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Abstract

To combat negative environmental conditions, reduce operating costs, and identify energy

savings opportunities, it is essential to efficiently manage energy consumption. Internet of

Things (IoT) devices, including widely-used smart meters, have created possibilities for sensor

based energy forecasting. Machine learning algorithms commonly used for energy forecasting,

such as FeedForward Neural Networks, are not well-suited for interpreting the time dimen-

sionality of a signal. Consequently, this thesis applies Sequence-to-Sequence (S2S) Recurrent

Neural Networks (RNNs) with attention for electrical load forecasting. The S2S and S2S-

attention architectures commonly used for neural machine translation are adapted for energy

forecasting. An RNN enables capturing time dependencies present in the load data, while the

S2S RNN model strengthens consecutive sequence prediction by combining two RNNs: en-

coder and decoder. Adding the attention mechanism to these S2S RNNs alleviates the burden

of connecting the encoder and decoder. Presented experiments compare a regular S2S model

and four S2S attention models with two baseline models, the conventional Non-S2S RNN and

a Deep Neural Network (DNN). Furthermore, each RNN model was evaluated with three dif-

ferent RNN-cells: Vanilla RNN, Gated Recurrent Unit (GRU) and Long Short-Term Memory

(LSTM) cell. All models were trained and tested on one building-level electrical load dataset,

with five-minute incremental data. Results showed that the S2S Bahdanau et al. attention

model was the dominant model as it outperformed all other models for nearly all forecasting

lengths.

Keywords: Deep Learning, Energy Load Forecasting, Recurrent Neural Networks, Sequence-

to-Sequence, Gated Recurrent Units, Long Short-Term memory, Attention, Bahdanau Atten-

tion, Luong Attention
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Lay Summary

Energy consumption has been continuously increasing due to the rapid expansion of high-

density cities, and growth in the industrial and commercial sectors. To combat negative envi-

ronmental conditions, reduce operating costs, and identify energy savings opportunities, it is

essential to efficiently manage energy consumption. Internet of Things (IoT) devices, such as

widely used smart meters, are capable of measuring and communicating data about energy use;

thus, they have created opportunities for improved energy management as well as for energy

forecasting. Machine learning techniques build a mathematical model based on this historical

data in order to make predictions or perform a different task. The common machine learning

algorithms used for energy forecasting are not well-suited for time series problems. Conse-

quently, this thesis applies Sequence-to-Sequence (S2S) Recurrent Neural Networks (RNNs)

with attention for electrical load forecasting. Specifically, S2S and S2S attention models from

neural machine translation are adapted for energy forecasting. RNNs enable capturing time

dependencies present in the consumption data, while the S2S RNN strengthens consecutive

predictions by combining two RNNs: encoder and decoder. The first RNN (encoder) reads

the data, passes information to the second RNN (decoder), and the second one predicts the

energy consumption. Further, an attention mechanism was added to the overall model, which

helps connect encoder and decoder RNN and allows the decoder RNN to pay attention to spe-

cific parts of the encoder RNN. By using these techniques, the proposed approach can improve

energy consumption forecasts. Presented experiments compare seven models: a regular S2S

model, four S2S attention models, and two baseline models, the conventional RNN and a Deep

Neural Network (DNN). All models were trained and tested on one building-level electrical

load dataset, with five-minute incremental data. Results showed that the S2S Bahdanau et al.

attention model was the dominant model as it outperformed all other models for nearly all

forecasting lengths.
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Chapter 1

Introduction

1.1 Motivation

Population growth together with expanding industrial and commercial sectors requires a con-

tinuous increase in energy production. It is estimated by the EIA (U.S. Energy Information

Administration) that the industrial and commercial sectors consume 50% of the total energy

production [1]. In 1949, the energy consumption by the commercial and industrial sectors was

3,668.816 trillion BTU and 14,723.587 trillion BTU, respectively [2]. In 2018, these numbers

rose to 18,607.581 trillion BTU and 32,617.767 trillion BTU [2], an increase of over 507% and

over 221%, respectively. Energy production and use is the single biggest contributor to global

warming, accounting for roughly two-thirds of human-induced greenhouse gas emissions [3].

Furthermore, the International Energy Agency estimates that a push for electric mobility, elec-

tric heating, and electricity access could lead to a 90% rise in power demand by 2040 [4].

Hence, efficient energy management in buildings is crucial to combat negative environmental

hazards, such as degradation and carbon dioxide emission [5].

In addition, buildings with efficient energy systems present financial gain by reducing over-

all operating costs. It is common for commercial, industrial, and other large energy consumers

to pay premium prices for high energy peaks. For example, in Ontario, the Independent Elec-

tricity System Operator (IESO) charges their large customers Global Adjustment fees based on

the consumers’ contribution to the top five province-wide peaks in a set period [6]. Another

1



2 Chapter 1. Introduction

category of consumers is charged premiums based on their peak monthly consumption [6].

The higher their peak consumption during this monthly time frame, the greater are the endured

costs. Therefore, it is important for respective parties to improve their energy consumption

efficiency for a reduction in associated operating costs.

The development of smart meters has provided data that can be used to evaluate building

energy consumption patterns. This smart meter data can be used to train machine learning

(ML) models to predict the future energy consumption for a desired time frame ahead. If the

model produces a predicted load pattern similar to the actual, the interested parties can make

cost-effective decisions based on these predicted values. For example, if the model predicts

that the consumption will be high during peak hours, energy saving measures can be taken to

reduce overall energy cost. A predictive model can also be used for anomaly detection. If the

actual usage is not within a desired threshold of the model predictions, these can be deemed as

anomalies and interested parties can further analyze their root cause. In addition, a predictive

model enables plant operators to optimize scheduling, such as maintenance work, as well as to

improve energy conservation. For example, if the model predicts that the consumption will be

low for a certain time frame ahead, plant operators can schedule maintenance work at this time

since the plant will be in a low-usage state. Furthermore, if the model predicts consumption

will be high for a certain time frame ahead, plant operators can limit energy usage, or caution

workers, to potentially conserve energy usage. Overall, energy consumption forecasting leads

to reduced costs, improved system reliability, and efficient use of energy resources. Thus, this

work focuses on ML algorithms to successfully forecast building energy consumption.

Machine learning-based energy forecasting has been attracting significant research and in-

dustry attention due to the importance for energy consumers and producers. Whereas forecast-

ing techniques in the past have mainly focused on annual or monthly energy forecasts for a

country or region, recent years have shown that the interest has shifted to building-level energy

forecasting in hourly, 15 min or smaller intervals. Moreover, the availability of smart meters

and other sensors has enabled deeper insights and improved energy forecasting. As machine
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learning, and specifically deep learning, evolves rapidly [7] [8] [9], energy forecasting can

benefit from this cutting edge research.

Feedforward neural networks (FFNN) are commonly used for load forecasting [10]; in

FFNN, information moves through a collection of connected nodes from the input layer, through

hidden layers, to the output layer. A Deep Neural Network (DNN) is a framework of Deep

Learning (DL), a subset of ML, that involves processing data through many hidden layers, usu-

ally containing a high number of nodes. A DNN can be thought of as a much larger ANN,

while the purpose of both is to learn the mathematical mapping that the input data takes to

produce the output data.

A Recurrent Neural Network (RNN) is a form of DNN where the connections between

nodes establish a directed graph along a sequence [11]. This architecture allows RNNs to

consider the current input along with the previously received inputs, differing from FFNNs

which only consider the current input. RNNs pass an internal hidden state through the graph

which is used as a mechanism to remember information throughout a temporal sequence. As

can be seen from recent works on load forecasting [12] [13] [14], RNNs have an advantage over

FFNNs and other approaches in analyzing the temporal dynamic behaviour of a sequence [15].

However, the combination of an encoder and decoder RNN to form a Sequence-to-Sequence

(S2S) RNN, has proved even more superior for time series related tasks [16]. The encoder

RNN is tasked with encoding information into a fixed-length vector, which the decoder RNN

uses to sequentially make predictions [16]. However, these S2S models pose potential issues

since the encoder is burdened with compressing all necessary information into this fixed-length

vector. For longer input sequences, this makes the task of the encoder increasingly difficult.

This issue was addressed for S2S models used in neural machine translation, which aims

to maximize the language translation performance. Both Bahdanau et al. [17] and Luong et

al. [18] applied their respective attention mechanisms to their S2S models. These mechanisms

learned to align and translate jointly. Each time the model generated a word in the decoder,

it soft searched the encoder outputs to find which positions, in the input sequence, held the
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most relevant information. The model then predicted a word using this information, along with

previously predicted words. The most important feature of attention is that it alleviates the

encoder from solely compressing all input information into a fixed-length vector.

These ML techniques have potential for energy forecasting because of the long term tempo-

ral dependencies they provide. Energy forecasting is a time-series related problem; RNNs use

an internal state to remember information throughout a time series sequence. The S2S mod-

els use an encoder-decoder framework to better predict consecutive time steps ahead, while

the attention based S2S models improve the Non-S2S architecture; the decoder is assisted at

each prediction step with information from the encoder outputs. The S2S attention models

showed improved state-of-the-art performance, over regular S2S models, for the time series

task of neural machine translation [17] [18]. Therefore, these attention models hold potential

to improve accuracy of regular S2S models in other time series prediction tasks such as energy

forecasting.

1.2 Contribution

The primary objective of the presented work is to enhance energy forecasting methods through

use of a novel adaptation of the S2S attention architectures. The use of a S2S attention model

for energy consumption forecasting is novel to this domain. Previous S2S attention architec-

tures have mainly been used in the classification problem domain of neural machine translation

(NMT). Furthermore, the contributions that this thesis presents are:

• Input and output sample generation for the energy forecasting problem. This data prepa-

ration was required to facilitate use of S2S models from NMT in energy forecasting.

For the training set the samples were uniformly randomized, for the test set the samples

were generated using a sliding window technique [19]. The combination of random-

ized samples for the training set and sliding window samples for the test is the specific

contribution.
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• Adaptation of a S2S model for the energy forecasting domain. S2S models have proved

to be powerful models for the task of language translation, which is a classification time

series problem. Hence, applying S2S and comparing with other models for the task of

load forecasting is the specific contribution.

• Adaptation of attention based architectures used in NMT problem domains for energy

forecasting. Four different attention mechanisms were applied to a S2S model, and the

application and comparisons of these models for load forecasting is the specific contri-

bution.

• Evaluation of seven different models: Non-S2S RNN, regular S2S, four S2S-attention

models, and a DNN model. The comparison of two strong baseline models (Non-S2S

RNN and DNN) with the S2S and four S2S attention models is the specific contribution.

• Evaluation of three different RNN cells: Vanilla RNN, Gated Recurrent Unit (GRU), and

Long Short-Term Memory (LSTM).

• Evaluation of each model across four prediction lengths: input length is fixed as predic-

tion length varies. The specific contribution here is to see which model performs the best

for a fixed number of input steps.

• Evaluation of each model across four input lengths: input length varies as prediction

length is fixed. The specific contribution here is to see if increasing the number of input

steps also increases the accuracy of the models.

The attention models were compared against a Non-S2S RNN model, a regular S2S models,

and a DNN model. In total, four different attention mechanisms were used in the evaluation

process. This was done to evaluate more than one attention mechanism versus the regular

S2S model, as well as compare the attention mechanisms among themselves to see which one

performs the best. The Non-S2S and DNN models were used to serve as baseline comparison
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models. All non-DNN models were evaluated with each of the following cells: Vanilla RNN,

GRU, and LSTM.

In addition, three DNN models of different sizes were used in the evaluation process: small,

medium, and large. Three sizes were chosen to provide fair comparisons with the S2S-attention

based models and the regular S2S model. Moreover, all models were evaluated for four dif-

ferent input cases: input length was fixed at four different values and at each fixed value the

prediction length was varied. This was done to analyze different cells at each input length,

as well as to observe which model achieved the best results for fixed input length with varied

prediction length. Likewise, the models were also evaluated with varied input length while the

prediction length was fixed. This was done to analyze whether a shorter or longer input length

improved the models accuracy in predicting a fixed number of time steps ahead.

1.3 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses the background, which

includes Recurrent Neural Networks in Section 2.1, Sequence to Sequence Recurrent Neural

Networks in Sections 2.2, the three different cells: RNN, GRU and LSTM, in Section 2.3, and is

wrapped up with Section 2.4 which gives the general concept of the S2S attention architecture.

Chapter 3 covers the related work, which provides literature discussing energy forecasting

methods in Section 3.1. Section 3.2 provides the use of S2S models in forecasting energy and

other domains, while Section 3.3 concludes the chapter with S2S-attention based models.

Chapter 4 describes the core of the thesis: the methodology. Section 4.1 defines the feature

selection and the evaluation process. Section 4.2 explains the sample generation process. Sec-

tion 4.3 describes the algorithm of the regular S2S model, while Sections 4.4 and 4.5 describe

the different S2S attention algorithms.

Chapter 5 provides the experiments and results. Section 5.1 discusses the experiments that

were taken to produce the results. These results, along with comments and discussions, are
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then given in Section 5.2. Chapter 6 concludes the paper and discusses future work.



Chapter 2

Background

This chapter first introduces DNNs and RNNs in Section 2.1, and provides a general view of

S2S RNNs in Section 2.2. Furthermore, it describes the functionality of the three RNN-based

cells used in the S2S models in Section 2.3: the Vanilla RNN, Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU) cells. Lastly, a general explanation of the two S2S

attention mechanisms is provided in Section 2.4.

2.1 Recurrent Neural Networks

Deep Neural Networks are ML models that can be thought of as much larger ANNs, where

an ANN is a neural network containing hidden layers between the input and output layer.

Generally, a FeedForward Neural Network consists of a set of neurons, or nodes, and a set

of directed edges between them. Associated with each node j is an activation function a j(·).

Associated with each edge, from node j′ to node j, is a weight w j′ j, where the index denotes

“from-to” notation. The output o j from each node j is calculated by applying a j(·) to a weighted

sum of the outputs of the previous nodes, given as:

o j = a j

(∑
j′

w j′ j · o j′

)
(2.1)

8
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Let us denote the weighted sum of outputs of previous nodes as s j. The computation

of o j can be visually described as in Fig. 2.1, where the circles constitute nodes and the

arrows represent the edges connecting them. Here, the inputs and outputs of previous nodes

are denoted as x j′ and o j′ respectively for j′ ∈ 1, 2, 3.

∑

�1

�2

�3 =�� ∑ � ��′ ��′

( )�� ��

�1

�2

�3

Figure 2.1: A neural network node computes a nonlinear function of a weighted sum of inputs.

Common choices for the activation function are the sigmoid σ(z) = 1/(1 + e−z) and tanh

function φ(z) = (ez − e−z)/(ez + e−z). However, for regression problems, it is common to omit

an activation function and simply use the sum s j as the output o j.

An ANN is made up of these nodes and edges, with the architecture constituting of an input

layer, hidden layers, and an output layer, as can be seen in Fig. 2.2 (a). In comparison, a DNN,

as seen in Fig. 2.2 (b), is a larger ANN with more hidden layers and usually more nodes per

each hidden layer.

DNNs have achieved success in solving many problems, such as speech recognition [20]

[21], speech synthesis [22] [23], object detection in images [24] [25], mitosis detection in

breast cancer histology images [26], and brain tumour segmentation [27]. Nonetheless, com-

monly used DNN architectures, such as FFNNs, are not well-suited for predicting a sequence

consecutively, since DNNs directly predict the sequence. Meaning, if a time series vector is

the desired predicted sequence, a feedforward DNN predicts this entire vector directly in the

output layer, all at once. Hence, DNNs generate predictions based solely on the current in-

put, irrelevant of any prior inputs, thus neglecting temporal dependencies present in time series

problems. RNNs provide a solution by using an internal state to remember information in
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(b)(a)                                                                             

Figure 2.2: (a) ANN vs (b) DNN. A DNN contains more hidden layers than an ANN.

sequential time steps.

Non-S2S RNNs take a sequence of inputs x[1], ..., x[T ], and previous hidden states h[1], ..., h[T−1],

to compute a sequence of outputs y[1], ..., y[T ], where j is a time step, j ∈ 1, ...,T . We can define

y[ j] as:

y[ j] = f ◦({x[1], ..., x[ j−1], x[ j]}, {h[1], ..., h[ j−1]}) (2.2a)

= f ◦(x[ j], h[ j−1]) (2.2b)

Equation (2.2a) refers to the sequence of inputs and hidden states needed, through time, to

reach the computation of y[ j], while equation (2.2b) denotes the specific input and hidden state

needed at time j to compute y[ j]. Here, f ◦ is a non-linear function, potentially combined of

either a vanilla RNN, LSTM, or GRU cell, and some multi-layered network. As can be seen

from Fig. 2.3, the inputs and hidden states used to generate y[T−1] are also used to generate y[T ],

but the reverse is not true.

These RNNs are convenient when trying to predict the next word in a sentence since the

RNN will learn to predict the word “blue” if given the previous inputs “the, sky” and current
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...

x[2] x[T]x[1] x[T−1]

h[1] h[T−1]

y[1] y[2] y[T−1] y[T]

Figure 2.3: Sample passed through the Non-S2S RNN.

input “was”. However, the method is weaker when trying to predict a consecutive sequence of

words. For example, given the inputs “the, sky, was, blue”, Non-S2S RNNs will struggle to

predict the consecutive sequence “so, I, went, outside” and will be unable to predict a sequence

of different length such as “so, I, went, outside, to, play, with, my, friends.” Non-S2S RNNs are

only able to output a prediction sequence that is less than or equal to the input sequence length.

In terms of energy forecasting, if the usage inputs [400, 425, 450, 475] kW were passed to

the Non-S2S RNN, it would adequately predict the next usage to be 500 kW. However, for the

same usage inputs, the Non-S2S RNN will struggle to predict the consecutive sequence [500,

475, 450, 425] kW, and will be unable to predict a sequence of longer length, such as [500,

475, 450, 425, 400, 400, 405] kW.

2.2 Sequence to Sequence Recurrent Neural Networks

In comparison to Non-S2S RNNs, S2S RNNs contain two RNNs, an Encoder and Decoder

RNN. The general idea, as shown in Fig. 2.4, is to first pass the input sequence, a sequence of

vectors x[1], ..., x[T ], into the Encoder RNN, one time step at a time, to obtain a context vector

(~c). A common approach is to use an Encoder RNN such that:

h[ j] = f ∗(x[ j], h[ j−1]) (2.3)
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and

~c = q({h[1], ..., h[T ]}) (2.4)

where h[ j] is the hidden state at time j, otherwise known as the encoder output at time j, and ~c

is generated from the sequence of hidden states. Note that the outputs from equations (2.3) and

(2.2a), h[ j] and y[ j] respectively, are different. Hence, y[ j] is the final predicted output at time j,

which is used to compute the loss and further train the model, while h[ j] is simply the hidden

state, or encoder output, computed at time j. Continuing, the functions f ∗ and q are generally

non-linear functions such as in the work of Sutskever et al. [16], where f ∗ denoted an LSTM

and q = h[T ] was simply the last hidden state produced by the encoder.

This context vector is an encoded representation of the processed input sequence and is

then passed to the Decoder RNN which extracts information at each unraveled time step to

obtain the output sequence ẏ[1], ..., ẏ[N], where i ∈ 1, ...,N. The decoder is trained to predict the

next output ẏ[i] from the sequence of previously predicted outputs {ẏ[1], ..., ẏ[i−1]}, sequence of

decoder hidden states {h∗[1], ..., h∗[i−1]}, and information provided by ~c. See that, from equations

(2.3) and (2.4), ~c has already encoded information from the input sequence. Obtaining ẏ[i] is

defined as:

ẏ[0]

ẏ[1]

ẏ[N−1]

ẏ[N]

ẏ[1]

...

x[2] x[T]x[1]

h[1]

ẏ[2]

...
h∗

[1]c
→

Figure 2.4: Sample passed through the S2S RNN.
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ẏ[i] = g∗({ẏ[1], ..., ẏ[i−1]}, {h∗[1], ..., h∗[i−1]}, ~c ) (2.5a)

= g∗(ẏ[i−1], h∗[i−1]) (2.5b)

where

ẏ[0] = q∗(~c) (2.6)

Here, equation (2.5a) denotes the needed variables to reach the computation of ẏ[i], while

equation (2.5b) denotes the specific variables needed, at time i, to compute ẏ[i]. Similarly as

before, g∗ is some non-linear function. See that ẏ[0] is the context value, derived from ~c as

obtained in equation (2.6), and is used as the initial input for the Decoder RNN. Also, in the

equations of (2.5), ~c is not explicitly used in generating any ẏ[i] other than ẏ[1], as seen in Fig.

2.4. The authors write ~c as a parameter of g∗ in equation (2.5a) to imply the “extracting of

information” from the input sequence.

Thus, the use of two RNNs strengthens consecutive sequence prediction, while also allow-

ing the time dimensionality of inputs and outputs to vary. Hence, regardless of the input sample

length T ([400, 425, 450, 475] kW = 4 steps), the output can be an arbitrary N time steps ([500,

475, 450, 425, 400, 400, 405] kW = 7 steps). This feat is unattainable for Non-S2S RNNs as

they can not produce a prediction sequence that is longer than the input sequence.

2.3 Vanilla RNN, LSTM and GRU Cells

This subsection provides a brief overview of the algorithms in vanilla RNN, Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) cells. Vanilla RNN cells were first pro-

posed by Elman [28] in an attempt to tackle time series problems and their long-term temporal

dependencies. To obtain the current output, Vanilla RNN cells not only consider the current
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input, but also the output of RNN cells preceding it. The computations of carrying memory

forward at arbitrary time step t and for input x[t] is given as:

h[t] = tanh(Wxhx[t] + bxh + Whhh[t−1] + bhh) (2.7)

In Vanilla RNN cells, their is only one calculation that occurs to produce the current hidden

state at time t, otherwise known as the output at time t, which can be seen in Fig. 2.5. Here,

h is the size of the hidden state, tanh is the activation function, Wxh ∈ R
h×x is the input-hidden

weight matrix, and Whh ∈ R
h×h is the hidden-hidden weight matrix. These weight matrices are

the parameters to be learned during training. Similarily, bxh ∈ R
h is the input-hidden bias and

bhh ∈ R
h is the hidden-hidden bias parameters to also be learned during training.

�[�]

ℎ[�−1]

ℎ[�]

Figure 2.5: Vanilla RNN cell architecture [29].

The parameters can be thought of as how much value to assign to the current input and

past hidden state. The error that the parameters produce will return via back-propagation [30]

and be used to adjust the weights until the error has reached a minimum; this is deemed con-

vergence. The activation function tanh is used to “squash” the input, which is a standard tool

for condensing very large or very small values into a [−1, 1] domain, it also helps to achieve

non-exploding gradients during back-propagation. In machine learning, the gradient is simply

a vector which gives the direction of the maximum rate of change, computed from the partial

derivatives of the error function.
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However, even with the tanh activation function, using traditional RNN cells for longer

sequences will lead to the vanishing gradient problem [31]. Hence, as a network becomes

longer, the calculated partial derivatives used to compute the gradient become increasingly

smaller as back-propagation reaches the early layers of the network. Since the gradients dictate

how much the network learns during training, very small or zero gradients will lead to little or

no training, causing poor predictive performance.

Thus, LSTM networks [32] are a form of RNNs that were designed to specifically overcome

the problem of vanishing gradient, producing a model able to store information for longer

periods of time. These LSTMs are comprised of cells, which contain internal mechanisms

called gates that perform actions on the flow of information. The general idea behind these

gates is that they learn which data in the given sequence is meaningful and should be kept, and

which data can be forgotten. By doing so, relevant information can be passed down through

longer sequences and, hence, the model can make better predictions.

The LSTM cell architecture, as shown in Fig. 2.6, contains three gates (input i, forget f

and output o), an update step g, a cell memory state c, and a hidden state h. The computations

in a single LSTM cell at time t, for input x, are given as [32]:

i[t] = σ(Wxix[t] + bxi + Whih[t−1] + bhi) (2.8a)

f[t] = σ(Wx f x[t] + bx f + Wh f h[t−1] + bh f ) (2.8b)

g[t] = tanh(Wxgx[t] + bxg + Whgh[t−1] + bhg) (2.8c)

o[t] = (Wxox[t] + bxo + Whoh[t−1] + bho) (2.8d)

c[t] = f[t] � c[t−1] + i[t] � g[t] (2.8e)

h[t] = o[t] � tanh(c[t−1]) (2.8f)

Here, σ is the sigmoid activation function, tanh represents the hyperbolic tanh activation

function, and the � stands for element-wise multiplication. The Wx’s are the input-hidden
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weight matrices, and Wh’s are the hidden-hidden weight matrices parameters learned during

training. Similarly, the bx’s and bh’s are the biases learned during training.

The forget gate in equation (2.8b) decides what information to keep and what information

to forget. It does so by passing the current input x[t] and previous hidden state h[t−1] through a

sigmoid function, which assigns a value between 0 and 1, to be element-wise multiplied to the

cell state in equation (2.8e). A value closer to 1 means “keep this information”, while a value

closer to 0 means “forget”. The input and output gates work similarly.

�[�−1]

ℎ[�−1]

�[�]
�[�]

�[�]

�[�]

ℎ[�]

�[�]

�[�]

ℎ[�]

Figure 2.6: LSTM cell architecture [33].

The GRU model [34] was recently introduced to simplify the LSTM model, while main-

taining similar functionality. The GRU cell architecture is provided in Fig. 2.7. GRU cells

differ from LSTM cells by merging the cell memory state and hidden state into one all-purpose

hidden state h and also by combining the input and forget gates into a single update gate z.

Introduced is the reset gate r, which moderates the impact of the previous hidden state on the

new hidden state, as can be seen in the update step k in equation (2.9c). The computations in a

single GRU cell are given as [34]:
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r[t] = σ(Wxr x[t] + bxr + Whrh[t−1] + bhr) (2.9a)

z[t] = σ(Wxzx[t] + bxz + Whzh[t−1] + bhz) (2.9b)

k[t] = tanh(Wxkx[t] + bxk + r[t] � (Whkh[t−1] + bhk)) (2.9c)

h[t] = (1 − z[t]) � k[t] + z[t] � h[t−1] (2.9d)

ℎ[�−1]

�[�]

�[�]

�[�] �[�]

ℎ[�]

Figure 2.7: GRU cell architecture [35].

where the σ, tanh, and � are equivalently used as in the LSTM cell. Note that there is one

less learnable input-hidden weight matrix Wx as compared to the LSTM cell. This is also

true for Wh, bx, and bh. Thus, GRUs have fewer tensor operations, less parameters, and they

omit an internal cell state. This means that training and convergence are achieved faster on

GRUs, while nonetheless, they contain enough gates and hidden state dimension for long-term

retention.

2.4 Attention Mechanism

Attention was introduced to S2S RNNs by Bahdanau et al. [17] to improve against the underly-

ing concerns the S2S models possess. Namely, the Encoder RNN is responsible for compress-
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ing all significant information of an input sequence into a single, fixed-length, context vector

(~c). For longer input sequences, this task of compressing becomes a burden on the Encoder,

and some valuable information may be lost. Furthermore, with only a single context vector

being passed from Encoder to Decoder, and for longer prediction lengths, the Decoder is bur-

dened by trying to make predictions using information from this single vector, notably in the

latter ends of the decoding process. Thus, a mechanism called “attention” is added to the S2S

model, with the main objective of storing information from the input sequence, then using this

information to aid in the decoding process. Bahdanau et al. [17], followed by Luong et al. [18],

applied attention-based architectures to S2S models for Neural Machine Translation (NMT) in

2014 and 2015 respectively.

The Bahdanau et al. attention (BA) mechanism, as originally shown in Fig. 2.8, was the

first form of attention applied to S2S models for NMT. Since NMT is ultimately a classification

problem, this section will present the general idea of applying BA to S2S regression problems.

Hence, as seen previously in section 2.2, the S2S architecture without BA predicts the output

ẏ[i] by the equations in (2.5). With BA applied, the new architecture first obtains the current

decoder hidden state, at time i, by:

hb
[i] = f b(

[
ẏ[i−1]; cb

[i]
]
, hb

[i−1]) (2.10)

Then the predicted value is obtained by:

ẏ[i] = gb(ẏ[i−1], cb
[i], h

b
[i]) (2.11)

See that the superscript b is used to denote the variables used in the Bahdanau attention

mechanism. Also, the subscript notation, where i is used to denote decoder variables and

j is used to denote encoder variables. Here, f b takes the previously predicted output ẏ[i−1],

the attention context vector cb
[i], and the previous hidden state hb

[i−1]. Note that ẏ[i−1] and cb
[i]

in equation (2.10) are concatenated and we use the [·] to denote concatenation. We let f b
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denote either a vanilla RNN, LSTM, or GRU cell and gb some non-linear function. Hence,

gb is arbitrary and should be used according to the specific problem domain. For example, gb

could be a DNN with many hidden layers and nodes, or it could be one fully-connected layer.

Continuing, the vector cb
[i], no relation to the cell state as in equation (2.8e), depends on the

sequence of encoder outputs h[1], ..., h[T ] as obtained in equations (2.3) and (2.4). Each encoder

output h[ j] contains information regarding the j-th part of the input sequence. The vector cb
[i] is

computed as a weighted sum of these encoder outputs:

cb
[i] =

T∑
j=1

αb
[i j]h[ j] (2.12)

where the attention weight αb
[i j] of each encoder output j is computed by:

αb
[i j] =

exp(eb
[i j])∑T

k=1 exp(eb
[ik])

(2.13)

And the attention energies eb
[i j] are computed as:

eb
[i j] = S (hb

[i−1], h[ j]) (2.14a)

= vᵀ tanh(W
[
hb

[i−1]; h[ j]
]
)) (2.14b)

Here, S is seen as an alignment model which scores how well the inputs around time j

and the output at time i match. The model uses the previous decoder hidden state and the

j-th encoder output of the input sequence. In equation (2.14b), S consists of the tanh activa-

tion function, a fully-connected layer W that takes the concatenation of hb
[i−1] and h[ j], and is

parametrized by a transposed variable v to allow S to be jointly trained with the rest of the

system. The alignment model directly computes a soft alignment, which allows the gradient

of the cost function to be back-propagated through; meaning S and the entire model can be

jointly trained by this gradient.
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Figure 2.8: The original Bahdanau et al. attention mechanism [17] for decoder time step t.
Here, the attention weights αt, j are shown as being multiplied by the encoder outputs ~h j, then
this product is joined with the previous hidden state st−1 to produce the current hidden state st,
which ultimately leads to the final output yt.

We can understand αb
[i j] as the probability that the target output ẏ[i] is aligned to, or most

derived from, the input vector x[ j]. Specifically, the decoder, at the i-th step, will pay a per-

centage of attention to the j-th encoder output in producing the target output. For example,

αb
[35] = 0.09 means for the 3rd decoder step, the target output ẏ[3] will have paid 9% attention

to the 5th encoder output, since this was the alignment weight computed. Hence, the attention

weight αb
[i j], and its associated energy e[i j], reflect the importance of each encoder output h[ j] in

generating the next hidden state hb
[i] and prediction value ẏ[i]. This allows the decoder to pay

attention to specific parts of the input sequence; which in turn, relieves the encoder of having

to encode all information into a single fixed length vector.

Furthermore, Luong et al. [18] developed both global and local attention-based models for

NMT, differing whether the attention is concentrated on a few input positions (local) or on all

(global). For the remainder of this thesis, Luong et al. attention (LA) will refer to the global

model, as originally given in Fig. 2.9. Similarly as for BA, this work will present the general
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idea of applying LA to S2S regression problems. With LA applied, the system first computes

an attentional decoder hidden state:

ĥl
[i] = tanh(W

[
hl

[i]; cl
[i]]) (2.15)

Then the predicted value is obtained by passing ĥl
[i] through some non-linear function:

ẏ[i] = gl(ĥl
[i]) (2.16)

In equation (2.15), the current hidden state hl
[i] is concatenated with the attention context

vector cl
[i], then passed through a fully-connected layer W and the tanh activation function. The

attentional hidden state ĥl
[i] is only used to compute the final output, while the current hidden

state hl
[i] is the hidden state that is passed to the next cell. Note the main difference between

BA and LA: BA applies the attention mechanism before the variables are passed through the

Figure 2.9: The original Luong et al. attention mechanism [18] for decoder time step t. Here,
the current hidden state ht is used to compute the attention weights αt by one of three score
functions. The context vector ct is then obtained by the inner product of the attention weights αt

and encoder outputs h̄s. This context vector and the current hidden state are used in producing
the attentional hidden state h̃t, which leads to producing the final output yt.
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respective RNN cell, while LA applies the mechanism to the outputs of that respective cell. BA

also generates the next hidden state from their attention mechanism in equation (2.10), while

the next hidden state in LA is generated directly from the respective RNN cell.

Continuing with LA, the vector cl
[i], along with attention weights αl

[i j], are similarly com-

puted as in equations (2.12) and (2.13) respectively. However, the attention energies el
[i j] for

LA are computed by:

el
[i j] = S (hl

[i], h[ j]) (2.17)

where the score function S has three different alternatives:

S (hl
[i], h[ j]) =


hl

[i]
ᵀh[ j] dot

hl
[i]
ᵀW(h[ j]) general

vᵀ tanh(W
[
hl

[i]; h[ j]
]
)) concat

(2.18)

Another difference between BA and LA: BA only utilizes one score function, the concat

product, while LA utilized all three in equation (2.18). Lastly, the computation path to obtain

the output ẏ[i] is marginally simpler for LA. Hence, GRU(·)→ hl
[i] → αl

[i j] → cl
[i] → ĥl

[i] → ẏ[i],

as compared to that of BA, hb
[i−1] → αb

[i j] → cb
[i] → GRU(·) → hb

[i] → [·] → ẏ[i]. Namely, BA is

slightly more complicated in the latter part of the mechanism, as the variables are concatenated

before being passed to the function gb. Ultimately, LA serves the same purpose as BA; to

relieve the encoder of having to extract all information from the input sequence into a single

fixed-length vector.
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Literature Review

This chapter provides an overview of the literature relevant to the work presented in this thesis.

Section 3.1 presents related work that is applicable to energy forecasting. Sections 3.2 and 3.3

discuss works that have incorporated S2S models and S2S attention models, respectively. Note

that Section 3.3 mainly focuses on problems in the classification domain as to the best of our

knowledge, only one other work has adapted a S2S attention model for a regression problem.

3.1 Energy Forecasting

Energy forecasting can be classified into three main categories: short, medium, and long-term

[36][37]. Firstly, it is important to note that the forecasting lengths are directly defined with

regards to the sample rate, the increment time between data entries [38]. Hence, datasets with

hourly or daily increments will define forecasting lengths differently as compared to minute-

increment datasets. For example, a distribution company that supports revenue projection may

define short term as one to five years ahead, and long term as 20 years ahead [38]. In addition,

the operations group in an Independent System Operator may define short term as a few hours

ahead, medium term as five days ahead, and long term as two weeks ahead [38].

Thus, in order to properly compare different forecasting models, the sample rate of the

datasets would have to be equivalent, along with the total number of time steps predicted ahead.

23
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Nonetheless, since the presented work is concerned with five minute-increment data, we define

the different forecasting lengths as:

• short-term: predict next thirty minutes to an hour ahead

• medium-term: predict next few hours to half a day ahead

• long-term: predict next day ahead

There are many approaches to load forecasting (physics, statistics, and machine learning-

based), but this section focuses on machine learning-based models as our work belongs to this

category. The purpose of these algorithms is to learn the mathematical relationship amongst

the variables which affect energy consumption.

Traditional machine learning methods, such as ANNs and Support Vector Machines (SVM),

have been used to forecast energy consumption. The work by Jetcheva et al. [39] proposed an

ANN model to forecast day-ahead building-level energy, with an ensemble approach to select

model parameters. Ferlito et al. [40] proposed a Nonlinear Auto Regressive Neural Network

(NAR), a form of ANN, to forecast building energy demand for forecasting lengths 3, 6 and 12

months ahead. Their results show that the NAR model achieved, in terms of root mean square

percentage error, 15.7%, 17.97%, and 14.59% for the three different forecasting lengths. It is

important to note that the aforementioned study used a dataset of monthly energy consump-

tion. The work by Chae et al. [41] considered the use of an ANN model, with Bayesian

regularization algorithm, to predict short-term building energy usage. On a 15-minute interval

dataset, the results demonstrated that the model, with adaptive training methods, outperformed

Linear Regression, SVM, and Gaussian process regression. Accordingly, Araya et al. [42]

proposed an ensemble learning framework for anomaly detection in building energy consump-

tion. Their work developed a new pattern-based anomaly classifier, the collective contextual

anomaly detection using sliding window (CCAD-SW), then implemented an ensemble frame-

work that consisted of pattern-based and prediction-based anomaly classifiers. Hence, part of

the framework consisted of ANN and SVM models to first predict energy consumption, then
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the predicted values were compared to the actual usage values to distinguish if an anomaly

had occurred or not. The results showed that the CCAD-SW improved the true positive rate

of the CCAD (without the sliding window) by 15% and reduced the false positive rate by 8%.

Moreover, the ensemble framework further improved the true positive rate of the CCAD-SW

by 3.6% and reduced the false positive rate by 2.7%.

A review of ML models for estimation of building energy consumption is presented by

Seyedzadeh et al [43]. Specifically, they review how other researchers have used the three

approaches: ANN, SVM, and Gaussian process regression, for energy forecasting. They do

not state results, but rather provides a discussion of the benefits and drawbacks of each model.

The work by Naji et al. [44] predicted building energy consumption by applying an Ex-

treme Learning Machine (ELM) method. The ELM method was applied to the data regarding

building material thickness and their thermal insulation capability. The results showed that

the ELM method was superior to genetic programming and ANNs, and that ELMs are faster

in learning speed compared to traditional feedforward network algorithms, such as the BPTT

algorithm. In comparison, the work by Tasfi et al. [45] focused on prediction-based anomaly

detection with a model that consisted of a Convolutional Neural Network (CNN) Encoder-

Decoder framework. The results showed their network outperformed SVM and Autoencoder

variants in anomaly detection ability. The work by Amarasinghe [46] also used a CNN model

to forecast energy consumption. Their results showed that the CNN architecture produced

superior results to SVMs, while having comparable results to ANNs and other deep learn-

ing approaches. Mocanu et al. [37] assessed their newly developed stochastic models on a

benchmark dataset consisting of almost four years of one-minute increment consumption data.

Their results showed that the Conditional Restricted Boltzmann Machine and Factored Condi-

tional Restricted Boltzmann Machine outperformed ANN, SVM, and regular non-S2S RNNs

for short-term prediction lengths.

While the aforementioned works contribute to load forecasting in their respective ways,

the presented work differs by focusing on both S2S-RNN based and S2S-RNN attention based
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models. These S2S-RNN models offer a stronger analysis in time series problems, since their

internal hidden state is passed through a directed graph along a sequence. For this reason,

regular S2S-RNN models are able to retain information in sequential data better than traditional

ANNs, SVMs and CNNs [16]. Moreover, adding an attention mechanism to these (already

superior) S2S-RNN models only holds potential in improving their ability to learn relationships

in the same temporal data.

Other works have explored the use of non-S2S RNN models for load forecasting. The work

by Kong et al. [47] proposed an LSTM based regular RNN model for short-term residential

load forecasting (STLF). The model was applied to 69 datasets, that consisted of 30-minute

increment readings. The results showed that the model achieved an average mean absolute

percentage error (MAPE) of 44.06% when predicting 12 time steps ahead. In contrast, Shi et al.

[48] worked with 30-minute increment residential datasets, where they applied a novel pooling

based deep recurrent neural network (PDRNN) for STLF. The methodology consists of two

stages: Stage one consisting of Load Profile Pooling and Stage two including STLF with a deep

non-S2S LSTM based RNN. The results showed the PDRNN model outperformed ARIMA by

19.5%, Support Vector Regression by 13.1% and classical RNN by 6.5% in terms of root

mean squared error. Moreover, non-S2S LSTM based RNN models were used for prediction-

based anomaly detection in different time series domains, one of which was power demand

[49]. These non-S2S LSTM models demonstrated that stacked LSTM networks outperformed

stacked vanilla RNN networks and also learned higher-level temporal patterns without prior

knowledge of the pattern duration. Moreover, Bouktif et al. [50] used a standard LSTM model,

coupled with a genetic algorithm, for short to medium term aggregate load forecasting. The

genetic algorithm was used to find optimal time lags and the number of layers for the LSTM

model to improve prediction performance. The dataset had a sample rate of 30-minutes, and

the models were trained to forecast a few days to months ahead. The results showed that the

model achieved a mean absolute error (MAE) of 251 for the 2-week forecasting scenario, and

a MAE of 208 for the 3-4 months scenario.
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Although these four studies used LSTM based RNN models for load forecasting, their fo-

cus was on standard non-S2S prediction, rather than S2S prediction as in our work. The main

difference, as described in section 2.2, is that standard non-S2S LSTM models use the outputs

from the Encoder as predictions, while S2S models combine the Encoder and Decoder to use

the sequential outputs from the Decoder as predictions. In addition, neither of the aforemen-

tioned works applied any sort of attention mechanism to their architectures.

3.2 Use of Sequence-to-Sequence Models

3.2.1 Energy Forecasting

This section reviews three different works that present models which are most comparable to

our S2S non-attention model. Firstly, the work by Marino et al. [36] used standard LSTM and

LSTM-based S2S models to forecast residential-level energy consumption on one hour and

one-minute time step datasets. The S2S model performed well on both datasets, and produced

comparable results with other deep learning methods [37]. While our work also uses S2S mod-

els, it varies by means of: overall different algorithm, sample generation, and longer prediction

sequence length. Furthermore, in the aforementioned work, an important step in the S2S ap-

proach of using the previous Decoder output as next input was not utilized for their respective

LSTM-S2S model.

Secondly, Zheng et al. [51] proposed a hybrid algorithm that combined similar days (SD)

selection, empirical mode decomposition (EMD), and LSTM neural networks to construct a

prediction model denoted SD-EMD-LSTM for STLF. The extreme gradient boosting-based

weighted k-means algorithm was used to calculate the similarity between historical and fore-

casting days. Then, the EMD method was used to decompose the SD load to numerous in-

trinsic mode functions (IMFs) and residuals. From here, LSTM S2S-based networks were

employed to forecast each IMF and residual. Once the forecasting values were produced from

each LSTM model, they were passed through a series reconstruction phase to obtained the
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forecasted results. The dataset used was in one-hour increments, and the model was tested to

forecast the next 24 hours (day-ahead) and 168 hours (week-ahead). The results showed the

SD-EMD-LSTM model obtained an average MAPE of 1.08% and 1.59% for day-ahead and

week-ahead respectively. Also, while this work proposed a unique hybrid model, the specific

S2S LSTM-based model is identical to the one used by Marino et al [36]. The only difference

is that Zheng et al. used a different input feature vector for their decoder network. Hence, our

work differs by: not clustering based on similar days, and passing the usage data to the LSTM

S2S model, not the IMF data and residuals. In addition, the work by Zheng et al. does not pass

the previous Decoder output as the next input, as in our S2S approach.

Lastly, Rahman et al. [52] developed two S2S LSTM-based models to make medium-to-

long term predictions, i.e. time horizon greater than one week, for commercial and residential

datasets at one-hour sample rate. Model “A” has an encoder-decoder base, with the final en-

coder step outputting the context vector, similar to our work. The main difference between

their work and ours: their work uses this encoded context vector as the input for each step in

the decoder process, while our work does not. Hence, their decoder would take as inputs the

context vector and the previous hidden state, while the decoder in our work takes as inputs the

previously predicted output and the previous hidden state. These differences are identical for

their respective model “B”. What is interesting about this work is that they concatenate the

original encoder inputs with the outputs of the decoder, and perform an operation, respective

to model A or B, on this newly formed concatenation to achieve the forecasted sequence. The

results showed that the proposed S2S LSTM-based models A and B, in general, performed bet-

ter than a 3-layer ANN model in the case of electric load forecasting in commercial buildings.

To conclude, even though the work by Rahman et al. is comparable to ours, it does not utilize

the complete S2S approach as proposed for the task of NMT [16], a re-occurring theme for

literature mentioned in this subsection.
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3.2.2 Classification Problems

While our work primarily focuses on using S2S models for a regression problem, such as load

forecasting, other works have used S2S models for tackling classification problems. The S2S

architecture was first developed, by Cho et al. [34], to achieve improved performance in the

field of statistical machine translation (SMT). Interestingly, this same work not only proposed

a novel model architecture, but also a novel RNN cell structure, later to be known as the GRU

unit. The model was evaluated on the task of translating from English to French. The results

showed that the RNN encoder-decoder, with GRU units, improved the overall translation per-

formance in terms of Bilingual Evaluation Understudy (BLEU) scores, obtaining a score of

34.64. Furthermore, the work by Sutskever et al. [16] introduced a slight variation to the RNN

S2S framework for the same task of translating from English to French. While Cho et al. used

a GRU cell, Sutskever et al. used an LSTM cell. The main technical difference between these

two works: as was done by Cho et al. Sutskever et al. did not pass the encoded representation

vector, the context vector, to the decoder at each time step. Nonetheless, the main result of

their work was the following: on the WMT’14 English to French translation task, the proposed

LSTM S2S model obtained a BLEU score of 34.81, which was the best achieved result up to

that point. One could argue that the model by Sutskever et al. achieved better results because

they used an LSTM cell, or that Cho et al. had not optimized the novel methodology at the

time. Nevertheless, both works revolutionized how deep learning is used for problems in the

domain of sequence prediction.

Since their origin, other works have explored the use of S2S RNN models for classification

problems. The work by Venugopalan et al. [53] use an LSTM-based S2S model to generate

descriptions of real-world videos. The architecture is slightly different than that of Cho et al.

and Sutskever et al. as the raw video frames are first passed through a CNN, then these out-

puts are used as the encoder sequence inputs. In addition, their work [53] used a stacked layer

approach, and the current decoder output of the last RNN layer was used as the next input

only for that last layer. The first layer of the decoder was only passed the previous hidden



30 Chapter 3. Literature Review

state. The proposed model achieved state-of-the-art performance on a standard YouTube cor-

pus dataset, and outperformed related work on two large and challenging movie-description

datasets. Similarly, S2S RNN models have found success in producing vector representations

of fixed dimensionality for variable-length audio segments [54]. Hence, an audio segment is

first converted to data, then used as the input sequence of the encoder RNN. The remaining

decoder architecture is as in Sutkever et al. where the predicted output is passed as the next

input. The results showed that the proposed models were able to outperform different baseline

Naive Encoders (NE) in terms of mean average precision (MAP).

Furthermore, an LSTM encoder-decoder network was used to improve the estimation of

Remaining Useful Life (RUL) of a machine [55]. The proposed model obtained a health index

(HI) for a system using multi-sensor time-series data. The model was trained to reconstruct the

time-series corresponding to the healthy state of the system. The reconstruction error was used

to calculate the HI, which is then used to estimate RUL. The results, obtained from using a real-

world industry dataset, showed a strong correlation between the HI produced from the LSTM

encoder-decoder and actual maintenance costs. Lastly, the work by Park et al. [56] explored

the use of LSTM-based S2S models for real-time vehicle trajectory sequence prediction. The

encoder was used to analyze the pattern of the past trajectory, while the decoder was used to

generate the future trajectory sequence. The overall process used a beam search technique to

keep the K most likely trajectory candidates from the decoder output. From highway traffic

scenarios, the results showed the proposed model obtained improved prediction accuracy over

traditional trajectory prediction techniques.

3.3 Use of Sequence-to-Sequence Attention Models

While RNN encoder-decoder models have found success in the problem domain of sequence

prediction, the underlying issue of burdening the encoder to condense all information into one

context vector is still present. Thus, an attention mechanism, otherwise known as an “alignment
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model”, was added to these models by Bahdanau et al. [17]. Their work focused on using this

novel architecture to maximize neural machine translation (NMT) performance. The proposed

model was evaluated on the WMT’14 dataset, for the task of English to French translation. For

sentence prediction length of up to 30 words and 50 words, the results showed the attention

based model outperformed the Non-attention encoder-decoder model [34] [16] in terms of

BLEU score. Shortly after, Luong et al. [18] proposed a new S2S attention mechanism for

the same task of improving NMT performance. The technical differences between Bahdanau

et al. attention (BA) and Luong et al. attention (LA) is given in Section 2.4. To summarize,

LA introduced two new score functions, dot and general, on top of BA’s concat function, and

LA introduced local attention in addition to BA’s global attention. The proposed model was

tested on the WMT translation tasks between English and German in both directions. Similar

to BA, their attention mechanism achieved better results over the regular S2S models [34] [16]

in terms of BLEU score. Their ensemble model established new state-of-the-art results for both

WMT’14 and WMT’15, which outperformed existing best systems by more than 1.0 BLEU.

As described in Section 2.4, our work incorporates both the BA and LA attention mechanisms

for the regression problem of predicting energy consumption.

The work by Qin et al. [57] proposed a dual-stage attention-based RNN (DA-RNN) to

predict the NASDAQ 100 Stock for input lengths of 3, 5, 10, 15, and 25 minute time steps.

The first stage is the Input Attention Mechanism which converts the original inputs to newly

computed “attention inputs” to be used by the encoder RNN. The second stage is the Tempo-

ral Stage Mechanism, which incorporates the BA mechanism in their S2S model. The results

showed that DA-RNN achieved state-of-the-art results, outperforming regular S2S models and

S2S-attention based models. It is important to note that the model was used to only predict

the next minute value, and that the decoder was passed the previous actual values throughout

the entire decoder process, a technique otherwise known as Teacher Forcing. The proposed

model achieved state-of-the-art performance in terms of MAPE. Our work differs as: no con-

version was done to the original inputs, our S2S-attention models were tested for much longer
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prediction lengths, and no Teacher Forcing was done during the decoder process.

Other works have used the S2S-attention architecture for classification problems. The work

by Prabhavalkar et al. [58] compared several S2S models for the task of speech recognition.

The models included connectionist temporal classification (CTC), the RNN transducer, an

attention-based model, and an augmented RNN transducer with attention mechanism. Their

results showed that, on the large vocabulary continuous speech recognition (LVCSR) task, the

baseline outperformed all models for the voice-search test. Nonetheless, the S2S attention-

based models significantly outperformed the baseline on the test set of numeric entities, which

require the model to map utterances from the spoken to the written domain. Furthermore, S2S

attention based models have also been used for the task of Grapheme-to-Phoneme conversion

[59]. Results showed that regular S2S models obtained comparable, but not better, performance

to S2S attention based model. However, it was found that a bi-directional LSTM combined

with an attention mechanism, as presented by Bahdanau et al. [17], significantly outperformed

previous baseline methods for the Grapheme-to-Phoneme conversion task. Lastly, Zhang et

al. [60], proposed a character-level S2S attention model for the task of understanding subti-

tles, where the applied attention mechanism was that by Bahdanau et al. [17]. Results showed

that, on the task of English-to-Chinese subtitle translation, the proposed model achieved per-

formance comparable to that of the most competitive word-based model, namely the Bahdanau

et al. attention model. In addition, the model by Zhang et al. delivered results close to the

well-established phrase-based system, Moses.

While the aforementioned works found success using attention based S2S models in their

respective classification domains, our work differs as it adapts a S2S attention mechanism to a

regression problem, namely that of energy consumption forecasting.
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Methodology

This section discusses the applied approach. First, the dataset and evaluation process are intro-

duced in Section 4.1, followed by the sample generation in Section 4.2. Section 4.3 describes

the S2S algorithm, while Sections 4.4 and 4.5 give the specific BA and LA attention-based S2S

algorithms respectively.

4.1 Dataset and Evaluation Process

Smart meters are digital electricity meters that are able to measure how much electricity is used

and when it is used. Typically, data obtained from smart meters contains the meter location,

the time stamp, and usage recorded at each reading interval. Ultimately, for this thesis, one

building-level smart meter raw data was processed and the dataset used for machine learning

consists of readings with 9 features, as given in Table 4.1, where three readings from the dataset

are randomly given to show how the data can vary. The holiday feature was added using the

Ontario holiday calendar, while the remaining time features were engineered from the time

stamp. Gray encoding could be used to deal with cyclical features, such as hour, in order

to address the issue of rolling over from maximum to minimum (hour 23 to 0). Using gray

encoding holds potential to further improve results obtained in our study.

The entire dataset was divided into a training set and test set. The first 80% of all readings

33
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Table 4.1: Feature Data (before standardization).

Index Month Day of Year Day of Month Weekday Weekend Holiday Hour Season Usage (kW)

0 7 187 5 1 0 0 0 3 405.8743
23470 9 268 24 5 1 0 18 4 332.7853

104275 7 184 3 0 0 1 7 3 297.4848

were assigned as the training set and the last 20% as the test set. Fig. 4.1 shows where the

train set ends and the test set begins for the usage feature. This validation process was chose

to ensure that the model is built using older data and tested on newer data. As seen in Fig. 4.1,

the usage data describes a building that experiences a regular work-week. Hence, the spikes

represent the typical Monday-Friday work-week, while the drops represent lower consumption

during the weekend.

102000 104000 106000 108000 110000
Time: 5 minute timesteps

100

200

300

400

500

600

700

800

Us
ag

e 
(k

W
)

Usage: Training vs Testing data

Train
Test

Figure 4.1: Usage data zoomed in to show breakdown between the train and test sets.

The data was normalized using standardization. Hence, the values of each feature in the

data were transformed to have zero-mean and unit-variance:

x̃ =
x − µ
σ

(4.1)
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Here, x is the original feature vector, µ is the mean of that feature vector, σ is its standard

deviation, and x̃ represents the feature vector after normalization.

4.2 Sample Generation

To enable the use of S2S models, the training and testing datasets need to be prepared in a

different way as compared to traditional Feedfoward neural networks. More specifically, each

target sample needs to be obtained from the end of each input sample since we want to train

the model to predict a desired length ahead. Let one input sample be represented as a matrix,

X ∈ RT× f , where T is the number of input time steps and f is the number of features. As

defined in the previous subsection, the number of features is f = 9, where each row of the

matrix X is defined as:

x[ j] = [Month[ j] DayOfYear[ j] DayOfMonth[ j]

Weekday[ j] Weekend[ j] Holiday[ j] Hour[ j]

Season[ j] Usage[ j]]

(4.2)

where j ∈ 1, ...,T . For each input sample, one target sample was generated, represented by a

vector y ∈ RN×1, where N represents the number of predicted time steps from T . The target

vector represents the actual usage vector, which is given by:

y = [Usage[1], ... , Usage[i], ... , Usage[N]] (4.3)

where y[i], with subscript [i] notation, denotes the actual usage value at time step i, i ∈ 1, ...,N.

We use this target vector to compare with the predicted usage vector, ẏ ∈ RN×1.

Thus, the input and target samples were generated using the technique demonstrated in

Fig. 4.2. Here, i + 1 denotes the index (of the dataset) where the window starts, T denotes

the length of the input window, and N denotes the length of the target vector. Note that the

use of notation i will refer to the index for the rest of this section, hence while only discussing
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sample generation. As an example, to predict the next hour of energy consumption using the

previous four hours (in 5-minute increments), T and N would be set to T = 48 and N =

12. It is important to note that the indices (minus the last T + N) of the training set were

first randomized, not the data itself, then the input and target samples were generated. This

way, data in a single input sample represents consecutive time steps. The process for sample

generation of the training set is given as:

1. Uniformly randomize indices i from U(1, ilast). Here, i ∈ 1, ..., ilast and ilast denotes the

total length of the training set minus the last T + N indices. If i was chosen to be ilast + 1,

the input sample would still be length T , but the target sample would now be length N−1,

since it is not possible to exceed the available index of the training set.

2. For each i:

(a) Append, from the training set, consecutive data from indices i + 1 to i + T as the

input sample. Hence, obtaining X ∈ RT× f .

(b) Append, from the training set, i + T + 1 to i + T + N as the target usage vector.

Hence, obtaining y ∈ RN×1.

Obtaining the input and target samples for the test set was slightly different. Instead, as

seen in Fig. 4.3, a sliding window technique was used; the window shifted sequentially with

f X ∈ ℝ
T×f

i i + 1 i + 2 ... i + T i + T + 1 i + T + 2 ... i + T + N . . . +1

y ∈ ℝ
N×1

Index

NTInput: length Target: length

Figure 4.2: Training set sample generation. Input and target samples generated from random
index i + 1.



4.2. Sample Generation 37

the overlap size equivalent to the target length, N. Hence, if we obtain one test input sample

starting at index i′ + 1, the target sample still ends at i′ + T + N, similar to what is done in

Fig. 4.2 and the training set. However, the indices are not randomized for the test set, and the

next input sample slides N time steps and starts at i′ + 1 + N, with the target sample ending at

i′ + T + 2N. The process for sample generation of the test set is given as:

1. For each i′, s.t. i′ ∈ 1, 1 + N, 1 + 2N, ..., i′last, where i′last denotes total length of the test set

minus the last T + N:

(a) Append, from the test set, consecutive data from indices i′ + 1 to i′ + T as the input

sample. Hence, obtaining X′ ∈ RT× f .

(b) Append, from the test set, i′ + T + 1 to i′ + T + N as the target usage vector. Hence,

obtaining y′ ∈ RN×1.

Note that the process above accounts for the sliding window technique by starting at index

f ∈X ′

a ℝ
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′

+ 1i
′

+ 2i
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a ℝ
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Figure 4.3: Test set sample generation. (a) Input and target samples generated from dataset
at index i′ + 1. (b) Sequential input and target samples generated from sliding window with
overlap length N.
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1 and adding N each time. Doing so allows for an overlap in input test samples, but no overlap

in target test samples. This was done to enable concatenating the predicted usage vectors

together into one vector which has equivalent length as the total actual usage vector. Thus,

from here, comparisons between the predicted and actual usage can be done by means of

accuracy measures.

4.3 S2S-prediction

This section gives a detailed breakdown of the S2S algorithm used for this work. As briefly

described in section 2.2, each S2S model has an Encoder RNN (ET ) of length T and Decoder

RNN (DN) of length N. The inputs, as obtained in the previous subsection, are passed through

ET , one time step at a time. Hence, Fig. 2.4 shows ET unrolled, where a vector, as in equation

(4.2), is passed to it at each time step. Each cell takes the previous hidden state and the current

input at time step j, performs the actions discussed in section 2.3 (equations (2.7), (2.8), (2.9)

for a Vanilla RNN, LSTM or GRU cell, respectively), and outputs a hidden state. Note that

Vanilla RNN and GRU cells output one hidden state, while LSTM cells output both a cell state

and a hidden state.

Fig. 4.4 shows how ET and DN connect in the S2S approach. Once the entire input has

been processed by ET , the output produced is a hidden state commonly referred to as the

context vector [16], since it encodes context from the entire input sequence. This context

vector, shown as h[T ] in Fig. 4.4, is then used as the initial hidden state for DN . The context

vector is also passed through a fully-connected layer to produce the feature context value,

shown as ẏ[0], which is the initial input of DN . Let us denote this fully-connected layer as

Wh→1, where h represents the hidden state dimension, or the size of the hidden state vector that

is passed through each cell. Note that the ET cell took f = 9 features as input, while the DN

cell only takes f = 1 feature, hence the previously predicted usage value ẏ[i−1]. Therefore, this

Wh→1 transforms the output vector from dimension h to a single value of dimension 1, allowing
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it to be used as the next input value for DN . This approach differs from others in literature as it

passes the previously predicted output as the next decoder input; a novel approach to building-

level load forecasting. Thus, let us denote these models with a “-o” notation, representing

the distinguishing characteristic of the applied architecture for energy load forecasting; one

predicted value computed at time step i is passed as the next decoder input. Hence, GRU S2S

will be denoted as GRU S2S-o [61].

Continuing, each output produced from the remaining DN cells is passed through the same

fully-connected layer. This transforms the output h̄[i] to a single predicted usage value, ẏ[i], at

time step i. Thus, after N time steps we have obtained the predicted usage vector, and we can

compute the loss from the target usage vector as:

L =
1
i

N∑
i=1

(y[i] − ẏ[i])2 (4.4)

Where equation (4.4) is the objective function that is minimized after each epoch; it is

calculated as the Mean Squared Error (MSE) of the target and predicted values.

To train the model, back-propagation through time (BPTT) is used. The entire network is

ECell

x[T]

W h→1

y˙[0]

h[T]

DCell

W h→1

y˙[1]

h¯ [1]
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W h→1

h¯ [2]

y˙[2]

ECell

x[T−1]

h[T−1]

Decoder

... ...
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Figure 4.4: Detailed process of the S2S architecture. The left box shows the last two steps of
ET , while the right box shows the first two steps of DN .
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unrolled by a fixed number of time steps T + N; hence, it can be seen as a deep standard feed-

forward neural network with shared parameters. Thus, standard BPTT can be applied to train

the network using a gradient based method. Here, the ADAM [62] algorithm is used as the

gradient based optimizer since it outperformed other methods in terms of faster convergence

and better accuracy measures. The complete process is given in Algorithm 1.

In line 10, the hidden state is initialized to be ~0 of size B×h, where B is denoted as the batch

size, which is the number of training examples the model processes for one update of weight

parameters [63]. Batching is done to speed up convergence. Since the weight parameters are

Algorithm 1 Train-S2S(G = (ET ,DN ,Wh→1, P0))
1: Input : Model G consisting of: ET of length T , DN of length N, fully-connected layer
2: Wh→1 and initial weight parameters denoted P0.
3: Output : Model G trained to convergence, with updated weight parameters P.
4:
5: Generate randomized input samples X ∈ RT× f and corresponding target vectors y ∈ RN×1

6:
7: for each epoch do
8: for each batch do
9:

10: initialize h[ j−1] ← ~0 ∈ RB×h, where B = batch size
11:
12: for time step j from 1 to T do
13: h[ j] ← Ecell(x[ j], h[ j−1])
14:
15: ẏ[0] ← Wh→1(h[T ])
16: h̄[0] ← h[T ]

17:
18: for time step i from 1 to N do
19: h̄[i] ← Dcell(ẏ[i−1], h̄[i−1])
20: ẏ[i] ← Wh→1(h̄[i])
21: append ẏ[i] to predicted usage vector ẏ
22:
23: compute L as in equation (4.4)
24: BPTT(L)
25: P← Adam(P0, r), where r = learning rate
26: P0 ← P
27:
28: Return : Trained model G, with updated parameter weights P.
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updated per batch, a smaller batch size provides more accurate updates. Once all the batches

have been processed by the model, one full epoch has occurred. Lines 12-13 show the input

example being passed through the ET . Lines 15-16 transform the output of ET , the context,

to create the initial input and hidden state of the DN . Lines 19-21 describe the process of

predicting the usage value, appending that value, and preparing the next input and hidden state.

In lines 23-26, the total loss is computed, BPTT is applied, and the model parameters are

updated. See that Algorithm 1, Train-S2S, is used to train the model, and will differ slightly

when applied to the test set. Namely, for the test set, we build the inputs and targets differently

(as outlined in the section 4.2) and do not apply BPTT on the loss, hence do not update the

parameters in any way.

4.4 S2S-prediction with Bahdanau Attention

Section 2.4 gives a generic breakdown of the BA mechanism, whereas here the specific process

of applying BA to a S2S model to forecast building energy consumption is described. As in

section 4.3, the S2S model with BA (S2S-BA) takes an identical encoder approach, except as

can be seen in Fig. 4.5, the outputs of ET are stored and used in the decoder attention process.

Let us denote all of these encoder outputs as H =
[
h[1], ..., h[T ]

]
∈ RT×h where each output can

be defined as H[ j] = h[ j] ∈ R
h. Here, the dimensions T and h are the input sequence length and

hidden state size, respectively. Hence, at the end of the encoder process, we have obtained the

context vector h[T ], the initial input value ẏ[0] for DN , and the encoder outputs H. Even though

the context vector h[T ] is an element of H, it can be seen as the initial hidden state of DN; hence

it is denoted as hb
[0]. The BA process that occurs at decoder time step i to produce the output

ẏ[i] is given in Fig. 4.5, while the entire training process is defined in Algorithm 2. Let us

denote BA variables with the b superscript notation. See that lines 12-20 of Algorithm 2 are

very similar to lines 10-16 of Algorithm 1, since an identical encoder approach is taken, except

in Algorithm 2 the encoder outputs are initialized and stored in lines 13 and 17 respectively.
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The first step of BA is to compute the attention energies eb
[i j]. In order to do so, T copies of

hb
[i−1] are made, and this matrix is denoted as Hb

[i−1] ∈ R
T×h. As in lines 23-25 of Algorithm 2,

the energies are computed by:

λ1 =
[
Hb

[i−1]; H
]
∈ RT×2h (4.5a)

λ2 = tanh(W2h→h(λ1)) ∈ RT×h (4.5b)

λ3 = 〈λ2, v〉,where v ∈ Rh (4.5c)

eb
[i j] = λ3 ∈ R

T (4.5d)

Here, W2h→h and v are parameters to be learned during training. W2h→h is a fully-connected

layer and v is a vector randomly initialized from N(0, 1
√

h
). From Fig. 4.5, the inner product

has been taken with the result from the tanh(W2h→h) block. Note that the [·] notation is used

to indicate concatenation, while the λ notation in equation (4.5), and in subsequent equations,

is simply used as a placeholder to denote the steps taken to produce that respective output.

See that the inner product is taken in equation (4.5c), where λ2 from equation (4.5b) is right

multiplied with v. In equation (4.5c), λ2 has dimensions T × h which is right multiplied by a

vector of dimension h (or h × 1), which results in a vector of dimension T . Hence, at decoder

time step i, eb
[i j] is a vector of length T , where each element j ∈ 1, ...,T represents the attention

energy dedicated to that encoder output. The next step, line 26 of Algorithm 2, is to compute

the attention weights αb
[i j] ∈ R

T :

αb
[i j] =

exp(eb
[i j])∑T

k=1 exp(eb
[ik])

(4.6)

This is the Softmax of the attention energies computed in equation (4.5). Observe that

equation (4.6) is identical to equation (2.13). In Fig. 4.5, at this point of the process we have

passed the “Softmax” block. Continuing, line 27 of Algorithm 2 shows that these attention

weights are then used in an inner product with H, to compute the context vector cb
[i] ∈ R

h, given
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Figure 4.5: Detailed process of the BA mechanism at time step i.

as:

cb
[i] = 〈αb

[i j],H〉 (4.7a)

=

T∑
j=1

αb
[i j]h[ j] (4.7b)

The next step is to concatenate the context vector with the previously predicted output ẏ[i−1],

and pass this newly formed vector through the respective RNN cell, to obtain the current hidden

state hb
[i]. In Algorithm 2, line 28 is given by the following steps:

λ4 =
[
ẏ[i−1]; cb

[i]
]
∈ R1+h (4.8a)

λ5 = GRUCell(λ4, hb
[i−1]) (4.8b)

hb
[i] = λ5 ∈ R

h (4.8c)
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Algorithm 2 S2S-BATrain(G = (ET ,DN , tanh,Softmax,W2h→h,W1+2h→h,Wh→1, v, P0))
1: Input : Model G consisting of: ET of length T , DN of length N, activation functions
2: tanh and Softmax, fully-connected layers W2h→h,W1+2h→h,Wh→1, vector parameter v,
3: and initial weight parameters P0.
4: Output : Model G trained to convergence, with updated weight parameters P.
5:
6: Generate input samples X ∈ RT× f and corresponding target vectors y ∈ RN×1

7: Initialize v ∼ N(0, 1
√

h
) ∈ Rh

8:
9: for each epoch do

10: for each batch do
11:
12: initialize h[ j−1] ← ~0 ∈ RB×h, where B = batch size
13: initialize H← ~0 ∈ RT×B×h

14:
15: for time step j from 1 to T do # Encoder part
16: h[ j] ← GRUcell(x[ j], h[ j−1])
17: H[ j] ← h[ j]

18:
19: ẏ[0] ← Wh→1(h[T ]) # Obtaining initial inputs for Decoder
20: hb

[0] ← h[T ]

21:
22: for time step i from 1 to N do # Decoder part
23: Hb

[i−1] ← T copies of hb
[i−1]

24: eb
[i j] ← tanh(W2h→h(

[
Hb

[i−1]; H
]
))

25: eb
[i j] ← 〈e

b
[i j], v〉

ᵀ # Transpose to correspond with B dimension
26: αb

[i j] ← Softmax(eb
[i j])

27: cb
[i] ← 〈α

b
[i j],H

ᵀ〉 # Transpose to correspond with B dimension
28: hb

[i] ← GRUCell(
[
ẏ[i−1]; cb

[i]
]
, hb

[i−1])
29: ẏ[i] ← Wh→1(W1+2h→h(

[
ẏ[i−1]; cb

[i]; hb
[i]
]
))

30: append ẏ[i] to predicted usage vector ẏ
31:
32: compute L as in equation (4.4)
33: BPTT(L)
34: P← Adam(P0, r), where r = learning rate
35: P0 ← P
36:
37: Return : Trained model G, with updated parameter weights P.

where the GRUCell in equation (4.8b) takes λ4 and the previous hidden state hb
[i−1] as inputs. See

that the entire BA process was given using the GRU cell and differs slightly for the LSTM cell,
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since the LSTM cell outputs both a hidden state and a cell state. Nonetheless, only the hidden

state that is output from the LSTM cell is used for the attention process. For the Vanilla RNN

cell, the process would remain the same, since both GRU and Vanilla RNN cell only output a

hidden state. The last step, in computing the predicted output ẏ[i], is to pass the current hidden

state, the context vector, and the previous output through a function as given in equation (2.11).

For this work, all three variables are concatenated, as seen to the right of the last decoder GRU

cell in Fig. 4.5, and this vector is passed through two fully-connected layers. Hence:

λ6 =
[
ẏ[i−1]; cb

[i]; hb
[i]
]
∈ R1+2h (4.9a)

λ7 = W1+2h→h(λ6) ∈ Rh (4.9b)

ẏ[i] = Wh→1(λ7) ∈ R1 (4.9c)

(4.9d)

Here, W1+2h→h and Wh→1 are parameters to be learned during training. As seen in Fig. 4.5

and line 29 in Algorithm 2, the predicted output is obtained following the steps in equation

(4.9). Therefore, this concludes the decoder process for one time step. After N time steps, we

have obtained our predicted usage vector ẏ ∈ RN , and can compute the loss as given in equation

(4.4). The remaining steps, BPTT using the gradient based weights update, are identical as in

section 4.3.

4.5 S2S-prediction with Luong Attention

This section describes the detailed process of applying LA to a S2S model to forecast building

energy consumption. The process for time step i is shown in Fig. 4.6, while the entire training

process is given in Algorithm 3. As in Section 4.4, the encoder takes an identical approach;

lines 11-19 of Algorithm 3 are identical to lines 12-20 of Algorithm 2, respective to their own
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variables. Hence, at time step T , we will have obtained h[T ], ẏ[0], and H. Let us denote LA

variables with the l superscript notation. The key difference between LA and BA; the first

step in LA is to compute the current hidden state hl
[i] ∈ R

h, while the first step in BA is to

make copies of the previous hidden state. Hence, the first step in LA, as given in line 22 of

Algorithm 3:

hl
[i] = GRUCell(ẏ[i−1], hl

[i−1]) (4.10)

where equation (4.10) takes as inputs the previously predicted output and the previous hidden

state. Note that the LA mechanism is applied using this current hidden state; counter to BA

which used the previous hidden state. The next step is to compute the attention energies el
[i j],

which is done by equations (2.17) and (2.18). Note, from equation (2.18), that only one score

function is chosen at a time, and this constitutes one model. The procedure to compute el
[i j]

using the dot score function is given as:

el
[i j] = 〈H, hl

[i]〉 ∈ R
T (4.11)

Here, the dot product between h[ j] and hl
[i] is computed for j ∈ 1, ...,T , and store the scalar

value in the j-th element of el
[i j]. Instead, if the general score function is chosen from equation

(2.18), as in line 23 of Algorithm 3, the attention energies are computed as:

λ1 = Wh→h(H) ∈ RT×h (4.12a)

λ2 = 〈λ1, hl
[i]〉 (4.12b)

el
[i j] = λ2 ∈ R

T (4.12c)

Where Wh→h is a parameter to be learned during training. From Fig. 4.6, the inner prod-

uct has been taken with the result from the Wh→h block. See that the dot and general score
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functions, as obtained in equations (4.11) and (4.12) respectively, are very similar. They differ

only by a fully-connected layer, as used for the general score function, that first transforms H

into a matrix with the exact same dimensions. Hence, the general score function can be seen

as applying the dot score function to the matrix resulting from equation (4.12a). The remain-

ing score function, concat, computes the energies similarly as in equation (4.5). However, the

difference here is the use of matrix Hl
[i] ∈ R

T×h, T copies of hl
[i], instead of Hb

[i−1].

Continuing, line 24 of Algorithm 3 shows that the attention weights αl
[i j] ∈ R

T are com-

puted using equation (4.6), except here we use the attention energies el
[i j] as obtained in equa-

tions (4.11) or (4.12). The attention context vector cl
[i] ∈ R

h is then computed in line 25 of

Algorithm 3 using the equations of (4.7) with the respective attention weights αl
[i j]. There is

no difference between BA and LA in how the attention weights or attention context vectors are

obtained from each mechanisms respective attention energies. This can be seen from figures

4.5 and 4.6, as the the attention energies take the same path to obtain the respective attention
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Figure 4.6: Detailed process of the LA mechanism at time step i, using the general score
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context vectors. The next step, as in line 26 of Algorithm 3, is to compute the attentional hidden

state ĥl
[i]:

λ3 =
[
hl

[i]; cl
[i]
]
∈ R2h (4.13a)

λ4 = tanh(W2h→h(λ3)) (4.13b)

ĥl
[i] = λ4 ∈ R

h (4.13c)

From Fig. 4.6, at this point of the process the result from the tanh(W2h→h) block has

been obtained. Lastly, the predicted output value is computed by passing ĥl
[i] through a fully-

connected layer:

ẏ[i] = Wh→1(ĥl
[i]) (4.14)

where W2h→h and Wh→1 are parameters to be learned during training. Note that the attentional

hidden state ĥl
[i] and current hidden state hl

[i] have different functions in LA; ĥl
[i] is only used in

computing the output value, while hl
[i] is used in computing the attention context vector and is

the hidden state to be used in the next time step. This concludes the LA mechanism for one

time step. After N time steps, we have obtained the predicted usage vector, and the remaining

steps are equivalent to that of Section 4.4.
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Algorithm 3 S2S-LA-generalTrain(G = (ET ,DN , tanh,Softmax,W2h→h,Wh→h,Wh→1, P0))
1: Input : Model G consisting of: ET of length T , DN of length N, activation functions
2: tanh and Softmax,fully-connected layers W2h→h,Wh→h,Wh→1 and initial weight
3: parameters denoted P0.
4: Output : Model G trained to convergence, with updated weight parameters P.
5:
6: Generate input samples X ∈ RT× f and corresponding target vectors y ∈ RN×1

7:
8: for each epoch do
9: for each batch do

10:
11: initialize h[ j−1] ← ~0 ∈ RB×h, B = batch size
12: initialize H← ~0 ∈ RT×B×h

13:
14: for time step j from 1 to T do # Encoder part
15: h[ j] ← GRUCell(x[ j], h[ j−1])
16: H[ j] ← h[ j]

17:
18: ẏ[0] ← Wh→1(h[T ]) # Obtaining initial inputs for Decoder
19: hl

[0] ← h[T ]

20:
21: for time step i from 1 to N do # Decoder part
22: hl

[i] ← GRUCell(ẏ[i−1], hl
[i−1]) # LA uses current hidden state, BA uses previous

23: el
[i j] ← 〈W

h→h(H), hl
[i]〉
ᵀ # Transpose to correspond with B dimension

24: αl
[i j] ← Softmax(el

[i j])
25: cl

[i] ← 〈α
l
[i j],H

ᵀ〉 # Transpose to correspond with B dimension

26: ĥl
[i] ← tanh(W2h→h(cat(hl

[i], c
l
[i]))) # BA concatenates ẏ[i−1], LA does not

27: ẏ[i] ← Wh→1(ĥl
[i]) # LA computes ẏ[i] from attentional hidden state, BA does not

28: append ẏ[i] to predicted usage vector ẏ
29:
30: compute L as in equation (4.4)
31: BPTT(L)
32: P← Adam(P0, r), r = learning rate
33: P0 ← P
34:
35: Return : Trained model G, with updated parameter weights P.
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Evaluation

The utilized approach is evaluated on a real-world dataset that was provided by an industry

partner. The dataset is based on approximately 1 year and 3 months of energy load data for one

smart meter of one commercial building. The dataset, as obtained by the smart meter, contained

readings with a timestamp (yyyy-mm-dd hh:mm:ss) and usage value in kW. The readings were

in five minute increments, so the total number of readings was 12 readings in one hour × 24

hours in one day = 287 × 458 days = 131,446. As stated in Section 4.1, the smart meter data

was processed into a dataset where each row consists of 9 features. The S2S and S2S attention-

based models are evaluated for varying lengths of input and prediction sequences. In addition,

the models are compared to a deep neural network, as well as a Non-S2S RNN. The rest of this

section describes the conducted experiments, presents their results, and discusses the findings.

5.1 Experiments

All S2S models were tested for four different prediction lengths, which range from short to

long. Each prediction length N is given as an element of the vector ~N:

~N = [12, 48, 120, 288] (5.1)

50
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Hence Ni ∈ ~N, where i = 1, 2, 3, 4. In 5 minute increments, this equates to predicting the

next [1 hour, 4 hours, 10 hours, 24 hours] respectively. Since there are endless combinations

of input length T to prediction length N, the following four input cases were chosen for

experiments:

• Case 1: input T = 12, predict each Ni ∈ ~N.

• Case 2: input T = 48, predict each Ni ∈ ~N.

• Case 3: input T = 120, predict each Ni ∈ ~N.

• Case 4: input T = 288, predict each Ni ∈ ~N.

These cases equate to fixed input lengths of 1 hour, 4 hours, 10 hours, and 24 hours, re-

spectively, to predict the next Ni ∈ ~N time steps. See that each of the four input lengths is

used in computing four different prediction lengths, hence a total of 16 different combina-

tions/subcases are evaluated. Note that the longest prediction length is 24 hours, or 288 time

steps, for five-minute data intervals. With datasets consisting of one-hour increments, 288 time

steps would translate to predicting 288 hours (12 days) consecutively. All models were trained

for no longer than 10 epochs, since this was sufficient to reach an acceptable level of conver-

gence. To support this claim, figures throughout each case are provided to show that the total

loss, for both the training and test set, did not exhibit signs of improvement as the 10th epoch

approached. The hyperparameters used to compute the results were:

• Hidden dimension size h = [64, 128]

• Cell state dimension size c = [64, 128] (LSTM)

• Batch size B = 256

• Learning rate = 0.001

Note that only one value of h, and equivalent dimension c for LSTM, is used for each

experiment. Two sizes of h were considered to see if increasing the hidden state, hence adding
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more parameters, would improve the accuracy. A large grid search holds potential to optimize

hyperparameters and further improve results. Each model was compared against the other

models; overall a total of 21 different models were used for each of the experiments:

• S2S-o model with GRU/LSTM/RNN cell

– Three models in total corresponding to three cell types

• S2S-BA model with GRU/LSTM/RNN cell

– Three models in total corresponding to three cell types

• S2S-LA model with GRU/LSTM/RNN cell

– Accompanied with each of three cells is one of three attention score functions: dot,

general, concat

– Nine models in total

• Non-S2S plain RNN model with GRU/LSTM/RNN cell

– Three models in total corresponding to three cell types

• DNN model with varying sizes: small, medium, large

– Three models in total

It is important to note that we define a model as a network with one of the 21 general

architectures as listed above. However, the specific architecture does change for one of 16

subcases of T and N: four input cases that each predict four lengths. A trained model within a

specific subcase will be unique to that subcase; it is technically different than the same model

for a different subcase, although the algorithms are equivalent. For example, the GRU based

S2S-BA model with T = 48 and N = 12 is ultimately different than the GRU based S2S-BA

model with T = 120 and N = 288. Hence, these subcase specific models branch from the
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parent model architecture since they undergo the same algorithm, but are technically different

as each specific subcase model uses their respective number of input and prediction steps.

The Non-S2S model is a Non-S2S RNN model, such as described in Section 2.1. This

model does not use an encoder-decoder framework, and thus can not have a prediction length

longer than input sequence length. Hence, this model is only used when N <= T . For example,

for case 3 where input length is T = 120, the Non-S2S model can only predict Ni ∈ ~N for

i = 1, 2, 3, and is omitted from results where T = 120 and N = 288.

The DNN model took the same input matrix X ∈ RT× f as was used with all other models,

but this matrix was flattened it into a single vector of dimension size = T × f . Hence, each

input vector x[ j] of X, as in 4.2, was now side-by-side constituting one long vector. The first

f elements of this long vector are the first row of X, the second f elements is the second row,

and so-forth. This vector was then passed through three different DNN models: DNN-small,

DNN-medium, and DNN-large. The output was a layer consisting of Ni ∈ ~N nodes, which is

equivalent to length Ni of the predicted usage sequence used in the S2S models. The three sizes

of DNN models are:

• DNN-small: Input layer (size T × f ) Z 512 Z 256 Z 128 Z Output layer (size Ni)

• DNN-medium: Input layer Z 512Z3 Z 256 Z 128 Z Output layer

• DNN-large: Input layer Z 1024Z2 Z 512Z3 Z 256Z2 Z Output layer

Where the notation Z is used to indicate the joining of the previous layer to the next,

and AZB notation used to indicate joining B layers of size A. Hence, 512Z3 indicates three

fully-connected layers of size 512. Multiple layers of the same size were used to add more

parameters, to see whether increasing parameters improved the accuracy. The DNN models are

used to directly predict the sequence of values, all at once, while the S2S models sequentially

predict the values one at a time. Thus, the DNN results give a good comparison between direct

prediction accuracy versus sequential prediction accuracy. The activation function used for the

DNN output layer was linear, since this is a regression problem.
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See that the S2S models were compared against two baseline models, the Non-S2S RNN

and the DNN. In addition, the moving average was also used as a baseline during experiments

but the results were left out since these models did not achieve good accuracy and would

impair visualization of figures and tables. For S2S models, as stated in the sample generation

subsection, there was no overlap in target test samples to enable concatenation of predicted

usage vectors into one vector. Hence, the accuracy measures were obtained by comparing

this one overall predicted usage vector against the overall actual usage vector. The accuracy

measures used throughout this work were the Mean Absolute Error (MAE) and Mean Absolute

Percentage Error (MAPE), given by the following equations:

MAE =
1
n

n∑
i=0

|yi − ŷi| (5.2)

MAPE =
100%

n

n∑
i=0

∣∣∣∣∣yi − ŷi

yi

∣∣∣∣∣ (5.3)

Where y represents the actual value, ŷ the predicted value, and number of observations or

samples is given by n. Note that the MAE and MAPE were calculated with the unnormal-

ized predicted values, meaning once the overall predicted usage vector was obtained in the

normalized space, it was converted to the original domain using:

ŷ = (ŷ × σusage) + µusage (5.4)

Where σusage and µusage was calculated as in equation (4.1) for the usage feature vector, and

ŷ on the right-hand side of (5.4) is the predicted vector in the normalized space.

Since this work randomized the training samples, it was important to run a several sim-

ulations where each model sees a different randomized order of training samples each time.

Hence, 5 random seeds were used for each case. For example, if random seed equals 1, then

the training samples are in one randomized order, and that order is used by each model, for that

case. If random seed equals 2, the training samples are in a different randomized order. A value
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(such as 1 or 2) is assigned to the seed to keep track of the random order, to later reproduce

identical results.

All models had their matrix weights initialized with a random (semi) orthogonal matrix,

and their bias vector weights initialized to zero. The work by Saxe et al. [64] showed that

these random orthogonal initial weights are favourable for depth independent learning times,

and also lead to faithful propagation of gradients even in deep nonlinear networks.

5.2 Results and Discussion

The applied approach was implemented using Python and the PyTorch optimized tensor library

[65], which is an open-source machine learning library. Experiments were conducted using

two different workstations: the first contains two NVIDIA GeForce RTX 2080 Ti GPU cards,

and the second contains one NVIDIA GeForce GTX 1060 GPU card. The following four

subsections present results for the four input length cases as outlined in Section 5.1. Subsection

5.2.1 analyzes case 1 with three figures: cell performance comparison, best models achieved,

and total loss computed. Subsection 5.2.2 analyzes case 2 with the same three figures, only the

results are respective to case 2, while subsections 5.2.3 and 5.2.4 considers the results for cases

3 and 4 respectively. The aforementioned subsections contain discussions that accompany

each figure. The last subsection, 5.2.5, provides results on how each model performed while

the prediction length N was fixed, and input length T varied instead.

The first figure, in each of the four sections corresponding to four cases, is given to analyze

the performance of cells used in the models. Each S2S and Non-S2S RNN model used one

of: Vanilla RNN, GRU, or LSTM cell. This result is shown to compare cell performance as

input length T is kept stationary while prediction length N varies. Note that the Non-S2S RNN

models will only show results for when N <= T , hence for the first figure of each subsection,

if T > N, no results will appear for the Non-S2S RNN model. In addition, the DNN model

results were not used in this first figure, since it does not deal with RNN cell variation and
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performance comparison; it would show the same results for each cell (different MAPE and

MAE).

The second figure in each case subsection is used to show the best achieved results by each

model. This result is shown to compare the performance of each model, regardless of which

cell or hidden dimension size h was used. Note for these second figures, the best obtained

MAPE among all models, for each N, is bolded. This is done to identify the best performing

models and to expand on their results further - as provided in the third figure, where each row

of graphs represents the best achieved MAPE for that prediction length N. In this way, the

second and third figure of each case subsection are interconnected. This third figure is given to

analyze the performance of the best models, in terms of how well it fits to the actual data and

whether or not the model is overfitting/underfitting.

The discussions in each subsection center around the MAPE accuracy measure. For the

most part, the MAPE and MAE graphs show identical results, hence commenting on the MAE

graphs is omitted, since it would repeat the statements given for the MAPE graphs. Neverthe-

less, figures include results for both MAPE and MAE.

5.2.1 Case 1: Input One Hour

This subsection analyzes the results obtained for case 1, where input length is fixed at T = 12

and the models predict each Ni ∈ ~N. From Fig. 5.1, it can be seen that the accuracy decreases

across all cells as prediction length N increases. While accuracy does decrease, it is interesting

to see that the Vanilla RNN cell achieves comparable results with two attention models: S2S-

LA-general and S2S-LA-concat. In addition, for the Vanilla RNN cell, every attention model

outperformed the S2S-o model for N = 120 and N = 288. Note that the Non-S2S RNN model

produced results only for N = 12, and for each cell, this model produced the worst results

among all models.

Furthermore, the MAPE and MAE for the GRU cell is relatively similar among all models

across Ni ∈ ~N, with the majority of attention models performing better than the S2S-o model
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Figure 5.1: Comparing cell performance of each non-DNN model: input T = 12 to predict
Ni ∈ ~N. First row graphs show MAPE, while bottom row shows MAE.

for N = 288. However, this is not the case for the LSTM cell, as the S2S-o model outperforms

the attention models for N = 120 and N = 288. See that the DNN model results were not

used in Fig. 5.1, since it does not deal with RNN cell variation and performance comparison;

it would show the same results for each cell (different MAPE and MAE).

The following figure, Fig. 5.2, shows the best achieved MAPE and MAE by each model,

for each prediction length Ni ∈ ~N. Again, the Non-S2S model only has a result for N = 12,

and is the worst performing model from all the models, even the DNN model achieved better

results. Furthermore, it can be seen that as N increases, the accuracy of each model decreases as

well. The accuracy of the DNN model decreases at a much greater rate than the other models.

It is interesting to see that the S2S-o models perform comparable to the attention models.

We assumed that the attention mechanism would be an advantage for the S2S models, however,

a short input length such as T = 12 produces only 12 encoder outputs, and this might not

contribute enough to these attention models. Nonetheless, the attention models obtained the
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Figure 5.2: Best achieved results, by each model: input T = 12 to predict Ni ∈ ~N. First row
graph shows MAPE, bottom row shows MAE.

best MAPE for each Ni ∈ ~N, as can be seen by the bolded numbers in the top row of Fig. 5.2.

These best performing models are analyzed further in Fig. 5.3. The predicted vs. actual

(PvA) graph in each row shows that the models are capable of learning the trend even from a

short input length, such as one hour. From these PvA graphs, it can be seen that the models

do not fit perfectly to the actual data, but rather they are able to predict the general trend very

well. This is an indicator that the model is not overfitting. This statement is further supported

by the respective training and testing loss graphs of (a), (b), (c) in Fig. 5.3. These three models

show that as the loss decreases for the training set, it also decreases for the test set, which is an

indicator that a model is not overfitting.

However, the test loss graph of Fig. 5.3 (d) does raise some caution as the loss is not

continuously decreasing. By the last output sample of the PvA graph of Fig. 5.3 (d), it can be

seen that the predicted does not match the actual as it does for shorter lengths. It is known that

the accuracy does decrease as prediction length N increases, hence, this may be a reason for the
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S2S-LA-general model fitting worse for N = 288 than the other models for shorter prediction

lengths.

5.2.2 Case 2: Input Four Hours

This subsection analyzes the results obtained for case 2, where input length is fixed at T = 48

and the models predict each Ni ∈ ~N. From Fig. 5.4, it can be seen that, for all cells, the Non-

S2S RNN model performs the worst when N <= T . Similarly as in Fig. 5.1, the Vanilla RNN

cell shows comparable results for two of the attention models, here S2S-LA-dot and S2S-LA-

concat, for N = 120 and N = 288. However, Fig. 5.1 shows the S2S-LA-general model as

the dominant model for N = 288, for the Vanilla RNN cell, over other attention based models.

This observation is switched in Fig. 5.4, as the S2S-LA-dot model shows better accuracy over
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Figure 5.3: (a) Results for the S2S-BA model where T = 12, N = 12. From left to right:
Predicted vs. Actual of the last output sample, total train loss and total test loss computed at
each epoch, respectively. (b) Results for the S2S-LA-concat model where T = 12, N = 48. (c)
Results for the S2S-LA-dot model where T = 12, N = 120. (d) Results for the S2S-LA-general
model where T = 12, N = 288.
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Figure 5.4: Comparing cell performance of each non-DNN model: input T = 48 to predict
Ni ∈ ~N. First row graphs show MAPE, while bottom row shows MAE.

the S2S-LA-general model, for the Vanilla RNN cell.

Furthermore, the GRU cell results in Fig. 5.4 show the majority of attention models out-

performing the S2S-o model as N increases. As this result holds for both the Vanilla RNN and

GRU cell, it is interesting to see that the opposite happens for the LSTM cell. Namely, Fig.

5.4 shows the S2S-o model outperforming the attention models as N increases. One possible

hypothesis as to why this may be happening: the attention models “confuse themselves” since

they use the encoder outputs in determining the next decoder output. Namely, the LSTM cell

contains a hidden state, which are the encoder outputs after each cell operation, and a cell state,

which is not used in the attention mechanism. Hence, the use of only one internal state, from

the LSTM cell, in determining the decoder output for attention models could be the underlying

reason as to why the S2S-o models outperformed the attention models, for increasing N.

Fig. 5.5 gives the best results achieved by each model, not taking into account the cell used

or hidden dimension size, for each Ni ∈ ~N. Similarly as in Fig. 5.2, the Non-S2S RNN model
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Figure 5.5: Best achieved results, by each model: input T = 48 to predict Ni ∈ ~N. First row
graph shows MAPE, bottom row shows MAE.

performs the worst for N = 12, but does perform better than the DNN model for N = 48. It

is interesting to see that the S2S-o model shows comparable results to the attention models for

N = 12 and N = 48. Ultimately, a similar outcome is obtained as in case 1, where the best

achieved MAPE for each Ni ∈ ~N was obtained by one of the attention models, as can be seen

by the bolded values in Fig. 5.5.

Comparing the DNN model results between Fig. 5.2 and Fig. 5.5, it can be seen that the

accuracy, both MAPE and MAE, slightly increases as input length T increases. Nonetheless,

as N increases in Fig. 5.5, the DNN models are significantly outperformed by all S2S models

for N = 120 and N = 288.

Continuing, Fig. 5.6 analyzes results from the best models as obtained in Fig. 5.5. All

PvA graphs of Fig. 5.6 show that the models are able to learn and predict the general trend of

usage data. As in Fig. 5.3, this is an indicator that the models are not overfitting. Supporting

this statement, the train and test loss graphs, in Fig. 5.6 (a), (b), and (d), show continuously
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Figure 5.6: (a) Results for the S2S-LA-concat model where T = 48, N = 12. (b) Results
for the S2S-BA model where T = 48, N = 48. (c) Results for the S2S-LA-dot model where
T = 48, N = 120. (d) Results for the S2S-BA model where T = 48, N = 288.

decreasing absolute loss for both the training and testing sets. Only the S2S-BA model for

N = 48, Fig. 5.6 (b), shows a slight sign of overfitting, as the very last epoch in the test loss

graph shows as increase in loss rather than a decrease.

5.2.3 Case 3: Input Ten Hours

This subsection provides the results obtained for case 3, where input length is fixed at T = 120

and the models predict each Ni ∈ ~N. From Fig. 5.7, it can be observed that the Non-S2S RNN

model with the Vanilla RNN cell obtains better results than the S2S-o model for N = 120. One

possible reason for this outcome is that the S2S-o model with Vanilla RNN cell loses more

information as N increases, than the Non-S2S RNN model. Hence, the use of a Vanilla RNN

cell in the decoder part of the S2S-o model does not retain information better than the one

encoder in the Non-S2S RNN model.

For the GRU and LSTM-based models, the Non-S2S RNN model performs the worst for
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Figure 5.7: Comparing cell performance of each non-DNN model: input T = 120 to predict
Ni ∈ ~N. First row graphs show MAPE, while bottom row shows MAE.

all N except for N = 288, as there is no result for it in case 3, since N = 288 > T = 120.

From Fig. 5.7, the Vanilla RNN-based S2S attention models outperformed the S2S-o model

for N = 120 and N = 288, as were similar findings from figures 5.1 and 5.4. In addition, the

GRU and LSTM cell results from Fig. 5.7 are similar to that of figures 5.1 and 5.4. Hence, the

majority of GRU-based attention models outperform the S2S-o model as N increases, while

the LSTM-based S2S-o model still outperforms the attention models for Ni ∈ ~N. A possible

reason as to why this may be the case is given in subsection 5.2.2.

The next figure, Fig. 5.8, shows the best achieved MAPE and MAE by each model for

Ni ∈ ~N, regardless of which cell or hidden dimension size was used. A re-occurring pattern is

seen from figures 5.8, 5.5, and 5.2, where the attention models obtain the best MAPE across all

prediction lengths, as given by the bolded values. From Fig. 5.8, it can be seen that the DNN

model obtains the worst MAPE for N > 12. Nonetheless, from figures 5.8, 5.5, and 5.2, the

DNN model improves as input length T increases, hence as we move from case 1 to case 3.
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Figure 5.8: Best achieved results, by each model: input T = 120 to predict Ni ∈ ~N. First row
graph shows MAPE, bottom row shows MAE.

Fig. 5.9 provides more insight into the best achieved models as obtained in Fig. 5.8.

Similarly as in figures 5.3 and 5.6, the PvA graphs of Fig. 5.9 show that the models are able to

capture the general trend of data, and thus predict this future general trend rather than perfectly

fitting to the data. From the test loss graphs of Fig. 5.9 (a) and (c), these models do not show

signs of overfitting, while the models of Fig. 5.9 (b) and (d) do raise some caution. One

possible way to address this: reduce the learning rate or have it decay after a certain number of

epochs. The learning rate was fixed at 0.001 for all models, hence there is potential to improve

results by additional tuning.

5.2.4 Case 4: Input Twenty-Four Hours

This subsection presents the results obtained for case 4, where input length is fixed at T = 288

and the models predict each Ni ∈ ~N. Fig. 5.10, shows the GRU and LSTM-based Non-S2S

RNN models performed the worst for all prediction lengths. This was not the case for the
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Figure 5.9: (a) Results for the S2S-LA-general model where T = 120, N = 12. (b) Results
for the S2S-BA model where T = 120, N = 48. (c) Results for the S2S-BA model where
T = 120, N = 120. (d) Results for the S2S-LA-dot model where T = 120, N = 288.

Vanilla RNN cell-based models, as the Non-S2S RNN model performed the best for N =

288. A similar hypothesis as stated in subsection 5.2.3 can be give here as well. Namely,

the combination of an Encoder-Decoder + Vanilla RNN cell does not retain information better

than a model consisting of a sole Encoder + Vanilla RNN cell. Like figures 5.1, 5.4, and 5.7,

the LSTM-based S2S-o model in Fig. 5.10 outperformed all other models for N = 288. It is

interesting to see that, unlike figures 5.1, 5.4, and 5.7, Fig. 5.10 shows that the GRU-based

S2S-o models outperformed all other models for N = 288. One hypothesis for this outcome:

the attention models are “confusing themselves” by trying to “pay attention” to too much of the

input sequence. Hence, for case 4, all 288 encoder outputs contribute to each decoder output,

which may be excessive and causes a loss in accuracy rather than improvement.

The following figure, Fig. 5.11, gives the best MAPE and MAE achieved by each model,

regardless of which cell was used or hidden dimension size. See that the DNN model achieved



66 Chapter 5. Evaluation

1 2 3 4

5

10

15

20

M
AP

E
Vanilla RNN cell

S2S-BA
S2S-LA-concat
S2S-LA-dot
S2S-LA-general
S2S-o
Non-S2S

1 2 3 4

4

6

8

GRU cell

1 2 3 4

4

6

8

10 LSTM cell

12 48 120 288
N

20

40

60

80

M
AE

12 48 120 288
N

20

30

40

12 48 120 288
N

20

30

40

MAPE and MAE for T = 288 to predict each N: cell accuracy comparison

Figure 5.10: Comparing cell performance of each non-DNN model: input T = 288 to predict
Ni ∈ ~N. First row graphs show MAPE, while bottom row shows MAE.

S2S-BA

S2S-LA-concat

S2S-LA-dot

S2S-LA-general
S2S-o DNN

Non-S2S

Model Type

4

6

8

M
AP

E

   2.705    2.743    2.714    2.709    2.735    3.051    3.38
   4.116    4.266    4.401    4.383    4.386

   5.051
   5.835   6.055    6.198    6.171    5.955    5.925

   6.936
   7.372

   8.094    8.077
   7.654    7.985

   7.016

   8.938    9.147
Best performing models, in terms of MAPE and MAE, for each NN = 12

N = 48
N = 120
N = 288

S2S-BA

S2S-LA-concat

S2S-LA-dot

S2S-LA-general
S2S-o DNN

Non-S2S

Model Type

15

20

25

30

35

40

M
AE

   12.155    12.287    12.175    12.137    12.328    13.424
   15.146

   18.383    19.189    19.518    19.421    19.954    21.436

   25.88   26.841    27.63    27.587    26.249    26.483
   28.966

   33.249
   36.293    35.935

   33.742
   35.507

   31.109

   37.389
   40.559
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worse results than the S2S models, but did outperform the Non-S2S RNN model for each

Ni ∈ ~N. Nonetheless, the DNN model results in Fig. 5.11 are a significant improvement from

the figures 5.2, 5.5, and 5.8. However, unlike the previous second figures of each subsection,

the S2S-o model achieved the best MAPE for N = 120 and N = 288. The reasoning for this

can be given as stated in the previous paragraph, the attention models lose accuracy for using

too much information from the input sequence.

Lastly, Fig. 5.12 provides an analysis of the best models as obtained in Fig. 5.11. The PvA

graphs in Fig. 5.12 are similar to the PvA graphs in figures 5.3, 5.6, and 5.9. Hence, we can

conclude that all S2S models, with and without attention, are able to predict the future general

trend of the usage data. This statement is an indication that these S2S models do not experience

overfitting. Furthermore, the test loss graphs of Fig. 5.12 confirm the best models, as obtained

from Fig. 5.11, do not overfit.
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120. (d) Results for the S2S-o model where T = 288, N = 288.
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5.2.5 Discussion

The previous subsections of this chapter analyzed model behaviour for a fixed input length T

to predict each Ni ∈ ~N. This subsection analyzes model results for varying input length T ,

hence across input time, as the prediction length increases. This result is shown to determine

how each model performed with different input lengths. Meaning, one specific model produced

four different results at each Ni ∈ ~N, since it saw four different input lengths for that respective

N. For example, the S2S-BA model produced four different results for N = 12: S2S-BA for

T = 12, T = 48, T = 120, and T = 288. Note that for these results, the Non-S2S RNN model

produced four models for N = 12, three models for N = 48, two for N = 120, and only one

model for N = 288. Hence, the Non-S2S RNN model was not included in this analysis, since

analysis could not be performed over all prediction lengths.

From Fig. 5.13, it can be seen that, for the longest prediction length N = 288, the best

model versions are obtained for input lengths either T = 48 or T = 120. Looking at the S2S-

BA model in Fig. 5.13 (a), when input length is T = 288, this version achieved the best results

for N = 12 and N = 48; a result that is shared with every other model. However, the S2S-BA

model, when input length is T = 288, achieved the worst results for N = 120 and N = 288; a

result that is not shared with any other model. The S2S-BAT=48 model achieved the best MAPE

for N = 288; similar to the S2S-LA-generalT=48 model. Note the subscript notation indicates

the respective model version for that input length. The S2S-LA-dotT=120 model achieved the

best results for N = 120, N = 288; similar to the S2S-LA-concatT=120 model.

Mostly, the S2S attention models share a similar pattern: versions with T = 288 achieve

the best results for N <= 48, while versions for T < 288 achieve the best results for N >= 120.

One possible reason for this, as given in the first paragraph of subsection 5.2.4, the attention

models “confuse themselves” trying to “pay attention” to an entire previous day in the latter end

of the decoder part. Hence, as the decoder approaches the end of a long prediction sequence,

looking at the entire previous day does not seem necessary in determining the next predicted

value. For example, the process to predict the last output value at n = 288 incorporates the
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very first encoder output at t = 1, which is 576 (288 × 2) time steps in the past, nearly 48 hours

previous. Therefore, the aforementioned reason supports plausibility as to why the attention

models with T = 288 performed worse for N >= 120, than models with input length T < 288.

Furthermore, the above reasoning is weakly confirmed by analyzing the non-attention S2S-

o model results in Fig. 5.13 (a). As can be seen, the best S2S-o models for N = 288 are, in

order: S2S-oT=288, S2S-oT=120, S2S-oT=48, S2S-oT=12. This result is what was expected of all

models. Nonetheless, the S2S-o models do not use an attention mechanism; each predicted

output is computed using the previously predicted output and previous decoder hidden state.

This allows no “confusion” between a long encoder and decoder, thus weakly supporting the

above reasoning.

Lastly, The DNN model in Fig. 5.13 (a) shows the clearest signs of improvement over

input length versions T . Hence, the longer the input sequence, the better the results obtained

for each Ni ∈ ~N. The DNNT=288 model achieved the best results across all prediction lengths,

with significant improvement from the DNNT=12 model as N increased.

Overall, it can be concluded that as the prediction length N increases, the accuracy in both

MAPE and MAE decreases. This can be observed from Table 5.1, which is given to summarize

all results and identify the overall best performing model. The Table provides the best achieved

MAPE and MAE for each model, as well as the standard deviation of the Absolute Percentage

Error (APE) and Absolute Error (AE) respectively. The standard deviation-APE (SD-APE)

was calculated as:

~APE = 100% ∗
∣∣∣∣ ( ~actual − ~predicted)/ ~predicted

∣∣∣∣ (5.5a)

SD-APE =

√√
1
n

n∑
i=0

( ~APEi − µ) (5.5b)

where equation (5.5a) computes the APE of the actual and predicted vectors, then equation

(5.5b) computes the standard deviation of this APE vector. In equation (5.5b), n and µ are the
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number of elements and the mean of ~APE respectively, hence µ is simply the MAPE. Similarly,

the standard deviation-AE (SD-AE) was calculated as:

~AE =
∣∣∣∣ ~actual − ~predicted

∣∣∣∣ (5.6a)

SD-AE =

√√
1
n

n∑
i=0

( ~AEi − µ) (5.6b)

Table 5.1 shows that the S2S-BA model was dominant among all models. It obtained the

best MAPE for N = 12, 48, 120 and almost matches the best MAPE for N = 288. The S2S-BA

model also obtained the best MAE for T = 48, 120, 288 and obtained the second best MAE

for N = 12. However, for each MAPE achieved by the S2S-BA model, it did not achieve the

lowest SD-APE. A lower standard deviation means the model obtained results that are closer

to the mean (more reliable). Hence, Table 5.1 shows that the S2S-LA-dot model provides

results closest to the achieved MAPE (N = 12, 120) and MAE (N = 12, 120, 288), making

it slightly more reliable than the other models. Therefore, if a slight loss in accuracy is an

Table 5.1: Best achieved MAPE and MAE for each model to predict Ni ∈ ~N. Input length, cell
used, and hidden state size not taken into consideration. The respective standard deviation of
the APE and AE for those specific test set samples is given in the brackets below.

Model MAPE (%) MAE
(SD-APE) (SD-AE)

N 12 48 120 288 12 48 120 288
S2S-o 2.735 4.386 5.891 7.016 12.328 19.683 26.081 31.109

(2.803) (3.994) (5.401) (6.923) (12.313) (18.891) (24.214) (30.712)
S2S-LA-dot 2.714 4.401 5.707 6.773 12.175 19.518 25.356 30.316

(2.738) (4.101) (5.125) (6.345) (11.970) (18.500) (23.108) (28.027)
S2S-LA-general 2.709 4.383 5.805 7.375 12.137 19.421 25.836 33.316

(2.750) (4.073) (5.398) (7.674) (11.984) (18.068) (24.806) (37.264)
S2S-LA-concat 2.743 4.266 5.822 7.172 12.287 19.189 25.747 32.664

(2.783) (3.826) (5.477) (6.055) (12.266) (18.007) (23.993) (30.296)
S2S-BA 2.705 4.116 5.599 6.774 12.155 18.383 24.948 30.069

(2.801) (3.863) (5.219) (6.859) (12.482) (17.650) (23.372) (31.783)
Non-S2S 3.380 5.606 7.372 9.147 15.146 24.668 33.249 40.559

(3.234) (5.037) (6.704) (8.471) (14.117) (23.244) (33.808) (39.808)
DNN 3.051 5.051 6.936 8.938 13.424 21.436 28.966 37.389

(3.005) (4.823) (7.100) (10.523) (12.688) (19.542) (25.817) (36.819)
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acceptable exchange for a slight increase in reliability, the S2S-LA-dot model is preferred.

In addition, the preferred model of choice, for interested parties, may not necessarily be the

S2S-BA model, the S2S-LA-dot model, or any attention model for that matter. The attention

models contain more parameters than all other models, with the S2S-BA model containing the

most parameters. Nonetheless, the S2S-o model achieves comparable results to all attention

based models, for each prediction length, while needing fewer parameters and therefore is

faster to train. Hence, if the interested parties main objective is high accuracy irrelevant of the

training speed and reliability, the S2S-BA model is preferred. If a slight decrease in accuracy

and reliability is acceptable, a reduction in training speed can be achieved by using the S2S-o

model.

Furthermore, figures 5.1, 5.4, 5.7, and 5.10 showed that the Vanilla RNN based attention

models outperformed the regular S2S model as N increased. These figures also showed that the

GRU and LSTM-based Non-S2S RNN model performed the worst among all models. Lastly, it

can be seen from Fig. 5.13 that all S2S attention models performed better, for longer prediction

lengths N, when an input length less than T = 288 was used. This was not the case for S2S-o

and DNN models, as they both performed better when longer input lengths were used.
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Conclusion and Future Work

6.1 Conclusion

Continuously rising electricity consumption and its impact on the environment is increasing

importance of efficient energy management and conservation strategies. Load forecasting is

contributing to energy management efforts through improved maintenance scheduling, budget

planning, and by identifying energy savings opportunities. Feedforward neural networks and

Support Vector Regression have had a great success in load forecasting; however, Recurrent

Neural Networks have an advantage because of their ability to model time dependencies.

This thesis adapted an attention-based Sequence-to-Sequence RNN algorithm with a novel

sample generation approach for the task of building-level energy forecasting. RNNs provide

the ability to model time dependencies while the S2S approach strengthens this ability by using

an encoder-decoder framework. For the sample generation, the training and testing samples

were generated in a way that is unique to energy forecasting problems. For the training set,

an index was chosen at random, and from this index to the end of the desired input length, a

training sample was obtained. The actual usage vector, that accompanied this input sample,

was obtained from the end of the input length to the end of a desired prediction length ahead.

This usage vector, or output sample, was compared with the predicted usage vector that our

73
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models generated. For the testing set, an index was chosen without randomization, the input

sample and output sample were generated as before, then the index was shifted the desired

prediction length, and the process was repeated.

For the machine learning algorithm, this work adapts a S2S approach from language trans-

lation for energy load forecasting: the encoder RNN compresses information from the input

sequence into a fixed length context vector, which the decoder RNN then uses to sequentially

output a predicted value. The previously predicted output and previous hidden state are passed

as next inputs in the decoder.

This work also adapts the Bahdanau et al. and Luong et al. S2S attention mechanisms,

used in NMT, for energy load forecasting: the decoder considers the encoder outputs at each

decoder step before making a prediction. These attention models were introduced to alleviate

the encoder task of solely compressing all input information into a fixed-length vector. Also

known as alignment models in the task of NMT, each decoder step computes attention weights:

the probabilities that the target output is aligned to, or most derived from, the respective input

vector. While BA only considered one attention score function, LA considered three; meaning

a total of four different S2S attention-based models were evaluated.

Overall, seven different models were evaluated: the regular S2S and four attention based

models were compared with two baseline models, a Non-S2S RNN and a DNN with sizes

small, medium, and large. Furthermore, each Non-DNN model was evaluated with three dif-

ferent RNN cells: Vanilla RNN, GRU, and LSTM. All models were trained and tested on five

minute incremental data, with equivalent hyperparameters, and compared for four different

cases. Hence, input length was held constant for four separate values, while prediction lengths

were varied. Lastly, the models were compared with fixed prediction length while the input

length was varied.

The Vanilla RNN based attention models outperformed the regular S2S model as predic-

tion length increased, while the GRU and LSTM-based Non-S2S RNN models performed the

worst among all Non-DNN models. The S2S-BA model proved to be dominant as it outper-
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formed all other models, in terms of MAPE and MAE for most of the four prediction lengths.

However, the S2S-LA-dot model proved to be the most reliable model, in terms of lowest SD-

APE and SD-AE for most of the prediction lengths. While the DNN model did show the most

improvement as input length increased, it was still outperformed by all S2S models, for each

prediction length. However, it was shown that the S2S-o model achieved comparable results to

all attention-based models, for each prediction length. The preferred model choice rests on the

needs of the interested parties; the S2S-LA-dot model is suggested if reliability is the number

one priority, while the S2S-BA model is suggested if accuracy is valued over training speed

and reliability. The S2S-o model is suggested if training speed is vital and a slight decrease in

accuracy and reliability is not a concern.

6.2 Future Work

Future work holds the potential to improve presented models, fully understand minor uncer-

tainties, and add insight to areas that peaked our curiosity. Thus, future work will analyze:

• Changing the data preparation process for the test set. Hence, changing the input and

output sample generation as done for the training set, then averaging the overlapping

target values. This could potentially improve accuracy as the test samples would be

generated and passed to the models for each of the time indices, not just for certain times

as was done in the presented thesis.

• Changing the dataset entirely. Hence, evaluate the models on different datasets, such as

residential, schools, offices, etc., to observe if the models will behave similarly. Also,

evaluate the models on datasets with different increments, such as 15-minute or hourly

increments.

• Using a local attention mechanism instead of a global one, for all attention models. This

will allow attention models to not use all encoder outputs for longer input lengths, hence
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improved training time.

• Evaluating more models such as one-dimensional Convolutional Neural Networks, and

Support Vector Regression.

• Evaluating the GRU and LSTM cells to see whether a different initialization of the

weights improves accuracy measures.

• Further analyzing the Vanilla RNN-based S2S attention models. These results proved

comparable to the GRU and LSTM-based models, for shorter prediction lengths.

• Testing the models for extreme input and prediction lengths. Hence, see how well the

models perform for very short input lengths and for predictions lengths greater than one

thousand steps. Then compare to the DNN, as it may be the case that the DNN will

outperform the S2S models for extreme prediction lengths.

• Performing a grid search for parameter optimization. Hence, a smaller batch size could

lead to improved accuracy measures, while a smaller or decaying learning rate could

improve performance. Furthermore, a larger hidden size would give each model more

parameters. However, this would further slow down the training speed of the S2S atten-

tion models. It could also see the S2S-o models perform better, and holds potential to see

the Vanilla RNN S2S models outperform the GRU and LSTM-based models for shorter

prediction lengths.

• Modifying all models for an online learning scenario: hence, see how well the models

perform for a constant influx of data. For these tests, we hypothesize that training speed

will be more valuable than obtaining the highest accuracy.

The adapted S2S attention-based models performed well on the considered dataset, achiev-

ing better accuracy results than the regular S2S model and two baseline models. However,

there is still space for further improvements, such as in testing set sample generation, using a
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different dataset, evaluating more models, and completing a much larger grid search. Further

analysis would fine-tune these dominant time series models.
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