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Abstract

This thesis covers a theoretical study of interfacial temperature generated at 

MEMS switch contact interfaces. A characterization of metal surface topogra­

phy based on fractal geometry is presented. A surface model, a surface contact 

model and electrical contact resistance are discussed in the thesis. Further, a 

theoretical treatment of the general problem of electrical contact and heating 

is presented and developed. The interfacial temperature generated at micro 

electrical contact is analyzed and discussed, and the reason for the collapse 

of gold contact system before melting point of gold is given. Moreover, the 

interfacial temperature and contact heating analysis related to MEMS switch 

contact interfaces are discussed.
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Chapter 1

Introduction

In view of the increasing number of Micro-Electro-Mechanical systems (MEMS) 

involving surface contact, understanding of the behavior of MEMS contact in­

terfaces is imperative. Touch-mode MEMS devices are advantageous in many 

applications, such as electrostatic actuators, microswitches, and microrelays. 

The performance and lifetime of such microdevices depend on the behavior of 

their contact interfaces [1].

A Micro-Electro-Mechanical System (MEMS) is a batch-fabricated (micro­

fabricated) system that contains both electrical and mechanical components 

with characteristic sizes ranging from nanometers to millimeters.

Initially MEMS techniques were borrowed directly from the integrated cir­

cuit (IC) fabrication technologies, hence, MEMS technology also holds many 

advantages of IC technologies. A few of the advantages include very low cost 

attributed to batch fabrication, tremendous size, weight and power reduction, 

and simultaneous great performance improvement [2, 3].

The development and application of MEMS and NEMS (Nano-Electro­

Mechanical System) are critical to the current world as they will lead to major 

1
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breakthroughs in information technology, computers, medicine, health, manu­

facturing, transportation, energy, avionics, security, etc. Nowadays developing 

tendencies in engineering science have increased the importance on integrated 

synthesis, analysis, design and control of advanced MEMS and NEMS [4].

MEMS applications and markets begin where traditional IC applications 

and markets end. Commercially successful devices and systems that apply 

MEMS technologies include many micro- or nano-scale sensors (e.g., iner­

tial sensors, pressure sensors, chemical sensors, etc.), actuators (e.g., micro­

mirrors, micro-relays, micro-switches, micro-valves, etc.), and other Microsys­

tems [2]. Today, MEMS are mostly found in automotive industry, but the 

devices have already extended to biomedical, computer, wireless and optical 

communication systems, military and other industrial areas.

With the recent progress of MEMS technology, the development of MEMS 

devices for radio frequency (RF) applications has been growing rapidly. RF 

MEMS devices have a broad range of potential applications in wireless commu­

nication, space, military, instrumentation, etc. RF MEMS switches are one of 

the most promising surface-micro-machined devices that have attracted many 

research efforts in recent years. Compared with conventional switches such 

as PIN diode or FET switches, RF MEMS switches show many advantages 

in terms of near-zero power consumption, very high isolation and linearity, 

low insertion loss, etc [5, 6]. Also, RF MEMS switches can be applied in 

broad areas because of their frequencies from RF to millimeter-wave (0.1 to 

100GHz), such as Radar Systems for Defense Applications (5-94 GHz), Auto­

motive Radars: 24, 60, and 77 GHz, Satellite Communication Systems (12-35 

GHz), and Wireless Communication Systems (0.8-6 GHz) [6].

Two typical MEMS switches are shown in Figure 1.1. Figure 1.1 (a) [7] 

is the Analog devices MEMS-series inline switch developed in Northeastern
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University Boston USA. Figure 1.1 (b) [8] is miniature inline-series switch (de­

contact) developed in MIT Lincoln Lab. Both of them are vertical metal con­

tact switches. The contact material of the first device is gold while platinum- 

to-platinum contact is used by second one.

0.5 um Electrode Anchor
3

Figure 1.1: (a) Analog devices MEMS-series switch [7] (b) SEM of the de­
contact switch [8]

From their actuation mechanisms RF MEMS switches can be divided into 

electrostatic, magnetic, thermal, and piezoelectric types. Currently Most of 

researches focus on the electrostatic types because of its spectacular RF perfor­

mance [6]. From their contact mechanisms two types of RF MEMS switches 

can be divided - metal contacting and capacitive coupling. MEMS Metal 

contacting switches has a broader frequency coverage than capacitive cou­

pling switches which are not suitable for low frequency applications because of 

the capacitance nature. However, the contact lifetime of capacitive coupling 

switches is obviously longer than that of the metal contacting switches [3]. In 

addition, RF MEMS switches can be cataloged into series and shunt switches 

in terms of applications. Most metal contacting switches are often used as se­

rial switches while the capacitive coupling switches are used for shunt switches. 

In this thesis we mainly focus on a metal contacting serial RF MEMS switch.
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Even though RF MEMS switches have many advantages over traditional 

switches, there are still some problems need to be solved in the future, such 

as relatively Low Speed, Power Handling (lower than 100mW), High-Voltage 

Drive (reliable operation at 20-80V), Reliability (lower than 10 billion cycles), 

Packaging, and Cost, etc. [6].

Currently, the main failure analysis issue for RF MEMS metal contacting 

switches focuses on contact metallurgy [9]. However, understanding of contact 

properties and surface interactions at micron scale is challenging. Some of 

the failure mechanisms include adhesion, thermal softening, melting, micro­

welding, material transfer, and increased contact resistance, etc. [10, 11, 12]. 

All of them are related to contact properties and metallurgy. The contact 

properties include surface topography [13] of contact interfaces, contact me­

chanics [14], electrical contact resistance [1], etc. In addition, the surface in­

teractions due to deformation, current flow, heat generation affect the failure 

mechanisms significantly.

1.1 Surface Topography

Since the contact mechanism and metallurgy of MEMS switches are crucial 

to their failure mechanisms analysis and the surface topography is known to 

substantially affect the properties of contact materials, the surface topography 

of contact interfaces should play a significant role in these studies.

The real contacts between two rough surfaces occur only over highest as­

perities of the two surfaces. The total real contact area of the micro- contacts 

is typically a small fraction of apparent contact area [15, 16]. Greenwood and 

Williamson made the pioneering contribution for representing the topography 

of engineering surfaces by developing a popular elastic model (GW model). 
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In this model, two rough surfaces were represented by assuming them as a 

flat surface in normal contact with an equivalent rough surface. Also, it was 

assumed that the asperity heights follow a Gaussian distribution function, 

while all the radii of the asperities are same [15]. However, the values of the 

statistical parameters used in this model, such as the height variance, slope, 

and curvature of surface asperities the dependence on the statistical param­

eters depend on sample size and revolution of measuring instrument. To get 

objective contact mechanism analysis of contact rough surfaces, these short­

comings of GW model can be solved by using scale-independent parameters 

to characterize surface topography [13, 17].

In view of the random and multi-scale properties of surface topography, 

fractal geometry [18], pioneered by Benoit Mandelbrot, has been used recently 

to study rough surfaces. Due to the inherent advantages of fractal geometry, 

such as scale-independence (independence of sample size effects and resolution 

of measuring instrument) and self-affinity [13, 17], it avoids the shortcomings 

of GW model and characterizes the surface topography well. The researches 

in references [13, 14] generated a three-dimensional fractal surface topography 

by a modified (truncated) two-variable Weierstrass-Mandelbrot function. The 

simulated lμm × lμm isotropie fractal surface is shown in Figure 1.2. This 

surface model will be analyzed in detail in the following contact analysis. One 

of the earliest studies to use fractal geometry for surface topography is that of 

reference [19]. It was shown that small asperities deform plastically while large 

asperities deform elastically which is a totally different result from what is pre­

dicted from the GW model. Researchers of reference [13] introduced the fractal 

contact model prescribed above based on a modified three-dimensional W-M 

function for elastic-plastic surface in normal contact and obtained numerical 

results for the average contact pressure and real contact area in terms of the
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Figure 1.2: A simulated fractal surface lμm X lμm [13]

mean surface separation distance. However, in their study, the stress-strain 

behavior of asperities was assumed to be either purely elastic or fully plastic, 

i.e., the intermediate range of elastic-plastic deformation was not considered.

In order to obtain relations between the mean contact pressure and real 

contact area for a single spherical asperity indenting an elastic-plastic homoge­

neous medium a finite element model was developed [14] which characterized a 

single asperity micro-contact and interactions occurring at multi-scale contact 

interfaces of layered media based on fractal surface topography. In this model 

the elastic-plastic deformation was considered and the stress-strain constitu­

tive relation and the real contact area corresponding to the purely elastic, fully 

plastic, and elastic-plastic deformation regimes were characterized in details.

There are two main assumptions in this so-called elastic-plastic constitutive 

model. First, a system of two contacting rough surfaces was replaced by 

an equivalent system of a rigid rough surface and a flat deformable surface 

with an effective elastic modulus. Second, even though there are numerous 

spherical asperity micro-contacts in the contact interface, it is assumed that 

they are enough far away from each other and the asperity interactions could 

be neglected. This is a reasonable assumption since the real contact area is 

much smaller than apparent contact area and interference distance is small.
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Figure 1.3 is a schematic of a micro-contact between an upper rigid spher­

ical rough surface and a flat deformable surface. Here, r is real contact radius 

of the real contact area a , r, is the truncated contact radius of the truncated 

contact area a' and δ is local interference distance.

R
Original 
surace

X • 
Deformed 
surface

Figure 1.3: Schematic of a micro-contact between an upper rigid spherical 
rough surface and a flat deformable surface (reproduced from [20])

1.2 Electrical Contact Resistance

The electrical contact resistance (ECR) of rough surfaces is significantly im­

portant in many fields of science and engineering [1], especially in MEMS. For 

example, the operation and lifetime of some MEMS devices, such as micro­

switches, micro-relays and connectors, greatly depend on the ECR perfor­

mance.

The ECR at a single micro-contact is attributed to the constriction resis­

tance Rc, which arises due to the convergence and divergence of the electrical 

current flow through the micro-contact during switch closure [16]. When the 

contact radius r is much larger than the electron mean free path length l of 
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the material (r>l), the constriction resistance is dominated by a scattering 

or diffusive mechanism, given by the Maxwell spreading resistance [1, 16].

On the other hand, when the radius r is smaller than the electron mean free 

path length l(r <l), the constriction resistance is dominated by the Sharvin 

mechanism, in which electrons travel through the micro-contact ballistically 

without undergoing any scattering [21]. Figure 1.4 is the schematic illustration 

of diffusive (left) and ballistic (right) electron transport in a micro-contact. In

diffusive ballistic

Figure 1.4: Schematic of diffusive (left) and ballistic (right) mechanism (re­
produced from [22])

the intermediate range, neither Sharvin mechanism nor Maxwell spreading is 

in dominance. To a quite good approximation, the constriction resistance is 

described by Wexler’s interpolation formula [23] which will be discussed further 

in Chapter 3.

For most MEMS devices, due to relatively light contact loads, the ratio of 

real contact area and apparent contact area is between 10-4 and 10-2. Such 

small micro-contacts lead to the predominance of Sharvin mechanism in the 

ECR [1].
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1.3 The Temperature-Voltage Relation of The­

oretical Electrical Contact Theory

As mentioned above, surfaces of metals are rough no matter how carefully 

they are prepared. The nature of the contact between two metals is markedly 

influenced by the roughness of the two contact surfaces. When two metals 

are brought into contact, just highest asperities of the surfaces contact each 

other. The real contact area is just a small fraction of the apparent contact 

area (10^4 to 10-2) [15, 16].

If there is a current flow between the contact metals, the current flow must 

pass the metal micro-contact through those highest asperities, converging then 

diverging. The constriction resistance causes the Joule heating in the micro­

contact and the temperature in the micro-contact is much higher than the 

surrounding bulk metal. [16, 24, 25]. The heat generation in the micro-contact 

often causes thermal softening, melting, micro-welding, etc., and decreases the 

reliability and life of devices. Therefore, it is important to understand contact 

temperature for the study, design and use of contacts. Figure 1.5 indicates the 

molten gold has splashed from micro-contact interfaces onto the surrounding 

cold metal, where it has frozen.

One method to determine the temperature of a micro-contact is to use the 

theoretical temperature-voltage relation [16, 26] which indicates the relation 

between the applied voltage across the micro-contact and maximum tempera­

ture in contact interface. By utilizing this relation, we can calculate maximum 

temperature in contact interface from applied contact voltage. Further, a new 

mathematical treatment of the general problem of electrical heating had been 

presented in [24, 26]. The researchers in [24] investigated the interface temper-
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whs

Figure 1.5: Photomicrograph of a gold surface showing the damage caused in 
region of contact by the passage of a high current. Magnification ×120. [24]

ature between the contact of two gold bulks due to the passage of an electric 

current from a high impedance source [27] and heat generated in the con­

stricted region of the contact interface. They observed the collapse of the 

contact system occured at the temperature calculated from the temperature­

voltage relation | around 950 oC which is lower than the melting point of gold 

(1064 °C). Further, the metallographic evidence showed clearly that some of 

the gold had reached the melting point, 1064 °C. Later on, the researchers 

in [26] suggested that at high temperatures the behaviour of the contact re­

gion is not adequately described by the accepted theory. They developed a 

theoretical treatment of the general problem of electrical contact and heat­

ing. The relations they obtained include the relation between the temperature 

at any point and the maximum temperature, the relation between the total 

current and the maximum temperature and the relation between the current 

density at any point and the total current, etc. Also, they discussed the rea­

son of the phenomena described in study [24]. In this thesis we developed 
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their theories and clearly revealed the reason of the phenomena described in 

study [24] in Chapter 4.

Both of the thermal conductivities and the electrical resistivities of metals 

are temperature dependent. The thermal conductivity of gold decreases when 

temperature increases [28]. The electrical resistivity of gold varies obviously 

with temperature and increases when temperature increases [29]. This makes 

the problem more complicated, however, the thermal conductivities and the 

electrical resistivities of metals follow the Wiedemann-Franz Law [16] which 

indicates the relation among the thermal conductivity, the electrical resistivity 

and the temperatures.

1.4 Thesis Outline

The general approach of this study aims at finding out what will happen in 

the interfaces of a micro-switch or a micro-relay when electric currents pass 

through the interfaces. During contact, some portions of the interfaces will 

melt and weld because of high temperature. Sometimes the molten gold might 

be splashed from the surfaces. When the molten metal solidifies, the two 

surfaces may bond and the device will damage and fail. Even though there is 

no melting or splashing, high temperature may change mechanical properties 

of the material of the micro-relay, soften the asperities of the surfaces and 

make larger real contact area and larger adhesion, which also will lead to the 

failure of the device.

The objectives of this study include:

1. Study metal surface topography, contact model and electrical contact 

resistance in micro scale;
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2. Solve the temperature field across contacting surfaces of a micro-switch 

subject to electric current flow;

3. Study the effect of elevated temperatures at micro-switch interfaces on 

the mechanical response (thermal softening), real contact area, adhesion, 

and permanent failure of the micro-switch due to micro-welding.

Figure 1.6 shows schematically how the various parameters are intercon­

nected. The fractal surface analysis is based on a lμm × lμm gold sample, 

and the effects of related material properties, fractal roughness G, and fractal 

dimension D, to the surface topography are discussed. Then, a contact model 

due to applied load P is described and related material properties include 

Young’s modulus E, Poisson’s ratio v and yield strength σγ. Since the real 

contact area ai of the ith asperity is obtained, the electrical contact resistance 

can be calculated and the material electrical resistivity p, electron mean free 

path I are applied here. Further, the temperature and heat transfer in con­

tact interfaces are analyzed and discussed, the related material property is 

thermal conductivity k. The maximum temperature Tmi of the ith asperity in 

contact interfaces is computed. When it is higher than the melting point of 

gold micro-welding will happen. The device will damage and fail. When Tmi 

is less than the melting point, material softening and adhesion will change the 

contact mechanics of the device such as the real contact area and electrical 

contact resistance of the material. This might lead to the failure of the device.

Conclusions based upon existing data and theoretical computations are 

included in the last chapter.
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Figure 1.6: Flow chart



Chapter 2

Contact Modeling

As mentioned in Chapter 1, the main failure analysis focuses on the contact 

properties and metallurgy for MEMS metal contacting switches [9]. The con­

tact properties mainly include surface topography of contact interfaces and 

contact mechanics. In this chapter we will explore them and study how the 

related material properties affect them.

2.1 Fractal Surface Characterization

Many conventional analytical approaches for surface topography are based on 

the Greenwood Williamson (GW) model [15]. However, this model is scale­

dependent, the values of the statistical parameters used in this model, such as 

the height variance, slope, and curvature of surface asperities depend on sample 

size and revolution of measuring instrument. In order to account for the effect 

of surface topography that is random and multi-scaled, it is necessary to use 

a scale-independent model. A fractal approach essentially serves the purpose. 

The concept of fractal geometry pioneered by Benoit Mandelbrot [18] has been 

14
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+Φm,n∙

used recently to characterize rough surfaces and contact problems.

2.1.1 The Fractal Surface Model

In this thesis we use the modified (truncated) two-variable Weierstrass-Mandelbrot 

function mentioned before to generate a three-dimensional fractal surface to­

pography [13].

/G\D —2) ∕ι \ 1/2 M Nmaz
z(x,y) = L ( — (2 X X y(D-3)x(cos Qm,m _ cos ym,n), (2.1)

M / m=1 n=0

where,

277y"(x2 + y2)1/2 Γ 7m
Ψm,n = ---------------------cos tan 1(-) L---------------- L Nx/

Here, L is the sample length, G is the fractal roughness, D is the fractal 

dimension of the surface (2 < D < 3), 7(7 > 1) is a scaling parameter, 

M is the number of superposed ridges used to construct the surfaces, n is a 

frequency index, with Nmax = int[log(L∕Ls)/ log 7] representing the upper limit 

of n, where Ls is the cut-off length (smallest length between two points), and 

Φmtn is a random phase. The chosen material is lμm × lμm gold sample so 

the sample length L = lμm. The scaling parameter 7 controls the density of 

frequencies in the surface profile. Considering surface flatness and frequency 

distribution density, 7 is chosen to be 1.5 [13]. The cut-off length Ls is set to 

equal to lnm. The ridge number M is chosen to be 10. The fractal roughness G 

is a height scaling parameter independent of frequency. The magnitude of the 

fractal dimension D determines the contribution of high and low frequency 

components in the equation. Thus, larger values of D indicate that higher 
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frequency components are more dominant than lower frequency components 

in the surface topography profile. In this equation the only unknown variables 

are G and D , which can be determined experimentally.

2.1.2 Generation of the Surface

First, we divided each side of the sample by 1000, so the total points on the 

surface is one million. Then, we wrote a Fortran programme (see appendix 

A) to calculate the height z(x,y) of each point. In this programme, we use 

SUBROUTINE QUICK SORT to sort the values of z(x,y) in a sequence from 

the lowest one to the highest one. The function of the CALL RANDOM 

NUMBER(R)is to obtain a random number for each loop of the function 

"z(x,y)" , since there is a random phase Om,n in the equation (2.1). Therefore, 

each time we run the same programme we will get a different surface even 

though we do not change anything in the programme.

After running the programme in Fortran, we use the obtained data to 

generate the rough surface in Matlab.

2.1.3 Effects of Fractal Parameters G and D

Before the analysis of effects of G And D, we first elucidate the effects of Ls 

and M to the surface topography.

The cut-off length Ls represents the smallest wavelength. For fixed Gy D 

and M , when Ls = lμm which is the sample length Ly it means there is just 

one wave in x direction (Fig. 2.1 (a)). Comparing with Figure 2.1 (b) where 

Ls = lnm , we can see the obvious difference between them. In both of them 

M = 1, it means there is one superposed ridge, so we can see there is just a 

straight line in y direction. However, when the ridge number M = 3 , it is 
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not a straight line any more in y direction and a visually random surface is

obtained (Fig. 2.2 (b)).

0
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Figure 2.1: Simulated three-dimensional fractal surfaces (D = 2.44, G =
9.46 × 10-13m, M = 1 )

0.5 
am

To illustrate the physical significance of the fractal parameters G And D 

on the surface topography, another two pairs of simulated fractal surfaces are 

shown in Figure 2.3 (a)-(b) and Figure 2.4 (a)-(b). The fractal roughness G 

is a height scaling parameter independent of frequency. The comparison of 

Figure 2.3 (a) and (b) indicate that the bigger G value yields the rougher 

surface topography. This is expected since G affects the amplitude term in 

equation (2.1). However, for fractal dimension D , the situation is reverse. 

Even though the magnitude of the fractal dimension D determines the con­

tribution of high- and low-frequency components in equation (2.1) and high 

D values indicate the dominance of high-frequency components in the sur­

face topography, increasing D value yields a smoother topography (Fig. 2.4 

(a)-(b)).

Comparing Figure 2.3 (b) with Figure 2.4 (b), we gain the evidence that 

even though both of them have same parameters ( D = 2.44, G = 9.46 ×
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Figure 2.2: Simulated three-dimensional fractal surfaces (P = 2.44, G = 
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Figure 2.3: Simulated three-dimensional fractal surfaces (D = 2.44, Ls = 
lnm, M = 10 )
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(a) D = 2.34 (b) D = 2.44

Figure 2.4: Simulated three-dimensional fractal surfaces (G = 9.46 × 10 13m, 
Ls= lnm, M = 10 )

10^13m, M = 10, Ls = lnm ), the surface topographies are different for 

running the programme two times due to the existence of the random phase in 

the equation (2.1). However, since their fractal roughness and dimension are 

same, there should have some similarities between their mechanical properties. 

We will discuss it in next section.

2.2 Contact Mechanics Analysis

2.2.1 Elastic-Plastic Deformation Model

Figure 2.5 (left) could be utilized to simulate two MEMS switch contact inter­

faces which are closing together. The interfaces are not perfectly smooth due 

to the surface roughness and topography. When the two interfaces are closing, 

just the highest asperities come into contact. Therefore, the surface contact 

comprises numerous asperity micro-contacts which are assumed as spherical 

in shape. Another assumption is the micro-contacts are apart from each other 

0 0
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sufficiently and the asperity interactions among them can be neglected. This 

is a reasonable approximation for relatively light contact loads where the real 

contact area A is a small percentage of the apparent contact area Aa [16]. The 

system of these two contacting rough surfaces can be represented by an equiv­

alent system of a flat deformable surface with a rigid rough surface (Fig 2.5 

(right)). Here, the material Young’s moduli can be transferred to an effective 

elastic modulus E*

where V1,1/2 , and E1, E2, are the Poisson’s ratios and elastic moduli of 

the two interacting surfaces, respectively. Here, gold Young’s modulus E = 

80 × 109Pa and Poisson’s radio v = 0.44 [30]. Based on these assumptions and 

the knowledge of the mean contact pressure at asperity micro-contacts and 

real micro-contact area, the total contact load and total real contact area can 

be obtained using an integration procedure [14].

Figure 2.5: Contacting rough surfaces

In the study of [14], the stress-strain behavior was divided into three kinds 

of deformations-purely elastic, elastic-plastic and fully plastic deformation, 

depending on the values of the representative strain, E*δ∕σγr', where δ is the 

7777777777777/77
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interference distance between the rigid sphere and the surface of the deformable 

medium, σγ is the yield strength of the deformable medium and r' is the 

radius of the truncated contact area a' , the mean contact pressure, pm, and 

the real contact area, a , were obtained due to the interference distance δ . 

A constitutive elastic-plastic deformation model for a single asperity micro­

contact was generated as [14],

For elastic deformation ( E*δ∕σγr' < 1.78 ),

Pm = 4/2 (E°\ d = 2 
σγ 37 (oyr')'a (2.3)

For elastic-plastic deformation (1.78 ≤ E*δ∕σγr' < 21),

Pm 1 (E*δ ∖— = 0.70 In ---- - ) + 0.66,
Oy OYT)

al Γ / E*8\12 (E*8
— = 0.05 In —- ) - 0.571n
a L Oyr )] OYT'

+ 2.41.
(2.4)

For fully plastic deformation ( 21 ≤ E*δ∕σγr' < 400 ),

a' Γ /E*S\12 / E*S\m = 2.9, — = 0.05 In ----- - - 0.571n ------) + 2.41. 
σγ-------------a---------- [ OYT'/ OYT’)

(2.5)

For fully plastic deformation ( 400 ≤ E*ô/oyr‘), 

a2m = 2.9, - = 0.71.
Ty a

This elastic-plastic deformation model reflects a continuous transition from 

elastic to fully plastic deformation. For any contact asperity in the regime, 

its mean contact pressure, pm, and real contact area, a, can be found out, 

depending on its representative strain, E*δ∕σγr', and truncated contact area
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a, . Then, by using an integration procedure the total contact load and total 

real contact area can be obtained, which will be discussed in the following 

subsection.

2.2.2 Surface Contact Model

As mentioned above, the equivalent contact model of two rough surfaces com­

prises a rigid spherical rough surface and a deformable flat medium. The 

mechanical properties of the medium and the surface topography (described 

by fractal geometry) of the rough surface are equivalent with those of real 

contacting surfaces. The total contact load and total real contact area at 

a given surface interference distance can be obtained if we find out the val­

ues of the local surface interference distance and the truncated radius of each 

micro-contact asperity.

To find out the truncated radius of the ith micro-contact asperity, rli, 

we need to get the value of the total truncated area Al first. Following an 

analytical procedure similar to the studies [13, 14], A' is given by

[ a'n(a')d 
Ja,

(2.7)

where a, is the truncated area of a single micro-contact, a’t and a', are the 

largest and smallest truncated micro-contact areas, respectively, and n(a') is 

the truncated asperity size distribution function.

The number of truncated asperities, N, with areas greater than a particular 

truncated area, a', is assumed to follow the power-law relation [18],

/l\(D-1)/2

N(a') = a'/ (2.8)
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Eventually, the total number of truncated asperities, at a given surface inter­

ference distance Δ , can be expressed as

f a'r\ (D-1)/2N(a4)=(-)
N s /

(2.9)

For a continuum, the size of the smallest micro-contact asperity should be 

bigger than the atomic dimensions, therefore, the diameter ds of the smallest 

truncated area, a's, is assumed to be six times the lattice dimension of the 

contact material [14]. In this study, we set ds = lnm .

At a given surface interference distance Δ , the number of micro-contact 

asperities with their truncated areas between a' and al + da, is n(a')da' . So, 

the truncated asperity size distribution function can be calculated by [13]

A dN(a') (D - 1) (D-1)/2 /(D+1)/2 (9
0 2 da, 2L 2

Substituting equation (2.10) into equation (2.7), the total truncated area of 

the fractal surface can be written as [14]

A' = P-1
3- D
(N! (D-1)/2 ,(3-D)/2 
[aL ~aL as) (2.11)

At a given surface interference Δ , the total truncated contact area, A' , 

can be obtained by numerical integration. The number of surface points Ns 

above the truncation plane was determined and the ratio of the total truncated 

area and the apparent area (Aw = 10-12m) equals to the ratio of the number 

of truncated surface points to the total number of points (1000 × 1000 = 106).
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See equation below

Aa 106'

For relatively light contact loads the total real çontact area of the micro­

contacts is typically a small fraction of apparent contact area (between 10-4 

to 10-2) [15, 16]. We preset the smallest total truncated area and biggest total 

truncated area as 10-4 and 10-2 of the apparent area , respectively, then the 

surface interferences are decided (see Figure 2.6). After this procedure, from 

the obtained total truncated area A’, the truncated area of the largest micro­

contact, a't was calculated from equation (2.11). Then the total truncated 

asperities can be generated from equation (2.9). Also, the truncated area of 

ithasperity a'i was calculated using equation (2.8).

/77777/7//7/X////////////////

A/A, =102

A/A, =104

Smallest Surface 
Interference 

(Ag)

Largest Surface 
Interference 

(AL)

The ith truncated asperity radius r can be calculated from a'i. The local 
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interference, δi, at the ith asperity is given by [13]

δi = 2G(D-2)(In)1/2(2r4)(3-D). (2.12)

Then the representative strain E*δi∕σγrli at the ith asperity was obtained. 

Subsequently, from the elastic-elastic deformation model (Eqs. (2.3)-(2.6)), 

the mean contact pressure, Pmçi, and real contact area, ai, at the ith asperity 

micro-contact were determined. Finally, the total contact load, P, and total 

real contact area, A, were obtained by numerical integration,

N(a4)
P = Z Pm,i0, (2.13)

i=1

and
N(a4)

A= S q. (2.14) 
i=1

2.2.3 Results and Discussion

The chosen values of the parameters in the surface model (Eq. (2.1)) are shown 

in the Table 2.1

Table 2.1: Surface model parameters

Parameters Values Physical Meanings
L 1pm Sample Length
G 9.46 × 10-13m Fractal Roughness
D 2.44 Fractal Dimension
7 1.5 Scaling Parameter
M 10 Number of Superposed Ridges
Ls Inm cutoff length(smallest wavelength)
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As mentioned previously, the surface topographies are different for running 

the programme two times due to the existence of the random phase in the 

equation (2.1). So, we just chose this surface topography for following surface 

contact calculation. Table 2.2 shows the calculation results of total truncated 

area, A', biggest truncated area, a'L, total contact asperities and the ratio of 

a'L and A’, depending on different surface interference, Δ. It indicates that 

A’, a’t and total contact asperities all increase as the surface interference Δ 

increases, however, the ratio a’L/ A’ decreases slowly, which is reasonable since 

there are more and more asperities contact each other. Nevertheless, biggest 

truncated area, a’t is a big portion of total truncated area, A’ (from 0.427 to 

0.558). Therefore, the calculation of a'L is critical for the analysis of surface 

contact.

Table 2.2: Surface model results

Δ[m] A/s,2 A Lm J lT21 alm 1 Contact Asperities Ratio of a'L to A'
8.51E-10 1.OOE-16 5.58E-17 21 5.58E-01
1.94E-09 1.00E-15 4.67E-16 99 4.67E-01
2.55E-09 2.00E-15 9.03E-16 159 4.52E-01
2.86E-09 3.00E-15 1.33E-15 211 4.44E-01
3.08E-09 4.00E-15 1.76E-15 258 4.40E-01
3.26E-09 5.00E-15 2.18E-15 301 4.36E-01
3.44E-09 6.00E-15 2.60E-15 342 4.34E-01
3.58E-09 7.00E-15 3.02E-15 381 4.32E-01
3.69E-09 8.00E-15 3.44E-15 418 4.30E-01
3.79E-09 9.00E-15 3.86E-15 454 4.29E-01
3.88E-09 1.00E-14 4.27E-15 489 4.27E-01

Figure 2.7 indicates the relation between biggest truncated area, a’L and 
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surface interference, Δ. Figure 2.8 indicates the relation between the ratio, 

a’L / A‘ and surface interference, Δ. In the calculations we set the diameter of 

the smallest truncated area, ds — lnm.

3.00E-15 -

1.50E-09

Δ [m]

3.00E-09 4.50E-09

2.∞E-15 -

1.OOE-15 -

0.00E+00 ------
0.00E+00

5.00E-15 T

4.00E-15-

Figure 2.7: Biggest truncated area vs. surface interference

As mentioned previously, we need to use equation (2.2) to calculate the 

effective elastic modulus E* of contact medium. Since we use two gold contact 

surfaces, the equation can be converted into

E
E* = ,2(1 - v2)’

where Young’s modulus of gold E = 80 x 109Pa and Poisson’s radio v = 

0.44 [30]. The yield strength σγ is approximately equal to one third of the 

material hardness [14], in this study we chose σγ = 0.53 × 109Pa.

The calculation results for total real contact area A and total contact load P 

are shown in Table 2.3. We use dimensionless contact load P, = P∕AaE* which 

is total contact load P divided by apparent area Aa and the effective elastic 

modulus of gold E* as x-axis and dimensionless real contact area A. = A∕Aa 

which is total real contact area A divided by apparent area Aa as y-axis. The
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Figure 2.8: The ratio of biggest truncated area to total truncated area vs. 
surface interference 

relation between contact load and real contact area is shown in Figure 2.9 

which indicates the total real contact area increases approximately linearly as 

the total contact load increases.

The relation between the ratio of real contact area to apparent area (A.) 

and surface interference is shown in the Figure 2.10 which indicates that the 

real contact area increases as the surface interference increases and the real 

contact area is just a very small fraction of the apparent contact area.

The significance of the fractal roughness G and the fractal dimension D on 

the total contact load and real contact area can be interpreted in light of the 

results shown in Figures 2.11 and 2.12 , respectively. For fixed contact load, 

decreasing the fractal roughness increases the real contact area significantly 

(Fig. 2.11). This is expected because G is a height scaling parameter, smaller 

G values correspond to smoother surface topographies, therefore, under same 

contact load, smoother surfaces result in larger real contact areas. A similar 

trend occurs when the fractal dimension D increases (Fig. 2.12). Since larger
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Figure 2.9: The relation between dimensionless contact load and dimensionless 
real contact area
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Figure 2.10: Dimensionless real contact area vs. surface interference
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Table 2.3: Total real contact area and contact load

Δ[m] 4[m2] P(M] A/Aa P/A.E*

8.51E-10 8.55E-17 8.60E-08 8.55E-05 1.73E-06
1.94E-09 7.52E-16 6.63E-07 7.52E-04 1.34E-05
2.55E-09 1.45E-15 1.22E-06 1.45E-03 2.46E-05
2.86E-09 2.13E-15 1.74E-06 2.13E-03 3.50E-05
3.08E-09 2.81E-15 2.24E-06 2.81E-03 4.51E-05
3.26E-09 3.46E-15 2.71E-06 3.46E-03 5.47E-05
3.44E-09 4.12E-15 3.18E-06 4.12E-03 6.41E-05
3.58E-09 4.77E-15 3.64E-06 4.77E-03 7.33E-05
3.69E-09 5.50E-15 4.13E-06 5.50E-03 8.33E-05
3.79E-09 6.17E-15 4.58E-06 6.17E-03 9.22E-05
3.88E-09 6.82E-15 5.00E-06 6.82E-03 1.01E-04

D values are associated with smoother surface topographies, which, obviously, 

lead to larger real contact areas under same contact load.

In conclusion, a normal contact analysis of two rough gold surfaces char­

acterized by three dimensional fractal geometry has been presented. Random 

rough surfaces were generated from the developed fractal model. The signif­

icance of the fractal roughness G and the fractal dimension D on the total 

contact load and real contact area were discussed in detail. The biggest trun­

cated area, a'L is a big portion of total truncated area, A,. Therefore, the 

calculation of a’t is critical for the analysis of surface contact.
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Figure 2.11: Effect of the fractal roughness G on the dimensionless total con­
tact load and real contact area
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Figure 2.12: Effect of the fractal dimension D on the dimensionless total 
contact load and real contact area



Chapters

Electrical Contact Resistance

Analysis

Electrical contact resistance (ECR) is caused by the roughness of contact sur­

faces. When two rough surfaces are pressed together, just highest asperities 

make contact. Therefore, the constriction resistance at each asperity is gener­

ated due to the convergence and divergence of the current flow passing through 

the micro-contact spot (Fig 3.1 and 3.2). Since all the constriction resistances 

are in parallel, the total electrical contact resistance

Rc=
N(a4) ] 1
>R-1
i=1

(3.1)

where Rei is the constriction resistance at the ith asperity. As mentioned 

in Chapter 1, the constriction resistance is composed by both of Maxwell 

spreading resistance and Sharvin resistance. When the contact radius a0 is 

much larger than the electron mean free path length I of the material (α0 » l), 

the constriction resistance is dominated by a scattering or diffusive mechanism,

32
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Surface S1

Current Flow

Interface S.

Surface S2

Uu710 uv1

U H V """" UUU HU

Micro-contact Spot

Figure 3.1: Schematic of current flow passing through electrical contact inter­
faces

a

Figure 3.2: Schematic of MEMS contact interfaces (reproduced from [1])
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given by the Maxwell spreading resistance [1, 16],

(3.2)

When the radius ⅛ is smaller than the electron mean free path length I of 

the material (do ≪ l), the constriction resistance is dominated by Sharvin 

mechanism, in which electrons travel through the micro-contact ballistically 

without undergoing any scattering [21],

Rs=-⅛L(3,3) 
37ra02'2

where Rs is so-called Sharvin resistance. In the intermediate range, neither 

Sharvin mechanism nor Maxwell scattering Mechanism is in dominance. To a 

quite good approximation, the constriction resistance is described by Wexler’s 

interpolation formula [23]

— Rs+T(K)RM, (3.4)

where T(K) is a slowly varying function of the ratio K = l/a0 , with Γ(0) = 1 

and Γ(∞) = 0.694 (Fig. 3.3).

From Table 2.2 the biggest truncated area ⅛ = 4.27 × 10-15m2 for largest 

surface interference AL = 3.88 × 10-9m, so the radius of biggest micro­

contact spot α0 = 36.8 × 10-9m. Since the electron mean free path of gold 

l = 40nm [30], all the micro-contact spots radii are smaller than the electron
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1.5

Figure 3.3: The slowly varying function Γ(K) vs. K = l/ao (reproduced 
from [23])
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mean free path of gold. We can assume T(K) — 0.694 and obtain

Rd — 7------ , + 0.694- ---- (3.5)37ra0,2 2a0,

Table 3.1 shows the calculation results of total electrical contact resistance, 

R[Q], total contact pressure P/A„[N/m2], depending on different surface in­

terference, Δ. The logarithmic scale relation of electrical contact resistance 

and contact pressure is shown in Figure 3.4 which indicates that the electrical 

contact resistance decreases as the contact pressure increases. This is expected 

because the real contact area increases as the contact pressure increases.

To sum up, Electrical contact resistance (ECR) is caused by the roughness 

of contact surfaces. The constriction resistance of a particular contact asperity 

is composed of the Maxwell resistance or the Sharvin resistanceby or both of 

them, depending on ratio of the electron mean free path length, 1, and the 

radius of the asperity, αo.

However, the effect of the resistance described in equation (3.5) on the re- 
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Iationship between voltage and contact temperature is not immediately appar­

ent. Moreover, the relation between the electrical resistivity and the contact 

temperature is not shown in this equation. In real situation, due to the con­

vergence and divergence of the current flow passing through the micro-contact 

spot, the contact temperature of the spot increases ' very quickly [16]. The 

electrical resistivity of the metal material varies obviously with temperature 

and increases when temperature increases [29]. In next chapter (Temperature 

Analysis), we focus on the effects of temperature at the micro-contact spot on 

the mechanical and electrical properties of contact medium. The relationships 

among maximum temperature, current flow and applied voltage are described.

Table 3.1: Electrical contact resistance and contact pressure

Δ[m] P/A.[N/m2] Re[0)

8.51E-10 8.60E+04 1.49E+01
1.94E-09 6.63E+05 1.79E+00
2.55E-09 1.22E+06 9.51E-01
2.86E-09 1.74E+06 6.60E-01
3.08E-09 2.24E+06 5.08E-01
3.26E-09 2.71E+06 4.17E-01
3.44E-09 3.18E+06 3.54E-01
3.58E-09 3.64E+06 3.09E-01
3.69E-09 4.13E+06 2.72E-01
3.79E-09 4.58E+06 2.44E-01
3.88E-09 5.00E+06 2.23E-01
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Figure 3.4: Logarithmic scale relation of electrical contact resistance vs. con­
tact pressure



Chapter 4

Temperature Analysis

4.1 Temperature-Dependent Thermal Conduc­

tivity and Electrical Resistivity of Gold

4.1.1 The Thermal Conductivity

The magnitude of the thermal conductivity of a given metal depends on its 

microscopic structure and also tends to vary somewhat with temperature. The 

temperature dependence of thermal conductivity k[W/mK] of gold is shown 

in Table 4.1 [28]. It indicates that the thermal conductivity decreases when 

temperature increases but it varies very slowly. See Figure 4.1. At room

Table 4.1: Thermal conductivity of gold

Temperature 
T[K)

200 300 400 500 600 800 1000 1200

Thermal Conductivity 
k[W/mK]

323 317 311 304 298 284 270 255

38
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Figure 4.1: Temperature dependent thermal conductivity of gold

temperature, To = 298K and thermal conductivity, ko = 317W∕mK, we set 

θ = T — To, where θ is supertemperature, T is absolute temperature, then,

k = ko (1 — B0). (4.1)

where, β is the temperature coefficient of the thermal conductivity and ap­

proximately equal to 2 × 10-4 for gold.

4.1.2 The Electrical Resistivity

The electrical resistivity of a metal varies with temperature and increases 

when temperature increases. It can also be represented by a linear function of 

temperature [29]

p = p6(1 + a8), (4.2)

where a, the temperature coefficient of the electrical resistivity, is of the order 

of magnitude of 1/2 per cent for ordinary metal. Po is the resistivity at room 

temperature. If we choose Po = 2.25510-8Ωm as room temperature resistivity 
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where To = 298K (see Table 4.2) [31], then a approximately equals to 4 x 

10-3 which is much larger than the temperature coefficient of the thermal 

conductivity, /3 = 2 × 10-4. The curve of resistivity vs. temperature is almost 

linear (Fig 4.2).

o--- :----- ,----- ,----- ------
0 200 400 600 800 1000 

T[K]

Figure 4.2: Temperature dependent electrical resistivity of gold

4.1.3 The Wiedemann-Franz Law

The Wiedemann-Franz Law [16] states that the thermal conductivity k and 

the electrical resistivity p obey the relation

kp = LT, (4.3)

where L is Lorenz constant (2.45 × 10 8(V∕K)2). From this relation we can



41

Table 4.2: Electrical resistivity of gold

Temperature 
T[K]

Electrical Resistivity 
^lO-8Qm]

1 0.022
10 0.0226
20 0.035
40 0.141’
60 0.308
80 0.481
100 0.65
150 1.061
200 1.462
273 2.051
293 2.214
298 2.255
300 2.271
400 3.107
500 3.97
600 4.87
700 5.82
800 6.81
900 7.86

This equation indicates the relation among the thermal conductivity, the elec­

trical resistivity and the temperatures and will be used in following analysis.

4.2 Current in a Straight Wire

4.2.1 A Straight Wire of Gold

Before we explore the micro-contact problem which is a three-dimensional 

problem, we discuss the problem in a one-dimensional straight wire of gold 

shown in Fig 4.3. Its length is 2 × L, area is A, the boundary conditions are
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Figure 4.3: A straight wire of gold

V = U, 0 = 0 Current Flow I V =-U, 0=0——•
--------:--------- !--------------------I 4

A 1 1
K------------------ •

V = U, 0 = 0, x — L,
(4.5)

V = - U, 8 = 0, x = -L.

The wire is insulated along lateral surfaces. By the Ohm’s law the current 

density is
dV

j = -0 —, (4.6)j dx 2
1

where the electrical conductivity σ ≡ -. So, from conservation of charge, 
P

djx d ( dV\ , == = = — 0— = 0. 4.7 
dx dx∖ dx J

Equation (4.7) indicates that the net electric outflow per unit volume passing 

through any point within the wire is zero and it holds everywhere in the wire.

The electrical conductivity σ is a function of temperature and as U is 

increased the Joule heating causes a temperature increase so that σ is not a 

constant. If we regard a as a function of V (instead of T), we can write

( = / odn, 
Jo

(4.8)
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In Appendix D, it is shown that the temperature can be found in terms of the 

voltage. The conductivity is then written as

U00 (1 + T)
O = —===== — COT. 

VU3 +U2 - V2
(4.9)

where U3 = Tokopo and τ = βTo. Now, the problem transforms to essentially 

a constant conductivity problem. Then, we have

dip dV
— = O — = dx dx

d2) n, We want , = 0, so we have dx2‘

x 
V == Vo- (4.10)

where, 

o= σdη.
Jo

(4.11)

A
We also know that total current 1 = V0 —, therfore, 

L 

A U 
1=τ odn.L Jo

(4.12)

If U is very small and we can ignore temperature increasing, then Jo- σdηz 

σ0U, and
τ Ago, 
I = U.

L

We know resistance R0 = ——, so it converts into

U_
- R0’ 
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which is the linear expression of Ohm’s law where the material properties are 

constant.

Substitute σ by equation (4.9), we get

I = -00U0(1+ τ)—===========— -σ0τU L VU3 + U2 - n2 L

A , U U —0000 (1 + T) arctan - — τ - . 
L U0 U0∖ 

A 
A reference constant I0 is defined by I0 = -σ0U0, and then,

I U U — = (1 + 7) arctan — - 
To ‘ U0 U0

(4.13)

(4.14)

4.2.2 Analysis and Discussion

The values of the parameters in the equation (4.14) are shown in the Table 4.3. 

The straight line in Figure 4.4 represents the current-voltage relation when the 

electrical conductivity is a constant and obviously the relation between them 

is linear. However, when the electrical conductivity is temperature dependent 

the current-voltage relation would not be linear. That is because increasing 

applied voltage leeds current increasing and the temperature increases due to

Joule heating. Since the electrical resistivity p increases a lot due to higher 

temperature, the conductivity decreases leeds the current increasing slower 

than before and reaching maximum value at the instability point, then de­

creases slowly until the maximum temperature reaches melting point. At the 

instability point, the contact maximum temperature θm = 959 oC is lower than 

the melting point of gold (1064 °C). Current also reaches its maximum value 

at the instability point. If we keep increasing the current after the instability 
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point the wire will reach the melting point immediately and melt.

Table 4.3: The parameters of the wire

Parameters Values Physical Meanings
A 7.9 × 10"9m2 Area
L 0.3m Length
10 298K |Room Temperature
ko 317W∕mK Thermal Conductivity
Po 2.25510-8Ωm Electrical Resistivity
τ 0.0596 3T

Here, the instability point is similar with the “Necking” point in a uniaxial 

tensile test. Figure 4.5 is a schematic of a typical load-extension curve for a 

ductile metal during the tensile test. Onset of non-uniform plastic deformation 

(Necking) occurs at the “Necking” point where the maximum or ultimate load 

is carried by the specimen. The relation between current and voltage for a 

micro-contact system is analogous with load-extension or nominal stress-strain 

relation in a tensile test. Therefore, we give this point the name “Instability” 

where the current reaches its maximum value and instability behaviors occur. 

We will discuss the maximum current at the instability point in detail in next 

section.

Table 4.4 shows the results of currents and applied voltages at instability 

point and the melting point. The current at instability point is smaller than 

that at melting point when applied voltage goes higher. In next section we will 

discuss the same problem when current pass through a micro-contact spot.
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Figure 4.4: Theoretical relation between current and voltage for a straight 
wire of gold
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▲

“Necking” Point
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Deformation
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Plastic ;

Deformation! 
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Figure 4.5: Load-extension or nominal stress-strain plot for a ductile metal 
during a tensile test

Table 4.4: Calculation results of the gold wire

Temperature [°C] Current I [A] Applied Voltage U [V]
959(Instability) 1.958 0.189
1064(Melting) 1.956 0.202

4.3 The Current Passing Through the Micro­

Contact Spot

4.3.1 The General Problem

Figure 4.6 shows a model of a spot micro-contact system, which is rotationally 

symmetric with respect to z-axis. The micro-contact system is made up of two 

relatively large pieces of metal which contact each other over a very small spot. 
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The radius of the contact spot is r = ao. When the electrical current passes 

through the surfaces S1, S2, which are assumed far from the contact spot, 

the surface potentials V1, V2 equal to applied voltage U, -U, respectively,

and the temperature on the surfaces are room temperature T0. The surface

S is assumed electrically and thermally insulated, so. ∂V T OV 
— = 0. V and- ∂z ∂z are

continuous over the contact spot and V = 0 at the contact spot. Our purpose

is to determine the values of the potential, the temperature, and the current 

at all points within the micro-contact system. The boundary conditions are

Rotational Symetry

S1

SS

SS
Insulator

S2

Contact Spot 
(V =0, r =a)

Figure 4.6: Model of a spot micro-contact system
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There are three situations for a micro-contact spot,

V = U as 2,2 r° + 2% — 00 z > 0,

V = -U as 2,2 r +z →∞ z < 0,
∂V n — =0∂z

(4.15) 
r > do.

∂VV and az are continous r ≤ ao.

no >l, 20 S l, «o < l, 

where the electron mean free path length of gold, l = 40nm. When α0 » l, the 

micro-contact system is a continuum and dominated by Maxwell spreading. 

We begin to discuss the problem in this situation.

4.3.2 Current-Voltage Relationship

In three dimensional condition, by the Ohm’s law the current density can be 

expressed by,

j= -σ grad V, (4.16)

so,

div j = — div (σ grad V) = 0. (4.17)

For this problem we need to define the same function of p as we did in last 

section (see equation (4.8) on page 42), then from equation (4.16) we obtain 

grad ψ = σ grad V = —, So,

div j = -V2 = 0,
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22 —00 z >-0,# = = 0 = = / odn as
and 40

(4.18)
y = -0 = / odn as 

Jo
22r- + 24 — do z << 0.

The electrical flow and temperature across the contact spot continuously. The 

solution is given on [32].

, l 2 / Z sin (Xao) XV = 9|1 ---- / exp (-Xz) J0(Ar) ------XdX 
T Jo------------------- X √

,(2/% sin(X40)\#= - Q|1 ---- / exp(-Xz)J0(Xr) — -—LdX 
NT Jo X /

On the plane 2 = 0, @ = 0 when r < a0, and 

∂ψ 2Ω ,
— — / Jo(Xr) sin (Xao)d). 

Bz T J0 S

z > 0, 

z < 0.
(4.19)

The current passing through the contact spot

, 00 Db,I = / 2ir —dr.
J0 Bz

Since

Ca° ιao 0/ J0(Ar)rdr = -J1(Xr) = J1(Xa0o), 
Jo LA Jo X

we obtained [33]

I = 4Sa0
0

o dXsin Xa0J1(Xao)-- = 49a0.
X 0

(4.20)
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Substitute Ω by equation (4.18), then,

fuI = 4a0 / o(U,n)dn. (4.21)

If U is very small and we can ignore temperature increasing, then Joσdη

σ0U, and

I = 4a0o0U.

1
So the constriction resistance Rn = -------for top portion which is well known 

4α0σ0
relation for the constriction resistance [16].

Substitute σ (see Eq. (4.9) on page 43) in the equation (4.21), then,

I =
U dn 

4a0o0U0(1 + 7) ============== — 4a070TUJo VU3 + U2 - n2

Γ U U'
= 4a0o0U0 (1 + T) arctan —— T.

L ' U0 U0J
(4.22)

This relation between the current and the applied voltage is a general char­

acteristic for all micro-contacts in the system, and it indicates clearly the 

breakdown of steady conditions which we discuss in next subsection.
1

Since the constriction resistance Ro = ------ , if we define a dimensionless 
2a000

current and a dimensionless voltage as

τ IRo
I. 2Uo' and

U
U. = = —U0

respectively, then the equation (4.22) can be written

I. = (1 + τ) arctan U. — TU., (4.23)
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which is shown elsewhere [26].

4.3.3 Analysis and Discussion

From equation (D.4) and equation (D.5) on page 76, since V = 0 at the con­

tact spot, the maximum supertemperature θm occurs precisely at the contact 

spot and it is dependent on the applied voltage U, thermal conductivity k0 

and electrical resistivity Po of the medium at room temperature T0 instead 

of the size of the micro-contact spot. If we transfer U and θm to the dimen- 
■ U θm sionless voltage U* = — and a dimensionless supertemperature O = n, 

respectively, the equation (D.4) becomes

U.2 = 28m. + 0.2 (4.24)

Figure 4.7 shows the theoretical relation of Um* versus U.. In real condition 

the curve should stop at the melting point of Gold (1064 °C) since there is no 

steady value possible above this temperature.

Figure 4.8 shows the theoretical relation between current and voltage for 

the micro-contact system of gold where τ = βTo = 0.0596. This relation can 

be implemented by applying a voltage across the micro-contact system form 

a low impedance source and keeping increasing the voltage [26].

A low impedance source also is called a voltage source which is a circuit 

component that supplies a fixed potential difference across its terminals that 

is almost completely independent of the current it supplies. The internal 

impedance of such a device is very low. Conversely, a high impedance source is 

called a current source which supply constant current irrespective of the voltage 

needed by the load across its terminals. The voltage across an ideal current 

source is completely determined by the circuit connected to the source [27].
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Figure 4.7: Theoretical relation between supertemperature and voltage for a 
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Figure 4.8: Theoretical relation between current and voltage for a micro­
contact system of gold



54

At the beginning stage, since the temperature was low and the electrical 

resistivity p did not change too much comparing with the electrical resistivity 

at room temperature Po (Fig 4.2 on page 40 ), the relation between current 

and voltage is approximately linear. Further, increasing applied voltage led 

current increasing and the temperature increased due to Joule heating. Since 

the electrical resistivity p increased a lot due to higher temperature, the cur­

rent increased slower than before and reached maximum value at the insta­

bility point, then decreased slowly until the maximum temperature reached 

melting point. At the instability point, the contact maximum temperature 

Θm = 959 oC is lower than the melting point of gold (1064 °C). Set the radius 

of the micro-contact spot αo = 80nm which is much bigger than 1 — 40nm, 

then we can find out the values of the current (see Table 4.5) at instability
IR0 1point and melting point by using I. = , where, Ra = -------. They are
2U0 2α0σ0

764mA and 763mA. Comparing with the results of the straight wire of gold ( 

Table 4.4 on page 47), the values of applied voltage and maximum temperature 

at two points are same, which indicates the applied voltage and maximum tem­

perature are independent of the size and shape of contact spot. However, the 

values of current passing through contact spot are different and size-dependent 

which is expected since the resistances are different for the contact spots with 

different sizes.

Table 4.5: Calculation results of the micro-contact system

Temperature [°C] Current I [mA] Applied Voltage U [V]
959(Instability) 764 0.189
1064(Melting) 763 0.202

Figure 4.9 indicates that, after the instability point, as the current was 
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decreasing, the maximum temperature kept increasing until it reached melting 

point. If the micro-contact system is connected into a high impedance circuit

6

2 

E 
Φ 
Φ

00

5 -

3 -

2 -

1 -

4 -

Instability Point

Melting Point 5

0 -------- I -------- i-------- i-------- I--------
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Current, I.

Figure 4.9: Theoretical relation between superatemperature and current for a 
micro-contact system of gold

where the current is slowly increased and the potential difference is observed, 

the curve would interrupt at instability point [26]. The contact system was 

collapsed when the current kept increasing after instability point even though 

the maximum temperature at the contact spot did not reach the melting point 

of gold. This can be used to explained the reason that, in the study [24], the 

contact region collapsed when the temperature is below the melting point of 

gold.

At different room temperatures, the maximum currents and applied volt­

ages are different at the instability point (see Figure 4.10). At the lower room 

temperature, applied voltage at instability point is higher and the maximum 

current is higher too. Further, it needs much higher applied voltage for maxi­
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mum temperature reaching the melting point.

0.6

0.2

0.8

0
0 2 6 8 10 12

T =298K 0

T0=100K

T0=200K

Figure 4.10: Theoretical relations between Current and voltage at different 
room temperatures

However, when a0 ≈ l, or αo < l, we can not use the procedures described 

above since it is not a continuum any more and dominated by the Sharvin 

mechanism.

4.4 Heat Generation in Micro-Switch Inter­

faces

For most of MEMS devices, due to relatively light contact loads, the ratio 

of real contact area and apparent contact area is between 10-4 and 10-2. 

As mentioned in Chapter 3, even for largest surface interference, AL, all the 

micro-contact spots radii are smaller than the electron mean free path of gold. 

Therefore, it is obvious that the constriction resistance in such small micro- 
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contacts is dominated by the Sharvin mechanism in which electrons travel 

through the micro-contact ballistically without undergoing any scattering [21].

Since in the Sharvin mechanism electrons travel through the micro-contact 

ballistically without any interaction or collision with lattices, this resistance 

component does not lead to any heat generation within the micro-contact sys­

tem. The resistance contributing to Joule heating is just Maxwell spreading 

resistance in which electrons travel through diffusively. Therefore, the mea­

sured resistance from micro-switch interfaces can not be used to calculate the 

contact heating because of the existence of the Sharvin resistance.

When α0 >l, Utilizing the procedures described in this Chapter we can 

easily find out the relationships between maximum temperature and applied 

voltage, maximum temperature and current. The maximum supertemperature 

θm occurs precisely at the contact spot and it is dependent on the applied 

voltage U, and material properties instead of the size of the micro-contact 

spot (see equation (4.24)).



Chapter 5

Conclusions

A theoretical study on interfacial temperatures generated at micro-switch con­

tact interfaces has been developed. In addition, surface topography, contact 

modeling, and electrical contact resistance are described in detail.

A normal contact analysis of two rough gold surfaces characterized by three 

dimensional fractal geometry was presented. Random rough surfaces were 

generated from the developed fractal model. The significance of the fractal 

roughness G and the fractal dimension D on the total contact load and real 

contact area were discussed in detail. For fixed contact load, decreasing the 

fractal roughness G or increasing the fractal dimension D increases the real 

contact area Significantly The biggest truncated area, a'L is a big portion of 

total truncated area, A' (from 0.427 to 0.558). Therefore, the calculation of 

a'L is critical for the analysis of surface contact.

Electrical contact resistance (ECR) is caused by the roughness of contact 

surfaces. The constriction resistance of a particular contact asperity is com­

posed of the Maxwell resistance or the Sharvin resistance or both of them, 

depending on the ratio of the electron mean free path length, l, and the radius

58
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of the asperity, αo.

Comparing the results of the straight wire of gold and the micro-contact 

spot (a0 » l), the values of applied voltage and maximum temperature at in­

stability point and melting point are same, which indicates the applied voltage 

and maximum temperature are independent of the 'size and shape of contact 

spot. However, the values of current passing through contact spot are different 

and size-dependent which is expected since electrical resistances are different 

for the contact spots with different sizes.

If the micro-contact system was connected into a high impedance circuit, 

it would be melted when the current kept increasing after instability point 

even though the maximum temperature at the contact spot did not reach the 

melting point of gold. However, in a low impedance circuit, current reached its 

maximum value at instability point and decreased slowly until the maximum 

temperature reached melting point.

Measured resistance from micro-switch interfaces where a0 ≈ l, or a0 < l 

can not be used to calculate the contact heating because of the existence of 

the Sharvin resistance which does not lead to any heat generation within the 

interfaces.

Temperature and heat generation analysis in micro-contact system are chal­

lenging. The accuracy of this study on it need more demonstrations of future 

works, especially that of practical experiment. At the same time, this study 

provides a wonderful reference to future studies since it combines the classi­

cal voltage-temperature theory to current heat generation analysis of micro­

switches very well.



Appendix A

Surface Generation Programme 

(Fortran) ;

!main program

INTEGER, PARAMETER :: N = 1000
REAL,DIMENSION (N+1,N+1): : A
REAL,DIMENSION((N+1)**2) ::B
INTEGER i,j,ii,iii
REAL x,y

!ANALYZING THE DATA

REAL D
INTEGER jj.jjj
INTEGERjDIMENSION (Or lO) : : NUM

REAL jDIMENSION(Or lO) ::delt,Ar

! ! ! ! ! !!! ! !!!! ! NUM _ truncated number,Ar ___(num∕N**2) truncated ratio

60
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OPEN (3, FILE= 'OUT3.TXT')

do 10 i=1,N
do 20 j=1,N

x =i*1.0e-9
y=j*1.0e-9-

WRITE (3, (F10.9,8X,F10.9,8X,F15.13 )') x,y ,z(x,y)

A(i,j)=z(x,y)

B(ii)=INT(A(i,j)*1.0e13)

ii=ii+l

20 CONTINUE 
10 CONTINUE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! quick sort now 
CALL Quick_Sort( B, 1, (N+1)**2 )

PRINT *, "After: "
!PRINT *, B

PRINT 11, B
11 FORMAT(9F9.0)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!ANALYZING THE DATA

D=B((N+1)**2)-B(1) !B((N+1)**2)=Bmax, B(I)=Bmin 
DD=D∕Nd
BB=B(1)+DD
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id=l

do 1000 jd=l , Nd

NC(jd)=0

do while (B(id)<BB) !DO begin

NC(jd)=NC(jd)+l

id=id+l

END DO

BB=BB+DD

PRINT*,NC(jd)

1000 CONTINUE

!! !! !! !! ! ! !!!! !!! !!!!!!!!!!!!!!!!!!!!!!!!!!!!! SUBROUTINE Quick_Sort

CONTAINS
RECURSIVE SUBROUTINE Quick_Sort( X, L, R )

REAL, DIMENSION(:), INTENT(INOUT) :: X ! list
INTEGER, INTENt(IN) : : L, R ! left, right bounds
INTEGER Ll, Rl ! etc

IF (L < R)THEN
Ll = L
R1 = R

DO
DO WHILE (L1 < R .and. X(Ll) <= X(L)) ! shift Ll right

Ll = Ll + 1
END DO

DO WHILE (L < R1 .and. X(R1) >= X(L)) ! shift R1 left
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R1 = R1 - 1
END DO

IF (L1 < R1) CALL Swop( X(Ll), X(R1) ) ! swop
IF (L1 >= R1) EXIT ! crossover -

! partition
END DO -

CALL Swop( X(L), X(R1) ) ! partition with X(L) at R1 
CALL Quick_Sort( X, L, Rl-I ) ! now attack left subproblem 
CALL Quick_Sort( X, R1+1, R ) ! don’t forget right subproblem

END IF
END SUBROUTINE Quick_Sort

SUBROUTINE Swop ( A, B )
REAL, INTENT(INOUT) : : A, B
REAL : : Temp

Temp = A
A = B
B = Temp

END SUBROUTINE Swop

END

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !Solve Funtion z(x,y)

Function z(xz,yz)

REAL gama,L,DD,G, Ls,F1,pi,xz,yz,zz,K1,K2,KK ,pointt,k3

INTEGER M,mm,n ,nmax

INTEGER,DIMENSION(1) :: Seed
REAL phi,R

M = 10
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gama - 1.5
DD = 2.3
G = 0.1Dl / 0.10000000000000D14
Ls = 0.1D1 / 0.1000000000D10
pointt = 5.0
L =pointt*Ls
pi=4*atan(l.0)•

Fl = L * (G / L) ** (DD - 2.0) * sqrt (log (gama) / M)

nmax = int(aint(log(pointt) / log(gama)))

ZZ=O.0

do 100, mm=1,M
do 200,n=0,nmax

111111111111111111111111111111111111

CALL RANDOM-SEED(PUT=Seed) !

CALL RANDOM-NUMBER( R ) ! Generate Random Numbers

phi=2.0*pi*R!

CALL RANDOM-SEED(GET=Seed) !
Iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii II

K1 = gama ** ((DD - 3) * n) * F1

K2 = cos(KK(xz,yz) - pi * mm / M)

K3 = 0.2D1 * pi * gama ** n * sqrt(xz ** 2 + yz ** 2) / L

P = K3 * K2 + phi
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Q = cos(phi) - cos(P)

zz=zz+K1*Q

200 continue
100 continue •

Z=ZZ

END FUNCTION

I l l l l l l l f l l l l l l l l l l l l l l t l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l I I l I I I

IlllllltllllllflllllllllllllIfIIIIl

REAL FUNCTION KK(xs, ys) !

IF (xs <=0.0) THEN !
! Solve Function KK(x,y) 

KK=atan(1.0)*2!
ELSE !

KK=atan(ys/xs) !

END IF !
END FUNCTION !

IlllllllllllllllltlllllllllllIIIIIl



Appendix B

Load and Resistance Analysis

(Maple)

#read"c: /program files/maple 9/maplefiles/total resis-load.txt";

gama:=1.5;
DD:=2.44; # fractal dimension
G:=9.46*10*(-13) ; # fractal roughness
as_prime:=evalf(Pi)*(10 (-9)/2) 2; # smallest trucated area
lambda: =40*10^ (-9) ; # the average electron mean free path (of gold)
rho:= 2.3*10 (-8); # electrical resistivity of gold at room temp.

V:=10; # applied votage

Aa:= 10^(-12); # apparent contact area
E:= 80*10-9; # elastic modulus of gold
nu:= 0.44; # Poisson’s retio of gold
#Estar:= ((l-nul"2)/E1+(l-nu2^2)∕E2)^(-1);# effective elastic modulus
Estar:= (2*((1-nu*2)/E))*(-1);

sigmaY:= 0.53*10''9;

# effective elastic modulus
# of gold

# the yield strength of the
# deformable medium of gold

66



67

A:=array(1..11);
F:=array(1..11);

Rt:=array(1..11);

# total real contact area
# total load on the surfaces
# total contact resistance

Delta:=array(1..11); #surface interference
A_prime:=array(1..11); #total truncated contact area

al_prime:=array(1..11); #biggest truncated contact area
Numt:=array(1..11); #total truncated points

#############################

#reading data from "inputll file"

data:=ImportMatrix("c:
/program files/maple 9/maplefiles∕input∕inputll.txt"):

Delta: =data[1..11, 1] :

A_prime :=data[1..11,2]:

al_prime :=data[1..11,3]:

Numt :=data[1..11,4]:

#############################

fd := fopen("c: /program files/maple 9
∕maplefiles∕output∕out4.txt", WRITE,TEXT):

for i from 1 to 11 do
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NN: =Numt [i];

ai_prime:=array(1..NN); # truncated contact area of particular point 
ri_prime:=array(1..NN); # the radius of ai_prime.

deltai:=array(1..NN); # the interference distance of particular point
ai :=array(l..NN); # real contact area of particular point
Fmi:=array(1..NN); # mean contact pressure
Fri:=array(1..NN); # load on particular point, Fri:=Fmi*ai
str:=array(1..NN); # the representative strain of particular point 
ri: =array(l..NN); # the radius of ai
Rc:=array(l..NN); # the resistance of particular point

Rcc:=array(1..NN);

##############################

# Contact Deformation model (Calculate ai_prime, ai and Pmi)

a_prime:=al_prime[i]∕N^(2∕(DD-1));
a_prime: =unapply(a_prime,N);

#Calculating

# A _ total real contact area
# F _ total contact load
#Rt_ total contact resistance

AA:=0;
FF:=0;

Rtt: =0 ;

for j from 1 to NN do

Nacc:=j:
ai_prime[j] : =a_prime (Nacc):

ri_prime[j] :=evalf(sqrt(ai_prime[j]/Pi));
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deltai[j] : = 2*G^ (DD-2)*sqrt(ln(gama))
* (2*ri_prime [j]) ^ (3-DD) ;

str[j] := Estar*deltai [j]/(sigmaY*ri_prime [j]);

# elastic deformation•

if str[j] < 1.78 then ai[j]:= ai_prime[j]/2;
Fmi [j] :=(4*sqrt(2)/(3*Pi))*str[j]*sigmaY;

# elastic-plastic deformation

elif str[j] < 21 then
ai[j]:= ai_prime[j]/(0.05*(1n(str[j])) 2 

-0.57*ln(str[j])+2.41);
Fmi Ej]:=(0.70*ln(str[j])+0.66)*sigmaY;

# fully plastic deformation

elif str[j] <= 400 then
ai[j]:= ai_prime[j]/(0.05*(ln(str[j])) 2 

-0.57*ln(str[j])+2.41);
Fmi[j] :=2.9*sigmaY;

# fully plastic deformation

else ai[j]:= ai_prime[j]/0.71;
Fmi[j]:=2.9*sigmaY;

end if;

############################

#Resistance analysis

ri[j]:=evalf(sqrt(ai[j]/Pi));
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INTT:= Integrate(exp(-x*lambda∕ri[j])*sin(Pi*x)∕(Pi*x), 
x=0..inf inity):

#comments: INTT= arctan (ri*Pi∕lambda) ∕Pi

#Rc[j]:= 4*lambda*(rho1+rho2)/(9*ai[j])
+ INTT*(rho1+rho2)/(2*Pi*ri[j]);

Rc[j]:= 4*lambda*rho/(3*Pi*(ri[j]) 2) + 0.694*rho/(2*ri[j]);

Rcc[j] :=1/Rc[j];
Rtt: =Rcc [j]+Rtt;

############################

#load analysis

Fri [j] : =Fmi [j]*ai [j] ;

AA:=ai [j]+AA:
FF:=Fri[j]+FF:

end do:

A[i] :=AA;
F[i]:=FF;
Pre[i] :=F[i]/Aa;
Rt [i] :=1/Rtt;

Aratio[i]:= A[i]/Aa;
Fratio[i] :=F[i]/(Aa*Estar);
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fprintf (fd,"% 3.2E\t% 3.2E\t% 3.2E\t% 3.2E\t\n"
,Delta[i],A[i],Pre[i] ,Rt [i]);

#############################

end do:

fclose(fd);



Appendix C

Programme to Plot Surface

Roughness (Matlab)

YYYY.Yll7Y.lrY.Xvrt7r.XYY.XXY
% programme to plot surface roughness %
% %
% 012405 %
77X7X77777777777777X777777777%7%

clear all;

load out3.txt
nn=size(out3);
%n: the fractal surface is expressed as a n x n matrix 
n=nn(1,1)^0.5;
xl=out3(:,1);
y1=out3(:,2);
zl=out3(:,3);

x1=1e6*x1;
y1=1e6*y1;
%x1 and yl are now in micro meter
zl=le9*zl;
%zl is now in nano meter

72



73

x=reshape(xl,n,n);
y=reshape(y1,n,n);
z=reshape(z1,n,n);

for i=1:1:64
for j=1:1:3

map(i,j)=0;
end;

end;
colormap (map) ;

%figure(1);

subplot (1,2,1)
meshz(x,y,z)



Appendix D

Voltage-Dependent Electrical

Conductivity

When an electrical current passes through a resistor, the Joule heating leads 
to the temperature change. In one dimensional condition, heat flux

dθ 
lx = ~kdχ, 

where k is the thermal conductivity and θ is the supertemperature, and the 
ner heat outflow per unit volume,

1 dP div qx = — 4Adχ,

where P is electrical power and Adx is volume. We also know the electrical 
power generated in the volume

dP = (JzA) —, 
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dx 
where jxA is the current passing through the volume and A is the resistance 

dV σ 
of the volume. Substitute ix = -σ-, we have jdχ,

dP (dV\2
Adx (dx ) ,

finally we have

(D.1)

which means that for steady conditions the rate of the heat generation inside 
any volume must equal to the rate at which the heat is passing through its 
surface [26J.

The Kohlrausch equation (for example, see [16, 26]) indicates the relation 
between the potential-drop V across the terminal and maximum supertemper­
ature Θm.

rem
V2 = 2 / pkdn, 

Je (D.2)
1 t 

where p = —, and equation (D.2) must satisfy the governing differential equa- O
tion (D.1). To verify it, we differentiate equation (D.2),

dV >dθ 
2V — = —2pk—, dx dx 

then multiply both sides by σ,

dV ,dθ
oV — = —k—, dx dx

then differentiate,
d / dV d (, de 

— ( oV-) = —— ( k— ) , 
dx dx ) dx dx j 

So,
d / dV∖ (dV\2 d Ldθ∖

dx dx J dx / dx dx J

d ( dV\From equation (4.7) we know V— ( 0 = 0 , then the governing differen- 
S dx ∖ dx J
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tial equation (D.1) is satisfied.

To solve equation (4.12) on page 43, we need to know σ as a function of 
the potential V. Substitute kp = k0p0(l + θ∕To) in equation (D.2), we obtain

V2 = 2k0ρ0 / 1 + — dn
Jθ X 10/

~ 210m

= 2kopo n+ ■ (D.3)

Since by the boundary condition (Eq. (4.5)) on page 42,0 = 0, V = U, we 
obtain the relation between applied voltage and maximum supertemperature,

Γ 027
U2 = 2 kopo θm+

2To]
(D.4)

Also we can get rid of Θm, then

θ2 1
V2 = U2 - 2k0p0 0+ 2T0. (D.5)

By utilizing equation (4.4), we obtain

θ = -T0(1-

Θ2 Tothen Θ H— — can be transformed to -----
2T0 2

kp) 
kopo J

\kopoj

(D.6)

V2 = U2 +T0k0p0 1 -
(kpV
\kopoJ

, so,

If we define U0 = Tokopo, then,

kp _ VU3 + U2 - V2
k0p0 U0 (D.7)

1 
By utilizing equation (4.1) on page 39 and p = —, the equation (D.7) is 

σ
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transformed to U00(1 - 30) 
O = —= = = = = = = = = = = = = = = = =. 

VU3 + U2 - V2

By equation (D.6) and equation (D.7), we get

,T0U2+UP—V2 
0 = —0-----------------T0. • Uo

Substitute 8 in the equation (D.8) and define τ = βTo, finally we obtain the 
solution for voltage-dependent electrical conductivity σ

0 = Uoo(1 +7) 
VU2 + UP = V2 - COT. (D.9)



Appendix E

Curves of Temperature Analysis

(Matlab)

%temperature vs. Voltage

x=0:0.001:3.487;
'/,subplot (3, 1, 1)

plot(test(x),x,'-','Color','blue','LineWidth',2) 
hold on

x=3.487:0.01:5;
plot(test(x) ,x,, —’ , ’Color’, ’red’, ’LineWidth’,2)

plot (4.096,3.216,’o’)
plot(4.096,3.216,’*’)
plot(4.374,3.487,’o’)
plot (4.374,3.487,’*’)

hold off

% Current vs. Voltage
clear

x=0:0.001:3.487;
Us=test(x);
plot (Us,testl(Us), ’-’, ’Color’, ’blue’, ’LineWidth’,2)
hold on
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x=3.487:0.01:6;
Us=test(x);
plot(Us,test1(Us),,—,,'Color', 'red', ’LineWidth’,2)

plot (4.096,1.167,‘o')
plot(4.096,1-167,’*’)
plot (4.374,1.166,'o')
plot (4.374,1.166,’*’)'

hold off

% Temperature vs. Current
clear

x=0:0.001:3.487;
Us=test(x);
plot(testl(Us),x,’-’, ’Color’, ’blue’, ’LineWidth’,2)
hold on
x=3.487:0.01:6;
Us=test(x);
plot(testl(Us),x,’—’,’Color’, ’red’, ’LineWidth’, 2)

plot(l.167,3.216,’o’)
plot (1.167,3.216,’*’)
plot (1.166,3.487, ’o’)
plot (1.166,3.487,’*’)

hold off

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%/%
% function for Is
“function testl=ttt(x)
%gamma=0.0596;
%test1=(1+gamma) *atan(x)-gamma*x;

% Function for Us
/function test=ttt(x) %test is voltage, x is thetam/TO
%test=sqrt(2*x+x. 2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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