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Abstract 
 

For decades researchers have used 2D stimuli under the assumption that they accurately represent 

real objects. This assumption has been challenged by recent vision and neuroeconomics research 

which has found that 2D images can evoke different neural and behavioural responses than real 

objects. The current study continues this line of research in the field of affective cognitive 

neuroscience; a field where small effect sizes are common and rapid habituation to affective stimuli 

used in the lab often occurs. The present study uses realistic 2D and 3D emotional images to 

determine the impact of visual dimension on affective responding. Subjective ratings revealed a 

perceptual advantage for 3D images which were rated more realistic and received some higher 

ratings of emotion than 2D images. Conversely, there were no differences in psychophysiological 

responding (i.e. skin conductance and electromyography) between 2D and 3D images. The 

implications of these results and future directions are discussed. 
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Summary for Lay Audience 
 

In order to generate an emotional reaction within a research setting, most psychology and 

neuroscience studies use emotional 2D images (e.g. kittens to induce pleasant emotions, spiders to 

induce fear). However, recent research suggests there are differences in the way the human brain 

respond to 2D images versus actual, physical objects. Real objects are better remembered, attended 

to, and are more highly valued than 2D images. This raises the question as to how well findings 

from studies which use 2D images can generalize to real world situations. In the laboratory, it is 

often difficult to mimic the impact of emotions in the real-world because emotional responses to 

images tends to weaken significantly when they are presented repeatedly. The present study aims 

to determine whether effects of emotion can be improved by using 3D images as they more closely 

resemble real objects. This study compared photorealistic 2D and 3D images of insects and 

arachnids of varying degrees of pleasantness (e.g. butterflies, scorpions). We predicted that 3D 

images would be perceived as more realistic and generate more intense emotional reactions 

compared to 2D images. To measure this, we explicitly asked participants to rate how realistic, 

pleasant, arousing, approachable, and dangerous they found each image. We also measured 

participants’ bodily responses to the images as specific patterns of bodily responses are associated 

with different emotional reactions. The startle eye blink response is differentially affected by 

emotional images; positive images decrease the magnitude of the startle and negative images 

increase the magnitude of the startle. Skin conductance (SC) measures minute changes in the 

amount of sweat present on the skin. SC increases in response to emotionally arousing images, 

whether positive or negative. Our study found that 3D images showed greater subjective ratings 

for realism, arousal, and danger, but these same 3D images did not result in significant differences 

in visceral emotional reactions compared to 2D images. Before a definitive judgement can be made 

on whether there are differences in visceral reactions between 2D and 3D images, future research 

should compare these two image types using more arousing images, more bodily measures, and 

less repetitions.  
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CHAPTER 1 

1  Introduction 

Imagine you wake up on a typical Saturday morning with plans to meet your friend for breakfast at 

a local cafe. This everyday scenario is imbued with emotions that guide our behaviour. The 

happiness we feel when we walk outside to go to the cafe reinforces the health benefits associated 

with sun exposure and exercise. The fear we feel when exposed to threatening situations, like a car 

speeding past us as we cross the street, reminds us to be more cautious and aware of our 

surroundings when walking by the road in the future. The disgust we feel when we find mould on 

our bagel prevents us from consuming potentially harmful fungi.  By recognizing our 

friend’s emotional facial expression we are able to infer her internal emotional state and behave 

accordingly. For example, if our friend was frowning we would recognize that she was upset and 

our sense of empathy would compel us to ask what was bothering her. In this way, our ability to 

recognize emotions and the impact that ability has on our own emotional responses allows us 

to have successful social interactions and form fulfilling social connections. Not only do these 

emotions guide our behaviour but typical emotion processing is essential for us to function 

normally and successfully within the world around us.   

1.1  Affective Cognitive Neuroscience 

The field of affective cognitive neuroscience investigates the underlying neural mechanisms 

involved in the integration of emotional and cognitive systems. Research in this field identifies the 

brain areas responsible for emotional processing and the neural correlates behind emotional 

experiences. Information gained from these studies have revealed the ways emotions can impact 

the way we behave, learn, attend, remember, and interact socially.  

Emotions have been described as “states elicited by rewards or punishers” where “a reward 

[is] something for which an animal (which includes humans) will work, and a punisher as 

something that an animal will work to escape from or avoid (Rolls, 2005, p. 1-2). This definition 

clearly indicates how emotions can influence our decision making; emotional psychophysiological 

responses and their neural correlates bias our behaviour towards rewards and away from 
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punishments (Damasio, Tranel, & Damasio, 1991). One example of how emotion can shape our 

behaviours is through fear conditioning. Fear conditioning is a form of associative learning 

encoded by the amygdala where a previously neutral stimulus (conditioned stimulus) is coupled 

with an innately fearful stimulus (unconditioned stimulus) until it too is able to produce a fear 

response (Phillips & LeDoux, 1992). This form of learning is biologically advantageous as it 

allows us to quickly recognize and respond to potentially dangerous situations. For example, if we 

burn ourselves by touching a hot pan we learn to associate the pan with pain and will be more 

cautious when handling it in the future. Emotion also biases our attention by enhancing the salience 

of biologically relevant stimuli. We preferentially attend to emotional stimuli; we are able to locate 

them within the visual field more quickly than neutral stimuli and we are less able to ignore them 

(Ohman, Flykt, & Esteves, 2001; Williams, Matthew, & MacLeod, 1996). For instance, it would 

be difficult to focus on driving if there was a wasp in the car with you, your attention would be 

drawn to the threatening stimulus. Just as with attention, emotional events are preferentially 

encoded into memory compared to neutral events. Flashbulb memories are the most compelling 

evidence of this; they are extremely vivid, detailed memories of surprising events that cause an 

extreme emotional reactions, usually associated with traumatic events such as the 9/11 terrorist 

attacks (Brown & Kulik, 1977). Finally, emotional processing is crucial for successful social 

interaction. By recognizing emotional facial expressions we are able to deduce what others are 

feeling and share in those feelings with them (Blair, 2003; Blair, 1995). Our ability to empathize 

with others facilitates our social interactions by ensuring that we conduct ourselves in ways that 

are deemed socially appropriate. As the breadth of these studies suggest, emotional processing is 

integral to normal functioning. In fact, it is so central to our wellbeing that abnormalities in 

emotional processing are present in almost every neuropsychiatric disorder (Vuilleumier, 2005).  

There are disruptions of mood in major depressive and bipolar disorder, fear and anxiety in anxiety 

disorders, aggression in antisocial personality disorder, and empathy in autism and conduct 

disorders to name a few. Affective cognitive research identifies how neural processing differs in 

these disorders allowing for the development of interventions and treatments which can then be 

tested and evaluated for effectiveness.  

To perform this research, experimenters must elicit emotion within the controlled setting of 

a laboratory. The most common way experimenters evoke emotion is by using visual stimuli, 

usually 2D photographs. By using these 2D images experimenters can safely induce emotion and 
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are afforded a high level of experimental control; they can be sure that the stimuli appear consistent 

between participants.  

1.2 Brain areas involved in emotion processing 

While vision allows us to more easily complete practical tasks, it also allows us to admire 

paintings, regard our loved ones, or notice a spider crawling towards us. These types of stimuli 

elicit an emotional response; they influence internal states which reflect reward or punishment 

(Rolls, 1999). Emotion has such an impact on human cognition that it influences the way we 

process sensory information. Compared to neutral stimuli, emotional stimuli are more attention 

grabbing (Fenske & Raymond, 2006; Williams & Broadbent, 1986; Vuilleumier & Schwartz, 

2001), more memorable (Cahill & McGaugh, 1995; Kensinger, 2009; Bradley, Greenwald, Petry, 

& Lang., 1992), and are able to prime reflexive actions (Bonnet, Bradley, Lang, & Requin, 1995; 

Both, Everaerd, & Laan, 2003). As such, the emotional pathways within the brain are widely 

connected and have strong bidirectional connections to the visual pathway (Amaral, Behniea, & 

Kelly, 2003; Price, 2003; Vuilleumier, 2005).  

To better understand how emotion is able to accomplish this sensory modulation, we can 

examine the neural correlates of emotion. One region central to the neural processing of emotion 

and social behaviour is the amygdala, a bilateral structure within the medial temporal lobe 

(Aggleton, 2000). It is involved in almost every aspect of emotional processing including emotion 

regulation (Banks et al., 2007; LeDoux, 2007), fear conditioning (Davis & Whalen, 2001; Duvarci, 

Popa, & Pare, 2011), and emotion recognition (Yang et al., 2002; Garavan et al., 2001). The 

amygdala responds preferentially to emotional stimuli of both positive and negative valence (Yang 

et al., 2002; Hamann, Ely, Hoffman & Kilts, 2002; Sphors et al., 2018). Amygdala activation has 

been observed over a variety of emotionally evocative stimuli spanning different modalities and 

forms; this includes aversive natural stimuli (Krusemark & Li, 2011; Kensinger & Schacter, 2006), 

pleasant and negative events (Hamann, Ely, Grafton & Kilts, 1999), emotional films (Bride et al., 

2014), aversive smells (Zald & Pardo, 1997), fearful vocal expressions (Phillips et al., 1998), and 

aversive tastes (Zald, Lee, Flugel, & Pardo, 1998). The amygdala sends more projections to the 

ventral visual pathway than it receives (Iwai & Yukie, 1987; Amaral, Behniea, & Kelly, 2003) 

suggesting that it modulates activity in these areas, particularly the inferior temporal cortex (area 
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TE; Iwai, Yukie, Suyama, & Shirakawa, 1987; Amaral & Price, 1984). This association between 

the amygdala and area TE is implicated in reward learning. A lesion study conducted by Spiegler 

& Mishkin (1981) found that macaques were only able to perform an object-reward association 

task when both area TE and the amygdala were intact; lesions to either of these areas impaired task 

performance. Since area TE is involved in object recognition, this suggests that the amygdala was 

responsible for linking the stimuli with the reward. The amygdala also modulates responding in 

the visual cortex in response to emotional facial expressions. Amygdalar lesions are associated 

with a reduction in fearful face recognition (Morris et al., 1998; Adolphs et al., 1999; Adolphs, 

Tranel, Damasio, & Damasio, 1995) and result in less activation in visual areas, such as the 

fusiform and occipital cortex, when viewing fearful faces compared to healthy controls 

(Vuilleumier et al., 2004). The amygdala’s ability to increase activation in the visual cortex in 

response to emotional stimuli has also been observed in healthy adults when observing positive 

and negative emotional stimuli (Frank & Sabatinelli, 2014) and threatening stimuli, with activation 

in both the amygdala and visual cortex increasing with arousal (Bradley et al., 2003; Sabatinelli, 

Bradley, Fitzsimmons, & Lang, 2005). 

While the amygdala is considered a central structure within the pathways of emotion due to 

its extensive connections throughout the brain (Amaral et al., 1992), the ventromedial prefrontal 

cortex (vmPFC) and orbitofrontal cortex (OFC) are also significantly involved in emotion 

processing. Both structures are within the prefrontal cortex (PFC) and have strong, bidirectional 

connections with the amygdala (Ghashghaei & Barbas, 2002; Amaral & Price, 1984; Barbas & De 

Olmos, 1990). Lesion studies suggest that both structures are involved in the emotional processes 

which underlie personality. A study by Barrash, Tranel, & Anderson (2000) found that bilateral 

damage to the vmPFC impaired emotional expression, emotional affect, interest, social behaviour, 

and insight. Likewise, a study by Hornak and colleagues (2003) found that patients with bilateral 

OFC lesions had deficits in emotion recognition of vocal stimuli, emotional affect, and social 

behaviour. The deficits in social behaviour (which were judged by an informant) were caused 

mostly due to the patients’ inability to recognize or express emotions or provide insight into 

another’s state of mind. The OFC has also been associated with insight into self behaviour, deficits 

to which impair social behaviour (Beer, John, Scabini, & Knight, 2006).  
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Although these are exclusive, the amygdala, vmPFC, and OFC have been identified as 

playing a key role in emotional processing and their function in this context illustrates how 

extensive the connections are between brain regions responsible for emotion and other systems. 

These structures respond to appetitive and aversive stimuli from every modality and yet visual 

stimuli are used most often in research on emotion. It is important to evaluate the visual stimuli 

used in these studies to ensure that they are not only effective at generating an emotional response 

but also that they accurately represent the emotional stimuli encountered outside a research setting.  

1.3  Psychophysiological measures of emotion 

Along with neural and behavioural measures, emotional responses can also be studied through 

measures of psychophysiological arousal. 

Electromyography (EMG) is a measure of the electrical activity produced by muscle 

stimulation. The startle eye blink response is a response of the sympathetic autonomic nervous 

system (ANS) that is triggered by an unexpected stimuli, such as a loud burst of white noise. EMG 

electrodes can be placed on the orbicularis oculi muscle surrounding the eye to measure the 

magnitude of the eye blink response. Emotional modulation of the startle response is bidirectional 

where the valence of the stimuli presented affects the direction of the modulation. Positive images 

inhibit the startle response and negative images enhance the response (Vrana, Spence, & Lang, 

1988; Bradley, Codispoti, Cuthbert, & Lang, 2001). Cuthbert, Bradley, & Lang (1996) illustrated 

this modulation in a study where participants viewed pleasant, neutral, and unpleasant images 

while being exposed to a startling stimuli (a burst of white noise). They found a valence by arousal 

interaction where, compared to neutral images, startle eye blink magnitude was larger for negative 

images (further increasing the more arousing the images were) and smaller for positive images 

(further decreasing the more arousing the images were). 

Skin conductance (SC) measures the electrical conductance of the skin which increases with 

the level of sweat and oils present. As such, SC is used as a measure of arousal of the sympathetic 

ANS which innervates the sweat glands in response to threatening or arousing stimuli. A skin 

conductance response (SCR) is a rapid, transient increase in SC which can occur in response to 

external or internal stimuli. Since the ANS and SC by extension respond to environmental threat, 
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it is often used in emotion research. Unlike the startle eye blink response, the SC response to 

emotional stimuli is unidirectional; SC increases in response to stimuli of both positive and 

negative valence (Simons, Detenber, Roedema, & Reiss, 1999; Khalfa, Isabelle, Jean-Pierre, & 

Manon, 2002). A study by Bradley, Codispoti, Cuthbert & Lang (2001) found that SC increases to 

emotional images with arousal; the more emotionally arousing the image, the greater the response, 

regardless of whether the images were of positive or negative valence.   

Amygdala activation has been linked to changes in psychophysiological responding related 

to fear, including SC and the startle eye blink response (Davis & Whalen, 2001; Wood, Van Hoef 

& Knight, 2014; Laine, Spitler, Mosher, & Gothard, 2009). Like the amygdala, SC and the startle 

eye blink response habituate to emotional stimuli. Bradley, Lang & Cuthbert (1993) conducted a 

habituation experiment where participants viewed pleasant, neutral, and unpleasant images 

repeatedly over three blocks while SCR, heart rate (HR), and startle eye blink EMG were 

measured. All three psychophysiological measures showed the expected valence effects within the 

first block and showed a large reduction in responding across the three blocks. While largely 

reduced, the startle eye blink response still displayed significant valence effects by the end of the 

final block while the other two measures no longer showed an effect. This persistence of valence 

effects is why the startle eye blink response is the primary psychophysiological measure in the 

current study. SC and EMG are often recorded together in studies of affective autonomic signalling 

to get a more complete view of how the brain processes emotional information.  

1.4 Emotion and decision making 

Our emotions do not only impact our internal states, they also impact our behaviour. Emotions 

influence our behaviour in ways that increase the likelihood of rewarding outcomes and decrease 

the likelihood of punishing outcomes. The somatic marker hypothesis (Damasio, 1994) postulates 

that emotional bodily responses (or ‘somatic markers’) are responsible for guiding decision 

making behaviour. Activation in the vmPFC is correlated with autonomic responses to emotional 

stimuli (Damasio, Tranel, & Damasio, 1990) so it is unsurprising that it has been implicated in the 

somatic marker hypothesis. In a study using a gambling task, both controls and patients with 

damage to the vmPFC were able to generate SCRs in response to rewards and punishments but 

only controls were able to generate anticipatory SCRs before making a decision, with larger SCRs 
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preceding riskier decisions (Bechara, Tranel, Damasio, & Damasio, 1996). From these results the 

experimenters concluded that vmPFC patients were impaired in their ability to change their 

autonomic responses in response to anticipated negative consequences. This study illustrates that 

autonomic signals generated by the vmPFC may play a role in guiding our decisions. While the 

somatic marker hypothesis has since been questioned (Dunn, Dalgleish, & Lawrence, 2006; 

Caramazza, Deldin, Hauser, & Tomb, 2002; Maia & McClelland, 2004), other studies have 

replicated the finding that autonomic signals related to emotion and their neural correlates play a 

role in decision making related to rewards and punishments (Bechara, Damasio, Damasio, & Lee, 

1999; Guillaume et al., 2009; Bechara, Tranel, & Damasio, 2000).  

In addition to the vmPFC, the OFC and ventrolateral prefrontal cortex (vlPFC) are also 

implicated in emotional decision making. Activation in the OFC has been linked to representations 

of reward and punishment (Rolls, 1999) and reward evaluation and choice difficulty (Arana et al., 

2003). The OFC is involved in stimulus-reinforcement associated learning where a rewarding 

stimulus (e.g. an appetitive food) is associated with a neutral stimulus (i.e. an image) until the 

neutral stimulus alone becomes associated with reward (Rolls, 2000; Kringelbach & Rolls, 2004). 

During stimulus-reinforcement learning tasks, activity in the medial OFC is correlated with 

reward, with greater activation for greater gains, while activity in the lateral anterior OFC is 

associated with punishment, with greater activation for greater losses (O’Doherty et al., 2001). The 

OFC also represents outcome expectations and modulates associations between a stimulus and an 

expected outcome in response to violations of these expectations (Mitchell, 2011). In this way, the 

OFC impacts our behaviour by devaluing stimuli that are no longer rewarding (Gotfried, 

O’Doherty, & Dolan, 2003). Similarly, the vlPFC is involved in changing behaviour in response 

to changes in context (Mitchell, 2011). Lesions to the vlPFC result in impaired performance during 

reversal learning tasks, where one stimulus is associated with a reward and another with a 

punishment before the associations are reversed (Fellows & Farrah, 2003). This suggests that the 

vlPFC is necessary for alterations in decision making based on new information related to the 

reward and punishment value of certain behaviours. Taken together, these studies illustrate how 

the PFC influences decision making by optimizing behaviours that will result in rewards and 

minimizing behaviours that will result in punishments.  
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There is a saying about how we should not let our emotions make our decisions but these 

studies show that this would not only be difficult to accomplish but also maladaptive. Emotions, 

presently felt or anticipated, guide our behaviour in part due to the autonomic signals we receive 

or will experience once we make a decision. As previously mentioned, these autonomic signals 

can then be used as a measure of emotional arousal and have been in many affective cognitive 

neuroscience studies (Bradley, Lang, & Cuthbert, 1993; Kimmel & Gardern, 1986; Vrana, Spence, 

& Lang, 1988; Codispoti, Ferrari, & Bradley, 2007). The present study will use two measures of 

autonomic signaling to evaluate the differences in affective responding between emotional stimuli 

of two different modalities.  

1.5 Emotion and attention 

Attention is a cognitive process where certain stimuli are selected for further processing while 

other stimuli are neglected (Blair & Mitchell, 2009). The biased competition model of attention 

postulates that stimuli within the environment compete for neural representation and cognitive 

processing (Desimone & Duncan, 1995). As the name suggests, this competition is biased, 

specifically by bottom up and top down processes. Bottom up processes prioritize stimuli based 

on their low level visual features. Bottom up systems would bias attention towards stimuli that are 

large, colourful, and have a high contrast ratio (Beck & Kastner, 2009). Top down processes 

prioritize stimuli based on their higher order cognitive relevance. Top down systems would bias 

attention towards task relevant stimuli, for example stimuli which appear in a particular location 

within the visual field where participants were instructed to attend (Kastner, Weerd, Desimone, & 

Ungerleider, 1998). In either case, the neurons representing these stimuli would become highly 

active (Blair & Mitchell, 2009). The representation that generates the most activation will win the 

competition for attention.  

So far, the processes described here identify ways that mundane stimuli compete for attention 

but a particular advantage is given to emotional stimuli. The preferential processing or enhanced 

encoding of emotional stimuli is thought to be conferred via the bidirectional interaction between 

the ventral visual stream and the amygdala (Pessoa and Ungerleider, 2004). Pessoa & Adolphs 

(2010) proposed a model where emotional stimuli are recognized by the amygdala which amplifies 

the activity of neurons representing the stimuli within the visual cortex. This model is supported 
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by tracer studies and studies of functional connectivity which have shown the amygdala is highly 

connected to the ventral visual cortex (Amaral, Behniea, & Kelly, 2003; Vuilleumier, 2005) and 

that activity in this cortex is intensified in response to emotional stimuli (Morris et al., 1998; 

Pessoa, McKenna, Gutierrez, & Ungerleider, 2002). Just as the amygdala modulates activity in the 

visual cortex, activity in the amygdala can be modulated. The PFC can modulate amygdala activity 

to prevent emotional stimuli from reaching awareness (Amting et al., 2009). This modulation may 

be a result of the PFC’s role in directing visual attention to emotionally salient information. A 

study by Wolf and colleagues (2014) found that patients with vmPFC lesions exhibited deficits in 

identifying emotional facial expressions. Eye tracking data revealed that this impairment was due 

to the fact that patients were not attending to areas which would provide emotional information 

(e.g. the eyes), regardless of which facial expression was being displayed.  

Although these studies reveal that emotional stimuli are salient, there are still issues 

associated with their use which has a negative impact on affective cognitive research. These 

limitations will be discussed and addressed in the current study. 

1.6 Difficulties with emotion research 

Small effect sizes are expected in emotion research as brain areas responsible for emotional 

encoding rapidly habituate to emotive stimuli (Plichta et al., 2014; Fischer et al., 2003; Wright et 

al., 2000). Unsurprisingly, this includes the amygdala which not only responds to emotional stimuli 

but also rapidly habituates to them (Plichta et al., 2014; Buchel, Morris, Dolan, & Friston, 1998; 

Wedig, Rauch, Albert, & Wright 2005). A neuroimaging study conducted by Brieter and 

colleagues (1996) found that the amygdala responds preferentially to faces of both positive and 

negative valences and rapidly habituates to them. This pattern of activation and habituation within 

the amygdala has been replicated in many studies featuring negative and positive stimuli (Wright 

et al., 2001; Fischer et al, 2003). Habituation to emotional stimuli is a common phenomenon in 

brain areas related to emotion; a neuroimaging study by Denny and colleagues (2014) found that 

repeated presentation of aversive stimuli resulted in a decrease in activation in several brain areas 

implicated in emotion processing including the amygdala but also the ventral PFC. Likewise, 

Wright and colleagues (2001) found significant habituation effects with both happy and fearful 

faces in the right amygdala and left dorsolateral PFC.  
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Emotion research is further restrained by ethical limitations. One of the central reasons why 

ethical guidelines are used in research is to ensure the individuals participating in research are not 

harmed. Although activation in brain areas related to emotion have been found to increase with 

arousal (Garavan et al., 2001), there is a possibility that exposing participants to highly arousing 

negative stimuli featuring death, violence, and/or gore may distress or traumatize some participants 

and thus cause them harm. There is evidence to suggests that images alone are enough to negatively 

impact an individuals’ emotional state; studies on media exposure following natural disasters or 

terrorist attacks reveal that frequent exposure to distressing images can cause anxiety and increase 

the likelihood of developing post-traumatic stress disorder (Ahern et al., 2002; Yeung et al., 2018; 

Busso et al., 2014; Bodas, Siman-Tov, Peleg, & Solomon, 2015). As such, highly emotional 

negative images are uncommon in emotion research even though they would evoke the most 

compelling effects of emotion.  

One possible solution to these issues would be to improve upon the emotional stimuli that 

can be ethically used in emotion research by improving their level of realism. Emotional responses 

may be more robust and sustained if participants’ experiences within the laboratory more closely 

resemble an authentic, real life experience. One possible way to accomplish this would be to use 

virtual 3D environments which are becoming more popular commercially in video gaming for 

exactly this reason (LaViola, 2008; Tachi, 2013).  

1.7 Visual processing in the brain 

Vision allows us to observe, navigate, and easily interact with our environment (Barry, 1997; 

Ekstrom, 2015; Cronin & Douglas, 2014). While not essential to daily living, having the ability to 

see assists us in almost every aspect of our daily functioning from simple tasks like washing and 

feeding ourselves to complex functions like operating a motor vehicle as we navigate through the 

city on our way to work.   

Visual processing begins with the eye when images are projected through the cornea 

and lens onto the photoreceptors in the retina at the back of the eye (Enoch, Bedell, & Tobey, 

1981). These photoreceptors then synapse onto a series of cells in the optic nerve which in turn 

pass the visual information into the optic tract and then to the lateral genticulate nucleus (LGN; 
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Hubel, 1963; Sefton & Swinburn, 1964). The LGN is divided into 6 layers, half of which receive 

information from one eye and half receiving information from the other eye (Bishop, Kozak, 

Levick, & Vakkur, 1962). This information corresponds to one visual hemifield; the left LGN 

processes information from the right visual field while the right LGN processes information from 

the left (Glees & le Gros Clark, 1941; Connolly & Van Essen, 1984). From here, visual information 

finally moves on to the cortex for processing, the first stop being the primary visual cortex (V1) in 

the occipital lobe (Hubel & Wiesel, 1974; Tootell, Silverman, & De Valois, 1981).   

V1 processes basic visual features. Cells within V1 are sensitive to orientation; they respond 

to lines pointed in a particular direction which allows them to detect edges and bars (Hubel & 

Wiesel, 1977). After V1, a two pathway theory of vision has been suggested; a ventral ‘vision for 

perception’ pathway for object recognition and identification and a dorsal ‘vision for action’ 

pathway for object location and action-guided behaviour (Goodale & Milner, 1992; Mishkin, 

Ungerleider, & Macko, 1983; Goodale & Humphrey, 1998). The ventral pathway projects from 

V1 to the temporal lobe and includes V2 (which also processes basic visual features), V4 (which 

is involved in colour processing), and the inferior temporal lobe (Kobatake & Tanaka, 

1994; Rousselet, Thorpe, & Fabre-Thorpe, 2004). The dorsal pathway projects from V1 to the 

occipital and parietal lobes and includes V2, V3A and V5/MT (which are involved in motion 

perception), and the posterior parietal cortex (McKeefry et al., 1997; Goodale, 2011).    

While the LGN processes visual information from both eyes, the information is still 

segregated within different layers. The first time visual information from both eyes actually 

integrate is within the V1 (Hubel & Wiesel, 1959; Bridge & Cumming, 2001). Simple and 

complex cells within the V1 use this information for edge detection (Hubel & Wiesel, 

1962) but other cells respond to the fact that the visual information they receive form each eye is 

slightly different (Pettigrew, Nikara, & Bishop, 1968; Heeger, Polonsky, Blake, & Braun, 

2000). Since human eyes are horizontally separated by approximately 6 cm, objects fall on a 

different part of the retina of each eye. This difference between the images projected onto each 

retina is referred to as binocular disparity. Stereopsis is the process by which binocular disparity 

is used to perceive depth. The binocular neurons in V1 alone are not enough for the conscious 

perception of depth (Cumming & Parker, 1997; Cumming & Parker, 1999) but work in 

conjunction with higher order visual areas such as V2 (Poggio, Motter, Squatrito, & Trotter, 1985; 
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Durand, Zhu, Celebrini, & Trotter, 2002), V3A (Felleman & Van Essen, 1987; Tsao et al., 2003; 

Wang et al., 2016), and V5/MT (Cumming, DeAngelis, & Newsome, 1998; Wang et al., 2016).   

While stereopsis provides the most compelling depth information, it is not the only way 

humans are able to perceive depth. Monocular depth cues allow us to estimate distance with the 

visual information from one eye. Some examples of monocular depth cues include shadows (Kim 

& Anstis, 2016), occlusion (objects in front of other objects are perceived to be closer to the 

observer; Palou & Salembier, 2013), relative size (smaller objects are perceived to be farther away 

than larger objects; Sousa, Brenner, & Smeets, 2011), and motion parallax (when an observer is 

moving, objects that move fast are perceived to be closer than objects that move slower; Gibson, 

Gibson, Smith, & Flock, 1959). 

1.8  Databases of affective stimuli 

To facilitate research on emotion, several databases of standardized emotion-provoking stimuli 

have been created for use worldwide. Visual stimuli are most commonly used in affective cognitive 

research due to their convenience, the level of experimental control they afford, and their ability 

to generate unique behavioural and psychophysiological responses corresponding to particular 

emotional states (Mauss et al., 2005; Bradley et al., 1993; Rosenberg & Ekman, 1994). Many 

databases of emotional visual stimuli have been created to aide in this research including the 

International Affective Picture System (IAPS; Lang, Bradley, & Cuthbert, 1997), Geneva 

Affective Picture Database (GAPED; Dan-Glauser & Scherer, 2011), the Nencki Affective Picture 

System (NAPS; Marchewka, Zurawski, Jednorog, & Grabowska, 2013), the Emotional Picture 

System (EmoPicS; Wessa et al., 2010), and the recently created and freely available Open 

Affective Standardized Image Set (OASIS; Kurdi, Lozano, & Banaji, 2016). These databases 

provide normative valence, arousal, and dominance ratings for thousands of emotional images 

which cover the full range of valence and arousal dimensions, from very positive (e.g. happy 

babies, dogs) to very negative (e.g. spiders, cemeteries) and low arousal (e.g. flowers, baskets) to 

high arousal (e.g. erotic nudes, mutilated bodies).   

The IAPS database was developed over 30 years ago and is now the most widely used 

database of emotional visual stimuli (Lang & Greenwald, 1988). The IAPS was developed by the 
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Center for the Study of Emotion and Attention (CSEA) with the goal of creating a standard set of 

images which could be used universally in psychological and neuroscience research to allow direct 

comparisons to be made between experiments and exact replication studies to be conducted (Lang 

& Greenwald, 1988). Since its creation, new stimuli have been consistently added to the database 

which is now comprised of over 1000 images across several different categories including images 

that feature humans, animals, objects, and scenes (Lang, Bradley, & Cuthbert, 2008). The database 

has been validated in many populations; most frequently with healthy adults but also adolescents 

(Vasa et al., 2011; Truedsson et al., 2019), older adults (Gruhn & Scheibe, 2008; Rehmert & 

Kisley, 2013), and clinical populations such as individuals with schizophrenia (Pankow et al., 

2013), fibromyalgia (Rhudy et al., 2013), and depression (Gollan et al., 2016). Subsets of the 

database have also been tested across cultures with studies proposing different normative ratings 

for certain cultures including Spain (Molto et al., 1999), Belgium (Verschuere, Crombez, & 

Koster, 2001), Brazil (Ribeiro et al., 2005), India (Lohani, Gupta, & Srinivasan, 2013), and China 

(Huang et al., 2015; Gong & Wang, 2016). Along with these cross-cultural validation studies, 

IAPS is further trusted due to its reliability. IAPS images have a high internal consistency for 

valence and arousal ratings with both dimensions having highly reliable split-half coefficients 

when presented on paper (rs = 0.94 and rs = 0.94, p < 0.001) or on a computer (rs = 0.94 and rs = 

0.93; Lang, Bradley, & Cuthbert, 1997).  

Despite these benefits, there are some limitations to using this database. IAPS images are 

not matched on low level visual features like colour composition, luminance, or contrast (Coan & 

Allen, 2007) which can lead to differences in affective and visual processing (Bradley, Hamby, 

Low, & Lang, 2007; Wiens, Sand, & Olofsson, 2011). In order to correct for these physical 

differences, experimenters would need to use photoediting tools or select images based on their 

low level visual features. A test of spatial frequency, such as a wavelet analysis (Delplanque et al., 

2007), would then need to be conducted to confirm that the images were not significantly different 

on these features. Another issue is that, while there are an extensive number of images in the IAPS 

database, the number of stimuli in some specific categories have been found to be limited 

(Marchewka, Zurawski, Jednorog, & Grabowska, 2013; Wessa et al., 2010; Dan-Glauser & 

Scherer, 2011). This is an issue for experiment designs that require many trials such as fMRI, EEG, 

or repetition experiments where the number of stimuli must be large enough to prevent any 

unintentional repetition (Dan-Glauser & Scherer, 2011). Finally, the fact that the IAPS database is 
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so widely used may also be one of its determinants. Many participants in psychological research 

are university students who participate in many studies. Thus the more studies that use IAPS 

images, the more likely participants are to have seen these images before which would lower their 

emotional impact (Marchewka, Zurawski, Jednorog, & Grabowska, 2013).  

Along with the IAPS, the CSEA has created several other emotion-provoking databases 

including the International Affective Digitized Sound system (IADs), the Affective Norms for 

English Words (ANEW), and the Affective Norms for English Text (ANET) which provide 

normative ratings of emotion for sounds, English words, and brief English texts 

respectively. These databases are also used in research on emotion although they are not as 

extensive or ubiquitous as the IAPS.  

Despite the number of emotional databases that exist there is still a lack of variety regarding 

visual stimuli. While the visual databases do contain a vast variety of images of different emotional 

content, they currently only feature 2D photographic stimuli. Moving forward, these databases 

should take advantage of the recent advances in vision technologies and work to create a set of 

standardized 3D images.  

1.9 Questioning the ecological validity of 2D stimuli 

For decades researchers have been using 2D stimuli under the assumption that they accurately 

represent real objects. This assumption that has been challenged by recent studies which show 

differences in neural, cognitive, and behavioural responding between the two stimulus types. For 

example, a neuroimaging study conducted by Snow and colleagues (2011) investigated the 

differences in repetition effects when using 2D images and real objects. Repetition suppression is 

a phenomenon where there is a characteristic reduction in the hemodynamic response (a direct 

measure of blood oxygenation levels within the brain and an indirect measure of neural activation) 

when stimuli are presented repeatedly. The Snow study found that there was a change in activation 

for 2D stimuli where there was a reduction in activation in a condition where stimuli were 

presented twice compared to a condition where they were only presented once. Conversely, there 

was no reduction in response when using real objects in the condition where stimuli were repeated. 

So while repetition suppression was observed, as expected, with 2D images, it was absent when 
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participants viewed real objects suggesting an inherent difference in the way these stimuli are 

perceived and processed.  

As for cognition, Snow, Skiba, Coleman & Berryhill (2014) conducted a study which 

compared memory effects between 2D images and real objects. There were three conditions where 

participants were shown either black-and-white line drawings, coloured photographs, or real 

household objects. Participants then completed a free-recall task, where they wrote down as many 

stimuli as they remembered, and a recognition task, where they just had to state whether they had 

seen the object or not. Participants in the real object condition performed significantly better on 

both tasks whereas performance did not differ in the colored photograph or line drawing 

conditions.  

The differences in responding between these two stimulus types extend to behavioural 

responses as well. Bushong, King, Camerer, & Rangel (2010) conducted a neuroeconomics study 

which compared the differences in valuation judgements between real objects and 2D images of 

those objects. Participants gave real objects significantly higher valuations than 2D images, 

increasing their willingness to pay for the item by 40-60%.  

Taken together, these studies show a fundamental difference in the way 2D images and real 

objects are processed. Therefore, they raise questions about whether the results gained from studies 

which use 2D stimuli can be generalized to make claims about real world experiences as they have 

been in the past. 

Several studies have been conducted to delineate the processes behind these observed 

differences in responding between 2D images and real objects. These studies most commonly 

focus on whether these differences exist because real objects can be interacted with in a purposeful 

way whereas 2D images cannot. One such study was an action priming study by Squires, 

Macdonald, Culham & Snow (2016). Action priming refers to the observation that viewing an 

object before being asked to interact with that same object facilitates grasping (Valyear et al., 

2011). Interestingly, this study found that there was no difference in action priming between 2D 

images of tools and real tools. Although this study showed no difference in behavioural responses 

due to the interactive nature of real objects, a study by Gomez, Skiba, & Snow (2018) showed that 

there were attentional differences. Real objects were found to be more distracting during a flanker 
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task (where participants respond to a central image which is flanked by two distractor images) 

compared to 2D or 3D images only when the objects were graspable. As soon as a barrier was 

placed between the object and the participant, the differences in attentional effects disappeared. 

Further, a study by Marini, Breeding & Snow (2019) found that real objects elicited greater 

activation in action-related brain areas and brain areas related to stereopsis compared to 2D images. 

Taken together with past research, these studies suggest that the differences observed between real 

objects and other visual stimuli may be due to differences in visual processing and the fact that 

real objects are interactive.  

While these studies provide a compelling argument that the brain responds differently to 2D 

images and real objects, this does not mean that all experiments should attempt to use real stimuli. 

While real objects would provide the most ecologically valid results, they are not always feasible 

to use within a laboratory setting, especially with research related to emotion. Biologically 

significant visual stimuli such as threat related stimuli (e.g. spiders, wolves) and social stimuli (e.g. 

emotional facial expressions) would be difficult to present in a controlled and consistent manner 

across participants. Even the act of storing and presenting these stimuli would be difficult in studies 

with designs that require many stimuli or many trials. In cases where using real stimuli is not 

possible, a compromise may be made by using 3D images. Just as with real objects, there is 

evidence to suggest that there are differences in responding between 2D and 3D stimuli. A study 

conducted by Rooney, Benson, & Hennessy (2012) compared participants’ perception of and 

psychophysiological arousal to scenes from films presented in either 2D or 3D. Participants in the 

3D film condition gave higher ratings of realism and had a higher heart rate compared to 

participants in the 2D condition. This difference in subjective ratings was replicated in a study by 

Gaebler and colleagues (2014) where participants rated a 3D film more immersive compared to 

the 2D version of that film.  

While these studies provide intriguing results, most studies on emotion still use static 2D 

stimuli. To date, we are aware of only two prior studies that compared 2D and 3D emotional 

images. These were two neuroimaging studies conducted by Dores and colleagues (2013, 2014) 

which investigated the difference between pleasant, unpleasant, and neutral scenes presented in 

2D and anaglyph 3D. These studies discovered greater activation in the amygdala for unpleasant 

3D scenes compared to their 2D counterparts and greater activation in the postcentral and middle 
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frontal gyrus for both pleasant and unpleasant 3D scenes. Despite these promising results, these 

studies alone are not enough to conclude that 2D and 3D images produce different effects of 

emotion. The emotional scenes created for these studies were computer generated, giving both 2D 

and 3D stimuli a cartoonish appearance instead of looking like actual photographs of real scenes. 

Given the evidence that photographic 2D images and real objects are already known to engage the 

visual system and related systems in fundamental different ways (Snow et al., 2011; Gomez, Skiba 

& Snow, 2018; Marini, Breeding & Snow, 2019), it cannot be assumed that computer generated 

images would engage these systems in the same way as either stimulus type. Also, these studies 

used an anaglyph technique to create the illusion of depth. Red-cyan anaglyph glasses affect the 

colour of the stimuli further reducing its appearance of realism. Additionally, ghosting (where 

images appeared doubled as an image designed for one eye bleeds through to the other) is common 

with anaglyph glasses which impairs the stereoscopic effect and reduces image quality by blurring 

the edges of objects in the foreground (Woods & Rourke, 2004). Most emotion research does not 

use computer-generated 2D images but 2D photographs of actual stimuli. So even if 3D computer-

generated images do elicit greater effects of emotion compared to computer-generated 2D images, 

this does not indicate that either have greater effects than realistic 2D images. Additional research 

needs to be conducted comparing photorealistic 2D and 3D emotional images before conclusions 

about differences in processing can be drawn. 

1.10 Thesis objectives and hypotheses 

Even though humans perceive the world in three dimensions, almost all prior studies on vision and 

emotion have used 2D stimuli. It was believed that 2D images were able to elicit responses that 

closely resembled those that would be experienced in the real world but recent research challenges 

this belief by revealing differences in neural, cognitive, and behavioural responding between 2D 

images and real objects (Snow et al., 2011; Snow, Skiba, Coleman & Berryhill, 2014; Bushong et 

al., 2010; Gomez, Skiba, & Snow, 2018). While the differences between 2D images and real 

objects are being explored, there is very little research comparing 2D and 3D images in the field 

of affective cognitive neuroscience. Research in this area could be especially beneficial for this 

field where small effect sizes are expected as brain areas and psychophysiological responses 

rapidly habituate to emotional stimuli (Breiter et al., 1996; Plichta et al., 2014; Bradley, Lang, & 

Cuthbert, 1993). This habituation could be counteracted if, like real objects, 3D images are more 
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resistant to repetition effects (Snow et al., 2011). This leaves a gap in current knowledge, there are 

no studies we are aware of that explore whether there are differences in affective responding 

between photorealistic 2D and 3D emotional images.  

The overall objective of this thesis is to determine if 3D images can be used to improve 

stimulus realism and be used in emotion research to achieve more reliable effects of emotion. We 

predict that, compared to 2D images, 3D images will elicit greater affective responses. 

Specifically, we predict that 3D images will: 

1. Receive higher subjective ratings of realism and emotion; 

2. Initially elicit increases in psychophysiological responding; 

3. Be more resistant to habituation effects; and 

4. Experience a greater recovery of response when novel emotional images are 

presented after habituation.  

The difficulties associated with emotion research increase the likelihood of committing a 

Type I error; effects may be missed due to the small or rapidly diminishing effects of emotion. The 

aim of this study is to determine whether classic emotion research methods can be improved upon 

by using stimuli that more closely represent real world experiences to bolster effects of emotion to 

ensure they are not wrongly overlooked. Unlike previous research, the present study will use 

photorealistic stimuli presented with 3D shutter glasses to more directly compare classic, 

photographic 2D stimuli to realistic 3D stimuli. The results of this study could expand beyond 

emotion research and inform all studies which use visual stimuli on how to improve effect sizes 

and ecological validity.  
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CHAPTER 2 

2 Methods 

2.1 Participants 

Fifty-three participants (32 female, 21 male; mean age, 22.4; range, 18-35 years) from Western 

University took part in the current study. Three participants were excluded for being unable to 

distinguish between 2D and 3D stimuli (less than a 1-point difference in mean visual 

dimensionality scores between the two stimulus types). Of the 50 remaining participants, EMG 

and SCR data were collected from 45 participants. Participants were recruited from flyers posted 

around campus. All participants were screened for vision and psychiatric disorders and had normal 

or corrected-to-normal vision. Even though only participants with normal or corrected-to-normal 

vision were recruited, the Randot Stereo Vision Test (2018) was employed to ensure that all 

participants displayed normal depth perception.  Eligible participants had a visual acuity score of 

50 arcseconds or better, one participant was excluded for having a stereoacuity score greater than 

400 arcseconds. All participants provided written informed consent and received monetary 

compensation at a rate of $15/hour. This study was approved by the University of Western Ontario 

Research Ethics Board. 

2.2 Stimuli 

A 3D stimulus set was created by photographing 39 plant and taxidermic entomological 

specimens. The stimulus set consisted of 6 plant specimens, 16 beetle specimens, 3 wasp specimen, 

12 butterfly specimens, and 2 arachnid specimens. One 2D and one 3D image was created of each 

specimen to create a stimulus set of 78 images. To create the stimuli, the specimens were 

positioned on a rock in front of a white background. Foliage was added to the background to 

provide additional monocular depth cues. A digital camera was placed approximately 188 cm away 

from the specimen, although images were later cropped and resized to optimize three-

dimensionality when the images were viewed at 30 cm. To create the 2D images, two pictures 

were taken of the specimen from an established center line. To create the 3D images, one picture 

of the specimen was taken 3 cm to the left of the center line and a second picture was taken 3 cm 
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to the right of a center line to mimic the distance between human eyes. StereoPhoto Maker 

(Version 5.10; 2015) was used to superimpose the two images and merge them into a single .JPS 

file. The physical properties of the images were matched as closely as possible. Even though the 

specimen varied in size, the rock and foliage were consistent throughout the stimulus set in size 

and position. The images were then matched for colour, luminance, and size using MATLAB 

(2018a). To adjust colour and luminance, the top left corner of each image (which did not feature 

any objects) was measured as the average background colour and brightness. The rest of the image 

was adjusted so the background had an RGB of [230 230 230]. All images were sized to 1582 x 

1315 pixels, with the background consistent and target centered in each image. For 3D images 

there was a 30 pixel separation between the left and right images (each 15 pixels away from the 

center). These stimuli were displayed using NVIDIA 3D Vision Photo Viewer on an ASUS 24-

inch 3D gaming monitor (MG248Q) using NVIDIA 3D Vision 2 Goggles. 

A subset of 36 of the 78 images in our stimulus set were chosen to use in the main study 

based on participants’ ratings in a pilot study (see Appendix A for mean ratings). Stimuli were first 

split into three groups based on pleasantness ratings from a pilot experiment (Fig. 1); the images 

with the top third of pleasantness ratings were considered ‘pleasant’ (mean ratings between 6.33 – 

8.17), the middle third ‘neutral’ (mean ratings between 4.31 – 5.77), and the bottom third 

‘unpleasant’ (mean ratings between 1.58 – 3.38). Six images were then chosen from each emotion 

category based on visual dimensionality ratings; images with the greatest disparity in visual 

dimensionality ratings between the 2D and 3D version of the images were chosen (mean disparity 

4.13 points). These images were chosen as the main study examines the effect of visual dimension 

on affective responding; thus, the images with the greatest perceived difference in visual 

dimensionality would be best suited to reveal any differences in responding between 2D and 3D 

stimuli if such a difference exists. Six stimulus subsets were created from these 36 images so that 

there was one 2D and one 3D image from each emotion category in each set. Subsets were created 

by matching stimulus size as closely as possible.  
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Figure 1. Examples of a pleasant, neutral, and unpleasant 2D stimuli in one stimulus subset. 

An acoustic startle probe was created using Audacity (Version 2.1.2; Mazzoni, 2015). The 

probe was a 50ms white noise burst saved in a .wav file and presented at 104dB. The probe was 

administered through Sennheiser HD 25 Light DJ Headphones which were connected to a 

Behringer HA400 Stereo Headphone Amplifier.  

2.3 Items 

Trait anxiety was measured to determine if higher levels of anxiety resulted in increases in 

psychophysiological responding. The State Trait Anxiety Inventory (STAI; Spielberger et al., 

1983) for Adults Form Y was administered to participants in order to evaluate their level of trait 

anxiety. The STAI is a self-evaluation questionnaire composed of two 20-item scales which 

measure state and trait anxiety respectively. The questionnaire is composed of statements related 

to how they are currently feeling or generally feel (i.e. I feel nervous or restless) and participants 

are asked to circle a number from 1-4 to indicate how much the statement applies to them (1 = 

almost never, 2 = sometimes, 3 = often, 4 = almost always). Half of the items are reverse-scored 

as they corresponded to statements associated with low anxiety (i.e. I am “calm, cool, and 

collected”). Participants received a score between 20 and 80 for each scale. All participants 

completed this questionnaire before they began the computer task. This measure was included to 

determine if higher levels of trait anxiety increased psychophysiological responding.  

Additionally, individual scores of fear of insects and spiders were measured to determine if 

higher levels of fear resulted in increases in psychophysiological responding. The Fear of Spiders 
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Questionnaire (FSQ; Szymanski & O’Donohue, 1995) was adapted to assess participants’ fear of 

insects as well as spiders. The adapted FSQ was administered to determine whether participants 

had a spider and/or insect phobia or to assess the level of fear towards spiders and/or insects in 

non-phobics. The FSQ is an 18-item self-evaluation questionnaire which asked participants how 

much they agreed or disagreed with statements relating to how they feel about or would respond 

to insects and/or spiders (i.e. If I saw an insect/spider now, I would think it will harm me) using a 

7-point Likert scale (1 = strongly disagree, 7 = strongly agree, 4 = neither agree or disagree). After 

completing the adapted FSQ, participants received a score ranging from 18 to 126. Population 

means determine phobics score an average of 89.9 on the FSQ before undergoing treatment (Muris 

& Merckelbach, 1996), no participants in the present study scored above this threshold. The FSQ 

was chosen over the Spider Phobia Questionnaire because it more sensitive at measuring fear 

within the non-phobic range as it uses a 7-point scale as opposed to a dichotomous true or false 

scale (Muris & Merckelbach, 1996). 

2.4 Subjective measures 

Participants were asked to rate each image across six different dimensions. The six dimensions 

used were Arousal, Pleasantness, Approachability, Dangerousness, Realism, and Visual 

Dimensionality. Arousal and Pleasantness dimensions mirror the arousal and valence dimensions 

used in the Self-Assessment Manikin (SAM) scale used to assess IAPS images (Bradley & Lang, 

1994). Approachability and Dangerousness dimensions were used instead of the dominance 

dimension used in the SAM scale to get a more complete picture of whether the image was being 

perceived as threatening. Realism was included as a direct measure of our prediction that 3D 

images would be perceived as more realistic than 2D images and Visual Dimensionality was 

included to ensure that participants were perceiving a difference between the 2D and 3D stimuli. 

For each image participants were asked to provide a rating on each dimension using a 9-point 

Likert scale (1 = min, 9 = max, 5 = neutral). Participants’ starting position on the scale was 

highlighted in red; they used arrow keys to move between points on the scale and the enter key to 

confirm their selection. Participants had an unlimited amount of time to provide responses. The 

order that the dimensions appeared and the starting position on the scale was randomized. This 

was done to encourage participants to pay attention so they could rate the pictures independently 
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and to reduce the likelihood of response bias. Participants were provided with the definition of 

each dimension and information on how to use the scale before they completed the task.  

2.5 Psychophysiological measures 

The current study used two psychophysiological measures, EMG and SCR. Both are measures of 

the sympathetic ANS which are modulated by emotional stimuli. SCR shows a unidirectional 

response to emotional stimuli where the response increases with arousal. The EMG measure 

recorded the startle eye blink response to an acoustic startle probe. A startle response is a behaviour 

that occurs in response to an unexpected stimulus and can be modulated by emotional stimuli. 

Unlike skin conductance, the startle eye blink reflex shows a bidirectional response to emotional 

stimuli where positive stimuli inhibit the response and negative stimuli magnify the response.  

Two EMG electrodes were places on the orbicularis oculi of the left eye, one directly below 

the pupil and one near the outer corner of the eye (Fig. 2). EMG data were sampled at 2000 Hz 

with a pair of reusable 4mm Ag/AgCl shielded electrodes (Biopac model: EL254S) which were 

filled with an isotonic gel (Biopac model: GEL100). The raw signal was automatically filtered 

through a 30 Hz comb band stop filter during data collection to reduce noise. The signal was 

filtered offline using a 28-500 Hz band pass filter, the root mean square was derived, and 40 Hz 

low pass FIR filter in line with previously established guidelines (Blumenthal et al., 2005). The 

startle response was measured as the maximum amplitude of the EMG signal 20-200 ms after the 

presentation of the startle stimulus compared to a baseline which was determined as the average 

EMG activity 180 ms before stimulus presentation. EMG data were excluded if it contained 

excessive noise due to technical difficulties during recording or if participants were non-

responders. Approximately 5-10% of healthy adults are startle non-responders (Blumenthal et al., 

2005). For our EMG measure, non-responders were identified as participants who did not generate 

a startle eye blink response (EMG activity following startle probe was less than 2 standard 

deviations higher than baseline) but who clearly displayed voluntary eye blink responses. Data 

from three participants were excluded after they were identified as non-responders (6.1% of our 

sample) and data from two participants were excluded due to excessive noise.  
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This study measured the mean number of SCRs as opposed to the amplitude of the response 

as the number of SCRs was low overall. As with EMG, SCR data were gathered using the Biopac 

M160 Data Acquisition System and were processed and analyzed using the Acqknowledge 5 

software. Data were sampled at 2000 Hz with a pair of disposable pre-gelled contact electrodes 

(Biopac model: EL507-10). The electrodes were placed on the distal phalanx of the first and middle 

fingers of the non-dominant hand (Fig. 2). SCR data were processed by removing movement 

manually and filtering the signal offline using a 1 Hz low pass FIR filter to eliminate noise. SCRs 

were identified and linked to stimulus events using the Acqknowledge software using a threshold 

of 0.01 microsiemens compared to a 2 second baseline. As with EMG, SCR data were excluded if 

participants were non-responders. Approximately 10% of the general population are SCR non-

responders (Braithwaite, Watson, & Jones, 2015). For SCR, non-responders were identified as 

participants who displayed no event-related SCRs throughout the recording process (they did not 

display a 0.01 microsiemen increase in skin conductance level after stimulus onset). Data from 

five participants were excluded after they were identified as non-responders (10% of our sample). 

 

 

 

     Figure 2. SCR and EMG electrode placements. 
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2.6 Procedure: Pilot 

In the pilot study participants completed a computer task where they provided subjective ratings 

across the six dimensions for all 78 images within the stimulus set. Participants viewed the stimuli 

on the 3D capable monitor with NVIDIA 3D Vision 2 Goggles while they provided ratings for the 

images on a laptop placed beside the 3D monitor. Stimuli were presented randomly and remained 

visible on the 3D monitor until participants completed rating the images on all six dimensions. 

2.7 Procedure: Main study 

Skin conductance electrodes were applied to a participant’s non-dominant hand immediately after 

providing informed consent to ensure that the gel would have enough time to saturate the recording 

area before the computer task (saturation time >10 minutes). Participants completed the STAI 

Form-Y (Spielberger et al., 1983), the adapted FSQ (Szymanski & O’Donohue, 1995), and the 

Randot Stereovision Test (2018).  

EMG electrodes were then placed under participants’ left eye and SCR leads were affixed to 

the SCR electrodes. Both psychophysiological signals were tested for noise. For EMG, participants 

were asked to blink three times. The EMG signal was determined to be acceptable if the blinks 

were clearly distinguishable in the EMG signal. For SCR, participants were asked to take a deep 

breath. The SCR signal was determined to be acceptable if there was a corresponding increase in 

skin conductance level following the inhale. If either signal was unacceptable, the electrodes were 

replaced up to two more times in order to get a better signal.  

Next, the participants completed the computer task which was displayed in MATLAB 

(2018a) using Psychtoolbox-3 (Kleiner et al., 2007). The computer task was broken down into 

three phases; a preparation phase, a habitation phase, and a novel phase (Fig. 3; Codispoti, Bradley 

& Ferrari, 2006; Codispoti, De Cesarei, Biondi & Ferrari, 2016). In the preparation phase, 

participants reviewed the task instructions, completed two test rating trials where they rated two 

test images (one 2D and one 3D image) across each subjective dimension, and were exposed to 

six acoustic startle probes to acclimate them to the noise. The habituation phase is broken down 

into three observation blocks where participants rated one set of six images repeatedly. During 

observation trials, participants placed their chin on a chin rest which was positioned 30 cm away 
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from the 3D monitor and asked not to move. There were 30 observation trials within each block 

where the images were presented quasi-randomly. Each observation block was broken down into 

five mini-blocks where each image was presented once. The same stimulus did not follow itself in 

either dimension (i.e. a negative 2D image would not be followed by a negative 2D or negative 

3D image). Each image would follow all other images at nearly equivalent rates within one 

observation block. Since each image could follow four others without following itself in 2D or 3D, 

within the 30 trials of one block each image would follow every other image once with only four 

repeats. Of the 30 observation blocks, there was an acoustic startle on 3/5th of trials. A startle 

probe was not included on all trials to reduce participant expectancy. Startle probes were also not 

included on the first mini-block in block 1 or block 4 so participants could observe each image 

once undisturbed. Observation trials began with a fixation cross before the stimuli appeared. The 

stimuli was present on the screen for 8s. On startle trials, the acoustic startle probe occurred 7s 

after stimulus onset. The image was then followed by 15s of a fixation cross to avoid contamination 

of SCRs in the proceeding trial; SCRs can occur within 1 to 7s after stimulus onset and last for 

several seconds (Fig. 4). The acoustic startle was balanced across visual dimensionality and 

emotion category. Each observation block was preceded and proceeded by ratings trials where 

participants rate each image across the six dimensions. In the novel phase, participants viewed six 

new images in one block, again preceded and proceeded by rating trials. The novel phase was 

included to see if there is a recovery of response.  
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Figure 3. Computer task schematic.   

 

 

Figure 4. Example of observation trial. SCR data were collected over all 30 trials within an 

observation block; SCRs were considered event related if they began between 1 to 7s after stimulus 

onset. An acoustic startle probe was present on 3/5ths of observation trials thus EMG was collected 

on 18 trials within an observation block. EMG responses were measured 20-200ms after the startle 

probe.   
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2.7 Statistics 

Statistical analyses were conducted using the IBM Statistical Package for Social Sciences version 

25 (2017). Six 2 X 3 X 4 repeated measures ANOVAs were conducted to evaluate dimension (2D, 

3D), emotion (pleasant, neutral, unpleasant), and time (1-4) for each of the six subjective ratings. 

Two 2 X 3 X 3 repeated measures ANOVAs were conducted to evaluate the effects of dimension 

(2D, 3D), emotion (pleasant, neutral, unpleasant), and block (1-3) for both psychophysiological 

measures. The threshold for significance was set at p < 0.05 for planned comparisons and post-hoc 

tests. 

To evaluate if there was a difference in initial psychophysiological responding between the 

two stimulus types, 2 X 3 (Dimension, Emotion) repeated measures ANOVAs were conducted on 

the mean values (EMG maximum amplitude and number of SCRs) of the first block of the 

experiment comparing 2D and 3D images of each of the emotion categories.  

To establish habituation effects in psychophysiological responding, difference scores were 

calculated by subtracting responses from the third block from responses in the first block to create 

a habituation index (where positive values represent amount of habituation). A 2 X 3 (Dimension, 

Emotion) repeated measures ANOVA was conducted to compare difference scores between 2D 

and 3D images of the same emotion category for both EMG and SCR measures.  

To see if there was a recovery of response in psychophysiological responding, a recovery 

index was calculated by subtracting responses from the third block from responses from the fourth, 

novel block where participants viewed a new set of images (where positive values represent a 

recovery of response). Again, A 2 X 3 (Dimension, Emotion) repeated measures ANOVA was 

conducted to compare recovery scores between 2D and 3D images of the same emotion category 

for both EMG and SCR measures. 

To determine if trait anxiety or fear of insects and/or spiders affected affective responding, 

trait anxiety and FSQ scores were correlated against mean EMG amplitude and mean number of 

SCRs.   
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CHAPTER 3 

3 Results 

3.1 Subjective Ratings 

Six 2 (Dimension: 2D, 3D) X 3 (Emotion: Negative, Neutral, Positive) X 4 (Time) repeated 

measures ANOVAs were conducted on participants’ subjective ratings of the stimuli, one for each 

of the six subjective dimensions (Realism, Arousal, Danger, Approachability, Pleasantness, and 

Visual Dimensionality).  

3.1.1 Realism 

The ANOVA for Realism ratings revealed a significant main effect of Dimension (F = 51.49, df = 

1, p < 0.001, ηP
2 = 0.505), Emotion (F = 4.53, df = 2, p = 0.013, ηP

2 = 0.093) and Time (F = 3.54, 

df = 2.31, p = 0.027, ηP
2 = 0.074). 3D images were rated significantly more realistic than 2D 

images and negative images were rated more realistic than neutral or positive images. Realism 

ratings decreased over time for all stimulus types. There was a significant Dimension X Emotion 

interaction (F = 3.30, df = 2, p = 0.042, η2 = 0.070) but no significant Dimension X Time (F = 

2.55, df = 2.19, p = 0.135, η2 = 0.044), Emotion X Time (F = 0.318, df = 4.31, p = 0.878 η2 = 

0.007), or three way interaction (F = 0.455, df = 4.35, p = 0.784, η2 = 0.010).  

A series of planned paired t-tests were conducted to uncover the nature of the Dimension X 

Emotion interaction. The t-tests revealed that 3D images were rated significantly more realistic 

than 2D images across all emotion categories (Negative: t = 6.55, df = 44, p < 0.001 d = 0.893; 

Neutral: t = 4.02, df = 44, p < 0.001, d = 0.600, Positive: t = 3.57, df = 44, p < 0.001, d = 0.529). 

In terms of the interaction, negative images were rated more realistic than neutral and positive 

images for 3D stimuli (Negative – Neutral: t = 2.46, df = 44, p = 0.018, d = 0.363; Negative – 

Positive: t = 2.56, df = 44, p = 0.014, d = 0.381; Neutral – Positive: t = 2.46, df = 44, p = 0.018, d 

= 0.041), while there were no significant differences in Realism ratings between the three emotion 

categories for 2D stimuli (Negative – Neutral: t = 0.130, df = 44, p = 0.897, d = 0.022; Negative – 

Positive: t = 0.077, df = 44, p = 0.939, d = 0.015; Neutral – Positive: t = 0.070, df = 44, p = 0.944, 

d = 0.009).  
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Figure 5. Mean subjective ratings of Realism; error bars represent standard error. A) Realism 

ratings for 2D and 3D images across the 6 points in time that participants were asked to rate images; 

one set of images was used for time points 1-4 and a novel set of images was used for time points 

5-6. 3D images rated significantly more realistic than 2D images; Realism ratings decreased 

slightly for both stimulus types over time. B) There was a significant Dimension X Emotion 

interaction. 3D negative images were rated more realistic than neutral and positive 3D images 

while there was no difference in Realism ratings between emotion categories for 2D images.  

3.1.2 Arousal 

The ANOVA for Arousal ratings revealed a significant main effect of Dimension (F = 22.3, df = 

1, p < 0.001, ηP
2 = 0.317), Emotion (F = 3.88, df = 1.60, p = 0.033, ηP

2= 0.075) and Time (F = 

3.55, df = 3.00, p = 0.016, ηP
2 = 0.069). 3D images were rated more arousing than 2D images. 

Negative and positive images were rated more arousing than neutral images. As with Realism, 

Arousal ratings decreased over time for all stimulus types. There were no significant interactions 

(Dimension X Emotion: F = 1.18, df = 1.64, p = 0.306, η2 = 0.024; Dimension X Time: F = 0.089, 

df = 2.54, p = 0.949, η2 = 0.002; Emotion X Time: F = 0.648, df = 6.00, p = 0.692, η2 = 0.013; 

Dimension X Emotion X Time: F = 0.742, df = 5.05, p = 0.616, η2 = 0.015).   

The planned paired t-tests revealed that 3D images were rated significantly more arousing 

than 2D images across all emotion categories (Negative: t = 3.42, df = 44, p < 0.001, d = 0.528; 

Neutral: t = 2.17, df = 44, p = 0.035, d = 0.374; Positive: t = 2.33, df = 44, p = 0.024, d = 0.245). 

Negative and positive images were rated more arousing than neutral images for 3D stimuli 

(Negative – Neutral: t = 2.27, df = 44, p < 0.001, d = 0.341; Negative – Positive: t = 0.639, df = 

44, p = 0.562, d = 0.093; Neutral – Positive: t = 1.79, df = 44, p = 0.039, d = 0.274) while there 

were no significant differences in arousal ratings between the three emotion categories for 2D 

stimuli (Negative – Neutral: t = 1.16, df = 44, p = 0.250, d = 0.209; Negative – Positive: t = 0.250, 

df = 44, p = 0.804, d = 0.055; Neutral – Positive: t = 1.56, df = 44, p = 0.126, d = 0.305). 
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Figure 6. Mean subjective ratings of Arousal; error bars represent standard error. A) Arousal 

ratings for 2D and 3D images across the 6 points in time points. 3D images rated significantly 

more arousing than 2D images; arousal ratings decreased slightly for both stimulus types over 

time. B) Planned comparisons revealed 3D negative and positive images were rated more arousing 

than neutral images while there was no difference in arousal ratings between emotion categories 

for 2D images. 

3.1.3 Danger 

The ANOVA for Danger ratings revealed a significant main effect of Dimension (F = 12.6, df = 

1.00, p = 0.001, ηP
2 = 0.205) and Emotion (F = 76.5, df = 1.45, p < 0.001, ηP

2 = 0.609) but no main 

effect for Time (F = 0.837, df = 2.15, p = 0.476, ηP
2 = 0.071). 3D images were rated significantly 

more dangerous than 2D images. As expected, negative images were rated significantly more 

dangerous than neutral images which were in turn rated more dangerous than positive images. 

There was a significant Dimension X Emotion interaction (F = 3.74, df = 2.00, p = 0.027, ηP
2 = 

0.071) but no significant Dimension X Time (F = 2.38, df = 2.55, p = 0.072, ηP
2 = 0.046), Emotion 

X Time (F = 0.887, df = 4.74, p = 0.505, ηP
2 =0.018), or three way interaction (F = 0.187, df = 

4.96, p = 0.967, ηP
2 = 0.004).   

The planned paired t-tests found that negative and neutral 3D images were rated more 

dangerous than negative and neutral 2D images (Negative: t = 3.60, df = 44, p = 0.001, d = 0.388; 

Neutral: t = 2.74, df = 44, p = 0.008, d = 0.368; Positive: t = 0.101, df = 44, p = 0.920, d = 0.011). 

Danger ratings for the emotion categories were as expected, with negative images being rated more 

dangerous than neutral images and neutral images rated more dangerous than positive images (2D: 

Negative – Neutral: t = 7.07, df = 44, p < 0.001, d = 0.961; Negative – Positive: t = 10.4, df = 44, 

p < 0.001, d = 1.45 ; Neutral – Positive: t = 4.95, df = 44, p < 0.001, d = 0.502; 3D: Negative – 

Neutral: t = 6.87, df = 44, p < 0.001, d = 0.905; Negative – Positive: t = 11.5, df = 44, p < 0.001, 

d = 1.74; Neutral – Positive: t = 6.82, df = 44, p < 0.001, d = 1.74). 
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Figure 7. Mean subjective ratings of Danger; error bars represent standard error. A) Danger ratings 

for 2D and 3D images across the 6 points in time points. 3D images rated significantly more 

dangerous than 2D images. B) There was a main effect of emotion in the expected direction 

(Negative > Neutral > Positive) for both stimulus types. There was also a significant Dimension 

by Emotion interaction. 3D negative and neutral images were rated more dangerous than their 2D 

counterparts but there was no difference in danger ratings for positive images. 

3.1.4 Approachability  

The ANOVA for Approachability ratings revealed a significant main effect of Dimension (F = 

10.28, df = 1.00, p = 0.003, ηP
2 = 0.189) and Emotion (F = 122.03, df = 2.00, p < 0.001, ηP

2 = 

0.735) but no main effect of Time (F = 2.20, df = 2.09, p = 0.115, ηP
2 = 0.048). 2D images were 

rated significantly more approachable than 3D images. As expected, positive images were rated 

significantly more approachable than neutral images which in turn were rated more approachable 

than negative images. There was a significant Emotion X Time interaction (F = 2.39, df = 4.88, p 

= 0.041, ηP
2 = 0.051) and a Dimension X Emotion X Time interaction (F = 2.16, df = 6.00, p = 

0.048, ηP
2 = 0.047) but no Dimension X Emotion (F = 2.76, df = 2.00, p = 0.069, ηP

2 = 0.059) or 

Dimension X Time interaction (F = 1.22, df = 3.00, p = 0.305, ηP
2 = 0.027).  

Paired t-tests were conducted to investigate the Emotion X Time interaction. 

Approachability ratings for positive images decreased over time (t = 3.81, df = 44, p = 0.003, d = 

0.373) but there was no difference in approachability ratings for negative or neutral images over 

time (Negative: t = 1.05, df = 44, p = 0.394, d = 0.059; Neutral: t = 0.822, df = 44, p = 0.311, d = 

0.093).  

To begin to delineate the three-way interaction, three 2 X 4 (Dimension, Time) ANOVAs 

were conducted, one for each emotion category. The ANOVA for the negative images revealed a 

main effect of Dimension (F = 10.3, df = 1.00, p = 0.003, ηP
2 = 0.189) but not Time (F = 0.338, df 

= 2.45, p = 0.757, ηP
2 = 0.008) and no interaction (F = 0.808, df = 3.00, p = 0.492, ηP

2 = 0.018). 

The ANOVA for neutral images also revealed a main effect of Dimension (F = 5.83, df = 1.00, p 

= 0.020, η2 = 0.117) but not Time (F = 2.02, df = 2.23, p = 0.135, ηP
2 = 0.044) and no interaction 

(F = 0.882, df = 3.00, p = 0.452, ηP
2 = 0.020). The ANOVA for positive images revealed a main 
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effect of Time (F = 5.37, df = 2.29, p = 0.004, ηP
2 = 0.109) but not Dimension (F = 0.03, df = 1.00, 

p = 0.865, ηP
2 = 0.001) and no interaction (F = 3.89, df = 3.00, p = 0.011, ηP

2 = 0.081). To further 

define the nature of the three-way interaction, a series of paired t-tests were conducted comparing 

2D and 3D negative, neutral, and positive images at each time point. These t-tests revealed that 

the difference between 2D and 3D negative images was greatest in time point 4 (t = 2.61, df = 44, 

p = 0.012, d = 0.394; 2D > 3D) but the difference between 2D and 3D positive and neutral images 

was not significant during time point 4 (Positive: t = 0.83, df = 44, p = 0.411, d = 0.111; Neutral: 

t = 0.35, df = 44, p = 0.730, d = 0.039). The difference between 2D and 3D positive images was 

significant during time point 1 (t = 2.78, df = 44, p = 0.008, d = 0.399) while the difference between 

2D and 3D negative and neutral images was not significant during this time point (Negative: t = 

1.60, df = 44, p = 0.118, d = 0.260; Neutral: t = 1.11, df = 44, p = 0.274, d = 0.154).  Finally, the 

difference between 2D and 3D neutral images was greatest for time point 3 (t = 2.07, df = 44, p = 

0.044, d = 0.346) while the differences between 2D and 3D positive and negative images was not 

significant during this time point (Positive: t = 1.30, d = 44, p = 0.202, d = 0.119; Negative: t = 

0.780, df = 44, p = 0.437, d = 0.173).  
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Figure 8. Mean subjective ratings of Approachability; error bars represent standard error. A) 

Approachability ratings for 2D and 3D images across the 6 points in time points. B) 

Approachability ratings showing main effect of emotion (Positive > Neutral > Negative). There 

was a significant Dimension by Emotion interaction. 3D negative and neutral images were rated 

less approachable than 2D images. C) Emotion by Time interaction. D) There was a significant 

three-way interaction. Between 2D and 3D images, negative images were significantly different 

in time point 4, positive images in time point 1, and neutral images in time point 3.  

3.1.5 Pleasantness 

The ANOVA for Pleasantness ratings revealed a significant main effect of Emotion (F = 106.5, df 

= 2.00, p < 0.001, ηP
2 = 0.712) but no main effect of Dimension (F = 0.049, df = 1.00, p = 0.826, 

ηP
2 = 0.001) or Time (F = 0.454, df = 2.32, p = 0.665, ηP

2 = 0.010). There were no significant 

interactions (Dimension X Emotion: F = 2.27, df = 1.67, p = 0.119, ηP
2 = 0.050; Dimension X 

Time: F = 0.409, df = 3.00, p = 0.747, ηP
2 = 0.009; Emotion X Time: F = 1.59, df = 6.00, p = 0.150, 

ηP
2 = 0.036; Dimension X Emotion X Time: F = 1.56, df = 6.00, p = 0.160, ηP

2 = 0.035). The 

Pleasantness ratings were as expected for the emotional categories with positive images being 

rated more pleasant than neutral images which were in turn rated more pleasant than negative 

images for both stimulus types (Negative – Neutral: t = 6.77, df = 44, p < 0.001, d = 1.02; Negative 

– Positive: t = 14.0, df = 44, p < 0.001, d = 2.11; Neutral – Positive: t = 8.13, df = 44, p < 0.001, d 

= 1.22).  
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Figure 9. Mean subjective ratings of Pleasantness; error bars represent standard error. A) 

Pleasantness ratings for 2D and 3D images across the 6 points in time points. There were no 

significant differences between pleasantness ratings across dimension or time. B) There was a 

main effect of Emotion with pleasantness ratings in the expected direction (Positive > Neutral > 

Negative) for both stimulus types. 

3.2 Electromyography results 

As with the analysis of subjective ratings, a 2 X 3 X 3 (Dimension, Emotion, Block) repeated 

measures ANOVA was conducted on the mean EMG amplitude scores. A Greenhouse-Geisser 

correction was used for all main effects and interactions that had a significant Mauchly's Test of 

Sphericity (p > 0.05). A main effect of Block was uncovered (F = 21.78, df = 1.14, p < 0.001, ηP
2 

= 0.331) but there was no main effect of Dimension (F = 0.71, df = 1.00, p = 0.404, ηP
2 = 0.016) 

or Emotion (F = 0.12, df = 2.00, p = 0.884, ηP
2 = 0.003). No significant interactions were 

discovered (Dimension X Emotion: F = 0.048, df = 1.44, p = 0.905, ηP
2 = 0.001; Dimension X 

Time: F = 0.918, df = 2.00, p = 0.403, ηP
2 = 0.020; Emotion X Time: F = 1.11, df = 4.00, p = 0.355, 

ηP
2 = 0.025; Dimension X Emotion X Time: F = 0.453, df = 2.49, p = 0.680, ηP

2 = 0.010).  
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Figure 10. Mean maximum EMG amplitude after startle probe compared to a baseline; error bars 

represent standard error. A) EMG response to 2D images across blocks for each of the emotion 

categories. Participants observed one set of images for blocks 1-3 and a novel set of images for 

block 4.  There was a significant decrease in EMG response over time for all emotion categories. 

B) EMG response to 3D images over time for each emotion category. As with 2D images, there 

was a significant reduction in EMG responding over time. 
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3.2.1. EMG first block 

The first block was investigated more closely to determine if there were any differences in initial 

EMG responding between the two stimulus types. A Dimension X Emotion repeated measures 

ANOVA was conducted; there was not a main effect of Dimension (F = 1.59, df = 1.00, p = 0.214, 

ηP
2 = 0.035) or Emotion (F = 1.19, df = 2.00, p = 0.930, ηP

2 = 0.026) and the interaction was not 

significant (F = 0.360, df = 1.63, p = 0.65, ηP
2 = 0.008). 

 

Figure 11. Mean maximum EMG amplitude in the first block of the experiment; error bars 

represent standard error. There were no significant differences in initial responding between 2D 

and 3D images. There was also no significant emotional modulation of the eye blink startle 

response. 
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3.2.2. EMG habituation 

A habituation index was created by calculating difference score between the third and first block 

(Block 3 – Block 1) of the experiment. The third block was used as this is the last time participants 

observe the first set of images (a new set of images is presented in the fourth block). Positive scores 

on the habituation index indicate greater habituation. A Dimension X Emotion repeated measures 

ANOVA was conducted. There were no significant differences in habituation effects based on 

Dimension (F = 1.75, df = 1.00, p = 0.192, ηP
2 = 0.038) or Emotion (F = 1.10, df = 2.00, p = 0.338, 

ηP
2 = 0.024) and no significant interaction (F = 0.619, df = 1.71, p = 0.517, ηP

2 = 0.014).  

 

Figure 12. EMG Habituation Index; error bars represent standard error. There was no significant 

difference in habituation effects between the two dimensions. 
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3.2.3 EMG recovery 

A Recovery Index was created by subtracting EMG response from the fourth, novel block from 

the third block (Block 4 – Block 3). Positive scores on the recovery index would indicate a recovery 

of response. A Dimension X Emotion repeated measures ANOVA was conducted. There were no 

significant differences in response recovery based on Dimension (F = 0.654, df = 1.00, p = 0.423, 

ηP
2 = 0.015) or Emotion (F = 1.46, df = 1.67, p = 0.238, ηP

2 = 0.032) and no significant interaction 

(F = 0.020, df = 1.72, p = 0.969, ηP
2 = 0.00). 

 

Figure 13. EMG Recovery Index; error bars represent standard error. There was no significant 

difference in recovery effects between the two dimensions. 
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3.3 Skin conductance response results 

A 2 X 3 X 3 (Dimension, Emotion, Block) repeated measures ANOVA was conducted on the mean 

number of SCRs. A Greenhouse-Geisser correction was used as Mauchly’s test for Sphericity was 

significant for all main effects and interactions (p > 0.05). No significant main effects were 

uncovered (Dimension: F = 0.231, df = 1.00, p = 0.633, ηP
2 = 0.005; Emotion: F = 0.837, df = 

2.00, p = 0.436, ηP
2 = 0.019; Block: F = 0.906, df = 2.00, p = 0.408, ηP

2 = 0.020) but there was a 

significant Dimension by Block interaction (F = 3.94, df = 2.00, p = 0.023, ηP
2 = 0.082). No other 

interactions were significant (Dimension X Emotion: F = 1.37, df = 2.00, p = 0.259, ηP
2 = 0.020; 

Emotion X Time: F = 0.415, df = 4.00, p = 0.789, ηP
2 = 0.009; Dimension X Emotion X Time: F 

= 1.61, df = .400, p = 0.175, ηP
2 = 0.035).  

Collapsing across emotion, a 2 X 3 repeated measures ANOVA was conducted to delineate 

the Dimension X Block interaction. There were no main effects of Dimension (F = 0.231, df = 1, 

p = 0.633, ηP
2 = 0.005) or Block (F = 0.906, df = 2, p = 0.408, ηP

2 = 0.020) but a Dimension X 

Block interaction was discovered (F = 3.94, df = 2, p = 0.023, ηP
2 = 0.082). Paired t-tests revealed 

this interaction was driven by the difference in response to 2D images in the first block and the 

third block where there was significantly more response in the first block compared to the third 

block (t = 2,16, df = 44, p = 0.036, d = 0.320). There was no significant difference in the number 

of SCRs for 3D images across blocks (t = -0.046, df = 44, p = 0.964, d = 0.009).  
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C) 

 

Figure 14. Mean amount of SCRs; error bars represent standard error. A) Number of SCRs to 2D 

images across blocks for each emotion category. B) Number of SCRs to 3D images across blocks 

for each emotion category. C) Number of SCRs by Dimension across time. The number of SCRs 

in response to 2D images decreased across blocks while there was no difference in SCRs to 3D 

images across blocks.  
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3.3.1 SCR first block 

The first block was investigated more closely to determine if there were any differences in initial 

SCR responding between the two stimulus types. A Dimension X Emotion repeated measures 

ANOVA was conducted; no main effect of Dimension (F = 1.19, df = 1.00, p = 0.276, ηP
2 = 0.004) 

or Emotion (F = 0.402, df = 2.00, p = 0.670, ηP
2 = 0.003) was found. The interaction was not found 

to be significant (F = 1.19, df = 2, p = 0.305, ηP
2 = 0.009). 

 

Figure 15. Mean number of SCRs in the first block of the experiment; error bars represent standard 

error. There was a significant difference in initial responding between 2D and 3D neutral images 

where 2D elicited more SCRs but no difference between negative or positive images between the 

two dimensions. Neutral 2D images elicited more SCRs than positive 2D images but there was no 

other significant difference between images of different emotion categories within a dimension. 
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3.3.2 SCR Habituation 

A Habituation Index was created for SCRs, again difference scores were calculated by subtracting 

SCRs from the third block from the first block to create a habituation score (where higher scores 

represent more habituation). A Dimension X Emotion repeated measures ANOVA revealed a main 

effect of Dimension (F = 7.36, df = 1.00, p = 0.009, ηP
2 = 0.143) but not of Emotion (F = 0.412, 

df = 2.00, p = 0.663, ηP
2 = 0.009). 2D images experienced greater habituation compared to 3D 

images. The Dimension X Emotion interaction was found to be significant (F = 3.22, df = 2.00, p 

= 0.045, ηP
2 = 0.068).  

Paired t-tests were conducted to delineate the Dimension X Emotion interaction. There was 

greater habituation for neutral 2D images compared to 3D images (t = 3.39, df = 44, p = 0.001, d 

= 0.504), there was no significant difference in habituation effects for negative or positive images 

(t = 0.584, df = 44, p = 0.562, d = 0.087; t = -1.62, df = 44, p = 0.113, d = 0.238).  

 

Figure 16. SCR Habituation Index; error bars represent standard error. There was no significant 

difference in habituation effects between the two dimensions. 
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3.3.3 SCR Recovery 

A Recovery Index was created by subtracting SCRS from the fourth, novel block from EMG 

responses from the third block. A Dimension X Emotion ANOVA revealed there was no 

significant differences in response recovery based on Dimension (F = 1.44, df = 1.00, p = 0.231, 

ηP
2 = 0.005) or Emotion (F = 0.81, df = 2.00, p = 0.446, ηP

2 = 0.006). The interaction was also 

found not to be significant (F = 0.15, df = 2.00, p = 0.862, ηP
2 = 0.001).  

 

Figure 17. SCR Recovery Index; error bars represent standard error. There was no significant 

difference in recovery effects between the two dimensions. 
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3.4 Adapted Fear of Spiders Questionnaire Correlations 

To determine if fear of insects and/or spiders had an effect on the startle eye blink response, scores 

on the adapted FSQ were correlated with maximum EMG amplitude to negative images in the first 

block. Only negative images were considered because fear would only have an impact on aversive 

stimuli. A bivariate correlation revealed that fear of insect and spiders did not have an impact on 

startle eye blink amplitude (r2 = 0.074, df = 43, p = 0.636). 

Likewise, to determine if fear of insects and/or spiders had an effect on skin conductance, 

scores on the adapted FSQ were correlated with the number of SCRs to negative images in the first 

block. A bivariate correlation revealed that fear of insect and spiders did not have a significant 

impact on number of SCRs (r2 = -0.127, df =43, p = 0.418). 
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Figure 18. Impact of fear of insects and spiders on affective responding. A) No correlation found 

between FSQ scores and startle eye blink magnitude. B) No correlation found between FSQ scores 

and number of SCRs. 

3.5 Trait Anxiety Score Correlations 

To determine if trait anxiety had an effect on the startle eye blink response, trait anxiety scores 

from the STAI were correlated with maximum EMG amplitude to negative images in the first 

block. A bivariate correlation revealed that trait anxiety did not have an impact on startle eye blink 

amplitude (r2 = -0.134, df = 43, p = 0.393). 

Likewise, to determine if trait anxiety had an effect on skin conductance, trait anxiety scores 

from the STAI were correlated with the number of SCRs to negative images in the first block. A 

bivariate correlation revealed that trait anxiety did not have an impact on number of SCRs (r2 = -

0.258, df = 43, p = 0.094). 

 

 

 

 

 

 

 

 

 

 

 



57 
 

A) 

 

B)

 

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70

M
ax

 E
M

G
 A

m
p

 (
u

V
)

Trait Anxiety Score

Anxiety Scores vs. EMG Amplitude to Negative 
Stimuli in Block 1

r2 = -0.134
p = 0.393

0.0

1.0

2.0

3.0

4.0

5.0

0 10 20 30 40 50 60 70

N
u

m
b

er
 o

f 
SC

R
s

Trait Anxiety Score

Anxiety Scores vs. Number of SCRs to Negative 
Stimuli in Block 1

r2 = -0.258
p = 0.094



58 
 

Figure 19. Impact of trait anxiety on affective responding. A) No correlation found between trait 

anxiety scores and startle eye blink magnitude. B) No correlation found between trait anxiety 

scores and number of SCRs. 
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CHAPTER 4 

4 Discussion 

4.1 Study Results 

Our investigation into whether 3D images could improve stimulus realism and improve effects of 

emotion demonstrated a difference in how 2D and 3D emotional images are subjectively 

perceived, but no significant difference in psychophysical responding between the two stimulus 

types.  

Differences in subjective perception between 2D and 3D images were discovered; 3D images 

were rated more realistic, arousing, and dangerous than 2D images whereas 2D images were rated 

more approachable than 3D images. In line with previous research (Tellegen, 1985; Lang, 

Greenwald, Bradley & Hamm, 1993; Codispoti, Ferrari, Bradley, 2007), negative and positive 

images were rated more arousing than neutral images. Negative images were also rated more 

realistic than neutral or positive images. There were a couple notable Dimension by Emotion 

interactions; 3D negative images were rated more realistic than 3D neutral and positive images but 

there was no difference in ratings for 2D images and 3D negative and neutral images were rated 

more dangerous than negative and neutral 2D images. These results demonstrate a subjective 

advantage to 3D images, particularly with negative images.  

Contrary to our predictions, there was no significant difference in the EMG startle response 

magnitude between the two dimensions. Surprisingly, there was also no main effect of emotion 

even though previous research typically reports that the startle response should be differentially 

modulated by stimuli of different valence (Bradley, Lang, Cuthbert, 1993). There was a significant 

decrease in EMG response over time but there were no other main effects or significant 

interactions. There were also no differences in initial responding, habituation effects, or response 

recovery between the two dimensions.  

Likewise, there was no significant difference in the number of SCRs between the two 

dimensions. Again, contrary to past research, there was no main effect of emotion indicating that 

emotional images did not increase the number of SCRs as expected (Bradley, Lang, Cuthbert, 
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1993). There was a significant Dimension by Block interaction where there was a significant 

decrease in the number of SCRs to 2D images across block but no decrease in the number of SCRs 

to 3D images. A closer investigation of habituation effects uncovered a significant Dimension by 

Emotion interaction where there was greater habituation for neutral 2D images than neutral 3D 

images. There were no differences in initial responding or response recovery between the two 

stimulus types. These results suggest there was no psychophysiological advantage to using 

emotional 3D stimuli.  

Finally, fear of insects and/or spiders did not significantly correlate with EMG startle 

response magnitude or the number of SCRs to negative stimuli within the first block of the 

experiment. There was also no correlation between trait anxiety and EMG startle response 

magnitude or number of SCRs to negative images. This suggests that neither fear nor trait anxiety 

had an impact on psychophysiological responding.  

4.2 Study implications 

A possible conclusion that can be drawn from this experiment is that while using 3D images do 

provide a perceptual advantage for visual stimuli, they do not provide an advantage for responding 

in the autonomic nervous system. Although these results are not in line with our predictions, there 

is some previous research on 3D films which supports the finding that there is a subjective but not 

a psychophysiological benefit to 3D stimuli. Gaebler and colleagues (2014) found a subjective 

advantage to using 3D stimuli where 3D films were rated more immersive than 2D films. 

Conversely, Bride and colleagues (2014) conducted a psychophysiological study to compare skin 

conductance level and cardiac measures between 2D and 3D emotional film clips from popular 

films. There were 20 comparisons between the five psychophysiological measures used during the 

four film clips and only one significant difference between 2D and 3D films emerged. The thrilling 

3D film clip elicited more SCRs than the 2D clip, otherwise, there was no increase in 

psychophysiological responding for 3D films. Rooney, Benson, & Hennessy (2012) compared 

both subjective and psychophysiological ratings in their study comparing 2D and 3D film scenes. 

This study revealed that 3D films received higher realism ratings and increased heart 

rate  compared to 2D film but no significant difference in skin conductance level or skin 

temperature. They proposed that this dissociation between psychophysiological responses was due 



61 
 

to the fact that skin conductance level is controlled by the sympathetic nervous system whereas 

heart rate is influenced by both the sympathetic and parasympathetic nervous system. The 

sympathetic nervous system prepares the body for energy expenditure (the ‘fight or flight’ 

response) whereas the parasympathetic nervous system conserves energy (the ‘rest and digest’ 

response). The present study only included measures of the sympathetic nervous system (SCR and 

EMG) so it is unknown whether the 3D stimuli used in our study had an effect on 

psychophysiological responses controlled by the parasympathetic nervous system. As such, it is 

unknown whether there were differential psychophysiological responses associated with rest 

between our 2D and 3D stimuli. This is a limitation of the current study which should be addressed 

in future research.  

A complication to the conclusion that there is a subjective but not an autonomic advantage 

for 3D images is that the present study did not observe the typical emotional modulation expected 

when using these psychophysiological measures. Previous research on the effect of emotional 

images on psychophysiological responses report effect sizes of emotion as η2 = 0.20 for SCR 

(Codispoti & De Cesarei, 2007) and 0.25 for EMG (Anokhin & Golosheykin, 2010). In the current 

study, our effects of emotion were only ηP
2 = 0.003 and 0.019 for SCR and EMG respectively, a 

decrease in effect size from large effects to no effect and a small effect respectively. This may 

suggest that our stimuli were not as effective at eliciting an emotional response as those used in 

previous research. Of note, the current study used entomological stimuli for each of the stimulus 

categories as brain areas associated with emotion respond more strongly to threatening animate 

biological stimuli than to threatening inanimate stimuli (Coker-Appiah et al., 2013). However, the 

comparison studies used images of emotional faces, erotic couples, and mutilated bodies. Our 

stimuli may not have had enough variance between emotion categories and/or were not as arousing 

as the stimuli used in previous research.  

To investigate this possibility, pleasantness and arousal ratings were examined more closely. 

While there was a significant effect of Emotion within pleasantness ratings, it is possible 

participants did not find the images emotionally distinct enough. While participants did rate the 

positive stimuli (which featured butterflies) more pleasant than the neutral stimuli (which featured 

beetles), it is possible that they did not find the pleasant stimuli objectively pleasant nor the neutral 

stimuli objectively neutral. Previous research has shown that participants tend to use 
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approximately 60% of a step-wise Likert scale like the one used in the current study (Matell & 

Jacoby, 1975). This raises the possibility that our results were a function of the participants’ 

tendency to use the majority of the scale provided, even if they found our stimuli relatively benign. 

On a 9 point Likert scale, there was only a 3.31 point difference between average pleasantness 

ratings for positive and negative images, with positive images being rated only 1.29 points above 

neutral. This is a more limited range than is observed in studies comparing affective responding 

with IAPS images where a 4.5 point or greater difference between valence ratings is commonly 

observed (Codispoti, Ferrari, & Bradley, 2006; Codispoti & De Cesarei, 2007; Bradley, Lang, & 

Cuthbert, 1993; Sanchez-Navarro & Martinez-Selva, 2006; Bradley, Hamby, Low, & Lang, 2007; 

Codispoti, De Cesarei, Biondi, & Ferrari, 2016). While average pleasantness ratings did reflect 

positive, neutral, and negative scores for their respective emotion categories (6.29, 4.47, and 2.97), 

it is possible that these are relative ratings as only entomological stimuli were used; participants 

may not have actually considered the butterfly stimuli in the positive category pleasant but rated 

them pleasant compared to the beetle stimuli in the neutral category. Likewise, while there were 

main effects of Emotion and Dimension for arousal ratings, all average arousal ratings were under 

or at 5, the neutral point, on the 9 point scale. Since arousal is the driving force behind these 

psychophysiological measures (Bradley, Codispoti, Cuthbert & Lang, 2001; Cuthbert, Bradley, & 

Lang, 1996), it is possible that we did not see the expected differences in responding for emotion 

and the predicted differences in responding for dimension because the stimuli were not arousing 

enough. 

Another possible explanation for our results is that there was a dissociation in the neural 

pathways associated with subjective ratings and psychophysiological responding. There is some 

evidence at the neural level that subjective emotional ratings and psychophysiological responses 

are governed by partially dissociable neurocognitive systems. When subjects are asked to provide 

emotional ratings for affective stimuli, brain areas responsible for emotional attention and 

interoception are activated, particularly the dorsomedial prefrontal cortex (dmPFC) and the 

anterior cingulate cortex (ACC; Taylor, Phan, Decker, & Liberzon., 2003; Buhle et al., 2014; 

Hariri, Bookheimer, & Mazziotta 2000; Lane et al., 1997; Northoff & Bermpohl, 2004; Hutcherson 

et al., 2005; Schienle, Wabnegger, Schoengassner, & Scharmuller, 2014). The amygdala is 

implicated in both the production of SCRs (Wood, Ver Hoef, & Knight, 2014) and startle eye blink 

modulation (Hitchcock & Davis, 1986; Angrilli et al., 1996). While the amygdala is not the only 
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structure involved in the generation of SCRs in response to emotional stimuli (Nagai et al., 2004; 

Critchley, Elliot, Mathais, & Dolan, 2000; Alvarez & Lahera, 2017) or startle eye blink modulation 

(Neuner et al., 2010), it is common to both types of responding. Previous research has shown a 

dissociation whereby neural regions associated with emotion were activated to fear-conditioned 

stimuli in the absence of differential autonomic responding (Tabbert, Stark, Kirsch, & Vaitl, 2006). 

Therefore it is possible that there was a dissociation between activity in areas of emotional 

attention that drove enhancement of subjective ratings of affect and realism for 3D stimuli, even 

though processes related to autonomic arousal did not differentiate between these stimuli. 

However, it should be noted that this explanation is highly speculative at this point; particularly 

given evidence that the brain areas responsible for subjective ratings and psychophysiological 

responding are often found to be highly overlapping. Providing emotional subjective ratings has 

been correlated with activation in the dmPFC and the ACC (Taylor, Phan, Decker, & Liberzon; 

2003; Buhle et al., 2014) but also the middle PFC, amygdala (Phan et al., 2000), and middle 

temporal and fusiform gyri (Critchley et al., 2000). Psychophysiological responding has been 

correlated with activation in the amygdala (Wood, Ver Hoef, & Knight, 2014; Hitchcock & Davis, 

1986) as well as the ACC (Tranel & Damasio, 1994) and the vmPFC (Damasio, Tranel, & 

Damasio, 1990). Also, activation in both the amygdala and mid-thalamic nuclei has been 

correlated with subjective rating conditions where SCRs were also present (Liberzon et al., 2000). 

So while the dmPFC and ACC has been associated with providing subjective emotional ratings 

and the amygdala has been associated with psychophysiological responding, the amount of overlap 

and brain areas involved in these processes complicates this interpretation of the results.  

Another possible explanation for why effects of Dimension and Emotion were found for 

subjective and not psychophysiological ratings involves experimenter demand characteristics. 

Demand characteristics are changes in behaviour that occur when participants form a prediction 

about the expected results of an experiment and behave in a way to confirm those results. In the 

current study participants may have concluded that we were expecting a differences in subjective 

ratings between the two dimensions in favour of the 3D images and responded accordingly. 

Likewise, it is possible that participants did not actually experience an appreciable emotional 

reaction to our stimuli but knew conceptually that there should be an emotional difference between 

them. While our stimuli of spiders and butterflies did not produce the intended 

psychophysiological effects of emotion, other studies have shown that these reactions do exist to 
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these stimuli (Maltzman & Boyd, 1984; Wiemer, Gerdes, & Pauli, 2013; Stanley & Knight, 2004; 

Huijding & Jong, 2006; Anders et al., 2004; Neubert et al., 2017). So if participants did not 

experience a significant emotional reaction to our stimuli, it is possible they have had these 

reactions to these specimens in the past or know that other people in the population have these 

reactions so they reported experiencing differences between the stimuli that they did not actually 

feel. 

Finally, it is also possible that the psychophysiological responses were diminished because 

the stimuli used in the current study may have generated an ambivalent response in the participants. 

Some findings suggest that activity in emotion related brain areas can be attenuated by ambiguous 

stimuli. A study by Wang and colleagues (2017) found a reduction in activation in the amygdala 

in response to ambiguous facial stimuli while a study by Kryklywy, Nates, & Mitchell (2009) 

found a reduction in insular activation in response to ambiguous emotional scenes. Activation in 

both of these areas has been found to be correlated with autonomic responding (Critchley, Elliot, 

Mathais, & Dolan, 2000; Neuner et al., 2010; Flynn, 1999). As the stimuli in the present study 

displayed a limited range of pleasantness ratings, it is possible there was limited activation in brain 

regions responsible for emotional encoding. This reduced response may explain why the expected 

emotional modulation of psychophysiological measures was not observed. 

4.3 Limitations and future directions 

While the current study provides a foundation for a line of research investigating the use of realistic 

3D stimuli in affective cognitive neuroscience, it is not without limitations. As previously 

mentioned, the stimuli created may not have been emotionally distinct or arousing enough to 

produce psychophysiological effects of emotion. Additionally, while this study did use two 

measures of psychophysiological responding, they were both measures of the sympathetic nervous 

system. A measure of the parasympathetic nervous system, such as heart rate as was used 

successfully in a prior study comparing 2D and 3D scenes (see Rooney, Benson, & Hennessy, 

2012), could have provided a more complete understanding of the effect of the stimuli on 

psychophysiological responding. Future studies should use stimuli with a greater amount of 

variance in pleasantness and arousal ratings as well as include measures of the 
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parasympathetic nervous system before a conclusive determination on whether visual dimension 

has an effect on psychophysiological responding can be made.  

Since this study explored habituation effects, participants were exposed to a small number 

of stimuli repeatedly. It is possible that participants were less engaged with the stimuli and 

habituated more rapidly than expected because there was such a lack of variety in the images 

presented that they lost interest in the study faster than expected. Previous research comparing 

subjective and psychophysiological responding between emotional images vary in the number of 

stimuli used; whereas some use a small number as was done in the present study (Bradley, Lang, 

& Cuthbert, 1993; Codispoti, Ferrari, & Bradley, 2006; Codispoti, De Ceseari, Biondi, & Ferrari, 

2016) others use dozens of different stimuli (Bradley, Hamby, Low, & Lang, 2007; Bradley, 

Codispoti, Cuthbert, & Lang, 2001; Sanchez-Navarro & Martinez-Selva, 2006). Future studies 

may consider increasing the number of stimuli used or look at habituation effects within stimulus 

category (e.g. positive-high arousal, negative-high arousal, etc.). Another limitation was that, in 

line with previous research (Codispoti, Ferrari, Bradley, 2006), participants were first exposed to 

the stimuli during a rating trial, when they were asked to rate the images on dimensions of emotion 

and realism. Psychophysiological responses were not being recorded during this time. Bradley and 

colleagues (1993) demonstrated a significant decrease in SCR magnitude after the first stimulus 

presentation so it is possible that emotional effects were present during these earlier presentations 

but not during the observation blocks when psychophysiological responses were being recorded. 

It is also notable that there was no recovery of response during the novel phase of the experiment. 

Including a novel block where new stimuli are presented has been shown to result in an increase 

of affective responding (Bradley, Lang, & Cuthbert, 1993; Codispoti, Ferrari, & Bradley, 2006), 

but this experiment did not find any significant recovery of response. This suggests that 

participants may have been fatigued by this point in the experiment which would reduce 

psychophysiological responding (Geldreich, 1939; Shiihara et al., 2000). Future studies comparing 

habituation effects between the two dimensions should address these limitations by using a greater 

number of stimuli and omitting the first rating trails to more conclusively determine whether using 

3D emotional stimuli could result in different patterns of psychophysiological responding.  

Future studies in this area should also investigate a greater variety of stimulus types. There 

is a growing body of research exploring the difference between 2D images and real objects but 
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future studies should compare all three stimulus types: 2D images, 3D images, and real objects. 

Just as the studies comparing 2D images and real objects have investigated the differences in 

memory effects (Snow, Skiba, Coleman, & Berryhill, 2014), attention (Gomez, Skiba, & Snow, 

2018), behaviour (Breiter et al., 1996; Squires, MacDonald, Culham, & Snow, 2016), and 

repetition suppression (Snow et al., 2011), so too should studies comparing 2D, 3D, and real 

stimuli. Studies of this kind would elucidate the differences and similarities in behavioural, 

physiological, and neural responding between the stimulus types and allow researchers to make a 

more informed decision about what stimulus type would be most appropriate for their experiment. 

While real objects would be the most ecologically valid, they would not be feasible for all 

experiment types, including some studies of emotion. For example, studies using stimuli related 

to a variety of threatening cues (i.e. guns, violent interactions, injuries, or snakes) or stimuli of 

emotional facial expressions would be difficult to operationalize with real objects. Although Nili, 

Goldberg, Weizman, & Dudai (2010) did conduct a study where a live snake was used in an fMRI 

experiment to measure brain regions associated with bravery. This study found that activation in 

the ACC and the right temporal pole was positively correlated with overcoming fear (i.e. when 

participants chose to bring the snake closer to them despite indicating that they were scared). As 

far as we are aware, this study is unique in its use of live stimuli. Another option is to deceive 

participants with videos of live stimuli as Mobbs and colleagues (2010) did in an fMRI experiment 

where participants believed a live tarantula was being placed at various distances away from their 

feet. Their study aimed to determine the neural correlates associated with the absolute proximity 

and approach and retreat movements of a phylogenetic threat. While habituation was observed in 

most brain areas, activity in the midbrain periaqueductal gray (an area associated with fear and 

panic; Nashold, Wilson, & Slaughter, 1969) was sustained throughout the experiment for 

participants who scored high on the FSQ. While robust effects of emotion were found in both of 

these studies, it is difficult to say if or how results would differ if more conventional dynamic 

stimuli were used (i.e. where participants knew they were observing film clips). Although, a 

similar issue arises with both of these studies as participants observed the real or believed to be 

real stimuli indirectly, which eliminates some of the benefits associated with observing real objects 

directly (e.g. three-dimensionality and the possibility of interaction). While these studies illustrate 

how real stimuli can be incorporated into emotion research, most likely 2D or 3D stimuli would 

be employed in studies of this kind. As such, it would be beneficial to know the differences in 
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neural processing between live, perceived to be live, and known to be pre-recorded stimuli. A 

manipulation allowing for these comparisons would allow researchers to determine whether there 

are benefits to using real stimuli which outweigh the costs, whether the deception of reality is 

sufficient to achieve these benefits, and whether deception is even necessary to achieve an effect.  

Stimulus realism could also be improved upon by using dynamic 3D stimuli. In real life, 

emotion provoking stimuli rarely exist in static states. Research suggests that, compared to static 

stimuli, dynamic emotional stimuli elicit greater activation in brain areas associated with emotion 

(Trautmann, Fehr, & Herrmann, 2009), higher ratings of emotional intensity (Atkinson, Dittrich, 

Gemmel, & Young, 2003), and greater psychophysiological responses (Courtney et al., 2010). As 

the current study showed that participants perceived 3D images as subjectively more realistic and 

arousing than 2D images, dynamic 3D stimuli could further improve these effects and may then 

extend to psychophysiological responding. Another venue for future emotion research would be 

to explore emotion in virtual reality. Previous research has shown behavioural differences between 

real objects and 2D and 3D images due to the fact that real objects allow for subject interaction 

(Gomez, Skiba & Snow, 2018), a difference which could be eliminated in studies which use virtual 

reality.  

Finally, our results revealed a dissociation between subjective and psychophysiological 

responding which may be explained by the fact that these processes have some divergent neural 

correlates. A neuroimaging study should be conducted to determine the pattern of brain activation 

associated with affective picture processing of 2D and 3D images. A study of this nature would 

not only clarify the results observed in the present study but would also provide a more complete 

understanding of the processes involved in processing emotional 2D and 3D stimuli. 

4.4 Conclusions 

This study investigated whether 3D images could be used in affective cognitive research to 

improve stimulus realism and achieve more reliable effects of emotion. 3D images were rated more 

realistic than 2D images, with a particular advantage observed for negative 3D images. They also 

received higher subjective ratings of arousal and danger than 2D images, indicating that 3D images 

did have an advantage in some emotion categories as well. Contrary to predictions, no difference 
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in psychophysiological responding was observed between emotional 2D and 3D images initially 

or across blocks. While 3D objects have been found to be resistant to repetition effects (Snow et 

al., 2011), this study did not find that emotional 3D images were more resistant to habituation 

effects than 2D images nor did they experience a greater recovery of response compared to 2D 

images. While these results appear to show a dissociation between the subjective experience of 

emotion and psychophysiological responding, the lack of differential psychophysiological 

responses may be attributed to potential methodological issues. Specifically, due to the effects of 

pre-exposure to the stimuli before psychophysiological recording, the reliance solely on 

sympathetic autonomic measurements, and the use of stimuli which may have only generated an 

ambivalent response. Further research should address these issues to explore the potential utility 

of 3D versus 2D stimuli in the field of affective cognitive neuroscience. 
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Appendix A 

1 Pilot Study 

Fifty participants (31 female, 19 male; mean age, 20.7; range, 18-31 years) completed the pilot 

study. Six participants were excluded from data analysis based on their visual dimensionality 

ratings which revealed they were not rating 2D and 3D images differently (less than 1 standard 

deviation between mean ratings). 

Five 2 (Dimension: 2D, 3D) X 3 (Negative, Neutral, Positive) way repeated measures ANOVAs 

were conducted on participants’ subjective ratings of stimuli, one for each subjective dimension 

(Realism, Arousal, Danger, Approachability, and Pleasantness). 

1.1 Realism 

The ANOVA for Realism revealed a significant main effect of Dimension (F = 6.74, df = 1, p = 

0.013, ηP
2 = 0.144) but not of Emotion (F = 2.86, df = 1.50, p = 0.079, ηP

2 = 0.067) and no 

Dimension X Emotion interaction (F = 3.10, df = 2, p = 0.050, ηP
2 = 0.072). 

 
 

Figure 1. Mean realism ratings for the pilot study; error bars represent standard error. 3D images 

were rated more realistic than 2D images.  
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1.2 Arousal 

The ANOVA for Realism revealed a significant main effect of Dimension (F = 19.9, df = 1, p < 

0.001, ηP
2 = 0.332) but not of Emotion (F = 0.450, df = 1.29, p = 0.642, ηP

2 = 0.011) and no 

Dimension X Emotion interaction (F = 0.910, df = 2, p = 0.408, ηP
2 = 0.022). 

 

 
 

Figure 2. Mean arousal ratings for the pilot study; error bars represent standard error. 3D images 

were rated more arousing than 2D images.  
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1.3 Danger 

The ANOVA for Realism revealed a significant main effect of Dimension (F = 18.7, df = 1, p < 

0.001, ηP
2 = 0.318) and Emotion (F = 169.8, df = 1.37, p < 0.001, ηP

2 = 0.809) but no Dimension 

X Emotion interaction (F = 1.64, df = 2, p = 0.201, ηP
2 = 0.039). 

 

 

Figure 3. Mean Danger ratings for the pilot study; error bars represent standard error. 3D images 

were rated more arousing than 2D images. Effects of emotion were as expected (Negative > 

Neutral > Positive).  
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1.4 Approachability 

The ANOVA for Realism revealed a significant main effect of Emotion (F = 159.0, df = 1.48, p < 

0.001, ηP
2 = 0.799) but not Dimension (F = 0.543, df = 1, p = 0.466, ηP

2 = 0.013) and no Dimension 

X Emotion interaction (F = 0.398, df = 2, p = 0.673, ηP
2 = 0.010). 

 

 
 

Figure 4. Mean Approachability ratings for the pilot study; error bars represent standard error. 

Effects of emotion were as expected (Positive > Neutral > Negative).  
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1.5 Pleasantness 

The ANOVA for Realism revealed a significant main effect of Emotion (F = 230.7, df = 1.63, p < 

0.001, ηP
2 = 0.852) but not Dimension (F = 2.84, df = 1, p = 0.099, ηP

2 = 0.066) and no Dimension 

X Emotion interaction (F = 4.00, df = 2, p = 0.022, ηP
2 = 0.091). 

 

 

Figure 5. Mean Pleasantness ratings for the pilot study; error bars represent standard error. Effects 

of emotion were as expected (Positive > Neutral > Negative).  
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