compared to controls (average DL: 0.2233) at the larger temporal magnitudes of 1 second 

(Fig. 2.4D). 

The third PD group that was tested consisted of de novo PD patients who were not 

undergoing any treatment for their PD at the time of testing. At the smaller tested standard 

stimulus of 0.5 seconds, the de novo PD patients showed did not significantly differ (p-

value = 0.633) in mean DL (average DL: 0.2093 ± 0.043) compared to control participants 

(average DL = 0.1867) (Fig. 2.4E). However, as with all other PD patient groups there was 

significant increases (p-value = 0.002) seen in the DLs of de novo PD patients (average 

DL = 0.35565 ± 0.021) compared to control participants (average DL: 0.2233) (Fig. 2.4F). 
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2.2.3 Effect of Levodopa and Deep Brain Stimulation on Temporal 
Perception 

To analyze the effect that levodopa and DBS has on the temporal perception of PD 

participants, the paired two-tailed T-test was used, with statistical significance being 

achieved with p-values ≤ 0.05. The use of levodopa did not elicit any significant effects on 

temporal perception for the PD participants using the therapy. At the smaller tested 

magnitudes of time using the standard stimulus of 0.5 seconds the use of levodopa did not 

significantly alter patient DL compared to when the participants were OFF levodopa (p-

value = 0.707) (Fig. 2.4A). At the greater tested magnitudes (using a standard stimulus of 

1 second) there were no significant differences (p-value = 0.074) seen when levodopa was 

used, however a potential trend may be present regarding the increase of participant DL 

when ON levodopa compared to when OFF (Fig. 8B). Similar to levodopa, the use of DBS 

therapy did not elicit significant changes in patient temporal perception. With regard to the 

smaller standard stimulus (0.5seconds), the use of DBS did not lead to significant 

alterations between participants DLs (p-value = 0.257) (Fig. 2.4C). At the standard 

stimulus of 1 second there were no significant differences (p-value = 0.123) in DL when 

DBS was turned ON vs. OFF, however again a potential trend regarding the effect of DBS 

may be present regarding DL improvement when the patients DBS device was turned ON 

(Fig. 2.4D). A note of interest, when comparing a participants DL (considering all 

participants with PD) OFF their respective therapies to the UPDRS subsection III scores 

there were significant correlations at both the standard of 0.5 seconds (R = 0.570; p-value 

< 0.001) and the 1 second standard (R = 0.339; p-value = 0.050). When PD patients were 

using their respective therapy however, there were no significant correlations between an 

individual’s DL and UPDRS section III score for both the 0.5 second standard (R = - 0.131; 

p = 0.483) and the 1 second standard (R = 0.085; p-value  = 0.655). 

2.2.4 Temporal Perception Coherency 

To analyze the perceptual coherency of participants, the WF was calculated at both 

standard stimuli magnitudes. In normal, healthy conditions, it is expected that there will be 

strong correlations between the WFs for the different standard stimuli (as an individual’s 

WF is constant across standard stimuli magnitudes). To analyze this in study participants, 
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Pearson correlation coefficients were applied to compare the similarity between WFs at the 

two tested standard stimuli. Note that in perfectly idealized conditions the slope of the line 

of best fit used in calculating the Pearson correlation coefficient (R) will be 1 (as the WF 

of both the y- and x-axis’ are the same), will have an axis intercept at (0,0), and R will 

equal 1. Deviations in the slope and the y-intercept of the line of best fit will lead to 

decreases in R, signifying abnormal relationships between WF of different standard stimuli 

and thus abnormal perceptual abilities across participant groups. Statistical significance 

was achieved with values of p ≤ 0.05. For the control group there were very strong WF 

correlations between the two tested standard stimuli (R: 0.932, p-value < 0.001).  Although 

not as 

 

Figure 2.5: Correlations between participant WF at the standard stimuli of 0.5 and 1 

seconds. Points displaying high similarity between their x and y values signify that the 

participant displayed little to no difference in the WF values at different stimulus 

magnitudes, and thus are in accordance with Weber’s Law. Correlation plots of DBS and 

de novo patients are not shown due to small sample sizes (n = 6 for each group). 

 

strong of a correlation was seen in all PD patients OFF their respective therapies, they still 

displayed significant, strong correlations between the WF at different standard stimuli 
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magnitudes (R: 0.648, p-value < 0.001). When all PD patients ON their respective therapies 

were analyzed, significant correlations were also seen between WFs (R: 0.362, p-value = 

0.045), however the correlation was not as strong as when OFF PD therapy. When looking 

at PD patient groups separated by PD therapy usage, PD participants OFF levodopa also 

showed strong WF correlations between the two tested standard stimuli (R: 0.612, p-value 

= 0.001). However, when these PD patients were ON levodopa they did not display 

significant correlations between their WFs at the two tested standard stimuli (R: 0.325; p-

value = 0.112). For PD participants using DBS, no significant correlations for the WFs 

between standard stimuli were observed in OFF (R: 0.635, p-value = 0.176) and ON (R: 

0.608, p-value = 0.200) DBS states. De novo PD patients did not show any significant 

correlations between the WFs of the two standard stimuli (R: 0.691, p-value = 0.129) as 

well (Fig. 2.5). 

2.3 Discussion 

The current work showed overall that individuals with PD displayed impairments in the 

tested visual temporal discrimination task (regardless of disease duration) compared to 

healthy controls. In addition, levodopa and DBS therapies were shown to elicit minimal 

effect on the temporal discrimination, and, perceptual coherency was generally disrupted 

in PD patients. It should be noted that the average age of DBS patients was significantly 

lower than that of the levodopa, de novo and control participant groups. The effect of age 

did not appear to affect a participants DL as no correlations were seen between a 

participants age and DL. Furthermore, the duration of PD for DBS patients on average was 

significantly greater than the Levodopa and control participant groups, which is assumed 

due to them being at late stages of the disease. Interestingly, both OFF and ON therapy for 

both the 0.5 and 1 second standard stimuli significant correlations between a patient’s years 

since PD diagnosis and DL were seen. It should be noted, the statistical findings for the 

DBS and de novo groups should not be considered conclusive evidence for the temporal 

perception findings in these groups due to their small sample sizes. Instead, these case 

studies provide an interesting view on how patients at different disease stages and utilizing 

different treatments are affected with regards to temporal perception ability. The main 

findings of this study are in-line with past work showing impairments in time perception 
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and processing for PD patients, as well as work signifying the BG’s importance in temporal 

perception at specific time magnitudes [14–17, 19, 20, 48].  The current study however has 

observed these impairments independent of task-related patient movement, as well as 

differential perceptual ability based on the scale of time that was used during testing. It 

should be noted that these impairments are not attributed to abnormalities in oculomotor 

control, deficits in visual acuity, or clinically diagnosed cognitive deficits common in PD 

(such as Parkinson’s Disease Dementia [PD-D] or Parkinson’s Disease related Visual 

Hallucinations [PD-VH]) as participants were tested diagnostically for these symptoms. 

Furthermore, it is unlikely that the observed deficiencies seen in PD subjects were due to 

deficits of attention or working memory which commonly affect persons suffering from 

PD [49], as there was no deficit seen in the perception of time at the smaller tested 

magnitudes. Thus, the observed temporal perception impairments are likely due to 

abnormal timing processes occurring in PD. 

Subjective timing processes for different time scales achieve different goals and are 

controlled by different neural regions [23, 24]. In this regard, timing in the range of 

milliseconds is responsible for proper motor control, speech recognition and production, 

and playing music [50–52].  The cerebellum has been shown to be the primary neural 

structure involved in millisecond timing through cerebellar lesion studies of motor timing 

and rapid, discontinuous timing tasks, with neuroimaging studies providing further 

evidence [53–56].  Furthermore, based on current research, there is no conclusive evidence 

that the BG are involved in neural timing in the range of milliseconds [57]. The current 

work observed no vision-based temporal perception impairments at the smaller tested 

standard stimulus (utilizing time scales only in the millisecond range) in PD participants, 

coinciding with current knowledge regarding subjective timing in the range of 

milliseconds. Although connections between the cerebellum and BG exist [58], there has 

been no evidence suggesting the BG’s involvement in millisecond timing, which is further 

confirmed by the results in the current study. Timing in the range of milliseconds is 

however important for the control of motor functions and motor timing, which are known 

to be impaired in PD [20, 23, 24, 59]. These motor timing impairments seen in previous 

studies can be attributed to abnormal motor function occurring in PD, as suggested by the 

current study and past work comparing motor timing in PD patients and people with 
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cerebellar lesions [60]. Interestingly, it was previously shown that millisecond timing was 

heterogeneously impaired in some (but not all) PD patients [61], however as all tasks 

involved motor timing these observed abnormalities likely indicate heterogeneous motor 

timing in the millisecond range for PD patients. The PD patients tested in the current study 

did show correlations between perceptual impairment and disease duration for both the 0.5 

and 1 second standards. This could indicate that at earlier stages of the disease when the 

BG is the predominantly affected neural region that timing processes utilizing the BG are 

impaired.  As the disease progresses and spreads to other neural regions impairments in 

timing processes that don’t involve the BG might occur (such as millisecond timing). 

However, this could also be caused by a general increase in impairment (perceptual or 

otherwise) occurring as PD progresses. The core findings of the current study appear to 

confirm that timing processes in the scale of milliseconds independent of motor functions 

are not impaired in PD, providing further evidence that the timing control elicited by the 

cerebellum at this scale functions independently of the BG. 

Timing processes in the range of seconds to minutes utilize the interval timing 

method, which is believed to involve attention of current events and memories of past 

events to estimate time duration [24].  Interval timing utilizes multiple neural regions 

including the BG, with the SNc (dopamine producing cells of BG that experience mass 

neuronal loss during PD) modulating timing processes of the Striatum [24, 48, 62]. With 

this considered, past findings of abnormal temporal production, reproduction, and 

estimation in PD patients aligns with the postulated interval timing models largely 

involving the BG [14, 19, 20, 59, 63]. At the larger tested magnitudes (standard stimulus 

of 1s), patients utilizing levodopa (when both ON and OFF), as well as de novo patients, 

and DBS patients OFF stimulation displayed significant impairments in temporal 

perception compared to control participants, with potential trends regarding impaired 

temporal perception for DBS patients ON therapy also being observed.  These findings 

demonstrate that visual temporal discrimination independent of movement is indeed 

abnormal in PD, yet there are limitations on these abnormalities based on the BG’s role as 

an internal clock.  Interestingly, observations demonstrating a discrepancy in temporal 

perception occurring in PD based on the scale of time was seen. This work strengthens 

postulated subjective timing models in the range of milliseconds–controlled by the 
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cerebellum with no (or negligible) BG influence–and interval timing models which are 

largely influenced by the BG. Interestingly, past work investigating weakened CSTC 

circuit activity in PD that is at least partially responsible for timing deficits suggest 

increased cerebellar activity occurs to attempt to compensate, potentially indicating 

entirely different timing processes occur during PD [29]. The current study has also 

demonstrated that these perceptual abnormalities are occurring early in disease 

development. As previously studied perceptual deficits occurring in PD such as olfaction 

often predate disease motor symptoms [4], it is possible that visual temporal abnormalities 

also predate motor symptoms, providing an easy to test disease marker. 

The use of the two tested therapies did not elicit any significant effects on the visual 

perception of time.  At the lower temporal magnitudes (standard stimulus of 0.5 second) 

this is expected as the postulated timing mechanism is controlled by the cerebellum, which 

is not dopamine dependent [23, 24, 27]. The lack of effect caused by levodopa at the larger 

tested magnitudes (standard stimulus of 1 second) is more peculiar due to the postulated 

role of BG in time perception at this scale and the occurrence of reduced striatal dopamine 

levels in PD [23, 24]. Although studies have attributed levodopa to improved internal clock 

function [64], this could be attributed to improvements in working memory (an important 

component of interval timing) caused by levodopa. As the time scales were rather small in 

magnitude for the current study, this may have reduced error’s that occur from abnormal 

working memory and memory systems rooted in improper striatal activation, which are 

aided by dopaminergic therapy [22]. Furthermore, the detrimental effect of dopamine 

antagonists on internal timing seems to be more pronounced than beneficial effects of 

dopamine agonists [65–67]. Interestingly, if any trend is occurring from levodopa use it is 

negative, which has also been observed in previous work [27]. However, based on the 

statistical analysis, levodopa did not lead to significant alteration in PD patient’s 

capabilities in the tested visual perception task. The use of DBS did not lead to significant 

alterations in a subject’s ability to perform the perceptual task either. However, there was 

a potential trend towards DBS-based improvements in the perceptual task. Due to the small 

sample size, it is possible that the statistical analysis is not representative of the effect of 

DBS on temporal perception, yet, previous work showed neural timing improvements after 

DBS of the subthalamic nucleus [25]. Based on the finding of the current work, it appears 
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that DBS may be more effective at restoring temporal perceptions in the absence of motor 

actions, however both PD therapies have minimal if any effect on the tested visual temporal 

perception. The finding that correlations exist between and individuals UPDRS part III 

subsection score and DL OFF the patient’s respective therapy suggest that like motor 

abnormalities of PD, sensory abnormalities (or in the least the tested visual temporal 

perception) also further deteriorate as the disease progresses. However, the lack of 

correlations when patients were ON their therapies between a subject’s UPDRS part III 

score and DL further suggests that while the tested PD therapies do improve movement 

abnormalities of PD, they do not have the same positive outcome with visual temporal 

perception. Although Weber’s Law is maintained for the majority of tested sensory 

modalities, past work has questioned its merit in temporal perception [68].  Linear 

relationships between perceptual accuracy and stimulus magnitude (via Weber’s Law) 

intemporal perception were shown to occur in healthy subjects between 0.2 – 2 seconds; 

however, other work involving visual timing showed consistency in the WF of standard 

stimuli at 0.6 and 0.9 seconds, but not at 1.2 seconds [68]. In the current work, strong 

correlations between WFs from the two tested standard stimuli were seen for control 

participants and PD participants OFF therapy (as well as PD patients using levodopa when 

OFF medication). Interestingly, no significant correlations between WF calculations at 

different standard stimuli were seen when these patients were ON levodopa. Although 

perception coherency via Weber’s Law did occur in the tested healthy patients, it is still 

not certain whether Weber’s Law is maintained in visual temporal perception across a wide 

range of stimuli magnitudes.  However, this finding further promotes the possibility of 

levodopa acting negatively in terms of visual temporal perception, prompting further 

research into both levodopa’s effect on temporal perception and Weber’s Law in relation 

to this perception. No correlations in WFs between the 0.5 and 1 second standards were 

seen in patients using DBS therapy (both ON and OFF) and de-novo patients. This is likely 

partially due to the small sample sizes of each group (n= 6 for both groups).  

The small sample sizes of both the DBS and de novo groups were a limitation of 

the current work. Due to restricted patient recruitment/testing time frames, as well as a 

small candidate pool for the DBS group (with only 10% of potential candidates utilizing 

the treatment) and de novo group (due to the recruitment centre [University Hospital] being 
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a tertiary care hospital) the recruitment of large numbers of PD patients in these groups 

was a challenge.  However, the results from these groups provide interesting insight into 

how these populations might function with regards to temporal perception, prompting 

further research of the groups. Further study limitations were the constant order of patients 

conducting experiments first OFF PD therapies, followed by ON therapies. This was due 

to the testing occurring in one day, and the approximate 12 hours needed for an individual 

to be considered clinically OFF levodopa (which all non-de novo PD patients were utilizing 

for treatment). Although this is common practice for PD experiments involved ON/OFF 

analysis, and extended breaks were provided for participants, fatigue could have occurred 

for some participants. 

The current study demonstrated abnormalities in visual temporal discrimination 

independent of goal-directed movement occur in PD in timing scales utilizing interval 

timing. However, these deficits were not seen with millisecond timing. This supports 

commonly postulated subjective timing models outlining the BG’s lack of function in 

neural timing in the millisecond range, and involvement in neural timing in second to 

minute range.  This was also seen in early stage de novo PD patients, suggesting that visual 

temporal discrimination is disrupted early in the disease. Thus, visual temporal 

discrimination shows potential as an early disease marker that could be used in diagnostic 

scenarios, due to the simplicity of testing this perception. A non-invasive, easy-to-use 

computer graphics-generated tool was implemented to test this perception. The toolbox can 

be easily modified, allowing for the analysis of different sensory modalities in research or 

clinical settings.  Furthermore, the toolbox is not taxing from a computer processing 

standpoint, allowing it to be used in a wide variety of clinical and non-clinical settings. 

Testing of early stage PD patients (specifically those who do not yet display significant 

motor impairments) should be carried out to further analyze a potential diagnostic use of 

the toolbox for neurological disorders such as PD. As non-motor PD symptoms often arise 

before motor symptoms [4], this tool or similar software could be a valuable asset to assist 

physicians with early diagnosis of the disease. Furthermore, potential clinical importance 

of the computer-generated graphical tool is exemplified through its design, as no goal 

directed movements which could confound perceptual analysis occur, contrasting current 

diagnostic timing tests (such as the Purdue peg board) which utilize extensive movements 
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[69]. Although movements (via talking) were necessary for the analysis, these actions had 

zero impact on the analyzed perception as response time was not a considered factor, 

ensuring motor capabilities had no role in the observations. Due to the simple to use, 

flexible nature of the graphical tool, its use could assist in the widespread monitoring of 

neurological disorders, potentially in the comfort of the user’s home or local community 

centres should it be further validated. This could allow for more regular disease monitoring 

that benefits from the tool’s accessibility, further assisting disease prognosis by providing 

more complete disease analytics for clinicians to utilize. Further studies should also 

investigate a potential use of the toolbox for predicting the onset of PD-D (which may have 

visual markers such as abnormal colour perception [70]) to further assist physicians with 

the monitoring of the disease.  Many current PD monitoring tools focus on motor symptoms 

of the disease [71, 72]; however, disease phenotype varies from patient to patient, meaning 

many do not receive optimum treatment for their conditions or realize the extent of their 

disease symptoms. The graphics-tool used in this study provides a simple means for 

analysis of non-motor perceptual modalities affected in neurological disorders such as PD. 

Future work will continue testing visual perceptual modalities in PD, as well as assess 

perceptual abilities at different disease stages and for different sensory systems (such as 

auditory perceptions) to further validate the use of perceptual testing toolboxes in clinical 

and research use. We hope that the computer-generated graphical tool will one day be used 

in conjunction with other state of the art clinical diagnostic/disease monitoring tools to 

provide improved clinical outcomes for the treatment of neurological disorder, allowing 

those suffering to have the greatest quality of life that is possible. 

2.4 Methods 

2.4.1 Demographics and Clinical Assessment 

The study protocol for this work was approved by the Research Ethics Board of the 

University of Western Ontario.  All experiments were conducted in accordance with the 

Declaration of Helsinki, as well as the Tri-Councel Policy Statement of Ethical Conduct 

for Research Involving Humans in Canada.  All participants provided informed consent 

regarding their participation in the study. Furthermore, the participant displayed in Fig. 2.6 

provided consent allowing for their image to be used in publications of the research. All 
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participants in the study were recruited from the Movement Disorders Program at 

University Hospital, London Health Sciences Centre, Ontario, Canada, where they were 

diagnosed and have been regularly treated for their PD. Study protocol details and consent 

forms were provided to patients prior to participation. For this study, 25 participants were 

recruited who had mid-stage PD (22 male, 3 female) and were on levodopa therapy. Six 

patients with mid-late stage PD were recruited who have been receiving DBS therapy (4 

male, 2 female), as well as 6 early-stage PD de novo patients who were not currently 

receiving any treatment for their PD. Table 2.1 provides the clinical details and 

demographic data about the recruited participants. In addition, 17 healthy, age-matched 

control participants (14 female, 3 male) with no known neurological or psychiatric 

disorders were recruited for the study. The patients and participants were from the Southern 

Ontario region of Canada. For this study, all PD patients fulfilled the UK Parkinson’s 

Disease Society Brain Bank Diagnostic Criteria. Participants utilizing levodopa therapy 

refrained from taking the medication 12 hours prior to experimentation, ensuring that they 

were in the OFF levodopa state. Similarly, participants receiving DBS had their device 

turned OFF upon arrival at the testing centre. These participants had to wait at least 45 

minutes, ensuring that they were not experiencing any effects from the DBS therapy. After 

the participants completed the experiment in the OFF state, they were administered 300 

mg of levodopa if this was their primary therapy (unless their regular levodopa dose was 

100 mg or less, in which case they were administered 200 mg); or their DBS device was 

turned ON to the patients regular stimulation levels if their primary PD treatment was DBS. 

After an hour’s break the participants went through the experiments again in their ON state. 

All participants conducted the experiment ON and OFF PD therapy in a one-day testing 

session. It should be noted that although participants utilizing DBS typically would take it 

alongside levodopa, for the duration of the experiment they did not take any levodopa 

medication. This was to ensure that the effect of DBS was not confounded by the effect of 

levodopa. The severity of motor symptoms affecting the PD participants was assessed 

using the motor subsection (section 3) of the UPDRS both ON and OFF PD therapy. All 

PD subjects also conducted a cognitive assessment using the Montreal Cognitive 

Assessment (MoCA) [73]. Assessments of visual acuity (reading tasks and tests using the 

Snellen eye chart), smooth pursuit and saccades were carried out for all participants 
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(including control participants). Furthermore, the control group was questioned to detect 

symptoms of neurological disorder (including PD) as part of the control participant 

screening. Exclusion criteria (for both control and PD groups) include the presence of 

considerable cognitive impairments (MoCA < 25), impairments in visual diagnostic tasks, 

and the presence of visual hallucination (VH). Furthermore, PD patients utilizing 

pharmacological therapies other than Levodopa were excluded from the study.  

 

 

Figure 2.6: Experimental Setup and Visual Temporal Perception Task 

For testing the LG Flatron W2242PM 22-inch (resolution 1680 x 1050) computer monitor 

was used, with participants sitting at a comfortable viewing position approximately 2 feet 

away from the monitor. The testing room has only the participant and experimenter, with 

excess stimuli (such as sounds, distracting visual) minimized. Illustrative examples of the 

visual temporal discrimination task shown on right, with each quadrant section 

representing a specific time window in a single trial on the computer monitor viewed by 

the participant. In each trial, the participant compares the time period between the 

appearance of circles to the time period between the appearance of circles. The participant 

verbally answers which time period they perceived to be smaller. The example trial begins 

with Image 1 being shown for 1 second, followed by Image 2 being shown for 0.5 seconds, 

followed by Image 3 being shown for 1 second. After a 1 second period where the screen 

is blank, Image 4 is shown for 1 second, followed by Image 5 being shown for 0.7 seconds, 

followed by Image 6 being shown for 1 second 
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2.4.2 Testing Apparatus 

A graphics-enabled tool running in Matlab/Simulink was designed at Canadian Surgical 

Technologies and Advanced Robotics (CSTAR) to examine vision-based temporal 

perception. The graphical environment of this toolbox can be easily modified, allowing for 

the examination of various visual sensory modalities. The tool was utilized to study visual 

temporal discrimination in the current study, with all visual inputs being displayed on an 

LG Flatron W2242PM 22-inch monitor (resolution: 1680 x1050). The participants sat 

approximately 2 feet away from the monitor (Fig. 2.6). The height of the chair and the 

monitor were adjusted for optimum comfort. In order to reduce possible visual and auditory 

distractions, the subjects were located in an isolated room with the experimenter. Fig. 2.1 

shows the station utilized for the experiment. 

2.4.3 Experiment 

A two-forced alternative choice experiment consisting of 160 trials based on the method 

of constant stimuli for difference thresholds described by Gescheider [40] was carried out 

to examine temporal perception. Each trial in the experiment began with a large, central 

white circle appearing in the middle of the computer monitor for 1 second before 

disappearing, leaving a blank screen. After a variable amount of time, the white circle 

reappears for 1 second, before again disappearing. This is followed by the appearance of a 

large, central white triangle on the monitor for 1 second, disappearing for a variable amount 

of time, and reappearing for 1 second before disappearing. At the end of each trial the 

subject compares the period of time between the appearance of the circles to the period of 

time between the appearance of the triangles, verbally answering which time period they 

perceive to be the shortest (can alternatively be thought of as "which shape was blinking 

the fastest"). The participant had no time constraints regarding their response, thus although 

movement was necessary to produce a response, it had no effect on the analysis of patient 

perception. At the 80th trial, a mandatory break was given to the participants, with as many 

additional breaks as desired by the participants given throughout the experiment. Two 

standard stimuli of 0.5 and 1 seconds were tested, with one of these two standard stimuli 
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being present in every trial. The presentation of stimuli comparisons was completely 

random, with both standard stimuli being blended together for testing. For each standard 

stimulus there were 8 comparison values: 0.1, 0.3, 0.4, 0.45, 0.55, 0.6, 0.7 and 0.9 seconds 

for the standard stimulus of 0.5 seconds; and 0.2, 0.6, 0.8, 0.9, 1.1,1.2, 1.4 and 1.8 seconds 

for the standard stimulus of 1 second. The comparison values were chosen so that those 

differing in magnitude the least from the standard stimulus was answered correctly 

approximately 50% of the time, and those differing the most in magnitude from the 

standard stimulus were almost always answered correctly (Fig. 2.6). It should be noted that 

control and de novo PD patients conducted the experimental task once, whereas the PD 

patients using levodopa and DBS conducted the task twice (in both their ON and OFF 

states). It is unlikely that the repetition of the experiment lead to improvements based on 

experiment familiarity however as the PD participants only conducted the task once in a 

given therapeutic state (with task familiarity not transferring over through therapeutic 

states). Furthermore, although the enhancement of neural networks related to visual 

perceptual tasks can occur in adults (i.e. visual perceptual learning), this is a long-term 

change that would not occur in a single experimental session (such as our work) [74, 75]. 

2.4.4 Analysis 

The number of correct and incorrect responses were computed for each comparison value 

of a particular standard stimulus. These values were input into the Psignifit 4.0 third party 

Matlab toolbox, creating a cumulative Gaussian distribution psychometricfunction76. 

From the psychometric function the Point of Subjective Equality (PSE), Upper Threshold 

(UT) and Lower Threshold (LT) (points on cumulative Gaussian distribution function 

correlating to 0.5, 0.75 and 0.25 points on the x-axis respectively [Fig. 2.1]) were obtained 

and utilized to calculate the participants difference threshold (DL), calculated as DL = PSE 

− LT or DL = UT − DL (Fig. 2.1). As described by Gescheider [40], the DL is a value that 

signifies the difference in the stimulus magnitude necessary for a participant to discern a 

stimulus as being different from the standard stimulus that it is compared to. Thus, the 

smaller one’s DL is the more sensitive they are towards the tested perceptual modality at 

the given standard stimulus [40]. Apart from perceptual sensitivity, the perceptual 

coherency of a participant was also analyzed using WF. According to Weber’s Law, the 
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ratio of DL to standard stimulus is constant across the magnitudes of stimuli [40]. This is 

displayed through the WF, defined as WF=DL/S, where S represents the standard stimulus 

magnitude.  
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Chapter 3  

3 Abnormal Vision-Based Displacement Perception and 
Perceptual Linearity in Parkinson’s Disease 

This chapter contains the paper (with the same title) that is being considered for journal 

publication. This work has been published in its preliminary form in the 40th 

International Conference of the IEEE Engineering in Medicine and Biology Society, 

Honolulu, USA, 2018 conference proceedings, titled “Visual Displacement Perception in 

Parkinson’s Disease Analyzed Using a Computer-Generated Graphical Tool”.  

3.1 Introduction 

Parkinson’s disease is a progressive neurodegenerative disorder characterized by the 

degeneration of dopaminergic neurons in the brain stem [1]. The disease phenotype is 

typically classified by the heterogeneous presence of motor symptoms such as resting 

tremors and muscle stiffness [2]. However, non-motor symptoms can arise at all disease 

stages, often posing greater detriments in patient quality of life, and eliciting greater 

influence on institutionalization and economical health burdens compared to motor 

symptoms [3–5]. The current PD monitoring practice lacks accurate diagnosis of non-

motor impairments, thereby leading to a lack of recognition and treatment for many of 

these symptoms [3, 6]. Furthermore, the severity and extent of non-motor impairments has 

not been fully described in PD [7]. The breadth of knowledge regarding non-motor PD 

symptoms is however growing, with an increasing amount of research on sensory, 

neuropsychiatric, autonomic, and sleep dysfunction [8].  

In this regard, visual and oculomotor dysfunctions have frequently been observed 

in patients suffering from PD [3, 9, 10]. Impairments in colour contrast perception, 

hallucinations, and oculomotor control were some of the first documented visual 

impairments in PD, arising across many disease stages [11–14]. Visuospatial abnormalities 

also commonly affect individuals who have PD, with 78% of patients in a self-reporting 

study displaying either visual, visuospatial or both visual and visuospatial deficits [15].  

Although these spatial deficits can hinder performance in memory, representation and 

perceptual tasks in three-dimensional space, they can also pose risks to the patients’ health 
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and quality of life [15]. Visuospatial impairments contribute to balance deficits, increasing 

the chance of falling, thus, increasing the risk of injury; which can be exceedingly 

problematic as PD patients display greater reliance on vision for movement than their non-

PD counterparts [15–17]. Abnormal visuospatial perception of objects in the environment 

also contributes to movement abnormalities in PD such as freezing of gait (FOG; difficulty 

with the initiation of walking) [18, 19]. Furthermore, impairments in attentional tasks and 

tasks involving accurate limb movement in response to perceived visual stimuli occur in 

PD [20, 21]. However, most of the studies that have explored visual perceptions caused by 

PD have involved associated movement responses, raising the question: what is causing 

the observe dysfunctions? Sensorimotor integration impairments are well documented in 

PD, and likely contribute to many of the studied visual perception deficits [22–24]. In 

addition, the BG - a brain region drastically affected by PD - is known to be an important 

group of subcortical nuclei involved in the production and fine tuning of accurate 

movements [25]. Thus, it is not clear in many studies if there are abnormalities in isolated 

visual perceptions of space, or if the deficits are caused by sensorimotor integration and/or 

motor deficits arising from movements produced in response to the tested visual stimuli.  

Although those with PD show deficits in proprioceptive displacement and 

egocentric (visual perception using one’s own body as a reference point) displacement 

perceptions [23, 26–29], allocentric (visual perceptions using an object as a reference 

point) displacement perception independent of motor outputs has not been investigated yet. 

Neural regions associated with allocentric visual space representations are used in the 

recognition and memory of objects, with visual information largely being processed down 

the ventral occipitotemporal stream [30, 31]. Since the ventral stream processes visual 

information to identify objects as opposed to direct movements in response to visual stimuli 

(which is processed down the dorsal stream), studying the effect of PD on perceptions 

processed by the ventral stream may provide evidence that visual processing independent 

of motor activity is abnormal in PD, helping to explain phenomena occurring in PD that 

utilize this processing stream [30]. Movement abnormalities like FOG and environmental 

navigation deficits in PD may be caused in part by inaccurate representations of visually 

perceived objects [15, 17–19].  Individuals with PD also show impairments in object 

recognition and accurate recognition of some facial emotions [32–35]. The above-
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mentioned deficiencies occurring in PD all utilize allocentric visual displacement 

information, using distances between objects and object features to create the full 

representations necessary for accurate recognition. This provides evidence that there may 

be disturbances in the ventral occipitotemporal visual processing pathway in PD.  

The current study has sought to answer three research questions.  The main 

objective of this study (the first research question) was to explore potential visual 

allocentric displacement perception abnormalities occurring in PD independent of motor-

responses and specific object-related memories. The results provide insight into the 

potential ventral visual processing abnormalities occurring in PD. This is building on 

preliminary work which showed a small sample of PD patients had impairments in this 

perception, prompting further, more in-depth investigation.  In addition, in this work (as 

the second research question) we examine the effect that levodopa (half-life: 0.5-1.5 

hours) medication and DBS of the subthalamic nucleus have on allocentric visual 

displacement perception. Early-stage PD patients not currently utilizing PD therapies 

known as “de novo” PD patients were also examined, allowing for analysis over a range 

of PD disease stages. Levodopa is a common first-line treatment that generally improves 

motor dysfunction occurring in PD. However, it has variable effect on the non-motor 

features [3]. This is exemplified in the visual system through improvements in colour 

contrast perception after levodopa administration and detriments in the proprioceptive 

perception of arm displacements [26, 36]. DBS has proven to be an effective late-stage PD 

treatment, specifically when levodopa side effects such as dyskinesia and motor 

fluctuations are severe [37]. DBS in general elicits effects similar to levodopa (when it is 

optimally functioning), with it also displaying varying therapeutic effects depending on the 

non-motor symptom [38]. As levodopa and DBS can improve, impair or have no effect on 

a given non-motor symptom, its effect on visual allocentric displacement perception was 

unknown. This provided further motivation for the study to investigate the positive or 

negative effects of these PD therapies on allocentric visuospatial perception. The third 

research question that was investigated deals with linearity between perceptual accuracy 

and stimulus magnitude, an important perceptual trend consistently occurring in healthy 

individuals.  This trend was first observed in the nineteenth century when E.H. Weber 

sought a method to quantify perceptions independent of the perceptual modality. Based on 
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his studies, the DL of weight perception was found to be related to stimulus intensity as a 

linear function [39].This work, continued by G. Fechner, has led to Weber’s Law, which 

states that the ratio of an individual’s DL (amount of magnitude change necessary to 

discern a stimulus from a different stimulus of fixed magnitude [standard stimulus]) to the 

standard stimulus is constant [40]. The quantifiable value of Weber’s Law, WF, is defined 

as WF = DL/S, where S represents the standard stimulus magnitude. Weber’s Law has been 

validated in a large number of tested modalities [39, 40]. It is widely accepted that 

perceptions of healthy humans measured by WF have a linear relationship, following 

Weber’s Law. Motivated by this, the current study measured participant WF to analyze the 

linearity of visual displacement perception, evaluating if individuals with PD display linear 

relationships in allocentric displacement perception of different stimuli magnitudes. To our 

knowledge this is the first time WF is used to evaluate perceptual capabilities of PD 

patients. Its use was motivated by the observation of potential underlying phenomena 

regarding the effects of PD therapies which cannot be observed through the direct 

measurement of absolute changes in perceptual capability. If validated in this study this 

could be used as a strong tool to investigate the effect of PD and dopaminergic medications 

deeper with regards to its potential benefit for not only perceptual ability, but also on the 

underlying perceptual patterns seen through perceptual linearity.  

3.2 Methods 

3.2.1 Participants 

Thirty-seven patients with middle- to late-stage PD (30 male, 7 female) and 15 healthy, 

age-matched controls (12 female, 3 male) with no known neurological or psychiatric 

disorders participated in the study. The PD patients were recruited from the Movement 

Disorders Program at London Health Sciences Centre, University Hospital in London, 

Ontario, Canada, where they were diagnosed and regularly treated. All patients fulfilled 

the UK Parkinson’s Disease Society Brain Bank Diagnostic Criteria. Of the 37 PD patients, 

25 were treated using levodopa medication daily.  At the beginning of the experiment the 

PD patients refrained from taking Levodopa for at least 12 hours, ensuring they were 

completely OFF Levodopa. After the patients performed the experiment in OFF Levodopa 

conditions, they were administered 300 mg of levodopa (unless their regular dose was 100 
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mg or lower, in which case they were administered 200 mg). None of the patients had 

dyskinesia with this acute dose.  The patients conducted the experiments ON and OFF 

levodopa on the same day, with a break of an hour between drug administration. Motor 

symptoms were assessed ON and OFF levodopa using section 3 (motor sub-scale) of the 

UPDRS. Six of the PD patients were using DBS therapy. If these individuals were also 

using levodopa they were asked to refrain from using the medication the day of testing. 

When the patients using DBS entered the lab their DBS device was turned OFF. After a 

45-minute waiting period they carried out the examinations in the same fashion that 

patients using levodopa did. After completing the first round of experiments their DBS 

device was turned back ON to the exact same parameters it was set to when the patient 

arrived for testing. De novo PD patients (n = 6) only had to carry out the experiments once 

as they were not using any PD therapies. Neurological assessment of PD patients was 

conducted using the MoCA [41]. Visual assessments for visual acuity (using reading tasks 

and the Snellen eyechart), smooth pursuit and saccades were performed on all patients by 

an experienced clinician. Patients were excluded from the study if they displayed visual, 

visuomotor or substantial cognitive impairments (MoCA < 25). Furthermore, PD patients 

experiencing PD-VH were excluded from the study. Parkinson’s Disease patients using 

pharmacological medication other than levodopa were also omitted from the study. The 

study protocol for this work was approved by the Research Ethics Board of the University 

of Western Ontario (REB# 107253). All experiments were conducted in accordance with 

the Declaration of Helsinki, as well as the Tri-Councel Policy Statement of Ethical Conduct 

for Research Involving Humans in Canada. All participants provided informed consent 

regarding their participation in the study. Furthermore, the participant displayed in Fig. 3.1 

provided consent allowing for their image to be used in publications of the research. 

3.2.2 Testing Apparatus 

Participant visual input for the tests was solely displayed on a LG Flatron W2242PM 22-

inch visual monitor (resolution: 1680x 1050). Participants sat in a comfortable, upright 

position 2 feet in front of the computer monitor (Fig. 3.1). Both the height of the chair and 

monitor were adjusted for optimum viewing.  Each participant and the examiner were in 

an isolated room, minimizing auditory and visual distractions. The visual perception test 
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was run in a graphics environment designed at CSTAR and connected to a Matlab-

Simulink program controlled by the experimenter. 

 

 
Figure 5: Testing apparatus and displacement perception experiment. The perceptual 

task was conducted on the LG Flatron W2242PM 22-inch (resolution 1680 x 1050) 

computer monitor at a comfortable viewing position for the participant, who is sitting 

approximately 2 feet away from the monitor. The testing room has only the participant and 

experimenter, with excess stimuli (such as sounds, distracting visual) minimized. To the 

right an illustrative example of the allocentric visual displacement perception task with 

each image-pane showing a specific time window in a single trial on the computer monitor 

viewed by the participant. In each trial the participant compares a pair of white to green 

circle displacements (only one displacement shown here). The participant verbally answers 

which displacement distance they perceived to be greater. The example trial begins with 

Image 1 being shown for 1 second, followed by Image 2 being shown for one second. After 

a 1 second period where the screen is blank, a similar process is repeated, however the 

displacement distance (D) is different. It should be noted that the red line is not shown in 

the experiment. Displacement (D) is used in this figure to show the displacement distances 

that are estimated by the participant (and compared to another circle displacement. 

 

3.2.3 Analysis 

Initially the correct and incorrect patient responses from the experiment were computed for 

each comparison value of a given standard stimulus. This data was input to the Psignifit 
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4.0 third quality party Matlab toolbox, which produced a cumulative Gaussian distribution 

psychometric function [42].  The participants’ PSE for both standard stimuli were 

calculated by this toolbox. The UT and LT signify the magnitude of displacement that was 

discerned from the standard stimulus 75% of the time [39], and was obtained through 

analysis of the psychometric function, described in Fig. 3.2. As seen in Fig. 3.2, the DL 

was calculated by subtracting the LT from the PSE, of the PSE from the UT (both yielding 

the same result due to function symmetry). The DL signifies the difference in stimulus 

magnitude necessary to differentiate it from the standard stimulus. Thus, smaller DLs 

signify better perceptual ability. Datum points were considered outliers and omitted from 

analysis if they were 1.5∗ IQR above the third quartile, or 1.5 ∗ IQR below the first quartile. 

3.3 Results 

3.3.1 Demographic Data, PD Related Clinical Characteristics 

In this study, 37 PD patients in total were tested; 25 (22 male, 3 female) using levodopa, 6 

(4 male, 2 female) using DBS, 6 (4 male, 2 female) de-novo patients, and 15 control 

participants (12 female, 3 male) were included. All participants were recruited from the 

Southern Ontario region. Demographic and clinical data for the PD patients are shown in 

Table 3.1. All patients were examined for oculomotor deficits by an experienced clinician 

and only those without deficits were recruited. 

3.3.2 PD vs. Control Displacement Perception Findings 

The DL was the main descriptor used to quantify the perception of participants. The DL 

signifies the change in magnitude necessary to perceptually differentiate a stimulus from 

the standard stimulus.  Smaller DLs signify increased perceptual sensitivity (Fig.  3.2).  The 

task to measure displacement perception is displayed in Figure 3.1.  The results of PD and 

control participants were fit to a cumulative Gaussian distribution, produced using the 

Psignifit 4.0 third party Matlab toolbox (as seen on Fig. 3.2). The individual cumulative 

Gaussian distribution curves produced by a certain participant in a certain condition display 

an inverse relationship between subject DL and curve slope, with greater slopes and 

function shifts implying impaired perception (Fig. 3.3). The paired two -tailed t-test was 

utilized for statistical analysis of PD patients, comparing their perception ON and OFF 
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levodopa.  The unpaired (independent samples) two-tailed t-test was used for comparisons 

between PD and control groups. 

 

Table 3.1: Demographic and clinical data for PD patients. Abbreviations: MoCA – 

Montreal Cognitive Assessment; UPDRS – Unified Parkinson’s Disease Rating Scale  

Demographic Data Levodopa DBS De Novo Control 

Number  25 6 6 15 

Age (years) 70.04 ± 6.80 55.16 ± 8.99 74.17 ± 3.97 67.26 ± 9.04 

Sex (m/f) 22/3 4/2 4/2 3/12 

Total Years of Education 13.4 ± 2.14 13.33 ± 2.50 13.00 ± 1.67 14 ± 1.79 

Clinical Data 

MoCA (out of 30) 26.68 ± 2.17 26.67 ± 3.08 27.83 ± 2.14 27.13 ± 1.50 

UPDRS motor sub-scale 
OFF Therapy 

23.92 ± 6.69 34 ± 10.51 22.33 ± 7.91 N/A 

UPDRS motor sub-scale 
ON Therapy 

14.72 ± 6.07 22.33 ± 7.91 N/A N/A 

UPDRS motor sub-scale 
OFF vs. ON Difference 

9.20 ± 5.09 21 ± 5.62 N/A N/A 

 

 
Figure 6: Individual Cumulative Gaussian Distribution examples used for subject 

analysis regarding displacement perception abilities. Subject DL was analyzed by 

subtracting the PSE from the Upper Threshold (UT; or subtracting the Lower Threshold 

[LT] from the PSE). The UT and LT are the points of the function which the subject 

answered correctly 75% of the time for a given standard stimulus. Larger DLs signify 

decreased perceptual sensitivity. 
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Figure 7: Displacement Perception Gaussian distributions showing perceptual 

performance of individual PD participants using Levodopa. Sub-figures categorized 

by therapeutic state and standard stimulus. Curves are colour coded based on participant 

DL (which is inversely proportional to function slope) for a certain condition. Curves that 

are more blue belong to participants displaying lower DL’s (greater slopes) and thus 

having better perceptual abilities, with red/orange curves signifying the opposite. 

 

For the displacement perception experiment, two different displacement 

magnitudes were used, with the standard stimulus for smaller magnitudes being 10 cm, and 

the standard stimulus of larger magnitudes being 17.5 cm. When comparing all PD patients 

to control participants, there were no abnormalities in displacement seen at the smaller 

standard stimulus between individuals with Parkinson’s disease and control individuals 

OFF their respective therapies (the average DL for PD patients OFF their therapy was 

1.6944 ± 0.48; the average DL for control participants was 1.6026  ± 0.58; p-value = 0.595) 

and ON their respective therapies (the average DL for PD patients ON their therapy was 

1.5037 ± 0.47; p-value = 0.566) (Fig. 3.4). However, for the larger tested standard stimulus 

of 17.5 cm, PD patients displayed significant impairments in visual displacement 

perception OFF of their respective therapies (the average DL for PD patients OFF their 

therapy was 2.2207 ± 0.75; the average DL for control participants was 1.6956 ± 0.44; p-
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value = 0.006), as well as significant impairments while ON their PD therapies (the average 

DL for PD patients ON their therapy was 2.1043 ± 0.78; p-value = 0.033) (Fig. 3.4). 

Figure 8: Displacement Difference thresholds of all PD patients compared to control 

participants. The standard stimulus of 10 cm is displayed on the left, and 17.5 cm on the 

right; with boxplots related to PD patients OFF and ON their respective PD therapies 

compared to control participants. The red lines are the median DL for each group. The bars 

represent the data spectrum. PD patients did not show any impairments in displacement 

perception at the standard stimulus of 10 cm ON or OFF of PD therapies. However, there 

were significant impairments seen at the standard stimulus of 17.5 cm OFF PD therapies 

(p-value =0.006) and ON PD therapies (p-value = 0.033). 

 

Considering only the PD patients utilizing levodopa medication for the standard 

stimulus of 10 cm, the average DL for PD patients OFF levodopa was slightly and 

insignificantly greater (p-value = 0.954) than that for control participants (the average DL 

for patients OFF levodopa was 1.6132 ± 0.49; the average DL for control participants was 

1.6026 ± 0.58). PD patients also showed slightly, however insignificantly increased DLs 

(p-value = 0.372) when they were ON levodopa compared to the tested controls (the 

average DL for patients ON levodopa was 1.4115 ± 0.36) (Fig. 3.5). Thus, at the smaller 

magnitudes of displacement there was no observed perceptual impairments of 

displacement in PD patients both ON and OFF levodopa. For the larger tested standard 

stimulus (i.e., 17.5 cm), the DL of PD patients OFF levodopa was significantly greater (p-

value = 0.041) than control participant DLs (the average DL for patients OFF levodopa 
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was 2.0892 ± 0.68; the average DL for control participants was 1.6956 ± 0.44). In addition, 

there was a relatively strong trend (p-value = 0.120) regarding greater DLs for PD patients 

ON levodopa compared to control participants (the average DL for patients ON levodopa 

was 2.0318 ± 0.79) (Fig. 3.5). Thus, at the greater tested magnitudes individuals with PD 

showed significant perceptual impairments in displacement ON and OFF levodopa 

compared to the tested controls. 

 

 
Figure 9: Displacement difference thresholds comparing control subjects to PD 

patients using Levodopa. DL’s obtained through displacement perception examination 

with the standard stimulus of 10cm being shown on the left and of 17.5 cm on the right. 

The red lines are the median DL for each group. The bars represent the data spectrum. 

Regarding the standard stimulus of 10 cm, there were no significant differences in DLs 

observed between PD patients OFF Levodopa and controls, PD patients ON levodopa and 

controls, and PD patients ON and OFF levodopa. For the standard stimulus of 17.5 cm, 

significant differences in DL were observed between PD patients OFF Levodopa and 

controls (p-value = 0.041), and a relatively strong trend regarding increased DLs between 

PD patients ON levodopa and controls (p-value = 0.120) were also seen. 

 

Levodopa medication did not elicit any significant effects on the perception of 

displacement.  Regarding the standard stimulus of 10 cm, an insignificant trend towards 



92 

 

reduced DLs was observed after the patient received levodopa (the average DL of patients 

OFF levodopa was 1.6088 ± 0.51; the average DL of patients ON levodopa was 1.4357 ± 

0.56). In addition, for the standard stimulus of 17.5 cm there was a slight, but insignificant 

increase in DL (p-value = 0.655) after the participants received levodopa (the average DL 

of patients OFF levodopa was 1.9539 ± 0.59; the average DL of patients ON levodopa was 

2.0318 ± 0.79) (Fig. 3.5). 

3.3.3 Displacement Perception Linearity 

To assess correlations in the WF of the two tested stimuli magnitudes the Pearson 

correlation coefficient was used. Typically, it is expected that there will be a linear 

relationship between the WF of different standard stimulus magnitudes (based on Weber’s 

Law), which is signified by substantial correlations between WFs of different standard 

stimuli. This study shows that for the control group, there was very strong correlation 

between the WF of the standard stimuli (Pearson correlation (R): 0.928, p-value < 0.001). 

When comparing all PD patients OFF their respective therapies together, they did not show 

a significant correlation between WFs of the tested standard stimuli (R = 0.250, p-value = 

0.135). However, when all PD patients were using their respective therapies, there was a 

significant correlation seen between the WFs (R = 0.762, p-value < 0.001). When 

specifically looking at the PD patient group that was using levodopa, significant 

correlations were not observed for the WF of different standard stimuli when OFF levodopa 

(Pearson correlation: 0.235, p-value = 0.258). When these PD participants were 

administered levodopa, strong correlations were observed between the WFs of different 

stimuli (Pearson Correlation: 0.821, p-value < 0.001) (Fig. 3.6). The above is summarized 

in Table 3.2. 
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Figure 10: Correlations between participant WF at the standard stimuli of 10 and 

17.5 cm. The red line signifies the line of best fit for the correlation data points. Points that 

have a high similarity between their x and y axis values signifies that the participant 

followed Weber’s Law, displaying little to no difference in the WF calculated at the 

standard stimuli of 10 cm and17.5 cm. Correlation plots for DBS and de-novo PD patients 

are not shown due to small sample sizes (n = 6 for each group) 

 

 

Table 2.2: Results of correlations in WFs calculated at the standard stimuli of 10 cm 

and 17.5cm 

Participant Group Correlations in WFs of Different 

Standard Stimuli Magnitudes (Pearson 

Correlation [R]; p-value) 

Control (n = 15)  R = 0.928; p < 0.001 

All PD Patients OFF respective therapies 

(n = 37) 

R = 0.250; p = 0.135 

ALL PD Patients ON respective therapies 

(n = 37) 

R = 0.762; p < 0.001 

PD Patients OFF Levodopa (n = 25) R = 0.235; p = 0.258 

PD Patients ON Levodopa (n = 25) R = 0.821; p < 0.001 
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3.4 Case Study A: Deep Brain Stimulation 

Besides the results given in previous sections, in this work, a pair of small sample sized 

groups of patients using either DBS therapy or not using any PD therapies (early stage de-

novo patients) were also analyzed as case studies. The intention of these case studies were 

to observe potential trends regarding the visual displacement perception abilities of early 

stage and late stage PD patients (de novo and DBS patients respectively), as well to see if 

any perceptual effect arose from the use of DBS. Due to the small sample sizes for these 

two groups the statistical tests act more so as indicators of trends rather than confirmation 

that certain differences are occurring between certain populations. The Gaussian 

distributions representing participant perceptual abilities are displayed on Fig. 3.7.  

When looking at DLs between control participants and PD patients using DBS at 

the standard stimulus of 10 cm, PD participants displayed on average greater DLs (p-value 

= 0.032) than controls when OFF of DBS (the average DL for patients OFF DBS was 

2.0702 ± 0.29). However, when ON DBS, there was only a slight, non-significant increase 

in DLs (p-value = 0.976) for PD patients compared to controls (the average DL for patients 

ON DBS was 1.60792 ± 0.20). With regards to the standard stimulus of 17.5 cm, patients 

OFF DBS displayed significantly greater DLs (p-value = 0.025) compared to control 

participants (the average DL for patients OFF DBS was 2.9901 ± 0.86). At the larger 

standard stimulus, small, insignificant increases in DLs (p-value = 0.158) were seen for PD 

patients on DBS compared to controls (the average DL for patients ON DBS was 2.347 ± 

0.94) (Fig. 3.8). DBS patients displayed overall impairments in displacement perception, 

specifically when they were not using their treatment. PD patients using DBS in their OFF 

state displayed a strong correlation between the WFs of different standard stimuli 

(Pearson’s Correlation: 0.972, p-value = 0.001). However, when these patients were ON 

DBS, they did not display any significant correlations in the WFs of the different standard 

stimuli (Pearson Correlation: 0.384, p-value = 0.452). 

For these PD patients using DBS, no significant differences in DLs were seen 

between ON and OFF DBS states. At the smaller standard stimulus there was an 
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insignificant decrease in DLs (p-value = 0.167) when patients were ON DBS (the average 

DL of patients OFF DBS was 2.0609 ± 0.17; the average DL for patients ON DBS was 

1.5749 ± 0.21).  At the larger tested magnitudes (standard stimulus 17.5 cm) there was 

again an insignificant decrease in DLs (p-value = 0.560) when the patients were using DBS 

(the average DL for patients OFF DBS was 2.9907 ± 0.86; the average DL for patients ON 

DBS was 2.5819 ± 0.37) (Fig. 3.8). Although there were decreases seen when PD patients 

were using their respective therapies (especially for those on DBS), these improvements in 

DL were not significant. It should be noted that a strong trend towards reduced DLs was 

observed when participants were ON DBS. However, due to the small sample size of the 

DBS PD group (n = 6) it is possible that the statistical analysis is not representative of the 

therapy’s perceptual improvements. In all but one of the patients using DBS, reduced DLs 

were observed when ON DBS at both standard stimuli magnitudes, further promoting the 

possibility of unrepresentative statistical outcomes. 

3.5 Case Study B: de Novo Patients 

The final patient group that was tested was the early stage de novo PD patients, who were 

not using any PD therapies at the time of testing. The Gaussian distributions representing 

participant perceptual abilities can be seen on Fig. 3.7. For the smaller standard stimulus 

of 10 cm, there was a slight, insignificant increase in the DLs (p-value = 0.749) of de novo 

PD patients compared to the control group (the average DL for de-novo patients was 1.6787 

± 0.44).  At the larger tested standard stimulus of 17.5 cm, de novo patients displayed a 

strong (but insignificant) trend towards greater DLs (p-value = 0.158) compared to the 

control group (the average DL for de-novo patients was 2.3474 ± 0.94) (Fig. 3.8). Thus, 

early stage PD patients did not display significant differences in PD compared to the 

controls. The de novo PD participants did not show any significant correlations between 

the WFs of the tested standard stimuli (Pearson Correlation:  0.412, p-value = 0.416). All 

PD groups displayed discrepancies in Weber’s Law in some therapeutic state, contrasting 

the control group which had a strong correlation between the WFs (Fig. 3.6). To reiterate 

again, the statistical analysis of the case studies are not necessarily representative of the 

patient subgroup populations due to their small sample size, however the trends that were 

found present interesting information on how the patients of different disease stages, 
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utilizing different treatments are affected by the disease. The above findings regarding 

perceptual linearity is summarized in Table 3.2, with the observations regarding perceptual 

ability being summarized in Table 3.3. 

 

Table 3.3: Results for DL % increases and comparison of means via two-tailed t-

tests for the Levodopa, DBS and De Novo PD groups 

Compared Participant 

Groups (x vs. y) 

Increase in DL (%x > y); t test (x vs. y) p-value 

 Levodopa (n 

= 25) 

DBS (n = 6) De Novo (n = 6) 

PD OFF vs. Control (Standard 

Stimulus: 10 cm)  

0.6614%; p = 

0.954 

29.19%; p = 

0.032 

4.755%; p = 

0.749 

PD OFF vs. Control (Standard 

Stimulus: 17.5 cm) 

23.21%; p = 

0.004 

76.34%; p = 

0.025 

1.384%; p = 

0.158 

PD ON vs. Control (Standard 

Stimulus: 10 cm) 

-11.64%; p = 

0.372 

0.3351%; p = 

0.976 

N/A 

PD ON vs. Control (Standard 

Stimulus: 17.5 cm) 

19.83%; p = 

0.120 

38.44%; p = 

0.158 

N/A 

PD OFF vs. PD ON (Standard 

Stimulus: 10 cm) 

12.06%; p = 

0.164 

28.75%; p = 

0.167 

N/A 

PD OFF vs. PD ON (Standard 

Stimulus: 17.5 cm) 

3.987%; p = 

0.655 

27.40%; p = 

0.56 

N/A 

 

3.6 Discussion 

This study investigated allocentric visual displacement perception while excluding goal-

directed motor responses for those with PD. In addition, the effect of levodopa and DBS 

medication and perceptual linearity was investigated. The PD patient group showed overall 

impairments in displacement perception compared to controls.  The observed deficiency 

cannot be due to oculomotor deficiencies since all participants were examined for these 

malfunctions before conducting the tests. Furthermore, PD patients with PD-D and PD-VH 
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Figure 11: Displacement Gaussian distributions of individual participants 

categorized by disease state, therapeutic state and standard stimulus. Curves are 

colour coded based on the participants DL (which is inversely proportional to function 

slope) for a certain condition. Curves that are more blue belong to participants displaying 

lower DL’s (greater slopes) and thus having better perceptual abilities, with red/orange 

curves signifying the opposite. 
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Figure 12: Difference thresholds obtained through displacement perception 

examination of DBS and de novo patients. The standard stimulus of 10cm is shown on 

the left and 17.5 cm on the right. The red lines are the median DL for each group. The bars 

represent the data spectrum. Regarding the standard stimulus of 10 cm, patients using DBS 

had significantly greater (p-value = 0.032) DL’s than controls while OFF DBS; however, 

when ON there were no significant differences. There was also no significant difference 

between patients ON and OFF DBS. De novo patients did not display patients using DBS 

had significantly greater DLs than controls when OFF DBS (p-value = 0.025) as well, 

however no significant differences were seen in DLs between patients ON DBS and 

controls. There were no significant differences between de-novo patients and control 

patients at this standard stimulus. Levodopa and DBS did not elicit significant changes in 

DL for PD patients. 
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were omitted from the study. Therefore, the observed perceptual abnormalities are not 

likely due to cognitive deficit. Thus, the current study showed that allocentric visual 

displacement perception is abnormal in mid-stage PD patients (using levodopa), and late 

stage PD patients (using DBS), and that observed deficiencies are not likely arising from 

the motor or sensorimotor integration complications of the disease due to the task isolating 

perception from motor activity. The early stage PD patients did not however show 

significant impairments in the visual displacement perception task. 

In general, PD patients showed increased DLs – signifying decreased perceptual 

sensitivity – in visual displacement perception compared to the control group for the larger 

tested displacement magnitudes. Previous research has shown that patients with PD-D 

and/or PD-VH (both common in late stage PD) displayed impaired visual memory and 

object perception [43, 44]. Both vision-based memories and perception of specific objects 

are neurally processed through the ventral occipitotemporal processing stream [30]. 

However, it cannot be determined if executive, visuospatial and memory impairments 

occurring in PD-D, and visual abnormalities due to PD-VH were responsible for the 

observed visual memory and object perception deficits, or if the findings were caused by 

deficits in the ventral processing stream [30, 31, 45, 46]. The current study however 

provides evidence that impairments in the occipitotemporal visual processing stream occur 

in mid-stage PD before PD-D and PD-VH symptoms arise. It is important to note that 

although working memory and attentional deficits are well noted symptoms of PD [47, 48], 

it is unlikely that these contributed to the observed perceptual abnormalities for the 

levodopa and de novo PD groups as no deficits were seen at the smaller displacement 

magnitudes that were tested. This further provides new evidence that the observed 

allocentric displacement perception dysfunctions may be arising due to disruptions in the 

ventral occipitotemporal pathway. Our findings along with past work showing impairments 

of object identification and recognition of facial features and emotions [32–35] might 

indicate dysfunction in neural regions along the ventral visual processing stream that 

respond to certain classes of objects (and specific objects/faces) such as the inferior 

temporal cortex and fusiform face area [49, 50]. It should be noted patients that were 

utilizing DBS therapy did however show deficits in the perception task at both testing 

magnitudes. As individuals in this study that were using DBS were at a later stage of the 
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disease, it is possible that the increased disease severity contributed to memory and/or 

attentional deficits which lead to decreased performance at all testing magnitudes. 

However, increasingly severe PD symptoms may lead to an increasingly impaired 

processing of visual displacements via the occipitotemporal pathway, leading to a broader 

range of perceptual deficits. This note is further motivated due to all PD patients conducting 

memory tasks, with those showing substantial deficits being excluded from the study. 

Levodopa and DBS were shown to have no significant effect on the tested visual 

displacement at both of the tested standard stimuli, aligning with past studies suggesting 

these therapies predominantly benefit PD motor symptoms, having a minimal effect on 

non-motor symptoms [3]. Both levodopa and DBS modulate dopaminergic neural 

pathways of the BG, however, neural dysfunction in PD is not limited to dopaminergic 

dysfunction in the BG [37]. Non-dopaminergic neural abnormalities (such as cholinergic, 

noradrenergic and glutamatergic dysfunction) also contribute to PD symptoms [51].  In this 

regard, FOG, which is heavily influenced by improper visuospatial perception, responds 

poorly to dopaminergic treatment [18]. Also, recent work suggests the occurrence of FOG 

is based on improper noradrenergic neural function as opposed to dopaminergic 

dysfunction [52]. As visuospatial processing involves both allocentric and egocentric 

visual perceptions [31], the perceptual abnormalities observed in the current study may 

contribute to the visuospatial deficits seen in PD. This suggestion is further supported by 

the lack of a significant response from levodopa in the current study, which is consistent 

with levodopa’s lack of effect on PD symptoms utilizing visuospatial information (such as 

FOG). Furthermore, past research concluded levodopa did not lead to improvements in the 

object recognition capabilities of PD individuals [53]. Thus, the lack of effect caused by 

levodopa for previously researched visual perceptions utilizing displacement information 

and in our current study suggests the postulated ventral visual processing stream 

impairments in PD are not caused by dopamine related dysfunction. Interestingly, past 

work has suggested that DBS of the subthalamic nucleus lead to impairments in the 

recognition of certain facial emotions [54]. Although accurate facial emotion recognition 

requires much more than just visual displacement perception, this further contributes to the 

idea that the observed perceptual abnormalities are not caused by a dysfunction of 

dopamine dependent BG processes. However, it should be noted that a relatively strong 
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trend regarding reductions in patient DL when ON DBS (compared to when OFF DBS) 

was observed. Furthermore, statistical abnormalities were seen in the DL of DBS patients 

OFF stimulation compared to controls, with no statistical observations seen when these 

patients were ON stimulation (Fig. 3.8). Thus, it appears DBS might cause improvements 

of visual displacement perception abnormalities seen in PD patients; however, due to the 

small sample size of PD patients using DBS, future work should further investigate this 

therapies effect on the tested perception.  

In the current study, patients with PD in general did not show linear perceptual 

capability in visual displacement perception. To the best of our knowledge this is the first 

time that linearity of a perceptual ability and the effect of dopaminergic medication has 

been investigated in patients with PD. Although displacement perception of control 

participants was consistent with Weber’s Law, PD patients deviated from this in some 

cases, suggesting the possibility of nonlinearity in perceptual capabilities of PD patients.  

According to the analog coding hypothesis mental processes occur in a continuum, 

meaning higher-level mental processes function similarly to related lower-level processes, 

follow the same laws, and display similar attributes [55]. It was further shown that some 

cognitive processes exhibit attributes similar to those found in related sensory and 

perceptual processes [55]. Regarding visual perception of displacement, both accurate 

visual perception and accurate processing of visual information in higher visual areas is 

needed to accurately perceive visual displacements.  As the visual stimuli of both the 

smaller and larger displacement magnitudes per trial are identical (two white and two green 

circles on a black background), it is likely that discrepancies in the linearity of Weber’s 

Law occur in higher visual processing areas. This further suggests that the displacement 

perception abnormalities may be rooted in dysfunctional ventral visual processing in PD, 

causing deviations from perceptual linearity seen in healthy individuals. The results also 

imply that the observed perception abnormalities were not caused by memory and attention 

problems, as this should lead to deficits at both tested standard stimuli. Interestingly, when 

patients were utilizing levodopa they showed very strong perceptual coherency, while OFF 

Levodopa no correlations between the WF of the tested standard stimuli were seen. This 

appears to indicate a role of levodopa in visual displacement perception, possibly regarding 

a “tightening” of an individual’s perceptual boundaries, causing more consistent perception 
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across stimulus magnitudes. To further explore the observed perceptual non-linearity 

occurring in PD an increased range of stimuli magnitudes should be tested.  

For this work a graphical tool that can be used to test visual perceptions was 

designed and validated. The tool is easily modified, allowing for the testing of various 

perceptual modalities, stimulus magnitudes and stimulus orientations.  The current study 

can be extended to encompass more orientations and stimuli magnitudes, as well as 

different perceptual modalities to further examine how perceptions are abnormal in PD, 

with future work aiming to assess the use of the graphical tool for diagnostic and disease 

monitoring purposes. Based on the study’s results, perceptions of the larger tested 

magnitudes were abnormal to some extent across disease stages. Although no significant 

impairments were observed in the early-stage de novo PD patients at the larger tested 

standard stimulus, there was a relatively strong trend towards impaired visual displacement 

perception for the standard stimulus of 17.5 cm. Future work should seek to analyze this 

perception over a large time scale, to see if visual displacement perception abilities does 

indeed deteriorate as PD becomes more severe. A study limitation is that similar to most 

ON/OFF levodopa studies, PD patients always conducted the experiment first OFF 

levodopa/DBS, followed by ON levodopa/DBS. As each subject participated in only one 

experimental session, it was necessary that they begin the experiment OFF levodopa, as 

one must refrain from levodopa for 12 hours to be considered in an OFF state. Thus, it is 

possible that participants experienced increased fatigue in their ON state compared to their 

OFF state. However, the hour break between sessions and breaks during testing should 

have provided sufficient mental relief to the participants. 

In summary, allocentric visual displacement perception independent of associated 

movements was assessed in PD ON and OFF levodopa/DBS therapies, as well as in early-

stage patients. Mid- to late-stage PD patients using either levodopa or DBS therapies 

displayed significant impairments in displacement perception of the larger tested 

magnitudes, however these impairments were only seen at the smaller magnitudes in the 

late-stage patients utilizing DBS. The work has revealed visual perceptual impairments in 

PD that are not due to abnormal motor or sensorimotor integration function, suggesting 

that impairments in the ventral occipitotemporal visual processing pathway occur in PD. 
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Future work should further investigate the neurological basis for these abnormalities, as 

well as different perceptual modalities that may be affected in PD.  

 

3.7 References 

1. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia  

disorders. Trends neurosciences 12, 366–375 (1989). 

2. Jankovic, J. Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg.  

& Psychiatry 79, 368–376 (2008). 

3. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-motor symptoms of  

Parkinson’s disease: diagnosis and management. The Lancet Neurol. 5, 235–245 

(2006). 

4. Bugalho, P.et al. Non-motor symptoms in Portuguese Parkinson’s disease patients:  

correlation and impact on quality of life and activities of daily living. Nat. Sci. 

Reports 6, 32267 (2016). 

5. Martinez-Martin, P., Rodriguez-Blazquez, C., Kurtis, M. M., Chaudhuri, K. R. &  

Group, N. V. The impact of non-motor symptoms on health-related quality of life 

of patients with Parkinson’s disease. Mov. Disord. 26, 399–406 (2011). 

6. Shulman, L., Taback, R., Rabinstein, A. & Weiner, W. Non-recognition of depression  

and other non-motor symptoms in Parkinson’s disease. Park. & Related Disorders 

8, 193–197 (2002). 

7. Zhu, M.et al. Sensory symptoms in Parkinson’s disease: Clinical features,  

pathophysiology, and treatment. J. Neuroscience Research 94, 685–692 (2016). 

8. Schapira, A. H., Chaudhuri, K. R. & Jenner, P.  Non-motor features of Parkinson  

disease. Nat. Rev. Neurosci. 18, 435–450 (2017). 

9. Chaudhuri, K. R. & Schapira, A. H.  Non-motor symptoms of Parkinson’s disease:  

dopaminergic pathophysiology and treatment. The Lancet Neurol. 8, 464–474 

(2009). 

10. Joyce, D. S., Feigl, B., Kerr, G., Roeder, L. & Zele, A. J. Melanopsin-mediated pupil  

function is impaired in Parkinson’s disease. Sci. reports 8, 7796 (2018). 

 



104 

 

11. Corin, M., Elizan, T. S. & Bender, M. B. Oculomotor function in patients with  

Parkinson’s disease. J. neurological sciences15, 251–265 (1972). 

12. Barnes, J. & David, A. Visual hallucinations in Parkinson’s disease: a review and  

phenomenological survey. J. Neurol. Neurosurg. & Psychiatry70, 727–733 

(2001). 

13. Haug, B. A., Trenkwalder, C., Arden, G. B., Oertel, W. H. & Paulus, W.   Visual  

thresholds to low-contrast pattern displacement, color contrast, and luminance 

contrast stimuli in Parkinson’s disease. Mov. Disord.9, 563–570 (1994). 

14. Buttner, T.et al. Distorted color discrimination in ‘de nova’ Parkinsonian patients.  

Neurology45, 386–387 (1995). 

15. Davidsdottir, S., Cronin-Golomb, A. & Lee, A.  Visual and spatial symptoms in  

Parkinson’s disease. Vis. research45,1285–1296 (2005). 

16. Azulay, J.-P.et al. Visual control of locomotion in Parkinson’s disease.Brain 122,  

111–120 (1999). 

17. Wood, B., Bilclough, J., Bowron, A. & Walker, R. Incidence and prediction of falls in  

Parkinson’s disease: a prospective multidisciplinary study. J. Neurol. Neurosurg. 

& Psychiatry72, 721–725 (2002). 

18. Almeida, Q. J. & Lebold, C. A.  Freezing of gait in Parkinson’s disease: a perceptual  

cause for a motor impairment? J. Neurol. Neurosurg. & Psychiatry 81, 513–518 

(2010). 

19. Nantel, J., McDonald, J., Tan, S. & Bronte-Stewart, H.  Deficits in visuospatial  

processing contribute to quantitative measures of freezing of gait in Parkinson’s 

disease. Neuroscience 221, 151–156 (2012). 

20. Wright, M., Burns, R., Geffen, G. & Geffen, L. Covert orientation of visual attention  

in Parkinson’s disease: An impairment in the maintenance of attention. 

Neuropsychologia 28, 151–159 (1990). 

21. Adamovich, S., Berkinblit, M., Hening, W., Sage, J. & Poizner, H. The interaction of  

visual and proprioceptive inputs in pointing to actual and remembered targets in   

Parkinson’s disease. Neuroscience 104, 1027–1041 (2001). 

22. Abbruzzese, G. & Berardelli, A. Sensorimotor integration in movement disorders.  

Mov. Disorders 18, 231–240 (2003). 



105 

 

23. Demirci, M., Grill, S., McShane, L. & Hallett, M. A mismatch between kinesthetic  

and visual perception in Parkinson’s disease. Annals Neurol. 41, 781–788 (1997). 

24. Davidsdottir, S., Wagenaar, R., Young, D. & Cronin-Golomb, A. Impact of optic  

flow perception and egocentric coordinateson veering in Parkinson’s disease. 

Brain 131, 2882–2893 (2008). 

25. DeLong, M. R. Primate models of movement disorders of basal ganglia origin.  

Trends Neurosciences 13, 281–285 (1990). 

26. Konczak, J., Krawczewski, K., Tuite, P. & Maschke, M.  The perception of passive  

motion in Parkinson’s disease. J. Neurology 254, 655–663 (2007). 

27. Zia, S., Cody, F. & O’Boyle, D. Joint position sense is impaired by Parkinson’s  

disease. Annals Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 47, 218–

228 (2000). 

28. Kabasakalian, A.et al. Hypometric allocentric and egocentric distance estimates in  

Parkinson disease. Cogn. Behav. Neurol. 26, 133–139 (2013). 

29. Lee, A., Harris, J., Atkinson, E. & Fowler, M. Disruption of estimation of body- 

scaled aperture width in hemi-Parkinson’s disease. Neuropsychologia 39, 1097–

1104 (2001). 

30. James, T. W., Culham, J., Humphrey, G. K., Milner, A. D. & Goodale, M. A.  Ventral  

occipital lesions impair object recognition but not object-directed grasping: an 

fmri study. Brain 126, 2463–2475 (2003). 

31. Neggers, S., Van der Lubbe, R. H. J., Ramsey, N. & Postma, A. Interactions between  

ego-and allocentric neuronal representations of space. Neuroimage 31, 320–331 

(2006). 

32. Jacobs, D. H., Shuren, J., Bowers, D. & Heilman, K. M. Emotional facial imagery,  

perception, and expression in Parkinson’s disease. Neurology 45, 1696–1702 

(1995). 

33. Clark, U. S., Neargarder, S. & Cronin-Golomb, A. Specific impairments in the  

recognition of emotional facial expressions in Parkinson’s disease. 

Neuropsychologia 46, 2300–2309 (2008). 

 

 



106 

 

34. Laatu, S., Revonsuo, A., Pihko, L., Portin, R. & Rinne, J. O. Visual object recognition  

deficits in early Parkinson’s disease. Park. & Related Disorders 10, 227–233 

(2004). 

35. Lawrence, A. D., Goerendt, I. K. & Brooks, D. J. Impaired recognition of facial  

expressions of anger in Parkinson’s disease patients acutely withdrawn from 

dopamine replacement therapy. Neuropsychologia 45, 65–74 (2007). 

36. Price, M. J., Feldman, R. G., Adelberg, D. & Kayne, H. Abnormalities in color vision  

and contrast sensitivity in Parkinson’s disease. Neurology 42, 887–887 (1992). 

37. Parkinson’s Disease Study Group, D.-B. S. Deep-brain stimulation of the subthalamic  

nucleus or the pars interna of the globus pallidus in Parkinson’s disease. New 

Engl. J. Medicine 345, 956–963 (2001). 

38. Fasano, A., Daniele, A. & Albanese, A. Treatment of motor and non-motor features  

of Parkinson’s disease with deep brain stimulation. The Lancet Neurol. 11, 429–

442 (2012). 

39. Gescheider, G. A. Psychophysics: the fundamentals (Psychology Press, 2013). 

40. Coren, S. Sensation and perception (Wiley Online Library, 2003). 

41. Nasreddine, Z. S.et al. The Montreal cognitive assessment, MoCA: a brief screening  

tool for mild cognitive impairment. J. Am. Geriatr. Soc. 53, 695–699 (2005). 

42. Frund, I., Haenel, N. V. & Wichmann, F. A. Inference for psychometric functions in  

the presence of nonstationary behavior. J. vision 11, 16–16 (2011). 

43. Barnes, J., Boubert, L., Harris, J., Lee, A. & David, A. S.  Reality monitoring and  

visual hallucinations in Parkinson’s disease. Neuropsychologia 41, 565–574 

(2003). 

44. Mosimann, U. P.et al. Visual perception in Parkinson disease dementia and dementia  

with Lewy bodies. Neurology 63, 2091–2096 (2004). 

45. Docherty, M. J. & Burn, D. J. Parkinson’s disease dementia. Curr. neurology  

neuroscience reports 10, 292–298 (2010). 

46. Fenelon, G., Mahieux, F., Huon, R. & Ziegler, M. Hallucinations in Parkinson’s  

disease: prevalence, phenomenology and risk factors. Brain 123, 733–745 (2000). 

 

 



107 

 

47. Calderon, J.et al. Perception, attention, and working memory are disproportionately  

impaired in dementia with Lewy bodies compared with Alzheimer’s disease. J. 

Neurol. Neurosurg. & Psychiatry 70, 157–164 (2001). 

48. Brown, R. & Marsden, C. Internal versus external cues and the control of attention in  

Parkinson’s disease. Brain 111,323–345 (1988). 

49. Lowe, D. G.  Object recognition from local scale-invariant features.  In Computer  

vision, 1999. The proceedings of the seventh IEEE international conference on, 

vol. 2, 1150–1157 (IEEE, 1999). 

50. Kanwisher, N., McDermott, J. & Chun, M. M. The fusiform face area: a module in  

human extrastriate cortex specialized for face perception. J. neuroscience 17, 

4302–4311 (1997). 

51. Ahlskog, J. E. Challenging conventional wisdom: the etiologic role of dopamine  

oxidative stress in Parkinson’s disease. Mov. Disorders 20, 271–282 (2005). 

52. Ono, S. A., Sato, T. & Muramatsu, S.I.   Freezing of gait in Parkinson’s disease is  

associated with reduced 6-[18f]fluoro-lm-tyrosine uptake in the locus coeruleus. 

Park. Dis. 2016 1–5 (2016). 

53. Pillon, B.et al. Cognitive slowing in Parkinson’s disease fails to respond to levodopa  

treatment the 15-objects test. Neurology 39, 762–762 (1989). 

54. Schroeder, U.et al. Facial expression recognition and subthalamic nucleus  

stimulation. J. Neurol. Neurosurg. & Psychiatry 75, 648–650 (2004). 

55. Nieder, A. & Miller, E. K. Coding of cognitive magnitude: Compressed scaling of  

numerical information in the primate prefrontal cortex. Neuron 37, 149–157 

(2003). 

 

 

 

 

 



108 

 

Chapter 4  

4 Vision-based Velocity Perception in Parkinson’s 
Disease: Skewed Perception of the Fabric of Time and 
Space 

This chapter contains the paper (with the same title) to be submitted for journal 

publication. 

4.1 Introduction 

Non-motor symptoms of Parkinson’s Disease (PD) are as common and important as their 

motor counterparts when considering disease related implications on the quality of life of 

those affected, institutionalization costs, and economic burden on the healthcare system 

[1–5].  Although the importance of non-motor symptoms has been noted in the literature, 

the characteristics of these symptoms are yet to be fully discovered. This challenge is 

compounded by difficulties in diagnosis and treatment of PD; thus, the non-motor 

symptoms are often neglected during the process of PD management [1, 6, 7].   Of these 

non-motor disease symptoms, perceptual abnormalities have been noted to occur across 

various sensory systems—sometimes appearing before the onset of motor symptoms—

raising concerns regarding the affected individual’s performance in daily activities such as 

navigation and the operating of vehicles [8–13].  One of the sensory systems primarily 

affected is the visual system, with abnormalities ranging from colour and contrast 

perceptual deficits to visual recognition, spatial, and vision-based motion perception 

impairments [12–15]. The accurate visual perception of velocity is fundamental for 

navigation, mobility, and motor control, with deficits substantially impacting an 

individual’s quality of life. Although direct measurements of velocity perception can be 

made when there is an interaction between a human limb and the moving object (for 

example measuring muscle spindle activity), similar direct measurements are not currently 

available for the visual perception of velocity. A factor for this may be that perceiving the 

speed of visual stimuli may involve the processing of multiple sensory modalities, 

requiring proper timing, judgement of position, information integration, and optimal 

sensory functioning (via the eye). In this work, for the first time, the capability of PD 
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patients is examined regarding the perception of velocity visually, while observing the 

effect of dopaminergic medication and DBS therapy. For this we conducted a visual 

velocity perception task independent of movement for PD patients at different stages of the 

disease who utilized either levodopa, DBS or no therapy, as well as control participants. 

For the first time it is shown that accurate visual perception of an object’s speed is abnormal 

in PD, with impairments extending to early stages of the disease. Furthermore, levodopa 

medication appears to be detrimental to this perception. The linearity in perception is also 

examined and reported. This work not only sheds light on perceptual deficits occurring in 

PD that have everyday implications, but also suggests visual velocity perception as a 

promising modality to be used for disease diagnosis and monitoring in the future. 

4.1.1 Background 

Parkinson’s Disease (PD) is the second most common chronic progressive 

neurodegenerative disease that has been extensively researched, uncovering many motor 

and non-motor symptoms that both significantly impact patient quality of life. However, 

the symptoms targeted for therapeutic intervention, as well as clinical diagnosis and 

monitoring markers have almost exclusively been the motor symptoms, often causing 

treatment outcomes that do not address all disease symptoms [16, 17]. The root cause of 

PD is believed to be major degeneration of dopaminergic neurons at the SNc, leading to 

reduced dopamine levels at the BG, in turn causing heterogeneous motor symptoms [17–

19]. Accordingly, pharmaceutical and surgical interventions seek to restore BG function 

and alleviate disease motor symptoms, often with excellent efficacy [20, 21]. However, the 

non-motor symptoms do not universally respond well to these treatments like motor 

symptoms do. Non-motor symptoms instead display a much more variable response to 

dopaminergic and DBS therapies that can be beneficial, detrimental, or neutral depending 

on the symptom, suggesting neurotransmitters other than dopamine are also involved (and 

functioning abnormally) for some non-motor symptoms [1, 4, 8, 22]. Although there has 

been increased attention given to the importance and extent of non-motor PD symptoms in 

recent years, there is still a substantial lag in the management of non-motor symptoms 

compared to PD motor symptoms. This in many cases leads to non-optimized clinical 

outcomes as non-motor symptoms can be left unnoticed and untreated by practitioners [7].  
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It is clear that improvements in the understanding of non-motor PD symptoms are 

necessary for improved patient care. This would also help enhance patient quality of life 

as adverse events related to navigation and environmental interactions that contribute to 

everyday living (from crossing a street to driving a car) would be directly clinically 

monitored and addressed. By understanding the characteristics and variability of non-

motor symptoms clinicians will be better equipped to diagnose, assess, and treat patients. 

It can also provide new information for developing new treatments and improve upon the 

early diagnosis and comprehensive monitoring practices of PD.  

4.1.2 Current Study Rationale and Procedure 

To address the current uncertainty regarding the perceptual abilities of PD patients 

for vision-based velocity, as well as uncertainties regarding the neural processing of 

velocity in general, a perceptual task was carried out on a computer-generated graphical 

tool capable of quantifying perceptual abilities independent of movements. It should be 

noted that there is a lack of studies that focus specifically on visual perceptions of motion 

that function independently from goal-directed movements and motor-control, causing 

results that are influenced by degraded motor functioning occurring in PD [23]. Although 

accurate perception of object velocity is imperative for conduction of several activities of 

daily living such as the accurate navigation through our dynamic world, obstacle 

avoidance, and the operating of automobiles, vision-based velocity perception has yet to 

be analyzed in PD. In this work, vision-based velocity perception is examined for 25 

patients with PD utilizing levodopa therapy, 6 PD patients using subthalamic DBS therapy, 

6 de novo patients in early stages of PD, as well as 17 age-matched control participants. 

All participants conducted occulomotor and cognitive diagnostic testing, ensuring those 

included in the study did not display substantial visual or cognitive deficits that could affect 

the main experiments results. The primary visual velocity perception examination was 

designed to solely test perceptual ability (without any goal-directed motor inputs) through 

a two-forced alternative choice discrimination test composed of 200 trials according to the 

method of constant stimuli described by Gescheider et al. [24].  

In each trial of this study, two circles (each moving at a constant but different 

vertical velocity) were presented in series, with the subject verbally answering (without 
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any time constraint) which circle they perceived to be moving the fastest. One of two 

standard stimuli (10 cm/s or 25 cm/s) were present in each trial at random, with 5 greater 

and 5 lesser comparison speed magnitudes compared 10 times to each standard. Upon 

completion of the velocity discrimination task subject responses were broken up based on 

standard stimulus and input to the psignifit 4 psychometric measurement toolbox, i.e., 

psignifit 4 [25], which is a third party Matlab toolbox used to produce a cumulative 

Gaussian distribution used for perceptual quantification of each standard stimulus. Patients 

using either levodopa or DBS conducted the velocity discrimination task both ON and OFF 

their respective therapy, allowing for the analysis of therapy’s efficacy on the studied 

perception. The subject’s DL for each standard stimulus and therapeutic state was obtained 

through analysis of Gaussian distributions (Fig. 4.1), indicating the stimulus magnitude 

needed by an individual to discern said comparison stimulus as different from the tested 

standard stimuli [24].  An individual with a smaller DL for a given perceptual modality 

will have increased perceptual sensitivity, thus displaying better perceptual abilities. This 

allowed for the quantification and comparison of visual velocity perceptual abilities 

between participants and participant states. 

4.2 Results 

4.2.1 Velocity Perception in PD 

Firstly, the mean DLs of all PD patients OFF and ON their respective therapies to control 

participants. PD patients showed statistical impairments in visual velocity perception of 

speeds compared to the standard stimulus magnitude of 10 cm/s.  The DLs of control 

participants (mean DL: 1.24 ± 0.39) were significantly smaller than those of all tested PD 

patients OFF of their therapies (mean DL: 1.62 ± 0.47; control vs. PD OFF p-value:  0.008). 

PD patients ON their therapies (mean DL: 1.81 ± 0.56) again displayed perceptual 

impairments compared to healthy individuals (control vs. PD ON p-value:  0.001) (Fig. 

4.2). When refining the patient groups based on their therapy usage these smaller PD 

participant groups still displayed impaired velocity perception for the smaller magnitude 

speeds. Considering the PD patients using levodopa, strong (yet insignificant) trends 

showed impairments in visual velocity perception when OFF therapy compared to ON 
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therapy (mean DL: 1.55 ± 0.52; control vs. PD OFF levodopa p-value:  0.061). When 

participants   were administered (ON)  levodopa,  they  displayed  significant  perceptual  

 
Figure 4.1: Cumulative Gaussian Distribution examples used for subject analysis of 

velocity perception. Subject DL was analyzed by subtracting the Point of Subjective 

Equality (PSE) from the Upper Threshold (UT; or subtracting the Lower Threshold [LT] 

from the PSE). UT and LT are the points of the function which the subject answered 

correctly 75% of the time for a given standard stimulus. Larger DLs signify decreased 

perceptual sensitivity. 
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impairments (mean DL: 1.81 ± 0.62; control vs.  PD ON levodopa p-value:  0.003).  The 

late stage PD patients using DBS to treat their PD displayed significant impairments both 

ON DBS (mean DL: 1.82 ± 0.58; control vs.  PD ON DBS p-value: 0.016) and OFF DBS 

(mean DL: 1.81 ± 0.28; control vs. PD OFF DBS p-value:  0.005). Impairments in velocity 

perception using the smaller standard stimulus extended to the early stages of the disease, 

with significant perceptual impairments seen in de novo patients (mean: 1.75 ± 0.27; 

control vs PD de novo p-value: 0.015) (Fig. 4.3). 

In contrast to the smaller reference stimulus, at higher tested velocities (using the 

standard stimulus of 25 cm/s) there were no statistical differences observed in perceptual 

ability between control and PD participants. The DLs of control participants (mean DL: 

3.85 ± 1.67) did not substantially differ from the DLs of PD patients OFF their respective 

therapy (mean DL: 3.59 ± 1.40; control vs. PD OFF p-value: 0.557) and ON therapy (mean 

DL: 4.06 ± 1.40; control vs.  PD ON p-value:  0.661) (Fig. 4.2).  Considering only patients 

utilizing levodopa medication, no significant differences in perceptual abilities for the 

visual velocity task ON levodopa (mean DL: 4.30 ± 1,74; control vs. PD ON levodopa p-

value:0.407) and OFF levodopa (mean DL: 3.57 ± 1.14; control vs. PD ON levodopa p-

value: 0.551) were observed. Similarly, perceptual abilities of patients using DBS did not 

differ from control participants ON DBS (mean DL: 4.15 ± 1.87; control vs. PD ON DBS 

p-value:  0.710) and OFF DBS (mean: 4.27 ± 2.43; control vs. PD OFF DBS p-value: 

0.639) for the standard stimulus of 25cm/s. Again, this trend persists in the early stages of 

PD, as the DL of de novo patients (mean DL: 3.00 ± 1.00) did not differ significantly from 

control participants (control vs. PD de novo p-value: 0.260) (Fig. 4.3). 

4.2.2 Velocity Perception Linearity 

In this work, to further analyze participants’ perceptual ability perceptual linearity 

was also examined using Weber’s Law. Weber’s Law states that an individual’s DL is 

directly proportional to the magnitude of the standard stimulus, in that the greater the 

stimulus magnitude the greater the magnitude change necessary to differentiate stimuli. 

This is exemplified through consistent correlations in the WF (defined as WF = DL/S, 
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where S is standard stimulus magnitude) for standards differing in magnitude [24]. Weber’s 

Law has been validated for healthy individuals over a wide range of sensory modalities 

[26, 27]. The effect that PD and levodopa have on perceptual linearity is largely unknown, 

although linearity provides a different means of measurement to assess perceptual abilities. 

In the current work, Pearson correlation analysis of the participants’ WF for the 10 cm/s 

and 25 cm/s standards for a certain therapeutic condition were analyzed, with high 

correlation between WFs signifying perceptual linearity and satisfaction of Weber’s Law.  

The results showed that for the control group there were moderate correlations seen 

between the two WFs (Pearson Correlation [R] = 0.534, p-value: 0.027), signifying their 

accordance with Weber’s Law. Interestingly, when all PD patients were analyzed as a 

group, moderate correlations were also seen in the OFF medication state (R = 0.432, p-

value:  0.008). However, this perceptual coherency was not observed with patients were 

ON their respective therapies, for which a very small, insignificant correlation is observed 

(R = 0.168, p-value: 0.367).  A similar trend was observed when specifically examining 

the performance of patients using levodopa, with Weber’s Law being satisfied in the OFF 

state (R = 0.496, p-value:  0.012), but not the ON state (R = 0.142, p-value: 0.497) (Fig 

4.4). 

 

Figure 4.13: Velocity perception difference thresholds of all PD patients (n = 37) 

regardless of treatment state compared to control participants. The standard stimulus 

of 10 cm/s is displayed on the left, and 25 cm/s second on the right; with boxplots related 
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to PD patients OFF and ON their respective therapies.  The red lines are the median DL for 

each group. The bars represent the data spectrum. PD patients did not show any 

impairments in temporal perception at the standard stimulus of 0.5 seconds ON or OFF PD 

therapy. However, there were significant impairments seen at the standard stimulus of 10 

cm/s OFF PD therapy (p-value = 0.008) and ON PD therapy (p-value = 0.001). 

 

Figure 14: Velocity difference thresholds separated by individual therapies/de novo 

obtained through velocity perception examination. The standard stimulus of 10 cm/s 
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displayed on the left, and that of 25 cm/s on the right. The red lines are the median DL for 

each group. The bars represent the data spectrum.  Regarding the standard stimulus of 25 

cm/s, there were no significant differences in DLs observed between PD patients OFF and 

ON levodopa and DBS compared to controls.  De novo PD patients did not display 

significant differences in DL compared to controls as well.  Although use of DBS did not 

lead to significant changes in the DLs of PD patients, there were significant differences (p-

value = 0.006) elicited by levodopa use.  For the standard stimulus of 10 cm/s, substantial 

differences in DL were observed between PD patients OFF levodopa and controls (p-value 

= 0.061), as well as significant differences when ON levodopa compared to controls (p-

value = 0.003) were also seen. PD patients also significantly differed in perceptual abilities 

when administered levodopa compared to their OFF state (p-value = 0.030). PD patients 

using DBS displayed significant increases in DL when OFF DBS (p-value =0.005), and 

ON DBS (p-value = 0.016). De novo PD patients also displayed significantly greater DLs 

than controls (p-value = 0.015) at the standard stimulus of 10 cm/s. DBS use did not lead 

to significant differences at both tested standard stimuli magnitudes. 

 

 
Figure 15: Correlations between participant WF at the standard stimuli of 10 and 25 

cm/s. Points displaying high similarity between their x and y values signify that the 

participant displayed little to no difference in the WF values at different stimulus 

magnitudes, and thus are in accordance with Weber’s Law. Correlation plots of DBS and 

de novo patients are not shown due to small sample sizes (n = 6 for each group). 

 



117 

 

4.3 Discussion 

The current work has observed deficits in visual velocity perception (independent of related 

movements) occurring in individuals with PD, and the degrading effect of dopaminergic 

therapy on the perception sensitivity and linearity according to Weber’s Law. Interestingly, 

the significant perceptual impairment was statistically validated for the slower tested 

velocities, while comparison with the faster standard stimulus of 25 cm/s did not show 

statistically different perceptual capability compared with the healthy group. A potential 

explanation for this observation could involve the manner that the neural system processes 

vision-based velocity inputs. Considering the mathematical formula for velocity (V), in 

which V = ΔD/T (where D and T signify displacement and time respectively), time 

perception deficits, displacement perception deficits or deficits in multimodal sensory 

fusion could affect the perception of velocity if neural calculations of visual velocity are 

indeed processed in this manner. When considering velocity perception as a problem of 

multimodal information fusion that is neurally complied, impairment of either time or 

displacement would contribute to abnormalities in perceiving velocity. As discussed in 

Chapters 2 and 3, the visual perception of both displacement and time functions abnormally 

in individuals with PD. Thus, abnormalities in the processing of visual velocity may be 

rooted in one, or both of these sensory modalities. Evidence for this phenomenon can be 

seen with temporal deficits as abnormalities were observed in the second, but not 

millisecond range; correlating to deficits occurring at slower velocities with movement 

durations in the second range, but not the greater velocities with movement durations in 

the millisecond range. Also of interest, the administration of levodopa led to detriments in 

velocity perception at both standard stimuli, persisting at the greater standard stimulus (25 

cm/s). Furthermore, perceptual coherency was shown to be disrupted significantly after the 

administration of levodopa for the patients using the therapy. In the past, levodopa 

medication has been shown to have variable efficacy with regard to non-motor symptoms.  

However, it has been suggested that levodopa induced impairments of temporal perception 

are a repercussion of dopamine overdose, in which levodopa concentrations that are ideal 

for treating motor symptoms are detrimental for certain timing procedures [31]. The 

detrimental effects of levodopa on velocity perception further suggests the use of temporal 

information during the neural processing of visual velocity information.  
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The analysis of speed perception in PD has been explored in a few past studies, 

however these works aimed to mimic environmental movement as opposed to object 

movement [32, 33]. Although both environmental movement and object movement are 

controlled by similar neural complexes (the dorsal MST and lateral MST respectively) that 

interact with one another, the information processed by the dorsal MST is used for gauging 

movement of the perceiving individual, while the lateral MST provides details about object 

movement and velocity [34, 35].  As the lateral MST processes object motion information 

to allow the perceiving individual to visually track and interact with the said object, it can 

be assumed that individuals with PD will display abnormalities in MST-related processes 

if the results from the current study are rooted in MST dysfunction. This is indeed the case, 

as PD patients have displayed impairment with the visual tracking and grasping of objects 

in space [36–38]. It should be noted that smooth pursuit functioning is impaired in PD [39], 

possibly signifying oculomotor impairments as the root cause of visual velocity perception 

as opposed to perceptual abnormalities.  However, all patients had diagnostic assessment 

of oculomotor functioning by a trained clinician to ensure no severe abnormalities were 

present. As only one of the standard stimuli had observed abnormalities this further 

suggests a perceptual, and not an oculomotor deficit was responsible for the observations.  

The current work provides evidence that visual perception of objects velocity is 

impaired in PD. This implies an inaccurate representation of an object in space, which 

could be caused by inaccurate estimations of dynamic changes in object position (i.e. 

speed), inaccurate perception of time, or inaccurate fusion. In summary, PD and 

dopaminergic medications can potentially affect perceptions of the fabric of space and 

time, which can directly affect task conduction in this 4th-dimentional coordinate. The 

observed deficit, which may appear early in the disease progression (as shown in the 

current work’s results for de novo patients) presents a concern for those who have 

developed PD but are not yet diagnosed. The greatest concern regarding abnormal velocity 

perception involves the operation of heavy machinery such as vehicles. Past studies 

validate the presence of these concerns as individuals suffering from PD exhibit 

impairments in driving abilities [40–42].  Driving is a complex task that involves attention 

and motor control (both known to be impaired later in PD progression), as well as accurate 

perception of object’s velocities. The latter is a critical aspect which should be 



119 

 

systematically investigated early in the disease’s progression to assess the risks brought on 

by the improper perception. The protocol proposed and presented in this work used a 

simple virtual reality environment (which can be easily implemented on any computer and 

other devices such as smart phones) can be considered an in-clinic diagnostic and 

monitoring tool that would be able to provide quantitative measures regarding one’s vision-

based perceptual ability of speed and linearity of this perceptual ability. As mentioned, 

visual perception of velocity appears to be sensitive to deficits in other sensory modalities 

and/or the fusion of sensory information. Considering this, velocity perception 

abnormalities in PD may be magnified compared to temporal, displacement, and sensory 

integration deficits on their own, increasing graphical tool’s sensitivity to neurological 

based perceptual disorders. This motivates further investigation of this modality for early 

diagnosis, monitoring of disease progression, and for better assessment of one’s disease 

induced perceptual risks. It should be noted that the presented velocity perception 

assessment tool is simple to use, flexible with regards to the perceptual modality that is to 

be tested, and does not require much computational power, allowing it to be utilized in 

many clinical and non-clinical settings.  As the graphical tool shows promise for use with 

diagnosis and monitoring of neurological disorders, future work will aim to further validate 

its use through continued perceptual studies to further validate efficacy (specifically with 

early stage patients to analyze its diagnostic potentials), as well as study the effectiveness 

of pairing the tool with other potential disease monitoring and diagnostic tools (such as 

haptic enabled robotic systems). The current work uncovered a vision-based velocity 

perception deficit in PD that potentially has substantial implications and presents a tool to 

systematically assess perceptual deficits occurring during neurological disease. 

4.4 Methods 

4.4.1 Participants 

The study protocol for this work was approved by the Research Ethics Board of the 

University of Western Ontario. All experiments were conducted in accordance with the 

Declaration of Helsinki, as well as the Tri-Council Policy Statement of Ethical Conduct for 

Research Involving Humans in Canada. All participants provided informed consent 

regarding their participation in the study.  Furthermore, the participant displayed in Fig. 
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4.5   provided consent allowing for their image to be used in publications of the research. 

All of the PD participants were recruited through the Movement Disorder Program, at the 

University Hospital, London, Ontario, Canada. This is the care centre at which they were 

diagnosed with PD, receive treatment and regularly monitor the disease. A total of 25 

participants using levodopa (22 male, 3 female), 6 using DBS (4 male, 2 female), 6 de novo 

(4 male, 2 female), as well as 17 age-matched control participants with no known 

neurological disorder were tested. A summary of the demographic and clinical data for the 

patients can be seen in Table 2.1. All patients were from Southern Ontario, and recruited 

at the University Hospital in London, Ontario, Canada. All of the PD patients for this study 

fulfilled the UK Parkinson’s Disease Brain Bank criteria. Patients using levodopa (half-

life: 1.5 hours) were instructed to refrain from medication for at least 12 hours prior to 

assessment, ensuring complete metabolism necessary for OFF testing. Similarly, patients 

using DBS were instructed to refrain from Levodopa use 12 hours prior to assessment, with 

their DBS device being turned OFF upon arrival to the testing centre. After patients 

completed the visual velocity perception task in the clinically defined OFF state they either 

were given 300 mg of levodopa (unless their typical dosage was 100 mg or less, in which 

case they were given 200 mg of levodopa) or had their DBS device turned on to their usual 

stimulation levels depending on the patients primary PD therapy, then conducting the 

experiment in their ON medication state. It should be noted that a 1-hour break was given 

between the OFF and ON portion of the experiment. Furthermore, those using DBS did not 

take any Levodopa for their ON testing, preventing confounding results from therapeutic-

related task improvement.  Diagnostic assessment of Parkinson’s Disease motor severity 

(via the UPDRS part III [motor subsection]) was conducted in both ON and OFF states, 

with cognitive assessment (via the MoCA) being carried out before beginning the 

perceptual task. Also prior to testing (in the OFF state) visual diagnostic tests for smooth 

pursuit, saccades, and visual acuity (via reading tasks and the Snellen eye examination) 

were also conducted. Those that showed visual impairments (including visual 

hallucinations) and/or cognitive impairments (defined as MoCA score < 25) were omitted 

from the study. Furthermore, participants using PD medication other than Levodopa were 

excluded from study participation. It should be noted that a participant conducted all testing 

in a single session. 
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4.4.2 Testing Apparatus 

The computer-generated graphical tool used for the testing of visual velocity perception 

runs in the Matlab/Simulink platform, and was designed at the Canadian Surgical 

Techniques and Advanced Robotics lab.  Although the tool was used to test visual velocity 

perception, its design is flexible by nature, allowing it to be easily modified to test other 

visual perceptions. The visual velocity perception experiment was displayed on the LG 

Flatron W2242PM 22-inch monitor (resolution:  1680 x 1050).  The participant conducting 

the experiment was seated upright in the chair (that was adjusted in its height for maximum 

comfort) approximately 2 feet away from the monitor (Fig. 4.5).  The participant was tested 

in a room alone with the experimenter with minimal auditory and visual stimuli (apart from 

the task) in order to reduce attentional slips. 

4.4.3 Experiment 

A two-forced alternative choice perceptual experiment composed of 200 trials was carried 

out according to the method of constant stimuli for different thresholds as described by 

Gescheider [24].  Each trial began with a horizontally central white circle with a black, 

centred hole starting at the top of the computer monitor and moving at a constant velocity 

to the bottom of the monitor. Once reaching the bottom, the same circle again appeared at 

the top of the monitor, moving at the same constant velocity to the bottom. After this there 

was a gap of 2 seconds, followed by a solid white, horizontally centralized circle moving 

from the top to the bottom of the screen at a constant velocity in two successions. Thus, in 

each trial there were two circles each moving at a constant (but different) velocity, and the 

exposure the participant had to each circle was twice the duration of the circle moving from 

the top to bottom of the screen. For each trial the participant must answer verbally which 

circle they perceived to be moving the fastest (Fig. 4.5). There was no time constraint for 

the verbalization of their answer, thus movement impairments would not affect participant  
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Figure 16: Testing apparatus and velocity perception experiment. The LG Flatron 

W2242PM 22 inch (resolution 1680 x1050) computer monitor was used for testing, set up 

at a comfortable viewing position for the participant, who is sitting approximately 2 feet 

away from the monitor. The testing room has only the participant and experimenter, with 

excess stimuli (such as sounds, distracting visual) minimized. Illustrative examples of the 

velocity discrimination task shown on right, with the two squares representing the two 

objects which are compared. In each trial, the participant compares the constant vertical 

velocity of a circle with a hole to the constant vertical velocity of a solid circle.  The 

participant verbally answers which circle they perceived to be moving faster.  The exposure 

of each circle is moving from the top to the bottom of the screen twice, and the circles are 

separated by a 2 second waiting period.  Note the arrows are not present in experimental 

settings. 

 

success. In each trial one of two standard stimuli (10 cm/s or 25 cm/s) would be present 

and compared to one of 10 comparison velocities. The comparison values were chosen so 

that healthy individuals would always be able to differentiate the standard from the 

comparison differing the most in magnitude, and would answer correctly 50% of the time 

for the comparison value with the smallest magnitude difference from the standard (i.e.  the 
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participant was guessing).   Each comparison velocity was examined in 10 trials, with its 

order in relation to both the standard and other comparison values being randomized.  At 

the midway point of analysis (100th trial) a mandatory break was given to the participants; 

however, they were able to take as many breaks for as long as they desired throughout 

testing. It should be noted that control and de novo patients conducted the task once, 

however patients using DBS and levodopa conducted the experiment twice in both ON and 

OFF states. It is however unlikely that perceptual learning occurred, as the patients 

conducted the experiment only once for a given therapeutic state. Furthermore, neural 

learning for visual tasks is a process that occurs over long periods of time, with the one-

day testing session being too short for any meaningful learning [43, 44]. The psignifit 4.0 

third party Matlab psychometric assessment toolbox was used to calculate and create a 

cumulative Gaussian distribution foreach standard stimulus, allowing for perceptual 

quantification of each participant (Fig. 4.1). 
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Chapter 5  

5 Conclusions and Future Work 

5.1  Conclusions  

The purpose of this thesis was to explore certain visual perceptions in PD and develop 

disease diagnostic software. The perceptual modalities examined were not influenced by 

the motor system (which is impaired in PD), with PD disease patients ranging from early 

to late stages of the disease, and using levodopa, DBS, or no therapy for their PD, and 

compared to healthy controls. Following the objectives described in Chapter 1, the thesis 

was divided into three chapters, focusing on the temporal, displacement, and velocity 

perceptual modalities respectively, with the computer-generated graphical tool being used 

and validated for each perceptual modality. The goal of the work presented in this thesis 

was to develop a simple virtual reality tool that is able to use visual non-motor PD 

symptoms in the clinical assessment of  PD, of potential perceptual modalities that would 

function well with this tool, and to expand the knowledge of perceptual deficits occurring 

in PD. This work is the first step of the research goal to produce a tool capable of 

diagnosing and monitoring non-motor symptoms in PD. This takes into account the 

heterogeneous presentation of PD symptoms and considers the presence of non-motor 

symptoms before many motor symptoms. The work presented in this thesis provides a 

foundation for future work that will create a fully realized computational tool to accurately 

quantify and assess non-motor perceptions for use in neurological assessment. The overall 

conclusions from these chapters will be discussed in this section. 

 Chapter 2 studied visual temporal perception in the range of milliseconds and 

seconds. Our aim was to investigate temporal discrimination in PD without any motor 

influence (due to motor timing impairments), while further exploring the influence of the 

BG on timing and how therapies targeting the BG affect timing. For all patient groups, 

there were no impairments seen at the smaller tested magnitudes (using millisecond 

timing). However, all PD groups displayed significant impairments at the larger tested 

magnitudes (using interval timing). Neither levodopa nor DBS therapy led to significant 

improvements in timing abilities. Levodopa resulted in a strong trend towards impairing 
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timing processes and caused a deterioration in perceptual coherency according to Weber’s 

Law. It was shown that timing abnormalities in PD occur in the seconds range but does not 

extend to the millisecond range. Furthermore, observed timing deficits were shown to not 

be solely caused by motor deficiency. This provides evidence to support internal clock 

models involving the BG (among other neural regions) in interval timing, and cerebellar 

control of millisecond timing. 

 The investigation described in Chapter 3 studied allocentric visual displacement 

perception. Individuals with PD displayed significant perceptual impairments, with mid– 

to late–stage PD patients being particularly affected. The use of levodopa and DBS did not 

lead to statistically significant differences in the tested perceptual abilities of patients. 

However, DBS use showed a promising trend towards improvement in visual displacement 

perception. Regarding perceptual linearity analyzed via Weber’s Law, control group 

subjects closely followed a linear relationship, however, all tested PD groups displayed a 

significantly degraded linear relationship for perception of vision-based displacement in 

the OFF-therapy state.  Although Levodopa and DBS therapies did not cause improvements 

in the tested perception, their use did strengthen perceptual linearity relationships, 

suggesting a potential benefit to treatment use. Overall, these findings might suggest 

abnormal ventral occipitotemporal visual processing occurs in PD, which could contribute 

to freezing of gait, visuospatial deficits and abnormal object recognition. 

 Chapter 4 focused on the visual velocity perception of objects and investigated 

potential abnormalities that arise during PD and with the use of certain PD therapies. As 

with earlier chapters, PD patients displayed impairments with the accurate perception of 

visual velocity, affecting patients at early, mid, and late disease stages. These dysfunctions 

were only observed at the smaller tested standard stimulus (10 cm/s) however, with no 

differences in perceptual ability occurring between PD and control participants at the larger 

standard (25 cm/s).  Interestingly, levodopa appeared to have a detrimental effect on 

perceptual abilities of visual velocity, as significant impairments in perceptual sensitivity 

for patients ON levodopa (compared to being OFF levodopa) were observed. Furthermore, 

perceptual linearity (which was maintained in control and OFF therapy PD groups). The 

use of DBS did not however lead to alterations in velocity perception. These observations 
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highlight perceptual dysfunction in PD that has implications in navigational deficits and 

also highlights risks involving accurate speed perception such as the operation of 

automobiles that affects those with PD. 

 Throughout the work described in this thesis, a computer-generated graphical tool 

was used to analyze the perceptual ability for certain sensory modalities. The graphical tool 

proved to be capable of this task, with its flexible nature allowing for simple modifications 

to enable the analysis of various modalities. A primary goal of the toolbox development 

was for it to be simple to use, as well as easy to run on current computational devices. The 

clinical analysis of non-motor symptoms in PD is currently lacking, a substantial problem 

based on the disease’s heterogeneous nature. We hope the computer toolbox developed and 

used for the work in this thesis will be able to assist with the monitoring and management 

of PD, with it being used in both clinical and non-clinical settings (such as community or 

patients’ homes). In addition, we hope that the use of a similar device will assist with 

disease diagnosis and monitoring, allowing for more optimized treatment to improve the 

quality of lives of those suffering from PD. 

5.2 Future Work 

As previously noted, the computer-generated graphical tool can be easily operated, and its 

use has been demonstrated with the visual time, displacement, and velocity perceptual 

modalities. One direction of future work will be to explore different perceptual modalities 

in PD, including those using different sensory systems, such as the auditory system. This 

work will aim to provide insight into particular sensory modalities that prove to be ideal 

targets for the monitoring and diagnosis of PD. The analysis of sensory modalities studied 

in this thesis may also be performed with different parameters. For example, displacement 

perception (which was studied in a 2-dimensional allocentric fashion in this thesis) can be 

studied using a virtual reality headset (such as the oculus rift) to enable consideration of 

the perception of 3-dimensional depth displacement. Although this analysis also involves 

visual displacement perception, depth displacement relies on egocentric coordination, 

involving different neural processing, potentially providing increased sensitivity to 

disease-related sensory abnormalities. Furthermore, future work will increase focus on 

patients in the early stages of PD. As discussed throughout the thesis, several sensory 
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abnormalities arise in the early stages of PD, with some predating motor dysfunctions. In 

order to maximize the potential of a computer tool similar to the one used in the work 

described in this thesis, it should analyze some perceptions arising at the early disease 

stages, allowing for the tool to assist with disease diagnosis. Similarly, future work will 

seek sensory modalities that progress in severity with PD disease progression, to assist in 

monitoring of PD. A method of analysis that was outside of the scope of the current thesis 

is to assess an individual’s perceptual abilities across modalities (comparing their 

perceptual abilities collectively involving time, displacement and velocity tasks), and 

relating these abilities to motor functionality. Future work should assess the potential 

relationships between perceptual, motor, and integrative impairments that occur in PD. 

This can provide further insight in neural abnormalities occurring during the disease, and 

potentially lead to clinical assessment modalities or tests that are of increased sensitivity 

with regard to disease-based differences in ability. To further improve the clinical 

assessment viability of the work in this thesis, the graphical tool is planned for use in 

tandem with haptics-enabled robotic devices. These devices would further increase the 

diagnostic range of the computer-generated tool, as perceptions involving the motor system 

(such as proprioception and kinesthetics) could be incorporated in assessments. A future 

focus of great importance is the refining of the disease monitoring tool’s interface to allow 

for its use in a variety of settings. Though the implementation of the tool in clinical (and 

other) settings is not currently the primary focus, it is the ultimate focus of the research. By 

creating a user-friendly interface allowing for simple analysis and modification of the 

diagnostic test parameters, it will be possible to use the device to its maximal potential, and 

hopefully lead to improvement in PD management. Further work to increase accessibility, 

such as the development of a smartphone/tablet app will also be pursued in the future.  
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Appendices  

Appendix A: Ethics Approval (Levodopa and Control Participants) 
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Appendix B: Ethics Approval (DBS Participants) 
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Appendix C: Ethics Approval (de Novo Participants) 
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Appendix D: Letter of Informed Consent (LOI&C) for Levodopa Participants. 

Same LOI&C for Controls, except ON/OFF medication information is omitted. 
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Appendix E: LOI&C for DBS Participants 
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Appendix F: LOI&C for De Novo Participants 
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Appendix G: UPDRS Part III: Motor-Subsection 
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Appendix H: MoCA 

 

Use Body Text or Normal style for text in this section. 



164 

 

Appendix I: Snellen Eye Chart 
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