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Abstract 

Pattern separation is a neural computation thought to underlie our ability to form distinct 

memories of similar events. It involves transforming overlapping inputs into less overlapping 

outputs. In the ventral visual stream (VVS) there is considerable evidence for hierarchical 

transformation from feature-based visual representations to conjunctive whole-object 

representations, with the latter allowing for distinct coding even when objects have 

significant feature overlap. In the current study, we asked whether this transformation can be 

understood as pattern separation, and whether pattern separation can be observed even 

outside the context of classic recognition-memory tasks. To investigate pattern separation in 

the VVS, we combined fMRI in humans (N=23) with multivariate pattern analyses 

techniques and compared representations of visual objects in a mid-level visual region, 

Lateral Occipital (LO) region, with those in the region proposed to be at the top of the VVS 

object processing hierarchy, Perirhinal Cortex (PRC). During scanning we presented images 

of objects from multiple categories, with differing degrees of visual similarity among 

exemplars during performance of an N-Back task. Imaging results obtained using 

classification revealed patterns in LO could be distinguished successfully for all categories 

and at the lowest level of visual similarity within category exemplars. In contrast, patterns in 

PRC could be distinguished at all levels of similarity within a category, but no successful 

category differentiations were found. Because patterns at higher levels of visual similarity are 

overlapping in LO, but can be differentiated in PRC, these results provide evidence for 

pattern separation in the VVS. More broadly, this suggests that the engagement of pattern 

separation may not be restricted to the hippocampus during declarative-memory tasks. 

Keywords 

Object Recognition, fMRI, multivariate, multi-voxel pattern analysis, perirhinal cortex, 

lateral occipital complex, hippocampus, ventral visual stream 
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Summary for Lay Audience 
The ability to distinguish two similar ‘things’ is important in everyday life. These ‘things’ 

can be memories, for example, finding your car in the parking garage every day. Although 

the environment is very similar we are able to differentiate one day from the next. The neural 

process involved here is pattern separation. Pattern separation functions by transferring 

similar neural signals in one region to completely distinct neural signals in another region. 

Therefore, researchers can investigate this phenomenon by measuring how similar brain 

patterns are in different regions when participants complete a memory task. Previous animal 

and human research has provided evidence that the hippocampus plays an important role in 

separating similar signals from its input region, entorhinal cortex. But does pattern separation 

occur before the hippocampus and not solely during memory tasks?  

The goal of this study was to investigate whether or not pattern separation exists upstream 

from the hippocampus in the ventral visual stream during object perception. To address this 

goal 23 human participants were scanned in a functional MR scanner to obtain pictures of 

their brain as they viewed images of objects on a screen. We presented images of objects 

from multiple categories, with differing degrees of visual similarity within a category.  

Imaging results obtained by analyzing the neural patterns elicited by the stimuli revealed 

differences in mid-level visual region, lateral occipital region (LOC) and the region thought 

to be at the top of the visual processing hierarchy, perirhinal cortex (PRC). In LO, patterns 

could be distinguished successfully when they represented different categories or within-

category objects at the lowest level of visual similarity. In contrast, while all levels of visual 

similarity within a category could be distinguished successfully in PRC; no categories could 

be distinguished here. Because patterns at higher levels of visual similarity are non-
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distinguishable in LO, but can be differentiated in PRC, these results provide evidence for 

pattern separation in the ventral visual stream. 



 

v 

 

Co-Authorship Statement (where applicable) 
Dr. Köhler oversaw the project and co-ordinated the efforts from the all co-authors. He 

contributed significantly to the background research, motivation for the current project. Dr. 

Köhler also helped in planning analyses and interpretation of results. 

Dr. Khan helped in overseeing the project and contributed to the scanning protocol and 

imaging processing pipelines used to analyze the functional and structural images. 

Dr. Anna Blumenthal contributed significantly to the project development including the 

scanning paradigm, behavioural task and the novel functional imaging task to probe pattern 

separation in the ventral visual stream.   

Dr. Daria Proklova helped with functional data analysis using COSMO MVPA Matlab 

package.  

Dr. Chris Martin also helped with the functional data analysis using COSMO MVPA Matlab 

package.  



 

vi 

 

Acknowledgments 
Thank you to everyone in the Köhler and Khan labs for continuous support throughout this 

amazing experience. Thank you to Dr. Köhler for his encouragement, constructive 

discussion, kindness and time throughout my Master’s thesis. Thank you to Dr. Khan for his 

innovative ideas and techniques that has allowed my coding and data analysis abilities to 

grow exponentially.  

Thank you to my parents, Walter and Espie Ferko, and my boyfriend, Nick Holdbrook, for 

your constant love and support. Thank you for being my audience for every abstract, poster, 

and presentation.  

Thanks to the staff at Brain and Mind Institute and Centre for Functional and Metabolic 

Mapping. Special thanks to Scott Charlton for completing much of the MR scanning! 



 

vii 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience .............................................................................................. iii 

Co-Authorship Statement (where applicable) ..................................................................... v 

Acknowledgments .............................................................................................................. vi 

Table of Contents ............................................................................................................. vii 

List of Tables ...................................................................................................................... ix 

List of Figures ...................................................................................................................... x 

List of Appendices ............................................................................................................ xii 

1 Introduction ..................................................................................................................... 1 

1.1 Pattern Separation in the Hippocampus .................................................................. 1 

1.2 Pattern Separation beyond the Hippocampus ........................................................ 10 

1.3 Perirhinal Cortex as the Apex of the Ventral Visual Stream ................................. 13 

1.4 The Missing Link: Pattern Separation in Perirhinal Cortex .................................. 18 

1.5 The Current Study: Approach, Goals, and Hypotheses ......................................... 21 

2 Method .......................................................................................................................... 22 

2.1 Participants ............................................................................................................ 22 

2.2 Stimuli ................................................................................................................... 23 

2.3 Multi-Arrangement Task: Inverse Multi-Dimensional Scaling ............................ 24 

2.4 fMRI Task: Variation of a 1-Back Task ................................................................ 26 

2.5 MRI Data Acquisition and Preprocessing ............................................................. 28 

2.6 Regions of Interest ................................................................................................. 29 

2.7 Multi-Voxel Pattern Analysis ................................................................................ 30 

3 Results ........................................................................................................................... 31 

3.1 Behavioural Results ............................................................................................... 31 



 

viii 

 

3.2 fMRI Results ......................................................................................................... 33 

3.2.1 Between Category Classification .............................................................. 33 

3.2.2 Within Category Classification ................................................................. 34 

4 Discussion ..................................................................................................................... 37 

4.1 Role of Perirhinal Cortex in Object Discrimination .............................................. 37 

4.2 Role of LO in Category and Object Discrimination .............................................. 42 

4.3 Limitations and Future Directions ......................................................................... 46 

4.3.1 Investigating Other Regions of Interest ..................................................... 46 

4.3.2 Methodological Considerations ................................................................. 49 

4.3.3 Additional Insights that Could be Gained from Representational Similarity 
Analysis ..................................................................................................... 50 

4.4 Conclusion ............................................................................................................. 52 

References or Bibliography (if any) .................................................................................. 53 

Appendices ........................................................................................................................ 67 

 

Curriculum Vitae ............................................................................................................... 69 



 

ix 

 

List of Tables 

Table 1. Overall behavioural results of the variation of a 1-back task. Trial Type is indicated 

by the rows, participants response proportion (averaged across all participants and rounded to 

nearest tenth). Correct responses are located on the diagonal and bolded. Same category trial 

types can be split into high-middle-low visual similarity based on each participant’s sorting. 

Same category response options cannot be split into high-middle-low. ................................. 31 

Table 2. Summary of scanning protocols used in studies motivating the current study. ........ 50 

 



 

x 

 

List of Figures 

Figure 1. 40 stimuli from Migo Normative Database (Migo et al., 2016). The four object 

exemplars in each of the 10 categories were manipulated to be high-middle-low visual 

similarity compared with the an arbitrary target exemplar. ..................................................... 24 

Figure 2. Inverse Multi-dimensional scaling task adapted from Kreigeskorte & Mur (2012). 

This task allows for the calculation of dissimilarity distances between all possible object 

pairs. Left side of figure depicts a sample sorting of all object stimuli. Right side of figure 

depicts the starting position of a category specific sorting trial. Participants completed one 

trial for each of the 10 categories used in the study. ............................................................... 26 

Figure 3. Variation of a 1-back task. Each image was presented for 1.2 seconds with an inter-

stimulus interval of 1 second where a fixation cross was presented. Participants were asked to 

press one button if the object was the exact same as the one previous to it, a different button 

if the object was the same category as the one previous to it, and no button press if the object 

is a different category as the one previous to it. Each of the 40 exemplars were viewed four 

times--one presentation was a response trial—in each of the eight runs for a total of 24 non-

response stimulus presentations of each exemplar across the entire experiment. 

Corresponding neural patterns that resulted from viewing each of the 40 stimuli multiple 

times were averaged to obtain stable stimulus-specific estimates in fMRI analyses. ............. 28 

Figure 4. Reaction times for all correct “same category” button press trials. These correct 

trials were split by their corresponding degree of visual similarity (high-middle-low). 

Reaction time decreases with decreasing level of visual similarity. Behavioural results of a 

variation of a 1-back task indicates participants are sensitive to the visual similarity 

manipulation. (* indicates p<.01) ............................................................................................ 32 

Figure 5.  Mean between category classification accuracies in LO, PRC and control region 

(auditory cortex). Within each region, leave-one-run-out cross validation classification was 

performed to classify all pairs of categories (e.g., pens vs chillis; flowers vs apples etc). 

Accuracies were tested to be above chance 50% using t-test within each region. These 

classification accuracies were used to calculate each participants mean score (coloured dots) 



 

xi 

 

and each regions mean score (black dot) and standard deviation (shaded region of each box) 

plotted here. Classifier performed significantly above chance in LO only. ............................ 34 

Figure 6. Mean within category classification accuracies in LO, PRC and control region 

(auditory cortex). Participant-specific ratings were used to split the exemplars into the 

highest, middle and lowest within category object pairs for each category. Support vector 

machine classification with leave-one-run-out cross validation was performed using pairs of 

exemplars for all levels of similarity, in all categories for all regions of interest. The mean 

classification across categories (coloured dots) and across participants (black dots) and 

standard deviations (shading of each box plot) are plotted here. These values were tested to 

be above chance 50% using one-tailed t-test. In LO, only the lowest level of visual similarity 

performed significantly above chance. In PRC, all levels of visual similarity performed 

significantly above chance. As expected, no results were significant in the control region 

auditory cortex. ........................................................................................................................ 36 

  
 



 

xii 

 

List of Appendices 

Appendix 1. Classification Accuracy of all categories in LO and PRC versus control region 

(Auditory Cortex) .................................................................................................................... 67 

Appendix 2. Mean classification accuracy of within category exemplars in 3 regions, LO, 

PRC, and control region auditory cortex for the 3 levels of visual similarity low, middle, 

high. * p<.01; ** p < .001; *** p < .0001 ............................................................................... 68 



1 

 

 

1 Introduction 
Pattern separation is a neural computation that is thought to underlie our ability to 

form distinct memories of similar events. This concept was originally discussed by 

Marr (1971) as a computational mechanism that functions to separate similar inputs 

and reduce interference. For everyday tasks to be completed effectively, such as 

remembering where you parked in your parking garage, pattern separation is required. 

Although the sensory environment of the parking garage is very similar each day, you 

are able to find your car by distinctly remembering each day as a new episode. Pattern 

separation works here to transfer highly overlapping inputs from one brain region to 

non-overlapping outputs for another region (O’Reilly and McClelland, 1994; Santoro, 

2013; Neunuebel & Knierem, 2014). Extant research on pattern separation has 

primarily focused on transformations of representations between entorhinal cortex 

and the dentate gyrus of the hippocampus in the context of declarative memory tasks. 

Pattern separation may, however, also occur in other cortical regions and may not be 

limited to computations that support memory processing. This thesis will investigate 

pattern separation in the ventral visual stream during object recognition using ultra-

high resolution fMRI and multi-voxel pattern analysis. 

1.1 Pattern Separation in the Hippocampus 
The hippocampus has been studied extensively for its role in episodic memory since the 

seminal investigations in patient H.M. This individual suffered from severe anterograde 

amnesia after undergoing a bilateral medial temporal lobectomy that included the 

hippocampus to treat intractable epilepsy (Scoville & Milner, 1957; Penfield and Milner, 

1958). Since then, countless studies have investigated the involvement of the 

hippocampus in various aspects of cognition (see Moscovitch et al., 2016 for recent 

reviews). More recently, researchers have discovered that this archicortical structure is 

not homogenous and, similarly to the neocortex, is composed of  multiple regions based 



2 

 

on differences in cytoarchitecture and genomic expression. The hippocampal formation 

can be divided into subfields based on such differences at the cellular level. These 

subfields include the dentate gyrus, subiculum, and cornu ammonis (CA) 1-4 (Ding & 

Van Hoesen, 2015). They are differentially affected in diseases such as Alzheimer’s 

Disease, medial temporal lobe epilepsy, and depression (e.g., Van Hoesen and Hyman, 

1990; Price et al., 2001;  Coras et al., 2014) and, of interest to many behavioural 

cognitive neuroscientists, these subfields may perform different functional roles. One 

such function is the computation of pattern separation of inputs from the neocortex via 

entorhinal cortex, a major input to the hippocampus (see review by Aggleton, 2012). 

Many theoretical models have pointed to the dentate gyrus subfield as a region involved 

in separating similar representations from entorhinal cortex to distinguishable signals to 

pass onto the CA fields (Mcnaughton & Nadel, 1989; Treves & Rolls, 1992; O’Reilly & 

McClelland, 1994; Gilbert, Kesner, & Lee, 2001).  

To investigate whether overlapping signals are transferred to non-overlapping signals, 

scientists have used electrophysiology in non-human species to discover if 

representations of similar stimuli are distinguishable in dentate gyrus. There is a 

challenge, however, in recording cells in the dentate gyrus due to their sparse firing 

(Jung, Weiner & McNaughton, 1994). One study by Leutgeb et al. (2007) accomplished 

this difficult task when they trained rats to run in square or circular enclosures and 

recorded firing activity simultaneously in CA3 putative pyramidal cells and in dentate 

gyrus granule cells. The enclosure was transformed through five intermediate shapes such 

that rats spent 10 minutes in a square enclosure, and then 10 minutes in each of the 

enclosures with intermediate shapes until the enclosure was a circle (and vice versa). 

Leutgeb et al. (2007) analyzed firing rate patterns in CA3 and dentate gyrus by stacking 

the firing rate maps of all cells, such that the x and y coordinates coded a location in the 

enclosure and the z coordinate coded the cell identity. Population vectors of matching 

spatial locations (i.e., along the z direction) were correlated for pairs of environments in 

order to examine how the representations changed as the enclosure morphed 

incrementally to a different shape. If the population vectors representing two enclosures 
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were highly correlated representations then they were considered to be highly similar and 

non-distinguishable. Population vectors for the CA3 subfield were found to be highly 

overlapping for shapes 1, 2, 3, and significantly different between shape 1 versus 4, 5. In 

contrast, the dentate gyrus granule cells were highly sensitive to even the smallest change 

in the shape of the environment as the first intermediate shape (shape 2) enclosure was 

represented differently from shape 1. Not only were the representations different—as 

signaled by the lower population vector correlations—these differences were a direct 

result of the cells firing at different (i.e., non-overlapping) locations. This provided strong 

evidence that the dentate gyrus, and not CA3, is able to represent very similar spatial 

enclosures with distinct populations of neurons. But, without sampling the 

representations in the input region, entorhinal cortex, it is not possible to conclude that 

the dentate gyrus is performing this transfer function, a key part of the definition of 

pattern separation. In other words, researchers must provide evidence that signals are 

overlapping in entorhinal cortex and are transferred to non-overlapping representations in 

dentate gyrus.  

In 2014, Neunuebel and Knierim did exactly that. They sampled cells in entorhinal 

cortex, dentate gyrus and CA3. In this study rats ran clockwise around a track that had 

four local cues on the surface of the track and six global cues around the walls of the 

track. Rats were trained in a standard configuration for 16 days and then neural activity 

was recorded in three standard sessions separated by two mismatch sessions. These 

mismatch sessions rotated the global cues clockwise and the local cues counterclockwise, 

such that the cue mismatches were 45, 90, 135, 180 degrees in size. Similar to Leutgeb et 

al. (2007), the researchers then produced spatial correlation matrices by correlating the 

normalized firing rate vectors between a standard session and either another standard 

session or a mismatch session. If the firing rate vectors of two sessions were highly 

similar, they would have high correlations and would not be differentiable. In contrast, if 

the firing rate vectors of two sessions were not similar, they would have lower 

correlations and would therefore be distinguishable. Results indicated that the firing rate 

patterns of Standard 1 vs Standard 2 were highly correlated in both CA3 and dentate 
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gyrus. This was expected and signifies that representations of spatial locations are stable 

in both subfields. In comparison, firing rate patterns relating to Standard vs Mismatch 

sessions were still highly correlated in CA3, but significantly less correlated in dentate 

gyrus. This suggests that the representations of these spatially similar trials are not 

distinguishable in CA3, but are distinguishable in dentate gyrus. In addition, a previous 

article published by Neunuebel et al., (2013) used the same protocol to investigate medial 

entorhinal cortex, which is a primary input source to the dentate gyrus. Medial entorhinal 

cortex had highly correlated firing patterns when comparing Standard 1 vs Standard 2 

and Standard vs Mismatch. Similar to CA3, these results indicate that the Standard 

representations are stable across time and they do not significantly differ from the 

Mismatch firing rate patterns. Because the firing patterns for similar spatial scenes in the 

Standard and Mismatch conditions are not distinguishable in medial entorhinal cortex, 

but can be distinguished in dentate gyrus, this provides strong, direct evidence for pattern 

separation for spatial stimuli in the dentate gyrus. 

While electrophysiology studies provide the gold standard in measuring this transfer of 

overlapping representations to non-overlapping representations, taking such an approach 

is not straightforward in humans. Taking key experimental methods from the rodent 

neurophysiology methods, seminal work by Bakker et al.(2008) used high-resolution 

functional magnetic resonance imaging (fMRI) in combination with an incidental 

encoding task to probe pattern separation in awake adult humans. Eighteen subjects 

viewed pictures of everyday objects and were asked to respond with a button press 

whether an item is typically an indoor or outdoor object (e.g., light switch is typically an 

indoor object). On each trial the object could either be new (not seen before), a repetition 

of a previously shown object, or a lure, which is visually similar to an object seen before. 

The lures differed only in visual features and not by name, which is important when 

investigating how representations differ for mnemonically similar objects. They 

hypothesized that if a region was involved in pattern separation the lure would be treated 

like a completely new stimulus. Their prediction leveraged repetition suppression—a 

well-documented neural phenomenon where previously seen stimuli elicit a decreased 
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mean blood-oxygen level dependent (BOLD) signal (see, for review, Grill-Spector, 

Henson, & Martin, 2006; Krekelberg, Boynton, & Van Wezel, 2006; Larsson, Solomon, 

& Kohn, 2015). Following their rationale, if a region is involved in pattern separation the 

visually similar objects will not elicit repetition suppression as they are treated as new 

objects not previously seen. To image the hippocampus and surrounding cortices, 

researchers used 3 Tesla (3T) MRI to obtain 1.5 mm isotropic voxels, which allowed 

them to confidently segment the hippocampus, but CA3 and dentate gyrus were 

combined into one CA3/DG subregion (due to limited spatial resolution in their data). 

Despite this limitation, results showed that bilateral CA3/DG did not have the decrease in 

mean activity for lure trials that other regions CA1/3/DG, CA1, subiculum, or entorhinal 

cortex displayed. These results indicated that only CA3/DG treated even these very 

similar lures as first presentation, i.e. as new objects rather than repeat exposures. This 

was the first study to provide evidence for pattern separation in the hippocampus in 

humans. In their follow-up work, Lacy et al. (2011), investigated the dynamics of this 

pattern separation by including more levels of similarity and comparing BOLD activity in 

CA3/dentate gyrus with downstream CA1. The rationale behind these changes in protocol 

followed the rodent literature where even small changes in stimuli had been shown to 

elicit large differences in representations in dentate gyrus (Leutgeb et al., 2007; 

Neunuebel et al., 2014). In comparison, CA1 subfield was not expected to exhibit this 

transfer function; instead representations should vary continuously as similarity changes. 

The authors hypothesized that only CA3/DG would represent highly similar objects 

distinctly, whereas both CA3/DG and CA1 would represent low similarity objects 

distinctly. Moreover, they predicted that, in CA3/DG, high and low similarity objects 

would be treated as first presentations and not elicit repetition suppression. In CA1, by 

contrast, high similarity objects were not expected to be discernable and therefore to elicit 

repetition suppression, but low similarity objects were expected to be sufficiently 

different and would not exhibit repetition suppression. Modifying the task used in Bakker 

et al., (2008) by splitting the lures into high and low mnemonic similarity trials, the 

researchers were able to find support for their hypotheses. Confirming previous studies, 
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high and low similarity objects displayed activation similar to completely new objects in 

CA3/DG. Extending previous studies, data in CA1 showed that only low similarity 

objects exhibited activation resembling first presentations, whereas high similarity lures 

elicited repetition suppression similar to repeat trials. These subfields only had different 

activation for one condition. Specifically, only the high similarity lures elicited 

significantly different beta coefficients across regions. These results provide further 

evidence that even small differences in stimuli can be transferred to distinct 

representations in CA3/DG, but not CA1. Because the analyses conducted relied on 

leveraging of repetition-suppression effects, however, this univariate approach does not 

directly address the degree of overlap in representations within a region, and how 

representations change between regions as a result of computational transformations.  

Multi-voxel pattern analysis (MVPA) can provide stronger evidence for pattern 

separation as it can provide quantitative estimates of how distinct patterns are across 

different regions when observers view or judge similar stimuli. Innovative work that used 

this multivariate approach to investigate pattern separation in the hippocampus was 

published in 2016 by Berron and colleagues. This study relied on ultra-high resolution 

BOLD imaging with a 7T scanner at higher spatial resolution (0.8 mm isotropic voxels) 

than prior research (e.g., Bakker et al., 2008), which allowed researchers to separate CA3 

and dentate gyrus as anatomically distinct structures with higher confidence. In this 

experiment only two stimuli were used so that the only difference between the trial types  

was that they belonged to different sequences. This was an important manipulation to 

remove a confound that was present in previous studies (Bakker et al., 2008; Lacy et al., 

2011). Specifically, in those studies first presentation trials were the first presentations 

within the experiment and, therefore, evidence for pattern separation from repetition 

suppression may have reflected a novelty signal. Twenty young subjects viewed two 

similar dining room scene stimuli, A and B, which differed in the placement of the chairs 

at the table. These scenes were presented in short sequences of three to five stimulus 

presentations (e.g., AABA). Participants were asked to count repetitions in the sequences 

and to press a button for any third occurrence of the same stimulus. For the fMRI 
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analysis, only the first two presentations in a sequence were examined such that there 

were three different trial types: first presentations and then either repetitions (exact 

repeats of the first presentation of stimulus A) or lures (stimulus B/different). This 

allowed for similar analyses to be conducted as those reported by Bakker et al. (2008) as 

a first step. The contrast of lure trials against repetitions (lures > repetitions) showed a 

cluster in DG and the contrast of first presentation against repeats (first>repeats) showed 

a cluster in CA1. As expected, the DG cluster did not show a decrease in neural activity 

for lures, resembling the response for a first presentation. In the CA1 cluster, by contrast, 

lures did elicit a decrease in neural activity similar to the repeat condition. Interestingly, 

using an anatomically-defined ROI instead of these contrast clusters did not show a 

decrease in repetition suppression in dentate gyrus for lures. This result provided further 

motivation for the use of a multivariate approach to investigate pattern separation. Berron 

et al. used a linear support vector machine with a leave-one-run-out cross-validation 

classification to conduct classification of patterns of fMRI activity. The rationale behind 

such an approach is that if a region is involved in pattern separation then even similar 

stimuli will be represented distinctly; as a consequence the classifier may perform 

significantly above chance (50%) in distinguishing corresponding patterns of activity. In 

the study by Berron et al., the classifier did indeed perform significantly above chance 

only in the dentate gyrus for the lure condition. In entorhinal cortex, by contrast, the 

classifier did not reveal above chance performance for any condition. Therefore, the 

authors interpreted these results to argue that non-distinguishable patterns of activation in 

entorhinal cortex are transferred to distinguishable patterns in dentate gyrus. These 

findings provide strong evidence that the dentate gyrus is involved in pattern separation 

of visually similar scenes.  

One limitation with human functional imaging is that the results are correlational in 

nature. Thus although such research can show that dentate gyrus is capable of separating 

similar inputs to distinct signals, other methods are required to show whether a given 

region is necessary for that process. Recent evidence from Baker et al. (2016) provides 

evidence that the dentate gyrus is indeed critical for discriminating similar stimuli in the 
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context of memory tasks. This study leveraged behavioural data from patient BL, a man 

with selective dentate gyrus lesion, using the Mnemonic Similarity Task (Stark et al., 

2015). This recognition memory test requires participants to classify each image as “old” 

if the image has been seen earlier in the experiment (trial type = target), “new” if the 

image has not been seen previously (trial type = foil), or “similar” if the image is visually 

similar to an object previously seen in the experiment (trial type = lures). As predicted, 

BL performed similarly to the control subjects when identifying targets and foils, but was 

significantly worse at identifying lures. This pattern of abnormalities is similar to 

observations made in healthy older adults and those diagnosed with amnestic mild 

cognitive impairment (Stark et al., 2015; Stark et al., 2013). These results further point to 

the dentate gyrus as a critical region in keeping similar memories distinct. On a more 

cautionary note, however, this study also highlights challenges in investigating pattern 

separation in humans without any use of neuroimaging or neural recording. Arguably, 

without inclusion of recording data these results cannot be classified as direct evidence 

for pattern separation, given that the transfer of representations from entorhinal to the 

lesioned dentate gyrus was not directly examined.  

A recent study by Lohnas et al. (2018) that employed electrocorticography (ECog) aimed 

to bridge the gap between neurophysiological studies of pattern separation in non-human 

species with neuroimaging studies based on fMRI in humans. ECog is a type of 

electrophysiological monitoring where electrodes are placed below the skull on the 

cortical surface or in cortical or subcortical regions via depth electrodes. Typically, this 

procedure is performed in patients who require these electrodes for clinical evaluation of 

intractable epilepsy and electrodes are placed to monitor seizures and plan surgery. In the 

study by Lohnas et al., participants performed two blocks of trials, and each block 

contained a series of images on a computer screen. Each image was either a new object 

never seen before, an exact repeat that had been seen before, or a similar image that 

shared many features as a previous one. For the fine-grain task block, participants were 

asked to indicate with a button press if the image was new, old, or similar. For the coarse-

grain task block participants indicated if the image was new or old, with similar items to 
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be classified as old. To investigate pattern separation in awake human participants 

researchers explored the temporal dynamics of high-frequency activity (HFA; 45-115Hz). 

Past research has revealed strong similarities between HFA and BOLD fMRI responses 

as correlates of neural activity (Fries, Reynolds, Rorie, & Desimone, 2001; Hirabayashi 

et al., 2014; Manning, Jacobs, Fried, & Kahana, 2009). Results indicated that overall 

HFA was significantly greater for similar items than old items in the hippocampus during 

a 1.5-2 s time window. This is similar to the lack of repetition suppression for similar 

items previously observed in fMRI research. Furthermore, researchers investigated 

multivariate patterns to measure how HFA patterns change between regions. Results 

indicated a dissimilarity in multivariate HFA activity for similar items in the 

hippocampus. This was not observed in the upstream occipitotemporal cortex, therefore 

providing support that similar objects elicit more distinct HFA patterns in the 

hippocampus. Surprisingly, HFA in the hippocampus was found to be task-dependent. 

Specifically, multivariate HFA activity was not significantly dissimilar for similar items 

in the hippocampus during the coarse-grain task. The authors argued that this did not 

signify an inherent difference in the task (i.e., in difficulty), because patterns in two other 

regions of interest, occipitotemporal cortex and dorsal lateral prefrontal cortex, were 

found to be stable across both the fine and coarse grain task. Instead, they suggested that 

the structures are differentially activated for each task and that the hippocampus is 

recruited to represent similar objects distinctly only when the task requires such 

differentiation (i.e., fine grain task); otherwise cortical representations may be sufficient. 

ECog allows for the temporal unfolding of pattern separation to be examined and the 

authors cautioned that this time window of 1.5-2 seconds may be considered ‘late’ with 

respect to participants’ responses. In this context, it is important to remember that the 

participants examined were five patients with debilitating epilepsy, which may affect 

temporal dynamics. It is also important to note that little research has been conducted 

investigating the temporal dynamics of pattern separation or mnemonic reinstatement in 

general, due to the limited data available and difficult electrode placement. Furthermore, 

although this approach is one step closer to single neuron recordings, it is important to 
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keep in mind that that electrode placements and sampling rate used in this study do not 

allow for more selective localization (i.e., hippocampal subfields cannot be separated). 

Despite these limitations, combining the increased temporal resolution of ECog with the 

increased spatial resolution of functional imaging, allows for a more complete 

understanding of pattern separation.  

1.2 Pattern Separation beyond the Hippocampus 
As pattern separation is defined by a transfer from overlapping to non-overlapping 

representations, one may predict that this may not be a computational principle that is 

relevant only to memory processing and only the dentate gyrus. This idea originated over 

two decades ago (Murray & Bussey, 1999; see also Bussey and Saksida, 2002) in the 

context of  the Representational- Hierarchical (R-H) theory, and led to the proposal that 

pattern separation may be a widespread function in many cortical regions for many 

stimulus types (Kent et al., 2016). Specifically, although there is strong evidence for 

pattern separation in the dentate gyrus for spatial and episodic content, other regions may 

be involved for other stimulus material. To the extent that visual stimuli are concerned, 

the principle is of particular relevance to the functional organization of  the Ventral 

Visual Stream (VVS). R-H theory proposes that during object recognition, as information  

is transmitted from lower to higher regions of the VVS hierarchy, the formation of more 

conjunctive features creates more distinct, non-overlapping object representations. This 

transfer from similar overlapping representations in early/mid visual regions to non-

overlapping representations in late VVS can be conceptualized as pattern separation. 

Perirhinal Cortex (PRC) is of particular interest in this context as it is thought to reflect 

the pinnacle of object processing in the VVS that contains highly conjunctive, and in 

turn, the most distinct representations of highly similar objects, as has been proposed by 

Kent and colleagues (2016). In order to test specific hypotheses about pattern separation 

in PRC derived from this theory, it is important to consider processing at earlier stages of 

the VVS. In the following summary, emphasis will be placed on lateral occipital (LO) 

region as a mid-stream VVS region that can be used for comparison with PRC when 
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probing for pattern separation  The VVS has been extensively studied in both human and 

animal research and extends from primary visual cortex V1 through secondary visual 

areas V2, V3, V4 and then to ventral temporal cortex (Ungerleider & Mishkin, 1982; see 

Grill-Spector & Weiner, 2014, for recent review). Ventral temporal cortex contains 

multiple high-level visual regions, including LO, that are involved in visual perception 

and recognition of objects and scenes. While low-level features such as edges or 

luminance are represented in early visual cortex, increasingly more complex features 

such as shape and category are represented as signals move through higher visual regions. 

Research by Rust and DiCarlo (2010) using single neuron recordings in rhesus macaque 

monkeys demonstrated, for example, how as information travels from V4 to inferior 

temporal cortex—a likely analog to human LO (Kanwisher et al., 1996)—representations 

become more selective for objects than for scrambled images. This selectivity for these 

complex image features means that an image of an object on a background will produce 

more activity than when those same pixels are scrambled up. Human research has 

replicated the finding that mid-stream regions are more activated for objects than 

scrambled images (Malach et al., 1995; Grill-Spector, 2003). Because objects are 

typically defined by shape, this feature has attracted considerable attention in functional 

neuroimaging research on object recognition.  

In an influential early study, Kourtzi and Kanwisher (2001) used functional imaging and 

repetition suppression phenomenon to understand how human LO represents perceived 

object shape. Participants viewed a stream of different shapes presented either in front or 

behind vertical lines (different depths). Results indicated that viewing the identical shape 

at the same and different depths evoked an adaptation response. In contrast, if 

participants viewed a similar shape at the same depths, adaptation response was absent. 

Therefore, when the perceived shape was the same but the depths differed repetition 

suppression was evoked, but no repetition suppression was evident when the shapes were 

different but the depths were similar. This lack of repetition suppression for different 

shapes provided evidence that LO represents object shape.  
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Objects can be discriminated based on shape, but also based on category membership. 

Although primarily driven by shape, LO also elicits different responses to different 

categories of objects (Grill-Spector & Weiner, 2014). To explore how regions represent 

differences in shape or category membership, researchers can compare patterns evoked 

by objects from different categories that are similar in shape and objects from the same 

category that are different in shape. Proklova, Kaiser, and Peelen (2016) separately 

modelled the degree of visual similarity and category membership (i.e., animate, 

inanimate) to be compared with brain similarity patterns when viewing a set of stimuli in 

the scanner. These stimuli were carefully controlled for low level features and contained 

objects that had a similar shape but belonged to a different category (e.g., rope and 

snake). Searchlight MVPA analysis resulted in much of the lateral occipitotemporal 

cortex significantly correlated with the visual dissimilarity matrix and some regions that 

are correlated with the category dissimilarity matrix. In LO, there were voxels 

specifically sensitive to visual dissimilarity, but others whose response profile correlated 

significantly with both visual and category dissimilarity matrices. These results provide 

evidence that LO contains voxels that represent visual dissimilarity and also category 

membership.  

Additionally, there is evidence that LO contains both between and within category 

information. A study by Eger et al (2008) leveraged fMRI classification of evoked 

patterns when viewing two categories of objects, chairs & teapots, that varied in 

viewpoint. Participants were asked to respond with a button press when they saw a red or 

green hue to the stimuli. Interestingly, the mean signal in LO did not differ between and 

within object categories. Only when patterns of activation were measured and analyzed 

were differences between categories apparent. The researchers also investigated how 

different numbers of voxels contained in their LO ROI affected the results. Classification 

accuracy was significantly above chance for both between (average 62% at 200 voxels) 

and within category (average 55% at 200 voxels). Amazingly, between category 

classification was above chance with just 10 of the most discriminative voxels. These 

results provide evidence that LO represents these two categories and also different 
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exemplars within each category distinctly. Therefore, findings suggest that LO contains 

these coarse-grained and, to a lesser extent, some fine-grained object distinctions. The 

next section will focus on evidence suggesting that PRC may represent objects differently 

from LO, by virtue of  specifically being involved in object discrimination when objects 

share many features, i.e., when there is a high degree of feature overlap. 

1.3 Perirhinal Cortex as the Apex of the Ventral Visual 
Stream 

The Multiple Memory Systems paradigm proposes perirhinal cortex as the border region 

between “memory” and “perceptual” systems (e.g., Schacter and Tulving, 1994; Zola-

Morgan, Squire, & Ramus, 1994; Tulving and Schacter, 1990). As such, recent studies 

have investigated the perirhinal cortex as a potential new anterior apex of the ventral 

visual stream (Murray et al., 2007; Barense et al., 2012). This was first examined in 

animal lesion research such as a study reported by Bussey, Saksida, and Murrary in 2003. 

In that study, researchers morphed greyscale picture stimuli creating pairs of stimuli that 

shared many features and were visually similar or shared few features and were visually 

dissimilar. The monkeys viewed two images and learned to associate one image with a 

reward and performance was measured as percent of trials that were correct. The results 

indicated that monkeys with PRC lesions were only impaired on learning to discriminate 

pairs of stimuli that shared many features. This findings is part of a large body of 

evidence suggesting that PRC of non-human primates is involved in perceptual 

discrimination of visually similar objects (see Murrary, Bussey & Saksida, 2007 for 

review).  

Human lesion studies have also confirmed the role of PRC in object perception. Several 

studies have compared a select group of patients that either had medial-temporal lobe 

damage specific to the hippocampus or that included, but was not limited to, perirhinal 

cortex (typically extending into anterior lateral temporal cortex, other parts of 

parahippocampal gyrus, and the amygdala). Barense et al. (2007) investigated the 

difference in object discrimination between three participants with selective bilateral 
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hippocampal damage and three participants with medial-temporal lobe damage that 

included the PRC, as well as age-matched controls. Participants completed an oddity task 

(Buckley, Booth, Rolls, & Gaffan, 2001; Lee, Buckley, Gaffan, Emery, Hodges, & 

Graham, 2005) that required them to indicate which object was the odd-one-out. 

Participants were asked to find and press a button corresponding to the object that did not 

have an exact match in each trial. Trials ranged from low to middle to high visual 

similarity. Results showed that while the hippocampal-specific lesion participants 

performed similarly to controls, those with more widespread MTL damage, including 

PRC, performed significantly worse than controls and HP-patients on trials with objects 

of middle and the highest level of similarity. Further, these results were supported in 

2012 by Barense and coworkers when these same participants completed a different 

visual discrimination task. They were asked to indicate if two simultaneously presented 

stimuli were a match or a non-match. The stimuli belonged to four conditions that were 

defined by high or low shape ambiguity and by high or low size ambiguity. As predicted, 

only patients with MTL damage that included the perirhinal cortex were impaired when 

discriminating objects, and only in the high shape ambiguity condition. This follow-up 

study provided evidence that this deficit in performance, in participants with MTL 

damage including PRC, for highly similar objects does not generalize to size 

discrimination. In these patients, however, the MTL damage is not limited to perirhinal 

cortex so we cannot rule out the possibility of one or some of the other affected regions 

being the site for these highly complex objects.  

Lee et al. (2006) tackled this problem using functional imaging of healthy participants 

while performing specific tasks. In each of three functional runs participants were asked 

to compare two grids on each trial. They were either asked to determine if 1) the object 

changed visually, 2) the position of the object changed, or 3) no change occurred. The 

researchers then measured the activity specific to object change by subtracting the 

activation in the no change condition and found that both right PRC and right posterior 

hippocampus was significantly active during the object change condition. In contrast, the 

change of object position did not elicit significant BOLD change in the MTL. Although 



15 

 

this was not expected in the hippocampus, these null object position results may be due to 

spatial task simplicity. For example, a previous study from this group required 

participants to discriminate three-dimensional virtual reality rooms, whereas this study 

required participants to pay attention to object position on the screen (Lee et al., 2005). 

While this spatial task may not be suitable for probing spatial discrimination, the object 

change condition has been used in many visual object discrimination tasks in the 

literature. There is, however, another aspect to object discrimination besides attending to 

the way the object looks. For example, we may also discriminate objects based on what 

they are used for or where they are usually located and these characteristics of an object 

are part of its conceptual representation. Consequently, if a change in BOLD activity 

occurs in response to the object changing from apple to toothbrush, this may be due to a 

change in visual features (e.g., from round to elongated) or a change in conceptual 

features (e.g., from ‘used for nutrition’ to ‘used for hygiene’). Therefore, a clever 

experimental design is needed to tease apart the differential effects of visual and 

conceptual feature overlap. 

Although many objects share both visual and conceptual features (e.g., apple and orange), 

many everyday objects share only conceptual features or only visual features. Evidence 

suggests PRC plays a role in representing objects conceptual features (Clarke & Tyler, 

2014) in addition to visual features (e.g., Erez et al., 2016). A challenge arises when 

investigating a dissociable effect of these two feature types because these features tend to 

be related as form and function are typically intertwined (Mur, 2014). A great example of 

this is illustrated in Martin et al (2018) that suggested that a concept of a ‘hairdryer’ 

shares many conceptual features with ‘comb’ (e.g., used to style hair) and shares many 

visual features with ‘gun’. Because we are able to recognize these differences in both 

visual and abstract conceptual features such that we do not use a gun to tame our hair in 

the morning just because it looks similar to a hairdryer, therefore our brain must have a 

way to integrate these representations. This study investigated how both conceptual and 

visual features are represented in the brain by obtaining ratings for objects about both 

visual similarity and conceptual similarity. Combining results from previous studies that 
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investigated object representations of visual feature conjunctions during object 

discrimination or conceptual feature conjunctions during semantic memory, Martin and 

colleagues hypothesized that PRC is involved in both discriminating visual and 

conceptual features. To test their hypothesis, participants viewed 40 words of object 

concepts in the MR scanner and were asked to answer two questions about these object 

concepts in a blocked design (two blocks in each of the eight functional runs). During one 

block participants answered questions with a button press yes/no, pertaining to the 

objects visual features such as, ‘Is the object angular?’ and the other block contained 

questions about the objects conceptual features such as ‘Is this object a tool?’. Then, 

representational similarity analysis (RSA) was performed to obtain representational 

dissimilarity matrices (RDM) where brain patterns when viewing the different objects 

was compared to the brain patterns when viewing all other objects. Therefore, if two 

objects are represented distinctly then the multivoxel patterns would be distinct. In 

separate studies, other participants rated visual and conceptual similarity between these 

object concepts; thus the researchers obtained behavioural-based visual RDM and 

behaviour-based conceptual RDM. This resulted in behaviour-based visual RDMs and 

conceptual RDMs that could be compared to the visual task brain RDM and conceptual 

task brain RDM. Confirming their hypothesis, both the behaviour-based visual RDM and 

conceptual RDM were significantly correlated to both the brain-based visual task RDM 

and conceptual task RDM. This indicates that PRC represents both visual and conceptual 

features and not in a task-dependent way. In contrast, in LO, only the behaviour-based 

visual RDM was significantly correlated to the brain-based RDM, only during the visual 

task. This research provides evidence that both LO and PRC represent visual features, but 

PRC also represents conceptual features. Seeing that both LO and PRC represent visual 

features during object recognition, how do these regions differ? R-H theory would 

propose that LO may be more active for more coarse-grain feature overlap and PRC may 

be more active for more fine-grain distinctions (Bussey & Saksida, 2002; Kent et al., 

2016). Therefore, it is important to further explore how object representations change as a 

function of the degree of feature overlap.  
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Research has investigated PRC as a potential region that contains representations of 

similar objects which share many features. To resolve this feature overlap, R-H proposes 

that areas of the brain contain conjunctive representations and these conjunctive 

representations have the property that “the whole is greater than the sum of its parts” 

(Kent et al., 2016). At this point in the thesis, we have discussed much research that 

indicates that PRC would contain these conjunctive representations, but no direct 

evidence existed that these representations are in fact highly conjunctive object-based 

representations and not separately represented features that are co-activated. In 2016, 

Erez and colleagues provided direct evidence using fMRI to support the hierarchical 

model and conjunctive representations in the ventral visual stream of humans. The 

Hierarchical model predicts that early VVS regions contain low-level features and as 

representations move through the visual stream these features are combined to create 

increasingly complex object representations. This is in contrast to a non-local binding 

mechanism where the features are represented independently and are bound by co-

activation. In this study, Erez investigated whether the representations of whole objects 

differed from combined representations of its features. To do this participants viewed 

different combinations of three features (A, B, C) added to a common base object (similar 

to adding parts to a Mr. Potato Head toy) during a classic 1-back task where participants 

pressed a button when they saw an exact repeat. Importantly, a “conjunctive contrast” 

was performed to compare patterns of activation elicited by different conjunctions of 

features across two objects: 1 one-feature object + 1 two-feature object (i.e., A + BC 

versus B + AC versus C + AB). All combinations contained the same three features 

therefore controlling for visual and mnemonic characteristics. This allowed the 

researchers to create a model of conjunctive coding where patterns evoked by repetitions 

of the same conjunctions were more similar than patterns evoked by the same features in 

different conjunctions. If a region is highly correlated to this model then that would be 

evidence that the region represents highly specific conjunctions rather than co-activating 

separate feature representations. First a searchlight and then ROI-based MVPA 

confirmed conjunctive coding (i.e., A + BC ≠ B + AC ≠ C + AB) in PRC, LO, and V4. 
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The ROI-based conjunction contrast showed the greatest effect size for PRC (0.24), LO 

had 0.1 effect size and FFA/PPA did not have significant effects. This study provided the 

first evidence for explicit conjunctive coding in PRC in humans.  

1.4 The Missing Link: Pattern Separation in Perirhinal 
Cortex 

As reviewed in the previous sections, there is a theoretical framework and some initial 

evidence that can be seen as support for the notion that pattern separation takes place 

upstream of the hippocampus, including the transformation of representations from mid-

stream VVS regions to PRC.  This theoretical framework was reviewed in 2012 by 

Cowell in which seven major computational models of perirhinal cortex function 

examined. Early computational models of PRC focused on a potential cognitive 

algorithm that these neurons in this region might perform (Bogacz, Brown, & Giraud-

Carrier, 2001; Bogacz & Brown 2003). More recently, models have focused on content 

rather than function (Bussey & Saksida, 2002; Cowell, Bussey, & Saksida, 2006; Cowell, 

Bussey, & Saksida, 2010). This content-focused model depicts the visual pathway as a 

hierarchy of layers that contain representations of an increasing number of preferred 

feature conjunctions. For example, Bussey and Saksida (2002) proposed a model of 

visual discrimination learning in PRC with two representational layers: caudal VVS layer 

and PRC. In their study, four monkeys who underwent bilateral aspiration lesions of the 

perirhinal cortex and four control monkeys completed a task where they were placed in 

front of two stimuli and had to touch one of the stimuli to get a reward (the other one did 

not produce a reward). The two stimuli could differ in visual similarity from minimum to 

intermediate to maximum. Behavioural performance was measured by comparing how 

many errors it took the monkeys to produce four correct discriminations in a row for each 

of the stimulus similarity conditions. As the model predicted, the monkeys with PRC 

lesions performed increasingly worse as the degree of feature overlap increased and 

significantly worse than the controls in the intermediate and maximum feature overlap 

conditions. These results provided evidence that PRC is involved in the discrimination of 
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highly visually similar objects. Further development of Bussey and Saksida’s (2002) 

model proposed by Cowell et al. (2010) included 3 layers. In this model, Layer 1 prefers 

the conjunction of two visual features, Layer 2 prefers the conjunction of three visual 

features, and Layer 3 prefers the conjunction of four visual features. These layers are 

thought to model successive processing stages from occipitotemporal cortex to the 

anterior temporal lobe and are connected to an outcome node via weights that are 

adjustable by a specific mechanism. This mechanism implies that each layer has a 

preferred feature complexity of a stimulus, and as such later layers are maximally active 

for stimuli with increasing feature overlap. Additionally, this mechanism can vary based 

on the stimuli used and the task design, including both the task instructions and its 

representational demands. Previous research indicates that representations in LO contain 

coarse-grained distinctions (i.e., category), and some additional finer-grained distinctions 

(i.e., within-category) between objects. In contrast, much evidence has supported PRC as 

a region that contains the more fine-grain distinctions and less so for coarse-grain 

distinctions. However, there remains a missing link to the existing extensive literature on 

pattern separation in the hippocampus. Currently, methods that have been used to probe 

pattern separation in the hippocampus during episodic memory tasks differ from those 

that have been employed to probe object discrimination with high feature overlap during 

object perception. No studies, to our knowledge, have used the methods from the 

hippocampal-memory literature and tailored them to the content that may be pattern 

separated in the ventral visual stream. Specifically, R-H model would propose that LO is 

similar to earlier layers and preferentially activated for low-feature overlap conditions 

and more downstream there is a region that prefers high-feature overlap conditions 

(Bussey & Saksida, 2002; Cowell 2010; Kent et al., 2016). Previous studies that have 

indicated that this downstream region is perirhinal cortex as it performs conjunctive 

coding (Erez et al., 2016) of visual and conceptual features (Martin et al., 2018). Some of 

these studies might not yet have revealed pattern separation directly in the ventral visual 

stream because they were not tailored to probe similarities between objects outside of the 

context of declarative memory tasks.  
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R-H theory proposes that the dentate gyrus is unlikely to maintain all levels of 

representations for all stimulus materials. Therefore, pattern separation is thought to take 

place in the dentate gyrus for spatial and episodic material, but high level visual object 

perception may occur at the top of the VVS hierarchy (i.e., in the perirhinal cortex). 

Currently, the only study that has revealed pattern separation in the dentate gyrus without 

a novelty confound is by Berron et al., 2016 and that study used scene stimuli. It would 

be desirable to have evidence from a similar paradigm that avoids novelty confounds 

when probing object representations and pattern separation in perirhinal cortex. To 

measure pattern separation in the visual stream we must use stimuli that are represented 

there. One approach to show that there is pattern separation in the VVS, specifically with 

respect to input for PRC, might be to use object stimuli given that PRC has been shown 

to represent objects in numerous studies (Lee et al., 2006; Erez et al., 2016; Martin et al., 

2018). In contrast to the hippocampal-memory literature, in would also be critical to use 

tasks other than those traditionally employed to probe declarative memory functioning.  

A promising task to consider in this context is the 1-back task, which is more commonly 

used in VVS functioning (e.g., Reddy & Kanwisher, 2007). A 1-back tack has no 

declarative memory component, and allows for  probing of object representations that 

support object perception and working memory over brief delays .  

Studies have used a task that was not focused on declarative memory (e.g., Martin et al., 

2018) did not manipulate similarity along a continuous dimension. The use of a varying 

range of stimuli visual similarity is especially important when investigating the 

differences of representations between LO and PRC because they may represent different 

grains of similarity, coarse and fine, respectively. Moreover, these studies did not 

examine whether their manipulation affected perceived similarity. When viewing objects 

there is the objective or physical characteristics, but also a subjective or perceptual 

experience of that object. A measure of perceived similarity might provide a another 

means to probe for pattern separation in the ventral visual stream. There is a subjective, 

individual-specific component in representational object space (Charest et al., 2014) and 

this can be utilized to measure pattern separation of objects perceived to be similar. 
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1.5 The Current Study: Approach, Goals, and Hypotheses 
The general goal of the current study is to test whether there is pattern separation 

upstream from the hippocampus and if it can be observed even when participants do not 

perform a declarative memory task. The approach to address this goal is to probe pattern 

separation with a focus on classification of activation patterns of objects with different 

degrees of similarity in the ventral visual stream. The current study has two more specific 

goals, each with their own set of hypotheses and predictions. The first goal is to develop a 

behavioural paradigm to probe pattern separation in relation to fine-grained object 

discrimination in the Ventral Visual Stream. To achieve this, the paradigm must 

challenge participants’ object discrimination such that participants cannot use low level 

features to complete the task. To foreshadow our approach, we modified the classic 1-

back task so that participants were required to indicate with a button press if the object is 

the exact same as the one previous and a different button press if the object is the same 

category as the one previous. Because exemplars within a category share the same name 

(e.g., apple, toothbrush, leaf) this probes the object level of object processing, while 

controlling for mnemonic similarity. We hypothesize that behavioural performance will 

track subjectively perceived similarity. We predict that as perceptual similarity increases, 

the number of errors and the reaction time (for correct responses) will also increase. 

The second goal of this study is to seek evidence for pattern separation using fMRI 

MVPA classification. We use multi-voxel pattern analysis which allows us to investigate 

differences in representations of visually similar objects between LO and PRC. In line 

with the R-H model, we hypothesize that more coarse-grain differences such as 

categories will be represented in LO and more fine-grain differences such as within-

category exemplars will be represented in PRC. Specifically, we hypothesize that object 

representation patterns of visually similar objects are more distinct in PRC than in LOC. 

Therefore, we predict the support vector machine classifier will perform significantly 

above chance discriminating categories and within-category exemplars with low visual 

similarity in LOC. But the classifier will perform at chance when discriminating 

exemplars at higher levels of similarity in LOC. These non-distinct representations in LO 
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will then be resolved in PRC, with the classifier performing significantly above chance in 

PRC and distinguishing representations of highly similar within-category exemplars. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Method 

2.1 Participants 
23 participants (12 females) were recruited from Western University, London, Canada. 

All participants were 18 to 35 years old, right-handed, native English speakers with no 

known history of psychiatric or neurological disorders. Participants had normal or 

corrected-to-normal vision. This study was conducted with Western’s Human Research 

Ethics Board approval. Informed consent was acquired from each participant before the 
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experiment and participants were debriefed and given monetary compensation upon 

completion of the experiment.  

2.2 Stimuli 
Similar to studies that investigate pattern separation in the dentate gyrus (e.g., Bakker et 

al., 2008; Lacy et al., 2011), the current study used stimuli that have varying levels of 

visual similarity. This allowed for the identification of the “cut-off” level of visual 

similarity that is distinguishable in each of the regions of interest. Stimuli were carefully 

chosen from the Migo Normative Database (Migo et al., 2016). 40 greyscale images of 

objects from 10 categories were selected after careful piloting of 40 participants. Stimuli 

were selected to range from high-middle-low similarity compared with a target object 

(see Figure 1). Low similarity objects ranged from 910 to 1300, middle similarity objects 

ranged from 3260 to 3840 and high similarity objects ranged from 5420 to 6030 on the 

Migo normative database. Pilot work was conducted with the purpose of choosing stimuli 

that correlated closely with the Migo database normative ratings. At first, pair-wise 

ratings of visual similarity were used. We reasoned that using a measurement of the 

entire visual similarity space would also be beneficial in order to consider similarities 

within and between categories. For this purpose, we employed an Inverse Multi-

Dimensional Scaling task that was modified from Kriegeskorte & Mur (2012). The 

stimuli selected after piloting were in high agreement with the Migo normative database 

although some inter-individual differences were present. Our study design allowed us to 

capture these inter-individual differences using inverse multi-dimensional scaling with 

individual-specific measurements, which outputs a representational dissimilarity matrix 

that shows the relative distances between any and all object pairs, in all participants (see 

section 2.3; Kriegeskorte & Mur, 2012). In the scanner images were projected onto the 

center of a screen onto a white background and participants watched them through a 

mirror mounted on the head coil, at a visual angle of 25 degrees. Stimulus presentation 

was controlled using Psychtoolbox (Brainard, 1997).  
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Figure 1. 40 stimuli from Migo Normative Database (Migo et al., 2016). The four 

object exemplars in each of the 10 categories were manipulated to be high-middle-

low visual similarity compared with the an arbitrary target exemplar. 

 
 

2.3 Multi-Arrangement Task: Inverse Multi-Dimensional 
Scaling 

To obtain a metric for subjective similarity space, participants completed a behavioural 

task on a computer outside of the scanner. After obtaining informed consent, participants 

were seated in front of a monitor to complete a variation of a multi-arrangement sorting 

task, where participants were asked to click-drag-drop objects within the white circle 

based on how visually similar they think the objects are (Kriegeskorte & Mur, 2012; see 

Figure 2). The closer two objects were placed, the more visually similar the participant 

thought the objects were. After carefully completing the sorting of all 40 exemplars, 

participants completed 10 category-specific trials where they were asked to sort the four 

exemplars based on perceptual visual similarity. This MATLAB-based program then 



25 

 

calculated distances from all trials and we obtained participant-specific perceptual visual 

similarity ratings to be used in future analyses to compare to brain dissimilarity matrices 

when viewing these same objects. Specifically, the sorting of four exemplars results in 

six unique pairwise dissimilarity distances (1&2; 1&3; 1&4; 2&3; 2&4; 3&4). For our 

pattern separation classification analysis (see section 3.2.2 Fine-Grained Representations: 

Exemplar Classification), we split these six unique distances into the two shortest 

distances, the two middle distances, and the two longest distances to create high, middle, 

and low visual similarity, respectively. Moreover, we ensured the greatest separation 

between the similarity levels by excluding any values that was not at least .06 

dissimilarity (10% of the highest dissimilarity which ranged from 0 – 0.6) between each 

of the successive levels (i.e., high-middle, middle-low). Out of the 690 data points (23 

participants * 3 levels of similarity * 10 categories), 8 data points were removed and were 

from varying participants, levels of similarity and categories. 
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2.4 fMRI Task: Variation of a 1-Back Task 
To address the first goal of this thesis, we aimed to develop a task to probe pattern 

separation using techniques similar to those used in the hippocampal-memory literature. 

Therefore, a 1-back task was modified to suit the demands of investigating fine-grained 

object discrimination. After completing the inverse multi-dimensional scaling task, 

participants completed a 1 minute training session on the variation of a 1-back task using 

2-D images of the object stimuli (see section 2.2 Stimuli) on a computer before entering 

the MR scanner. Like in a classic 1-back task, participants pressed a button when they 

saw an exact repeat of the object previous to it and no response when consecutive objects 

were from different categories (Figure 3). Our novel twist was the addition of a second 

response option to indicate if the object is from the same category as the previous one, 

Figure 2. Inverse Multi-dimensional scaling task adapted from Kreigeskorte & Mur (2012). 

This task allows for the calculation of dissimilarity distances between all possible object 

pairs. Left side of figure depicts a sample sorting of all object stimuli. Right side of figure 

depicts the starting position of a category specific sorting trial. Participants completed one 

trial for each of the 10 categories used in the study. 
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but a different exemplar. Participants used their right index and middle finger with 

counter-balancing of response assignments across participants. Of the three trial types—

exact repeat, same category, no response—only the no response trials were used in the 

fMRI analysis to avoid motor confounds. The two other trial types served as catch trials 

to keep participants’ attention focused on differences between objects across consecutive 

trials and to assess behavioural performance (see 3.1 Behavioural Results section). 

Importantly, these modifications of the classic 1-back task were introduced to ensure that 

participants attended closely to each object and engaged in object processing at the 

exemplar and category level. That is to say, this task cannot be completed using only 

low-level features such as local changes in luminance or local changes in shape across 

consecutive trials.  

Additional pilot work went in to making this task as robust as possible. At first, pilot 

participants were asked to complete 4 functional runs that lasted eight minutes each. This 

seemed to fatigue the participants because it resulted in poor performance, especially 

towards the end of the run. Therefore, we shortened the run duration to four minutes and 

split the functional runs such that participants would complete 4-four minute runs, rest 

(structural scan), and complete the remaining 4-four minute functional runs. In this way, 

we were able to increase behavioural performance and not sacrifice individual 

presentations of objects. We ensured that each object was viewed a total of 32 times 

across the entire experiment: three no response trials and one response trial, either exact 

repeat or same category trial, per exemplar per run. Therefore, 24 non-response 

presentations of each object was used in the MVPA ensuring adequate signal for each 

stimulus. Additionally, same category response trials were manipulated to be of equal 

number for high, middle and low visual similarity. 
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Figure 3. Variation of a 1-back task. Each image was presented for 1.2 seconds with 

an inter-stimulus interval of 1 second where a fixation cross was presented. 

Participants were asked to press one button if the object was the exact same as the 

one previous to it, a different button if the object was the same category as the one 

previous to it, and no button press if the object is a different category as the one 

previous to it. Each of the 40 exemplars were viewed four times--one presentation 

was a response trial—in each of the eight runs for a total of 24 non-response 

stimulus presentations of each exemplar across the entire experiment. 

Corresponding neural patterns that resulted from viewing each of the 40 stimuli 

multiple times were averaged to obtain stable stimulus-specific estimates in fMRI 

analyses. 

2.5 MRI Data Acquisition and Preprocessing 
MRI data were acquired using a 3 T MR system (Siemens). A 32-channel head coil was 

used. Before the fMRI session, a whole head MP-RAGE volume (TE = 2.28 ms , TR = 

2400 ms , TI = 1060 ms, resolution= 0.8 X 0.8 X 0.8 mm isometric) was acquired. After, 

four fMRI sessions were run each with 300 volumes which consisted of 42 T2*-weighted 

slices with a resolution of 1.7 X 1.7 mm (TE = 30 ms, TR = 1000 ms, slice thickness 1.7 

mm , FOV 200 mm, parallel imaging with grappa factor 2). The slices were acquired in 

odd-even interleaved fashion in the anterior to posterior direction. Subsequently, a T2-

weighted image (TE = 564 ms, TR = 3200 ms, resolution 0.8 X 0.8 X 0.8 mm isometric) 
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was acquired. Finally, participants then completed four more fMRI sessions. Total 

duration of MRI acquisition was approximately 60 min.  

MRI data were converted to brain imaging data structure (BIDS) and ran through 

fmriprep-v1.1.8 (Esteban et al., 2018). This preprocessing included: motion correction, 

slice time correction, susceptibility distortion correction, registration from EPI to T1w 

image, and confounds estimated (e.g., tCompCor, aCompCor, framewise displacement). 

Component based noise correction was performed using anatomical and temporal 

CompCor, aCompCor and tCompCor, by adding these confound estimates as regressors 

in SPM12 during first level GLM (Behzadi, Restom, Liau, & Liu, 2007). Spatial 

smoothing of 5 mm full-width half-max (FWHM) Gaussian Kernel was applied as in 

Martin et al. (2018).  

2.6 Regions of Interest 
Our two main regions of interest were defined in the following steps. LO was 

anatomically defined using the Wang et al. (2014) probabilistic atlas. In that study, 52 

human subjects followed several retinotopy protocols used to delineated separate visual 

regions. A protocol from Larsson and Heeger (2006) was used to extract lateral occipital 

areas 1 and 2, which each contain a topographic representation of the contralateral visual 

hemifield. This ROI, a combination of both areas, was then transformed to each 

individual’s native space. LO is comprised of lateral occipital complex which is thought 

to be the object selective region of LO.  

PRC was defined using automated segmentation of hippocampal subfields (ASHS; 

Yuskevich et al., 2014). This method allows for the segmentation of structural scans via 

their multi-atlas image segmentation algorithm, joint label fusion (JLF; Wang et al., 

2013). As explained in Yuskevich et al. (2014), the JLF algorithm performs a deformable 

registration between the target image and a set of labeled atlas images, and each 

registration provides a “weak” segmentation. JLF then weights each registration such that 

applying those weights results in a “strong” segmentation of the target image. 

Additionally, machine learning is used by applying their corrective learning algorithm 
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(Wang & Yuskevich, 2011). Classification helps “clean up” this strong segmentation by 

re-labelling any mislabelled voxels. This method segments hippocampal subfield and 

extra-hippocampal cortical areas, including PRC. 

For a control region, auditory cortex was chosen and defined using a probabilistic atlas 

from Harvard Center for Morphometric Analysis (Mazziotta et al., 2001). This atlas was 

derived from semi-automated segmentations of 37 healthy human subjects T1-weighted 

images. These images were affine-registered to MNI152 space and results were combined 

across subjects to construct population probability maps for each label, including auditory 

cortex. This ROI was then transformed to each individual participants’ native space. 

2.7 Multi-Voxel Pattern Analysis 
We used SPM12 to obtain beta estimates of exemplar specific voxel activations from 24 

no response trials for each category, which resulted in 40 separate general linear models 

(GLMs). These GLMs were then analyzed with CoSMoMVPA toolbox in Matlab 

(Oosterhof, Connolly, & Haxby, 2016). This toolbox calculates a dissimilarity matrix of 

multi-voxel patterns for every exemplar compared with every other exemplar (Figure 2). 

For the purpose of statistical inferences, a leave-one-run-out cross-validation was 

performed. A linear support vector machine was trained on the data from seven runs and 

tested on the remaining run. Overall classification accuracy was defined as the mean 

accuracy of all eight validation steps. This classification was used to distinguish category 

level and exemplar level differences in activation patterns at different levels of similarity 

in each of our ROIs. Results were corrected for multiple comparisons using the 

Bonferroni Correction by dividing α = 0.05 by number of regions (2) and number of 

levels of similarity (3) considered (i.e., .05/(2*3) = .00833). In this calculation, we 

included regions that were of primary theoretical interest, namely perirhinal cortex and 

lateral occipital region, but not our control region, i.e., auditory cortex. Therefore, results 

were considered significant if their p-value was less than p = .00833. 
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3 Results 

3.1 Behavioural Results 
Behavioural data from 23 participants in the scanner revealed that participants performed 

this variation of a 1-back task with high accuracy (see Table 1). The three trial types 

could be split into detections of objects in the same category or different categories, 

which were associated with a button press or no button press, respectively. The response 

trials could further be separated into an exact repeat or a similar exemplar belonging to 

the same category (i.e., apple, leaf, lipstick etc). Detection of same category repeats type 

was associated with lower accuracy than the detection of exact repeats. This was 

expected as the within-category exemplars look similar, the vast majority of incorrect 

responses was mislabelling the two trial types that required responses. Moreover, there 

was a performance accuracy difference between different levels of visual similarity 

derived from the inverse multi-dimensional scaling task. Participants can perform this 

task at all similarity levels, but accuracy and reaction time data showed that participants 

are sensitive to personal visual similarity ratings (Figure 4). First, the number of errors 

increased with increasing visual similarity: high vs middle, t(22) = 7.09; p < .0001; 

middle vs low, t(22) = 6.88; p < .0001. Second, reaction times for the correct responses 

increased with increasing visual similarity as well: high vs middle, (t(22) = 4.35 ; p < .01) 

and middle vs low, (t(22) = 4.11 ; p < .01). We can conclude that participants are able to 

complete this novel variation of a 1-back task and also that participants are sensitive to 

perceptual visual similarity ratings. 

Table 1. Overall behavioural results of the variation of a 1-back task. Trial Type is 

indicated by the rows, participants response proportion (averaged across all 

participants and rounded to nearest tenth). Correct responses are located on the 

diagonal and bolded. Same category trial types can be split into high-middle-low 
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visual similarity based on each participant’s sorting. Same category response 

options cannot be split into high-middle-low. 

      Mean Response Proportions (with Standard Deviations) 

      Exact Repeat Same Category No Response 

TRIAL 

TYPE 

EXACT REPEAT  .91 (.032) .07 (.01) .02 (.001) 

SAME 

CATEGORY 

HIGH .26 (.019) .69 (.029) .05 (.01) 

MIDDLE .18 (.017) .79 (.025) .03 (.007) 

LOW .07 (.01) .90 (.03) .03 (.006) 

NO RESPONSE  .01 (.009) .06 (.014) .93 (.02) 

 

 

 

Figure 4. Reaction times for all correct “same category” button press trials. These 

correct trials were split by their corresponding degree of visual similarity (high-
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middle-low). Reaction time decreases with decreasing level of visual similarity. 

Behavioural results of a variation of a 1-back task indicates participants are 

sensitive to the visual similarity manipulation. (* indicates p<.01) 

3.2 fMRI Results 

3.2.1 Between Category Classification 
Functional imaging data were analyzed using MVPA support vector machine 

classification (see Multi-Voxel Pattern Analysis section). We were interested in where 

category information was represented in the ventral visual stream. Analysis of Variance 

(ANOVA) was conducted to measure the difference of classification accuracies between 

the three regions of interest. The ANOVA was significant, F(2, 22) = 7.01, p <0.01, 

therefore classifier performance in the three regions are significantly different.  

To investigate which regions represent categories distinctly significantly above chance, 

classification accuracies for all pairs of categories i (i.e., apples vs pens; toothbrush vs 

leaf etc.) were tested against chance (50%) using a one-tailed t-test. In addition, to 

category specific classification accuracies (see Appendix 1), the overall mean 

classification accuracy was calculated, averaged across all categories, as displayed in 

Figure 5. The classifier performed significantly above chance in LO in this measure 

(t(22) = 6.61; p = 6 x 10-7). Additionally, category classification accuracies were 

significantly above chance for all individual categories in LO (see Appendix 1). This 

pattern of results suggests that category information is represented distinctly in lateral 

occipital region. In contrast, the classifier did not perform significantly above chance in 

PRC (t(22) = 2.51; p = .01) when category-level differences were examined overall, 

suggesting that categories are not represented distinctly in this region. Although 

classification was significant for two individual categories (apple and chilli) in PRC, this 

result did not survive correction for multiple comparisons. Our control region of auditory 

cortex was, as expected, at chance overall and for every individual category (t(22) = 1.40; 

p > .05).  In summary, that categories are distinguishable in LO, but not in PRC or 

auditory cortex, suggests that these more coarse-grained between category 
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representations are resolved earlier in the ventral visual stream and not present in later 

visual regions, such as PRC.  

 

Figure 5.  Mean between category classification accuracies in LO, PRC and control 

region (auditory cortex). Within each region, leave-one-run-out cross validation 

classification was performed to classify all pairs of categories (e.g., pens vs chillis; 

flowers vs apples etc). Accuracies were tested to be above chance 50% using t-test 

within each region. These classification accuracies were used to calculate each 

participants mean score (coloured dots) and each regions mean score (black dot) 

and standard deviation (shaded region of each box) plotted here. Classifier 

performed significantly above chance in LO only. 

3.2.2 Within Category Classification 
For our main question, we asked whether object representation patterns for visually 

similar objects are more distinct in PRC than in LOC. To begin, a 2-factor ANOVA (3 

regions X 3 levels of similarity) was conducted to investigate whether or not 

classification accuracies differed between regions and/or levels of visual similarity. 

Consistent with the hypothesis, there was a main effect of region, F(2, 22) = 8.35, p < .01 

LO PRC AUD 
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and a main effect of level of visual similarity F(2, 22) = 3.99, p < .05. Additionally, a 

significant interaction was found between region and level of similarity F(2, 22) = 4.28, p 

< .05. 

Further analyses were conducted to find on which levels of visual similarity (high, 

middle, low) the SVM classifier performs significantly above chance when classifying 

specific within-category exemplars. We obtained classification accuracies for each 

exemplar against every other exemplar in the same category (e.g., apple 1 versus apple 2; 

apple 1 versus apple 3 … apple 3 versus apple 4). Additionally, these accuracies were 

designated to be high, middle or low visual similarity based on the participant specific 

results of the inverse multi-dimensional scaling task (see 2.3 Multi-Arrangement Task). 

The Means of the classification accuracies across all categories are plotted in Figure 6 for 

the regions of interest and the control region. As reported in section 2.7, any p value less 

than .008833 was considered significant. Classification accuracy results (Figure 6) in LO 

revealed that only the lowest visual similarity level was represented distinctly (low, 

t(22)= 5.21; p < .001; middle, t(22)= 1.89; p > .01; high, t(22)= 2.34; p > .01 ). In 

contrast, all visual similarity levels are represented non-overlapping in PRC low, t(22)= 

5.67; p < .001 .05; middle, t(22)= 5.76; p < .001; high, t(22)= 5.55; p < .001 ). In the 

control region, auditory cortex, no within-category pairs are differentiable (low, t(22)= 

1.55; p > .05; middle, t(22)= 1.48; p > .05; high, t(22)= 1.54; p > .05 ). Because patterns 

at higher levels of similarity are non-distinguishable in LO, but can be differentiated in 

PRC, these results provide some evidence for pattern separation in the ventral visual 

stream (please refer to section 4.3.3 Additional insights that could be gained from 

Representational Similarity Analysis). 
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Figure 6. Mean within category classification accuracies in LO, PRC and control 

region (auditory cortex). Participant-specific ratings were used to split the 

exemplars into the highest, middle and lowest within category object pairs for each 

category. Support vector machine classification with leave-one-run-out cross 

validation was performed using pairs of exemplars for all levels of similarity, in all 

categories for all regions of interest. The mean classification across categories 

(coloured dots) and across participants (black dots) and standard deviations 

(shading of each box plot) are plotted here. These values were tested to be above 

chance 50% using one-tailed t-test. In LO, only the lowest level of visual similarity 

performed significantly above chance. In PRC, all levels of visual similarity 

performed significantly above chance. As expected, no results were significant in the 

control region auditory cortex. The transfer of overlapping representations in LO 
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4 Discussion 
This thesis set out with two objectives in order to investigate pattern separation in the 

ventral visual stream during object perception. First, we aimed to develop a behavioural 

paradigm to probe pattern separation outside of the domain of declarative memory, using 

a modified 1-back task. Second, we aimed to seek evidence for pattern separation in the 

VVS using classification of multivoxel patterns obtained with fMRI while participants 

performed this task. The task we designed taxed participants’ object discrimination at the 

level of exemplars and categories while minimizing opportunities to perform the task 

based on low-level features. In combination with an inverse multi-dimensional scaling 

task adapted from Kriegeskorte & Mur (2012) that allowed us to obtain participant-

specific visual similarity ratings, our behavioural findings showed behavioural 

performance on catch trials in our fMRI experiment to be sensitive to perceived 

similarity. Specifically, as perceived similarity increased, the number of errors and 

response times (on correct trials) also increased. When we explored pattern distinctions in 

LO and PRC using fMRI MVPA classification we revealed theoretically important 

differences in activation patterns between both structures. Results showed differentiation 

of categories and within-category classification at low levels of similarity in LOC. In 

contrast, patterns in PRC were distinguishable at all levels of within category visual 

similarity examined in the current study, but not at the level of categories. Taken together 

this pattern of results across regions provides support for the notion of pattern separation 

along the VVS. This next section will link these results to the extant literature and 

highlight key future directions to further understand these interesting results. 

4.1 Role of Perirhinal Cortex in Object Discrimination 
As postulated in the RH model, pattern separation may be a more general function not 

constrained to the dentate gyrus or declarative memory tasks. The current study used 

methods derived from the hippocampal pattern separation literature, but tailored them to 

investigate pattern separation in the ventral visual stream during object perception. Our 

results provide support for the role of perirhinal cortex during object discrimination of 
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visually similar objects. Specifically, classification analysis revealed that patterns in PRC 

were distinguishable at all within category levels of perceived visual similarity. The 

classifier performed significantly above chance when discriminating between 

representations relating to within category exemplars at all similarity levels (high, 

middle, low). In contrast, the classifier was not able to successfully distinguish patterns 

that represented objects from different categories. The RH model predicts that each level 

of the visual processing hierarchy will have a preferred object complexity such that 

earlier visual regions prefer simple features and later regions prefer complex feature 

conjunctions (Bussey and Saksida, 2002, 2003; Cowell, 2012; Kent, 2016). Here we 

found that PRC represents all within category exemplar pairs distinctly, but the more 

coarse grain category distinction is not evident. Although these results are consistent with 

what previous research of PRC lesions would have predicted (e.g., Bussey & Saksida, 

2003; Barense et al., 2007, 2012), it is interesting that perirhinal cortex was found to be 

involved in discriminating objects at all within-category similarity levels. RH model may 

have hypothesized that PRC would represent only the highest and middle visual 

similarity objects distinctly because both animal and human PRC lesion studies indicate 

that PRC is essential for differentiating objects with high feature overlap. Its preferred 

object ambiguity is very highly visually similar objects. Therefore, RH would propose 

that the classifier would perform significantly above chance in the high and middle 

similarity conditions but only at chance in the low similarity condition. These results 

suggest that all within category distinctions represent an optimal level of feature overlap 

for PRC. Interestingly, extant research may in fact agree with these results. A key factor 

to consider is the degree of visual similarity across experiments and how these high 

versus low similarity distinctions are categorized.  First, in animal PRC lesion studies 

such as Bussey, Saksida, & Murray (2003) two greyscale pictures were morphed together 

to create 40 new images. For example, if image 1 was a sunflower bouquet and image 40 

was a bird with an outstretched wing, picture 20 and 21 would be equal portions image 1 

and image 40. In their study the researchers described the low ambiguity condition as the 

original greyscale pictures (e.g., image 1 and 40) and the high ambiguity condition as 
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images 14 and 27, which are still visually fairly distinct. This study found that monkeys 

with PRC lesions were performed significantly worse at discriminating images in this 

high ambiguity condition as compared with control monkeys. In Figure 1 of the current 

study, we can see that many of the lowest visual similarity level objects are indeed 

qualitatively visually similar. As a quantitative measure of similarity, the inverse multi-

dimensional scaling task outputs participant-specific representational dissimilarity 

matrices that provide metrics for the entire representational space. This representational 

space can be used to investigate differences in both within and between category 

distances. For example, the lowest level of visual similarity within a category for the 

stimuli used in this study is highly overlapping: the average longest distance within a 

category (i.e., between the perceptually least similar exemplars) is .10 and the average 

distance between the center point of each category and its closest 5 categories is .35. This 

demonstrates that, in the current study, all within category exemplars are viewed as more 

visually similar than exemplars from a different category. Thus, providing support that 

PRC represents all levels of similarity of within category exemplars used in this study 

distinctly.  

Human PRC lesion studies, such as Barense et al. (2007, 2012), investigated the 

difference in object discrimination between patients with hippocampal-selective damage 

or more widespread MTL damage that included perirhinal cortex. These studies reported 

that participants with damage that included PRC had significantly more errors in 

discerning which object did not have an exact match within each trial as compared with 

participants with HP-selective damage. This difference in performance was only seen in 

the intermediate and high ambiguity conditions. A possible explanation that the low 

ambiguity trials were not affected in these patients with PRC damage is that other visual 

stream regions, such as LO, were able to compensate in those trials to allow for improved 

performance. Perhaps when participants have an intact PRC, such as in the current study, 

it is involved in discriminating all within-category similarity levels. Thus, PRC may be 

sufficient to discriminate all within-category similarity levels, but it is more crucially 
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important to adequately distinguish exemplars that are of intermediate or highly visual 

similarity.  

Although there is evidence for the role of PRC in these fine-grain differentiations, the 

present study provided no evidence that PRC represents categories distinctly. How does 

this result line up with the existing literature? Previous work that used MVPA to examine 

similarity of different category representations in PRC showed that some categories may 

be represented distinctly here such as, faces (Diana et al., 2010; Martin et al., 2013, 2016; 

O’Neil et al., 2013) and images of monkeys (Blumenthal, Stojanoski, Martin, Cusack, & 

Köhler, 2018). The current study found no individual category classifications survived 

the correction for multiple comparisons. This highlights the importance of the stimuli or 

even task used in investigating object representations because different kinds of 

categories or different types of tasks used across studies can lead to differences in results. 

More research is needed to determine which of these methodological differences account 

for the discrepancy across studies. 

Central to Representational-Hierarchical theory and their models of the role of PRC in 

object discrimination is the idea that PRC contains these highly conjunctive feature 

representations. As representations of highly visually similar objects move through the 

ventral visual stream they become increasingly more conjunctive and this necessarily 

means these representations are more distinct. In this study, we did not specifically 

manipulate feature conjunctions as we were interested in pushing participants’ natural 

object discrimination. Erez and colleagues (2016) did investigate whether representations 

in PRC can be described as “conjunctive coding”. To do this, researchers used object 

stimuli that consisted of a base object and three different features that could be added 

separately (A, B, C) or in conjunctions (AB, AC, BC). The goal here was to compare 

patterns evoked by the different combinations of features (A+BC; B+AC; C+AB). 

Because all combinations of features included the same three features, but combined in 

different ways, researchers could control for any confounds relating to different number 

of features. If a region did conjunctive coding then, these different conjunctions of three 

features would elicit significantly different patterns of activation. Indeed, that is what 
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Erez et al (2016) found using both searchlight and ROI-based analyses. Other regions 

were indicated, such as LO, but the effect size was significantly greater in PRC. 

Therefore, although our study did not manipulate feature conjunctions, there is evidence 

that PRC employs conjunctive coding to be able to differentiate between highly visually 

similar objects.  

We did, however, control for semantic involvement in our experiment design. 

Specifically, all within-category exemplars shared the same name (i.e., leaf, stapler). It 

was important that all exemplars shared the same mnemonic name because we were 

investigating the role of PRC in high-level object perception. If objects could be 

discriminated based on other dimensions such as their name or function then this would 

present as a confound. Previous research has indicated that PRC contains not only visual 

information, but also conceptual object information such as, where an object is usually 

located or what it can be used for. Martin et al. (2018) scanned participants as they 

completed tasks that probed visual object perception or conceptual object perception. 

They also collected data on how similar the objects were on both perceived visual 

similarity and perceived conceptual similarity dimensions. This allowed for the 

correlation between the perceived similarities and neural-evoked similarities of two 

objects. Representational similarity analysis showed that activity patterns in PRC were 

similar to both perceived visual similarity and perceived conceptual similarity.  

In contrast to previous studies, in the current study, we were interested in the role of PRC 

during visual object perception. Our out-of-scanner task asked participants to drag and 

drop items based on “how visually similar they are to you”. The instructions of this 

inverse multi-dimensional scaling task encouraged subjects to base their ratings on 

perceptual visual similarity. Because all exemplars within a category share the same 

name and our task specifically probed perceptual similarity, we were able to investigate 

how perceived visual similarity is represented in PRC and the upstream region LOC. 
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4.2 Role of LO in Category and Object Discrimination 
A key part of the definition of pattern separation is the transfer from overlapping 

representations in one region to non-overlapping representations in another region. The 

RH model specifically proposes that PRC may perform pattern separation on input from 

regions lower in the ventral visual stream processing hierarchy (Bussey and Saksida, 

2002, 3; Cowell, 2012; Kent et al., 2016). We chose lateral occipital region as the input 

region because it is a visual region upstream from PRC in the VVS. In the current study, 

we corroborated evidence from the field and demonstrated that LO was able to distinctly 

represent different categories (e.g., Schwarzlose et al., 2008). Our classification analysis 

showed a significantly above chance overall classification accuracy across categories. 

Therefore, LO was able to represent these coarse-grain differences distinctly. As 

hypothesized, our results also showed that LO can represent within-category object pairs 

distinctly. SVM classifier performed significantly above chance when labelling the 

lowest visual similarity exemplars within a category. Thus, this mid-ventral visual stream 

region represented these still quite visually similar conditions. Previous research from 

Eger and colleagues (2008) provided support of both of these LO findings. In their study, 

participants performed an incidental encoding task when viewing two categories of 

objects (i.e., teapots and chairs) that could vary in size and viewpoint. MVPA 

classification results indicated that patterns in LO distinctly represented both between and 

within category object stimuli. Although researchers did not include an explicit measure 

of visual similarity between exemplars, qualitative investigation of the stimuli indicated 

that the within category differences were quite large (e.g., round office chair versus 

square dining chair). Hence, our low visual similarity condition at least matched these 

within category differences and may even provide evidence that LO is able to 

discriminate objects more visually similar than previously thought. This increased role of 

LO in representing within-category exemplars may be because this study utilized 

participants’ individual perceptions of visual similarity. 

It was important to include perceived similarity ratings in addition to normative ratings 

because individual perception is variable and can be predictive of individual brain 
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patterns. Subjectively perceived similarity is known to shape object representations in 

higher regions in ventral visual stream (Edelman et al., 1998; Weber et al., 2009). For 

example, Charest et al (2014) scanned participants when viewing personally meaningful 

objects present in their daily life (e.g., own vehicle, friend’s body), photos from other 

participants photo album, and a general set unfamiliar to subjects. Additionally, 

individual perceptual spaces were created by asking all subjects to sort the objects based 

on how similar they were to them using a computer. When comparing the neural 

representations in inferotemporal cortex and the subject’s own similarity judgements, 

researchers found that neural representations predicted each subject’s similarity 

judgements when the objects were personally meaningful. Results indicated that 

idiosyncrasies in perception of the semantic similarities between objects can be predicted 

based on an individual's measured brain-activity patterns in inferotemporal cortex. 

Moreover, this region of interest was defined using a functional localizer contrast 

between faces, places, objects, and scrambled to capture fusiform face area (faces > 

places), parahippocampal place area (places > faces), and lateral occipital complex (faces, 

places, objects > scrambled). These three regions together comprised their inferotemporal 

cortex and therefore motivated the use of individual visual perceptual space in the current 

study of LO and PRC.  

Individualized perceived visual similarity was captured in the present study by using 

Kriegeskorte & Mur’s (2012) inverse Multi-Dimensional Scaling Sorting task. This task 

creates a representation of similarity of all objects compared to all other objects. In our 

variation of their multi-arrangement tool, our participants also completed trials that only 

contained exemplars from the same category allowing for the calculation of more 

sensitive within category similarity distances. We then used these within category 

distances to split all six within category comparisons (i.e., permutation of 4 exemplars) 

into perceived highest distance (lowest visual similarity) to middle to lowest distance 

(highest visual similarity). Here, we were able to use individual visual similarity ratings 

to probe each individuals’ object perception more closely. If we conduct the exemplar 

classification (see 3.2.2 Fine-Grained Representations) using the normative ratings as 
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they were manipulated in the design of this study, more variable results were found. 

Indeed, when we aimed to classify patterns representing high, middle, and low similarity 

exemplars in each participant with normative ratings only lowest level similarity in LO 

was successful (see Appendix 2). Although the numerical values are quite similar, the 

increased error bars indicate more variation. The difference in results observed when 

using normative or individualized perceptual ratings indicates the importance of 

including measures of perceptual visual similarity, but also that PRC is particularly 

involved in representing the perceptual experience of an object.  

Using individualized perceptual ratings helps account for the inter-individual differences 

in perception. This is especially true for PRC, but the results were just as significant in 

LO using both the normative and personal ratings. Evidence from Haushofer, 

Livingstone, and Kanwisher (2008) aligns with our findings. They measured differences 

in multivariate neural patterns evoked when viewing objects during a 1-back task and 

found that LO patterns most closely matched with physical (objective) shape 

representational space. The researchers further divided LO into anterior and posterior 

subregions and found evidence that posterior LO patterns are highly similar to ratings of 

perceptual (subjective) shape. Moreover, while representations in LO were stable across 

participants, activity in posterior LO were highly variable across participants. Our results 

further confirm that both objective and subjective shape information is represented in 

LOC. Future analyses should include subregions of anterior and posterior LO to further 

understand how object shape information is represented. 

Evidence suggests that LO represents both physical and perceptual visual similarities, but 

how does LO represent conceptual similarities between objects? A study by Mur et al. 

(2013) investigated how multivariate patterns in human inferior temporal cortex related 

to a judgement of how similar (both visually and conceptually) the objects were using the 

inverse multi-dimensional scaling methods (Kriegeskorte & Mur, 2012). Results showed 

that objects that elicited similar activity patterns in human inferior temporal cortex tended 

to be judged as similar as shown by a small distance between the objects in the inverse 

multi-dimensional scaling method. Additionally, the nature of both the neural and judged 
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object representations correlated with animate and inanimate category model. In contrast, 

there were some key differences between the neural and judged object space. For 

example, the neural object space emphasized the divide between face and body stimuli, 

while the judged behavioural object space emphasized the divide between 

human/nonhuman and natural/artificial. Interestingly, when the researchers compared 

neural representations of the same stimuli in humans and monkey inferior temporal 

cortex there were no significant differences in the percentage of explained category 

variance—much category variance was explained by the inanimate/animate and the 

face/body models. This may suggest that representing animate/inanimate and face/body 

objects differently was evolutionarily important for survival and reproduction. Moreover, 

this behavioural division between human/nonhuman and natural/artificial objects may be 

more modernly relevant and represented in other brain regions. The stimulus set in the 

current study was not manipulated to contain specific broader categories, however, an 

apparent natural (apple, chilli, flower, leaf, shell) versus artificial (lipstick, pen, screw, 

stapler, toothbrush) divide exists. There is a large confound between the shape of the 

object and its category membership with natural objects tending to be more round and 

artificial objects tending to be more elongated. Therefore, although classification of 

round versus elongated objects in LO was significantly above chance (t(22) = 8.07; p < 

.0001 ), it will be interesting to view how the entire visual representational space relates 

to the neural representational space using Representational Similarity Analysis (see 

section 4.3.3). 

In summary, our results indicate that LO allows for category discrimination and PRC 

does not. This suggests that LO may play a more important role in categorization, 

whereas PRC may play a more important role in exemplar identification. These results 

indicate a double dissociation between the information represented in LO and PRC, 

therefore these results cannot be due to signal quality discrepancy. Because within 

category exemplars were differentiable in PRC, where one could predict a lack of signal 

due to dropout (Bellgowan, Bandettini, can Gelderen, Matin, & Bodurka, 2006; Olman, 

Davachi, & Inati, 2006), and not in LO we can be confident that these regions have 
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adequate signal to feed into the classifier. Moreover, calculation of the temporal signal-

to-noise ratio (tSNR; a measure of signal quality) in both regions results in no significant 

difference between the regions (t(22)= 1.21, p > .05 ). 

4.3 Limitations and Future Directions 

4.3.1 Investigating Other Regions of Interest 
This thesis investigated pattern separation in the ventral visual stream using techniques 

founded in the hippocampal-memory system literature (e.g., Bakker et al., 2008; Lacy et 

al., 2011; Berron et al., 2016). Previous animal, human and model work provided support 

to examine PRC as a region that may contain these distinct representations of even very 

visually similar objects (Bussey et al., 2003; Cowell 2012; Erez et al., 2016; Martin et al., 

2018). True to the pattern separation definition of the transfer of representations between 

an input and output region, we chose LO as an upstream region to compare with 

representations in PRC. To obtain a more complete picture of the ventral visual stream-

medial temporal lobe and the roles of different regions along this cortex, we plan to 

include more regions of interest in both systems. It will be important to consider regions 

upstream and downstream from PRC.  

Of importance we plan to investigate dentate gyrus and its input region entorhinal cortex 

to parallel the traditional pattern separation literature. With much support of dentate 

gyrus’ involvement in pattern separation of mnemonically similar objects and scenes, it 

will be interesting to examine multivariate patterns in this region during this object 

perception task. Similar to Bakker et al (2008) we may see pattern separation between 

entorhinal cortex and dentate gyrus for highly similar objects. We may, however, not see 

this well-known and supported result. There are a couple reasons why this may be the 

case. First, we are using highly similar exemplars that are pictures of objects. Although 

studies provide support for hippocampal involvement in distinguishing these 

mnemonically similar objects, these results are univariate adaptation response measures. 

As Berron et al. (2016) emphasized, this overall adaptation response may be linked to a 

novelty detection response where very similar items trigger a mismatch signal because 
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they are similar, rather than exactly the same as a previously viewed object (see also 

Kumaran and Macguire, 2009). Berron and colleagues eliminated this alternative novelty 

hypothesis by using only two images of very similar scenes (A and B). Researchers 

compared patterns of activation across sequences (e.g., AABA) separated only by a 

fixation cross that indicated the start of the new sequence to the participants. 

Classification of patterns evoked by scenes A and B in first presentation, repetition, or 

lure conditions showed that only in the dentate gyrus subfield during lure conditions were 

patterns distinguishable. This was the first study to use a multivariate approach without a 

novelty signal confound that indicated dentate gyrus as separating patterns that are not 

distinguishable in its input region, entorhinal cortex. Although that study did not find any 

distinguishable patterns in PRC, they did not include any object stimuli. 

Previous research has shown that PRC is sensitive to objects and not scenes (Lee et al., 

2006). R-H theory (see, for example, Bussey & Saksida, 2002; Cowell, 2010) would 

predict that while DG is involved in PS for spatial and episodic content, it may not play a 

role in this high level object perception using these methods. Given no MVPA-based data 

with objects matched for novelty are available, it is unclear based on extant fMRI data 

whether we can expect to find successful classification in dentate gyrus in the current 

data set.  

In addition to investigating the dentate gyrus, it will be important to examine entorhinal 

cortex (ERC). We plan to further divide ERC using manual segmentation into 

anterolateral and posteromedial entorhinal cortex (alERC; pmERC); we will use the 

protocol delineated in Olsen et al. (2017) based on differentiation in a human functional 

connectivity study by Maass et al. (2015). This segmentation is critical as the ventral 

visual stream projects to anterolateral entorhinal cortex via PRC (Naber et al., 1997; 

Suzuki & Amaral, 1994; Cowell, et al.,2010) whereas posteromedial entorhinal cortex is 

more connected with the dorsal visual stream via parahippocampal cortex (Moser et al., 

2008). Moreover, these two regions are differentially involved in object perception and 

memory. A human study by Yeung et al. (2019) investigated older adults with varying 

levels of brain atrophy and cognitive abilities and found that lower volume of alERC 
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predicted worse object-in-place memory (measured by proportion of fixations to the 

critical object ROI relative to the entire scene). Although a distinction between alERC 

and pmERC has been acknowledged, little is known about their unique contributions in 

various cognitive functions including pattern separation. We predict that results will show 

successful classification in parts of entorhinal cortex that are sensitive to objects, namely 

anterolateral, not posteromedial ERC. Moreover, classification may be even more tuned 

to very highly similar object discrimination if there is further pattern separation between 

PRC and ERC.  

As we compare the results of the hippocampal-MTL and VVS-vision literature covering 

pattern separation or resolving feature overlap, respectively, it is important to remember 

some structural differences between these regions. For example, in the classic pattern 

separation literature, signals representing similar stimuli are overlapping in entorhinal 

cortex and sent to dentate gyrus to separate the signals, via a single synapse. In this way, 

dentate gyrus is seen as the “pattern separator” for input from ERC. How does this 

compare with the connections between LO and PRC? We know LO is earlier in the 

ventral visual stream than PRC, and there is evidence of structural connections between 

the two regions via the inferior longitudinal fasciculus (Gomez et al., 2015; Herbet, 

Zemmoura, Duffau, 2018), but it is not clear whether such connections are monosynaptic. 

The inferior longitudinal fasciculus is a major white matter bundle that connects many 

regions of the occipital lobe to many regions in the temporal lobe along the VVS. This 

bundle consists of many individual tracts that directly connect specific occipital and 

temporal regions. Gomez and colleagues (2015) identified white-matter tracts that 

connected regions in ventral temporal cortex with the anterior temporal lobe. Although 

the ventral temporal cortex is comprised of different subregions including face-, place-, 

and object-selective regions, this study only investigated connections terminating in face 

and place regions. It is clear from their study that there are large white matter bundles 

connecting the ventral temporal and anterior temporal cortices. In addition to these long 

tracts, short U-shaped fibers along the inferior longitudinal fasciculus allow for the 

structural connection of even more regions (Tusa & Ungerleider, 1985; Herbet et al., 
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2018). This allows for a very interconnected brain and suggests that LO and PRC may be 

connected via these U-shaped fibers and, thus, through multisynaptic connections. A 

review by Herbet et al. in 2018 suggests that the inferior longitudinal fasciculus is 

involved in a wide range of cognitive functions including object, face, place, semantic, 

and lexical processing. This large white matter tract, however, has only recently been 

characterized by diffusion tensor imaging (e.g., Kamali et al., 2014; Duan et al., 2015; 

Keser et al., 2016) and no studies to our knowledge has directly investigated the physical 

connections that exist between LO and PRC. Potentially, there exists an intermediate step 

between LO and PRC that resolves only the lowest and middle visual similarity levels. 

Further research is required to carefully map the connections between LO and PRC and 

how an additional synapse would affect these results.  

4.3.2 Methodological Considerations 
It is also important to consider how analysis techniques may affect results. While the 

brain can represent different granularities of visual distinction, the representation itself 

can span across small to medium to large scales within a given region of interest. For 

example, Gardumi et al., (2018) reconstructed 1.1 mm isotropic resolution fMRI to 2.2 

mm and 3.3 mm and also smoothed at 1.1, 2.2, 3.3, 4.4, or 8.8 mm FWHM Gaussian 

kernels to investigate how the spatial resolution for the same data in the same region 

changes. Results indicated that smoothing improved the decoding accuracies of the data 

for some tasks. Therefore, it is important to find the optimal smoothing for each region 

and for each task. This is evidence of inconsistencies in the resolution and smoothing 

kernels used even in the studies we have discussed in this thesis. Table 2 shows the 

scanning protocol, resolution, and smoothing kernels for some of the studies that 

motivated the current one. It is apparent that studies that investigated hippocampal 

subfields and adjacent cortices typically use sub-2mm isotropic resolution (Bakker et al., 

2008; Lacy et al., 2011; Berron et al., 2016). In contrast, studies with more whole brain 

coverage typically use larger voxel sizes (Erez et al., 2016; Martin et al., 2018). This 

study pushed the functional resolution when covering the majority of the cortex to allow 
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for investigation of the entire ventral visual stream and also the hippocampal subfields 

similar to Bakker et al. (2008) and Lacy et al. (2011). 

Table 2. Summary of scanning protocols used in studies motivating the current 

study. 

Reference 3T or 7T Coverage Resolution Smoothing 
Kernel 

Bakker et al., 2008 3T MTL 1.5 mm^3 3 mm 

Lacy et al., 2011 

Berron et al., 2016 7T MTL 0.6mm^3 none  

Erez et al., 2016 3T 
 

Majority of 
Cortex except 
superior aspect 
of frontal and 
pariental lobes 

3.1x3.1 in plane, 2 
mm slice thickness, 

0.5mm interslice gap 

12 mm 

Martin et al., 2018 5 mm 

Ferko et al., 2019 
(current study) 

1.7 mm ^3 5 mm 

 

4.3.3 Additional Insights that Could be Gained from 
Representational Similarity Analysis 

Classification analysis is well-suited to our question of whether or not the patterns differ 

between LO and PRC for high-middle-low visual similarity conditions. Results tell us 

where and for what conditions the patterns are distinct, but they do not reflect to what 

extent they are distinct. Representational Similarity Analysis allows for patterns of 

activation to be compared for all items against all other items. In this way, we would be 

able to view a full picture of the representational space of these 40 objects. The more 

similar the patterns are, the smaller the distance between the patterns. On the other hand, 

the more distinct patterns indicate a larger distance. We would expect parallel results as 

the classification analysis reported in this study: larger distance in PRC than LO for the 

highest/intermediate levels of visual similarity and larger distance in LO than PRC for 

categories.  
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Results of classification and RSA are not always parallel because of the following 

concepts. If classification is significantly above chance this indicates these multi-voxel 

patterns are distinct and non-overlapping. In contrast, if classification accuracy is at 

chance this does not necessarily mean the patterns are similar and overlapping (Awad & 

Khanna, 2015). An alternative possibility is that the patterns are not distinguishable 

because they contain noise, which the classifier cannot “learn”. In this scenario the 

classifier will perform at chance, but the patterns will not be similar. Representational 

similarity analysis will help reject this alternative hypothesis. To resolve pattern 

similarity versus noise, a ratio of similarity distance within a representation and between 

representations can be calculated. Noisey representations will have high within 

representation distance whereas real representations should have low within 

representation variability. Additionally, RSA will allow for the investigation of the entire 

representational space, both within and between categories. For these classification 

analyses we grouped the two highest, two middle and two lowest dissimilarity distances 

from the inverse multi-dimensional scaling task to ensure a clear perceptual distinction 

between these groups. Consequently, we were confident that results were in fact for the 

perceptually highest-middle-lowest visual similarity groups with no overlap between the 

groups. Using RSA, however, would allow for every combination of exemplars to be 

compared by correlating the brain-based representational dissimilarity matrices (RDMs) 

to the behaviour-based RDMs. Combining these two analyses promises to provide a more 

thorough picture of what objects are distinct in which locations, and to what extent they 

differ. 
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4.4 Conclusion 
Animals, both human and non-human, are able to distinguish very visually similar 

objects. How similar we think objects are differs for each person. This contributes to how 

and why we choose our produce at the grocery store: although each apple looks similar 

we may steer away from the one with a bruise or the one that is misshapen. Of course, 

there are other factors involved in this choice, but the core decision relies on the ability to 

distinguish two highly similar objects. This is similar to how we are able to separate two 

very similar memories such as finding your car in a parking garage on different 

occasions. Much research has been devoted to both of these processes of object 

perception and recognition memory, but there has been a division in the methods used to 

study these related phenomena. This is the first study, to our knowledge, that bridges the 

gap between the hippocampal-memory and VVS-object recognition literature. In this 

way, this study was developed to investigate how regions in the VVS and medial 

temporal lobe represent coarse and fine-grain distinctions during an implicit recognition 

test. This thesis found support for the role of LO in more coarse grain object 

discrimination as patterns of activation were distinguishable for different categories and 

the lowest level of similarity within a category. Additionally, patterns in PRC showed no 

representation of category information, but showed differentiation at the exemplar level 

even at high levels of similarity. In conclusion, because patterns overlapping in LO are 

non-overlapping in PRC, this is evidence of pattern separation in the ventral visual 

stream. More broadly, this suggests that the engagement of pattern separation may not be 

restricted to the hippocampus during declarative-memory tasks. 
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Appendix 1. Mean between category classification accuracy of all categories in LO 

and PRC versus control region (Auditory Cortex) 
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Appendix 2. Mean classification accuracy of within category exemplars in 3 regions, 

LO, PRC, and control region auditory cortex for the 3 levels of visual similarity low, 

middle, high. * p<.01; ** p < .001; *** p < .0001 
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