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Abstract 

Hearing aids use a variety of noise reduction techniques to enhance the experience of hearing 

impaired listeners. One of these techniques is beamforming, which typically aims to preserve 

sounds coming from the front of the user and suppresses those from the sides and back. 

Recently, hearing aids have begun employing a wireless connection between the left and 

right hearing aids in order to augment the directionality of the beamformers, called binaural 

beamformers. However, the effect of these binaural beamformers on perceived quality and 

intelligibility has not been thoroughly tested. This thesis investigated the benchmarking of 

hearing aids which utilize binaural beamforming algorithms using behavioural testing and 

computational models. Speech recordings from bilateral pairs of several popular hearing aids 

were obtained across different processing conditions, and in different noisy and reverberant 

environments.  The quality of these recordings was evaluated subjectively by thirteen hearing 

impaired adults. In addition, computational predictors of perceived quality and intelligibility 

were extracted from the left and right hearing aid recordings. Objective and subjective 

analyses revealed that binaural beamforming has a generally positive effect on quality and 

intelligibility that was dependent on the directionality of the speech and noise. The ear 

recording with the better predicted quality score was also found to correlate better with the 

subjective quality ratings than the average of left and right ear predicted scores. A new 

weighting function that optimally combines the monaural computational metrics was 

developed, which was shown to be especially effective in environments where speech and/or 

noise sources are asymmetrically positioned. 

Keywords 

Hearing aids, binaural beamforming, noise reduction, speech quality, speech intelligibility, 

quality metrics, HASPI, HASQI. 

  



 

iii 

 

Summary for Lay Audience 

Hearing aids use a variety of signal processing techniques to enhance the experience of 

hearing-impaired listeners across varied listening environments. One of these techniques is 

noise reduction, where unwanted signals such as ambient noise and unwanted speech are 

suppressed while signals such as wanted speech are enhanced. Recently, hearing aids have 

begun utilizing binaural beamformers, which use a wireless link between the left and right 

hearing aids in order to amplify signals originating from the front of the user while 

suppressing those from the sides and back. Effectively, the algorithm utilizes the assumption 

that the user is looking at what they want to listen to in order to reduce noise. However as 

binaural beamformers have only been recently developed, the actual benefit the algorithms 

have on enhancing the quality and intelligibility of speech in noisy conditions is largely 

unknown. This thesis investigated the benchmarking of hearing aids which utilize binaural 

beamforming algorithms using both computational models of the auditory system as well as 

behavioural testing with hearing-impaired listeners. Binaural beamformers were found to 

have a generally positive effect on the quality and intelligibility of speech, however it largely 

depended on the directionality of the speech and noise. It was also found that when using a 

computational model to predict speech quality, the better scoring ear was a better predictor of 

the behavioural testing results. A new weighting function to combine predicted quality scores 

for the left and right ears was developed that more heavily weights the better scoring ear. 
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Chapter 1  

1 Introduction 

Hearing aids incorporate a variety of signal processing techniques in order to assist 

hearing impaired listeners achieve a comfortable hearing experience. Hearing loss can be 

complicated: not only will there be a different level of hearing loss at each frequency of 

sound, the inability to perceive quieter sounds has no effect on the threshold where loud 

sounds become uncomfortable for the same frequency [1]. In effect, hearing aids must be 

able to accommodate the user’s limited dynamic range in order to afford hearing aid users 

a comfortable listening experience. The utilization of a smaller range is where condition-

specific signal processing algorithms such as noise reduction become useful. The thesis 

will investigate the effectiveness of binaural beamforming algorithms, a noise reduction 

technique, in enhancing speech intelligibility and quality in speech in noise conditions. 

1.1 Signal Processing in Hearing Aids 

Modern hearing aids make heavy use of signal processing, as shown in Figure 1.1, which 

illustrates the general signal processing techniques a hearing aid applies through from 

input to output. The figure is separated into sections: Sound Pick Up, where microphones 

in the hearing aid pick up audio and sort it into an array, Sound Cleaning, where the 

signal is pre-processed with noise reduction or feedback cancelation algorithms used to 

ensure as few undesirable aspects of the signal are cleansed as much as possible before 

being sent to Audibility & Loudness, where the hearing aid applies gain according to the 

user’s audiogram and fulfills the primary purpose of the hearing aid. Throughout this 

process, Environment Classification processes work to use the input signals to identify 

the situation the user is using the hearing aids in and adjust the processing, or steer the 

hearing aid, accordingly. Each of these processes plays an important role in delivering a 

comfortable and intelligible auditory experience to the user, and likewise, each process 

has performance measures that can be evaluated in order to provide a clear picture of the 

performance of the hearing aid on a whole. In the case of noise reduction, the amount of 
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noise before and after the process has taken place can be measured, as can the 

intelligibility and quality of speech processed by the algorithm.  

 

Figure 1.1: Signal processing in hearing aid [2]. 

1.2 Binaural Beamforming 

Noise reduction in hearing aids can be defined as removing unwanted sounds, noise, from 

a signal while still ensuring wanted sounds remain undistorted. The human brain is 

remarkably effective at this problem, able to parse out individual voices in crowded, 

noisy areas in a phenomenon dubbed the “cocktail party phenomenon.” Replicating the 

same ability with signal processing, however, has proven difficult [3]. Noise reducing 

binaural beamforming algorithms have recently become a popular solution in modern 

hearing aids to alleviate this problem. A beamforming algorithm is a signal processing 

technique which enhances signal from a certain direction while suppressing signals from 

other directions. In hearing aids, beamformers are used to enhance the signal originating 

from the front of the user while suppressing noise from the sides and back, effectively 

amplifying sound sources the user is facing while attenuating sound sources around them. 

A hearing aid with beamforming algorithms, then, aims to enhance the user’s ability to 
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focus on speech in situations such as a one-on-one conversation while reducing unwanted 

speech or ambient noise in the background. 

As hearing aids continue to evolve, recent beamforming algorithms have begun to utilize 

the binaural link between left and right hearing aids to narrow the range of angles where 

the signal is amplified instead of suppressed. Binaural hearing aids, as opposed to 

monaural hearing aids, are hearing aids which can wirelessly communicate between the 

left and right devices. Binaural hearing aids can have a range of advantages including 

easier human interface, as program changes to one hearing aid such as volume control 

will change the settings in other as well, as well as the ability to transmit the entire audio 

signal from one hearing aid to the other in cases where the desired signal originates from 

one side (such as listening in a car or in cases where the user has severe asymmetric 

hearing loss). Beamformers which take advantage of the wireless link in binaural hearing 

aids can utilize the transmitted input signal from the contralateral hearing aid for a total 

of four input microphones, instead of the usual two, which can be used in the beamformer 

calculations. In Figure 1.1, this can be identified by the Wireless Audio arrow prior to the 

noise reduction stage. Commercial implementations of binaural beamformers are 

relatively recent, with Phonak announcing their Quest platform capable of binaural 

beamforming in 2012 [4] and Siemens introducing a binaural beamforming algorithm in 

2014 [5]. While the mathematical operation behind the beamformer can vary depending 

on the hearing aid manufacturer, the additional input generally leads to a beam that, while 

still dependent on the beamforming function itself, can be narrower than that achieved by 

a monaural beamformer [2]. 

1.3 Assessment of Hearing Aid Features 

Speech recordings, and by extension, noise reduction algorithms, can have their 

performance evaluated in a variety of ways including speech intelligibility and speech 

quality. Speech intelligibility is a measure of how well the speech can be understood. For 

instance, playing a recording of speech to a participant and recording how many words 

the listener correctly repeated back would constitute a simple test of intelligibility. 

Quality, on the other hand, is a measure of how “good” or pleasant the speech is 

perceived. A simple speech quality test may involve a listener ranking a speech sample 
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on a scale of zero to five. Speech may be perfectly intelligible, but still maintain 

annoying or unpleasant distortions that affect its perceived quality. 

Testing speech recordings with participants, called a subjective test, is considered the 

most relevant test for either speech metric. However, behavioural testing can be a costly 

and time-consuming venture. It is the logistical cost of these tests that led researchers to 

begin developing ways of predicting subjective testing results with computational models 

applied to audio recordings. The ability to test for intelligibility and quality without live 

participants is where the distinction between subjective and objective testing is made, 

where subjective tests are those which require human participants and objective tests are 

based on inherent, unchanging features of a hearing aid such as signal processing and 

computational models.  

The hearing aid metrics can therefore be split into four categories, objective and 

subjective intelligibility tests, and objective and subjective quality tests.  Table 1.1 lists 

examples for each of these categories where the Hearing in Noise Test (HINT) [6] is a 

subjective sentence intelligibility measure, Multiple Stimuli with Hidden Reference and 

Anchors (MUSHRA) [7] is the subjective speech quality evaluation method, Hearing Aid 

Speech Perception Index (HASPI) [8] is the computational predictor of speech 

intelligibility, and Hearing Aid Speech Quality Index (HASQI) [9], [10] is the 

complementary objective speech quality predictor. Of these four, objective and subjective 

quality as well as objective intelligibility were chosen to be the focus for this thesis. 

Subjective quality testing was firstly deemed to be an area the binaural beamformers had 

not been thoroughly tested in, and therefore a good choice of experiment to be performed. 

An objective quality test to compare it to was selected alongside it, and as objective tests 

are logistically simple to undergo, an objective intelligibility test was selected to be 

performed as well. MUSHRA, HASPI, and HASQI were ultimately the evaluation 

methods chosen in those categories, MUSHRA for its statistical validity with a lower 

number of data points and HASQI and HASPI due to their emphasis on testing the 

quality and intelligibility of hearing aids specifically. Ultimately, single number indices 

are derived from each of these scores. In the case of MUSHRA, it is a single score from 
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zero to 100, and for HASPI and HASQI it is two scores, one for each ear, from zero to 

one. 

Table 1.1: Hearing Aid Assessment Tools 

 
Subjective Objective 

Intelligibility HINT HASPI 

Quality MUSHRA HASQI 

MUSHRA allows participants to rank several audio samples taken in the same noise 

conditions but with different noise reduction algorithms on a single screen by adjusting 

sliders which rank each sample from zero to 100. By having each sample in a single set 

accessible on a single screen, participants, can replay samples as many times as necessary 

to get a solid listen and rank for each one. Part of the MUSHRA test is the hidden anchor, 

which attempts to normalize each screen with each other and prevent minor issues with 

certain samples from driving the score down beyond what the perceived discrepancy was. 

HASPI and HASQI are objective scores which utilize computational models of the 

auditory system to process the speech in noise audio before applying several signal 

processing techniques to calculate known predictors of quality and intelligibility. In the 

case of HASPI, these include cepstral correlation and three-level covariance, and for 

HASQI these include cepstral correlation, coherence, and long-term changes in the signal 

spectra. The final indices are derived from a mapping function which takes raw values 

outputted from the model and maps them to subjective scores. As the mapping function 

must be calculated with pre-existing data, it is the variability and size of the database that 

the mapping function is trained on that determines the robustness of the metric. By 

extension, if certain conditions or features in hearing aids are missing from that database, 

the metrics may not be valid for scenarios in which those features or conditions are 

present. Constant validation of the metrics is therefore required to ensure that they are 

robust enough to be generalized. As binaural beamforming is a relatively new 

technology, it is one such hearing aid processing strategy which has not been fully 

validated by HASQI or HASPI. 
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Another issue arising from the use of HASQI and HASPI is the lack of a single, binaural 

index representing both the left and right ears. As HASQI and HASPI use audio 

recordings to measure performance, each ear is given a score independent of each other 

when the metric is used. In binaural systems, where the left and right ear share 

information, assigning a single number to the entire binaural system is more perceptually 

relevant than evaluating each device separately. By mapping the left and right scores to 

the behavioural data in the same way the HASQI and HASPI mapping functions derive 

their final indices, a weighting function to determine the final score can be found. 

1.4 Problem Statement 

With the continued development and proliferation of hearing aids which use binaural 

beamforming algorithms as a major component of their sound cleaning strategy, methods 

of measuring and benchmarking their performance become critical in order to be able to 

accurately compare different models and brands of hearing aids. Testing procedures to 

compare algorithms are both useful for hearing aid manufacturers, who need logistically 

simple and cost-effective methods of testing algorithms throughout the development 

process, as well as audiologists who can use benchmarking data to make more educated 

decisions when prescribing hearing aids to patients. 

1.5 Goals 

As binaural beamformers are a relatively new technology, currently no such testing 

procedure exists. The goals of the thesis will therefore be as follows: 

1. Develop a procedure to benchmark binaural beamforming algorithms 

electroacoustically with HASPI and HASQI and behaviourally with MUSHRA. 

2. Validate HASQI with subjective data gathered through behavioural tests. 

3. Develop a weighting function to combine left and right HASQI scores into a 

single, index representative of the subjective data. 
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1.6 Organization 

The organization of this thesis is as follows. In Chapter 2, a review of literature on both 

objective and subjective quality and intelligibility metrics used for hearing aids is 

undertaken, as well as a review on the current state of research into binaural 

beamforming hearing aids. Chapter 3 then focusses on the cloud database developed for 

the thesis, where hearing aid recordings and their respective objective and subjective test 

scores are stored in an effort to pilot a long-term hearing aid recording repository for 

future research. Chapter 4 follows and explores the electroacoustic, or objective testing of 

the effect of binaural beamforming on predicted speech quality and intelligibility in a 

wide variety of noise conditions, taking advantage of the low logistical barrier to 

objective testing. Following that, Chapter 5 seeks to look at the behavioural speech 

quality testing and examine the relationship between the behavioural results and the 

electroacoustic results. A weighting function is developed which combines left and right 

HASQI scores into one, perceptually relevant index. Finally, Chapter 6 concludes the 

thesis.   
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Chapter 2  

2 Literature Review 

As the goals of the thesis comprise of both the measurement of binaural beamforming 

hearing aids as well as the further development of speech quality and intelligibility 

indices, it is valuable to understand the state of these technologies based on the current 

literature. Multiple speech quality and intelligibility metrics exist for signal processing 

applications such as cell phones, television audio, and radio, however not all are well 

suited for hearing aids. The metrics that have been modified for use with hearing 

impaired listeners are in a state of constant development, so the state of these algorithms 

is important to understand before attempting to advance them further. Additionally, while 

the effect of binaural beamforming programs in hearing aids have not been extensively 

studied, other studies investigating their effect on localization and preference can give 

hints towards the behaviour of these new technologies and help explain the results of the 

electroacoustic tests. 

2.1 Measuring Speech Intelligibility 

Several tests exist to measure the intelligibility of speech. Measurements serve to identify 

how understandable a given passage of speech is, rather than its overall quality or appeal. 

The Connected Speech Test (CST) [11] is a speech intelligibility test that seeks to 

replicate real life scenarios in which the listener will have context to help them 

understand the content of the speech. The test consists of 48 passages which consist of 10 

sentences each. The listener is given a word related to a certain topic, such as “windows,” 

and then must repeat the following sentences which are related to that word in some way. 

Speech Reception Threshold (SRT), though can be predicted objectively [12], has been 

traditionally measured as a subjective test of intelligibility as well. SRT is a measure 

which describes the level speech must be presented for a listener to correctly identify the 

speech contents 50% of the time. SRT is often measured with a Hearing in Noise Test 

(HINT), developed in [6] to be better suited for predicting speech intelligibility in noisy 
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environments than the CST. The HINT provides a large set of recorded sentences that 

were constructed to be phonemically balanced with each other for use in subjective 

testing of intelligibility. Since their development, the HINT sentences have found 

widespread usage for measuring SRTs or other subjective intelligibility tests where the 

phoneme-make-up of the test sentences are a concern. 

Objective measures of intelligibility were first developed by French and Steinberg at Bell 

Telephone Laboratories [13], which sought to identify measurable components of a 

speech sample’s intelligibility and combine them into one, quantifiable index from zero 

(not intelligible) to one (intelligible). In [13], it was concluded that the intelligibility of 

speech is determined by the sum of audible speech components, which formed the 

mathematical basis of the Articulation Index (AI). In other words, the AI can be 

determined by splitting the speech into frequency bands and determining what the 

proportion of audible speech is within that band [14]. The proportion can be determined 

by simply subtracting the noise level in decibels from the idealized speech spectrum. 

Each band is then multiplied by its weighted importance to speech intelligibility and then 

summed to get a final index. While the original AI was first developed in 1947, the 

metric was again validated in [15] and adopted by the American National Standards 

Institute (ANSI) in 1969 (ANSI S3.5).  Despite its widespread usage, the AI was focused 

on frequency domain distortions such as noise and band filtering.  

One of the successors to the AI is the Speech Transmission Index (STI), a metric 

developed in 1980 [16], which extended the method used in the AI to account for non-

linear distortions and time domain distortions, which in [17] was proved to correlate with 

the subjective intelligibility tests in hearing impaired listeners. Despite this, the STI was 

never formally inducted into any ANSI standard.  

The Speech Intelligibility Index (SII) standard, which may be considered the “true” 

successor to the AI, updates the AI through incorporating additional procedures 

developed in the STI, to further increase the SII’s ability to account for non-linear 

distortions and time domain distortions such as echo and reverberation [18]. The list of 

distortions the SII has been updated to account for include fluctuating backgrounds [19] 



10 

 

[20] and binaural listening [21] as discussed later in the chapter. In addition, there exists 

and extension of SII [22] which includes broadband peak-clipping and center-clipping 

distortions. This updated metric, termed Coherence-based SII (CSII), simply replaces the 

SNR estimate parameter of the SII with the speech distortion ratio (SDR) to provide 

better intelligibility predictions for both normal-hearing and hearing-impaired listeners. 

Still, certain processes and distortions often unique to hearing aid processing systems 

such as ideal time frequency segregation (ITFS), show a low correlation with scores 

determined by metrics such as CSII and STI  [23]. A metric called the Short-Time 

Objective Intelligibility (STOI) attempts to remedy this [24]. As the name suggest, the 

STOI works by first performing a Short-Time Fourier Transform (STFT) on both the 

clean and degraded speech signals, then grouping the resulting time-frequency bands 

through a third-octave analysis. The data can be visualized as, for each third-octave band, 

a strip of time-frequency bands which change along the time axis. The “strip” is then split 

once again into small segments of time, in the case of [24], 384 milliseconds in length. 

The corresponding segments in the clean and degraded speech are then correlated, and 

each sample correlation coefficient for each time-octave-band segment is averaged for 

the final index. The algorithm provided strong correlation with intelligibility scores in 

ITFS-processed speech signals and signals processed by single-channel noise-reduction 

algorithms, which were weak points of previous metrics [24]. 

An attempt to combine the benefits of a coherence metric (such as the CSII) and a short-

time envelope metric (such as STOI) was developed in 2014 in the form of the Hearing 

Aid Speech Perception Index (HASPI) [8], the block diagram of which is shown in 

Figure 2.1. HASPI uses two sets of raw, objective values which are then mapped to a 

dataset of intelligibility scores. The first, non-linear index, cepstrum correlation, is 

similar to the STOI in that it is calculated from the correlation between a processed 

version of the clean and degraded speech signals. After being processed through a 

computational model of the auditory system, the envelope of the signal is taken. Then, 

each sequence is approximated using a set of half-cosine basis functions called cepstrum 

basis functions, functions which can be thought of as the “building blocks” of speech. As 

this process is completed for both the clean and degraded speech, the new, approximated 
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signals can then be reconstructed and cross correlated with each other to get the cepstrum 

correlation. 

The second component of HASPI is the auditory coherence term, which itself is split into 

low-, mid- and high-level coherence components. Both the clean and degraded signal are 

processed with the same computational model of the auditory system and then split into 

short-time segments of 16 ms. Segments that correspond to silent portions are ignored, 

the rest of the segments are sorted into low-, mid- and high-level intensity categories. The 

short-time segments of the clean and degraded signal are then normalized and cross 

correlated with each other, with the result being averaged among segments in a like 

intensity category. This analysis leads to three auditory coherence values for low-, mid-, 

and high-level intensities. The three auditory coherences and the cepstrum correlation are 

mapped to a dataset of intelligibility scores to provide the final HASPI index. 

Hearing loss is incorporated in the model in several ways. First, the gammatone filter 

bank that models the inner ear uses filter shapes which replicate the outer hair cell (OHC) 

damage. OHC damage is also modelled through dynamic range compression, which 

occurs after the signal is modified by the gammatone filter bank. Inner hair cell (IHC) 

damage is modelled during this step by attenuating the signal according to the subjects 

hearing loss. As HASPI incorporates hearing loss in its computational model through the 

subject’s audiogram, it has clear advantages over other metrics for predicting the impact 

of hearing aid algorithms on speech intelligibility. 

 

 

Figure 2.1: Block diagram of HASPI. Output variables are mapped to the final 

index. 
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2.2 Measuring Speech Quality 

Mean Opinion Score (MOS) is a way of subjectively ranking speech and audio quality 

into five categories, as described in Table 2.1 below. It is considered as Absolute 

Category Rating (ACR) subjective evaluation, often used in the telecommunications 

industry.  Many objective metrics also use MOS, particularly those that map features 

extracted from an audio recording to subjective rankings. 

Table 2.1: Mean Opinion Scores 

MOS Quality Distortion 

5 Excellent Imperceptible 

4 Good Perceptible but not annoying 

3 Fair Slightly Annoying 

2 Poor Annoying 

1 Bad Very Annoying 

Recommended by the International Telecommunication Union – Radio (ITU-R) for “the 

subjective assessment of intermediate quality levels” is the Multiple Stimuli with Hidden 

Reference and Anchor (MUSHRA) [7] in which participants are presented with several 

speech samples at once, each representing the output of a different processing algorithm 

for the same input. The participant can play each speech sample as many times as they 

wish, and rate each one on a scale from zero to 100. MUSHRA is recommended over 

MOS due to the increased intra- and inter-rater reliability. As recruiting hearing impaired 

listeners can be logistically difficult, a subjective assessment methodology that accounts 

for a relatively low number of participants is advantageous. 

The Perceptual Evaluation of Speech Quality (PESQ) [25] and the Perceptual Model – 

Quality (PEMO-Q)  [26], are two objective speech quality metrics developed primarily 

for the use in the telephone industry. PESQ is the speech quality metric that comes 



13 

 

recommended by the ITU Telecommunication Standardization Sector (ITU-T) and is 

used by phone manufacturers as the industry standard for objective voice quality testing. 

PESQ uses the degraded signal and its clean version as inputs, and after level aligning, 

filtering to replicate a phone handset, time aligning, and equalizing, the two signals are 

put through an auditory transform and then mapped to a prediction of the MOS. As PESQ 

is still in use today, albeit in an application different from hearing aids, it provides a good 

baseline metric with proven strengths. 

Perceptual Evaluation of Audio Quality (PEAQ) is the complementary standard 

developed by ITU-R for audio applications.  To broaden the applications of PEAQ, 

PEMO-Q [26] attempts to move away from purely data-driven, score mapping to 

subjectively tested MOS and towards a more “theoretically sound” computational model 

of the auditory system to increase robustness. The final PEMO-Q score is derived from a 

perceptual similarity measure (PSM), and PSMt, a denotation of the fifth percentile of the 

sequence of instantaneous audio quality. The PSM, as the name implies, is an index from 

-1 to 1 determined from the correlation coefficient of the reference signal and degraded 

signal after going through the auditory model. In [26], the PSM alone performed better 

than PEAQ in most conditions at the cost of higher computational complexity. Since 

PSM was developed using an auditory model, it can also be used for generic audio 

quality measures such as music, as opposed to PESQ which was modelled specifically on 

speech [27]. 

A speech quality metric designed specifically for hearing aid applications called the 

Hearing Aid Speech Quality Index (HASQI) was developed by Kates and Arehart in 

2010, and then a second version in 2014. Though HASQI predates the development of 

HASPI, like HASPI, HASQI is derived from two components: a non-linear component, 

cepstrum correlation, and a linear component based on the long-term spectra of the clean 

and degraded signal (see Figure 2.2 for HASQI block diagram). Cepstrum correlation is 

calculated as described in Section 2.1.  

The second, linear index is calculated with the long-term spectra of the clean and 

degraded signals, which is an attempt to capture the effects of linear filters on the speech 
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in the final metric which will go unnoticed by the cepstrum correlation. Essentially, like 

cepstrum correlation, the signals are processed through a computational model of the 

auditory system, then their level is averaged over a single utterance. The two signals then 

have the standard deviation of their spectral difference and spectral slope difference 

calculated to capture the raw, linear portion of the metric. Spectral difference is simply 

the difference between the average normalized spectrum levels of the two signals, and 

spectral slope is the difference of a signals normalized level of a certain gammatone filter 

index with the previous gammatone filter index.  

In 2014, a new version of HASQI was developed which utilizes a new auditory model 

described in [28] and also developed by Kates. 

There are several other objective quality metrics which do not map to subjective scores 

nor do they use computational models of the auditory system, and therefore may sacrifice 

accuracy and robustness for lower computational complexity. These metrics include the 

signal-to-noise ratio enhancement (SNRE), coherence, segmental SNR, log-area ratio, 

and log-likelihood ratio. These low-computation metrics, as well as PESQ and PSM, 

were evaluated in [27] on their ability to predict subjective quality scores. The results of 

the test showed that for noise reduction testing, the SNRE was the superior metric, 

however perceptual metrics such as PESQ and PSM are better for objective assessments 

of perceived speech distortion or general quality. 

The robustness of HASQI was also evaluated in [29] where it was shown to have similar 

correlation to MOS as PESQ, log-likelihood ratio, and frequency-weighted segmental 

SNR. However as hearing aids shape the audio signal based on the user’s audiogram, 

using a metric that takes this altered frequency spectrum into account is critical, making 

HASQI a clear choice for the evaluation of binaural beamformers. 
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Figure 2.2: Block diagram of HASQI. Output variables are mapped to the final 

index. 

2.3 Binaural Beamforming Evaluation 

As testing binaural beamforming in a variety of noise/reverberation conditions is a central 

component to this thesis, understanding the signal processing behind binaural 

beamforming was important to interpret the observed behaviour of the beamforming 

hearing aids with some kind of theoretical foundation. As overviewed in [30], binaural 

beamforming takes the monaurally processed signal from each ear and wirelessly 

transfers it to the contralateral ear. It’s notable that the signal being transferred has been 

monaurally processed with a monaural beamformer, and is not the raw input signal to the 

microphone. This means by the time the binaural beamforming algorithm is applied, 

noise from behind the user has already been attenuated. 

Binaural beamforming broadly works by adding the two monaurally processed signals 

from each ear together after appropriately weighting them. As signals originating from 

the front of the user will be picked up by both hearing aids at approximately the same 

time, adding the signals together will result in an effect similar to positive interference. A 

higher weighting will generally be given to the monoaural signal with the minimum 

power. The reasoning here is that barring the component of the monaural signal that is the 

same power and phase, which is the signal originating from the front, any additional 

power is the result of interfering noise. Therefore the signal with the lower power has less 

noise and more of the 0° signal which is intended to be amplified.   
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The robustness of specific beamforming algorithms were tested in [31], specifically 

comparing fixed beamformers versus adaptive beamformers in their susceptibility to 

steering errors as well as showing the extent to which the test beamforming algorithms 

distort binaural cues. Part of this analysis, however, included the utilization of objective 

quality measures to confirm the quality benefit of beamforming in binaural hearing aids. 

It was this section that was of interest. 

Several factors were investigated through the creation of a variety of testing conditions: a 

total of three binaural algorithms, four head models for use within the algorithms, and the 

two beamformer types described above (fixed and adaptive). The four head models range 

in complexity, where the first model simply did not use a head model at all and modelled 

the sound in free field (FF). Of the two “true” head models, one modelled the head as a 

sphere (HM1), whereas the second (HM2) used a model developed in [32] which 

includes near-field and interference effects. Finally, a head-related transfer function 

(HRTF) was measured on the Brüel & Kjær (B&K) head and torso simulator and used it 

to model the propagation of sound. 

As all the microphones on both the left and right side of the head (XL1-3, XR1-3) 

contribute to only one binaural output (Z), three strategies were tested to preserve the 

differences between each side. The first (bin1) involved constructing a filter that was 

dependent on the output Z, then filtering two input reference signals through it ((XL1, 

XR1) to get an output for the left and right ears. Second (bin2), was somewhat of the 

opposite: taking the output Z and filtering it through two propagation vectors (left side 

and right side) to get the two outputs. Finally, to simulate bilateral hearing aids, the 

algorithm was simply performed twice for the set of microphones on each side of the 

head to obtain two outputs. 

The objective quality measures chosen included SNRE and PSM, described in Section 

2.2 as well as an objective model of SRT proposed in [12]. The beamforming algorithms 

in bin1 and bin2, which utilize the full set of microphones, performed better than bin3, 

which was modelled bilaterally, showing the benefit of binaural beamforming in 

objective quality improvements. However even within bin1 and bin2, different results 
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between the left and right ears for SNRE and SRT required additional explanation. 

Without a comparison to subjective testing, or a way to combine the left and right quality 

measures into a single, perceptually representative value, the quantifiable quality benefit 

of bin1 versus bin2 remained unclear. 

Potential subjective benefits from binaural beamforming were discussed in [33], which 

included testing mild, moderate, and strong levels of directional processing for its effects 

on localization, sentence recognition, listening effort and participant preference.  The 

“strong” directional processing setting incorporated the binaural beamforming strategy. 

Localization testing was done through a test called the Spatial Test Requiring Effortful 

Speech Recognition (STRESR), which had the participant face four loudspeakers at +60, 

+45, -45, and -60 degree angles, and identify which loudspeaker was playing words. 

Listeners were then judged on accuracy and reaction time. Localization was found to be 

negatively affected by beamforming algorithms, as the worst performance was with the 

strong directional processing. However, with the addition of visual cues, the performance 

difference between the types of directional processing became negligible, suggesting the 

differences are “rather small” [33]. 

Sentence recognition was judged through the Connected Speech Test (CST). The results 

of the test indicated that performance improved with strong and moderate directional 

processing, however the only advantage strong directional processing conferred over 

moderate was in settings with moderate reverberation. Regardless, the benefit of 

beamforming for speech recognition was shown. 

While initial listening effort tests did not reveal a preference between the strong, mild and 

moderate levels of directional processing, follow up testing showed a stronger preference 

for strong directional processing over mild or moderate. Additionally, in [34], strong 

directional processing was shown to improve subjective listening effort as well as 

objective listening effort in moderate reverberation. It was shown that this improvement 

might not extrapolate to other reverberation scenarios, suggesting additional testing 

would be useful. 
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Beamforming was also tested in [35] to measure the benefits of beamforming algorithms 

towards solving the “Cocktail Party” problem. The cocktail party problem describes the 

issues computer algorithms can have isolating speech sources from other spatially 

separated sources of speech, despite the ease at which the human brain does it 

subconsciously. The study showed that for listeners with sensorineural hearing loss, 

beamforming improved the SRT in situations with spatially separated speech-on-speech 

masking. With that said, for normal-hearing listeners, performance was worse in 

conditions with beamforming due to the distortion of spatial cues such as interaural time 

differences.  

In [36], binaural beamforming algorithms were specifically tested against monaural 

beamforming algorithms in commercially available hearings aids in sentence recognition 

and subjective ratings of perceived work, desire to control the situation, willingness to 

give up, and tiredness. While both beamformers conferred a benefit in all measurements 

against the omnidirectional programs, the binaural beamformers only provided a small 

advantage over the monaural beamformer in sentence recognition and tiredness. Notably, 

the benefits of binaural beamforming were also found to be independent of noise 

configuration, where two configurations were used: noise sources at 90° and 270°, and 

noise sources at 45°, 135°, 225°, and 315°. 

2.4 Summary 

Common among the literature is that directional noise reduction processing of any kind 

has advantages over omnidirectional processing, and that binaural beamforming has a 

small benefit in certain measurements such as speech recognition over monaural 

beamforming in hearing-impaired listeners. Other findings include:  

 The sentence recognition advantages of binaural beamformers were suggested to 

be dependent on reverberation. 

 The speech recognition advantages of binaural beamformers were suggested to be 

independent to noise configuration.  

 Binaural beamformers negatively affect localization, however the negative effect 

can be tempered by visual cues.  
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 Binaural beamformers do not have an equal effect on both ears. 

Overall, in comparison to published research on the assessment of other hearing aid 

signal processing algorithms, there is sparse literature on the effectiveness of binaural 

beamforming algorithms.  As such, more reliable and consistent methods of measuring 

binaural beamforming algorithm performance is a necessity. Additionally, HASQI and 

HASPI were determined to be the best choice of objective hearing aid assessment for 

speech quality and intelligibility respectively, but they have yet to be validated for 

assessing binaural beamforming performance. MUSHRA provides the best methodology 

for testing speech quality in participants, as it allows for a lower number of participants 

with higher statistical reliability of their ratings, but it has not been utilized for subjective 

evaluation of binaural beamforming.  This thesis addresses these gaps in the literature, as 

detailed in the next three Chapters. 
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Chapter 3  

3 REDCap Database 

Machine learning has become an increasingly popular modelling technique used in 

modern computer systems. As machine learning algorithms require to be trained on data 

sets so that the algorithm in use can find patterns in the records and use those patterns to 

predict future data, developing methods and infrastructure to acquire and hold large 

amounts of data are of increasing importance in the modern day.  Hearing aid metrics are 

no exception, as many metrics including HASPI and HASQI utilize mapping functions 

which were “learned” through training them on subjective data sets. Often, a large, 

generic data set which can be used to train a model is just as useful as a smaller, more 

specially designed data set. 

As a large amount of data was to be collected in order to examine the relationship 

between the objective and subjective results of binaural beamforming hearing aids, it was 

deemed prudent to develop the infrastructure to maintain this data for future studies that 

may require a generic bank of hearing aid recordings and their associated patient data and 

subjective ratings. A repository in REDCap – an open source, secure, cloud database – 

was developed in order to hold the hearing aid recording data and any relevant 

measurements that may be useful in the future. 

3.1 REDCap Overview 

The database was created using REDCap, a database manager designed initially by 

Vanderbilt University for medical research projects. As storing patient data on a server 

requires ethics approval, using an application designed specifically for medical research 

made sense to streamline the ethics process as well as creating a greater degree of 

comfort regarding the security and anonymity of the data. Internally, REDCap is 

structured like a series of forms that must be designed in advance and filled out for every 

new data entry in the project. For instance, the REDCap admin must create several fields 

such as “Patient Number,” “Age,” and “Gender” and assign them to the project. When a 
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new record is to be added to the database, the user must fill out each of these fields for 

each record.  

In this respect, REDCap is not a particularly flexible database manager, particularly for 

the secondary goal of creating a database which can be used for future projects that have 

yet to be fully defined. It is easy to foresee situations in which new fields must be added 

for new projects that were not predicted when the database was created, or vice versa 

where not every field is necessary for every record. For example, one user may add a 

field such as “Noise Direction” to identify which direction the recorded noise originated 

from. If another user is using the database for an intelligibility test that requires no noise, 

however, then the field would not be applicable nor make sense to include. 

3.2 REDCap Interface 

To remedy the inflexibility of the REDCap database manager, a user interface, an 

example of which is shown in Figure 3.1, was created in C# which would automatically 

structure the data based on custom made “tags” written in each data field’s notes 

category. REDCap’s metadata had several fields which defined the form the field entry 

took, such as label and type, and among these was a “notes” section which could be used 

for miscellaneous items related to the field. The user interface can connect to the 

REDCap server, download all the metadata and data in the repository and then 

subsequently sort it based on which tags it belonged to and the values of certain key 

fields in the form. For example, if a user wanted to view all audio recordings made 

through a specific patient’s audiogram, the user could scroll through a list of patient 

numbers, select the requested one, and a list of each data field for every record made with 

that patient number entered in the “patient” field would come into view. Additionally, 

when the patient data came into view, it would be visually segregated based on its “tags.” 

For instance, data tied to the patient such as age, gender, or audiogram, would be listed 

under a “Patient Data” header, whereas data tied to a specific recording such as SNR or 

sound pressure level would be under a “Recording Data” header. 

The user interface can update several REDCap forms at once depending on its tag, 

making updating the data in the repository far quicker and more intuitive. As mentioned 
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above, REDCap stores data on a record-by-record basis, meaning an entire new form 

must be filled out for each new record entered. If there were two audio recordings for one 

patient, perhaps one with noise coming from the left and the other with noise coming 

from behind, there is a need to fill out two records and despite much of the data being 

redundant such as age and gender. With the user interface, however, multiple records can 

be updated at once based on the “tag” or category of the data changed. If a field for 

patient age is updated, for example, and the field is correctly tagged as a “patient” field, 

the interface can easily go through every record in the database and update every record 

with the same patient number as the one selected. 

Figure 3.1 displays the interface prior to connecting to the REDCap server. In order to 

connect, the Connect button located at the top left of Figure 3.1 must be pressed, which 

then automatically pulls the data currently stored on the server into the interface as seen 

in Figure 3.2. From there, a Study can be selected in the top left list box in Figure 3.2. 

When a given study is selected, the participants associated with that study then populate 

the Participant list box directly below. Likewise, when a participant is selected, each 

recording associated with that study and participant combination is displayed in the 

Recording list box as seen in Figure 3.3.  

Data associated with the participant is then displayed under the Participant header and 

data associated with the recording is then displayed under the Recording ID header as 

seen in Figure 3.3. In order to decrease clutter, certain data fields, such as Audiogram, 

have their own sub-fields which can be viewed by clicking the View button which then 

opens the window seen in Figure 3.4. In order to edit data fields, the check box to the left 

of the data field name must be checked. The corresponding field can then be edited, and 

by pressing the “Update Recording” or “Update Participant” button, the REDCap server 

will be updated with the new information. An example of changing the SNR data field 

can be seen in Figure 3.5.  

In order to add new data fields, the “Edit Data Field” button can be pressed for either 

participant data or recording data which opens the window seen in Figure 3.6. New fields 

can then be added and the type, be it a text box or drop down menu, can be specified. By 
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clicking the “Save & Close” button, the REDCap metadata will be updated to include the 

new data field as seen in Figure 3.7. Adding new fields does not immediately affect other 

recordings or participants. As seen in Figure 3.8, while the new data fields will be 

available for other recordings, unless the check box is checked they are not included in 

that recording’s or participant’s data set.    

 

 

 

Figure 3.1: REDCap interface prior to connecting to the server. 
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Figure 3.2: Selecting a study in the REDCap Interface. 

 

Figure 3.3: Selecting a recording in REDCap interface. 
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Figure 3.4: Certain data fields with sub-fields have their own interface to decrease 

clutter. 

 

Figure 3.5: Updating the SNR field of a recording in the REDCap interface. 
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Figure 3.6: Data fields for recordings can be added and edited. 

 

Figure 3.7: REDCap interface with new data field added. 
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Figure 3.8: Added data fields are available to other recording IDs, but do not affect 

the database unless the corresponding checkbox is checked. 

3.3 Data Fields 

Once the internal structure of the database was established, the specific data fields to be 

used in the project could then be decided upon. Fields were separated into two categories: 

Participant Fields, which would update every entry under a certain participant number 

when changed, and Recording Fields, which would only update the specific entry that 

was changed. 

3.3.1 Participant Fields 

Age: The age range of the participant was useful when looking at the diversity of the 

participant sample, and could be recorded while still keeping the participant’s identity 

anonymous. 

Audiogram: The audiogram of the participant. As the audiogram of the participant is an 

integral part of the recording as well as necessary to properly use HASQI, a field to 

record the hearing loss at each audiometric frequency was imperative. 
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Years of Hearing Aid Experience: While all participants were experienced hearing aid 

users, since the years of hearing aid experience was known it was included to parse the 

data more easily in the future. 

3.3.2 Recording Fields 

Direction (Noise): The directions of the noise sources where 0° is in front of the user and 

then rotating around the HATS clockwise.   

Direction (Speech): The direction of the speech source where 0° is in front of the user 

and then rotating around the HATS clockwise.   

HASPI: The HASPI score of the recording measured against the clean recording. As 

HASPI is computationally intensive and can take a long time, uploading the calculated 

index was done so the HASPI process would not have to be repeated for every new 

project. 

HASQI: The HASQI score of the recording measured against the clean recording. See 

HASPI. 

HASQI CC: The cepstral correlation score used in HASQI of the recording measured 

against the clean recording. See HASPI. 

Level (Speech): The level in dB SPL of the speech measured at the center of the HATS.  

Noise Type: The type of noise used. In the case of this study, pink noise, speech-shaped 

noise and cafeteria noise were all used at some point. 

Recording (Clean): A wav file of the original speech sample before being recording 

through the hearing aid. The clean recording was included as a raw form of the HASQI 

index in case the HASQI or HASPI results needed to be reproduced. 

Recording: A file field to upload the hearing aid recording file. Hearing aid recordings 

were stored as two channel wav files at a sample rate of 48000 Hz. 
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Sample Rate: The sample rate of the recording, despite being encoded in the wav file 

having the sample rate explicitly recording in the database would help parse the data for 

future projects. 

SNR (A priori): The signal-to-noise ratio determined by the level of sound at the center 

of the HATS.  

3.4 Summary 

The hearing aid recording repository was developed as part of a larger effort to maintain 

hearing aid recordings and their associated data from study to study. REDCap was chosen 

as the database manager due to its common usage for academic studies which often have 

stringent privacy and ethics restrictions. The lack of flexibility within REDCap was 

remedied through a database interface developed in C#, which allowed multiple database 

entries in REDCap to be changed at once if they shared common parameters such as 

participant number. Data collected through this study was uploaded to the REDCap 

server to serve as a starting point for the database. 
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Chapter 4  

4 Electroacoustic Analysis 

The electroacoustic analysis of the binaural beamforming algorithms in different noise 

conditions was the first to be performed. Ideally, the audio output of each hearing aid 

would be captured in a variety of simulated environments, which would then be subject 

to listening tests by human participants as well as quality and intelligibility metrics such 

as HASQI and HASPI. However, as there was a more limited number of conditions a 

participant could reasonably listen to and evaluate in a single session, an initial 

benchmarking of the hearing aids was performed first, to determine which speech in 

noise conditions would provide the greatest variety of results as well as to quantify the 

effect different noise conditions had on the predicted speech quality and intelligibility of 

the hearing aids. 

4.1 Methods 

Initial benchmarking recordings were done in two physical environments, the sound 

booth in the digital signal processing laboratory, and the reverberation chamber, both in 

the National Centre for Audiology (NCA). The sound booth had a reverberation time of 

100 ms, while the reverberation chamber had a reverberation time of 900 ms. Within the 

sound booth, a B&K Head and Torso Simulator (HATS) sat on a small wooden table, 

flanked by three loudspeakers affixed to arms which suspended them from the 

aforementioned table, as depicted in Figure 4.1. The loudspeaker arms were, at their base, 

attached to a rotating platform on top of the small table. The platform allowed the arms to 

be rotated about the table, meaning sound could be directed from any of three directions 

during recording. 

The HATS made use of a rubber pinnae to simulate the shape of the outer ear of a patient, 

and allowed for easy and realistic placement of the tested hearing aids on the manikin, as 

shown in Figure 4.2. Within the left and right ear canals, microphones led down through 

torso of the HATS and into a B&K Nexus Conditioning Amplifier which amplified the 

stereo signals at 100mV/Pa. The signals were then processed with the Echo AudioFire 12 
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sound card outside the sound booth and recorded with MATLAB on the corresponding 

computer with the Data Acquisition Toolbox (Figure 4.3). Similar to the hardware 

involved in the recording, the playback utilized the Echo AudioFire 12 sound card to the 

AMCRON D-75 multichannel amplifier, then to each corresponding loudspeaker around 

the HATS.  

The computer in the reverberation chamber was also connected to an Echo AudioFire 12 

sound card which then fed into a SoundWeb 9088i Networked Signal Processor, which 

allowed the AudioFire to connect to up to 16 output speakers instead of the usual 8. 

Finally, the system was connected to a LabGruppen C 10:8X amplifier before connecting 

to the loudspeaker array within the chamber. 

 

Figure 4.1: B&K HATS on wooden table with rotating speaker apparatus. 
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Figure 4.2: Close-up of hearing aid affixed to the rubber ear, simulating the shape 

and material of a real ear. 

 

Figure 4.3: Computer set-up outside sound booth used to control speakers and 

microphones. 
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While there are a multitude of audio recording methods in MATLAB, the Data 

Acquisition Toolbox was chosen for its focus on simultaneous playback and recording. 

Once the playback system was calibrated with a G.R.A.S. Type 26 AK free-field 

microphone temporarily replacing the HATS at the center of the room and a B&K UA 

1546 calibrator which emitted a tone at a known 94 dB sound pressure level (SPL), the 

precise sound pressure level at the free field microphone could be measured. By then 

generating pink noise out of each of the three loudspeakers one-by-one, the correct level 

adjustments could be made to the digital signal outputted at the computer, to ensure not 

only that all three loudspeakers produced equal sound levels at the center of the room, but 

that it was at a known sound pressure level which could be calculated based on the digital 

output level. The B&K UA 1546 calibrator was also used with the HATS in place on 

each of its ear canal microphones, as being able to calculate the sound pressure level at 

the ear canal based on the digital input recordings.  The recorded SPLs at left and right 

ears was critical for both HASPI and HASQI measurements, as they incorporate hearing 

loss model. 

4.1.1 Speech and Noise Conditions 

To collect a database of the recordings, several parameters of the recording set-ups were 

adjusted to simulate a variety of noise conditions. Each hearing aid would then be 

recorded in each condition, on each of the hearing aids’ available program settings. Four 

brands of hearing aids were tested, and most of the hearing aids were programmed to 

three settings , meant to be switched between by the user depending on their situation or 

current needs: omnidirectional, which incorporated no noise reduction, a monaural 

beamforming program, and a binaural beamforming program.  All hearing aids were fit to 

targets prescribed the DSL 5.0 algorithm for the standard N4 audiogram [37]. 

The direction of the noise itself was also altered between three states: the 90° and 270° 

state, where the two loudspeakers assigned to output noise would be rotated to the HATS 

left and right flank; the 90° and 180° state, where one loudspeaker would be to the 

HATS’ direct right and one loudspeaker from its behind; and finally the 45° and 315° 

state, where the output noise would originate from a point more adjacent to the 0° 

loudspeaker. The loudspeaker that would play speech would always be at the 0° angle, 
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directly facing the HATS. The speech was initially always played from the front to best 

utilize the hearing aids binaural beamforming abilities, which amplify sounds from the 

front while attenuating those from the sides and back. In order to test the beamformers in 

sub-optimal conditions, the speech was also rotated to a 45° angle when the noise was in 

its 90° and 270° state, adding a fourth speech/noise spatial configuration condition. 

Speech was played at 70 dB SPL, where the sound pressure level was measured at the 

center of the HATS as described in the calibration process. The noise was played at two 

different levels for an SNR of 0 and 5 dB respectively. Since there were two loudspeakers 

dedicated to noise, the noise level from each loudspeaker was reduced by an additional 3 

decibels for an SPL of 67 and 62 depending on the desired SNR. 

Two noise types were also used: pink noise and cafeteria noise. Pink noise is spectrally 

and statistically stable while cafeteria noise is non-stationary and meant to resemble the 

ambient background noise of a restaurant or crowded area, therefore the two noise types 

provided a spread of realistic noise types.  

With four hearing aids, two noise types, two SNRs, two rooms, four directionality 

conditions, and two to three programs per hearing aid, the described parameters 

amounted to a total of 352 conditions, which are described in Table 4.1.  

The speech samples played were twenty HINT sentences concatenated into one 

continuous string. Analysis was done only on the last ten sentences in order to provide 

the hearing aid with at least twenty seconds of settling time in the acoustic environment. 

Each of the last ten sentences were analyzed independently, then averaged together to get 

the final result. 
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Table 4.1: Hearing aid recording conditions for electroacoustic measurements. 

Speech and 

Noise 

Directions 

Hearing 

Aids 

Programs Noise 

Types 

SNR Rooms 

• Speech at 0°, 

Noise and 90° 

and 270° 

• Speech at 0°, 

Noise at 45° 

and 315° 

• Speech at 0°, 

Noise at 90° 

and 180° 

• Speech at 

45°, Noise at 

90° and 270° 

• Hearing 

Aid 1 

• Hearing 

Aid 2 

• Hearing 

Aid 3 

• Hearing 

Aid 4 

• Omnidirectional 

• Monaural 

Beamformer 

• Binaural 

Beamformer* 

• Pink 

• Cafeteria 

• 0 dB 

• 5 dB 

• Sound 

booth 

• Reverb 

Chamber 

*Binaural beamforming programs were not available on Hearing Aid 4 

4.2 Electroacoustic Analysis Results 

4.2.1 Sound Booth 

The HASPI and HASQI scores of speech in pink noise at 0 dB SNR with the speech 

originating from 0° and noise from 90° and 270° recorded in the anechoic sound booth 

are displayed in Figure 4.4 and Figure 4.5 respectively, and provide a baseline for the 

other measurements due to its low reverberation, statistically flat noise, and speech 

originating from directly in front of the HATS where binaural beamformers are most 

optimized to listen to speech from.  
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When each of the hearing aids are in their omnidirectional program (Omni) with no noise 

reduction, the HASPI and HASQI scores are similar between different brands. This 

follows logically as other than adjusting the signal according to the amplification 

requirements associated with the N4 audiogram, the hearing aids do not provide any other 

processing in this program leaving little room for deviation between brands.  

A larger difference occurs when the hearing aids were switched to program 2, the 

monaural beamformer (BF), which sees a large improvement in both HASPI and HASQI 

scores jumping from an average HASPI score of 0.035 to 0.34 and an average HASQI 

score of 0.059 to 0.24. With the introduction of noise reduction, not only does the 

processed signal improve in predicted intelligibility and quality, but more variability 

occurs between brands as the strengths and weaknesses of different processing strategies 

within each model are divulged. In the monaural beamforming program, Hearing Aid 2 

(HA2) has the best HASPI score at a left-right average of 0.52 while Hearing Aid 1 

(HA1) has the best HASQI score at a left-right average of 0.27. The pattern of HASPI 

and HASQI scores do not always align perfectly with each other. While a higher 

predicted intelligibility may correspond to an increase in predicted quality, it may also 

telegraph more noise reduction processing in the hearing aid which can often increase 

quality-degrading distortions in the speech.  

The binaural beamforming program (BBF) for Hearing Aids 1, 2, and 3 see a slight 

improvement in predicted intelligibility and a slight improvement in predicted quality in 

Hearing Aids 1 and 3. The lack of significant improvement is not a reflection of poor 

performance on the part of the binaural beamformers, rather it is simply not a condition in 

which a narrower beamformer accrues any benefit beyond what the monaural 

beamformers can already achieve.  
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Figure 4.4: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 90° and 270° recorded in the sound booth. 

 

Figure 4.5: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 90° and 270° recorded in the sound booth. 

The conclusion is further evidenced by Figure 4.6 and Figure 4.7, which show the same 
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and 315° instead of 90° and 270°. In this case, while the overall HASPI and HASQI 

scores are smaller than when the noise originates from 90° and 270°, there is a clear 

improvement from the scores of the monaural beamformers to the binaural beamformers 

in Hearing Aids 1 and 2. This suggests the benefits of binaural beamformers versus 

monaural beamformers are best seen when the direction of the noise source are closer to 

speech at 0° azimuth. As the binaural hearing aids’ ability to wirelessly communicate 

with each other allows for a narrower range of angles in which sound sources are 

amplified, the narrower beamformer cutting out more distorting noise sources affirms the 

increase in predicted performance.  

 

Figure 4.6: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 45° and 315° recorded in the sound booth. 
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Figure 4.7: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 45° and 315° recorded in the sound booth. 

The HASPI and HASQI scores of pink noise, this time with the noise source at 90° and 

180° as seen in Figure 4.8, can be interpreted differently depending on the weighting of 

the left and right scores. Hearing Aid 2, for example, sees a decrease in HASPI in the left 

ear and an increase in HASPI in the right ear on switching to a binaural beamformer. 

Hearing Aid 3 sees the opposite effect, where the left and right ear scores grow more 

extreme on switching to the binaural beamformer. This is the result of a difference in 

processing strategy between these two hearing aids, however given the difference in the 

left and right score it is difficult to effectively evaluate them and say definitively which 

one is more effective in improving predicted speech quality. Combining the left and right 

scores for each hearing aid in a perceptually relevant way, one of the goals of the thesis, 

would go a long way in aiding this comparison. 

Regardless, both changes in predicted performance are fairly small. As this is a case with 

more localized noise than the previous two conditions, a similar conclusion to the first 

noise condition is likely where as long as the speech and noise sources have significant 

spatial separation, the binaural beamformer loses its advantage over the monaural 

beamformer. 
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Figure 4.8: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 90° and 180° recorded in the sound booth. 
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Figure 4.9: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 90° and 180° recorded in the sound booth. 

 

Figure 4.10: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 45° and the noise from 90° and 270° recorded in the sound booth. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

HA1
(Omni)

HA1
(BF)

HA1
(BBF)

HA2
(Omni)

HA2
(BF)

HA2
(BBF)

HA3
(Omni)

HA3
(BF)

HA3
(BBF)

HA4
(Omni)

HA4
(BF)

H
A

SQ
I

Left

Right

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

HA1
(Omni)

HA1
(BF)

HA1
(BBF)

HA2
(Omni)

HA2
(BF)

HA2
(BBF)

HA3
(Omni)

HA3
(BF)

HA3
(BBF)

HA4
(Omni)

HA4
(BF)

H
A

SP
I

Left

Right



42 

 

 

Figure 4.11: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 45° and the noise from 90° and 270° recorded in the sound booth. 
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significantly change the pattern of the HASQI or HASPI scores between brands and 

programs beyond a flat increase or decrease depending on the condition. The average 

HASQI and HASPI can be seen in Figure 4.12 and Figure 4.14, where the left and right 

scores of every monaural beamforming program were averaged together for each noise, 

SNR and directionality condition in the sound booth to view how the different conditions 

affected each hearing aid program on the whole. The equivalent figures for the binaural 

beamforming programs can be seen in Figure 4.13 and Figure 4.15. 

Generally, higher SNR corresponded with higher HASQI and HASPI scores, which 

follows logically since a lower noise level will lead to less distortion to the original 

speech signal. Likewise, generally pink noise either corresponded with higher HASQI 

and HASPI scores compared to cafeteria noise or else there was no discernible difference. 

As pink noise is not statistically time-variant, it is possible to filter it out using statistical 

noise reduction methods as opposed to solely directional methods leading to stronger 

HASQI and HASPI scores than cafeteria noise in conditions where directional noise 

reduction is not possible. In areas where this is not the case, the averages HASQI and 

HASPI scores for speech in pink noise versus cafeteria noise are still within a standard 

error.  
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Figure 4.12: Average HASQI scores of monaural beamforming programs across all 

brands. 

 

Figure 4.13: Average HASQI scores of binaural beamforming programs across all 

brands. 
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Figure 4.14: Average HASPI scores of monaural beamforming programs across all 

brands. 

 

Figure 4.15: Average HASPI scores of binaural beamforming programs across all 

brands. 
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4.2.2 Reverberation Chamber 

As the performance of the predicted speech quality and intelligibility scores were 

dependent on the spatial locations of the speech source and noise source, testing the 

hearing aids in reverberant conditions which negatively effects sound localization was 

key. Previous studies have shown the performance of binaural beamformers in speech 

recognition to be highly dependent on reverberation [33], [34]. The two conditions with 

the most notable differences between the measurements taken in the sound booth and 

reverb chamber was when the speech source originated from a 0° angle and the noise 

sources originated from a 45° and 315° angle, and when the speech source originated 

from a 45° angle and the noise source originated from a 90° and 270° angle. Respectively, 

these are the conditions where the binaural beamforming programs showed the greatest 

improvement over the monaural beamforming programs, due to the close proximity of 

the noise and speech sources, and the worst improvement, due to the decentering of the 

speech source out of the hearing aid’s narrowed beamformer. 

Comparing Figure 4.17, which displays a baseline condition in the reverb chamber 

similar to Figure 4.5 where the speech source originates from 0° and the noise sources 

originate from 90° and 270° with Figure 4.5,  there is a drop in all HASQI scores in 

measurements taken in the reverb chamber versus the sound booth, however similar 

patterns emerge with a jump in predicted quality and intelligibility with the introduction 

of a monaural beamforming program, and similarly a minor improvement with the 

introduction a binaural beamforming program, this time in Hearing Aids 1 and 2, likely 

attributable to stronger de-reverberation processing in the noise reduction algorithm of 

these hearing aids. Also notable in Figure 4.17 is the performance of Hearing Aid 4, 

which remained competitive with the other hearing aid programs despite its poor HASQI 

score in the sound booth.  
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Figure 4.16: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 90° and 270° recorded in the reverb chamber. 

    

 

Figure 4.17: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 90° and 270° recorded in the reverb chamber. 
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Figure 4.18: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 45° and 315° recorded in the reverb chamber. 

 

Figure 4.19: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 0° and the noise from 45° and 315° recorded in the reverb chamber. 
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proximity of the noise sources is closer to the speech sources, particularly with Hearing 

Aid 2. This was a similar pattern seen with the measurements taken in the sound booth. 

Once again, placing the noise sources in closer proximity to the speech source negatively 

affected the predicted speech quality and intelligibility scores more than the binaural 

beamformers could make up for, however they still improved the performance 

significantly beyond what was capable with the monaural beamformer in the same 

condition.   

 

Figure 4.20: HASPI of speech in pink noise at 0 dB SNR, with speech originating 

from 45° and the noise from 90° and 270° recorded in the reverberation chamber. 
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Figure 4.21: HASQI of speech in pink noise at 0 dB SNR, with speech originating 

from 45° and the noise from 90° and 270° recorded in the reverberation chamber. 
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from each device, it follows that some level of “equalization” would occur between them 

where the worse performing device would improve and the better performing device 

would worsen. In most cases, this is an attempt from the manufacturer to use the best of 

the two hearing aid signals. However as the weighted sum must use at least some 

component of the input signal from both devices in order to preserve localization cues, 

the better performing ear may experience a drop in performance as it is summed with the 

device experiencing more noise. 

4.3 B&K HATS and CARL Comparison 

As there was a significant decrease in performance in Hearing Aid 2 when the speech 

source was at a 45° direction, it was important to verify that the decrease was due to the 

narrow beam of the binaural beamformer and not due to the interference from either the 

electrical components or material of the HATS. A comparison experiment was therefore 

performed using a Canadian Audiology simulator for Research and Learning (CARL) to 

ensure similar results were gathered between the microphone-equipped HATS and the 

more anatomically accurate, and hollow CARL.  

The CARL was fitted with the Real Ear Measurement system on the Audioscan Verifit 2 

hearing aid measurement system, which uses probe tubes inserted into the ear canal to 

take hearing aid recordings. The CARL was then affixed with Hearing Aid 2 fitted to an 

N4 audiogram in the reverb chamber and recorded in an omnidirectional program 

(Omni), the monaural beamforming program (BF), and the binaural beamforming 

program (BBF) with speech-shaped noise coming from 90° and 270° and speech coming 

from 0° and then again with speech at 45°. 
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Figure 4.22: Comparison of Hearing Aid 2 HASPI and HASQI for HATS and 

CARL. 

  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
A

SP
I

HASPI - CARL

Left Right

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

H
A

SP
I

HASPI - HATS

Left Right

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H
A

SQ
I

HASQI - CARL

Left Right

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

H
A

SQ
I

HASQI - HATS

Left Right



53 

 

As the Verifit 2 was not calibrated to the same level as the HATS, the absolute value of 

HASQI and HASPI could not be compared. However the CARL recordings still showed 

the same decrease in performance when speech was at a 45°, as seen in Figure 4.22, 

consistent with the same measurement done with the HATS. Therefore the decrease 

could not be attributed to material or electrical interference from the HATS. 

4.4 Summary 

Electroacoustic measurements of hearing aids allowed for several insights into the 

performance of binaural beamformers. First, the predicted speech quality and 

intelligibility of the beamformers was dependent on the direction of the speech and noise 

source. When the noise sources were at 90° and 270°, the binaural beamformer provided a 

small predicted quality and intelligibility improvement over the monaural beamformer. 

The benefit over the monaural beamformer increased when the noise sources were moved 

to 45° and 315°. When the noise sources were more localized at 90° and 180°, the 

predicted quality and intelligibility benefit was negligible. Finally, when the speech 

source was rotated to a 45° angle, the binaural beamformer provided no benefit over the 

monaural beamformer and in some cases decreased the HASPI and HASQI score.  

The performance of the binaural beamformers was also dependent on the reverberation of 

the environment. Particularly, the predicted speech quality and intelligibility drop when 

the speech source was at 45° increased. Changing the noise type from pink to cafeteria 

noise or the SNR from 0 to 5 dB did not change the results significantly. 
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Chapter 5  

5 Behavioural Analysis 

To gain a thorough understanding of the effect of binaural beamforming algorithms on 

speech quality as well as to validate the objective speech quality metric HASQI with 

binaural beamformers, subjective ratings of speech processed by binaural beamforming 

hearing aids were collected. Thirteen hearing impaired participants were recruited to take 

part in the study. Similar to the electroacoustic measurements, recordings of the hearing 

aids were first made according to the conditions detailed in Table 5.1 programmed to 

each participant’s audiograms. Recordings were then presented to the participants using 

the Multiple Stimuli with Hidden Reference and Anchor (MUSHRA) methodology and 

ranked from zero to one hundred. 

5.1 Methods 

5.1.1 Participants 

Participants were recruited through a pre-existing database of hearing impaired listeners 

who frequently participate in studies through the NCA. A total of 13 participants were 

brought in for the study with mild to moderate hearing loss based on the Pure Tone 

Average (PTA); all were experienced hearing aid users and ranged in age between 60 to 

86 years with a mean age of 73. The ages of the participants are listed in Appendix A, 

while the individual and average audiograms of all participants are shown in Figure 5.1. 

The study was approved the Western University Health Sciences Research Ethics Board 

(HSREB), which can be viewed in Appendix D. 

Hearing aids were then programmed according to the given participant’s audiogram and 

then verified with an Audioscan Verifit 2 based on the participant’s Real Ear to Coupler 

Difference (RECD) values. Each of the participant’s audiogram and RECD values were 

adjusted based on the HATS difference displayed in Appendix B. 
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a)  

b)  

Figure 5.1: Individual and average audiogram of participants for the a) left ear and 

b) right ear. 

5.1.2 Speech and Noise Conditions 

With the hearing aids programmed to each participant’s audiograms, recordings were 

made in each of the conditions detailed in Table 5.1.  

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000 7000

H
ea

ri
n

g 
Lo

ss
 (

d
B

)

Frequency (Hz)

Left Audiograms

Individual

Mean

0

10

20

30

40

50

60

70

80

90

0 1000 2000 3000 4000 5000 6000 7000

H
ea

ri
n

g 
Lo

ss
 (

d
B

)

Frequency (Hz)

Right Audiograms

Individual

Mean



56 

 

Table 5.1: Hearing aid recording conditions for behavioural measurements. 

Speech and 

Noise 

Directions 

Hearing 

Aids 

Programs Noise 

Types 

SNR Rooms 

• Speech at 0°, 

Noise and 90°, 

180° and 270° 

• Speech at 0°, 

Noise at 90° 

and 180° 

• Speech at 

45°, Noise at 

90°, 180° and 

270° 

• Speech at 0°, 

No Noise* 

• Hearing 

Aid 1 

• Hearing 

Aid 2 

• Hearing 

Aid 3 

• Hearing 

Aid 4 

• Omnidirectional 

• Monaural 

Beamformer 

• Binaural 

Beamformer† 

• Better Ear† 

• Speech-

shaped 

• Cafeteria 

• 0 dB • Sound 

booth 

• Reverb 

Chamber 

*In conditions with no noise, the Noise Types condition was not necessary 

†
Binaural beamforming programs were not available on Hearing Aid 4, and so a Better Ear program was 

used instead. Better Ear takes the signal with the highest SNR and outputs it to both ears. 

A few changes were made between the conditions of the electroacoustic recordings and 

the recordings made for the behavioural tests. First, it was known that some number of 

conditions would have to be removed for logistical reasons. As the tests were to be done 

with participants, each additional condition added exponentially more recordings each 

participant would have to listen to. It was decided it would be unreasonable to ask for 

participants to listen to any more than 200 recordings in one sitting, therefore with four 

hearing aid brands and three programs each, the number of total listening conditions was 

reduced to 16. The reasoning behind each condition change or removal is detailed below. 
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Pink Noise to Speech-Shaped Noise: The pink noise condition was changed to speech-

shaped noise. While it was important for one of the noise conditions to be spectrally 

stable in order to contrast with the cafeteria noise, speech-shaped noise was chosen to 

better mask the spectral features of the underlying speech signal. 

Removal of Noise from 45° and 315° Condition: The second noise direction condition 

was removed by the process of elimination. Noise from 90° and 270° needed to be kept 

as a baseline, and speech from a 45° degree angle was kept to see the effect of an off-

angle speech source on the quality. Between the noise at 90° and 180° condition and the 

noise at 45° and 315° condition, the former was kept as it had a greater discrepancy 

between the left and right HASQI scores and therefore would provide stronger data for a 

weighting function between the two ears. 

Removal of 5 dB SNR Condition: The 5 dB SNR condition was removed to ensure 

there was enough room to test multiple noise types.   

Addition of Noise at 180° in Noise Direction 1 and 3: A third noise source at 180° was 

added to noise directions 1 and 3 to increase the dispersion of sound outside the speech 

source. 

Addition of Better Ear Program for Hearing Aid 4: As Hearing Aid 4 did not have a 

binaural beamformer, a third Better Ear program was added to see how it compared to the 

binaural beamformers. 

Addition of Speech in No Noise Condition: A speech in quiet condition was added both 

as a reference for MUSHRA and for statistical reliability analysis.  

5.1.3 MUSHRA Test 

Once recordings of the four hearing aids programmed to each participant’s audiogram 

were made in each of the listed Table 5.1 conditions, participants were brought to the 

NCA and instructed to rank each of the recordings according to the MUSHRA 

methodology. As seen in Figure 5.2, MUSHRA utilizes a single screen where each letter 

corresponds to a different hearing aid program, while each screen corresponds to a 
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specific noise, room, and directionality condition. By clicking on a letter, the participant 

can listen to the corresponding recording, which are randomly ordered on the screen, and 

then rank it using the slider from zero to 100. Participants were also free to adjust the 

volume to a comfortable level using the slider at the top of the screen. Participants ranked 

12 hearing aid programs per screen for 16 screens, where two screens were speech 

recordings made in identical, no noise conditions for internal statistical analysis. 

 

Figure 5.2: The MUSHRA program participants used to rank hearing aid 

recordings. 

5.2 Behavioural Data Analysis Results 

Subjective ratings were compiled alongside the HASQI score for the respective ranked 

recording and conditionally averaged. In other words, the subjective rating and HASQI 

score were averaged with all other participant’s rating and HASQI score for the same 

noise, room, and directionality condition. 

Intra-participant reliability was measured with the correlation coefficients between the 

two identical, no noise conditions for each participant and was found to have a range of -

0.1672 to 1 for recordings made in the sound booth and -0.1664 to 0.9462 for recordings 

made in the reverberation chamber. A large range of correlation coefficients can be 
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ascribed to the lack of variation between the two no noise conditions. Inter-participant 

reliability was then measured with Cronbach’s alpha, which was found to be 0.9246 for 

recordings made in the sound booth and 0.9230 for recordings made in the reverberation 

chamber. When the data was restricted to not include recordings made in the no noise 

condition which were consistently ranked highly, Cronbach’s alpha was calculated to be 

0.8199 for recordings made in the sound booth and 0.6871 for recordings made in the 

reverberation chamber. 

As seen in Figure 5.3, the left-right mean HASQI scores were correlated with the 

corresponding subjective ratings, providing an R squared value of 0.7504. The R squared 

value rose even higher when scores were restricted to sound booth recordings with little 

to no reverb, rising to 0.9017 as seen in Figure 5.4. With the reverb chamber recordings 

alone, the R squared value fell to 0.7327 as seen in Figure 5.5. Overall, the left-right 

mean HASQI score provided a good indicator of subjective ratings when the 

reverberation of the environment is controlled. 

A gap in data points between subjective ratings of 62 and 75 is visible in the Figure 5.3, 

Figure 5.4, and Figure 5.5, which illustrates the predicted quality gap between the speech 

in no noise conditions versus the speech in 0 dB SNR conditions. The grouping of data 

points at the top in Figure 5.3 corresponds with recordings made in the sound booth, 

while the grouping of data points closer to the bottom corresponds with recordings made 

in the reverberation chamber, highlighting the impact of reverberation on perceived 

speech quality even in the absence of any background noise. 
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Figure 5.3: Correlation of the conditional averages of the mean HASQI score 

between left and right ears and the corresponding recording’s subjective ranking. 

 

Figure 5.4: Correlation of the conditional averages of the mean HASQI score 

between left and right ears and the corresponding recording’s subjective ranking 

for recordings made in sound booth. 
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Figure 5.5: Correlation of the conditional averages of the mean HASQI score 

between left and right ears and the corresponding recording’s subjective ranking 

for recordings made in reverb chamber. 
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information regarding the effect of binaural beamforming on speech quality. Figure 5.6 
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Figure 5.6: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in speech-shaped noise at 0 dB 

SNR, with speech originating from 0° and the noise from 90°, 180° and 270° in the 

sound booth. 
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subjective ratings and maximum HASQI. Both Hearing Aids 1 and 2 increase in rated 

speech quality and predicted speech quality from the omnidirectional program to the 
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however, see an increase in rated speech quality and predicted speech quality from the 

omnidirectional program to the monaural beamformer, but then Hearing Aid 3 maintains 

a similar score in the binaural beamformer and Hearing Aid 4 drops in performance for 

the Better Ear program. Likely this was a result of switching from pink noise to speech-

shaped noise, which may cause more interference with the noise reduction algorithms for 

Hearing Aid 3. It also follows logically that in noise-symmetric conditions, the better ear 

program for Hearing Aid 4 would not see an increase in rated speech quality or predicted 

speech quality since both ears would perceive the same SNR.  

The left-right maximum HASQI provided a closer similarity between the subjective 
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3, where the left-right mean HASQI score saw an increase in predicted speech quality 

from the monaural beamformer to the binaural beamformer, whereas the subjective 

speech quality ratings and the left-right maximum HASQI score saw a decrease. 

The pattern of inter-hearing aid performance was largely maintained between the rated 

speech quality and predicted speech quality scores. The best subjectively rated program, 

Hearing Aid 4’s monaural beamformer, was also the best scoring HASQI maximum.  

 

Figure 5.7: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in speech-shaped noise at 0 dB 

SNR, with speech originating from 0° and the noise from 90° and 180° in the sound 

booth. 
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omnidirectional program. Hearing Aid 4 had similarly harmonious results, with the 

monaural beamformer performing best in both subjective rating and predicted speech 

quality and seeing a minor drop in both metrics when switched to the better ear program. 

Hearing Aid 3 sees a discrepancy in the monaural beamformer, which drops even below 

the omnidirectional program in subjective ratings whereas the HASQI scores improve. As 

the omnidirectional program uses no noise reduction, and is used a baseline to compare 

the other programs, it is an outlier compared to the overall correlation of HASQI score to 

subjective ratings. 

Hearing Aid 1 sees a discrepancy between the metrics when switched from the monaural 

beamforming program to the binaural beamforming program, as the left-right maximum 

HASQI scores see a drop on the switch. This contrasts with the subjective ratings which 

see an improvement on the switch from monaural beamforming to binaural beamforming. 

The left-right mean HASQI score follows the same pattern as the subjective ratings, with 

the binaural beamforming program again performing the best in predicted speech quality. 

This implies that the left-right mean HASQI score is a better indicator of subjective 

speech quality in conditions where the noise source is at 90° and 180°.  

Additionally, while Hearing Aid 2’s binaural beamforming program does not improve 

subjective ratings, no binaural beamforming program has an adverse effect on the 

subjective speech quality rating and most see an improvement. 
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Figure 5.8: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in speech-shaped noise at 0 dB 

SNR, with speech originating from 45° and the noise from 90°, 180°, and 270° in the 

sound booth. 
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predicted speech quality performance between the monaural and binaural programs and 

Hearing Aid 1 seeing a drop from the monaural beamformer to the binaural beamformer, 

the subjective ratings saw a drop from the monaural to binaural programs in hearing aids 

1, 2 and 4. In Hearing Aid 1 specifically, the drop was significant enough that the 

binaural beamformer performed worse that the baseline omnidirectional program. While 

this seems unusual, given that the speech was out of the narrow range of the binaural 

beamformer it makes sense that the binaural beamformer would not perform as intended. 

Compounding this fact with the non-stochastic nature of the noise means that the hearing 

aids could not depend on a statistical analysis of the noise as a backup noise reduction 

technique, and therefore may have misinterpreted the cafeteria noise as a wanted signal. 

In other words, there was no discernible quality of the speech that separated in from the 

noise, either directionally or statistically. Still, the deviation of the subjective ratings from 

the HASQI scores make it an important component of the data set. 

  

Figure 5.9: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in cafeteria noise at 0 dB SNR, 

with speech originating from 45° and the noise from 90°, 180°, and 270° in the sound 

booth. 
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Despite this, the intra-hearing aid patterns were maintained between the subjective for the 

other directionality conditions as seen in Figure 5.10 and Figure 5.11. 

 

Figure 5.10: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in cafeteria noise at 0 dB SNR, 

with speech originating from 0° and the noise from 90°, 180°, and 270° in the sound 

booth. 
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Figure 5.11: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in cafeteria noise at 0 dB SNR, 

with speech originating from 0° and the noise from 90° and 180° in the sound booth. 

5.2.2 Reverberation Chamber 

Performing the same tests in the reverberation chamber allowed for an analysis into the 

effect of reverberation on speech quality as well as conditions where the noise was 

spatially asymmetric but perceptually symmetric due to the diffusion of sound. 
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Figure 5.12: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in speech-shaped noise at 0 dB 

SNR, with speech originating from 0° and the noise from 90°, 180°, and 270° in the 

reverberation chamber. 

When the recording is made with noise sources located at 90°, 180° and 270° and the 

speech source is at 0° in the reverberation chamber, as seen in Figure 5.12, the HASQI 

scores and subjective ratings largely line up with the electroacoustic analysis where there 

is an increase in subjective speech quality rating and predicted speech quality from the 

monaural beamformer to the binaural beamformer in Hearing Aids 1 and 2, and none in 

Hearing Aid 3. The exception to this is Hearing Aid 2, where the subjective rating for the 

monaural beamformer is much higher than both the predicted speech quality would 

imply, as well as the subsequent performance of the binaural beamformer both in 

subjective ratings and HASQI scoring. In general, subjective ratings obtained for 

recordings in the reverberation chamber have a lower intra-participant reliability as 

measured with Cronbach’s alpha.  

Hearing Aid 4 performs very well in the reverberant environment in both HASQI scoring 

and subjective rating, achieving the highest score by both metrics for all directionality 

conditions. 
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Figure 5.13: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in speech-shaped noise at 0 dB 

SNR, with speech originating from 0° and the noise from 90° and 180° in the 

reverberation chamber. 

When the noise source is located at 90° and 180°, similar results are seen in Figure 5.13 

where the HASQI scores are representative of the subjective scores with a few notable 

exceptions. There are no significant improvements in HASQI scores between the 

monaural beamformers and the binaural beamformers, however Hearing Aid 1 sees a 

drop in subjective rating when switched to the binaural beamformer just as Hearing Aid 3 

sees an increase.  

Discrepancies between the HASQI scores and subjective ratings become apparent when 

the noise source is located at 90°, 180° and 270° and the speech source is located at 45° as 

seen in Figure 5.14. The HASQI scores follow the expected outcome when the speech 

source is outside the range of the narrow binaural beamformer. Hearing Aids 2 and 3 do 

not improve in predicted speech quality from the monaural beamformer to the binaural 

beamformer, and Hearing Aid 1 sees a decrease in predicted speech quality. The 

subjective ratings, however, do not align with these patterns. Both Hearing Aids 1 and 2 

see an increase in subjective ratings from the monaural beamformer to the binaural 
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beamformer, and only Hearing Aid 3 sees a decrease in subjective ratings. It becomes 

clear that the reverberation of the chamber does not affect the participant’s subjective 

rating as much as it does the objective HASQI metric.  

 

Figure 5.14: Conditionally averaged subjective rating, left-right maximum HASQI 

score and left-right mean HASQI score of speech in speech-shaped noise at 0 dB 

SNR, with speech originating from 45° and the noise from 90°, 180° and 270° in the 

reverberation chamber. 

5.3 HASQI Average Weighting Function 

By adjusting the weighting function used when averaging the left and right HASQI 

scores, a stronger correlation between the HASQI average and the subjective ratings can 

be established. Initially, five HASQI weighting functions were tested, as seen in Table 

5.2. The weighting functions take the form of Eq. (5.1). 
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𝐻𝐴𝑆𝑄𝐼𝑎𝑣𝑒 = w1𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡 +w2𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡 

where 

 w1 +w2 = 1 

1 ≥ w1, w2 ≥ 0 

(5.1) 

 

Table 5.2: HASQI averaging equation comparison. 

HASQI 

Weighting 

Function 

R2 SSE 

Sound 

Booth 

Reverb 

Chamber 

Overall Sound 

Booth 

Reverb 

Chamber 

Overall 

Mean 0.9017* 0.7327 0.7504 1.473 1.427 5.292 

Left Ear 0.8438 0.6697 0.7074 1.895 1.791 5.861 

Right Ear 0.8645 0.7101* 0.7231 1.647 1.524 5.437 

Max 0.9057 0.6711 0.7373* 0.834 1.728 4.154 

Min 0.8570 0.7632 0.7287 2.708 1.587 7.145 

Eqn. (5.5) 0.9004* 0.7037 0.7477* 1.064 1.527 4.607 

Bold indicates the best value for that category. 

*Indicates value that, when compared to the weighting function with the maximum R squared in 

that category with Steiger’s Z Test [38] [39], has a ρ value less than 0.05 and is therefore not have 

a statistically significant difference. In other words, the value is statistically similar to the highest 

R squared value in that category.  

The HASQI mean is the average of left and right HASQI scores, and is displayed in the 

first row of Table 5.2. Weighting the average asymmetrically so it is comprised of 
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entirely the left or right value presents the next two rows on Table 5.2 respectively. 

Finally, two averaging equations were developed by basing them off of intelligibility 

weighting tests in literature such as [40] where the ear with the higher intelligibility score 

drives the intelligibility score up. In other words, the ear with the more intelligible input 

signal is the most heavily weighted when determining the overall intelligibility. To see if 

a similar effect presented itself in quality tests, the Max and Min are comprised entirely 

of the higher HASQI score and the lower HASQI score of the two ears respectively. 

 

Figure 5.15: Correlation of the conditional averages of the Weighting Function 4 

average HASQI score comprising of the maximum HASQI score between the left 

and right ears and the corresponding recordings subjective ranking for recordings 

made in sound booth. 
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Figure 5.16: Correlation of the conditional averages of the Weighting Function 4 

average HASQI score comprising of the maximum HASQI score between the left 

and right ears and the corresponding recordings subjective ranking for recordings 

made in reverberation chamber. 

 

Figure 5.17: Correlation of the conditional averages of the Weighting Function 5 

average HASQI score comprising of the minimum HASQI score between the left 

and right ears and the corresponding recordings subjective ranking for recordings 

made in sound booth. 
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Figure 5.18: Correlation of the conditional averages of the Weighting Function 5 

average HASQI score comprising of the minimum HASQI score between the left 

and right ears and the corresponding recordings subjective ranking for recordings 

made in reverberation chamber. 

By comparing the resulting R squared values of the line of best fit for each average 

equation versus the corresponding subjective ratings, it can be determined that HASQI 

maximum has the best fit between the datasets for recordings made in the sound booth 

while the HASQI minimum has the best fit between datasets for the recordings made in 

the reverberation chamber. Furthermore, the HASQI mean has the best R squared value 

overall. This implies at least that the HASQI averaging equation that is the best predictor 

of overall perceived quality will utilize maximum and minimum HASQI scores, taking 

the form of Eq. (5.2) seen below. This implication is corroborated by the sum of the 

squared residual errors (SSE), the lowest of which occur with the maximum HASQI 

score for recordings made in the sound booth and overall, while the mean HASQI score 

has the lowest SSE for recordings made in the reverberation chamber. 
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𝐻𝐴𝑆𝑄𝐼𝑎𝑣𝑒 = w1max⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡)

+ w2min⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡) 

where 

 w1 +w2 = 1 

1 ≥ w1, w2 ≥ 0 

(5.2) 

 

The values of the two weighting coefficient w1 and w2 were then calculated using a linear 

least squares solver in MATLAB with the constraints outlined in Eq. (5.2). The data was 

first normalized and then used to train the solver to obtain the result in Eq. (5.3). 

𝑤1 = 1 

𝑤2 = 0 

𝐻𝐴𝑆𝑄𝐼𝑙𝑠𝑞 = max⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡) 

(5.3) 

By validating the linear least-squares solver with 10-fold cross validation a correlation of 

0.8600 is found. Therefore, according to the linear least squares solution in Eq. (5.3), the 

HASQI maximum in Table 5.2 is the best fit between the left and right HASQI scores 

and the subjective ratings when all data is used. When only recordings made in the sound 

booth are used, the linear least squares solution is Eq. (5.3) again, this time with a 

correlation of 0.9472. However when only recordings made in the reverberation chamber 

are used, the linear least squares solution is found in Eq. (5.4). This is much closer to the 

mean HASQI score. 
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𝑤1 = 0.4630 

𝑤2 = 0.5370 

𝐻𝐴𝑆𝑄𝐼𝑟𝑒𝑣𝑒𝑟𝑏 = w1max⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡)

+ w2min⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡) 

(5.4) 

The result in Eq. (5.3) stating that the optimal weighting function for recordings made in 

the sound booth imply that the subjective rating will generally follow the same pattern as 

the maximum HASQI score. However as seen in Section 5.2 this is not always the case, 

particularly in cases with asymmetrical directionality conditions. By restricting the data 

points to the recordings made in the sound booth in conditions where the noise source is 

at 90° and 180°, this assumption is verified as seen in Figure 5.19, where the left-right 

minimum performs the best of the three (Table 5.2: 1, 4, 5) weighting functions similar to 

scores for recordings made in the reverberation chamber.  
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b)  

c)  

Figure 5.19: Correlation of the conditional averages of a) the left-right mean HASQI 

score b) the left-right maximum HASQI score c) the left-right minimum HASQI 

score and the corresponding recording’s subjective ranking only for recordings 

made in the sound booth in conditions where the noise source is at 90° and 180°. 

So while overall, the left-right maximum HASQI score is a better correlator of subjective 

ratings in the sound booth, in cases with asymmetric noise, the left-right minimum 

HASQI score performs better. 
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The same analysis can be done by restricting the data points to the recordings made in the 

sound booth in conditions where the speech source is at 45°, another asymmetrical 

directionality condition. Unlike the directionality condition where the speech source was 

located at a 0° angle and the noise sources were located at 90° and 180°, subjective rating 

correlated better with the HASQI score when it was weighted equally between the left 

and right ear, as seen in Figure 5.20. Because the best correlation does not occur at either 

the maximum or minimum extreme, another linear regression analysis must be used to 

find the best weighting in these asymmetric conditions. 

a)  

b)  
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c)  

Figure 5.20: Correlation of the conditional averages of a) the left-right mean HASQI 

score b) the left-right maximum HASQI score c) the left-right minimum HASQI 

score and the corresponding recording’s subjective ranking only for recordings 

made in the sound booth in conditions where the speech source is at 45° and the 

noise source is at 90°, 180° and 270°. 

To perform the linear regression, data was restricted to only asymmetrical directionality 

conditions, where the speech source was located at 0° and the noise sources originated 

from 90° and 180° or where the speech source was located at 45° and the noise sources 

originated from 90°, 180° and 270°. The data was also limited to recordings made in the 

sound booth, again to heighten the asymmetry between the left and right scores. The data 

was then normalized and put through a MATLAB linear least-squares solver with the 

constraints shown in Eq. (5.3). Using 5-fold cross validation, the resulting model 

coefficients were averaged and the result is shown in Eq. (5.5). 

 

 

 

R² = 0.6589

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 20 40 60 80 100

H
A

SQ
I (

Le
ft

-R
ig

h
t 

M
in

)

Subjective Rating

HASQI (Left-Right Min) vs Subjective Rating



81 

 

𝑤1 = 0.7620 

𝑤2 = 0.2380 

𝐻𝐴𝑆𝑄𝐼𝑙𝑠𝑞,𝑙𝑚𝑡 = w1max⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡)

+ w2min⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡) 

(5.5) 

The result of this solver is less extreme than the previous one. After 5-fold cross 

validation, the average correlation with the restricted dataset HASQI average with the 

subjective ratings was 0.8836. While when fitting against all data, Eq. (5.5) has a lower R 

squared value than the maximum HASQI average found in Eq. (5.3). However 

comparing the results with Steiger’s Z Test [38][39], the ρ-value calculated with a 2-

tailed test was found to be less than 0.05 and therefore the difference was not found to be 

statistically significant.  

When restricting the test data set to recordings made in the reverberation chamber and 

comparing it to the left-right minimum, however, the equation found in Eq. (5.5) was 

found to have a significantly lower R squared value. With that said, the SSE of Eq. (5.5) 

was the second lowest of the averaging equations that utilized the maximum and 

minimum HASQI scores. The performance of the weighting function overall was most 

indicative of its application where the reverberation of the environment would be 

unknown. 
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Figure 5.21: Correlation of the conditional averages of Error! Reference source not 

ound. model HASQI score and the corresponding recording’s subjective ranking. 

 

Figure 5.22: Correlation of the conditional averages of (5.5) model HASQI score and 

the corresponding recording’s subjective ranking for recordings made in the sound 

booth. 
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Figure 5.23: Correlation of the conditional averages of (5.5) model HASQI score and 

the corresponding recording’s subjective ranking for recordings made in the reverb 

chamber. 

As Figure 5.19 and Figure 5.20 imply a difference in optimal HASQI Weighting 

Function between the condition where speech source is at 45°, and the noise source is at 

90°, 180° and 270°, and when speech source is at 0° and the noise source is at 90° and 

180°, verifying the optimal weighting function for both data sets independently was 

important. The weighting functions are seen in (5.6) and (5.7) below for the speech at 45° 

and noise at 90°, 180° and 270°, and the speech at 0° and the noise at 90° and 180° 

respectively. (5.6) was found to have a 5-fold cross validation correlation of 0.9143 and 

(5.7) was found to have a 5-fold cross validation correlation of 0.8222. 

𝑤1 = 0.6665 

𝑤2 = 0.3335 

𝐻𝐴𝑆𝑄𝐼𝑎𝑠𝑦𝑚1 = w1max⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡)

+ w2min⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡) 

(5.6) 
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w1 = 0.7592 

𝑤2 = 0.2408 

𝐻𝐴𝑆𝑄𝐼𝑎𝑠𝑦𝑚2 = w1max⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡)

+ w2min⁡(𝐻𝐴𝑆𝑄𝐼𝑙𝑒𝑓𝑡, 𝐻𝐴𝑆𝑄𝐼𝑟𝑖𝑔ℎ𝑡) 

(5.7) 

 

5.3.1 Summary 

Analyzing the subjective ratings of the binaural beamforming algorithms provides a more 

concrete understanding of binaural beamformer’s effect on quality. Similar to the 

electroacoustic results, the results were variable depending on the direction of the speech 

and noise, the reverberation, and the choice of hearing aid and program. With a few 

outliers, both monaural and binaural beamformers performed better than the 

omnidirectional program in all conditions. Additionally, binaural beamformers performed 

moderately better than monaural beamformers in conditions where speech was located at 

a 0° angle. When the speech was at a 45° angle, the performance of the binaural 

beamformers versus the monaural beamformers in subjective ratings dropped for certain 

hearing aids. Interestingly, in the reverberation chamber, this pattern was not maintained. 

When speech was at a 45° angle, there was no drop in subjective rating from the 

monaural beamformer to the binaural beamformer yet certain hearing aids reported a 

lower objective rating for the binaural beamformer versus the monaural beamformer. 

Correlation between the subjective ratings and HASQI scores were fairly high, with an R 

squared of 0.7504 between the conditionally averaged subjective ratings and the mean 

HASQI score. By optimizing the weighting function used in the average with all data, a 

lower sum of squared errors can be achieved without significantly affecting the 

correlation. However as this weighting function has a poor correlation with the 

asymmetrical directionality conditions, a new weighting function was solved for using 

only the asymmetrical data in Eq. (5.5). This led to a new R squared of 0.7477 for all 
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data, which has a statistically insignificant difference than the weighting function 

currently in usage as well as being valid for asymmetrical speech and noise conditions.     
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Chapter 6  

6 Conclusion 

The continued development and perfection of hearing aids is important to further enhance 

the experience of hearing aid users. Part of the constant updating of hearing aid 

technology involves testing and ensuring new features provide a tangible benefit to users 

and not just an extra cost. With wireless technology that allows hearing aids to 

communicate with each other becoming more ubiquitous, it is important to ensure that the 

benefits the binaural connection provides to noise reducing beamforming algorithms is 

quantifiable in a perceptually relevant manner. Not only that, but ensuring there are 

strategies and processes in place to quickly and effectively test these algorithms with 

objective metrics allows more developments in the technology to be made with ease.  

6.1 Goals 

This thesis sought to meet three goals. First, benchmarking binaural beamforming 

algorithms with electroacoustic intelligibility metrics, electroacoustic quality metrics, and 

behavioural quality metrics.  Salient results from this thesis relevant to the first goal are: 

 Monaural and binaural beamformers generally perform better than 

omnidirectional programs in predicted speech intelligibility and quality in 

electroacoustic tests. 

 Binaural beamformers perform slightly better than monaural beamformers in 

conditions where the speech source is at a 0° angle and noise is surrounding the 

user in the sound booth. Benefits were reduced when noise was asymmetrical, and 

binaural beamformers often performed worse in electroacoustic tests when the 

speech source was at a 45° angle.  

 Reverberation affected the performance of the hearing aids, but binaural 

beamformers still performed better in electroacoustic tests in conditions where the 

speech source is at a 0 angle°. 
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 Monaural and binaural beamformers perform better than omnidirectional 

programs in subjective quality ratings. 

 Binaural beamformers generally performed better than monaural beamformers in 

subjective quality ratings, even when the speech source was at a 45° angle. 

 A lot of variation in performance remained between hearing aid models in both 

electroacoustic and behavioural tests. 

The second goal was to validate HASQI with subjective quality ratings when binaural 

beamforming was activated. As performing electroacoustic quality tests with HASQI is 

much easier logistically than behavioural tests, ensuring the scores gleaned from HASQI 

are representative of subjective quality in cases with binaural beamforming algorithms 

was important for the endorsement of HASQI for future test cases. 

 The mean HASQI score correlated well with the subjective ratings for recordings 

made in the sound booth. 

 The mean HASQI score did not correlate well with the subjective ratings for 

recordings made in the reverberation chamber. However HASQI scores 

maintained similar patterns between recordings made in the sound booth and 

reverberation chamber. 

The final goal was the development of a weighting function that could combine left and 

right HASQI scores in a perceptually relevant way. There are many test cases where upon 

switching a program, the HASQI score in one ear may rise while the HASQI score in the 

other drops. It can be difficult to compare test cases in such a scenario without a single 

index. Therefore, finding a weighting function which could harness the relationship 

between the two ears for quality was an important step in developing long-term 

procedures which could be used to electroacoustically benchmark binaural hearing aids.    

 Optimizing the weighting function for all the data led to a weighting function that 

used only the larger of the left and right HASQI scores, however this weighting 
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function did not correlate well with recordings made in asymmetrical speech 

noise conditions. 

 Optimizing the weighting function for only the data collected in the sound booth, 

where there was a high correlation with the subjective ratings, and in 

asymmetrical speech and noise conditions, led to a weighting function that gave 

the largest of the left and right HASQI scores more weight but still had a 

component of the smaller score. This weighting function correlated well with 

recordings made in asymmetrical speech and noise conditions and still performed 

statistically similar to the mean HASQI score with the rest of the data. 

6.2 Future Work 

As binaural beamformers are a relatively new technology, additional steps can be taken to 

develop further testing procedures. 

 As recordings made in the reverberation chamber did not correlate as well with 

the subjective ratings, a further investigation of the effect of reverberation on 

binaural beamformers and sound quality as predicted by HASQI would be 

beneficial, including recordings made in environments with varying amounts of 

reverberation. 

 Recordings made with higher SNRs would also be beneficial to add more data 

points which fall in the mid to high range of HASQI.  

 The performance of the binaural beamformers was highly dependent on the 

direction of the speech source. However the performance was not always 

consistent between brands. Therefore, an investigation on the performance of 

binaural beamformers in speech directions from 0° to 90° to determine how the 

direction of the speech source affects the predicted speech quality and 

intelligibility would be valuable for determining the exact range of speech source 

angles the binaural beamformer remains beneficial to the user. 
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Appendices 

Appendix A: Subjective test participant information. 

Participant Age 

1 82 

2 72 

3 78 

4 72 

5 69 

6 76 

7 69 

8 68 

9 73 

10 82 

11 60 

12 76 

13 67 

 

Appendix B: KEMAR RECD values. 

250 500 1000 2000 4000 6000 

2.9 3.6 5.6 9.2 15 18 
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Appendix C: Correlation of the conditional averages and the corresponding 

recordings subjective ranking. 
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Appendix D: Western University Health Sciences Research Ethics Board approval 

letter 
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