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Abstract

During the past few decades there has been an extensive amount of work involving 

the modelling of extreme events. A reasonably accurate estimate of the probabilities 

associated with these events contributes to a good understanding of the risk taken. 

Extreme Value Theory provides powerful tools to aid in investigating this risk.

In applications involving more than one random variable of interest, it is neces­

sary to understand the extremal behaviour of the dependence structure as well as the 

extremal behaviour of the marginal distributions. In this thesis, the focus is on ex­

plaining the extremal dependence structure and its impact on financial and actuarial 

applications.

The first two contributions of this thesis are mainly focused on the extreme be­

haviour of two commonly used classes of multivariate distributions in finance and 

insurance, namely phase-type and elliptical. In the phase-type case, we examine the 

limiting distributions of the componentwise maxima and minima, while asymptotic 

results are obtained for joint threshold exceedance probabilities in the elliptical case.

The next two contributions present asymptotic results for large claims reinsurance. 

Specifically, we focus on ECOMOR (excédent du coût moyen relatif) and LCR (largest 

claims reinsurance). We provide asymptotic tail probabilities that can be used to 

iii



estimate certain risk measures, such as the Value-at-Risk. Two specific models are 

investigated; one represents the total claims under a claims process for which each 

claim amount depends on the time since the previous claim and the other represents 

the total claims under n dependent insurance contracts.

Keywords: Archimedean copula, Componentwise maxima, Dependence, ECOMOR 

and LCR reinsurance, Elliptical distribution, Extreme Value Theory, Long-tailed dis­

tribution, Marshall-Olkin distribution, Multivariate extreme value distribution, 

Pickands' representation, Regular variation, Tail probability, Threshold exceedances.
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Chapter 1

Introduction

Special attention has recently been given to quantifying events with a small occurrence 

chance. Appropriate evaluations of the probabilities associated with these events 

are useful in measuring the impact of the “worst case scenario.” Extreme Value 

Theory (EVT) provides a powerful set of tools for approximating these probabilities. 

Standard references on EVT with various applications including the practical aspects 

of estimation, as well as theoretical development are discussed in Beirlant (2004), 

Coles (2004), Embrechts et al. (1997), Kotz and Nadarajah (2000), McNeil et al. 

(2005) and Resnick (1987).

A key ingredient of this thesis is its focus on extremal dependence structures. 

In many financial and actuarial applications there are indications that the impact 

of dependence is not negligible. There is a growing body of research that addresses 

how to quantify this dependence. Albrecher and Teugels (2006), Bauerle and Müller 

(1998), Boudreault et al. (2006), Dupuis and Jones (2006), and Tang and Vernic 

(2007) discuss actuarial applications for which appropriate assumptions regarding 

dependence are required.
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Chapter 2 investigates the limiting distributions of the componentwise maxima 

and minima of suitably normalized independent and identically distributed (iid) mul­

tivariate phase-type random vectors. In the case of maxima, a large parametric class 

of multivariate extreme value distributions is obtained. The flexibility of this new 

class is exemplified in the bivariate setup.

In Chapter 3, we exploit a stochastic representation of bivariate elliptical distribu­

tions in order to obtain asymptotic results which are determined by the tail behaviour 

of the generator. Under certain specified assumptions, we present the limiting distri­

bution of componentwise maxima, the limiting upper copula, and a bivariate version 

of the classical peaks over threshold result.

We consider in Chapter 4 an extension of the classical compound Poisson risk 

model, where the waiting time between two consecutive claims and the forthcoming 

claim are no longer independent. Asymptotic tail probabilities are obtained for the 

reinsurance amount under two reinsurance treaties, ECOMOR and LCR. These rein­

surance arrangements pay amounts that are based on the upper order statistics of 

the claims. Simulation results are provided in order to illustrate this.

Finally, in Chapter 5, we consider a dependent portfolio of insurance contracts. 

Asymptotic tail probabilities of the ECOMOR and LCR reinsurance amounts are 

obtained under certain assumptions about the extremal dependence structure, de­

pendence structure.
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Chapter 2

Extreme Behaviour of Multivariate 
Phase-type Distributions

2.1 Introduction

Extreme value theory has received increasing attention in the actuarial literature in 

recent years. The severe financial implications of extreme events justify the need for 

such quantitative tools. Since many insurance portfolios include several (or many) 

dependent risks, multivariate extreme value theory is needed to properly quantify the 

overall risk.

The limiting distribution of the normalized componentwise maxima (minima) of 

a sequence of iid random vectors is a fundamental and thoroughly studied topic in 

the area of multivariate extreme value theory The possible limit distributions are 

known as max (min) multivariate extreme value (MEV) distributions. One of the key 

features of these distribution functions (df) is that they cannot be specified in terms 

of a function involving a finite number of parameters (see Beirlant et al., 2004 chapter 

1A version of this chapter is published: Insurance: Mathematics and Economics 41(2): 223-233. 
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8) . A number of parametric families of multivariate extreme value distributions have 

been discussed in the literature. However, none is sufficiently broad to widely cover 

the entire class, and most simple families are quite restricted in their behaviour.

In this chapter, we establish the limit distribution for the normalized compo­

nentwise maxima and minima of a sequence of random vectors with multivariate 

phase-type (MPH) distributions. Introduced by Assaf et al. (1984), multivariate 

phase-type random vectors can be viewed as representing the times until absorption 

into overlapping non-empty subsets of the state space of a finite-state continuous-time 

Markov chain. MPH distributions have been used in reliability theory (see Assaf et 

al., 1984), queueing theory (see Li and Xu, 2000) and ruin theory (see Cai and Li, 

2005a).

The collection of limiting distributions forms a rich subclass of the max extreme 

value distributions. We provide some examples of bivariate phase-type distributions 

and explore the behaviour of the Pickands' function corresponding to the limiting 

distribution of componentwise maxima.

In Section 2.2, we present some preliminaries on MEV distributions and establish 

some of the notation that will be used throughout the chapter. This is continued 

in Section 2.3 where we discuss the basics of univariate phase-type distributions, in­

cluding the limiting distributions of normalized maxima and minima. Section 2.4 

introduces the multivariate phase-type distribution and the bivariate special case, 

and gives the main results of the chapter - the limiting distributions of normalized 

componentwise maxima and minima along with the norming constants. Some exam­

ples illustrating the flexibility of this class of distributions are provided in Section 2.5. 
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Conclusions are given in Section 2.6.

2.2 Preliminaries

Let x() = (x!, ∙ ∙ ∙ ,x,), x(2) = (X(2), • • - ,x,2)), be a sequence of independent 

p-dimensional random vectors with common distribution F, and let U(n) be a random 

vector with jth component

U,P = max(X,, i=1,. .n).

That is, U(n) is the vector of componentwise maxima of X,..., X(n). If there 

exist sequences of vectors of constants a(n), b(n) ∈ RP and a random vector U with 

distribution G and nondegenerate marginals such that a n)U()+b(n) converges weakly 

to U, then G, the limit distribution of normalized componentwise maxima, is said 

to be a max extreme value distribution. We then say that F is in the max domain 

of attraction of G with normalizing vectors of constants a(n) and b(n) and write 

F ∈ MaxDA(G). Then

lim F(a(n)x + b(n)) = G(x), for all x ∈ JP, (2.2.1) 
n—c 

and it follows that there exist sequences of vectors of constants a(n), B(n) ∈ RP such 

that

Gn(aMx + 13(n)) = G(x), for all x ∈ BP. (2.2.2) 

Distributions G satisfying (2.2.2) are said to be max stable. The class of multivariate 

distributions having this property is exactly the class of max extreme value distribu­

tions (see Resnick, 1987 chapter 5).
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From (2.2.1), it follows that

lim n[1 — F(a(n)x + b(n))] = — log G(x), (2.2.3) 
n→∞ 

for all x such that G(x) > 0. This relation is useful in verifying the limit distribution 

of the normalized componentwise maxima.

Analogous to U(n), define L^ to be the vector of componentwise minima of 

x0,..., x(n). That is, L(n) is the random vector with jth component

L,n) = min(X9,i= 1, .,n).

If there exist sequences of vectors of constants a(n), b(n) ∈ RP and a random vector L 

with distribution G and nondegenerate marginals such that an)L(n) + b(n) converges 

weakly to L, then G, the limit distribution of normalized componentwise minima, is 

said to be a min extreme value distribution, and F is said to be in the min domain 

of attraction of G. We write F ∈ MinDA(G). Then

lim Fil(a(n)x + bw) = G(x), for all x ∈ BP, (2.2.4) 
n→∞

where for any distribution H of random variables Y1,...,Yp,

R(s) = Pr(Y > yι,-,Yp > yp)

is the joint survival function of Y1,...,Yp. It follows from (2.2.4) that there exist 

sequences of vectors of constants o(n), B'n) ∈ NRP such that

Cr(a(")x + B(n)) =C(x), for all x € BP. (2.2.5)

Distributions G satisfying (2.2.5) are said to be min stable. It is easily seen that a 

random vector L is min stable if and only if -L is max stable. The following relation, 
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which follows from (2.2.4), is useful in verifying the limit distribution. We have

Iim n[l — F(a^x + b^)] = — logG,(x), (2.2.6) 
n→∞

for all x such that G(x) > 0.

A characterization of max and min domains of attraction of multivariate extreme 

value distributions is given by Marshall and Olkin (1983).

Necessary conditions for (2.2.1) and (2.2.4) are that each marginal Fi of F is in the 

(univariate) MaxDA, respectively MinDA, of the corresponding marginal Gi of G. The 

following classical results concerning max and min extreme value distributions in the 

univariate case are provided by Gnedenko (1943). In particular, if Fi ∈ MaxDA(Gj) 

for some non-degenerate df Gi, then Gi belongs to the type of one of the following 

three df’s:

Φα(≈) = exp(-≈-α)1 x > 0 (a > 0) => Gi is of Fréchet type 

‰(≈) = e×p(-(—x)a), x ≤ 0 (a > 0) => Gi is of Weibull type (2.2.7) 

A(x) = exp(-e'1), x E 3i => Gi is of Gumbel type

This is the well-known Fisher-Tippett theorem. Analogously, if Fi E MinDA(Gi) for 

some non-degenerate df Gi, then Gi belongs to the type of one of the following three 

df’s:

^α(x) = 1 ~ exp (—(—x)^a), x < 0 (α > 0) => Gi is of type I

Ψ*(τ) — l-θxp(-≈α), x ≥ 0 (a > 0) => Gi is of type II (2.2.8)

A*(x) = 1 — exp (—e1), x E ^R =≠ Gi is of type III

The dependence structure of a multivariate distribution can be characterized in 

terms of the copula. A copula is a multivariate distribution function defined on the 

unit cube [0, l]p with uniformly distributed marginals. According to the well-known 
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Sklar’s Theorem (see Sklar, 1959), if G is a joint distribution function with continuous 

marginals Gι,... ,Gp, then there exists a unique copula, C, given by

C(ui, .,",) = G(GT(u), ,G,(up), (2.2.9)

where h°(u) = inf{x : h(x) > u} is the generalized inverse function. The survival 

copula of a multivariate distribution is given by

C(un,.,up) =C(C(u),...Cp(up). (2.2.10)

A more formal definition, properties and examples of copulas are given in Nelsen 

(1999). The dependence structure of max extreme value distributions can be ex­

pressed in terms of the copula. In the bivariate case, it has the form

C(u, v) = exp log(uv)A ( :—8—(2.2.11)

where A is the unique Pickands’ representation function, which is a convex function 

on [0,1] such that max(t, 1 — ⅛) ≤ A(t) ≤ 1 (see Pickands, 1981). Note that, for 

A(t) ≡ 1, we have independence, and, for A(t) = max(t, 1-t), we have perfect positive 

dependence. For higher dimensional max extreme value distributions, representation 

functions for the dependence structure are given in, for example, Beirlant et al. (2004) 

and Resnick (1987). Since we focus our attention on the bivariate case, we need not 

discuss other representations. In the case of min extreme value distributions, the 

survival copula has the form (2.2.11).
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2.3 Univariate Phase-Type Distributions

Let {Y(t), t ≥ 0} be a right-continuous, continuous-time Markov Chain (CTMC) 

with state space ξ = {A,1,...,d}, and initial distribution 3 = (No,a). Suppose that 

the CTMC has infinitesimal generator

/ 0 0)
Q= , (2.3.1)

-Ae AJ 

where the subgenerator A = (aj,j) is a dxd matrix, 0 = (0,..., 0) is a row vector of 

zeroes and e= (1,...,1) is a column vector of ones. Then the nonnegative random 

variable X of the time until absorption into state Δ is said to be phase-type (PH) 

distributed with representation (α, A, d). We assume that absorption into state Δ is 

certain, or equivalently, that the matrix A is nonsingular. The survival function of 

X, denoted by F, can be expressed as follows:

P(x) = Pr(Y() ç {Δ}) = aeA-e, æ ≥ 0, (2.3.2)

where the matrix exponential of a matrix A is

001

For other properties of PH distributions, see Rolski et al. (1999). PH distributions 

have been used in reliability theory (see Neuts, 1994), queueing theory (see Asmussen, 

1992) and ruin theory (see Drekic et al., 2004).

All of the eigenvalues of the subgenerator A have negative real parts (see Rolski 

et al., 1999). Also, the matrix A is of Metzler type. That is, all of its off-diagonal 

entries are nonnegative. Therefore, it has a real dominant eigenvalue -η (called the 
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Perron eigenvalue), not necessarily unique, such that for all complex eigenvalues λ, 

Re(λ) < —n (see MacCluer, 2000). If the matrix A is irreducible, then the dominant 

eigenvalue -η is unique. By expressing A in Jordan canonical form, one can conclude 

that there exists a nonnegative matrix of constants M that satisfies:

1. if -η is a simple eigenvalue of A then

et = e-T(M + 0(1)), (2.3.3)

2. if -η has algebric multiplicity l, then there exists an integer k (0 ≤ k ≤ I — 1) 

such that

eAr = ake-V(M + O(1)), (2.3.4) 

where O(1) is a matrix with entries that are o(1) as x — 00, and k+1 is the maximal 

order of Jordan blocks corresponding to -η, called the index of —n (see Perko, 2001 

chapter 1, or Horn and Johnson, 1985, chapter 3).

This suggests the following approach to finding the matrix M. First, determine 

the eigenvalues of A. Let -η be the largest real eigenvalue. If -η has algebraic 

multiplicity 1, then let

M = lim e"E eAc.

If -η has algebraic multiplicity 1 > 1, then calculate the matrix

lim x-ke"ZeAz, (2.3.5) x—c

for k = 0,..l - 1, and let M be the matrix obtained using the largest value of k 

such that expression (2.3.5) does not give the zero matrix.
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This approach adapts and gives a more general way of finding the matrix M than 

that of Theorem 9 from Kang and Serfozo (1999). When all of the eigenvalues are 

real, the Putzer algorithm (see Theorem 8.2.2., Rolski et al., 1999) leads to a simpler 

alternative than the method described above. These results are sufficient to find the 

limiting distribution of the normalized maxima of a sequence of iid PH-distributed 

random variables. It is well-known that this distribution must be one of the three 

distributions in the class of generalized extreme value (GEV) distributions - the 

Fréchet, Weibull and Gumbel distributions given in (2.2.7). The following proposition 

indicates that, in this case, it is the Gumbel distribution and gives the corresponding 

norming constants. The norming constants for the case in which (2.3.3) holds are 

also given in Theorem 9 of Kang and Serfozo (1999).

Proposition 2.3.1. Let X be a PH distributed random variable with representation 

(&, A,d). Then its distribution is in the MaxDA(A). If (2.3.3) holds, then the norm­

ing constants are 

1 lognc 
On — — On —

and if (2.3.4) holds, then the norming constants are

_1 _On -- 5 On
log nc + k log log n — k log η (2.3.7)

7

where c = aMe is assumed to be positive.

Proof. Since (2.3.3) is the special case of (2.3.4) with k = 0, it is sufficient to check 

that the convergence criterion in (2.2.3) is satisfied using the norming constants in 
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(2.3.7). From (2.3.2) and (2.3.4), we have

nF(anx + bn) = nα[M + O(1)]e(ayx + bn)ke n(apz+bn)

n[c + o(1)]
(logn + o(log n) ——log nc-k log log n+k log n

(1+0(1))e-r (logn+o(logn))"4 e-t, n-00, (2.3.8)
‘ \ login /

which together with (2.2.7) completes the proof. • 

The limiting distribution of the normalized minima of a sequence of nd PH- 

distributed random variables along with the norming constants is given by Propo­

sition 2.3.2. Here we require that Np = 0. We first provide a lemma which will be 

used in proving the proposition.

Lemma 2.3.1. If the random variable X is PH distributed with representation (&, A1 d), 

then m is the minimum number of transitions needed for the underlying CTMC to be 

absorbed if and only if

-~A"e> 0, and when m 22, - aA'e= 0, €= 1,. ,m - 1. (2.3.9)

Proof. Let I0 = {i Qi > 0} be a subset of the state space ξ and aA = —Ae, with 

ith component aj,A, be the exit rate vector from the CTMC. Then

-Ae = Da ai,A. (2.3.10) 
ielo

If m = 1, then the right-hand side of (2.3.10) is positive since there exists at least 

one transient state with positive probability of being the initial state for which direct 

absorption is possible.

When m 2 2, then, for i € To, ij,i2,... €A\ {A}, and all € = 1,..., m - 1,

aj,ijdi1,i2" dipl,A O. (2.3.11) 
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Also,

aj,ii aj, fi2 • •, aim-1 ,∆ >0 (2.3.12) 

for some {i,...,im-1} since absorption is possible on the mth transition. Further­

more, whenever the left-hand side of (2.3.12) is not positive, it must be 0. We see 

this by noting that the product can be negative only if an odd number of terms are 

negative. However, from (2.3.11), the product of the remaining terms must be 0. 

Now

-aA'e =)0 2 di,ijdji,iz • • • aj-1,A, for 02 2. (2.3.13) 
iGlo i1,e-1

For 0 <m, each term on the right-hand side of (2.3.13) vanishes due to (2.3.11), 

and for C= m, the right-hand side of (2.3.13) must be positive due to (2.3.12). This 

completes the proof of necessity. The sufficiency part of the proof follows from the 

same arguments. ■

Proposition 2.3.2. Let X be a PH distributed random variable with representation

(a, A, d). Then its distribution is in the MinDA(Vh) with norming constants

On -- I5 On U, ∖nc J
(2.3.14)

where the constant c = —&Ame, and m is the minimum number of transitions needed

for the CTMC to be absorbed.

Proof Let F be the distribution function of X. It is sufficient to check the con­

vergence criterion (2.2.6). Using Lemma 2.3.1 and the fact that
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O(xm) as x ∣ 0 we have

n[l — F(anx + bn)] = n 1-œI
i=1

A’x® /m!)m _ 1
— — ) + O(n-l) e

U! Vnc/

— x , asn → CO, (2.3.15)

where I is the identity matrix. Thus, F is in the type II class (see (2.2.8). ■

2.4 Multivariate Phase-Type Distributions

Let {Y(t), t ≥ 0} be a continuous-time Markov Chain (CTMC) with finite state 

space ξ = {Δ,l,...,d} and infinitesimal generator Q defined as in (2.3.1). Let Si, 

i=1,...,p, be nonempty stochastically closed subsets of the state space ξ such that 

01 Si is a proper subset of ξ. A subset of the state space is said to be stochastically 

closed if, once the process {Y(t), 20} enters the subset, it never leaves. We assume 

that absorption into API Si is certain. Since we are interested in the process only 

until it is absorbed into OI Si, we may assume that 0=1 Si can be viewed as one 

state denoted by Δ. We may write ξ = (UR1 Si) USo for some subset ξo C ξ with 

ξ0∩ξi = 0 for i = 1,..., p. Let 3 = (0,α) be the initial distribution, with each 

component representing the probability that the process starts in a particular state 

in 6

We define Xi = inf{t ≥ 0 : Y(t) ∈ Si} for i = 1,... ,p. For simplicity, we may as­

sume that Pr{X1 > 0,..., Xp > 0} = 1, which means that the CTMC starts within §o. 

Thejoint distribution of (X1,...,Xp) is called a multivariate phase-type (MPH) dis­

tribution with representation (α, A,ξ,ξι,... ,ξp), and (X1,...,Xp) is called a phase­

type random vector (see Assaf et al., 1984). Thus, a MPH distribution is a joint 
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distribution of first passage times to various subsets of the state space ξ of a CTMC.

Examples of MPH distributions include, among many others, the multivariate 

exponential distributions of Marshall and Olkin (1967). The set of p-dimensional 

MPH distributions is dense in the set of all distributions on [O, ∞)p. For further 

details and for discussions of the closure properties of these distributions, see Assaf 

et al. (1984) or Cai and Li (2005a). Some results on order statistics of MPH random 

vectors are given in Cai and Li (2005b).

Let F denote the joint survival function of a MPH distribution. Then by Assaf et 

al. (1984) we have for 0 <p <<1 that

F(= ,2) = 0eAT/gy eA(p-1==9) g,-1=eA(r1-72) ge, (2.4.1)

where, for k = 1,...,p, g is a dx d diagonal matrix whose ith diagonal entry, for 

i = 1,...,d, equals 1 if i €S\Sk and 0 otherwise. For p = 2, we can interpret 

equation (2.4.1) as the probability that the underlying Markov chain remains in the 

subset ξ ∖ {ξι U §2} until time X2 and remains in the subset S\81 between time 2 

and time1.

The random variable Xi represents the first passage time of the CTMC into Si- 

This implies that Xi is univariate PH distributed with representation (&g\ Ag,d+ 

1—), where &g\g and Age, are the probability entry distribution and subgenerator 

matrix restricted to the state space ξ ∖ Si. As in Section 2, Ti, ki, and Mi are defined 

for the i-th marginal of the MPH random vector. The matrix M; is extended to have 

dimension d, by padding it with zeroes. In order to avoid an abuse of notation, this 

padded matrix is denoted by M;.
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In the bivariate case, the subgenerator has the special form

where, for i= 0,1, 2, Ai represents the subgenerator for states in ξi ∖ {Δ}, and for

' A0 B1 B2
A = 0 Al 0 , (2.4.2)

0 0 A2 /

i = 1,2, Bi represents the matrix of transition intensities from states in §o to states

in 6N(A).

The following theorem establishes the limiting distribution for bivariate PH dis­

tributions. The extension to higher dimensions will be outlined later.

Theorem 2.4.1. Let F be the distribution function of a bivariate PH distribution 

with representation (α, A,8,61,2). Then there exist sequences of constants a(n), b(n)

∈ R2 such that (2.2.1) holds with G given by 
e-e-Z1e-e-72 exp / e-L M,eA (a+log c2-21-logci)nge., 

C1 I
if τ1 + log c1 < x2 + log c2

e-e-71 e-e-72 eχp / E-ZZMZeA (ti+log ci-2-log ca)n-1 ge ,
C2 I

(2.4.3)

if x2 + log c2 ≤ C1 + log Cι

whenever m=n=n and k1 = k2 = k, where ci = aM;e is assumed to be 

positive for i = 1,2. For any other case we have independence, and G(x1, 2) = 

exp (—e a1) exp (—e @2).

Proof. Since X1 and A2 are PH distributed, both are in the MaxDA(A) with respective 

normalizing constants an,1, bn,1, and an,2, bn,2. From basic probability we have 

n[1 - Pr(X1 ≤ anrlx1 + bn,1, X2 < an,232 + bn,2)]

= n Pr(X1 > an,101 + bn,1) + n Pr(X2 > am,202 + bn,2) (2.4.4)

— n Pr(X1 > an,101 + b»,1, X2 > ⅛i2¾ ÷ bn,2). 
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From Proposition 2.3.1, the first two terms on the right hand side of (2.4.4) have 

limits e^xι and e-T2, respectively. If n =n =n and ki=k2 = k, for x1 and x2 such 

that xι + log Cι ≤ 32 + log c2, from (2.3.3 or 2.3.4) and (2.4.1) we obtain

n Pr(X1 > an,1%1 + bn,1,X2 > an,202 + bn,2)

= e__I (logn+o(logn)) Q(M, + 0(1))ea (=2-+10g C2-*1-logci)nle e 
logn∕ 2

- eSMeA(2+log C2-21-log ci)n-ige, as n-00,

C1

which completes the proof for this case.

If n > 72, then for n sufficiently large, an,101 + bn,1 < an,232 + bn,2, and 

an,2a2 + bn,2 - anizi - ba,i = (1 - 1) logn+ o(log n)

→ ∞, as n — CO.

Therefore,

n Pr(X1 > an,141 + bn,1, X2 > an,232 + bn,2)

= ----- a(M1 + O(1))O(1)e 
C1

— 0, as n — 00.

This implies that we have independence in the limit. In a similar way, the remaining 

cases yield the same result. •

Starting with (2.2.11), simple algebraic computations show that, if F is a bivariate 

PH distribution function, then (2.2.1) holds, where G is a BEV distribution with 

Gumbel marginals and dependence structure given by the Pickands' representation 

function
( 1-1-t~M2eAplsa*ge, if 0 <t <

A(t) = 8 C2 - c+cz . (2.4.5) 
1-aMeA, °Sc11-gje, if Q St 61
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A number of other characterizations of MEV distributions have been proposed (see, 

for example, Balkema and Resnick, 1977, de Haan and Resnick, 1977). For further 

discussion of the different representations, see de Haan and de Ronde (1998) or Beir- 

lant et al. (2004). For ease of presentation of our examples in Section 2.5, we consider 

only Pickands, representation.

By using the same logic as in Theorem 2.4.1 and the identity

P
Pr (A{X ≤ «})

i=1
P ___ P

= 1-2Pr(X> 4)+LPr(X,>4),Xj > &)-(1)PPr (0{X,> }), 
i=1 i<j 1=1 

we can obtain the limit distribution for higher dimensional MPH distributions. In 

order to take more advantage of the structure of A, it is convenient to rearrange the 

state space. As in Cai and Li (2005a), ξ is partitioned as follows:

rg = 6.

rE1 = &\(U(n 6), i=1,.p
k+i

173 = (606)V( U (606n6)), i,j=1,.p,ii 
k+i,k+j

1 = (Aa)v(U(snsk)), D c {1,2,...,p}
i€D keD ieD

TReay - (A)

where ∣ • ∣ denotes set cardinality. Notice that, by partitioning the state space in this 

fashion and reordering the states so that i < j whenever i ∈ 12,21, j ∈ F2,02 and 
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D1 < D2, the subgenerator A becomes a block upper triangular matrix. Therefore, 

its eigenvalue set coincides with the union of eigenvalue sets of diagonal blocks, which 

simplifies the problem of finding the eigenvalues for high cardinality state spaces.

The following theorem provides the analogous limit distribution for normalized 

componentwise minima of bivariate PH distributed random vectors.

Theorem 2.4.2. Let F be the distribution function of a bivariate PH distribution 

with representation (&, A,8,81,82). Then there exist sequences of constants a(n), b(n) 

∈ R2 such that (2.2.4) holds with G given by

/~.m ∖ 1
—m - P + cmin (-1,-2) %, (2.4.6)

\C1 C2 J J

where Ci — -ctAmigie, i — 1,2, and c = -aAme, provided that mi= m2 = m, where 

mi is the minimum number of transitions required in order to enter Si. Otherwise, we 

are in the independence case and G(x1, T2) = exp(-xml — xcm2).

Remark: If mi = m2 = m then the limiting distribution has the Marshall-Olkin 

dependence structure

C{u, v) = min(ul-av, uvl-b), 0 < a, b < 1,

CC
where a = — and b = —.

C1 C2

Proof. Let ami = (mil)'a and bni = 0 be the norming constants defined as in 

(2.3.14). It is sufficient to verify the convergence criterion (2.2.6). Throughout the 

proof, we will make use of the fact that agi = & for i = 1, 2, since the underlying

CTMC starts in §o.
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In the case that mi= m2 = m, if 0 <
mi m2
a < 5a_ then similar to the proof of
C1 — C2, -

Proposition 2.3.2, we have

n[1 - F(a(n)x + b«)]
, - m

i=1
m

3 / m!m 
A° ——1! \ncij

+ O(n 1) Si

∙+Σ
■ j=1

32C2 m
1j d

— jcim + O(n ) g2e 7

n(-A's.=.o(m)59 
+S-azo() IX2C2 m — 1C1

-1] 11 m __
1 . j!

m-1 m-i / f ∖ 12
+ 2 2(-aA'giA'ge)()

i=1 j=1 N

1 Γ

i —i/m
CC1C1

X2C2 — Ticim + O(n )

J!\n / L

1

1

Xm
X™ + x™ — c—, as n — 00, 

C1
(2.4.7)

where (2.4.7) follows from Lemma 2.3.1 and the fact that

-~A'g Am ig2e - -aA"ge,

and

c = Cl + c2 - (-αAmg1g2e).

This completes the proof in the mi = m2 = m case.

In the mi 7 m2 case we can, without loss of generality, assume that mi < m2
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Then, for n sufficiently large αn,ι^ι < am,202, which gives the following:

n[1 - F(a(n)x + b(n))]

m2
+ 2(-aA ge)

j=1

( m2: ∖ m2 
∖ n.C2 J

/mi!) mi
C1 —∖ n.C1 J

+ £ (-aA g,A'gze)qi(ma!)
-.v!y! nC1) 

{i,jlm,+*2 61}

/ m2.m2 / m1.)m1
¾ --- — 1 ----------

nC2 / nC1/

— xT1 + x2°2, as n — Co, (2.4.8)

where (2.4.8) follows from the fact that -aA"1g ge = ci, from Lemma 2.3.1, its 

implication that

-aA'g A’ge = 0 when i< mi and i+j < m2.

and from the fact that

(i,j) : — + — ≤ 1 [ Ç {(i,j) : i < mi,i+j < m2}. 
m1m2 J

This completes the proof. ■

2.5 Examples

In this section, we present some simple examples of bivariate PH distributions. We 

find that, even in simple cases, we are able to achieve a wide variety of dependence 

structures within the BEV class. We explore this by examining the Pickands' repre­

sentation function which is given by (2.4.5).
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Example 1

In this example we consider a bivariate PH distribution with representation

(α, A,6,81,2), where

-a P q

0 —6 0a= (1,0,0), A = a < min(b, c), p+q<a,

0 0 -C/

ξ = {Δ,1,2,3}, 6 = {Δ,2}, ξ2 = {Δ,3}.

Then one gets n= a,k = 1, ci = 1+-1, C2 = 1÷⅛> and from (2.4.5), the Pickands' 

representation function is given by

A(t) = <
7—b-a—- q(c + q - a)-&ta (1 — t)l-a, o<t< Ci (c-a)(b+p-a) ) 1 — C1+C2 

. 1b 
t+ ( -—Ca—- p(p + b-a) at1 d(1-t)a, -L <t<1

(b-a)(+c-a) ) - / C1+C2 _

In the special case where p — q — 0, we have A(t) = max(t, 1-t), which corresponds to 

the perfect positive dependence case. In this case the underlying CTMC is certain to 

make a direct transition from state 1 to state Δ. Therefore, X1 — X2 with probability 

1 and the componentwise maxima must also be equal.

Figure 2.1 shows the Pickands' function obtained using three different sets of 

parameters. In all three cases, we have assumed that b = c and p = q. The resulting 

symmetry leads to symmetric A(t) functions. Notice that as b and c approach a, we 

move closer to the independence case: A(t) = 1. Also, note that by choosing p and q 

so that p+q=a, the underlying CTMC cannot make a direct transition from state

1 to state Δ. Therefore, X1 and X2 are different with probability 1.

Figure 2.2 shows the Pickands' function for three different sets of parameters. 

Each of these functions is asymmetric.
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0

Figure 2.1: Plots of Pickands' A(t) function for Example 1 with (a, b, c,p,q) = 
(2,3,3,0,0) — solid line, (a, b, c,p,q) = (2,3,3, 1, 1) — long-dashed line, 
(a,b, c, p, q) = (2, 2.1,2.1,1,1) → short-dashed line.

0.9

0.8

0.6

0.6 0.80.2 0.4

Figure 2.2: Plots of Pickands' A(t) function for Example 1 with (a, b, c,p,q) = 
(2, 2.1,3,1,1) → solid line, (a, b, c,p,q) = (2,3, 2.5,0.1, 1) → long-dashed line, 
(a, b, c, p, q) = (2,3,3,1, 0.1) → short-dashed line.
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Example 2

In this example, we consider the same setup as Example 1, except that we assume

a = b = c. We also require that a,p,q > O. Thus, we have

—a p

A = 0 -α 0

0 ~a)

which implies that η = a, k = 2, cι = q, c2 = p, and A(t) = 1. Notice that we 

have independence, even though we have satisfied all the conditions of Theorem 2.4.1 

necessary for G to be given by (2.4.3).

Example 3

In this example we consider a bivariate PH distribution with representation

(α, A,ξ,ξ1,ξ2), where

/ -5 1 2 A

α = (P,1-P,0,0), 0≤p≤l, A =

0

-5

0

0

-7 0

0 -6 ?

ξ = {Δ,1,2,3,4}, ξ1 = {Δ,3}, ξ2 = {Δ,4}.

then η = 5, k = 1, cι = 1 + 2p, c2 = 2 - ∣, which implies that

A(t) =
l-t + 2≡p(l + 2p) ∣(4-p)h∣(l - t) ⅛, 0≤t≤g∣

i + 25(2-p)(4-p)4(l + 2p)⅛-i(l-t)ξ ∣⅛ ≤ t ≤ 1

Figure 2.3 shows the Pickands, function for three different values of the parameter
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0.2 0.4 0.6
t

0.8

Figure 2.3: Plots of Pickands’ A(t) function for Example 3 with p = 0 → solid line, 
p =0.5 — long-dashed line, p=1 — short-dashed line.

2.6 Summary and Conclusions

In this chapter, we establish the set of attractors for the componentwise minima and 

maxima of an iid sequence of random vectors from a fairly general class of multi­

variate distributions known as the multivariate phase-type (MPH) distributions. The 

norming constants and corresponding MEV distributions are explicitly given. For the 

sake of simplicity, we focus on the bivariate case.

The limiting distribution of the componentwise maxima of bivariate phase-type 

random vectors has a complicated form. In order to investigate its behaviour, the 

Pickands’ representation is chosen. Our examples illustrate that the limit distribution 

allows considerable flexibility within the BEV class. This suggests that the MPH 

distribution functions are well suited for statistical inference of multivariate data.

It is shown that the dependence structure of the limit distribution of compo­

nentwise minima of MPH random vectors coincides with that of the multivariate 

exponential (Marshall-Olkin) distributions.

0.6
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Chapter 3

Extreme Behaviour of Bivariate
Elliptical Distributions

3.1 Introduction

During the past few decades there has been an extensive amount of work on the 

understanding of the elliptical class of distributions. The first comprehensive work 

was given by Fang et al. (1990). Primarily, these distributions allow an alternative 

and extension of the normal law. Elliptical distributions are easily implemented and 

simulated (see, for example, Breymann et al., 2003; Hodgson et al., 2002; Johnson, 

1987; Li et al., 1997; Manzotti et al., 2002), and they are useful for actuarial and 

financial applications.

Modelling of extreme or rare events is an important and well-researched topic. 

When there are several random variables of interest, the dependence structure must 

2A version of this chapter is published: Insurance: Mathematics and Economics 41(1): 53-61 
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be considered in investigating their extreme behaviour. This is addressed in the 

growing literature on multivariate extreme value theory (see, for example, Beirlant, 

et al., 2004).

The extreme behaviour of elliptically distributed random vectors is closely related 

to the asymptotic property of their generator (see Berman, 1992 and Hashorva, 2005). 

Starting with the work of Sibuya (1960), recently many other papers have studied 

the extreme behaviour of elliptical random vectors, see for example Hult and Lind- 

skog (2002), Schmidt (2002), Abdous et al. (2005), Demarta and McNeil (2005), and 

Hashorva (2005).

In this chapter, we present some results on the extreme behaviour of bivariate ellip­

tical distributions. These results hold under certain conditions on the tail behaviour 

of the generator. Specifically, we give the limiting distribution of componentwise 

maxima of iid elliptical random vectors and find that it is exactly that obtained by 

Demarta and McNeil (2005) for the special case of the Student t distribution. We then 

present results concerning joint exceedances over a high threshold. We first provide a 

characterization of the limiting upper copula. We then give a bivariate version of the 

classical peaks over threshold result (see Balkema and de Haan, 1974, and Pickands, 

1975). We close this chapter with an illustration.
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3.2 Definitions and examples

Let Zi = (Xi, Y),i — 1,2,... be a sequence of independent random vectors with 

common distribution F, and let

Mn = (max Xi, max Yi).

That is, Mn is the vector of componentwise maxima of Zi,...,Zn. Ifthere exist 

sequences of vectors of constants an, by ∈ R2 and a random vector Z with distri­

bution G and nondegenerate marginals such that anMn + bn converges weakly to 

Z, then G, the limit distribution of normalized componentwise maxima, is said to 

be a bivariate extreme value distribution. We then say that F is in the maximum 

domain of attraction of G with normalizing vectors of constants an and bn and write 

F ∈ MDA(G). It is useful to note that

lim F"(a,x+ b„) = G(x) 4 lim n[1 — F(anx÷bn)] = - log G(x), (3.2.1) n-c n-o

for all x such that G(x) > 0.

A characterization of the maximum domain of attraction of multivariate extreme 

value distributions is given by Marshall and Olkin (1983). Necessary conditions for 

(3.2.1) are that each marginal Fi of F is in the (univariate) MDA of the correspond­

ing component Gi of G. Classical results concerning univariate maxima are given 

by Gnedenko (1943). In particular, if Fi ∈ MDA(Gj) then, by the Fisher-Tippett 

theorem, Gi belongs to the type of the distribution

∫ exp{-(l + ξ≈) 1^}, 1+& > 0, 640
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Hg is known as the generalized extreme value distribution. For a > 0, P~(x) = 

Hi/~(a(x - 1)) is the standard Fréchet distribution, Va(x) := H_l/~(a(x + 1)) is the 

standard Weibull distribution, and A(x) := Ho(x) is the standard Gumbel distribu­

tion.

It is well-known (see, for example, Embrechts et al., 1997) that Fi ∈ MDA(Hg) 

if and only if there exists a positive, measurable function a(∙) such that

F(t+xa(t)) „ ∫ (1+6z)-1/€ 1+6r>0, if 6+0 
limn — — , 0.2.2) 

t↑XFi fi(t) e-c, -0 <X< ∞, if 8 = 0 

where IF, is the right endpoint of the support of F;. The right-hand side of (3.2.2) is 

the survival function of the generalized Pareto distribution.

Returning to the bivariate setup, the bivariate extreme value distribution can be 

represented as follows:

G(x,v) =exp Slog (G,(e)Ga(u)) A ( 5 C])} (3.2.3) 

where A is the Pickands' representation function, which is a convex function on [0,1] 

such that max(t, 1 — 0 ≤ A(t) ≤ 1 (see Pickands, 1981).

The dependence structure associated with the distribution of a random vector 

can be characterized in terms of a copula. A two-dimensional copula is a bivariate 

distribution function defined on [0,1]2 with uniformly distributed marginals. Due to 

Sklar’s Theorem (see Sklar, 1959), if F is a joint distribution function with continuous 

marginals F1 and F2 respectively, then there exists a unique copula, C, given by

C(u,u) = F(F-(u), FX-(v)),

where h°(u) = inf{x : h(x) > u} is the generalized inverse function. Similarly, the 
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survival copula is defined as the copula relative to the joint survival function and is 

given by

C(u, v) = u + υ — 1 + C(1 — u, 1 — v). (3.2.4)

A more formal definition, properties and examples of copulas are given in Nelsen 

(1999). Let (U, V) be a random vector with copula C, and standard uniformly dis­

tributed marginals. The upper copula at level u is defined as follows:

CP(z, V) = Pr(U ≤ Fia(),V < F2(U > u,V>u), (3.2.5) 

where Fi,u(a) = Pr(U ≤ x∖U > u,V >u) and Fz,u(y) = Pr(V ≤ y|U >u,V> u).

A fundamental concept in Extreme Value Theory is that of regular variation, 

which we now define.

Definition 3.2.1. A positive measurable function h defined on (0, ∞) and satisfying

lim h(ta) = , E > 0, (3.2.6) 
t-c h(t)

is said to be regularly varying at co with index a€ R, and we denote this by h € RVP°.

For a more thorough background on regular variation see Bingham et al. (1987).

We now introduce the bivariate elliptical family of distribution, using the approach 

of Abdous et al. (2005). For other properties see Fang et al. (1990).

Definition 3.2.2. A bivariate elliptical random vector has the following stochastic 

representation:

(X, Y) = (μx,μγ) + (ox RDU, , GYPRDUI + Cy V1-02 R √1 - D2 U2), (3.2.7) 
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where U1, U2, R, and D are mutually independent random variables, ux,ly ∈ R are 

the respective means of X and Y, Tx,TY > 0 are the standard deviations, p is the 

Pearson correlation between X and Y, and Pr(Ui = —1) = Pr(Ui =1) = 2,i = 1,2. 

Both D and R are positive random variables and D has probability density function

2
fo(s) =--==5, 0 <s <1. (3.2.8)

The random variable R is called the generator of the elliptical distributed random 

vector. R is the radiai part of the parent spherical distribution of which the elliptical 

distribution is an affine transformation.

Throughout this chapter it is assumed that ux = uy = 0 and ox = TY = 1. 

Therefore, the joint distribution of X and Y is symmetric, and X and Y are identically 

distributed. Our results can be extended to the more general setup.

The following examples give the generator pdfs for some well-known bivariate 

elliptical distributions. We refer to these examples later in the chapter. For more 

examples, see Fang et al. (1990), who use a more classical representation. Abdous et 

al. (2005) explain the relationship between the two representations.

Example 3.2.1. Pearson type VII

2(N_1) ∕ -N 
fR(x) = — 2 x(1+— , x > 0, N> 1,m > 0. 

m \ mJ

When m =1 and N = 3/2, we have the Cauchy distribution, and when N = (m+2)/2 

we have the Student t distribution with m degrees of freedom.
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Example 3.2.2. Logistic

fr()=4 exL=3W,> 0. 
(1 + expi- Γ})2

Example 3.2.3. Kotz

fR(x) = ,-N/T(N/s) «2 'exp{-rz25), >0, N,r,s>0.

When N=1,s =1, and r = 1/2, we have the normal distribution.

Finally, we shall use the notation g(x) ~ h(x), as c — co to mean that

τ→∞ h(x)

3.3 Main results

3.3.1 Componentwise maxima

The limiting distribution of componentwise maxima of iid elliptical random vectors 

is discussed in detail by Hashorva (2005). The following result shows that, in the 

bivariate case where the generator R € MDA(a), the limiting distribution of com­

ponentwise maxima of iid bivariate elliptical random vectors is exactly that obtained 

by Demarta and McNeil (2005) for the bivariate Student t distribution.

Proposition 3.3.3. Let (X, Y) be a bivariate standardized elliptical random vector, 

and F its distribution function. If R ∈ MDA(P~), then (X,Y) ∈ MDA(G), where 

G has Fréchet marginals, H, and the Pickands' representation is given by

A /[CA)-va+1).A= /[(4)-pva+1)
A(U) -- Ula+1 /------- (TC t)la+1 Γ------ T ( 

√1-p2---------√1 — P ) 
(3.3.1)
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where Ta is the survival function of a univariate Student t random variable with a 

degrees of freedom.

Proof First, we show that X G MDA(P~) whenever the generator R G MDA(P~).

The latter implies that FR G RVLX (see, for example, Embrechts et al., 1997). There­

fore, for x > 0, by conditioning on U1 in (3.2.7) we get

Ex(x) 
FR(x)

Pr(RDU1> x) 1Pr(RD> «)
FR(a) 2 FA(a)

1 V
Qu"fp(u) du as x — ∞,
2 Jo

(3.3.2)

where the Dominated Convergence Theorem is used in the last step, since for x 

sufficiently large, the integrand is bounded by uo-1/2fp(u). The result can also be 

obtained from Lemma 2.2 of Hashorva (2005). Thus, X ∈ MDA(H), and the 

normalizing constants for the maxima are given by an ~ Fx (1 — n-l) and bn = 0 

(see page 131 of Embrechts et al. 1997). It is sufficient to verify convergence criterion 

(3.2.1):

n[l - Pr(X ≤ anx,Y < any)]

= n Pr(X > anx) + n Pr(Y > any) - n Pr(X > anx,Y > any). (3.3.3) 

Since X and Y ∈ MDA(H~), the first two terms on the right hand side of (3.3.3) 

have limits co and yo, respectively, and from Theorem 1 of Abdous et al. (2005) 
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we have

n Pr(X > ana, Y > any)

Pr(X > anx, Y > any)5
- —Pr(X > G,4)—nFxfOn*) G3.3.4)

- (M-p) Va+1 -
7 X - a+1) /------- - (T9 - a+1

. V1-p2

Combining (3.2.1), (3.2.3), (3.3.3) and (3.3.4) completes the proof. ■

3.3.2 Joint threshold exceedances

In financial applications, the limiting distribution of joint threshold exceedances is 

important in assessing the impact of extreme events affecting two or more variables 

of interest. For example, the losses in value of several different assets that result from 

a stock market crash can be viewed as dependent random variables. In analyzing 

the overall effect of the crash on the value of a portfolio, the dependence structure of 

these losses must be considered. If we are primarily interested in extreme cases, it is 

useful to understand the behaviour of joint exceedances over a high threshold.

When the threshold of interest for each asset is the Value at Risk (VaR), then we 

are interested in exceedances above high quantiles. The joint distribution of these 

exceedances is given by the upper copula.

The next result is motivated by the work of Breymann et al. (2003). There, 

an empirical approach was given to illustrate that the limiting upper copula of a 

bivariate elliptical random vector is well-fitted by the survival Clayton copula. If 

R E MDA(P~), then under the assumption that the distribution function of the 

elliptical random vector is continuous with strictly increasing marginals, we can ob­
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tain an asymptotic result for the upper copula. This result is a direct implication of 

Theorem 2.3 of Juri and Wüthrich (2003), which states the following:

Let C be a symmetric copula such that C(v, v) > 0 for all v> 0. Furthermore7 assume 

that there is a strictly increasing continuous function g : [0, ∞) → [0, co), such that

,. C(XV7V) , . .
Iim —--------== g(x), I € 0, Co). ulo C(v, v)---1

Then, there is 0 > 0 such that g(x) = x@g(1/x) for all x € (O, oo). Further7 for all 

(x,y) ∈ [0,1]2

lim CP(x,y) =x+y-1+G(g 1(1-x),g 1(1-y)), u’l

where G(x,y) := yog(x/y) for (x, y) € (0, 1]2 and G:=0 on [0,1]2 ∖ (0,1]2.

Proposition 3.3.4. Let (.X, Y) be a standardized continuous elliptical random vector 

with strictly increasing margins. If RE MDA(Qa)7 then the limiting survival upper 

copula is given by 

lim CP(c,v) =g 1()g(9(x)), (3.3.5) 
uTi \9 (9)/ 

where

2T+1 ((al/a - p)-9+I,) + 741((a-1/0 - p)-o+I, 

g(x) = •   7 F—j 2 Ta+1 {(1 -
(3.3.6)

Proof Letting x > 0, we only need to check the sufficient condition from Theorem 2.3 
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of Juri and Wüthrich (2003) as follows:

C(xv,v) Pr(X > Fx(xv),Y > Px(v)) 
C(v,u) = Pr(X > Fx (),Y > Fx (v) 

Pr(X > x-1/FX (v),Y > Fx(v)) 
~ Pr(X > Fx (),Y > Fx(v) 

→ g(x), as v l 0,

which gives the required result by applying Theorem 1 of Abdous et al. (2005) and 

the result of de Haan (1970, see page 22). ■

Proposition 3.3.4 is useful because it expresses the limiting distribution in terms 

of the two parameters & and p, which can be estimated using standard methods.

A comparison of contour plots shown in Figures 3.1, 3.2, and 3.3 indicate that, 

for three different & and p combinations, the copula in (3.3.5) is indeed similar to a 

Clayton copula. We have not, however, explored the relationship between the Clayton 

parameter and the values of a and p.

The main result of this chapter establishes the joint distribution of the exceedances 

over a high threshold when R € MDA(H~) and when R ∈ MDA(A). We first give 

some preliminary results.

If a distribution function F ∈ MDA(A) has infinite support, then the auxiliary 

function a(-) that satisfies (3.2.2) is absolutely continuous with density a'(-) such that 

lim a(k) ±0, im 4/(0 = 0, and lim a(t+ra(t)) 1, (3.3.7) 
t-o t t→∞ ‘ ' t→∞ a(t) ’ v , 

locally uniformly in x € R. For further details see Resnick (1987, p. 40).

The following lemma will be useful in proving the main result.
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p = 0.9 compared with the survival Clayton copula with a = 1.5.
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Lemma 3.3.1. If F € MDA(A) with IF =0 and auxiliary function a(-), then, 

provided that h(t) = o(a(t)), the following holds for any x:

F(t + xa(t) + h(t)) , .
Jιm----------- 5/4----------= expi-cy (3.3.8) t-c----------- F(t)

Proof, Let h(t) = o(a(t)). Then it is sufficient to verify that F(t + h(t)) ~ F(t).

Using a representation of Von Mises functions (see Resnick, 1987, p. 40) we need 

only prove that

st+h(t) 1
lim - du=0.
t-oJt a(u)

(3.3.9)

Let 8,8 > 0, then since a(-) is positive, for t sufficiently large we get

At+h(t) 1 jAt+a(t)e 1 , Γ a(t) , . .
- du < - du— -- -------- — dz<(1+ ∂)ε,Jt a(u) Jt a(u) Jo a(t + za(t)) 

where the last inequality is implied by (3.3.7), which completes the proof. ■

Theorem 3.3.1. Let (X,Y) be a bivariate standard elliptical random vector with

-1<p<1.

(a) Let R ∈ MDA(Pa). Then whenever x,y> 0,

lim Pr(X >+ xa(t),Y >+ ya(t)∖X > t,Y > t) (3.3.10)—co

- (ι+∣π⅛Λ⅛Pil[^^
2 T41{0-)V/2=3) ’ 

where a(-) is defined by (3.2.2).

(b) Let R € MDA(A) with auxiliary function a(-) and infinite right endpoint. If

a ∈ RV°, & <1, then whenever x,y > 0,

lim Pr(X >t+ xa(t), Y > t + ya(t)|X > t,Y >t) —co

= exp 3——K (p)F, (3.3.11)
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where K(p) = y(p+l)72∙

Ifp= 1, then

lim Pr(X > t + xa(t),Y > t + xa(t)|X > t,Y >t) = exp{- max(a, y)}. t—co

Remarks:

1. When p = -1, there exists a to > 0 such that for all t > to, Pr(X > t,Y >t) =

0. Since it does not make sense to condition on the event {X > t,Y > t} in 

this case, an equivalent result cannot be obtained.

2. In the Gaussian case, a=-1 and (3.3.11) coincides with the result of Juri and 

Wüthrich (2003).

Proof, (a) If R ∈ MDA(Φ0), then a(t) ~ & (see p. 159 Embrechts et al. 1997). Then 

the proof of (a) follows from Theorem 1 of Abdous et al. (2005).

(b ) Let x,y > 0, and we assume that p € [0,1) (the p ∈ (—1, 0) case follows the 

same reasoning). We now prove that when t → ∞ the following holds:

Pr(X >t+a(t),Y >t+a(t) ga(t) K2=0(p)
F(_t) t 1=K2(p) 
TRK(p)) v ‘ 

xexp/-Ka-l(p)E+V}. (3.3.12)

By conditioning on U1, U2 and D, from Definition 3.2.2, for t sufficiently large, we 

obtain

Pr(X >+ xa(t),Y > t + xa(t))

1
2*

(t+a(t)x t+a(t)y) 1
FR max ----------- , —----- — 7 -=====5

JoX (U J(u,p) ) / V1-u2
du

(3.3.13)
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where f(u, p) = pu+ V1 - p2V1 - u2 and g(u, p) = pu~ V1 - p2V1 - u2. Note that 

we have used the fact that g(u,p) < 0 when u < V1 - p2. Some simple algebraic 

computations allow one to express (3.3.13) as

Pr(X >t+ xa(t),Y >t+ xa(t))

= 1 {T(t, c,y, p) + I2(t,c,y, p) + I3(t,,y,p)}, (3.3.14)

where the three integrals I1, I2, and I3 are

and
/ 2 / ∖1/2t+a(t)y o(t+a(t)y 1

t+a(t)a ) P (t+a(t)a)

Ii(t, a,y,P) =
ru(t,x,bip) = (t+ a(t)x 

HRJo U
) 1 ,
J V1-u2 '

(3.3.15)

h(t,χ,y,p) =
s’ Fe(t+a(t)y)

Ju(t,xiy,p) \ f(u,p) / ∕ du, 1 V1-u2 ' (3.3.16)

Is(t,a,y,p) =
/' Fe(t+a(t)y) 

J/1-02 R\ g(u, p) J_ du, 
V1 — u2

(3.3.17)

u(t,c,y,p) = 1 — p2
(3.3.18)

/
We now have to determine the rates of convergence for each of the three integrals 

defined in (3.3.15), (3.3.16), and (3.3.17). First, we establish that

'(,5,.P)-v=k=00y4q** (k(p)

x exp 3 -Ko-1(p)"HU > , as t — 00. (3.3.19)

The change of variable u(t, x, y, p)∕u = 1 + za(t)/t in (3.3.15) gives

. . a(t) ∖Iι{t,x,y,p) = t u(t,x,y,p)×
CCO

/ Fr
Jo

(t+(x+z)a(t) + za2(t)/t\ (1+za(t)/t) 2
u(t, c,y,p) / / 2* 1 u(t,x,y,p) ∖

V \1+za(t)/t)

dz. (3.3.20)
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Using Lemma 3.3.1 and the fact that a(-) ∈ RV°, straightforward computations yield

that

FR(t/K(p))
~ exp{-K% ⅛) (2 +**M) } 

I ∖ 2
as t — oo. (3.3.21)

Since e < 1/z(z + 1) for z 2 2 the integral in (3.3.20) is bounded, and the 

Dominated Convergence Theorem together with (3.3.7), (3.3.18), and (3.3.21) leads 

to (3.3.19).

In a similar manner asymptotic equivalences for 12 and 13 can be found. The 

one-to-one mapping u — f(z, p) reduces (3.3.16) to

rz(t,a,y,p) _ 1
I2(t, a, y,p) = / FR ( - dz, (3.3.22)

where

z(t, x, y, p) = f(u(t, x, y, p),p). (3.3.23)

The change of variable z — p = (z(t, x, y, p) — p)/ (1 + ça(t)/t) in (3.3.22) yields

I2(t,2,y,P) = (z(t,2,y,p) - p)°At)x

/p(t+(y+s)a(t) + ysa2(t)/t)
Jo ∖ z(t, c,y, p) + pça(t)/t J

—+so(t)/0)2— d6, (3.3.24)

/. _ (z(t,,W,p)+ps°()
1 ∖ 1+sa(t)/t )

and straightforward computations together with Lemma 3.3.1 and the Dominated

Convergence Theorem give

, X K2-(p) — ( )

x exp/-Ka-1(p)"$V}, as t-, 00. (3.3.25)
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The change of variable 2 = g(u, p) in (3.3.17) yields

/3(t,2,W,p)= / Fa(t+a(t)u)-1dz. (3.3.26) 
J0X / v1-z=

In a similar way as for the previous two integrals, the rate of convergence for 13 can 

be found when p > O:

02 a a(t) _ /t\I3(t, x, y. p)-------===FR ( - ) exp{-pa-ly} , as t — co, (3.3.27) 
v1-p- t NP/

and by (3.3.17) 13 = 0 when p =O. Moreover, when p ≥ 0 it follows that p < K(p), 

and since FR is rapidly varying (see, for example, Embrechts, et al. 1997, p. 140) and 

using (3.3.27) we get

a(t)) 
t /

h(t,x,y,ρ) = o(^Fr (x()

Combining (3.3.14), (3.3.19), (3.3.25) and (3.3.28) gives (3.3.12) and (3.3.11), which 

completes the proof. ■

The Pearson type VII generator given in Example 3.2.1 is in the maximum domain 

of attraction of the Fréchet distribution with α = 2(N — 1), and the generators given 

in Examples 3.2.2 and 3.2.3 are in the maximum domain of attraction of the Gumbel 

distribution. The auxiliary functions a(-) are regularly varying with indices -1 and 

1 — 25 for the Logistic and Kotz cases, respectively.

3.4 Illustration

In this section, we explore the sensitivity of the probabilities obtained from the limit 

distribution given by (3.3.10) in Theorem 3.3.1 to the values of a and p, and we 
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illustrate how the theorem can be used in analyzing the joint distribution of returns 

on two stocks in the presence of an extreme event such as a market crash.

Table 3.1: Probabilities from equation (3.3.10) with x =1 and y = 3 for various & 
and p

a\p -0.9 -0.7 -0.2 0 0.1 0.5 0.8
3 0.2155 0.2145 0.2110 0.2089 0.2076 0.1994 0.1835
4 0.1971 0.1962 0.1929 0.1910 0.1898 0.1820 0.1664
5 0.1856 0.1847 0.1817 0.1799 0.1788 0.1714 0.1563

Table 3.1 shows joint probabilities obtained from equation (3.3.10) with c =1 

and y = 3 for several values of O and p. We observe that relatively small changes 

in a (relative to the range of possible values, a > 0) lead to similar changes in 

the probabilities as relatively large changes in p (—1 < p < 1). Therefore, these 

probabilities are sensitive to the value of N, while the value of p does not have an 

large impact.

Table 3.2: Approximate Values of Pr(X > 0.25+x,Y > 0.25+y ∣ X > 0.25,Y > 0.25)

χ y Probability
0.1 0.1 0.2603
0.1 0.2 0.1456
0.1 0.3 0.0826
0.2 0.2 0.0953
0.2 0.3 0.0606
0.3 0.3 0.0427

We now illustrate the used of Theorem 3.3.1 in analyzing the conditional joint 

distribution of returns on two stocks when both are subject to large losses. Let 

X represent the negative daily log return for a given stock, and let Y represent 
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the negative daily log return for another stock. Assume that (X,Y) is elliptically 

distributed with mean vector (0, 0), standard deviation vector (0.01, 0.01), a =4 and 

p = 0.5. These parameters were chosen arbitrarily, but are intended to be plausible.

We are interested in the conditional distribution of (X,Y) given that a significant 

loss has occurred on both stocks (perhaps due to a market crash). Specifically, we 

condition on the event that the negative log return on both stocks exceeds 0.25. 

That is, both stocks have decreased in value by at least (approximately) 22 percent.

Table 3.2 shows several probabilities obtained from the conditional distribution of 

interest using the result of Theorem 3.3.1 (a). Calculations such as this allow one to 

correctly capture the impact of the dependence structure when analyzing the severity 

investment losses under extreme market conditions.
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Chapter 4

Dependence and the Asymptotic 
Behavior of Large Claims
Reinsurance

4.1 Introduction

Insurance companies often seek reinsurance to protect themselves against catastrophic 

losses. Such reinsurance comes in many forms. Excess of loss and stop loss coverages 

are common, and the risks associated with these coverages have been thoroughly 

studied in the literature. Two lesser-known reinsurances are ECOMOR (excédent 

du coût moyen relatif) and LCR (largest claims reinsurance). This may be due to 

their mathematical complexity. Under ECOMOR, the reinsurer pays the sum of 

the exceedances of the I largest claims over the I + 1st largest claim. Under LCR, 

the reinsurer pays the sum of the I largest claims. These forms of reinsurance were 

introduced to actuaries by Thépaut (1950) and Ammeter (1964), respectively.

1A version of this chapter has been submitted for publication in Insurance: Mathematics and 
Economics, ref no. IME-D-07-00155
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The purpose of this chapter is to establish the asymptotic tail probabilities of 

the reinsurance amount under ECOMOR and LCR. This problem is considered by 

Ladoucette and Teugels (2006a and b) under the assumption that the claim amounts 

are iid and independent of the claim arrival process. Kremer (1998) provides an 

upper bound for the reinsurance premium when the claim amounts are not necessarily 

independent. In this chapter, we consider a different dependence assumption. That is, 

we assume that the interarrivai time and the forthcoming claim size are dependent. In 

the context of ruin theory, similar risk models are discussed by Albrecher and Boxma 

(2004), Albrecher and Teugels (2006) and Boudreault et al. (2006).

We consider a risk process for which the claim sizes Xi,i = 1,2,... are assumed to 

be positive iid rvs with common distribution function F. Moreover, the claim arrival 

process {N(u), u ≥ 0} is assumed to be a homogeneous Poisson process with intensity 

λ > 0. Let XN(t),1 ≥ XN(t),2,... be the order statistics corresponding to the claim 

sizes occurring on the time horizon of interest, [O, ⅛]. Then the reinsurance amounts 

under ECOMOR and LCR are given by

(4.1.1)

and

(4.1.2)

As stated above, our primary objective is to obtain asymptotic tail probabilities 

for the reinsurance amount under ECOMOR and LCR reinsurance treaties. These 

results can be used in analyzing risk measures associated with these contracts.
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4.2 Preliminaries

4.2.1 Definitions

The dependence structure associated with the distribution of a random vector can 

be characterized in terms of a copula. A two-dimensional copula is a bivariate dis­

tribution function defined on [0, 1]2 with uniformly distributed marginals. Due to 

Sklar’s Theorem (see Sklar, 1959), if F is a joint distribution function with contin­

uous marginals F1 and F2 respectively, then there exists a unique copula, C, given 

by

C(u,u) = F(FT(u), F(v)), 

where h*(u) = inf{x : h(x) ≥ u}. Similarly, the survival copula is defined as the 

copula relative to the joint survival function and is given by

C(u, v) = u + v — 1 + C(1 - u,1 - v).

A more formal definition and properties of copulas are given in Nelsen (1999).

There are many characterizations of heavy-tailed distributions, but one of the 

largest families is the class £ of long-tailed distributions. By definition, a df F = 1-F 

belongs to C if

F(t + x)
hm —— = 1, for all x ER. 
t→∞ F(t) '

Note that, the convergence is uniform on compact subsets of R. For more details on 

heavy-tailed distributions, we refer the reader to Bingham et al. (1987) and Embrechts 

et al. (1997).
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The long-tailed distributions form a large class that included distributions with 

regularly varying tails as well as the more general subexponential class. An example of 

a long-tailed distribution is the lognormal distribution, which is also a subexponential 

distribution, but does not have a regularly varying tail. The Pareto distribution is 

an example which does have a regularly varying tail.

The long-tailed distributions are a special case of the more general class S(a) for 

which

F(t + x) _ 
lim - = e °X, fori→∞ F(t)

In addition to the long-tailed distributions, S(a) includes light-tailed distributions 

such as the exponential, Erlang, and more general phase-type distributions. While 

we focus on the long-tailed distributions in this chapter, we briefly discuss an extension 

of our results in the light-tailed case.

An important concept that is crucial to establishing the main results of this chapter 

is vague convergence. Let {un,n ≥ 1} be a sequence of measures on a locally compact 

space E with countable base. Then μn converges vaguely to some measure μ (written 

μn "> u) if for all bounded continuous functions f with compact support we have

n—CO

A thorough background on vague convergence is given by Kallenberg (1983) and 

Resnick (1987).
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4.2.2 Assumptions and Examples

Let W; be the time between the (i — 1)st and ith claims. This model relaxes the 

usual assumption of independence between Wi and Xi. This may be necessary, for 

example, in modelling earthquake insurance, where the intensity of the earthquake 

depends on the time since the last occurrence. The following assumptions for the 

underlying dependence structure are sufficient to establish our main results.

Assumption 4.2.1. The random vectors (Xi,Wi), i = 1,..., N(t), are mutually 

independent and identically distributed, and the generic pair (X1, W1) has absolutely 

continuous copula C with corresponding survival copula C.

Assumption 4.2.2. There exists a vo € (0,1) and a continuous bounded function g 

such that

1. C2(u,v) . Γ 11 hm = g(v), for all v € [Vo, 1], 
u.0 U 

where C2(u,v) 8„C(u,v).

Below are some examples of copulas given in Nelsen (1999) which satisfy Assump­

tions 4.2.1 and 4.2.2.

Example 4.2.1. Independence

C(u, v) = uv,

with g(v) = 1.

Example 4.2.2. Ali-Mikhail-Haq

C(u,u) = 1001-0)01-0) 0 €1-1,1), 
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with g(υ) =1+ 0(1 — 2v).

Example 4.2.3. Clayton

C(u,v) = {u~θ + v-6 — 1)-1/0, θ € (0,∞), 

with g(v) = (1+ 8)(1 — v)°.

Example 4.2.4. Farlie-Gumbel-Morgenstern

C(u,v) =u+ Buv(1 - u)(1 - v), 0 € [-1,1], 

with g(v) =1+ 0(1 — 2v).

Example 4.2.5. Frank

1 / (e-Bu _ 1)(e-0v — 1)NC(u,v) =-In (1+- - - - - - - ——2), @ ERV{0},

with g(v) = @e®(l-u)/(e® - 1).

Example 4.2.6. Plackett 

C(u,v) =
1+(0-1)(u+v) - V (1+(0-1)(u + v))2 - Auve(0-1)v -, 0 € R+\{1},

2(9 - 1)

with g(v) = 0/(1 +(0 - 1)v)2.

Note that, while all six of the above examples involve a symmetric copula, this 

is not necessary. In particular, Assumptions 4.2.1 and 4.2.2 are satisfied by the 

asymmetric copula,

Cki(u,v) = ul-kul-C(uk,v), 
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for many of the well-known absolutely continuous symmetric copulas C given in 

Nelsen (1999) and 0 < k,l < 1. This construction of an asymmetric copula was 

proposed by Khoudraji (1995).

We also note that Assumptions 4.2.1 and 4.2.2 imply the existence of the limit

lim Pr(W, ≤ w x.sa).

This is a special case of the characterization of random vectors with one extreme 

component given by Heffernan and Resnick (2007).

Two examples of copulas that do not satisfy Assumption 4.2.2 are the Gaussian 

copula with p 7 0 (see Abdous et al., 2005) and the Gumbel copula.

4.3 Main results

4.3.1 Order statistics

In the first part of this section, we derive the asymptotic behavior of the lth largest 

order statistic XN(t),[. Recall that the joint pdf of the interarrivai times conditioned 

on the number of claims by time t is

n' — 
fw1,.,Wnl~()=n(W1,...,Wn) = +, on Dn = w : 0 < 2_Wj <ti=1,...,n> 

j=1 , 

(see, for example, Embrechts et al., 1997, p. 187), and the marginals are identically 

distributed with common density 

. . n(t-w)n 1 
/WIv(=n(W) = An , 0 < w < t. 
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Proposition 4.3.5. If Assumptions 4.2.1 and 4.2.2 are satisfied with vo =e At, then 

for any integer l > 1 we have

Pr(XN(t),1 >s) ~ [Pr(X1 > s)]° K(I) as s — 00, 

where 
t-w1 rt-2421wi L ' 

h(t - >wil)I[g(e-*) dw
Jo i=l i=1 

and 

h(x,i) = e-Mx X 0a)"(n+). 
« TO: n=07

Proof. For simplicity, we focus on the case in which 1 = 1. Extensions to 1 > 1 follow 

the same logic. We have

Pr(XN(t),1 > s) — Xe-MCt)" Pr (XN(, >sN()=n) (4.3.1)

= Ze-hta" / Pr (XN > s lW-w, N(e)=n) dw
n=1 JDn

n
1-II- Pr(X, > s w,=w,)1 dw. 

i=1 )

Now,

n

( i=1

Pr(X1 > 5 ∣vr,1=wi) ,
' Pr(X1> s) ‘ dw

(t-w)"7— -X(Xt)" 2 / Pr(X1> s W1=w) 
Ze n! n J0 Pr(X)> s) n=1

dw. (4.3.2)

And since the inequality

A’ w1>⅛j x (t-wy"1 d.u < gun r d - w)-1 du - eM/a 
Jo Pr(X1> s) th À Jo th 
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holds for any S > 0, we can apply the Dominated Convergence Theorem to show that 

(4.3.2) is asymptotically equivalent to

00 ∖n ft
/ g(e-*v)(t - w)n-1 dw

n=1 N P
= e-MA / g(e-Av) Xnt - w)!" dw. 

J0 n=0 ■

Note that we used the fact that Pr (X1 > s Wi=w) ~ Pr(X1 > s)g(e-Xw), which is a 

straightforward implication of Assumption 4.2.2. The interchange of the summation 

and integral is due to Pratt’s Lemma (see Pratt, 1960). In a similar manner, the 

remaining terms of (4.3.1) can be shown to be o(Pr(X1 > s)). The proof for the case 

l = 1 is now complete. ■

Some examples with a simple closed form for the asymptotic constant K(1) from 

Proposition 4.3.5 are now given. In Example 4.2.1, the explicit form of the asymptotic 

constant is K(I) = (Xt)‘/l!, which is the lth factorial moment of the counting process. 

That is,

e / N()(N()-1)..(N()-1+1)1 
KC)=S Ti 1 '

Examples 4.2.2 and 4.2.4 imply that K(1) = Xt - (1 - e-2à€)e/2. In the case of 

Example 4.2.6, we have

, 0 Xt + 81n(8)- In(@ - 1+ext)
K051-0-1+ex~ι---------------- ■

For other cases, including l > 1, if a closed form is obtainable it is long and compli­

cated.
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4.3.2 ECOMOR and LCR reinsurance

This section contains the main results of this chapter. More specifically, the asymp­

totic tail probability results for the ECOMOR and LCR reinsurances on finite horizon 

[0, t] are obtained. Recall that we allow dependence between claim amount and inter­

arrival time and the number of claims process is assumed to be homogeneous Poisson. 

These results are motivated by the work of Ladoucette and Teugels (2006a) which 

assumes that the claim and number of claims processes are independent; the counting 

process is assumed to be a mixed Poisson process. They provide explicit results for 

the ECOMOR reinsurance when the horizon is finite. Specifically,

Pr(E(t) > s) ~ Pr(XN(t),1 > s) as s — 00,

for any 1 > 1, provided that X1 ∈ C. We conclude that the same results follow under 

our assumptions for both reinsurances. This implies that the tail of the reinsurer’s 

total claims is (asymptotically) the same regardless of how many upper order statistics 

are reinsured.

Theorem 4.3.1. If Assumptions 4.2.1 and 4.2.2 are satisfied with vo = e-èt, and 

X1 ∈ C, then for any integer 1 > 1 we have

Pr(E(t) >s) ~ Pr(L(t) > s) ~ Pr(X N(0),1 > s) as s — 00.

Remark: Using the logic of the following proof, one can conclude that the same 

asymptotic results hold in the case of independence and a mixed Poisson counting 

process. This provides an alternative proof for the tail probability of Ei(t) to that 

given in Ladoucette and Teugels (2006a).
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Proof. For simplicity we give the proof for Ei(t) and L2(t). In light of the proof of 

Proposition 4.3.5 and the fact that X1 ∈ C, it is easy to obtain that

Im Pr(XN(),1>S+, XN(),2 S y)
5→∞ Pr(X1 > S) = H(y)

for any real x and nonnegative y, where

CO n
H(y) = e-èt XxX/ g(e-Aw) II Pr(X ≤ V W,=00,) dw.

n=1 i=1 JDn jti

This implies that

(4.3.3)

(4.3.4)

where u ((x, ∞] × [0, y]) = H(y). Note that H(y) < K(1) holds for any positive y and 

H(y) → K(1) when y — 00. Thus, u({(x,y) x2y2 0}) = K(1), which together 

with (4.3.4) and Proposition 4.3.5 completes the proof for the ECOMOR case. 

The LCR case is slightly different. For any M>0, 

p({(x,y):c+y20,2> -M}) =K(1)

. Now, since u((a, b] × [0, y]) = 0,

lim μ ({(x,y) : x + y > 0, x < -M,y> 0}) = 0, (4.3.5) 
M—c

which completes the proof for the LCR case. ■

A straightforward generalization to the case in which X1 ∈ S(a) is obtained for 

ECOMOR reinsurance. In this case, u in (4.3.4) is given by

μ((τ,∞] × [0,v) = e-H(),

where the function H is defined in (4.3.3). This modest extension, which we can 

provide only for Ei(t), is stated as Proposition 4.3.6.
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Proposition 4.3.6. If Assumptions 4.2.1 and 4.2.2 are satisfied with vo = e At, and 

Xι € S(a), a> 0, then

Pr(E1(t) >s) ~ Pr(X1 >s) ae-GZH(z) dz as s - co.

As a special case, under independence we have H(z) = Xt exp{—Ai Pr(X1 > z)}.

4.3.3 Another Dependence Model

Boudreault et al. (2006) consider a risk process for which each claim amount is de­

pendent on the waiting time until the claim as follows:

Pr(X, > « W,=W) = e-B"Fi(e) +(1 - e-Bu)Fa(z),

where Fi =1-Fi and F2 = 1 - F2 are distribution functions of positive random 

variables such that F2 has a heavier tail than Fi. It follows that

Pr(X1> * Iw-w) *400. 43.0) 
Ir(A1 PC) O

Therefore, Proposition 4.3.5 holds with g(e-Aw) replaced by the right hand side of 

(4.3.6), and Theorem 4.3.1 holds. This illustrates that, even when we cannot explicitly 

characterize the dependence structure of W1 and Xi via the copula, we can still obtain 

the asymptotic results as long as the limit of Pr(X1 > x W1=w)/ Pr(X1 > x) exists.

4.4 Simulation Study

To explore the results given in Proposition 4.3.5 and Theorem 4.3.1, a simulation 

study was performed using the software R (see R Development Core Team, 2007). It 
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was assumed that claim amounts have a Pareto distribution with distribution function

Fx,(x) =1-(1+*)-9, 2 2 0

with a equal to 1 and 2. The dependence of the claim amount and the waiting time 

until the claim is given by the Ali-Mikhail-Haq copula given in Example 4.2.2 with 

values of θ equal to -0.9, 0.1 and 0.9.

Each analysis consists of 1,000,000 simulations of the risk process with A = 1 and 

time horizon t = 50. For each simulation, the values of XN(50),1, L2(50) and E1(50) 

were calculated. Probabilities associated with these three random variables were then 

estimated from the empirical distributions arising from the simulated samples of size 

1,000,000. Probabilities associated with the random variable X1, were estimated from 

the empirical distribution of all simulated claim amounts. These estimates were used 

to obtain the ratios presented in Tables 4.1, 4.2, 4.3 and 4.4.

For the ratios in Tables 4.1 and 4.2, the speed of convergence increases with θ, 

the strength of dependence. For a =2 the ratios converge quickly to 1.

Table 4.1: Estimated probability ratios, Pr(XN(50),1 > s)/K(1) Pr(X1 > s), when 
& — 1 and 0 ∈ {-0.9,0.1,0.9}.

s -0.9 0.1 0.9
500 0.9413 0.9533 0.9623
1000 0.9654 0.9772 0.9852
2000 0.9782 0.9884 0.9978
2500 0.9806 0.9908 0.9997
4000 0.9843 0.9942 1

The probabilities involving L2(50) and E1(50) are compared with those involving

XN(50),1 in Tables 4.3 and 4.4 for θ € {-0.9, 0.1,0.9} and a =1, a = 2, respectively.
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Table 4.2: Estimated probability ratios, Pr(XN(50),1 > s)/K(1) Pr(X1 > s), when 
a = 2 and 0 € {-0.9,0.1,0.9}.

S -0.9 0.1 0.9
50
150
250 
500 
1000

0.9815 0.9924 0.9999
0.9907 0.9997 1.0074
0.9912 0.9998 1.0088
0.9912 1.0010 1.0088
0.9912 1.0010 1.0088

For both cases, there does not appear to be an effect from θ, indicating that unlike 

the maximum, LCR and ECOMOR arc not affected by the strength of dependence. 

In addition, when α = 2, the rate of convergence is faster than when α = 1.

Table 4.3: Estimated probability ratios, Pr(L2(50) > s)/ Pr(XN(50),1 > s) and 
Pr(E1(50) > s)/ Pr(XN(50),1 > s), when α = 1 and θ € {—0.9,0.1,0.9}.

s\e

LCR ECOMOR

-0.9 0.1 0.9 -0.9 0.1 0.9

500
1000
2000
2500
4000

1.2169 1.2155 1.2165 0.8394 0.8401 0.8395
1.1456 1.1443 1.1422 0.8931 0.8928 0.8944
1.0906 1.0853 1.0876 0.9334 0.9590 0.9332
1.0740 1.0750 1.0755 0.9389 0.9402 0.9461
1.0535 1.0509 1.0533 0.9563 0.9613 0.9594
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Table 4.4: Estimated probability ratios, Pr(L2(50) > s)/ Pr(XN(50),1 > s) and 
Pr(E1(50) > s)/ Pr(XN(50),1 > s), when Q! = 2 and θ ∈ {—0.9, 0.1,0.9}.

s\e

LCR ECOMOR

-0.9 0.1 0.9 -0.9 0.1 0.9

50 1.5466 1.5630 1.5508 0.7270 0.7268 0.7269
150 1.1964 1.1744 1.1797 0.8787 0.8873 0.8820
250 1.1023 1.0966 1.1006 0.9223 0.9136 0.9301
500 1.0506 1.0598 1.0276 0.9545 0.9620 0.9585
1000 1 1.0189 1.0204 0.9821 0.9783 1

References

Abdous, B., Fougères, A.L. and Ghoudi, K. 2005. “Extreme Behaviour for Bivariate 

Elliptical Distributions,” The Canadian Journal of Statistics, 33(3), 317-334.

Albrecher, H. and Boxma, O.J. 2004. "A Ruin Model with Dependence between 

Claim Sizes and Claim Intervals,” Insurance: Mathematics and Economics, 35(1), 

245-254.

Albrecher, H. and Teugels, J.L. 2006. “Exponential Behavior in the Presence of 

Dependence in Risk Theory,” Journal of Applied Probability, 43(1), 257-273.

Ammeter, H. 1964. “The Rating of Largest Claim Reinsurance Covers,” Quarterly 

Letter from the Algemeine Reinsurance Companies Jubilee, Number 2, 5-17.

Bingham, N.H., Goldie, C.M., and Teugels, J.L. 1987. Regular Variation. Cambridge

University Press, Cambridge.



69

Boudreault, M., Cossette, H., Landriault, D. and Marceau, E. 2006. “On a Risk Model 

with Dependence between Interclaim Arrivals and Claim Sizes,” Scandinavian 

Actuarial Journals 5, 265-285.

Embrechts, P., Kliippelberg, C. and Mikosch, T. 1997. Modelling Extremal Events 

for Insurance and Finance. Springer-Verlag, Berlin.

Heffernan, J.E. and Resnick, S.I. 2007. “Limit laws for random vectors with an 

extreme component,” Annals of Applied Probability, 17(2), 537-571.

Kallenberg, O. 1983. Random Measures, 3rd edition Akademie-Verlag, Berlin.

Kremer, E. 1998. “Largest Claims Reinsurance Premiums under Possible Claims 

Dependence,” ASTIN Bulletin, 28(2), 257-267.

Khoudraji, A. 1995. ’’Contributions à l’étude des copules et à la modélasion des 

valeurs extrêmes bivariées,” Ph.D. thesis, Université Laval, Québec, Canada.

Ladoucette, S.A. and Teugels, J.L. 2006a. “Reinsurance of Large Claims,” Journal 

of Computational and Applied Mathematics, 186(1), 163-190.

Ladoucette, S.A. and Teugels, J.L. 2006b. “Analysis of Risk Measures for Reinsurance 

Layers,” Insurance: Mathematics and Economics, 38(3), 360-369.

Nelsen, R. B. 1999. An Introduction to Copulas. Springer-Verlag, New York.

Pratt, J.W. 1960. “On Interchanging limits and integrals,” Annals of Mathematical 

Statistics, 31(1), 74-77.

R Development Core Team (2007). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 

3-900051-07-0, URL http : /∕www. R-project. org.

Resnick, S.I. 1987. Extreme Values, Regular Variation and Point Processes. Springer- 



70

Verlag, New York.

Sklar, A. 1959. “Fonctions de répartion à n dimensions et leurs marges,” Publications 

de l’Institut de Statistique de l’Université de Paris, 8, 229-231.

Thépaut, A. 1950. “Une nouvelle forme de réassurance: le traité d’excédent de 

coût moyen relatif (ECOMOR),” Bulletin Trimestriel de l’Institut des Actuaires 

Français, 49, 273-343.



71

Chapter 5

Asymptotic Tail Probabilities for
Large Claims Reinsurance of a
Portfolio of Dependent Risks

5.1 Introduction

Insurance companies often use reinsurance as a mechanism for sharing risk, particu­

larly when there is the possibility of catastrophic losses. Two appealing reinsurances 

are ECOMOR (excédent du coût moyen relatif) and LCR (largest claims reinsurance). 

Under ECOMOR, the reinsurer pays the sum of the exceedances of the I largest claims 

over the l+ 1st largest claim. Under LCR, the reinsurer pays the sum of the l largest 

claims. ECOMOR and LCR treaties were proposed by Thépaut (1950) and Ammeter 

(1964), respectively.

We consider a portfolio of n similar insurance contracts. The associated loss 

random variables Xi,i = l,...,n are assumed to be dependent and identically dis- 

1A version of this chapter has been submitted for publication in ASTIN Bulletin 
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tributed with common df F — 1 — F and dependence structure given by a suitable 

copula. Let Xi,n ≥ ... ≥ Xn,n be the corresponding upper order statistics. Then the 

reinsurance amounts under ECOMOR and LCR are given by

1
E1 = X(X,n - X1+L,n), 

i=1

and

i=1

The purpose of this chapter is to establish the asymptotic tail probabilities of the 

reinsurance amount under ECOMOR and LCR for a portfolio of dependent insurance 

contracts. This may be quite useful for risk management purposes, as it allows one 

to determine high quantiles of the reinsurance amount and therefore enables one to 

obtain capital amounts that will be adequate with high probability. This can also be 

done by performing a simulation study. However, to estimate high quantiles, a very 

large number of simulations are required, and since multivariate outcomes must be 

generated, the computations may be very time consuming.

5.2 Preliminaries

Let Y, i = 1,2,... be a sequence of independent random variables with common 

distribution F, and let Mn be the maximum of Y1, ... ,Yn- If there exist constants an, 

bn and a random variable Z with nondegenerate df G such that anMn + bn converges 

weakly to Z, then F is in the maximum domain of attraction of G and we write 

F ∈ MDA(G). Moreover, by the Fisher-Tippett theorem (see, for example, Embrechts 
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et al., 1997), G belongs to the type of the distribution

/ exp {-(1+6)-1/}, 1+6 > 0, 6+0

∣ expie <x € — 0

Hg is known as the generalized extreme value distribution. For a > 0, P~(x) := 

Hi/~(~(x — 1)) is the standard Fréchet distribution, V~(x) := H_l/~(a(x + 1)) is the 

standard Weibull distribution, and A(x) = Ho(x) is the standard Gumbel distribu­

tion.

The dependence structure associated with the distribution of a random vector can 

be characterized in terms of a copula. An n-dimensional copula is a multivariate df 

defined on [0, l]n with uniformly distributed marginals. Due to Sklar’s Theorem (see 

Sklar, 1959), if X1, .., Xn has ajoint distribution function with continuous marginals, 

then there exists a unique copula, C, such that

Pr(X1 <ai,:.., Xn S In) = C(Pr(Xι ≤ Xi),. .. ,Pr(Xn ≤ Xn)).

Similarly, the survival copula, C, is defined as the copula relative to the joint survival 

function and satisfies

Pr(X1 > x1,...,Xn>xn) = T(Pr(X. > di), ... ,Pr(X, > «n)).

A well-known class of copulas is the Archimedean class. By definition, an Archimedean 

copula C is given by
n ∖

i=1 / 

where © : [0,1] — [O, ∞) is its generator. Some regularity conditions are necessary to 

ensure that C is a valid copula (see Kimberling, 1974 and Nelsen, 1999, chapter 4).
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An important concept that is crucial to establishing the main results of this chapter 

is vague convergence. Let {um,n ≥ 1} be a sequence of measures on a locally compact 

space E with countable base. Then μn converges vaguely to some measure μ (written 

un — u) if for all bounded continuous functions f with compact support we have

lim f dμn= f dμ. 
^°0JE JE

A thorough background on vague convergence is given by Kallenberg (1983) and 

Resnick (1987).

5.3 Main Results

Throughout this chapter it is assumed that the common dfF=1-F has positive 

support and infinite right endpoint. For ease of exposition, we first assume that the 

survival copula, which describes the dependence among portfolio risks, is a member of 

the Archimedean class. This setup is used by Wiithrich (2003) and Alink et al. (2004 

and 2005) in order to characterize the asymptotic tail behavior for a sum of dependent 

random variables. A similar problem is discussed by Albrecher et al. (2006), Barbe 

et al. (2006) and Kortschak and Albrecher (2007), when a more general dependence 

structure is assumed. Since the ECOMOR and LCR reinsurances are linear combi­

nations of the order statistics, studying the asymptotic tail probability for the losses 

associated with these reinsurance treaties is closely related to the aforementioned 

problem.

We make the additional assumption that the generator © of the survival copula is 
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regularly varying at 0 with index -α (y ∈ RVQ). That is,

lim p(tr) = 
t↑0 p(t) 

for any positive x. For more details on regular variation, we refer the reader to 

Bingham et al. (1987).

The Clayton copula is an example of an Archimedean copula with generator, 

p(u) = u~a — 1, which satisfies the property φ ∈ RVL. This copula has the form 

/ n ∖-1∕≈ 
C(u1,...,un) = (1-n+2u“) , 

\ i=1 / 

where a> 0.

Our assumption that the individual loss df F has infinite right endpoint implies 

that only F E MDA(B) or F € MDA(A) may hold. We consider these two cases 

in turn.

5.3.1 Results for F in MDA of Fréchet

If F ∈ MDA(Hg) and φ E RVQ, then for any positive X1,.. ,xι with 1<l<n,

lim
—co

Pr(X1 > ti,...
F(t)

Xi > txι) 2-98 

i=1
(5.3.1)

provided that 0 < α < ∞ (see Alink et al. 2004).

Now, as a result of our assumptions, the random variables X1,.. ., Xn are ex­

changeable. Therefore,

Pr(X1,n > 1,..., Xl,n > txι) 

= Σ —---- ⅛------------------- L Pr ({X1,.,XA >tzi}, 

(ReAki'*kpl(n-ki--- t,)! \ 
{tx2 < Xk1+1, ..., Xk1+k2 S txi}, ‘ 5 {Xki+.+k+1, * * • , An S 

(5.3.2)
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for any1> > Tl where Al = {(ki,. ∙-,kι) i<ki+.+k< n,i = 1,...,/}. 

Each term on the right-hand side of (5.3.2) can be expressed as a linear combination 

of joint survival probabilities. This fact combined with (5.3.1) allows us to conclude 

that there exists a positive function fι such that

Pr(XIn > tx1,...,Xιιn > ta) ~ F(t)fι(xu.. .xι), t→∞. (5.3.3)

Under more general assumptions for which the exchangeability property does not 

hold, a similar but even more cumbersome relationship to that in (5.3.2) can be 

obtained.

Now, relation (5.3.3) implies that

Pr((Xi,n/t,...,X,n/t) € ) v

holds on [0, ∞]z ∖ {0} where the measure Lt is given by

u((a1,o0] × ••• × (si,∞]) = fi(x1,... ,xi). (5.3.4)

We now have the essential development for the main results of this subsection, 

which are stated in the following theorem.

Theorem 5.3.1. Let (X1,...,Xn) be a positive random vector with an Archimedean 

survival copula for which the generator satisfies φ ∈ RVLL with a ∈ (0,∞). In 

addition, the marginals are identically distributed with df F € MDA(Pg). For l = 

1,...,n — 1, the asymptotic tail probability for El, the reinsurance amount under an 

ECOMOR treaty, is given by

Pr(E, >t) ~ CER(I, a, B) F(t) ast-00, 

where
(l \ 
a:20- lx^ 21,012 2 ¾+l 20),

i=1 / 
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with μι defined by (5.3.4).

For 1 = 1,...,n, the asymptotic tail probability for L^ the reinsurance amount 

under an LCR treaty, is given by

Pr(L, >t) ~ CLP(l, a, β) F(t) as t - co,

where

x2a21,12 2020
It should be noted that in order to obtain these results, we used the fact that each

1
measure μι contributes zero mass to {xi = oo}.

i=1

5.3.2 Result for F in MDA of Gumbel

As in the Fréchet case, the first step is to establish the joint tail extreme behavior. It 

is well-known (see, for example, Embrechts et al., 1997) that if F ∈ MDA(A), then 

there exists a positive, measurable function aβ) such that

,. F(t + xa(t)) _x hm -------- =e 
t→∞ F(t)

(5.3.5)

for any real x. Once again, we assume that q ∈ RVQ, which gives that

Pr(X, > t + xa(t), . .. XI >t+wa(t)) ( A
hm------------------------=----------------------- —>F(t) ——‘ 1=1 

for any real X1,... 1 with 1 ≤ 1 < n (see Alink et al. 2004).

In the same manner as the previous subsection, we have

Pr(X1,n > t + xja(t), .. .,Xι,n > t + xa(t)) ~ F(t) gι(xi,.. .xι), (5.3.7)

where gι is a positive function.
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Now, relation (5.3.7) implies that

Pr (((XL. - t)∕a(t‰ .. ,(Xιtn-t)∣a(ty ∈ ) 

Pr(X,>4) * "C).

holds on (—00, ∞]^ where the measure VI is given by

vi((a1,o] x* x (x1, c0]) := 9(1,..., C ). (5.3.8)

Now, we are able to give the main result from this subsection, which is only for 

the LCR reinsurance. This is stated as Theorem 5.3.2.

Theorem 5.3.2. Let (X1,..., Xh) be a positive random vector with an Archimedean 

survival copula for which the generator satisfies q ∈ RVO with a € (0,co). In 

addition, the marginals are identically distributed with df F € MDA(A). For 1 = 

1,...,n, we have

Pr(Li > lt) ~ Clg{11 a,6) F(t) as t—oo, 

where 

x2a20,01224, 
i=1 / 

with Vt defined by (5.3.8).

Two more remarks are useful in understanding Theorem 5.3.2. First, note that 
1

each measure VIl contributes zero mass to Uxi — ∞}∙ Second, VI has no mass on 
i=1

regions around —∞. This is obvious for l = 1, so we consider the case in which 1 > 1.

It is sufficient to check that

l \
x:)X > 0,31 >..> > -M 2 x= 0. (5.3.9)

— Ii=1 / 

In doing so, we first mention that the following clearly holds

) Pr(X1> t) -+(-1)n+1( Pr(X1 >t,...,Xn>t)
1/ T

AF(t), ast — co. (5.3.10)
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where the last step is due to (5.3.6) and Δ is a positive constant. Combining (5.3.5)

and (5.3.10), we have

(l ∖
x ∙ ^3xi ≥ θ,τι — — ~ xι )

i=l /

≤ lim
t→∞

Pr (X1,n >t + a(t)^)
= ^ke-WG-O

which leads to (5.3.9).

5.3.3 Examples

In this subsection, examples for the limiting constants from Theorems 5.3.1 and 5.3.2 

are given. In order to avoid long computations, a portfolio consisting of n = 3 

insurance contracts is considered. First, the Fréchet case is explored. From (5.3.2), 

we have

Pr(X13 > tx1,X2,3 > tx2) = Pr(Xι,¾,X3 > ⅛ι) + 3Pr(Xi,X2 > ⅛,¾ ≤ tx2) 

+ 3Pr(X1,X2 > tx1,tx2 < X3 ≤ tx1)

+ 3Pr(Xi > tx1,tx2 < X2, X3 ≤ tx1) 

+ 6 Pr(Xι > tx1,tx2 < X2 < tx1,X3 ≤ tx2), 

for any ^1 > x2 > 0. Otherwise,

Pr(Xιι3 > tx1,X2t3 > tx2) = Pr(X1, X2, X3 > tx2) + 3 Pr(X1, X2 > tx2,X3 ≤ tx2).

Straightforward computations together with (5.3.1) yield the following

(3“1/a - 3 - 2-Va)xW + 6(^ + xf)-Fa 

f2(x1,x2)=< -3(x↑β+ 2x*0)~1∣a, 0<

(3-2-P“ - 2 - 3~1∕q)¾ z3, O <

Cx2<x1 . (5.3.11)

C X1 < X2
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In a similar manner, if F ∈ MDA(A) then (5.3.6) yields

92(X1,T2) =

(3-1/0 - 3 • 2-1/0)e-21 + 6(e∞1 + e02)-1/0

-3(e071 + 2e0X2)-1/0,

(3 . 2-1/0 - 2 . 3-1/0)e-22,

0 <2<X1 - (5.3.12)

0 < X1 ≤ 3C2

The measure 2((x1,o0] × (x2,00]) := f2(x1,32), and it follows from Theorem 5.3.1

. that the respective constants for ECOMOR and LCR are

CEF(1, N, B)

= u2((x1,2):a-22 1,0 S 2 Sci)

= ^βj to8-([to8+(1+t)e8)H-[2to8+(1+t)e8)/°} dt

and

CLF(2,a,/)

= u2((1,2) : 1 + 02 ≥ 1,0 ≤ x2 ≤ τx)

= u2((c1,02) :1 =022 1/2) + u2((x1,2) : X1 + x2 21,0 S 2 < Ti)

= /2(1/2,1/2)

+6(1+0)82 / /
J1/2 J1-s

(st)08-1 + t0B) 2 1/a - (s0B + 2t0B) 2 vα] dt ds

/SAS r /
+6(1 + a)s32/ J (st)°8-1 [(so8+to0)*3° - (so8+ 26°8)

= 3 +3- 2-1/0(28 - 1) + 3-1/(1 - 28+1)

+6(1 + 0)832 [
J1/2 J1-s

(st)0B-1 (so + toB) 2 to -(s^ + 2t08) 2 X/“] dt ds.

■ S

S

2 1^ dt ds

The measure V2((x1,00] x (x2,00]) := 92(x1,02) and from Theorem 5.3.2 the
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limiting constant for LCR is

Cuc(2,0)

= V2((1,02) :1+022 0,01 ≥ 02)

= V2((1,02) :1 =022 0) + V2((1,02) +22 0,01 > «2)

- 3.2-1∕α -2.3-1/K

CO AS

J —S
eo(s+t)

Numerical exemplifications of our main results are now considered for the LCR 

treaty. It is assumed that each marginal is a two-parameter Pareto distribution with 

df

in order to illustrate Theorem 5.3.1 and exponentially distributed for Theorem 5.3.2. 

In both cases, the expected value is set to 10,000, which implies that the Pareto 

parameters should satisfy 7 = β∕{{β — 1) × 10,000). We performed the calculations 

for β = 2, 3,4,5. For both the Pareto and exponential cases we considered a = 

2,3, 5, 7,9,10. The following tables show the values of the asymptotic constants and 

the resulting quantiles at level 0.999.

Tables 5.1 and 5.2 show that, as & increases, the asymptotic constants CLF(2, a,B) 

decrease. This makes the corresponding quantile decrease, which is expected since an 

increasing value of o results in a stronger dependence between the insurance contracts. 

Changing the value of & does not have a significant impact on the quantiles, but the 

sensitivity to β is quite apparent. This indicates that poor quantification of the tail
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Table 5.1: Asymptotic constants, CLF(2,a,B)

& 3=2 /3 = 3 B=4 B =5
2 8.6293 17.2031 34.3509 68.6358
3 8.5542 17.0840 34.1435 68.2577
5 8.4062 16.8037 33.5987 67.1870
7 8.3146 16.6248 33.2452 66.4851
9 8.2557 16.5087 33.0147 66.0263
10 8.2336 16.4651 32.9280 65.8535

Table 5.2: Quantile estimates of L2 at 0.999 level

& B =2 B =3 B=4 B =5
2 918,940 496,296 378,419 330,997
3 914,891 495,102 377,801 330,587
5 906, 852 492,269 376,164 329,417
7 901,844 490,445 375,092 328,642
9 898,606 489,254 374,388 328,132
10 897,393 488,805 374,122 327,939

index β may yield incorrect results. A heavier tail, which corresponds to a lower value 

of B, results in larger quantiles.

The asymptotic constant CLa(2, a) and quantile from Table 5.3 exhibit the same 

behaviour as in Tables 5.1 and 5.2, regarding changes in the strength of dependence. 

As anticipated, the quantiles for the exponential case are smaller than the corre­

sponding Pareto quantiles, due to the light-tail extreme behaviour of the exponential

distribution.
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Table 5.3: Asymptotic constants, CLc(2, a) and quantile estimates of L2 at level 0.999

Q CLa(2,a) Quantile
2 
3
5
7
9
10

2.1367 153,340
2.1294 153,272
2.0983 152,978
2.0770 152,774
2.0630 152,638
2.0576 152,586

5.4 Other Dependence Structures

In the previous section it was assumed that the survival copula is Archimedean, and 

some regularity conditions were imposed. The main purpose of this section is to 

extend those results.

5.4.1 Archimedean Copula

A natural question is how do the asymptotic results differ when the copula itself 

(rather than the survival copula) is assumed to be Archimedean? This can be done, 

but we give up some simplicity. In this case, we assume that the generator q is 

regularly varying at 1. By definition, this means that for any positive x the following 

holds

Him p0-tz)
H0 p(1 — t)

and we write φ ∈ RV1. Furthermore, the index satisfies the condition that a21 

(see Juri and Wütrich, 2003). The Gumbel copula is an example of such a copula 

with regularly varying generator p(u) = (— In u)°, which satisfies the latter property
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(qp € RV).
C'(u1, • • - ,Un) = exp

where α ≥ 1.

Upon defining the joint tail extreme behavior, the same steps as in the case of 

the survival Archimedean copula are followed, where (5.3.1) and (5.3.6) are replaced 

respectively by

Pr(X1 > tX1,X2 > 2) -B-B / -aβ . -aB\1/0 _ 
lιm = =xx To , 1,02 > 0, t- F(t) - N 4/ ' 

in the Fréchet case, and

Pr(X1 > t+cia(t), X2 > t+za(t))
4 F(t)

= e-2i +e-Z2 - (e-oi +e-02)1/°, -∞ < 21,22 < ∞,

in the Gumbel case (see Juri and Wütrich, 2003) provided that 1 < α < ∞. For 

simplicity, the bivariate case has been considered, but the result can be extended to 

the multivariate case, which is more cumbersome.

5.4.2 Extension

All previous cases were done under the assumption of exchangeability, which sim­

plifies the computations since we deal with order statistics. We recognize that this 

assumption may be questionable, but extensions can be made when it does not hold, 

though they are tedious.

Earlier we mentioned that the joint tail extreme behaviour is essential to charac­

terize the tail probability for the ECOMOR and LCR reinsurances. In the case that 
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the exchangeability property fails to hold we can still make the same characterization, 

provided that for any set I C {1,...,n} the following exist

Pr(X, > txi,i € I) 
⅛ —V(t)—■li > °’

in the Fréchet case, and

1 Pr(X; >t+a(t)s,i€ I)
hm------------ —;---------------, -∞ <xi<∞,
too V(t)

for Gumbel, where V(-) is a positive-valued function.

5.5 Conclusions

In this chapter, we provide a procedure to understand the tail behavior of the ECO- 

MOR and LCR reinsurances for a portfolio of dependent insurance contracts. First, 

a specific dependence structure is considered. Namely, the survival copula is assumed 

to be Archimedean. This choice of dependence structure aids in giving closed form 

results, while the exchangeability between random variables simplifies the analysis. 

Finally, we note that our main results can be extended, provided that we control the 

limiting joint tail probabilities.
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Chapter 6

Future Research

Some extensions of the present work might be considered for future research. In the 

last two chapters of this thesis, asymptotic results for large claims reinsurance are 

studied in two specific models. A related practical problem is to actually price these 

insurance products. In other words, the pure premiums for ECOMOR and LCR 

need to be quantified. We have already partially addressed this problem by providing 

asymptotic tail probabilities. Exact results will be difficult to obtain, but it may be 

feasible to find upper and/or lower bounds.

Another idea for future research focuses on the diversification effect of a portfolio 

with dependent financial risks. Under the assumption that risks are diversified, it is 

generally accepted that the subadditivity of the most popular risk measure, Value-at- 

Risk, holds. In order to determine the minimum capital charge required by regulators, 

a lower bound for the overall risk must be obtained. More specifically, the interna­

tional Basel II regulations express that the minimal amount of capital for paying 

the possible future claims should cover at least 99% of the realizations. One way 

of addressing this problem is to consider the case in which the multivariate regular

88
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variation property holds. In this situation, the associated spectral measure needs to 

be explored to aid in deciding if the asymptotic diversification effect is satisfied.
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