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Abstract
In this thesis, we look at a novel way of finding roots of a scalar polynomial using eigenvalue
techniques. We extended this novel method to the polynomial eigenvalue problem (PEP). PEP
have been used in many science and engineering applications such vibrations of structures,
computer-aided geometric design, robotics, and machine learning. This thesis explains this
idea in the order which we discovered it.

In Chapter 2, a new kind of companion matrix is introduced for scalar polynomials of the
form c(λ) = λa(λ)b(λ) + c0, where upper Hessenberg companions are known for the polyno-
mials a(λ) and b(λ). This construction can generate companion matrices with smaller entries
than the Fiedler or Frobenius forms. This generalizes Piers Lawrence’s Mandelbrot companion
matrix. The construction was motivated by use of Narayana-Mandelbrot polynomials.

In Chapter 3, we define Euclid polynomials Ek+1(λ) = Ek(λ)(Ek(λ) − 1) + 1 where E1(λ) =

λ+ 1 in analogy to Euclid numbers ek = Ek(1). We show how to construct companion matrices
Ek, so Ek(λ) = det(λI − Ek) is of height 1 (and thus of minimal height over all integer compan-
ion matrices for Ek(λ)). We prove various properties of these objects, and give experimental
confirmation of some unproved properties.

In Chapter 4, we show how to construct linearizations of matrix polynomials za(z)d0 + c0,
a(z)b(z), a(z) + b(z) (when deg(b(z)) < deg(a(z))), and za(z)d0b(z) + c0 from linearizations
of the component parts, matrix polynomials a(z) and b(z). This extends the new companion
matrix construction introduced in Chapter 2 to matrix polynomials.

In Chapter 5, we define “generalized standard triples” which can be used in constructing
algebraic linearizations; for example, for H(z) = za(z)b(z) + c0 from linearizations for a(z)
and b(z). For convenience, we tabulate generalized standard triples for orthogonal polyno-
mial bases, the monomial basis, and Newton interpolational bases; for the Bernstein basis;
for Lagrange interpolational bases; and for Hermite interpolational bases. We account for the
possibility of common similarity transformations. We give explicit proofs for the less familiar
bases.

In Chapter 6, we investigate the numerical stability of algebraic linearization, which re-uses
linearizations of matrix polynomials a(λ) and b(λ) to make a linearization for the matrix poly-
nomial P(λ) = λa(λ)b(λ) + c. Such a re-use seems more likely to produce a well-conditioned
linearization, and thus the implied algorithm for finding the eigenvalues of P(λ) seems likely to
be more numerically stable than expanding out the product a(λ)b(λ) (in whatever polynomial
basis one is using). We investigate this question experimentally by using pseudospectra.

Keywords: matrix, polynomial, matrix polynomial, linearizations, pseudospectra, Bo-
hemian, companion matrix, comrade matrix, eigenvalues
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Summary for lay audience
Matrix polynomials have been used in many scientific and engineering applications, ranging
from vibrations of structures including buildings and aircrafts to machine learning. This thesis
studies new and effective methods for solving design problems with such models. This thesis
provides new theory and new algorithms. We introduce several new ideas including minimal
height companion matrices which promise more numerically stable algorithms. A numerically
stable algorithm gives exact solutions to a nearby problem. This thesis extends this result to
the case where the polynomial coefficients are matrices themselves i.e. matrix polynomials.
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Chapter 1

Introduction

For this thesis, we are interested in finding solutions to univariate scalar and matrix polynomial
problems numerically. To solve for the zeros in the scalar case, we convert the polynomial
problem into an eigenvalue problem, where we build a matrix whose eigenvalues are nearly
identical to the solution of the polynomial problem. Such a matrix is called a companion ma-
trix. Rather than using commonly-used constructions such as Frobenius [1] and Fiedler [2], we
introduce a new construction for the companion matrix, first thought of by Piers W. Lawrence
for the Mandelbrot matrices. We generalized his construction for polynomials in the form

p(z) = za0(z) · a1(z) · · · an(z) + c ,

where n is an integer greater than 0, ai(z) are scalar polynomials with deg(ai(z)) > 0, and c ∈ C.
We then extended this construction to the matrix polynomials that were in the form

P(λ) = λa(λ)b(λ) + c , (1.1)

where a(λ) and b(λ) are matrix polynomials expressed in any polynomial basis with their
coefficients of the same dimension Cr×r, and c ∈ Cr×r. In this case, instead of calling the
matrix a companion, we use the term linearization as it is conventional.

This chapter breaks down the scalar polynomial problem and the polynomial eigenvalue
problem, separately, and then gives an outline of this thesis.

1.1 Finding solutions to a scalar polynomial
Polynomial system models are used extremely frequently in mathematics, engineering, and
science. These systems have been studied extensively, such computer aided geometric design
by Sederberg [7] and robotics by Sommese and Wampler [8]. In the first part of this thesis, we
focus on univariate scalar polynomials.

A scalar polynomial expressed in the monomial basis is defined by

A(z) =

n∑
i=0

ziai , ai ∈ C , an , 0 .

The article [5] surveys efficient methods to solve these polynomials, ranging from iterative
methods to multi-point methods to methods based on rational approximation and more. One

1



2

method that we are particularly interested in is to solve for the roots of a scalar polynomial
is to convert the problem into an eigenvalue problem. The most popular construction is the
Frobenius companion. The generalized companion matrix construction is

M1(z) = z


an 0 · · · 0

0 1 0
...

... 0 . . . 0
0 · · · 0 1

 −

−an−1 −an−2 · · · −a0

1 0 · · · 0

0 . . .
. . .

...
0 0 1 0

 , (1.2)

where det (M1(z)) = A(z). The permutations of equation (1.2),

M2(z) = z


1 0 · · · 0

0 . . . 0
...

... 0 1 0
0 · · · 0 an

 −


1 0 · · · 0

0 . . .
. . .

...
0 0 1 0
−a0 −a1 · · · −an−1


M3(z) = z


1 0 · · · 0

0 . . . 0
...

... 0 1 0
0 · · · 0 an

 −

0 · · · 0 −a0

1 . . .
... −a1

0 . . . 0
...

0 0 1 −an−1


M4(z) = z


an 0 · · · 0

0 1 0
...

... 0 . . . 0
0 · · · 0 1

 −

−an−1 1 0 0

−an−2 0 . . . 0
...

...
. . . 1

−a0 0 · · · 0


are also commonly used. Although the Frobenius construction is the most popular, there are
many other companion matrix constructions, such as the Fiedler construction and the construc-
tion that we will introduce in this thesis. Companion matrices are sometimes referred to as
comrade matrices or colleague matrices.

The polynomial that we are interested in is in the recursive form

p(z) = za(z)b(z) + c .

Our construction (Theorem 2.2.1) takes advantage of this form: if we know the companions
for a(z) and b(z), we can simply “glue” everything together, creating the companion for p(z).

We can show through a small example why it may be advantageous to use our companion
matrix construction rather than the Frobenius companion matrix construction. Let us take

p(z) = z(z + 1)(z + 1) + 1 (1.3)

= z3 + 2z2 + z + 1 . (1.4)
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Using Maple 2017, we can find the roots exactly:

−
1
6

3
√

100 + 12
√

69 −
2
3

1
3
√

100 + 12
√

69
−

2
3
,

1
12

3
√

100 + 12
√

69 +
1
3

1
3
√

100 + 12
√

69
−

2
3

+
i
2

√
3

−1
6

3
√

100 + 12
√

69 +
2
3

1
3
√

100 + 12
√

69

 ,
1

12

3
√

100 + 12
√

69 +
1
3

1
3
√

100 + 12
√

69
−

2
3
−

i
2

√
3

−1
6

3
√

100 + 12
√

69 +
2
3

1
3
√

100 + 12
√

69

 ,
which evaluated using 20 digit precision are

−1.7548776662466927601 ,
−0.12256116687665361998 − 0.74486176661974423660i ,
−0.12256116687665361998 + 0.74486176661974423660i ,

respectively.
The Frobenius companion matrix for this example would be

zI3 −

−2 −1 −1
1 0 0
0 1 0

 . (1.5)

The characteristic polynomial of equation (1.5) is∣∣∣∣∣∣∣∣
z + 2 1 1
−1 z 0
0 −1 z

∣∣∣∣∣∣∣∣ = (z + 2)

∣∣∣∣∣∣ z 0
−1 z

∣∣∣∣∣∣ +

∣∣∣∣∣∣ 1 1
−1 z

∣∣∣∣∣∣
= z2(z + 2) + z + 1

= z3 + 2z2 + z + 1 ,

which is equivalent to equation (1.4), which means that the eigenvalues of equation (1.5) are
the solutions to equation (1.4) if computed exactly. Using Matlab R2017a’s eig routine, the
eigenvalues of equation (1.5) are

−1.754877666246694 + 0.000000000000000i
−0.122561166876654 + 0.744861766619744i
−0.122561166876654 − 0.744861766619744i .

On the other hand, our companion matrix for this example would be

zI3 −

−1 0 −1
−1 0 0

0 −1 −1

 . (1.6)
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The characteristic polynomial of (1.6) is∣∣∣∣∣∣∣∣
z + 1 0 1

1 z 0
0 1 z + 1

∣∣∣∣∣∣∣∣ = (z + 1)

∣∣∣∣∣∣z 0
1 z + 1

∣∣∣∣∣∣ −
∣∣∣∣∣∣0 1
1 z + 1

∣∣∣∣∣∣
= (z + 1)z(z + 1) + 1

= z(z + 1)2 + 1

= z3 + 2z2 + z + 1 ,

which is also equivalent to equation (1.4) meaning that equation (1.6) is also a companion of
(1.4). Using Matlab’s eig routine, the eigenvalues of equation (1.6) are

−1.754877666246691 + 0.000000000000000i
−0.122561166876653 + 0.744861766619744i
−0.122561166876653 − 0.744861766619744i .

We can see that the eigenvalues of both companions are slightly different than the solution eval-
uated by Maple. This demonstrates the idea of “solving the exact solution to a nearby problem”,
thus resulting in nearly identical results. On another note, even though this is a small example,
we can see that equation (1.6) has lower height compared to equation (1.5) since our con-
struction does not require the multiplication between coefficients. Lower height becomes more
important for larger problems by offering smaller condition number of the eigenvalues, which
suggests better backward stability. We demonstrate this by using pseudospectra in chapters 3
and 6.

1.2 Polynomial eigenvalue problem
For the matrix polynomial case, polynomial eigenvalue problems (PEP) arise in many applica-
tions. In Mackey et al. [4], the authors mention applications in extreme designs, such as high
speed trains, optoelectronic devices, micro-electromechanical systems and “superjumbo” jets
such as the Airbus 380. This particular application presents a challenge for the computation
of the resonant frequencies of these structures since these extreme designs often lead to eigen-
problems with poor conditioning. Other applications of PEP can be found in survey articles
such as Güttel and Tisseur [3] and Mehrmann and Voss [6].

The polynomial eigenvalue problem is to find scalars λ and nonzero vectors x and y satis-
fying P(λ)x = 0 and y∗P(λ) = 0 where

P(λ) =

m∑
i=0

φi(λ)Ai , Ai ∈ Cn×n , Am , 0

is a matrix polynomial of degree m and φi(λ) is any polynomial basis. If det P(λ) is not a zero
polynomial, then the matrix polynomial is regular. For matrix polynomials expressed in the
power basis, when Am is the identity matrix, the matrix polynomial is classified as a monic n×n
matrix polynomial. On the other hand, if the leading matrix coefficient is not necessarily the
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identity matrix or even invertible, but not identically equal to zero, then the matrix polynomial
is classified as a non-monic n × n matrix polynomial. Chapters 4 to 6 consider these cases in
various polynomial bases. Chapter 6 also gives an example where the leading coefficient of the
matrix polynomial is singular.

The standard way of solving this problem is by linearization, where we convert the matrix
polynomial P(λ) into a linear polynomial

L(λ) = λC1 + C0

where C0, C1 ∈ Cmn×mn, whose eigenvalues are nearly identical to the solution of the matrix
polynomial. It is guaranteed that both P(λ) and L(λ) have the same spectrum if

E(λ)L(λ)F(λ) =

[
P(λ) 0

0 I(m−1)n

]
where E(λ) and F(λ) are unimodular. Chapter 5 presents the linearizations for bases with
three-term recurrence relations, the Bernstein basis, the Lagrange interpolational basis, and the
Hermite interpolational basis.

For this thesis, we are interested in matrix polynomials that are in the recursive form shown
in equation (1.1). In Chapter 4, we extend the construction from Theorem 2.2.1 to the matrix
polynomial case, which we call algebraic linearizations (Theorem 4.3.5). Due to the similarly
in the construction between the scalar polynomial and matrix polynomial case, we also be-
lieve that algebraic linearizations can offer better backward stability for larger problems due to
having lower height. We explore this through numerical experiments in Chapter 6.

1.3 Outline
This thesis is based on five papers. Chapters 2 and 3 discuss the construction of companion
matrices for scalar polynomials. Chapters 4 extends the theorems from the previous two chap-
ters to the the matrix polynomial case. Chapter 5 provides the standard triples for various
polynomial bases which is used in the construction of the linearization introduced in Chapter
5. Lastly, Chapter 6 examines the backward stability of the linearization from Chapter 4.

Chapter 2 introduces a new construction of a companion matrix for scalar polynomials in
the form

p(z) = za(z)b(z) + c

such as the Mandelbrot polynomials,

p0(z) = 0

pn+1(z) = zp2
n(z) + 1

and the Narayana-Mandelbrot polynomials

q0(z) = 0
q1(z) = 1

qn+1(z) = zqn(z)qn−1(z) + 1
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for n ≥ 0. We prove that this construction is indeed a companion matrix by using Schur
factoring and Laplace expansion. We also introduce the notion of height of a matrix. In this
chapter, we define height as the largest element minus the smallest element in the population.
We use a different definition of height in Chapter 3.

Chapter 3 generalizes the construction of companion matrix that was introduced in the
previous chapter. This generalization was successfully proven to be correct from working on a
test problem that was posed by Don Knuth: the Euclid polynomials

E1(λ) = λ + 1
En+1(λ) = λEn(λ)En−1(λ) · · · E1(λ) + 1

for n > 0. Euclid polynomials arose from the Euclid number. In the chapter, we establish some
properties for Euclid numbers and Euclid polynomials. We also looked at the conditioning of
the generalized companion matrix by computing the condition number for both the evaluation
of the polynomial and the companion matrix and seeing the growth as the degree of the poly-
nomial increases. We also show through using pseudospectra that using companion matrices
is the best method for computing the roots of the Euclid polynomials. We introduce the term
“Bohemian” matrices in this chapter.

Chapter 4 extends the theory from Chapter 2 and 3 to matrix polynomials. Using a similar
construction to the scalar polynomial case, we were successful in using this construction for
matrix polynomials in the form h(z) = za(z)b(z) + c0 where a(z) and b(z) are matrix poly-
nomials and c0 is a matrix. We call this linearization construction algebraic linearizations.
Theorem 4.3.5 is the main theorem of the chapter, and we used the Schur complement to prove
that our linearization construction is indeed a linearization. We also perform a few numerical
experiments at the end of the chapter. We introduce the notion of “rhapsody” in this chapter.

Chapter 5 is an addition to Chapter 3: we define generalized standard triples X, zC1−C0, Y
of regular matrix polynomials P(z) ∈ Cn×n in order to use the representation X(zC1 −C0)−1Y =

P−1(z) for z < Λ(P(z)) (which is needed for the construction of the algebraic linearization)
in most commonly used polynomial bases. At the end of the chapter, there are numerical
experiments for some of the polynomial bases to demonstrate that the standard triples provided
in the chapter are correct.

Chapter 6 explores the backward stability of algebraic linearizations. We note in the chap-
ter that the standard theory for backward stability does not applied for algebraic linearizations
since the matrix polynomial in its factored for is not a linear combination of the basis ele-
ments, which is required for the standard theory to hold. We also included several numerical
experiments, in which we plot the pseudospectra for both the matrix polynomials and their
linearizations. From the experiments, we have seen some cases where the algebraic lineariza-
tion has better backward stability in comparison to commonly-used linearizations such as the
frobenius linearization.
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Chapter 2

A new kind of companion matrix

2.1 Introduction
Recently, we generalized the Mandelbrot polynomials

pn+1 = zp2
n + 1 p0 = 0

to the Fibonacci-Mandelbrot polynomials

qn+1 = zqnqn−1 + 1 q0 = 0, q1 = 1

and generalized Piers Lawrence’s supersparse1 companion matrix for pn [8] to an analogous
one for qn. See [4], [5] and [7] for details, though we summarize these constructions below.

If pn = det (zI −Mn) for the Mandelbrot polynomials, the subdiagonals of Mn are all −1
which gives

Mn+1 =

 Mn −cnrn

−rn 0
−cn Mn

 , (2.1)

where rn =
[

0 0 . . . 1
]

and cn =
[

1 0 · · · 0
]T

are both of length dn, where dn is
the degree of pn(z) or the dimension of Mn. This is Piers Lawrence’s original construction
[8].These are remarkable matrices: they contain only −1 or 0, and therefore are Bohemian
matrices2; yet the characteristic polynomial contains coefficients that grow exponentially in
the degree dn (doubly exponentially in n).

For the Fibonacci-Mandelbrot polynomials, the degree of qn = Fn − 1, where Fn is the nth
Fibonacci number, and the construction contains matrices of different size. We begin with

M3 =
[
−1

]
and

M4 =

[
0 1
−1 −1

]
1A matrix is supersparse if it is sparse and its nonzero elements are drawn from a small set, e.g. {−1, 1}
2The name “Bohemian” is an acronym for Bounded height matrix of integers. See example OEIS A272658

8
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to construct our recursive companion matrix:

Mn+1 =

 Mn (−1)dn+1cnrn−1

−rn 0
−cn−1 Mn−1

 ,
where rn =

[
0 0 · · · 1

]
and cn =

[
1 0 · · · 0

]T
are, as before, the row and column

vectors of length dn. This gives a matrix of slightly greater height than (2.1) because the entries
may be {−1, 0, 1}.

The surprising analogy between these two families of supersparse companions led us to
conjecture and prove the following.

2.2 Main result
Theorem 2.2.1 Suppose a(z) = det(zI − A), b(z) = det(zI − B), and both A and B are upper
Hessenberg matrices with nonzero subdiagonal entries, and

α =
1(∏da−1

j=1 a j+1, j

) (∏db−1
j=1 b j+1, j

)
is the reciprocal of the product of the subdiagonal entries of A and B, and da = degz a and
db = degz b, so the dimension of A is da × da and the dimension of B is db × db. Suppose both
da and db are at least 1. Then if

C =

 A −αc0carb
−ra 0

−cb B


where ra =

[
0 0 · · · 1

]
of length da, cb =

[
1 0 · · · 0

]T
of length db, we have

c(z) = det (zI − C) = z · a(z)b(z) + c0.

Remark Proving this theorem automatically proves the validity of the constructions of the
supersparse companion matrices for pn, qn, and rn.

Remark Starting with a polynomial c(z), we see that there are potentially many such a(z) and
b(z). This freedom may be quite valuable or, it may be an obstacle.

Proof Partition

zI − C =

[
C11 C12

C21 C22

]
where C22 = zI − B is nonsingular if z is not an eigenvalue of B, i.e. b(z) , 0. Later we will
remove this restriction. Also,

C21 =

 1

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is db × (da + 1) and has only one nonzero element, which is a 1 in the upper right corner. Next,

C12 =

 αc0


is (1 + da) × db and again has only one nonzero element, αc0 in the upper right corner. [In fact,
c0 can be zero.] This leaves

C11 =


zI − A

0
...
0
0

1 z


which is da + 1 by da + 1.

The Schur factoring is[
C11 C12

C21 C22

]
=

[
I C12

0 C22

] [
C11 − C12C−1

22 C21 0
C−1

22 C21 I

]
with the computation of the Schur complement C11 −C12C−1

22 C21 going to do most of the work
in the proof. The Schur determinantal formula [10, Chapter 12] is then

det C = det (C22) det
(
C11 − C12C−1

22 C21

)
.

We have the following propositions.

1. zI − A and zI − B are upper Hessenberg because A and B are.

2. The first da columns of C−1
22 C21 are zero.

3. The final column of C−1
22 C21 is the solution, say −→v , of (zI − B)−→v = e1. Again, zI − B is

nonsingular.

4. By Cramer’s rule, the final entry in −→v , say v, is

v =

det
(
C22 ←−

db
e1

)
det (C22)

where the notation M←−
k

−→v means replace the kth column of M with the vector −→v [3].

5. Since C22 = zI − B is upper Hessenberg,

C22 ←−
db

e1 =



∗ ∗ ∗ · · · ∗ 1
−b21 ∗ ∗ · · · ∗ 0

−b32 ∗
...

...

−b43
. . .
. . .

∗ 0
−bdb,db−1 0


.
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Laplace expansion about the final column gives

det
(
C22 ←−

db
e1

)
= (−1)db−1(−1)db−1

db−1∏
j=1

b j+1, j

=

db−1∏
j=1

b j+1, j.

Therefore,

v =

∏db−1
j=1 b j+1, j

b(z)

because det C22 = det (zI − B) = b(z) by hypothesis.

6. Now

C12C−1
22 C21 =


αc0




∗
...
∗

v

 =


αc0v



is da + 1 by da + 1 and has its only nonzero entry, αc0v, in the upper right corner.

7. The Schur complement is therefore


zI − A

−αc0v
0
...
0

0 · · · 0 1 z


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and we compute det
(
C11 − C12C−1

22 C21

)
by Laplace expansion on the last column:

det
(
C11 − C12C−1

22 C21

)
= − (−1)daαc0v det



−a21 ∗ ∗ · ∗

−a32 ∗ ∗

−a43
...

. . .

−ada,da−1


+ z det (zI − A)

= − (−1)daαc0v
da−1∏
j=1

(
−a j+1, j

)
+ z · a(z)

=αv
da−1∏
j=1

a j+1, j · c0 + z · a(z)

=α ·

(∏db−1
j=1 b j+1, j

)
b(z)

·

da−1∏
j=1

a j+1, j

 · c0 + z · a(z)

=
c0

b(z)
+ z · a(z)

by the definition of α.

Therefore by the Schur determinantal formula

det (zI − C) = det (C22) det
(
C11 − C12C−1

22 C21

)
= b(z)

(
c0

b(z)
+ z · a(z)

)
= z · a(z)b(z) + c0.

Since the left hand side is a polynomial as is the right hand side, the formula will be true
even if b(z) = 0, by continuity.

\

2.3 Applications and examples
Sequence A000930 of the Online Encyclopedia of Integer Sequences, Narayana’s cows se-
quence, begins

1, 1, 1, 2, 3, 4, 6, 9, 13, 19, . . .

and is generated by Rn = Rn−1 + Rn−3 [13]. The connection to cows is that an ideal cow
produces a calf every year, starting in its fourth year. Narayana was a mathematician in 14th
century India. Various facts are known for this sequence, which is similar to the Fibonacci
sequence: for instance, the generating function is 1/(1 − x − x3). Many references are given in
the OEIS, but see also [12].
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We define the Narayana-Mandelbrot polynomials by r0 = 1, r1 = r2 = 1 and

rn+1 = zrnrn−2 + 1

for n ≥ 2. We construct a recursive family of companion matrices Rn, i.e. such that

rn(z) = det(zI − Rn).

Just as the Fibonacci-Mandelbrot polynomials, the construction contains matrices of different
sizes. However, for this family, we start with

R3 =
[
−1

]
,

R4 =

[
0 1
−1 −1

]
,

and

R5 =

 0 0 −1
−1 0 1

0 −1 −1

 .
Our construction is then

Rn+1 =

 Rn (−1)dn+1cnrn−2

−rn 0
−cn−2 Rn−2

 ,
where rn =

[
0 0 · · · 1

]
and cn =

[
1 0 · · · 0

]T
are, as before, the row and column

vectors of length dn = deg rn = Rn+1 − 1.
This construction also allows new matrix families. For instance, suppose s0 = 0, sn+1 =

z3s4
n + 1. Then if Sn is an upper Hessenberg companion for sn (with all −1 on the subdiagonal)

the matrix

Sn+1 =



Sn −cnrn

−rn 0
−cn Sn

−rn 0
−cn Sn

−rn 0
−cn Sn


is an upper Hessenberg companion for sn+1.

2.4 Concluding remarks
This is a genuinely new kind of companion matrix. We demonstrate this on Newton’s example
polynomial x3 − 2x − 5. We see that x3 − 2x − 5 = x(x2 − 2) − 5 = x(x −

√
2)(x +

√
2) − 5,
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Figure 2.1: Roots of Narayana-Mandelbrot polynomial, r36(z). The degree of r36(z) is 578,948.
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and companion matrices for x −
√

2 and x +
√

2 are just [+
√

2] and [−
√

2] respectively. Thus
a companion matrix for Newton’s polynomial is

√
2 5

−1
−1 −

√
2

 .
This matrix contains

√
2, unlike any previously recorded companion matrix. For unimodular

polynomials, such companion matrices may be of lower height than the Frobenius or Fiedler
[9] companions, and may offer better numerical condition.

We have now established that if c(z) = z · a(z)b(z) + c0 and A and B are upper Hessenberg
companion matrices for the polynomials a(z) and b(z) respectively, then

C =

 A −αc0carb
−ra 0

−cb B


is a companion matrix for c(z). One wonders immediately about a corresponding linearization,
LC, strong or otherwise, for the matrix polynomial

C(z) = zA(z)B(z) + C0 ,

if LA is a linearization for A, LB for B. Some very preliminary experiments, where LA and LB
were block upper Hessenberg with all blocks I, so α = 1, find that indeed

LC =


LA −C0

−I 0
−I LB


is a (strong) linearization for c(z), in the examples we tried.

In a paper to be submitted soon, we have now proved that this construction can be extended
to matrix polynomials. See [6].

A referee pointed out that Robol et al. [11] use a similar construction to linearize polyno-
mials of the form p(z) = a(z)b(z) + zc(z)d(z) to find the roots of rational functions, which can
also be applied to matrix polynomials.

We leave these extensions to future work.
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Chapter 3

Minimal height companion matrices for
Euclid polynomials

3.1 Introduction
The sequence en = 2, 3, 7, 43, 1807, . . . defined by e1 = 2 and the recurrence relation

en+1 = enen−1 · · · e2e1 + 1 = en(en − 1) + 1

for n ≥ 1, is known under various names: Euclid numbers, Sylvester’s sequence, or Ahmes
numbers. The sequence can be found at The Online Encyclopedia of Integer Sequences as
entry A000058. There, we find references to work of Erdös, Shparlinsky, Vardi, Sloane, Guy,
and other well-known number theorists and analysts.

These numbers, which we will call Euclid numbers, as they are called in [7, chapter 4],
have interesting properties. For instance, they are mutually relatively prime. Quoting [7],

“Euclid’s algorithm (what else?) tells us this in three short steps, because en mod em =

1 when n > m: gcd(en, em) = gcd(1, em) = gcd(1, 0) = 1.”

Euclid numbers grow doubly exponentially; indeed exercise 37, chapter 4 of [7] asks the reader
to prove1 that

en =

⌊
E2n

+
1
2

⌋
for a number E ≈ 1.264; here bxc is the floor of x, the largest integer not greater than x.

The name “Ahmes numbers” comes from a connection to so-called Egyptian fractions2.
Quoting Néstor Romeral Andrés from the A000058 entry,

“The greedy Egyptian representation of 1 is 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/1807 + · · · ”

and he then goes on to give a geometric dissection of a unit square (in words) proving this
assertion. Algebraically, we have the following.

1The hint there is to write en+1 −
1/2 = (en −

1/2)2 + 1/4 and consider 2−n log (en −
1/2).

2Quoting Exercise 9, p. 95 from [7], “Egyptian mathematicians in 1800 BC represented rational numbers
between 0 and 1 as sums of unit fractions 1/x1 + · · · + 1/xk where the xk were distinct positive integers.”

17
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Lemma 3.1.1 For n ≥ 1,

1 =

n∑
k=1

1
ek

+
1

en+1 − 1
.

Proof An easy induction: clearly 1 = 1/2 + 1/2 = 1/2 + 1/(3 − 1) so the statement is true for n = 1.
Then

1 =

n∑
k=1

1
ek

+
1

en+1 − 1

=

n+1∑
k=1

1
ek

+
1

en+1 − 1
−

1
en+1

=

n+1∑
k=1

1
ek

+
en+1 − en+1 + 1
en+1 (en+1 − 1)

=

n+1∑
k=1

1
ek

+
1

en+2 − 1
.

\

There are other properties too, but we hope that this is enough to whet your appetite because
we want to move on to what we call3 “Euclid polynomials.” Put

E1(λ) = λ + 1

and
En+1(λ) = λEn(λ)En−1(λ) · · · E1(λ) + 1

for n ≥ 1. Then, obviously, Ek(0) = 1 for k ≥ 1 and Ek(1) = ek for k ≥ 1. Possibly
these polynomials in the variable λ can shed some light on Euclid numbers. One could make
E0(λ) = 1 but this complicates later formulae to no purpose. The first few Euclid polynomials
are

E1 = λ + 1

E2 = λ2 + λ + 1

E3 = λ4 + 2λ3 + 2λ2 + λ + 1

E4 = λ8 + 4λ7 + 8λ6 + 10λ5 + 9λ4 + 6λ3 + 3λ2 + λ + 1 .

We will enumerate and prove some properties of these polynomials in the next section, but first
we confess: we’re not interested in Euclid polynomials because of their connection to Euclid
numbers. We are interested because we have a new technique for finding their roots, namely
by finding an equivalent eigenvalue problem (a so-called “companion matrix”) that has a very
interesting property of its own, namely that out of all integer matrices Ak having

Ek(λ) = det (λI − Ak)

the height of Ak—that is, the largest absolute value of any entry of Ak—is the least when we
use our method.

3The polynomials Ek(−λ) occur, not with this name, as sequence A225200 by Martin Renner.
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Remark H(A) = Height(A) = ‖ vec(A)‖∞ is actually a matrix norm. It is not, however,
submultiplicative:

H(AB) � H(A)H(B) .

For example, consider [
2 2
2 2

]
=

[
1 1
1 1

] [
1 1
1 1

]
.

We will find companion matrices for Ek(λ) of height 1, as small as possible for any integer
matrix. This is to be contrasted with the size of the largest polynomial coefficient of Ek(λ),
which since

Ek(1) =

2k−1∑
j=0

E j,k =

⌊
E2k

+
1
2

⌋
must at least be

1
2k−1 + 1

⌊
E2k

+
1
2

⌋
= O

(
E2k−O(k)

)
(the maximum cannot be smaller than the average). Here, we are denoting the coefficients of

Ek(λ) =

deg Ek∑
j=0

E j,kλ
j

by E j,k and claiming deg Ek(λ) = 2k−1, which we will prove in the next section. This massive
reduction in height has important numerical consequences. The eigenvalues of this “minimal
height companion matrix” will be much easier to compute in comparison to the roots of the
explicit polynomial (with its doubly-exponentially large coefficients).

This minimal height companion matrix would itself just be a curiosity, except that the
technique we use to generate it turns out to be quite general, and in fact can be extended to
matrix polynomials, giving so-called lower-height linearizations4. Euclid polynomials have a
special place in our hearts, though, because it was by finding their minimal height companion
matrices that we realized the technique was, in fact, general.

3.2 Properties of Euclid polynomials
Proposition 3.2.1 deg Ek(λ) = 2k−1.

Proof deg E1(λ) = deg λ + 1 = 1 = 21−1. Since

Ek+1(λ) = λEk(λ)Ek−1(λ) · · · E1(λ) + 1
= Ek(λ) (Ek(λ) − 1) + 1

for k ≥ 2, and independently for k = 1 when

E2(λ) = (1 + λ) · λ + 1 ,
deg Ek+1(λ) = 2 deg Ek(λ) .

If deg Ek(λ) = 2k−1, deg Ek+1(λ) = 2k+1−1. This establishes the inductive step. \
4Minimal height linearizations are an open question.
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Proposition 3.2.2 If Ek(λ) =
∑2k−1

j=0 E j,kλ
j, then all E j,k are positive integers,

E0,k = E2k−1,k = 1 ,

and

ek = Ek(1) =

2k−1∑
j=0

E j,k .

Proof

Ek+1(λ) = Ek(λ) (Ek(λ) − 1) + 1
= λEk(λ)Ek−1(λ) · · · E1(λ) + 1

has trailing coefficient 1 (set λ = 0) and leading coefficient 1 (the square of the leading coeffi-
cient of Ek(λ)). As for E j,k ≥ 1 being integral, the Cauchy product formula gives[

z j
]

Ek+1(λ) = E j,k+1

(the coefficient of z j of Ek+1)

=

j∑
`=0

E`,kÊ j−`,k

where

Ê j−`,k =

E j−`,k if ` < j
0 if ` = j

is a sum of products of positive integers, and hence a positive integer. The statement ek =∑2k−1

j=0 E j,k follows from the definition of E j,k. \

Proposition 3.2.3

max
0≤ j≤2k

E j,k+1 ≥

(
max

0≤ j≤2k−1
E j,k

)2

.

Proof From the Cauchy product in the last proposition, if j∗ is the index of the largest coeffi-
cient of Ek(λ), then for j = 2 j∗ in Ek+1(λ) the coefficient of

[
z j
]

is

2 j∑
`=0

E`,kE2 j−`,k

which, for ` = j∗, contains
E j∗,kE j∗,k = E2

j∗,k

which establishes the proposition. \

Proposition 3.2.4 The largest coefficient of Ek(λ) grows doubly exponentially with k.
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Proof 1

ek = Ek(1) =

2k−1∑
j=0

E j,k =

⌊
E2k

+
1
2

⌋
,

then

max
j

E j,k ≥
1

2k−1 + 1

⌊
E2k

+
1
2

⌋
= E2k−O(k) .

\

Proof 2 By inspection, max j E j,3 = 2. Since max j E j,4 = 10 > 22 = 21/4·23
= 21/4·k, we are well

on our way. Assume that max j E j,k = 2c12k
. Then max j E j,k+1 ≥

(
2c1·2k

)2
= 2c12k+1

. \

Proposition 3.2.5 The polynomials Ek(λ) are all mutually relatively prime, as polynomials
over Z.

Proof The proof is the same as that proving the ek are relatively prime integers: En(λ) ≡ 1
mod Em(λ) if n > m⇒ gcd(En(λ), Em(λ)) = gcd(1, Em(λ)) = 1. \

Proposition 3.2.6 The roots of Ek(λ) are simple.

Proof This is true for E1(λ) and E2(λ).
Assume to the contrary that for some k there exists a λ∗ for which both

Ek+1(λ∗) = 0

and
E′k+1(λ∗) = 0 .

Then since for any 1 ≤ j ≤ k

E j+1(λ) = E j(λ)
(
E j(λ) − 1

)
+ 1 ,

we have
E′j+1(λ) =

(
2E j(λ) − 1

)
E′j(λ) .

Therefore, either Ek(λ∗) = 1/2 (which is impossible because then Ek+1(λ∗) = 1/2(−1/2) + 1 = 3/4 ,
0) or E′k(λ

∗) = 0. If there exists any ` < k for which E′`(λ
∗) , 0 while E′`+1(λ∗) = 0, then

E`(λ∗) = 1/2 because E′`+1(λ) = (2E`(λ) − 1) E′`(λ). If E`(λ∗) = 1/2, then E j(λ∗) for j ≥ ` is
rational because

E j+1(λ∗) = E j(λ∗)(E j(λ∗) − 1)

is a product of rational numbers.
This gives an ultimate contradiction because

Ek(λ∗)(Ek(λ∗) − 1) + 1 = 0

only if Ek(λ∗) = −1/2 ± i
√

3/2 < Q. \
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Proposition 3.2.7
1
λ

=

n∑
k=1

1
Ek(λ)

+
1

En+1(λ) − 1
. (3.1)

Proof Identical to Lemma 3.1.1 on substituting Ek(λ) for ek and noting

1
λ

=
1

λ + 1
+

1
λ2 + λ

=
λ

λ2 + λ
+

1
λ2 + λ

=
λ + 1
λ(λ + 1)

=
1
λ
.

\

Remark The series
∑

k≥1 E−1
k (λ) converges if λ > 0 and diverges if λ = −1/2.

Conjecture 3.2.8 There is convergence outside the “cauliflower” in Figure 3.1 and divergence
inside the cauliflower.

Definition We say that a polynomial p(λ) is unimodal [9] if its coefficient vector [a0, a1, · · · , an]
of positive integers has first monotonic increase to a peak (which may occur twice or more at
adjacent coefficients) and then decay to an = 1. Notice that E1(λ), E2(λ), E3(λ) and E4(λ) are
unimodal.

Conjecture 3.2.9 The Euclid polynomials are unimodal.

Remark The doubly exponential growth of the polynomial coefficients mean that the condi-
tioning of the evaluation of the polynomial grows doubly exponentially in k. Note that since
the degree deg Ek = 2k−1, this means that the conditioning grows exponentially in the degree.
In contrast, we will see in section 3.5 a much better condition number of the eigenvalues of
the companions Ek, sublinear in the degree. This means that evaluation (and rootfinding) re-
quires significantly more precision (and therefore expense) if the monomial basis is used. The
following definition is used in [6] and [5]:

Bk(λ) =

2k−1∑
j=0

E j,k |λ|
j

as a “condition number for the evaluation of the polynomial Ek(λ)” for a given λ. One can
show that if

pk(λ) =

2k−1∑
j=0

E j,k(1 + δ j)λ j



3.3. A brief history of the technique 23

then pk(λ) differs from Ek(λ) by at most

|pk(λ) − Ek(λ)| ≤ Bk(λ)
(

max
0≤ j≤2k−1

|δk|

)
.

This shows that relative errors δk in the coefficients produce absolute errors in the values at
most B(λ)||δ||∞. From the foregoing discussion it is evident that on 0 ≤ λ ≤ 1

Bk(λ) = O
(
E2k)

= O
(
E2 deg Ek(λ)

)
is exponentially large in the degree of Ek(λ). That is, in order to ensure that numerical errors
in evaluation (which, by standard backward error results are equivalent to O(µ), where µ is the
unit roundoff, relative changes in the coefficients) would require that the unit roundoff to be of
size

µ = O
(
E−2 deg Ek(λ)

)
which in turn requires O

(
2 deg Ek

)
bits of precision; this is an exponential number of bits

of precision, in k. To evaluate Ek(λ) (or to find its roots) one would need to use O
(
2k

)
bit

arithmetic. This is of course possible, but the cost of multiplication of high precision number
grows faster than the precision length.

Luckily, there’s a better way: minimal height companion matrices.

3.3 A brief history of the technique
In 2011, Piers W. Lawrence invented a family of companion matrices for the Mandelbrot poly-
nomials5, defined by p1(λ) = 1 and for n ≥ 0

pn+1(λ) = λp2
n(λ) + 1 .

5It can be shown that the Euclid polynomials are related to the Mandelbrot polynomials. We can rewrite the
Euclid polynomials as

fn+1 = f 2
n +

1
4

4 fn+1 =
1
4

(4 fn)2 + 1 .

We can then let un = 4 fn, so

un+1 =
1
4

u2
n + 1 ,

which recurrence is the same as for the Mandelbrot polynomials, except with z = 1/4 and

u1 = 4 f1 = 4 (e1 −
1/2) = 2 ;

whereas p1 = 1.
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We have p2(λ) = λ+ 1 with a (trivial) companion matrix M2 = [−1]. Piers invented a recursive
construction,

Mn+1

 Mn −cnrn

−rn 0
−cn Mn


where rn =

[
0 0 · · · 1

]
and cn =

[
1 0 · · · 0

]T
, given

pn+1(λ) = det (λI −Mn+1)

= λ det (λI −Mn)2 + 1 .

In her Masters’ thesis [2], Eunice Chan extended this construction to Fibonacci-Mandelbrot
polynomials qn(λ) satisfying

q0(λ) = 0
q1(λ) = 1

qn+1(λ) = λqn(λ)qn−1(λ) + 1

and Narayana-Mandelbrot polynomials rn(λ) satisfying

r0(λ) = 1
r1(λ) = 1
r2(λ) = 1

rn+1(λ) = λrn(λ)rn−2(λ) + 1 .

Chan used these to explore the comparative efficiency of linearization (companion matrices)
and homotopy methods (i.e. following paths, also called continuation methods, from roots of
pn(λ) to roots of pn+1(λ) and similarly for the others). [Spoiler alert: homotopy wins, hands
down.]

These families of polynomials all have similarities and it is not really surprising that ana-
logues of Piers Lawrence’s construction work to make companion matrices.

Donald E. Knuth suggested we look at Euclid numbers (polynomials). The fact that it
worked immediately suggested that the construction was in fact general, which led to the papers
[3] and [4].

We return from that generality to the Euclid polynomials, which are interesting enough in
themselves to deserve further attention. In the rest of this paper, we show how this general
technique of construction applies to the Euclid polynomials, how far we can push it, and what
we learn in the process.

3.4 Computation of eigenvalues
Suppose Ek = det (λI − Ek). Each identity matrix I is a different size, but this should be natural
enough: it will be deg Ek by deg Ek if it’s being used in λI − Ek. Notice that this amounts to a
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Figure 3.1: All 16, 384 roots of the Euclid polynomial E15(λ) with circle of radius 1.1180, the
approximate magnitude of the largest |λ + 1/2|.

strong induction—we will need companion matrices for each prior polynomial in order to find
one for Ek+1. Then put

Ẽk :=



0
−1 E1

−1 . . .

−1 Ek−2

−1 Ek−1


= Ek −


0 · · · 0 1

0
...
0

 .

Remark det
(
λI − Ẽk

)
= Ek(λ)− 1 = λ

∑k−1
j=1 E j(λ); subtracting 1 just changes the final column

of this companion (see [4]).

This is upper Hessenberg, but block lower triangular; therefore, its determinant is the prod-
uct of the determinants of the blocks (see e.g. [8]) , and similarly for the resolvent [10], like
so:

det
(
λI − Ẽk

)
= λE1(λ)E2(λ)E3(λ) · · · Ek−1(λ) .

Therefore, if we put a 1 in the upper right corner (we will see shortly it must be +1),

Ek+1 :=

 Ẽk
1

−1 Ek

 ,
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we will have Ek+1(λ) = det (λI − Ek+1) for k ≥ 2 and Ek+1 will be (irreducibly) upper Hessen-
berg if Ek is.

Explicitly, E1 = [−1] and we may take

E2 =

[
0 1
−1 −1

]

because det (λI − E2) = det
(
λ −1
1 λ + 1

)
= λ (λ + 1) + 1 = E2(λ). Therefore,

E3 =


0 1
−1 −1

−1 0 1
−1 −1

 .
To confirm, we form

λI − E3 =


λ 0 0 −1
1 λ + 1 0 0

1 λ −1
1 λ + 1

 .
A short computation shows

det (λI − E3) = λ (λ + 1) (λ (λ + 1) + 1) + 1
= λE1(λ)E2(λ) + 1
= E3(λ)

as desired. Emboldened, we build

E4 =



0 1
−1 −1

−1 0 1
−1 −1

−1 0 1
−1 −1

−1 0 1
−1 −1


and direct computation again shows

det (λI − E4) = λ (λ + 1) (λ (λ + 1) + 1) (λ (λ + 1) (λ (λ + 1) + 1) + 1) + 1
= λE1(λ)E2(λ)E3(λ) + 1
= E4(λ) .

Theorem 3.4.1
Ek(λ) = det (λI − Ek)

where Ek is defined as above.
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Proof This follows immediately from Theorem 4 of [4]. An easy proof follows from linearity
of (λI − Ek) in its first row, and that the determinant of a block lower triangular matrix is
the product of the determinants of the blocks; the 1 in the corner contributes (−1)deg(Ek(λ))−1

·

(−1)deg(Ek(λ))−1 = +1. \

Lemma 3.4.2 The upper right corner of Ek is always 1.

Proof As mentioned in Theorem 4 from [4], the element in the upper right corner is dependent
on the degree of the polynomial, in this case (−1)deg Ek for Ek. Since the degree of the Euclid
polynomials is

deg Ek = 1 + deg (Ek−1) − 1 + deg Ek−1

= 2 deg Ek

and deg E1 = 1; therefore,
deg Ek = 2k−1 ,

which means that deg Ek is always even for k ≥ 2, and thus, the upper right corner of Ek is
always 1. We get (−1)deg Ek−1 from Laplace expansion and (−1)deg Ek−1 from minor and therefore,(

(−1)deg Ek−1
)2

= +1 .

\

Remark These “Bohemian” matrices6 contain only entries that are −1, 0, or 1: the bound on
that height of the entries is just

∣∣∣mi j

∣∣∣ ≤ 1. But the coefficients of the Euclid polynomials Ek(λ)
are decidedly not bounded. This is just like the Mandelbrot polynomials, whose (polynomial
coefficient) height grows exponentially with their degree dn = 2n−1 − 1, and doubly exponen-
tially with n. The eigenvalue problems we have found are considerably easier to solve than the
monomial basis polynomials are!

Remark There are many choices here—these companion matrices are in no way unique. For
instance, we could use any of[

0 1
−1 −1

]
,

[
0 −1
1 −1

]
,

[
−1 −1

1 0

]
,

[
−1 1
−1 0

]
for E2; and we may arrange the blocks for λ (i.e. [0]), E1, E2, . . ., Ek−1 in any order; at this
time we do not know which order is best numerically, if any.

6A matrix family is Bohemian if its entries come from a single discrete (and hence bounded) set. The name
comes from “Bounded Height Matrix of Integers.”
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Figure 3.2: Log-log plot of condition numbers of the evaluation of the Euclid polynomials
and the 2-norm condition number of their companions from k = 2 to k = 12. The computed
slope for the condition number for the matrices is 0.618 giving an estimated condition number
growth as Ke ∼ d0.618 which is better than the expected O(d2) behaviour [1]. The curious
three digit coincidence with (

√
5 − 1)/2 is noted. The doubly exponential growth of the polynomial

conditioning appears as exponential growth in this log log plot.

3.5 Conditioning of the eigenvalues of Ek

Since the eigenvalues are all simple, Ek is diagonalizable and the condition number of each
eigenvalue can be expressed using its unit left eigenvector yH and unit right eigenvector x with
yHEk = λyH and Ekx = λx, ‖x‖ = ‖yH‖ = 1 and the condition number is

Ke = 1/(yH x) .

We expect from our experience with random matrices that Ke = O(d2) where d is the dimension
of the matrix, here the degree of the polynomial.

We can also look at the pseudospectra of the matrices that is, the eigenvalues of perturbed
matrices [5]. Given an ε > 0, a pseudospectrum Λε(E6) is defined by

Λε(E6) =

{
z
∣∣∣∣∣ ‖(zI − E6)−1‖2 ≥

1
ε

}
=

{
z
∣∣∣∣∣ σdeg(E6) (zI − E6) ≤ ε

}
.

Here σdeg(E6) is the smallest singular value of zI − E6. The contour plot can then be created
using

f (z) = σdeg(E6) (zI − E6) > 0 .

Figure 3.3c shows the pseudospectra of E6 for ten logarithmically-spaced values of ε between
10−2 and 10−1.



3.6. Do we have to use matrices? 29

To compare the conditioning of our companion matrices to the polynomials, we can also
look at the pseudozeros of the polynomials. This allows us to look at the relationship between
the condition number for the evaluation of polynomials and the condition number for rootfind-
ing for polynomials [5]. The pseudozeros are defined as

Λε (E6(λ)) =

{
λ

∣∣∣∣∣ |E6(λ)| ≤ ε · B6(λ)
}
, (3.2)

where B6(λ) = E6(|λ|). Figure 3.3a shows the contour plot of the pseudozeros of E6(λ), and
Figure 3.3b the pseudozeros of Euclid polynomial expanded about λ = −1/2, denoted as E6(u).
Using the definition of the pseudozeros from equation (3.2), we can simply compute |E6(λ)|/E6(|λ|)

for various λ in the area of interest and use Matlab’s contour function to create the contour
lines.

We can see from these figures that the roots computed from the companion matrix are
well-conditioned. That the spacing are similar in the two figures, when ε is so much smaller in
Figure 3.3a demonstrates unequivocally that the eigenvalue problem is much better conditioned
(a factor about 103). This factor grows exponentially, as shown in Figure 3.2. We consider that
these figures are “similar” if

• there are circles around individual roots/eigenvalues,

• there are some regions surrounding merged roots/eigenvalues,

• spacing between contours in about 1% of the figure diameter.

3.6 Do we have to use matrices?
Expanding about λ = −1/2 is clearly better than expanding about λ = 0. Put u = λ + 1/2, and
then

E1(λ) = λ + 1 = u +
1
2

= E1(u)

E2(u) = u2 +
3
4

E3(u) = u4 +
1
2

u2 +
13
16

E4(u) = u8 + u6 +
7
8

u4 +
5

16
u2 +

217
256

and these polynomials only have even powers (after k = 1); this makes the polynomials subject
to only half as much rounding error because zero coefficients cannot (are not allowed to) be
perturbed. More, the coefficients of the even order terms appears to grow more slowly.

However, they do still grow doubly exponentially with k (exponentially with the degree).
The first polynomial to have a coefficient larger than 1 in magnitude is E5(u) = u16 +2u14 + · · ·+
57073/65536 and thereafter the repeated squaring gives runaway growth. We present the graphs of
the condition numbers for the evaluation of Ek(λ)

B̃k(u) =

deg(Ek)∑
j=0

∣∣∣v j

∣∣∣ |u| j



30

(a) Pseudozeros of E6(λ) for 10
logarithmically-spaced values of ε be-
tween 10−9.5 and 10−8.5. The eigenvalues
between −1.5 ≤ Re(λ) ≤ −0.5 is quite
ill-conditioned. We only change E6(λ)
by 3 × 10−6% at most.

(b) Pseudozeros of E6(u) for 10
logarithmically-spaced values of ε

between 10−3 and 10−2. This is sub-
stantially better-conditioned (and more
symmetric) than the monomial basis
(Figure 3.3a) changing Ek(λ) by 1% at
most.

(c) Pseudospectra of E6 for 10
logarithmically-spaced values of ε

between 10−2 and 10−1. This is the
best-conditioned of the representations.
This figure shows the results of changing
E6 by 1–10%.

Figure 3.3: The similar spacings between Figures 3.3a, 3.3b and 3.3c demonstrate the superior
conditioning of the companion matrix, owing to its minimal height.
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on 0 ≤ u ≤ 1.1180, a circle that contains the roots, in Figure 3.4. We see that for inside
the interior of the cauliflower, this representation is well-conditioned (though uninteresting—
nothing much is happening there) but near the boundary the exponential growth takes over.

We are forced to conclude that the minimal height companion matrices are exponentially
better than these polynomials too.

Implicit in our discussion is the observation that the minimal height companion matrix is
even more advantageous for larger k. The condition number for the evaluation of Ek(λ) grows
like E2k

; the condition number for the evaluation of Ek(u) grows like E2k−1
(possibly for a

different E); while the condition number of Ek’s eigenvalues grow only, as in Figure 3.2, like(
2k−1

)0.618
. In practice, the pseudozeros/pseudospectra widths are already supporting this at

k = 6, 7, 8, shown in Table 3.1.

k Ek(λ) Ek(u) Ek

6 10−9.5 . . . 10−8.5 10−3 . . . 10−2 10−2 . . . 10−1

7 10−19.5 . . . 10−18.5 10−6 . . . 10−5 10−2 . . . 10−1

8 10−38.5 . . . 10−37.5 10−12 . . . 10−11 10−2 . . . 10−1

Table 3.1: Pseudozeros/pseudospectra of Ek(λ), Ek(u) and Ek for k = 6, 7, 8. For these ε ranges,
the pictures are similar to those of Figure 3.3. These pictures are available upon request.

Remark Using just the recurrence, not the polynomials, might be superior even to matrices.

3.7 Concluding remarks

For us, the Euclid polynomials showed that the construction of companion matrices by the
method of Piers Lawrence was, in fact, general. This construction also gives a minimal height
companion matrix (over the integers); trivially so, because height(Ek) = 1. This implies su-
perior conditioning: already at k = 6, the matrix E6 has eigencondition about 1 while the
polynomial E6(λ) had B(λ) ∼ 104. But the other facts presented here show that the Ek(λ) are
themselves of interest: in particular, we’re not done with the identity (for λ > 0)

1
λ

=
∑
k≥1

1
Ek(λ)

.
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Figure 3.4: Condition numbers for the evaluation of Ek(λ) B̃k(u) on 0 ≤ u ≤ 1.1180 for k = 2
to 8.
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Chapter 4

Algebraic linearizations of matrix
polynomials

4.1 Introduction
Many applications require the computation or approximation of polynomial eigenvalues, that
is, those z ∈ C for which the matrix polynomial P(z) (of degree at most s) ∈ C[z]r×r is singu-
lar. In other words, we search for z such that det P(z) = 0. If s = 1, that is P(z) = zB − A,
where A, B ∈ CN×N , where N = r, is degree 1 in z, i.e. linear, then this is “just” the general-
ized eigenvalue problem, which can be reliably solved numerically on many platforms using
software developed over many decades by the efforts of many people. We do not here sur-
vey the state of the art of solving the generalized eigenvalue problem, i.e. determining z such
that det (zB − A) = 0 (provided the pencil (A,B) is regular, i.e. that det (zB − A) . 0). We
do note that the so-called QZ iteration, which uses unitary transformations to simultaneously
upper-triangularize A and B so that

det(zB − A) = det Q det (zB − A) det Z
= det (zQBZ −QAZ)
= det (zTB − TA)

allows its eigenvalues to be read off from the corresponding diagonal entries of TB and TA, is
by now very well-developed and reliable. Research continues into making the method even
faster and more reliable especially as novel architectures are invented and especially for matrix
structures that arise frequently in practice. But in this paper we simply take such methods as
given: we regard a linear matrix polynomial as one that is effectively solved. Thus, our task
becomes one of reducing a more general matrix polynomial eigenproblem to a “mere” linear
one. In this case, the dimension of the linear problem, N, is larger: N ≥ r · s (remember the
degree of P(z) is at most s, and its dimension is r). This process is known as “linearization”,
naturally enough, although we note that the resulting problem, even if it is called “linear”, is
more properly considered as being of degree 2, once the unknown eigenvectors are considered:
zBv = Av is linear in the entries of v, and of z by itself, but terms like zv1, zv2, etc appear,
which are really of degree two, in the language of computational algebra. Indeed reduction of
any system of polynomial equations (if there are only a finite number of solutions, a situation

34
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called “being zero-dimensional” in the literature) can always be “reduced” to a degree 2 system;
this is known as the effective Nullstellensatz. Reduction to a generalized eigenproblem is a
(very) practical concrete exhibition of this theorem.

Of course there are many practical details, that really matter. “In theory, there’s no dif-
ference between theory and practice; but in practice, there is.” One huge item of practical
importance is the commonly-undertaken reduction to upper Hessenberg form, prior to begin-
ning the QZ iteration; this can be stably done in O(N2) operations and greatly speeds up the
iterations subsequently.

Other possibilities exist than linearization. Indeed there is much current research into what
is called “`-ification,” i.e. reduction of a matrix polynomial of degree m` to a (larger) matrix
polynomial of degree at most ` (having degree at most ` is also called “having grade `”) [9].
But here we restrict ourselves to the case ` = 1.

Surprisingly, there are still things to be said about this, in spite of many decades of work
by many people. Of course, the proofs in this paper rely heavily on that work, especially that
summarized in the classic [10]. But still we will see some new elements, at least for a particular
class of problems.

A useful introduction to the general area can be found in [12, pages 263–281] and the
references therein. Early history is discussed in [17]. Major recent works include [16] and
[15].

4.2 The basic idea

The basic idea of the algebraic linearizations described here was first discovered in the context
of what are called “Mandelbrot polynomials” [3, 8]. Mandelbrot polynomials are defined by
p0 = 0 and pn+1 = zp2

n + 1. Piers Lawrence found matrices Mn, populated only by elements 0
or −1, with pn(z) = det(zI −Mn). Naturally enough, these were called Mandelbrot matrices.
We outline their construction below.

The first few pn are p0 = 0, p1 = 1, p2 = z + 1, and p3 = z3 + 2z2 + z + 1. The idea is clearest
going from M3 to M4; we will build up to that. Because the only root of p2 is z = −1, clearly
M2 = [−1], a 1× 1 matrix with eigenvalue −1. To make M3, glue two copies of M2 together to
make

M3 =

 −1 0 −1
−1 0 0

0 −1 −1


which one can directly verify has

det (zI −M3) = det

 z + 1 0 1
1 z 0

1 z + 1


= (z + 1) det

(
z 0
1 z + 1

)
+ 1 · det

(
1 z

1

)
= z(z + 1)2 + 1 , as desired.
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To make M4 we glue two copies of M3 together:

−1 0 −1 −1
−1 0 0

−1 −1
−1 0

−1 −1 0 −1
−1 0 0

−1 −1


and at this level the “glue” and the “copies” are more distingushable. The upper Hessenberg
nature of the matrix is also visible. To prove p4 = det (zI −M4) we use Knuth’s idea: the
determinant is linear in the first row:

det (zI −M4)

= det


zI −M3

1 z
1

zI −M3

 + det


0 0 0 0 1
1

1
. . .

1


= zp2

3 + 1 · det


1

1
. . .

1


= zp2

3 + 1 , as desired.

This gives the idea. The generalization will be Theorem 4.3.4 in the next section.
For more on Mandelbrot matrices, see [8], [3], and [4]. They and their generalizations have

some interesting properties. For now, note that [4] generalized the construction to finding a
companion for the scalar polynomial c = zab + c0 given upper Hessenberg companions for a
and b. It is that generalization that we turn into a linearization in the next section.

4.3 The main theorems
Theorem 4.3.1 shows how to linearize

e1(z) = zd0a(z) + c0 (4.1)

and
e2(z) = za(z)d0 + c0 , (4.2)

where e1(z), e2(z) ∈ Cr×r, once linearization for a(z) is available.

Λ (a(z)) := {z | det (a(z)) = 0}

is the spectrum of the matrix polynomial a(z) ∈ Cr×r. These z are the polynomial eigenvalues
of a(z).
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Theorem 4.3.1 Consider e1(z) and e2(z) as in equations (4.1) and (4.2), respectively. Suppose
a(z) ∈ C[z]r×r is of degree s ≥ 1, c0 and d0 ∈ Cr×r, and that a(z) has the regular linearization
pencil (DA,A) with det a(z) = det (zDA − A) and zDA − A invertible except when z ∈ Λ(a)
which is a discrete set. Moreover suppose that we have the resolvent form

a−1(z) = XA (zDA − A)−1 YA z ∈ C < Λ(a)

and XA ∈ Cr×rs and YA ∈ Crs×r are known. Then if

E1 =

[
0 c0XA
−YA A

]
, DE1 =

[
d0

DA

]
and

E2 =

[
A YAc0

−XA 0

]
, DE2 =

[
DA

d0

]
then det

(
zDE1 − E1

)
= det e1(z) where e1(z) = zd0a(z) + c0 and

det
(
zDE2 − E2

)
= det e2(z) where e2(z) = za(z)d0 + c0. Moreoever[

0 −XA
] (

zDE1 − E1
)−1

[
I
0

]
= e−1

1 (z)

and [
0 I

] (
zDE2 − E2

)−1
[
−YA

0

]
= e−1

2 (z)

give resolvent forms for the larger systems.

Proof We use the Schur factoring [13, Chapter 12]:

zDE1 − E1

=

[
zd0 −c0XA
YA zDA − A

]
=

[
I −c0XA (zDA − A)−1

0 I

] [
SA 0
YA zDA − A

]
=

[
I −c0XA (zDA − A)−1

0 I

] [
zd0 + c0a−1(z) 0

YA zDA − A

]
= P1P2 ,

where the Schur complement SA = zd0 + c0XA (zDA − A)−1 YA. Thus

det(zDE1 − E1) = det(P1)det(P2)

= det
(
zd0 + c0a−1(z)

)
det (zDA − A)

= det
(
zd0 + c0a−1(z)

)
det a(z)

= det (zd0a(z) + c0)
= det (e1(z)) ,
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as desired. Moreover,
(
zDE1 − E1

)−1
= P−1

2 P−1
1 . Let

Qa =

[
I

(zDA − A)−1

] [
I 0
−YA I

]  (
e1(z)a−1(z)

)−1

I


=

[
a(z)e−1

1 (z) 0
− (zDA − A)−1 YAa(z)e−1

1 (z) (zDA − A)−1

]
and

Qb =

[
I c0XA (zDA − A)−1

0 I

]
.

Then,

P−1
2 = QaQb

=

[
a(z)e−1

1 (z) Qc

− (zDA − A)−1 YAa(z)e−1
1 (z) Qd

]
,

where
Qc = a(z)e−1

1 (z)c0XA (zDA − A)−1

and
Qd = (zDA − A)−1

− (zDA − A)−1 YAa(z)e−1
1 (z)c0XA (zDA − A)−1 ,

so [
0 −XA

] (
zDE1 − E1

)−1
[

I
0

]
= XA (zDA − A)−1 YAa(z)e−1

1 (z)

= a−1(z)a(z)e−1
1 (z)

= e−1
1 (z)

as claimed.
Similarly,

zDE2 − E2 =

[
zDA − A −YAc0

XA zd0

]
= QeQ f ,

where

Qe =

[
zDA − A 0

XA zd0 + XA (zDA − A)−1 YAc0

]
and

Q f =

[
I − (zDA − A)−1 YAc0

0 I

]
,

so

det
(
zDE2 − E2

)
= det (zDA − A) det

(
zd0 + a−1(z)c0

)
= det a(z) det

(
zd0 + a−1(z)c0

)
= det (za(z)d0 + c0)
= det e2(z)
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as claimed.
Moreover (

zDE2 − E2
)−1

= QgQh ,

where

Qg =

[
I (zDA − A)−1 YAc0

0 I

] [
I

e−1
2 (z)a(z)

]
=

[
I (zDA − A)−1 YAc0e−1

2 (z)a(z)
0 e−1

2 (z)a(z)

]
and

Qh =

[
I 0
−XA I

] [
(zDA − A)−1

I

]
=

[
(zDA − A)−1 0

−XA (zDA − A)−1 I

]
,

which results in [
Qi (zDA − A)−1 YAc0e−1

2 (z)a(z)
−e−1

2 (z)a(z)XA (zDA − A)−1 e−1
2 (z)a(z)

]
,

where
Qi = (zDA − A)−1

− (zDA − A)−1 YAc0e−1
2 (z)a(z)XA (zDA − A)−1 .

Therefore, [
0 I

]
(zD2 − E2)−1

[
−YA

0

]
= e−1

2 (z)a(z)XA (zDA − A)−1 YA

= e−1
2 (z)

as claimed. \

Theorem 4.3.2 shows how to linearize a product a(z)b(z) given linearizations of each of
a(z) and b(z).

Theorem 4.3.2 Suppose a(z), DA, A, XA, and YA are as in Theorem 4.3.1, and suppose sim-
ilarly that b(z) ∈ C[z]r×r is of degree t ≥ 1, has the regular linearization pencil (DB,B) with
det b(z) = det (zDB − B) and resolvent

b−1(z) = XB (zDB − B)−1 YB for z ∈ C < Λ(b)

Then if we define

F1 =

[
A 0

YBXA B

]
and DF1 =

[
DA 0
0 DB

]
(4.3)

or similarly

F2 =

[
B YBXA
0 A

]
and DF2 =

[
DB 0
0 DA

]
, (4.4)

then zDF1 − F1 and zDF2 − F2 are linearizations for a(z)b(z).
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Proof Consider F1, DF1 , F2, and DF2 as in equations (4.3) and (4.4) shown above. Clearly A
and B can be exchanged in either factor to get new but related constructions. Then

det
(
zDF1 − F1

)
= det

(
zDA − A 0
−YBXA zDB − B

)
= det a(z) det b(z)
= det a(z)b(z)

and moreover (
zDF1 − F1

)−1
=[

(zDA − A)−1 0
(zDB − B)−1 YBXA (zDA − A)−1 (zDB − B)−1

]
so [

0 XB
] (

zDF1 − F1
)−1

[
YA
0

]
= b−1(z)a−1(z) .

Reversing A and B in F1 gives instead a−1(z)b−1(z). Similarly

zDF2 − F2 =

[
zDB − B −YBXA

0 zDA − A

]
so again det

(
zDF2 − F2

)
= det b(z) det a(z) = det (b(z)a(z)). Moreover(

zDF2 − F2
)−1

=[
(zDB − B)−1 (zDB − B)−1 YBXA (zDA − A)−1

0 (zDA − A)−1

]
so [

XB 0
] (

zDF2 − F2
)−1

[
0

YA

]
= b−1(z)a−1(z) .

\

Remark Theorem 4.3.2 is just Theorem 3.2 from [10, p. 85] with two minor modifications:
non-monic a(z) is covered here, and we will use F2 to give a block upper Hessenberg matrix
whereas they use F1. That seems paradoxical because F1 looks more likely to generate block
upper Hessenberg matrices, but when used recursively the lower left triangle remains empty
when XA and YB are eT

s ⊗ Ir and f1 ⊗ Ir. We will need the upper right block for the constant
coefficient added.

Theorems 4.3.3 and 4.3.4 show how to linearize a(z) + c(z) if deg(c(z)) < deg(a(z)). Theo-
rem 4.3.3 considers the monic case for a(z), and Theorem 4.3.4 relaxes this restriction.

Theorem 4.3.3 (monic case) Suppose a(z) = zs + αs−1zs−1 + · · · + α0 and each αk ∈ Cr×r, and
that we have a block upper Hessenberg linearization A of a(z) with standard triple XA, A, YA
which means among other things that

XA (zIsr − A)−1 YA = a−1(z) .
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Then if c(z) = cs−1zs−1 + · · · + c1z + c0, with each ci ∈ Cr×r, is of degree at most s − 1, then

G = A −
s−1∑
k=0

AkYAckXA

is a block upper Hessenberg linearization of a(z) + c(z), with

XA (zI −G)−1 YA = (a(z) + c(z))−1 .

Proof Using the properties of a standard triple [10, see Proposition 2.1 (i), p 53] the matrix

V =
[

YA AYA A2YA · · · As−1YA
]

is nonsingular. Put Vk = Ak−1YA for 1 ≤ k ≤ s. Note each Vk is sr by r. Then direct
computation shows

A
[

V1 V2 . . . Vs

]
=

[
V2 V3 · · · Vs AsYA

]
By part (iii) of the previously mentioned proposition,

AsYA = −

s∑
k=1

Ak−1YAαk−1 ,

meaning that the given matrix polynomial is “solved” by its linearization times YA (a general-
ization of the Cayley-Hamilton theorem).

Thus

AV = V



0 0 · · · 0 −α0

I 0 −α1

I . . .
...

. . . 0 −αs−2

I −αs−1


= VC2

where C2 is the familiar “second companion linearization”, making explicit the similarity A =

VC2V−1. Quite clearly the second companion linearization of a(z) + c(z) is

0 − (α0 + c0)
I 0 − (α1 + c1)

I
...

. . .

I − (αs−1 + cs−1)


and we look for a matrix W such that A + W linearizes a(z) + c(z). Now

WV = V∆C2 = V


0 0 · · · 0 −c0

0 · · · · · · 0 −c1
...

. . .
...

...
0 · · · · · · 0 −cs−1


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implies

W = V


0 · · · 0 −c0
...

... −c1
...

...
...

0 · · · 0 −cs−1

 V−1

=


0 · · · 0

−
∑s

k=1 Vkck−1...
...

0 · · · 0

 V−1

= −

s∑
k=1

Vkck−1XA = −

s∑
k=1

Ak−1YAck−1XA

as desired, because property (ii) of Proposition 2.1 in [10] has XA uniquely defined as[
0 · · · 0 I

]
· V−1 in our notation. This proves the theorem. \

Theorem 4.3.4 (non-monic case) Suppose a(z) = αszs + αs−1 + · · · + α0 and αs might be
singular. Suppose that we have a block upper Hessenberg generalized linearization (A,DA)—
that is, A is block upper Hessenberg, DA is block diagonal, each with r × r blocks, and that we
have the generalized standard triple,

XA (zDA − A)−1 DAYA = a−1(z) .

Then if c(z) =
∑s−1

k=0 ckzk, with each ci ∈ Cr×r, is of degree at most s − 1, then

G = A −
s−1∑
k=0

AkYAckXA

is a block upper Hessenberg linearization of a(z) + c(z), with

XA (zDA −G)−1 DAYA = (a(z) + c(z))−1 .

Proof If αs is singular, this also means that DA will be singular. To find the resolvent form, we
can perturb the matrix polynomial: a(z) + ε∆a(z, ε), which we will define as perturbing just αs.
The generalized linearization for this new matrix polynomial is (A,DA + εI) (which defines
∆a (z, ε) implicitly) and the standard triple is(

XA, (DA + εI)−1 A,YA
)

which gives the resolvent form

(a(z) + ε∆a(z, ε))−1 = XA
(
zI − (DA + εI)−1 A

)−1
YA

= XA
(
(DA + εI)−1 (z (DA + εI) − A)

)−1
YA

= XA (z (DA + εI) − A)−1 (DA + εI) YA .
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As ε→ 0,
a−1(z) = XA (zDA − A)−1 DAYA .

Then using the proof from Theorem 4.3.3, we find that

G = A −
s∑

k=1

Ak−1YAck−1XA

is, again, the block upper Hessenberg linearization of a(z) + c(z) with

XA (zDA −G)−1 DAYA = (a(z) + c(z))−1 ,

as desired. \

We now come to the theorem that we wanted to prove, originally. The previous theorems
are not used in the proof, although it seems that they could be. But because we want the 0
block between the A block and the B block, and because we want c0 in the upper right corner,
it’s better to apply the following direct proof.

Theorem 4.3.5 Let a(z), A, DA, b(z), B, DB and their ancillaries be as in the previous theo-
rems. Let c0, d0 ∈ Cr×r be given. Then

H =

 A 0 −YAc0XB
−XA 0 0

0 −YB B


and

DH =

 DA
d0

DB


linearize h(z) = za(z)d0b(z) + c0; we have

XH =
[

0 0 XB
]

and YH =

 YA
0
0


making a standard triple with

XH (zDH −H)−1 YH = h−1(z) .

An explicit formula for (zDH −H)−1 will be given in the proof.

Proof We use a compound Schur factoring, i.e. use the Schur complement twice.

zDH −H = F1F2

where

F1 =

 zDA − A 0 0
XA Ir 0
0 0 Itr


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and

F2 =

 Isr 0 (zDA − A)−1 YAc0XB
0 zd0 −XA (zDA − A)−1 YAc0XB
0 YB zDB − B

 .
This is

F2 = F3F4

with

F3 =

 Isr Q j (zDA − A)−1 YAc0XB
0 Qk −a−1c0XB (zDB − B)−1

0 0 Itr

 ,
where

Q j = − (zDA − A)−1 YAc0XB (zDB − B)−1 YB

and
Qk = zd0 + XA (zDA − A)−1 YAc0XB (zDB − B)−1 YB ,

and

F4 =

 Isr 0 0
0 Ir 0
0 YB zDB − B

 .
Simplifying F3 further,

F3 =

 Isr − (zDA − A)−1 YAc0b−1 Q`

0 zd0 + a−1c0b−1 −a−1c0XB (zDB − B)−1

0 0 Itr

 ,
where,

Q` = (zDA − A)−1 YAc0XB (zDB − B)−1 .

Since

det (zDH −H) = det F1 · det F2

= det F1 · det F3 · det F4 ,

we have

det (zDH −H) = det (zDA − A) det
(
zd0 + a−1c0b−1

)
det (zDB − B)

= det a(z) det
(
zd0 + a−1c0b−1

)
det b(z)

= det (za(z)d0b(z) + c0)
= det (h(z))

as claimed. \

To find the explicit form of the resolvent inverse, we invert the factors:

(zDH −H)−1 = F−1
4 F−1

3 F−1
1 .
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F−1
4 =

 Isr

Ir

(zDB − B)−1


 Isr

Ir

−YB Itr


=

 Isr

Ir

− (zDB − B)−1 YB (zDB − B)−1

 .
Now (using α, β, γ as shorthand for the relevant blocks, where β is regular),

F3 =

 I α γ
β δ

I

 =

 I
β

I


 I α γ

I β−1δ
I


=

 I
β

I


 I γ

I β−1δ
I


 I α

I
I


So

F−1
3 =

 I −α
I

I


 I −γ

I −β−1δ
I


 I

β−1

I


=

 I −α −γ + αβ−1δ
I −β−1δ

I


 I

β−1

I


=

 I −αβ−1 −γ + αβ−1δ
β−1 −β−1δ

I


So

F−1
3 =

 Isr (zDA − A)−1 YAc0h−1a U
bh−1a bh−1c0XB (zDB − B)−1

Itr


using zd0 + a−1c0b−1 = a−1 (zad0b + c0) b−1 = a−1hb−1 so(

zd0 + a−1c0b−1
)−1

= bh−1a

and

− (zDA− A)−1 YAc0XB (zDB − B)−1

+ (zDA − A)−1 YAc0h−1C0XB (zDB − B)−1 = U

= (zDA − A)−1 YA
[
c0h−1c0 − c0

]
XB (zDB − B)−1 .

In the next section we will use this at z = 0 if c0 is invertible to show U = 0 (sr by tr block).
Also,

F−1
1 =

 (zDA − A)−1

−XA (zDA − A)−1 Ir

Itr

 .
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Therefore (zI −H)−1 is F−1
4 F−1

3 F−1
1 . Now

F−1
4 F−1

3 = Isr (zDA − A)−1 YAc0h−1a U
0 bh−1a bh−1c0XB (zDB − B)−1

0 − (zDB − B)−1 YBbh−1a R33


where

R33 = (zDB − B)−1
− (zDB − B)−1 YBbh−1c0XB (zDB − B)−1 .

Therefore F−1
4 F−1

3 F−1
1 is R11 (zDA − A)−1 YAc0b−1a U
R21 bh−1a bh−1c0XB (zDB − B)−1

R31 − (zDB − B)−1 YBbh−1a R33


where

R11 = (zDA − A)−1
− (zDA − A)−1 YAc0h−1aXA (zDA − A) ,

R21 = −bh−1aXA (zDA − A)−1 ,

R31 = (zDB − B)−1 YBbh−1aXA (zDA − A)−1 .

Moreover,

[
0 0 XB

]
(zDH −H)−1

 YA
0
0

 = b−1(z)b(z)h−1(z)a(z)a−1(z)

= h−1(z) ,

as desired.
Additionally, we need to ensure that the linearization given in Theorem 4.3.5 has the same

spectrum as h(z) = za(z)d0b(z) + c0 by showing

E(λ) (λDH −H) F(λ) =

[
h(z) 0

0 I(s−1)r

]
for some unimodular E(λ) and F(λ). To find such E(λ) and F(λ), we can take the Schur com-
pliment of

λDH −H =

 zDA − A 0 YAc0XB

XA zd0 0
0 YB zDB − B

 . (4.5)

Recall
a(z) = YA

−1 (zDA − A) XA
−1

and
b(z) = YB

−1 (zDB − B) XB
−1 .
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Then, the Schur compliment of equation (4.5) is

S(z) = YBc0XB −
[
zDA − A 0

] [XA
−1 −XAzd0YB

−1

0 YB
−1

] [
0

zDB − B

]
= YAc0XB −

[
(zDA − A) XA

−1 − (zDA − A) XA
−1zd0YB

−1
] [ 0

zDB − B

]
= YAc0XB + (zDA − A) XA

−1zd0YB
−1 (zDB − B)

= YAc0XB + YA YA
−1 (zDA − A) XA

−1︸                     ︷︷                     ︸
a(z)

zd0 YB
−1 (zDB − B) XB

−1︸                     ︷︷                     ︸
b(z)

XB

= YA (c0 + za(z)d0b(z)) XB

= YAh(z)XB .

Therefore, as long as YA and XB are regular, it guarantees that there exists unimodular E(λ)
and F(λ).

4.4 Implications
Consider first the Mandelbrot matrices Mn from Section 4.2. Here r is just 1, and we may
deduce a sequence of facts, as follows.

Lemma 4.4.1 The dimension of Mn is dn × dn, where dn = 2n−1 − 1.

Proof Simple induction beginning with d2 = 1 and dn+1 = 2dn + 1. \

Lemma 4.4.2 Xn and Yn are simply eT
dn

=
[

0 · · · 0 1
]

and e1 where eT
1 =

[
1 0 · · · 0

]
.

Proof Again induction, beginning with M2:

p2 = z + 1 ⇒ [1] (z + 1)−1 [1] = p−1
2

and
xn+1 =

[
zeros(size(xn)) 0 xn

]
while

yn+1 =

 yn

0
zeros(size(yn))


by Theorem 4.3.4. \

Lemma 4.4.3 The bottom left corner of M−1
n is always −1.

Proof We have several proofs for this fact, most simply using the minor of the top right corner;
but we will shortly want M−1

n explicitly and so we compute it here. We note that M2 is invert-
ible, M−1

2 = [−1], and that c0 = 1 is always invertible. Thus by induction Mn+1 is invertible
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because Mn is. We have, by specializing the resolvent inverse from Theorem 4.3.4, that the
bottom left block of (0 · I −Mn+1)−1 is

M−1
n Yn · 1 · 1−1 · 1 · Xn ·M−1

n = M−1
n


1
0
...

 [ 0 · · · 1
]

M−1
n

= CnRn

where Cn is the first column of M−1
n and Rn is the last row of M−1

n .
By the inductive hypothesis, the bottom left corner of this block is

+1


because (−1)(−1) = +1. Remember this is the bottom left block of (−Mn+1)−1; thus if the
bottom left corners of M−1

n are −1, so is the bottom left corner of (Mn+1)−1. \

Lemma 4.4.4 The upper left block of M−1
n+1 is the same as the lower right block; both are

M−1
n + M−1

n Yn · XnM−1
n = M−1

n + CnRn .

The proof is simple computation.

Lemma 4.4.5 The first column and the last row of the blocks in Lemma 4.4.4 are zero.

Proof The left column of CnRn is −Cn because the left element of Rn is −1 by Lemma 4.4.3.
Thus the left column of M−1

n CnRn is zero. Similarly the last row of CnRn is −Rn, leading to the
same conclusion. \

Lemma 4.4.6 For n ≥ 3, the lower left block of M−1
n + CnRn is a 1 + dn−1 × 1 + dn−1 block of

zeros, and all other blocks of M−1
n+1 are untouched.

Proof Consider first M3 =

 −1 0 −1
−1 0 0

0 −1 −1

 and M−1
3 =

 0 −1 0
1 −1 −1
−1 1 0

. Then C3 =

 0
1
−1


and R3 =

[
−1 1 0

]
so

C3R3 =

 0 0 0
−1 1 0

1 −1 0

 , M−1
3 + C3R3 =

 0 −1 0
0 0 −1
0 0 0

 .
Note that the first dn entries of Cn are 0 and that the last dn entries of Rn are 0. Note that as in the
proof of Lemma 4.4.3, the bottom left dn × dn block of M−1

n+1 is just CnRn, and by specializing
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the resolvent formula the row just above that is −Rn; similarly the column beside that block is
Rn; similarly the column beside that block is Cn. Indeed

M−1
n+1 =

 M−1
n+1 + CnRn Cn 0
−Rn −1 Rn

−CnRn −Cn M−1
n + CnRn

 .
We have established in Lemma 4.4.5 that the bottom right block has a zero last row and that
the upper left block has a zero first column. Thus

Cn+1 =

 0
1
Cn

 and Rn+1 =
[
Rn 1 0

]
.

Therefore

Cn+1Rn+1 =

 0 0 0
Rn 1 0
CnRn Cn 0


and

M−1
n+1 + Cn+1Rn+1 =

 M−1
n CnRn Cn 0

0 0 Rn

0 0 M−1
n + CnRn


establishing the claim by induction. \

Definition A matrix family is Bohemian if its entries come from a single discrete (and hence
bounded) set. Here the set is just {−1, 0, 1}. The name comes from “Bounded Height Matrix
of Integers.”

Lemma 4.4.7 The Mandelbrot matrices are Bohemian, with height1 1. Indeed the only entries
are 0 or −1.

Proof Induction. \

Definition A matrix family has rhapsody if it is Bohemian and its inverse is also Bohemian
with the same height.

Theorem 4.4.8 The Mandelbrot matrices have rhapsody.

Proof By induction using the previous lemmas. Clearly the entries of Cn and Rn are +1, −1, or
0; thus CnRn has height 1. Since the contribution of CnRn to M−1

n in M−1
n + CnRn was entirely

removing the lower left 1 + dn−1 by 1 + dn−1 block, and did not touch the other entries, each
block remains of height 1. \

1height(A) := ||vec(A)||∞ is the largest entry of |A|, where |A| means the matrix whose entries are the absolute
values of the entries of A.
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4.5 First matrix polynomial experiments
To test these ideas we examine a family of matrix polynomials that we have artificially created
for the purpose. We use the following recursive construction. Put

h1 = zI + c0

and for k ≥ 0
hk+1(z) = zh2

k(z) + ck(z) (4.6)

where ck(z) ∈ C4×4 are nonsingular upper Hessenberg matrices with zero diagonal and entries
−1 on the subdiagonal. We choose these matrices ck in advance, not all the same. This gives
a “Mandelbrot-like” flavour to the construction. Notice that for k ≥ 1 deg hk(z) = 2k − 1, and
its dimension is 4 × 4 for every k. The linearization of Theorem 4.3.4 gives matrices Hk of
dimension 4 ·

(
2k − 1

)
by 4 ·

(
2k − 1

)
. Our experiments covered various choices of the ck and

dimensions up to 16380 × 16380.
The matrices ck that we used are

0 −1 −1 −1

−1 0 0 1

0 −1 0 1

0 0 −1 0


,


0 −1 −1 −1

−1 0 1 1

0 −1 0 0

0 0 −1 0


,


0 −1 −1 −1

−1 0 0 0

0 −1 0 1

0 0 −1 0


,


0 −1 −1 −1

−1 0 1 0

0 −1 0 0

0 0 −1 0


,


0 −1 −1 −1

−1 0 0 −1

0 −1 0 1

0 0 −1 0


,


0 −1 −1 −1

−1 0 1 −1

0 −1 0 0

0 0 −1 0


,


0 −1 −1 0

−1 0 −1 1

0 −1 0 −1

0 0 −1 0


,


0 −1 −1 −1

−1 0 −1 1

0 −1 0 0

0 0 −1 0


,


0 −1 −1 0

−1 0 0 1

0 −1 0 −1

0 0 −1 0


,


0 −1 −1 −1

−1 0 −1 1

0 −1 0 1

0 0 −1 0


,


0 −1 −1 −1

−1 0 0 1

0 −1 0 0

0 0 −1 0


,


0 −1 −1 0

−1 0 1 1

0 −1 0 −1

0 0 −1 0


.

Larger experiments are of course possible and desirable.
We exhibit the eigenvalues of one 4092× 4092 (k = 10) matrix in figure 4.1. We compared

the computed eigenvalues (computed using Maple’s
LinearAlgebra:-Eigenvalues routine, which calls an implementation of LAPACK via the
NAG library) with the roots of the characteristic polynomials pk(z) = det(hk(z)) computed by
Maple’s built-in solver fsolve (refer to [5]) which is slow but quite reliable. Because the
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Figure 4.1: Eigenvalues of a 4092 × 4092 matrix. For details, refer to equation (4.6)

height of the exactly-computed characteristic polynomial reached 10234, solving the polyno-
mial using fsolve required multiple precision, which is slow. To compute the residual, we
computed the singular values of our matrix polynomial, h10(ξi) for each of the eigenvalues,
ξi, and divided the smallest singular value by the largest singular value for each case. The
residual σ4/σ1 of h4(λ) in any polynomial eigenvalue λ was never more than ∼ 4 × 10−13.
Table 4.1 shows the time taken to compute the eigenvalues and time take to compute the roots
using Maple’s fsolve (using a machine with 32 GB of memory). Eigenvalue computation
of the linearization was always the fastest taking only 94.782 seconds for the k = 10 case.
Unfortunately, we had to kill the job on Maple after a week for the k = 10 case.

In another experiment, for a specialized example, we compared the accuracy of the eigen-
values from our companion construction and the eigenvalues from the Frobenius companion
construction in Matlab. In comparison to the previous experiment, we used a lower degree
matrix polynomial

H(z) = za(z)b(z) + c0 ,
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k Dimension Eigenvalues (s) fsolve (s)
5 124 0.047 0.531
6 252 0.125 2.313
7 508 0.640 176.203
8 1020 2.375 829.093
9 2044 13.469 80242.078

10 4092 94.782 −

11 8188 715.109 −

12 16380 6367.703 −

Table 4.1: Times of eigenvalue computation of the algebraic linearizations using Maple. The
polynomial solver fsolve takes so long because the heights of the characteristic polynomials
grow exponentially in the dimension. The eigenvalue solver has no difficulty, because the
matrix height is constant.

where

a(z) =

3∑
k=0

zkAk ,

b(z) =

3∑
k=0

zkBk ,

and c0 = I5. The matrices Ak that we used here were chosen by calling Maple’s RandomMatrix
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function. For reference, the ones we used were

A0 =


−81 −98 −76 −4 29
−38 −77 −72 27 44
−18 57 −2 8 92
87 27 −32 69 −31
33 −93 −74 99 67

 ,

A1 =


76 20 31 94 −16
−44 −61 −50 12 −9
24 −48 −80 −2 −50
65 77 43 50 −22
86 9 25 10 45

 ,

A2 =


70 82 12 22 60
−32 72 −62 14 −95
−1 42 −33 16 −20
52 18 −68 9 −25
−13 −59 −67 99 51

 ,

A3 =


−38 −63 12 21 −82
91 −26 45 90 −70
−1 30 −14 80 41
63 10 60 19 91
−23 22 −35 88 29

 .
We then randomly assigned

B0 =


−15 10 −83 10 −4

2 −44 9 −61 5
−88 26 88 −26 −91
99 −3 95 −20 −44
−59 −62 63 −78 −38

 ,
and chose the rest of the Bk to be

B3 = A−1
3

B2 = −A−1
3 A2B3

B1 = −A−1
3 (A1B3 + A2B2)

so that some of the coefficients of H(z), when expressed in the monomial basis, would be 0.
However, since we are computing these coefficients numerically, rounding errors would be
introduced, resulting in loss of accuracy as we will see in the residuals.

In order to construct the algebraic linearization of H(z), we need the linearizations of both
a(z) and b(z). We decided to use the Frobenius companion construction for these smaller
companions, since the coefficients were readily available to use. The rest then follows the
construction described in this paper. This suggests the idea that we can potentially mix different
polynomial bases using our construction, which will be elaborated on in the next example.
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We computed the residuals (as described in our previous example) to compare the accuracy
of the two results. We found that the largest residual for the eigenvalues of the algebraic
linearization is approximately 7.8× 10−12 and the largest residual for the Frobenius companion
matrix is approximately 7.0 × 10−9, around 900 times larger. This suggests that the algebraic
linearization may be more numerically stable.

For our third example, we show that one can mix different polynomial bases together. All
that is needed is a standard triple for a(z) and another for b(z), like so:

XA(zA1 − A0)−1YA = a−1(z)

XB(zB1 − B0)−1YB = b−1(z) .

For instance, suppose a(z) is expressed in the barycentric Lagrange basis, as follows:

a(z) = w(z)
n∑

k=0

βkak

z − τk
ak ∈ Cr×r

where the τk are distinct nodes, the node polynomial is w(z) =
∏n

k=0(z−τk), and the barycentric
weights βk come from the partial fraction decomposition

1
w(z)

=

n∑
k=0

βk

z − τk
.

Then there are several choices for linearizations of a(z) without needing to change bases.
See [1] or [19]. In 2004, RMC implemented the following linearization in Maple[6]: if

A0 =


−τ0I aT

0
−τ1I aT

1
. . .

...
−τnI aT

n
−β0I −β1I · · · −βnI 0


A1 =


−I
−I

. . .

−I
0


then det(A0 − zA1) = det

(
a(z)T

)
= det(a(z)). Putting the zero blocks in the lower left corner is

not as numerically stable as using linearizations with the zero blocks in the upper left corner
(see [14]) but we’ll use the existing software. The transpose also complicates this example, but
not much.

It can be shown that
XA =

[
0 0 · · · 0 I

]
and

YA =
[
I I · · · I 0

]T

give XA(zA1 − A0)−1YA = a−1(z) (note the sign reversal).
For b(z), we choose the Chebyshev basis. One could equally well choose the Legendre

basis (implemented in Maple as JacobiP(k, 0, 0, x)) or any other bases. The generalized
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companion matrix (“colleague” matrices of [11] and of [18] independently) give the lineariza-
tion of b0T0(x) + b1T1(x) + b2T2(x) + b3T3(x) + b4T4(x) + b5T5(x) as

B0 =


0 1

2I 0 0 −b0

I 0 1
2I 0 −b1

1
2I 0 1

2I −b2
1
2I 0 −b3 + b5

1
2I −b4

 B1 =


I

I
I

I
2b5


with

XB =
[
0 0 0 0 I

]
and

YB =
[
I 0 0 0 0

]T
.

That is, XB(zB1 − B0)−1YB = b−1(z), z < Λ(b).
Specifically, we take for a(z) the nodes

[
−1 −1

2
1
2 1

]
and the barycentric weights β =[

−2
3

4
3 −4

3
2
3

]
. We suppose that

a(−1) =

−2 −1 −1
−1 −1 1
0 −1 −1


a(−1/2) =

−0.875 −0.5 −1.25
−0.75 −0.125 0.5

0 −0.75 −0.875


a(1/2) =

−1.625 0.5 −0.25
−1.75 0.125 −0.5

0 −1.75 −0.625


a(1) =

−2 1 1
−3 1 −1
0 −3 1


Thus a(z) has degree at most 3. We choose b(z) of degree 3, with

b0 =

 0 −1 0
1 −1 −1
−1 1 0


b1 =

 0 1 0
−1 −1 1

0 −1 −1


b2 =

 1 −1 0
−1 −1 −1

0 −1 0


b3 =

1 0 0
0 1 0
0 0 1

 .
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(a) Matrix structure of H (b) Matrix structure of DH

Figure 4.2: Matrix structure of the companion matrix (H,DH) of h(z) = za(z)b(z) + c0. The
block of zeros in DH means that there are spurious infinite eigenvalues. These are numerically
harmless and can be discarded.

The shape of the resulting algebraic linearization for h(z) = za(z)b(z) + c0 is shown in figure
4.2.

To find the forward error of the eigenvalues, we needed a program to find the appropriate
root/eigenvalue pairings. Because the number of eigenvalues and roots in this test was modest,
we wrote this “sibling finder” program in Maple. The largest forward error of this construction
is approximately 8.7 × 10−15.

While not conclusive, these experiments show that the algebraic linearization introduced
this paper can be fast and accurate when computing polynomial eigenvalues.

Remark We learned to be careful not to have singular ck, which leads to high multiplicity zero
eigenvalues of hk(z) and thus of Hk. Such high multiplicity zeros caused serious numerical
artifacts. Owing to the integer nature of this family, this could perhaps be ameliorated without
recourse to high precision, but we leave this for future work.

4.6 Concluding remarks
“Almost anything will give you a strong linearization. What would be interesting
would be numerical stability.” — Françoise Tisseur (private communication)

There is some hope here for numerical stability of these linearizations, owing to the reduced
height. Indeed, taken to extremes, a linearization of height 1 might have a characteristic equa-
tion of height exponential in the degree. This means that the polynomial evaluation condition
number [7] will be CN for some C > 1. However, the linearization resulting from recursive use
of Theorem 4.3.4, having height 1, will have an expected condition number O(N2) [2]. Here
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N is the dimension of the matrix. This means that the algorithm implied by the use of our
linearizations can be (for some examples) exponentially more numerically stable.

However, not every matrix polynomial has a naturally recursive formulation. Preliminary
experiments on reverse-engineering such formulations are promising and we will report on
these developments later.

We have no theorems that suggest a lower-height matrix will have better-conditioned eigen-
values, only an expectation that is perhaps naive. This, too, will be reported on at a later date.
Of course by “height” we mean scaled height, which needs a careful formulation; obviously
sA has eigenvalues sλk if A has eigenvalues λk, and the same eigenvectors (and thus eigenvalue
condition numbers are unchanged by the scaling). Perhaps a better numerical representation of
scaled height’s sensitivity would be, say,

t = min
ai j,0

|ai j|

Height(A)
.

The smaller this number is, the more sensitive one might expect the eigenvalues to be. Again,
this has yet to be explored.
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Chapter 5

Generalized standard triples for algebraic
linearizations of matrix polynomials

5.1 Introduction
A matrix polynomial is normally defined using words such as “A matrix polynomial P(λ) ∈
Fm×n(λ) is a polynomial in the variable λ with coefficients that are m by n matrices with entries
from the field F.” Typically an expression in the monomial basis λk is given for P(λ), and only
regular matrix polynomials are considered, that is, with m = n (we will use n for the dimension)
and where det P(λ) is not identically zero. Matrix polynomials have many applications and
their study is of both classic and ongoing interest.

In this paper we wish to consider the case when any polynomial basis φk(λ) is used, if the
set {φk(λ)} for 0 ≤ k ≤ ` forms a basis for polynomials of degree at most `. Thus, we write our
regular matrix polynomial as

P(λ) =
∑̀
k=0

Pkφk(λ) ,

where the matrices Pk ∈ Fn×n are square, and the degree of P(λ) is at most `. The upper bound
` on the degree is also called the grade. The notion of “grade” is useful even for the monomial
basis, but it is especially useful if the basis is an interpolational basis or the Bernstein basis,
when the degree of the polynomial may not be clear from the data.

Two matrix polynomials P1(λ) and P2(λ) are called equivalent if there exist unimodular
matrix polynomials (that is, matrices with constant nonzero determinant) E(λ) and F(λ) with
P1(λ) = E(λ)P2(λ)F(λ). A matrix pencil L(λ) := λC1 − C0 is called a linearization of the
matrix polynomial P(λ) if both C1 and C0 are of dimension N ≥ n` and L(λ) is equivalent to the
block diagonal matrix diag(P(λ), IN−n). Two linearizations Lm(λ) and Lφ(λ) are called strictly
equivalent if the corresponding matrices are equivalent: C1,m = EC1,φF and C0,m = EC0,φF,
with the same unimodular matrices E and F.

The reversal1 of a matrix polynomial of grade ` is the polynomial rev P(λ) = λ`P(λ−1).

1This definition, which is standard, is particularly appropriate for the monomial basis. The coefficients of the
reversed matrix polynomial in the monomial basis are simply the same matrices in reverse order. The notion of a
reversal, however, is independent of the basis used. In [8] we find a slightly different definition, appropriate for
computation in a Lagrange or Hermite interpolational basis, which maps an arbitrary finite point to infinity; this
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A linearization L(λ) = λC1 − C0 of P is called a strong linearization if also rev L(λ) is a
linearization of rev P(λ).

For more information, consult [24]. See also [26], [18], and consult the seminal book [17].
Linearizations using different polynomials bases were first systematically studied in [1]. Some
recent papers of interest include [4], [25], [10], [14], and [29]; this is a very active area.

5.1.1 Organization of the paper

In the remainder of this first section, we establish notation, give the definition of a generalized
standard triple, and give lemmas about common similarity transformations2. At the end of this
section, we show how to use the generalized standard triple in the construction of algebraic
linearizations.

In section 5.2, we tabulate our results in detail for the generalized standard triples for many
common polynomial bases in sections 5.3.2, 5.3.3, and 5.3.4. In section 5.4, we give the strict
equivalence of generalized standard triples for any polynomial basis. We give specific proofs
in section 5.5.

5.1.2 Notation and definition of a generalized standard triple

If L(z) = zC1 − C0 ∈ CN×N (usually N = n` but not always; for Lagrange and Hermite interpo-
lational bases some constructions use N = (n + 2)` and others N = (n + 1)`) is a linearization
of P(z), then det(P(z)) = det(L(z)) = det(zC1 − C0). The eigenvalues of P are thus computable
from the eigenvalues of L. For instance, this can be done with eig(C0,C1) in Matlab, or
Eigenvalues(C[0],C[1]) in Maple if the matrix variables are defined appropriately (and
are of complex floating-point type in Maple).

A standard pair (X,T) for a regular matrix polynomial P(λ) expressed in the monomial
basis is defined in [17] or in [24] as having the properties X has dimension n × n`, T has
dimension n` × n`, and ∑̀

k=0

PkXTk = 0

and that the n` by n` matrix

Q =


X

XT
...

XT`−1


difference allows for greater numerical stability.

2Transposition and flipping give altogether four common variations of companion matrix pencils. Other vari-
ations are possible (indeed, any similarity transformation will work) but these are the main variations seen in the
literature. We include these variations in enough detail to help the reader with the bookkeeping.
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is nonsingular. We can then define a third matrix

Y = Q−1


0n
...

0n

In


and say that the triple (X,T,Y) is a standard triple for a monic P(λ). It is pointed out in [24]
that monicity of P(λ) is not required for many of the formulæ to do with standard pairs (but is
required for some). Theorem 2.6 of [17], which states that if there are matrices X, T, and Y of
dimension n × n`, n` × n`, and n` × n for which

P−1(λ) = X(λIn − T)−1Y

then (X,T,Y) is a standard triple for P(λ). This construction is clearly tied to the monomial
basis, and we would like to extend this to a form for other bases, and also to the non-monic
case. In particular we would like the following extension of Theorem 2.6 in [17] or Theorem
12.1.4 in [16] to be available: If a matrix X ∈ Cn×N , the pencil L(z), and a matrix Y ∈ CN×n

satisfies
P−1(z) = X(zC1 − C0)−1Y (5.1)

for z < Λ(P) (the set of polynomial eigenvalues of P), then X, L(z), and Y form a generalized
standard triple for P(λ). This obviously requires regularity of P.

This new definition would allow N > n` and not just N = n`. Note that the matrices X
and Y do not depend on z, but the linearization L(z) does, albeit only linearly; we could instead
have chosen to use the words “standard quadruple” to mean (X,C1,C0,Y) where z does not
appear of any of these matrices, but this seems to be a matter of aesthetics only.

In the case when the leading coefficient A` of the matrix polynomial is nonsingular, one can
reduce to the monic case in any of several ways. This is done in several places in the literature,
and thus our generalized standard triple is not very new in allowing for a non-identity matrix
coefficient of λ in the linearization. For various reasons we do not wish to do this here; for
instance, if the polynomial basis is not degree-graded, e.g. for the Bernstein basis, then it is not
clear what one should use for the leading coefficient. Similarly for the Lagrange and Hermite
interpolational bases.

All we will need for the purposes of this paper is that the representation displayed in equa-
tion (5.1) holds (whether we say that it involves a “triple” or a “quadruple”). The representation
itself is what is useful in the recursive construction of algebraic linearizations.

There is some risk of confusion with this definition: not all properties of standard triples
may hold for “generalized standard triples”, and so we should take some care.

Similarity

If X, zC1 − C0, and Y form a generalized standard triple, then so also do XS, S−1(zC1 − C0)S,
and S−1Y for any nonsingular matrix S of dimension N by N.
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Lemma 5.1.1 If S is nonsingular3 and B1 = S−1C1S and B0 = S−1C0S so that the pencil
zB1 − B0 has the same generalized eigenvalues as zC1 − C0, then another standard triple for
P(z) is X̃, zB1 − B0, Ỹ where X̃ = XS and Ỹ = S−1Y.

Proof

P−1(z) = X(zC1 − C0)−1Y
= XSS−1(zC1 − C0)−1SS−1Y
= (XS)(S−1(zC1 − C0)S)−1S−1Y .

\

Several similarities are used very frequently. For convenience we describe two of the most
common explicitly here.

Lemma 5.1.2 (Flipping) Put J = the N × N “anti-identity”, also called the sip matrix, for
standard involutory permutation, Ji, j = 0 unless i+ j = N +1 when Ji,N+1−i = 1. Then J2 = I
and the “flipped” linearization LF(z) = J(zC1−C0)J has in its generalized standard triple the
matrices XF = XJ and YF = JY. The paper [27] calls this matrix “R”.

Proof Immediate. \

Remark Flipping switches both the order of the equations and the order of the variables. It ob-
viously does not change eigenvalues. Flipping, transposition, and flipping-with-transposition
give four common equivalent linearizations [31].

5.1.3 Algebraic linearizations
An algebraic linearization, as referred to in the title of this present note, is defined in [6] as a
linearization of a matrix polynomial H(λ) = zA(λ)B(λ) + C constructed recursively from lin-
earizations of the lower-degree component matrix polynomials A(λ) and B(λ), together with
a constant matrix C. Algebraic linearizations are typically strong linearizations, which not
only preserve eigenvalues but also their partial multiplicities, even at infinity [6]. Algebraic
linearizations offer a new, potentially more numerically stable, class of linearizations. The re-
cursive construction of algebraic linearizations relies on the generalized standard triples of each
of the component matrix polynomials, and (as does the unrelated paper [29]) allows different
polynomial bases to be used for each component. This present note provides some explicit for-
mulas for generalized standard triples in various bases, for reference. As one reviewer points
out, these formulas could simply be obtained by reading the proofs that these linearizations are
indeed linearizations; one purpose of this paper is simply convenience.

If A(λ) and B(λ) have the generalized standard triple representations A−1(λ) = XA(λDA −

EA)−1YA and B−1(λ) = XB(λDB − EB)−1YB, then the pencil λDH − EH is a linearization of

3We only use similarities in this section, but as a referee points out, we could also use equivalences, with
different matrices S on the left and right.
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H(λ) = λA(λ)B(λ) + C, where the matrices DH and EH are given as follows:

DH =

 DA

In

DB


and

EH =

 A 0NA,n −YACXB

−XA 0n 0n,NB

0NB,NA −YB B


For a proof and some examples, see [6].

5.2 Representation of matrix polynomials using generalized
standard triples

Since the φk(x), 0 ≤ k ≤ ` form a basis, we may express the polynomial 1 in that basis: then
1 =

∑n−1
k=0 ekφk(z) defines the coefficients ek uniquely. Putting

X =
[
en−1 en−2 · · · e1 e0

]
⊗ I

always gives our generalized standard triple P−1(z) = X(zC1−C0)−1Y with Y =
[
In 0n 0n · · · 0n

]T
.

The proof is simple and (with appropriate modifications for the bases) universal: the change of
basis matrixΦ has as its last row of its inverse the coefficients of 1 in that basis. This is exactly
the translation of the monomial standard triple element X into the new basis.

P−1(z) = X (zC1 − C0)−1 Y

= X
(
zEC1,mF − EC0,mF

)−1 Y

= XΦ−1 (
zC1,m − C0,m

)−1 E−1Y .

Thus the new X is as claimed. It is a separate matter to show that E−1[I, 0, . . . , 0]T = [I, 0, . . . , 0]T

again, but it always is for the bases that we consider.

Remark There are linearizations not explicitly considered in this paper; for instance, a referee
has pointed out that when a matrix polynomial is expressed in a basis where the elements
satisfy a linear recurrence, then there is an automatic way to build what is called a CORK
linearization. See [18] and [33] for details. Whatever the linearization, though, the previous
universal theorem shows how to construct the generalized standard triple.

That proof sketch may not be convincing, in part because details are omitted. In what
follows we examine specific cases in detail and supply specific proofs for each basis. Indeed,
much of the utility of this paper is simply writing down those details, which will allow easier
programming for the uses of these generalized standard triples.
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5.3 Examples of generalized standard triples

In this section, we tabulate generalized standard triples for four classes of linearizations. We
do so by examples of companion pencils, leaving the reader to do the necessary tensor products
to produce linearizations. This saves some space in the presentation. In contrast, in section 5.5
where we gave proofs, we do so in full generality.

5.3.1 Companion matrices

In the special case n = 1, a linearization is usually called a “companion pencil” or Frobenius
pencil4. Thus finding roots of a scalar polynomial can be done by finding generalized eigen-
values of the companion pencil. In the monic case, C1 becomes the identity matrix and the
generalized eigenproblem becomes a standard eigenproblem. Kublanovskaya calls these “ac-
companying pencils” in [22]. For bases other than the monomial, the unfortunate nomenclature
“colleague matrix” or “comrade matrix” is also used. This nomenclature hinders citation search
and we prefer “generalized companion”, if a distinction is needed. See [26].

Construction of a linearization from a companion pencil is a simple matter of the Kronecker
(tensor) product: given C1, C0 ∈ Cn×n, take C̃1 = C1 ⊗ In and then replace each block pkIn with
the corresponding matrix coefficient Pk ∈ Cr×r (the first pk, in pkIn, is the symbolic coefficient
from p(z) =

∑`
k=0 pkφk(z); the matrix coefficient Pk ∈ Cr×r is from P(z) =

∑`
k=0 Pkφk(z).) This

will be clearer by example.

5.3.2 Bases with three-term recurrence relations

The monomial basis, the shifted monomial basis, the Taylor basis, the Newton interpolational
bases, and many common orthogonal polynomial bases all have three-term recurrence relations
that, except for initial cases, can be written

zφk(z) = αkφk+1(z) + βkφk(z) + γkφk−1(z) .

We give a selection in table 5.1, and refer the reader to Section 18.9 of the Digital Library of
Mathematical Functions (dlmf.nist.gov) for more. See also [15].

4The Frobenius form of a matrix is related, but different: see for instance [30].
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φk(z) Name αk βk γk φ0 φ1

zk monomial 1 0 0 1 z
(z − a)k shifted monomial 1 a 0 1 z − a
(z − a)k/k! Taylor n + 1 a 0 1 z − a∏k−1

j=0(z − τ j) Newton interpolational 1 τn 0 1 z − τ0

Tk(z) = cos
(
k cos−1(z)

)
Chebyshev 1/2 0 1/2 1 z

Pk(z) Legendre (k + 1)/(2k + 1) 0 k/(2k + 1) 1 z

Table 5.1: A short list of three-term recurrence relations for some important polynomial bases.
For a more comprehensive list, see The Digital Library of Mathematical Functions. These
relations and others are coded in Walter Gautschi’s packages OPQ and SOPQ [15] and in the
MatrixPolynomialObject implementation package in Maple (see [19]).

For all such bases, we have the companion pencil5

C1 =



p5

α4
1

1
1

1



C0 =


−p4 +

β4

α4
p5 −p3 +

γ4

α4
p5 −p2 −p1 −p0

α3 β3 γ3

α2 β2 γ2

α1 β1 γ1

α0 β0


and

X =
[
0 0 0 0 1

]
Y =

[
1 0 0 0 0

]T
.

For instance, a flipped and transposed pencil of this class for the Chebyshev case is6

L(z) =



z −
1
2

p0

−1 z −
1
2

p1

−
1
2

z −
1
2

p2

−
1
2

z p3 + p5

−
1
2

2zp5 + p4


5For exposition, we follow Peter Lancaster’s dictum, namely that the 5 × 5 case almost always gives the idea.
6For the matrix polynomial case, each Pk would be transposed.
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has flipped and transposed X =
[
0 0 0 0 1

]
, Y =

[
1 0 0 0 0

]T
. As another instance,

a Newton interpolational basis on the nodes τ0, τ1, . . ., τ5 has a companion pencil

z


p5

1
1

1
1

 −

−p4 + τ4 p5 −p3 −p2 −p1 −p0

1 τ3

1 τ2

1 τ1

1 τ0

 .

The corresponding linearization is

z


P5

In

In

In

In

 −

−P4 + τ4 P5 −P3 −P2 −P1 −P0

In τ3In

In τ2In

In τ1In

In τ0In

 .

5.3.3 The Bernstein basis

The set of polynomials {B`
k(z)}`k=0 is a set of `+ 1 polynomials each of exact degree ` that forms

a basis for polynomials of degree at most `. They have many applications, for example in
Computer Aided Geometric Design (CAGD), and many important properties including that of
optimal polynomial evaluation condition number over all bases positive on [0, 1]. They do not
satisfy a simple three term recurrence relation of the form discussed in section 5.3.2. See [13],
[11], and [12] for more details of Bernstein bases.

A companion pencil for p5(z) =
∑5

k=0 pkB5
k(z) is

C1 =



−p4 +
1
5

p5 −p3 −p2 −p1 −p0

1
2
4
1

3
3
1

4
2
1

5
1



C0 =


−p4 −p3 −p2 −p1 −p0

1 0
1 0

1 0
1 0


X =

[1
5

2
5

3
5

4
5

5
5

]
Y =

[
1 0 0 0 0

]T
.
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We have p−1(z) = X(zC1 − C0)−1Y if p(z) , 0. This pencil was first analyzed in [20] and [21].
One of the present authors independently invented and implemented a version of this lineariza-
tion in Maple (except using PT(z), and reversed from the above form) in about 2004. For a
review of Bernstein linearization, see [27]. For a proof of its numerical stability, see the origi-
nal thesis [20]. We supply a proof in section 5.5. The standard triple is, we believe, new to this
paper.

5.3.4 The Lagrange interpolational basis

There are by now several Lagrange basis pencils and linearizations. The use of barycentric
forms means that Lagrange interpolation is efficient and numerically stable. For many sets of
nodes (Chebyshev nodes on [−1, 1], or roots of unity on the unit disk) the resulting interpolant
is also well-conditioned, and can even be “better than optimal” [9], see also [5]. The lineariza-
tion we use here is “too large” and has (numerically harmless in our experience) spurious roots
at infinity7; for alternative formulations see [33], [28], [32]. Then pencil is zC1 − C0 where

C1 =


0

1
1

1
1



C0 =



0 −ρ0 −ρ1 −ρ2 −ρ3 −ρ4

β0 τ0

β1 τ1

β2 τ2

β3 τ3

β4 τ4


.

Then det(τkC1 − C0) = ρk, 0 ≤ k ≤ 4 and deg(zC1 − C0) ≤ 4. Thus, p(z) = det(zC1 − C0)
interpolates the given data, assuming the τk are distinct. Here the barycentric weights βk are
found by partial fraction expansion of ω(z)−1 where

ω(z) = (z − τ0)(z − τ1)(z − τ2)(z − τ3)(z − τ4)

is the node polynomial. Explicitly,

1
ω(z)

=

5∑
k=0

βk

z − τk

7This numerical harmlessness needs some explanation. In brief, Lagrange basis matrix polynomial eigenvalues
will be well-conditioned only in a compact region determined by the interpolation nodes, and are increasingly ill-
conditioned towards infinity; in practice this means only small changes in the data are needed to perturb large
finite ill-conditioned eigenvalues out to infinity. Any eigenvalues produced numerically that are well outside the
region determined by the interpolation nodes are likely easily perturbed all the way to infinity, and can be safely
ignored.
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so

βk =

5∏
j=0
j,k

(τk − τ j)−1 .

The X and Y for the standard triple are

X =
[
0 1 1 1 1 1

]
,

Y =
[
1 0 0 0 0 0

]T

Notice in this case that for the linearization N = (` + 2)n while deg p ≤ `, and therefore there
are at least 2n eigenvalues at infinity. This can be inconvenient if n is at all large.

5.3.5 Hermite interpolational basis
The companion pencil of the previous section has been extended to Hermite interpolational
bases, where some of the nodes have “flowed together,” collapsing to fewer distinct nodes8.
We suppose that at each node τi, there are now si ≥ 1 consecutive pieces of information
known, namely P(τi), P′(τi)/1!, P′′(τi)/2!, and so on up to the last one, the value of the si − 1-
th derivative at z = τi, namely P(si−1)(τi)/(si − 1)!. The integer si is called the confluency of
the node. The known pieces of information are the local Taylor coefficients of the polynomial
fitting the data:

ρi, j =
f ( j)(τi)

j!
, 0 ≤ j ≤ si − 1 .

Note that the derivative P′(z) of a matrix polynomial is a straightforward extension to ma-
trices of the ordinary derivative. It is isomorphic to the matrix with entries that are the ordinary
derivatives of the original matrix.

The companion pencil (that is, the scalar case) of the previous section changes to the fol-
lowing elegant form. The matrix C1 is unchanged,

C1 =


0

1
. . .

1
1


,

being (` + 2) by (` + 2) as before, although now

` = −1 +

m∑
i=0

si

8A formal definition can be found in [7], for instance. The essential idea is that given two distinct pieces of
data (τk, p(τk)) and (τk+1, p(τk+1)), we also know the forward difference (pk+1 − pk)/(τk+1 − τk). In the limit as one
node approaches (flows towards) the other, we still know two pieces of information: p(τk) and p′(τk). Hermite
interpolation captures this idea.
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is the grade of the resulting polynomial. The matrix C0 changes, picking up transposed Jordan-
like blocks for each distinct node. For instance, suppose we have two distinct nodes, τ0 and τ1.
Suppose further that τ0 has confluency s0 = 3 while τ1 has confluency s1 = 2. This means that
we know f (τ0), f ′(τ0)/1!, f ′′(τ0)/2!, f (τ1) and f ′(τ1)/1!. Then,

C0 =



0 − f ′′(τ0)/2! − f ′(τ0)/1! − f (τ0) − f ′(τ1)/1! − f (τ1)
β02 τ0

β01 1 τ0

β00 1 τ0

β11 τ1

β10 1 τ1


Note the reverse ordering of the derivative values in this formulation. The barycentric

weights βi j again come from the partial fraction expansion of the reciprocal of the node poly-
nomial

ω(z) =

m∏
i=0

(z − τi)si .

That is,
1

ω(z)
=

m∑
i=0

si−1∑
j=0

βi j

(z − τi) j+1 .

For the standard triple, take in the scalar case

Y =
[
1 0 · · · 0

]T

but for X take the coefficients of the expansion of the polynomial 1 in this particular Hermite
interpolational basis: it is equal to 1 at each node but has all derivatives zero at each node. That
is, put ρi j = 1 if j = 0 ,

0 otherwise ,

and sort them in order:

X =
[
0 ρ0,s0−1 ρ0,s0−2 · · · ρ0,0 ρ1,s1−1 · · · ρn,0

]
.

For the earlier instance (two nodes, of confluency 3 and 2, respectively,

X =
[
0 0 0 1︸   ︷︷   ︸

for τ0

0 1︸︷︷︸
for τ1

]
.

Then
p−1(z) = X(zC1 − C0)−1Y .

Remark We may re-order the nodes in any fashion we like, and each ordering generates its
own companion pencil (both Hermite and Lagrange). We may also find a pencil where the
confluent data is ordered p(τi), p′(τi)/1!, p′′(τi)/2!, etc., although we have not done so.
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If there is just one node of confluency `, we recover the standard Frobenius companion
form (plus two infinite roots):


0

1
. . .

1
1


,



0 −p`−1 −p`−2 · · · −p1 −p0

1 τ0

0 1 τ0

0 1 . . .
...

. . . τ0

0 1 τ0


.

Here pk = p(k)(τ0)/k! is the ordinary coefficient in the expansion p(z) =
∑`

k=0 pk(z − τ0)k. The
numerical stability of these Hermite interpolational companions has been studied briefly [23]
but much remains unknown. We confine ourselves in this paper to the study of the standard
triple.

To make a linearization out of these companion pencils, take the Kronecker tensor product with
In, and insert the appropriate matrix polynomial values and derivative values.

Remark The modified linearizations of [33] also have standard triples that can be used for
algebraic linearization, and arguably should be tabled here as well. They have the advantage of
including fewer eigenvalues at infinity, or no spurious eigenvalues at infinity, which may lead
to better algebraic linearizations. However, they are more involved, and we have less numerical
experience with them. In particular we do not understand their dependence on the ordering of
the nodes, and so we leave their analysis to a future study.

5.4 Strict equivalence of generalized standard triples for any
polynomial basis

Theorem 5.4.1 If φk(z) for 0 ≤ k ≤ ` is one of the degree-graded polynomial bases (e.g. Cheby-
shev, Newton, Jacobi P) or a Bernstein basis although they are not degree-graded, then the
companion pencil for a polynomial p(z) expressed in that basis is strictly equivalent to the
second companion pencil for same polynomial expressed in the monomial basis. That is, there
exist unimodular matrices E and F for which C1,m = EC1,φF and C0,m = EC0,φF. The matrix
E will depend on the given polynomial p(z). Here the subscript m is short for “monomial”.

Proof Denote the change-of-bases matrix for polynomials up to degree `−1 byΦ. This matrix
is ` by `. Then we have 

φ`−1(z)
φ`−2(z)
...

φ1(z)
φ0(z)


= Φ


z`−1

...
z2

z
1


.



5.4. Strict equivalence of generalized standard triples for any polynomial basis 71

In all cases considered here, the companion matrix pencil for a polynomial p(z) of exact degree
` has null vectors of the form

N =


φ`−1(λ)
φ`−2(λ)

...
φ1(λ)
φ0(λ)


where λ is a root of p(z). That is, (

λC1,φ − C0,φ

)
N = 0 .

Using the Φ formula above, we have F = Φ. By direct computation, we find that E =

C0,mΦ
−1C−1

0,φ necessarily giving EC0,φF = C0,m. Since F = Φ is unimodular and nonsingular, all
that remains is to show that E is unimodular and nonsingular, and that it satisfies EC1,φF = C1,m

as well. Since C1,φ is the identity matrix except for the 1, 1 entry which is a` , 0, the leading
coefficient of the polynomial, this last is straightforward. Indeed, the action of premultiplying
by C0,m and postmultiplying by C−1

0,φ cancels the coefficient a` in the 1, 1 entry of E, and thus by
continuity this construction works even if a` = 0, that is for polynomials of grade `. Then since
Φ is upper triangular for degree-graded matrices and lower triangular for Bernstein matrices,
and E has in that case zeros in the first column below the diagonal entry, E is unimodular.

To make this work for regular matrix polynomials of dimension n, we must use the tensor
product Φ ⊗ I. \

We illustrate this proof with a four by four example in the Bernstein basis. If p(z) = a0B4
0(z) +

a1B4
1(z) + a2B4

2(z) + a3B4
3(z) + a4B4

4(z), then

E =


1 1/4 a0 − a1 + 3/2 a2 −1/6 a0 + 2/3 a1 1/4 a0

0 1/4 0 0

0 1/4 1/6 0

0 1/4 1/3 1/4


and

F =


4 0 0 0

−6 6 0 0

4 −8 4 0

−1 3 −3 1


.

Direct computation shows that both matrices are nonsingular irrespective of the values of the
ak, and that these transform the Bernstein companion pencil

C0,Bernstein =


−a3 −a2 −a1 −a0

1 0 0 0

0 1 0 0

0 0 1 0


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and

C1,Bernstein =



a4

4
− a3 −a2 −a1 −a0

1 2/3 0 0

0 1 3/2 0

0 0 1 4


to

C0,monomial =


−b3 −b2 −b1 −b0

1 0 0 0

0 1 0 0

0 0 1 0


with −b3 = 4 a0 − 12 a1 + 12 a2 − 4 a3, −b2 = −6 a0 + 12 a1 − 6 a2, −b1 = 4 a0 − 4 a1, and
−b0 = −a0. Also, EC1,BernsteinF becomes the identity matrix except the 1, 1 entry is b4 =

a0 − 4 a1 + 6 a2 − 4 a3 + a4. These are the correct coefficients of the same polynomial expressed
in the monomial basis.

5.4.1 The Lagrange interpolational case

As is usual we denote a Lagrange basis element on the distinct nodes [τ0, τ1, . . . , τ`] by `k(z) =

βk
∏

j,k(z − τ j). The use of the symbol ` by itself denotes an integer, namely the grade of the
polynomial; the distinction is that ` with a subscript and a variable ` j(z) denotes a Lagrange
basis polynomial. This should not cause confusion.

Remark Many people think of “interpolation” as meaning the construction of a monomial
basis polynomial p(z) = a`z` + · · · + a0 that fits the given data p(τk) = ρk for 0 ≤ k ≤ `. This
is naive. Interpolation truly means constructing a polynomial in any basis that we may use to
evaluate p(z) for z different to the values at the nodes. The most stable and convenient way
to do this is by the barycentric form of Lagrange interpolants. Constructing an interpolant in
a Newton basis by using divided differences or the monomial basis by using a Vandermonde
matrix is changing the basis. Changing bases can have condition number exponential in the
degree, and is usually a bad idea. In practice, we use the barycentric form [3]. For the purposes
of proof of equivalence, we here occasionally use the Vandermonde matrix, and we think about
the explicit construction of the monomial basis. This is not used in numerical practice.

Theorem 5.4.2 If φk(z) for 0 ≤ k ≤ ` is a Lagrange basis on distinct nodes τ0, τ1, . . ., τ`, then
the ` + 2 by ` + 2 companion pencil for a polynomial p(z) expressed in that basis is strictly
equivalent to the second companion pencil for same polynomial expressed in the monomial ba-
sis but regarded as having grade `+2 (i.e. with zero coefficients padding the terms z`+2 and z`+1.
That is, there exist unimodular matrices E and F for which C1,φ = EC1,mF and C0,φ = EC0,mF,
where now the second companion matrices in the monomial basis have dimension larger by
two than needed for the exact degree. The matrix E will depend on the given polynomial p(z).
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Proof For the Lagrange basis companion pencil, the right null vector is of the form

N =


w(λ)
`0(λ)
`1(λ)
...

``(λ)


.

Here w(z) =
∏`

k=0(z − τk) is of degree ` + 1 and all the other entries, being elements of the
Lagrange basis on ` + 1 nodes, are of degree `. Thus Φ is dimension ` + 2 by ` + 2 and has
first column e1; that is, 1 in the first entry and zeros below it. The rest of the first row contains
the coefficients of w(z) expanded in the monomial basis. The remaining rows of Φ contain the
coefficients of the monomial expansions of the Lagrange basis polynomial; that is, the inverse
of the transposed Vandermonde matrix, which relates the Lagrange interpolation basis to the
monomial basis. Call that block Φ̂. Explicitly,

Φ̂−1 =


τ`0 τ`1 · · · τ``
τ`−1

0 τ`−1
1 · · · τ`−1

`
...

...
τ0 τ1 · · · τ`
1 1 · · · 1


. (5.2)

Then E is straightforwardly seen to be diag(1, Φ̂−1) and as in the degree-graded case F = Φ.
Further, EC0,φF has as its first row [0,−ρΦ̂]. But ρΦ̂ is by the Vandermonde matrix simply
the negative of the vector of monomial coefficients, −[0, a`−1, a`−2, . . . , a0]. More, the block
underneath, namely Φ̂−1diag(τ0, τ1, . . . , τ`)Φ̂ turns out to be simple, because

Φ̂−1diag(τ0, τ1, . . . , τ`) =


τ`+1

0 τ`+1
1 · · · τ`+1

`

τ`0 τ`1 · · · τ``
...

...
τ2

0 τ2
1 · · · τ2

`

τ0 τ1 · · · τ`


Multiplying this by Φ̂ shifts the identity matrix down one diagonal, giving the correct form for
the second companion matrix C0,m.

As in the previous theorem, to construct E and F for n-dimensional regular matrix polyno-
mials, we must take the tensor product Φ ⊗ I. \

Again we illustrate this proof with an example, this time of interpolation at the four points
[−1,−1/2, 1/2, 1]. This will give rise to a polynomial of degree at most 3. If the values this
polynomial takes at these four points are ρ0, ρ1, ρ2, and ρ3, then the equivalent polynomial
expressed in the monomial basis has coefficients

a0 = −1/6 ρ0 + 2/3 ρ1 + 2/3 ρ2 − 1/6 ρ3

a1 = 1/6 ρ0 − 4/3 ρ1 + 4/3 ρ2 − 1/6 ρ3

a2 = 2/3 ρ0 − 2/3 ρ1 − 2/3 ρ2 + 2/3 ρ3

a3 = 2/3 ρ3 − 4/3 ρ2 + 4/3 ρ1 − 2/3 ρ0 .
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Expressing this as a polynomial of grade 5, that is p(z) = 0 · z5 + 0 · z4 + a3z3 + a2z2 + a1z + a0,
we get the second companion pencil

C0,monomial =



0 −a3 −a2 −a1 −a0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


and

C1,monomial =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

The Lagrange basis companion matrix of [9], which admittedly has two extra infinite eigenval-
ues, is

C0,Lagrange =



0 −ρ3 −ρ2 −ρ1 −ρ0

2/3 1 0 0 0

−4/3 0 1/2 0 0

4/3 0 0 −1/2 0

−2/3 0 0 0 −1


and

C1,Lagrange =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

For these interpolation nodes, direct computation shows

E =



1 0 0 0 0

0 1 1/8 −1/8 −1

0 1 1/4 1/4 1

0 1 1/2 −1/2 −1

0 1 1 1 1





5.5. Individual proofs 75

and

F =



1 0 −5/4 0 1/4

0 2/3 2/3 −1/6 −1/6

0 −4/3 −2/3 4/3 2/3

0 4/3 −2/3 −4/3 2/3

0 −2/3 2/3 1/6 −1/6


.

5.5 Individual proofs

In section 5.2 we give a short universal proof of all the theorems in this section. Each individual
proof in this section is therefore redundant. We include them here both for surety (giving two
proofs of each theorem) and because they give insight and may be relevant to any numerical
analysis. We will use the Schur Complement, in the following form: assuming a matrix R is
partitioned into

R =

[
A B
C D

]
where A ∈ C`×` , B ∈ Cr×(N−r), C ∈ C(N−r)×r and D ∈ C(N−r)×(N−r) is assumed invertible, then

R =

[
In BD−1

0 I

] [
A − BD−1C 0

C D

]
.

If further the Schur Complement A − BD−1C is invertible, then

R−1 =

 (A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1 + D−1C(A − BD−1C)−1BD−1


as can be verified by block multiplication of R or by R. We will use S for the Schur Comple-
ment S = A − BD−1C. We will take R = zC1 − C0. We may already use this to establish for
each of the four classes of linearizations that

det R = det(zC1 − C0) = det(A − BD−1C) det D = det P(z) . (5.3)

Notice that the coefficients of P do not appear in the D block (in any of our linearizations).
Thus the Schur Complement carries all the information particular to P(z). The computations
verifying (5.3) are not obvious but in each case D−1 plays an important role. We will see that
generically D−1 exists, except for isolated values of z, which we can safely ignore and recover
later by continuity.
We take each case in turn.



76

Theorem 5.5.1 If C1 = diag
[

1
α`−1

P` In In · · · In

]
and

C0 =



β`−1

α`−1
P` − P`−1

γ`−1

α`−1
P` − P`−2 −P`−1 · · · −P0

α`−2I` β`−2In γ`−2In

α`−3In β`−3In γ`−3In
. . .

. . . γ1In

α0In β0In


and X =

[
0 0 · · · 0 In

]
and Y =

[
In 0 0 · · · 0

]
then X(zC1 − C0)−1Y = P−1(z) where

P(z) =
∑`

k=0 Pkφk(z) except for such z that det P(z) = 0. As in section 5.3.2 the polynomials
φk(z) satisfy zφk = αkφk+1 + βkφk + γkφk−1, φ−1 = 0, φ0 = 1, φ1 = (z − β0)/α0. In this theorem, ` ≥ 2
and N = `n, and if P` , 0n then degree P = `.

That this is a linearization is well-known; see e.g. [2]. We only prove P−1(z) = XR−1Y, here.

Proof We use the first block column of Schur Complement inverse formula

R−1 =

[
S−1 ∗

−D−1CS−1 ∗

]
.

Here

D =



(z − β`−2)In −γ`−2In

−α`−3In (z − β`−3)In −γ`−3In

−α`−4In
. . .

. . .
. . . −γ1In

−α0In (z − β0)I


is block tridiagonal, and

C =


−α`−2In

0
0
...
0


.

By inspection V = −D−1C is

V = q


φ`−2(z)In

...
φ2(z)In

φ1(z)In

φ0(z)In


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for some constant q, because

−αkφk+1(z) + (z − βk)φk(z) − γkφk−1(z) = 0

for k = 0, 1, · · · , ` − 3. The constant q is obtained from

q · (z − β`−2)φ`−2(z) − q · γ`−2φ`−3(z) = +α`−2

or

q · [φ`−1(z)] = +1

So

q =
+1

φ`−1(z)
.

It follows that

S =
z − β`−1

α`−1
P` + P`−1 +

[−γ`−1

α`−1
P` + P`−2 P`−3 · · · P0

] 
φ`−2(z)
φ`−3(z)
...

φ0(z)

 ·
1

φ`−1(z)

=

z − β`−1

α`−1
φ`−1(z)P` + φ`−1(z)P`−1 −

γ`−1

α`−1
φ`−2(z)P` + φ`−2(z)P`−2 + · · · + φ0(z)P0

φ`−1(z)

=

∑`
k=0 φk(z)Pk

φ`−1(z)
=

P(z)
φ`−1(z)

.

Thus

−D−1CS−1 =


φ`−2(z)In

...
φ0(z)In

 P−1(z)

because
1

φ`−1(z)
S−1 = P−1(z). Finally, φ0(z) = 1, so the bottom block is P−1(z), establishing

that

X =
[
0 0 · · · 0 In

]

Y =
[
In 0 · · · 0 0

]T

will produce XR−1Y = P−1(z).
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Theorem 5.5.2 Put

C1 =



1
`

P` − P`−1 −P`−2 · · · −P1 −P0

In
2

` − 1
In

In
3

` − 2
In

. . .
. . .

In
`

1
In


and

C0 =


−P`−1 −P`−2 · · · −P1 −P0

In 0
In 0

. . .
. . .

In 0


and Y =

[
In 0 · · · 0 0

]T
with X =

[1
`

In
2
`

In
3
`

In · · ·
`

`
In

]
. Then X(zC1 − C0)−1Y =

P−1(z), unless z ∈ Λ(P), and det P(z) = det R(z) = det(zC1 − C0).

Proof This linearization in proved e.g. in [27], but for convenience we supply one here as
well. The Schur factoring is

R =

[
In BD−1

0 IN−r

] [
S 0
C D

]
where S = A − BD−1C is the Schur Complement. Here

A =
z
`

P` + (1 − z)P`−1

B =
[
(1 − z)P`−2 (1 − z)P`−3 · · · (1 − z)P0

]

C =


(z − 1)In

0
0
...
0


and

D =



2
` − 1

zIn

(z − 1)In
3

` − 2
zIn

(z − 1)In
. . .
. . .

(z − 1)In
`

1
zIn


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Therefore V = D−1C satisfies

2
` − 1

zIn

(z − 1)In
3

` − 2
zIn

(z − 1)In
4

` − 3
zIn

. . .

. . .

(z − 1)In
`

1
zIn




v1

v2
...

v`−1

 =


(z − 1)In

0
...
0



So

v1 =
` − 1

2

(
z − 1

z

)
In = −

` − 1
2

(
1 − z

z

)
In

v2 = −
` − 2

3
· v1 = −

` − 2
3
·
` − 1

2
·

(
1 − z

z

)2

In

v3 = −
` − 3

4
·
` − 2

3
·
` − 1

2

(
1 − z

z

)3

In

and so on; by inspection, confirmed by a formal induction not given here,

vk = −
(` − 1)!

(` − k − 1)!(k + 1)!

(
1 − z

z

)k

In = −
1
`

(
`

k + 1

) (
1 − z

z

)k

In

for k = 1, · · · , ` − 1. Thus

S =
z
`

P` + (1 − z)P`−1 + (1 − z)
[
P`−2 P`−3 · · · P0

]


1
`

(
`
2

) (1 − z
z

)
In

1
`

(
`
3

) (1 − z
z

)2

In

...

1
`

(
`
`

) (1 − z
z

)`−1

In


=

1
`z`−1 ·

[
z`P` + `z`−1(1 − z)P`−1 +

(
`

2

)
z`−2(1 − z)2 P`−2 + · · · +

(
`

`

)
(1 − z)`P0

]
=

P(z)
`z`−1 .

Hence

det R = det S det D

=
det P(z)
(`z`−1)n ·

(
2

` − 1
·

3
` − 2

· · ·
` − 1

2
· ` · z

)n

= det P(z) .
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This establishes the linearization. Moreover,

S−1 = `z`−1 P−1(z)

and the first column of R−1 is

[
S−1

−D−1CS−1

]
=



`z`−1 P−1

`z`−1 ·
1
`

(
`

2

) (1 − z
z

)
P−1

`z`−1 ·
1
`

(
`

3

) (1 − z
z

)2

P−1

`z`−1 ·
1
`

(
`

4

) (1 − z
z

)3

P−1

...

`z`−1 ·
1
`

(
`

`

) (1 − z
z

)`−1

P−1



=



nzn−1 P−1(
`
2

)
z`−2(1 − z)P−1(

`
3

)
z`−3(1 − z)2 P−1

...(
`
`

)
z0(1 − z)`−1 P−1



We now notice that 1, expressed as a linear combination of(
`

1

)
z`−1,

(
`

2

)
z`−2(1 − z), · · · ,

(
`

`

)
z0(1 − z)`−1

is

1 =
1
`
·

(
`

1

)
z`−1 +

2
`
·

(
`

2

)
z`−2(1 − z) + · · · +

`

`
·

(
`

`

)
z0(1 − z)`−1

=

(
` − 1

0

)
z`−1(1 − z)0 +

(
` − 1

1

)
z`−2(1 − z)1 + · · · +

(
` − 1
` − 1

)
z0(1 − z)`−1

= (z + 1 − z)`−1 .

Indeed we use a degree-reduced Bernstein bases here,
(
`−1

k

)
zk(1 − z)`−1−k, to express 1.

In any case, the coefficients of 1 give us our X vector: XR−1Y = P−1(z). \

Theorem 5.5.3 (Lagrange Basis) If P(z) ∈ Cn×n is of degree at most `, and takes the values
ρk ∈ Cn×n at the `+ 1 distinct nodes z = τk, 0 ≤ k ≤ `, i.e P(τk) = ρk ∈ Cn×n, and the reciprocal
of the node polynomial ω(z) =

∏`
k=0(z − τk) has partial fraction expansion

1
ω(z)

=
∑̀
k=0

βk

z − τk

then a linearization for P(z) is zC1 −C0 where C1 = diag(0n, In, In, · · · , In) with ` + 2 diagonal
blocks, so N = (` + 2)r, and

C0 =



0 −ρ0 −ρ1 −ρ2 · · · −ρ`
β0In τ0In

β1In τ1In

β2In τ2In
...

. . .

β`In τ`I


.
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Moreover, if Y =
[
In 0 0 · · · 0

]T
and X =

[
0n In In · · · In

]
then X(zC1 − C0)−1Y =

P−1(z) where z ∈ Λ(P).

Proof Again we use the Schur complement: S = A − BD−1C where here

A = 0n

B = −
[
ρ0 ρ1 · · · ρ`

]
D−1 = diag

(
1

z − τ0
In,

1
z − τ1

In, · · · ,
1

z − τ`
In

)

C =


β0In

β1In
...

β`In


So

S =
∑̀
k=0

βk

z − τk
ρk = ω(z)−1 P(z) (5.4)

from the first barycentric formula [3].

Note the first column of R−1(z) is
[

S−1

−CD−1S−1

]
or

ω(z)P−1(z)(
β0

z − τ0

)
ω(z)P−1(z)(

β1

z − τ1

)
ω(z)P−1(z)

...(
β`

z − τ`

)
ω(z)P−1(z)


Note that

∑`
k=0

βk

z − τk
=

1
ω(z)

, so

[
0 In In · · · In

]
· R−1


In

0
...
0

 =

∑̀
k=0

βk

z − τk

ω(z)P−1(z) = P−1(z)

\

Theorem 5.5.4 In the Hermite interpolational bases on m + 1 nodes each with coefficiency si,
so the degree ` is at most −1 +

∑m
k=0 sk, the barycentric weights are

1
ω(z)

=

m∑
i=0

si−1∑
j=0

βi j

(z − τi) j+1
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As in the Lagrange case, C1 = diag(0, In, · · · , In). C0 is as below:

C0 =


0 −ρ̂0 −ρ̂1 · · · −ρ̂m

β0,s0−1In JT
0

β0,s0−2In JT
1

...
. . .

βm,sm−1 JT
m


where each block per node of data is collected in the n × m` block matrix

ρ̂i =
[
ρi,si−1 ρi,si−2 · · · ρi,0

]
.

Each diagonal node block is a tensor product of a transposed Jordan block:

Ji =


τiIn

In τiIn

In τiIn
. . .

. . .

In τiIn


.

This form arises naturally on letting distinct Lagrange nodes flow together in a limit.
Express 1 as a polynomial in this basis. Then 1 ←→ ρ00 = 1, ρ10 = 1, · · · , ρn0 = 1 and all

other components are zero. Put

X =
[
0 0 · · · 0 1︸         ︷︷         ︸

S 0 entries

0 · · · 0 1︸         ︷︷         ︸
S 1 entries

· · · 1
]
⊗ In

and Y =
[
In 0 0 · · · 0

]
.

A similar but more involved computation than in theorem 5.5.3 gives

S =
1

ω(z)
P(z) =

m∑
i=0

si−1∑
j=0

j∑
k=0

βi jρik(z − τi)k− j−1 (5.5)

and D−1C contains just the correct powers of (z − τi) divided into βi j to make the sums come
out right; the inverse of the block

(z − τ0)In

−In (z − τ0)In

−In
. . .
. . .

−In (z − τ0)In


is 

1
z − τ0

In

1
(z − τ0)2 In

1
z − τ0

In

1
(z − τ0)3 In

1
(z − τ0)2 In

1
z − τ0

In

...
. . .

1
(z − τ0)s0

In
1

z − τ0
In


.
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and thus each block is reminiscent of theorem 5.5.1, in fact.

Remark In every case X = [coefficients of 1] ⊗ I, Y = [1, 0, · · · , 0] ⊗ I. This is in agreement
with our universal proof in section 5.2.

5.6 Examples

In this section, we will show some experiments done in Maple 2017 to demonstrate that stan-
dard triples introduced in section works for the different bases. We wrote our own code for
constructing the linearizations rather than using Maple’s built-in CompanionMatrix function
since the result of the built-in function is the flipped and transposed version of the companion
matrices compared to the structure in this paper.

For the following examples, we check the correctness of the standard triple for each of the
following examples by rearranging the resolvent form

P−1(z) = X (zC1 − C0)−1 Y
In = X (zC1 − C0)−1 YP(z) .

Since these computations are done exactly, the result will exactly equal the identity matrix. For
the Lagrange basis example, since we construct our companion matrices using τ and ρ instead
of the matrix polynomial itself, P(z) is constructed using the barycentric Lagrange interpolation
formula, which can be derived from equation (5.4). The Hermite interpolational basis examples
are handled similarly to the Lagrange case, where P(z) is the Hermite interpolation polynomial,
which can be derived from equation (5.5).

5.6.1 Bases with three-term recurrence relations

Chebyshev basis of the first kind

P(z) =

[
1/5 7/100

−93/200 −29/200

]
T0(z) +

[
53/300 7/60

2/25 3/50

]
T1(z) (5.6)

+

[
−9/80 −13/80

57/400 −47/400

]
T2(z) +

[
−3/250 −31/500

−77/500 27/250

]
T3(z) .
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The standard triple for equation (5.6) is

C0 =



−21/200 −29/400 −107/750 −17/50 −73/200 1/25

−13/400 −1/400 −49/300 −283/750 −27/200 9/25

1/2 0 0 0 1/2 0
0 1/2 0 0 0 1/2
0 0 1 0 0 0
0 0 0 1 0 0


C1 =



−33/250 −9/25 0 0 0 0
3/25 −37/250 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



X =

[
0 0 0 0 1 0
0 0 0 0 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0


.

Then,
X (zC1 − C0)−1 YP(z) = I2 .

which indicates that the standard triple is correct.

Newton Interpolational Basis

τ =

[
seq

(
cos

(
π · k

3

)
, k = 0..3

)]
= [1, 1/2,−1/2,−1]

P(z) =

[
6 25
−1 5

] 0∏
j=0

(z − τ j) +

[
−80/3 25/3

43/3 94/3

] 1∏
j=0

(z − τ j) (5.7)

+

[
77/4 31/4
9/4 −25/2

] 2∏
j=0

(z − τ j) +

[
86/5 −61/5
4 −48/5

] 3∏
j=0

(z − τ j)

The standard triple for equation (5.7) is

C0 =



−557/20 −33/20 80/3 −25/3 −6 −25
−17/4 173/10 −43/3 −94/3 1 −5

1 0 1/2 0 0 0
0 1 0 1/2 0 0
0 0 1 0 1 0
0 0 0 1 0 1


C1 =



86
5 −61

5 0 0 0 0
4 −48

5 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



X =

[
0 0 0 0 1 0
0 0 0 0 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0


.
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5.6.2 Bernstein basis

Non-singular leading coefficient case

P(z) =

[
4/25 99/100

9/100 3/5

]
B3

0(z) +

[
−17/25 11/50

−67/100 7/50

]
B3

1(z) (5.8)

+

[
−59/100 −31/50

3/25 −33/100

]
B3

2(z) +

[
41/50 21/50

18/25 9/50

]
B3

3(z) .

The standard triple for equation (5.8) is

C0 =



59/100 31/50 17/25 −11/50 −4/25 −99/100

−3/25 33/100 67/100 −7/50 −9/100 −3/5
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


C1 =



259/300 19/25 17/25 −11/50 −4/25 −99/100

3/25 39/100 67/100 −7/50 −9/100 −3/5
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 3 0
0 0 0 1 0 3



X =

[
1/3 0 2/3 0 1 0
0 1/3 0 2/3 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0


.

Then,

X (zC1 − C0)−1 YP(z) = I2 .

Singular leading coefficient case

P(z) =

[
29/100 −8/25

7/10 −1/100

]
B3

0(z) +

[
−41/50 41/100

−7/10 91/100

]
B3

1(z) (5.9)

+

[
9/10 19/100

4/5 22/25

]
B3

2(z) +

[
1 1

9851/1980 0

]
B3

3(z) .

Expressing equation (5.9) into the monomial basis, we have

P(z) =

[
29/100 −8/25

7/10 −1/100

]
+

[
29/100 −8/25

7/10 −1/100

]
z +

[
849/100 −57/20

87/10 −57/20

]
z2 +

[
−89/20 99/50

−89/396 1/10

]
z3 .

Taking the determinant of the leading coefficient

det
([
−89/20 99/50

−89/396 1/10

])
= (−89/20) (1/10) − (99/50) (−89/396) = 0 ,
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we can observe that leading coefficient is singular, and thus, this matrix polynomial is non-
monic. The standard triple for equation (5.9) is

C0 =



−9/10 −19/100 41/50 −41/100 −29/100 8/25

−4/5 −22/25 7/10 −91/100 −7/10 1/100

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


C1 =



−17/30 43/300 41/50 −41/100 −29/100 8/25

5099/5940 −22/25 7/10 −91/100 −7/10 1/100

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 3 0
0 0 0 1 0 3



X =

[
1/3 0 2/3 0 1 0
0 1/3 0 2/3 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0


.

Then,
X (zC1 − C0)−1 YP(z) = I2 .

5.6.3 Lagrange basis

Example

τ =

[
seq

(
cos

(
π · k

2

)
, k = 0..2

)]
= [1, 0,−1] (5.10)

ρ = [I2, I2, I2] =

[[
1 0
0 1

]
,

[
1 0
0 1

]
,

[
1 0
0 1

]]

C0 =



0 0 −1 0 −1 0 −1 0
0 0 0 −1 0 −1 0 −1

1/2 0 1 0 0 0 0 0
0 1/2 0 1 0 0 0 0
−1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
2 0 0 0 0 0 −1 0
0 1/2 0 0 0 0 0 −1


C1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



X =

[
0 0 1 0 1 0 1 0
0 0 0 1 0 1 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0


.
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Using the barycentric Lagrange interpolation formula, we construct our matrix polynomial

P(z) =

(z − 1) z (z + 1)
(

1
2(z−1) −

1
z + 1

2(z+1)

)
0

0 (z − 1) z (z + 1)
(

1
2(z−1) −

1
z + 1

2(z+1)

)
=

[
1 0
0 1

]
that corresponds to the given τ and ρ from equation 5.10. Therefore, P−1(z)

X (zC1 − C0)−1 Y = I2

5.6.4 Hermite interpolational basis

Polynomial case Let

τ =

[
−1,−

1
2
,

1
2
, 1

]
(5.11)

and

z P(z) P′(z) P′′(z)
τ0 = −1 1 0 0
τ1 = −1

2 1
τ2 = 1

2 1
τ3 = 1 1 0

Note that this polynomial is identically 1: its values at all nodes are 1, and all derivatives at all
nodes are 0. This demonstrates explicitly that the degree of the polynomial is not necessarily
revealed by the grade, which here is ` = 5. The standard triple is then

C0 =



0 0 −1 −1 −1 0 0 −1
1/6 1 0 0 0 0 0 0
−25/36 1 1 0 0 0 0 0

32/27 0 0 1/2 0 0 0 0
−32/9 0 0 0 −1/2 0 0 0

1/3 0 0 0 0 −1 0 0
11/9 0 0 0 0 1 −1 0

331/108 0 0 0 0 0 1 −1


C1 =



0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



X =
[
0 0 1 1 1 0 0 1

]
Y =



1
0
0
0
0
0
0
0


.
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Using the first barycentric representation, the Hermite interpolation polynomial of the given
data is

P(z) = (z + 1)3
(
z +

1
2

) (
z −

1
2

)
(z − 1)2

· 331
108z + 108

+
11

9 (z + 1)2 +
1
3

(z + 1)−3
−

32
9z + 9

2

+
32

27z − 27
2

−
25

36z − 36
+

1
6

(z − 1)−2


= 1 ,

as discussed. Therefore the companion pencil has no finite eigenvalues, in exact arithmetic.
Numerically, it can be expected to have eigenvalues around O(1/µ)1/7 where µ is the unit
roundoff; here the exponent is 7, two more than the grade because only two of the spurious
eigenvalues at infinity are detected and removed precisely [23]. Indeed that is what occurs
(calculations not shown here). Returning to the example, calculating the resolvent form gives

X (zC1 − C0)−1 Y = 1 ,

and therefore (due to multiplying this by P(z) = 1), this shows that the standard triple for the
Hermite interpolating basis is correct.

Matrix polynomial case Let
τ = [0, 1]

and
z P(z) P′(z)

τ0 = 0
[
−1 0
−1 1

]
τ1 = 1

[
0 1
1 −1

] [
1 −1
−1 0

]
Then, the standard triple is

C0 =



0 0 −1 1 0 −1 1 0
0 0 1 0 −1 1 1 −1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
−1 0 1 0 1 0 0 0
0 −1 0 1 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


C1 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1



X =

[
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1

]
Y =



1 0
0 1
0 0
0 0
0 0
0 0
0 0
0 0


.
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The Hermite interpolating polynomial is

P(z) =

[
z − 1 −2z2 + 3z

−3z2 + 5z − 1 2z2 − 4z + 1

]
and the resolvent form is

X (zC1 − C0)−1 Y =


−2z2 + 4z − 1

6z4 − 21z3 + 23z2 − 8z + 1
−2z2 + 3z

6z4 − 21z3 + 23z2 − 8z + 1
−3z2 + 5z − 1

6z4 − 21z3 + 23z2 − 8z + 1
−z + 1

6z4 − 21z3 + 23z2 − 8z + 1

 .
Then,

X (zC1 − C0)−1 YP(z) = I2 ,

which indicates that the standard triples is correct.

5.7 Concluding remarks
The generalized standard triple (or standard quadruple, if you prefer) that we propose in this
paper for convenience in algebraic linearization may have other uses. As pointed out on p. 28
of [17] many of the properties stated in that work for monic polynomials are valid for non-
monic polynomials with the appropriate changes made. We have not attempted a comprehen-
sive categorization of those changes for other purposes.

We have established that these generalized standard triples allow the resolvent representa-
tion for the matrix polynomial, equation (5.1), is useful for algebraic linearization.
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Chapter 6

Numerical examples on backward
stability of algebraic linearizations

6.1 Introduction

The polynomial eigenvalue problem (PEP) is to find the scalar λ and the vectors x and y to
satisfy

P(λ)x = 0 and y∗P(λ) = 0

where P(λ) is a matrix polynomial. In this article, we are interested in matrix polynomials in a
particular factored form

P(λ) = λa(λ)b(λ) + c ,

where a(λ), b(λ) ∈ C[λ]r×r with matrix coefficients of size n × n and c ∈ Cn×n. To solve
the PEP, we use a very common technique called linearization, namely the transformation
of P to a linear matrix pencil; however, we use a specialized construction called algebraic
linearization. We are interested in the backward stability of this algorithm. The algebraic
linearization construction takes advantage of the factored form of the matrix polynomial by
piecing together the linearization of a(λ) and b(λ) to form the linearization for P(λ). Due to
this recursive re-use, the linearizations are usually of lower height in comparison to the standard
linearizations that arise on expanding P(λ) (in whatever polynomial basis) and thus, we hope
that the algebraic linearization matrix is better conditioned (and hence the algorithm has a
chance to be more numerically stable). Because of this, we believe that algebraic linearizations
are more stable than other linearization constructions such as Frobenius linearizations. In this
article, we explore whether our hypothesis is true by doing numerical experiments.

6.1.1 Algebraic linearizations

Algebraic linearization was first introduced in Theorem 5 of [1]. We restate the theorem below.

Theorem 6.1.1 If a(z) and b(z) have the generalized standard triple representations a−1(z) =

XA(zDA − A)−1YA and b−1(z) = XB(zDB − B)−1YB, then the pencil zDH − H is a linearization

93
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of h(z) = za(z)b(z) + c0, where the matrices DH and H are given as follows:

H =

 A 0 −YAc0XB

−XA 0 0
0 −YB B


and

DH =

 DA

I
DB

 .
Proof See the proof from Theorem 5 from [1]. \

6.1.2 Backward stability of PEP
The literature of backward stability of linearizations is extremely large. Some of this literature
includes Lawrence and Corless [8], Lawrence et al. [9], Higham et al. [6], [5], and Dopico et
al. [3].

The normwise backward error of a finite approximate right eigenpair (λ, x) of the polyno-
mial P(λ) expressed in the monomial basis is defined by

ηP(x, λ) = min {ε : (P(λ) + ∆P(λ)) x = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,m} . (6.1)

Tisseur [10, Theorem 1] obtained the explicit formula

ηP(x, λ) =
‖P(λ)x‖2(∑m

i=0 |λ
i|‖Ai‖2

)
‖x‖2

.

For the left eigenpair (y∗, λ), the normwise backward error is

ηP(y∗, λ) = min {ε : y∗ (P(λ) + ∆P(λ)) = 0, ‖∆Ai‖2 ≤ ε‖Ai‖2, i = 0, . . . ,m}

=
‖y∗P(λ)‖2(∑m

i=0 |λ
i|‖Ai‖2

)
‖y‖2

.

Corless, Rezvani, and Amiraslani [2] have also extended the normwise backward error
for the Lagrange basis, based on Amiraslani’s 2006 PhD thesis. The same result was derived
independently by Green and Wagenknecht in the same year [4]. For P(λ) =

∑m
i=0 Ai`i(λ), where

`i(λ) is the Lagrange basis, the normwise backward error is

ηP(x, λ) =
‖P(λ)x‖2(∑m

i=0 ‖Ai‖2|`i(λ)|
)
‖x‖2

ηP(y∗, λ) =
‖y∗P(λ)‖2(∑m

i=0 ‖Ai‖2|`i(λ)|
)
‖y‖2

.

The generalized normwise backward error for any polynomial basis1 φi(λ) is

ηP(x, λ) =
‖P(λ)x‖2(∑m

i=0 ‖Ai‖2|φi(λ)|
)
‖x‖2

ηP(y∗, λ) =
‖y∗P(λ)‖2(∑m

i=0 ‖Ai‖2|φi(λ)|
)
‖y‖2

.

1Green and Wagenknecht noted that this theorem also holds for nonpolynomial φ(λ), such as exp(−λ), which
occur for instance in delay differential equations.
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Unfortunately, this type of backward error formula cannot work for h(λ) = λa(λ)b(λ) + c0

because a(z)b(z) is not a linear combination of the basis elements. The standard theory requires
that the matrix polynomial be expressed as a linear combination of the basis elements. At this
time, we do not have a satisfactory theoretical framework for this. We can allow changes in a
while keeping b fixed, and vice-versa; or we can do a linearized analysis, getting terms such as
a∆b and ∆ab, but these are only valid in the limit of small ∆a and ∆b.

On the other hand, we can use the established normwise backward error for algebraic lin-
earization. Let L(λ) = λX − Y be a linearization of P(λ). The backward errors of approximate
left and right eigenpairs (u∗, λ) and (λ, v) are given by

ηL(u∗, λ) =
‖u∗L(λ)‖2

(|λ|‖X‖2 + ‖Y‖2) ‖u‖2

ηL(v, λ) =
‖L(λ)v‖2

(|λ|‖X‖2 + ‖Y‖2) ‖v‖2
.

6.1.3 Pseudospectra of matrix polynomials
In the following section, we present numerical experiments to determine the backward stability
of algebraic linearizations comparatively with other known linearizations, such as Frobenius
linearizations and linearizations for other polynomial basis. Our method to compare the back-
ward stability between different expressions of a matrix polynomial is to use ε-pseudospectra.
Pseudospectra of matrix polynomials has been studied extensively: there are many references
such as Tisseur and Higham [11] which looks at structured pseudospectra for polynomial
eigenvalue problems, Lancaster and Psarrakos [7] which gives the general properties for pseu-
dospectra of matrix polynomials, and Corless et al. [2] which looks at pseudospectra of matrix
polynomials expressed in alternative polynomial bases. Tisseur and Higham [11] define the
ε-pseudospectra for matrix polynomials as

Λε(P) = {λ ∈ C : (P(λ) + ∆P(λ)) x = 0 for some x , 0 and ∆P(λ) with
‖∆Ak‖ ≤ εαk, k = 0, . . . ,m} , (6.2)

where
∆P(λ) = λm∆Am + λm−1∆Am−1 + · · · + ∆A0 , (6.3)

and αk are non negative weights that allow freedom on how the perturbations are measured.

6.1.4 Connection between pseudospectra and backward error
The pseudospectrum of a matrix has connections both with backward error and with the condi-
tioning of its eigenvalues. The definition of the normwise backward error for an approximate
eigenpair (x, λ) of P(λ)x = 0 given in Tisseur and Higham [11] is shown in equation (6.1), but
the norms ‖Ai‖2 are replaced by weights αk

η(x, λ) := min {ε : (P(λ) + ∆P(λ)) x = 0, ‖∆Ak‖ ≤ εαk, k = 0, . . . ,m}

and the backward error for an approximate eigenvalue λ is given by

η(λ) := min
k,0

η(x, λ) .
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Comparing equations (6.3) and (6.2), we can see that the ε-pseudospectrum can be expressed
terms of backward error of λ as

Λε(P) = {λ ∈ C : η(λ) ≤ ε} .

Another way of thinking about the connection between pseudospectra and backward sta-
bility could be through the relationship between between forward and backward error:

‖∆y‖ - κ · ‖∆x‖ , (6.4)

where ∆y and ∆x are forward error and backward error, respectively, and κ is the condition
number. By using the contours of the pseudospectra, we are able to compute the condition
number and determine whether solving our problem using algebraic linearization is sensitive
to change. An eigenvalue problem is considered well-conditioned if the condition number is
relatively small, which means that the problem is insensitive to perturbations.

In figure 6.1, we show the pseudospectra contours around an eigenvalue from matrix poly-
nomial from equation (6.5). The eigenvalue that we are looking at its sensitivity is x = 2.23.
Then, picking a point (x = 2.4535 + 0.03803i) on the contour, we can estimate the condition
number2 of the PEP. The distance between the point and the eigenvalue is the forward error.
In our example, the forward error is approximately 0.2267. The value of the contour, on the
other hand is our backward error. In our example, the backward error is x = 0.0499. Using the
formula from equation 6.4,

κ =
‖∆y‖
‖∆x‖

=
0.2267
0.0499

= 4.5424 .

6.1.5 Algorithms as transformations
The final and perhaps most important connection between pseudospectra, condition numbers,
and numerical stability is in the notion of an algorithm being a transformation of one problemP
to another problemP′ which is easier to solve. Examples include transforming a pair of general
matrices (A, B) to a pair of upper triangular matrices (S,T) (say, by unitary congruence) so that
the generalized eigenvalues are the same, but can simply be read off from the latter pair.

The basic principle is that an algorithm that transforms a well-conditioned problem P to an
ill-conditioned problem P′ cannot, without a miracle, be a numerically stable algorithm. Thus,
examining the condition number of the transformed problem P′ gives us an indication of the
potential numerical stability of the overall algorithm.

In what follows, we will use pseudospectra to examine the conditioning of the algebraic
linearization (our transformed problem P′). We will see that our algebraic linearization will
usually be well-conditioned: this suggests—but does not prove—that the algorithm for solving
the PEP that consists of computing and then solving an algebraic linearization has the potential
to be numerically stable.

2The condition number of a simple eigenvalue is an estimate of how spread-apart the near-circular contours
are, very close to the eigenvalue.
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Figure 6.1: Pseudospectra of (6.5) to demonstrate the connection between pseudospectra and
backward stability. The length of the line connecting the eigenvalue (λ = 2.23) and the contour
(ε = 0.05) is the forward error.

6.2 Numerical experiments
In this section, we perform some numerical experiments to gain an understanding of the back-
ward stability of algebraic linearizations by using pseudospectra. We give a variety of numer-
ical experiments, including using different polynomial bases, such as monomial basis, Bern-
stein basis and Lagrange basis, and changing the size of the problem. In the following, the
pseudospectra is plotted on the complex plane. Subsection 6.2.1 shows an example of the
pseudospectra of the matrix polynomials themselves in their original bases, whereas the rest
are examples of the pseudospectra of the linearization.

6.2.1 Pseudospectrum of a matrix polynomial
Let

P(λ) = λA(λ)B(λ) + I3 (6.5)

where

A(λ) =

0.4615 0.0923 0.8391
0.1533 0.4590 0.5133
0.9339 0.4703 0.3931

+
0.0665 0.3310 0.0346
0.0251 0.7981 0.3070
0.0844 0.8489 0.2307

 λ+

0.1961 0.6483 0.6803
0.8701 0.4791 0.4333
0.8227 0.0951 0.2917

 λ2
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and

B(λ) =

0.1018 0.8888 0.7178
0.4186 0.6231 0.6527
0.6902 0.0650 0.5154

+
0.4264 0.1536 0.7465
0.8109 0.5541 0.5062
0.7240 0.3980 0.3853

 λ+

0.2322 0.4092 0.8949
0.8038 0.0554 0.5337
0.3854 0.4454 0.6937

 λ2.

To save space, we rounded the printed coefficients to four places.
Figure 6.2 shows the pseudospectra of two different linearizations of the matrix polynomial

in the form λa(λ)b(λ) + c0 given in equation (6.5). On the left, we use algebraic linearization
and on the right, we use Frobenius linearization. Since we do not know how to compute the
condition number for a matrix polynomial expressed in the form for algebraic linearization, we
used the results from subsection 6.1.4 as our condition number for the algebraic linearization
problem. We can observe that the two figures look quite similar at a quick glance. Looking
at the figure more carefully, some eigenvalues, especially those near the origin, for the matrix
polynomial expressed in the monomial basis (right) are less sensitive to perturbation. Despite
this, it seems that the matrix polynomial expressed in the algebraic linearization form looks
less susceptible to changes.

We can also compute the condition number for an eigenvalue for the expanded matrix
polynomial expressed in the monomial basis. For the results to be more comparable, we use
the same eigenvalue as previously x = 2.23. Evaluating

5∑
k=0

‖Mk‖2 · |2.23|k � 321.3134 ,

where Mk would be the coefficients of the expanded matrix polynomial. If we normalize the
matrix polynomial by dividing all the coefficients with the largest norm of the coefficients, our
condition number is then κ = 51.7018. This quantitatively suggests that the matrix polynomial
expressed in the factor form is more stable.

6.2.2 Monomial basis
In this subsection, we have three matrix polynomials which are expressed in the monomial
basis.

Monic case

Let us use the same matrix polynomial as the example in subsection 6.2.1. In figure 6.3, we
show that we calculated the pseudospectra in two ways: using the grid technique to create the
contours (coloured) and perturbing the coefficients on the matrix polynomials and finding the
solution to these perturbed equations (in black). For the algebraic linearization case, we perturb
the coefficients of a(λ) and b(λ) and c0 by. On the other hand, for the Frobenius linearization,
after expanding the matrix polynomial, we then perturb the coefficients of the matrix polyno-
mial now expressed differently. We then take the eigenvalues of these perturbed polynomial
matrices—these are what is plotted in figure 6.3. For these experiments, we performed the per-
turbations for the algebraic linearization problem 1000 times and the Frobenius linearization
10000 times.
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Figure 6.2: Pseudospectra of two different linearizations (left: algebraic linearization, right:
frobenius linearization) of the matrix polynomial in the form λa(λ)b(λ) + c0 given in equation
(6.5).

The left figure is of the pseudospectra of the linearization of the equation constructed using
algebraic linearization whereas the right figure uses Frobenius linearization. We observe that
the left figure is clearly more stable according to both methods. For the grid technique, we can
see that the contours, for example ε = 0.05, are closer to the roots in the left figure compared
to the right figure. As for the perturbation technique, we also used ε = 0.05. We can see that
distribution of the eigenvalues vary more for the Frobenius linearization, indicating that even
very small perturbations result in large changes in the result. This demonstrates that for this
example, the algebraic linearization is more stable in comparison to the Frobenius linearization.

Singular leading coefficient case

Let
P(λ) = λA(λ)B(λ) + c (6.6)

where

A =

[
17 78
1 77

]
+

[
43 59
6 18

]
λ +

[
73 26
54 92

]
λ2 +

[
76 7
89 19

]
λ3 ,

B =

[
74 78
70 51

]
+

[
43 86
62 68

]
λ +

[
53 71
30 39

]
λ2 +

[
1 1
2 2

]
λ3

c =

[
94 1
82 1

]
.

Since the leading coefficient of B is singular, this means that when it is multiplied with the
leading coefficient of A, the result is singular, and therefore the leading coefficient of equation
(6.6) is singular.

Figure 6.4 shows the pseudospectra of two different linearization construction of (6.6).
The left figure uses the algebraic linearization construction whereas the right figure uses the
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Figure 6.3: Pseudospectra of two different kinds of linearizations for equation (6.5) which is
expressed in the monomial basis. The linearization constructions used are algebraic lineariza-
tion (left) and Frobenius linearization (right).

Frobenius linearization. From the figure, it is clear that the algebraic linearization for this
example has better stability. Although the contour ε = 10−4 is pictorially smaller in the right
figure (Frobenius linearization) compared to the left figure (algebraic linearization), we still
consider that the algebraic linearization is more stable because the other contours that can be
seen in these figures are comparatively much larger in the right figure compared to the left.

“Large” example

Let
P(λ) = λ (λA(λ)B(λ) + c0) (λC(λ)D(λ) + c1) + c2 (6.7)

where

A(λ) =

[
0.5674 0.8245
0.9688 0.9596

]
+

[
0.6463 0.4766
0.3796 0.9119

]
λ +

[
0.0149 0.4716
0.1567 0.5430

]
λ2 +

[
0.0597 0.8896
0.6580 0.1096

]
λ3 ,

B(λ) =

[
0.4378 0.9852
0.2802 0.6088

]
+

[
0.2537 0.5450
0.1326 0.8278

]
λ +

[
0.8370 0.2037
0.8333 0.5444

]
λ2 +

[
0.8749 0.8564
0.1210 0.8998

]
λ3 ,

C(λ) =

[
0.2179 0.4742
0.0770 0.8350

]
+

[
0.4694 0.5027
0.4138 0.1254

]
λ +

[
0.1323 0.6030
0.8705 0.2653

]
λ2 +

[
0.8648 0.4578
0.0581 0.7222

]
λ3 ,

D(λ) =

[
0.3390 0.5270
0.4012 0.8942

]
+

[
0.7784 0.2788
0.0694 0.3794

]
λ +

[
0.8647 0.2399
0.4200 0.5977

]
λ2 +

[
0.4794 0.9347
0.8985 0.8179

]
λ3

and

c0 =

[
0.7089 0.8997
0.7432 0.0652

]
, c1 =

[
0.3359 0.8281
0.0043 0.5074

]
, c2 =

[
0.3662 0.5348
0.2266 0.2895

]
.

To save space, we have rounded the printed coefficients to four decimal places. Figure 6.5
shows pseudospectra of the eigenvalue problem being solved with different linearizations. The
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Figure 6.4: Pseudospectra of two different kinds of linearizations for equation (6.6) which is
expressed in the monomial basis. The linearization constructions used are algebraic lineariza-
tion (left) and Frobenius linearization (right).

linearization of the figure on the left was constructed using algebraic linearization recursively.
Since λA(λ)B(λ) + c0 and λA(λ)B(λ) + c1 are in the appropriate form that is required for the
algebraic linearization construction, we can construct the companion for these two terms using
algebraic linearizations. Then, using the companions that we built, we can build the lineariza-
tion for equation (6.7) using algebraic linearization again. The second way (the figure is in the
center) we express the equation is by expressing λA(λ)B(λ) + c0 and λA(λ)B(λ) + c1 in an ex-
panded form rather than in a factor form. By expressing these terms in the monomial basis, we
then can construct linearizations for each term using the Frobenius linearization construction.
Then, using the resulting linearizations, we can build the linearization for equation (6.7) using
the algebraic linearization construction. Lastly, we can expand the entire matrix polynomial
express it in the monomial basis. The figure for this is in the right.

From figure 6.5, we can see that the pseudospectra figure is the most stable, which is to be
expected. Between the pseudospectra figures, the recursive algebraic linearization can be seen
to be the most stable among the three since the contours in the algebraic linearization figure
are the closest to the roots. The most unstable linearization for this example is the Frobenius
linearization.

6.2.3 Bernstein basis

Let

P(λ) = λA(λ)B(λ) + c (6.8)
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Figure 6.5: The left figure uses the form in (6.7) and uses algebraic linearizations to construct
the companion. The center figure expresses the inner terms λA(λ)B(λ)+ c0 and λC(λ)D(λ)+ c1

in the monomial basis. This is so that we use the Frobenius linearization construction for the
parts expressed in the monomial basis and then use algebraic linearization to construct the
final companion. Lastly, we use the expanded form of the equation and created the Frobenius
linearization (right).

where matrix polynomials A(λ) and B(λ) are expressed in the Bernstein basis, Bn
k(λ), in which

the subscript k is the index and the superscript n is the degree,

A(λ) =

[
73 59
61 44

]
B2

0(λ) +

[
25 2
43 61

]
B2

1(λ) +

[
96 4
10 89

]
B2

2(λ) ,

B(λ) =

[
25 82
1 15

]
B2

0(λ) +

[
88 36
10 60

]
B2

1(λ) +

[
59 65
67 44

]
B2

2(λ)

and

c =

[
14 25
76 66

]
.

Figure 6.6 shows the pseudospectra of equation (6.8) for various constructions for the lin-
earization. From left to right, we have the algebraic linearization, linearization for matrix
polynomials expressed in the Bernstein basis, and the Frobenius linearization. Here, we see
that the algebraic linearization and the Frobenius linearization are quite similar (the algebraic
linearization result may be only slightly better). For the Bernstein linearization, we can see that
the eigenvalue 0.8639 + 0.0000i is very well-conditioned, whereas all the other eigenvalues are
not as well-conditioned. Overall, it is difficult to determine which linearization construction
offers the best stability from these results.

6.2.4 Mixed bases
Let

P(λ) = λA(λ)B(λ) + c (6.9)

where A(λ) is expressed in the monomial basis

A(λ) =

[
44 20
18 62

]
+

[
27 95
56 72

]
λ +

[
68 78
96 61

]
λ2
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Figure 6.6: Pseudospectra of two different kinds of linearizations for equation – which is ex-
pressed in the Bernstein basis. The linearization constructions used are algebraic linearization
(left), linearization for matrix polynomials expressed in the Bernstein basis (center), Frobenius
linearization (right).

and B(λ) is expressed in the Lagrange interpolational basis with the interpolating nodes

τ =

−1,−

√
2

2
, 0,

√
2

2
, 1


and

B =

[[
95 27
6 99

]
,

[
78 69
48 42

]
,

[
39 39
22 3

]
,

[
48 98
34 56

]
,

[
85 47
41 83

]]
,

respectively.
Figure 6.7 shows the pseudospectra of equation (6.9) for the algebraic linearization con-

struction (left) and the Frobenius linearization construction (right). The two figures look very
similar—the most obvious difference would be the color of the contours, which helps us de-
termine which of the two linearizations are more stable. Since the largest contour (ε = 1) is
only visible in the algebraic linearization figure, this suggests that it is more stable than the
Frobenius linearization.

6.3 Concluding Remarks
In this article, we have presented some numerical experiments to show that there are many
potential cases where algebraic linearizations are more backward stable. As future work, we
hope to establish bounds and find an explicit formula for the normwise backward error for
polynomial eigenvalue problems that are solved using algebraic linearizations.
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Chapter 7

Concluding remarks

This thesis has described the historical development of the idea of the recursive algebraic
linearization of matrix polynomials expressible in the form za(z)b(z) + c, beginning from
Piers Lawrence’s idea for the Mandelbrot polynomials. We first generalized to Fibonacci-
Mandelbrot and Narayana-Mandelbrot, and later to Euclid polynomials, at which time we re-
alized that the idea must be general. At this point, the ideal of a “minimal height” companion
became clearer. We then extended the idea to matrix polynomials, and studied the numerical
stability, which is good, according to our experiment. Future work includes generalizing the
minimal height idea to matrix polynomial linearizations.

Perhaps the most interesting future work will be to combine the Masters’ Thesis [1], which
used homotopy methods and singularity detection, in an attempt to create an efficient, reli-
able “divide and conquer” method to compute general eigenvalues using a homotopy. We
will first formally specify this divide-and-conquer algorithm, prove it correct, and perform a
cost analysis based on the cost of numerical solution of ODE and the approximate location of
singularities, which we need to avoid. We will then test the algorithm again using millions of
Bohemians, again looking for worst-cases (likely to be cases in which the eigenvalues of differ-
ent blocks are close, or are identical, which leads to potential singularities) and experimentally
determining the average case behaviour.
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