
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

8-13-2019 11:00 AM

Spatiotemporal Forecasting At Scale Spatiotemporal Forecasting At Scale

Rafael Felipe Nascimento de Aguiar, The University of Western Ontario

Supervisor: Capretz, Miriam A. M., The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Master of Engineering

Science degree in Electrical and Computer Engineering

© Rafael Felipe Nascimento de Aguiar 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Nascimento de Aguiar, Rafael Felipe, "Spatiotemporal Forecasting At Scale" (2019). Electronic Thesis and
Dissertation Repository. 6316.
https://ir.lib.uwo.ca/etd/6316

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6316&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ir.lib.uwo.ca%2Fetd%2F6316&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6316?utm_source=ir.lib.uwo.ca%2Fetd%2F6316&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Spatiotemporal forecasting can be described as predicting the future value of a variable given

when and where it will happen. This type of forecasting task has the potential to aid many

institutions and businesses in asking questions, such as how many people will visit a given

hospital in the next hour. Answers to these questions have the potential to spur significant so-

cioeconomic impact, providing privacy-friendly short-term forecasts about geolocated events,

which in turn can help entities to plan and operate more efficiently.

These seemingly simple questions, however, present complex challenges to forecasting sys-

tems. With more GPS-enabled devices connected every year, from smartphones to wearables

to IoT devices, the volume of collected spatiotemporal data that accompanies these questions

has exploded, following the Big Data trend. This thesis proposes a forecasting framework that

employs distributed computing in order to scale its internal components and overcome this

high data volume scenario. It also designs discretization components that allow for flexibility

in the framing of the forecasting questions. Furthermore, it devises a Geographically Global

Model (GGM) backed by an ensemble of Stochastic Gradient Boosted Trees, a collection of

Geographically Local Models (GLMs) backed by ARIMA models, and a non-linear blending

of those as part of its multistage machine learning pipeline in order to boost its performance

and stability.

The merit of the proposed research is evaluated in three experiments, each of which com-

prises millions of records, namely forecasting hourly taxi demand in the city of New York,

forecasting daily crime density in the city of Chicago, and forecasting hourly visits to places

of interest across Canada. The experimental results show the effectiveness of the proposed

Spatiotemporal Forecasting Framework in forecasting stable results across the three domains,

while also outperforming the naive baseline by at least 49.8% with respect to the SMAPE

residuals.

Keywords: Spatiotemporal, Forecasting, Big Data, Distributed Computing, Ensemble Learn-

ing, Blending, Local Learning

ii

Summary for Lay Audience

Spatiotemporal forecasting can be described as predicting the future value of a variable given

when and where it will happen. This type of forecasting task has the potential to aid many

institutions and businesses in asking questions, such as how many people will visit a given

hospital in the next hour. Answers to these questions have the potential to spur significant so-

cioeconomic impact, providing privacy-friendly short-term forecasts about geolocated events,

which in turn can help entities to plan and operate more efficiently.

These seemingly simple questions, however, present complex challenges to forecasting sys-

tems. With more GPS-enabled devices connected every year, from smartphones to wearables

to IoT devices, the volume of collected spatiotemporal data that accompanies these questions

has exploded, following the Big Data trend. This thesis proposes a forecasting framework that

employs distributed computing in order to scale its internal components and overcome this high

data volume scenario. It also designs discretization components that allow for flexibility in the

framing of the forecasting questions.

The merit of the proposed research is evaluated in three experiments, each of which com-

prises millions of records, namely forecasting hourly taxi demand in the city of New York,

forecasting daily crime density in the city of Chicago, and forecasting hourly visits to places

of interest across Canada. The experimental results show the effectiveness of the proposed

Spatiotemporal Forecasting Framework in forecasting stable results across the three domains,

while also outperforming the naive baseline by at least 49.8%.

iii

Acknowlegements

I thank God for every person you sent my way. The person that I am today is, without a doubt,

much better because of everything that I learned from them and all the moments I shared with

them.

I want to thank my supervisor Dr. Miriam Capretz, for seeing potential in me and opening

the doors to Western University. Also, I would like to say that I sincerely appreciate your

guidance and the effort you put in helping me with this research.

To my colleagues, fellow TAs, students, and faculty members at Western University a big

thanks. My graduate school years were fantastic because of all of you.

To Dr. Abdelkader Ouda, I extend my heartfelt gratitude. I learned a lot while I was a TA

under your supervision.

I would also like to extend my appreciation to the incredibly talented and helpful people

from Western University’s Writing Centre, and Map and Data Centre. Your support was of

exceptional value to me.

To my cousin Lilo, Thamiris and Donatello, I’ll be forever grateful for your support here in

Canada. Thank you for always being there for me.

To my father, mother, brother, sister, family and friends, you are the joy of my life. Thank

you all so much for your kindness and encouragement.

To my wife, I could not have done any of this without you. Thank you for making my life

a whole lot better.

iv

Contents

Abstract ii

Summary for Lay Audience iii

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Motivation . 3

1.2 Contributions . 5

1.3 Thesis Organization . 6

2 Background and Literature Review 8

2.1 Feature Discretization . 8

2.1.1 Equal Width Discretization . 9

2.1.2 Grid-based Discretization . 9

2.2 Time Series Forecasting Models . 14

2.3 Machine Learning . 15

2.3.1 Tree-based Ensembles . 16

2.3.2 Blending Models . 21

2.3.3 Local Learning . 22

v

2.3.4 Time-sliding Cross-validation . 22

2.4 Distributed Computing And Scalability . 23

2.5 Literature Review . 24

2.5.1 Linear Models . 26

2.5.2 Neural Networks . 27

2.5.3 Ensemble Models . 29

2.6 Summary . 30

3 Spatiotemporal Forecasting Framework 32

3.1 Data Preprocessing . 34

3.1.1 Temporal Discretization . 34

3.1.2 Spatial Discretization . 35

3.1.3 Data Cleaning . 37

3.1.4 Large Scale Aggregation . 40

3.2 Multistage Machine Learning Pipeline . 42

3.2.1 Geographically Global Model . 43

3.2.2 Geographically Local Models . 44

3.2.3 Blending Model . 48

3.3 Summary . 54

4 Evaluation 56

4.1 Implementation . 56

4.2 Experiments . 62

4.2.1 New York City Taxi Trips . 64

4.2.2 Crimes in The City of Chicago . 70

4.2.3 Visits to Places of Interest Across Canada 76

4.2.4 Discussion . 82

4.3 Summary . 85

vi

5 Conclusions and Future Work 86

5.1 Conclusions . 86

5.2 Future Work . 87

Bibliography 90

Curriculum Vitae 98

vii

List of Figures

2.1 Grid-based discretization of the Earth . 11

2.2 Illustration of two levels of subdivision of the unit square 11

2.3 Six iterations of the Hilbert Curve . 13

2.4 Unfolded Earth cube indexed by a global Hilbert Curve 14

2.5 Decision Tree region boundaries in a 2-dimensional (latitude, longitude) fea-

ture space . 18

2.6 Decision Tree nodes with their predicates in boldface, leaves with their under-

lying records (described in a set), and predictions at the lower bottom 19

2.7 Time-sliding window for cross-validation . 23

2.8 Distributed Computing vs. Parallel Computing 25

3.1 Spatiotemporal Forecasting Framework Overview 33

3.2 Earthquakes in the state of California from 1967 to 2018 38

3.3 Earthquakes in the state of California from 1967 to 2018 after discretization

and aggregation processes . 39

3.4 A geo-located polygon (in red) representing an area of interest 40

3.5 Three spatial grids covering the same geographical region (not to scale) at dif-

ferent resolutions . 46

3.6 A discretized map of Manhattan . 47

3.7 Supporting Class Diagram . 49

3.8 Stage 0 - Training Of The Base Models. 50

3.9 Stage 1 - Training Of The Blending Model. 53

viii

3.10 Stage 2 - Predicting With the Blending Model. 54

4.1 Docker Containers vs. Virtual Machines . 58

4.2 Spark Cluster Architecture Overview . 59

4.3 Polygons in grey representing the spatial filter over the Manhattan region. . . . 66

4.4 NYC Taxi Trips – Average SMAPE per hour on a small sample of the testing

data . 68

4.5 NYC Taxi Trips – Average RMSE per hour on a small sample of the testing data 69

4.6 NYC Taxi Trips – SMAPE box plot . 70

4.7 Polygons in grey representing the spatial filter over the Chicago region. 72

4.8 Chicago Crimes – Average SMAPE per day on a small sample of the testing data. 74

4.9 Chicago Crimes – Average RMSE per day on a small sample of the testing data. 75

4.10 Chicago Crimes – SMAPE box plot . 76

4.11 Polygons in grey representing the spatial filter across the Canadian landscape. . 78

4.12 Visits to Places of Interest Across Canada – Average SMAPE per hour on a

small sample of the testing data . 80

4.13 Visits to Places of Interest Across Canada – Average RMSE per hour on a small

sample of the testing data . 81

4.14 Visits to Places of Interest Across Canada – SMAPE box plot 82

4.15 Average SMAPE per model across experiments. 84

ix

List of Tables

3.1 Examples of timestamp truncations at arbitrary resolutions. 35

3.2 Examples of the discretization of spatial coordinates at arbitrary resolutions. . . 36

3.3 Spatiotemporal records before aggregation . 42

3.4 Records after density-based spatiotemporal aggregation. 42

3.5 Geographically Global Model Input Features 44

3.6 Sample spatiotemporal data . 45

3.7 Data from Table 3.6 after the spatial partitioning step 45

4.1 NYC Taxi Trips – Dataset Statistics . 64

4.2 NYC Taxi Trips – Dataset Statistics After Preprocessing. 65

4.3 GGM – Stochastic Gradient Boosted Trees Hyperparameters. 67

4.4 NYC Taxi Trips – Model Metrics Across All Testing Windows 69

4.5 Chicago Crimes – Dataset Statistics. 70

4.6 Chicago Crimes – Dataset Statistics After Preprocessing. 71

4.7 Chicago Crimes – Model Metrics Across All Testing Windows 76

4.8 Visits to Places of Interest Across Canada – Dataset Statistics. 77

4.9 Visits to Places of Interest Across Canada – Dataset Statistics After Prepro-

cessing. 78

4.10 Visits to Places of Interest Across Canada – Model Metrics Across All Testing

Windows . 82

x

Chapter 1

Introduction

Spatiotemporal forecasting has been applied to a diverse number of domains, including crime,

influenza, taxi demand, and visits forecasting. When used for crime forecasts, this technique

can alert police officers to developing crime patterns in a city, helping them to coordinate

patrols in order to better fight crime, for example [20]. In influenza forecasting, this technique

can provide insights into which hospitals will see more demand in the next influenza season,

helping health-care practitioners to prepare accordingly [52]. In the taxi demand prediction,

spatiotemporal forecasting can assist with the placement of drivers so that they can quickly

reach passengers, saving time and reducing overall costs [66]. Spatiotemporal forecasting can

also be utilized to estimate the anticipated number of visits that a site will receive, providing the

manager with foot-traffic information that they could leverage to optimize their staff schedule

and better serve customers [27].

A spatiotemporal dataset is a collection of records with labels showing where and when

they were collected [23]. More formally, it is a dataset sampled from a process that has both

spatial and temporal components. Even more specifically, in this research, a spatiotemporal

dataset is sampled from temporal and geographical spaces. That is, it contains a timestamp

denoting when it happened and a pair of latitude and longitude coordinates that identify where it

happened on Earth. Frequently this “when” label comes from the device’s system clock and the

1

2 Chapter 1. Introduction

“where” label comes from a satellite-based radio-navigation system like the Global Positioning

System (GPS) that tracks the positions of receivers on Earth. Because of the ubiquity of GPS, it

is common to refer to latitude and longitude as GPS coordinates, and it is also accepted to refer

to location-aware devices as “GPS-aware” or “GPS-enabled”; this research uses these terms

interchangeably henceforth.

A concrete example of a spatiotemporal dataset could be a dataset that describes the occur-

rence of earthquakes while containing the timestamp of when they happened, the GPS coordi-

nates of where the center of the earthquake was, and potentially some associated measurements

such as the magnitude of the earthquake and the depth from the epicentre to the surface.

The task of predicting out-of-sample values of a variable based on historical data is denoted

as a prediction task in the research field of Machine Learning [31]. For researchers in the field

of Time Series, however, the term “forecasting” carries the same meaning, with the added

connotation of predicting the future values of a random variable [65]. Henceforth, this thesis

utilizes the terms “prediction” and “forecasting” interchangeably to mean the prediction of

future values. What this work sets out to do, then, is to provide a domain agnostic, scalable

framework that can answer a predictive question of the form: given an input feature vector x,

an arbitrary timestamp t, and a location s, what is the forecasted value of a target variable ŷ(x)

at t + 1?

A fundamental facet of that question is the spatial (S) and temporal resolution (T) of the

study. In other words, assuming sufficient resolution in the initial underlying data, one could

ask forecasting questions based on longer time intervals or wider regions of interest. Taking the

previously mentioned earthquake dataset as a basis, and assuming an initial temporal resolution

of seconds and a spatial resolution at the city block level, one could conceivably ask questions

similar to the following:

1. ŷ(x)t+1,s | t ∼ T (hourly) ∧ s ∼ S (city block)

2. ŷ(x)t+1,s | t ∼ T (daily) ∧ s ∼ S (city)

1.1. Motivation 3

3. ŷ(x)t+1,s | t ∼ T (monthly) ∧ s ∼ S (1 km2 area)

The first of these questions models a one-hour-ahead forecast at the city block level, the

second models a one-day-ahead forecast at the city level, and the third models a next-month

forecast for spatial regions that comprise a 1km2 area. The appropriate resolution for the spatial

and temporal variables ultimately depends on which forecasting questions a user wants to an-

swer. For example, it might be sensible to forecast a macro event, such as an earthquake, at the

daily resolution and city level because of how its aftermath can wreak chaos in large regions

for an entire day. On the other hand, for other types of events, such as taxi demand, an hourly

forecast at the city block level might be more appropriate as drivers would have predictions that

would be more in line with the transit patterns of a car. Another essential facet is the volume of

historical data. In terms of time frame, volume relates to how many months, years or decades

of data are available, for example. In terms of geographical extension, volume relates to how

many neighbourhoods, cities, or states the data cover.

1.1 Motivation

The gathering of space and time contextualized information about people’s offline behaviour,

has made it possible for businesses and institutions to use forecasting techniques to ask ques-

tions such as: how many visits will this coffee shop experience in the next hour? A significant

challenge in this type of forecasting comes from the fact that the underlying datasets are in-

creasingly growing, following the Big Data trend [52]. With more GPS-enabled devices being

connected every year, from smartphones to wearables to IoT devices, the amount of collected

geolocated data has been exploding [68].

This Big Data volume that increasingly accompanies spatiotemporal datasets poses difficul-

ties for the preprocessing algorithms that run in a single pass through the data and even more

so for the training of learning algorithms, which often iterate a few times on the input dataset.

For instance, the NYC Taxi Trips dataset utilized in this work’s experiments has over one bil-

4 Chapter 1. Introduction

lion records before preprocessing, making it laborious to process it in a reasonable time frame

even in a powerful machine. Furthermore, the choices of resolution, considered time frame,

and geographical extension also profoundly impact this matter, making it more challenging to

support arbitrary choices for these parameters without constraints. For example, forecasting

over vast regions and long time frames at fine resolutions can be a remarkably challenging task

for a single machine.

Difficulty also emerges from the fact that not all learning algorithms can deal with datasets

at the millions-of-records scale, with many such algorithms requiring all data to fit in memory,

and even when they can, their learning times can be prohibitive for datasets of such magnitude

[42][30].

Another front on which obstacles arise is the stability of the forecasts. It is generally de-

sirable that forecasts be stable, even at some loss of accuracy. For example, in the health-care

domain, a forecasting model that consistently performs at 25% error in every influenza season

might be favoured over another forecasting model that averages 20% error across seasons, but

that at times has an error of 40%.

Few researchers have designed spatiotemporal forecasting methods with Big Data as a

foundation, and to the best of our knowledge, a framework that enables forecasts that are

less constrained by resolution choices and volume of historical data has not yet been proposed.

Furthermore, most studies have focussed on training the single best forecasting model and have

not taken model stability into consideration, except for Reich et al. [52] and Ray et al. [51].

Moreover, most studies have considered spatiotemporal forecasting problems with a high de-

gree of attachment to the specific domain area of the underlying data source, making it difficult

to gauge whether they would have similar efficacy in other domains.

1.2. Contributions 5

1.2 Contributions

State of the art in spatiotemporal forecasting impose constraints in terms of either temporal

resolution, spatial resolution, time span or geographical extension in order to cope with Big

Data. For instance, Xu et al. [66] limits the time span to 3.5 years and fixes the spatial

resolution at an 80 x 80 grid with cells averaging 23000 m2 in order to scale to millions of

records, and Liao et al. [41] fixes the spatial resolution at a 32 x 32 grid with cells averaging

80000 m2 and limits the geographical extension to the Manhattan region in order to achieve

similar scale. These limitations would restrain the user from running experiments similar to

the Chicago Crimes and Visits Canada experiments reported in this work.

Thus, the contribution of this research is to provide a framework that is accurate, stable,

and free of these constraints, enabling the user to choose the configuration that is adequate to

the spatiotemporal forecasting question that they are trying to answer despite the high volume

of records that accompanies its underlying dataset.

Each facet of this research’s contribution is addressed as follows:

Temporal and spatial resolution. Flexibility in the choice of temporal and spatial resolution

is gained by using fast feature discretization methods based on an equal width discretization of

time and a grid-based discretization of space.

Geographical extension and time span. By utilizing training strategies that balance the mem-

ory requirements and CPU load of the learning components, the framework is able to cover

wider geographical regions and longer time spans than previous work. The proposed Geo-

graphically Global Model (GGM) backed by tree-based ensembles can learn many decision

trees over the entire geographical space in a distributed fashion, covering regions as vast as

Canada. The proposed collection of Geographically Local Models (GLMs) backed by time

series models, can learn independent models at every location, capturing local patterns in time

series spanning as long as 18 years.

Prediction accuracy and stability. A multistage machine learning pipeline, introduces a

Blending Model that learns how to weight the predictions of the GGM and GLMs, and a subset

6 Chapter 1. Introduction

of the input features to come up with the final prediction of the framework. This blending

scheme is employed in order to boost prediction accuracy, by fostering diversity, and to confer

more stability than a single model solution perhaps could. Diversity is achieved by combining

a non-linear model that is better at capturing spatial patterns (GGM) with time series models

that are more capable of modelling sequential data (GLMs). Stability is achieved by learning

how to weight the contributions of these base models with respect to their historical errors so

that less-performing models have a weaker impact on the framework predictions.

Scale. Supporting all the components in the framework in scaling to high-volume datasets

is a distributed computing foundation that enables the spreading of load across a cluster of

machines.

Furthermore, experimental results on diverse domain datasets, yet taking only features de-

rived from temporal and spatial components, shed light onto how the structure of the data in

terms of temporal and spatial sparsity can affect forecasting capabilities, and demonstrate the

flexibility of the framework in handling a variety of configurations to support arbitrary spa-

tiotemporal forecasting questions.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 introduces background on the most important techniques utilized throughout

this work. It starts by describing feature discretization methods that can be applied to

temporal and spatial variables. Then it points out the beneficial properties of time series

forecasting models for spatiotemporal forecasting tasks and gives an overview of one of

the most popular such models. Then it proceeds to a section that describes in depth a few

machine learning models, and techniques that also offer advantages for handling large

volumes of spatiotemporal data. Moreover, a section on distributed computing lays out

the concepts that support scaling the components of the proposed solution in the face of

1.3. Thesis Organization 7

Big Data. Finally, it presents a literature review of recent work done by other researchers

in diverse domains.

• Chapter 3 details the proposed research, diving deep into each block of the proposed

framework. First, the components that support the preprocessing of spatiotemporal data

are presented, namely temporal discretization, spatial discretization, data cleaning, and

large scale aggregation. Finally, the machine learning core of this research is described:

a multistage machine learning pipeline composed of a Geographically Global Model

(GGM), a collection of Geographically Local Models (GLMs), and a Blending Model.

• Chapter 4 describes details that are pertinent to the implementation of the proposed re-

search. Then it moves on to an experiments section where the capabilities of the proposed

approach are evaluated on different datasets, namely a dataset containing information on

taxi trips in the city of New York, another dataset containing crime density information

in the city of Chicago, and finally a dataset containing visits to places of interest across

Canada.

• Chapter 5 concludes this work and offers an overview of its challenges and achievements.

Finally, it provides some context into areas that could be explored in future work.

Chapter 2

Background and Literature Review

The goal of this chapter is to introduce important techniques that are utilized throughout this

work. It starts by describing feature discretization methods. Then, it presents the Time Se-

ries Forecasting and Machine Learning methods employed in this work. Next, it moves into

relevant aspects of distributed computing. Finally, it presents a literature review.

2.1 Feature Discretization

This section describes discretization processes that take a variable defined in a continuous in-

terval and transforms it into a nominal feature space. For example, the time from the day a

person was born until today can be transformed into yearly buckets representing their age in

the time continuum. Moreover, Catlett [21] notes that many algorithms possess the capacity

to handle continuous attributes, but to do so, they require substantially more CPU and mem-

ory than a corresponding task based on discrete features. Catlett also mentions experimental

results where feature discretization resulted in reductions in learning time accompanied by no

significant loss, or sometimes even significant improvements, in accuracy.

Hence, feature discretization is used in this work with two primary purposes: to produce

summarized information that is meaningful to human beings, and to achieve performance and

accuracy gains in Machine Learning.

8

2.1. Feature Discretization 9

Furthermore, discretization techniques are categorized according to three aspects: global

versus local, supervised versus unsupervised, and static versus dynamic [26].

• Global methods take as input the entire interval that the subject variable defines. Local

methods, in contrast, take as input subsets of the original feature space.

• Supervised methods take into consideration the record label while computing the parti-

tions (also referred as intervals, bins, or buckets). Unsupervised methods, on the other

hand, do not consider the label.

• Static methods require a parameter (k) indicating the maximum number of discrete inter-

vals to produce, whereas dynamic methods conduct a search over the space of possible

values of k.

2.1.1 Equal Width Discretization

Equal Width Discretization (EWD) is perhaps one of the simplest and fastest discretization

methods and can be characterized as global, unsupervised, and static [26]. EWD transforms

a continuous space into a discrete one by dividing it into equally sized bins. Equation (2.1)

expresses the relationship between the bin width (δ), the minimum (Xmin) and maximum (Xmax)

values of a subject variable X, and the number of resulting bins (k).

δ =
Xmax − Xmin

k
(2.1)

This work utilizes EWD in order to summarize temporal information into culturally acceptable

bins such as hourly and daily intervals.

2.1.2 Grid-based Discretization

Grid-based discretization techniques can be seen as an extension of the 1-dimensional EWD

to a 2-dimensional space. Hence, the objective of a grid-based discretization is to transform

10 Chapter 2. Background and Literature Review

a continuous surface of spatial events akin to a point cloud into a discrete surface constituted

of disjoint regions. In the context of this work, grid-based discretization is used to condense

continuous geospatial points into discrete tiles on the Earth’s surface.

A geospatial grid-based system is defined by cells of fixed shape and approximately equal

area. One of the fastest processes, with potentially the least distortion, to obtain a geospatial

grid over the Earth, involves projecting the six faces of a circumscribing cube (shown in Figure

2.1) onto the Globe, then recursively subdividing each face projection into four smaller quadri-

laterals with geodesic edges (i.e., lines projected onto a sphere) [53]. For simplicity, these

quadrilaterals are referred to as squared cells henceforth.

The hierarchical partitioning of each cell is done via a Quadtree [57] data structure that

recursively decomposes the originating squared cell into four children cells, where the number

of recursive subdivisions equates to the depth of the Quadtree and is denoted as the level (or

resolution) of the spatial partitioning. Consequently, changes in the partitioning level affect the

total number of cells and also their areas. This means that, increases in resolution grow the

number of cells and reduce their area, whereas decreases in resolution diminish the number of

cells and enlarge their area. An example of this hierarchical partitioning is illustrated in Figure

2.2, where the highlighted square is recursively divided into top-left, top-right, bottom-left, and

bottom-right children.

Space-filling Curves

Representing the Earth as six square grids, one per face of the cube, is enough to be able

to identify any square cell on the planet. However, that would require an index with four

attributes: the resolution level, the face number, the row, and the column number. Determining

whether two cells were neighbors would require a match on all four attributes, for example. The

addition of a space-filling curve as an index to the Earth-cube model aims to provide a faster,

more compact, 1-dimensional indexing of spatial operations. This sub-section describes the use

of a space-filling curve to index each cell across the faces of the Earth-cube at all possible levels

2.1. Feature Discretization 11

Figure 2.1: Grid-based discretization of the Earth [58]. The Globe is inscribed in a cube where
each face is partitioned into square cells that are later indexed with a space-filling curve.

Figure 2.2: Illustration of two levels of subdivision of the unit square [35]. Each highlighted
square is recursively divided into four child squares.

12 Chapter 2. Background and Literature Review

of subdivision of the grid down to the cm2 level. With regard to this work, space-filling curves

are harnessed to provide an efficient encoding for spatial features at arbitrary resolutions.

A space-filling curve is a curve that contains in its domain all the possible values in the 2-

dimensional unit square. The Hilbert Curve is a spatial-filling curve that is both fast to compute

and has high locality of reference (i.e., elements that are close in the curve are also close in the

square) [32].

The initial state of the Hilbert Curve is the curve shown in Figure 2.3(a). From there,

an iterative procedure is employed to generate higher-resolution versions of the curve. For

example, one iteration goes from the initial curve, which indexes only four squares, to the

curve in Figure 2.3(b), which indexes sixteen. A subsequent iteration goes from this past curve

to the one in Figure 2.3(c), which now indexes sixty-four squares, and so on. Thus, from an

initial state, with a segment size (s = 1), and assuming the upwards orientation of copies to

be the equivalent to the starting state, the following process is repeated to generate the next

iteration of the curve [32]:

1. In the first iteration, place the initial state of the curve.

2. Move to the right of the current state, leaving a gap of size s. Place a mirrored copy of

the current state there.

3. Copy the curve segment on the left, rotate it 90 degrees counter-clockwise, move a dis-

tance s to the bottom, and place the copy there.

4. Copy the curve segment on the right, rotate it 90 degrees clockwise, move a distance s to

the left, and place the copy there.

5. Go to the lower-left corner of the state. Start traversing the curve and connecting its

segments through their closest points.

The last step in the process to construct the Hilbert Curve involves a traversal through all the

cells in the square, uniquely mapping each to one value in the curve, as depicted in the top

2.1. Feature Discretization 13

Figure 2.3: Six iterations of the Hilbert Curve [15]. Each iteration builds a better approxima-
tion of the square.

axes of Figure 2.3. This step effectively generates an index from a 2-dimensional space into a

1-dimensional space.

From Figure 2.3, it is also possible to observe the aforementioned locality of reference

property. For example, in the second iteration of the curve in Figure 2.3(b), cells that are close

in the curve are always close in space (e.g., cells 2 and 3); however, the converse is not always

true (e.g., cells 3 and 9). Although the converse property would be desirable, it is unfortunately

not possible [32].

Figure 2.4 closely (i.e., before projection onto the sphere) summarizes the effect of the

grid-based discretization followed by the Hilbert curve indexing. In the figure, the six faces of

the cube are unfolded, and a single Hilbert curve that encompasses the entire Globe is revealed.

This research will rely on this one-dimensional coordinate system, made possible by the Hilbert

indexing, to represent the spatial component of a spatiotemporal dataset.

14 Chapter 2. Background and Literature Review

Figure 2.4: Unfolded Earth cube indexed by a global Hilbert Curve [54]. Start and end points
of the curve are marked with arrows.

2.2 Time Series Forecasting Models

The core value of this research work is the use of learning algorithms to approximate the future

value of arbitrary spatiotemporal measurements. One example is the number of visits that a

given place will experience in the next hour. This section presents a formal definition of time

series and describes the time series forecasting model utilized in this work.

Längkvist et al. defined time series data as a stream of sampled data points taken from a

continuous, real-valued process over time [39]. Under this definition, a univariate time series

represents a single variable sampled through time, whereas a multivariate time series represents

multiple variables. A time series can also be classified as stationary or non-stationary, depend-

ing on whether its variance, mean, and frequency are invariant to shifts in time. A stationary

time series maintains these properties invariant to shifts in time, whereas a non-stationary one

does not. Moreover, the time series dependency on time brings a fundamental property to the

problem: given the same input at different times, a time series governed system will likely

2.3. Machine Learning 15

present different responses [39].

Autoregressive integrated moving average (ARIMA) models are well-known time series

forecasting models, and are generally denoted by ARIMA(p, d, q). Parameters p, d, and q

are non-negative integers, in which p is the order (number of time lags) of the autoregressive

model, d is the degree of differentiation (the number of times that the data have had past values

subtracted), and q is the order of the moving-average model [13].

Given a time series of data Xt ∈ IR, where t is an integer index, an ARIMA(p, d, q) model

is given by Equation (2.2). In the equation, L is the lag operator, α and θ are parameters, and

ε is the error term, which is assumed to be an independent and identically distributed (I.I.D)

variable sampled from a Gaussian distribution with zero mean and variance σ2.

1 − p∑
i=1

αiLi

 (1 − L)dXt =

1 +

q∑
i=1

θiLi

 εt (2.2)

The ARIMA model can be seen as three composable parts (AR, I, MA) [13]:

1. AR(p): Forecasts the variable of interest using a linear combination of past values of the

variable.

2. I(d): Applies differentiation (i.e., the difference between consecutive observations) to

make the series stationary.

3. MA(q): Uses past forecast errors in a regression-like model.

With regards to this work, time series forecasting models are used in a univariate fashion

and address purely the time component of the spatiotemporal data.

2.3 Machine Learning

This section introduces the Machine Learning techniques utilized throughout this work. First,

it details the inner workings of tree-based ensembles and their advantages with respect to Big

16 Chapter 2. Background and Literature Review

Data. Then it describes a method for blending Machine Learning models to boost their accu-

racy. Next, it outlines a process for partitioning the input space and delegating it to multiple

independent learners. Finally, it presents a method for cross-validation on temporal data.

2.3.1 Tree-based Ensembles

The Decision Tree ensemble techniques that follow are less equipped to deal with sequential

data than the earlier mentioned time series forecasting methods, but they are still capable of

producing competitive forecasts, especially for multivariate time series [2][24]. This work

explores tree-based ensembles in order to capture non-linear patterns in the spatial and tem-

poral variables and assumes the potential loss of neglecting sequentiality. This difference in

capabilities will be explored later to build an even stronger predictor.

A Decision Tree is a non-linear learning algorithm that induces a binary tree representing

relationships in the data [50]. Each node in the tree splits the data according to an attribute until

only leaves (i.e., terminal nodes) are left. Thus, the traversal from root to leaf is characterized

as the prediction path of this model.

Algorithm 1 Decision Tree Induction
Require:

node to be the root node at the first iteration
D to be the D∗ at the first iteration
function Induction(node, D)

if ReachedStoppingCriteria(D) then
node.prediction← Predict(D)
return

predicate,DL,DR ← FindBestSplit(D)
node.splittingAttribute← predicate.attribute
node.splittingValue← predicate.value
Induction(node.left, DL)
Induction(node.right, DR)

The induction process of a Decision Tree is described in Algorithm 1. Its initial state is a

root node containing the original data (D∗). The stopping condition (ReachedStoppingCrite-

ria) comprises the hyper-parameters of the model that control whether a node should still be

2.3. Machine Learning 17

split, such as the maximum depth of the tree, and the minimum number of records in a leaf.

The Predict function computes the model prediction based on the data available at the leaf (in

regression tasks, it is the average of the values). The FindBestSplit function is the most com-

putationally expensive part of the induction process and has the objective of reducing the data

impurity (a measure of dissimilarity between the record labels; typically variance in regression

problems). FindBestSplit works by selecting the feature split that results in the highest reduc-

tion in impurity. Hence, for regression problems, FindBestSplit aims to maximize Equation

(2.3).

I = |D| ∗ Var(D) − (|DL| ∗ Var(DL) + |DR| ∗ Var(DR)) (2.3)

Var(X) =
1
n

n∑
i=1

(xi − µ)2

µ =
1
n

n∑
i=1

xi

(2.4)

In the equation, I is the impurity reduction, Var is the variance as defined in Eq. (2.4), DL ⊂ D

and DR ⊂ D are the datasets that result from splitting D on the given predicate.

This greedy, top-down, recursive induction process is depicted in Figure 2.5. In the figure,

a dataset is split based on two features (latitude, longitude), with a minimum number of records

per leaf equal to 5, generating a partitioned space with less impurity after each iteration. First,

the dataset starts with a single region A ∪ B ∪ C with variance 53.2; then it is split at latitude

equals 20.0 into two regions, top (A) with variance 38.0, and bottom (B ∪ C) with variance

10.12, leading to a variance of 48.12 after the split. Second, the bottom region is split at

longitude equals 70.0 into another two regions, left (B) with variance 4.66, and right (C) with

variance 1.25, leading to a total variance of 43.91 after the split. Because there are no nodes

left with more than five records, the induction process stops. This spatial partitioning results in

three distinct regions (A, B, C) for which the decision tree will predict constant values based

18 Chapter 2. Background and Literature Review

Figure 2.5: Decision Tree region boundaries in a 2-dimensional (latitude, longitude) feature
space. Each node in the tree bisects the space into distinct regions.

on the average record values in the leaves. Figure 2.6 shows a view of the resulting tree, with

the node predicates in boldface, node elements in curly brackets, and predictions (A=23, B=7,

C=12.5) at the lower bottom of each leaf.

Random Forests

In order to improve accuracy and reduce overfitting, Ho [33] proposed an ensemble learning

method that utilizes a combination of decision trees, trained on random subsets of the original

feature space, to solve classification, regression, and other tasks. To reach a consensus over the

individual predictions, this ensemble outputs the mode of the classes of the individual trees for

a classification task or the mean of the predictions of the individual trees for a regression task

[33].

Breiman [18] proposed the Random Forest as a method that uses the random subsampling

of the input features (i.e., columns) in tandem with random subsampling of the input data

(i.e., rows), a process known as bagging [16], in order to grow an ensemble of decision trees.

Breiman also proved that bagging these weak learners would result in a more complex model

that was not hurt by overfitting in the same way as traditional learners, mainly because of the

2.3. Machine Learning 19

Figure 2.6: Decision Tree nodes with their predicates in boldface, leaves with their underlying
records (described in a set), and predictions at the lower bottom. A summary of the accumu-
lated variance after each split is also shown on the right.

way they were trained on random subsets and the way each node had a random set of features

on which it could be split [18].

F(x) =
1
M

M∑
i=1

hi(x) (2.5)

Equation (2.5) relates the output of the bagged ensemble to that from the base learners [18],

where F(x) is the ensemble output, M is the number of base learners, and hi(x) is the prediction

of the i-th model given input x. Furthermore, each hypothesis hi(x) is formed by training a base

learner on a random sample Ñ ⊂ N of the original dataset N.

Gradient Boosted Trees

Motivated by Breiman [17], Friedman proposed the Stochastic Gradient Boosting method for

constructing ensembles via a boosting procedure. Stochastic Gradient Boosted Trees (GBT)

[29] differ from Random Forests in that they are sequentially grown by fitting a new tree to the

residuals of the previous one as opposed to grown independently. This sequential dependency

poses difficulties for the training of many decision trees in parallel; however, GBTs can still

be parallelized at the level of a single Decision Tree. Hence, the FindBestSplit function can be

computed in parallel because the variance can be calculated in subsamples of the data and later

20 Chapter 2. Background and Literature Review

aggregated [49].

F0(x) = arg min
γ

N∑
i−1

Ψ(yi, γ) (2.6)

ỹim = −

[
∂Ψ(yi, Fm−1(xi))

∂Fm−1(xi)

]
, i = 1...Ñ (2.7)

{Rlm}
L
1 = terminal node tree({ỹim, xi}

Ñ
1) (2.8)

γlm = arg min
γ

∑
xi ∈ Rlm

Ψ(yi, Fm−1(xi) + γ) (2.9)

Fm(x) = Fm−1(x) + v ∗ γlm1(x ∈ Rlm) (2.10)

Equations (2.6) through (2.10) formally express the GBT boosting process [29], where m is

the index of the current model, and {yi, xi}
Ñ
1 is a random subsample of the training set (Ñ < N),

with yi representing the i-th record label and xi representing the i-th input vector. F0(x) in (2.6)

is the base case of the sequential process, and Ψ is the loss function, typically least squares

in regression problems. ỹim in (2.7) are the residuals that the current model inherits from the

previous one. Rlm in (2.8) is a set of residuals at disjoint regions (1, . . . , L) represented by the

tree leaves at iteration m. γlm in (2.9) is the value that minimizes the residuals at leaf l. Finally,

in (2.10), v is the learning rate, 1 is an indicator function that outputs one if x ∈ Rlm and zero

otherwise, and Fm(x) is the final output of the ensemble.

The following are some properties of decision tree ensembles taken from Breiman [18].

1. Relatively robust to outliers and noise.

2. Useful internal estimates of error, strength, correlation, and variable importance.

2.3. Machine Learning 21

3. Simple and easily parallelized.

These properties summarize the most important characteristics of the models presented in this

section and point to a means of overcoming the challenges of conducting Machine Learning

over big datasets: parallelization.

2.3.2 Blending Models

Ensemble methods (e.g., bagging, boosting, stacking) train multiple learners in order to solve

a problem. Whereas ordinal learning approaches will train a single model on the dataset,

ensemble methods will train multiple models and weight their contributions to come up with

a final answer [71]. Although there are many different ways of constructing ensembles, (e.g.,

Random Forests are built via bagging), the strategy employed in this work is a special form of

stacking, called blending.

Sill et al. describe stacked models as methods designed to boost predictive accuracy by

blending the predictions of multiple machine learning models [59]. A stacked model is in

itself a meta-model that learns how to weight the contributions of its members based on their

predictions.

Blending is a derived concept introduced by the Netflix prize winners that is very close

to stacked generalization, but more straightforward to implement and safer to guard against

information leaks between the stacker and the generalizers because it keeps a small, completely

separate holdout set to train the stacker [59].

The key to a successful blending is the inclusion of diverse base-learners [59]; where the

diversity in a set of learners can be quantified as a low correlation in their predictions. Hence, in

the context of this work, blending is utilized to enhance the prediction accuracy by combining

tree-based ensembles with time series forecasting models.

22 Chapter 2. Background and Literature Review

2.3.3 Local Learning

Bottou and Vapnik devised what might seem a slow and ineffective way to scale machine

learning algorithms, but one that, in reality, scored, and more importantly scaled, incredibly

well [12]. Noticing that training data are rarely evenly distributed in the input space, Bottou

and Vapnik suggested a change in the typical training process. Instead of relying on a single,

global learner over an entire dataset, they proposed that the training process should rely on

multiple learners trained independently on closely related chunks of data. A simple example

of a local learning algorithm would be as follows [12]. For each testing pattern:

1. Select a few training examples located in the vicinity of the testing pattern.

2. Train any learning model over these few examples.

3. Use that model to predict over the testing pattern.

In particular, local learning provides a construct to scale learning algorithms in terms of mem-

ory, enabling otherwise memory-constrained techniques such as ARIMA to be applied on large

datasets [42][30]. Hence, in the context of this work, local learning is applied with the objective

of scaling time series forecasting models over large geographical regions.

2.3.4 Time-sliding Cross-validation

The aforementioned machine learning models require several hyperparameters in order to be

properly fitted [10]. For example, the maximum depth of the decision tree impacts the com-

plexity of the model, and its value can make the difference between an under-fitted tree and

an over-fitted one. Thus, a fair amount of time is devoted to the tuning of these hyperparam-

eters. Typically, methods such as grid-search and random-search are used in practice [10].

The former performs a train-and-evaluate cycle for all possible combinations of hyperparam-

eters values given as input. The latter conducts a search on the same space randomly and

non-exhaustively.

2.4. Distributed Computing And Scalability 23

Figure 2.7: Time-sliding window for cross-validation. The Training fold chronologically pre-
cedes the validation fold.

Popular methods for evaluating the performance of a machine learning model are train-

validation splits, and cross-validation, both of which are often done by picking records at ran-

dom and including them into disjoint training and validation sets. In the Time Series domain,

however, this randomness would wrongly allow the model to be trained on future data, and

as a consequence, to be asked to predict the past [9]. Thus, traditionally in the Time Series

literature out-of-sample methods such as a time-sliding window are utilized to provide a more

accurate evaluation [24]. The process illustrated in Figure 2.7 splits the original training set

into a training set that increases in size for each consecutive fold and a fixed-size validation set

that is slid forward in time to preserve sequentiality.

Forcing the evaluation process to respect the time dimension will likely hurt the model’s

score and running-time performance [9]. However, as a result, the trained model will report

an evaluation metric that is more semantically sound, because the model was never allowed to

peek into the future.

2.4 Distributed Computing And Scalability

Sections 2.3.1 and 2.3.3 offered insights into how the training of tree-based ensembles and

time series forecasting models respectively can be parallelized. This research makes use of

distributed computing to explore that parallelism even further and achieve reasonable training

24 Chapter 2. Background and Literature Review

times for machine learning models despite the challenges of Big Data [45][43][14][38].

Distributed computing is a computing paradigm that relies on the communication and co-

ordination of computing systems (i.e., nodes) across a computer network in order to achieve a

common goal [44]. As in parallel computing problems, it is best used when the global goal can

be broken down into independent tasks. For example, the mergesort algorithm has a partition

step that creates independent chunks of data that can later be pair-wise merged into a globally

sorted solution.

Furthermore, the distribution of nodes in a computer network brings additional challenges

in comparison to parallel computing. The abscence of shared memory between nodes means

that they need to communicate by message passing [5]. Figure 2.8 illustrates this memory-wise

difference between distributed computing systems and thread-based parallel systems. More-

over, because messaging over the network can fail, and nodes can also fail, distributed systems

need to be engineered with fault-tolerance in mind [40].

A computing system is deemed horizontally scalable if its computation can be sped up

when distributed across a cluster of machines (i.e., adding a new node reduces the load on the

system). A vertically scalable computing system, however, explores speedups via improve-

ments in the hardware of a single node (i.e., via more expensive hardware with more memory

and processors). Although both techniques have the effect of improving the performance of

a computing system, Michael et al. [46] have demonstrated that scale-out (i.e., horizontal)

solutions offer better price/performance ratio than scale-up (i.e., vertical) solutions.

Hence, this research work makes use of distributed computing to offer a cost-effective scale-

out solution that enables unconstrained spatiotemporal forecasting at scale.

2.5 Literature Review

This section reviews the relevant work done by other researchers. It describes successful

approaches to solving spatiotemporal problems found in the literature and comments on the

2.5. Literature Review 25

Figure 2.8: Distributed Computing vs. Parallel Computing [47]. Item (a) displays an abstract
view of a distributed computing cluster. Item (b) shows a detailed view of the nodes with their
own memory and message passing (outer arrows). Item (c) displays a thread-based parallel
computing model with shared memory.

26 Chapter 2. Background and Literature Review

shared and diverging aspects concerning this work.

2.5.1 Linear Models

Catlett et al. [20] presented a spatiotemporal forecasting method for predicting crime density

in hot spot regions. The authors pointed out that such information could enable police de-

partments to allocate their limited resources better and develop insightful strategies for crime

prevention. Their proposed approach was made up of two main components: a spatial cluster-

ing partitioner that identifies high-density crime areas, and a collection of multi-variate auto-

regressive models (one per region) that account for the regions discovered in the previous step.

Furthermore, in their implementation, the authors utilize a density-based partitioner (i.e., DB-

SCAN) for the first component, which resulted in hot spot regions that were diverse in size and

shape. Catlett et al. [20] also demonstrated by means of experiments with public data from

the city of Chicago and New York that their locally learned ARIMA models can outperform

other approaches in the crime forecasting literature. In contrast to their work, this research

partitions the geographical space into square cells of an approximately equal area to facilitate

the forecasting at arbitrary resolutions (e.g., cells with 1 m2 or 1 km2 area).

Tran et al. [61] proposed a distributed implementation of the spatial regression model de-

vised by Fotheringham et al. [28]. They argued that building a global model over data that

exhibit a spatial relationship could result in misleading global coefficients. For example, a

naive ordinary least-squares regression model trained to predict house prices over an entire

city could learn global coefficients that imply that the older the house, the lower the price.

In fact, there are significant local effects that could indicate that old country houses are more

valuable, possibly because they are reminiscent of an acclaimed architectural style, and old

urban houses tend to be cheaper possibly because they were built with lower construction stan-

dards [28]. The authors then proposed a distributed linear regression method that embedded

the spatial variation of the data in the models’ coefficients [61]. The Geographically Weighted

Regression (GWR) model operates by weighting the influence of the points in the neighbor-

2.5. Literature Review 27

hood of the point in question via a kernel function (e.g., Gaussian) so that points closer to the

point in question have more influence on its value than points that are further away. In synergy

with their work, this research acknowledges the difference between local and global patterns in

the data by training separate models for each. Likewise, it makes use of distributed computing

to train learning models over massive geographical datasets. However, unlike Tran et al. [61],

it explores the use of a feature discretization process before the training of the learning algo-

rithms, and even more importantly, it models both spatial and temporal features as opposed to

only spatial.

Agoua et al. [1] proposed a spatially aware linear regression to predict photovoltaic power

production. Similarly, Cabral et al. [19], and Yadav and Sheoran [67] proposed modifications

to the inner workings of the ARIMA model to deal with spatiotemporal data. In contrast to their

work, this study goes in a different direction, handing off the spatial responsibilities to another

model, and utilizing pure, locally independent ARIMA models to account for the temporal

component. This separation of concerns was also employed by André et al. [4], who built a

linear blend, with fixed weights, of Spatiotemporal Vector Autoregressive (STVAR) and Cloud

Motion Vector (CMV) models. In contrast to André et al., this research utilizes a non-linear

meta-model to learn the weights of the blend as opposed to fixing them.

2.5.2 Neural Networks

Xu et al. [66] proposed a one-step-ahead prediction for taxi demand based on Recurrent Neural

Networks (RNN). The authors claim that many taxi companies still use a naive seasonal average

as their demand forecasting method and argue that sounder methods would enable shorter

waiting times and increased fuel efficiency, translating into cost savings for both drivers and

passengers. Their work leaned on the long-term learning capabilities of the Long-Short Term

Memory (LSTM) networks to model the taxi demand prediction as a sequence forecasting

problem. LSTM networks, which are a type of RNN, contain a memory gating mechanism that

is tuned to allow past observations to contribute to the current network input, and therefore to

28 Chapter 2. Background and Literature Review

influence its final output. The length of that time window from which past observations are

drawn is called the sequence length and had a fixed value of one week in their experiments

to constraint the computing power required to train the model. Similarly, Huang et al. [34]

proposed an LSTM-based approach for crime prediction while also overcoming the limitations

of the fixed sequence length by using an attention mechanism that enabled the network to pay

more attention to parts of the input sequence. Wang et al. [63] demonstrated another LSTM-

based technique that accounted for spatial sparsity by reducing the geographic plane into a

geographical graph, where nodes were disjoint regions determined by zip-code and edges were

placed according to a statistical process. In contrast to their work, this research relies on time

series models that learn the optimal sequence length during the tuning process and deals with

sparsity by facilitating the use of arbitrary spatial and temporal resolutions.

Liao et al. [41] investigated the use of Deep Neural Networks (DNN), in particular, ST-

ResNet and FLC-Net, to forecast taxi demand. The authors reckoned that the challenges in

making spatiotemporal predictions are caused by strong dependencies in three different realms:

time, space, and external factors (e.g., weather, and holidays). Hence, the DNNs they exam-

ined were selected because their architectures were explicitly designed to deal with both space

and time simultaneously: ST-ResNet [64], which is a weighted blend of Convolution Neu-

ral Networks (CNN) trained on near-term, mid-term, and long-term data; and, FLC-Net [37]

which is a fused Convolutional-LSTM [22] approach, also trained with near, intermediate, and

distant time horizons. Their [41] experimental results, however, surprisingly revealed that the

fusion of models in different temporal horizons had more impact in the results than the specific

choice of DNN, with Feed-Forward networks outperforming all models when such fusion was

not in effect. Moreover, the dependence on convolutional operations resulted in a computation-

ally expensive architecture when dealing with large geographical regions, even after several

optimizations to compact the representation of the data used in the convolution window [41].

The framework proposed in this thesis, however, does not rely on a spatial window to capture

spatial patterns, but instead uses the spatial position as an input feature and never instantiates

2.5. Literature Review 29

a spatial grid in memory. This representation of the geographical space, akin to an adjacency

list as opposed to a matrix, has lower memory requirements and potentially works better with

sparse data.

Furthermore, to achieve reasonable training times, all the aforementioned neural network

techniques were tested in machines with highly capable GPUs. Due to the high cost of such

hardware, this work favoured techniques that have reasonable training time on CPUs, enabling

the deployment of the proposed framework on cheap commodity hardware, even for consider-

ably large datasets.

2.5.3 Ensemble Models

Reich et al. [52] compiled a seven-year benchmark of influenza forecasts across the United

States. Initially, they commented on how near-real-time forecasts of influenza, fuelled by the

promise of Big Data, could positively impact the public health response to disease outbreaks.

Then they analyzed the performance of twenty-two different models, showing that they con-

sistently outperformed the historical baseline in week-ahead forecasts over multiple influenza

seasons. One important shortcoming that arose in their study was the degradation of the relia-

bility of the forecasts as the prediction horizon became more distant. In other words, in their

experiments, most models became less reliable than the baseline after the forecasting horizon

expanded further than four weeks, leaving public health officials with little time to prepare.

Currently, the proposed research does not contemplate multi-step forecasting and instead fo-

cusses only on the next step, for example, the next hour or the next day, depending on the

required prediction resolution.

Another notable aspect of their work [52] is the performance and stability gains they

achieved by combining several base models into weighted ensembles. Likewise, Ray et al.

[51] also argued that forecasting stability is crucial in any application in the health domain, so

much so that public health officials would favour a trustworthy stable ensemble model over an-

other model that frequently had better performance, but that at times gave extremely diverging

30 Chapter 2. Background and Literature Review

results [51]. In accordance with their work, this research absorbs this concern for stability and

also relies on a pool of base models as opposed to conceding the forecast responsibility to a

single one. Furthermore, unlike Vanichrujee et al. [62], it uses a blending model to weight

the base learners’ predictions as opposed to a fixed weighting scheme based on the individual

ranked performance of each base model.

Alves et al. [3] demonstrated that tree-based ensembles are highly capable of predicting

crime density at the city level based on socio-economic indicators. Unlike Alves et al. [3],

this research does not directly use such features in its experiments section to keep the results

agnostic of domain features, so that only the merits of spatiotemporal modelling can be com-

pared. However, it leaves the option for users to do so easily in their own experiments. In fact,

the addition of up-to-date domain specific features is expected to lift performance substantially

[3].

2.6 Summary

This chapter has presented a background view of the techniques that support the proposed

framework. It started by describing feature discretization methods pertinent to spatiotempo-

ral datasets. These methods are used by the Spatiotemporal Forecasting Framework to build

its representation of temporal and spatial features. It also introduced one of the most popular

time series forecasting models, ARIMA. It also dived into machine learning techniques that

support spatiotemporal forecasting at scale: ensembles of randomly sampled trees; blending

models that promote diversity and stability; a training strategy that allows for the training of

local models; and an evaluation strategy that is suitable for temporal data. These techniques are

what power the multistage machine learning pipeline employed by the Spatiotemporal Fore-

casting Framework. In addition, this chapter portrayed ways in which distributed computing

can help to scale preprocessing and machine learning tasks on top of Big Data. This use of

distributed computing is what enables the Spatiotemporal Forecasting Framework to scale to

2.6. Summary 31

large volumes of data. Finally, this chapter reviewed the available literature on spatiotempo-

ral forecasting, inspecting techniques based on linear models, neural networks, and ensemble

models in diverse domains. To enable accurate and stable spatiotemporal forecasting at arbi-

trary resolutions despite the challenges posed by Big Data and without the shortcomings of

the reviewed techniques, this research proposes a framework based on a distributed multistage

machine learning pipeline: the Spatiotemporal Forecasting Framework.

Chapter 3

Spatiotemporal Forecasting Framework

The popularity of smartphones, wearables, IoT, and many other GPS-enabled devices, points

to a future of endless streams of spatiotemporal data arising from diverse knowledge domains.

Machine Learning and Time Series Forecasting emerged as disciplines that could approx-

imate the future value of a given measurement in a dataset and turn it into actionable infor-

mation. The forecasts, however, require the training of learning models on historical data, and

since that amount of data is expected to keep growing following the Big Data trends, it is fitting

to devise a framework that can scale that training.

Hence, the primary objective of this research is to support spatiotemporal forecasts at the

scale of millions of records. To do so, the proposed framework mounts each of its components

on top of a distributed computing backbone, represented in the outer layer of Figure 3.1, which

enables on-demand addition of new machines to handle heavier workloads. In turn, its internal

components also promote parallelism whenever possible, resulting in a system that is highly

horizontally scalable (Section 2.4). Therefore, throughout this chapter, where other viable

techniques existed, this work leaned towards options that conferred more scalability, adhering

to end-to-end scalability by design.

Figure 3.1 illustrates the top-level components of the proposed framework. The goal of

this chapter is to present in detail the inner workings of each component and how they inte-

32

33

Figure 3.1: Spatiotemporal Forecasting Framework Overview.

34 Chapter 3. Spatiotemporal Forecasting Framework

grate. This chapter is divided as follows: Data Preprocessing, including the discretization,

cleaning, and aggregation processes, and Multistage Machine Learning Pipeline, comprising

the geographically global and local models as well as the blending model.

3.1 Data Preprocessing

This section describes the preprocessing steps that are performed before the data enter the ma-

chine learning pipeline, namely: temporal discretization, spatial discretization, data cleaning,

and large scale aggregation.

Since the essence of this work is to produce forecasts of summaries of events in space and

time, and ultimately to report that information to humans, a discretization of both space and

time is required in order to map a continuous range of values into bins (aggregates or buckets).

The aggregation of values into buckets has the effect of reducing the overall amount of

data and summarizing information into more meaningful chunks [36]. The former reduces the

computing time, and the latter diminishes the cognitive load on the user of the application.

Furthermore, it is worth noting that every preprocessing transformation described in this

section was carefully designed down to the bit level. This low-level optimization is important

since these operations are literally executed millions of times in the preprocessing block.

3.1.1 Temporal Discretization

This work utilizes an Equal Width Discretization (EWD) of the temporal component, a tech-

nique that has been extensively explored in the literature [26] and is directly related to common

temporal aggregates (e.g., day, hour, minute). Discretizing over such fixed width intervals al-

lows the framework to answer forecasting questions that are closer to the cultural norm: for

example, what is the forecasted value for the next hour?

Furthermore, this research work utilizes the Unix Epoch, also known as POSIX Time, to

represent timestamps. The POSIX Time is a count of the number of seconds elapsed since

3.1. Data Preprocessing 35

Original Timestamp Grain String Representation POSIX Time Result
Minute 2019/08/08 09:40:00 1565257200

2019/08/08 09:40:40 Hour 2019/08/08 09:00:00 1565254800
Day 2019/08/08 00:00:00 1565222400

Table 3.1: Examples of timestamp truncations at arbitrary resolutions.

midnight, January 1st, 1970 (also known as Epoch Zero) and is encoded as a 64-bit integer.

With this encoding, the discretization operation becomes fast to compute since it can be done

via an integer truncation: one integer division followed by one multiplication.

The discretization of a timestamp involves choosing its adequate grain size (also referred

to as resolution), for example, one hour, and then zeroing all finer grains below it: minutes

and seconds. Table 3.1 illustrates the process of truncating an arbitrary timestamp (2019/08/08

09:40:40) to different grain sizes, which can be seen as a transformation that squashes a contin-

uous time interval into a fixed discrete interval. In the table, the 64-bit integer result is obtained

by starting with 1565257240 (the POSIX Time equivalent of the original timestamp) and per-

forming an integer division (i.e., ignores the remainder) by the number of seconds in the grain,

followed by a multiplication by the same factor.

In addition to a fast truncation, the choice of the Unix Time encoding also enables fast

integer-based comparison operations such as filtering and ordering, both of which are of com-

pelling relevance throughout this research.

3.1.2 Spatial Discretization

Whereas an equal width discretization, that squashed a continuous time interval into discrete

temporal bins ordinarily used by humans was possible, a spatial EWD with the same char-

acteristics was not. This impossibility stems from the fact that humans often conquered new

territories through a series of challenging endeavours (e.g., wars, rough terrains), resulting in

geographical regions that broadly vary in shape and size.

Relying on a spatial discretization process based on human-based knowledge would be

preferable in terms of communicating the results of forecasts, because it would be closer to the

36 Chapter 3. Spatiotemporal Forecasting Framework

Original Location Grain 2-D Coordinates 1-D Index Result
19m2 42.9958849,-81.2778856 -8633697493758771200

42.9959039,-81.2778887 79000m2 42.9957268,-81.2780361 -8633697494468919296
1.2km2 42.9922132,-81.2794123 -8633697508427563008

Table 3.2: Examples of the discretization of spatial coordinates at arbitrary resolutions.

traditional norm, but it would dramatically hinder the performance of one critical preprocessing

operation: hierarchical indexing, which is heavily utilized in the large scale aggregation.

In other words, the spatial part of the aggregation process is responsible for reducing a

cloud of nearby location points with their individual measurements into a single point with

a summary measurement. Thus, with human-based discretization and its arbitrarily shaped

and sized regions, the finding of the right bucket to place a point would require a search for

nearby regions’ polygons centers, followed by another operation to find which of these poly-

gons contained the point; both of these are computationally expensive, making the operation

impractical at scale. Another dangerous effect that arises from utilizing regions with widely

different sizes is the potential to increase data skewness in the aggregation phase. That is, one

vast region could end up holding most of the points, while many other small regions would end

up containing almost none, risking memory bottlenecks in the aggregation phase.

Hence, in order to benefit from faster hierarchical indexing, and easiness to operate at dif-

ferent grains (e.g., province, city, city block), this work utilizes a grid-based discretization.

More specifically, this work favours a squared kind of grid, which when indexed with a space-

filling Hilbert Curve, has higher locality of reference than triangular or hexagonal grids. This

means that, cells that are close on the Hilbert curve are also close in space, although the con-

verse does not always hold. The reason behind this is that this work aims to utilize the spatial

index beyond the aggregation process, taking advantage of the increased locality of reference

to power a spatially compact machine learning feature [21].

Table 3.2 exemplifies the translation from a pair of latitude and longitude coordinates in

a continuous 2-dimensional space, to a unique 1-dimensional 64-bits identifier on the Hilbert

Curve over the Earth-cube at arbitrary grains (i.e., cell areas). Table 3.2 also depicts the hierar-

3.1. Data Preprocessing 37

chical properties of the index: a location has a common index prefix, highlighted in boldface,

even at different resolutions.

A concrete visual example of the discretization process described in this section, followed

by an aggregation of the event counts and magnitude, can be seen in the transformation from

Figure 3.2 to Figure 3.3. Figure 3.2 illustrates an example of spatial events (earthquakes in

the state of California) distributed over a continuous space, forming a cloud of location points,

whereas Figure 3.3 illustrates the resulting grid of disjoint squared cells with their compiled

measurements. Visualizations were built on Kepler.gl1 with publicly available data from the

Northern California Earthquake Data Center (NCEDC) portal2.

3.1.3 Data Cleaning

Spatiotemporal datasets are prone to two primary sources of input error: drifting system clocks

and imprecise GPS measurements. To avoid passing incorrect data down the pipeline, this

framework implements a data cleaning layer that allows the filtering of out-of-range times-

tamps (i.e., too far back in the past or in any form of future) as well as the filtering of out-of-

region points via a bounding multi-polygon.

Clocks can often drift (i.e., differ from the reference clock) depending on the precision of

the mechanism they use to count time (e.g., quartz crystals, pendulum, atom). Although this

drift can result in small shifts in the discretized timestamp, this research is more concerned

with imprecisions that are large enough (e.g., years before or after the true timeline of events)

to create outliers that can compromise the learning stage in the machine learning pipeline [26].

Therefore, the temporal filtering component allows the user to input a start and end timestamp

that will be used to crop the dataset timeline and discard temporal outliers.

The Global Positioning System (GPS) is a satellite-based navigation system that can iden-

tify the position of a receiver on Earth and express it as a pair of latitude and longitude co-

1https://kepler.gl/
2http://service.ncedc.org/

https://kepler.gl/
http://service.ncedc.org/

38 Chapter 3. Spatiotemporal Forecasting Framework

Figure 3.2: Earthquakes in the state of California from 1967 to 2018. Each point represents the
source of an earthquake event.

3.1. Data Preprocessing 39

Figure 3.3: Earthquakes in the state of California from 1967 to 2018 after discretization and
aggregation processes. Each 2500 km2 squared cell summarizes the earthquake events that
happened within that region. Taller cells indicate a larger number of occurring events and
darker colors indicate a larger average magnitude.

40 Chapter 3. Spatiotemporal Forecasting Framework

Figure 3.4: A geo-located polygon (in red) representing an area of interest.

ordinates. However, land features such as buildings and mountains can pose obstacles to the

transmission path between satellite and receiver, resulting in an approximated position that can

be far away from its real value. Because of this, the proposed framework allows the user to

specify a collection of geo-located polygons that will be utilized to crop the desired regions of

the map. An example of this type of spatial filter is shown in Figure 3.4, where only points

inside the region contained in the polygon are kept.

3.1.4 Large Scale Aggregation

After the data have been discretized and cleaned, many events that happened at different times

and places when determined at finer grain size will collide, generating multiple measurements

for a given place and time. Although most of the domain-specific applications analyzed in this

study could be supported by a pure summation of measurements, this work supports different

summarization procedures through a User Defined Aggregate Function (UDAF) that follows

3.1. Data Preprocessing 41

the signature of Function 3.1.

mergeFunction(initialValue:Double, x:Double, y:Double) −→ Double (3.1)

The merge function takes an initial value, two double-precision numbers, each from one

colliding event, and returns a single double-precision that expresses the desired behaviour (e.g.,

sum, min, max, count). For example, the number of taxi pickups at any given hour in a given

city block is equal to the sum of all pickups that happened within that hour and city block,

independent of the more precise minute or street at which they actually happened. To support

this summary behaviour, the mergeFunction would have an initialValue of zero and would be

recursively called to count each pair of colliding events and increment its count until it ran out

of pairs.

This stage is the most resource intensive in the preprocessing pipeline. Therefore, to sup-

port the aggregation of millions of spatiotemporal events into meaningful measurements, this

research makes use of a distributed computing cluster, where the merging of colliding event

pairs can happen in parallel and later be reduced across machines.

Moreover, both the aforementioned discretization processes refer to a decision regarding

the appropriate grain. Although it is very likely that the decision is going to be application

driven (i.e., based on the desired outcome of the target application), it is of utmost importance

to consider its impacts in the rest of the pipeline. In fact, choosing finer resolutions for time

(e.g., minutes) or space (e.g., street level) over large temporal intervals and vast regions will

lead to an enormous number of records overall, substantially degrading the performance of any

data-driven application that runs on top of it.

Table 3.3 puts together a few spatiotemporal records along with their truncated represen-

tations in space (5188km2 cell area resolution) and time (day resolution). Table 3.4 shows

the aggregated results considering a density-based count as the mergeFunction. The truncated

timestamps (TS) of the first three records collides in the same day, and their truncated locations

also lead to the same spatial cell. Therefore they get merged, resulting in a count of three. Fi-

42 Chapter 3. Spatiotemporal Forecasting Framework

Original TS Truncated TS Original Location Truncated Location
1566691200 1566691200 -8633697493758909797 -8633752329390129152
1566723600 1566691200 -8633701486735168543 -8633752329390129152
1566766800 1566691200 -8633701643754327097 -8633752329390129152
1566777600 1566777600 5535525082222034515 5535557260735938560
1566810000 1566777600 5534362237210301769 5534431360829095936
1566853200 1566777600 5534365754237559225 5534431360829095936

Table 3.3: Spatio-temporal records before aggregation. Timestamp (TS) and location are rep-
resented by the POSIX Time and the index in the Hilbert Curve respectively.

Truncated Timestamp Truncated Location Density Count
1566691200 -8633752329390129152 3
1566777600 5535557260735938560 1
1566777600 5534431360829095936 2

Table 3.4: Records after density-based spatiotemporal aggregation.

nally, the truncated TS of the last three records also resolve to the same day, but their locations

only collide for the last two. Therefore only the last two get merged, resulting in a count of

two and a separate count of one for the left-out location.

3.2 Multistage Machine Learning Pipeline

In order to provide more freedom in the choosing of spatial and temporal resolutions for fore-

casting tasks over big data sets, while maintaining acceptable performance, this work proposes

a multistage machine learning pipeline that can be easily distributed across commodity hard-

ware.

More specifically, this pipeline is composed of two families of base models that work at

different hierarchical geographical levels: a geographically global model that accounts for the

entire observed region, and a collection of geographically local models that individually ac-

count for the single spatial cell that they observe. This nomenclature is taken from Cressie

and Wikle [23] which note how models trained on local vs global scenarios can learn distinct

patterns, some times even contradicting each other. These models also differ in the type of data

they are more capable of modelling, with the former capturing spatiotemporal patterns without

3.2. MultistageMachine Learning Pipeline 43

concern for sequentially in the data, and the latter capturing the sequentiality in the data while

being unable to model space varying patterns.

Finally, this pipeline is augmented with a blending model that is responsible for deciding

on what the final prediction should be, given the original inputs and the predictions that were

made by the base models. The following sections explain these components and how they

interact.

3.2.1 Geographically Global Model

Although time series (e.g., ARIMA) and geostatistics (e.g., GWR) based approaches have had

their share of success in spatiotemporal forecasting problems [72][55][52][20], one of their

major drawbacks is that they require the entire training data set to fit into memory [42][30],

making them unfit to handle Big Data scale problems.

In order to scale the training of a global model over a vast geographical region, at arbi-

trary resolutions, this work employs as one of its learning algorithms, a non-linear tree-based

ensemble such as the Stochastic Gradient Boosted Trees. The advantages of this approach

are two-fold: ensemble models can be trivially parallelized and do not require that all data fit

in memory [18], and a non-linear model can hierarchically partition the space and effectively

capture global and local relationships [8].

Furthermore, the fact that each individual model in the ensemble is given a sample of the

original data, and that the models’ computation can be broken down into independent tasks, en-

ables the training of the ensemble in a distributed fashion. In other words, computing steps can

operate in parallel across different machines in a cluster, resulting in a faster training process.

The Geographically Global Model takes as input the features listed in Table 3.5. It is worth

noting that although most of the time-based features are standard in time series problems, the

spatial feature is not. This work moves away from the typical spatial features (i.e., latitude

and longitude) and explores the use of the position in the Hilbert space-filling curve described

in Section 2.1.2. It does so to provide the model with a more compact representation of the

44 Chapter 3. Spatiotemporal Forecasting Framework

Feature Name Description Example
CellId Index on Hilbert curve over the earth cube -8633697494468919296
Year Year 2019

Month Month 8
Day Day 16
Hour 24h hours 4

Timestamp POSIX Time 1565971200
WeekDay Day of week (1 to 7; from Sun to Sat) 1
IsWeekend 1 if Saturday or Sunday, 0 otherwise 1

Table 3.5: Geographically Global Model Input Features

geographical space (one dimension as opposed to two).

This tree-based ensemble is then tuned via grid-search with respect to the number of trees,

maximum depth, and the maximum number of bins while being evaluated on folds generated

by the time-sliding cross-validation process described in Section 2.3.4. After this, this model

is then ready to predict on new records and thereby to assist the blending model in computing

the final prediction.

3.2.2 Geographically Local Models

To take advantage of the success of time series models in the modelling of spatiotemporal prob-

lems while mitigating their memory constraints, this work leans on a Local Learning strategy

backed by a spatial partitioning. These models are built using the following procedure:

1. Data Reduction. The input data are projected to contain only the space component at a

chosen resolution, the time component, and the target value (i.e., label). This transfor-

mation reduces the amount of data intake and avoids the higher computational costs of a

multivariate model.

2. Spatial Partitioning. The input data are spatially partitioned by cellId at the original

resolution. The effect of this spatial partitioning is demonstrated in the transformation

from Table 3.6 to Table 3.7, where records with the same cellId are grouped in the same

local dataset. Optionally, the input data can be partitioned at lower spatial resolutions

3.2. MultistageMachine Learning Pipeline 45

cellId timestamp label
cellId1 ts2 label1

cellId3 ts1 label2

cellId3 ts2 label3

cellId1 ts1 label4

Table 3.6: Sample spatiotemporal data. The label is the measured value at the given cellId and
timestamp (e.g., number of taxi pickups).

cellId Local Dataset
cellId1 [(ts2, label1), (ts1, label4)]
cellId3 [(ts1, label2), (ts2, label3)]

Table 3.7: Data from Table 3.6 after the spatial partitioning step. Records that belonged to the
same spatial cell were grouped together, forming an independent dataset at each location.

and aggregated to reduce the number of resulting spatial cells and fit smaller computa-

tional budgets at some loss of accuracy. Figure 3.5 illustrates a spatial partitioning at the

following three resolutions: 79000 m2, 0.32 km2, and 1.27 km2. In the figure, it can be

seen how altering the spatial resolution affects the area and number of cells.

3. Local Time Series Construction. The records in each local dataset are chronologically

ordered by timestamp, resulting in one local time series per cellId. Then, each local time

series is subjected to linear interpolation to fill the missing values.

4. Local Learning. With data clustered in these local time series at arbitrary spatial dimen-

sions (e.g., neighbourhood, city, state level), Local Learning is employed to build multi-

ple independent models that represent the space as a whole. Under this creation strategy,

one time series forecasting model is built to address the patterns in each particular clus-

ter (hence the name, geographically local model). For example, Figure 3.6 represents a

squared grid over Manhattan in which one time series model would be trained for each

marked squared cell.

5. Tuning. These models undergo an optimization of hyper-parameters via the Akaike

Information Criterion (AIC) [56] and become ready to issue predictions.

46 Chapter 3. Spatiotemporal Forecasting Framework

Figure 3.5: Three spatial grids covering the same geographical region (not to scale) at different
resolutions. The higher-resolution grid at the bottom has cells of an approximate area of 79000
m2, the intermediate-resolution grid in the middle has cells of an approximate area of 0.32 km2,
and the lower-resolution at the top has cells of an approximate area of 1.27 km2.

3.2. MultistageMachine Learning Pipeline 47

Figure 3.6: A discretized map of Manhattan. Each marked cell holds its own time series.

48 Chapter 3. Spatiotemporal Forecasting Framework

In summary, the benefit of employing a lightweight, independent, univariate time series

model per disjoint location is that it becomes trivial to scale to large regions and fine resolu-

tions. In other words, an increase in the number of mapped locations or in the resolution grain

can be linearly compensated for by adding more machines to the computing cluster.

3.2.3 Blending Model

A natural consequence that emerges from the choosing of the tree-based models for the Geo-

graphically Global Model presented in Section 3.2.1 is that data will be modelled as static. In

other words, the GGM assumes independence between consecutive records, and therefore will

lose the sequential patterns in the data. However, because each node of the tree can bipartition

the space represented by the cellId, it is expected that spatial relationships (e.g., distances from

location to location) are adequately captured. On the other hand, the times-series based mod-

els chosen for the Geographically Local Models presented in Section 3.2.2 will shine in the

sequence forecasting, but will not capture spatial patterns because they assume independence

between spatial cells.

Hence, these models are preferred as base learners for the problem of spatiotemporal fore-

casting at scale: each family of model addresses one part of the problem while keeping up with

the parallelism necessary to handle Big Data, given that the latter model is trained through

Local Learning. Moreover, although other families of models, such as Neural Networks, could

have been included, doing so would have incurred higher computational costs and added more

complexity to managing the pipeline in a production environment. In other words, there is

a trade-off between accuracy in predictions and the number of models included in the base

models layer.

Figure 3.7 displays a class diagram with the high-level classes and interfaces that support

the Spatiotemporal Forecasting Framework. In the figure, a GGMView portrays a Dataset

containing records that are compatible with the schema that the GGM accepts. The same

notion is valid for the GLMsView and BlendingView. Moreover, the schemas for all such

3.2. MultistageMachine Learning Pipeline 49

Figure 3.7: Supporting Class Diagram.

records are shown, as well as the signatures of relevant methods.

Algorithms 2 through 4 and the accompanying interaction diagrams 3.8 through 3.10 de-

scribe the strategy employed to build a geographically global model, a collection of geograph-

ically local models, and a blend of these two while respecting the time series constraints and

avoiding data leakage.

After preprocessing, the dataset is split into trainBaseModels, trainBlendingModel, and test, with-

out shuffling, so that those slices are consecutive in time. Then the pipeline proceeds as follows:

• Stage 0 — Training Of The Base Models. Both the geographically global model and

the geographically local models are trained and tuned over the trainBaseModels dataset.

They build their views of the training data and run in a distributed fashion. As mentioned

before, the GGM is trained globally, whereas each GLM is trained only on the records

that pertain to the spatial cell that it observes. This training procedure is formalized in

Algorithm 2 and illustrated in its accompanying diagram depicted in Figure 3.8.

• Stage 1 — Training Of The Blending Model. All base models make predictions

50 Chapter 3. Spatiotemporal Forecasting Framework

Figure 3.8: Stage 0 - Training Of The Base Models.

on the trainBlendingModel, and then the blending model is trained and tuned over a sub-

set of the original features augmented with predictions of the base models, denoted as

train∗BlendingModel. The augmentation originates from the join operations in Algorithm 3

where the predictions of the base models are introduced into the input dataset that the

blending model receives. Furthermore, the reserved trainBlendingModel, with no intersec-

tion with trainBaseModels, is necessary to guarantee that the blending model never sees

the same data as the base models in the ensemble, and its size is required to be small

to avoid massively overfitting the data [59]. Because of this smaller size, the choice of

what machine learning model to use when blending does not have the same scalability

requirements as the base models do. A more important requirement for it is non-linearity

because the best representation of the relationship between the contributions of the base

models and the subset of original features can be non-linear. For this reason, a stochastic

gradient boosted trees ensemble is also utilized as the learning algorithm in the imple-

3.2. MultistageMachine Learning Pipeline 51

Algorithm 2 Stage 0 - Training Of The Base Models
Require:

dataset to be a spatiotemporal dataset with a timestamp and a cellId
Train to be an operation that optimizes a models’ hyperparameters and fits it to the input
data
proportions to be an array of percentages by which to split the dataset
SplitOn to be a function that chronologically slices a dataset
GGM to be a Geographically Global Model
GLMs to be a collection of Geographically Local Models

temporalIndex← Chronological index of dataset based on timestamp
[trainBaseModels, trainBlendingModel, test]← dataset.SplitOn(temporalIndex, proportions)
baseModels← TrainBaseModels(trainBaseModels)

function TrainBaseModels(dataset)
. Execution of GGM and GLMs code is independent and distributed

ggm← GGM()
glms← GLMs()
baseModels← [ggm, glms]
ggmView← GGMView.BuildFrom(dataset)
glmsView← GLMsView.BuildFrom(dataset)

.Project()

.Partition()

.Sort()
ggm.Train(ggmView)
for cellId in glmsView do . parallel loop

glms[cellId].Train(glmsView[cellId])
return baseModels

mentation of the blending model in the Spatiotemporal Forecasting Framework. This

procedure, where the predictions of the base models are utilized to influence the training

of the blending model, is formalized in Algorithm 3 and illustrated in its accompanying

diagram depicted in Figure 3.9.

• Stage 2 — Predicting With The Blending Model. Once the blending model has learned

how to weight the inputs and the contributions of the base models in Stage 1, these in-

termediate models are then used to predict on the test set (test), generating a new test set

(test∗) on which the blending model can make predictions. Then the predictions of the

blending model are returned as the final output of the ensemble. This prediction proce-

52 Chapter 3. Spatiotemporal Forecasting Framework

Algorithm 3 Stage 1 - Training Of The Blending Model
Require:

Train to be an operation that optimizes a models’ hyperparameters and fits it to the input
data
Join to be a function that joins datasets
baseModels to be the fitted base models defined in Algorithm 2
trainBlendingModel to be the dataset split defined in Algorithm 2

blendingModel← TrainBlendingModel(trainBlendingModel)

function TrainBlendingModel(trainBlendingModel)
newFeatures← PredictWithBaseModels(baseModels, trainBlendingModel)
train∗BlendingModel ← Join(trainBlendingModel, newFeatures).on(cellId, timestamp)
blendingView← BlendingView.BuildFrom(train∗BlendingModel)
blendingModel← BlendingModel()
blendingModel.Train(blendingView)
return blendingModel

function PredictWithBaseModels(baseModels, ds)
. Execution of GGM and GLMs code is independent and distributed

(ggm, glms)← baseModels
ggmView← GGMView.BuildFrom(ds)
glmsView← GLMsView.BuildFrom(ds)

.Project()

.Partition()

.Sort()
ggmPredictions← ggm.Predict(ggmView)
glmsPredictions← Dataset()
for cellId in glmsView do . parallel loop

glmsPredictions.append(glms[cellId].Predict(glmsView[cellId]))
return Join(ggmPredictions, glmsPredictions).on(cellId, timestamp)

3.2. MultistageMachine Learning Pipeline 53

Figure 3.9: Stage 1 - Training Of The Blending Model.

dure is formalized in Algorithm 4 and illustrated in its accompanying diagram depicted

in Figure 3.10.

In essence, each base model predicts a number, and the blending model considers these

well-thought-out guesses in addition to the original features to predict the outcome of the

framework. A concrete example of this would be forecasting visits to a coffee shop at a given

cellId and timestamp. In this scenario, a GGM backed by a Stochastic Gradient Boosted Trees

(GBT) ensemble could predict a value of 10 visits. A GLM backed by an ARIMA model at

that cellId could predict 20. A blending model backed by another GBT could predict 12 visits

as the final output of the framework, based on how much importance it has learned that the

input and the base models have in predicting the outcome (i.e., the models’ coefficients learned

during the training).

54 Chapter 3. Spatiotemporal Forecasting Framework

Figure 3.10: Stage 2 - Predicting With the Blending Model.

3.3 Summary

This chapter has presented the data preprocessing components of this work, as well as its multi-

stage machine learning pipeline blocks. The data preprocessing contemplated the discretization

of temporal and spatial variables via equal width discretization methods, the data cleaning via

customizable temporal and spatial filters, and the large scale aggregation via a user-defined

aggregation function that made it possible to choose arbitrary spatial and temporal resolutions.

The multistage machine learning pipeline envisioned a geographically global model that took

the entire training data as input, a collection of geographically local models each trained on its

local time series, and a blending model that was responsible for issuing the final prediction of

the framework based on the response of the other models.

3.3. Summary 55

Algorithm 4 Stage 2 - Predicting With the Blending Model
Require:

baseModels to be the fitted base models defined in Algorithm 2
blendingModel to be the fitted blending model defined in Algorithm 3
test to be the dataset split defined in Algorithm 2
PredictWithBaseModels to be the function defined in Algorithm 3
Join to be a function that joins datasets

finalPrediction← PredictWithTheBlendingModel(test)

function PredictWithTheBlendingModel(test)
newFeatures← PredictWithBaseModels(baseModels, test)
test∗ ← Join(test, newFeatures).on(cellId, timestamp)
blendingView← BlendingView.BuildFrom(test∗)
finalPrediction← blendingModel.Predict(blendingView)
return finalPrediction

Chapter 4

Evaluation

This chapter covers the evaluation of the proposed framework. It starts by describing the im-

plementation details of each component in the framework and discussing the supporting tech-

nologies. Finally, it presents three experiments, backed by different datasets, which shed light

on the expected performance of the proposed research in diverse scenarios.

4.1 Implementation

This section presents implementation details that are pertinent to the development of the pro-

posed research. The implementation of the proposed framework is guided by valuable software

engineering principles: single-responsibility, maintainability, simplicity, and scalability.

The majority of its components are written in Scala1, a statically typed, high-level language

that runs on the Java Virtual Machine (JVM). Furthermore, most components are accompanied

by an extensive test suite written with the ScalaTest2 framework that verifies the desired be-

haviour, serves as documentation, and enables less error-prone modification of the codebase.

Moreover, because components are designed with single responsibility and dependency inver-

sion in mind, they are easier to maintain and evolve.

1https://www.scala-lang.org/
2http://www.scalatest.org/

56

https://www.scala-lang.org/
http://www.scalatest.org/

4.1. Implementation 57

The rest of this section is organized as follows: first, the packaging and deployment of the

software is described; then a brief introduction to the underlying distributed computing frame-

work is given; next, a high-level description of the implementation of the data preprocessing

components is provided; finally, an overview of the implementation of the multistage machine

learning pipeline is presented.

Software Packaging and Deployment

This research used Docker3 container images in order to provide a unit of software that can

be easily packaged and deployed into commodity hardware, providing a seamless deployment

across machines in a cluster.

A Docker image is a lightweight software package that contains the application code and all

its dependencies, enabling applications to run reliably even when transferred from one comput-

ing environment to another [11]. Docker containers, like virtual machines, allow for resource

isolation (e.g., file system, network), but are much more lightweight than virtual machines [11].

This reduced resource footprint stems from the fact that containers run on top of a host Oper-

ating System (OS), as opposed to running on its own guest OS, as it is the case with virtual

machines. Figure 4.1 illustrates this resource management strategy difference between Docker

containers and virtual machines.

Distributed Computing Framework

The distributed computing foundation of the proposed research was implemented on top of

Apache Spark, allowing the inner components of the framework to scale horizontally to meet

the demanding resource requirements of Big Data [6].

Apache Spark4 is an open-source distributed computing framework that employs a clus-

ter of worker nodes to process tasks in parallel [7]. In Spark’s programming model, a driver

program acquires executors from a cluster manager and implements the control-flow of an ap-

3https://www.docker.com/
4https://spark.apache.org/

https://www.docker.com/
https://spark.apache.org/

58 Chapter 4. Evaluation

Figure 4.1: Docker Containers vs. Virtual Machines [25].

plication by handing off tasks to those executors. Architecturally, worker nodes are computing

machines, executors are workers’ processes that run tasks, and a task is a unit of work that is

sent by the driver to one executor [70]. Figure 4.2 illustrates this architecture.

The Resilient Distributed Dataset (RDD) is Spark’s abstraction of an immutable collection

of records partitioned across machines [69]. RDDs also provide abstractions for a wide range

of high-level, coarse-grained parallel operations, such as Map, Filter and Group-by, which can

accommodate a diverse set of data workflows while providing scalability and fault tolerance.

Together, these abstractions yield a remarkably powerful data-processing framework because

they enable developers to execute high-level operations while abstracting distribution and fault

tolerance concerns.

The sample code in Listing 4.1 illustrates a simplistic example where Apache Spark is

utilized to read a spatiotemporal dataset and count only records that happened in Manhattan

in 2019. In the code, the dataset itself is transparent to the user, who, independently of the

original dataset size or record placement in each worker’s partitions, can filter and request a

count of the desired records. In the same code snippet, one filter accepts an equality-based

comparison over the timestamp, while the other accepts a user-defined function that can verify

whether a cell identifier lies within the Manhattan region. Spark’s execution engine chains

these filter statements and defers their execution until the ”count” action is issued. This lazy

4.1. Implementation 59

Figure 4.2: Spark Cluster Architecture Overview [60].

evaluation strategy allows for operations to be coupled and executed with a single pass through

the dataset, saving substantial amounts of time in preprocessing tasks.

Listing 4.1: Sample of a short Spark program that filters spatiotemporal records that happened

in Manhattan in 2019.

val dataset = spark.read.load(inputPath)

.filter(year($"timestamp") === 2019)

.filter(isInsideManhattan($"cell_id"))

.count()

Data Preprocessing

At a high level, the data preprocessing components were implemented as follows:

Temporal Discretization. The temporal discretization component was implemented via a Map

function over an RDD representing the input dataset. The mapping allowed for the framework

to apply a temporal truncation across all records in the input.

Spatial Discretization. The spatial discretization component was implemented via a subse-

quent map on the same dataset, and because RDD operations are lazy, this did not incur in

another pass through the dataset. This time, however, the map took a function based on the

60 Chapter 4. Evaluation

S2Geometry5 library that knows how to convert GPS coordinates into a cell id at arbitrary res-

olutions.

Data Cleaning. The temporal filter block was implemented via a Filter operation that took a

user-supplied JSON6 document, like the one shown in Listing 4.2, with a start and end times-

tamps and kept only the pertinent records from the RDD. The spatial filter block was imple-

mented via another filter operation that verified whether records’ cell ids lay inside a polygon

of interest. That polygon was backed by an S2Geometry Polygon constructed from a user-

supplied GeoJSON7. Listing 4.3 presents a fragment of such user input, where each pair of

coordinates represents one corner of a geospatial polygon and the last pair is just a repetition

of the first, which serves the purpose of connecting all segments into a triangular region.

Large Scale Aggregation. The large scale aggregation block was implemented via a Group-by

operation that reduced the original RDD into an RDD of density counts at the specified tempo-

ral and spatial resolution. This aggregated dataset was then consolidated in persistent storage

using a columnar format known as Parquet8.

Listing 4.2: Example of a JSON document specifying a temporal filter.

{"start": "2019-08-01T00:00:00", "end":"2019-08-31T23:59:59"}

Listing 4.3: Example of a GeoJSON document describing a spatial filter made up of a triangular

geographical region.

{

"type": "FeatureCollection",

"features": [

{

"type": "Feature",

"properties": {},

5https://s2geometry.io/
6https://json.org/
7https://geojson.org/
8https://parquet.apache.org/

https://s2geometry.io/
https://json.org/
https://geojson.org/
https://parquet.apache.org/

4.1. Implementation 61

"geometry": {

"type": "Polygon",

"coordinates": [

[

[-81.2764048576355, 43.01475191944554],

[-81.28818511962889,43.00210497752506],

[-81.26443147659302,43.002152055337895],

[-81.2764048576355, 43.01475191944554]

]

]

}

}

]

}

Multistage Machine Learning Pipeline

The following blocks portray an overview of the implementation of the machine learning core

of this research:

Geographically Global Model (GGM). The GGM was implemented as a Gradient Boosted

Tree Regressor from the Apache Spark machine learning library (MLLib9). MLLib’s imple-

mentation of decision trees provided a distributed computation of variance that massively sped

up the node splitting process.

Geographically Local Models (GLMs). The GLMs were implemented on top of ARIMA

models from a third-party time series library, named SparkTS10, open-sourced by Cloudera.

The GLMs are themselves a persisted RDD of ARIMA models partitioned by cell id, which

9https://spark.apache.org/mllib/
10https://github.com/sryza/spark-timeseries

https://spark.apache.org/mllib/
https://github.com/sryza/spark-timeseries

62 Chapter 4. Evaluation

are spatially joined with test records in order to issue predictions.

Blending Model. The blending model, like the GGM, is also backed by the MLLib, but it

takes its input features from an intermediate RDD generated by the base models, as opposed to

the original input.

Others. Dataset metrics gathering was implemented via SparkSQL11 operations, the SMAPE

evaluation metric was implemented via a custom Spark regression evaluator, and the time-

sliding cross-validation was implemented via a SparkSQL window function.

4.2 Experiments

This section reports on experimental results that the proposed framework achieved in three

diverse domains: taxi trips in New York City, crimes in the city of Chicago, and visits to places

of interest across Canada. These domains are backed by spatiotemporal datasets, which in

turn are also diverse in several relevant statistics, such as the number of records, time span,

geographical region, and temporal and spatial sparsity. This variability in the characteristics of

input datasets is welcomed and serves the purpose of demonstrating the merit of the proposed

research in different scenarios.

Before the experiments can be presented, a few relevant terms need to be defined. With

regards to sparsity statistics, this study utilizes the definitions of temporal sparsity and spatial

sparsity formalized in equations (4.1) and (4.2), respectively. In Equation (4.1), the temporal

sparsity of a given spatial cell is measured as one minus a fraction between the number of

time intervals that the cell contained and the total number of time intervals in the dataset. In

Equation (4.2), the spatial sparsity at a given time is measured as a fraction between the number

of spatial cells with no neighbours and the total number of spatial cells in the dataset. In this

study, these metrics are reported in their aggregate form (e.g., average, standard deviation),

summarizing data across all available spatial cells for Equation (4.1), and across all temporal

11https://spark.apache.org/sql/

https://spark.apache.org/sql/

4.2. Experiments 63

intervals for Equation (4.2).

temporalSparsity(cell) = 1 −
#local temporal intervals

#global temporal intervals
(4.1)

spatialSparsity(time) =
#spatial cells with no neighbours

#total spatial cells
(4.2)

As for the evaluation metrics, this study makes use of the standard regression metrics, Root

Mean Squared Error (RMSE) and Symmetric Mean Absolute Percentage Error (SMAPE), for-

mulated in equations (4.3) and (4.4), respectively. In those equations, n is the number of

records, Y is the true value of the variable being predicted, and Ŷ is the predicted value:

RMSE =

√√
1
n

n∑
i=1

(Yi − Ŷi)2 (4.3)

SMAPE =
100%

n

n∑
i=1

|Yi − Ŷi|

|Yi| + |Ŷi|
(4.4)

The last definition necessary for understanding the experiments is the definition of the Naive

Model. In this study, the Naive Model is an overly simplistic heuristic commonly used as a

baseline in one-step time series forecasts, which predicts the future value of a variable to be

equal to its current value. For example, under this naive baseline model, a forecast for the

next hour t + 1 would output the variable value at t. This naive model tends to be successful

if there is not enough variability between consecutive values in a time series, and exposing its

performance in an experiment helps in evaluating how much the proposed learning technique

actually learned.

Following are self-contained reports of experiments that ran in a three-machine cluster with

24-cores and 94GB of memory each.

64 Chapter 4. Evaluation

Number of Records Over 1.3 billion
Time Span 2009 to 2018

Geographical Region New York City
Provider New York City Taxi and Limousine Commission

Table 4.1: NYC Taxi Trips – Dataset Statistics

4.2.1 New York City Taxi Trips

The New York City Taxi and Limousine Commission (TLC) provides an open dataset contain-

ing taxi trips in the city of New York since 2009. The more than 1.3 billion records available

have information on the time and GPS coordinates of where pickups and drop-offs happened,

making it one of the most massive spatiotemporal datasets that are openly available to the

public. This dataset and accompanying schemas can be downloaded from the NYC-TLC data

portal12. A summary of a few characteristics of this dataset in its raw form, with no alteration

in comparison to the original source, are reported in Table 4.1.

Data Preprocessing

For this experiment, the Data Preprocessing block was implemented as follows:

Temporal Discretization. The temporal component was discretized into hourly bins to enable

one-step forecasts of one hour, giving enough time for drivers to position themselves in order

to better serve customers.

Spatial Discretization. The spatial component was discretized via a square grid with cells

having an average area of 79000 m2 to account for the mobility range of a car.

Data Cleaning. Data were filtered to be contained in the interval from June 2014 to June 2016

and within the polygon representing the Manhattan region, as shown in Figure 4.3. The cut-off

point at 2016 was necessary because the data provider stopped publishing fine location data to

avoid privacy issues, only reporting on coarse locations since then.

Large Scale Aggregation. After the discretization process, over 400 million records were

aggregated into hourly counts for each spatial cell, resulting in a much smaller dataset with

12https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

4.2. Experiments 65

Number of Records Over 9.6 million
Time Span June 2014 to June 2016

Temporal Resolution Hour
Number of Temporal Intervals Over 17.5k

Temporal Sparsity Avg = 36.8% Std = 37.8%
Geographical Region Manhattan

Spatial Resolution Cells with an average area of 79000 m2

Number of Spatial Cells Over 800
Spatial Sparsity Avg = 0.8% Std = 3.0%

Table 4.2: NYC Taxi Trips – Dataset Statistics After Preprocessing.

just over 9.6 million records. Furthermore, the discretized dataset is characterized by a low

temporal sparsity averaging 36.8% and an extremely low spatial sparsity averaging 0.8%. In

other words, on average, each spatial cell is missing 36.8% of the timestamps contained in the

global timeline, and only 0.8% of the spatial cells do not have at least one neighbour at any

given time. Summary statistics on the final dataset after preprocessing are reported in Table

4.2.

Multistage Machine Learning Pipeline

After preprocessing, the dataset was split into 81% training, 9% blending training, and 10%

testing. The larger training set potentially allows for the learning algorithms to be exposed

to more patterns, whereas the smaller blending training set avoids overfitting the base models

contributions. The remaining records, which are numbered in the high hundreds of thousands,

were reserved for testing. Next, the machine learning models were trained according to the

following scheme:

Geographically Global Model (GGM). One stochastic gradient boosted tree ensemble was

trained over the entire training set. A grid-search with 3-fold time-sliding cross-validation was

utilized to tune the following model hyperparameters: maximum depth, number of iterations,

and maximum number of bins. The considered values for these parameters are reported in

Table 4.3.

Geographically Local Models (GLMs). The training dataset was partitioned into one time

66 Chapter 4. Evaluation

Figure 4.3: Polygons in grey representing the spatial filter over the Manhattan region.

4.2. Experiments 67

Hyperparameter Considered Values
Maximum Depth [3, 5, 6, 10, 15, 20, 25]

Number of Iterations [10, 20, 50, 100, 150, 200, 250]
Maximum Number of Bins [32, 64, 128, 1024, 2048]

Table 4.3: GGM – Stochastic Gradient Boosted Trees Hyperparameters.

series per spatial cell at the 79000 m2 resolution. Then one ARIMA model was trained on

each of these cells and tuned according to the Akaike Information Criterion (AIC), considering

maximum values of p, d, and q to be 5, 2, and 5 respectively. Such thresholds were based

on Nau [48], who stated that in most cases, the optimal values for these parameters are small

integers where p + q ≤ k for some small integer k, and that most of the time, either p or q is

zero.

Blending Model. One stochastic gradient boosted tree ensemble was trained over the blending

training set, taking as input features the base-learners’ predictions, the cell id, the hour, and the

day of the week. A grid-search with 3-fold time-sliding cross-validation was utilized to tune

the same hyperparameters as the GGM. The considered values for these parameters were taken

from the lower half of the ranges utilized for the GGM.

Results

The metrics reported in this section result from applying a one-hour time-sliding window to

a test set (i.e., 10% of the preprocessed data) comprising over 1800 hours from April to June

2016 and more than 800 different spatial cells. The measured RMSE and SMAPE values are

reported for the naive model, the base-learners (GGM, GLMs), and the blending model.

Figure 4.4 illustrates the SMAPE for all models in question. Noticeably, the blending

model sits at the bottom with the lowest error and slightly close to the GGM. Also, it can

be seen that the GLMs clearly performed much better than the naive model, but seemed to

struggle during off-peak hours (7 pm to 3 am). In fact, all the evaluated models struggled to

some extent because fewer taxi trips tend to happen at off-peak hours, leaving relatively fewer

training records available for the models to learn.

68 Chapter 4. Evaluation

Figure 4.4: NYC Taxi Trips – Average SMAPE per hour on a small sample of the testing data.
Timestamps are in the local timezone (EST).

Figure 4.5 depicts the RMSE for all models in question and offers more insight into the off-

peak behaviour. The ranked performance of the models remains the same, with the blending

model still having the lowest error, followed by the GGM, GLMs, and naive models. However,

the RMSE, unlike the SMAPE, decreases during off-peak hours. This pattern might seem

counter-intuitive, but it can be explained by the fact that the overall scale of the label is weaker

in most places during the evening and the RMSE captures that reduction in scale, whereas the

SMAPE, because it is scale-invariant, does not.

Table 4.4 summarizes the average and standard deviation of both RMSE and SMAPE for

all models across the iterations of the sliding window. Thus, for the entirety of the test set, and

according to both metrics: the naive model performs the worst; the GLMs are worse than the

GGM by a small amount, and yet with lower standard deviation; and the proposed blending

model performs the best on both metrics while also maintaining the lowest standard deviations.

Figure 4.6 also illustrates the performance of the models and point to higher stability of the

4.2. Experiments 69

Figure 4.5: NYC Taxi Trips – Average RMSE per hour on a small sample of the testing data.
Timestamps are in the local timezone (EST).

Model Avg(RMSE) Std(RMSE) Avg(SMAPE) Std(SMAPE)
Naive 106.18 20.75 40.02% 9.89%
GLMs 56.50 14.77 32.11% 7.56%
GGM 46.60 16.20 31.00% 10.53%

Blending 42.78 13.57 26.70% 4.02%

Table 4.4: NYC Taxi Trips – Model Metrics Across All Testing Windows

blending model as captured by the range between the whiskers.The lower performance of the

naive model points to significant variability between consecutive labels. In other words, merely

using the labels from the last hour to make predictions yielded weak results, suggesting a more

complex relationship between the label and the time. The performance of the base models in

comparison to the baseline (the naive model) shows that they were more successful in capturing

patterns in the data. Furthermore, the performance of the blending model shows that enough

diversity existed among the base models so that the blend could achieve far surpassing results.

70 Chapter 4. Evaluation

Figure 4.6: NYC Taxi Trips – SMAPE box plot. Blending model has the lowest error and the
highest stability (smallest range between whiskers).

Number of Records Almost 7 million
Time Span 2001 to present

Geographical Region Chicago
Provider Chicago Police Department

Table 4.5: Chicago Crimes – Dataset Statistics.

4.2.2 Crimes in The City of Chicago

The Chicago Police Department provides an open dataset, originating from its CLEAR (Citizen

Law Enforcement Analysis and Reporting) system, that contains crime incident records in the

city of Chicago since 2001. The almost 7 million records available have information on the

time and GPS coordinates (at the city block level) of where incidents happened, making it one

of the largest geolocated crime datasets available to the public. This dataset and accompanying

schemas can be downloaded from the city of Chicago open data portal 13. A summary of a few

characteristics of this dataset in its raw form, with no alteration in comparison to the original

source, are reported in Table 4.5.

Data Preprocessing

For this experiment, the Data Preprocessing block was implemented as follows:

Temporal Discretization. The temporal component was discretized into daily bins to enable

13https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2

4.2. Experiments 71

Number of Records Over 4.5 million
Time Span January 2001 to May 2019

Temporal Resolution Day
Number of Temporal Intervals Over 6.7k

Temporal Sparsity Avg = 72.82% Std = 20.91%
Geographical Region City of Chicago

Spatial Resolution Cells with an average area of 0.32 km2

Number of Spatial Cells Over 2.4k
Spatial Sparsity Avg = 8.29% Std = 4.69%

Table 4.6: Chicago Crimes – Dataset Statistics After Preprocessing.

one-step forecasts of one day, giving a reasonable time for police officers to plan patrol routes.

Spatial Discretization. The spatial component was discretized via a square grid, with cells

having an average area of 0.32 km2 to account for areas that are large enough to exhibit recur-

rent crime patterns.

Data Cleaning. Data were filtered to be contained in the interval from January 2001 to May

2019 and within the polygon representing the Chicago region, as seen in Figure 4.7.

Large Scale Aggregation. After the discretization process, more than 6.8 million records

were aggregated into daily counts for each spatial cell, resulting in a substantially smaller

dataset with just over 4.5 million records. Furthermore, the discretized dataset was charac-

terized by an extremely high temporal sparsity averaging 72.82%, and a low spatial sparsity

averaging 8.29%. In other words, on average, each spatial cell misses 72.82% of the times-

tamps contained in the global timeline, and only 8.29% of the spatial cells do not have at least

one neighbour at any given time. Summary statistics on the final dataset after preprocessing

are reported in Table 4.6.

Multistage Machine Learning Pipeline

After preprocessing, the dataset was split into 81% training, 9% blending training, and 10%

testing. The larger training set potentially allows for the learning algorithms to be exposed

to more patterns, whereas the smaller blending training set avoids overfitting the base models

contributions. The remaining records, which numbered several hundreds of thousands, were

72 Chapter 4. Evaluation

Figure 4.7: Polygons in grey representing the spatial filter over the Chicago region.

4.2. Experiments 73

reserved for testing. Next, the machine learning models were trained according to the following

scheme:

Geographically Global Model (GGM). One stochastic gradient boosted tree ensemble was

trained over the entire training set. A grid-search with 3-fold time-sliding cross-validation was

utilized to tune the following model hyperparameters: maximum depth, number of iterations,

and maximum number of bins. The considered values for those parameters are reported in

Table 4.3. For clarity, this was done in the exact same way as the correspondent step in the

NYC Taxi Trips experiment.

Geographically Local Models (GLMs). The training dataset was partitioned into one time

series per spatial cell at the 1.27 km2 resolution. Then one ARIMA model was trained on each

of those cells and tuned according to the Akaike Information Criterion (AIC), considering

maximum values of p, d, and q to be 5, 2, and 5 respectively. These thresholds were based

on Nau [48], who stated that in most cases, the optimal values for these parameters are small

integers where p + q ≤ k for some small integer k, and that most of the time, either p or q is

zero.

Blending Model. One stochastic gradient boosted tree ensemble was trained over the blending

training set, taking as input features the base-learners’ predictions, the cell id, the day, and the

day of the week. A grid-search with 3-fold time-sliding cross-validation was utilized to tune

the same hyperparameters as the GGM. The considered values for these parameters were taken

from the lower half of the ranges utilized for the GGM. For clarity, this was done in almost the

same way as the corresponding step in the NYC Taxi Trips experiment, except for not including

the “hour” as an input feature because this dataset was discretized at the “day” resolution.

Results

The metrics reported in this section are the result of applying a one-day time-sliding window

to a test set (i.e., 10% of the preprocessed data) comprising over 670 days from July 2017 to

May 2019 and over 2.4k different spatial cells. The measured RMSE and SMAPE values are

74 Chapter 4. Evaluation

Figure 4.8: Chicago Crimes – Average SMAPE per day on a small sample of the testing data.

reported for the naive model, the base learners (GGM, GLMs), and the blending model.

Figure 4.8 illustrates the SMAPE for all models in question. Noticeably, the blending model

sits at the bottom with the lowest error and significantly close to the GGM. Also, the GLMs

performed much better than the naive model, but that they still underperformed with respect to

the others by a significant margin. This impact on the prediction capabilities of the GLMs can

be explained by the increased difficulty of forecasting over a highly sparse time series.

Figure 4.9 depicts the RMSE for all models in question. The ranked performance of the

models remains about the same, with the naive model and the GLMs with the highest error, and

the GGM with slightly less error than the blending model for that particular window. Further-

more, the higher standard deviation of labels on the dataset for days of the week from Thursday

through Saturday resulted in more challenges for the GLMs, which rely purely on time series

forecasting. The GGM and blending models, however, were not as profoundly influenced by

these changes in distribution because they likely chose spatial patterns that outweighed them.

Table 4.7 summarizes the average and standard deviation of both RMSE and SMAPE, for

all models, across the iterations of the sliding window. For the entirety of the test set, and

4.2. Experiments 75

Figure 4.9: Chicago Crimes – Average RMSE per day on a small sample of the testing data.

according to both metrics: the naive model performed the worst; the GLMs were worse than

the GGM by a significant amount; the proposed blending model performed slightly better than

the best base model on both metrics while also maintaining the lowest standard deviations.

Figure 4.10 also illustrates the performance of the models and point to higher stability of the

blending model as captured by the range between the whiskers. The lower performance of

the naive model points to significant variability between consecutive labels. In other words,

merely using the labels from the last day to make predictions yielded weak results, suggesting

a more complex relationship between the label and the time. The performance of the base

models in comparison to the baseline (the naive model) shows that they were more successful

in capturing patterns in the data; however, the GLMs were worse than the GGM by a fair

margin. One possible reason for this gap in performance is that crime events may be more

correlated with space than they are with time, weakening the temporal patterns that the GLMs

could leverage, and therefore impairing its performance. Furthermore, the performance of the

blending model shows that even when one of the base models was worse than the other by

a fair margin, the blend itself still maintained a better performance, serving as a guard to the

76 Chapter 4. Evaluation

Figure 4.10: Chicago Crimes – SMAPE box plot. Blending model has the lowest error and the
highest stability (smallest range between whiskers).

Model Avg(RMSE) Std(RMSE) Avg(SMAPE) Std(SMAPE)
Naive 1.33 0.11 69.50% 3.77%
GLMs 1.17 0.16 33.88% 3.07%
GGM 0.76 0.18 15.60% 0.86%

Blending 0.74 0.18 15.32% 0.77%

Table 4.7: Chicago Crimes – Model Metrics Across All Testing Windows

overall performance of the Spatiotemporal Forecasting Framework.

4.2.3 Visits to Places of Interest Across Canada

An industry partner in the mobile application space provided a dataset containing visits to

places of interest across Canada in the period from June to December 2018. The more than

175 million records available include information on the number of visits, the time, and the

GPS coordinates of the place where they happened, making this the dataset with the largest

spatial coverage that the authors could find. With respect to privacy issues, because the dataset

only reports aggregated visit counts from the point of view of an arbitrary location, there is

no personal identifiable information that could trace a visit back to a user. Hence, users are

completely anonymous and only places can be analyzed. A summary of a few characteristics

of this dataset in its raw form, with no alteration in comparison to the original source, is given

in Table 4.8.

4.2. Experiments 77

Number of Records Over 175 million
Time Span June to December 2018

Geographical Region Canada
Provider Industry Partner

Table 4.8: Visits to Places of Interest Across Canada – Dataset Statistics.

Data Preprocessing

For this experiment, the Data Preprocessing block was implemented as follows:

Temporal Discretization. The temporal component was discretized into hourly bins to enable

one-step-ahead forecasts of one hour, giving enough time to support a variety of short-term

optimization tasks, such as anticipating the number of staff needed to serve customers better

during peak hours in a coffee shop.

Spatial Discretization. The spatial component was discretized via a square grid with cells

having an average area of 79000 m2 to account for areas that are large enough to exhibit recur-

rent visit patterns.

Data Cleaning. Data were filtered to be contained in the interval from June to December 2018

and within the polygon representing the Canadian borders, as shown in Figure 4.11. The shorter

timeframe in this experiment is due only to less recent data not being available. This shortage

of historical information is caused by the relatively recent start of our industry partner’s effort

to collect such data; a shared reality with many other mobile companies that recently under-

stood the value in spatiotemporal data.

Large Scale Aggregation. After the discretization process, more than 175 million records

were aggregated into hourly counts for each spatial cell, resulting in a much smaller dataset

with just over 33 million records. Furthermore, the discretized dataset is characterized by

an extremely high temporal sparsity averaging 79.45% and a high spatial sparsity averaging

51.64%. In other words, on average, each spatial cell misses 79.45% of the timestamps con-

tained in the global timeline, and 51.64% of the spatial cells do not have at least one neighbour

at any given time. Summary statistics on the final dataset after preprocessing are reported in

Table 4.9.

78 Chapter 4. Evaluation

Number of Records Over 33 million
Time Span June to December 2018

Temporal Resolution Hour
Number of Temporal Intervals Over 5k

Temporal Sparsity Avg = 79.45% Std = 19.71%
Geographical Region Canada

Spatial Resolution Cells with an average area of 79000 m2

Number of Spatial Cells Over 31.5k
Spatial Sparsity Avg = 51.64% Std = 19.57%

Table 4.9: Visits to Places of Interest Across Canada – Dataset Statistics After Preprocessing.

Figure 4.11: Polygons in grey representing the spatial filter across the Canadian landscape.

4.2. Experiments 79

Multistage Machine Learning Pipeline

After preprocessing, the dataset was split into 81% training, 9% blending training, and 10%

testing. The larger training set potentially allowed for the learning algorithms to be exposed

to more patterns, whereas the smaller blending training set avoided overfitting the base models

contributions. The remaining records, which numbered in the millions, were reserved for test-

ing. Next, the machine learning models were trained according to the following scheme:

Geographically Global Model (GGM). One stochastic gradient boosted tree was trained over

the entire training set. A grid-search with 3-fold time-sliding cross-validation was utilized to

tune the following model hyperparameters: maximum depth, number of iterations, and max-

imum number of bins. The considered values for these parameters are reported in Table 4.3.

For clarity, this was done in the exact same way as the correspondent step in the NYC Taxi

Trips, and Chicago Crimes experiments.

Geographically Local Models (GLMs). The training dataset was partitioned into one time

series per spatial cell at 81 km2 resolution. Then one ARIMA model was trained on each of

these cells and tuned according to the Akaike Information Criterion (AIC), considering maxi-

mum values of p, d, and q to be 5, 2, and 5 respectively. These thresholds were based on Nau

[48], who stated that in most cases the optimal value for these parameters are small integers

where p + q ≤ k for some small integer k, and that most of the time, either p or q is zero.

Blending Model. One stochastic gradient boosted tree was trained over the blending training

set, taking as input features the base-learners’ predictions, the cell id, the hour, and the day of

the week. A grid-search with 3-fold time-sliding cross-validation was utilized to tune the same

hyperparameters as the GGM. The considered values for these parameters were taken from the

lower half of the ranges utilized for the GGM. For clarity, this was done in the exact same way

as the corresponding step in the NYC Taxi Trips experiment.

80 Chapter 4. Evaluation

Figure 4.12: Visits to Places of Interest Across Canada – Average SMAPE per hour on a small
sample of the testing data. Timestamps are in the associated local timezone.

Results

The metrics reported in this section are the result of applying a one-hour time-sliding window

to a test set (i.e., 10% of the preprocessed data) covering over 630 hours from November to

December 2018 and over 27k different spatial cells. The measured RMSE and SMAPE values

are reported for the naive model, the base-learners (GGM, GLMs), and the blending model.

Figure 4.12 illustrates the SMAPE for all models in question. Noticeably, the blending

model sits at the bottom with the lowest error and slightly close to the GGM. Also, the GLMs

performed much better than the naive model and had only a small variance across hours. Fur-

thermore, except for the naive model, all others showed an increased error during working

hours (9 am to 6 pm), which correlated with an increased volume and variability of test records.

Figure 4.13 depicts the RMSE for all models in question. The ranked performance of the

models remained the same, with the blending model still having the lowest error, followed by

4.2. Experiments 81

Figure 4.13: Visits to Places of Interest Across Canada – Average RMSE per hour on a small
sample of the testing data. Timestamps are in the associated local timezone.

the GGM, GLMs, and naive models. However, this time, the residual errors of the blending,

GGM, and GLMs models are much closer, indicating a greater agreement in the scale of their

predictions. Nevertheless, their predictions are not precisely the same and are similar only

when some margin is considered. This marginal difference is better captured by the earlier

mentioned SMAPE residuals depicted in figure 4.12.

Table 4.10 summarizes the average and standard deviation of both RMSE and SMAPE,

for all models, across the iterations of the sliding window. For the entirety of the test set,

and according to both metrics: the naive model performed the worst; the GGM and blending

models were close in terms of RMSE, and the GLMs were also somewhat close; the blending

model outperformed all others in terms of SMAPE, but held higher standard deviations than

its base models. Despite the mildly increased standard deviation in its SMAPE, the blending

model was reasonably stable in comparison to others, with a 95% confidence interval bound

between 32.74 and 35.12. For reference, the corresponding confidence intervals for the naive,

82 Chapter 4. Evaluation

Figure 4.14: Visits to Places of Interest Across Canada – SMAPE box plot. Blending model
has lower errors at stability comparable to the GGM.

Model Avg(RMSE) Std(RMSE) Avg(SMAPE) Std(SMAPE)
Naive 28.61 13.04 59.93% 14.24%
GLMs 12.84 6.12 42.06% 4.47%
GGM 12.28 6.16 38.50% 7.82%

Blending 12.18 6.18 33.93% 9.93%

Table 4.10: Visits to Places of Interest Across Canada – Model Metrics Across All Testing
Windows

GLMs, and GGM models were [58.63, 61.22], [41.66, 42.47], and [37.79, 39.21] respectively.

This stability aspect is also illustrated in Figure 4.14, where the blending model demonstrates

lower errors at stability comparable to the GGM.

4.2.4 Discussion

This section, has presented three diverse experiments. They varied greatly with respect to the

domain, the number of records, time span, geographical region, temporal resolution, spatial

resolution, and even more eminently, with respect to temporal and spatial sparsity.

The experiments explored the domains of taxi trips, crime, and visits to places of interest,

showing different emerging spatiotemporal patterns in each, while still reporting comparable

performance, demonstrating the domain-agnostic capacities of the Spatiotemporal Forecasting

Framework.

Furthermore, the three experiments demonstrated the capabilities of the Spatiotemporal

4.2. Experiments 83

Forecasting Framework in scaling to as many as 1.3 billion records in the Data Preprocessing

component and 33 million records in the Multistage Machine Learning Pipeline.

They also portrayed the framework’s ability to support time spans of tens of years and geo-

graphical regions as large as one of the world’s largest countries, while enabling unconstrained

flexibility in the choice of temporal (e.g., day, hour) and spatial resolutions (e.g., 79000m2,

0.32km2). To the best of our knowledge, this work is the first to allow such freedom in framing

the forecasting question at the Big Data scale.

Figure 4.15 gathers the reported SMAPE averages from tables 4.2, 4.6, 4.9 for a direct

comparison across experiments. Clearly, the naive model generally has poor performance, and

especially in the Chicago Crimes experiment, it produced the worst results, possibly because

the label had low correlation with the last measured value. It is also evident that the blending

model improved upon the performance of the GGM and GLMs across all experiments, al-

though less so in the Chicago Crimes experiment because, like the naive model, the GLMs also

faced difficulties in extracting temporal patterns from highly sparse time series. Furthermore,

considering the SMAPE residuals and the same order as the presented experiments, the blend-

ing model improved performance by about: 14%, 2%, and 12% with respect to the GGM; and

about 17%, 55%, and 20% with respect to the GLMs. Hence, the blending model successfully

boosted the overall performance of the framework by improving upon the performance of the

best base model and also added robustness to the framework by lifting performance even when

one of the base models produced less accurate forecasts. Moreover, even though the GGM out-

performed the GLMs across experiments, the reverse could have happened in different datasets,

and because the Spatiotemporal Forecasting Framework makes use of a blending model and

does not rely on a single type of learning algorithm, stability could still be expected.

With respect to the temporal sparsity, it can be seen how its rise (36.8%, 72.82%, 79.45%)

across the experiments hindered the performance of the GLMs (SMAPE: 32.11%, 33.88%,

and 42.8%) because there were fewer consistent temporal patterns from which to learn. With

respect to the spatial sparsity, lower values (0.8%, 8.29%) led to better performance for the

84 Chapter 4. Evaluation

Figure 4.15: Average SMAPE per model across experiments.

GGM and GLM models in the NYC Taxi Trips and Chicago Crimes experiments, but a higher

value (51.64%) led to increased errors for these in the Visits Canada experiment. Because

this sparsity is a consequence of the type of reported events, more so than the data collection

methods utilized to collect them, it is possible that by using more data, although probably not

drastically changing sparsity, could lead to improved performance. For example, an extended

time span in the training set could have improved the results from the NYC Taxi Trips and

Visits Canada experiments by improving the chance of repeating patterns appearing. There-

fore, it is advised that users of the framework acknowledge the challenges that spatial and

temporal sparsity pose to spatiotemporal forecasting tasks and inspect for these characteristics

in their gathered datasets beforehand to know what can be expected in terms of forecasting

performance.

4.3. Summary 85

4.3 Summary

This chapter delved into the implementation of the Spatiotemporal Forecasting Framework.

It described how the framework was packaged and deployed to commodity hardware, how a

distributed computing foundation was leveraged to scale its internal components, and at a high

level, how each component was implemented. Finally, this chapter presented three experi-

ments that demonstrated the merits of the Spatiotemporal Forecasting Framework in diverse

forecasting scenarios.

Chapter 5

Conclusions and Future Work

This chapter closes this thesis with conclusions about the proposed research and its achieve-

ments. In addition, it points to a few areas that can be explored in future work.

5.1 Conclusions

This research has proposed a framework built on top of a distributed computing cluster to

tackle the high-volume datasets that often accompany spatiotemporal forecasting tasks. The

architectural choice of using Apache Spark as the backbone of the framework enabled it to scale

its internal components to process as many as 1.3 billion records during the Data Preprocessing

stage and 33 million records during the Multistage Machine Learning Pipeline stage.

To put the user in complete control of the forecasting question, this research designed

several components that enable unconstrained configuration of temporal and spatial resolu-

tion, time span, geographical extension, and data cleaning routines, all this by accepting user-

provided JSON and GeoJSON documents without necessary changes to the code base. Notably,

changes in temporal resolutions are supported via fast POSIX time truncations, and changes in

spatial resolutions are supported via a Hilbert curve that indexes the Earth. The authors believe

that providing such flexibility is the right path to take despite its potential impact on the system

load. As a counterbalance, this approach enables seamless scaling-out of the cluster via the

86

5.2. FutureWork 87

addition of Apache Spark workers. The training strategies presented in the multistage machine

learning pipeline enabled the learning components to be scaled to millions of records. The

Geographically Global Model (GGM) took advantage of a distributed implementation of the

Stochastic Gradient Boosted Trees (GBT) ensemble, and of Hilbert indexing over the globe, to

train several decision trees comprising the entire observed geographical space. The Geograph-

ically Local Models (GLMs) took advantage of Local Learning to train independent ARIMA

models that otherwise could not even have fitted the data because of their memory constraints.

The blending model employed in the final stage of the machine learning pipeline, and imple-

mented as another GBT, enabled a non-linear combination of the GGM and GLMs predictions,

resulting in higher performance and stability for the framework.

Three experiments gave credibility to this research: New York City Taxi Trips, Crimes in

The City of Chicago, and Visits to Places of Interest Across Canada. They showed compara-

ble performances of the Spatiotemporal Forecasting Framework across domains while dealing

with challenges, such as high variation in the number of records, and temporal and spatial

sparsity. Furthermore, they point to the effectiveness of the proposed model in modelling spa-

tiotemporal patterns by demonstrating that it outperforms the naive baseline by at least 49.8%

in terms of Symmetric Mean Absolute Percentage Error (SMAPE).

It can be expected that spatiotemporal forecasting will gain in popularity, with GPS sensors

being on-boarded in even more categories of electronic devices in the future. This research is

a testament to that future and the positive impact that the authors believe that such predictions

could have in the cities of the future.

5.2 Future Work

This section presents areas where future work can be explored:

• Multi-step forecasts. The proposed research addresses only single-step forecasts like

the next hour or the next day, and currently does not allow the user to predict multiple

88 Chapter 5. Conclusions and FutureWork

steps in the future. Single-step predictions already enable a wide range of forecasting

questions to be answered, but in some scenarios such as influenza outbreaks, accurately

predicting more steps ahead might give health-care practitioners adequate time to put

preventive measures in place.

• Multi-resolution GLMs. The proposed GLMs account for the observed area at a single

arbitrary resolution. Adding multi-resolution GLMs could help the framework capture

temporal patterns that are more prominent at some other macro or micro scale. For

example, the three layers of cells from Figure 3.5 could be used to build three-level

GLMs. On a different note, multi-resolution GLMs could also be utilized to model dense

areas at a high resolution and sparse areas at a lower resolution. For example, city centers

could be modelled at 79000m2 and rural regions at 1.27km2, saving computational costs

and reducing the sparsity perceived by the time series models.

• Multi-time-horizon GGM. The proposed GGM accounts for all the training data with-

out having a strong capability to model the sequentiality of such records. Decoupling the

GGM into short-term, mid-term, and long-term horizon models could potentially help

the GGM to capture such patterns.

• Extreme Events. The proposed research does not specifically address extreme events

such as holidays and sports events, resulting in higher residual errors in these cases. The

introduction of an Anomaly Detection component could help the framework in automat-

ically detecting extreme events and responding accordingly.

• Integration with Geospatial Analysis Tools. The proposed research provides ways for

a user to interact and configure the framework to their needs, but the authors believe that

the Spatiotemporal Forecasting Framework would be more useful if it were integrated

with commercial tools that researchers already use for geospatial analysis. From the rich

user interface of a tool such as ArcGIS, researchers can already use machine learning al-

gorithms to aid their analysis, but such tools currently lack support for handling datasets

5.2. FutureWork 89

at the Big Data scale. The Spatiotemporal Forecasting Framework could make use of an

integration channel available on ArcGIS1 to receive tasks and hand back the results to

the user interface, enabling the researcher to do spatiotemporal forecasting at scale from

the tool that for them is most comfortable.

1https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview

Bibliography

[1] Xwegnon Ghislain Agoua, Robin Girard, and George Kariniotakis. Short-Term Spatio-

Temporal Forecasting of Photovoltaic Power Production. IEEE Transactions on Sustain-

able Energy, 9(2):538–546, 2018.

[2] Nesreen K Ahmed, Amir F Atiya, Neamat El Gayar, and Hisham El-Shishiny. An em-

pirical comparison of machine learning models for time series forecasting. Econometric

Reviews, 29(5-6):594–621, 2010.

[3] Luiz G.A. Alves, Haroldo V. Ribeiro, and Francisco A. Rodrigues. Crime prediction

through urban metrics and statistical learning. Physica A: Statistical Mechanics and its

Applications, 505:435–443, 2018.

[4] Maı̈na André, Richard Perez, Ted Soubdhan, James Schlemmer, Rudy Calif, and

Stéphanie Monjoly. Preliminary assessment of two spatio-temporal forecasting technics

for hourly satellite-derived irradiance in a complex meteorological context. Solar Energy,

177(April 2018):703–712, 2019.

[5] Gregory R Andrews. Foundations of multithreaded, parallel, and distributed program-

ming, volume 11. Addison-Wesley Reading, 2000.

[6] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew Or, Josh Rosen,

Ion Stoica, Patrick Wendell, Reynold Xin, and Matei Zaharia. Scaling Spark in the Real

World: Performance and Usability. Proc. VLDB Endow., 8(12):1840–1843, aug 2015.

90

BIBLIOGRAPHY 91

[7] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley,

Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, and Matei Zaharia. Spark

SQL: Relational Data Processing in Spark. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’15, pages 1383–1394, New

York, NY, USA, 2015. ACM.

[8] L. Bel, D. Allard, J. M. Laurent, R. Cheddadi, and A. Bar-Hen. CART algorithm for

spatial data: Application to environmental and ecological data. Computational Statistics

and Data Analysis, 53(8):3082–3093, 2009.

[9] Christoph Bergmeir and José M. Benı́tez. On the use of cross-validation for time series

predictor evaluation. Information Sciences, 191:192–213, 2012.

[10] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.

Journal of Machine Learning Research, 13(Feb):281–305, 2012.

[11] Carl Boettiger. An introduction to docker for reproducible research. SIGOPS Oper. Syst.

Rev., 49(1):71–79, January 2015.

[12] Léon Bottou and Vladimir Vapnik. Local learning algorithms. Neural computation,

4(6):888–900, 1992.

[13] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series

analysis: forecasting and control. John Wiley & Sons, 2015.

[14] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed

Optimization and Statistical Learning via the Alternating Direction Method of Multipli-

ers. Foundations and Trends® in Machine Learning, 3(1):1–122, 2011.

[15] Braindrain0000. Six iterations of the Hilbert Curve. https://commons.wikimedia.

org/wiki/File:Hilbert_curve.svg / CC BY-SA 3.0, 2007.

[16] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg
https://commons.wikimedia.org/wiki/File:Hilbert_curve.svg
https://commons.wikimedia.org/w/index.php?curid=7317036

92 BIBLIOGRAPHY

[17] Leo Breiman. Using adaptive bagging to debias regressions. Technical report, Technical

Report 547, Statistics Dept. UCB, 1999.

[18] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[19] Joilson de Assis Cabral, Luiz Fernando Loureiro Legey, and Maria Viviana de Freitas

Cabral. Electricity consumption forecasting in Brazil: A spatial econometrics approach.

Energy, 126:124–131, 2017.

[20] Charlie Catlett, Eugenio Cesario, Domenico Talia, and Andrea Vinci. Spatio-temporal

crime predictions in smart cities: A data-driven approach and experiments. Pervasive

and Mobile Computing, 53:62–74, 2019.

[21] Jason Catlett. On changing continuous attributes into ordered discrete attributes. In Yves

Kodratoff, editor, Machine Learning — EWSL-91, pages 164–178, Berlin, Heidelberg,

1991. Springer Berlin Heidelberg.

[22] Yong Chen, Shuai Zhang, Wenyu Zhang, Juanjuan Peng, and Yishuai Cai. Multifactor

spatio-temporal correlation model based on a combination of convolutional neural net-

work and long short-term memory neural network for wind speed forecasting. Energy

Conversion and Management, 185(November 2018):783–799, 2019.

[23] Noel Cressie and Christopher K Wikle. Statistics for spatio-temporal data. John Wiley

& Sons, 2015.

[24] Thomas G Dietterich. Machine learning for sequential data: A review. In Joint IAPR In-

ternational Workshops on Statistical Techniques in Pattern Recognition (SPR) and Struc-

tural and Syntactic Pattern Recognition (SSPR), pages 15–30. Springer, 2002.

[25] Docker. Docker Containers vs. Virtual Machines. https://www.docker.com/sites/

default/files/d8/2018-11/docker-containerized-and-vm-transparent-

bg.png, 2019.

https://www.docker.com/sites/default/files/d8/2018-11/docker-containerized-and-vm-transparent-bg.png
https://www.docker.com/sites/default/files/d8/2018-11/docker-containerized-and-vm-transparent-bg.png
https://www.docker.com/sites/default/files/d8/2018-11/docker-containerized-and-vm-transparent-bg.png

BIBLIOGRAPHY 93

[26] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and Unsupervised Dis-

cretization of Continuous Features. Machine Learning Proceedings 1995, pages 194–202,

1995.

[27] Alireza Ermagun, Greg Lindsey, and Tracy Hadden Loh. Bicycle, pedestrian, and mixed-

mode trail traffic: A performance assessment of demand models. Landscape and Urban

Planning, 177:92–102, sep 2018.

[28] A Stewart Fotheringham, Chris Brunsdon, and Martin Charlton. Geographically weighted

regression. John Wiley & Sons, Limited West Atrium, 2003.

[29] Jerome H Friedman. Stochastic gradient boosting. Computational Statistics & Data

Analysis, 38(4):367–378, 2002.

[30] Hossein Hassani and Emmanuel Sirimal Silva. Forecasting with Big Data: A Review.

Annals of Data Science, 2(1):5–19, 2015.

[31] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and James Franklin. The elements

of statistical learning: data mining, inference and prediction. The Mathematical Intelli-

gencer, 27(2):83–85, 2005.

[32] David Hilbert. Über die stetige Abbildung einer Linie auf ein Flächenstück, pages 1–2.

Springer Berlin Heidelberg, Berlin, Heidelberg, 1935.

[33] Tin Kam Ho. Random decision forests. In Document analysis and recognition, 1995.,

proceedings of the third international conference on, volume 1, pages 278–282. IEEE,

1995.

[34] Chao Huang, Junbo Zhang, Yu Zheng, and Nitesh V. Chawla. DeepCrime. In Proceedings

of the 27th ACM International Conference on Information and Knowledge Management

- CIKM ’18, pages 1423–1432, New York, New York, USA, 2018. ACM Press.

94 BIBLIOGRAPHY

[35] Nick Johnson. A representation of how a quadtree is structured internally. http://

static.notdot.net/uploads/quadtree.png, 2009.

[36] Juyoung Kang and Hwan-Seung Yong. Spatio-temporal discretization for sequential pat-

tern mining. In Proceedings of the 2nd international conference on Ubiquitous informa-

tion management and communication, page 218, 2008.

[37] Jintao Ke, Hongyu Zheng, Hai Yang, and Xiqun (Michael) Chen. Short-term forecasting

of passenger demand under on-demand ride services: A spatio-temporal deep learning

approach. Transportation Research Part C: Emerging Technologies, 85(October):591–

608, 2017.

[38] Tim Kraska, Ameet Talwalkar, John C Duchi, Rean Griffith, Michael J Franklin, and

Michael I Jordan. Mlbase: A distributed machine-learning system. In Cidr, volume 1,

pages 2–1, 2013.

[39] Martin Längkvist, Lars Karlsson, and Amy Loutfi. A review of unsupervised feature

learning and deep learning for time-series modeling. Pattern Recognition Letters, 42:11–

24, 2014.

[40] Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola, Amr Ahmed, Vanja Josi-

fovski, James Long, Eugene J Shekita, and Bor-Yiing Su. Scaling distributed machine

learning with the parameter server. In 11th ${$USENIX$}$ Symposium on Operating

Systems Design and Implementation (${$OSDI$}$ 14), pages 583–598, 2014.

[41] Siyu Liao, Liutong Zhou, Xuan Di, Bo Yuan, and Jinjun Xiong. Large-scale short-term

urban taxi demand forecasting using deep learning. In Proceedings of the 23rd Asia and

South Pacific Design Automation Conference, pages 428–433. IEEE Press, 2018.

[42] Chenghao Liu, Steven C H Hoi, Peilin Zhao, and Jianling Sun. Online ARIMA Al-

gorithms for Time Series Prediction. Proceedings of the Thirtieth AAAI Conference on

Artificial Intelligence (AAAI2016), pages 1867–1873, 2016.

http://static.notdot.net/uploads/quadtree.png
http://static.notdot.net/uploads/quadtree.png

BIBLIOGRAPHY 95

[43] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and

Joseph M Hellerstein. Distributed GraphLab: A Framework for Machine Learning and

Data Mining in the Cloud. Proc. VLDB Endow., 5(8):716–727, apr 2012.

[44] Nancy A Lynch. Distributed algorithms. Elsevier, 1996.

[45] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,

Davies Liu, Jeremy Freeman, D B Tsai, Manish Amde, Sean Owen, and Others. Ml-

lib: Machine learning in apache spark. The Journal of Machine Learning Research,

17(1):1235–1241, 2016.

[46] Maged Michael, José E. Moreira, Doron Shiloach, and Robert W. Wisniewski. Scale-up

x scale-out: A case study using nutch/Lucene. Proceedings - 21st International Parallel

and Distributed Processing Symposium, IPDPS 2007; Abstracts and CD-ROM, 2007.

[47] Miym. Distributed Computing vs. Parallel Computing. https://commons.wikimedia.

org/wiki/File:Distributed-parallel.svg / CC BY-SA 3.0, 2009.

[48] Robert Nau. Notes on nonseasonal ARIMA models. http://people.duke.edu/

˜rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf, 2014.

[49] Biswanath Panda, Joshua S Herbach, Sugato Basu, and Roberto J Bayardo. PLANET:

Massively Parallel Learning of Tree Ensembles with MapReduce. In Proceedings of the

35th International Conference on Very Large Data Bases (VLDB-2009), 2009.

[50] J R Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, mar 1986.

[51] Evan L. Ray and Nicholas G. Reich. Prediction of infectious disease epidemics via

weighted density ensembles. PLoS Computational Biology, 14(2):1–23, 2018.

[52] Nicholas G. Reich, Logan C. Brooks, Spencer J. Fox, Sasikiran Kandula, Craig J. Mc-

Gowan, Evan Moore, Dave Osthus, Evan L. Ray, Abhinav Tushar, Teresa K. Yamana,

Matthew Biggerstaff, Michael A. Johansson, Roni Rosenfeld, and Jeffrey Shaman. A

https://commons.wikimedia.org/wiki/File:Distributed-parallel.svg
https://commons.wikimedia.org/wiki/File:Distributed-parallel.svg
https://commons.wikimedia.org/w/index.php?curid=7317036
http://people.duke.edu/~rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf
http://people.duke.edu/~rnau/Notes_on_nonseasonal_ARIMA_models--Robert_Nau.pdf

96 BIBLIOGRAPHY

collaborative multiyear, multimodel assessment of seasonal influenza forecasting in the

United States. Proceedings of the National Academy of Sciences, 116(8):201812594,

2019.

[53] C. Ronchi, R. Iacono, and P. S. Paolucci. The ”Cubed sphere”: A new method for the

solution of partial differential equations in spherical geometry. Journal of Computational

Physics, 124(1):93–114, 1996.

[54] S2Geometry. Earth Cube. https://s2geometry.io/devguide/img/s2cell_

global.jpg, 2019.

[55] Abolfazl Safikhani, Camille Kamga, Sandeep Mudigonda, Sabiheh Sadat Faghih, and

Bahman Moghimi. Spatio-temporal modeling of yellow taxi demands in New York City

using generalized STAR models. International Journal of Forecasting, nov 2018.

[56] Yosiyuki Sakamoto, Makio Ishiguro, and Genshiro Kitagawa. Akaike information crite-

rion statistics. Dordrecht, The Netherlands: D. Reidel, 81, 1986.

[57] Hanan Samet. The Quadtree and Related Hierarchical Data Structures. ACM Computing

Surveys, 16(2):187–260, 1984.

[58] SideWalkLabs. Planetary View of s2sphere. https://s2.sidewalklabs.com/

planetaryview/, 2009.

[59] Joseph Sill, Gábor Takács, Lester Mackey, and David Lin. Feature-weighted linear stack-

ing. arXiv preprint arXiv:0911.0460, 2009.

[60] Apache Spark. Cluster Overview. https://spark.apache.org/docs/latest/img/

cluster-overview.png, 2019.

[61] Hung Tien Tran, Hiep Tuan Nguyen, and Viet Trung Tran. Large-scale geographically

weighted regression on Spark. Proceedings - 2016 8th International Conference on

Knowledge and Systems Engineering, KSE 2016, pages 127–132, 2016.

https://s2geometry.io/devguide/img/s2cell_global.jpg
https://s2geometry.io/devguide/img/s2cell_global.jpg
https://s2.sidewalklabs.com/planetaryview/
https://s2.sidewalklabs.com/planetaryview/
https://spark.apache.org/docs/latest/img/cluster-overview.png
https://spark.apache.org/docs/latest/img/cluster-overview.png

BIBLIOGRAPHY 97

[62] Ukrish Vanichrujee, Teerayut Horanont, Wasan Pattara-atikom, Thanaruk Theera-

munkong, and Takahiro Shinozaki. Taxi Demand Prediction using Ensemble Model

Based on RNNs and XGBOOST. In 2018 International Conference on Embedded Sys-

tems and Intelligent Technology & International Conference on Information and Commu-

nication Technology for Embedded Systems (ICESIT-ICICTES), pages 1–6. IEEE, may

2018.

[63] Bao Wang, Xiyang Luo, Fangbo Zhang, Baichuan Yuan, Andrea L Bertozzi, and

PJ Brantingham. Graph-based deep modeling and real time forecasting of sparse spatio-

temporal data. MiLeTS18, London, United Kingdom, 2018.

[64] Bao Wang, Penghang Yin, Andrea L Bertozzi, P Jeffrey Brantingham, Stanley J Osher,

and Jack Xin. Deep learning for real-time crime forecasting and its ternarization. arXiv

preprint arXiv:1711.08833, 2017.

[65] Andreas S Weigend. Time series prediction: forecasting the future and understanding the

past. Routledge, 2018.

[66] Jun Xu, Rouhollah Rahmatizadeh, Ladislau Boloni, and Damla Turgut. Real-Time pre-

diction of taxi demand using recurrent neural networks. IEEE Transactions on Intelligent

Transportation Systems, 19(8):2572–2581, 2018.

[67] R Yadav and S Kumari Sheoran. Modified ARIMA Model for Improving Certainty in

Spatio-Temporal Crime Event Prediction. In 2018 3rd International Conference and

Workshops on Recent Advances and Innovations in Engineering (ICRAIE), pages 1–4,

nov 2018.

[68] Jia Yu, Zongsi Zhang, and Mohamed Sarwat. Spatial data management in apache spark:

the GeoSpark perspective and beyond. GeoInformatica, 2018.

[69] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy

McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed

98 BIBLIOGRAPHY

Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In Proceed-

ings of the 9th USENIX Conference on Networked Systems Design and Implementation,

NSDI’12, page 2, Berkeley, CA, USA, 2012. USENIX Association.

[70] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur

Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J Franklin, Ali

Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: A Unified

Engine for Big Data Processing. Commun. ACM, 59(11):56–65, oct 2016.

[71] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012.

[72] Shanjiang Zhu, Mark L. Franz, Arefeh Nasri, Lei Zhang, Zhuo Yang, and Jina Mah-

moudi. Analysis of Washington, DC taxi demand using GPS and land-use data. Journal

of Transport Geography, 66(February 2017):35–44, 2018.

Curriculum Vitae

Name: Rafael Nascimento de Aguiar

Post-Secondary The University of Western Ontario
Education and London, ON
Degrees: 2017 - 2019 MESc

Federal University of Pernambuco
Recife, PE - Brazil
2009 - 2015 BSc Computer Science

Honours and CNPq Science Without Borders
Awards: 2013-2014

Related Work Teaching Assistant
Experience: The University of Western Ontario

2017 - 2019

Data Engineer
In Loco Media
2015 - 2017

Co-founder and Software Engineer
CriticalLab
2011 - 2013

99

	Spatiotemporal Forecasting At Scale
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Thesis Organization

	Background and Literature Review
	Feature Discretization
	Equal Width Discretization
	Grid-based Discretization

	Time Series Forecasting Models
	Machine Learning
	Tree-based Ensembles
	Blending Models
	Local Learning
	Time-sliding Cross-validation

	Distributed Computing And Scalability
	Literature Review
	Linear Models
	Neural Networks
	Ensemble Models

	Summary

	Spatiotemporal Forecasting Framework
	Data Preprocessing
	Temporal Discretization
	Spatial Discretization
	Data Cleaning
	Large Scale Aggregation

	Multistage Machine Learning Pipeline
	Geographically Global Model
	Geographically Local Models
	Blending Model

	Summary

	Evaluation
	Implementation
	Experiments
	New York City Taxi Trips
	Crimes in The City of Chicago
	Visits to Places of Interest Across Canada
	Discussion

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Curriculum Vitae

