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Abstract 

  The reactivity of tetramesityldisilene 4 and tetramesityldigermene 5 towards 

organophosphorus oxides was explored in this thesis. The reaction of dialkyl and diarylphosphine 

oxides and phosphites with ditetrelenes 4 and 5 resulted in a 1,3-addition to form diorganodisilyl 

and digermyl phosphinites 27, 28, 31, 32 and disilyl phosphites 35 and 36. The 1,3-addition 

resulted in a mild two electron reduction of the P(V) centre of the phosphine oxide and phosphite 

to a P(III) centre in the products, without the use of heat or a catalyst. The reaction of 

organophosphorus oxides provides another example of a main group oxide that can be activated 

by ditetrelenes 4 and 5 in addition to nitro and sulfonyl containing compounds, CO and CO2. 

 The mechanism for the reaction of diorganophosphorus oxides and phosphites with 

ditetrelenes 4 and 5 was investigated through deuterium labelling studies and KIE experiments. 

The mechanism for the formation of disilyl and digermyl phosphinites and phosphites was 

determined to proceed through a nucleophilic addition. An exchange phenomenon between the 

OP(pentyl)2 moiety of 32 and an OPPh2 group from diphenylphosphine oxide was discovered and 

the mechanism of this exchange was investigated. 

 

Keywords: Group 14, silicon, germanium, disilene, digermene, organophosphorus oxides, 

phosphine oxides, phosphites, nucleophilic addition 
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Summary for Lay Audience 

 Just as houses can only be utilized after first laying down a stable foundation, 

understanding the fundamental chemistry of compounds is important for the future development 

of applications of the chemistry. In this thesis, reactions with compounds containing silicon and 

germanium are explored. These compounds are of interest because of their ability to easily react 

with numerous reagents to form new compounds that are not easily synthesized in any other way. 

The addition of phosphorus oxides to the silicon or germanium species was investigated. The new 

compounds formed were identified using state-of-the-art analytical techniques and the pathways 

to these compounds were elucidated using physical inorganic methodology. The chemistry 

reported is simple to perform and, with the mechanistic insights provided, it is hoped that the 

chemistry can be utilized in applications such as the organic functionalization of semiconductor 

surfaces.  
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Chapter 1  

1 Stable Doubly Bonded Si and Ge Compounds 

1.1 Introduction 

 The chemistry of ditetrelenes, the heavy atom analog of alkenes, has been explored for the 

last 40 years,1 and the acquired knowledge is now being utilized in many interesting applications. 

For example, Scheschkewitz and Manners reported the atom-economic and catalyst free method 

for synthesis of a σ-π conjugated organosilicon polymer under mild reaction conditions.2 Co-

monomers tetrasiladiene 1 and 1,4-diethynylbenzene 2 were reacted at room temperature in 

benzene to form an air stable polymer 3 in 86% yield  (Scheme 1). The key reaction in the 

polymerization takes advantage of the well-known [2+2] cycloaddition of alkynes with disilenes.1b 

 

Scheme 1. The synthesis of a mixed inorganic-organic material 3 by copolymerization of 1 and 2. 

As a second example, tetramesityldisilene 4 and -digermene 5 (Mes = mesityl = 2,4,6-

trimethylphenyl) have been used as molecular models to understand the chemistry of the Si(100) 

2x1 and Ge(100) 2x1 reconstructed surfaces (Figure 1). The elucidation of an unambiguous 

structure of surface adducts is difficult because surface characterization methods are limited. Such 

methods include Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron 

Spectroscopy (XPS) and Scanning Tunnelling Microscopy (STM)3
 which provide information on 

functional groups, elemental composition and oxidation states, and electronic states, respectively. 

The use of surface analytical techniques is often complemented by computational studies to ensure 

the accuracy of the proposed structures of surface adducts. In contrast, the structure of molecular 

species may be unequivocally determined using characterization techniques such as Nuclear 
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Figure 1. The structures of a Si/Ge(100) 2x1 surface and tetramesityldisilene and -digermene. 

Magnetic Resonance (NMR) Spectroscopy, Mass Spectrometry (MS) and X-ray Crystallography. 

For this reason, comparisons between the structures derived from reactions of molecular and 

surface disilenes and digermenes are frequently made. For example, the addition of nitriles to 5 

was compared to the reactivity between nitriles and the Ge(100) 2x1 surface.4 On the basis of 

theoretical and experimental evidence, the addition of acrylonitrile to the Ge(100) 2x1 surface was 

proposed to form two types of adducts: ketenimines (a cyclic single-dimer adduct 6a and an 

interdimer adduct 6b), and a cycloadduct between the surface dimer and the C=C bond of 

acrylonitrile, digermetane 7 (Scheme 2a).5,6
 The addition of acrylonitrile to molecular digermene 

5, on the other hand, resulted in the formation of 1,2,3-azadigermetine 8 at room temperature 

(Scheme 2b).4 The lack of formation of the six-membered cyclic ketenimine 6a in the molecular 

system suggests that ketenimine 6b is the more likely ketenimine formed on the surface, and not 

6a. Furthermore, the surface chemistry suggests that azadigermetine 8 may be the kinetic product, 

and under equilibrium conditions, a molecular analog of digermetane 7 may be formed. 

 

Scheme 2. The addition of acrylonitrile to (a) the Ge(100) 2x1 surface and (b) tetramesityldigermene 5. 
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 For the continued development of applications using ditetrelene chemistry, it is important 

to continue to study fundamental chemistry of ditetrelenes. In order to understand the chemistry, 

the structure, bonding and reactivity of ditetrelenes will be briefly reviewed. 

1.2 Structure and Bonding in Ditetrelenes 

The increased reactivity of ditetrelenes compared to alkenes, can be understood in terms of 

the nature of the π-bond between the heavier Group 14 elements, which is significantly weaker 

than the π-bond in alkenes (estimated π-bond strengths (kcal/mol) for H2M=MH2: M = C: 65, M 

= Si: 25, M = Ge: 25).7 The weak π-bond in non-polar molecules has been studied computationally 

by Frenking et al. using energy-partitioning analysis (EPA).8 EPA focuses on the instantaneous 

interaction energy (ΔEint) of the bond, which is defined as the energy difference between the 

molecule and its fragments in a specified geometry. The interaction energy can be divided into 

three terms: the quasiclassical electrostatic interaction energy (ΔEelstat), the repulsive Pauli term 

(ΔEPauli) and the orbital interaction energy (ΔEorb). The interaction energies for H3M-MH3 single 

bonds (M = C to Pb) were calculated and shown to decrease down the group, resulting in a weaker 

σ-bond. While the bonding in ditetrelenes was not investigated, analogous compounds containing 

multiple bonds between first-row main group elements were analyzed, including diazene 

(HN=NH). The Pauli repulsion contribution significantly increases from diazene (ΔEPauli = 599.4 

kcal/mol) compared to ethylene (ΔEPauli = 281.9 kcal/mol), which results in a smaller interaction 

energy, and therefore, a weaker π-bond. Similar to diazene, ditetrelenes are expected to have a 

strong Pauli repulsion contribution, explaining the inherently weak π-bond and increased reactivity 

compared to alkenes.   

In contrast to planar alkenes, most ditetrelenes exhibit a trans-bent geometry at the silicon 

and germanium centre and twisting about the M=M bond (Figure 2). The bend angle (θ) is the  

 

Figure 2. Structural deformations of the M=M bond. 
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angle between the M=M bond axis and the R-M-R plane, whereas, the twist angle (τ) is defined 

as the dihedral angle between two R-M-R planes (Figure 3).9  

 

Figure 3. Definition for the trans-bent angle (θ) at M and the twist angle (τ) about the M=M bond. 

 The trans-bent geometry observed in ditetrelenes can be understood using two molecular 

orbital (MO) models. The first model rationalizes the formation of the double bond in alkenes as 

the covalent interaction between singly occupied MOs of two monomeric, ground state triplet 

carbenes, resulting in a classical planar C=C bond (Figure 4a). The heavy analogues of carbenes 

(silylenes and germylenes) are ground state singlets. Consequently, the covalent interaction of 

singlet silylenes and germylenes would result in Pauli repulsion between the doubly occupied n-

orbitals (Figure 4b). To form a classical planar M=M bond, a significant amount of energy would 

be required to overcome the singlet-triplet energy gap (ΔEST) to promote an electron from n- to p-

level. Alternatively, the heavy carbene analogues prefer to interact through two equivalent donor-

acceptor interactions to form the non-classical M=M bond, featuring trans-bending at the M 

centres (Figure 4c).10 

 

Figure 4. MO model representing (a) the classical covalent interaction, (b) the non-classical donor-acceptor 

interaction (M = Si, Ge) and (c) the donor-acceptor double bond.10 



 

5 

 

 In an alternative MO model, trans-bending in ditetrelenes is rationalized by the mixing of 

M=M π- and σ*-orbitals, which is possible through bending at the M centres (Figure 5). The π-σ* 

interaction is dependant on the π-σ* energy gap; the mixing of π-σ* orbitals increases as the 

 

Figure 5. π- and σ*-orbital interactions of the M=M bond in ditetrelenes.10 

energy gap decreases, which results in a larger trans-bent angle. In the planar H2M=MH2 (M = C 

to Pb), the magnitude of the π-σ* energy separation decreases going down Group 14, thereby 

increasing π-σ* mixing and the trans-bent angle for the heavier elements. Another factor which 

influences the degree of trans-bending in ditetrelenes is the electronegativity of the substituents 

on the M=M bond: electronegative substituents (i.e. substituents containing O or N) lead to 

increased trans-bending, while electropositive substituents (i.e. substituents featuring Si) produce 

smaller bending deformations at the M centres. These trends are evident in the examples given in 

Table 1.   

Table 1. Trans-bending angle (θ) and twist angle (τ) of selected disilenes and digermenes. 

Compound θ (deg) τ (deg) Ref. 

 
Mes = 2,4,6-trimethylphenyl 

12, 14 3 11 

  41 46 12 

  33 3 13 

 
16 0 14 

 

1.3 Reactivity of Ditetrelenes 

 The most common modes of reactivity for ditetrelenes are 1,2-additions and cycloadditions 

(Scheme 3).1 Typical reagents that react with ditetrelenes via 1,2-addition reaction include polar, 
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Scheme 3. Common modes of reactivity for ditetrelenes. 

σ-bonded compounds such as water and alcohols.1d,e,f Ditetrelenes also react with reagents 

containing π-bonds, most often in cycloaddition reactions. The most common mode of 

cycloaddition for ditetrelenes is the [2+2] cycloaddition. Ketones, aldehydes, alkynes and nitriles 

are typical reagents used in the formation of four-membered heterocyclic rings containing Si-

Si/Ge-Ge fragments.1b, 4, 15 For example, the addition of acetonitrile to tetramesityldigermene, 5, 

resulted in the formation of 1,2,3-azadigermetine 9 (Scheme 4).4 The addition of acetonitrile to 5  

 

Scheme 4. The [2+2] cycloaddition of acetonitrile to tetramesityldigermene 5. 

occurs at room temperature, in stark contrast to the [2+2] cycloadditions of alkenes, which are 

forbidden under thermal conditions. Reactions to form larger heterocyclic rings through [3+2] and 

[4+2] cycloadditions have been reported; however, these examples are less common. While Diels-

Alder reactions are common in alkene chemistry, stable ditetrelenes typically do not undergo [4+2] 

cycloadditions to form Diels-Alder adducts with conjugated dienes. Diels-Alder reactivity is only 

known for transient disilenes and digermenes.16 However, other examples of [4+2] cycloadditions 
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exist in ditetrelene chemistry. Boudjouk et al. reported the addition of benzil to disilene 4 to yield 

a six-membered heterocyclic ring 10 (Scheme 5).17 

 

Scheme 5. The addition of benzil to disilene 4. 

 While the reactivity of ditetrelenes has focused on reactions with the π-bond, recent 

research has explored the synthesis of functionalized disilenes.1a These functional disilenes include 

disilenides, containing a Li substituent, and phosphinodisilenes, containing a PR2 substituent 

bound to the Si centre. By incorporating this functionality into the ditetrelene, reactivity can be 

explored that focuses on the reaction of the σ-bonded substituents on the ditetrelene instead of the 

π-bond.  

 Recently, the focus of reactivity studies in ditetrelene chemistry has shifted towards small 

molecule activation.18 Small molecules such as H2, NH3 and CO2 can be used as synthons for value 

added chemicals; however, these stable compounds must be activated for further functionalization. 

The most efficient method to achieve functionalization of these small molecules is through 

catalytic processes which requires activation of a small molecule (Scheme 6a), and then 

elimination of the functionalized product (Scheme 6b) with regeneration of the catalyst (Scheme 

6c).  

 

Scheme 6. General cycle for the catalytic functionalization of small molecules. 
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While the activation of small molecules is a new field in ditetrelene chemistry and there 

have been no reports of catalysis to date, there have been recent reports of small molecule 

activation. Inoue and co-workers synthesized the (Z)-diiminodisilyldisilene 11, featuring a highly 

twisted (τ = 23º) and trans-bent (θ = 38º, 39º) geometry about the Si=Si bond, leading to a weaker 

π-bond in comparison to other disilenes.19 When iminodisilene 11 was allowed to react with NH3 

at -78 ºC,  1-aminodisilane 12 was formed as the only product in 64% yield (Scheme 7a).20 Most 

notably, 11 was the first multiply bonded silicon compound to activate H2, forming disilane 13 in 

excellent yield (Scheme 7b).19 

 

Scheme 7. Activation of (a) NH3 and (b) H2 by iminodisilene 11. 

1.4 Reactions with Organic Main Group Oxides Including CO2 and 

CO 

 Although the reactivity of ditetrelenes has been extensively explored, studies of the addition 

of organic main group oxides are few. Following the shift in interest towards the activation of small 

molecules, reactions of CO2 and CO with ditetrelenes have been explored. In addition to NH3 and 

H2, the reaction of iminodisilene 11 with CO2 selectively formed oxadisilacyclobutanone 14 in 

60% yield (Scheme 8).20 The activation of NH3, CO2, and H2 by 11 is indicative of the highly 

 

Scheme 8. The activation of CO2 by 11 to yield oxadisilacyclobutanone 14. 
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reactive Si=Si bond, which may be attributed to the strongly donating N-heterocyclic imine 

(NItBu) substituents which lead to increased trans-bending and twisting at the Si centres.  Future 

investigations by Inoue and co-workers will focus on transferring the CO2 moiety of 14 to other 

substrates. Scheschkewitz et al. reported the partial reduction of CO using cyclotrisilene 15.21 

Exposure of cyclotrisilene to CO at room temperature resulted in the incorporation of one 

equivalent of CO per molecule of 15, yielding the tricyclic compound, bis(silene) 16 (Scheme 9). 

The facile activation of CO by 15 can be explained, in part, by the release of ring strain in the 

three-membered ring featuring the Si=Si bond.  

 

Scheme 9. Partial reduction of CO by cyclotrisilene 15. 

Ditetrelenes are also known to react with other carbonyl containing compounds. The 

reaction of ketones and aldehydes with tetramesityldisilene 4, reported by West, undergoes 

cycloaddition to form 2,3-disilaoxetanes 17a-f (Scheme 10).22 The reactions with the aldehydes 

and ketones listed in Scheme 10 went to completion within minutes at room temperature, with the 

exception of the reaction of benzophenone with 4 which was heated to 50 ºC for 1 hour to form 

17c in 12% yield. 

 

Scheme 10.  The addition of aldehydes and ketones to tetramesityldisilene 4. 
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Interestingly, disilene 4 was unreactive towards esters including ethyl acetate, methyl 

benzoate and ethyl p-(dimethylamino)benzoate, even at elevated temperatures over 3 days.22  

Reactivity was observed only with the activated carbonyl in methyl furoate to give the cycloadduct 

18, analogous in structure to adducts 17a-f (Scheme 11). The lack of reactivity of esters towards 

4 can be accounted for by the less polar C=O bond in esters. Evidently, a moderately strongly 

polarized π-bond is required for the reaction to proceed.  

 

Scheme 11. The addition of methyl furoate to 4. 

In contrast to the cycloaddition observed in the reaction of disilene 4 with aldehydes and 

ketones, the addition of carboxylic acids to digermene 5 resulted in a 1,2-addition that yielded 

digermyl esters 19a-c (Scheme 12).13 Carboxylic acids also react rapidly with 5 at room 

temperature, similar to the conditions for the reactions of aldehydes and ketones with disilene 4.  

 

Scheme 12. The 1,2-addition of carboxylic acids to digermene 5.  

 The reaction of ditetrelenes and compounds featuring double bonds between oxygen and 

main group elements other than carbon have also been investigated. Baines et al. reported the 

addition of nitromethane to tetramesityldisilene 4  and -digermene 5 at room temperature, resulting 

in the formation of 1,3,2-dioxazolidines, 20 and 21, respectively (Scheme 13).23 The cycloaddition 

results in a selective two-electron reduction of the nitrogen in nitromethane. The synthesis of 20 

and 21 is facile in comparison to the analogous reactions in alkene chemistry. The generation of a 

1,3,2-dioxazolidine ring system by cycloaddition of a nitro group to an alkene only occurs under 
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Scheme 13. The addition of nitromethane to ditetrelenes 4 and 5. 

special circumstances; either photochemically24 or thermally, using highly strained alkenes and 

aromatic nitro compounds.25 Since the reduction of nitromethane by ditetrelenes 4 and 5 was a 

novel, selective two electron reduction and resulted in the formation of new heterocyclic ring 

systems, Baines and co-workers were interested in exploring the reaction of other organic main 

group oxides with ditetrelenes.  The reactivity of disilene 4 and digermene 5 towards arylsulfonyl 

chlorides was also explored.26 Similar to the reaction with nitromethane, a two electron reduction 

occurs at the sulfur centre of the sulfonyl chlorides to give arylsulfinates 22, 23 and 24 (Scheme 

14). Unlike the reaction with nitromethane, the reduction of the arylsulfonyl chlorides occurs 

through a 1,3-addition. For both nitroalkanes and the arylsulfonyl chlorides, the reductions are 

performed under mild conditions, without the use of a catalyst or heat, unlike the analogous reactions 

with alkenes.27 

 

Scheme 14. The reduction of arylsulfonyl chlorides by ditetrelenes 4 and 5. 

1.5 Reactions with Organophosphorus Oxides 

The reaction of ditetrelenes with organophosphorus oxides has not been reported in the 

literature. The only example of the addition of phosphine oxides to a low-valent Group 14 

compound was reported by Zhao et al.28 Diphenylphosphine oxide and other organic phosphorus 

compounds such as diphenylphosphine, (2-thienyl)2PCl, diphenylphosphinic acid and 

diphenylthiophosphinic acid, were allowed to react with the N-heterocyclic germylene 25, the 

germanium analogue of a carbene. In the reaction of  25 with diphenylphosphine oxide at elevated 
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temperatures, the phosphorus centre is reduced from P(V) to P(III) to give 26 (Scheme 15). This one-

step process was envisioned as an alternative to the salt metathesis reactions for the formation of 

oxyphosphorus-substituted germanium (II) complexes.  

 

Scheme 15. The reactivity of diphenylphosphine oxide with germylene 25. 

In this thesis, the reactivity of tetramesityldisilene 4 and -digermene 5, prototypical 

examples of a disilene and a digermene, with organophosphorus oxides, namely, phosphine oxides 

and phosphites (Figure 6) will be examined. The nature of the phosphorus-oxygen bond has been 

investigated by Natural Bond Order (NBO)/ Natural Resonance Theory (NRT) calculations. The 

results of these calculations indicate that the phosphinyl moiety in the phosphine oxides and 

phosphites is a charge-localized dipole with the best Lewis representation of the bonding being 

P+-O-.29 However, throughout the thesis, the phosphorus-oxygen bond of the organophosphorus 

oxides will be represented as a π bond. 

 

Figure 6. Structure of organophosphorus oxides. 

The reactions of 4 and 5 with diphenylphosphine oxide, diphenyl phosphite and dimethyl 

phosphite have previously been explored in the group.30,31 In all reactions, the formation of a 1,3-

adduct was observed, resulting in the reduction of the P(V) centre in the phosphine oxide or 

phosphite reagent to P(III) in compounds 27, 28, 29 and 30 (Scheme 16). Since compounds 27 and 

28 were not sufficiently pure for publication, these reactions will be repeated and the spectroscopic 

assignments will be reassessed.  
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In addition to the re-examination of the reactions of 4 and 5 with diphenylphosphine oxide, 

the scope of the reaction of phosphorus(V) compounds with ditetrelenes 4 and 5, will be expanded 

upon in this thesis. Specifically, the reaction of 4  and 5 with dipentylphosphine oxide, an 

alkylphosphine oxide, and the reaction of 4 with diphenyl phosphite and dimethyl phosphite will 

be explored. 

 

Scheme 16. The addition of phosphine oxides and phosphites to 4 and 5. 
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Chapter 2  

2 Synthesis and Characterization of Disilyl and Digermyl 

Phosphinites and Phosphites 

2.1 The Addition of Organophosphorus Oxides to Ditetrelenes 

 The reactivity of dialkyl and diarylphosphine oxides and phosphites towards ditetrelenes 4 

and 5 is reported. The addition of phosphine oxides to a yellow solution of  4 or 5 at room 

temperature in benzene resulted in the formation of disilyl and digermyl phosphinites 27, 28, 31 

or 32 (Scheme 17). The reactions occurred rapidly under mild conditions as evidenced by the rapid 

fading (5 min) of the yellow colour of the solutions to light yellow. The isolation of 27 and 28 was 

achieved by recrystallization of the crude oil from hexanes to yield white solids in 56% and 54% 

yield, respectively. By repeating the synthesis of 27 and recollecting the spectroscopic data, the 

assignment of the chemical shifts for the mesityl moieties could be corrected. For 28, the 13C 

chemical shifts for the mesityl i- and p-carbons were reassigned, and a spectrum with better 

resolution was obtained which enabled the correct assignment of the broad peaks originally 

reported in the 13C{1H} NMR spectrum of 28. Since, the purification of 31 and 32 was difficult 

due to the sensitivity of the compounds to air and moisture, characterization of the products was 

performed on the crude reaction mixtures.  

 

Scheme 17. The addition of diphenyl- and dipentylphosphine oxide to 4 and 5. 

 The reaction of diethylphosphine oxide with 4 was also examined. The addition of 

diethylphosphine oxide (95%, Alfa Aesar) to a solution of 4 resulted in a colour change of the 

solution from bright yellow to pale yellow after 10 minutes. The solvent was evaporated, resulting 

in a pale yellow oil which was recrystallized from hexanes to yield an off-white solid which 
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contained two products, 33 and 34 in a ratio of 1:10, respectively (Scheme 18). The electrospray 

ionization (ESI) mass spectrum of the recrystallized solid contains a base peak at m/z 677.3 which  

 

Scheme 18. The addition of 95% diethylphosphine oxide to 4. 

is consistent with C40H55O2PSi2Na (34 plus Na+), corresponding to a 1:1 adduct between 

diethylphosphine oxide and disilene 4 plus an oxygen. A less intense signal was also observed at 

m/z 639.4 which is consistent with the molecular formula C40H56OPSi2 (33 plus H+). The 31P{1H} 

NMR spectrum of the solid revealed a signal at 135.4 ppm which is characteristic of a P(III) centre, 

and therefore, was assigned to 33. However, it is in minor amounts compared to the signal at 47.5 

ppm, which is indicative of a P(V) centre and was assigned to 34. An attempt was made to separate 

compounds 33 and 34 by preparative TLC; however, only 34 was isolated as a clear, colourless 

oil. The oil was recrystallized from benzene to give 34 as clear, colourless crystals. The structure 

of 34 was determined using X-ray crystallography (Figure 7). All bond lengths and angles in the 

structure of 34 are within expected ranges.1 
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Figure 7. Displacement ellipsoid plot of 34. Ellipsoids are at the 50% probability level and hydrogen atoms are 

omitted for clarity except the hydrogen on Si2. Selected bond lengths (Å) and angles (deg): Si1-O1 = 1.6830(17), 

Si1-Si2 = 2.3742(10), P1-O1 = 1.5802(17), P1-O2 = 1.4711(18), O1-Si1-Si2 = 105.63(7), Si1-Si2-H2 = 100.6(10), 

P1-O1-Si1 = 150.79(12). 

 The formation of 34 was surprising given that the reaction was performed under inert 

conditions. The progress of the reaction was monitored by 31P{1H} NMR spectroscopy which 

revealed that 34 is formed during the early stages of the reaction (Figure 8). Analysis of the reagent 

by 31P{1H} NMR spectroscopy2 revealed that the reagent was primarily diethylphosphinic acid 

(Et2P(O)OH) with only minor amounts of diethylphosphine oxide present (95: 5 ratio). Evidently, 

compound 34 is formed by reaction of disilene 4 with diethylphosphinic acid and 33 is formed by 

reaction of 4 with diethylphosphine oxide. Compound 33 is susceptible to oxidation, as the 

intensity of the signal at 135.4 ppm decreases over time, while the intensity of the signal at 47.5 

ppm increases. 
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Figure 8. The reaction of 4 with diethylphosphinic acid monitored by 31P{1H} NMR spectroscopy (C6D6, 162 

MHz). 

 Diethylphosphine oxide was synthesized by the reaction of diethyl phosphite with excess 

ethylmagnesium bromide in diethyl ether at room temperature (Scheme 19).3 The phosphine oxide 

was isolated as a white solid after recrystallization of the crude oil from hexanes. Multiple attempts 

were made to react 4 with diethylphosphine oxide, however, the phosphine oxide was only soluble  

 

Scheme 19. The synthesis of diethylphosphine oxide. 

in water and slightly soluble in chloroform. These solvents could not be used for the reaction of 

diethylphosphine oxide with 4 since both water and chloroform readily react with 4.4 Since the 

24 hr 

47.5 ppm 

135.4 ppm 

59.3 ppm 

7 min 

14 min 

1 hr 
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reaction of diethylphosphine oxide with 4 proved to be problematic, the study of the reaction of 

diethylphosphine oxide with 4 was discontinued. 

 Similar to the addition of diphenyl- and dipentylphosphine oxide to ditetrelenes 4 and 5, 

one equivalent of dimethyl or diphenyl phosphite was added to a yellow solution of disilene 4 

dissolved in benzene to yield disilyl phosphites 35 and 36, respectively (Scheme 20). Unlike the 

phosphine oxides which reacted within 5 minutes, the reaction of the ditetrelenes with the 

phosphites took 18 hours to go to completion. The purification of 35 involved recrystallization of 

the crude oil from hexanes to yield clear, colourless crystals. In the reaction of diphenyl phosphite 

with 4, excess phosphite was separated by preparative thin layer chromatography (TLC) and 36 

was isolated as a white solid by recrystallization from hexanes in 46% yield. 

 

Scheme 20. The addition of dimethyl and diphenyl phosphite to 4. 

2.2 Characterization of Disilyl and Digermyl Phosphinites and 

Phosphites 

 The compounds synthesized from the reaction of diorganophosphine oxides and phosphites 

with ditetrelenes 4 and 5 were characterized by NMR spectroscopy, high resolution mass 

spectrometry, infrared (IR) spectroscopy, and when appropriate, X-ray crystallography. The exact 

mass for each compound, as determined by ESI-MS in positive ion mode, was consistent with the 

formation of a 1: 1 adduct between the diorganophosphine oxide or phosphite and disilene 4 or 

digermene 5, plus Na+ or H+.  

NMR spectroscopy was extremely useful in the characterization of the disilyl and digermyl 

phosphinites and phosphites as the compounds contained multiple NMR active nuclei including 

1H, 13C, 31P, and 29Si (for the derivatives formed from the reactions with tetramesityldisilene 4). 

The most diagnostic nucleus for assessing the outcome of the reactions was 31P. 
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Diorganophosphites with a P(III) centre, resonate downfield in comparison to compounds with 

P(V) centres as exemplified by the 31P chemical shifts of trimethyl phosphite (P(OCH3)3) and 

trimethyl phosphate (O=P(OCH3)3) which resonate at 142.0 ppm and 3.7 ppm, respectively.5 The 

same trend is seen in the reaction of phosphine oxides and phosphites with ditetrelenes 4 or 5. The 

phosphine oxides and phosphite reagents containing a P(V) centre resonate below 40 ppm,  

whereas the disilyl and digermyl phosphinite and phosphite derivatives formed, containing a P(III) 

centre, resonate at chemical shifts significantly shifted downfield (above 100 ppm) compared to 

the starting phosphorus reagent (Table 2). 

Table 2. 31P chemical shifts of P(V) reagents, disilyl/ digermyl phosphinites and phosphites. 

 

31P Chemical 

Shift (ppm)a 

 

31P Chemical 

Shift (ppm)a 

R = Ph 16.9 
M = Si, R = Ph (27) 107.2 

M = Ge, R = Ph (28) 104.5 

R = pentyl 29.7 
M = Si, R = pentyl (31) 130.6b 

M = Ge, R = pentyl (32) 129.0 

R = OCH3 9.8 M = Si, R = OCH3 (35) 132.8 

R = OPh -0.4 M = Si, R = OPh (36) 133.3 

a Measured in C6D6. 
b Tentatively assigned. 

 For the reactions with tetramesityldisilene 4, 1H-29Si gHMBC (gradient heteronuclear 

multiple bond correlation) spectroscopy also provided valuable structural information. In HMBC 

spectroscopy, correlations are seen between heteronuclei and hydrogens which are 1 to 3 bonds 

away, which gives insight into the connectivity of the molecule. Two signals were consistently 

observed in the disilyl phosphinite and phosphite derivatives synthesized with 29Si chemical shifts 

of approximately -55 and -5 ppm and coupling constants of ~ 180 Hz and 15 Hz, respectively 

(Table 3). For example, the 1H NMR spectrum of 35 revealed a signal at 5.67 ppm, which 

integrated to 1H and was assigned to the Si-H moiety. In the 1H-29Si gHMBC spectrum of disilyl 

phosphite 35, each signal in the 29Si dimension correlates to the signal at 5.67 ppm in 
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Table 3. The 29Si chemical shifts and coupling constants of disilyl phosphinites and phosphites. 

 

29Si chemical 

shifts of SiA 

(ppm) 

2JSi-H 

coupling 

constant (Hz) 

29Si chemical 

shifts of SiB 

(ppm) 

1JSi-H 

coupling 

constant (Hz) 

R = Ph (27) -1.8 15 -56.4 175 

R = pentyl (31) -5.6 13 -54.8 177 

R = OCH3 (35) -7.3 13 -55.3 180 

R = OPh (36) -5.9 15 -55.7 179 

 

the 1H dimension. The signal at -55.3 ppm correlates through a J coupling of 180 Hz and this, was 

assigned to an Si-H moiety on the basis of the magnitude of the J and the chemical shift. The signal 

at -7.3 ppm correlates through a J coupling of 13 Hz and thus, was assigned to SiA (Figure 9). 

 

 

Figure 9. The 1H-29Si gHMBC spectrum of 35 showing the correlations to the signal at 5.67 ppm in the 1H 

dimension. 

 

5.67 ppm 

Si-H 

 

 

 

-55.3 ppm 

SiB 
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The structures of 276 and 35 (Figure 10) were identified unambiguously through single 

crystal X-ray diffraction. The phosphorus centre of 35 exhibits trigonal pyramidal geometry; the 

displacement of the phosphorus atom from the plane of the attached atoms is 0.764 Å. The 

geometry at the phosphorus centre is indicative of the P(III) oxidation state. All bond lengths and 

angles in 35 are within expected ranges. For example, the Si2-H2 (1.39 Å), Si1-O1 (1.67 Å), Si1-

Si2 (2.38 Å) and P1-O1 (1.60 Å) bond lengths in 35 are within the ranges of 1.39-1.45, 1.64-1.71, 

2.35-2.40 and 1.59-1.66 Å, respectively, for related compounds.7 In some crystal samples of disilyl 

phosphite 35, a disorder was observed in the molecular structure where a hydroxyl group was 

bound to Si2, 5% of the time, instead of a hydrogen, as a result of oxidation of the Si-H centre. 

 

Figure 10. Displacement ellipsoid plot of 35. Ellipsoids are at the 50% probability level and hydrogen atoms are 

omitted for clarity except the hydrogen on Si2. Selected bond lengths (Å) and angles (deg): Si1-O1 = 1.6685(11), Si1-

Si2 = 2.3806(7), P1-O1 = 1.6043(11), O1-Si1-Si2 = 108.52(4), Si1-Si2-H2 = 100.0(7), P1-O1-Si1 = 141.92(7). 

Infrared spectroscopy is also useful in this chemistry. The appearance of the characteristic 

signals for Si-H (or Ge-H) groups and the disappearance of the signals characteristic of the P=O 

moiety of the phosphine oxides and phosphites are particularly diagnostic. For example, the IR 

spectrum of 36 (Figure 11) shows a medium intensity signal at 2129 cm-1, which is characteristic 

of an Si-H stretching vibration (typically 2250 – 2100 cm-1). Additionally, the absence of strong 
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signals in the regions 2425 – 2325 cm-1 and 1350 – 1300 cm-1, corresponding to phosphorus ester 

P-H stretching and aromatic P=O stretching, respectively, indicates the lack of a O=P(V)-H moiety 

in the compound. Instead, a strong signal at 851 cm-1 is observed and can be assigned to the      

P(III)-O stretching of the P(III)-(OPh)2 functional group, which are typically found in the range of 

875 – 830 cm-1.8 

 

Figure 11. IR spectrum of compound 36. 

2.3 Reactivity of Disilyl and Digermyl Phosphinites and Phosphites 

 The disilyl and digermyl adducts 31, 32, 35, and 36 were prone to oxidation of the M-H 

bond, hydrolysis at the P-OR bond or oxidation of the P(III) centre. The reactions were typically 

accelerated by chromatography, except for the oxidation of the Si-H bond of disilyl phosphite 35. 

The dialkyldisilyl and digermyl phosphinites were particularly prone to oxidation of the P(III) 

centre and hydrolysis of the P-O moiety bound to the M centre.   

Attempted purification of 31 by preparative TLC resulted in the isolation of two 

compounds, 37 and 38. Compound 37 is a result of the oxidation of the P(III) centre in 31 and 

compound 38 is proposed to form through hydrolysis of the P-O moiety bound to the Si centre. 

(Scheme 21a). Compound 39 was the only compound isolated from the attempted purification of 

32 by preparative  TLC and is proposed to form by hydrolysis of the P-O moiety bound to the Ge 

centre, similar to the formation 38 (Scheme 21b). 

Si-H 

stretching 

vibration 

P(III)-O 

stretch 
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Scheme 21. The secondary reactivity observed for (a) disilyl phosphinite 31 and (b) digermyl phosphinite 32. 

Dimethyldisilyl phosphite 35 was also susceptible to oxidation of the Si-H bond to form 

compound 40 (Scheme 22). The presence of 40 was observed in the molecular structure obtained 

from single-crystal X-ray diffraction, and in the ESI mass spectrum at m/z 681.3 of samples of 35.  

 

Scheme 22. The oxidation of the Si-H moiety of 35. 

 Attempts to separate 35 and 40 by preparative TLC resulted in the isolation of compound 

41 in 6% isolated yield (Scheme 23). The ESI mass spectrum of 41, revealed a base peak at m/z 

651.3 corresponding to the molecular formula C37H49O3PSi2 plus Na+, which is consistent with a 

1:1 adduct between 35 and water, and the loss of methanol. Consistent with the loss of CH3O, in 

the 1H NMR spectrum of 41, the doublet assigned to the methoxy group at 3.24 ppm integrates to  

 

Scheme 23. The formation of 41 following preparative TLC. 
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3H relative to the signal at 5.66 ppm which was assigned to the Si-H moiety. An additional doublet 

appears at 6.80 ppm. The coupling constant of the doublet is 690 Hz, which is typical of a one-

bond hydrogen-phosphorus(V) coupling, and therefore, is assigned to the hydrogen directly 

bonded to the P(V) centre.9 In the 31P{1H} NMR spectrum of 41, a signal is observed at -5.2 ppm 

which is shifted upfield compared to the chemical shift of the signal for disilyl phosphite 35 at 

132.8 ppm, consistent with a P(V) centre. These data are consistent with the structure proposed for 

41.  

 The formation of compound 41 was proposed to occur through the hydrolysis of the              

P-OCH3 bond in 35, followed by tautomerization. Indeed, 41 could be formed independently by 

hydrolysis to give a white solid consisting of 41 in an 82% yield as determined by 31P NMR 

spectroscopy (Scheme 24).  

 

Scheme 24. The direct hydrolysis of dimethyldisilyl phosphite 35. 

Preparative TLC of a sample of 35 also resulted in the formation of 41, indicating the hydrolysis 

was accelerated by chromatography. The hydrolysis of trialkyl phosphites to give dialkyl 

phosphites is well known; the mechanism for the hydrolysis of P(OMe)3 has been studied by Alam 

et al. and the results are consistent with the observations reported herein (Scheme 25).10 

 

Scheme 25. The hydrolysis of trimethyl phosphite with 17O-labelled water.10 

Diphenyldisilyl phosphite 36 is not as susceptible to hydrolysis or oxidation in comparison to the 

dialkyldisilyl phosphite since 36 was successfully isolated from the TLC plate as a white solid, 

although minor contaminants were observed. On the basis of ESI mass spectrometry and 31P NMR 
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spectroscopy the contaminants were identified as triphenyl phosphite (P(OPh)3) and compounds 

42, 43, and 44; the ratio of 36 relative to the contaminants was 100: 12: 1: 1: 1, respectively (Figure 

12). Compound 42 is proposed to form through the hydrolysis of the P-OPh bond in 36, followed 

by tautomerization, similar to the formation of 41. The formation of 43 can be explained by the 

oxidation of the P(III) centre, and 44 is a result of the oxidation of both the P(III) centre and the 

Si-H moiety. 

 

Figure 12. Compounds isolated from the preparative TLC plate. 

The diaryldisilyl and digermyl phosphinites 27 and 28 showed no signs of further 

chemistry. Upon exposure to air, 27 and 28 were stable, and no oxidation or hydrolysis was 

observed by NMR spectroscopy. The diaryl phosphinites and phosphites were more stable in 

comparison to the dialkyl derivatives. This observation is in line with the computational studies 

performed on the stability of dialkyl and diarylphosphines by Higham et al.11 In order for a 

phosphine to be oxidized, it must go through a cationic radical intermediate [R2HP]•+. The authors 

report that [Ph2HP]•+ is more stable due to the steric bulk and conjugation provided by the aryl 

groups in comparison to the dialkyl derivative [Et2HP]•+. As a result, the P(III) centre of 

diethylphosphine is more susceptible to oxidation compared to diphenylphosphine. 

2.4 Discussion 

The reactivity of ditetrelenes 4 and 5 towards compounds containing P=O bonds, resulted 

in the formation of 1,3-adducts 27, 28, 31, 32, 35 and 36 under mild conditions (Scheme 26). In 

each case, the reaction resulted in the formation of an M-O and M-H bond, and the breaking of a 

P-H bond to reduce the P(V) centre in the phosphine oxides and phosphites to P(III) in the adducts. 
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Scheme 26. The addition of organophosphorus oxides to 4 and 5. 

Reductions of phosphine oxides to form phosphines are often achieved using alumino 

hydride or chlorosilane reagents such as LiAlH4 or HSiCl3 at elevated temperatures.12 The use of 

hydrosilanes as alternatives to alumino hydrides and chlorosilane reagents has also been explored 

in the reduction of phosphine oxides, although this method requires a catalyst to activate the Si-H 

bond.13 While these methods have been extensively investigated with tertiary phosphine oxides 

(O=PR3), the reduction of secondary phosphine oxides (O=PHR2) has been explored to a lesser 

extent. Blanchet et al. recently reported the reduction of tertiary and secondary phosphine oxides 

using bis(2-chlorophenyl)borinic acid as a precatalyst and phenylsilane as the hydride source.14 

The reduction of diphenylphosphine oxide by the borinic acid precatalyst to form 

diphenylphosphine 45 was conducted at 80 ºC (Scheme 27). In contrast, the reduction of diphenyl- 

and dipentylphosphine oxide by disilene 4 and digermene 5 yields phosphinite (R2P(OR’)) 

derivatives 27, 28, 31 and 32, and not dialkyl- or diarylphosphines. While the formal oxidation 

number for P is (III) in both types of products, the chemical state of P in the phosphinite derivatives 

is intermediate between that of phosphine oxides and phosphines.  

 

Scheme 27. Reduction of diphenylphosphine oxide by a borinic acid precatalyst. 

The reduction of diorganophosphine oxides and phosphites by disilene 4 is reminiscent of the 

reaction of diorganophosphine oxides and phosphites with chlorosilanes at elevated temperatures 
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in the presence of an amine which also gives silyl phosphinite and phosphite derivatives 46 and 

47, respectively (Scheme 28).15 However, in the reactivity with disilene 4, the Lewis acid and 

Lewis base are contained within the same molecule, and the reaction can be performed under 

neutral conditions and at room temperature. 

 

Scheme 28. Reaction of diorganophosphine oxides and phosphites with chlorosilanes in the presence of amines. 

 The synthesis of germyl phosphinite 48 has previously been reported to occur through the 

reduction of dibutylphosphine oxide by potassium to form the salt derivative (R2POK). A salt 

metathesis reaction occurs when the salt is added to Bu3GeCl to yield germyl phosphinite 48 

(Scheme 29a).16  Similarly, diethylgermyl phosphite 49 is synthesized from the reaction of a 

phosphite salt with a chlorogermane at 70 ºC (Scheme 29b).17 

 

Scheme 29. The synthesis of (a) germyl phosphinite 48 and (b) germyl phosphite 49 through a salt metathesis 

reaction. 

In the salt metathesis method, the P(V) centre of dibutylphosphine oxide and diethyl phosphite is 

already reduced to a P(III) centre in the salt derivative. In this case, the germane is only involved 

in a substitution reaction. In contrast, the formation of the digermyl phosphinites and phosphites 
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by the reaction between phosphine oxides or phosphites with digermene 5 is a result of the Ge 

centre being directly involved in the reduction of the P(V) centre of the phosphorus oxides.  

The reaction of diorganophosphine oxides and phosphites with ditetrelenes is in stark 

contrast to that with alkenes. The reaction of diorganophosphine oxides and phosphites with 

alkenes leads to cleavage of the P-H bond and the formation of a C-P bond and requires the use of 

heat with or without a transition metal catalyst. For example, the addition of diphenylphosphine 

oxide to 1-decene yields the anti-Markovnikov adduct 50 at 80 ºC (Scheme 30a).18 In another 

example, the hydrophosphorylation of alkenes with dialkyl phosphites is catalyzed by Mn(OAc)2 

at high temperatures (ranging from 90 to 110 ºC) to yield dialkyl phosphonates 51 (Scheme 30b)19. 

In both examples, the reaction of the organophosphorus oxide with the alkene involves addition of 

the P-H across the C=C bond. 

 

Scheme 30. (a) Anti-Markovnikov addition of diphenylphosphine oxide to 1-decene. (b) Hydrophosphorylation of 

an alkene with dialkyl phosphites. 

In contrast, ditetrelenes react readily with phosphine oxides and phosphites without the use of heat 

or a catalyst. Instead of the formation of a C-P bond, the stronger and more thermodynamically 

favoured M-O (M = Si, Ge) bond is formed. The phosphorus centre in the reaction of phosphine 

oxides and phosphites with ditetrelenes is reduced from P(V) to P(III). In the reaction with alkenes, 

the oxidation state of the phosphorus centre remains the same.  

 Since ditetrelenes 4 and 5 successfully activated organophosphorus oxides, it is also 

interesting to compare the reactivity of phosphine oxides and phosphites with transition metals, 

particularly those used to facilitate the addition to alkenes. In the Ni-catalyzed 

hydrophosphinylation of 1-octene with a primary phosphite, ethyl phosphinate (EtOP(O)H2), the 
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anti-Markovnikov adduct 52 was formed in 96% yield as determined by 31P NMR spectroscopy 

(Scheme 31).20  

 

Scheme 31. The Ni-catalyzed hydrophosphinylation of 1-octene. 

The mechanism proposed by the authors (Scheme 32) involves the coordination of the ethyl 

phosphinate tautomer to the Ni(0) centre, to generate intermediate species I. Following the 

complexation of Ni(0) to the phosphinate tautomer, intermediate I can add to the alkene. 

Subsequent reductive elimination would regenerate the Ni catalyst and yield the functionalized 

product 52.  

 

Scheme 32. Proposed mechanism for the hydrophosphinylation of 1-octene. 20 

 The enantioselective hydrophosphinylation of diene 53 with diphenylphosphine oxide is 

facilitated by a Pd-based catalyst and diphenylphosphinic acid as a co-catalyst to yield the 

Markovnikov adduct 54 in 86% yield (Scheme 33).21  The authors proposed the mechanism 

depicted in Scheme 34 based on literature precedence and experimental observations. The Pd(0) 
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Scheme 33. The Pd-catalyzed hydrophosphinylation of 54. 

precatalyst undergoes ligand substitution with the Josiphos ligand (L3) to form chiral species I. 

Subsequent oxidative addition of co-catalyst (diphenylphosphinic acid), yields the Pd-H species 

II. Addition of the 1,3-diene results in coordination of the Pd to the less hindered alkene to form 

species III. Species III undergoes hydropalladation to generate the Pd-π-allyl intermediate IV, 

which is subjected to ligand exchange upon addition of diphenylphosphine oxide. As a result of 

the substitution of diphenyphosphinic acid with Ph2P(O)H, a Pd-P(V) intermediate V is formed 

and the co-catalyst is regenerated.  Reductive elimination results in the formation of the 

functionalized product VI and regeneration of chiral species I. 

 

Scheme 34. Proposed mechanism for the Pd-catalyzed hydrophosphinylation of 1,3-dienes. 

 In the Pd-catalyzed hydrophosphinylation of 1,3-dienes, the alkene is activated before 

addition of the phosphine oxide; whereas, in the Ni-catalyzed hydrophosphinylation of terminal 

alkenes with primary phosphites, the phosphite is activated first, then addition to the alkene occurs. 
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While the mechanism for the transition metal catalyzed hydrophosphinylation of alkenes differs 

between reactions with phosphine oxides and phosphites, a similarity is seen where the phosphorus 

reagent binds to the transition metal through the P atom. In contrast, for the reactions of phosphine 

oxides and phosphites with ditetrelenes, the phosphine oxide or phosphite is attached to the metal 

centre through the oxygen. The reactivity observed between phosphine oxides and phosphites with 

4 and 5 is evidently governed by the strong M-O bond that is formed from addition of the P+-O-
 

bond of the organophosphorus oxide to the M=M bond. This imparts unique reactivity to the 

reactions of ditetrelenes with phosphine oxides and phosphites which can be utilized in further 

chemistry. 

2.5 Summary 

 The reaction of phosphine oxides and phosphites with disilene 4 and digermene 5 resulted 

in a mild two electron reduction of the P centre, to yield diorganodisilyl and digermyl phosphinites 

and phosphites (Figure 13). The formation of diorganodisilyl phosphinites and phosphites by 4 

provides an alternative synthetic route to the traditional reduction of phosphine oxides and 

 

Figure 13. General structures of disilyl and digermyl phosphinites and phosphites. 

phosphites by chlorosilanes in the presence of amines at elevated temperatures, under neutral 

conditions at room temperature. For the previous synthesis of a diorganogermyl phosphinite, the 

phosphine oxide was reduced by potassium to form a salt of the phosphine oxide, followed by a 

salt metathesis reaction with a chlorogermane. The new synthesis of diorganodigermyl 

phosphinites with 5 shows the reduction of the P(V) centre of the phosphine oxide directly by the 

Ge centre.  

 The formation of an M-O bond in the disilyl and digermyl phosphinites and phosphites is 

in contrast to alkene chemistry, which adds the P-H moiety of the phosphine oxide or phosphite 

across the C=C bond to form a C-P bond. Furthermore, alkenes require heat and/or a catalyst to 
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facilitate the addition of phosphine oxides and phosphites. The reactions of organophosphorus 

oxides with ditetrelenes 4 and 5 are performed under mild conditions, without the use of a catalyst. 

Therefore, ditetrelenes 4 and 5 are capable of activating organophosphorus oxides. However, the 

reactivity of phosphine oxides and phosphites with ditetrelenes differs from the reactivity with 

transition metals. Transition metals react directly with the P centre, often through a P-OH 

containing species, whereas ditetrelenes react with the oxygen of the P+-O- moiety. The reaction 

of organophosphorus oxides with 4 and 5 provides another example of the activation of organic 

main group oxides by ditetrelenes, in addition to the activation of nitromethane,22 arylsulfonyl 

chlorides,23 CO24 and CO2.
25 

 While all reactions lead to the formation of a 1,3-adduct containing a P(III) centre, 

secondary reactions of certain adducts were observed. Upon exposure to air and moisture, three 

classes of secondary reactions were observed: i) hydrolysis of the P-OR bond, ii) oxidation of the 

M-H bond and iii) oxidation of the P(III) centre. The dipentyldisilyl and digermyl phosphinites 

were the most susceptible to secondary reactions, while the diphenyldisilyl and digermyl 

phosphinites were the most stable. This trend can be rationalized by the steric bulk of the aryl 

derivatives providing increased stability of the P(III) center.11 

 The importance of the purity of commercially available reagents is exemplified in the 

attempted addition of diethylphosphine oxide to 4. The 95% reagent that was purchased was made 

up of diethylphosphinic acid, and only about 5% diethylphosphine oxide. The addition of 

diethylphosphinic acid to 4 resulted in the formation of 34, containing a P(V) centre.   

2.6 Experimental 

2.6.1 General Experimental Details 

All reactions were carried out using flame dried apparatus under an inert atmosphere of 

argon using general Schlenk techniques or in an MBraun glovebox under an atmosphere of 

nitrogen, unless otherwise stated. All anhydrous solvents were collected from an Innovative 

Technology solvent purification system and dried over 4 Å molecular sieves. All reagents were 

purchased from Millipore Sigma or Alfa Aesar. Disilene 4 was prepared by photolysis of 

Mes2Si(Si(CH3)3)2 in hexanes in a quartz tube with Ushio G8T5 Mercury UV-C lamps (254 nm) 
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and cooled to -45 ºC using a Thermo Scientific Neslab ULT 80 bath circulator. Digermene 5 was 

prepared through a similar procedure as 4, by the photolysis of (Mes2Ge)3 in THF at 350 nm. NMR 

spectra were acquired using a Varian INOVA I600 FT-NMR spectrometer or a Bruker AvIII HD 

400 spectrometer. The 1H and 13C chemical shifts (δ) are listed in ppm against residual C6D5H 

(7.15 ppm) and C6D6 (128 ppm) relative to tetramethylsilane, respectively. The chemical shifts for 

the 31P{1H} NMR spectrum were referenced externally to 85% H3PO4. The 29Si chemical shifts 

were obtained from the 29Si dimension of the 1H-29Si gHMBC spectrum relative to 

tetramethylsilane. Electrospray ionization time of flight mass spectrometry was performed using 

the Bruker microOTOF 11 instrument in positive ion mode. Infrared spectra were collected 

through Attenuated Total Reflectance (ATR)-IR spectroscopy on a solid sample using the Perkin 

Elmer Spectrum Two IR Spectrometer. Reaction mixtures were purified outside of the glovebox 

using preparative thin-layer chromatography on 20 x 20 cm plastic TLC plates consisting of silica 

gel coated with a fluorescent indicator and purchased from Millipore Sigma. 

2.6.2 Addition of Diphenylphosphine Oxide to Tetramesityldisilene 4 

Diphenylphosphine oxide (19 mg, 0.10 mmol) was added to a yellow solution, 

consisting of tetramesityldisilene 4 (52 mg, 0.10 mmol) dissolved in benzene 

(4 mL), at room temperature; the colour of the solution immediately changed to 

pale yellow. The benzene was evaporated giving a colourless oil which was redissolved in a 

minimal amount of hexanes. The flask was placed in the freezer (-20 ºC) for 24 hours. A white 

precipitate formed and the solid was isolated by decantation (37 mg, 56 %). mp: 186 – 190 ºC; 

ATR-FTIR (solid, cm-1) 2919 (m), 2132 (m, Si-H), 1602 (m), 1435 (m), 940 (s), 842 (m), 795 (m), 

696 (s);  1H NMR (C6D6, 600 MHz) δ 7.57 – 7.52 (m, 4H, Ph m-H), 7.06 – 6.98 (m, 6H, Ph o- and 

p-H), 6.67 (s, 4H, Mes m-H), 6.63 (s, 4H, Mes m-H), 5.66 (s, 1H, Si-H), [2.32 (s, Mes o-CH3), 

2.31 (s, Mes o-CH3) all together 24H], 2.07 (br s, 12H, Mes p-CH3); 
13C{1H} NMR (C6D6, 151 

MHz) δ 145.41 (Mes o-C), 144.19 (Mes o-C), 143.94 (d, J = 24 Hz, Ph i-C), 139.19 (Mes p-C), 

138.56 (Mes p-C), 135.06 (Mes i-C), 131.73 (d, J = 25 Hz, Ph o-CH), 131.49 (Mes i-C), 129.71 

(Mes m-CH), 129.22 (Ph p-CH), 128.86 (Mes m-CH), 128.1 (Ph m-CH)a, 25.14 (Mes o-CH3), 

25.12 (Mes o-CH3), 25.06 (br s, Mes o-CH3), 21.05 (Mes p-CH3), 20.99 (Mes p-CH3); 
29Si (C6D6) 

 
a Chemical shift extracted from 13C-1H gHMBC spectrum. 
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δ -1.8 (Si-O), -56.4 (Si-H); 31P{1H} (C6D6, 243 MHz) δ 107.2; ESI-MS for [C48H55Si2OP + H+] 

calcd: 735.3607, found: 735.3604. 

2.6.3 Addition of Diphenylphosphine Oxide to Tetramesityldigermene 5 

Diphenylphosphine oxide (28 g, 0.14 mmol) was added to a yellow solution of 

tetramesityldigermene 5 (85 mg, 0.14 mmol) dissolved in benzene (5 mL), at 

room temperature. The colour of the solution changed to light yellow after 5 

minutes. The benzene was evaporated to give a light yellow oil. The oil was dissolved in a minimal 

amount of hexanes and stored in the freezer (-20 ºC) for 24 hours. A white precipitate formed and 

the solid was isolated by decantation (72 mg, 54 % contaminated with 9% Ph2P(O)H). mp: 196 – 

200 ºC; FTIR (thin film, cm-1) 2918 (m), 2024 (m, Ge-H), 1601 (m), 1556 (m), 1436 (s), 1290 (w), 

1186 (s), 1122 (m), 1026 (m), 953 (m), 846 (s), 737 (s), 693 (s); 1H NMR (C6D6, 600 MHz) δ 7.65 

– 7.63 (m, 4H, Ph o-H), 7.09 – 7.06 (m, 4H, Ph m-H), 7.01 – 6.99 (m, 2H, Ph p-H), 6.68 (s, 4H, 

Mes m-H), 6.63 (s, 4H, Mes m-H), 5.98 (s, 1H, Ge-H), [2.332 (s, Mes o-CH3), 2.327 (s, Mes             

o-CH3) all together 24H], [2.07 (s, Mes p-CH3), 2.06 (s, Mes p-CH3) all together 12H]; 13C{1H} 

NMR (C6D6, 151 MHz) δ 147.06 (d, J = 25 Hz, Ph i-C)b, 144.02 (Mes o-C), 143.18 (Mes o-C), 

139.07 (Mes p-C), 138.43 (d, J = 2.2 Hz, Mes i-C), 138.31 (Mes p-C), 135.01 (Mes i-C), 130.90 

(d,  J = 24 Hz, Ph o-CH)a, 129.67 (Mes m-CH), 128.96 (Mes, m-CH), 128.63 (Ph p-CH), 128.29 

(Ph m-CH), 25.22 (d, J = 2.6 Hz, Mes o-CH3), 24.59 (d, J = 1.8 Hz, Mes o-CH3), 20.97 (Mes           

p-CH3), 20.95 (Mes p-CH3); 
31P{1H} NMR (C6D6, 243 MHz) δ 104.8; ESI-MS for 

[C48H55OP70Ge2 + Na+] calcd: 841.2373, found: 841.2398.26 

2.6.4 Addition of Dipentylphosphine Oxide to Tetramesityldisilene 4 

Dipentylphosphine oxide (15 mg, 0.079 mmol) was added to a yellow solution of 

tetramesityldisilene (42 mg, 0.079 mmol) dissolved in C6D6 (4 mL). The colour of the solution 

faded to light yellow after 1 minute of stirring at room temperature. The C6D6 was removed under 

vacuum, yielding 31 as a light yellow oil (35 mg, 61%), which was contaminated with compound 

40, formed from the oxidation of the Si-H bond (16%)c and dipentylphosphine (20%)d. Attempts 

 
b Similar magnitude for J found in PhCH2P(Ph)2.

26  
c Tentatively assigned by 31P chemical shift. 
d Assigned on the basis of 31P chemical shift reported in the literature.27 
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at purification by preparative TLC (silica gel; 30: 70 DCM to hexanes) resulted in the isolation of 

37 and Mes2HSiSiOHMes2.
4 Since purification of 31 was difficult, the characterization of the 

compound was performed on the crude reaction mixture. 

31: 1H NMR (C6D6, 600 MHz) δ 6.75 (s, 4H, Mes m-H), 6.66 (s, 4H, Mes  

m-H), 5.64 (s, 1H, Si-H), 2.46 (br s, Mes o-CH3), 2.38 (s, 12H, Mes o-CH3), 

2.11 (s, 6H, Mes p-CH3), 2.09 (br s, Mes p-CH3), 1.73 – 1.56 (m, P-CH2), 

1.44 – 1.31 (m, P-CH2CH2), 1.30 – 1.20 (m, CH2CH2CH3), 0.88 (t, J = 7.0 Hz, 6H, CH3); 
13C{1H} 

NMR (C6D6, 151 MHz) δ 145.47 (Mes o-C), 144.09 (Mes o-C), 139.10 (Mes p-C), 138.64 (Mes 

p-C), 135.58 (Mes i-C), 131.71 (Mes i-C), 129.73 (Mes m-CH), 128.98 (Mes m-CH), 35.58 (d,      

J = 25 Hz, P-CH2), 34.06 (d, J = 12 Hz, CH2CH2CH3), 25.22 (br, Mes o-CH3), 25.01 (Mes o-CH3), 

24.29 (d, J = 15 Hz, P-CH2CH2), 22.84 (CH2CH3), 21.14 (Mes p-CH3), 21.04 (Mes p-CH3), 14.27 

(CH3); 
29Si (C6D6) δ -5.6 (Si-O), -54.8 (Si-H); 31P{1H} (C6D6, 162 MHz) δ 130.6. Satisfactory 

ESI-MS high resolution data could not be obtained likely due to a contaminant with the same m/z 

as 31. 

37: 1H NMR (C6D6, 400 MHz) δ 6.73 (s, 4H, Mes m-H), 6.66 (s, 4H, Mes           

m-H), 5.66 (d, J = 1.8 Hz) 1H, Si-H), 2.42, 2.41 [(br s and s, 24 H all together, 

Mes o-CH3)], 2.10 (s, 6H, Mes p-CH3), 2.06 (s, 6H, Mes p-CH3), 1.61 – 1.49 

(m, P-CH2CH2)
e, 1.42 – 1.26 (m, P-CH2CH2)

e, 1.22 – 1.07 (m, CH2CH2CH3)
e, 0.84 (t, J = 6.9 Hz, 

6H, CH3);  
29Si (C6D6) δ -5.2 (Si-O), -55.6 (Si-H); 31P{1H} (C6D6, 162 MHz) δ 44.7; ESI-MS for 

[C46H67Si2O2P + Na+] calcd: 761.4315, found: 761.4326.27 

2.6.5 Addition of Dipentylphosphine Oxide to Tetramesityldigermene 5 

 Dipentylphosphine oxide (31 mg, 0.16 mmol) was added to a yellow 

solution of tetramesityldigermene (0.10 g, 0.16 mmol) dissolved in benzene 

(3 mL), and the reaction was allowed to stir at room temperature. The colour 

of the solution changed to light yellow after 5 min. The benzene was evaporated under vacuum, 

yielding 32 as a light yellow oil (0.12 g, 94%), likely contaminated by the compound formed upon 

oxidation of the P(III) centre (5%). Attempts to purify 32 by preparative TLC or micropipette 

 
e Tentatively assigned on the basis of chemical shifts. 
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columns under inert conditions resulted in hydrolysis of the Ge centre with the P(III) moiety to 

give Mes2HGeGeOHMes2.
28 Since purification was difficult, 32 was characterized from the crude 

reaction mixture. 1H NMR (C6D6, 600 MHz) δ 6.75 (s, 4H, Mes m-H), 6.67 (s, 4H, Mes m-H), 

5.93 (s, 1H, Ge-H), 2.47 (s, 12H, Mes o-CH3), 2.41 (s, 12H, Mes o-CH3), 2.10 (s, 6H, Mes p-CH3), 

2.07 (s, 6H, Mes p-CH3), 1.63 (t, J = 7.9 Hz, 4H, P-CH2), 1.47 – 1.37 (m, P-CH2CH2)
f, 1.34 – 1.23 

(m, CH2CH2CH3)
a, 0.88 (t, J = 7.1 Hz, 6H, CH3); 

13C{1H} NMR (C6D6, 151 MHz) δ 144.17 (Mes 

o-C), 143.11 (Mes o-C), 138.99 (Mes p-C), 138.81 (Mes i-C), 138.32 (Mes p-C), 135.19 (Mes i-

C), 129.67 (Mes m-CH), 129.04 (Mes m-CH), 36.31 (d, J = 25 Hz, P-CH2), 34.29 (d, J = 10 Hz, 

CH2CH2CH3), 25.30 (Mes o-CH3), 24.62 (d, J = 5.6 Hz, Mes o-CH3), 24.22 (d, J = 16 Hz, P-

CH2CH2), 22.94 (CH2CH3), 21.05 (Mes p-CH3), 21.00 (Mes p-CH3), 14.33 (CH3); 
31P{1H} NMR 

(C6D6, 162 MHz) δ 129.0; ESI-MS for [C46H67OP70Ge2 + Na+] calcd: 829.3312, found: 829.3306. 

2.6.6 Addition of Dimethyl Phosphite to Tetramesityldisilene 4 

Dimethyl phosphite (0.011 mL, 0.12 mmol) was added to a yellow solution of tetramesityldisilene 

4 (66 mg, 0.12 mmol) dissolved in benzene (5 mL) and the solution was allowed to stir at room 

temperature. After 18 hours, the colour of the solution changed from yellow to pale yellow. The 

benzene was evaporated under vacuum to give a pale yellow oil which was re-dissolved in a 

minimal amount of hexanes. The vial was stored in the freezer (-20 ºC) for 7 days. Clear, colourless 

crystals of  35 and 40 (36 mg, 19:1) were isolated. 

35: mp: 168 – 172 ºC; ATR-FTIR (solid, cm-1) 2916 (m), 2147 (m, Si-H), 

1603 (m), 1445 (m), 1011 (s), 940 (m), 847 (s), 733 (s); 1H NMR (C6D6, 400 

MHz) δ 6.73 (s, 4H, Mes m-H), 6.67 (s, 4H, Mes m-H), 5.67 (s, 1H, Si-H), 

3.20 (d, 6H, OCH3, J = 11 Hz), 2.46 (br s, 12H, Mes o-CH3), 2.37 (s, 12H, Mes o-CH3), 2.10 (s, 

6H, Mes p-CH3), 2.06 (s, 6H, Mes p-CH3); 
13C{1H} NMR (C6D6, 101 MHz) δ 145.56 (Mes o-C), 

144.31 (Mes o-C), 139.26 (Mes p-C), 138.74 (Mes p-C), 134.32 (Mes i-C), 131.20 (Mes i-C), 

129.73 (Mes m-CH), 128.97 (Mes m-CH), 48.34 (d, OCH3, J = 4.9 Hz), 24.80 (br, Mes o-CH3), 

24.53 (d, Mes, o-CH3, J = 3.3 Hz), 21.08 (Mes p-CH3), 21.00 (Mes, p-CH3); 
31P{1H} NMR (C6D6, 

162 MHz) δ 132.8; 29Si (C6D6) δ -55.3 (Si-H), -7.3 (Si-OP(OCH3)2); ESI-MS for [C38H51O3PSi2 + 

Na+] calcd: 665.3012, found: 665.3006. 

 
f Chemical shifts extracted from 13C-1H gHSQC spectrum. 
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40: ESI-MS for [C38H51O4PSi2 + Na+] calcd: 681.2961, found: 681.2962. 

 

The reaction was repeated and the crude yellow oil was dissolved in a minimal amount of 

dichloromethane (DCM) and purified by preparative TLC. The mixture was separated into two 

bands using an 80: 20 DCM to hexanes solvent ratio. Compound 41 (4.5 mg, 6%) was isolated as 

a pale yellow oil from the band closest to the baseline and is contaminated with a compound 

tentatively identified as (Mes2SiH)2O (10%). 

41: 1H NMR (C6D6, 400 MHz) δ 6.80 (d, 1H, P-H, J = 690 Hz), 6.71 (s, 4H, 

Mes m-H), 6.63 (s, 2H, Mes m-H), 6.62 (s, 2H, Mes m-H), 5.66 (d, 1H, Si-H,     

J = 1.8 Hz), 3.23 (d, 3H, OCH3, J = 12 Hz), [2.42, 2.41, 2.40 (each br s, total 

12H, Mes o-CH3)], 2.32 (s, 12H, Mes o-CH3), 2.09 (s, 3H, Mes p-CH3), 2.08 (s, 3H, Mes p-CH3), 

2.04 (s, 6H, p-CH3); 
13C{1H} NMR (C6D6, 101 MHz) δ 145.51 (Mes o-C), 144.44 (Mes o-C), 

139.88 (Mes p-C), 139.87 (Mes p-C), 139.12 (Mes p-C), 139.10 (Mes p-C), 132.39 (Mes i-C), 

132.32 (Mes i-C), 130.14 (Mes i-C), 130.06  (Mes i-C), 129.87 (Mes m-CH), 129.12 (Mes m-CH), 

129.11 (Mes m-CH), 51.48 (d, OCH3, J = 4.6 Hz), 24.51 (br, Mes o-CH3), 24.17 (Mes, o-CH3), 

21.06 (Mes p-CH3), 20.98 (Mes p-CH3), 20.97 (Mes p-CH3); 
31P NMR (C6D6, 162 MHz) δ -5.2 

(dqd, 1J = 696 Hz, 3J = 12 Hz, 4J = 1.8 Hz); 29Si (C6D6) δ -56.0 (Si-H), -3.2 (Si-OP(O)OCH3); ESI-

MS for [C37H49O3PSi2 + Na+] calcd: 651.2856, found: 651.2852. 

(Mes2SiH)2O was isolated cleanly from the second band in the TLC plate, directly above 41, and 

was tentatively assigned by 1H NMR spectroscopy and mass spectrometry. 1H NMR (C6D6, 400 

MHz) δ 6.70 (s, 8H, Mes m-H), 6.11 (s, 2H, Si-H), 2.41 (s, 24H, Mes o-CH3), 2.09 (s, 12H, Mes 

p-CH3); ESI-MS m/z 550.3. 

2.6.7 Direct Hydrolysis of 35 

Degassed water (4 mL, 0.17 mmol) was added to the yellow solid 35 (58 mg, 0.090 mmol), and 

the reaction stirred at room temperature. The colour of the solid changed from yellow to white 

after 18 hours. The water was removed under vacuum to yield a white solid consisting of a mixture 

of 35 and 41 (57 mg, 1:5).  
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2.6.8 Addition of Diphenyl Phosphite to Tetramesityldisilene 4 

Diphenyl phosphite (0.023 mL, 0.12 mmol) was added to a yellow solution of 

tetramesityldisilene  4 (66 mg, 0.12 mmol) dissolved in benzene (5 mL), and 

the reaction was allowed to stir at room temperature. The colour of the solution 

changed to light yellow after 18 hours. The benzene was removed under vacuum, yielding a light 

yellow oil. The oil was redissolved in a minimal amount of DCM and purified by preparative TLC 

(silica gel; 20:80 DCM to hexanes) Compound 36 was extracted as a colourless oil from the band 

of silica closest to the baseline. The oil was redissolved in a minimal amount of hexanes and stored 

in the freezer for 7 days (-8 ºC). A white solid consisting of 36 (42 mg, 46%) with contaminants 

including P(OPh)3
g, 42, 43 and 44h present in a 100: 12: 1: 1: 1 ratio relative to 36, was isolated. 

mp: decomposes at 60 ºC; ATR-FTIR (solid, cm-1) 2919 (m), 2129 (m, Si-H), 1594 (m), 1489 (m), 

1200 (m), 995 (m), 851 (s), 763 (m), 690 (m); 1H NMR (C6D6, 600 MHz) δ 6.94 – 6.98 (m, 4H, 

Ph m-CH), 6.88 – 6.91 (m, 4H, Ph o-CH), 6.78 – 6.82 (m, 2H, Ph p-CH), 6.70 (s, 4H, Mes m-CH), 

6.64 (s, 4H, Mes m-CH), 5.72 (s, 1H, Si-H), 2.50 (br s, 12H, Mes o-CH3), 2.40 (s, 12H, Mes            

o-CH3), 2.08 (s, 6H, Mes p-CH3), 2.06 (s, 6H, Mes p-CH3); 
13C{1H} NMR (C6D6, 151 MHz) δ 

152.85 (d, Ph i-C, J = 8.1 Hz), 145.64 (Mes o-C), 144.33 (Mes o-C), 139.47 (Mes p-C), 138.86 

(Mes p-C), 133.90 (Mes i-C), 130.74 (Mes i-C), 129.86 (Mes m-CH), 129.72 (Ph m-CH), 129.03 

(Mes m-CH), 123.61 (Ph p-CH), 120.85 (d, Ph o-CH, J = 9.0 Hz), 24.83 (br, Mes o-CH3), 24.63 

(d, Mes o-CH3, J = 3.6 Hz), 21.08 (Mes p-CH3), 20.99 (Mes p-CH3); 
29Si (C6D6) δ -55.7 (Si-H),    

-5.9 (Si-OP(OPh)2); 
31P{1H} NMR (C6D6, 243 Hz) δ 133.3; ESI-MS for [C48H55O3PSi2 + Na+] 

calcd: 789.3325, found: 789.3328.29 

2.6.9 Addition of Diethylphosphinic Acid to Tetramesityldisilene 4 

Diethylphosphinic acid (15 mg, 0.12 mmol) was added to a yellow solution of 4 (66 mg, 0.12 

mmol) dissolved in benzene (5 mL) and the solution was allowed to stir at room temperature. After 

10 minutes, the colour of the solution changed to pale yellow. The benzene was evaporated under 

vacuum, yielding a light yellow oil which was redissolved in a minimal amount of hexanes. The 

vial was stored in the freezer (-20 ºC) for 24 hours, yielding a mixture of  33 and 34 as an off-

 
g P(OPh)3 is a contaminant in diphenyl phosphite and was characterized by 1H, 31P{1H}, 13C{1H} NMR spectroscopy.29 
h Compounds 42, 43, and 44 are tentatively assigned by 31P{1H} and 31P NMR spectroscopy and ESI-MS. 
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white solid. The solid was dissolved in a minimal amount of DCM and the compounds were 

separated by preparative TLC (silica gel; 50:50 DCM to hexanes). Compound 34 (3.8 mg, 39%) 

was isolated as a clear, colourless oil from the silica and recrystallized in a minimal amount of 

benzene to yield clear, colourless crystals. In a separate band, Mes2HSiSi(OH)Mes2 (4.2 mg, 43%) 

was isolated.4 

33: 1H and 29Si chemical shifts are not listed because the signals for the product 

overlapped with those assigned to 34 in the NMR spectra of the mixture, and 

thus, were not easily distinguished. 31P{1H} NMR (C6D6, 162 MHz) δ 135.4; 

ESI-MS for [C40H55OPSi2 + H+] calcd: 639.3607, found: 639.3612.  

34: 1H NMR (C6D6, 400 MHz) δ 6.71 (s, 4H, Mes m-CH), 6.63 (s, 4H, Mes           

m-CH), 5.64 (d, 1H, Si-H, J = 1.9 Hz), 2.38, (s, 12H, Mes o-CH3), 2.37 (br s, 

12H, Mes o-CH3), 2.10 (s, 6H, Mes p-CH3), 2.04 (s, 6H, Mes p-CH3), 1.39 – 1.54 

(m, 4H, CH2CH3), 0.96 (dt, 6H, CH2CH3, J = 7.6 Hz, 18 Hz); 13C{1H} NMR (C6D6, 101 MHz) δ 

145.21 (Mes o-C), 144.49 (Mes o-C), 139.71 (Mes p-C), 138.92 (Mes p-C), 133.59 (Mes i-C), 

130.99 (Mes i-C), 129.84 (Mes m-CH), 128.97 (Mes m-CH), 24.80 (Mes o-CH3), 23.36 (d, 

CH2CH3, J = 94 Hz), 21.07 (Mes p-CH3), 20.97 (Mes p-CH3), 7.04 (d, CH2CH3, J = 5.0 Hz); 

31P{1H} NMR (C6D6, 162 MHz) δ 47.6; 29Si (C6D6) δ -55 (Si-H), -5 (Si-OP(CH2CH3)2); ESI-MS 

for [C40H55O2PSi2 + Na+] calcd: 677.3376, found: 677.3402. 
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Chapter 3  

3 Mechanistic Studies and Competition Experiments 

3.1 Introduction 

 In this chapter, the mechanism for the addition of organophosphorus oxides to ditetrelenes 

4 and 5 will be discussed. Five plausible mechanisms can be envisioned for the reaction (Scheme 

35). Stepwise electrophilic addition, which is common in alkene chemistry, would involve 

abstraction of a proton from the secondary phosphine oxide or phosphite, followed by addition of 

the conjugate base to the disilyl or digermyl cation to give disilyl and digermyl phosphinites or 

phosphites (Scheme 35a). Another option is a concerted addition where the abstraction of the 

proton from the organophosphorus oxide and nucleophilic addition of the oxygen in the phosphine 

oxide or phosphite towards the M centre occurs in one step (Scheme 35b). A stepwise nucleophilic 

addition mechanism should also be considered. In this pathway, the nucleophilic addition of the 

oxygen in the phosphine oxide or phosphite towards the M centre generates a disilyl or digermyl 

anion which undergoes intramolecular proton abstraction to form the disilyl or digermyl 

phosphinites and phosphites (Scheme 35c). An intermolecular proton abstraction between the 

disilyl or digermyl anion and another molecule of phosphine oxide or phosphite is also plausible 

following nucleophilic addition of the oxygen from the organophosphorus oxide (Scheme 35d). 

The last mechanism involves the addition of the phosphine oxide or phosphite tautomer (R2P-OH) 

to 4 and 5 (Scheme 35e). The alcoholic oxygen attacks the M centre to generate the disilyl or 

digermyl anion intermediate, which undergoes intramolecular or intermolecular proton abstraction 

to form the product.  

On the basis of previous mechanistic studies on the addition of water, alcohols and HCl to 

disilenes,1,2 the electrophilic addition mechanism was eliminated since phosphine oxides and 

phosphites are weak acids and ditetrelenes 4 and 5 are weak bases. The mechanism which involves 

addition through the organophosphorus oxide tautomer (R2P-OH) was also eliminated since the 

oxygen of the P+-O- bond in the organophosphorus oxide is expected to be more nucleophilic than 

the hydroxyl oxygen of the tautomer and higher in concentration compared to the tautomer. 

To distinguish between the concerted or stepwise nucleophilic addition mechanisms, 

deuterium labelling and kinetic isotope effect experiments were performed. In addition, 
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competition experiments between dialkyl and diarylphosphine oxides were investigated to 

determine which derivative reacts more readily with digermene 5.  

 

Scheme 35. Plausible reaction mechanisms for the addition of organophosphorus oxides to 4 and 5. 
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3.2 Deuterium Labelling Experiment 

The addition of organophosphorus oxides to 4 or 5 is proposed to proceed through either a 

concerted or a stepwise nucleophilic addition mechanism. In both, the P-H bond is broken and a 

M-H bond is formed. To determine if the hydrogen of the phosphine oxide or phosphite is 

transferred to the ditetrelene, deuterated diphenylphosphine oxide was added to digermene 5. 

Diphenylphosphine oxide-d1 was synthesized by stirring diphenylphosphine oxide in excess 

MeOH-d4 at 30 ºC for 18 hours (Scheme 36).3  

 

Scheme 36. The synthesis of diphenylphosphine oxide-d1. 

One equivalent of diphenylphosphine oxide-d1 was added to a yellow solution of 5 

dissolved in benzene and the reaction was allowed to stir at room temperature (Scheme 37). After 

5 minutes, the colour of the solution faded from yellow to light yellow. Evaporation of benzene  

 

Scheme 37. The addition of diphenylphosphine oxide-d1 to 5. 

yielded a light yellow oil which was recrystallized from hexanes to give 55 as a white solid in 61% 

yield. The 1H chemical shifts of 55 matched the chemical shifts observed in the 1H NMR spectrum 

of the protonated analogue 28 within experimental error (± 0.01 ppm). A signal at 5.98 ppm in the 

1H NMR spectrum of 55 was observed and was assigned as the Ge-H from residual amounts of 

28. Since the signal at 5.98 ppm integrated to 0.08 relative to the signals assigned to the mesityl 

protons of 55, 92% of 55 was deuterated in both the crude and recrystallized product. The level of 

deuterium incorporation in the phosphine oxide reagent and 55 are within experimental error. In 

the 2H NMR spectrum of 55, only one signal appeared at 5.99 ppm, which was assigned to the    
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Ge-D moiety. The isolation of 55 confirms that the hydrogen attached to the P of the phosphine 

oxide is transferred exclusively to a Ge of the former digermene 5, during the reaction. 

3.3 Kinetic Isotope Effect 

 Kinetic isotope effect (KIE) experiments are a useful experimental technique to gain an 

understanding of which bonds are broken, formed or rehybridized in the rate determining step (rds) 

of a reaction. The KIE is a measurement of the change in the rate of the reaction when an atom is 

replaced with its isotope, the most common exchange being H/D. KIEs are expressed as a ratio of 

the rate constants of the reaction for the protonated and the deuterated analogues (KIE = kH/kD). If 

the value for kH/kD >> 1, then a primary isotope effect is observed meaning the labelled atom is 

transferred in the rate determining step of the reaction. The maximum kH/kD value for a primary 

isotope effect is 6.5 – 7 at 298 K.4 In contrast, if the labelled atom is not transferred in the rds, a 

secondary isotope effect where kH/kD ≈ 1 (normally 1.1–1.2, estimated theoretical maximum is 

1.4) is observed.5 

 Diphenylphosphine oxide, and its deuterated analog were combined in a 1:1 ratio (0.05 M 

stock solution in C6D6 for each reagent). The phosphine oxide mixture was added to a 0.06 M 

solution of 5 dissolved in C6D6. The reaction was monitored by following the disappearance of the 

31P chemical shifts for the deuterated and protonated phosphine oxide over time, since 28 and 55 

have indistinguishable 31P chemical shifts.  

 Figure 14 shows the graph of the absolute integrals of the deuterated and non-deuterated 

phosphine oxides versus time. Even though the protonated phosphine oxide was present in a 

slightly higher concentration, both reagents are consumed at similar rates. After 20 minutes, the 

plot for both reagents plateaus, indicating the reaction has gone to completion. The KIE for the 

reaction was calculated according to Equation (1) which expresses the KIE ratio as the change in 

concentration over time of the protonated species over the deuterated species. To account for the 

higher concentration of the protonated phosphine oxide, the integrals at each time point for the 

protonated and deuterated species were subtracted from the integrals at t0.  

 
𝐾𝐼𝐸 =

𝑘𝐻
𝑘𝐷

=
∆[𝐻]

∆[𝐷]
≈
𝐼𝑛𝑡𝐻(𝑡0) − 𝐼𝑛𝑡𝐻(𝑡)

𝐼𝑛𝑡𝐷(𝑡0) − 𝐼𝑛𝑡𝐷(𝑡)
                                   (1) 
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From the integrals, the average kH/kD value over all time points was calculated to be 1.3, 

which is indicative of a secondary isotope effect. This result provides evidence against a concerted 

mechanism since the P-H/P-D bond is not broken in the rds. Therefore, the 1,3-addition of 

diorganophosphine oxides and phosphites to 4 and 5 is proposed to proceed through a stepwise 

nucleophilic addition mechanism, with the nucleophilic attack of the oxygen atom in the P+-O- 

bond at the M centre as the rds. However, the KIE results cannot distinguish whether the 

subsequent step involves an intramolecular or intermolecular abstraction of the hydrogen. 

 

Figure 14. Consumption of protonated and deuterated diphenylphosphine oxide in the reaction with digermene 5. 

 The addition of ethanol to disilene 56 to regioselectively form ethoxydisilane 57 was also 

proposed to take place by nucleophilic addition on the basis of KIE experiments (Scheme 38).6 

When ethanol-d1 was allowed to react with 56, no significant isotope effect was observed, which 

suggests a concerted addition is not the rds.  

 

Scheme 38. The addition of ethanol to transient disilene 56. 
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 The mechanism of the addition of phenol derivatives to disilene 4 was investigated by 

Apeloig et al. through KIE experiments.7 The authors observed a trend where electron-donating 

substituents on the phenol, resulted in kH/kD values close to 1. For example, the addition of 

deuterated 4-methoxyphenol to 4 had a kH/kD value of 0.71, which is consistent with the rate 

determining step involving nucleophilic attack of the alcoholic oxygen to the Si centre (Scheme 

39a). In contrast, the addition of phenols containing electron-withdrawing substituents resulted in 

primary KIEs. The addition of deuterated 4-(trifluoromethyl)phenol to 4 resulted in a large KIE 

value of 5.27, indicating a primary KIE. The primary KIE strongly supports an electrophilic 

addition where the phenolic H or D is transferred to 4 in the rds which is rationalized by the 

increased acidity of the phenolic H (Scheme 39b).  

 

Scheme 39. The (a) nucleophilic addition and (b) electrophilic addition of phenols to disilene 4. 

 Since diphenylphosphine oxide is a weak acid (pKa is approximately 25),8 an electrophilic 

addition to digermene 5 is not likely. The KIE results for the addition of diphenylphosphine oxide 

to 5 are consistent with the results from the addition of electron-donating substituted phenols to 

disilene 4, which takes place through a stepwise nucleophilic addition. In both reactions, the 

nucleophilic addition by an oxygen atom to the M centre is involved in the rate determining step 

of the reaction. 
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3.4 Relative Rate Studies and Exchange Reactivity on the Addition of 

Phosphine Oxides to Tetramesityldigermene 5 

 A competition experiment between dipentyl- and diphenylphosphine oxide was performed 

to determine the relative rates of reaction between the dialkyl and diarylphosphine oxide with 

digermene 5. A 1:1 mixture of dipentylphosphine oxide and diphenylphosphine oxide was added 

to a yellow solution of 5 dissolved in C6D6. The colour of the solution faded to light yellow within 

5 minutes after adding the phosphine oxide mixture. The reaction was monitored by 31P{1H} NMR 

spectroscopy (Figure 15), which revealed the appearance of two new signals within 5 minutes at 

104.5 and 129.0 ppm, assigned to 28 and 32, respectively. At the 5 minute time point, 28 and 32 

are present in a 3:1 relative ratio, indicating that diphenylphosphine oxide reacts with 5 more 

readily compared to dipentylphosphine oxide. The 1H NMR spectrum of the reaction after 20 

minutes confirms the reaction has gone to completion which was indicated by the disappearance 

of the signals for digermene 5 in the 1H NMR spectrum of the reaction mixture. Interestingly, the 

relative ratio of 28 to 32 changes over time, which is noticeable at the 24 hour time point where 

the relative ratio of products is 7:1. The change in the relative ratio of products is not due to 

oxidation of 32 since no new signals appeared in the 31P{1H} NMR spectrum. The increase of 28 

and decrease of 32 over time suggests that the OP(pentyl)2 group can be exchanged for a OPPh2 

group. 

The faster rate for the addition of diphenylphosphine oxide to digermene 5 compared to 

the addition of dipentylphosphine oxide suggests the oxygen of the aryl substituted phosphine 

oxide is more nucleophilic than the alkyl substituted phosphine oxide. These conclusions were 

made based on the assumption that diphenyldigermyl phosphinite 28 is the kinetic product. 

However, it is possible that dipentyldigermyl phosphinite 32 could be the kinetic product and the 

exchange with the OPPh2 group likely occurs because 28 is the thermodynamic product. The early 

stages of the reaction should be monitored to determine which phosphinite is the kinetic product. 
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Figure 15. 31P{1H} NMR (C6D6, 162 MHz) spectra of the competition reaction between dipentyl- and 

diphenylphosphine oxide with digermene 5.  

 To probe the exchange between the OP(pentyl)2 moiety and the OPPh2 group, excess 

diphenylphosphine oxide was added to a crude sample of dipentyldigermyl phosphinite 32, and 

the reaction was monitored by 31P{1H} NMR spectroscopy using OPEt3 (
31P chemical shift = 46.1 

ppm) as an internal standard inside a sealed capillary tube (Figure 16). Within the first 10 minutes 

of the reaction, the appearance of a signal at 104.7 ppm was observed and assigned to 

diphenyldigermyl phosphinite 28. The appearance of another signal at 29.2 ppm is indicative of 

the regeneration of dipentylphosphine oxide, which is in line with the disappearance of the signal 

at 128.9 ppm, assigned to dipentyldigermyl phosphinite 32. The reaction occurs quite rapidly under 

mild conditions, as evident at the 1 hour time point, where the signal for 32 has almost disappeared. 

The reverse reaction, where excess dipentylphosphine oxide was added to diphenyldigermyl 

phosphinite 28, was also monitored by 31P{1H} NMR spectroscopy; however, appearance of a 

signal at 128.9 ppm was not observed after 24 hours, indicating no reaction occurred. 
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Figure 16. 31P{1H} NMR (C6D6, 162 MHz) spectra of the addition of diphenyl phosphine oxide to dipentyldigermyl 

phosphinite 32. 

 The exchange phenomenon was also explored with the disilene derivatives. The addition 

of excess diphenyl phosphite to dimethyldisilyl phosphite 35 (Scheme 40a) was monitored by 

31P{1H} NMR spectroscopy. After 18 hours at room temperature, no change in the 31P{1H} NMR 

spectrum was observed. Since no reaction was observed, the mixture was heated at 50 ºC for an 

additional 18 hours, however, no change was observed in the 31P{1H} NMR spectrum. The reaction 

of 35 with excess diphenylphosphine oxide (Scheme 40b) was also tested, however after 22 hours, 

no change was observed in the 31P{1H} NMR spectrum. On the basis of the results from these two 

experiments, the exchange of the OP(OCH3)2 group in 35 for another OPR2 group is not possible 

under the reaction conditions examined. 
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Scheme 40. The addition of (a) diphenyl phosphite and (b) diphenylphosphine oxide to 35. 

 The mechanism of the reaction of diphenylphosphine oxide with dipentyldigermyl 

phosphinite 32 was explored by adding excess diphenylphosphine oxide-d1 to a crude sample of 

32 (Scheme 41). The reaction was monitored by 31P{1H} NMR spectroscopy (Figure 17a). 

 

Scheme 41. The addition of diphenylphosphine oxide-d1 to 32. 

Within 10 minutes, the appearance of signals at 104.7 and 29.2 ppm are observed, which were 

assigned to diphenyldigermyl phosphinite 28 and dipentylphosphine oxide, respectively. At the 30 

minute time point, it is clear that the deuterium label is incorporated in the dipentylphosphine oxide 

that is formed based on the appearance of a triplet at 28.4 ppm, which is isotopically shifted from 

the protonated analog (Figure 17b). The integration of the signal for 28 stopped increasing after 

15 hours, indicating diphenyldigermyl phophinite 28 was no longer being formed. In the 2H{1H} 

NMR spectrum, two doublets were observed at 7.80 ppm (J = 73 Hz) and 6.60 ppm (J = 70 Hz) 

and are assigned to diphenylphosphine oxide-d1 and dipentylphosphine oxide-d1, respectively. The 

observed coupling constants are within 3 Hz of the calculated coupling constants for Ph2P(O)D 

(72 Hz) and pentyl2P(O)D (67 Hz). A third doublet at 7.33 ppm (J = 22 Hz) was also observed, 

however the identity of this compound is unknown, although the magnitude of the coupling 
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constant suggests a 2 to 3 bond D-P coupling. The absence of a signal at 5.98 ppm indicates the 

deuterium label was not being incorporated into 28. 

 

 

 

Figure 17. 31P{1H} NMR (C6D6, 162 MHz) spectra of the addition of diphenylphosphine oxide-d1 to 32. (a) Shows 

all signals present in the spectra. (b) Expansion shows the zoomed region containing the signals for protonated and 

deuterated dipentylphosphine oxide.  

 Five mechanisms can be envisioned for the reaction of diphenylphosphine oxide-d1 with 

32 (Scheme 42). In the first mechanism, an intramolecular abstraction of the Ge-H proton results 

in the regeneration of digermene 5, followed by the stepwise addition of diphenylphosphine oxide 

to form deuterated diphenyldigermyl phosphinite 28. Mechanisms (b) and (c) involve the 

intermolecular abstraction of the Ge-H proton by diphenylphosphine oxide. In mechanism (b), 5 
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is regenerated and adds to diphenylphosphine oxide by stepwise nucleophilic addition; while in 

mechanism (c), a digermyl anion adds to diphenylphosphine oxide. The remaining mechanisms, 

(d) and (e), are substitution pathways. In mechanism (d), an SN1 type mechanism is shown where 

dissociation of the OP(pentyl)2 group forms a digermyl cation intermediate, which forms 28 by 

nucleophilic addition to the Ge cation. A direct substitution mechanism is depicted in mechanism 

(e) where nucleophilic attack of diphenylphosphine oxide and dissociation of the OP(pentyl)2 

moiety occurs in the same step. In mechanisms (b), (c), (d) and (e), the deuterium label is 

incorporated on the regenerated dipentylphosphine oxide and not diphenyldigermyl phosphinite 

28. On the basis of the results from the deuterium labelling experiment where diphenylphosphine 

oxide-d1 was added to 5, mechanism (a) can be eliminated, since there was no signal for the Ge-D 

moiety of 28 in the 2H{1H} NMR spectrum. Since deuterium is incorporated in dipentylphosphine 

oxide instead of 28, mechanisms (b), (c), (d), and (e) are all plausible, although the mechanism 

cannot be distinguished with the results obtained. If the Ge-H of 32 is retained, then the reaction 

likely proceeds through substitution mechanisms (d) or (e). However, if the Ge-H of 32 is broken, 

then the reaction likely proceeds through either mechanism (b) or (c).  Digermyl cations are not 

readily formed, so the reaction proceeding through mechanism (d) is not likely. Since no deuterium 

is incorporated into the Ge-H position of 28, the direct substitution, mechanism (e), is proposed to 

be the most plausible mechanism since some deuterium incorporation into the Ge-H moiety is 

expected to occur in mechanisms (b) and (c). 
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Scheme 42. Proposed reaction mechanisms for the addition of diphenylphosphine oxide-d1 to 32. 
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3.5 Summary 

 The reaction mechanism for the addition of organophosphorus oxides to ditetrelenes 4 and 

5 was investigated. The addition of diphenylphosphine oxide-d1 to 5, confirmed the breaking of 

the P-H bond and formation of the Ge-H bond to yield compound 28. Furthermore, the reaction 

was confirmed to proceed through a stepwise nucleophilic addition and not a concerted reaction 

pathway by a KIE experiment. The kH/kD value of 1.3 obtained from the KIE experiment indicates 

a secondary isotope effect, suggesting the breaking of the P-D bond or formation of the Ge-D bond 

is not involved in the rate determining step, thereby, providing evidence which supports a 

nucleophilic addition mechanism. However, the KIE experiments could not distinguish between 

an intramolecular or intermolecular proton abstraction in the second step of the mechanism 

(Scheme 43). 

 

Scheme 43. Plausible mechanisms for the nucleophilic addition of diphenylphosphine oxide to 5. 

 A competition experiment between diphenyl- and dipentylphosphine oxide was also 

explored to determine which reagent reacted with digermene 5 more readily. Since 28 was formed 

in larger amounts, it can be concluded that diphenylphosphine oxide reacts more rapidly with 5.  

Interestingly, the relative ratio of products changed after 24 hours to favour the formation 

of 28, giving evidence that the OP(pentyl)2 group can be exchanged with a OPPh2 group. The 
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exchange phenomenon of the reaction was confirmed by adding excess diphenyl phosphine oxide 

to dipentyldigermyl phosphinite 32 (Scheme 44). 

 

Scheme 44. The addition of diphenylphosphine oxide to 32 to yield diphenyldigermyl phosphinite 28. 

 The exchange phenomenon was not observed in the reverse reaction, the addition of 

dipentylphosphine oxide to diphenyldigermyl phosphinite 28. In addition, the OP(OCH3)2 group 

of dimethyldisilyl phosphite 35 could not be exchanged with either OPPh2 or OP(OPh)2 groups. 

 Lastly, the mechanism for the exchange of the OP(pentyl)2 group of 32 with a PPh2 group 

was explored by adding diphenylphosphine oxide-d1 to a crude sample of 32. Since the deuterium 

label was not incorporated into diphenyldigermyl phosphinite 28, four plausible mechanisms can 

still be considered including mechanisms involving intermolecular abstraction of the Ge-H moiety 

or substitution mechanisms. However, more work is required to determine whether the Ge-H of 

32 remains intact to distinguish between the plausible mechanisms remaining. 

3.6 Experimental 

3.6.1 General Experimental Details 

All reactions were carried out in an MBraun glovebox under an atmosphere of nitrogen. 

All anhydrous solvents were collected from an Innovative Technology solvent purification system 

and dried over 4 Å molecular sieves. All reagents were purchased from Millipore Sigma or Alfa 

Aesar. Disilene 4 was prepared by photolysis of Mes2Si(Si(CH3)3)2 in hexanes in a quartz tube 

with Ushio G8T5 Mercury UV-C lamps (254 nm) and cooled to -45 ºC using a Thermo Scientific 

Neslab ULT 80 bath circulator. Digermene 5 was prepared through a similar procedure as 4, by 

the photolysis of (Mes2Ge)3 in THF at 350 nm. NMR spectra were acquired using a Varian INOVA 

I600 or I400 FT-NMR spectrometer or a Bruker AvIII HD 400 spectrometer. The 1H and 13C 

chemical shifts (δ) are listed in ppm against residual C6D5H (7.15 ppm) and C6D6 (128 ppm) 

relative to tetramethylsilane, respectively. The chemical shifts for the 31P{1H} NMR spectrum 
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were referenced externally to 85% H3PO4. Triethylphosphine oxide was used as an internal 

standard inside a sealed capillary tube for reactions monitored by 31P{1H} NMR spectroscopy, 

unless otherwise stated. The 2H chemical shifts are listed in ppm against residual C6H5D (7.15 

ppm).  

3.6.2 Addition of Diphenylphosphine Oxide-d1 to Tetramesityldigermene 5 

Diphenylphosphine oxide-d1 (6.9 mg, 0.034 mmol) was added to a yellow 

solution of 5 (17 mg, 0.034 mmol) dissolved in C6D6. After 5 minutes of stirring 

the reaction at room temperature, the colour of the solution changed to light 

yellow. The C6D6 was evaporated under vacuum to yield a light yellow oil, which was redissolved 

in a minimal amount of hexanes and stored in the freezer (-20 ºC) for 18 hours. A tan precipitate 

formed and 55 was isolated as a solid by decantation (20 mg, 61%). 1H NMR (C6D6, 600 MHz) δ 

7.66 – 7.62 (m, 4H, Ph o-H), 7.10 – 7.05 (m, 4H, Ph m-H), 7.02 – 6.98 (m, 2H, Ph p-H), 6.68 (s, 

4H, Mes m-H), 6.63 (s, 4H, Mes m-H), 5.98 (s, 0.2H, residual Ge-H from 28), [2.331, 2.328 (s, all 

together 24H, Mes o-CH3)], [2.07, 2.06 (s, all together 12H, Mes p-CH3]; 
31P{1H} NMR (C6D6, 

243 MHz) δ 104.8; 2H{1H} NMR (C6H6, 92 MHz) 5.99 (Ge-D). 

3.6.3 Competition Kinetic Isotope Effect 

A stock solution of diphenylphosphine oxide (0.05 M, 0.02 mmol) and 94% diphenylphosphine 

oxide-d1 (0.05 M, 0.02 mmol) were added to a yellow solution of 5 dissolved in C6D6 (0.06M, 0.02 

mmol) in an NMR tube. The colour of the solution faded to light yellow in 5 minutes. The reaction 

was monitored by 31P{1H} NMR spectroscopy over 9 time points (5, 7, 10, 12, 15, 20, 30, 40 and 

60 minutes). 

3.6.4 Addition of Dipentyl- and Diphenylphosphine Oxide to Tetramesityl- 

digermene 5 

A mixture of diphenylphosphine oxide (33 mg, 0.17 mmol) and dipentylphosphine oxide (31 mg, 

0.17 mmol) dissolved in C6D6 (2 mL) was added to a yellow solution of 5 (0.1 g, 0.17 mmol) 

dissolved in C6D6 (2 mL). The colour of the solution immediately faded to light yellow. An aliquot 
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of the solution was taken to monitor the reaction by 31P{1H} NMR spectroscopy, without an 

internal standard, over 6 time points (5, 10, and 20 minutes, 1, 2, and 24 hours). 

3.6.5 Addition of Diphenylphosphine Oxide to Dipentyldigermyl Phosphinite 32 

A stock solution of diphenylphosphine oxide (0.3 M, 0.2 mmol) was added to 32 (17 mg, 0.021 

mmol) in an NMR tube. The reaction was monitored by 31P{1H} NMR spectroscopy over 7 time 

points (10, 12, 15, 18, 20 and 60 minutes, and 18 hours). 

3.6.6 Addition of Dipentylphosphine Oxide to Diphenyldigermyl Phosphinite 28 

A stock solution of dipentylphosphine oxide (0.2 M, 0.08 mmol) in C6D6 was added to 28 (8 mg, 

0.01 mmol) in an NMR tube. The reaction was monitored by 31P{1H} NMR spectroscopy over 7 

time points (10, 20, 30, 40, 50 and 60 minutes, and 24 hours), however, no reaction was observed 

after 24 hours. 

3.6.7 Addition of Diphenylphosphine Oxide to Dimethyldisilyl Phosphite 35  

A stock solution of diphenylphosphine oxide (0.2 M, 0.09 mmol) in C6D6 was added to 35 (7 

mg, 0.02 mmol) in an NMR tube. The reaction was monitored by 31P{1H} NMR spectroscopy 

over 5 time points (10, 20, 30, and 60 min, and 22 hours), however, no reaction was observed 

after 22 hours. 

3.6.8 Addition of Diphenyl Phosphite to Dimethyldisilyl Phosphite 35 

A stock solution of diphenyl phosphite (0.3 M, 0.1 mmol) in C6D6, was added to 35 (0.01 g, 0.02 

mmol) in an NMR tube. The reaction was monitored by 31P{1H} NMR spectroscopy over 6 time 

points (12, 20, 30, 40 and 60 min, and 18 hours). After 18 hours, no reaction occurred at room 

temperature. The reaction was heated at 50 ºC for an additional 18 hours, but no reaction was 

observed. 
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3.6.9 The Addition of Diphenylphosphine Oxide-d1 to Dipentyldigermyl 

Phosphinite 32 

A stock solution of diphenylphosphine oxide-d1 (0.2 M, 0.07 mmol) in C6D6 was added to 32 (14 

mg, 0.017 mmol) in an NMR tube. The reaction was monitored by 31P{1H} NMR spectroscopy 

over 9 time points (7, 10, 20, 30, 40, 50 and 60 minutes, 15 hours, and 3 days). 2H{1H} (C6H6, 92 

MHz) δ 7.80 (d, J = 73 Hz, Ph2P(O)D), 7.33 (d, J = 22 Hz)a, 6.60 (d, J = 70 Hz, pentyl2P(O)D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a Identity of compound is unknown. 
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Chapter 4  

4 Conclusions and Future Work 

4.1 Summary and Conclusions 

 This thesis has examined the reactivity of doubly bonded Group 14 species towards 

organophosphorus oxides. The addition of dialkyl and diarly phosphine oxides and phosphites with 

ditetrelenes 4 and 5 was explored (Scheme 45), and in all cases examined, disilyl and digermyl 

phosphinite and phosphites  (27, 28, 29,1 30,1 31, 32, 35 and 36) were isolated. The reaction results 

in a mild reduction of the P(V) centre of the phosphine oxides and phosphites to give a P centre in 

the phosphinite and phosphite derivatives that has an intermediate chemical state between R3P=O 

and R3P. The only other method for synthesizing the silyl phosphinite and phosphite derivatives is 

through the reaction of phosphine oxides or phosphites with chlorosilanes in the presence of 

amines at elevated temperatures.2 In the reactivity with disilene 4, the Lewis acid and Lewis base 

are contained within the same molecule and the reaction can be performed under neutral conditions 

at room temperature. The typical synthesis of germyl phosphinites and phosphites involves the salt 

metathesis reaction of the phosphine oxide or phosphite salt with chlorogermanes at elevated 

temperatures. 3 , 4  In the synthesis of digermyl phosphinite and phosphite derivatives using 

digermene 5, the Ge centre is directly involved in the partial reduction of the P(V) centre of the 

phosphine oxide and phosphite. 

 

Scheme 45. The addition of organophosphorus oxides to ditetrelenes 4 and 5.  

 In the analogous reactivity with alkenes, the P-H bond of the phosphine oxide or phosphite 

adds across the C=C bond through activation of the P-H bond by a transition metal catalyst to form 
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a C-P and a C-H bond. In contrast, in the reaction of phosphine oxides and phosphites with 

ditetrelenes 4 or 5, an M-O bond is formed, without the use of heat or a catalyst. The reactivity of 

phosphine oxides and phosphites with ditetrelenes 4 and 5 provides an additional example of the 

activation of organic main group oxides by doubly bonded Group 14 species, which previously 

included nitromethane5, arylsulfonyl chlorides6, carbon monoxide7 and carbon dioxide.8  

 In Chapter 3, the mechanism for the reaction of organophosphorus oxides with ditetrelenes 

4 and 5 was explored. On the basis of the results from the KIE experiment, the mechanism was 

proposed to be a stepwise nucleophilic addition of the organophosphorus oxide across the M=M 

bond in the ditetrelene (Scheme 46). However, it is not clear whether one or two equivalents of 

the organophosphorus oxide is involved in the reaction mechanism. 

 

Scheme 46. Plausible mechanisms for the addition of organophosphorus oxides to 4 and 5. 

 The relative rates of the reactions between dipentyl- or diphenylphosphine oxide with 

digermene 5 was also investigated by a competition experiment. Since diphenyldigermyl 

phosphinite 28 was formed in a larger amount, this indicates diphenylphosphine oxide reacts more 

rapidly with 5, suggesting higher nucleophilicity of the P+-O- moiety in the diaryl-substituted 

phosphine oxide. Surprisingly, the relative ratio of products changed over time, with the 

concentration of  28 increasing and the concentration of 32 decreasing, suggesting the OP(pentyl)2 

moiety of 32 can be exchanged for a OPPh2 group. 
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 The exchange phenomenon was investigated further by adding excess diphenylphosphine 

oxide to 32 (Scheme 47). This competition experiment confirmed the exchange of the OPR2 

moieties. However, when the reverse reaction was attempted and when disilene derivatives were 

probed, no exchange occurred. In fact, of all the cases attempted, the only exchange observed was 

between the OP(pentyl)2 moiety of 32 and the OPPh2 group of diphenylphosphine oxide. The 

exchange seen in the dipentyldigermyl phosphinite derivative 32 may be due to instability of the 

product which has been proven to readily undergo secondary reactivity such as hydrolysis of the 

O-P bond on the Ge centre. The exchange with the OPPh2 group would generate diphenyldigermyl 

phosphinite 28, which is a more stable adduct. 

 

Scheme 47. The addition of diphenylphosphine oxide to 32. 

 Using a deuterium labelling experiment, the mechanism of the exchange phenomenon was 

probed by adding diphenylphosphine oxide-d1 to dipentyldigermyl phosphinite 32. The deuterium 

label was only incorporated in the dipentylphosphine oxide that was regenerated. On the basis of 

the results from the deuterium labelling experiment, a direct substitution mechanism is proposed 

for the exchange of the OP(pentyl)2 moiety of 32 with a OPPh2 group (Scheme 48).  

 

 

Scheme 48. Plausible mechanism for the exchange phenomenon between 32 and diphenylphosphine oxide.   

4.2 Future Work 

The scope of this work includes reactions of dialkyl and diarylphosphine oxides and 

phosphites with ditetrelenes 4 and 5, however, the reaction scope may be increased by looking at 
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other compounds containing a P=O group. Potential organophosphorus oxides that could be 

explored include primary phosphine oxides and phosphites (RP(O)H2) or diorganophosphinic 

chlorides (R2P(O)Cl). 

The reaction mechanism for the addition of organophosphorus oxides to 4 and 5 proceeds 

through a stepwise nucleophilic addition, as confirmed by KIE experiments. However, to 

determine whether one or two equivalents of diphenylphosphine oxide are required in the reaction 

mechanism, the order of phosphine oxide in the rate law could be investigated. Diphenylphosphine 

oxide could also be added to cyclic digermene9 58 (Scheme 49) to gain information on whether 

one or two equivalents of phosphine oxide are involved in the reaction mechanism. The reaction 

of  58 with diphenylphosphine oxide could proceed through two pathways, a syn-addition to form 

59 or anti-addition to yield 60. If 59 is formed as the major product, an intramolecular proton 

abstraction seems more plausible. However, if a racemic mixture of 59 and 60 is observed, an 

intermolecular proton abstraction is more likely, since the second equivalent of phosphine oxide 

could be deprotonated on either face of the Ge=Ge bond. 

 

Scheme 49. The addition of diphenylphosphine oxide to cyclic digermene 58. 

The competition experiment between dipentyl- and diphenylphosphine oxide with 

digermene 4 should be monitored within the first 5 minutes of the reaction by NMR spectroscopy 

to determine whether diphenyldigermyl phosphinite 28 or dipentyldigermyl phosphinite 29 is the 

kinetic product. Since the exchange of the OP(pentyl)2 moiety of 32 with a OPPh2 group from 

diphenylphosphine oxide was successful, expanding on the scope of this reactivity is worthwhile. 

Diphenyl phosphite or dimethyl phosphite can be added to 32 to determine if an OP(OR)2 group 

can also exchange with the OP(pentyl)2 moiety.  
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 Lastly, the mechanism for the exchange phenomenon can be investigated further by 

labeling the Ge-H moiety in 32 with deuterium. This labelling experiment would provide 

information on whether the Ge-H moiety is retained throughout the reaction. If the Ge-H moiety 

is retained, and the deuterium label is not transferred, this would provide evidence for a substitution 

mechanism. 
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Appendices 

Appendix A: NMR Data 

Note: 1H, 13C{1H} and 1H-29Si gHMBC NMR spectra have been expanded to clearly show all 

signals assigned to the compounds of interest. 

 

 

Figure A1: 1H NMR spectrum (C6D6, 600 MHz) of 27. 
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Figure A2: 31P{1H} NMR spectrum (C6D6, 243 MHz) of 27. 

 

 

Figure A3: 13C{1H} NMR spectrum (C6D6, 151 MHz) of 27. The region of the spectrum from 

30 to 120 ppm has been omitted. 
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Figure A4: 1H-29Si gHMBC NMR spectrum (C6D6) of 27. 

 

 

Figure A5: ATR-IR spectrum of 27. 
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Figure A6: 1H NMR spectrum (C6D6, 600 MHz) of 28. 

 

 

Figure A7: 31P{1H} NMR spectrum (C6D6, 243 MHz) of 28. 
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Figure A8: 13C{1H} NMR spectrum (C6D6, 151 MHz) of 28. The region of the spectrum from 

40 to 115 ppm has been omitted. 

 

 

Figure A9: 1H NMR spectrum (C6D6, 600 MHz) of 31. 
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Figure A10: 31P{1H} NMR spectrum (C6D6, 162 MHz) of 31. 

 

 

Figure A11: 13C{1H} NMR spectrum (C6D6, 151MHz) of 31. The region of the spectrum from 

60 to 120 ppm has been omitted. 
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Figure A12: 1H-29Si gHMBC NMR spectrum (C6D6) of 31. 

 

 

Figure A13: 1H NMR spectrum (C6D6, 600 MHz) of 32. 
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Figure A14: 31P{1H} NMR spectrum (C6D6, 162 MHz) of 32. 

 

 

Figure A15: 13C{1H} NMR spectrum (C6D6, 151 MHz) of 32. 
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Figure A16: 1H NMR spectrum (C6D6, 400 MHz) of 34. 

 

 

Figure A17: 31P{1H} NMR spectrum (C6D6, 162 MHz) of 34. 
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Figure A18: 13C{1H} NMR spectrum (C6D6, 101 MHz) of 34. The region of the spectrum from 

35 to 110 ppm has been omitted. 

 

 

Figure A19: 1H-29Si gHMBC NMR spectrum (C6D6) of 34. 
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Figure A20: 1H NMR spectrum (C6D6, 600 MHz) of 35.  

 

 

Figure A21: 31P{1H} NMR spectrum (C6D6, 162 MHz) of 35. 
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Figure A22: 13C{1H} NMR spectrum (C6D6, 101 MHz) of 35. The region of the spectrum from 

50 to 120 ppm has been omitted. 

 

Figure A23: 1H-29Si gHMBC NMR spectrum (C6D6) of 35. 
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Figure A24: ATR-IR spectrum of 35. 

 

 

Figure A25: 1H NMR spectrum (C6D6, 600 MHz) of 36. 
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Figure A26: 31P{1H} NMR spectrum (C6D6, 243 MHz) of 36. 

 

Figure A27: 13C{1H} NMR spectrum (C6D6, 151 MHz) of 36. The region of the spectrum from 

30 to 115 ppm has been omitted. 
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Figure A28: 1H-29Si gHMBC NMR spectrum (C6D6) of 36. 

 

 

Figure A29: ATR-IR spectrum of 36. 
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Figure A30: 1H NMR spectrum (C6D6, 600 MHz) of 41. 

 

 

Figure A31: 31P NMR spectrum (C6D6, 243 MHz) of 41. 
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Figure A32: 13C{1H} NMR spectrum (C6D6, 151 MHz) of 41. The region of the spectrum from 

55 to 115 ppm has been omitted. 

 

 

Figure A33: 1H-29Si gHMBC NMR spectrum (C6D6) of 41. 
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Appendix B: X-ray Crystallography Data 

Appendix B1: X-ray crystallography data for 34.  

Experimental for C40H55O2PSi2 (n19016) 

Data Collection and Processing. The sample (n19016) was submitted by Maissa Belcina of the 

Baines research group at the University of Western Ontario. The sample was mounted on a 

MiTeGen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements 

were made on a Bruker-Nonius KappaCCD Apex2 diffractometer at a temperature of 123 K. The 

unit cell dimensions were determined from a symmetry constrained fit of 7915 reflections with 

7.08° < 2θ < 134.7°. The data collection strategy was a number of ω and φ scans which collected 

data up to 135.51° (2θ). The frame integration was performed using SAINT.1  The resulting raw 

data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent 

data using SADABS.2 

Structure Solution and Refinement. The structure was solved by using a dual space methodology 

using the SHELXT program.3 All non-hydrogen atoms were obtained from the initial solution. The 

carbon bound hydrogen atoms were introduced at idealized positions and were allowed to ride on 

their parent atoms.  The position of the hydrogen atom bound to the Si atom was obtained from a 

difference Fourier map and was allowed to refine isotropically.  The structural model was fit to the 

data using full matrix least-squares based on F2. The calculated structure factors included 

corrections for anomalous dispersion from the usual tabulation. The structure was refined using 

the SHELXL program from the SHELX suite of crystallographic software.4 Graphic plots were 

produced using the Mercury program suite.5  Additional information and other relevant literature 

references can be found in the reference section of this website (http://xray.chem.uwo.ca).  

 
1 Bruker-AXS, SAINT version 2013.8, 2013, Bruker-AXS, Madison, WI 53711, USA 
2 Bruker-AXS, SADABS version 2012.1, 2012, Bruker-AXS, Madison, WI 53711, USA 
3 Sheldrick, G. M., Acta Cryst. 2015, A71, 3-8 
4 Sheldrick, G. M., Acta Cryst. 2015, C71, 3-8 
5 Gabe, E. J.; Le Page, Y.; Charland, J. P.; Lee, F. L. and White, P. S. J. Appl. Cryst. 1989, 22, 384-387 

http://xray.chem.uwo.ca/
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Table 1.  Summary of Crystal Data for n19016 

 

Formula C40H55O2PSi2 

Formula Weight (g/mol) 654.99 

Crystal Dimensions (mm) 0.390 × 0.234 × 0.072 

Crystal Color and Habit colourless prism 

Crystal System monoclinic 

Space Group P 21/n 

Temperature, K 123 

a, Å 11.421(2) 

b, Å 20.397(4) 

c, Å 16.635(3) 

,° 90 

,° 108.314(8) 

,° 90 

V, Å3 3678.9(13) 

Number of reflections to determine final unit cell 7915 

Min and Max 2 for cell determination, ° 7.08, 134.7 

Z 4 

F(000) 1416 

 (g/cm) 1.183 

, Å, (CuK) 1.54178 

, (cm-1) 1.529 
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Diffractometer Type Bruker-Nonius KappaCCD Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 135.51 

Measured fraction of data 0.979 

Number of reflections measured 33307 

Unique reflections measured 6519 

Rmerge 0.0702 

Number of reflections included in refinement 6519 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0628P)2+1.14

35P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 424 

R1 0.0458 

ωR2 0.1108 

R1 (all data) 0.0692 

ωR2 (all data) 0.1234 

GOF 1.017 

Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -0.341, 0.303 

Where: 

R1 = ( |Fo| - |Fc| ) /  Fo 

ωR2 = [ ( ω( Fo
2 - Fc

2 )2 ) / (ωFo
4 ) ]½ 
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GOF = [ ( ω( Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params. ) ]½ 

Appendix B2: X-ray crystallography data for 35. 

Experimental for C38H51O3PSi2 (b19206) 

 

Data Collection and Processing. The sample (b19206) was submitted by Maissa of the Baines 

research group at the University of Western Ontario. The sample was mounted on a MiTeGen 

polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made 

on a Bruker Kappa Axis Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions 

were determined from a symmetry constrained fit of 9860 reflections with 5.46° < 2θ < 61.94°. 

The data collection strategy was a number of ω and φ scans which collected data up to 63.316° 

(2θ). The frame integration was performed using SAINT.6  The resulting raw data was scaled and 

absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.7 

Structure Solution and Refinement. The structure was solved by using a dual space methodology 

using the SHELXT program.8 All non-hydrogen atoms were obtained from the initial solution. The 

hydrogen atoms were introduced at idealized positions and were treated in a mixed fashion.    The 

structural model was fit to the data using full matrix least-squares based on F2. The calculated 

structure factors included corrections for anomalous dispersion from the usual tabulation. The 

structure was refined using the SHELXL program from the SHELXTL suite of crystallographic 

software.9 Graphic plots were produced using the Mercury program suite.10Additional information 

and other relevant literature references can be found in the reference section of this website 

(http://xray.chem.uwo.ca).  

 

 

 

 
6 Bruker-AXS, SAINT  version 2013.8, 2013, Bruker-AXS, Madison, WI 53711, USA 
7 Bruker-AXS, SADABS version 2012.1, 2012, Bruker-AXS, Madison, WI 53711, USA 
8 Sheldrick, G. M., Acta Cryst. 2015, A71, 3-8 
9 Sheldrick, G. M., Acta Cryst. 2015, C71, 3-8 
10 Gabe, E. J.; Le Page, Y.; Charland, J. P.; Lee, F. L. and White, P. S. J. Appl. Cryst. 1989, 22, 384-387 

http://xray.chem.uwo.ca/
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Table 1.  Summary of Crystal Data for b19206 

Formula C38H51O3PSi2 

Formula Weight (g/mol) 642.93 

Crystal Dimensions (mm) 0.289 × 0.189 × 0.098 

Crystal Color and Habit colourless prism 

Crystal System monoclinic 

Space Group P 21/c 

Temperature, K 110 

a, Å 11.509(3) 

b, Å 21.803(5) 

c, Å 14.804(4) 

,° 90 

,° 106.380(9) 

,° 90 

V, Å3 3563.8(16) 

Number of reflections to determine final unit cell 9860 

Min and Max 2 for cell determination, ° 5.46, 61.94 

Z 4 

F(000) 1384 

 (g/cm) 1.198 

, Å, (MoK) 0.71073 

, (cm-1) 0.179 
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Diffractometer Type Bruker Kappa Axis Apex2 

Scan Type(s) phi and omega scans 

Max 2 for data collection, ° 63.316 

Measured fraction of data 0.999 

Number of reflections measured 179963 

Unique reflections measured 11977 

Rmerge 0.0553 

Number of reflections included in refinement 11977 

Cut off Threshold Expression I > 2sigma(I) 

Structure refined using full matrix least-squares using F2 

Weighting Scheme w=1/[sigma2(Fo2)+(0.0586P)2+1.71

70P] where P=(Fo2+2Fc2)/3 

Number of parameters in least-squares 447 

R1 0.0438 

ωR2 0.1124 

R1 (all data) 0.0662 

ωR2 (all data) 0.1255 

GOF 1.037 

Maximum shift/error 0.001 

Min & Max peak heights on final F Map (e-/Å) -0.568, 0.597 

Where: 

R1 =  ( Fo| - |Fc| ) /  Fo 

ωR2 = [ (ω(Fo
2 - Fc

2 )2 ) / (ωFo
4 ) ]½ 
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GOF = [ (ω(Fo
2 - Fc

2 )2 ) / (No. of reflns. - No. of params.)]½ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

94 

 

Curriculum Vitae 

 

Education                B.Sc. Honors Chemistry 

 The University of Western Ontario 

 2013 – 2017  

 4491 Supervisor: Dr. Kim Baines 

 

Presentations “Addition of Phosphorus Oxides to Ditetrelenes” Maissa Belcina, 

Bahareh Farhadpour, Nada Y. Tashkandi, and Kim M. Baines*, CSC 

2018 

 

Related Experience Research Assistant 

 Baines Group 

 May 2017 – August 2017 

 

Graduate Teaching Assistant 

 2017 – 2019  

 Courses: Chemistry 2213 (Organic Chemistry for Life Sciences), 

Chemistry 2223 (Organic Chemistry of Biological Molecules), 

Chemistry 3373 (Organic Chemistry III: Reactions and Strategies for 

Synthesis) 

 

Course Grades       9503R (Advanced NMR Spectroscopy I) – 83 

  9507Q (Advanced Chemical Communications) – 90 

 9521S (Catalysis) – 87 

 9603S (Advanced NMR Spectroscopy II) – 87 

 9657 (Seminar) – PASS 

 


	The Reactivity of Ditetrelenes Towards Organophosphorus Oxides
	Recommended Citation

	tmp.1566410149.pdf.sQcui

