Western University

Scholarship@Western

Digitized Theses Digitized Special Collections

1990

Generalized Design of Damping Control

M. Sainath Moorty

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation

Moorty, M. Sainath, "Generalized Design of Damping Control" (1990). Digitized Theses. 4963.
https://ir.lib.uwo.ca/digitizedtheses/4963

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wiswadmin@uwo.ca.


https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4963&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4963?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4963&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Generalized Design of Damping Control

by

M.Sainath Moorty

Department of Electrical Engineering

—~
B4
~

Submitted in partial fulfillment
of the requirement for the degree of

Master of Engineering Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario

April 1990

© M.Sainath Moorty 1990




Abstract

This thesis establishes new guidelines to aid a system planning
engineer in the process of improving the small signal stability of power
systems. These guidelines help in designing controllers to increase the
positive damping of poorly damped or unstable electromechanical modes of
oscillations. Design strategies for damping controllers on generators
(called power system stabilizers) and on Static Var Compensators (called
supplementary controls) are described. The same procedure can be used
for designing damping controllers on other dynamic devices like HVDC

link, Flexible AC Transmission System (FACTS) elements etc.

In this thesis the particulars of the appropriate system
representation and the use of various analysis techniques are treated in
detail. Also, in this thesis certain new techniques and innovations to the
existing techniques for the small signal stability investigations and design
of damping control on a power system are introduced, namely, modal
torque calculations, use of voltage participation and observability factors
and innovations to the standard pole placement technique of designing

damping control to make it more robust.

Modal torque calculations, used to determine in a qualitative and

quantitative manner the dynamic interaction between various devices and
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their effect on system stability, is shown to be a very powerful for small

signal stability studies.

A systematic procedure for the selection of a suitable location to place
damping control is presented considering the controllability and
observability of the device and feedback signal respectively, for the mode
under consideration (the mode whose damping is to be enhanced). The
controllability and observability aspects using the well known state
participation factors are augmented by the use of a new sensitivity index
called the voltage participation factor and a novel method for calculating
the observability of a potential feedback signal to the mode under
consideration respectively. The effectiveness of this procedure for the

selection of a suitable site is validated through a case study of a test system.

The effectiveness of the standard pole placement technique used for
the design of the démping control is enhanced from robustness
considerations by certain innovations with regard to selecting the new
location for the mode under consideration and the constraints placed on the

phase characteristics of the damping control compensation network.

The proposed guidelines developed for the generalized procedure of
designing damping control is validated through an extensive case study of

a 39-bus test system presented in this thesis.
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Nomenclature

All of the symbols used in this thesis have been defined in the text at

appropriate places. Definitions of some important symbols are reproduced

here.

Base angular speed (radians/second)

Inertia constant of synchronous machine in per unit
Damping constant of synchronous machine in per unit
Matrix A or vector [A]

Transpose of matrix [A] or vector [A]

Small deviation in the quantity (.)

Static Var Compensator

Power System Stabilizer

High Voltage Direct Current

Current

Voltage

Real and reactive power respectively

Flux linkage in per unit (Chapter 2); Eigenvalue elsewhere
Flux linkage per unit voltage

Impdence and admittance respectively

Damping ratio

Subscripts d,q and D.Q: Denote the direct (d,D) and quadrature (q,Q)

components of the quantities refered to the machine rotor axis and the

synchronously rotating reference frame respectively

X1X




Chapter 1.

Introduction

1.1 General

Electric power systems are the most complex structures mankind
has ever built. They span vast geographical areas transmitting energy
over large distances. The stability and integrity of this system is vital for
the economy. The power system must be reliable and ensure good quality
of electric energy supplied to the user. However, these systems are prone to
disturbances. A disturbance may be small or large in magnitude. These
disturbances lead to different type of changes in the system. These
changes may allow the system to operate under a stable condition or make
it unstable. The instability of a power system can be loosely classified into
two categories a)Steady state or small disturbance instability and
 b)Transient instability. The conditions for the onset of these instabilities
and the corresponding remedial actions have been widely documented in

the literature [2].

The steady state stability or small disturbance stability of a power

system is defined as follows [24]:




A power system is steady state stable for a particular steady state
operating condition if, following any small disturbance, it reaches a
steady state operating condition which is identical or close to the pre-
disturbance operating condition. This is also known as small
disturbance stability of a power system.
In general the term small signal stability is interchangeably used for
steady state stability [6]. Small signal instability is prone to occur in
situations where the system is operating near its power limit, or if remote
generation is involved, or if the system is trying to achieve an operating
point which is inherently unstable. Incidents such as the Northeast Power
Failure of 1965 demonstrate the consequences of small signal instability [3].
Ever since then there has been a growing interest in the study of power

systems to improve the small signal stability.

1.2 Problem of small signal instability

Almost on a continuous basis the power system undergoes small
changes due to random switching of the loads. The inherent nature of the
system to try and meet the load requirements cause low frequency
electromechanical oscillations. This is due to the dynamic interactions
between the mechanical and electrical torques applied to the generator
rotating system. These oscillations are reflected as variations in the speed,
voltage, frequency etc. of the system. When these variations remain within
narrow bounds, the system is said to be stable in the small signal sense.
Conversely, if these variations increase with time, the system is unstable.
The relative small signal stability of the system depends on how well the

electromechanical modes of the system are damped. The behavior of the




electromechanical modes of oscillations can be analyzed in a linearized
domain, since the cause of small signal instability is not due to large
deviations but the inherent system conditions which lead to instability.
The improvement of small signal stability is achieved by the proper design
of controls so as to increase the damping of electromechanical modes of
oscillation. This calls for a detailed analysis of the power system through
appropriate modelling of its components as well as a systematic approach

to the design of the controls.

1.3 System modelling

The modelling of a power system in dealing with small signal
stability studies has been a well researched topic (1]. As mentioned earlier
small signal stability studies involve the analysis of the small signal
(linear) behavior of the power system about an operating point. This has
led to the development of linearized system models in the state space
framework. The time frame of interest in the analysis of the small signal
stability is between 1 to 10 seconds. By this time the stator quantities of the
machines and the network voltages and currents would have reached the
steady state and hence can be represented by algebraic equations [4]. A

| recent development in the representation of the power system is the use of
component connection form to model all the dynamic devices in the system
[1]. In this approach the development of the system model proceeds
systematically with the development of individual subsystems or
component models which are interfaced through appropriate variables.
This makes modelling flexible and enables large, complex systems to be

modelled conveniently [5].




1.4 Control system design philosophy

The basic steps in the design of a damping control are:
a)Selection of suitable location for installing the damping control
b)Choice of suitable feedback signal to the damping control.

¢)Determination of damping control parameters.

Linear control theory can be used to design damping control for the
damping of electromechanical modes of oscillations. There are many
control system design techniques, ranging from ‘classical control methods
to optimal and adaptive. It is important to note that very few power utilities
have incorporated designs using optimal or adaptive control methods; and
where it has been used, it is on an experimental basis. The main
shortcoming of the optimal design technique is its lack of robustness since
the system can operate under a wide variety of operating conditions,
thereby making an optimal design subjective [6]. Adaptive control
generally requires an internal model of the system (state identification).
The degree to which this model remains representative of the system
limits the use of adaptive control. Traditionally, classical control methods
have been used for design purposes in power systems. Techniques like root
locus, frequency response and pole placement have been used, but mainly

for the design of power system stabilizers (PSS) on generators.

Based on the feedback of signals like speed, frequency, or
combination of these and other signals; a PSS is designed to provide a

supplementary input to the excitation system. The excitation system acts




on this supplementary input and produces a torque. This torque has a
component in phase with speed changes of the generator which aids the
damping of the electromechanical modes of oscillation [7]. The frequency
response technique is normally used to design the lead or lag network for
providing the necessary phase compensation over the desired frequency

range [6].

Damping of electromechanical modes of oscillation can also be
achieved through the supplementary control of Static Var Compensators
“(SVC) [8]. For the proper design of SVC supplementary control it is
necessary to take into account the system wide interaction between the
generating systems. However, this may result in a single input/multi-
output type situation and hence the frequency response technique used for
the design of PSS cannot be directly applied. In this situation the design of
the phase compensation network will become quite complex and may
deteriorate into a trial and error procedure. A need therefore exists to
develop a systematic procedure for the design of SVC supplementary
control. In addition to frequency response, pole placement techniques have
also been used for the design of damping control [8,9,10]. This approach for
control design has the advantage that the complete system dynamics can

be conveniently handled.

In a large system, the location of damping control (power system
stabilizer, supplementary control on SVC, etc) plays an important role in
establishing its effectiveness on damping electromechanical modes of

oscillation. A suitable location can be determined, based on the state




participation factors [11,12]. State participation factors give the sensitivity
of the eigenvalues to the diagonal elements in the state matrix. The
magnitude of the state participation factor gives an indication of the
contribution of that state to a particular mode of electromechanical
oscillation (eigenvalue). In situations where state participation factors
cannot provide adequate information, a need exists to develop alternative

criterion using other system quantities.

To enhance the effectiveness of the damping control the proper
selection of feedback signals to the damping controllers is important.
Years of field experience coupled with detailed analysis has shown that
speed, frequency, line power flows or combinations of these form
satisfactory feedback signals to power system stabilizers [13]. In the
selection of feedback signals for supplementary control on SVC one cannot
rely on field experience as this is minimal. Some work done in this area
pinpoint line currents, ‘line active power, bus frequency, active current

components as possible signals [14].

1.5 Objective and scope of the thesis

The above discussion points to a need to develop a systematic
approach for the design of damping control taking into consideration the
dynamic interaction between the various components of a power system.
In an attempt to accomplish this, the specific objectives of this thesis are

established as:




a)Develop a better understanding, on a quantitative basis, of the dynamic
interactions between the various power system components and their effect
on the system stability.

b)Develop an alternate criteria for the determination of a suitable location
of the damping control. The need for this arises when the state
participation factors may not provide adequate information.

c)Develop a generalized procedure based on the mode observability criterion
to select the appropriate feedback signals for the damping control.
d)Develop a design strategy for increasing the robustness of a damping
control. The robustness of the design ensures that the damping control
will operate effectively under a wide range of operating conditions to

increase the damping of electromechanical modes of oscillation.

This thesis proposes new guidelines for the systematic design of
controllers for damping electromechanical modes of oscillation. Special
attention is required for the design of supplementary controls on Static Var

Compensators.

1.6 Outline of the thesis

Chapter 2 describes the development of the linearized power system
model in the state space form. Standard techniques ( state participation
factors, mode shape determination, frequency response, residue and time
response calculation) for the small signal stability analysis of power
systems and design of control is described in Chapter 3. Certain
shortcomings in these techniques are overcome by certain improvements

and new techniques are brought forth in Chapter 4. Also, in Chapter 4, the




effect of various power system components on the small signal stability of
the system is described. Here emphasis is laid on the quantitative
assessment of the effect a device (like SVC) has on system stability. Also,
the concepts of voltage participation factors and the observability of

eigenvalues in various system signals is described.

The guidelines and procedures for the design of the damping control
using a pole placement technique employing the residue method, is
discussed in Chapter 5. Certain innovations for making the damping

control more robust are also proposed in this chapter.

The structure and salient features of the Small Signal Stability ( S3)
program developed for the purpose of conducting small signal stability
investigations is described in Chapter 6. Also, case studies of a test system
employing the proposed design procedures for damping control are

reported in Chapter 6.

Chapter 7 summarizes the conclusions drawn from this thesis and

submits the future scope of work.




Chapter 2.

Power System Modelling

2.1 General

This chapter describes the development of the system model in the
state space framework for small signal stability analysis of power systems.
The overall system model is developed in a modular fashion utilizing the

various device (subsystem) models.

22  State space representation

A linear dynamic system described by state space equations has the

~following form,

[X] = [A] [X] + [B] [u] (2.001)
[y] = [C]1[X] + [D] [u] (2.002)

where, [X] is the state vector, a set of system variables which, when known,

completely describes the system, [u] is the vector of applied inputs to the
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system, [y] is the output vector, [A] is the system state matrix, [B] is the
input matrix defining the distribution of the inputs into the system, [C] is
the output matrix defining the linear combination of the states forming
each output and [D] is the feedforward matrix defining the linear

combination of the inputs forming each output.

The size of the vector [X] is equal to the number of states used to
represent the system under consideration and matrix [A] is a square

matrix whose size is equal to the number of states in the system modelled.

Also, [X] =%{ [X]

2.3 System modelling - a macro view

The development of the power system model for small signal stability
analysis requires appropriate representation of the dynamic behavior of the
various constituent devices of the power system and the interaction between
them. These constituent devices are generally generating system, reactive
power control devices, HVDC transmission system, loads etc. One
‘approach to model the system is to represent each individual device in the

linearized state space framework about an operating point, as given below,

[X,] = [Ag Xyl + [Bgl [AV,] (2.003)
[AId] = [Cd] [Xd] - [Yd] [Avd] (2.004)
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where, [X;] is the state vector of the device, [AV,] is the vector of all the
small signal changes in the bus voltages (p.u.) which are input to this
device, [Al4] is the vector of all the small signal changes in the current
injections into the buses by this device (p.u.), [A4] is the individual device
state matrix, [B4] is the bus voltage input distribution matrix, [C4] is the

device output distribution matrix for the device states, and [Yy] is the device

admittance matrix.

It can be seen that Equations (2.003) and (2.004) represent each device
as a voltage controlled current source. As the various devices in the power
system interact through the transmission network, their respective
component models can now be conveniently interfaced through appropriate
network variables (voltage and current). The transmission network is
treated to be under steady state for small signal stability analysis and is
represented in the linearized domain about an operating point, by the

equation,

[All = [Yy] [AV] (2.005)

~where, [Yy] is the bus admittance matrix.

2.3.1 System State Matrix

The individual state space equations of the dynamic devices are

stacked together in the following form,




[X] = [A,] [X] + [B,] [AV] (2.006)
[AI] = [Cg) [X] - [Yg] [AV] (2.007)

where, [X] is the complete state vector for the power system, [AV] is the
vector of the network small signal changes in the bus voltages (p.u.), [AI] is
the vector of the network small signal changes in the current injections
(p.u.) into the buses by the system devices, [Ay] is the stacked state matrix
built up from all the individual device state matrices in the block diagonal
form, [B;] is the stacked device bus input matrix built up from all the
individual device bus input matrices in the block diagonal form, [C] is the
stacked device output matrix built up from all the individual device output
matrices in the block diagonal form, and [Y,] is the stacked device
admittance matrix built up from all the individual device admittance

matrices in the block diagonal form.

Combining Equations (2.005), (2.006) and (2.007), the overall system

state matrix [A], can be derived as,

[A]=[ A, +B,, [Yn+Y]1C,, ] (2.008)

This modular approach known as the 'component connection form'
provides flexibility and ease in formulating the overall power system model.
By virtue of the fact that each device is represented separately and then
interfaced, it is possible to represent the device to any desired degree of

detail. Also, the approach extends the flexibility to conveniently augment
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the system model to include the representation of any new device. The
formation of the state matrix [A] for a sample power system is illustrated in

Appendix (Al.1).

An important consideration in the development of the power system
model is the proper interface of the various device dynamics. Since, each
synchronous machine in a power system is represented on its individual
direct (d-) and quadrature (q-) axes, these can be interfaced to the other
power system components only if all the component models including the
synchronous machine model can be transformed to a common reference
frame. In this context, a discussion on the common reference frame

(synchronously rotating reference frame) will be in order.

2.3.2 Synchronously rotating reference frame

The various power system components can be conveniently modelled
using phase variables except synchronous machines which results in
differential equations with time varying coefficients. To avoid these time
varying elements, it is customary to express the machine equations in the
direct (d-) and quadrature (q-) axes components using Park's
transformation. The machine interface to the external system is then
described through the terminal voltages and currents, which are
referenced to the machine d- and q- axes. The direct (d-) axis lags the

quadrature (q-) axis by 90° and is taken to be fixed on the machine rotor.
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Thus, each machine model will result in a different set of direct (d-) and

quadrature (q-) axes reference frame.

The proper interface of the machine models to the rest of the system
which, may be represented in the phase variable domain, would require the
transformation of all the device models to a common coordinate axes
(reference frame). The common coordinate axes (direct axis D- and
quadrature axis Q-) which form the synchronously rotating reference
frame, are established with respect to the system slack bus. The direct (D-)
axis coincides with angle reference of the slack bus and lags the quadrature
(Q-) axis by 900. The relationship between the phase variables and the D-

and Q- axis reference frame is depicted in Figure (2.1).

Figure (2.1): D-Q components of a phasor quantity
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The phase variable (f,,.f;,.f, where a,b,c denote the phases) are related

to the D-Q components (fp, fg)as follows [21],

£, cos 6 sin 6 fp
{ﬁ)} =| cos (8-120) sin (0-120) [ }

fqQ
cos (0 -240) sin (0 -240)

Since, the system is treated to be balanced for small signal stability
analysis, there will not be any zero sequence component. In case of
synchronous machine, the relationship between the machine d-q axes and

the system common reference frame (D-Q axes) is shown in Figure (2.2).

The voltage equation describing a synchronous machine under

steady state is given by,
E= Vi + it +j it Xq (2009)

where, all boldface quantities are phasors, E, v, and i; are the phasor

quantities respectively of the internal EMF, terminal voltage and current, of

‘the machine expressed in per unit and r,, x, are respectively the stator

q
resistance and quadrature (q-) axis reactance of the machine expressed in
per unit. The (d-q) and (D-Q) components of the terminal voltage and
current are related to the phase quantities as,

Vi =Vq+Jvg ; and V¢ = Vp +Jvq

iy =ig +Jig; and iy = ip +jiq
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where, subscripts d, q, D, Q denote the (d- and g-) and (D- and Q-)

component quantities (voltage and current ) respectively.

Any quantity (f) expressed in the d-q components can be transformed

as given below to the D-Q components and vice-versa, using the

transformation matrix [T.] which is derived from Figure (2.2).

IVe] =/ vi+VE = vh + v}

lig) =V i +i2 =+ iB +i}

D -'Axis

Figure (2.2): D-Q & d-q reference frames for a synchronous machine
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[qu] =[T.] [qu] (2.010)

[faq) = [Tl [fpgl (2.011)

where,

fpql =[fp fq I™; gl =[fa £, 175 and [Te] ={ c0sd -sin b }
sind cos d

The determination of the angle 6 between the machine reference
frame and the system reference frame can be obtained from the equation

given below.

li¢| x4 cos 6 -|i¢| ra sind®

tan(B+8 ) = — (2.012)
lig| ra cos O +|i¢] xq 5ind + | v¢]
where, tanf} = %%, and 0 is the power factor angle of the machine, and the

load angle (90-B) is the bus voltage angle as obtained in the load flow

calculations.
Expressing the machine terminal voltage and current in d-q and D-Q

components using Equations (2.010) and (2.011), the following equations are

obtained upon linearization,

_VQ
[Avpg] = [Tes] [Avgy] + [ v }AS (2.013)




[Aidq] = [TCS]T [AIDQl + [TCS]T[ I.Q :|A8 (2014)
-1p :

where,

[Avpql = [Avp Avg IT; and [Aipgl = [Alp Aig IT

In Equations (2.013) and (2.014) the operator A signifies a small

change around an operating point.

24  System modelling - a micro view

The overall power system model is built up from the individual
subsystem models for generating system, static var compensator, loads,
transmission network, etc. Loads can be assumed to be of the constant
impedance form and included as part of the transmission network which,
in turn, is represented by algebraic equations as it is treated to be under
steady state for small signal stability studies. The other dynamic devices
(subsystems) which comprise of various constituent blocks can be
represented through the models of these blocks depending on the degree of

‘detail required.

A typical generating system model consists of the synchronous
machine model and various other control systems like, the excitation
system model for terminal voltage regulation, the power system stabilizer
(PSS) model for damping enhancement, the prime mover model for

mechanical power input regulation etc. The synchronous machine of the
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generating system can be modelled in two ways, the classical model and the
flux linkage model. The classical model of the synchronous machine is
used when only the machine dynamics of the rotating system is considered
adequate in representing the dynamics of the generating system. The flux
linkage model of the synchronous machine is used when, apart from the
dynamics of the rotating system, a need is felt, to represent the rotor
dynamics, or/and the dynamics of the controls associated with the

generating system.

The static var compensator (SVC) model comprises of the voltage
regulator model (needed to maintain the specified bus voltage magnitude)
and may include the supplementary control model (needed for damping

enhancement).

The various control systems which are part of the devices, i.e.
excitation system and PSS on the generating system and, the voltage
regulator and supplementary control on the SVC, can be modelled in an
identical manner. The modelling of the control system involves the

formulation of the state space equations describing its dynamic behavior.

2.4.1 Control System model

A control system is built up of elementary blocks like lead, lag,
washout, etc. Each of these control blocks can be represented by an

individual state space equation of the form,
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x=ax+bu (2.015)
y=cx+du (2.016)

where, x is the state variable of the control block, u is the input to the control
block, y is the output of the control block and a,b,c,d are the coefficients of
the state space equations. The method of representing individual
elementary control blocks like lag, lead and washout are shown in

Appendix (A1.2).

For a control system comprising of many blocks, the individual state
space equations for each block are determined (in the form of Equations

(2.015) and (2.016) ), and are stacked together to get,

[X.] =[A][X.] + [B] [u] (2.017)
[yl = (C] [X.] + [D] [u] (2.018)

where, [X_] is the state vector of the control system, [A], [B], [C], [D] are the

matrices assembled from the stacking of the state space equations of each
‘individual control block, [u] is the vector of the inputs to all the individual

blocks, and [y] is the vector of the outputs from all the individual blocks.

The interconnection between the various control blocks, external

inputs and the final control system output [z] is given by,

[ul = [L] [y] + [G] [U] (2.019)
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[z] = (M] [y] + (K] [U] (2.020)

In Equations (2.019) and (2.020) the vector [U] consists of suitable variables,
whose linear combinations form the external inputs to the control system.
The inputs to the control blocks [u], as seen from Equation (2.019) is the sum
of the linear combinations of the external inputs defined by the relation
[GI[U] and the linear combinations of the outputs of the other control blocks
present in the system defined by the relation [L] [y]. Depending on the
external inputs to the control system and the control blocks to which they
are applied, the coefficient matrix [G] is accordingly derived. Similarly,
depending on the structural interconnections of the various blocks in the
control system, the matrix [L] is formulated which defines the input/output

relationship between the various blocks.

Based on the similar lines of deriving the matrices [L] and [G],
matrices [M] and [K] can also be formed. The matrix [M] describes the
contributions of the outputs of the various internal elementary blocks to
each of the final outputs from control system, and (K] is the feedforward
matrix describing the contributions of the external inputs to the final output

of the control system.

From the above discussion it is seen that the identity of the input and
output of each control block is maintained by separately defining the vectors
[u] and [y]. This procedure of defining a separate input [u] and output
vector [y], provides the flexibility to account for the structural changes in

the control system being modelled.
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Eliminating the vectors {u] and [y] from Equations (2.017) to 2.020),

the final form of the state space equations of the control system is derived

as,

[X.]=[A][X.]+I[B][U] (2.021)
[z] = [M,] [X.] + [K.] [U] (2.022).
where,

[AJ=[A+BL[I-DL]1C]; [BJ=[BL[I-DL]!1DG+BG]
MJ=MI[I-DL}]1C1]; and [KJ=[M[I-DL]}!DG+K]

The procedure outlined above for obtaining the control system state
space equations is highly flexible as modifications can be easily
incorporated. An example is given in Appendix (A1.3) to illustrate the

development of a control system model.

2.5 Classical model of the synchronous machine

The classical model of a synchronous machine is the simplest form of
representing its dynamics. This model is used if the detailed
representation of a machine dynamics is not considered important for the
analysis under consideration. In this model the assumptions made are
that the field flux linkages are constant, the stator resistance is negligible,

and the d- and gq- axes transient reactances are equal. Thus, the machine
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can be modelled as a voltage source E behind a transient reactance x4’ as

shown in Figure (2.3).

E
jxa Ve
Voltage behind
transient reactance Cenerator

terminal bus

Figure (2.3): Classical model of the synchronous machine

In Figure (2.3), all the boldface quantities are phasors and v; is the machine

terminal voltage (p.u.).

2.5.1 State variables

The state variables chosen to derive the classical model of the
synchronous machine are, the small changes in the angular velocity of the
synchronous machine (Aw; p.u.) and the small changes in the rotor angle
- (Ad; p.u.). The rotor angle is defined as the angle between the machine
direct (d-) axis and the common reference direct (D-) axis. Thus, the state

vector of the classical machine is,

Xal=[Aw AS]T (2.023)
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2.5.2 Initial equations for the state space formulation
The direct (d-) and quadrature (q-) axes terminal voltages of the

synchronous machine neglecting the rate of change of stator and rotor flux

linkages can be expressed as,

Va=-wpAq (2.024)
Vg = 0o Ad (2.025)

where, vy, vq are the d-q axis components of the machine terminal voltage

in per unit.

The dynamics of the rotating parts of the machine is described by the
following equation which is derived in Appendix (A1.4).

Imoadgm:Pbase((’)quid'moldiq) (2026)

where, Py ... is the base power of the system (MVA), o is the base angular

speed of the system in radians/second, o is the angular speed of the

'machine (p.u.), I is the moment of Inertia of the rotating parts of the

synchronous machine in Kg-m?2, A4 and Aq are the direct (d-) and

quadrature (q-) axes components of the stator flux linkages (p.u.).

The flux linkages (1) can be expressed in per unit voltage (V), as,

Vd =g Aq (2.027)
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Vg =wo Ad (2.028)

Rewriting Equations (2.024) to (2.026) using Equations (2.027) and (2.028)

gives,

vy =-Yq (2.029)

vy =Vd (2.030)

I wg _(cl_l_(oz Ppase (Waig-Vdig) (2.031)
t

Linearizing Equations (2.029), and (2.030) gives,

Avy = -AVYq (2.032)
Avy = AVd (2.033)

The d- and q- axes flux linkages are related to the stator d- and q- axes

currents as,

ha=-Lq'ig (2.034)
Aq=-Lg'ig (2.035)

where, L4 is the d- axis transient inductance. Combining Equations (2.027)

and (2.028), with Equations (2.034) and (2.035) results in,

Vi =-x4ig (2.036)
Yo =-xgi (2.037)




Linearizing Equation (2.036) and (2.037) gives,

AWd = - Xd' Ald (2038)
AVq = - x4 Aig (2.039)

2.5.3 Derivation of the state space equations

Equation (2.031) is linearized as,

Aig Ayy

2H pp=[vyq -] (2.040)
wo

' ] + [ i3]
Alg Ayq

where, H is the inertia constant of the machine (p.u). The derivation of

Equation (2.040) is given in Appendix (A1.4). Substituting AY¥d and AV¥q from
Equation (2.038) and (2.039) in the above equation gives,

: . Aig
2H 7= E; Bl (2.041)
@0 Aiq

where, E; and Eq are the d- and g- axes components of the voltage behind

the transient reactance and can be expressed as,

Eq=- (Vq +xq ig) (2.042)
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E,=Vd +x4 i . (2.043)

The states Aw and Ad are related as,

AS = Aw (2.044)

From Equations (2.032), (2.033), (2.038) and (2.039), the terminal voltage and

current can be related as,

[Aqu] = [Z4] [Aidq] (2.045)
where, [Avy ] =1 Avy Avq]T; [Aigg] = Aig Aiq]T : and,
[zd]=[ 0 x ]

-xq O

2.5.4 Transformation to the D- and Q- coordinates

In the state space equations derived above the terminal voltage and
current are referenced to the d- and q- axes of the machine. It is necessary
to transform these voltages to the D- and Q- axes of the system for proper
interface of the machine to the system. Applying the transformation given
by Equations (2.013) and (2.014) to the Equations (2.045), the terminal voltage
and current in the D and Q coordinates are related by the following

expression.
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[Aipg] = [Cgel A - [Yq4] [Avpgl (2.046)
where, [Avpgl =[ Avp  Avg]T, [Aipgl = [ Aip  Aig]T;
T
[Caal =| E EQ [ and [Yal =~ [Zg]"
Xd X4

Ep and Eq are the D- and Q- components of the voltage behind the transient

reactance, and is given as,

ED = VD - Xd' 1Q (2047)
Eq=vq+xd ip (2.048)

Transforming the terms in Equation (2.041) expressed in the d-q

coordinates to the D- and Q- coordinates, and substituting for [Aipq] from

Equation (2.046), gives,

Aw =aj, A5 + [B,][Avpg] (2.049)

where,
®p . D2 + EQ2
312 = — (EQ lD - ED lQ - ' ) s (2050)
2H iy
E
and, [B,]= 22% x_f %
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2.5.5 Final state space equations
Equations (2.049), (2.045) and (2.047) can be put in the general form of

Equations (2.003) and (2.004) to result in the following state space model of

the classical representation of the generating system.

[Xql = [Ag] [Xg] + [B4] [AV 4] (2.051)
[AL4] = [Cql [X4] - [Y4] [AV4] (2.052)
Aw _
where, [X4] ={ A5 }; [AV4] = [Avpq | ; [Al4] = [Aipgq ];
0 a B,
ma=| 9 ] mas|y s and  [Cd=[0gq Cadl

26 Flux linkage model of the synchronous machine

A synchronous machine having three stator windings, one field winding
and five equivalent damper windings - two along the direct (d-) axis and
three along the quadrature (q-) axis, on the rotor are considered in deriving
the detailed synchronous machine model using flux linkage
representation. Figures (2.4a) and (2.4b), show the d- and g- axes equivalent

circuits of the synchronous machine respectively [1,14,15].
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Ty X) Xc1 Xc2
O—W—T——0——
Xk]dl% Xk]dzé Xfl
Xad If

+
Tkd1l T'kd2 ve

O

Figure (2.4a): Synchronous machine d- axis equivalent circuit

Ta

X]
O—W—T"
— xqulé Xklcﬂ% xqu3§

TS g

O

Figure (2.4b): Synchronous machine q- axis equivalent circuit

In Figures (2.4a) and (2.4b), the various quantities are,

ry, X; = Stator resistance and leakage reactance (p.u.), respectively.
rg, Xp = Field winding resistance and leakage reactance (p.u.), respectively.

T'kdi> Xkia; = Damper winding resistance and leakage reactance (p.u.) in the

d- axis equivalent circuit respectively. Fori =1, 2.

I'eqj» Xklqj = Damper winding resistance and leakage reactance (p.u.) in the

g- axis equivalent circuit respectively. Forj =1 to 3.
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In Figures (2.4a) and (2.4b), the unsaturated value of the mutual
reactances on the d- and g- axes is given respectively as x,4 and x,,. These
mutual reactances are influenced by the saturation of the synchronous

machine. If saturation is to be represented in the flux linkage model of the

synchronous machine, then the saturation factors Sy, Sq and the
incremental saturation factors Sy and Sg; have to be calculated. The
determination of these factors is given in Appendix (A1.5). If saturation of

the machine is not considered then,
Sg =S¢ = Sg=S5g =1 (2.053)

The following reactances are defined based on the equivalent circuits of

Figures (2.4a) & (2.4b).

Xads = Xad Sq (2.054a)
Xags = Xaq Sq | (2.054b)
Xadsi = Xad Sai (2.054c¢)
Xaqsi = Xaq Sqi (2.054d)
X4 = X| + Xpds (2.054e)
Xq = Xi + Xags (2.054f)
- Xgi = X+ Xpgsi (2.054g)
Xgi = X] + Xqagsi (2.054h)
Xg =X+ gose A (2.054i)
xdi' =X+ 3(% v (2.054j)
Xq = Xg (2.054k)
Xgi = X (2.0541)

Xf = Xgdsi + X X1 +Xc9 (2.054m)
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Xfd1 = Xadsi + Xe1 (2.054n)
X1d2 = Xadsi + Xc1 + Xc2 (2.0540)
Xkd1 = Xadsi +Xk1d1 + Xcl (2.054p)
Xkd2 = Xadsi +Xkld2 + Xc1 + Xc2 (2.054q)
X412 = Xadsi + X2 (2.054r)
Xkql = Xaqsi TXklql (2.054s)
Xkq2 = Xagsi +¥kiq2 (2.054t)

Xkq3 = Xagsi +Xklq3 (2.054u)
Xq12 = Xagsi (2.054v)
Xq13 = Xaqsi (2.054w)
X423 = Xagsi | (2.054x)

These reactances are used in the formulation of the state space
equations of the synchronous machine. If fewer damper windings are to be
considered in the machine representation, the d- and q- axis equivalent
circuits can be modified by ignoring the appropriate damper winding

branches.

. 2.6.1 State variables

In the flux linkage model of the synchronous machine the state
variables chosen are, the small changes in the angular velocity of the
machine (Ao in per unit), small changes in the rotor angle (A8 in per unit),
the small changes in the field flux linkages (Ayt expressed in per unit

voltage) and the small changes in the d- and g- axes damper winding flux
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linkages (AYkdm and AVWkqn, expressed in per unit voltages). Thus, the state

vector of the machine for the flux linkage representation is,

[Xel =[Aw AB Ayt AYkdm AWken]T (2.055)

The rotor angle A3 is defined as the angle between the machine direct (d-)

axis and the common reference (D-) axis.

2.6.2 Initial equations for the state space formulation

Park's equation for the synchronous machine neglecting the rate of

change of stator flux linkages are given below [1,18,21].

Vg=-Tyig- 0o Aq (2.056)
Vg =-Talg+ 00 Ay (2.057)
Vp=Tpip+ aclzlf (2.058)
0 = Tegry ey + ccll_txkdm; Vm=12 (2.059)
0 = Tyqp ikqn + gglkqn; Vn=1to 3 (2.060)

The quantities vy, Vg 19, 1gy00, ©, Ag, @and Aq have already been defined, with

reference to the classical model of the synchronous machine. The other

quantities not defined so far are,




V¢, As » if = Field voltage, flux linkage and current (p.u.).

Akdms 1kdm = Mt d - axis damper winding flux linkage and current (p.u.);

where m=1,2.

Akqn» iggn = nth q - axis damper winding flux linkage and current (p.u.);

where n=1 to 3.

The dynamics of the rotating parts of the synchronous machine is

described by the following equation derived in Appendix (A1.4).
I oy zl(%(1): Prase ( Ty + @ Aq 1g - 0o Ag iq) (2.061)

In this equation all the terms except T,, have already been defined with
reference to the classical model of the synchronous machine. T, is the

mechanical power input to the synchronous machine.

The flux linkages (A) can be expressed in per unit voltage (V) as,

Va=qwyX ¢ (2.062)
Va=woha 7" (2.063)
Wt = 3o A (2.064)
WVkdm = @9 Akdm ; ¥V m = 1,2 (2.065)
WYkan = 0o Akqn; Y n=1t03 (2.066)

Using these equations, Equations (2.056) to (2.061) can be rewritten by
expressing the flux linkages in per unit voltage. The resulting equations

can be linearized and expressed as,




Avg=-T, Aig- AV¥q (2.067)

Avg = -1, Aig + Ayg (2.068)
wo Ave= @ Ty Alg + _cCILtA\Vf (2.069)
0 = wg Teay Al + %A\Ifkdm (2.070)
0 = wg Tkqn Alkgn + %Aqun (2.071)
% %m: AT, + AWqig- AVai; + WqAigq- Vd Aig (2.072)

The derivation of Equation (2.072) is given in Appendix (A1.4).

2.6.3 State space equations for the rotor flux linkage states [AWﬂ(dq]

The relation between the flux linkages in the stator and rotor to the

currents in the various windings is given below, by the matrix equations,

FAWd [ Aig |

-Aly
A Xdi Xadsi Xadsi Xadsi .
L4 _| Xadsi Xf Xfdl Xfd2 Aig 207
Aykdar | | Xadsi Xfdl Xkdl Xd12 || Aj, 4, :
Xadsi Xfd2 Xd12 Xkd2 .
| AWka2 | | Aigg J




36

-~ = i

A\I’ _ i 'Aiq
1 Xgi Xaqgsi Xaqsi Xagsi |
AYkq1 Xagsi Xkql Xq12 Xq13 || Alkql
= . ) (2.074)
AWkq2 Xagsi Xq12 Xkq2 Xq23 Aigq2
| Xagsi Xq13 Xq23 Xkq3 || .
L A\qu3 a _Alkqg_

The d- and q- axes rotor flux linkages ([Aygq,]) are related to the stator

currents ([Aiy,]1) and rotor currents ([Aig4,]) as,
[Aytidq] = - X [Algq] + [Xfaq] [Alfygq] (2.075)

where,
[Aytedq =[ AVE AVkdl AWkaz AWkql AVkg2 Ayiqs IT;
[Aiggq] -—-[ Alg Algqy Algge Algkqr Alkg2 Alqu]

[Aigg] = [Aig Aig]T;

T
Xadsi Xadsi Xadsi O 0 0
X = 0 ; and

0 0 Xagsi Xagsi Xagsi
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Xf Xfd1 Xtz 0 0 0 ]
Xfd1 Xkd1 Xa12 0 0 O
Xfd2 Xd12 Xki2 0 0 O
[xpaql=| 0 0 0 Xkq1 Xq12 Xq13
0 0 0 =xqi2 Xkq2 Xq23

0 0 0 Xq13 Xq23 Xkg3 |

From Equation (2.075), the following equation is evident,

[Aifaq] = [Xixdql? [AYdq) + [Rpeaql™? [Xl [Aigg] (2.076)

Using Equations (2.069) to (2.071), the rate of change of rotor flux

linkages can be expressed in the matrix form as,

[A\uikdq] =;[.(00 Tiedq] [Aigkaq] + [wos] Ave (2.077)

where, [ rrqq] is a diagonal matrix with elements as,
[wo Tixdql =Diaglwors woTkar WoTkaz 0 Tkql o Tkq2 o Tkq3) and

lwofl =lwg 0 0 0 0 OIT

Substituting for [Aig4,] from Equation (2.076) in Equation (2.077), gives,

[AWacaq] = [Avet] [Ayacagl + [Wxx;] [Aigg) + [og] Av (2.078)
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where, [Ayyg = [00Tfkdq] [Xpegql;  and  [Wxx;] = [00Tfkdq] [Xpeqql ! [X,]

Equation (2.078) is the state equation for the rotor flux linkage states,
[A\yfkdq].

2.6.4 State space equation for the speed and rotor angle states (Aw, Ad)

From Equation (2.072), the state equation for the speed state is,

Ao = B0 AT, - ©0 [-Yq WallAigg]+ Q0 [-i; ig][AV,] (2.079)
2H 2 H 2H

where, [A¥g] =[Ay,y Ay )T

From Equations (2.073) and (2.074) the stator flux linkage changes in

the d- and g- axes [Ayy,] can be expressed as a function of the stator d and q
components of the changes in current [A iy,] and the changes in the rotor

flux linkages [Aypeqq], i.e-

| [Awdq] =[X,] [A idq] + [X,] [A\kadq] (2.080)

“Xdi

0 _
where, [X,] =! 0 g } + [T (Xpyaql? [X,] 5 and

[Xb] = [Xx]T [kadq]'l
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Equations (2.081) and (2.082) are the state equations for the speed and
rotor angle states. These equations involve quantities which correspond to

the machine d-q axes. Equation (2.084) is the initial output equation.

2.6.5 Transformation to the D- and Q- coordinates

The machine state and output equations which are referenced to the
d- and g- coordinate axes of the machine need to be transformed to the D-
and Q- coordinates axes of the system for proper interface of the machine to
the system. From Equations (2.013) and (2.014) the following expressions

can be written for the voltage and current of the machine,
-VQ
[AVDQ] = [Tcs] [Aqu] + |: vD :'AS ‘ (2085)

-1

A (2.086)

ip

[Aigq] = [TeeIT [Aipg] - [T]T [

where,

cos & -sin d ]

sind cosd

[Tcs] ={ , [AVDQ] = [AVD AVQ]T ; and

[Aipg] = [Aip  Aig]T

Substituting for [Avg4,] from Equation (2.083) in Equation (2.085) gives,




41

[AVDQ] =- [Yd]'l [AIDQ] + [Cvdel] Ad + [CVf] [AWfkdq] (2.087)

where, [Y,] = - { [T] [Z,] {T. T} ; [Cv{ = [Tcs][ ‘1) g] [X,] ; and

-iq vQ
NS
Therefore, the current ([Aipgl) from Equation (2.087) is,
[Aipg] = [Cgell A8 + [Cel [Ayxqq] - [Yal [Avpg] (2.088)
where, [Cge] = [Y4l [Cvgal ; and [Cel =1Y4] [Cvyl

Equations (2.088) is the output current equation. Substituting for
[Aigq] using Equation (2.086) in Equation (2.081) and (2.078) gives,

Ao = %I_ ATm - [Wtdqi] [AIDQ] - Adw Ad+ [Adqf] [A\kadq] (2089)
-iq
- where, [Wtg;] = [Wygl [Te]T and Agw = - [Wagil [TeSIT i
and,

[A\{/f“kdq] = [Ayxel [Aypegq] + [Wtxx;] [Aipg]l + [Agel AS + [wor] Avy (2.090)
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ip

-iq
where, [Wtxx;] = [Wxx;] [T T and [Agl = - [Wxx] [TCS]T{ }

2.6.6 Overall state space model of the synchronous machine

The state Equations (2.089), (2.082) and (2.090) can be combined in the

form,

[X,] = (A, (Xg] + [W] [8ipg] + [Buy] AT, + [Ey] ave (2.091)
where,

Xl =[Aw A8 AypqglT; [Wil=[-Wtgqi O1x2 Wtxx]T;
(Bowl =l OnalTs [EJ=[0pq oo Osql? and

Ona  Adw  Agqr
[Ag] = 1 01><1 01x6
Osx1  Adr  Awxf

Here 0,,,., denotes a null matrix of size nxm.

The output current Equation (2.088) can be rewritten in terms of the

state vector [Xg] as,
[Aipg] = [C,) [Xg] - [Ya] [Avpo)] (2002



where, [Cg] = [ 02a Caet Cr ]

2.7 Exciter model

The exciter regulates the terminal voltage of the synchronous
machine. Exciter dynamics is modelled by the generalized method of
control system representation as described in Section (2.4.1). The block

diagram of an exciter [16] is given in Figure (2.5).

l Ath
Avis + 1T 1+ sTc¢ - Ka + 1 - AR
-
+ 1+ sTb 1+sTa|] 2 sTe
AVSO
Ke + Se
sKf <
1+ sTf

Figure (2.5): Exciter block diagram

In this figure the inputs |Av,|, Av,r and Av,, denote small changes
in the terminal voltage magnitude, reference voltage and output of PSS
respectively, expressed in per unit. AEfd is the change in the output of the
exciter in per unit and Se denotes the incremental saturation factor of the
exciter DC machine. The steady state saturation factor SE is calculated

from the following expression describing the saturation curve of the exciter

DC machine [16].
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SE = Aex gBex Efd (2.093)

where, Efd is the steady state output of the exciter and is calculated as
shown in Appendix (A1.6). Aex, Bex are constants defining the saturation
curve of the DC machine. The incremental saturation factor Se is obtained

by linearizing Equation (2.093) as,

Se = Aex Bex gBex Efd (2.094)

2.7.1 Initial state space equations

Based on Equations (2.017) to (2.020) of Section (2.4.1), the initial state

space equations of the exciter can be written as,

[X.] = [A,] [X.] + [B,] [u] + [Bg,] Av, (2.095)
[yl = [C,] [X.] + [D,] [ul+ [D] Av,, (2.096)
[u] = [L,] [yl + [G,] [U] (2.097)
AEfd = [M,] [y] + [K,] [U] (2.098)

[X,] is the state vector of the exciter. Vectors [U] and [z] of Equations (2.019)

and (2.020) are defined in case of exciter as,

[U] = [A(D AVD AVQ AID AlQ AVref ]T (2099)
[z] = AEfd (2.100)
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It can be seen that the vector [U] contains variables whose linear
combinations defines the external inputs to the exciter. From the block

diagram of the exciter given in Figure (2.5) it is seen that the external

inputs are |Av,|, Av,.rand Av,,.

The steady state terminal voltage magnitude of the synchronous

machine |v,lcan be expressed as a function of its D-Q components as,
l Vt | = »\/ sz + VQ2 (2.101)

where, vp, vq are the direct (D-) and quadrature (Q-) axes components of the
terminal voltage v,. Linearizing Equation (2.101), the expression for the

small changes in the terminal voltage magnitude |Av,lis given as,

lavyl =) 2 @ Ay AvglT (2.102)
I Vi I I Vi |

| Av,| can be expressed as a function of the vector [U] using Equation (2.099)

and (2.102) as,

|Avl =0 D 8 9 0 0] (2.103)

vil vl

The input Av,. can also be expressed as a function of the vector [U]

from Equation (2.099) as,

Aviee=[0 O 0 0 0O 1]JfU] (2.104)




The remaining input Av,, is treated separately for the sake of ease in
interfacing the exciter model to the PSS. The influence of the input Av,, on
the exciter is described by the vectors [B,,] and [D,,] in Equations (2.095) and
(2.096). The formulation of these vectors is illustrated by an example in

Appendix (A1.3).

The matrices [A,], [B,], [C,], [D,], [L,], [G,], [M,] and [K,] correspond

to the matrices [Al, [B], [C], [D], [L], [G], [M] and [K] of Equations (2.017) to
(2.020). All these matrices except [G,] and [K,] can be determined based

solely on the parameters of the various constituent exciter blocks and their

interconnections. Matrices [G,] and [K,] can be formulated from the

knowledge of external inputs and the constituent exciter blocks to which

they are applied. For the block diagram of the exciter shown in Figure (2.5),
where the external inputs |Av,| and Av,; are applied to the first block, the
matrix [G,] is derived,using Equations (2.103) and (2.104) as,

[Gx] =|:Onxxl le Onx2 Avl]

‘where, nx = number of exciter states;

VD vQ
I Vi I I Vi I 1
[le] =- and AV1 =
Otnx-1)x1 Onx-1)x1 Onx-1) x 1

The matrix [K,] is given by,




[K-x] = [Onx x6]

The negative sign in [G,,] is due to the negative feedback of |Av,!.

The matrix [K,] is a null matrix due to the absence of feedforward paths

from the external inputs to the output AEfd.

2.7.2 Final state space equations

Eliminating vectors [u] and [y] from Equations (2.095), (2.096), (2.097) and

(2.098); the final state space equations of the exciter are obtained as,

[X.] = [A] [X.] + [B,] [U] + [B,,] Av,, (2.105)
AEfd = [M,] [X,] + [K.] [U] + K,y Avg, (2.106)

The matrices [A,], [B,], [M_] and [K,] correspond to the matrices [A_], [B,],
[(M.] and [K_] of Equations (2.021) and (2.022) respectively. Also,

: [Bvso:I = [Bx Lx [Ix - Dx Lx]'1 Dss + Bss ]; and Kvso = Mx |:Ix - Dt I"x]-1 Dss

2.8 Power System Stabilizer (PSS) model

The Power System Stabilizer provides a supplementary input to the
exciter in order to modulate the voltage reference, thus modifying the

output of the exciter in a manner so that the damping of electromechanical
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modes is increased. The PSS dynamics is modelled by the generalized
method of control system representation as described in Section (2.4.1).
Depending on the type of feedback signals used in PSS, three different types
of PSS are considered here [1], which are,

i)Type-1: where the feedback signal to the PSS is the small change in the
speed (Aw) of the synchronous machine in per unit.

ii)Type-2: where the feedback signal is the small change in the electrical
power output (APe) of the synchronous machine in per unit.

iii)Type-3: where the feedback signal comprises both the small changes in
the speed and electrical power output of the synchronous machine in per

unit.

The block diagrams of Type-1, Type-2 and Type-3 PSS are given in

Figures (2.6a),(2.6b) and (2.6¢) respectively. The output of all the three types
of PSS is denoted by Av,,.

2.8.1 Initial state space equations

Based on Equations (2.017) to (2.020) of Section (2.4.1), the initial state

space equations of the PSS can be written as,

(%] = (A [X,] + By [u] | (2.107)




: 2
L 1f1 + sTsld2\|— sTq 1 + sTlagn1 11+ sTlagn2 f‘g)
1+ sTslg 1+sTq| N\ 1+ sTlagd 1 + sTlagd

PSS with Aw feedback (Type-1)

2
Ao |l |1 +sTsld]
(P-ur \1 + sTslg

Figure (2.6a)
ape [ ] [STp1 | [T+3Told] [T+sTpldd [ sTa | [(1+sTlagn)][(1 + sTiagnd\ 4%
(p.u) 1+sTp2l |1+sTplg] |1+ sTplgd |1+sTq [\'T+ sTlagd T+ sTlogd >

PSS with APefeedback (Type-2)

Figure (2.6b)

6V




2 3
Ao ) sk 1+ sTsldT 1 + sTsld2
(p.u; 1+ sTslg 1+ sTslg

+ 2
sTq | |1+ sTlagnT 3_ 1+ sTlagn2\ | Vso
+ 1+sTq |\ 1+ sTlagd 1 + sTlagd2

| APe sTpl 1+ sTpld] |1 + sTpld2
(p.u) + slp 1+ sTplg]l |1 + sTplgd

PSS with Awand APefeedback (Type-3)

Figure (2.6¢)

0¢
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[y] = [C] [X,] + [D] [ul (2.108)
[u] = [L{] ly] + [G{] [U] (2.109)
Avg, = M [y] + [K ] [U] (2.110)

[X,] is the state vector of the PSS. The vector [U] is the same as in the case of

exciter and is given by,

[U] =[A0) AVD AVQ AiD AlQ Avref ]T (2111)

The vector [z] of Equation (2.020) is defined in case of PSS as,

[z] = Avso (2.112)

It can be seen that the vector [U] contains variables whose linear
combinations defines the external inputs to the PSS. The two possible
external inputs considered are A® and APe. The input A®w can be expressed

as a function of the vector [U] as,

Aw=[1 0 0 0 0 0]fU] (2.113)

The steady state electrical power output (Pe) of the synchronous

machine can be expressed in terms of the D-Q components of the terminal

voltage (vp, vq) and current (ip, ig) as,

Pe = VD iD + VQ lQ (2114)
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Linearizing Equation (2.114), the expression for the small change in

electrical power output (APe) is obtained as,

APe = [lD IQ] [AVD AVQ]T + [VD VQ] [AiD AIQ]T (2115)

Expressing APe as a function of the vector [U] gives,

The matrices [A(], [B], [Cy], D], [Ly], [G¢], [M,] and [K] correspond to

the matrices [A], [B], [C], [D], [L], [G], [M] and [K] of Equations (2.017) to
(2.020). All these matrices except [G;] and [K,] can be determined based

solely on the parameters of the various PSS constituent blocks and their

interconnections. Matrices [G;] and [K,] can be formulated from the

knowledge of external inputs and the constituent blocks of the PSS to which

they are applied. For the block diagrams of the PSS shown in Figure (2.6a),
(2.6b) and (2.6¢c), the matrix [G,] and [K,] are derived using Equations

(2.109), (2.110), (2.113) and (2.116); depending on the type of PSS.

DType-1 Here, Aw is the feedback signal and hence,

[Gt] = [th Onsxsl]

where, ns is the number of PSS states; and,




[Gyl= [1 0;x (ns -1)]T > and [Kt] = I:01x6:I

ii)Type-2  Here, APe is the feedback signal and hence,

[Gt] = [Onsxl th Onsxl]

where,
ip 1qQ vD vD
G411 = and
[ t:l] Ons-lxl 0ns-lxl Ons-lxl Ons-lxl
iii)Type-3 Here, both A®w and APe are the feedback signals. The initial

state space Equations (2.107) to (2.110) for the PSS shown in Figure (2.6¢) are
formed by stacking the state space equations for each individual block in a
sequential manner as explained in Section (2.4.1). If the blocks to which Aw

and APe signals are applied are, say, respectively the first and the sixth

block in the stack, then the matrices [G,] and (K] are,

, [Gt,] = [th Onsxl]

where,




i 1 lel lel lel lel ]

Osx1i Osa Osa Osa  Oga

[th] = 5 and [KJ = [01 X 61

Opa  ip iQ vD VD

L Ons5x1 Ons5xi Onssx1 Onssx1 Onssxa ]

In all the PSS models (Type-1, Type-2 and Type-3) it is seen that the
matrix [K,] is a null matrix. This is so because in all these models there is

no feedforward path from the external inputs to the output Avg,,.

2.8.2 Final state space equations

Eliminating vectors [u] and [yl from Equations (2.107) to (2.110), the

final state space equations of the PSS are obtained as,

[X,] = [A,] [X] + [B,] [U] 2.117)
Avg, = [Ms] [xs] + [Ks] (U] (2.118)

where, the matrices [A], [B.], [M,] and [K,] correspond to the matrices [A_],
[B.], [M.] and [K_] of Equations (2.021) and (2.022) respectively.
29 Overall state space representation of the generating system

Depending upon the details required, the generating system model

can be formulated with any of the following three options,
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1)Only machine dynamics considered.
ii)Machine and exciter dynamics are considered.

iii)Dynamics of machine, exciter and PSS are considered.

2.9.1 Generating system model considering only machine dynamics

If the requirement of the small signal stability investigation is
satisfied by the classical representation of a synchronous machine, then the

generating system model comprises only the Equations (2.051) and (2.052).

If the flux linkage model of a synchronous machine is required.

Equations (2.091) and (2.092) constitute the generating system model with

the exception that Avy; = 0, as no exciter controls is modelled and hence the
field voltage vy remains constant. With this modification Equation (2.091)

and (2.092) can be rewritten as,

[Xg] = [Ag] [X,] + [Wi] [Aipg] + [Byy] ATy, (2.119)
[AiDQ] = [Cg] [Xg] - [Yq4] [Avpq] (2.120)

Substituting for [Aipg] from Equation (2.120) in Equation (2.119) gives,

(Xl =[A; + W; C, 1[X,] - [W; Yq1[Avpg] + [By,] AT, (2.121)
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Equations (2.121) and (2.120) can be put in the general form of
Equations (2.003) and (2.004) to result in the following state space model of

the generating system.

[Xal = [Aq] [X4] + [Bgl [AV 4]
[ALq) = [Cgl [X4] - (Y4l [AV4]

where,  [Xg =[X.}; [Agl = [Ag +W;Cgl;  [Bgl=-[W;Y4];
[Al] = [Aipg);  [Cq4l =[Cgl; [AV4] = [Avpg]

In Equation (2.121) the vector [B,,] is the input distribution vector for

the change in mechanical torque input applied to this machine. The vector

[B,,,] is not needed in the formation of the system state matrix. It is needed

only for the calculation of residues, or frequency or time responses.

2.9.2 Generating system model considering machine and exciter
dynamics

The flux linkage model of the synchronous machine is considered in
this case. In this model the field voltage of the synchronous machine is

related to the exciter output by the following relation [15],

ve= 3o; Efd (2.122)

Linearizing Equation (2.122) gives,
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Av = - AEfd (2.123)

Equation (2.123) provides the interface between the machine and

exciter model. For the exciter, the external inputs (1Av,|, Av,.) are

expressed as functions of the vector [U] in the state space representation of

the exciter model. In this representation only certain elements (Avp, Avg

and Av,) of [U] are needed. Based on this, the state space equations of the

exciter model (Equations (2.105) and (2.106)) are rewritten by partitioning
the vector [U] and matrices [B.] and [K.], so that only the elements of [U],

needed to represent the external inputs are considered.

[X.] = [Ae] [X.] + [Bey] [Avpgl + [Bea] Avyer (2.124)
AEfd = [M,] [X,] + [Kq1] [AvpQl+ [Keg] Avyes (2.125)

[Be1], [Beg] and [Kqq], [Kqg] can be easily obtained by the proper partitioning
of matrices [B,.] and [K,] respectively. It must be noted that as the PSS is not
modelled, Av,, = 0.

To interface the exciter and machine model, AEfd is substituted from

‘Equation (2.125) in Equation (2.123). This results in Avy, which is expressed

as a function of the exciter variables . Substituting the resulting expression

in Equation (2.091) gives,

. X
[X,] = [Ag (E,;Me)][ xeg ]+ [W] [Aipg] + By ATy + [(ByK )] [Avpg]

+[E, Kol AV, (2.126)
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Expressing [Aipg] in Equation (2.126) as a function of synchronous machine

variables using Equation (2.092) gives,

X
[X,] = [Ag Age][ xf } +[B,] [Avpgl + [Bey] ATy, + [Ex Kol Avye  (2.127)

where,  [Ex]=j~ [Ex]; Ag=I[A; + W,C,]; Ag, = [E,M,];
and [Bgl = [-W; Yq + (B, Kyl

The machine and exciter state Equations (2.127) and (2.124) can be

combined together as,

Xg
Xe

Bg
B.

+ [AVDQ] + [Biw'1 ATy, + [Byg] Avyer

).
¢ __{ Agg  Age
Xe

Ong xnx Be
(2.128)

where, ng,nx is the number of states in the machine and exciter models

respectively and,

E, K>
Be2

Btw
[Biw1= [ } and [B. = {

Onxxl

To maintain compatibility of the overall state vector, the output current

Equation (2.092) is modified as,



X
[Aipq] = [Cy 02xnx]|: Xeg J - [Y4] [Avpgl (2.129)

Equations (2.128) and (2.129) can be put in the general form of
Equations (2.003) and (2.004) to result in the following state space model of

the generating system.

[X4] = [Ag] [X4] + [B4l [AV 4]
[ALg] = [Cql [X4] - [Y4l [AV4]

where,

Xg | Agg Age | Bg|
[Xd]_{xe}’ [Ad]—[ 0 Ae:I’ Byl = B, |’
[Al4] = [Aipg] ; [Cal =[Cy Ogndd 5 and [AVy] =[Avpg)

In Equation (2.128) the vectors [B;,'] and [B,s] are the input

distribution vectors for either a change in mechanical torque input applied
to this machine or a change in the voltage reference input to the exciter.
- The vectors [B,,,'] and [B,] are not needed in the formation of the system
state matrix. They are needed only for the calculation of residues, or

frequency or time responses.
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2.9.3 Generating system model considering the dynamics of machine,
exciter and PSS

This is the most detailed representation of the generating system.
The flux linkage model of the synchronous machine is considered here. To
interface the PSS and exciter models with the synchronous machine model,

the PSS and exciter state space equations can be rewritten as,

[X.] = [A.] [X] + [Bg;] [Avpgl + [Beal [AV,q] + [Bygo] [Av,,] (2.130)
© AEfd = [M] [X,] + [Ke ] [Avpg) + [Kea] [AVeq] + Kygo [Avg] (2.131)
(Xl = [AJ [X,] + [Byy] Aw + [Byy] [Avpql + [Bya] [Aipg] (2.132)
Avg, = [M,] [X(] + [K;] Ao + [Ko] [Avpql + [Kgsl [Aipg] (2.133)

Equations (2.132) and (2.133) correspond to the PSS state space

Equations (2.117) and (2.118), and are derived by partitioning the vector [U]

to explicitly introduce interface variables Aw, [Avpql and [Aipgl.
Accordingly, the matrices [By,], [Bgol, [Bgs]l and [K,;], [Kgol, [K 3] are

obtained by the proper partitioning of the matrices [B.] and [K,] respectively.

On the same basis, the exciter state space Equations (2.105) and
(2.106) are written in the form of Equation (2.130) and (2.131). It may be
noted that Av,, now appears as a variable in the exciter state Equation
(2.130) as PSS is being considered and this forms a basis for interfacing the

exciter and PSS models. Equations (2.130) and (2.132) are combined
together, and eliminating Av,, using Equation (2.133) gives,




[X;es] = [Aes] [Xes] + [Besv] [AVDQ] + [Besi] [AiDQ] + [Bsw] Ao + [Besr] [Avref]

where,

] ;

Be1 + Buso Ke2
B

e[

|

[By] =[

[Be SV]

];

Bvso Ksl and

le

E

(2.134)

A= Ae Byso M; } ;
L Oneomx A

[Besi] =( Byso Ks3 ] :
[ B
[ BeZ

[Besr] - _Onsxl

Eliminating [Av,] from Equation (2.131) using Equation (2.133) gives,

AEfd = I:Mes] D(es] + I:I(esv:I [AVDQ] + [Iiem] [AiDQ] + [Kesw] Aw + [Kve2] [Avref]

where,

[Mes] = [ Me KvsoMs ] ;
[Kesi] = [Kvso Ks3 ] and

(2.135)

[Kesv]=[Ke1+Kvso Ks2];
[Kesw] = [ Kyso K1 ]

To interface the PSS and exciter model with the machine model, AEfd
is substituted from Equation (2.135) in Equation (2.123). This results in Avg

which is expressed as a function of exciter and PSS variables.

This

resulting expression can be combined with Equation (2.091) of synchronous

machine model to result in the following equation.
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[Xées] = [Agesv] [Xges] + [W I] [AiDQ] + [Bv] [AVDQ] + [Bref] [Avref] + [BT] ATm

(2.136)

where, ng, nx, ns are the number of states in the machine, exciter and PSS

models and, NXs = nx + ns; ngxs = ng + nx + ns. Also,
O2x1 02 x (ngxs-1)
Ag  ExMes r
[Agesv] = + ®o i;%' 01 x (ngxs-1) |
0 A .
nxs X ng €es BSW Onxsx (ngxs-l)

Wi + Ex Kegi [ Ey Keav
[WI] ={ Be51 jl ’ [BV] B - BESV :I ’
Ex Ke [ Btw

The [Aipg] term in Equation (2.136) can be eliminated using Equation (2.092)

to give,

[Xges] = [Ages] [Xges] + Bges [AvDQ] + [Bred [Avyeq] + [Brl AT, (2.137)

where,

Wi Cg Ong X NXs
[Ages] = [Agesy] + and [Bge] = [B, - Wy Y]

Onxsxng Onxsxnxs
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The output current ([Aipgl) in Equation (2.092) can be expressed in

terms of the generating system state variables as,

[Aipg] = [Cges] [Xges] - [Y4] [Avpq] (2.138)

where, [Cgesl = [Cg 02 1xs]

Equations (2.137) and (2.138) can be put in the general form of
Equations (2.003) and (2.004) to result in the following state space model of

the generating system.

[Xd] = [Ad] [Xd] + [Bd] [AV4]
[AL4] = [Cql [Xg] - [Yq] [AV4]

where,  [Xgl=[Xpo;  [Ag=[Aggd;  [Bgl=[Bgl,
[Al4] = [Aipg] [Cal =[Cqes1;  [AVy4] =[Avpg]

In Equation (2.137) the vectors [B.,'] and [B,f] are the input

distribution vectors for either a change in mechanical torque input applied
~to this machine or a change in the voltage reference input to the exciter.
The vectors [B,,,'] and [B,{] are not needed in the formation of the system
state matrix. They are needed only for the calculation of residues, or

frequency or time responses.
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2.10 Static Var Compensator (SVC) model

The primary function of the Static Var Compensator is to provide
voltage support by maintaining the voltage magnitude of a specified bus
constant. With the addition of supplementary controls it can also be used to
enhance the damping of the electromechanical modes. The SVC dynamics
is modelled by the generalized method of control system representation as
described in Section (2.4.1). The SVC model takes the form of a variable
susceptance controlled by the voltage magnitude of a specified sensing bus.
The control output is the value of the change in susceptance. The sign of
the output is taken to be that of an inductance for sensing bus voltage
magnitude higher than the reference value and of a capacitance for

sensing bus voltage magnitude lower than the reference value.

The steady state current in the D-Q coordinates (ip, ig) injected into
the power system by the SVC is,

[iDQ] ={Ygvc ] [VDQ] (2.139)

where, [Ygyc 1is the steady state shunt susceptance offered by the SVC,

lipgl = lip iglT; [vpgl =[vp vqIT;
_[0-B]. _Q
[YSVC]_[B 0}, and B_|V|2

The steady state reactive power injected into the power system by the
SVC is Q, which is positive if the net effect of the SVC is that of a capacitor,

and is negative if the net effect of the SVC is that of a inductor. The
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terminal voltage magnitude of the SVC is Iv| and can be expressed as a

function of the D-Q components of the terminal voltage as,

vl =4/vp2 + vg?

Linearizing Equation (2.140), gives,

[Aipg] = {

2.10.1

-VQ

vD

] AB + [YSVC ] [AVDQ]

SVC voltage regulator model

(2.140)

(2.141)

The voltage regulator of the SVC gives a control output based on the

feedback of the change in the voltage magnitude of a specified bus. The

control output of the SVC voltage regulator is AB. Figure (2.7) shows the

block diagram of the transfer function of the SVC voltage regulator [1].

| Avsl 1
—
1+ sT6
Avref

1+sT1

14sT3

1+ sT2

1 + sT4

1+sTH

Avg,

Figure (2.7): Block diagram of SVC voltage regulator

Y&
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In this figure the inputs |Avgl, Av,+and Av,, denote small changes

in the sensing bus voltage magnitude, reference voltage and output of the

supplementary control, all expressed in per unit.

2.10.2 Initial state space equations

Based on Equations (2.017) to (2.020) of Section (2.4.1), the initial state

space equations of the SVC voltage regulator can be written as,

[X,] =[A][X,] + [B,] [ul+ [B,] Av,, (2.142)
[y] = [C,1[X,] + [D,][u] + [Dg] Av, (2.143)
[ul = [L,] [y] + [G,] [U] (2.144)
AB = [M,](y] + [K,] [U] (2.145)

[X,] is the state vector of the SVC voltage regulator. Vectors [z] and [U] of
Equations (2.020) and (2.019) are defined in the case of the SVC voltage

regulator as,

[z] = AB
[Ul=[Avp AVQ Avps AVQs Avps AVQf Avpy AVQt Avees Aw 1T
(2.146)

where, Avps, AVQs are the D-Q components of the small changes in the
sensing bus voltage, Avps, AVQf are the D-Q components of the small

changes in the sending end bus voltage of the specified line, Avpt, AVQt are
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the D-Q components of the small changes in the receiving end bus voltage of
the specified line and Aw is the small change in speed of a specified
generating system. The vector [U] contains variables whose linear
combinations defines the external inputs to the SVC voltage regulator as
well as supplementary control input signal. From the block diagram of the

SVC voltage regulator given in Figure (2.7), it is seen that the external

inputs are 1Avgl, Av,.rand Av,,.

The steady state sensing bus voltage magnitude I|vg |l can be

expressed as a function of its D-Q components as,

Ivgl =/vpg2 + vqe? (2.147)

Linearizing Equation (2.147), the expression for the small changes in the

sensing bus voltage magnitude |Av,| is derived as,

Vps YQs

v v [AvDs AvasIT (2.148)

lAvgl =

IAv,l can be expressed as a function of the vector [U] using Equations

(2.148) and (2.146) as,

vVDs VQs
| vs| | vs]

lAvgl =[0 0 0000 0 0]U (2.149)

Similarly the input Av,.; which has a negative sign as shown in

Figure (2.7) can also be expressed as a function of the vector [U] as,




“Ave=[0 0 0 0 0 0 0 0 -1 0][U] (2.150)

The remaining input Avg,, is treated separately for the ease in

interfacing the SVC voltage regulator model with the supplementary
control. The influence of the input Av,, on the SVC voltage regulator is
described by the vectors [B.] and [D.] in Equations (2.142) and (2.143). The
formulation of these vectors is illustrated through an example in Appendix

(A1.3). It must however be noted that from the block diagram of the SVC
voltage regulator of Figure (2.7) that the sign of the input Av,, is negative

and must be taken into account while forming the vectors [B.] and [D].

The matrices [A,], [B,], [C,], [D,], [L,], [G,], [M,] and [K,] in
Equations (2.142) to (2.145) correspond to the matrices [A], [B], [C], [D], [L],

[G], IM] and [K] of Equations (2.017) to (2.020). All these matrices except
[G,] and [K,] can be determined solely based on the parameters of the

various constituent regulator blocks and their interconnections. Matrices

[G,] and [K,] can be formulated from the knowledge of external inputs and

the constituent regulator blocks to which they are applied. In a manner

identical to that describing the formulation of the matrices [G,] and [K,] for

PSS Type-3 model, let the first and second block in the sequence of stacking

the individual block state space equations be where the inputs [Av | and
Av,or are applied respectively, then the matrices [G,] and [K,] using

Equations (2.144), (2.145), (2.149) and (2.150) are,

I:(}v]=[ Onv x2 le Onv x4 Avl Onvxl]



where, nv is the number of states in the SVC voltage regulator; and

VDs Vas
|Vs|

[le] = |VSI ; [Avl] =[0 -1 01 x (nv—2)]T
0(nv-l)xl 0(nv-l)xl

2.10.3 Final state space equations

Eliminating vectors [u] and [y] from Equations (2.142) to (2.145), the

final state space equations of the voltage regulator are obtained as,

[X,] = [Agie] [X] + [Bgte [UT + [Byg,] Avg, (2.151)
AB = [M,, ] [X,] + [K,. ] (U] + Ko, Avg, (2.152)

where, the matrices [Agl, [Bgil, [Mg.] and [K;] correspond to the matrices
[A.), [B.], [M.] and [K.] of Equations (2.021) and (2.022) respectively. Also,
[Bysol = [By Ly [I, - Dy L] Dgg + By J; Kiso =My [I, - Dy L1 Dgg

2.11 Supplementary control model

The supplementary control provides an input (Avg,) to the SVC
voltage regulator in order to modulate the voltage reference, thus modifying
the output of the SVC voltage regulator in a manner so that the damping of

electromechanical modes is increased. The supplementary control
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dynamics is modelled by the generalized method of control system
representation as described in Section (2.4.1). Depending on the type of
feedback signals used in supplementary control, four different types of

supplementary control are considered here, which are,

i)Type-1: where the feedback signal to the supplementary control is the
small change in a specified line current magnitude (lAil) in per unit.
ii)Type-2: where the feedback signal is the small change in the sending end

real power (AP);,.) of a specified line in per unit.

i11)Type-3: where the feedback signal is the small change in the sending end

reactive power (AQy;,.) of a specified line in per unit.
iv)Type-4: where the feedback signal is the small change in the specified

generating systems speed (Aw) in per unit.

Figure (2.8) gives the block diagram of the supplementary control
transfer function. ASig is the input signal depending upon the type of

supplementary control considered as described above. Avg, is the output of

the supplementary control.

—>| Sk
+sT 1+ sT10 1+sT12{ |1+sT13
Type-1: ASig = 1 Ai |
Type-2: ASig = APy,
Type-3: ASig = AQy e
Type-4: ASig = Aw
Figure (2.8): Block diagram of supplementary control

ASig ( + sT7> sT9 1+sT11 sT13 A%
1
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2.11.1 Initial equations for the state space formulations

Based on Equations (2.017) to (2.020) of Section (2.4.1), the initial state

space equations of the supplementary control can be written as,

[X,] = [A{] [X,] + [B] [u] (2.153)
[yl = [C¢} [XS] + [Dy] [u] (2.154)
[ul = [L] [y] + [G¢] [U] (2.155)
Av,, = [M,] [y] + [K,] [U] (2.156)

[X,] is the state vector of the supplementary control. The vector [U] is the

same as in case of SVC voltage regulator and is given as,
[Ul=[Avp AvQ Avp, AVQs Avps AVQf Avpy AVQt Aveer Aw]T

The vector [z] of Equation (2.020) is defined in the case of supplementary

control as,
[z] = Av,

The supplementary control input (ASig) can be expressed in terms of

the elements of vector [U] as shown below:

1)Type-1: Here the input is the small change in the specified line current
magnitude (lAil) in per unit. The steady state line current magnitude in

a specified line can be expressed as,
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il ="/iD12 + iQ12 (2.157)

where, ip), iq; are the steady state D-Q components of the line current

respectively. These can also be expressed as a function of the D-Q

components of the steady state sending end (vpy, vq¢) and receiving end

(vpt» Vq ) voltages as shown below,

lipp  ig ]T=[ %11 gll ][[VDf vdT-vpy  vqdT) (2.158)
R Xj
h ’ = , d = ,
where 1= g e P an PR e xp

R; = Line resistance (p.u)
X, = Line reactance (p.u). It is positive for inductive reactance and negative

for capacitive reactance.

Linearizing Equations (2.157) and (2.158), the expression for the small

changes in the specified line current magnitude |Ail can be derived as,

ALl = KI [va VQ f VDt -VQ t] [AVD f AVQ f Ath AVQ t]T (2159)

Gf + Bf
((VDf'VQf)2+(VDt'VQt)2)%

where, KI=
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| Ail can be expressed as a function of the vector [U] using Equation (2.159)

and (2.146) as,

|A1| =KI[0 0 0 O vprf VQf VDt 'th 0 0][U] (2160)
ii)Type-2: Here the input is the small changes in the specified line sending

end power (APy;,.) in per unit. The steady state sending end power (P};,,) in

a specified line can be expressed as,

Pyne = Vprip1 + Vqriq) (2.161)

Combining the linearized form of Equations (2.161) and (2.158), the
expression for the small changes in the sending end power in a specified

line is given as,

APy =[ga gb gec gd] [Avpe AVQf Avp AVQt]T (2.162)

where, ga=2G vpr - Gy vp - By vgy;
gb=2G vqr + By vp, - Gyvqy;
ge=B,vqr -G vpy; and
gd=-Byvpr - Gyvqr

APy, can be expressed as a function of the vector [U] using Equation (2.162)

and (2.146) as,

APjre=[0 0 0 0 ga gb gc gd 0 0][U] (2.163)
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ii)Type-3: Here the input is the small changes in the specified line sending

end reactive power (AQ;;,.) in per unit. The steady state sending end

reactive power (Qy;,,.) in a specified line can be expressed as,
Quine = VQriD1 - VDriQ) (2.164)

Combining the linearized forms of Equations (2.164) and (2.158), the
expression for the small changes in the sending end reactive power in a

specified line 1s given as,
AQ]ine = [ga gb gc gd] [AVDf AVQf AVDt AVQ t]T (2.165)

where, ga=2B)vpr + G v - By vpy;
gb=2B;vqr -Gy vp -Byvgy
gc=-G]va +B1va;and

gd= Gyvpr - Byvgr

AQyp. can be expressed as a function of the vector [U] using Equation (2.165)
and (2.146) as,

AQjne=[0 0 0 0 ga gb gc gd 0 0][U]} (2.166)

1v)Type-4: Here the input is the small changes in the specified generating
system speed (Aw). The feedback signal (Aw) can be expressed as a function

of the vector [U] as shown below,
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Aw=[0 0 0 0 0 0 0 O O 1][U] (2.167)

The matrices [A.], [B], [C.], [D.], [L], [G,], [M] and [K,] in Equations (2.153)

to (2.156) correspond to the matrices [A], [B], [C], [D], [L], [G], [M] and [K] of
Equations (2.017) to (2.020). All these matrices except [G,] and [K,] can be

determined solely based on the parameters of the various constituent

supplementary control blocks and their interconnections. Matrices [G]

and [K;] can be formulated from the knowledge of external inputs and the

constituent supplementary control blocks to which they are applied. For the

block diagrams of the supplementary control shown in Figure (2.8) the
matrices [G;] and [K,] are derived using Equations (2.155), (2.156), (2.160),

(2.163), (2.166) and (2.167), depending on the type of feedback signal to the

supplementary control.

1)Type-1: The feedback signal is |Ailand hence, the matrices [G;] and [K(]

are derived as,

[Gt] = [Onc x4 th Onc x 2]

where, nc is the number of supplementary control states and;

VDf VDf VDt VDt
[G1] =KI
t1 0(nc-l) x1 O(nc-l) x 1 0(nc-l) x1 0(nc-l) x1

Also,




[I{t] = [0, ><10:|

ii)Type-2; The feedback signal is APy, and hence, the matrices [G] and [K(]

are derived as,

[Gt] = [Opc x4 th One x 2]

where, nc is the number of supplementary control states and;

ga gb ge gd
(G = ;
0(nc-l) x1 o(nc-l) x1 O(nc-l) x1 O(nc-l) x1

The coefficients ga,gb,gc,gd are obtained from the Equation (2.162). Also,
(K¢l = [0 x10]

iii)Type-3: The feedback signal is AQj;,. and hence, the matrices [G,] and

[K,] are derived as,
[Gt] = [Onc x 4 th One x 2]

where, nc is the number of supplementary control states and;

ga gb gc gd
[th] = )
0(nc-l) x1 O(nc-l) x1 O(nc-l) x1 0(nc-l) x 1

The coefficients ga,gb,gc,gd are obtained from the Equation (2.176). Also,

[Kt] = I:01 xlO]
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iv)Type-4; The feedback signal is Aw and hence, the matrices [G;] and [K}]

are derived as,

[G)=[0nc x 9 th]

where, nc is the number of supplementary control states and;
[Gul=[1 01 x (ne-)IT

Also,

(K¢l = [01 10l

In all the supplementary control models (Type-1, Type-2, Type-3 and Type-4)

it is seen that the matrix [K,] is a null matrix. This is so, because in all

these models there is no feedforward path from the external input to the

output Av,.

2.11.2 Final state space equations

Eliminating vectors [u] and [y] from Equations (2.153) to (2.156), the
final form of the state space equations for the supplementary control can be

derived as,

[X] = [AJ] [X] + [B,] [U] (2.168)
Avg, = [M,] [X,] + [K,] [U] (2.169)
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Matrices [A.], [B.], [M,] and [K,] correspond to the matrices [A.], [B.], [M.]
and [K,] of Equations (2.021) and (2.022) respectively.

2.12 Interconnection of SVC and its associated controls

The SVC can be modelled with the following options;
1) SVC with no supplementary control and,

ii))  SVC with supplementary control.

2.12.1 SVC model with no supplementary control

For the SVC voltage regulator, the external inputs (1Avgi, Av,¢) are

expressed as functions of the vector [U] in the state space representation of
the SVC voltage regulator model. In this representation only certain
elements (Avp,, Avgs and Av,,¢) of [U] are needed. Based on this, the state
space equations of the SVC voltage regulator model (Equations (2.151) and
(2.152)) are rewritten by partitioning the vector [U] and matrices [Bg,] and

[Kgto), so that only the elements of [U] needed to represent the external

inputs are considered.

[X,] = [Age] [X,] + [Bygeq] [AvDge) + [Bygl [AVe] (2.170)
AB = [My] [X,] + [Kqe1] [Avpqs) + [(Kygl [Avyed] (2.171)
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[Bgi1], (Bl and [K; 4], [K,¢] can be easily obtained by the proper partitioning
of matrices [Bg.] and [K,, ] respectively. It must be noted that as the

supplementary control is not modelled, Av, =0.

Eliminating AB in Equation (2.141) using Equation (2.171) gives,

—VQ
[Aipg] = [ . } [Mgee] [Xy] + [Ysl [Avpqsl + [Ysve ] [Avpgl + [Kref] Avier
(2.172)
-vQ -vQ
where, (K, ofl =[ D }[K,.f] and [Y] = [ D :I[Kstcll

Equation (2.170) and (2.172) can be put in the general form of Equations
(2.003) and (2.004) to result in the following state space model of the SVC.

[Xal = [Ag] [Xg] + [Bgl [AV ]
[AL4] = [Cql [Xq] - [Yq] [AV4]

where, X4l = [X,]; [Aq4] = [Agl] ;
[Bd] =[ Onvx2 Bste ] ’ [AId] = [AiDQ] 5
_VQ 'VQ
[C4l ={ VD }[Mstc]; (Y4l = - [Ygvc ] { D jl[Kstcl];

and, [AVd] = [AVD AVQ AVDs AVQs ]T
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In Equations (2.170) and (2.172), the vectors [B,{] and [K, ] are the

input distribution vectors for a change in the voltage reference input to the

SVC. The vectors [B4] and [K,] are not needed in the formation of the

system state matrix. They are needed only for the calculation of residues,

or frequency or time responses, as will be shown later.

2.12.2 SVC model with supplementary control

To interface the models of the supplementary control to the SVC
voltage regulator, the SVC voltage regulator and supplementary control

state space equations can be rewritten as,

Regulator:
[X\] = [Aste] (X1 + [Bytey] [Avpel+ [Brg] Avier + [Byg,] Avg, (2.173)
[AB] = [Mstc] [X'v] + [Kstcl] [ AVDQs] + [Krf] AVier + Kvso Avg, (2.174)

Supplementary control:
[X,] = [A ] [X,] + [Bg;1 [Av, ] + [Byo] Aw (2.175)
Avg, = [M] [X,] + [K ] [Av, 1+ K5 A (2.176)

Equations (2.175) and (2.176) correspond to the supplementary control
state space Equations (2.168) and (2.169), and are derived by partitioning the

vector [U] to explicitly introduce interface variables [Av.], Aw , [Avpg,] and

Av,er . Accordingly the matrices [By;], [Bgol and [Kg; ], K o (scalar), are
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obtained by the proper partitioning of the matrices [B,] and [K,]. In
Equations (2.175) and (2.176) the vector [Av, ] is defined as,

[AVC ] = [AVDf AVQ f Ath AVQ JI‘

On the same basis, the SVC voltage regulator state space Equations
(2.151) and (2.152) are written in the from of Equations (2.173) and (2.174). It
may be noted that in these equations, Av,, now appears as a variable, since
supplementary control is being considered and thus, forms a basis for
~ interfacing the SVC voltage regulator and its supplementary control

models. Equations (2.173) and (2.175) are combined together, and

eliminating Av,, using Equation (2.176) gives,
[Xm;mp] = [Acomp:I [Xcomp] + [Bcomp] [Astc] + [Bcw] Aw + [Bref] A\ (2.178)

where,

Reompl =| ¥ |

[Acomp] = [ AStc BVSO MS :! >

Onc xnv AS

Oncxl

Onv x2 Bstc Bvso Ksl

Onc x2 Onc x 2 le

[Bcomp] =[ J and

[Astc] = [ AVD AVQ AVDs AVQs AVDf AVQf AVDt AVQt ]T



Eliminating Av,, from Equation (2.174) using Equation (2.176), gives,

AB = [Mcomp] [Xcomp] + [Kcomp] [AVgyel + Koy A0 + Kip AVyer (2.179)

where, [Mcomp] =[Mge Kigo Msl; [Kcomp] = [Kster Kiso Myl
and Kew = Kyso Koo

Eliminating AB in Equation (2.141) using Equation (2.179), gives,

[8ipq] = [Ceomp) Keomp] - [Yeomp! [AVayel + [Conl Aw + [Kpold Avref  (2.180)

where,
-VQ -V

[Ccomp] =|: vD jl [Mge  Kiso Mgl [Cewl = l: D } Ko Kz

-VQ 'VQ
(Kref] =[ vD ] K and [Ycomp:| =- [Ysvc li D :l Kste  Kyso Kall
Equations (2.178) and (2.180) can be rewritten as follows,
[Xal = [Ag] [Xg] + [Bg] [AV4] + [B,, ] Aw (2.181)
[ALy]l = [Cy4) [Xg] - [Ygl [AVy] + [C.y ] A (2.182)

where,

[Xal = Keompl 5 [Adl =[Acompl 5 [Bgl = [Beompl ; [AV4] = [AVgy ] ;
[AId] = [AIDQ] ; [Cd] = [Ccomp] and [Yd] = [Ycomp]
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In Equations (2.178) and (2.180) the variable Aw appears only when
the supplementary control is of Type-4, hence for the other types of
supplementary control (Type-1, Type-2 and Type-3) Equations (2.181) and
(2.182) can be written in the general form of Equations (2.003) and (2.004) to

result in the state space model of the SVC. Also in Equations (2.178) and
(2.180) the vectors [B,4] and [K,.¢] are the input distribution vectors for a

change in the voltage reference input to the SVC. The vectors [B,¢] and
[K.ef] are not needed in the formation of the system state matrix. They are
needed only for the calculation of residues, or frequency or time responses,

as will be shown later.

For the supplementary control of Type-4 it can be noticed that Aw 1is
not included in the overall SVC state vector [X4]. This is because Aw is a
state which corresponds to the specified generating system. Hence,
inclusion of the effect of Aw state on SVC is treated separately after the
complete system state space equations are derived. This is illustrated

through an example shown below.

The state space equations for the generating systems and SVCs with
one of them having a supplementary con.rol of Type-4, can be combined as

described in Section (3.1) and expressed in the form,

[X] = [A] [X] + [Bg] [AV] + [B,,,']A® © o (2.183)
[AI] = [Cg] [X] - [Y,,] [AV] + [C.,,']1A® (2.184)
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For the SVC with supplementary control of Type-4, the individual
device matrices are the same as that given in Equations (2.181) and (2.182)
in the formation of matrices [A,], [Bgl, [Cq] and [Yg]. [B.y1 and [C,., ] are
vectors of appropriate sizes and have vectors [B,,] and [B,,] of Equations
(2.181) and (2.182) as their nonzero entries. Since Aw is a state variable
defined for the specified generating system, it is included in the overall
system state vector [X] and hence can be expressed in terms of the vector
[X]. Equations (2.183) and (2.184) can now be simplified to result in the

overall state space representation of the system, which is of the form

[X] = [A, 1 [X] + [By] [AV]
[AT] = [C4T [X] - [Yyl [AV] (2.184)

where, [Ag'] and [C,,'] are the resulting matrices formed due to the
inclusion of vectors [B,,'] and [C,,,'] in matrices [A.] and [C,,] respectively.

Using matrices [Ag;'] and [C,;'] the overall system state matrix [A] is

formulated in the same way as given by Equation (2.008) and is,

[A] = [Ag]+ [Bg) [Y + YpI1 [Cy,]

2.13 Discussion

This chapter has given a detailed description of how the various
subsystem models of the power system are modelled. The interfacing of

these models to the network is also explained. Modifications on existing or
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the incorporation of new models can be easily achieved by following the

same framework of modelling described in this chapter.

A program called the Small Signal Stability (83) programme has been
developed incorporating this modelling technique for the purpose of
conducting small signal stability studies. It is interesting to note that the
network admittance matrix may or may not be collapsed to its device buses
while forming the overall system state matrix. In the S3 programme,
presently the admittance matrix is collapsed to its device buses as explained

in Appendix (A1.7).



Chapter 3

Techniques for Small Signal Stability Analysis
and
Design of Damping Control

3.1 General

The small signal stability analysis of a power system deals with the
study of underdamped power systems where minor disturbances can cause
the machine rotor angle to oscillate around its steady state value at the
natural frequency of the total electromechanical system. These oscillations
called the electromechanical modes of oscillation are of very low frequency,
typically in the range of 0.1 to 2.5 Hz. These modes are initiated by the
interaction of the electrical and mechanical torques applied to the rotating
‘system of the synchronous machine in the event of a disturbance in the
power system. The primary objective of small signal stability analysis is to
identify and damp out the poorly damped electromechanical modes of

oscillation.

This chapter reviews some of the techniques currently used for the

small signal stability assessment and design of damping control. The
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small signal stability assessment is usually based on eigenvalue analysis.
The design of damping control to improve system stability is carried out
using frequency response technique, pole placement by residue calculations

and time response.

3.2 Eigenvalue analysis for small signal stability investigations

The power system small signals can be described in the linearized

domain by the following state equation as derived in the previous chapter.

(X1 =[A] [X]

The eigenvalues of the state matrix [A] provide information about the small
signal behavior of the power system. For, the power system to be stable, all
the eigenvalues of [A] should have a negative real part. The imaginary part
of each eigenvalue gives the natural frequency of oscillation of the power
system. These oscillations can range from electromechanical modes to the
control modes. The damping ratio of the corresponding eigenvalues
indicate how well these oscillations are damped. The poorly damped
oscillations corresponding to the control modes can be damped effectively by
the proper tuning of various controls present in the system. The poorly or
negatively damped oscillations (eigenvalues) corresponding to the
electromechanical modes of oscillation which are a cause of concern in the
small signal stability analysis of a power system, can be damped through

the proper design of damping control.
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An eigenvalue corresponds to the electromechanical mode of
oscillation if its frequency of oscillation lies between 0.1 to 2.5 Hz. and is
predominantly influenced by the speed (A®) state of the synchronous
machine. It is possible that some control modes might also have frequency
of oscillation in this range but it will not be mainly influenced by the speed
(Aw) state of the synchronous machine. The influence of the speed (Aw)
state on an eigenvalue can be obtained from a sensitivity index called the
state participation factor. The state participation factor of a state is the
sensitivity of the eigenvalue to the change in the corresponding diagonal
element in the system state matrix of the power system model. The
magnitude of this factor for an eigenvalue conveys information of how the
corresponding state of the system model influences the specific eigenvalue.
Also, since these factors are non-dimensional, they do not have the scaling
problems associated with eigenvectors and are therefore, better suited to
determine which states predominantly influence the specific eigenvalue.
Based on this procedure, the concerned electromechanical modes of
oscillation and the synchronous machines predominantly influencing
these modes can be identified. The procedure for the evaluation of state

participation factors is given in Appendix (A1.8).

The state participation factors of all the states for a specific
eigenvalue are useful in determining the influence of various system states
on that eigenvalue. But, the state participation factor does not give

information of the effect of the passive elements in the power system like tie
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line impedances or loads on the small signal stability. This information is

useful for a better understanding of the small signal stability problem.

Electromechanical modes of oscillation are loosely classified into
local, intermachine and interarea modes of oscillation. Local modes are
dominated by a single machine having a very significant state participation
factor of its speed (Aw) and rotor angle (Ad) states to this mode compared to
all of the other synchronous machines present in the system. The

frequency range of the local mode is approximately 0.5 to 2.5 Hz.

Intermachine modes are characterized by a small group of machines
having significant magnitude of state participation factors of their speed
(Aw) and rotor angle (A6) states to this mode compared to the other
synchronous machines present in the system. The frequency range of the

intermachine modes is roughly 0.3 to 1.0 Hz.

Interarea modes are characterized by a number of synchronous
machines located in one 'area’ (set of coherent machines) having a
significant state participation factor of their speed (Aw) and rotor angle (Ad)
states to this mode compared to the machines in other areas of the system.
The frequency range of these modes is around 0.1 to 0.6 Hz.. This
demarcation of the frequency ranges for the local, intermachine and
interarea modes is not strict and may vary according to the system under

consideration [2,17].
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In a physical sense, the occurrence of electromechanical modes of
oscillation can be described by machines oscillating or 'swinging' against
each other. The information about which machine is swinging against the
other for a mode under consideration, can be obtained by determining the

mode shape of the electromechanical oscillation.

The modes shape for a particular electromechanical oscillation
(eigenvalue) is described by the elements of the associated eigenvector
corresponding to the speed deviation (Aw) of all the machines present in the
system. The various synchronous machines whose speed (Aw) states (in the
eigenvector under consideration) have a positive real part, oscillate
(swings) against those synchronous machines whose speed (Aw) states have
a negative real part. For intermachine and interarea modes, the mode
shapes will similarly depict the two groups of machines or areas which are
swinging against each other. Also, the mode shape provides the knowledge
about the interface between the group of machines or areas, which is
demarcated by the eigenvector elements corresponding to the speed (Aw)

states of the synchronous machines having a small magnitude [5,6].

In the study of the small signal behavior of a power system, the
machine rotor angle is defined with respect to a fixed reference. The
formulation of the linearized synchronous machine state space model
described in the previous chapter utilizes the bus angles as obtained from
the load flow analysis for the calculation of the machine rotor angle (). In
load flow calculations, the bus angles are defined with respect to a slack
bus, which can also be taken as the infinite bus for small signal stability

studies. Normally a bus whose voltage magnitude and phase angle is not
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influenced by any disturbance in the system and remains constant is
chosen as an infinite bus. An implicit assumption involved in this is that
the dynamics of the synchronous machine or equivalent external system
connected to this infinite bus cannot be represented in small signal stability
investigations. An attempt to model the power system without an infinite
bus will result in one or two zero eigenvalues [1,10]. One of the zero
eigenvalues is caused as the rotor angle is now defined with respect to a
floating reference. Another zero eigenvalue can appear if the inherent
damping of the synchronous machine is ignored. This zero eigenvalue
situation can be avoided, either by redefining the state variables
corresponding to the rotor angle and speed deviation states, or considering

an infinite bus in the model formulation.

3.3 Techniques for the design of damping control

The design of damping control is carried out using standard
techniques like frequency response and pole placement [22]. The advantage
of these techniques is that the state space representation of the system can
be directly used without explicitly deriving the system transfer function as
is the case in other standard techniques like root locus. The control design
can also be carried out using time response with step or impulse inputs.

This, however,results in a trial and error procedure for a complex system.




3.3.1 Frequency response technique

The frequency response calculation is a very powerful tool for control
system design. The power system is taken to be that of a Single Input
Multiple Output (SIMO) type. This enables the calculation of the frequency
response of various signals simultaneously. The frequency response of the
various monitored signals in the power system can be calculated with
respect to one of the following inputs:
i)Voltage reference of the excitation system of a synchronous machine.
ii)Mechanical torque applied to a synchronous machine.

iii)Voltage reference of the regulator of a SVC.
The state space equation describing the dynamics of the system is,

[X] = [A] [X] + [Bj,p] u (3.01)

where, [X] is the state vector of the system, [A] is the system state matrix,

[Binpl is the matrix defining the distribution of the input u to the system.

Transforming Equation (3.01) into the Laplace domain gives,
[X(s)] = [sI - Al [Bj,p] u(s) (3.02)
where, [I] is the identity matrix having the same dimension as matrix [Al.

For frequency response calculations the Laplace operator 's' is

replaced by the imaginary frequency jo i.e. s = jo and the frequency '@ is
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varied over a range of interest. u(s=jw) is taken as unit in frequency
response calculations. Thus Equation (3.02) can be rewritten as,

[X(Gw)] = ol - Al [B;,,] (3.03)
The calculation of the frequency response from Equation (3.03) would
require the inversion of matrix [jol - A]-! for each frequency point ® ; this is
computationaly expensive. In order to reduce the computational effort,

matrix [A] is diagonalized using standard eigenvector transformations as

shown below.

[A] =P [A] P (3.04)

where, [A] is a diagonal matrix with eigenvalues of [A] as its diagonal
elements. [P] is the transformation matrix whose columns are the
eigenvectors corresponding to each eigenvalue of [A]l. Combining this

equation with Equation (3.03) gives,

[XGe)] = [P [jI - A 11 [P] [Byy,] (3.05)

The use of Equation (3.05) for the calculation of the frequency response
would require the inversion of the matrix [joI - A ] at each frequency point
which is trivial as this matrix is diagonal. Equation (3.05) gives the state
vector [X(jw)] for each frequency point i.e. the frequency response of the

system state vector.
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The monitored signal (y) present in the system for which the
frequency response is being obtained can be expressed as a function of the

system states [X] as,

y =[C,] [X] (3.06)

Transforming the above equation into the frequency domain and

substituting the value of [X(jw)] from Equation (3.05) gives,
y(o) = [C,] [P]! [joI - A J1 [P] [Bjp] (3.07)

This expression can be used directly for obtaining the frequency response of

the monitored signal y.

Frequency response techniqﬁe has been extensively used for the
design of PSS [6,13,17]. In the design of a PSS for a particular machine in a
multimachine system, each machine except the candidate machine where
the PSS is being installed is replaced by a negative impedance and the
inertia constant of the candidate machine is increased by a factor of 25 so
that the effect of rotor angle deviation on exciter output of the candidate
machine is minimized [6]. The frequency response of the generating
system electrical torque with respect to the voltage reference of the exciter is
obtained. In this calculation of the frequency response only the contribution
to the electrical torque from the exciter is considered. Suitable
compensation networks are designed so that the phase lag from the exciter

is compensated over the range of frequencies of interest. The amount of
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phase compensation given is generally 300 less than the total phase lag
introduced by the exciter over the frequency range of interest. The gain of
the compensation network is determined by varying the gain over a range
and selecting the gain value where maximum damping of the mode of
interest is obtained and the damping of control modes are also acceptable.
The feedback signal used for the PSS is the speed or an equivalent speed
signal [6,13,14]. In this design, the PSS provides a phase lead to the speed
signal with appropriate amplification to compensate the phase lag
introduced by the exciter. The output of the PSS will modulate the voltage
reference of the exciter in a manner that the eleptrical torque contribution
from the exciter is in phase with the machine speed and hence increases

the damping of the electromechanical mode of oscillation.

The frequency response technique for the design of PSS is very
effective, but this method cannot be easily extended to the design of other
damping controls like supplementary control on SVC because the
compensation network will have to be designed to satisfy a single input
multiple output situation. Frequency response of various signals can also
be used to determine the suitability of various signals as potential feedback
‘signals to the damping control. The electromechanical mode (eigenvalue)
whose damping is to be improved, is obviously near the imaginary axis in
the complex s-plane. Thus, the frequency response of a potential feedback
signal would show the presence of this mode as a resonant peak in the
magnitude response (the bandwidth being governed by its damping) as the
frequency being varied equals the frequency of oscillation of this mode.

Also, the phase response would show a dip by 1800 lag. Even though the
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frequency response indicates as to how the monitored signal is influenced
by the poorly damped eigenvalues, it does not indicate how much
information the signal has on the modes that are better damped, or
information of eigenvalues which lie on the real axis in the complex s-
plane. This information is important for selecting the suitable feedback
signal for effective design of damping control. The frequency response of
various signals present in the system can also be used to detect any non-

minimum phase behavior exhibited by them [18,19].

3.3.2 Pole placement technique

The design of control has also been attempted with pole placement
techniques using the residue method for placing poles. In this method, the
residue of the power system model is calculated at a specified location in the
complex s-plane, where the mode under consideration is desired to be
shifted. Appropriate controls are designed to meet the required magnitude

and phase criteria.

For a system with transfer function G(s) if the pole is to be shifted

from a particular location to a new location s = s, = g, + jw, in the complex

s-plane, the residue of the transfer function G(s) at the complex frequency

S, i8 given as G(s, ).

The procedure for calculating the residues is the same as that of the

frequency response calculations described in the previous section. In case
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of residue calculation the complex frequency is used instead of the
imaginary frequency only as in the case of the frequency response
calculations. Therefore, from Equation (3.07) the residue of a monitored

signal with respect to a specified input at a complex frequency s, is given by

the expression,

y(so) = [Cy] [P11 [s,] - A 1 [P] [B;y,,] (3.08)

where, y is the desired monitored signal and the input for the power system
model is one of the following,

1)Voltage reference of the excitation system of a synchronous machine.
ii)Mechanical torque applied to a synchronous machine.

iii)Voltage reference of the regulator of an SVC.

While frequency response technique is well suited for the design of
PSS, the pole placement technique provides a more general method and has
been used for the PSS design and design of supplementary control of SVC
[8,10].

3.3.3 Time response calculation

The time response of the system to standard test signals like impulse
and step can also be used for the design of controls. The time response of
various monitored signals with respect-to an impulse or step in one of the

following inputs can be obtained.




i)Voltage reference of the excitation system of a synchronous machine.
ii)Mechanical torque applied to a synchronous machine.

iii)Voltage reference of the regulator of an SVC.

Impulsg response

For a impulse response, the input u(t) in Equation (3.01) is taken as,

u(0) =1 and »
u(t) =0, Vit>0 (3.09)

and the system is initially assumed to be at rest, i.e. [X(0)] = 0. Therefore,
from Equations (3.01) and (3.09), the impulse response of the system states

[X(t)] in the time domain is,

[X(t)] = [P] [e [At] ] [P [By,] (3.10)
Step response

For a step response the input u(t) is described by

u(t) =1, Vtz20 3.11)
and the system is assumed to be initially at rest, i.e. [X(0)] = 0. Therefore,
from Equations (3.01) and (3.11), the step response of the system states [X(t)]

in the time domain is,

[X(t)] = [P][A}! [e [At] - T] [P [By, ] (3.12)




Since the desired monitored signal can be expressed as a function of
the system states [X], the time response of the monitored signal can be
determined from Equations (3.06) and one of (3.10) or (3.12) depending on

whether an impulse or step input is applied respectively as,

y(t) = [Cy] [X(1)] (3.13)

As mentioned earlier, this technique for control design results in a trial

and error procedure and hence is used in relatively simple situations.

From the foregoing it is evident that a proper choice of the monitored

signal is important for effective damping of the power system.

3.3.4 Monitored system signals

The various signals which can be monitored in a power system for
damping purposes are the bus quantities, line quantities, machine
quantities, and SVC quantities. Given below are the most commonly

monitored signals in a typical power system.

i1)Bus quantities:
a)Change in bus voltage magnitude.
b)Change in bus voltage phase.

1i)Line quantities:




a)Change in line current magnitude.
b)Change in sending end line real power.
¢)Change in sending end line reactive power.
iii)Quantities related to the classical model of the synchronous machine:
a)Change in output real power.
b)Change in output reactive power.
¢)Change in speed.
d)Change in rotor angle.
e)Change in output current magnitude.
iv)Quantities related to the flux linkage model of the synchronous machine:
a)Change in output real power. |
b)Change in output reactive power.
c¢)Change in electrical torque contribution from the excitation system.
d)Change in speed.
e)Change in rotor angle.
f)lChange in output current magnitude.
v)Quantities related to SVC model:
a)Change in the output reactive power.

b)Change in the output current magnitude.
Any of the above signals can be expressed in the following form,
y =[R]1[X] + [S] [AV] (3.14)

where, y is the monitored signal, [X] is the state vector of the system, [AV] is

the vector of system bus voltage deviations and [R],[S] define the linear
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combination of the system states and bus voltages forming the monitored
signal respectively. The determination of matrices [R] and [S] for the

various monitored signals is quite straightforward and is not given.

From the linearized network equation (Equation (2.005)), and the
stacked device output current equation (Equation (2.007)) of Chapter 2., the

system bus voltages can be expressed as a function of the system states as,
[AV] = [YN + Y J1 [Cyl [X] (3.15)

Combining Equation (3.01) and (3.02) gives,
y = [C,] [X]

where, [C,] = [R] + [S] [Yy + YgI-1 [Cyy]

34 Discussion

| This chapter has given a review of the various analysis tools used for
the small signal stability study of a power system. Also, certain design
procedures for the design of damping control have been described.
Eigenanalysis, state participation factor determination, frequency, residue
and time response calculations can be obtained from the Small Signal

Stability (S3) programme.




Chapter 4

New Techniques for Small Signal Stability Analysis

4.1 General

This chapter describes certain innovations to enhance and overcome
some of the shortcomings of the existing techniques for the small signal
stability analysis of a power system and for the design of damping control.
To supplement the use of state participation factor, an index called voltage
participation factor has been suggested which indicates the influence of
passive network elements on system stability [20]. A suitable choice of the
potential feedback signal is important for the effectiveness of the damping
control. This can be evaluated based on observability criteria as described
here. Also, a novel method for calculating the modal torques for the mode
under consideration is introduced in this chapter. The calculation of modal

‘torques is considered useful in assessing the small signal and transient

stability.

4.2 Voltage participation factors

Voltage participation factor is the sensitivity of an eigenvalue to change in
the shunt admittance at a bus, or the sensitivity of the eigenvalue to the

changes in the transfer admittance between two buses. The voltage
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participation factors are ideal for analyzing the effect of network loads and
variations in tie line impedances on the small signal stability of a power
system. The voltage participation factors can also provide a suitable basis
for the selection of the site of a SVC equipped with damping control. This is
because the SVC is modelled as a voltage controlled variable shunt
susceptance. The method of calculating the voltage participation factors is

described below.

Using Equations (2.005) to (2.007), the state space equation for the

complete power system can be expressed in the form,

X A By X
= s 4.01
{ OJ [ Cst - (YN + Yst):H: AV } ( :

Transforming Equation (4.01) into the Laplace (complex frequency) domain

gives,
s X(s) ] =[ Ast Bgt ] X(s) (4.02)
[ 0 Cst -(Yn + Y5 AV(s)

where, [X(s)] is the state vector of the system in the Laplace domain and
[AV(s)] is the system bus voltage vector in the complex frequency domain.
Let A; be an eigenvalue of the system described by Equation (4.02), and
[X(A;)] be the corresponding right eigenvector. Also, let the corresponding
left eigenvector be [Z();)]. Substituting s =2, in Equation (4.02) gives,




X(\1)
AV(Ay)

=[ Ay By } (4.03)

Cst - (YN + Yst)

[ A1 X(A1)
0

where, [AV(A,)] is the right system bus voltage vector corresponding to the

eigenvalue );. A similar equation for the left eigenvector [Z(},)] as Equation

(4.03) can be derived as,
- Ast Bst T
(A Z(\y) 0] Coy (Yx + Yoo [ZO) AW (4.04)

where, [AW();)] is the left system bus voltage vector corresponding to the
eigenvalue A;. Premultiplying Equation (4.03) by the row vector
[Z(A\,) AW(},)] gives,

X(A1)
AV(Aq)

- Ast Bst
M ZOhy) X(Ay) = [Z(0) AW(Ry)] Cut Yy + Yst)}

(4.05)

The product of the right and left eigenvectors for a eigenvalue is unity as

described in Appendix (A1.8). i.e.

Z(\) X(A) = 1.0 (4.06)

Taking the partial derivative of the eigenvalue A; with respect to the

shunt admittance at the jth bus (y;;) in Equation (4.05), and using the

relation of Equation (4.06) gives,




dAq
— =- AW, AV
ayﬁ )] G

where, AW;, is the j*? element (the jth bus left voltage) in the left voltage
vector [AW(),)] and AVy;, is the j*h element (the jth bus right voltage) in the
right voltage vector [AV(A;)]. Equation (4.07) is the sensitivity of the

eigenvalue ); to the change in shunt admittance at the jth bus.

Taking the partial derivative of the eigenvalue A; with respect to the series

admittance between the j* bus and the k*h bus (y;) in Equation (4.05), and

using the relation of Equation (4.06) gives,

N
a}'jk

The L.H.S of Equations (4.07) and (4.08) are called the voltage participation

factors.

4.3 Observability of eigenvalues in system signals

An important consideration in the choice of suitable feedback signal
for damping control is that it should contain adequate information about
the mode being damped. Alternatively, it can be said that the mode under
consideration should be 'observable' in the signal being chosen. The
concept of observability as described in control theory can, therefore, be used

for the selection of the appropriate feedback signal. The calculation of
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observability of eigenvalues (modes) in various signals, determines in a
qualitative and quantitative manner the amount of information a signal
has of the system eigenvalues. The method of calculating the observability

of eigenvalues in various signals is described below.

Any signal present in the system can be expressed as a function of the

system states [X] as described by Equation (3.16), which is reproduced here,
y = {[R]+ [S][YN + Yol [Cgel } [X]

Transforming the above equation into the Laplace (complex frequency)

domain gives,

y(s) = {[R] + [SI [YNn + YguI'1 [Cy ]} [X(s)] (4.09)

Let A; be an eigenvalue under consideration, and [X(};)] be the
correspcnding eigenvector. Then, the observability of the monitored signal

(y) to this eigenvalue 1, , is given by,
y(A1) = ([R] + [S] [¥Yn + Ygl! [Cgel } [X(Ay)] (4.10)

Similarly the observability of the monitored signal (y) to all the system
eigenvalues can also be calculated using the right eigenvector matrix [P]

as,

[Yo]l = {[R] + [S][Yy + Y] [Cg]} [P] (4.11)
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where, [Yo] is a column vector and the ith element in it is the observability of

the monitored signal (y) to the ith eigenvalue of the system.

44 Small signal stability assessment using modal torque calculations

In an effort to improve the small signal stability of the power system
it is necessary to understand the mechanism by which various power
system components (excitation systems of generator, voltage regulators of
SVC etc.) influence the small signal stability. In the past the explanation of
these mechanisms have been addressed in a qualitative manner
[2,7,13,17,19]. This can help to predict the approximate behavior of a
component with regard to its effect on the system small signal stability.
However, a quantitative idea about the effect of various components on
system small signal stability would greatly benefit the design of various

controls.

The quantitative assessment of the effect of power system components
on the system small signal stability can be made on the basis of
determination of the torque contribution from the individual component for
each mode of oscillation. This torque contribution is called the modal
torque. The modal torque has two components, the damping and the
synchronizing torque. The damping torque indicates the inherent damping
the system has for the mode (eigenvalue) under consideration. The
synchronizing torque conveys the ability (strength or 'stiffness') of the
system to restore itself to a steady state operating point after a disturbance.

To understand the basic concept of how the modal torque governs the
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characteristics of these modes, a description of the generation of
electromechanical modes of oscillation and the corresponding torques is

necessary.

4.4.1 Generation of electromechanical modes and associated torques

Electromechanical oscillations are produced by the interaction
between the torques applied to the rotating system of the generators. To
illustrate this, consider the single machine infinite bus system shown in
Figure (4.1). The synchronous machine is modelled as a voltage source
(E) behind a transient reactance (x4') assuming that the field flux
linkages are constant. The machine is connected to an infinite bus having

voltage E, through an external reactance (x,).

' Eo
E ,
2 X4 Xe
Generator terminal bus Infinite bus
Figure (4.1): Single machine infinite bus system
The machine dynamics can be expressed as,
2H dAw + D dAS + K, A5 =0 (4.12)
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where, D is the damping coefficient (p.u.) and the synchronizing coefficient

(K,) is given as,

dTe E, Eo
=__ =———C08§,
00, x4 + X

Ky
where, §, is the steady state angle between E;' and E, in Figure (4.1) and T,
is the electrical torque. Equation (4.12) is in per unit quantities and hence;
Per unit torque = Per unit power. Equation (4.12) can be transformed into
the Laplace domain and can be represented in the block diagram structure

as shown in Figure (4.2).

K
D
o
} Aw A8
- Do 1
- 2Hs - s >

Figure (4.2): Block diagram of the single machine infinite bus system

The roots of the characteristic equation of Equation (4.12) are,

sl,S2=-£I—i4/ D2 _ Kiwo (4.13)
16H  2H
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Generally D? << Ki ®Wo, which leads to an oscillatory response. The
16H 2H

oscillatory response of the system is attributed to the imaginary part of the
roots given in Equation (4.13). This oscillation is called the
electromechanical mode of the system. Examining Equation (4.12), it is

evident that the torque applied to this machine is,

AT, =D Aw +K;A§ (4.14)
0o

This torque is also called the modal torque for the mode (eigenvalue)
corresponding to the roots of the characteristic equation (Equation (4.13)).

The modal torque has two components, which are,

i)Damping torque (D dA8 = D Aw): A positive value of the damping
Wy dt Wo

coefficient indicates that the oscillation will eventually decay, while a
negative value indicates that the oscillation will rise in magnitude i.e the
system is unstable. A measure of the small signal stability of the system is

indicated by the amount of damping torque present in the system.

ii)Synchronizing or restoring torque (K; A§) : This torque tends to bring the
system back to the steady state operating point. A higher value of the
synchronizing coefficient K,;, which is positive, indicates the strength or
'stiffness’ of the system. Higher the 'stiffness’, the better is the ability of the
system to achieve steady state. A measure of the relative transient stability
of the system 1is indicated by the amount of synchronizing torque present in

the system.
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4.4.2 Calculation of modal torques for multimachine power systems

In the case of the simple single machine infinite bus system
considered above, the electromechanical oscillation can be examined
through the interaction of only two states Aw (small changes in speed) and
Ad (small changes in the rotor angle) as shown in Figure (4.1). However in
a large complex system, the electromechanical oscillations would be
influenced by the dynamic interaction of the other states corresponding to
the various machines, SVC, HVDC etc. This calls for appropriate
modelling of the various system components. The complexity of the system
model would depend upon the degree of detail considered in the
representation of each subsystem. A typical block diagram of such a large
system is shown in Figure (4.3). Where, Aw,, and A3, are the small
changes in the mt" machine speed and machine angle. Figure (4.3)
illustrates the dynamic interaction between the mth machine and the rest of
the system which is represented by the equivalent transfer function G(s).
The effect of the mth machine on the equivalent system G(s) is represented
through the inputs A, and A§,,. The output of G(s) is AT . AT,, is the
torque contribution from the rest of the system applied to the mth machine.
This torque can be split into two components; one in phase with Aw,, and
the other in phase with A3,. The component in phase with the small
changes in speed of the mth machine (Aw,) will tend to damp out the
electromechanical modes of oscillation in which this machine participates,

whereas the component in phase with the small changes in rotor angle for
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the mth machine ( A3, ) will tend to restore the system to its steady state

operating point.

Kn1
Dy
Wo
. A, Adm
(O 1
- 4
- 2H, s - ) >

G(s)

Equivalent transfer function of the
rest of the system

Figure (4.3): The dynamics of the mth machine in a large power system

Having identified the electromechanical mode of interest and its
-participating machines, the corresponding modal torque and hence the
constituent damping and synchronizing torques can be calculated as

illustrated below.

Consider a local mode of electromechanical oscillation as initiated
from the mth generator. Let this mode of oscillation correspond to the kth

eigenvalue (A ) of the system. Since the mode under consideration is the
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local mode associated with the mth machine, only the modal torque for the
mode }; applied to this machine need to be calculated. From the
calculation of the modal torque, the damping and synchronizing torques

can also be calculated.

For the mth machine, its modal acceleration corresponding to the

mode Ay is,

e 4.15
AO)m:zajiXi 19
1

where, n is the size of the state matrix [A], a;; is the ith element in the jth

row of the state matrix [A], the Aw,, state of the mth machine is the jth

element in the state vector and x; is the ith element in the eigenvector of [A]

corresponding to the mode 2.

Therefore the corresponding modal torque applied to the mth machine is,

n
(4.16)
ATy =-2Hp z i X
W 1

where, H, is the inertia constant (p.u.) of the mtt machine.

The modal torque AT,, is a complex quantity. It has a component in
phase with Aw, (damping torque), and another component in phase with
A8, (synchronizing or restoring torque) as shown in Figure (4.4). Note
that Aw, and A8, are orthogonal due to the fact that




_ dAdy

Adm ="

The damping and synchronizing torque components of the modal
torque can be determined if the angle 0 (refer Figure (4.4)) is known. The
eigenvector corresponding to the mode A, will have elements corresponding
to Awn, and A3, . These elements which are complex quantities give the
magnitude and angle of Aw, and A§, with respect to a fixed reference.
Also, the angle information contained in the complex quantity AT, is with
reference to the same fixed reference. Thus the angle 6 can be obtained

accordingly to calculate the modal torque components.

Aas,,

Aosm>

AThm e

Figure (4.4) Modal torque components

In certain situations, there may be a need to determine the modal
torque (and hence, the damping and synchronizing torque) contribution

from a particular device (e.g. SVC or HVDC, excitation systems, voltage
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regulators, etc) for a particular mode of electromechanical oscillation
(eigenvalue). This can be easily obtained by modifying Equation (4.18).
Suppose in the example considered above, the interest lies in determining
the effect of a jth device on the local mode (). The modal torque

contribution ATy, from the jt*h device to mth machine for the local mode (2 )

1s given as,

i
(4.18)
Aij = '———ZCIO‘(I)m g’ aji Xj

where, the limits j1 to jj denote the locations of the corresponding states of

the jth device in the state vector.

In the above discussions we have considered a local mode and hence
the modal torque contribution to only one machine was determined. For
inter-area and inter-machines modes of electromechanical oscillations, the
modal torques applied to more than one machine will have to be
determined. This process will be a simple extension of the above method as

shown below.

Let the eigenvalue )y; be an interarea mode of oscillation and the

synchronous machines participating in this mode be m;, my, mg, ... m,.

The modal torque ATy applied to the Mt participating machine for the

interarea mode Ay is,




n
(4.19)
@ 1
where,
M=m;, my, mg,... my.

Hy = Inertia constant in (p.u) of the M*h machine.

ay; = theith element in the Jth row of the system state matrix [A].

The Awy state of the Mth machine is the Jth element in the state vector

The modal torque contribution ATy;y; from the jth device to the Mt

participating machine for the interarea mode A, is

;
(4.20)
AT = - zoiM Jg’ aj; X

The limits j1 to jj denote the locations of the corresponding states of the jth

device in the state vector.

The analysis of the modal torque contributions for the intermachine
“and interarea modes is accomplished by determining the the damping and

synchronizing torque contributions to each machine separately.



4.4.3 Modal torques : A discussion

The proposed method provides a systematic approach for calculating
the modal torque contribution of any device for the electromechanical mode
under consideration. This serves as a tool for evaluating the effect of
various devices on damping electromechanical modes of oscillation. In the
past this effect has been qualitatively determined for complex systems based
on either extrapolation of the effect obtained in case of simple systems or
through field experience. The proposed method, on the contrary, provides a
mathematical basis for evaluating modal torque components which give a
measure of the system small signal and transient stability. Further work
needs to be done in the nondimensionalizing the torque calculations so that
effective comparisons of different case studies can be accomplished. At
present these torque calculations can be compared on a percentage basis of

their damping and synchronizing torque contributions.




Design of Damping Control

5.1 General

In this chapter the generalized procedure for the design of damping
control for a power system is presented. The objéctive of installing damping
controllers is to damp those electromechanical modes of oscillations which
are otherwise poorly or negatively damped. A beneficial side effect of the
use of damping controls is the possibility for the system to increase its
steady state power transfer capability. This is so, because the damping
control allows the system to operate at certain operating conditions which
may correspond to higher levels of power transfer; which in the absence of
the damping control would not have been possible. It is also important that
the damping control should not adversely effect the transient stability of the

‘system.

52  Generalized design procedure

The process of designing the damping control involves the following

steps:

118
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a)ldentification of the least damped electromechanical mode of oscillation.
b)Determination of the damping and synchronizing torques present in the
system for the least damped mode of oscillation.

c)Selection of the site for installing the damping control.

d)Selection of suitable feedback signal for the damping control.

e)Design of the compensation network i.e. determining the parameters of
the damping control transfer function.

f)Validation of the design.

5.2.1 Identification of the least damped electromechanical mode of

oscillation

The foremost requirement is to know whether damping control is at
all needed for the power system under consideration or not. To obtain this
information, the eigenvalues of the state matrix of the power system are
obtained and the corresponding damping ratio for each eigenvalue
associated with the electromechanical mode (0.5 to 2.5 Hz.) is evaluated.
Unlike conventional control systems where one would ideally require the
‘dominant pole to have a damping ratio of 0.707; a minimum damping ratio
of 0.05 for the electromechanical mode is quite acceptable in power systems.
It may however so happen that within the range of 0.5 to 2.5 Hz. there may
be some modes which do not necessarily correspond to the
electromechanical modes of oscillation. The eigenvalues corresponding to
the electromechanical modes of oscillation of the system are identified by

the determination of the state participation factors for each eigenvalue.
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Those eigenvalues for which the state participation factors of the Aw states
of the synchronous machines are largest are taken as the
electromechanical modes. The state participation factors and the mode
shapes of these electromechanical oscillations are used to determine
whether these modes are local, intermachine or interarea oscillations. The
concept and use of the state participation factors and eigenvectors (mode

shapes) is given in Chapter 3.

5.2.2 Determination of the damping and synchronizing torques present in
the system

Once the least damped electromechanical mode of oscillation is
identified, the damping and synchronizing torque present in the system for
this electromechanical mode of oscillation is determined. The method of
calculating the damping and synchronizing torques has been explained in
detail in Chapter 4. The calculation of the damping and synchronizing
torques helps to evaluate the effectiveness of the damping control after it is

incorporated into the system.

5.2.3 Selection of the site for the location of the damping control

It is very important to choose the proper site for the location of the
damping control. Improper selection of the site for damping control will

require the damping control to have a large control effort in order to provide
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damping for the concerned electromechanical mode of oscillation. It will
lead to the damping control being overaggressive and thus detrimental to
transient stability [17]. There may also arise situations where the
parameters of a improperly located damping control are physically

unrealizable.

The selection of a suitable location of the damping control on a device
is based on the controllability of the device and the observability of the
feedback signal for the electromechanical mode whose damping is to be
enhanced. The controllability of a device to a particular mode is determined
through the use of state and voltage participation factors. Voltage
participation factors supplement the information obtained from the state

participation factors for the selection of a suitable site for damping control.

The potential site of the damping control must be chosen on the basis
of controllability and observability of the mode of interest, for the damping
control and its feedback signal respectively. The calculation of the
observability factors presented earlier is used to determine the observability
of eigenvalues (modes) present in various signals under consideration.
»From the control system design considerations it is important that the
feedback signal should not exhibit non minimum phase behavior near the

frequency of the mode of interest [18].

A natural location for installing the damping control is the
synchronous machine since it is itself the source of electromechanical

oscillations. For local and intermachine modes the choice of location for
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installing the damping control is, therefore, quite straightforward as

explained below.

The criteria for selecting the device (synchronous machine) for
installing the damping control is based on a sensitivity index called the
state participation factor which has been described in Chapter 3. A
machine which has a significantly large state participation factor of its Aw
state to the mode under consideration and also, a large rating is chosen for
the location of the damping control which is called the Power System
Stabilizer (PSS). The same procedure can be adopted for the selection of a
synchronous machine for installing the damping control to damp out
interarea modes. But in some situations it may be difficult to identify one
machine for the installation of damping control, either, due to the fact that
there might exist many machines of similar rating having significant state
participation factors of their Aw states making it difficult to select between
them; or , some other considerations might make the installation of a PSS
on a synchronous machine unattractive. In such a situation, it may be
worthwhile to consider installation of the damping control on devices like
SVC which may be present in the system. To know how effectively can SVC
~damp out interarea modes, the analysis of state participation factors will
require the representation of the SVC supplementary control (damping
control). But then, the problem is that the supplementary control is yet to be
designed. To explore the possibility of installing a damping control on a
SVC, another sensitivity index called the voltage participation factor may be

used.
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Voltage participation factors can be used to supplement the
information obtained from the state participation factors for the selection of
a suitable site for damping control. As voltage participation factor of the
system bus is the sensitivity of the eigenvalue to the change in shunt
admittance at the corresponding bus, it can form a basis for the selection of
the SVC to be equipped with the damping control (Supplementary Control).

The basic concepts of voltage participation factor is described in Chapter 4.

For electromechanical modes of oscillation the analysis of the
sensitivity indices i.e. state and voltage participation factors will generally
identify devices and system buses in close proximity as potential sites for
the installation of damping control. In the case of local and intermachine
modes as described earlier, a candidate synchronous machine is selected
for the installation of the PSS. For interarea modes the analysis of the state
participation factors will identify certain candidate synchronous machines
as the site for the location of PSS, whereas the analysis of the voltage
participation factors will identify certain candidate buses, where a SVC
equipped with a damping control (supplementary control) would probably
damp the interarea mode under consideration. The choice of selecting the
site for installing the damping control on a synchronous machine or SVC
will depend on transient stability and economic considerations. Even
though interarea modes are generally adequately damped by the use of PSS,
the use of damping control (Supplementary control) on SVC provides a

viable option that can be used under certain conditions.
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The selection of site should also take into consideration the
availability of suitable feedback signals which would contain adequate
information of the mode under consideration. This can be derived based on

the observability criteria described in Chapter 3.

In addition to the analytical procedure outlined above, practical
considerations must also be taken into account while selecting the site for
damping control. For example, if the state participation factors indicate
that a particular synchronous machine is suitable for the installation of a
PSS and if this synchronous machine happens to be equipped with a slow
acting exciter, then the control effort required by the PSS may be enormous.
Under such a situation the option is either to change the exciter itself or

select the next best location for installing the damping control.

5.2.4 Selection of a suitable feedback signal for the damping control

A primary requirement of a suitable feedback signal is that it should
contain adequate information about the mode of oscillation which is to be
damped. For this, it is necessary to calculate the observability of
eigenvalues (modes) present in various signals under consideration, as
described in Chapter 4. This provides the information about the presence of
the mode of interest in a particular signal and its selectivity. By selectivity
it means how the signal is influenced by eigenvalues other than thé one
that is to be damped. If the calculation of observability of system

eigenvalues for the signal under consideration shows that this signal has a
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high observability of not only of the mode of interest but another eigenvalue
whose frequency is close to that of the mode of interest, then this signal is
not a good choice for a suitable feedback signal. Based on this information,
the suitable feedback signal can be chosen for damping purposes. However
it is important that the output of the damping control should not strongly
influence the feedback signal. Otherwise a positive feedback situation will

arise which may lead to an unstable inner loop.

From the control system design considerations it is important that
the feedback signal should not exhibit non minimum phase behavior near
the frequency of the mode of interest [18]. In a complex power system
however, this cannot be avoided, but it is possible to select a signal which
does not exhibit non minimum phase behavior near the mode of interest.
Whether a signal exhibits non minimum phase behavior or not can be
- determined by obtaining a frequency response of the signal with respect to
the point where the damping control output is to be applied. If the
frequency response shows a sharp dip in the magnitude response
accompanied by sudden dip in phase by 180 degrees as frequency is scanned
upwards, it can be concluded that there is a zero in the right half plane
close to the imaginary axis of the s-plane which is the condition for a

nonminimum phase behavior.

From a practical point of view the feedback signal should be easily
available, i.e local signals are preferred and should exhibit good noise

immunity.



5.2.5 Design of the compensation network

In this section the realization of the structure of the damping control
is described. The general structure of the damping control consists of lead
or lag networks in series with a gain and a washout term. The washout
term is needed so that thé damping control is active only when there are
changes in the feedback signal applied to the damping control and thus
keeping the damping control inactive under steady state conditions. The
design procedure adopted here is a pole placement technique using the

residue method as described below [10].

Figure (5.1) shows the interconnection between the power system G(s)
and the damping control H(s). u(s)is the input to the system and y(s) is the
- desired feedback signal for the damping control (such as speed, line

current magnitude, line real power etc.).

u(s) + y(s)
() .

+

H(s) |-

Figure (5.1): Block diagram of system G(s) and damping control H(s).




Let the electromechanical mode of oscillation (eigenvalue) whose
damping is to be improved be A514. Aolq corresponds to one of the poles of the
transfer function G(s). The requirement is to shift this eigenvalue (pole) to
a new location A,.. This is accomplished by the addition of the damping
control H(s). The characteristic equation for the system shown in Figure

(5.1)is
I1-G(s)H(s)! =0 (5.01)

If H(s) has been properly realized then s = A,., will satisfy the above

characteristic equation i.e.
[1-GApew) HApew)! =0 (5.02)

This implies that

HOpew) = ——1— 5.03
G(knew) ( )
and
| Hupew)! = —1 (5.04)
| Gnew) |

ZLHGpow) = - ZGnew) (5.05)
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where, |HOpow) !, ZHOpew) and |GOpew) s ZG(hpew) are the magnitudes

and phase of H(A o) and G(Apevw) respectively.

Equations (5.04) and (5.05) give respectively the magnitude and phase
criterion. G(A,.,) is the residue of the transfer function G(s) at s = A ey.
Once this is obtained then it is possible to determine the transfer function
H(s) satisfying the magnitude and phase criterion. This is the basic
principle for the design of damping control using the residue method. The

procedure for the calculation of residues is given in Chapter 3.
Certain innovations in the realization of H(s) are described next to
ensure that the designed damping control is robust and also enhances the

'stiffness’ of the system to increase the transient stability margin of the

system.

lection of th location of the eigenv Mnew) :
The original eigenvalue (electromechanical mode of oscillation) A4

has to be shifted to a new location to increase its damping. Defining the

original eigenvalue as,

Aold = Clo+iBo (5.06)

The damping ratio for this eigenvalue is




- O

C=V%2+B02

The damping ratio can be increased by:
i)Keeping q,, constant and decreasing the magnitude of B, or

ii)Keeping PBo constant and making o, more negative, or

iii)Increasing the negative value of ¢, and the magnitude of Bo ensuring

that the resultant damping ratio is also increased.

The third option for increasing the damping ratio is considered here
as it not only increases the damping of the mode of interést but also
increases the 'stiffness’ of the system for this mode as explained below with
reference to the single machine infinite bus system shown in Figure (4.2) of

- Chapter 4. Neglecting the damping, the system dynamics is expressed as,

2H
‘“Ogd‘ffo' +K,A5=0 (5.08)

where, H is the inertia constant of the machine (p.u), K; is the
synchronizing coefficient of the machine, Aw and A8 are small changes in
the angular velocity of the synchronous machine (radians/sec) and small
changes in the rotor angle (radians) respectively. The rotor angle is defined
as the angle between the machine direct axis and the synchronously
rotating reference frame of the system. The roots of the characteristic

Equation of (5.08) are
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81,80 =% , [ K1 @ (5.09)

It is evident that the frequency of oscillation is directly proportional to

YK;. Thus, if K, increases so does the frequency of the electromechanical

mode of oscillation. Also, as described in Chapter 4, an increase in the
value of K; corresponds to the increase in the 'stiffness’ of the system,
which increases the transient stability margin of the system. A similar

observation can be made in case of large complex systems also.

The location of the old eigenvalues in the s-plane is shown in Figure
(5.2). The shaded portion indicates the possible region for the new
eigenvalue which would result in increased damping and 'stiffness’. The
final location to which the original eigenvalue can be shifted is determined

after ensuring that;

i)the damping control is not over aggressive (Gain is not too large),
ii)the damping control is physically realizable,
iii)the damping control does not deteriorate the damping of other modes or
introduce new eigenvalueﬂs which are unstable, and
iv)the designed damping control provides adequate damping over a range of

operating conditions.




Region for shifting
Aold to a new location

Aold
Original eigenvalue

el

Y
Figure (5.2): Area to shift eigenvalue

ization h n function H(g):

The general structure of the damping control consists of a series of
lead, lag blocks with a washout block and a gain block as shown in Figure

(5.3).




132
Gain block lead/lag block Washout block
ASig K | 1+sT L eT _ﬁvso
1+ 8Ty 1+ 8T

ASig = Feedback signal to the damping control

Avg, = Damping control output
K = Gain
Ty, Tg, . . . T = Time constants.

Figure (5.3): Block diagram of damping control

The washout block must act as an all pass to signals at frequencies of
interest (frequencies of the modes of interest). As electromechanical
oscillations have a very low frequency, the washout time constant (T) is kept
quite large (around 10 seconds). A large time constant is necessary to avoid

causing phase leads at the low end of the frequency spectrum [6].

The requirement of the damping control transfer function H(s) is that
it must satisfy the magnitude and phase criteria given in Equations (5.04)

and (5.05) respectively. From Figure (5.3) H(s) can be rewritten as

"H(s)=_sT K h(s). (5.10)
1+sT

where, h(s) represents the transfer function of the cascaded lead or lag
blocks. The washout time constant (T) is chosen as 10 seconds for the
reasons given earlier. The problem now is to realize h(s) which can be

accomplished as follows:




133

1)From the knowledge of the total phase compensation required, ZG(xnew),

the total number of lead or lag blocks can be determined. Generally the
maximum phase compensation which one lead or lag block can provide is
approximately 60 degrees. An attempt to achieve higher pﬁase
compensation from one block may result in undesirably large pole-zero
separation. From practical considerations, a limit of say three to four
blocks can be imposed on the total number of cascaded lead or lag blocks to
be used. In case more blocks are required to achieve the desired phase
compensation, it would -be better to look for other alternative solutions to
increase the damping of the mode of interest. These solutions could be in
the form of a new eigenvalue location, or a different feedback signal or a

different device for installing the damping control.

ii)Having determined the number of lead or lag blocks necessary to achieve
the desired phase compensation, the various time constants for each lead or

lag block are calculated. The requirements are:

a)The frequency at which all the lead or lag blocks together provide
maximum phase compensation should be close to the frequency

corresponding to the new eigenvalue location {9,10].

b)The following phase criterion obtained from Equations (5.05) and (5.10)
should be satisfied.

Zh o LM 5.11
Ohnew) =+ L7750+ LGO0nen) (5.11)
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The method of determining the time constants for each lead or lag
block is illustrated through an example. Figure (5.4) shows the block
diagram of a hypothetical damping control. Here the washout time
constant (T) is taken as 10 seconds and the number of cascaded lead or lag

blocks are two.

h(s)
Gain block \ Washout block
N
; N N A
A_SE> K N 1+58Ty N 1+sTs _sT _lw
-Q\ 1 +8Te Q 1+sTy 1+5sT
N N

- Figure (5.4): Example block diagram of damping control.

From Figure (5.4),

h(S)= 1+ST1 1+ST3 (512)
1+sTs 1+sTy

Generally the lead or lag blocks are taken to be identical. Hence, T, is the

same as Ty and T, is the same as T,. Therefore,

h(s) =

1+s T1)2 (5.13)
1+sTy

Considering that the residue of the system transfer function G(s) at s= A .w
is already calculated, where, A,y = ot + jBn is the new eigenvalue. The two

criteria mentioned above that must be satisfied are
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1
P = Foms (5.14)
/ (1 + Anew T1)2 L e o (5.15)
1+ Anew T2 1+ ApewT e

Equations (5.14) and (5.15) are solved iteratively for T, and Ty. As

shown earlier, the lead or lag blocks are generally taken to be identical,
which leads to the determination of two unknowns from two equations.
This results in a unique solution. In certain situations, where for example
the damping control is being designed to satisfy the above criteria for two
different operating conditions, it might be necessary to use lead or lag
blocks which are not identical. In such a situation, a trial and error
procedure combined with the above method will have to be used. This leads
to a compromise solution where the frequency at which the damping
control provides maximum phase compensation will not necessarily
coincide with the frequency of the new eigenvalue or the phase criteria of
Equation (5.05) may not be exactly satisfied. This results in the shifting of

the mode of interest to a slightly different position than it was meant to be

shifted to.

Once h(s) has been determined, it only remains to calculate the gain
K of the damping control H(s). This can be calculated from the following
expression which is obtained from (5.04) and (5.10).
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1

K=
ool hir | | GOew) |
1+ Anewl

(5.016)

In this way the entire damping control H(s) can be realized.

5.2.6 Validation of the design

The design of the damping control can be validated through small
signal stability analysis. For this the damping control is introduced into
the system model and the new system state matrix is obtained. The

effectiveness of the damping control can be determined through:

nalysis: It must be ensured that the mode under
consideration has been damped and that the damping control did not
introduce any additional eigenvalue with poor damping or did not have a

detrimental effect on the damping of the other modes.

ii)Determination of the damping and synchronizing torques: The damping
control should result in higher damping and synchronizing torques for the

mode under consideration.
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53 Discussion

The design strategy employed here assumes that there is only one
electromechanical mode of oscillation whose damping is to be increased. If
there exists more than one mode whose damping is to be increased, then
the design process may have to be repeated for each of the concerned
electromechanical modes of oscillation. Studies to be presented later show
that a proper design of the damping control will increase the damping of
not only the electromechanical mode of oscillation for which it was
designed, but would also increase the damping of other electromechanical
modes of oscillation. Thus, enhancing the overall system small signal

stability.

The design process described here explains the design strategy for
one operating condition. For the design of damping control to meet the
requirements of different operating conditions, the above design steps can
be followed in parallel for all the operating points under consideration.
This would lead to a damping control H(s) which can meet the
requirements of the various operating conditions to a certain extent. In this
process more weight is given to the parameters of H(s) obtained for the

weakest system operating point (usually maximum loading condition).

A flow chart of the generalized design procedure formulated in this

chapter is shown in Figures (5.5a) and (5.5b).
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Figure (5.5a): Flow chart for generalized design of damping control
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Figure (5.5b): Flow chart for generalized design of damping control (Contd).




Chapter 6

Program Development and System Studies

6.1 General

The state space representation of power system for small signal
stability analysis has been described in Chapter 2. Based on this a state-of-
the-art program -the Small Signal Stability (S3) programme- has been
developed incorporating the techniques for small signal stability
investigations and design of damping control outlined in the earlier
chapters [25]. A brief description of the structure and salient features of the
S3 program is given in this chapter. To illustrate this programs capability
and to demonstrate the effectiveness of the small signal stability analysis
techniques and the generalized philosophy of damping control design, a
case study of a 39 bus power system is also presented. Damping control is
designed for SVC (supplementary control) as well as the generating system

(PSS) and their relative performances are compared.

6.2 Small Signal Stability (S3) program

The Small Signal Stability (S3) program has been developed with a

modular structure, with each device model or subsystem described in a

140
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separate subroutine. Based on the modelling procedure described in
Chapter 2, the program proceeds systematically to formulate the linearized
state space model of the individual dynamic devices which are then stacked
together and interconnected through the transmission model to result in

the overall system model.

The flow chart describing the structure of the S3 program is given in
Figures (6.1a) to (6.1e). The program requires two inputs, one defining the
steady state operating point of the system about which the linearized system
model is formulated, and the other defining the dynamic parameters of the
system devices. The steady state operating point of the power system under
consideration is given by its load flow solution. The dynamic parameters of
the system devices which are required for the stability investigations
correspond to the relevant device data including the associated control

system parameters.

Using these inputs the individual device state space models are first
formulated and then assembled in a systematic manner to derive the entire
power system state space model as shown in Figures (6.1a) and (6.1b). The
specific details of formulating the classical machine model, detailed

generating system model and the SVC model are given in the flow charts

shown in Figures (6.1c) to (6.1e) respectively.
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Figure (6.1a): Flow chart of S3
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Figure (6.1b): Flow chart of S3 (contd)
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Figure (6.1c):Flow chart for formulating the state space model of the
classical machine
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space model
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Figure (6.1e): Flow chart for formulating the SVC state space model
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The Call Tree, i.e. the actual sequence of the subroutine calls in the
S3 program is shown in Figures (6.2a) and (6.2b). The subroutines in
square boxes, shown in Figure (6.2b), correspond to the various analysis
options available in S3 program. In any execution of the S3 program one of
these subroutines is used depending on the study being conducted. For
example, if the program is being executed to carry out the calculation of
frequency response, the subroutine FRQOUT will be used. The type of
analysis/calculation required is specified by the user as an input data. The
matrix operations and eigenvalue\eigenvector calculations are performed

by subroutines MATUTY and EISPS3 respectively [21].
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S3 (Main program)

Y

INFLO (Read load flow data)
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Figure (6.2a): S3 Call Tree
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Figure (6.2b): S3 Call Tree (contd)



6.2.1 Salient features of the S3 program

One of the salient features of the S3 program is its modular structure
which permits future extensions and modifications with relative ease and
without the need for modifying the entire program. Changes to the
program can be conveniently handled for modifications in any of the
existing device models or analysis techniques (eg. different algorithm for
calculating eigenvalues or frequency response). These modifications would
only involve changes in the corresponding subroutines. Also, the program
has the flexibility to include representation of other power system
components like HVDC transmission systems, governor or Flexible AC
Transmission System (FACTS) devices, etc. This would require describing
these components in separate subroutines which can then be easily
incorporated in the Call Tree. Similarly, alternative numerical techniques
like sparse vector approach for storing the admittance matrix etc, can be
easily implemented for better computational efficiency and increasing the

capacity of the program to model larger power systems.

Another salient feature of the program is the appropriate choice of
the interface variables between the devices and the transmission network.
In the modelling approach discussed in Chapter 2, it was shown that the
device model is interfaced with the external world through the device
terminal voltage and current. Thus, the dynamic interaction between the
system devices is defined through the network interconnection. This allows

the modification and implementation of new models with relative ease.
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The S8 program is versatile enough and has the option to carry out

small signal stability investigations and design of damping control using

various analysis techniques as given below [25]:

1)

ii)

iii)

iv)

V)

vi)

vii)

viii)

Eigenvalue analysis of the power system state matrix.

Calculation of the state and voltage participation factors of the power
system state matrix.

Modal torque calculations for the modes of interest.

Calculation of observability factors in various user specified line
signals.

Frequency response over the range of user specified frequencies for
various system signals with respect to a input. Both, the system
signals and the input are user specified.

Calculations of the residues at user specified complex frequencies,
for various system signals with respect to a input which are specified
by the user.

Time response over the range of user specified time interval for
various system signals with respect to a input. Both, the system
signals and the input are user specified.

Expressing a user specified system signal as a function of the system

states.

These studies give an in-depth knowledge of the dynamic behavior of

the power system under consideration and also provide the information
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needed to improve the existing controls or to design new controls for

enhancing the small signal stability of the power system.

The S3 program is suitable to carry out small signal stability analysis
of a moderately sized power system. In its present form, the program can
handle 400 system states corresponding to 20 individual power system
devices and a transmission network of up to 100 buses. A large power
system can also be represented in the S3 program but it will require sparsity
based storage technique for efficient computation. The features of S3
program are comparable to that of MASS (Multi-Area Small Signal)
stability program of Ontario Hydro [1].

6.3 Small Signal Stability Analysis-A Case Study

The effectiveness of the analysis techniques and the generalized
philosophy of damping control design proposed in the previous chapters is
demonstrated through a case study of a test system. The objective of these
studies is to improve the small signal stability of the test system for two
different operating conditions by the proper design of damping control to
damp out the poorly damped electromechanical modes of oscillation in the

system.

The two operating conditions of the test system are defined below.
1) The operating condition under nominal system loading which is

referred to as the nominal operating condition.
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The operating condition that is defined by the same nominal system
loading but with the heaviest loaded tie line out of service. This
operating condition is referred to as the weakened operating
condition. This is because of the fact that to supply the same load as
that of the nominal loading condition, it has to re-route the power
transfer over the in-service tie lines. This causes additional stress on
the in-service tie lines as they now have to share the burden of

transferring power of the out of service tie line also.

The case study of the test system can be subdivide as follows:

1)

ii)

Load flow studies to establish the operating point for representing the
test system in the linearized domain. This is obtained from the load

flow solution using any standard load flow package [23].

Preliminary study is carried out to first determine if any damping
improvement is required due to the presence of inadequately damped
electromechanical modes at both the operating points. If damping
improvement is sought then the preliminary study is extended to
identify the worst case condition between the two operating points
and a detailed analysis of the inadequately damped
electromechanical modes is carried out. This involves the
determination of the modes shapes and calculations of state and

voltage participation factors of system states and buses respectively

for the electromechanical modes under consideration.




iii)

154

The identification of the worst case situation is needed because the
design of damping control would have to satisfy the stability
requirements for the two operating conditions. As described in
Chapter 5 more weight is given to the parameters of the damping
control designed for the worst case situation. In the present study,
the strategy is to first design the damping control for the worst case
situation and test the design at the other operating condition to check
if any modifications are necessary. If not, then the design for the
worst case situation stands as the final choice of damping control to

meet the requirements for both the operating conditions.

Design and validation of the damping control to improve the small

signal stability of the test system,

6.3.1 The Test System-Modified 39 bus New England Area system

The test system is derived from the New England Area system of the

United States after certain- modifications [1]. The modifications include

replacement of IEEE DC1 type exciters on generating systems at buses 30

and 34 by ST1 type exciters. Also, in the test system 3 SVCs have been

included. The schematic of the test system is shown in Figure (6.3). The

system comprises 39 buses, 48 tie lines, 9 generating systems and 3 SVCs.

The system buses are numbered such that the generating systems (G30 to

G38) are respectively connected to each bus from 30 to 38. SVCs S1, S16 &

S23 are connected to each of the buses 1, 16 and 23 respectively, to provide
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the necessary voltage support. It is interesting to note that bus 39
represents the interface between the United States and Canada. Under
most operating conditions the United States imports power from Canadian
utilities. In most small signal stability studies for the New England Area,
bus 39 is taken to be a very strong source and is treated as a infinite bus.
With this it is implicitly assumed that any disturbance occuring within the

New England Area will not be transmitted to the Canadian power system.

The nine generating systems and the three SVCs are the dynamic
devices in the test system and hence, are described by differential equations
in the state space framework as discussed in Chapter 2. The transmission
system (tie lines) and the loads form the network model which is described
by a set of algebraic equations as its dynamics are ignored for the purpose of
small signal stability investigations. In the case study the generating
system is represented in detail considering flux linkage model of the
synchronous machine and IEEE type DC1 or ST1 exciters. The voltage
regulators of all three SVCs are assumed to have identical parameters for
the sake of simplicity. The network and dynamic device data are given in

Appendix (A2.1) and (A2.2), respectively. Bus 39 is taken as the infinite

bus.




Modified 39-Bus New England Area system

Line out of service for
Weakened operating
condition

Figure (6.3)

9¢1




6.3.2 Load flow studies

The load flow solution of the test system for the nominal operating
condition is given in Appendix (A2.3). The heaviest loaded line in this case
is the tie line between buses 21 and 22. For the weakened operating
condition the load flow solution is obtained for the same loading condition
but with the tie line between buses 21 and 22 out of service. The load flow
result for this case is given in Appendix (A2.4). It can be seen that for both
the operating conditions, the maximum generation and load is at bus 39,
- followed by the generating system G38. The fact that bus 39 is the strongest
bus is consistent with the fact that this bus represents the strong Canadian
system connected to it. In both load flow solutions it is assumed that the
SVC’s are floating i.e. they are neither generating nor absorbing reactive

power.

The operating points thus established by the load flow solutions is
given as a input to the S3 program for all further small signal stability

investigations.

6.3.3 Preliminary studies

The complete eigenvalue and the state participation factor analysis
for both the nominal and weakened operating conditions shows that the
least damped eigenvalues, as expected, are the electromechanical modes of
oscillations. All eigenvalues except for the electromechanical modes have a
damping ratio of greater than 0.1 and hence are not a cause of concern.

Tables (6.1a) and (6.1b) give eigenvalues corresponding to the
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electromechanical modes and the devices participating in these modes for
both the nominal and weakened operating conditions respectively. In
Tables (6.1a) and (6.1b) the symbol <-> in the right hand column indicates
the various generating systems swinging against one another. Also, from
Tables (6.1a) and (6.1b), it is seen that there are certain electromechanical
modes whose damping ratio is less than the cutoff level of 0.02 (established
in Chapter 5). This indicates that the damping of these modes must be
improved by the suitable design of damping control(s).

I 1 i he wor 1

Having determined the existence of inadequately damped
electromechanical modes, the next step is to identify the worst case
situation. From Table (6.1a) it can be seen that there are two
electromechanical modes (No. 5 & 9) which are of concern as these have
damping ratio less than 0.02. Also, from Table (6.1b) which corresponds vo
the weakened operating condition of the system, it is evident that modes 5, 6
& 9 are inadequately damped and have damping ratios less than the
corresponding damping ratios obtained under the nominal operating
condition. Thus the weakened operating condition of the system can be

treated as the worst case situation.

Figure (6.4) graphically displays the electromechanical modes in the
complex s-plane for both the weakened and nominal operating conditions.

It can be seen that for the weakened operating condition the
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electromechanical modes tend to be closer to the imaginary axis. For better
system stability these modes need to be shifted further into the left half
plane through proper design of damping control.

Before initiating the design procedure it is necessary to obtain more
information about the modes (No.5, 6 & 9) whose damping needs to be
improved. The mode shapes of these electromechanical modes are given in
Figures (6.5a) to (6.5¢) for the weakened operating condition. The ordinate
in Figures (6.5a) to (6.5¢) is a quantity equivalent to the speed state (Aw)
obtained as | Ao |cos(£A®) from the corresponding eigenvector of the mode
under consideration. The state participation factors of each of the
dominant device states (Aw for generating system and control system states
of SVC) to these modes (No. 5, 6 & 9) is given in Tables (6.2a) to (6.2¢). An
examination of the state participation factors and the modes shapes reveals
that:
i)Mode No.9 is an interarea mode in which all the generating systems
swing in near unison against the infinite bus '«bus(39)'.
ii)Mode No.5 is the local mode of the generating system G30.

iii)Mode No.6 is the local mode of the generating system G34.

Based on the above preliminary investigation, the following
conclusions can be drawn:
1) There are three electromechanical modes whose damping needs
improvement. The least damped mode is an interarea mode in

which all the machines are swinging against the infinite bus
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obus(39). The other two modes are local modes of generating

systems G30 and G34.

i1) The worst case situation corresponds to the weakened operating
condition.
iii) There is a need to provide damping control to improve system

damping.
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Figure (6.4): Electromechanical modes of the original system for the two
‘ operating conditions.
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Table (6.1a): Electromechanical modes and participating devices for the
nominal operating condition

No. | Electromechanical | Damping Participating devices
mode ratio
1 -0.3373 + j8.5928 0.03922 | G33 <> G334
2 | -04171+j8.7676  |004752  |G37 <> G30
3 -0.4638 + j8.8628 005226 |G36 <> G35
4 -0.2887 + j7.4341 0.03880 G32 <> G31
5 -0.1155 + 37.0859 0.01629 G30, G37 <-> Rest of the system
6 -0.2117 + j6.8445 0.03092 |G35,G36 <-> G31,G34,G30
7 -0.1620 + j6.1449 0.02635 G31,G32 <> G34,G38
8 -0.1675 + j5.7611 0.02907 G38 <> G334
9 -0.0596 + j3.2242 0.01848 obus (39) <-> Rest of the system

<-> indicate the generating systems swinging against one another for a

particular mode.




Table (6.1b): Electromechanical modes and participating devices for the
weakened operating condition

No. | Electromechanical | Damping Participating devices
mode ratio
1 -0.3027 + 38.4137 0.03595 G33 <> G34
2 -0.4276 + j8.7577 0.04877 G37 <> G30
3 -0.4214 + j8.8007 0.04783 G36 <> G35
4 -0.2799 +j7.4500 0.03755 G32 <> G31
5 -0.0962 + j7.0307 0.01368 G30,G37  <-> Rest of the system
6 -0.0947 + j5.9863 0.01582 G34,G33 <> G35,G36,G38
7 -0.2146 + j6.1424 0.03491 G31,G32 <> G34,G38
8 -0.2150 + j5.5846 0.03847 G38 <> G35
9 -0.0321 + j3.0508 0.01053 o bus (39) <-> Rest of the systera
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Table (6.2a): State participation factors for Mode No.9

Device Device state State participation

factor

G30 Aw 0.0330
G31 Aw 0.0333
G32 Aw 0.0435
G33 Aw 0.0482
G34 Ao 0.0679
G35 Ao 0.0918
G36 Ao 0.0710
G37 Aw 0.0203
G38 Aw 0.1070
S1 1 0.0003
1 0.0040

S16 2 0.0007
3 0.0020

S23 1 0.0020
3 0.0010

Device states 1,2 & 3 correspond to the control system states of SVC
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Table (6.2b): State participation factors for Mode No.5

Device Device state State participation

factor
G30 Aw 0.3784
G31 Aw 0.0333
G32 Aw 0.0097
G33 Aw 0.0004
G34 A® 0.0037
G35 Aw 0.0011
G36 Ao 0.0006
G37 Aw 0.0420
G38 A® 0.0421




Table (6.2c): State participation factors for Mode No.6

Device Device state State participation
factor
G30 Aw 0.0019
G31 . A® 0.0181
G32 Aw 0.156
G33 Aw 0.0364
G34 A 0.3523
G35 Aw 0.0891
G36 Aw 0.0574
G37 A 0.0
G38 Aw 0.0342

6.3.4 Design of Damping control

Based on the foregoing preliminary studies, as the interarea mode is
the least damped mode the damping control is first designed to improve its
damping before considering the other local modes of concern. The process

of designing damping control for a particular electromechanical mode can

be outlined by the following steps.
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1) Selection of the type of damping control (PSS on generating system or
supplementary control on SVC).

i) Selection of site for installing damping control.

iii) Design of damping control compensation network.

iv) Validation.

In Chapter 5 it is stated that for the local and intermachine modes
the obvious choice for the type of damping control would be the PSS on a
generating system. But for an interarea mode, which spreads over the
entire system, there are two possibilities for installing the damping control.
i) Using a PSS on a generating system

ii) Using a supplementary control on an existing SVC.

The design of PSS to damp an interarea mode must take into account
the local mode of the generating system on which the PSS is being installed.
This is done because the local mode is much more strongly coupled to the
generating system than the interarea mode and hence is likely to be most
affected by the introduction of PSS. Thus, if the local mode is ignored in the
design, the PSS could adversely effect the damping of the local mode.

The second option of using supplementary control on SVC can be
applied only under special circumstances which depends on a myriad of

practical considerations as described in Chapter 5.

In the present study both PSS and supplementary control on SVC are

designed and their relative performance compared.




6.3.4.1 Design of Power System Stabilizer (PSS)

The first step in the design process is to identify a suitable site for the
installation of PSS. This selection is relatively simple and can be based on
the state participation factors of the generating system speed states for the

mode under consideration.

Selection of site

From Table (6.2a) it is evident that the speed state of generating
system G38 is the best choice for installing PSS as this machine has the
largest participation to the interarea mode. Also, G38 has the largest
generation after the infinite bus. But a closer look at the excitation system
of G38 reveals that it is a IEEE DC1 type exciter (Appendix A2.2). This type
of exciter is slow acting and hence is not a good choice for installing a PSS.
In a practical situation, the utility would probably change the excitation
system altogether, but in the present study an attempt is made to choose an

alternative candidate location for installing PSS.

From Table (6.2a) it can be noticed that the state participation factors
of the speed states of all the other generating systems are relatively close

and keeping in mind that the next least damped mode is the local mode of
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G30, the logical choice for installing PSS is taken as the generating system
G30.

Selection of feedback signal

It is a standard practice to select the speed signal of the generator or
an equivalent signal as the feedback signal for PSS. The speed signal is
chosen as the feedback signal in the present study.

The PSS compensation network for the generating system G30 is
designed based on the following two methods to damp out the local mode as
well as the interarea mode.
i)Frequency response method used by Ontario Hydro [6].
ii)Generalized damping control design using residues presented in

Chapter 5.

t)Frequency response method used by Ontario Hydro [6].

In this design method the concerned generating system G30 is

modelled in detail and the rest of the system devices are represented by

negative impedances i.e, their dynamics are ignored. Also, the inertia
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constant of the modelled generating system G30 is increased by a factor of
10-25 to minimize the effect of the influence of rotor angle variation on the

excitation system output.

A frequency response of the electrical torque contribution of the
excitation system with respect to the exciter voltage reference is obtained
over the frequency range of interest. The phase of the frequency response
indicates the phase lag introduced by the excitation system. The damping
can be improved if the electrical torque applied to the machine is in phase
with the speed of the generating system. The compensation network is,
therefore, designed to compensate the phase lag introduced by the
excitation system over the frequency range of interest (frequency range of
modes whose damping needs improvement). Total phase compensation is,
however, avoided as there may be a chance of overcompensation due to a
- variety of reasons which may lead to reduction in synchronizing torques,
and thus transient stability [13]. The PSS compensation network consists of
phase lead blocks. Once the lead block time constants are determined the
PSS gain is determined by a trial and error procedure till acceptable
damping of the modes of interest are achieved without deteriorating other
modes (electromechanical and control modes) for the full system

representation.

The frequency response of the electrical torque contributipns from the
exciter of G30 (DGET 30) is shown in Figure (6.6). It can be seen that near
the frequency of the local mode (=1.1Hz.) the phase lag is approximately
1009 and approximately 700 for the interarea mode (=0.47Hz.). A lead
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network shown in Figure (6.7) is chosen as the phase compensation

network.

Frequency response of DGET 30 for input at G30
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Figure (6.6)Frequency response of DGET |
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AVs = Supplementary control output

Figure (6.7): PSS block diagram

The time constants, TN and TD are determined so that they give a f\

@
maximum phase lead of approximately 85° at the frequency of the local ’
' \
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mode of G30 and a phase lead of approximately 600 at the frequency of the
interarea mode. The various time constants of the phase compensation
network are determined as:

TN =0.225, Tp = 0.0907 and Tw = 10.0.
The gain (K) is determined by a trial and error approach and is found to be

60.0

ii)Generalized damping control method

The generalized design of damping control uses a pole placement
technique for shifting the eigenvalue (mode) under consideration to a
suitable location. When the PSS is being designed to damp out a interarea
mode, still the mode under consideration for design purposes will be the
local mode. The shifting of this local mode to a suitable location should
result in the improved damping of the interarea mode also. The first step
in this design procedure is to select the new location of the local mode.
Referring to the criteria developed in Chapter 5 the new location must be of
higher frequency and should have the desired damping. Based on this a
value of (-2.47 + j7.5) is chosen as the new location for the local mode of

G30.

The next step is to determine the residue of the feedback signal at this
new eigenvalue location in the complex s-plane. The feedback signal
considered here is the speed signal and its residue at (-2.47 + j7.5) has a

magnitude of 1.194 and an angle of -102.499,
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The compensation network can be designed based on the procedure
described in Chapter 5. The compensation network having the same
structure as that of Figure (6.7) is chosen for the PSS. The various time

constants and gain of the compensation network are obtained as

TN = 0.19, Tp = 0.0802, Tw = 10.0 and K = 88.95

Validation of the PSS design

The PSS designs are validated by incorporating the designed PSS into
the generating system (G30) model and determining the eigenvalues for
both the weakened and nominal operating conditions. Tables (6.3a,b) and
(6.4a,b) give the electromechanical modes with PSS designed by the
frequency response method (PSS(OH)), and the generalized design method
(PSS(GD)) respectively. The locations in the complex s-plane of the
electromechanical modes with and without damping control for both the

operating conditions is shown in Figures (6.8a) and (6.8b).




Table (6.3a): Electromechanical modes and participating devices for PSS

(OH) at G30 for the weakened operating condition

No. | Electromechanical | Damping Participating devices
mode ratio
1 -0.3318 + j8.4046 0.03945 G33 <->G34
2 -0.6663 + j8.7123 0.07626 | G37 <->G30
3 -0.4215 + j8.8005 0.04784 G36 <-> G35
4 | -0.2812 + j7.4459 0.03774 | G32 <->G31
5 -2.0138 + j7.5175 0.25876 | G30,G37  <-> Rest of the system
6 -0.0984 + 5.9827 0.01645 G34 <> G35
7 -0.2216 + j6.1620 0.03594 G31,G32 <->(G34,G35
8 -0.3170 + j5.6356 0.05617 G38 <->G36
9 -0.3906 + j3.1744 0.12214 ~bus(39) <-> Rest of the system
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Table (6.3b): Electromechanical modes and participating devices for PSS
(OH) at G30 for the nominal operating condition

No. | Electromechanical | Damping Participating devices
mode ratio
1 -0.3532 + j8.5973 0.04101 G33 <>G34
2 -0.6246 + j8.7160 0.07148 G37 <->G30
3 -0.4639 + j8.8633 0.05226 G36 <> G35
4 -0.2891 + j7.4336 0.03886 G32 <->G31
5 -2.1232 + j7.585 0.26956 G30,G37 <-> Rest of the system
6 -0.2320 + j6.864 0.03377 G34 <> G35
7 -0.1623 + j6.1682 0.02631 G31,G32 <->G34,G35
8 -0.2275 + j5.767 0.03942 G38 <->(G36
9 -0.4445 + 33.3629 0.13104 ~bus(39) <-> Rest of the system
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Table (6.4a): Electromechanical modes and participating devices for PSS
(GD) at G30 for the weakened operating condition

No. | Electromechanical | Damping Participating devices
mode ratio
1 -0.3343 +8,4010  |0.03977 | G33 <>G34
2 -0.6683 + j8.6558 0.07698 G37 <->G30
3 -0.4215 + j8.8005 0.04784 G36 <-> G35
4 | -0.2809 + j7.4459 0.03770 | G32 <->G31
5 -2.4137 +j7.8863 0.2927 G30,G37  <-> Rest of the system
6 -0.0990 + j5.9828 0.01654 G34 <->(G36
7 -0.2198 + j6.1635 0.03564 |G31,G32 <->G34, G38
8 -0.3135 + j5.6534 0.05537 | G38 <> G35
9 -0.4251 + j3.2972 0.12787 ~bus(39) <-> Rest of the system




Table (6.4b): Electromechanical modes and participating devices for PSS
(GD) at G30 for the nominal operating condition

No. | Electromechanical | Damping Participating devices
mode ratio

1 -0.3550 + j8.5972 0.04126 | G33 <>G34

2 -0.6248 + j8.6690 0.07189 G37 <->G30

3 -0.4639 + j8.8632 0.05227 G36 <-> (G35

4 -0.2891 + j7.4336 0.03886 G32 <->G31

5 -2.5247 +7.9483 0.30273 G30,G37 <-> Rest of the system
6 -0.2312 + j6.8641 0.03366 G34 <->G36

7 -0.1602 + j6.1691 0.02595 G31,G32 <->G34, G38

8 -0.2294 + j5.7749 0.03968 | G38 <> G35

9 -0.4756 +33.4928 0.13493 obus(39) <-> Rest of the system
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It is seen from Tables (6.3a,b) and (6.4a,b) that adequate damping of
the interarea mode and the local mode of G30 is achieved,but the local mode
of G34 is still less than the cutoff level of 0.02. Hence additional damping
control by using PSS on G34 is required to increase the damping of this

mode. The design of PSS at G34 is not carried out as it is trivial.

It can be noted that the parameters of the compensation network of
the PSS with both the design methods (frequencies response and the
generalized design method) are quite close. The frequency response
method has been proven to be quite robust [6] and thus, a similar claim can

be made for the generalized design method for damping control.

The PSS designs are further validated by calculating the damping
and synchronizing torques for the modes under consideration to see if any
beneficial changes have been brought about by the introduction of damping
control. The damping component (M-») and the synchronizing component
(M-8) as a percentage of the total modal torque for the local mode of G30 and
the interarea mode is given for the case with and without damping control

in Table (6.5).

It can be seen that in the absence of any damping control the modal
torque for the local mode of G30 and the interarea mode is primarily made
up of the synchronizing torque. Also, for the interarea mode the damping
torque is negative. With the introduction of the PSS, the damping torque

component of the two modes increases significantly. The synchronizing
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torque component however, shows a slight reduction. It may be pointed out
that the synchronizing torque is expressed as a % and not in actual
quantity. In fact to determine the change in synchronizing torque
component, it is necessary to compare actual magnitude of the modal
torque to make a comparison between the cases with and without damping
control. This is not possible at present because of the scaling problem

associated with the eigenvectors of state matrices having different sizes.

Table (6.5): Modal torque components for the weakened operating condition

Case Local mode of G30 Interarea mode
M-w M-3 M-w M-5
No damping 1.368% 99.96% -1.1% 98.9%
control
PSS(OH) 24.89% 86.6% 12.22% 97.019%
PSS(GD) 29.3% 82.93% 12.78% 96.73%

6.3.4.2 Design of supplementary control on SVC

The supplementary control on SVC is used for damping the interarea
mode. A critical part of the supplementary control design is the selection of

the SVC for placing this control.

installi n

The criteria for selecting the site for installing damping control has

been described in Chapter 5. The selection process involves two aspects
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i) Controllability i.e. how well the existing SVC will be able to control
the interarea mode under consideration.
ii) Observability i.e. how well the information about the interarea mode

is observable in the candidate feedback signal.

For selecting a SVC the ability to 'control' the mode under
consideration can be determined by the state and voltage participation
factors. The use of voltage participation factor for selecting the site (SVC)
for installing supplementary control is a new concept introduced in this

thesis and is described in detail in Chapters 4 & 5.

The observability of the mode under consideration in the potential
feedback signals can be determined by the calculation of the observability
factors, described in Chapter 4.

The state participation factors of the dominant device states
participating to the interarea mode is given in Table (6.2a). The voltage
participation factors of all the device buses for the interarea mode is given

in Table (6.6).

The potential feedback signals considered are the line current
magnitude (LCUR) and sending end line real power (LMWF). These
signals are chosen because these are locally available at the SVC bus in any
practical installation. The observability of the interarea mode in these

signals is calculated as given in Table (6.7).
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On examination of the state and voltage participation factors and also
the observability factors a relative ranking of the three SVCs, in accordance
to their suitability for installation of supplementary control, is determined

as given in Table (6.8).

From Table (6.2a) it can be seen that relative to SVCs S1 & S23, the
state participation factors of the states of SVC S16 is higher. the voltage
participation factors given in Table (6.6) indicate maximum controllability
at SVC S23 followed by SVC S16. Thus from the controllability point of view
the state and voltage participating factors indicate S16 to be the best choice
for placing supplementary control followed by S23 and then S1.

From the observability point of view the local signals near S1 exhibit a
very high observability to the interarea mode compared to the local signals
near the other SVCs. Thus the ranking of the SVCs based on the
| observability criteria is S1 followed by S16 and then S23.

For the potential feedback signals chosen for the three SVCs (LMWF
2-1 for S1, LMWF 16-17 for S16, LCUR 23-22 for S23), a frequency response
is obtained to detect any non-minimum phase behavior. These frequency
responses are shown in Figures (6.9a,b & c). The frequency response of all
the three feedback signals clearly indicate the presence of the interarea
mode shown by the high peak at the frequency of the interarea mode. The
phase response of LMWF 2-1 does not exhibit any non-minimum phase
behavior. The phase response of LMWF 16-17 indicates the presence of a

RHP zero near 1 Hz. which is not very close to the frequency of the interarea
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mode. The phase response of LMWF 23-24 indicates a LHP zero which is
very close to the frequency of the interarea mode. This signal therefore

would not be a good choice as a feedback signal.

Based on the above discussion it can be concluded that S16 with
feedback signal LMWF 16-17 and S1 with feedback signal LMWF 2-1 are
both suitable choices for the location of the supplementary control. The
SVC S23 with feedback signal LCUR 23-24 does not appear to be a promising
location for supplementary control. However, to validate these conclusions
further, supplementary control is designed for all the three SVCs and their

relative performance is compared.
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Table (6.6): Voltage participation factors for the interarea mode

Bus No | Device | Sensitivity of eigenvalue to | Sensitivity of eigenvalue to
shunt conductance é%r'- shunt susceptance fi%

1 S1 0.0018 0.0051
16 S16 0.0376 0.0532

S23 0.0256 0.1247
0 G30 0.0159 0.0425
31 G31 0.0251 0.0468
32 G32 0.0264 0.0543
3 G33 0.0453 0.0910
A G34 0.0598 0.0982
35 G35 0.0215 0.1576
36 G36 0.0269 0.1607
37 G37 0.0301 0.0491
3 G38 0.0892 0.1253




Table (6.7). Observability of the interarea mode in various signals
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Signal Observability
LMWF 16-19 -0.09 + j0.98056
LCUR 16-19 0.09266 - j1.04333
LMWF 16-21 -0.00994 +30.08137
LCUR 16-21 -0.00570 +;0.04678
LMWF 16-24 0.01213 +j1.04345
LCUR 16-24 -0.00091 -31.19291
LMWF 16-17 0.05656 - j1.21123

LCUR 16-17 0.06706 - j1.03185
LMWF 16-15 0.04361 - j0.96239
LCUR 16-15 0.02747 - j0.96545
LMWF 23-22 0.02002 +30.51927
LCUR 23-22 -0.00696 - j0.56341
LMWF 23-24 -0.02275 - j0.93866
LCUR 23-24 -0.00839 - j1.18512
LMWF 2-1 0.05292 + j2.64926

LCUR 2-1

0.05834 -3;2.47710
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Table (6.8): Relative ranking of SVCs for supplementary control
S1 S16 S23
State Poor Best Moderate
participation
factors
Voltage Poor Good Best
participation
factors
Observability of LMWF 2-1 LMWF 16-17 LCUR 23-22
potential Best Good Poor
feedback signal

Frequency response of LMWF 2-1 for input at S1
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Figure (6.9a)Frequency response LMWF 2-1
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Frequency response of LMWF 16-17 for input at S16
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Frequency response of LMWF 23-24 for input at S23
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The generalized design method is used to obtain the parameters of
the compensation network. The first step is to select the new eigenvalue
location to which the interarea mode is to be shifted. The new location is
chosen to be (-0.83 + j4.0), satisfying the criteria for selecting new
eigenvalue locations described in Chapter 5. The residues of the feedback

signals LMWF 2-1, LMWF 16-17 and LCUR 23-24 are obtained at the new

eigenvalue location as given in Table (6.9).

Table (6.9): Residue of feedback signals at the location (-0.83 + j4.0)

| Input at S1 Input at S16 Input at S23
LMWF 2-1 2.724 £ -51.920 - -
LMWF 16-17 - 6.82 £-50.380 -

LCUR 23-24 - - 5.814 £-1250

The compensation network has the structure as shown in Figure
(6.10). The parameters for each of the three supplementary controls are
obtained by satisfying the magnitude, phase criteria and also the criteria
fdr providing maximum phase lead at the frequency of the new eigenvalue
location as described in Chapter 5. In all the three designs the washout

time constant is chosen to be 10 seconds. The design parameters are given

in Table (6.10).




_ NBL AV
ASig - 1+ sTN sTw >
1+ sTD 1+ sTw

ASig = Feedback signal
A%, = Supplementary control output

Figure (6.10): Block diagram of supplementary control H(s)

Table (6.10): Supplementary control parameters

H(-0.83 + j4.0) NBL ™ Tp K
S1 0.3671 £ 51.920 2 0.365 0.171 | 0.1681
S16 0.14655 £ 50.38° 2 0.3613 | 0.173 | 0.0686
S23 0.17199 £ 1250 3 0473 0.132 | 0.0242

maximum phase compensation at fm = 0.637 Hz.
washout time constant Tw = 10.0 seconds

Validation of the SVC ] | desi

The three supplementary control designs are validated by
incorporating the supplementary control into the system model one at a
tirhe and determining the eigenvalues for the two operating conditions.
Tables (6.11a) to (6.11c) give the electromechanical modes of the weakened
operating condition for the three designs. Tables (6.1b) gives the
corresponding modes without fhe damping control. From comparison of
the damping ratios given in Table (6.1b) and Tables (6.11a) to (6.11c¢), it is
evident that the supplementary control at S23 has a disastrous effect on the

system stability as it introduces unstable eigenvalues (Table (6.11c)). This




193

design is rejected and the failure of the design can be attributed to the non-
minimum phase behavior of the feedback signal used and the fact that the
supplementary control at S23 interacts to the local mode of the nearby
generating system G36. On the other hand the supplementary control at S1
and S16 provide adequate damping and have shifted the interarea mode to
the desired location. The performance of the supplementary control at S16
is marginally better than that of the supplementary control at S1 because all
the electromechanical modes (Table (6.11b)) have a damping ratio greater

than the cutoff level of 0.02.

Table (6.11a): Electromechanical modes and participating devices
Weakened operating condition with damping control at S1

No. | Electromechanical | Damping Participating devices
mode ratio
1 -0.3064 + j8.4206 0.03636 | G33 <-> G34
2 -0.5055 + j8.7741 0.05752 G30 <-> G37
3 -0.4214 + i8.8006 0.04782 G36 <-> G35
4 -0.2791 + j7.4491 0.03744 | G32<->G31
5 -0.2201 +j7.1418 0.03080 G30 <-> Rest of the system
6 -0.1006 + j5.9776 0.01682 G35 <-> G35, G36
7 -0.2279 + j6.1693 0.03691 G31, G32 <-> G34, G38
8 -0.4433 + j5.6763 0.07785 G38 <-> G35, G36, S16
9 -0.8556 + j3.9866 0.20983 o bus(39) <-> Rest of the system




Table (6.11b): Electromechanical modes and participating devices

Weakened operating condition with damping control at S16

No. | Electromechanical | Damping Participating devices
mode
1 -0.4149 + j8.6258 0.04804 | G33<-> G37
2 -0.2901 + ;3.7817 0.03302 | G33 <-> G37
3 -0.418 + j8.8021 0.04743 | G36 <-> G35
4 -0.2843 + j7.455 0.03811 | G32<->G31
5 -0.1613 + j7.0553 0.02285 G30 <-> Rest of the system
6 -0.1702 + j5.9303 0.02869 | G34 <-> G35, G36
7 -0.2406 + j6.1563 0.03906 | G31, G32 <-> G38
8 -0.3820 + j5.4438 0.07000 | G38, G35, G34 <-> S16
9 -0.8596 + 33.9793 0.21115 oo Bus(39) <-> Rest of the system




Table (6.11c): Electromechanical modes and participating devices
Weakened operating condition with damping control at S23

No. ElectromechanicaI Damping

mode
-0.4274 + j8.7581 0.04875
-0.4567 + ;8.8067 0.05179
-0.2816 + j8.3627 0.03365

-0.2791 + j7.4492 0.03744

-0.1013 +;7.0178 0.01444
-0.1794 + ;6.1398 0.02921
-0.1754 + j5.7973 0.03024

-0.8226 + j4.0144 0.20074
-0.7570 + j2.8379 0.25772

O |0 |9 & |0 e W N =

Unstable eigenvalues from

supplementary control at S23

The locations of the electromechanical modes for the weakened
operating condition without the damping control, with the supplementary
control at S16 and at S1 is given in Figure (6.12a). The arrow indicates the
shift of the interarea mode from its original location to the new assigned

location.
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Figure (6.12a)Electromechanical modes-weakened operating condition-

S1&S16

The performance of the supplementary control at S1 and S16 is also
examined under the nominal operating condition. Tables (6.12a) and
(6.12b) give the electromechanical modes for the two supplementary control
designs. It is seen that f01: both the designs there is no mode with damping
ratio less than 0.02 and that the interarea mode is well damped. Thus there

is no need for any modification in the supplementary control based on the

system performance under the nominal operating condition.
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Table (6.12a): Electromechanical modes under nominal operating condition
with supplementary control at S1

No. | Electromechanical { Damping Participating devices
mode
1 -0.3394 + §8.6012 0.03943 G33 <-> G34, G36
2 -0.4973 + j8.7898 0.05648 G37 <-> G30
3 -0.4640 + j8.8626 0.05228 G36 <-> G35
4 -0.2881 + j7.4332 0.03873 G32 <-> G31
5 -0.2197 + j7.1833 0.03057 G30 <-> Rest of the system
6 -0.2080 + j6.8423 0.03039 G36, G35 <-> G34
7 -0.1657 + j6.1867 0.02678 G31, G32 <-> G34
8 -0.2872 + j5.7461 0.04992 G38 <-> G34
9 -1.0012 + j4.2021 0.23178 o BUS(39) <-> Rest of the system

Table (6.12b): Electromechanical modes under nominal operating condition
with supplementary control at S16

No. } Electromechanical | Damping Participating devices

mode

-0.3055 + j8.8451 0.03452 G33 <-> G37
-0.4074 + 38.6643 “ 0.04696 G37 <->G33
-0.4590 + j8.8568 0.05176 G36 <-> G35
-0.2867 + j7.4383 0.03851 G32 <> G31
-0.1573 + j6.9000 0.02279 G30 <-> rest of the system

-0.4522 + j7.2967 0.06185 G35, G36 <-> G30

-0.2156 + 36.1788 0.03487 G31,G32 <->G34,G38

-0.5102 + j5.6248 0.09034 G34, G38 <> S16
-0.7234 + j4.0656 0.17518 oo bus(39) <-> rest of the system

0 (o i~ jo fov b fw o I
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The location of the electromechanical modes in the complex s-plane
for the nominal operating condition with and without supplementary
control on S1 and S16 is shown in Figure (6.12b). The arrow indicates the
shift in the interarea mode from its original location due to the

supplementary control.

Electromechanical modes for nominal operating condition
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Figure (6.12b)Electromechanical modes-nominal operating condition-

S1&S16

A final check of the design is made through the calculation of the
damping and synchronizing torque components for the interarea mode to
see if any beneficial changes have been brought about by the introduction of

the damping (supplementary) control. The damping component (M-®) and
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the synchronizing component (M-6) as a percentage of the total modal
torque applied to each generating system for the interarea mode is given for
the case with and without damping control in Tables (6.13a,b,c). It can be
seen that the damping torque component significantly increases for the

interarea mode with the introduction of supplementary control.

Table (6.13a): Modal torque components for the interarea mode with no

damping control

Generating system M-o M-8

G30 -1.1% 98.9%
G31 1.0% 99.0%
G32 1.1% 98.9%
G33 1.1% 98.9%
G34 1.1% 98.9%
G35 ' 1.1% 98.9%
G36 1.1% ’ 98.9%
G37 1.0% 99.0%
G38 1.1% 98.9%
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Table (6.13b): Modal torque components for the interarea mode with

damping control at S1

Generating system M-0 M-d

G30 21.021% 91.347%
G31 20.932% 91.207%
G32 20.957% 91.252%
G33 20.997% 91.214%
G34 20.985% 91.194%
G35 20.982% 91.165%
G36 20.989% 91.209%
G37 20.993% 91.046%
G38 20.969% 91.149%

Table (6.13c): Modal torque components for the interarea mode with

damping control at S16

Generating system M-o M-8
G30 21.200% 91.100%
G31 21.100% 91.100%
G32 21.100% 91.100%
G33 21.100% 91.400%
G34 21.100% 91.000%
G35 21.100% 91.100%
G36 21.100% 91.100%
G37 21.100% 91.100%
G38 21.100% 91.100%
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The damping torque (S-0) and synchronizing torque (S-3) contributed
by the three SVCs individually for the cases with and without damping
control is given in Tables (6.14a,b,c). It can be seen that SVC has a
negative damping effect on the interarea modes in the absence of any
supplementary control. Introduction of supplementary control increases

the damping torque contribution of the corresponding SVC significantly.

Table (6.14a): Modal torque contributions from SVCs with no damping

control

S23-w S23-5 S16-w S16-6 Sl-o S1-3

G30 -0.342% | 3.087% | -0.723% | 8.332% | -0.105% | 1.707%

G31 -0.314% | 5.051% | -0.454% | 11.837% | -0.017% | 1.306%

G32 -0.314% | 5.752% | -0.422% | 13.568% | -0.008% | 1.413%

G33 -0.581% | 7.211% | -1.069% | 18.654% | -0.040% | 1.258%

G34 -1.300% | 7.092% | -2.624% | 15.911% | -0.135% | 0.965%

‘G35 -1.500% | 21.148% | -6.557% | 14.656% | -0.018% | 0.889%

G36 -1.600% | 18.067% | -0.913% | 14.327% | -0.033% | 0.883%

G37 -0.469% | 6.513% | -0.770% | 15.780% | -0.071% | 3.089%

G38 -0412% | 5.107% | -0.646% | 11.239% | -0.054% | 1.643%
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Table (6.14b): Modal torque contributions from SVCs with damping control

at S1
S23-0 S23-6 S16-w S16-6 Sl-w S1-8
G30 0.194% 1.59% | -0.509% | -0.535% | 57.431% | 47.222%
G31 -0.136% | 2.730% | -6.759% | -1.995% | 35.958% | 44.554%
G32 -0.113% | 3.115% | -7.867% | -2.190% | 39.962% | 47.829%
G33 -0.738% | 3.678% | -9.045% | -4.545% | 24.689% | 45.916%
G34 -1.065% | 2.969% | -5.569% | -4.316% | 10.094% | 32.266%
G35 -3.076% | 0.957% | -5.737% | -4.048% | 11.404% | 31.503%
G36 -2.700% | 0.835% | -5.751% | -4.066% | 11.608% | 32.157%
G37 -0.873% | 3.604% | -11.136% | 0.073% | 128.894% | 80.361%
G38 -1.218% | 2.629% | -8.272% | 1.454% | 79.031% | 29.399%

Table (6.14c): Modal torque contributions from SVCs with damping control

at S16
S23-» S23-5 S16-w S16-3 S1-® S1-8
G30 -1.267% | -0.311% | 11.231% | 32.087% | -0.631% | 0.196%
G31 -2.254% | -0.333% | 21.132% | 45.238% | -0.501% | 0.200%
G32 -2.631% —0.288% 26.769% | 51.692% | -0.548% | 0.237%
G33 -3.395% | -0.228% | 40.494% | 69.840% | -0.490% | 0.232%
G34 -2.366% | -0.208% | 23.566% | 42.960% | -0.278% | 0.122%
G35 -8.993% | -1.408% | 24.633% | 54.1564% | -0.327% | 0.127%
G36 -7.953% | -1.136% | 25.486% | 54.043% | -0.335% | 0.135%
G37 -2.927% | -0.364% | 29.522% | 59.512% | -1.175% | 0.491%
G38 -2.412% | -0.231% | 23.424% | 43.580% | -0.648% | 0.288%
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In the study presented above it has been shown that the
supplementary control on SVC can be used to improve the damping of the
interarea mode. From the study of the test system presented the following
interesting observations are also made:

1) If any mode is significantly observable in the feedback signal of the
SVC supplementary control then this mode will also be affected by the
supplementary control. Comparison of Tables (6.1b) & (6.11b) shows
that the local mode of G34 (mode No.6) is better damped after the
supplementary control is installed on S16.

ii) Supplementary control on SVC can also change the devices
participating in a particular mode. This may lead to change in the
mode shape. For example in Table (6.1b) the generating system G38
which was swinging against G35 for mode No. 8 ; starts swinging

against SVC S16 after supplementary control was put on S16.

6.3.5 Comparison of PSS and supplementary control performance

The performance is.compared for the effect on the interarea mode,
land it can be seen that both are equally effective in achieving the desired
damping of the interarea mode.. Thus, the choice of damping control
between PSS and supplementary control on SVC to increase the damping of
interarea modes depends mostly on practical considerations. = However,
there are certain differences on the basis of application which are pointed
out. The PSS is installed on a generating system which is the source of the

electromechanical oscillations, thus, it has an inherently better
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controllability than the supplementary control on SVC. The PSS is used to
damp local, intermachine and interarea modes, whereas the
supplementary control on SVC is recommended only for increasing the
damping of interarea modes as the interarea mode spreads throughout the
system and is not primarily localized to one generating system. Also, even
for different operating conditions the characteristics of the interarea mode
will not drastically change and a properly designed supplementary control
on SVC will be capable of handling the requirements of different operating
conditions. If the supplementary control on a SVC is used to damp local or
intermachine modes then the performance of this damping control will
depend on whether the mode under consideration exists under different
operating conditions (i.e. if for a particular operating condition the
concerned generating system is out of service, thus eliminating the local

mode to be damped).

64 Conclusions

This chapter presents the development of a versatile Small Signal
Stability (S3) program based on the models and analysis techniques outlined
in the previous chapters. the program has the capability and features
which are comparable to the MASS program of Ontario Hydro. Utilizing
this program a case study of the Modified 39-bus New England Area system
is carried out to improve the system small signal stability. The damping
control is implemented through PSS on generating system and

supplementary control on SVC. Both the frequency response method and




205

the generalized design method have been used for the systematic design of

the PSS, while the generalized design method is used for the design of

supplementary control. Both these design methods involve the selection of

suitable site, selection of suitable feedback signal and design of the

compensation network. The selection of the suitable SVC for installing the

damping control is based on a new concept of the use of voltage

participation factor introduced in this thesis. The results obtained form the

case study can be summarized as follows.

1)

1i)

1ii)

1v)

v)

The design of PSS using the frequency response and the generalized
design method yield similar parameters of the compensation
network and hence the generalized design method can be claimed to
be equally robust as the frequency response method.

The PSS increases the damping of the modes in which the
corresponding generating system participates.

The design of supplementary control on SVC using generalized
design method is quite effective in improving the damping of the
interarea mode.

The effectiveness of the supplementary control on a suitable SVC
validates the new criteria introduced in this thesis involving the use
of voltage participation factors and observability factors for the
selection of a suitable site for installing the damping control.

The modal torque calculations provide a clear understanding about
the variations in the damping and synchronizing torque components
for a particular mode. This helps in obtaining a better

understanding of the dynamic behavior of the power system.




7.1 General

This thesis establishes guidelines to aid a system planning engineer
in designing damping control to enhance the small signal stability of power
systems. In this context this thesis primarily deals with the following two
aspects:

1) Development of a generalized procedure for the design of damping
control to improve the small signal stability of a power system.

ii) Certain innovations in the techniques for better understanding of the
small signal stability problem and effective design of damping

control.

The proposed design procedure begins with a comprehensive investigation
to get an in-depth understanding of the nature of the small signal stability

problem existing in the power system using appropriate representation of

the power system in the linearized domain. This is followed by the suitable ‘
design of damping control which involves the following steps: :
i) selection of the type of damping control.

ii) selection of site for installing damping control
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iii)  selection of the feedback signal
iv) determination of the parameters of the damping control
compensation network

\%) validation of the design.

The types of damping control considered here are the Power System
Stabilizer (PSS) on the generating system and the supplementary control on
SVC. The design procedure is general enough and can be extended for the
design of damping control on other devices like HVDC transmission and

Flexible AC Transmission System (FACTS) elements.

To examine the small signal stability problem and design the
damping control, the power system is represented in the linearized state
space framework as described in Chapter 2. The development of the power
system model proceeds in a systematic manner by first deriving the
constituent component models of the power system (devices and
transmission network) which are then interfaced to result in the overall
state space model. This modular approach of developing system model
permits flexibility in representing any device or component to any desired
degree of detail. Also, new models for various devices can be conveniently

incorporated.

The small signal stability problem of power system canbe examined
using various techniques described in Chapter 3. These techniques, some
of which are used for the design of damping control are,

1) Eigenvalue/eigenvector analysis to identify the poorly damped

electromechanical modes and their mode shapes. This analysis




ii)

iii)

iv)

v)
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technique is also used for final validation of the damping control
design.

Application of state participation factors to identify the devices having
the largest participation to the mode under consideration.
Application of the frequency response method for the selection of
suitable feedback signal to the damping control. This method is also
used for damping control design.

Application of time response methods for damping control design

Application of residue calculations for the design of damping control.

The above techniques have been supplemented by three new

techniques proposed in this thesis. These proposed techniques are:

i)

ii)

iii)

Application of modal torque calculations to get an in-depth
understanding of the interactions between various devices and for
damping control design validation.

Application of voltage participation factors for the selection of site for
supplementary control on SVC.

Application of observability factors for the selection of the most

suitable feedback signal to the damping control.

The concept of modal torques is an entirely new concept introduced in

this thesis. For a particular electromechanical mode the modal torque

gives the torque applied to the rotating parts of the generating system. This

torque can be split into the damping and synhronizing torque components

which, respectively, determine the damping and the ability of the system to

restore itself to a steady state operating point. These torque components can

also be used to determine in a quantitative and qualitative manner the
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dynamic interaction between the various constituent system devices. The
method of calculating the modal torque and its components is given in

Chapter 4.

Voltage participation factor is a new sensitivity index developed by
Ontario Hydro which gives the sensitivity of the mode under consideration
to changes in the shunt and series admittance. The procedure to derive
this factor is given in Chapter 4. This sensitivity index can be used to study
the effect of static or dynamic shunt and series admittance i.e. loads, SVCs
etc. on system small signal stability. Based on this, a criteria for the
selection of site for installing damping control (specifically supplementary

control on SVC) is proposed in this thesis.

Observability factors determine, in control system terminology, the
'observability' of a signal to a particular mode. The criteria for the selection
of a suitable feedback signal to the damping control is based on the use of
this observability ractor. This is a well known concept in control theory and
has been applied to the complex power system model through a novel
method, described in Chapter 4, for calculating the observability factor of

any system signal described as a function of the system states.

A generalized procedure for the design of damping control as
described in Chapter 5, therefore, involves the selection of site based on -the
controllability of a device and the observability of the feedback signal to the
mode under consideration; and the determination of the parameters of the
compensation network of the damping control based on a pole placement

technique. -The robustness of the standard pole placement technique for the
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design of damping control is achieved by certain innovations in selecting
the location of the mode to be shifted and the phase characteristics of the

compensation network of the damping control.

Based on the above design procedure and incorporating the system
model derived in Chapter 2, a Small Signal Stability (S8) program has been
developed for small signal stability studies and design of damping control
as described in Chapter 6. The modular structure of the program and
certain features make the program extremely flexible. The capability and
features of the (S3) program are comparable to the MASS program
developed at Ontario Hydro [1]. This program has been utilized to
demonstrate the effectiveness of various analysis techniques and validate
the generalized design procedure proposed in this thesis through an

extensive case study of a 39-bus test system.

From the results of the case study the following general conclusions
are drawn.

1) The generalized design procedure proposed in this thesis is as
effective as the robust frequency response method for the design of
PSS.

ii) The use of voltage participation factors and observability factors for
the selection of suitable site and feedback signal for the damping
control increases the effectiveness of the supplementary control on
SVC in damping interarea modes.

iii) Modal torque calculations which can be used to validate a proposed
design provides a better understanding about the dynamic behavior of

the power system.
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i)

ii)

1ii)

iv)

Major contributions of the thesis

The major contributions of this thesis are summarized below.

The development of a procedure for a quantitative and qualitative
assessment of the dynamic interaction between the various
constituent system devices through the calculation of the damping
and synchronizing torque components for the mode under
consideration. These modal torque components reveal the effect of
various system devices on the small signal and transient stability of
the power system.

The development of a procedure to select a suitable site for the
location of the damping control on a device. This is based on the
controllability of the device and the observability of the feedback signal
to the the mode under consideration. The controllability of a device to
a particular mode is determined through the use of its state and
voltage participation factors. The observability of any feedback signal
to the mode under consideration is determined through the
calculation of the observability factor for the feedback signal described
as a function of the system states. The use of voltage participation
factors and the method of calculating the observability factors are
new contributions of this thesis.

Certain innovations introduced in the standard pole placement
technique have resulted in the robust design of damping control
using the generalized design procedure proposed in this thesis.

The development of the state-of the-art Small Signal Stability (S83)

program for small signal stability studies and design of damping
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control. The capability and features of this program are comparable
to that of MASS program developed at Ontario Hydro. The program
is structured in a manner so that modifications can be easily

accommodated without tedious and extensive changes.

7.3 Future scope of work

This thesis establishes certain guidelines for detailed investigation of
the small signal stability problem and robust design of damping control.
These guidelines should be further validated on systems having other
dynamic devices not considered here like nonlinear loads, HVDC
transmission, Flexible AC Transmission System (FACTS) elements. This
will require augmenting the power system model developed in this thesis

with appropriate representation of these elements.

Based on the case studies presented in this thesis the proposed
generalized design procedure for damping control design has been shown
to be robust. Further improvements in the design philosophy to ensure
robustness can be obtained by the use of advanced techniques such as the

He control concept.

The Small Signal Stability (S3) program developed in this thesis is
well suited to handle moderately sized power systems. To study large
power systems the program efficiency should be enhanced by using
alternative numerical techniques like sparse vector method for storing the

network admittance matrix. Also, use of other algorithms for the
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calculation of eigenvalues and eigenvectors which would take advantage of
the sparsity of the network admittance matrix and would not need to

formulate the huge system state matrix can be explored.




Appendix 1 - Miscellaneous Topics

Al.1 Example of the formulation of the system state matrix

The formulation of the system state matrix from the individual state
space equations is described in this section. The general form all the

individual device state space equations must take is;

[X4] = [Ag) [X4] + [B4l [AV ] (A1.01)
[AIy] = [C4l [Xq4] - [Yg4l [AV,] (A1.02)
- where,

[A4] = Device state matrix.

[B4] = Device input distribution matrix.

[C4] = Device output distribution matrix for the device states.

[Y4] = Device admittance matrix.

[X4] = Device state matrix.

[AV4] = Vector of all bus voltage changes which are inputted to this device,

in the D, Q coordinates.

[AI4] = Vector of all changes in current injections in the D, Q coordinates,

from this device.
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Figure (Al1l.1) shows a sample 5-Bus system. This system contains
four devices A,B,C and D. Devices A and B are connected to the same bus
i.e. Bus-2. Devices B and C have remote sensing buses. The remote
sensing bus for device B is Bus-1. The remote sensing bus for device C is
Bus-4. Bus-1,Bus-2 and Bus-3 are therefore device buses , Bus-4 is a remote

sensing bus and Bus-5 is the load bus.

—_Remote sensinginput __
|
Bus-1 |
|
Bus-5
Bus2l Device A
Bus-3

Figure (A1.1) Sample 5-bus system.
The individual device state space equations are:
Device A:

(Xa] = [Ag] [X,] + [Bgal [Avy) (A1.03)
[A,] = [Col [X,] - [Yago] [Av,)] (A1.04)
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Device B:

[Xp] = [Ap] [Xp] + [Bpol [Avy] + [By,;1[Avy] (A1.05)
[Ai] = [Cpl [Xy] - [Ypaol [Ava] - [Ypg1] [Av4] (A1.06)
Device C:

X = [A] [X.] + [B.sl] [Avs] + [B_ [Av,] (A1.07)
[AL] = [C.] [X.] - [Y q3] [Avs] - [Y 4] [Avy] (A1.08)
Device D:

[X4] = [Ag] [Xg] + [By;] [Av,] (A1.09)
[Aig] = [Cql [X4] - [Ygq1] [AV4] (A1.10)
where;

(X1, [X,], [X.], [X4] = State vectors of the devices A, B, C and D.

(AL, [Ap], [A.], [A4] = State matrices of devices A, B, C and D.

[B,sl, [Bypal, [Bpi1l, [Bsl, [Boyl, [B4i] = Input distribution matrices for the
individual device buses and remote sensing buses.

[C.], [Cy), [C.), [Cq4] = Individual device output distribution matrix for the
device states.

[Yaaz) [Yeazl, [Yparl [Yeas) [Yeaqls [Yqq1) = Individual device admittance
matrix.

[Av,], [Avs], [Avs], [Av,] = Bus-1, Bus-2, Bus-3 and Bus-4 voltage changes
respectively

[Ai,], [Aip], [Ai ], [Aig] = Device A, B, C and current injection changes into

the power system respectively.
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The linearized algebraic equation describing the passive

interconnecting network is
[AIl = [YyN] [AV] (Al.11)

where;

[ ALy
Alg
[AIl =| Ai3 |= Changes in the current injections into the individual buses.
Aiy
Aig

[Yn] = Linearized admittance matrix of the interconnecting power system.

i Avq i
Avo
[AV] =| Av3 | = Changes in the individual bus voltages.

AV4

L Avs _

From Equation (A1.04), (A1.06), (A1.08), (A1.10), (A1.11), one can get;

[AQy] = [Aig) (A1.12)
[Aig] = [Ai,] +[Aiy] (A1.13)
[Aig] = [Aig] . (AL19)
[Aig =0 (A1.15)
[Aig] =0 (Al.16)

From Equation (A1.12) to (A1.16) and Equation (A1.11) one can get;
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[AI] = [C,] [X] - [Yg [AV] (A1.17)
where,
X Ca O 0 0
Xa 0 Ca Cb 0
X]= X: ;[Cd={ 0 0 C. O
0 0 0 0
0 0 0 0
Yad1 0 0 0 0
Ybd1 Yad2 + Ybd2 0 0 0
[Yql = 0 0 Ycas Yed4 0
0 0 0 0 0
0 0 0 0 0

Stacking Equations (A1.03), (A1.05), (A1.07) and (A1.09) together gives,

[X] = [A,] [X] + [B] [AV] (A1.18)

where,

Ag 0 0 O 0 Bag 0 0 O

-| 0 As O 0o |. —| Bo1 Brz O 0 0

(A 0 0 A, 0 |’ (Bet) 0 0 Bsg By O
0O 0 0 A, Bgy 0 0 0 O

From Equation (A1.17), (A1.18) and (Al.11) the state matrix [A] of the

system is,
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[A] = [Ag] + [Bg] [YN + Ygil 1 [Cyel (A1.19)

Al.2 State space equations of elementary control blocks

The elementary state space equations for the following elementary

blocks are given.

i)Lag block: 1
1+sT

The block diagram of this transfer function is shown in Figure (A1.2).

3 =

Figure (A1.2) Lag block transfer function

The elementary state space equation for this block is

X= % X+1u (A1.20)

y=X (A1.21)

In this case the output of the block is the state.

ii) Lead/Lag block: 1+sTy
. 1+ sTo
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The block diagram of this transfer function is shown in Figure (A1.3).

T
To

+

u Yy
i
+
1 1 1 1 X
To Te 8

Figure (A1.3) Lead/Lag block transfer function

The elementary state space equation for this block is

X = TIE X Tfr' ;r 1 (A1.22)
2
y=X+ Iy (A1.23)
Te
" ii) Washout block: sT

1+ sT
The block diagram of this transfer function is shown in Figure (A1.4).
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+
y
u
.
4 1 1 X
T 8
Figure (A1.4) Washout block transfer function
The elementary state space equation for this block is
{=.1 1 Al1.24
X T X+ T ( )
y=-X+u (A1.25)

A1.3 State space equations of a sample control system

The elementary state space equations for a control system are:

[X] = [A] [X] + [B] [u] (A1.26)
[y] = [C][X] + [D] [u] (A1.27)
[ul = [L] [y] + [G] [i] (A1.28)
[z] = [M] [y] + (K] [i] (A1.29)
where,

[X] = State vector of the control system.
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X]= 4 X3

[u] = Vector of the inputs to all the individual blocks.

[y] = Vector of the outputs from all the individual blocks.

[i] = Vector of the actual external inputs to the control system.

[z] = Vector of the actual outputs from the control system.

[A], [B], [C], [D] = Matrices assembled from the stacking of the state space
equations of each individual control block.

[L] = Matrix describing the interconnections between the various
elementary blocks present in the control system.

[G] = Matrix describing the distribution of the external inputs to the control
system.

[M] = Matrix describing the contributions of the outputs of the various
internal elementary blocks to each of the final outputs to the external world
from the control system.

[K] = Feedforward matrix describing the contributions of the external

inputs to the final output of the control system.

The method developing the matrices [A], [B], [C], [D], [L], [G], [M]
and (K] are illustrated by an example. Figure (Al1l.5) shows the block
diagram of the transfer function of the excitation system of the synchronous

machine.




-t

Y4] 1+ sTf | uy

Figure (A1.5) Exciter block diagram.

The state space equations describing this system are

[X] = [A] [X] + [B] [u] + [Bg,] [Avy,]
[yl = [C] [X] + [D] [ul+ [Dgs] [Av,,]
[ul = (L] [y] + [G](i]

AEfd = [M] [y] + (K] [i]

where,
e
Avp
X3 u) n Avq
Xo ug y2
XI1=| X3 |;[ul=|us|;[yl=|¥3|;[l=| Aip
Xy uy Y4
Aig
_AVref_

(A1.30)
(A1.31)

(A1.32)
(A1.33)
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o Y08 ¢ o o

|Vt| I_\TI

o 0 0 o0 OO O
[G] =

0o 0 0o O o0 O

O o0 0o o0 o0 O

Al.4 Derivation of the state space equation describing the rotating system
of a synchronous machine

The steady state kinetic energy or the kinetic energy at the rated

synchronous speed of the machine is

Wign® = 2 T 02 (A1.34)
Where,

Wiin® = Rated kinetic energy of the rotating system of the synchronous
machine.

I = Moment of Inertia of the rotating system..

o = Rated synchronous speed of the system.

The rate of change of kinetic energy is the power input to the rotating
system. The rate of change of kinetic energy about the synchronous speed

of the system (®0) in per unit is
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1w, d (A1.35)
Ppase dt
where,

Ppace = Base power of the system.

® = Instantaneous speed of the machine (p.u.).

The power input to the rotating system is the difference between the
mechanical power input and the electrical power output of the rotating

system. Now,

T,, = Mechanical power input (p.u.). (A1.36)
Vdig -\lfq iq = Electrical power output (p.u). (A1.37)
where,

Yd = d-axis stator flux linkages in per unit voltage.

VYq = g-axis stator flux linkages in per unit voltage.

iy = d-axis component of the machine terminal current (p.u.).

iq = q-axis component of the machine terminal current (p.u.).

From Equation (A1.35) to (A1.37) the following relation can be obtained,

(A1.38)

Iw _ . .
—Pba:e z'%:-co-'l‘m -Vdig-Vq iy

Linearizing Equation (A1.38) gives,
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2H dAw= AT, + AVqig-AWdig + WqAig - Vd Aig (A1.39)
wo dt
where,
Wign®
H = —80- - Inertia constant of the machine (p.u.).

Pbase

Al.5 Calculation of the synchronous machine saturation factors

The synchronous machines magnetic circuit is subject to saturation
depending on the operating point. This saturation effects the value of the
mutual reactance x,4, X,q of the equivalent circuits shown in Figure 2.3(a)
and (b) in Chapter 2. In the program S3 two types of saturation can be
modelled.
i)Saturation in the d-axis represented. The q-axis is assumed to be
unaffected by saturation.(ISAT = 1)
ii)Saturation in both the d and g-axis is represented. The g-axis saturation

factors are the same as that of the d-axis saturation factors.(ISAT=2)

Figure (A1.6) gives the saturation characteristics. The vertical axis

is the flux linkages across the mutual reactance branch x,4 in per unit

voltage. The horizontal axis is the field current (p.u.) required to produce

the required flux linkages.
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Flux linkage (p.u. voltage)

Field current (p.u.)

Figure (A1.6) Machine saturation curve.

The curve of flux linkages (V) versus the field current (if) is split into

three regions; Region 1, Region 2 and Region 3.
Region 1;. Here the relationship between the flux linkage (V) in per unit

voltage and the field current (iy) is linear i.e.

V= X,q1f (A1.40)

where,

X,q4 = Unsaturated mutual reactance (p.u.).
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Region 2: Here the relationship between the flux linkage (¥) in per unit

voltage and the field current (if) is nonlinear and is given by

D SFRTER (Al.41)

where, V; = A, ¢ Bex(¥ - ¥1) (A1.42)

Vi = The level of flux linkages beyond which the saturation characteristics
become nonlinear.

A, , B., = Constant coefficients of the saturation function defining ¥; in

Region 2.

Region 3: Here the relationship between the flux linkage (¥) in per unit

voltage and the filed current (i) is linear but the slope of the characteristic

is different than in Region 1. The relation between the flux linkage in per

unit voltage and the field current is given by

V= Xaqif- Y (A1.43)
where, V; = A, £ Bx(Ym - Y1) L rg w_wn) (A1.44)
and

V¥m = The level of flux linkages defining the transition between Region 2 and
Region3.

A, ,» B.x = Constant coefficients of the saturation function defining y; in

Region 2.
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RS = Ratio of the slopes of the saturation characteristics in Regionl to that
of Region 3.

Alb5.1 Determination of V from the terminal quantities

Figure (A1.7) gives the phasor diagram of the synchronous machine

under steady state operation. VY is the voltage behind the stator resistance

(r,) and stator leakage reactance (x;) . Therefore,

Figure (A1.7): Phasor diagram of terminal quantities

v = V2 + 2 (A1.45)

where,

V. =v, +r, (i, cosd ) + x, (i, sind)

V. = -r, (i, sind ) + x, (i; cosd)

¢ = Power factor of the machine

v, = Terminal voltage magnitude (p.u.).

iy = Terminal current magnitude (p.u.).
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Al1.5.2 Calculation of the saturation factors S; and S,

In representing machine saturation, the unsaturated mutual

reactances cannot be used. The saturated reactances x,4, , X5qs » give the

slope of the line passing through the origin which intersects the saturation

characteristics at the corresponding operating point. Therefore,

Xads = Xad Sg (A1.46)
Xaqs = Xaq Sq (A1.47)

Region 1: Here as the saturation characteristic is linear the saturated

mutual reactances and the unsaturated reactances are the same.

Therefore,

Xads = Xad (A1.48)
Xaqs = Xaq (A1.49)
For ISAT =1o0r2

Sq=1 (A1.50)
Sq =1 ‘ (A1.51)

Region 2 & Region 3: The flus linkages in per unit voltage in terms of the

saturated reactance is
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From Equations (A1.41), (A1.42), (A1.45) and (A1.51) one gets,

Sa=y “'",Wi (A1.53)
For ISAT =1
Sa=y f% (A1.54)
S.=1 (A1.55)
For ISAT =2
Sa=8,= :'V\Vi (A1.56)

It must be noted that the calculation of ; is different in Region 2 and Region
3.

Al.5.3 Calculation of the incremental saturation factors S; and S

In the small signal analysis of power system the machine

incremental saturation factors are used. The incremental saturated
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reactances Xuqq » Xaqsi » give the slope of the line tangent to the saturation

characteristic at the operating point. Therefore,

(A1.57)
(A1.58)

Xadsi = Xad Sdi
Xagsi = Xaq Soi

Region 1: Here as the saturation characteristic is linear the incremental
saturated mutual reactances and the unsaturated reactances are the same

i.e. the machine is operating in the linear range. Therefore,

Xadsi = Xad (A1.59)
Xagsi = Xaq (Al1.60)
ForISAT =1o0r2

Sg=1 (Al1.61)
Si=1 (A1.62)

Region 2 & Region 3: From Equation (Al.41) and (A1.43) one gets for
Regioris 2 and 3,

W =Xaqie- ¥ (A1.63)
The first derivative with respect to the field current of Equation (A1.63) gives

the slope of the tangent to the saturation characteristic at the operating

point. therefore,
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_AX — Xad

e~ 1%V Bag = X,4s; = iNCremental saturated reactance. (Al.64)
1f 1 Dsat

Therefore from Equation (A1.57) and (A1.64) gives,

=1
Sa 1+ v B (Al1.65)
For ISAT =1
S =—1 Al1.66

d 1+ Y Bsat ( )

Sq =1 (A1.67)
For ISAT = 2

- Q - 1
Sq= Sq = 1+ v B (A1.68)

It must be noted that the calculation of W is different in Region 2 and Region
3.

A1.6 Calculation of the steady state exciter output

Figure (A1.8) gives the phasor diagram of the synchronous machine

under steady state. The equivalent field current (iy) required to maintain

the steady state terminal voltage (v,) is given by
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Figure (A1.8) Phasor diagram to determine field current.

jp=VYa+iqTa+iaXq (A1.69)
Xads

Therefore, the field voltage is,

Efd = if X.g (A1.70)

Al.7 Network reduction

The final state matrix [A] of the power system takes the form:

[A] = [A,] + [Bg] [Yy + Yol [Cql (A1.71)
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It is seen that the derivation of the state matrix involves the matrix
inversion of the interconnecting network. For large networks this
inversion process will be coputationaly costly. Compared to the number of
buses present in the network, the number of buses to which devices are
connected is small. This is used to advantage in reducing the network to
only the device buses and then inverting the resulting matrix. The general
form of the equation describing the linearized network is given below in
partitioned form depending on the type of bus i.e. device bus, remote

sensing bus or load bus.

Aig Avyq
) Yaq Yar Ya

Alr — Yrd Yrr le Avl' (Al . 72)
Aip Yia Yir Yn l| ay

where,

[Aig] = Vector of small changes in current injections into the system device
buses from all the system devices.

[Ai,] = Vector of small changes in current injections into the system remote
sensing buses.

[Ai}] = Vector of small changes in current injections into the system load
buses.

[Av4] = Vector of small changes in the device bus voltages.

[Av,] = Vector of small changes in the remote sensing buses.

[Avy] = Vector of small changes in the load buses.
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The current injections into the remote sensing buses and the load

buses are zero, since there is no source connected to them. hence,

[Ai] = [0] (A1.73)
(A}y] = [0] (A1.74)

Using Equation (A1.74), (A1.73) and (A1.72) one can represent the
changes in the voltage of the remote sensing and load buses in terms of the

changes in the voltages of the device buses i.e.

[Av)] = [Yipl [Avg] (A1.75)
(Av,] = [Ygrpl [Av4] (A1.76)
where,

[Yipl =- Yyt (Yig- Yir [ Yo - Yoy Yy Y3, 1L Vg - Yo Y Vil ) (AL7T)
[Yrpl = - [Yrr - Yn Y'! V3l [ Yyg - Yy Yyr! Y3l (AL.78)

Now, [Ai4] # [0] and therefore the reduced network equation becomes:

[Aigq] = [Yppl [Avyl (A1.79)

where,

[YDD] = Ydd + Ydr YRD + Ydl YLD (A180)
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Equation (A1.80) is finally used in the inversion process for obtaining
the system state matrix. From Equation (A1.75) and (A1.76) the remote
sensing and load bus voltages can be reconstructed once the device bus

voltages are known.

Al.8 System stability - Eigenvalues & Eigenvectors; State participation
factors

The stability of a system described by state space equations is
determined by the eigenvalues of the system state matrix [A]. If all the
eigenvalues have negative real parts then the system is said to be stable.
The eigenvalues of a system state matrix are the same as the poles of the

characteristic equation of the same system.

Consider the matrix [A] and one of its eigenvalues ). Then the
column vector [p] and row vector [q] are called the right and left eigenvector

of the matrix [A] respectively, if they satisfy the following expressions,

[A] (p] = A [p] (A1.81)
[ql [A]l =2 [q] (A1.82)
p]l,[ql #0

Each eigenvalue ) of the matrix [A] has a right [p], and a left [q]
eigenvector. Let the matrix [A] have all its eigenvalues distinct, then the

set of all the right eigenvectors are orthogonal with respect to each other.
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Similarly, the set of all left eigenvectors, will also be orthogonal with respect
to each other. The multiplication of any right eigenvector with any left

eigenvector results in the following expression,

n
k=Y Dim Gm (A1.83)

m=1

where, k is always zero except for the condition that i is equal to j. i.e. k is
nonzero only when the right and left eigenvectors corresponding to the
same eigenvalue are multiplied. In the above equation p;, and g;,, are the
mth elements of the right and left eigenvectors respectively, corresponding

to the ith eigenvalue. Also n is the size of the matrix [A].

The eigenvalues and right eigenvaectors of the state matrix [A] of the
power system are calculated by routines from the eigensystem package
EISPACK [21]. The right eigenvectors are then scaled so that their infinite
norm is unity. Let {P] be the matrix whose columns are the right
eigenvectors of the matrix [A]. The matrix [Q] whose rows are the left
eigenvectors of [A] are obtained by inverting matrix [P]. The left eigenvector

matrix [Q] is obtained by inverting the right eigenvector matrix [P]. i.e.

[Q] = [P]L. (A1.84)
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Dj lizati

Let [P] and [P])-! be the right and left eigenvector matrices of [A]
respectively and [A] be its eigenvalue matrix. Matrices [P], [P]-! and [A]
may be complex. the eigenvalue matrix [A] is diagonal if the eigenvalues of
matrix [A] are distinct. In power systems no two devices have exactly the
same characteristics even if they are manufactured by the same company,
at the same time. Hence one can say that the state matrix of the power
system does not contain any repeated eigenvalues i.e. all the eigenvalues of

- the power system are distinct.

The diagonalization of matrix [A] can be achieved by the following

operations on it as given below,

[A] = [PI[A] [P]. (A1.85)

ion f; r

The state participation factor is a sensitivity index. It is the
sensitivity of the specified eigenvalue to changes in the diagonal element of
the power system state matrix. The magnitude of these factors convey
information of the amount of influence the corresponding system states
have on a particular eigenvalue. Also, since these factors are non-
dimensional, they do not have the scaling problems of the eigenvectors and

are better at determining which states have a predominant influence on the




241

specified eigenvalue. The calculation of the state participation factors are

described below.
Consider the system state matrix [A] and one of its eigenvalues A.
Cooresponding to the eigenvalue A, let [p] and [q] be the corresponding right

and left eigenvectors respectively. The right eigenvector [p] satisfies the

following expression,

A [pl = [A] [p] (A1.86)
premultiplying both sides of the above equations with [q] gives,

A [q) [p] =[ql [A] [p] (A1.87)
From Equation (A1.85) it is seen that,

[al{p]=1.0 (A1.88)
Therefore, Equation (A1.87) is rewritten as,

A= [d] [A] [p] (A1.89)

Taking the partial derivative of A with respect to the diagonal element a;; of

the matrix [A] gives,

M __
2 _an (A1.90)
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where, q; is the ith element in the row vector [q], and p; is the i*h element in

the column vector [p]. Equation (A1.90) gives the state participation factor
of the ith state of the system to the eigenvalue A.




A2.1 Network data

Table (A2.1): Network data in per unit (Base-100MVA, 100 KV)

Appendix 2 - System Data

From Bus | To Bus No.| Ckt | r (p.u.) | x (p.u.) | B (p.u.)
No. I1.D
1 2 0.0035 | 0.0411 | 0.6987
1 B 1 0.0020 | 0.0500 | 0.3750
1 9 2 0.0020 | 0.0500 | 0.3750
2 3 0.0013 0.0151 0.2572
2 p] 0.0070 | 0.0086 | 0.1460
2 0 0.0000 | 0.0181 | 0.0000
3 4 0.0013 | 0.0213 | 0.2214
3 18 0.0011 | 0.0133 | 0.2138
4 5 0.0008 | 0.0128 | 0.1342
4 14 0.0008 | 0.0129 | 0.1382
5 6 0.0002 0.0026v 0.0434
5 8 0.0008 | 0.0112 | 0.1476
6 7 0.0006 | 0.0092 | 0.1130
6 11 0.0007 | 0.0082 | 0.1389
6 31 1 0.0000 | 0.0500 [ 0.0000
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Table (A2.1) Network data (Contd.)

6 31 2 0.0000 0.0500 | 0.0000
7 8 0.0004 0.0046 | 0.0780
8 9 0.0023 0.0363 | 0.3804
9 39 0.0010 0.0250 1.2000
10 11 0.0004 0.0043 | 0.0729
10 13 0.0004 0.0043 | 0.0729
10 32 0.0000 0.0200 | 0.0000
12 11 0.0016 0.0435 | 0.0000
12 13 0.0016 | .0.0435 | 0.0000
13 14 0.0009 0.0101 0.1723
14 15 0.0018 0.0217 0.3660
15 16 0.0009 0.0094 | 0.1710
16 17 0.0007 0.0089 | 0.1342
16 19 0.0016 0.0195 0.3040
16 21 0.0008 0.0135 0.2548
16 24 0.0003 0.0059 | 0.0680
17 18 0.0007 0.0082 | 0.1319
17 27 0.0013 0.0173 | 0.3216
19 2 0.0007 0.0138 0.0000
19 3 0.0007 0.0142 | 0.0000
2 A 0.0009 0.0180 0.0000
21 2 0.0008 0.0140 0.2565
22 23 0.0006 0.0096 | 0.1846
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Table (A2.1) Network data (Contd.)

22 35 0.0000 0.0143 0.0000
23 A 0.0022 | 0.0350 | 0.3610
23 36 0.0005 0.0272 | 0.0000
2 % 0.0032 0.0323 0.5130
p-3] 37 0.0006 | 0.0232 | 0.0000
2% 27 0.0014 0.147 0.2396
2% pes) 0.0043 0.0474 | 0.7802
% 29 0.0057 0.0625 1.0290
P pe) 0.0014 0.0151 0.2490
29 38 0.0008 0.0156 | 0.0000
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A2.2 Dynamic device data

Generator Data:

All generating system data is on 100 MVA, 100KV base, all machines have
one g-axis damper winding and the exciters are of either IEEE DC1 or ST1
type. Machine saturation is ignored. All data is expressed in per unit. H
and D is the inertia constant and damping in per unit respectively. All data
is with reference to the generator d-q equivalent circuits and the exciter

block diagram.

Table (A2.2a): Generator data-machine & exciter data.
G30 G31 | G32 | G33 | G34 | G35 | G36 | G37 | G38
H 42.0 303 | 358 | 286 | 26,0 | 348 | 264 | 243 | 34.5

D 4.0 9.75 | 100 | 10.0 3.0 10.0 8.0 9.0 14.0

xad | 0.087 | 0.26 | 0.22 | 0.232 | 0.616 | 0.232 | 0.263 | 0.262 | 0.181

Xaq | 0.056 | 0.247 | 0.207 ]| 0.228 | 0.566 | 0.219 | 0.26 | 0.2562 | 0.175

x] | 0.013 | 0.035 | 0.03 | 0.03 | 0.054 | 0.022 | 0.032 | 0.028 | 0.03
ra | 0,000} 0.0 00 | 00 00 {0006 | 00 | 0001]| 0.0
xfl |0.0227 | 0.0404 | 0.0257 | 0.0149 | 0.0893 | 0.0318 | 0.0182 | 0.0326 | 0.0317 |

rf |2.85E-|1.22E- | 1.14E- | 1.15E- | 347E- | 9.6E-5 | 1.32E- | 1.17E- | 1.18E-

Xklql} 0.0 [ .2977 | .0806 | 0.337 | .1396 | .0808 | .3777 | .0840 | .0348

rkql | 0.0 |9.6E4|5.1E4 | 1.0E-3|4.25E- | 1.99E- | 1.13E- | 2.17E- | 2.84E-




Table (A2.2a): Generator data-excter data.
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Ka | 25.0 6.0 5.0 50 | 400 | 5.0 | 40.0 50 | 40.0
Ta | 006 | 005 | 0.06 | 006 | 002 | 002 | 002 | 002 | 0.02
Ke * -0.63 | -0.02 | -0.05 * 004 | 10 | 005 ] 10
Te * 0.41 0.5 0.5 * 047 | 0.73 | 0.53 1.4
Aex * 0.705 | .0184 | .0035 * 0021 | 0.493 | .0028 | 0.61
Bex * 0.288 | 0.625 | 0.82 * 0.857 | 0.311 | 0837 | 0.3
Kf * 025 | 0.08 | 0.08 * 0.075 | 0.03 | 0.085 | 0.03
Tf * 0.5 1.0 1.0 * 1.25 1.0 1.26 1.0

* blocks with these parameters do not exist for IEEE ST1 type exciter.

SVC data:

The three SVCs are assumed to have identical parameters.

parameters are reference to the SVC block diagram.

Table (A2.2b): SVC Data

51,516,523
Base MVA 100.0
Base KV 100.0
Ksve 50.0
T1 0.172
T2 0.216
T3 0.0
T4 0.0
T5 0.006
T6 0.016

The
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A2.3 Nominal operating condition load flow data

Nominal operating condition load flow solution: loads, generation and

voltage magnitude in per unit. (Base-100MVA, 100KV) (All lines in

service.)

Table (A2.3): Nominal operating condition load flow solution

Bus| IVI | Angle | Load Load Generation | Generation
No. MW Mvar MW (p.u.) | Mvar (p.u.)
(p.u.) (p.u.)

1 | 1.0362 | -9.8009 | 0.0000 | 0.0000 0.0000 0.0000
2 | 10195 | -7.0103 | 0.0000 | 0.0000 0.0000 0.0000
3 | 09917 | -9.9973 | 3.2200 | 0.0240 0.0000 0.0000
4 ] 09551 |-10.8125| 5.0000 | 1.8400 0.0000 0.0000
5 | 0.9540 | -9.4724 | 0.0000 | 0.0000 0.0000 0.0000
6 | 09552 | -8.6842 | 0.0000 | 0.0000 0.0000 0.0000
7 | 09472 | -11.1386| 2.3380 | 0.8400 0.0000 0.0000
8 | 09478 | -11.7050| 5.2200 | 1.7600 0.0000 0.0000
9 | 10083 | -11.5817| 0.0000 | 0.0000 0.0000 0.0000
10 | 0.9620 | -6.0207 | 0.0000 | 0.0000 0.0000 0.0000
11 | 0.9584 | -6.9312 | 0.0000 | 0.0000 0.0000 0.0000
12 | 0.9389 | -6.9533 | 0.0850 | 0.8800 0.0000 0.0000
13 | 0.9603 | -6.8301 | 0.0000 | 0.0000 0.0000 0.0000
14 | 09610 | -8.7152 | 0.0000 | 0.0000 0.0000 0.0000
15 | 09694 | -9.2229 | 3.200 | 1.5300 0.0000 0.0000




Table (A2.3): Nominal load flow (Contd.)
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16 | 0.9888 | -7.7104 | 3.2940 | 0.3230 0.0000 0.0000
17 | 09928 | -8.8113 | 0.0000 | 0.0000 0.0000 0.0000
0.9909 | -9.7269 | 1.5800 | 0.3000 0.0000 0.0000

19 | 0.9900 | -2.5050 | 0.0000 | 0.0000 0.0000 0.0000
0.9869 | -3.9118 | 6.8000 | 1.0300 0.0000 0.0000

21 | 0.9955 | -5.1393 | 2.7400 | 1.1500 0.0000 0.0000
22 | 1.0217 | -0.4338 | 0.0000 { 0.0000 0.0000 0.0000
23 | 1.0204 | -0.6606 | 2.4750 | 0.8460 0.0000 0.0000
24 | 0.9970 | -7.5855 | 3.0860 | -0.9220 0.0000 0.0000
25 | 1.0282 | -5.5577 |} 2.2400 | 0.4720 0.0000 0.0000
2% | 10177 | -6.8541 | 1.3900 | 0.1700 0.0000 0.0000
21 1.000 | -8.9883 | 2.8100 | 0.7550 0.0000 0.0000
28 | 1.0191 | -3.1303 | 2.0600 { 0.2760 0.0000 0.0000
29 | 1.0206 | -0.2134 | 2.8350 | 0.2690 0.0000 0.0000
30 | 10475 | -4.5818 | 0.0000 | 0.0000 2.5000 1.6170
31 | 0.9820 | 0.0000 | 0.0920 | 0.0460 5.7571 1.5291
32 | 09831 | 1.8803 | 0.0000 | 0.0000 6.5000 1.4862
33 [ 09972 | 2.6913 | 0.0000 | 0.0000 6.3200 0.4796
34 | 10123 | 1.2673 | 0.0000 | 0.0000 5.0800 1.4031
35 | 1.0493 | 4.5403 | 0.0000 | 0.0000 6.5000 2.3080
36 | 1.0635 | 7.3558 | 0.0000 | 0.0000 5.6000 1.9720
37 | 10278 | 1.2456 | 0.0000 | 0.0000 5.4000 0.1635
38 | 1.0265 | 6.8654 | 0.0000 | 0.0000 8.3000 0.4751
39 | 1.0300 | -11.4056] 11.0400| 2.5000 10.0000 2.1615
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A2.4 Weakened operating condition load flow data

Weakened operating condition load flow solution: loads, generation and
voltage magnitude in per unit. (Base-100MVA, 100KV) (line 21-22 out of

service).

Table (A2.4): Weakened operating condition load flow solution

Bus| VI Angle | Load Load Generation | Generation
No. MW Mvar MW (p.u.) | Mvar (p.u.)
(p.u.) (p.u.)

1 | 1.0335 | -10.4328 ] 0.0000 | 0.0000 0.0000 0.0000
2 | 1.0125 | -7.6406 | 0.0000 | 0.0000 0.0000 0.0000
3 ] 09764 | -10.6621} 3.2200 | 0.0240 0.0000 0.0000
4 | 0.9415 | -11.4019] 5.0000 | 1.8400 0.0000 0.0000
5 | 0.9447 | -9.9425 | 0.0000 | 0.0000 0.0000 0.0000
6 | 0.9466 | -9.1216 | 0.0000 | 0.0000 0.0000 0.0000
7 | 0.9387 |-11.6363| 2.3380 | 0.8400 0.0000 0.0000
8 | 0.9395 | -12.2206| 5.2200 | 1.7600 0.0000 0.0000
9 | 1.0049 | -12.1604 | 0.0000 | 0.0000 0.0000 0.0000
10 | 0.9528 | -6.4655 | 0.0000 | 0.0000 0.0000 0.0000
11 | 0.9493 | -7.3746 | 0.0000 { 0.0000 0.0000 0.0000
12 | 0.9285 | -7.4120 | 0.0850 | 0.8800 0.0000 0.0000
13 | 09490 | -7.3002 | 0.0000 | 0.0000 |  0.0000 0.0000
14 | 09447 | -9.2624 | 0.0000 | 0.0000 0.0000 0.0000
15 | 0.9378 | -9.8841 | 3.200 1.5300 0.0000 0.0000
16 | 0.9512 | -8.2920 | 3.2940 | 0.3230 0.0000 0.0000
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17 | 0.9645 | -9.4634 | 0.0000 | 0.0000 0.0000 0.0000
18 | 0.9675 | -10.4110] 1.5800 | 0.3000 0.0000 0.0000

0.9773 | -2.9383 | 0.0000 | 0.0000 0.0000 0.0000

0.9796 | -4.3918 | 6.8000 | 1.0300 0.0000 0.0000
21 | 0.9330 | -10.6272| 2.7400 | 1.1500 0.0000 0.0000
22 | 1.0220 | 17.6382 | 0.0000 | 0.0000 0.0000 0.0000
23 | 1.0034 | 14.2091 | 2.4750 | 0.8460 0.0000 0.0000
24 | 0.9537 | -5.9548 | 3.0860 | -0.9220 0.0000 0.0000
25 | 1.0217 | -6.1979 | 2.2400 | 0.4720 0.0000 0.0000
2 | 1.0042 | -7.5003 | 1.3900 [ 0.1700 0.0000 0.0000
27 | 0.9794 | -9.6779 | 2.8100 | 0.7550 0.0000 0.0000
28 | 1.0122 | -3.7328 | 2.0600 | 0.2760 0.0000 0.0000
29 | 1.0159 | -0.7932 | 2.8350 | 0.2690 0.0000 0.0000
30 | 1.0475 | -5.1956 | 0.0000 | 0.0000 2.5000 2.0774
31 | 0.9820 | 0.0000 | 0.0920 | 0.0460 5.9866 1.9066
32 ] 0.9831 | 15121 | 0.0000 | 0.0000 6.5000 1.9436
33 | 09972 | 22884 | 0.0000 | 0.0000 6.3200 1.3702
34 | 1.0123 | 0.8042 | 0.0000 | 0.0000 5.0800 1.8125
3 | 1.0493 | 22.6104 | 0.0000 | 0.0000 . 6.5000 2.2865
36 | 1.0635 | 22.3439 | 0.0000 | 0.0000 5.6000 2.6427
37 | 10278 | 0.6389 | 0.0000 [ 0.0000 5.4000 0.4532
38 | 1.0265 | 6.3042 | 0.0000 | 0.0000 8.3000 0.7827
39 | 1.0300 | -12.0199 11.0400 | 2.5000 10.0000 24131
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