

58 Chapter 4. Evaluation

Figure 4.1: Docker Containers vs. Virtual Machines [25].

plication by handing off tasks to those executors. Architecturally, worker nodes are computing

machines, executors are workers’ processes that run tasks, and a task is a unit of work that is

sent by the driver to one executor [70]. Figure 4.2 illustrates this architecture.

The Resilient Distributed Dataset (RDD) is Spark’s abstraction of an immutable collection

of records partitioned across machines [69]. RDDs also provide abstractions for a wide range

of high-level, coarse-grained parallel operations, such as Map, Filter and Group-by, which can

accommodate a diverse set of data workflows while providing scalability and fault tolerance.

Together, these abstractions yield a remarkably powerful data-processing framework because

they enable developers to execute high-level operations while abstracting distribution and fault

tolerance concerns.

The sample code in Listing 4.1 illustrates a simplistic example where Apache Spark is

utilized to read a spatiotemporal dataset and count only records that happened in Manhattan

in 2019. In the code, the dataset itself is transparent to the user, who, independently of the

original dataset size or record placement in each worker’s partitions, can filter and request a

count of the desired records. In the same code snippet, one filter accepts an equality-based

comparison over the timestamp, while the other accepts a user-defined function that can verify

whether a cell identifier lies within the Manhattan region. Spark’s execution engine chains

these filter statements and defers their execution until the ”count” action is issued. This lazy

4.1. Implementation 59

Figure 4.2: Spark Cluster Architecture Overview [60].

evaluation strategy allows for operations to be coupled and executed with a single pass through

the dataset, saving substantial amounts of time in preprocessing tasks.

Listing 4.1: Sample of a short Spark program that filters spatiotemporal records that happened

in Manhattan in 2019.

val dataset = spark.read.load(inputPath)

.filter(year($"timestamp") === 2019)

.filter(isInsideManhattan($"cell_id"))

.count()

Data Preprocessing

At a high level, the data preprocessing components were implemented as follows:

Temporal Discretization. The temporal discretization component was implemented via a Map

function over an RDD representing the input dataset. The mapping allowed for the framework

to apply a temporal truncation across all records in the input.

Spatial Discretization. The spatial discretization component was implemented via a subse-

quent map on the same dataset, and because RDD operations are lazy, this did not incur in

another pass through the dataset. This time, however, the map took a function based on the

60 Chapter 4. Evaluation

S2Geometry5 library that knows how to convert GPS coordinates into a cell id at arbitrary res-

olutions.

Data Cleaning. The temporal filter block was implemented via a Filter operation that took a

user-supplied JSON6 document, like the one shown in Listing 4.2, with a start and end times-

tamps and kept only the pertinent records from the RDD. The spatial filter block was imple-

mented via another filter operation that verified whether records’ cell ids lay inside a polygon

of interest. That polygon was backed by an S2Geometry Polygon constructed from a user-

supplied GeoJSON7. Listing 4.3 presents a fragment of such user input, where each pair of

coordinates represents one corner of a geospatial polygon and the last pair is just a repetition

of the first, which serves the purpose of connecting all segments into a triangular region.

Large Scale Aggregation. The large scale aggregation block was implemented via a Group-by

operation that reduced the original RDD into an RDD of density counts at the specified tempo-

ral and spatial resolution. This aggregated dataset was then consolidated in persistent storage

using a columnar format known as Parquet8.

Listing 4.2: Example of a JSON document specifying a temporal filter.

{"start": "2019-08-01T00:00:00", "end":"2019-08-31T23:59:59"}

Listing 4.3: Example of a GeoJSON document describing a spatial filter made up of a triangular

geographical region.

{

"type": "FeatureCollection",

"features": [

{

"type": "Feature",

"properties": {},

5https://s2geometry.io/
6https://json.org/
7https://geojson.org/
8https://parquet.apache.org/

https://s2geometry.io/
https://json.org/
https://geojson.org/
https://parquet.apache.org/

4.1. Implementation 61

"geometry": {

"type": "Polygon",

"coordinates": [

[

[-81.2764048576355, 43.01475191944554],

[-81.28818511962889,43.00210497752506],

[-81.26443147659302,43.002152055337895],

[-81.2764048576355, 43.01475191944554]

]

]

}

}

]

}

Multistage Machine Learning Pipeline

The following blocks portray an overview of the implementation of the machine learning core

of this research:

Geographically Global Model (GGM). The GGM was implemented as a Gradient Boosted

Tree Regressor from the Apache Spark machine learning library (MLLib9). MLLib’s imple-

mentation of decision trees provided a distributed computation of variance that massively sped

up the node splitting process.

Geographically Local Models (GLMs). The GLMs were implemented on top of ARIMA

models from a third-party time series library, named SparkTS10, open-sourced by Cloudera.

The GLMs are themselves a persisted RDD of ARIMA models partitioned by cell id, which

9https://spark.apache.org/mllib/
10https://github.com/sryza/spark-timeseries

https://spark.apache.org/mllib/
https://github.com/sryza/spark-timeseries

62 Chapter 4. Evaluation

are spatially joined with test records in order to issue predictions.

Blending Model. The blending model, like the GGM, is also backed by the MLLib, but it

takes its input features from an intermediate RDD generated by the base models, as opposed to

the original input.

Others. Dataset metrics gathering was implemented via SparkSQL11 operations, the SMAPE

evaluation metric was implemented via a custom Spark regression evaluator, and the time-

sliding cross-validation was implemented via a SparkSQL window function.

4.2 Experiments

This section reports on experimental results that the proposed framework achieved in three

diverse domains: taxi trips in New York City, crimes in the city of Chicago, and visits to places

of interest across Canada. These domains are backed by spatiotemporal datasets, which in

turn are also diverse in several relevant statistics, such as the number of records, time span,

geographical region, and temporal and spatial sparsity. This variability in the characteristics of

input datasets is welcomed and serves the purpose of demonstrating the merit of the proposed

research in different scenarios.

Before the experiments can be presented, a few relevant terms need to be defined. With

regards to sparsity statistics, this study utilizes the definitions of temporal sparsity and spatial

sparsity formalized in equations (4.1) and (4.2), respectively. In Equation (4.1), the temporal

sparsity of a given spatial cell is measured as one minus a fraction between the number of

time intervals that the cell contained and the total number of time intervals in the dataset. In

Equation (4.2), the spatial sparsity at a given time is measured as a fraction between the number

of spatial cells with no neighbours and the total number of spatial cells in the dataset. In this

study, these metrics are reported in their aggregate form (e.g., average, standard deviation),

summarizing data across all available spatial cells for Equation (4.1), and across all temporal

11https://spark.apache.org/sql/

https://spark.apache.org/sql/

4.2. Experiments 63

intervals for Equation (4.2).

temporalSparsity(cell) = 1 −
#local temporal intervals

#global temporal intervals
(4.1)

spatialSparsity(time) =
#spatial cells with no neighbours

#total spatial cells
(4.2)

As for the evaluation metrics, this study makes use of the standard regression metrics, Root

Mean Squared Error (RMSE) and Symmetric Mean Absolute Percentage Error (SMAPE), for-

mulated in equations (4.3) and (4.4), respectively. In those equations, n is the number of

records, Y is the true value of the variable being predicted, and Ŷ is the predicted value:

RMSE =

√√
1
n

n∑
i=1

(Yi − Ŷi)2 (4.3)

SMAPE =
100%

n

n∑
i=1

|Yi − Ŷi|

|Yi| + |Ŷi|
(4.4)

The last definition necessary for understanding the experiments is the definition of the Naive

Model. In this study, the Naive Model is an overly simplistic heuristic commonly used as a

baseline in one-step time series forecasts, which predicts the future value of a variable to be

equal to its current value. For example, under this naive baseline model, a forecast for the

next hour t + 1 would output the variable value at t. This naive model tends to be successful

if there is not enough variability between consecutive values in a time series, and exposing its

performance in an experiment helps in evaluating how much the proposed learning technique

actually learned.

Following are self-contained reports of experiments that ran in a three-machine cluster with

24-cores and 94GB of memory each.

64 Chapter 4. Evaluation

Number of Records Over 1.3 billion
Time Span 2009 to 2018

Geographical Region New York City
Provider New York City Taxi and Limousine Commission

Table 4.1: NYC Taxi Trips – Dataset Statistics

4.2.1 New York City Taxi Trips

The New York City Taxi and Limousine Commission (TLC) provides an open dataset contain-

ing taxi trips in the city of New York since 2009. The more than 1.3 billion records available

have information on the time and GPS coordinates of where pickups and drop-offs happened,

making it one of the most massive spatiotemporal datasets that are openly available to the

public. This dataset and accompanying schemas can be downloaded from the NYC-TLC data

portal12. A summary of a few characteristics of this dataset in its raw form, with no alteration

in comparison to the original source, are reported in Table 4.1.

Data Preprocessing

For this experiment, the Data Preprocessing block was implemented as follows:

Temporal Discretization. The temporal component was discretized into hourly bins to enable

one-step forecasts of one hour, giving enough time for drivers to position themselves in order

to better serve customers.

Spatial Discretization. The spatial component was discretized via a square grid with cells

having an average area of 79000 m2 to account for the mobility range of a car.

Data Cleaning. Data were filtered to be contained in the interval from June 2014 to June 2016

and within the polygon representing the Manhattan region, as shown in Figure 4.3. The cut-off

point at 2016 was necessary because the data provider stopped publishing fine location data to

avoid privacy issues, only reporting on coarse locations since then.

Large Scale Aggregation. After the discretization process, over 400 million records were

aggregated into hourly counts for each spatial cell, resulting in a much smaller dataset with

12https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

4.2. Experiments 65

Number of Records Over 9.6 million
Time Span June 2014 to June 2016

Temporal Resolution Hour
Number of Temporal Intervals Over 17.5k

Temporal Sparsity Avg = 36.8% Std = 37.8%
Geographical Region Manhattan

Spatial Resolution Cells with an average area of 79000 m2

Number of Spatial Cells Over 800
Spatial Sparsity Avg = 0.8% Std = 3.0%

Table 4.2: NYC Taxi Trips – Dataset Statistics After Preprocessing.

just over 9.6 million records. Furthermore, the discretized dataset is characterized by a low

temporal sparsity averaging 36.8% and an extremely low spatial sparsity averaging 0.8%. In

other words, on average, each spatial cell is missing 36.8% of the timestamps contained in the

global timeline, and only 0.8% of the spatial cells do not have at least one neighbour at any

given time. Summary statistics on the final dataset after preprocessing are reported in Table

4.2.

Multistage Machine Learning Pipeline

After preprocessing, the dataset was split into 81% training, 9% blending training, and 10%

testing. The larger training set potentially allows for the learning algorithms to be exposed

to more patterns, whereas the smaller blending training set avoids overfitting the base models

contributions. The remaining records, which are numbered in the high hundreds of thousands,

were reserved for testing. Next, the machine learning models were trained according to the

following scheme:

Geographically Global Model (GGM). One stochastic gradient boosted tree ensemble was

trained over the entire training set. A grid-search with 3-fold time-sliding cross-validation was

utilized to tune the following model hyperparameters: maximum depth, number of iterations,

and maximum number of bins. The considered values for these parameters are reported in

Table 4.3.

Geographically Local Models (GLMs). The training dataset was partitioned into one time

66 Chapter 4. Evaluation

Figure 4.3: Polygons in grey representing the spatial filter over the Manhattan region.

4.2. Experiments 67

Hyperparameter Considered Values
Maximum Depth [3, 5, 6, 10, 15, 20, 25]

Number of Iterations [10, 20, 50, 100, 150, 200, 250]
Maximum Number of Bins [32, 64, 128, 1024, 2048]

Table 4.3: GGM – Stochastic Gradient Boosted Trees Hyperparameters.

series per spatial cell at the 79000 m2 resolution. Then one ARIMA model was trained on

each of these cells and tuned according to the Akaike Information Criterion (AIC), considering

maximum values of p, d, and q to be 5, 2, and 5 respectively. Such thresholds were based

on Nau [48], who stated that in most cases, the optimal values for these parameters are small

integers where p + q ≤ k for some small integer k, and that most of the time, either p or q is

zero.

Blending Model. One stochastic gradient boosted tree ensemble was trained over the blending

training set, taking as input features the base-learners’ predictions, the cell id, the hour, and the

day of the week. A grid-search with 3-fold time-sliding cross-validation was utilized to tune

the same hyperparameters as the GGM. The considered values for these parameters were taken

from the lower half of the ranges utilized for the GGM.

Results

The metrics reported in this section result from applying a one-hour time-sliding window to

a test set (i.e., 10% of the preprocessed data) comprising over 1800 hours from April to June

2016 and more than 800 different spatial cells. The measured RMSE and SMAPE values are

reported for the naive model, the base-learners (GGM, GLMs), and the blending model.

Figure 4.4 illustrates the SMAPE for all models in question. Noticeably, the blending

model sits at the bottom with the lowest error and slightly close to the GGM. Also, it can

be seen that the GLMs clearly performed much better than the naive model, but seemed to

struggle during off-peak hours (7 pm to 3 am). In fact, all the evaluated models struggled to

some extent because fewer taxi trips tend to happen at off-peak hours, leaving relatively fewer

training records available for the models to learn.

68 Chapter 4. Evaluation

Figure 4.4: NYC Taxi Trips – Average SMAPE per hour on a small sample of the testing data.
Timestamps are in the local timezone (EST).

Figure 4.5 depicts the RMSE for all models in question and offers more insight into the off-

peak behaviour. The ranked performance of the models remains the same, with the blending

model still having the lowest error, followed by the GGM, GLMs, and naive models. However,

the RMSE, unlike the SMAPE, decreases during off-peak hours. This pattern might seem

counter-intuitive, but it can be explained by the fact that the overall scale of the label is weaker

in most places during the evening and the RMSE captures that reduction in scale, whereas the

SMAPE, because it is scale-invariant, does not.

Table 4.4 summarizes the average and standard deviation of both RMSE and SMAPE for

all models across the iterations of the sliding window. Thus, for the entirety of the test set, and

according to both metrics: the naive model performs the worst; the GLMs are worse than the

GGM by a small amount, and yet with lower standard deviation; and the proposed blending

model performs the best on both metrics while also maintaining the lowest standard deviations.

Figure 4.6 also illustrates the performance of the models and point to higher stability of the

4.2. Experiments 69

Figure 4.5: NYC Taxi Trips – Average RMSE per hour on a small sample of the testing data.
Timestamps are in the local timezone (EST).

Model Avg(RMSE) Std(RMSE) Avg(SMAPE) Std(SMAPE)
Naive 106.18 20.75 40.02% 9.89%
GLMs 56.50 14.77 32.11% 7.56%
GGM 46.60 16.20 31.00% 10.53%

Blending 42.78 13.57 26.70% 4.02%

Table 4.4: NYC Taxi Trips – Model Metrics Across All Testing Windows

blending model as captured by the range between the whiskers.The lower performance of the

naive model points to significant variability between consecutive labels. In other words, merely

using the labels from the last hour to make predictions yielded weak results, suggesting a more

complex relationship between the label and the time. The performance of the base models in

comparison to the baseline (the naive model) shows that they were more successful in capturing

patterns in the data. Furthermore, the performance of the blending model shows that enough

diversity existed among the base models so that the blend could achieve far surpassing results.

70 Chapter 4. Evaluation

Figure 4.6: NYC Taxi Trips – SMAPE box plot. Blending model has the lowest error and the
highest stability (smallest range between whiskers).

Number of Records Almost 7 million
Time Span 2001 to present

Geographical Region Chicago
Provider Chicago Police Department

Table 4.5: Chicago Crimes – Dataset Statistics.

4.2.2 Crimes in The City of Chicago

The Chicago Police Department provides an open dataset, originating from its CLEAR (Citizen

Law Enforcement Analysis and Reporting) system, that contains crime incident records in the

city of Chicago since 2001. The almost 7 million records available have information on the

time and GPS coordinates (at the city block level) of where incidents happened, making it one

of the largest geolocated crime datasets available to the public. This dataset and accompanying

schemas can be downloaded from the city of Chicago open data portal 13. A summary of a few

characteristics of this dataset in its raw form, with no alteration in comparison to the original

source, are reported in Table 4.5.

Data Preprocessing

For this experiment, the Data Preprocessing block was implemented as follows:

Temporal Discretization. The temporal component was discretized into daily bins to enable

13https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

4.2. Experiments 71

Number of Records Over 4.5 million
Time Span January 2001 to May 2019

Temporal Resolution Day
Number of Temporal Intervals Over 6.7k

Temporal Sparsity Avg = 72.82% Std = 20.91%
Geographical Region City of Chicago

Spatial Resolution Cells with an average area of 0.32 km2

Number of Spatial Cells Over 2.4k
Spatial Sparsity Avg = 8.29% Std = 4.69%

Table 4.6: Chicago Crimes – Dataset Statistics After Preprocessing.

one-step forecasts of one day, giving a reasonable time for police officers to plan patrol routes.

Spatial Discretization. The spatial component was discretized via a square grid, with cells

having an average area of 0.32 km2 to account for areas that are large enough to exhibit recur-

rent crime patterns.

Data Cleaning. Data were filtered to be contained in the interval from January 2001 to May

2019 and within the polygon representing the Chicago region, as seen in Figure 4.7.

Large Scale Aggregation. After the discretization process, more than 6.8 million records

were aggregated into daily counts for each spatial cell, resulting in a substantially smaller

dataset with just over 4.5 million records. Furthermore, the discretized dataset was charac-

terized by an extremely high temporal sparsity averaging 72.82%, and a low spatial sparsity

averaging 8.29%. In other words, on average, each spatial cell misses 72.82% of the times-

tamps contained in the global timeline, and only 8.29% of the spatial cells do not have at least

one neighbour at any given time. Summary statistics on the final dataset after preprocessing

are reported in Table 4.6.

Multistage Machine Learning Pipeline

After preprocessing, the dataset was split into 81% training, 9% blending training, and 10%

testing. The larger training set potentially allows for the learning algorithms to be exposed

to more patterns, whereas the smaller blending training set avoids overfitting the base models

contributions. The remaining records, which numbered several hundreds of thousands, were

72 Chapter 4. Evaluation

Figure 4.7: Polygons in grey representing the spatial filter over the Chicago region.

4.2. Experiments 73

reserved for testing. Next, the machine learning models were trained according to the following

scheme:

Geographically Global Model (GGM). One stochastic gradient boosted tree ensemble was

trained over the entire training set. A grid-search with 3-fold time-sliding cross-validation was

utilized to tune the following model hyperparameters: maximum depth, number of iterations,

and maximum number of bins. The considered values for those parameters are reported in

Table 4.3. For clarity, this was done in the exact same way as the correspondent step in the

NYC Taxi Trips experiment.

Geographically Local Models (GLMs). The training dataset was partitioned into one time

series per spatial cell at the 1.27 km2 resolution. Then one ARIMA model was trained on each

of those cells and tuned according to the Akaike Information Criterion (AIC), considering

maximum values of p, d, and q to be 5, 2, and 5 respectively. These thresholds were based

on Nau [48], who stated that in most cases, the optimal values for these parameters are small

integers where p + q ≤ k for some small integer k, and that most of the time, either p or q is

zero.

Blending Model. One stochastic gradient boosted tree ensemble was trained over the blending

training set, taking as input features the base-learners’ predictions, the cell id, the day, and the

day of the week. A grid-search with 3-fold time-sliding cross-validation was utilized to tune

the same hyperparameters as the GGM. The considered values for these parameters were taken

from the lower half of the ranges utilized for the GGM. For clarity, this was done in almost the

same way as the corresponding step in the NYC Taxi Trips experiment, except for not including

the “hour” as an input feature because this dataset was discretized at the “day” resolution.

Results

The metrics reported in this section are the result of applying a one-day time-sliding window

to a test set (i.e., 10% of the preprocessed data) comprising over 670 days from July 2017 to

May 2019 and over 2.4k different spatial cells. The measured RMSE and SMAPE values are

74 Chapter 4. Evaluation

Figure 4.8: Chicago Crimes – Average SMAPE per day on a small sample of the testing data.

reported for the naive model, the base learners (GGM, GLMs), and the blending model.

Figure 4.8 illustrates the SMAPE for all models in question. Noticeably, the blending model

sits at the bottom with the lowest error and significantly close to the GGM. Also, the GLMs

performed much better than the naive model, but that they still underperformed with respect to

the others by a significant margin. This impact on the prediction capabilities of the GLMs can

be explained by the increased difficulty of forecasting over a highly sparse time series.

Figure 4.9 depicts the RMSE for all models in question. The ranked performance of the

models remains about the same, with the naive model and the GLMs with the highest error, and

the GGM with slightly less error than the blending model for that particular window. Further-

more, the higher standard deviation of labels on the dataset for days of the week from Thursday

through Saturday resulted in more challenges for the GLMs, which rely purely on time series

forecasting. The GGM and blending models, however, were not as profoundly influenced by

these changes in distribution because they likely chose spatial patterns that outweighed them.

Table 4.7 summarizes the average and standard deviation of both RMSE and SMAPE, for

all models, across the iterations of the sliding window. For the entirety of the test set, and

4.2. Experiments 75

Figure 4.9: Chicago Crimes – Average RMSE per day on a small sample of the testing data.

according to both metrics: the naive model performed the worst; the GLMs were worse than

the GGM by a significant amount; the proposed blending model performed slightly better than

the best base model on both metrics while also maintaining the lowest standard deviations.

Figure 4.10 also illustrates the performance of the models and point to higher stability of the

blending model as captured by the range between the whiskers. The lower performance of

the naive model points to significant variability between consecutive labels. In other words,

merely using the labels from the last day to make predictions yielded weak results, suggesting

a more complex relationship between the label and the time. The performance of the base

models in comparison to the baseline (the naive model) shows that they were more successful

in capturing patterns in the data; however, the GLMs were worse than the GGM by a fair

margin. One possible reason for this gap in performance is that crime events may be more

correlated with space than they are with time, weakening the temporal patterns that the GLMs

could leverage, and therefore impairing its performance. Furthermore, the performance of the

blending model shows that even when one of the base models was worse than the other by

a fair margin, the blend itself still maintained a better performance, serving as a guard to the

76 Chapter 4. Evaluation

Figure 4.10: Chicago Crimes – SMAPE box plot. Blending model has the lowest error and the
highest stability (smallest range between whiskers).

Model Avg(RMSE) Std(RMSE) Avg(SMAPE) Std(SMAPE)
Naive 1.33 0.11 69.50% 3.77%
GLMs 1.17 0.16 33.88% 3.07%
GGM 0.76 0.18 15.60% 0.86%

Blending 0.74 0.18 15.32% 0.77%

Table 4.7: Chicago Crimes – Model Metrics Across All Testing Windows

overall performance of the Spatiotemporal Forecasting Framework.

4.2.3 Visits to Places of Interest Across Canada

An industry partner in the mobile application space provided a dataset containing visits to

places of interest across Canada in the period from June to December 2018. The more than

175 million records available include information on the number of visits, the time, and the

GPS coordinates of the place where they happened, making this the dataset with the largest

spatial coverage that the authors could find. With respect to privacy issues, because the dataset

only reports aggregated visit counts from the point of view of an arbitrary location, there is

no personal identifiable information that could trace a visit back to a user. Hence, users are

completely anonymous and only places can be analyzed. A summary of a few characteristics

of this dataset in its raw form, with no alteration in comparison to the original source, is given

in Table 4.8.

4.2. Experiments 77

Number of Records Over 175 million
Time Span June to December 2018

Geographical Region Canada
Provider Industry Partner

Table 4.8: Visits to Places of Interest Across Canada – Dataset Statistics.

Data Preprocessing

For this experiment, the Data Preprocessing block was implemented as follows:

Temporal Discretization. The temporal component was discretized into hourly bins to enable

one-step-ahead forecasts of one hour, giving enough time to support a variety of short-term

optimization tasks, such as anticipating the number of staff needed to serve customers better

during peak hours in a coffee shop.

Spatial Discretization. The spatial component was discretized via a square grid with cells

having an average area of 79000 m2 to account for areas that are large enough to exhibit recur-

rent visit patterns.

Data Cleaning. Data were filtered to be contained in the interval from June to December 2018

and within the polygon representing the Canadian borders, as shown in Figure 4.11. The shorter

timeframe in this experiment is due only to less recent data not being available. This shortage

of historical information is caused by the relatively recent start of our industry partner’s effort

to collect such data; a shared reality with many other mobile companies that recently under-

stood the value in spatiotemporal data.

Large Scale Aggregation. After the discretization process, more than 175 million records

were aggregated into hourly counts for each spatial cell, resulting in a much smaller dataset

with just over 33 million records. Furthermore, the discretized dataset is characterized by

an extremely high temporal sparsity averaging 79.45% and a high spatial sparsity averaging

51.64%. In other words, on average, each spatial cell misses 79.45% of the timestamps con-

tained in the global timeline, and 51.64% of the spatial cells do not have at least one neighbour

at any given time. Summary statistics on the final dataset after preprocessing are reported in

Table 4.9.

78 Chapter 4. Evaluation

Number of Records Over 33 million
Time Span June to December 2018

Temporal Resolution Hour
Number of Temporal Intervals Over 5k

Temporal Sparsity Avg = 79.45% Std = 19.71%
Geographical Region Canada

Spatial Resolution Cells with an average area of 79000 m2

Number of Spatial Cells Over 31.5k
Spatial Sparsity Avg = 51.64% Std = 19.57%

Table 4.9: Visits to Places of Interest Across Canada – Dataset Statistics After Preprocessing.

Figure 4.11: Polygons in grey representing the spatial filter across the Canadian landscape.

4.2. Experiments 79

Multistage Machine Learning Pipeline

After preprocessing, the dataset was split into 81% training, 9% blending training, and 10%

testing. The larger training set potentially allowed for the learning algorithms to be exposed

to more patterns, whereas the smaller blending training set avoided overfitting the base models

contributions. The remaining records, which numbered in the millions, were reserved for test-

ing. Next, the machine learning models were trained according to the following scheme:

Geographically Global Model (GGM). One stochastic gradient boosted tree was trained over

the entire training set. A grid-search with 3-fold time-sliding cross-validation was utilized to

tune the following model hyperparameters: maximum depth, number of iterations, and max-

imum number of bins. The considered values for these parameters are reported in Table 4.3.

For clarity, this was done in the exact same way as the correspondent step in the NYC Taxi

Trips, and Chicago Crimes experiments.

Geographically Local Models (GLMs). The training dataset was partitioned into one time

series per spatial cell at 81 km2 resolution. Then one ARIMA model was trained on each of

these cells and tuned according to the Akaike Information Criterion (AIC), considering maxi-

mum values of p, d, and q to be 5, 2, and 5 respectively. These thresholds were based on Nau

[48], who stated that in most cases the optimal value for these parameters are small integers

where p + q ≤ k for some small integer k, and that most of the time, either p or q is zero.

Blending Model. One stochastic gradient boosted tree was trained over the blending training

set, taking as input features the base-learners’ predictions, the cell id, the hour, and the day of

the week. A grid-search with 3-fold time-sliding cross-validation was utilized to tune the same

hyperparameters as the GGM. The considered values for these parameters were taken from the

lower half of the ranges utilized for the GGM. For clarity, this was done in the exact same way

as the corresponding step in the NYC Taxi Trips experiment.

80 Chapter 4. Evaluation

Figure 4.12: Visits to Places of Interest Across Canada – Average SMAPE per hour on a small
sample of the testing data. Timestamps are in the associated local timezone.

Results

The metrics reported in this section are the result of applying a one-hour time-sliding window

to a test set (i.e., 10% of the preprocessed data) covering over 630 hours from November to

December 2018 and over 27k different spatial cells. The measured RMSE and SMAPE values

are reported for the naive model, the base-learners (GGM, GLMs), and the blending model.

Figure 4.12 illustrates the SMAPE for all models in question. Noticeably, the blending

model sits at the bottom with the lowest error and slightly close to the GGM. Also, the GLMs

performed much better than the naive model and had only a small variance across hours. Fur-

thermore, except for the naive model, all others showed an increased error during working

hours (9 am to 6 pm), which correlated with an increased volume and variability of test records.

Figure 4.13 depicts the RMSE for all models in question. The ranked performance of the

models remained the same, with the blending model still having the lowest error, followed by

4.2. Experiments 81

Figure 4.13: Visits to Places of Interest Across Canada – Average RMSE per hour on a small
sample of the testing data. Timestamps are in the associated local timezone.

the GGM, GLMs, and naive models. However, this time, the residual errors of the blending,

GGM, and GLMs models are much closer, indicating a greater agreement in the scale of their

predictions. Nevertheless, their predictions are not precisely the same and are similar only

when some margin is considered. This marginal difference is better captured by the earlier

mentioned SMAPE residuals depicted in figure 4.12.

Table 4.10 summarizes the average and standard deviation of both RMSE and SMAPE,

for all models, across the iterations of the sliding window. For the entirety of the test set,

and according to both metrics: the naive model performed the worst; the GGM and blending

models were close in terms of RMSE, and the GLMs were also somewhat close; the blending

model outperformed all others in terms of SMAPE, but held higher standard deviations than

its base models. Despite the mildly increased standard deviation in its SMAPE, the blending

model was reasonably stable in comparison to others, with a 95% confidence interval bound

between 32.74 and 35.12. For reference, the corresponding confidence intervals for the naive,

82 Chapter 4. Evaluation

Figure 4.14: Visits to Places of Interest Across Canada – SMAPE box plot. Blending model
has lower errors at stability comparable to the GGM.

Model Avg(RMSE) Std(RMSE) Avg(SMAPE) Std(SMAPE)
Naive 28.61 13.04 59.93% 14.24%
GLMs 12.84 6.12 42.06% 4.47%
GGM 12.28 6.16 38.50% 7.82%

Blending 12.18 6.18 33.93% 9.93%

Table 4.10: Visits to Places of Interest Across Canada – Model Metrics Across All Testing
Windows

GLMs, and GGM models were [58.63, 61.22], [41.66, 42.47], and [37.79, 39.21] respectively.

This stability aspect is also illustrated in Figure 4.14, where the blending model demonstrates

lower errors at stability comparable to the GGM.

4.2.4 Discussion

This section, has presented three diverse experiments. They varied greatly with respect to the

domain, the number of records, time span, geographical region, temporal resolution, spatial

resolution, and even more eminently, with respect to temporal and spatial sparsity.

The experiments explored the domains of taxi trips, crime, and visits to places of interest,

showing different emerging spatiotemporal patterns in each, while still reporting comparable

performance, demonstrating the domain-agnostic capacities of the Spatiotemporal Forecasting

Framework.

Furthermore, the three experiments demonstrated the capabilities of the Spatiotemporal

4.2. Experiments 83

Forecasting Framework in scaling to as many as 1.3 billion records in the Data Preprocessing

component and 33 million records in the Multistage Machine Learning Pipeline.

They also portrayed the framework’s ability to support time spans of tens of years and geo-

graphical regions as large as one of the world’s largest countries, while enabling unconstrained

flexibility in the choice of temporal (e.g., day, hour) and spatial resolutions (e.g., 79000m2,

0.32km2). To the best of our knowledge, this work is the first to allow such freedom in framing

the forecasting question at the Big Data scale.

Figure 4.15 gathers the reported SMAPE averages from tables 4.2, 4.6, 4.9 for a direct

comparison across experiments. Clearly, the naive model generally has poor performance, and

especially in the Chicago Crimes experiment, it produced the worst results, possibly because

the label had low correlation with the last measured value. It is also evident that the blending

model improved upon the performance of the GGM and GLMs across all experiments, al-

though less so in the Chicago Crimes experiment because, like the naive model, the GLMs also

faced difficulties in extracting temporal patterns from highly sparse time series. Furthermore,

considering the SMAPE residuals and the same order as the presented experiments, the blend-

ing model improved performance by about: 14%, 2%, and 12% with respect to the GGM; and

about 17%, 55%, and 20% with respect to the GLMs. Hence, the blending model successfully

boosted the overall performance of the framework by improving upon the performance of the

best base model and also added robustness to the framework by lifting performance even when

one of the base models produced less accurate forecasts. Moreover, even though the GGM out-

performed the GLMs across experiments, the reverse could have happened in different datasets,

and because the Spatiotemporal Forecasting Framework makes use of a blending model and

does not rely on a single type of learning algorithm, stability could still be expected.

With respect to the temporal sparsity, it can be seen how its rise (36.8%, 72.82%, 79.45%)

across the experiments hindered the performance of the GLMs (SMAPE: 32.11%, 33.88%,

and 42.8%) because there were fewer consistent temporal patterns from which to learn. With

respect to the spatial sparsity, lower values (0.8%, 8.29%) led to better performance for the

84 Chapter 4. Evaluation

Figure 4.15: Average SMAPE per model across experiments.

GGM and GLM models in the NYC Taxi Trips and Chicago Crimes experiments, but a higher

value (51.64%) led to increased errors for these in the Visits Canada experiment. Because

this sparsity is a consequence of the type of reported events, more so than the data collection

methods utilized to collect them, it is possible that by using more data, although probably not

drastically changing sparsity, could lead to improved performance. For example, an extended

time span in the training set could have improved the results from the NYC Taxi Trips and

Visits Canada experiments by improving the chance of repeating patterns appearing. There-

fore, it is advised that users of the framework acknowledge the challenges that spatial and

temporal sparsity pose to spatiotemporal forecasting tasks and inspect for these characteristics

in their gathered datasets beforehand to know what can be expected in terms of forecasting

performance.

4.3. Summary 85

4.3 Summary

This chapter delved into the implementation of the Spatiotemporal Forecasting Framework.

It described how the framework was packaged and deployed to commodity hardware, how a

distributed computing foundation was leveraged to scale its internal components, and at a high

level, how each component was implemented. Finally, this chapter presented three experi-

ments that demonstrated the merits of the Spatiotemporal Forecasting Framework in diverse

forecasting scenarios.

Chapter 5

Conclusions and Future Work

This chapter closes this thesis with conclusions about the proposed research and its achieve-

ments. In addition, it points to a few areas that can be explored in future work.

5.1 Conclusions

This research has proposed a framework built on top of a distributed computing cluster to

tackle the high-volume datasets that often accompany spatiotemporal forecasting tasks. The

architectural choice of using Apache Spark as the backbone of the framework enabled it to scale

its internal components to process as many as 1.3 billion records during the Data Preprocessing

stage and 33 million records during the Multistage Machine Learning Pipeline stage.

To put the user in complete control of the forecasting question, this research designed

several components that enable unconstrained configuration of temporal and spatial resolu-

tion, time span, geographical extension, and data cleaning routines, all this by accepting user-

provided JSON and GeoJSON documents without necessary changes to the code base. Notably,

changes in temporal resolutions are supported via fast POSIX time truncations, and changes in

spatial resolutions are supported via a Hilbert curve that indexes the Earth. The authors believe

that providing such flexibility is the right path to take despite its potential impact on the system

load. As a counterbalance, this approach enables seamless scaling-out of the cluster via the

86

5.2. FutureWork 87

addition of Apache Spark workers. The training strategies presented in the multistage machine

learning pipeline enabled the learning components to be scaled to millions of records. The

Geographically Global Model (GGM) took advantage of a distributed implementation of the

Stochastic Gradient Boosted Trees (GBT) ensemble, and of Hilbert indexing over the globe, to

train several decision trees comprising the entire observed geographical space. The Geograph-

ically Local Models (GLMs) took advantage of Local Learning to train independent ARIMA

models that otherwise could not even have fitted the data because of their memory constraints.

The blending model employed in the final stage of the machine learning pipeline, and imple-

mented as another GBT, enabled a non-linear combination of the GGM and GLMs predictions,

resulting in higher performance and stability for the framework.

Three experiments gave credibility to this research: New York City Taxi Trips, Crimes in

The City of Chicago, and Visits to Places of Interest Across Canada. They showed compara-

ble performances of the Spatiotemporal Forecasting Framework across domains while dealing

with challenges, such as high variation in the number of records, and temporal and spatial

sparsity. Furthermore, they point to the effectiveness of the proposed model in modelling spa-

tiotemporal patterns by demonstrating that it outperforms the naive baseline by at least 49.8%

in terms of Symmetric Mean Absolute Percentage Error (SMAPE).

It can be expected that spatiotemporal forecasting will gain in popularity, with GPS sensors

being on-boarded in even more categories of electronic devices in the future. This research is

a testament to that future and the positive impact that the authors believe that such predictions

could have in the cities of the future.

5.2 Future Work

This section presents areas where future work can be explored:

• Multi-step forecasts. The proposed research addresses only single-step forecasts like

the next hour or the next day, and currently does not allow the user to predict multiple

88 Chapter 5. Conclusions and FutureWork

steps in the future. Single-step predictions already enable a wide range of forecasting

questions to be answered, but in some scenarios such as influenza outbreaks, accurately

predicting more steps ahead might give health-care practitioners adequate time to put

preventive measures in place.

• Multi-resolution GLMs. The proposed GLMs account for the observed area at a single

arbitrary resolution. Adding multi-resolution GLMs could help the framework capture

temporal patterns that are more prominent at some other macro or micro scale. For

example, the three layers of cells from Figure 3.5 could be used to build three-level

GLMs. On a different note, multi-resolution GLMs could also be utilized to model dense

areas at a high resolution and sparse areas at a lower resolution. For example, city centers

could be modelled at 79000m2 and rural regions at 1.27km2, saving computational costs

and reducing the sparsity perceived by the time series models.

• Multi-time-horizon GGM. The proposed GGM accounts for all the training data with-

out having a strong capability to model the sequentiality of such records. Decoupling the

GGM into short-term, mid-term, and long-term horizon models could potentially help

the GGM to capture such patterns.

• Extreme Events. The proposed research does not specifically address extreme events

such as holidays and sports events, resulting in higher residual errors in these cases. The

introduction of an Anomaly Detection component could help the framework in automat-

ically detecting extreme events and responding accordingly.

• Integration with Geospatial Analysis Tools. The proposed research provides ways for

a user to interact and configure the framework to their needs, but the authors believe that

the Spatiotemporal Forecasting Framework would be more useful if it were integrated

with commercial tools that researchers already use for geospatial analysis. From the rich

user interface of a tool such as ArcGIS, researchers can already use machine learning al-

gorithms to aid their analysis, but such tools currently lack support for handling datasets

5.2. FutureWork 89

at the Big Data scale. The Spatiotemporal Forecasting Framework could make use of an

integration channel available on ArcGIS1 to receive tasks and hand back the results to

the user interface, enabling the researcher to do spatiotemporal forecasting at scale from

the tool that for them is most comfortable.

1https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

Bibliography

[1] Xwegnon Ghislain Agoua, Robin Girard, and George Kariniotakis. Short-Term Spatio-

Temporal Forecasting of Photovoltaic Power Production. IEEE Transactions on Sustain-

able Energy, 9(2):538–546, 2018.

[2] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An em-

pirical comparison of machine learning models for time series forecasting. Econometric

Reviews, 29(5-6):594–621, 2010.

[3] Luiz G.A. Alves, Haroldo V. Ribeiro, and Francisco A. Rodrigues. Crime prediction

through urban metrics and statistical learning. Physica A: Statistical Mechanics and its

Applications, 505:435–443, 2018.

[4] Maı̈na André, Richard Perez, Ted Soubdhan, James Schlemmer, Rudy Calif, and

Stéphanie Monjoly. Preliminary assessment of two spatio-temporal forecasting technics

for hourly satellite-derived irradiance in a complex meteorological context. Solar Energy,

177(April 2018):703–712, 2019.

[5] Gregory R Andrews. Foundations of multithreaded, parallel, and distributed program-

ming, volume 11. Addison-Wesley Reading, 2000.

[6] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh Rosen,

Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. Scaling Spark in the Real

World: Performance and Usability. Proc. VLDB Endow., 8(12):1840–1843, aug 2015.

90

BIBLIOGRAPHY 91

[7] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley,

Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, and Matei Zaharia. Spark

SQL: Relational Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’15, pages 1383–1394, New

York, NY, USA, 2015. ACM.

[8] L. Bel, D. Allard, J. M. Laurent, R. Cheddadi, and A. Bar-Hen. CART algorithm for

spatial data: Application to environmental and ecological data. Computational Statistics

and Data Analysis, 53(8):3082–3093, 2009.

[9] Christoph Bergmeir and José M. Benı́tez. On the use of cross-validation for time series

predictor evaluation. Information Sciences, 191:192–213, 2012.

[10] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[11] Carl Boettiger. An introduction to docker for reproducible research. SIGOPS Oper. Syst.

Rev., 49(1):71–79, January 2015.

[12] Léon Bottou and Vladimir Vapnik. Local learning algorithms. Neural computation,

4(6):888–900, 1992.

[13] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series

analysis: forecasting and control. John Wiley & Sons, 2015.

[14] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed

Optimization and Statistical Learning via the Alternating Direction Method of Multipli-

ers. Foundations and Trends® in Machine Learning, 3(1):1–122, 2011.

[15] Braindrain0000. Six iterations of the Hilbert Curve. https://commons.wikimedia.

org/wiki/File:Hilbert_curve.svg / CC BY-SA 3.0, 2007.

[16] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg
https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg
https://commons.wikimedia.org/w/index.php?curid=7317036

92 BIBLIOGRAPHY

[17] Leo Breiman. Using adaptive bagging to debias regressions. Technical report, Technical

Report 547, Statistics Dept. UCB, 1999.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Joilson de Assis Cabral, Luiz Fernando Loureiro Legey, and Maria Viviana de Freitas

Cabral. Electricity consumption forecasting in Brazil: A spatial econometrics approach.

Energy, 126:124–131, 2017.

[20] Charlie Catlett, Eugenio Cesario, Domenico Talia, and Andrea Vinci. Spatio-temporal

crime predictions in smart cities: A data-driven approach and experiments. Pervasive

and Mobile Computing, 53:62–74, 2019.

[21] Jason Catlett. On changing continuous attributes into ordered discrete attributes. In Yves

Kodratoff, editor, Machine Learning — EWSL-91, pages 164–178, Berlin, Heidelberg,

1991. Springer Berlin Heidelberg.

[22] Yong Chen, Shuai Zhang, Wenyu Zhang, Juanjuan Peng, and Yishuai Cai. Multifactor

spatio-temporal correlation model based on a combination of convolutional neural net-

work and long short-term memory neural network for wind speed forecasting. Energy

Conversion and Management, 185(November 2018):783–799, 2019.

[23] Noel Cressie and Christopher K Wikle. Statistics for spatio-temporal data. John Wiley

& Sons, 2015.

[24] Thomas G Dietterich. Machine learning for sequential data: A review. In Joint IAPR In-

ternational Workshops on Statistical Techniques in Pattern Recognition (SPR) and Struc-

tural and Syntactic Pattern Recognition (SSPR), pages 15–30. Springer, 2002.

[25] Docker. Docker Containers vs. Virtual Machines. https://www.docker.com/sites/

default/files/d8/2018-11/docker-containerized-and-vm-transparent-

bg.png, 2019.

https://www.docker.com/sites/default/files/d8/2018-11/docker-containerized-and-vm-transparent-bg.png
https://www.docker.com/sites/default/files/d8/2018-11/docker-containerized-and-vm-transparent-bg.png
https://www.docker.com/sites/default/files/d8/2018-11/docker-containerized-and-vm-transparent-bg.png

BIBLIOGRAPHY 93

[26] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and Unsupervised Dis-

cretization of Continuous Features. Machine Learning Proceedings 1995, pages 194–202,

1995.

[27] Alireza Ermagun, Greg Lindsey, and Tracy Hadden Loh. Bicycle, pedestrian, and mixed-

mode trail traffic: A performance assessment of demand models. Landscape and Urban

Planning, 177:92–102, sep 2018.

[28] A Stewart Fotheringham, Chris Brunsdon, and Martin Charlton. Geographically weighted

regression. John Wiley & Sons, Limited West Atrium, 2003.

[29] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data

Analysis, 38(4):367–378, 2002.

[30] Hossein Hassani and Emmanuel Sirimal Silva. Forecasting with Big Data: A Review.

Annals of Data Science, 2(1):5–19, 2015.

[31] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements

of statistical learning: data mining, inference and prediction. The Mathematical Intelli-

gencer, 27(2):83–85, 2005.

[32] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück, pages 1–2.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1935.

[33] Tin Kam Ho. Random decision forests. In Document analysis and recognition, 1995.,

proceedings of the third international conference on, volume 1, pages 278–282. IEEE,

1995.

[34] Chao Huang, Junbo Zhang, Yu Zheng, and Nitesh V. Chawla. DeepCrime. In Proceedings

of the 27th ACM International Conference on Information and Knowledge Management

- CIKM ’18, pages 1423–1432, New York, New York, USA, 2018. ACM Press.

94 BIBLIOGRAPHY

[35] Nick Johnson. A representation of how a quadtree is structured internally. http://

static.notdot.net/uploads/quadtree.png, 2009.

[36] Juyoung Kang and Hwan-Seung Yong. Spatio-temporal discretization for sequential pat-

tern mining. In Proceedings of the 2nd international conference on Ubiquitous informa-

tion management and communication, page 218, 2008.

[37] Jintao Ke, Hongyu Zheng, Hai Yang, and Xiqun (Michael) Chen. Short-term forecasting

of passenger demand under on-demand ride services: A spatio-temporal deep learning

approach. Transportation Research Part C: Emerging Technologies, 85(October):591–

608, 2017.

[38] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin, and

Michael I Jordan. Mlbase: A distributed machine-learning system. In Cidr, volume 1,

pages 2–1, 2013.

[39] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature

learning and deep learning for time-series modeling. Pattern Recognition Letters, 42:11–

24, 2014.

[40] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-

fovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine

learning with the parameter server. In 11th ${$USENIX$}$ Symposium on Operating

Systems Design and Implementation (${$OSDI$}$ 14), pages 583–598, 2014.

[41] Siyu Liao, Liutong Zhou, Xuan Di, Bo Yuan, and Jinjun Xiong. Large-scale short-term

urban taxi demand forecasting using deep learning. In Proceedings of the 23rd Asia and

South Pacific Design Automation Conference, pages 428–433. IEEE Press, 2018.

[42] Chenghao Liu, Steven C H Hoi, Peilin Zhao, and Jianling Sun. Online ARIMA Al-

gorithms for Time Series Prediction. Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence (AAAI2016), pages 1867–1873, 2016.

http://static.notdot.net/uploads/quadtree.png
http://static.notdot.net/uploads/quadtree.png

BIBLIOGRAPHY 95

[43] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and

Joseph M Hellerstein. Distributed GraphLab: A Framework for Machine Learning and

Data Mining in the Cloud. Proc. VLDB Endow., 5(8):716–727, apr 2012.

[44] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[45] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, D B Tsai, Manish Amde, Sean Owen, and Others. Ml-

lib: Machine learning in apache spark. The Journal of Machine Learning Research,

17(1):1235–1241, 2016.

[46] Maged Michael, José E. Moreira, Doron Shiloach, and Robert W. Wisniewski. Scale-up

x scale-out: A case study using nutch/Lucene. Proceedings - 21st International Parallel

and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM, 2007.

[47] Miym. Distributed Computing vs. Parallel Computing. https://commons.wikimedia.

org/wiki/File:Distributed-parallel.svg / CC BY-SA 3.0, 2009.

[48] Robert Nau. Notes on nonseasonal ARIMA models. http://people.duke.edu/

˜rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf, 2014.

[49] Biswanath Panda, Joshua S Herbach, Sugato Basu, and Roberto J Bayardo. PLANET:

Massively Parallel Learning of Tree Ensembles with MapReduce. In Proceedings of the

35th International Conference on Very Large Data Bases (VLDB-2009), 2009.

[50] J R Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, mar 1986.

[51] Evan L. Ray and Nicholas G. Reich. Prediction of infectious disease epidemics via

weighted density ensembles. PLoS Computational Biology, 14(2):1–23, 2018.

[52] Nicholas G. Reich, Logan C. Brooks, Spencer J. Fox, Sasikiran Kandula, Craig J. Mc-

Gowan, Evan Moore, Dave Osthus, Evan L. Ray, Abhinav Tushar, Teresa K. Yamana,

Matthew Biggerstaff, Michael A. Johansson, Roni Rosenfeld, and Jeffrey Shaman. A

https://commons.wikimedia.org/wiki/File:Distributed-parallel.svg
https://commons.wikimedia.org/wiki/File:Distributed-parallel.svg
https://commons.wikimedia.org/w/index.php?curid=7317036
http://people.duke.edu/~rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf
http://people.duke.edu/~rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf

96 BIBLIOGRAPHY

collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the

United States. Proceedings of the National Academy of Sciences, 116(8):201812594,

2019.

[53] C. Ronchi, R. Iacono, and P. S. Paolucci. The ”Cubed sphere”: A new method for the

solution of partial differential equations in spherical geometry. Journal of Computational

Physics, 124(1):93–114, 1996.

[54] S2Geometry. Earth Cube. https://s2geometry.io/devguide/img/s2cell_

global.jpg, 2019.

[55] Abolfazl Safikhani, Camille Kamga, Sandeep Mudigonda, Sabiheh Sadat Faghih, and

Bahman Moghimi. Spatio-temporal modeling of yellow taxi demands in New York City

using generalized STAR models. International Journal of Forecasting, nov 2018.

[56] Yosiyuki Sakamoto, Makio Ishiguro, and Genshiro Kitagawa. Akaike information crite-

rion statistics. Dordrecht, The Netherlands: D. Reidel, 81, 1986.

[57] Hanan Samet. The Quadtree and Related Hierarchical Data Structures. ACM Computing

Surveys, 16(2):187–260, 1984.

[58] SideWalkLabs. Planetary View of s2sphere. https://s2.sidewalklabs.com/

planetaryview/, 2009.

[59] Joseph Sill, Gábor Takács, Lester Mackey, and David Lin. Feature-weighted linear stack-

ing. arXiv preprint arXiv:0911.0460, 2009.

[60] Apache Spark. Cluster Overview. https://spark.apache.org/docs/latest/img/

cluster-overview.png, 2019.

[61] Hung Tien Tran, Hiep Tuan Nguyen, and Viet Trung Tran. Large-scale geographically

weighted regression on Spark. Proceedings - 2016 8th International Conference on

Knowledge and Systems Engineering, KSE 2016, pages 127–132, 2016.

https://s2geometry.io/devguide/img/s2cell_global.jpg
https://s2geometry.io/devguide/img/s2cell_global.jpg
https://s2.sidewalklabs.com/planetaryview/
https://s2.sidewalklabs.com/planetaryview/
https://spark.apache.org/docs/latest/img/cluster-overview.png
https://spark.apache.org/docs/latest/img/cluster-overview.png

BIBLIOGRAPHY 97

[62] Ukrish Vanichrujee, Teerayut Horanont, Wasan Pattara-atikom, Thanaruk Theera-

munkong, and Takahiro Shinozaki. Taxi Demand Prediction using Ensemble Model

Based on RNNs and XGBOOST. In 2018 International Conference on Embedded Sys-

tems and Intelligent Technology & International Conference on Information and Commu-

nication Technology for Embedded Systems (ICESIT-ICICTES), pages 1–6. IEEE, may

2018.

[63] Bao Wang, Xiyang Luo, Fangbo Zhang, Baichuan Yuan, Andrea L Bertozzi, and

PJ Brantingham. Graph-based deep modeling and real time forecasting of sparse spatio-

temporal data. MiLeTS18, London, United Kingdom, 2018.

[64] Bao Wang, Penghang Yin, Andrea L Bertozzi, P Jeffrey Brantingham, Stanley J Osher,

and Jack Xin. Deep learning for real-time crime forecasting and its ternarization. arXiv

preprint arXiv:1711.08833, 2017.

[65] Andreas S Weigend. Time series prediction: forecasting the future and understanding the

past. Routledge, 2018.

[66] Jun Xu, Rouhollah Rahmatizadeh, Ladislau Boloni, and Damla Turgut. Real-Time pre-

diction of taxi demand using recurrent neural networks. IEEE Transactions on Intelligent

Transportation Systems, 19(8):2572–2581, 2018.

[67] R Yadav and S Kumari Sheoran. Modified ARIMA Model for Improving Certainty in

Spatio-Temporal Crime Event Prediction. In 2018 3rd International Conference and

Workshops on Recent Advances and Innovations in Engineering (ICRAIE), pages 1–4,

nov 2018.

[68] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Spatial data management in apache spark:

the GeoSpark perspective and beyond. GeoInformatica, 2018.

[69] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed

98 BIBLIOGRAPHY

Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceed-

ings of the 9th USENIX Conference on Networked Systems Design and Implementation,

NSDI’12, page 2, Berkeley, CA, USA, 2012. USENIX Association.

[70] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, Ali

Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: A Unified

Engine for Big Data Processing. Commun. ACM, 59(11):56–65, oct 2016.

[71] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[72] Shanjiang Zhu, Mark L. Franz, Arefeh Nasri, Lei Zhang, Zhuo Yang, and Jina Mah-

moudi. Analysis of Washington, DC taxi demand using GPS and land-use data. Journal

of Transport Geography, 66(February 2017):35–44, 2018.

Curriculum Vitae

Name: Rafael Nascimento de Aguiar

Post-Secondary The University of Western Ontario
Education and London, ON
Degrees: 2017 - 2019 MESc

Federal University of Pernambuco
Recife, PE - Brazil
2009 - 2015 BSc Computer Science

Honours and CNPq Science Without Borders
Awards: 2013-2014

Related Work Teaching Assistant
Experience: The University of Western Ontario

2017 - 2019

Data Engineer
In Loco Media
2015 - 2017

Co-founder and Software Engineer
CriticalLab
2011 - 2013

99

