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ABSTRACT

This thesis presents two improved approaches to extend a periodic disturbance cancella­

tion algorithm to achieve different desired goals in active noise control and resistance spot 

welding (RSW). The original algorithm is adopted from the internal model based frequency 

estimation and noise cancellation principle in the error feedback control field.

One improvement of the algorithm is made and applied for an acoustic duct system 

to increase the stable frequency band. A design method of adaptively tuning the two con­

trol gains with the estimated frequency is presented. Simulations show that the improved 

algorithm not only broadly increases the working frequency band of the system, but also 

decreases the worst case error with minimum loss of speed.

The other extension of the algorithm is interpreting its results as an instantaneous 

Fourier series. This is then used for online estimation of the dynamic resistance in the 

secondary circuit of a resistance spot welding machine by instantaneous Fourier decompo­

sition. The Fourier decomposition system is developed behaving as a bandpass filter with 

notch filters. Simulations on synthesized data show good agreements between the estimates 

of the resistance and tip voltage magnitude and their respective known values. Application 

on experimental data gives very reasonable results.

Keywords: Active noise control; Resistance spot welding; Internal model; Frequency esti­

mation; Noise cancellation; Feedback control; Acoustic duct; Dynamic resistance; Instan­

taneous Fourier decomposition; Bandpass filter; Notch filter.
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Chapter 1

Introduction

1.1 Motivation

Since the internal model (IM) based adaptive algorithm for periodic disturbance cancel­

lation with uncertain frequency was proposed by Brown and Zhang in [1], it has been 

successfully employed on several applications, such as musical pitch tracking [2], power 

systems [3], and sound and vibration control [4], etc.. The results of these applications have 

proven that the algorithm is powerful in instantaneous frequency (IF) estimation, signal 

identification and noise cancellation when the input is composed of narrow band signals.

The research of this thesis was motivated by two of the applications - one is an 

acoustic duct system studied by Brown and Lu in [4]; the other is a resistance spot weld­

ing (RSW) process investigated by Malhotra in [5]. Modifications to this basic algorithm 

were appropriately made attempting to meet other requirements in addition to IF estima­

tion and/or noise cancellation, i.e., stability in acoustic duct system and dynamic resistance 

measurement in RSW.

In [4], the algorithm was applied to an acoustic duct and excellent disturbance re­

jection was achieved. However, the system is stable only when the disturbance frequency 
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varies in a very narrow band of frequency. The problem can be intuitively explained as fol­

lows: on one hand, the system has large phase variation (exceeding 180°) over the range of 

the frequencies of interest; on the other hand, the control gains of the IM are fixed. Stability 

for the basic algorithm can be guaranteed as long as control gains can be selected that sta­

bilize the system in the nonadaptive case. With fixed gains, stability can only be achievable 

when the systems have frequency responses with fairly constant phase responses (changing 

by no more than 90°). However, this is not possible for systems that have significant phase 

variations like the system of an acoustic duct, where possible positive feedback would be 

caused when the change of the phase is greater than 180° over certain frequency ranges. 

New insights into the algorithm need to be gained in order to improve the stability of the 

system. By adaptively tuning the control gains, letting them rotate with the frequency such 

that the phase of the system at resonance remains constant as possible, it may be hoped to 

get better stability performance over a wide range of frequency.

The two states of an IM exhibit many nice characteristics. They are sinusoidal, and 

orthogonal such that they can be used to form an analytic signal of the input as given 

in Hilbert Transform (HT) theory. This recognition triggers significant interest in signal 

processing, e.g., instantaneous Fourier decomposition (IFD) for an nonstationary signal 

composed of sums of narrow band signals. This decomposition was first applied to RSW 

for real time dynamic resistance estimation in secondary circuit by Malhotra [5]. The 

algorithm present in [5] gave fairly good decompositions of signals with a finite number 

of harmonies, but had poor transient response, and performed poorly with experimental 

weld data which is composed of an infinite number of harmonies. To decrease the transient 

response and to reduce the overshoot, the initial conditions of each IM are re-investigated in
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e(s)d(s)
•O

IM

L(s)

Figure 1.1: The block diagram of the basic internal model based periodic disturbance can­
cellation system

this thesis, the tuning of the estimation system is re-developed, so that tracking performance 

is improved and the estimation is more accurate.

1.2 Review of the Basic Algorithm

The foundation of this thesis utilizes an internal model based adaptive algorithm to improve 

the stability of the acoustic duct system and to measure the dynamic resistance in RSW. The 

modified algorithms are rooted in the works of Zhang [6] and Brown [7].

The novel algorithm was based on the internal model principle (IMP) [8]. It was orig­

inally constructed to identify and cancel a periodic disturbance with unknown frequency as 

present in [1, 6, 7]. The block diagram of the control system with an IM in the feedback 

loop is shown in Fig. 1.1, in which L(s) is a fictitious plant or a tuning function. The 

disturbance d = Acos(wat + q) is the input signal, where w2 is the true frequency of the 

disturbance of interest to be identified, φ is the initial phase, e is the feedback error that 

serves as the input of the IM, X1 and x2 are the two states of the IM. x2 is the output of the 

IM which is identical to the input d. The transfer function of the IM from e to x2 is ,22
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where ω is the estimate of W4- The state space representation of the IM is given by

0

— (0

1Γ

Based on the IMP, in steady state, we have

x1(t) = A sin(w2t + #) (1.2)

x2(t) = Acos(wat+ 0) (1.3)

e(t) = Aesin⅛+^(1.4)

where A = .e - 04-05
and • denotes the phase of e. The difference Aw between the estimate

ω and the true frequency w2 can be expressed by a non-linear function

Aw = @ - 00 S

A simple integrator can be used to update the frequency estimate ω and thus drive the 

difference Aw to zero, i.e.

exi 
22 1+-l2
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where Ke is the adaptation gain, ε is a very small constant to ensure no division by zero 

problem. By this means, frequency, and magnitude of the disturbance can be obtained. The 

stability and convergence of the adaptive algorithm are proven in [6, 7].

1.3 Review of Literature

The contents of this thesis build on a large volume of literature covering signal decompo­

sition in signal processing and resistance measurement in RSW in control field. Prior to 

describing the contributions of this thesis, the relevant literature will be first reviewed in 

this section.

1.3.1 Literature Review on Signal Decomposition

Signal decomposition is a common theme in signal processing. The field of signal pro­

cessing is mature, yet active [9]. The techniques of signal analysis and synthesis are var­

ious. From filtering to transforms, from subband decomposition to time-frequency repre­

sentations (TFR), the details of the methods can be easily found in many published books 

[9, 10, 11],

Fourier Series Fourier series is a classical frequency representation that has been 

a key technique for signal decomposition and reconstruction [12]. The theory of Fourier 

series says that any periodic signal can be formed by a sum of weighted sinusoids with 

frequencies are integer multiples of the reciprocal of the period. This is extended to more 

general signals through Fourier transform (FT) analysis and to a time-frequency analysis 

by using windows of data. During recent years, Fourier analysis has been supplemented by 
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other approaches, most notably are orthogonal transforms, subbands and wavelets. These 

alternatives hold promise for providing more useful ways of analyzing and processing sig­

nals for different applications, but Fourier series is still the prime vehicle for a large class 

of signal processes, and provides a useful theoretical tool for evaluating the new methods.

However, the majority of signals encountered in the real world are nonstationary, that 

is, the salient features of the signals change with time [9]. For such signals, the standard 

Fourier analysis is inadequate in highlighting local features of a signal due to its perfor­

mance limitations [13]. The most prominent limitations are: 1) frequency resolution, i.e., 

the ability to distinguish the spectral responses of two or more signals; 2) leakage in the 

spectral domain due to evenly windowing of the data. These performance limitations are 

particularly troublesome when analyzing short data records and nonstationary signals.

To overcome the limitations of the standard Fourier analysis, Gabor resorted to the 

windowed, short-time Fourier transform (STFT)[9]. It is suitable for locally stationary but 

globally nonstationary signals, but it still has the frequency resolution problem due to the 

fixed-duration widow inheriting from the classical Fourier transform. Though an adaptive 

short-time Fourier transform (ASTFT) [14] can outperform conventional STFT, it is at the 

expense of higher computational and storage cost.

Wavelet Transform The wavelet transform [15, 16, 17, 18] is a mathematical 

tool that decomposes a signal into linear combinations of local, time-dilated and time- 

translated wavelet components. A wavelet is a small wave (oscillatory) whose amplitude 

quickly decays to zero in both the positive and negative directions. The main advantages of 

wavelet transform over traditional Fourier series are the use of localized basis functions and 

the faster computation speed. The wavelet transform is similar to the STFT in that the signal 
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is multiplied by a function similar to windows function in STFT, but the transform is done 

separately for different segments of the signal. The main differences between the wavelet 

transform and the STFT are that in wavelet transform, the width of the window is changed 

as the transform is computed for every single spectral component [19]. Though wavelet 

transform is suitable for a variety of systems, it is typically well-suited for approximating 

data with sharp discontinuities. The difficulty of using wavelet transform is choosing or 

designing the appropriate mother wavelet for a given application.

Hilbert-Huang Transform Hilbert-Huang Transform (HHT) is a novel analy­

sis method for nonstationary data, which was developed by Huang et al in 1998 [20]. The 

key part of HHT is the empirical mode decomposition (EMD), with which any complicated 

dataset can be adaptively decomposed into finite and often smaller number of monocompo­

nent signals, defined as intrinsic mode functions (IMFs). With the Hilbert transform (HT), 

the IMFs form a time-frequency-energy representation of the data, and yield instantaneous 

frequencies as functions of time as well. Since the decomposition is based on the local 

characteristic time scale of the data, it is believed by many researchers [21, 22] that HHT is 

applicable to any time-varying process. When stationary datasets are used, HHT provides 

the same solution as the STFT. For analyzing nonstationary signals or data, HHT offers 

much better temporal and frequency resolutions. However, the signal analysis based on 

Hilbert transform is physically significant only on narrow band signals. The intrinsic mode 

functions have been conjectured to be narrow band if the signals are composed of the sum 

of narrow band signals.
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1.3.2 Literature Review on Resistance Measurement in RSW

Resistance spot welding (RSW) is widely used for joining sheets because of its short dura­

tion time, low cost operation, and adaptability for automation in high volume production. 

However, due to the complexity of the basic process as well as from numerous sources 

of variation, RSW suffers from a major qüality variation problem, i.e., inconsistent quality 

from weld to weld [23]. Though RSW has been continually studied since its invention [24], 

there is currently no satisfactory nondestructive quality evaluation for this type of welding.

The key to ensure weld quality through online measurement and process control is 

to choose the right control variables. There are many process variables involved in RSW 

as discussed by Malhotra in [5]. Some of them are extremely difficult to control and may 

cause weld problems, others are easy to control, such as the current and time. Electrical 

or mechanical variables, such as primary dynamic resistance [25, 26], secondary dynamic 

resistance [5, 27], welding current [28, 29], electrode displacement [30, 31], and electrode 

wear [32], have been often used as the monitoring parameters. The weld nugget has also 

been examined in [33, 34, 35].

As the name of RSW implies, electrical resistance is the most important factor af­

fecting resistance spot welding [36]. It has physical meaning relating to the variation of 

the heating, the growth of the nugget diameter, and the penetration of the electrodes, etc.. 

For this reason, many researchers have employed resistance as a valuable input parameter 

for a monitoring of the process to obtain good weld quality. Brown et al [33] developed 

a neural network model to provide information about the nugget diameter and heat being 

generated at the weld using the entire dynamic resistance curve as one of the inputs. Lee et 
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al [24] selected the dynamic resistance as the indicator of expulsion during welding using a 

neuro-fuzzy algorithm. Hao et al [37] used the dynamic resistance, in addition tip voltage, 

to improve the detection of the online nugget expulsion. Li et al [35] used the dynamic re­

sistance as the only input variable for their neural network model to estimate online nugget 

size. Livshits [38] proposed a universal quality assurance method based on dynamic resis­

tance that is valid over a wide range of welding time, welding current, electrode force and 

electrode tip geometry.

The electrical resistance cannot be considered as a constant during resistance spot 

welding (39]. A determination of dynamic resistance is beneficial for monitoring the weld 

quality. Generally speaking, the resistance can be calculated by dividing the voltage by 

the current. However, due to the inductive noise in the measured voltage signal, the mea­

sured tip voltage cannot be directly used for calculating the resistance. In literature, a lot 

of work has been done attempting to obtain the accurate measurement of the tip voltage 

and dynamic resistance. Osman et al [40] discussed a peak value method in which the tip 

voltage is measured only when current derivative is zero at the peak. Hence, the induced 

voltage is zero. Cho et al presented a new technology to measure the dynamic resistance 

in [25, 26]. However, the base line of the approach is the same as the Osman’s peak value 

method. The dynamic resistance is obtained once per half cycle. The only difference is that 

they measured primary dynamic resistance instead of measuring it on the secondary loop. 

The advantage of the peak value technique is that it can effectively eliminate the induced 

noise from the voltage signal, but the drawback is that the measurement is discontinuous 

since the voltage and current are available only once per half cycle. In order to obtain the 

continuous measurement of the resistance, Hao et al proposed a data acquisition and signal 
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processing system for spot welding aluminium in [41], where a scaled measurement of the 

derivative of the current was subtracted from the measured tip voltage signal. However, 

the compensated voltage by the extra loop cannot be guaranteed to be the same as the in­

duced voltage, an accurate calibration of the scaling. It may change as soon as the area 

encompassed by the voltage measuring leads changes. A recursive least square technique 

with a forgetting factor for time varying resistance measurement and mutual inductance 

estimation is proposed by Garza et al in [42]. The tip voltage was calculated by subtracting 

a scaled version of - from the measured tip voltage. The scaling constant was determined 

online by autoregressive moving-average (ARMA) model. By this means, the time vary­

ing dynamic resistance can be obtained. However, the estimate of the resistance in that 

work indicates very rapid changes with time which seems very unrealistic. This could be 

attributed to the highly variable values of the scaling constant that they estimated. More 

recently, a fuzzy adaptive algorithm [43] and a neuro-fuzzy algorithm [24] are proposed in 

literature to estimate the dynamic resistance. However, too many input variables and fuzzy 

rules are required to identify the time varying dynamic resistance.

1.4 Major Contributions in This Thesis

In this thesis, after further investigation of the aforementioned internal model based adap­

tive algorithm, new insights are gained, appropriate modifications are made, and successful 

implementations are completed to employ it on two practical applications: an acoustic duct 

system to improve stability performance, and RSW process to estimate the dynamic resis­

tance.
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1.4.1 An Application to an Acoustic Duct System for Stability

Improvement

1) A modified transfer function in the adaptive form
K2(w)s2+K1(w)s . .1

4v 'ijIV-J- ιs presented.

2) The design method how to choose K1 and K2 such that K1 and K2 can rotate with the

IF ω is given.

3) The improvement of the stability performance of the modified algorithm is achieved 

in that the stable frequency band for a widely phase varying system is significantly 

increased.

4) Simulations on an acoustic duct verify the algorithm on both independent pure sinu­

soidal signals and a chirp signal corrupted with Gaussian white noise.

1.4.2 An Application to RSW Process for Dynamic Resistance and

Tip Voltage Estimation

1) A modified output state space representation in the form of yi = Kli

is presented.

2) The design method how to choose Kli and K2i to achieve a bandpass filter with

notches is given.

3) A new application on RSW process to estimate the online values of the tip voltage 

(with no loop area calibrations) and dynamic resistance is implemented. A tip voltage 

and dynamic resistance measurement system is investigated and developed.
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4) A model of a simple exponential decay is incorporated to improve transient perfor­

mance.

4) Multiple IMs are used to cancel harmonies present in the input signals.

5) Information such as an expulsion can be provided by the estimate of the dynamic 

resistance.

6) Simulations verify the algorithm on synthesized data.

7) Application on real data gives very reasonable results.

1.5 Outline of the Thesis

The organization of the thesis is as follows. In Chapter 2, the work on tuning to stabilize 

adaptive internal model controller for periodic disturbance cancellation on an acoustic duct 

is presented. In Chapter 3, the novel algorithm of instantaneous Fourier decomposition is 

proposed. By connecting multiple internal models in parallel in the feedback loop, an real 

time Fourier series representation for a signal composed of harmonies can be achieved. 

The application of the modified algorithm to RSW process for tip voltage magnitude and 

dynamic resistance estimation is addressed in Chapter 4. Conclusions and future work are

given in Chapter 5.
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Chapter 2

Modifications and Design to Stabilize Adaptive

i t

0 Internal Model Controller for Periodic

Disturbance Cancellation 1

2.1 Introduction

Acoustic noise cancellation is an interesting and challenging problem in the area of sound 

and vibration control due to computational complexity and uncertainties of acoustic sys-

■ terns. A major source of destructive noise is periodic acoustic noise, which is generated 

in a wide range of active and dynamic systems including systems with AC power, electric

< fans and air blowers, etc. [44]. Often the noise is contained in ducting where it is possible 

to create opposing sounds that eliminate the noise. An introduction to this topic and sum­

: mary of the relevant active control techniques are given by Fuller and Flutow in [45]. OneI of the challenges of this application is that the systems to be controlled typically exhibit 

dead-time or transport delays leading to large and rapidly varying phase lags.

1. The content of this chapter is truncated from a paper submitted for review.
! Lyndon Brown and Yujuan Sun, “Tuning to Stabilize Adaptive Internal Model Controller for Peri-

I odic Disturbance Cancellation”, Proc. 45th IEEE Conference on Decision and Control.
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There are many methods specifically applicable to perform periodic disturbance can­

cellation. One of the well-known methods is the internal model principle (IMP) approach, 

proposed by Francis and Wonham [8] in 1976. For perfect disturbance rejection, a suitably 

reduplicated model of the exosystem generating the disturbance has to be included in the 

stable closed-loop system. This is a simple extension of integral control to non-constant 

disturbances. As with integral control, a minimum requirement for stability is that the 

phase angle of the controller, at the frequency where the controller gain is infinite, has the 

opposite orientation as that of the plant, resulting in negative feedback. If this condition is 

not satisfied, positive feedback and instability result.

Furthermore, it is not always the case that the disturbance model is completely known 

or that the disturbance properties are constant over time [46]. To overcome the limitation 

of the IMP approach, an adaptive version of the internal model controller (IMC) was con­

structed in [1, 7] to cancel periodic disturbances with unknown frequency. The application 

of the IMC on a model of an acoustic duct presented in [4] shows that this internal model 

based adaptive control algorithm can achieve perfect disturbance rejection within a reason­

able narrow band of frequency. For a fixed-gain, adaptive-frequency IMC, stability can 

only be achieved over ranges of frequency when the plants have frequency responses with 

fairly constant phase responses (changing by no more than 90°). Unfortunately, it is seldom 

the case that this holds true over all frequencies.

To keep the system stable over a large range of frequency, a new alternative form

K2 )s2+K1 (w)s 

$2+02 for the transfer function of the IMC is adopted. The two control gains, K1

and K2, are functions of ω, chosen so that the phase margin resulting from the critically 

stable poles is fixed. This ensures that the system has negative feedback everywhere in the
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d +
A—

u2

L(s)

Im

e

Figure 2.1: The general block diagram of an internal model control system

desired frequency range. Thus the stable frequency band can be significantly broadened for 

an acoustic system which previously was stable only for a very narrow band of disturbance 

frequency.

2.2 Improved Internal Model Based Adaptive Algorithm

The block diagram of the original internal model based adaptive algorithm described in 

section 1.2 is simplified as Fig. 2.1, in which, Imstands for an adaptive IMC which is used 

to identify d, and then to cancel it. u2 is the output signal of the IMC, which, in steady 

state, has the exact frequency, magnitude and phase of the disturbance d that can cancel the 

disturbance perfectly. The system L(s) is assumed to be a well behaved plant or properly 

designed feedback system. For this reason, while we would like our closed loop transfer 

to befunction L(S)
1+L(s)

zero at the disturbance frequency, we would like it to be equal to

L(s) elsewhere.

When the disturbance d is a pure sinusoid, d(t) = a sin(w2t + q), where w2 is the 

true frequency of the disturbance, and φ is the initial phase. The transfer function of Im, in 

the form of

(21 m S) (2.1) s-+w-
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where ω is the estimate of W4 from the IMC, was used in [4] to cancel the disturbance. The 

single zero at the origin causes the frequency response of IMC to be very small for both 

large and small frequencies satisfying our design goal of minimally affecting the behavior 

of our system.

The basic form of Im described above was proven to be exponentially stable [7] under 

the assumptions that the adaption gain Kein (1.5) is chosen sufficiently small, and the phase 

of L{jω) remains between -90° and +90° for all ω that are encountered. The difficulty is 

that for many noise cancellation applications, the latter assumption restricts ω to a narrow 

range. This can be interpreted by considering the Nyquist plot of (2.1). The plot is a simple 

half circle which encircles the entire right half plane. Thus the Nyquist plot of the loop 

transfer function will form a half circle at infinity that will contain the negative real axis if 

L(s) has angle between -90° and -270°. When the Nyquist plot of the open-loop system 

encircles the negative real axis at infinity, it is likely to include (—1,j0) point implying an 

unstable nominal system.

Since most adaptive noise cancellation problems have significant transport delays 

resulting in large changes in their phase responses, the nominal system is likely to be un­

stable for some values of ω and thus unstable for all but certain values of W2. This has been 

verified by an application of an acoustic system in [4]. The model of the acoustic system 

includes resonant peaks which dominate the dynamics [47] and transport delays. Gener­

ally, the precise locations of the resonances have significant uncertainty. Fig. 2.2 shows a 

typical Bode diagram of a finite degree state space model of an acoustic duct [48] with a 

linear quadratic regulator (LQR) in a feedback loop. From Fig. 2.2, it is obviously seen 

that the system has a constant gain/phase at very low frequencies, but they change rapidly
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at high resonant frequencies.

As discussed earlier, it is assumed that L(s) has been designed to have satisfactory 

behaviour at all frequencies except W4. Thus, ideally we would like Im to be small outside 

some region about 04 as in the aforementioned form. Unfortunately, the simplest modifi­

cations, either adding a PD or PI controller in series with Im, result in a transfer function 

that is non-small either above or below ω. In general, L(s) will have a low pass nature, 

hence it will be small for large frequencies, mitigating the need for Im to be small here. 

In addition, if Im is non-small at low frequencies, its sign will need to be fixed, reducing 

our tuning flexibility. For these reasons, we will add an adaptive PD controller in series

with the original Im or equivalently add a zero to the basic transfer function. The modified

transfer function is thus (K2(@
$2+02

-, where K1 and K2 rotate with the instantaneous

frequency ω estimated by the improved algorithm. The corresponding Nyquist plot near ω
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S- +w-

Im

∖ 

i

I 
i
i 
i

Figure 2.3: The sketched Nyquist plot of the open-loop system with the modified 
(K2(w)s +K1 (w)) , in range of [ω —ε,ω +ε], where ε is a small constant

for the open-loop system with the modified transfer function of the IMC is shown in Fig.

2.3 , in which, θ = 02(w) +OL(w), where (L(w) is the instantaneous phase angle of the 

plant L(s), (2(w) is the phase of the zero term K2(w)s -∣- K1(w) in the modified transfer 

function of IMC, which is given by

, , _1 @K2(@) φz(ω) = tan 1 /'K1(@)

For the application present in this chapter, the zero location is selected by choosing 0 = 0, 

or 02(w) = -(L(w), though it is not clear that another choice, such as adding phase lead 

by further rotating the half circle counterclockwise, might produce better results. Thus K1 

and K2 are given by

K2(w) = K(w) sin(-L(w)) (2.2)

K1(w) = wK(w) cos(-02(w)) (2.3) 
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This leaves a free gain parameter, K(w), to be chosen such that the overall system remains 

stable. This value will need to be chosen such that, for all other points where the loop trans­

fer function has angle close to 180°, the loop transfer function magnitude is sufficiently less 

than one. Note, for noise cancellation problems, L(s) is desired to be small wherever fea­

sible. Thus K(w) will need to be chosen small when the phase of L(s) is less than —45° or 

when the magnitude is large as a result of resonances. The proper selections of this scaling 

factor K(w) and the combined phase θ guarantee the Nyquist plot does not encircle the 

critical point (— 1, j0). The system can thus be stable for all ω.

t ;

i 2.3 Application and Simulations to an Acoustic Duct
W

Model

To demonstrate the effectiveness of the improved algorithm, an acoustic duct model given 

|by Ben Amara in [48] has been investigated. The acoustic duct model shown in Fig. 2.4 

is a two-input two-output (TITO) system. The two inputs are the noise d, and the voltage

I u applied to the noise cancellation speaker. The two outputs are the sound y measured at 

a microphone near the noise source, and the measured error e at the end of the duct where 

the noise is to be eliminated.

The block diagram of the closed-loop system with n internal models in the original 

|form in parallel is shown in Fig. 2.5 [4]. For a single sinusoidal disturbance, Fig. 2.5 can 

be simplified to Fig. 2.6. The plant G is given by a discrete time state space representation 

(A,B,C,D) in [48], with a sampling period T, = 0.5 msec. The disturbance d adopted
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Figure 2.4: An acoustic duct model
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Figure 2.5: The block diagram of a control system with multiple internal models
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Figure 2.6: The block diagram of an internal model based acoustic duct system
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by [4] is a single sinusoid with Gaussian white noise (zero-mean, PSD 0.001) added. The 

controller Gc is chosen as an optimal linear quadratic regulator. All the specified parameters 

can be found in [4] and [48] . The performance of the original disturbance cancellation is 

shown by Figure 3 in [4]. However, as the authors mentioned in [4], the closed-loop system

could remain stable only over a narrow range of disturbance frequencies for fixed control 

gains. In particular, when Ke = 0.015, the system with Im in the form of 2=, failed for

frequencies just outside the range of [1040, 1280] rad/sec.

The improved internal model based algorithm is applied to the system in order for

Gue 
l+GcGuy’particular

the adaptive system in [4] to be nominally stable over a large range of frequency. In this 

case, the overall transfer function of the plant is represented by L(s) =

in continuous form by using pole-zero matched approximation. The Bode plot of L(s) is 

shown in Fig. 2.2. To validate the improved algorithm, simulations are conducted under 

Mathworks SIMULINK environment with the integration algorithm ODE5 at different fre­

quencies. The parameters are chosen as 0 = 0, and K(w) shown in Fig. 2.7. Since K(w)
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Figure 2.11: The estimated frequency of w2(t) = (100 +280t)rad/sec with noise

is (1, 1256 rad/sec, 3 rad) for 0 ≤ t ≤ 0.5 sec and then changes to (0.5, 1194 rad/sec, 

1.5 rad) for t > 0.5 sec. ∏ is a Gaussian white noise with zero-mean and PSD 0.001. 

The corresponding transient response is shown in Fig. 2.9. The response to the same 

disturbance for the original internal model based algorithm is shown by Fig. 2.10 taken 

from [4]. It can be seen that the proposed improved algorithm decreases the worst case 

| error a small amount with minimum loss of speed. Thus, a major improvement in stability

is achieved with no loss of performance.

To guarantee the system is stable for the entire frequency band, a chirp signal w4(t) = 

: (100+280r) rad/sec with Gaussian white noise (zero-mean, PSD 0.001) was applied as an

[ input test signal. The value of Ke is chosen as 0.025. The simulation result of the estimated

⅛ frequency is shown in Fig. 2.11. The small embedded figure on the left corner is a partially

I magnified plot. The result in Fig. 2.11 shows that the estimated frequency tracks the true

: time varying frequency with delay about 7 rad/sec, which is equivalent to 25 msec of time

|delay. 

⅛ 
1 
|
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Figure 2.12: Error response of the improved adaptive control system to chirp signal (mag­
nitude 1) with noise

Fig. 2.12 shows the error response of the improved internal model based control 

system to chirp system (magnitude 1) with white noise added. Note that the residual error 

is a result of delay between ω and w2. For fixed W2, ω converges to w4 with delay of 

25 msec when Ke = 0.025. If W4 is fixed, the error will go to zero. A double integrator for 

updating w should enable the system to exactly track ramps, thus eliminating the delay, and 

thus also resulting in perfect cancellation of the chirp signal. The corresponding estimated 

frequency and error response when using a double integrator with this noise free chirp 

signal are shown in Fig. 2.13 and Fig. 2.14. Comparing with Fig. 2.11, Fig. 2.13 shows the 

delay drops from 7 rad/sec to 0.7 rad/sec when the adaptation law for updating frequency 

* is modified from single integration to double integration. It is believed the residual error

I derives from lag in the closed loop system represented in Figure 1.1.
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2.4 Conclusions

In this chapter, an adaptive approach to improve the control capability for periodic distur­

bance cancellation is presented. The improved approach is based on the behavior of an 

adaptive internal model in an error feedback control system. The design method of the pro­

posed improved algorithm is equivalent to placing a PD controller in series with the basic 

internal model in the feedback loop. The two control gains of the PD controller are made 

functions of the estimated frequency to keep the system as stable as possible. Simulations 

show that the proposed approach not only widely increases the working frequency band 

of the system, but also decreases the worst case error with minimum loss of speed for an 

acoustic system which previously was stable only for a very narrow band of disturbance 

frequency.
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• Chapter 3

Instantaneous Fourier Decomposition by

. Internal Model Based Adaptive Algorithm

: 3.1 Introduction

, Signal decomposition is an important topic in pure research and practical applications in

• signal processing. Through signal decomposition, a complex signal or function can be

’ decomposed into its primitive or fundamental constituents. Then simple operations can be 

performed separately on each component, thereby extremely sophisticated operations can 

be accomplished by a combination of individual simple operations [49].

Historically, the Fourier decomposition has been the prime vehicle for signal decom­

position since its invention. It decomposes an arbitrary time-domain signal into complex 

. exponentials [50], i.e., a sum of zero phase sine and cosine pairs. A Fourier transform

∙ offers a complete picture of frequency space, but for sampled data signals, it is limited 

in resolution, as the frequencies at which the sines and cosines are computed are equally 

spaced and fixed in number. Further, the signal should be strictly periodic and stationary, 

or be generated by a linear system.
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Unfortunately, the real-world acquired data, whether from physical measurements or 

numerical modelling [2()], most likely are from nonstationary and/or nonlinear processes. 

For such signals, the standard Fourier decomposition cannot give reasonable representa­

tions of the signals. Though other approaches, such as wavelet decomposition, have been 

studied extensively in recent years, many of them are just viewed as extensions of Fourier 

decomposition since the mathematical approach is very similar to Fourier analysis.

Hilbert-Huang transform (HHT), which is based on the empirical mode decomposi­

tion (EMD) method, has become one of the powerful tools to analyze nonlinear and non­

stationary system data since it was introduced by Huang in 1998 [20]. The decomposition 

is based on the direct extraction of the energy associated with various intrinsic time scales, 

generating a collection of adaptive intrinsic mode functions (IMFs). Each IMF should rep­

resent a simple oscillatory mode, which is a counterpart to a simple harmonie function, but 

is much more general. Having obtained the IMF components, the Hilbert transform is then 

applied to each IMF component according to (3.1). Consequently, a set of instantaneous 

frequencies can be calculated, and the data can be reconstructed by an expansion in terms 

of the IMFs. The relevant formulae are given below [20, 21, 22].

For an arbitrary continuous signal, x(t), its Hilbert transform, y(t), is defined as

x(t), 1_ ---- -dτ = x(t) * — (3.1) 
t-τ πt

— 0 0

where the integral is to be considered as a Cauchy principal value [51].
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A complex analytic signal, z(t), is formed by

where

a(t) = (x2(t)+52(t), 9(t) = arctan (2 (3.3) 

are the instantaneous amplitude and phase of x(t).

The instantaneous frequency w(t) of x(t) is defined as

∕χ dO(t)
2dt (3.4)

Since the representation of y(t) is designated as the Hilbert spectrum that emphasizes the 

local properties of x(t), and the polar coordinate expression (3.3) further clarifies the local 

nature of this representation, the Hilbert-Huang transform would be ideal for nonlinear and 

1 nonstationary system data analysis.

| However, the Hilbert transform (3.1) is noncausal. It can not be implemented in real 

time [51]. Moreover, for the instantaneous frequency to make sense, Huang clearly stated 

in [20] that the data are restricted to be narrow band. With this restriction, the Hilbert

transform (3.1) can be approximated by [52]

where ω is the best estimate of the instantaneous frequency. Thus, the integral operation in
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(3.1) is replaced by an differential operation.

In this chapter, a new data analysis method adopted from the basic internal model 

based adaptive algorithm described in section 1.2 will be present. The key part of the 

method is instantaneous Fourier decomposition (IFD). This approach was first introduced 

by Malhotra in [5]. The decomposition is based on the sinusoidal and orthogonal state 

variables associated with internal models (IMs). In terms of the state variables, the in­I *
i

|Stantaneous frequencies can be calculated, and the data can be reconstructed. Since the 

∣ internal models can be adaptive in the form of sine and cosine pairs, it can be interpreted

as a Fourier transform. When the frequencies are restricted to be integer multiples of each 

other, a Fourier series representation is generated. Thus, we can localize any event on the 

time as well as the frequency axis. Also, these state variables, based on and derived from 

the data, can serve as the basis of other operations which can be simple or sophisticated. 

Most importantly, this method can be implemented in real time.

| 3.2 Motivation of Instantaneous Fourier Decomposition

| In Section 1.2, the structure of the basic internal model based adaptive algorithm was shown

in Fig. 1.1. The two state variables X1 and x2 of the IM were proposed to be mapped into 

a ‘measurement’ of the instantaneous frequency of a pure sinusoidal signal. Unfortunately, 

most of the real data are not pure sinusoids. At any given time, the data may involve more 

than one oscillatory mode, either harmonies or multiple tones. Since any arbitrary quasi- 

periodic signal can be represented by a Fourier transform composed of a sum of delta 

functions, we can decompose the data into a sum of sine functions by employing multiple
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Figure 3.1: Instantaneous Fourier decomposition for an arbitrary periodic signal

IMs in the feedback loop. This can be extended to Fourier transforms that are composed of 

a set of narrow band signals by allowing the frequency and amplitude to vary slowly with 

time. This is what is referred to as instantaneous Fourier decomposition in this thesis. The 

block diagram of this decomposition is shown in Fig. 3.1, where L is a tuning function.

To motivate the algorithm, we consider the case where S is an arbitrary quasi-periodic 

signal in the form of 
n

S(t) = S S; sin(wt + q). (3.6)
i=1

where ωj and φ, are the frequency and initial phase of the ih(i = 1,2, • • ■ ,n) are frequency 

component present in the signal. The essence of the decomposition is to use each individual 

IM to identify each component in the data. The two state variables of ith IM are defined as 

xn(t) and x21(t). The state space representation of the IMs in the system as shown in Fig. 

3.1 are given as follows
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x =

A1
A2

*

Bi
B2

-

X + e (3.7)

An Bn

u == [ K1 K2 • • • Kn]X (3.8)

where A;, B; and K (i == 1,2, ∙∙∙ ,n) are given by

-

and

0 ω1 0
Bi = 1

K; —[ Kli K2i . (3.9)

X — X11 x21: X12 x22: “■ X1n X2n
1T

(3.10)

A;=
-00.

Without difficulty, the transfer functions from e(s) to x1i(s) and e(s) to x21(s) can be easily

obtained as i, and S. In steady state, 
s-+0- s-+0.

x1i(t) = x; sin (wt +0) (3.11)

x21(t) = x; cos(wt + Φi) (3.12)

5 % where

M = √⅛W+⅛(0 - Ix2 φi arctan — ) (3.13)
# 
I I

The two state variables x11(t) and x2t(t) are orthogonal, and have the same relationship 

as (3.5), a common causal approximation for the Hilbert transform. Therefore, we can 

assume x21(t) is the Hilbert transform of x11(t). Furthermore, just as Huang’s empirical 
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mode decomposition is able to decompose a complicated signal into finite and often small 

number of IMFs, we expect the multiple IMs will decompose a quasi-periodic signal into a 

sum of sinusoids in terms of the state variables corresponding to each IM, generating a real 

time Fourier representation of the input signal.

In view of the feedback signal u(t), it is a summation of the output from each IM, 

which is given by
n n

u(t) = ∑ u;(t) = ∑ (K1*1i +K2j*21) (3.14) 
i=1 i=1

u(t) can be given in the form of

n / K2x2 u(t) = X K; x; sin ( ωit + arctan(-! —!) ) = 1 \ Klixli /

where Ki= K+K3■ With proper design of the feedback gain Ki, the system can 

stable, and thus u(t) = S(t), which implies

(3.16)

O (t) = ωit + arctan (22 )

Thus, instantaneous Fourier decomposition is achieved, which has the same goal as EMD 

does.

To guarantee stability, the control gain K, where K = [ K1 K2 •• • Kn ], has to be 

properly designed. Thus, the Fourier decomposition problem is translated into a control 

problem: How to choose L and K such that the system as shown in Fig. 3.1 is stable? In 

this thesis, we propose to incorporate a bandpass filter into the algorithm, so as to enforce 
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the condition that only a small number of tones will be considered as relevant. Considering 

the IM exhibits one distinguished property of a narrow band notch filter, multiple notch 

filters should be incorporated in the system as well. Thus the desired system behaves as 

a bandpass filter with notches. The system can thereby generate the instantaneous Fourier 

series of the input signal as well as has the ability to isolate the useful signal and reject 

noises. The details of the design of an adaptive bandpass filter with an adjustable notch can 

be found in [51, 53].

3.3 Instantaneous Fourier Decomposition for Signals 

with Exponentially Decaying Terms

In the preceding section, the instantaneous Fourier decomposition was applied to a quasi- 

periodic signal. In practice, however, real-world signals often have nonperiodic compo­

nents. For a nonperiodic signal, the Fourier series can be given by

n
S(t) = So(t) + X S;sin(q;(t)) (3.18) 

i=1

where
t

φi(t) = /ωi(t)dt + q,(0) (3.19)

0

S0(t) in 3.18 represents the nonperiodic component of S(t). %(0) in (3.19) is the ini­

tial phase. For a signal of voltage or current, the nonperiodic component is often a time­

decaying exponential, that is, S0(t) = ae~σt (σ > 0). Since t → ∞, e~σt → 0, this term
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Figure 3.2: Instantaneous Fourier decomposition for a nonperiodic signal

does not affect the performance in steady state, but it will result in worse transient response. 

In order to obtain the most accurate representation of the signal, the system should reflect 

this nonperiodic component. Thus, a term with transfer function of e can be added in 

the feedback loop in parallel with the AIMs, each of which has the same structure as de­

scribed in Section 1.2. Fig. 3.2 gives the block diagram for such signals. Correspondingly, 

L, K, Kp can be determined by designing the system as a bandpass filter with notches plus 

a zero with the zero located at -σ. A theoretical analysis of the system producing this 

signal is presented in Appendix B.

3.4 Application to Experimental Weld Voltage Data

To demonstrate the effectiveness of the proposed algorithm, an application to real time 

experimental weld voltage data collected from a welding machine is studied. The data, as 

shown in Fig. 3.3, is nonstationary, and will be applied to the proposed algorithm.

Fig. 3.4 shows both the magnitude and the phase of the data by fast Fourier trans­

formation (FFT). It can be clearly seen from the subplot of the magnitude that four com-
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ponents with frequencies of 60Hz, 180Wz, 300Hz and 420Hz, dominate the experimental 

signal, but they cannot tell much about the dynamic characteristic of the signal.

Fig. 3.5 demonstrates the dynamic behaviour of these four components decomposed 

by our four IMs of the proposed algorithm from the same data. The relevant estimation 

system and the corresponding specified parameters will be discussed in detail in Subsection 

4.5.2 in Chapter 4. For comparison purposes, the first four components obtained by FFT 

as shown previously are also plotted in Fig. 3.5. It clearly shows that the results from 

our instantaneous Fourier decomposition demonstrate the time varying behaviour of the 

relevant components, while Fourier transform can only give constant values.

Furthermore, Huang’s empirical model decomposition does not result in decomposi­

tion into sums of narrow band signals for this class of signals. To demonstrate this, EMD is 

applied to a noise free, stationary truncated sinusoid as is produced by a silicon-controlled-
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rectifier (SCR) as shown in Fig. 3.6. This was done to show that the effect is not a result of 

noise or other artifact. Fig. 3.7 shows the first two intrinsic mode functions decomposed by 

EMD. Higher IMFs model the window applied to the data. The first IMF clearly represents 

a signal that is not narrow band but contains multiple harmonies.

3.5 Conclusion

In this chapter, a new method for analyzing nonstationary data has been developed. The 

key part of the method is the ‘instantaneous Fourier decomposition’ with which any com­

plex data can be decomposed into a finite and often small number of sines and cosines, 

generating a Fourier series representation. Since the decomposition is based on the state 

variables of IMs connected in parallel in the feedback loop of the system, it is intuitive, 

direct, simple and adaptive, and can be implemented in real time.
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Chapter 4

Instantaneous Fourier Decomposition Applied to

Real Time Measurement in RSW Process

4.1 Introduction

Resistance spot welding (RSW) is one of the oldest but most productive and competitive 

joining techniques in use by automotive, aerospace, electrical, electronics, radiators and 

other metal processing industries. The process uses two shaped copper alloy electrodes 

to concentrate welding current between the materials to be welded. The result is a small 

‘spot’ that is quickly heated to the melting point, forming a nugget of welded metal after the 

current is removed [54]. The principle benefits of RSW are high speed, low cost operation, 

and adaptability for automation in high volume production. In the automotive industry, for 

example, with an average of 2,000 to 5,000 spot welds performed on each manufactured 

car, RSW is used almost universally to weld the sheet metal forming a car.

However, despite its advantages, RSW suffers from a major quality variation prob­

lem, i.e., inconsistent quality from weld to weld [23]. This results from: 1) the complexity 

of the basic process which involves interactions among electrical, thermal, mechanical, and 
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metallurgical phenomena; 2) numerous sources of variation, noise, and errors, such as vari­

ations in surface conditions, available power, progressive degeneration of weld electrodes, 

and power cables [55], etc.. Though the relationship between weld quality and the various 

process conditions has not yet been systematically studied, any uncertainty in the process 

coming from variability surely reduces the weld quality, demands more welds to be pro­

duced than are needed if each was perfect, and thus drives up costs. For this reason, as well 

as to meet the recently great demands from industry to weld new materials such as high 

strength steels, aluminium and complex joints, new methods for process control and inno­

vative applications for improving weld qualities are in great demand. Due to the extensive 

use of RSW, particularly in auto bodies, even a small improvement would bring significant 

economic benefits.

In order to detect and correct the defective welds as soon as they occur, it is very 

important to study the relationships between the quality of the resistance welding spots and 

signal curves measured during the welding event. If some indication of the quality of a 

joint could be gathered from the signal curves, real time monitoring could be achieved to 

ensure a perfect weld every time, the need for destructive testing could be reduced. This 

would lead to savings in material and production costs and more effective operation of the 

quality-assurance process.

As the name of RSW implies, it is the resistance to current flow of the material to 

be welded that causes localized heating in the part. The variation of weldment resistance 

over time, or more specifically, the dynamic resistance in the transformer secondary circuit 

during the course of the weld, is an important explanatory variable that can be monitored 

in real time for weld quality control. Moreover, in industrial environments, the welding
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current and tip voltage signals can be more easily and economically acquired than other 

signals. Thus, to provide a reliable real time measurement of the secondary dynamic resis­

tance is our goal in this research.

4.2 Secondary Weld Circuit Measurements

The essence of the measurement of the secondary dynamic resistance is to measure the tip 

voltage at the electrodes and current through the electrodes in the secondary circuit of RSW. 

As an example, Fig. 4.1 illustrates the wiring of the measurements in lab environment 

for this study. Fig. 4.2 shows the corresponding equivalent electrical schematic of this 

measurements, in which V(t) is the secondary voltage served as the power supply of the 
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secondary circuit, Rc is the cable resistance, L is the cable inductance, and R(t) is the 

dynamic resistance across the electrodes that is being measured.

The current I is detected by a Rogowski coil, an air-cored toroidal coil that is placed 

around the conductor. The derivative of current is the measured quantity obtained from 

the toroid, presented as an induced voltage from a time varying magnetic field in the space 

around the conductor. This toroid voltage, which is defined as v(t), can be electronically 

integrated to provide an indirect measurement of the weld current, via the equation [56]

(4.1)

The voltage drop due to the dynamic resistance R(t) is measured by clipping two wires, 

one on each electrode. By doing so, a loop is formed in the circuit through which the 

magnetic flux is produced by the high current flows. This generates an error in the measured 

tip voltage. The induced error is proportional to the rate of the current change, given by 

Faraday’s law [57]

(4.2)dI 
Vw= K— dt

where Vn is the induced voltage error, dl/dt is the current change with respect to time, K is 

a scaling constant which is proportional to the area of the loop and the angle that the loop 

makes with the magnetic field. Though the induced error can be reduced to some extent 

by twisting the pair of sensing wires, enough slack must be left for allowing opening and 

closing of the electrodes, and insertion of the workpieces. With the very large current and 

the low tip voltage, the induced voltage is generally larger than the voltage signal being 
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measured. Therefore, the measured tip voltage, Vm, is not the actual voltage drop Va at the 

electrodes. Instead, it includes two parts, which is given by

Vhn = Va + V, (4.3)

In practice, Va < Vn. When the measured voltage signal is employed for calculating the 

dynamic resistance, this error can not be ignored.

4.3 Limitations of the Existing Methods for Dynamic 

Resistance Measurement

Generally, when the weld voltage and current are well measured, the resistance can be

calculated straight forward by using Ohm’s Law:

(4.4)

However, (4.3) shows that the measured tip voltage is not the actual tip voltage. It can­

not be directly used for resistance calculation. Therefore, in order to extract meaningful 

information of the actual tip voltage from the raw measured voltage signal, elimination of 

induced error is crucial for accurate measurement of the dynamic resistance in RSW.

There are several techniques of doing this. Two of them are well-known as the peak 

method [40] and the compensation method [41], respectively. The peak value method 

achieves this by calculating RÇt) only at the time instants where current peaks occur [27]. 
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At the peak, . = 0, hence Vn = 0, and Vm= Va. This method is accurate as long as the 

sample rate is fast enough to catch the true peaks. However, it is inconvenient to find 

peaks and zero crossings. Moreover, the measurement is discontinuous since only one 

voltage measurement is available per half cycle. It cannot provide a complete time varying 

representation of the dynamic resistance. Also, the greatest resistance, and greatest resis­

tance variance occur during the first quarter cycle of the weld, when no measurements are 

available. This is a serious disadvantage for any feedback control scheme using dynamic 

resistance [57].

Conversely, the compensation method can be achieved by two ways: one is to place 

two additional wires in parallel with the normal measurement wires and short them together 

instead of connecting them to electrodes. When the added loop is exactly the same as that 

of the measuring loop, continuous measurement of the induced noise is achieved and can 

be subtracted form the measured tip voltage. The drawback of this method is that it requires 

an extra measurement that needs to be taken precisely at that same time as the existing tip 

voltage. This precision in timing is necessary because the derivative of the current contains 

large steps as a result of the chopping of the current from the silicon-controlled-rectifiers. 

The need for exactly matching of the wire loops can be partially achieved by using twisted 

pair. However, to match loops at the electrodes requires a short circuit produced by the 

most direct path possible. This makes the approach impractical on the shop floor since the 

motion of the electrodes and access to workpieces require the short circuit to be produced 

by a relatively long path. Another way to achieve the compensation is to subtract the exact 

amount of the error from the measured signal when the current derivative is available. Since 

currents are commonly measured with a Rogaski coil, this measurement is often freely 
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available. To achieve this, the scaling constant K in (4.2) has to be precisely determined. 

However, this is only practical in laboratory environment. In the real world, K will vary 

with the wire placement. Since K is often predetermined offline, this variation makes the 

compensation not viable for measuring the resistance on factory floor.

In addition, for AC power welders, some other limitations arise when using (4.4) to 

calculate the dynamic resistance. They can be summarized as follows:

• Even when the measured V and I are continuous, since I is a sinusoid, calculating 

R = / is still not valid when I is too small or close to 0. This will give a division by 

zero error in the calculations.

• The AC power supplies used in spot welding are primarily SCR controlled. The SCR 

controlled power supplies produce significant harmonies in the input signal. This 

makes the calculation of the resistance even more complicated.

4.4 A Reliable Technique for Estimation of the Dynamic

Resistance

As discussed earlier, elimination of induced error from the measured voltage signal is the 

key step for accurate measurement of the dynamic resistance in RSW. Though many re­

searchers [57, 58] have acknowledged it, no effective way is provided to deal with it up 

to date. In this thesis, a projection approach is proposed to extract the actual tip voltage 

magnitude from the measured noisy voltage signal.
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4.4.1 Fundamentals of Dynamic Resistance Measurement

From (4.2) and (4.3), the actual tip voltage Va can be solved from its measurement Vm by

dI.K— (4.5) 
dt

Since the dynamic resistance R(t) is assumed to be purely resistive, the actual tip voltage 

Va is in phase with the current I. Thus, by representing the sinusoidal current and voltage 

signals as phasors, for each single harmonie, the geometric relationship between Va and Vm 

can be plotted as in Fig. 4.3. From the plot, we can see that the actual tip voltage Va is the 

projection of the measured voltage Vm on the current I. Therefore, the magnitude of Va can 

be calculated by dividing the dot product of Vm and I by the magnitude of I, which can be 

represented by

lτzl ∣‰∣∣Z∣cosθ Vm-I2 
Yal-—7—- 4.6

With the magnitude of the actual tip voltage, the dynamic resistance can thereby be calcu­

lated by division of the magnitude of actual tip voltage by magnitude of current, which is 

represented by

P Va 747X = - (4./) 
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The advantages of this projection approach to calculate the dynamic resistance include:

• The induced error is eliminated from the measured voltage signal.

• It provides a continuous measurement of the tip voltage and dynamic resistance with­

out calibration.

• It does not have division by zero problem since the resistance is calculated by the 

magnitudes of voltage and current.

• It can be performed without measuring dl/dt.

• K can be estimated when dl/dt is measured.

Since the projection approach in (4.6) is based on single phasor, when the measured 

voltage and current contain harmonies, they have to be decomposed into a sum of single 

tone signals first. The previously proposed internal model based instantaneous Fourier de­

composition algorithm can achieve this. For AC powered RSW, the fundamental frequency 

is 60Hz, and the high frequency components are the odd harmonies of 60Hz∙ Since the vari­

ations of the frequencies are very small, the frequencies are considered as known. Thus, 

they do not need to be updated. Therefore, for instantaneous Fourier decomposition, regu­

lar IMs are used rather than AIMs as shown in Fig. 3.2. Basically, the estimation requires: 

1) online measurement of time series of Vm(t) and I(t) at uniform time intervals; 2) two 

internal model based estimation systems are used to decompose the measured signals Vm(t) 

and I(t) into sums of harmonies, representing instantaneous Fourier series representations; 

3) estimation of the magnitude of current |I| from the Fourier series representation of cur­

rent; 4) estimation of the magnitude of the actual tip voltage Val from the projection of Vm
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Figure 4.4: Illustration of the internal model based estimation scheme for dynamic resis­
tance measurement

on Γ, 5) the dynamic resistance is calculated by (4.7) for each harmonic. Theoretically, they

are identical to each other. Fig. 4.4 illustrates the estimation scheme for this procedure.

4.4.2 Tuning of Internal Model Based Instantaneous Fourier

Decomposition System

In order to decompose the measured signals Vm(t) and I(t) into instantaneous Fourier series 

representations as stated above, the two internal model based estimation systems have to be 

properly designed. The two estimation systems are independent but have the same structure 

with same tuning parameters. Following will introduce a methodology to pick the tuning 

parameters. Goal is to incorporate a bandpass filter into design.

The original periodic disturbance cancellation system shown in Fig. 1.1 has the

L(s(.202. transfer function in the form of --—⅛. When 5 = jω, the magnitude of the trans- L(s)s+(s-+02)°

fer function is zero, exhibiting one property of a narrow band notch filter. Therefore, the 

internal model based estimation system described in Chapter 3 is designed to behave as a 

bandpass filter with notches to guarantee stability of the system and to enforce the condi­
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tion that only a small number of harmonies will be considered as relevant. The bandpass 

filter, defined as T2p(s), is chosen as a commonly used Chebyshev bandpass filter with cen­

ter frequency w0 and bandwidth BW, so that the input signal magnitude with frequencies 

outside the pass band will be monotonically decreased and eliminated. The designed tuning 

function L(s) has the same order as that of the bandpass filter. The number of the IMs in the 

estimation system is the same as the number of the harmonies present in the input signal, 

with transfer function of Tx(s) = K2s+10 The number of the notch filters is the same 
Js2+ωf

s2+w?
as the number of the IMs with transfer function of Th (s) = -----—I—7- By matching s-+2e 0 s+00

the coefficients of the bandpass filter in series with the notch filters and the tuning function

with IMs in the feedback loop given by

n L(s)
Tbp(s) ∏Tni(s) = -------- ⅛-------(4.8) 

i=1 1+L(s)STe(s)
∙ i=1

the form and the coefficients of L(s) and the values of the feedback gains (K1i K2i)(i =

1,2, ∙• ,n) can be determined. The detailed procedure can be found in Appendix C.

4.4.3 Estimate of I

With properly designed tuning function L(s) and feedback gain K, the internal model based 

estimation system can decompose a multi-tone signal into single-tone signals, generating a 

Fourier Series as given by (3.14). When n IMs are employed to identify the input signal of 

voltage or current with n harmonies in the form of (3.6), the th (n = 1,2, ■■■,n) harmonic
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estimated from the th IM is given by

Sisin(@; +φi) = KliXii +κ2ix2i (4.9)

where K1i, K2i are the two feedback gains with respect to the two state variables X1i, X2i 

of the ith IM. The magnitude of the th harmonic S; can be solved from (3.16), where the 

slowly time varying magnitude of the states 2 has to be known. Since X1i, X2i are in the 

form of sine and cosine, respectively, Sz- cos(w.t + φi) can be easily obtained by

Sicos(ωit +φi) = -K2ixιi+ Kιix2i (4.10)

Thus, as a alternative, S; can be solved directly from the two time varying state variables 

by

SI = ((K11+K22)2+(-K2u+K12i)2 (4.11)

In this way, the magnitude of the ith harmonic of current Z2l (i = 1,2,∙∙∙ ,n) can be esti­

mated when the input of the estimation system is the measured current signal.

4.4.4 Estimate of R(t)

Similarly, each harmonic contained in the measured voltage signal can be identified by

the corresponding internal model incorporated in the voltage estimation system. For each 

harmonic, the magnitude of the actual tip voltage can be obtained by (4.6) in terms of 

the corresponding current and its magnitude. The overall root mean square (RMS) voltage
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/1 nmagnitude is given by (Val =;>Vail2. With the estimates of the magnitudes of voltage 
V 2 i= 1

and current for each harmonic, the dynamic resistance R(t) can be estimated by (4.7) from 

each IM. Corresponding, n IMs provides n pairs of the estimates of the resistance.

4.5 Results

To demonstrate the effectiveness of the proposed estimation technique, simulations are 

conducted under Mathworks SIMULINK environment using computer generated data sets 

which address two concerns: 1) input data with finite harmonies; 2) SCR model controlled 

data with infinite harmonies. Finally, the algorithm is applied to experimental data from an 

actual resistance spot welder.

4.5.1 Simulation Results for Synthesized Data

To validate the algorithm, synthesized voltage and current data were used as the inputs of 

the estimation system to calculate the dynamic resistance. The estimated resistance is then 

compared with its known value to determine how well the algorithm works. A typical dy­

namic resistance curve that provides very meaningful information regarding the real-world 

nugget growth is shown in Fig. 4.5. Both the known resistance and the synthesized data set 

of voltage and current were generated on the values obtained from the experimental data 

acquired from welding machines located at The University of Waterloo with a sampling 

rate of 25 KHz and 5000 sample points.
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4.5.1.1 Synthesized Data Generation

The synthesized voltage/current dataset is generated by a Simulink data generation model.

The model is built based on the secondary electrical loop of welding circuit in Fig. 4.2. As 

an example, Fig. 4.6 shows a Simulink model to generate a pair of measured voltage/current 

data for a input with three harmonies. The values of Rc, L, and the scaling constant K 

were calculated from the shop-floor data acquired from laboratory welding system after 

noise filtration (see Appendix D). The typical values used here are Rc = 161.5μΩ, L = 

0.5675pH, and K = 4.6298 × 10-7, respectively. The secondary voltage V(t) serves as the 

input of the data generation model with typical magnitude of 4.125V.

As the outputs of the model, the measured tip voltage Vmand the current I provide the 

inputs for the internal model based estimation systems. The internal models can not only 

provide the Fourier series representations of the input signals, but also give the magnitude 

of the actual tip voltage Va and the estimate of the dynamic resistance R. Ideally, for a pure
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Figure 4.6: An example of a Simulink model to generate measured voltage and current
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sinusoid case, where only one IM is used for each input signal, the estimated tip 

magnitude will be the peak values of Va; the estimate of the resistance will match its 

values. For the case with harmonies, where multiple IMs are applied for each input, nei 

the individual magnitudes nor the RMS of the signal will have an obvious relation to 

peak of the waveform.

4.5.1.2 Initial Conditions

The initial conditions is a critical factor for the internal model based estimation algorithm.

Correct selection of the initial conditions for the IMs can minimize transient behaviour.

Therefore, the initial values of the voltage or current signal and its derivative for each IM 

has to be carefully considered and incorporated in the system. In this thesis, the initial 

values were calculated based on the fundamental theory of the secondary weld circuit as 

shown in Fig. 4.2. From the concept of AC circuit, when one of the n harmonies 

in the secondary voltage V(t) is v1(t) = V sin w;t (i = 1,2, ,n), the current output of the 
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loop in terms of v, is given by Ohm’s law

i(t) = Asin(wt - O;) = , sin(ω∕t - 02 2 1 117 z. 1 927

where Z is the equivalent impedance of the circuit, 0i is the phase lag which are defined by

Z; = (R2(t)+R2 +(00;L)2

0i = arctan( N() T Ic

In steady state, the output of the corresponding th IM is identical to the input i(t), that is

K1ix1i + K2ix2i = I; sin(wt - 0i) = i2(t) 

Furthermore, 

,dif(t)- K2ixli +κux2i = ⅛∞s(ωit - Qi) = /00

Therefore, the initial conditions of (x11(0), x21(0)) for th IM with input of i(t) can be 

solved by the following set of equations

, . V, ■ ( / -ω∣L ∖ riK1x110) + K21x21(0) = —------- I-------- sin (arctan() = Ib02(R2(0)+R2+(0)L)2 \ Ro+R/

: (4.15)

-K22*i(0) +K1j*2i(0) =
V; (-OL Y ri

— —:------ I—=-------- COS (arctan ) == l 
(R2(0)+R2+(0;L)2 N Te2
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Similarly, the initial conditions of (x12v(0), x22v(0)) for h IM with input of Vmi(t) =

i(t)R(t) + K410) can be solved by

^liXliv(O) + K21*2iy(0) = ZR(0) + KωiIid0

-K2P1iV(0) + K1*2iv(0) = (4 R(0) - Kojij

(4.16)

where K is the scaling constant. When the initial conditions for each harmonic source 

are applied to its corresponding IM, the transient response of each output signal will be 

significantly reduced.

The voltage and current in a simple RL circuit will generally contain an exponentially

decaying term. This term can be incorporated in the analysis as described in Section 3.3.

A model with transfer function of Ap
$+R(0)+Re will be included in the feedback loop for

each estimation system in parallel with the n IMs. The calculations of initial conditions

of each IM will remain the same as above, while the initial value for the integrator of the

compensated zero term is

n
is(0) = i(0) - ∑ (⅛∏(0) + K2j*21(0))

i=1

(4.17)

n
vs(0) zz Vm(0) - X (Kti li(0) + K2(*2iv(0))

i=1
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4.5.1.3 Simulation Results to Synthesized Data with Finite Harmonies

Following are the simulation results to synthesized data with finite harmonies. The synthe­

sized data used as the test signals are listed as below:

• Pure sinusoidal input current and voltage signals to represent a clean power supply.

• Pure sinusoidal input with added white noise.

• Four odd harmonies added to the signal to simulate the real data behaviour.

• A step function added to R(t) signal to represent a step change due to expulsion while 

welding.

• A 120Hz ripple added to the resistance R(t) signal to represent the effect of heating 

in welding process.

Case 1: Pure Sinusoidal Input Signals

The pure sinusoid was applied to Simulink model of the resistance spot welder and the 

calculated I and Vm were applied as the input signals to the estimation system to estimate the 

actual tip voltage magnitude Va and the dynamic resistance R(t). The secondary voltage 

V(t), which was used to generate 7 and Vm, is based on its calculated value from the real 

data as given below

v(t) = 4.12sin(2π60t) (4.18)

Since the input signals to the estimation system are pure sinusoids, only one in­

ternal model is used for each independent input. The design parameters for the sec­

ond order bandpass filter with a notch are given as: BW = 27160, ωo = 2780 and ε =
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Table 4.1: Tuning values for a bandpass filter with a notch

L(s) Ki K2------------------------------------------ - ---- z ——--- • ----------------------------
1.114×106,2 164.2191 521.8538,4+1669s3+2.244x 106s2+5.328× 108s+6.384× 1010

Table 4.2: Tuning values for a bandpass filter with a notch and a added zero term

L(s)| K p *1 K2
1.114x 106,2 0.23509 0.83726 0.49313s3+1251j2+9.091 × 105s+1.527x 108

0.75. The values of the tuning function L(s) and the state feedback gains K1 and K2 in 

the estimation system can be solved by (C.8) as given in Table 4.1. The initial condi­

tions for the current and voltage were obtained from (4.15) and (4.16), and are given as: 

(x1(0) = -21.462, x2(0) = -9.8111) and (*1,(0) = -0.0033, x2,(0) = 0.003), respectively. 

The estimates of the dynamic resistance and the tip voltage magnitude are shown in Fig.

4.7. It clearly shows that the dynamic resistance estimate converges to its known value with 

some time delay, and the actual tip voltage magnitude tracks its known peak values, but the 

transient responses prevents accurate measurement of the resistance for greater than one 

full cycle.

To further reduce the transient responses, a zero term was added in the estimation sys­

tem as shown in Fig. 3.2 with σ = R(O)+Rc. The design parameters for the bandpass filter 

and the notch remain the same. The values of L(s), Kp, K1 and K2 can be solved by match­

ing the coefficients in (C.11) and (C.12), and are given in Table 4.2. The corresponding 

initial conditions for IMs are (*1(0) = —12674, x2(0) = 3988.2) and (x1,(0) = -0.26476, 

x2v(0) ~2.5144) for the inputs of current and voltage, respectively. The initial conditions 

for the integrators of current and voltage are 8.6444kA and —1.0183V, respectively. The
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Figure 4.8: Estimates of dynamic resistance (above) and actual tip voltage magnitude (bot­
tom) for a pure sinusoid input with zero term compensation

corresponding estimates of the dynamic resistance and the tip voltage magnitude are shown 

in Fig. 4.8. From the figure, we can see that with the zero term compensation, the transient 

responses are significantly reduced, the estimated resistance matches the known value with 

time delay less than 10ms, and the estimated tip voltage magnitude tracks its known peak 

precisely.
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Case 2: Input with Measurement Noise

To test the noise rejection performance of the algorithm, a low magnitude band limited 

white noise with a power spectral density (PSD) of 0.000001 was added to the measured 

tip voltage signal, while white noise with PSD of 1 was added to the measured current 

signal. This is equivalent to variation of 5% of the peak values of the measured signals. 

The corresponding measured tip voltage and current with the added measurement noises 

are shown in Fig. 4.9.
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The estimated dynamic resistance and tip voltage magnitude are shown in Fig. 4.10. 

All the design parameters for the bandpass filter and the notch and the initial conditions for 

current and voltage decomposition routines remain same as the pure sinusoidal input case 

with the zero compensation. It can be seen from the results that the estimated resistance 

and the magnitude of tip voltage have very good tracking performance to their respective 

known values, with much less than 5% variation. The present algorithm has very high 

ability to reject noise.
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Figure 4.11: Measured tip voltage with 4 odd harmonies

Case 3: Input with Four Odd Harmonies

When the input secondary voltage signal contains harmonies, multiple IMs are incorporated 

in the estimation system to detect the fundamental component and each of the harmonies. 

The magnitudes and initial phases of the harmonies present in (4.19) are selected based on 

the best available estimates of the first four harmonies present in real weld data acquired 

from a welding machine. The number of the IMs should be identical to the number of the 

harmonies present in the input signal, in this case 4. The input secondary voltage signal is 

given by

v(t) = 4.125sin(2π60t) + 1.887 sin(2πl80ι —0.0556)

+1.2722 sin(27300r+1.1403)+0.4538 sin(27420r+1.6834) (4.19)

The measured tip voltage generated by this secondary voltage is plotted in Fig. 4.11. It still 

does not reflect the real data as the real data is composed of lots of significant harmonies.
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Table 4.3: State feedback gains and the initial conditions for current and voltage for 4 IMs

Ku K2i Xli ×2i Xliv X2iv
1 st 0.16504 -2.3063 3869.6 4025.1 0.99592 -0.37024

2nd 0.38589 0.016238 -6662.4 2566.5 0.83875 3.6831
3rd 0.47363 0.11731 -1045.7 2137.4 1.7861 1.0746
4th 0.42723 -0.13905 367.51 555.58 0.70666 -0.40689

1 107 21.56710,8 and Kp = 1.8104, respectively. 
+4.068×107s+3.019x1010 P > HJas: L(s) =

The desired estimation system behaves as a bandpass filter with four notches and 

an added zero term. The design parameters for the second order bandpass filter with four 

notches are given as: BW = 27600, w0 = 27300, 81 = 0.35 and 82 = 83 = &4 = 0.2. The 

transfer function of L(s) and the value of Kp solved from (C.11) and (C.12) are given 

s3 +6246s2

(C.12) gives the solutions of the state feedback gains (K1j, K2i) (i = 1,2,∙∙∙ ,4) as well. 

The initial conditions of the current and voltage for each IM incorporated in the system 

are calculated separately by (4.15) and (4.16). Table 4.3 gives all the solutions of the state 

feedback gains and the initial conditions for the four IMs incorporated in the feedback loop 

of the estimation system. The initial conditions for the integrators of current and voltage of 

the zero term compensation are 11.339kA and -2.7322V, respectively.

The algorithm provides four estimates of the resistance and tip voltage magnitude 

corresponding to the harmonies present in the signals. The overall tip voltage magnitude 

is calculated by taking the RMS of the all estimates of the tip voltage magnitudes from 

the system. Fig. 4.12 shows the estimated dynamic resistance from 157 pair of the internal 

models and the estimated tip voltage magnitude. The estimate of the tip voltage magnitude 

is compared with its theoretical value generated by the combined input sources. It can be
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seen from the figures that the resistance and the tip voltage magnitude track nicely to their 

respective known theoretical values with time delay of 10ms.
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Case 4: Input with Four Odd Harmonies and a Step Change for Expulsion

A significant variation in the welding process that can occur is when the forces generated 

by the expanding metal exceed the force applied by the electrodes. When this occurs, the 

liquid metal shoots out between the work pieces. For galvanized steel, this can damage 

the finish, and for all materials, this loss of material can significant weaken the weld. This 

phenomenon is called expulsion. It is believed that there is a step change in the resistance 

when expulsion occurs. To demonstrate that the present algorithm can detect the change, a 

step function was added to the resistance when the secondary voltage signal contains four 

odd harmonies. The step function used to represent the expulsion effect occurs at 0.1s and 

is given by

H(t) =
0 t< 0.1s

-10-5 t>0.1s
(4.20)

The secondary voltage with four odd harmonies remains the same as the case stated earlier. 

All the other design parameters, such as parameters for the bandpass filter and the notches, 

transfer function of L(s), state feedback gain K, and the initial conditions for each IM and 

integrators, remain the same as the case of input with four odd harmonies presented previ­

ously. The estimates of the dynamic resistance and the tip voltage magnitude demonstrate 

a step change due to expulsion are shown in Fig. 4.13. It is clearly shown in the figures 

that the estimated dynamic resistance and the tip voltage magnitude have detected the step 

change that represents the expulsion during the welding process with 10ms of time delay, 

as compared to their respective known values.
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Table 4.4: Values of L(s), Kp, K11,K21, K12 and K22

L(s) Kp Kii K21 K12 K22
5.641 x 106,2 0.13604 1.0585 -1.4635 0.65957 -0.16112P+3422s2+1.9×107s+3.912x 109

Case 5: Input with 3rd Harmonic and 120Hz Ripple

To investigate the algorithm’s ability to detect the effect of heating in the welding process, 

a low magnitude 3μΩ, 120Hz ripple is added to the dynamic resistance signal. In this case, 

the input secondary voltage signal used to generate the measured tip voltage and current 

signals contains 3rd harmonic, which is given by

v(t) = 4.125 sin(2760f +1.1636) +1.887 sin(2πl80r -0.3516) (4.21)

Two internal models are incorporated in the estimation system to detect the fundamental 

component and 3rd harmonic, respectively. The desired estimation system behaves as a 

bandpass filter with two notches. The design parameters for the second order bandpass 

filter with two notches are given as: BW = 27360, w0 = 27180, 81 = 0.9 and &2 = 0.3. 

The values of L(s), Kp for the zero term, and the state feedback gains (K1j, K2i)( i = 1,2) 

in the estimation system are given in Table 4.4. The initial conditions for the current and 

voltage are given in Table 4.5. The initial conditions for the integrators of current and 

voltage are -2.6237kA and 0.30906V, respectively.

The algorithm provides two estimates of the resistance and tip voltage magnitude 

corresponding to the harmonies present in the signal. The above figure in Fig. 4.14 shows 

the estimated dynamic resistances from 157 and 2nd pairs of the IMs. Fig. 4.14 shows that
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Table 4.5: Initial conditions for current and voltage for 2 IMs

Xli X2i Xliv X2iv
1 st 7010.6 1393.8 0.77478 —1.118
2nd -3942.9 973.89 0.21101 2.1384
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the estimate from the 132 IM gives good low frequency component, however, the estimate 

from the 2nd IM gives better result demonstrating the 120Hz component, but it has greater 

bias. To extract the most useful information from the two estimates, it is necessary to take 

these two estimates into account to find a equivalent resistance, i.e., a frequency weighted 

value of the two estimates. The bottom figure in Fig. 4.14 shows the estimated tip voltage 

magnitude comparing to the known values with ripple added in and without ripple. It is 

clearly shown that the estimated tip voltage magnitude is closer to the known value without 

ripple added in the known resistance. This shows that the present algorithm does not tell 

much information about ripple from the estimated tip voltage magnitude, on the other hand, 

it shows that the algorithm has a very good ability to reject noise.

4.5.1.4 Simulation Results for Synthesized Input Created by SCR Model

Though DC power controlled spot welding is commercially available, most of the spot 

welding processes generate AC power. The AC power supplies for the spot welding are 

primarily SCR source. The input current is usually controlled by holding the conduction 

angle constant or by adjusting it to hold measured current constant [5]. A model created in 

the SIMULINK environment tries to generate the chopped voltage and current signals that 

are as close to the ones generated by SCR controlled power supplies in practice as possible. 

Fig. 4.15 shows the current and voltage signals generated by the model. The duty cycle 

remained fixed at 80%.

It can be seen from Fig. 4.15 that the chopped waveforms of current and voltage cre­

ated by SCR controlled model are zero for significant amount of time during the crossovers, 

and contain infinite odd harmonies. General speaking, for identifying infinite harmonies,
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the more IMs that are incorporated in the estimation system, the better the performance 

will be. Since the power spectral energy of the higher order harmonies contained in the sig­

nals is usually significantly decreased after certain orders, only finite IMs are necessarily 

incorporated in the system. In this case, four IMs are applied to identify the fundamental 

component (60Hz) and its first three odd harmonies. Fig. 4.16 shows the estimated results 

of the dynamic resistance and the actual tip voltage magnitude. It can be seen from the 

figures that the estimated results have transient responses with big overshoots. It takes a
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Table 4.6: State feedback gains and the initial conditions for current and voltage for 4 IMs

Kli K2i Xli X2i Xliv X2iv
1rf 388.21 -55.485 -18.362 27.324 0.0033771 0.0052765

2nd -155.25 486.23 0 10-12 0 10-12
3rd -517.25 686.58 0 10-12 0 10-12
4th -632.03 1032.8 0 10-12 0 10-12

certain amount of time for these two signals to reach their steady state values. Besides, the 

initial conditions for each of the four pairs of IMs affect the transient responses as well. 

Since it is not feasible to get the magnitude of each harmonic contained in the input sig­

nals, the reasonable initial conditions for each IM used to identify the odd harmonies were 

chosen as 0, only the initial conditions for the 157 pair of IM that is used to identify the 

fundamental component are available to be obtained by solving (4.15) and (4.16) once the 

design parameters for the system are determined. The design parameters for the second 

order bandpass filter and four notches are given as: BW = 2π360, W0 = 27180, €1 = 0.35, 

82 = ⅛ = Fa -0∙2∙ L(s) = *5009,341.068*107**2388*107+1:636*101 The state feed­
back gains and initial conditions for each pair of the IM are listed in Table 4.6. Note that, 

in practice, the initial conditions of X2i and X2ivs where i = 2,3,4, were chosen as a very 

small positive constant (10-12) rather than 0 to avoid the issue of calculating 0/0 at 1 = 0.

To better understand how well the algorithm works for this case, the estimated dy­

namic resistance and the tip voltage magnitude shown in Fig. 4.16 are redrawn by taking 

the time delay into consideration. Fig. 4.17 shows the plots after shifting the 300 points to 

the left. This is equivalent to 12ms of time delay which is very close to that of the previous 

cases presented in subsection 4.5.1.3. Fig. 4.18 shows the estimated result closely matches
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the actual resistance in the frequency domain except at the odd harmonic of 60Hz begin­

ning with the 9th. This is not surprising because these are the frequencies that were chosen 

not to be modelled.

4.5.2 Results for Experimental Weld Data

In this subsection, the present algorithm is applied to the experimental data collected from 

the welding machines located at The University of Waterloo. The data acquisition system 

is described in detail in [5]. Fig. 4.19 shows the acquired current and voltage data that 

were applied to the algorithm for the estimation of the dynamic resistance and tip voltage 

magnitude. Fig. 4.20 gives the corresponding estimates when four IMs are applied to the 

estimation system with the same parameters stated in Case 5. For comparison purposes, 

Fig. 4.21 displays our estimated resistance with the resistance calculated by V/I at the peak 

currents and the state of the art measurement achieved by subtracting a scaled version of 

the derivative of the current. The state of the art measurement appears to have variations
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that are not consistent with the physics of the problem. Since energy is input into the 

system with a 120Hz fundamental frequency, and resistance increases with temperature, 

some 120Hz variance in the resistance is to be expected. However, the fluctuation seen 

here is greater than expected and the resistance is sometimes seen to be increasing when 

power is zero and decreasing at periods of high instantaneous power. Thus the laboratory 

measurement of the dynamic resistance is not acceptable. Fig. 4.22 compares the proposed 

algorithms estimate of the root mean square voltage times the square root of two with 

the voltage achieved by subtracting the scaled version of the current derivative from the 

measured voltage. We do not know what the exact resistance and tip voltage look like. 

We believe that the proposed algorithm provides better and more reasonable measurement 

of the resistance, and the estimated tip voltage magnitude tracks the peak value of the 

corrected tip voltage as shown in Fig. 4.22 .

4.6 Conclusion

In this chapter, an internal model based instantaneous Fourier decomposition algorithm has 

been applied to a real time resistance spot welding process. The algorithm can not only 

identify the input signals, eliminate the induced noise from the measured inputs, but also 

decompose a multi-tone signal into single-tone signals, in other words, Fourier Series rep­

resentation, thereby providing estimates of the time varying resistance and the tip voltage 

magnitude. Simulations using computer generated data show that the algorithm is reliable 

and can be applied to the real data. Also, the algorithm can detect resistance variations, 

such as expulsion and heating occurring in the welding process.
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Chapter 5

Conclusions and Future Work

Two applications of the internal model based estimation algorithm have been presented. 

Modifications to the basic algorithm are appropriately made to achieve the desired per­

formances for different systems: active noise control and spot welding monitoring. Design 

methods of the improved algorithms are presented. Simulations are conducted under Math­

works SIMULINK environment for algorithm validation.

5.1 Conclusions

Application on an acoustic duct is firstly presented. A design method which is equivalent to 

placing an adaptive PD controller in series with the original internal model in the feedback 

loop is proposed. The improvement of the basic algorithm is made to increase the stable 

frequency band for a widely phase varying system by adaptively tuning the two control 

gains with the estimated frequency. Simulations have been conducted on both independent 

sinusoidal signals and a chirp signal corrupted with Gaussian white noise. Excellent results 

are obtained on both increasing the working frequency band and decreasing the worst case 

error with minimum loss of speed for the system which previously was stable only for a 

very narrow band of disturbance frequency.
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The modification to the basic algorithm to decompose a multi-tone signal into single­

tone signals, generating a instantaneous Fourier series representation is presented next. The 

coefficients of the Fourier series represent the magnitude of the measured signal. The im­

proved algorithm is then applied to real time dynamic resistance estimation in resistance 

spot welding process. The time varying dynamic resistance is calculated by the division 

of the magnitude of voltage and the magnitude of current. The induced voltage noise is 

eliminated by projecting the measured tip voltage on current. The transfer function of the 

tuning function and the state feedback gains are determined by the design of the overall 

estimation system as a bandpass filter with notches. The initial conditions for each internal 

model incorporated in the system and the initial values for integrators where applicable 

are given. Simulations on synthesized data of pure sinusoidal input, input with finite har­

monics, and input with infinite harmonies are conducted under Mathworks SIMULINK 

environment. Results show that the improved algorithm provides fairly accurate estimation 

of the dynamic resistance and tip voltage magnitude with ability to detect expulsion and 

heating during welding process without any calibration. It is efficient and practical. Anal­

ysis on real data shows that the algorithm is more reliable and achievable than any other 

existing approaches and makes application of the previous academic literature to shop floor 

more likely to succeed.

5.2 Future Work

Though the modified methods have achieved excellent performance on each individual 

system, more work is still needed to be done, particularly on RSW process. Issues that 
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need to be further investigated in the future are as follows:

• The algorithm can clearly demonstrate whether there is an occurrence of expulsion 

during the welding process from the estimated dynamic resistance. However, it does 

not contain much information about 120Hz variation from the estimate of the 137 

IM. Though estimate of the dynamic resistance from each IM is of the same phys­

ical property, the results show that the 157 IM gives better low frequency behavior, 

the higher order IMs provide more information of behaviour of the even harmonies, 

but they are noisy and biased. Finding suitable techniques to combine all available 

resistance estimates is the biggest issue in the future.

• Increasing the number of IMs should enable us to more accurately model the signal. 

However, this also increases the order of the bandpass filter, which can degrade the 

convergence speed of our states to their steady state trajectories. In practice, the 

present simulations with their tuning parameters show that the best results occur with 

four IMs. Investigation of the best parameters for the closed loop bandpass filter is 

needed. Faster convergence, so as to enable tracking of resistance during the first half 

cycle, as well as improving the ability to track 120Hz variation may call for raising 

the lower cutoff frequency of the bandpass filter, and placing its poles as far into the 

left half plane as possible.

• Estimation performance is significantly affected by the initial conditions of each IM. 

The closer the initial conditions to their ideal values, the better the performance 

is. When the input contains uncertain components where the corresponding initial 

conditions are impossible to be obtained, it takes time for the estimation system to
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respond. Work on initialization for infinite harmonic case is another issue to be ad­

dressed in the future.
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Appendix A 

Responses of the Improved Adaptive Control

System to Disturbances
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Figure A.1: Response to a pure sinusoidal disturbance: ωd = 100 rad/sec
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Figure A.2: Response to a pure sinusoidal disturbance: ωd = 200 rad/sec
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Figure A.3: Response to a pure sinusoidal disturbance: ωd = 300 rad/sec
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Figure A.4: Response to a pure sinusoidal disturbance: ωd = 400 rad/sec
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Appendix B

Analysis of RSW Circuit with Exponential 

Resistance

Fig. B.1 shows the equivalent electrical schematic of the secondary AC circuit in RSW. 

The dynamic resistance R(t) here is exponential represented by R1e ot. The solutions of 

the current i(t) and the voltage v(t) are given below.

The governing differential equation of this RL circuit is given by

L42 + (Re + R(t))i(t) = u(t) t>0 (B.1)

where R(t) = R1e-Sf, u(t) = Vm sin wt.

Assuming x(t) = i(t), (B.1) can be written in the form of

*(t) = a(t)x(t) +b(t)u(t)

Vs

Rc

i(t)

COM

Dynam ic P
Resistance S 0 v(t)

______y

Figure B.1: Electrical circuit of the secondary loop in RSW with exponential resistance
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where a(t) = — E(R+R1e-91), b(t) = +.

Linear system theory gives the complete solution of (B.2) as

t 

x(t) = 0(r,0)x0+(t,r)b(r)u(t)dt (B.3)

0

where

Bit 0) _ eJfa(r)dt _ (oRet-R1 (e-91-1) (B 4)0,0 -ee 06 (D.4)

D(t z) = aJfa(z)dz _2-g(aRe(t-t)-R1(e-Ol-e-9T)) (B 5)

Therefore,

t

0

Vm atoRe( τ) Rile e sinœtdt

0

j2L J

0

-aE(oRe(t-t)-Ri(e ot-e στv.(eJωτ - e-Jωτ (B.6)

t

Since

t

-OE(oRe(t-t)-R1(e o-e "1)).ejoordt

0

-σt - jωL) jωt L(Rc+Rl- jωL) ORet-R (e 0(-1)— -—0- - - — - - - - - -—e CL (B.7)
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and

—r(oRe(t—t)—R1(e σt-e στ)) —jot OL EX ‘ IX "∙e 3 dt

0

L(Re+R1e gt+joL) -for L(Re+R1+j@L)------------------------------------------------------------------—0 J —- - - - - - - - - - -- - - - - ----- 1(e f-1) 
oL (B.8)

Substituting (B.7) and (B.8) into (B.6), we have

ct Age )Vm . . WLVm -— ------------ —.sin cot — -----------------------------(Re +R1e-ot)2 +@2L2 (Re + R1e-ot)2 +0212
mTV oRet-R1 (e-ot -1)

+7^ττ-^-7-∑272e oL

cos ωt

(B.9)

Substituting (B.4) and (B.9) into (B.3), we have the complete solution of x(t)

-R1(eσ,-l))rI_____ G)LVm
0T (Re+R)2+

ORet—R (e-0(-1) 
OL

(Re +R1e-et)Vm . WLVm
7 —- --------.  > >sin cot — - -------------.  , a(Re +R1e-ot)2 + ω2L2 (Re+R1e-ot)2 +002L2

In this case, X0 = 0, x(t) can be simply represented by

x(t) = CLVm ORet-R1 (e 0(-1) oL

(Re+Re- c)Vm
+R1e-ot)2 +04

GLVm
cos ωt (B.11)

Therefore, the time varying i(t) is

WLVm oRet—R (e-O1 -1)
----------- CL ---------

t

(Re+Rie C)Vm . WLVm
-—  --------- —3asin ait - 7--------------------.------ ,a(Re +R1e-ot)2 +w2L2 (Re+R1e-ot)2 +ω2L2
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When t = 0, the initial condition of i(0) is

i(0) = 0 (B.13)

When r → ∞, in steady state, i(∞) is

i« = - ------, a sin ct - .------9.2 cos wt (B.14)
r‘ R2 + w2L2 R2 + w2L2

The voltage across R(t) is

v(t) = Rie σti(t) (B.15)



Appendix C

Design of An Bandpass Filter with Notches

The desired internal model based estimation system for the dynamic resistance measure­

ment behaves as a bandpass filter with notches.

C.1 Design of An Bandpass Filter Tbp(s)

The transfer function of the desired bandpass filter Tbp can be obtained from a normalized 

lowpass prototype filter Tιp by the transformation

Tbp(s) - T1p(s) s2+0
S= BWS

(C.1)

where w0 is the center frequency, and BW is the bandwidth of the desired bandpass filter. 

In this thesis, the prototype of the normalized lowpass filter Tip is chosen as a second order 

Chebyshev lowpass filter with 1-dB ripple given in [59] as

z\ 1.102510Tx(s) = ------------------------------
LP\ / s2 + 1.097734s +1.102510

(C.2)

The transfer function of the desired bandpass obtained by the transformation (C.1) is

1.102510BW2.2
§4 + C1s3 + c2s2 + C35 + C4

(C.3)
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where

cι = 1.097734BW

c2 = 2ωJ+1.1025 10BW2

C3 = 1.097734w7BW

c4 = € (C.4)

C.2 Design of L, K for Single Tone Case

For a pure sinusoidal input, only one IM is incorporated in the estimation system. The 

system is designed to behave as a bandpass filter with a notch. The transfer function of a 

notch filter is in the form of

(C.5)

where ε is a small real number and w is the notch frequency.

Multiplying (C.3) and (C.5), the desired bandpass filter with a notch can be given by

In
1.102510BW2s2(s2 +w2)

(s4 + C1s3 + c2s2 + C3S + c4)(52 +2εωs + ω2)
(C.6)

M(s) bis2We assume the tuning function L(s) in the form of L(s) = N = 4—3-2-- — °7-----------------------7 N(s) s4+a1s +a2s-+a3s+a,

[53]. The transfer function of an IM is 25. Thus, the transfer function from the input

d(s) to the output e(s) in Fig. 3.1 when n = 1 is

Tde— L(s)
1 +L(s)

N(s)(s2.

2s+100)
52+2/

ω2) + M(s) (K2s + K1w)
(C.7)
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By setting the numerators and denominators in (C.7) and (C.6) to be equal, we have

b1 = 1.102510BW2

a2 = c2 + 280c1

a1 = c1 + 280

44 = C4

, , 02c1-c3
K1 = —2εω------- - -------2

bi

,, ω4-ω2c2+c4 
K2 = -2ε   1

wb1
(C.8)

C.3 Design of L, K for Multiple-Tone Case

When the input signal contains harmonies, multiple IMs are incorporated in the estimation 

system. Correspondingly, the desired system is expected to behave as a bandpass filter with 

multiple notches. In this case, the transfer function of the closed-loop feedback system as 

shown in Fig. 3.1 is as follows

n
1+L(s)> 

i=1

(C.9)

The desired bandpass notch filter has the form as

1.10251OBW2? A (s2+02) 
(s4 + cιs3 + c2s2 + c3s + C4) L (? -∣- 2εiωis + w2) (C.10)

By matching the coefficients of the numerators and denominators in (C.9) and (C.10), we 

can obtain the unique solutions of b1 and a2(k = 1, • • ■ ,4) for L(s), and the feedback gains 
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(K1i, K2i)(i = 1, ■ ■ ∙ ,n) for each IM.

C.4 Design of L, K for Nonperiodic Input

When the input signal is nonperiodic as described in section 3.3, Fig. 3.2 is applied to 

estimate the dynamic resistance in RSW. In this case, a zero will be added in the desired 

estimation system which was previously designed as a bandpass filter with notches. The 

corresponding transfer function is

T 1.102510BW2s2(s+0) " (§2 +@2) 
bpn (s4+c1s3 +€2s2+c3s+c4) U (§2 +2εiωis + w?) (C.11)

Accordingly, the form of the tuning function L(s) is modified as L(s) = M(s) _bs2_____
N(s) s3+a1s2+a2s+a3

The transfer function of the closed-loop feedback system as shown in Fig. 3.2 is then given

by

(C.12)

By matching the coefficients of the numerators and denominators in (C.12) and (C.11), we 

can obtain the unique solutions of b1 and a(k = 1, • • ∙ ,3) for L(s), and the feedback gains 

K2 and (K1), K21) (i = 1,2, ∙∙∙ ,n) for each IM.



Appendix D

Relevant Data Signals and Peak Values

The following relevant data signals and corresponding peaks values were extracted from 

the shop-floor data after noise filtration using FFT techniques.

Primary Current: 142.56 A

Secondary Current: 16 kA

Primary Voltage: 462 V

Secondary Voltage: 4.125 V

Measured Tip Voltage: 1.42 V

Corrected Tip Voltage: 1.23 V

Current Derivative: 2.55 V

Re.

L:

Turn Ratio:

161.5 μΩ

0.5675 μH
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Appendix E

MATLAB Code Listing

The gain of the state feedback K and the coefficients of the transfer function for the tuning 

function L are calculated based on the desired estimation system behaves as a bandpass fil­

ter with notches. Each harmonic contained in the input measured signal corresponds to one 

internal model in the estimation system. As an example, following MATLAB codes give 

the solutions of state feedback gain and tuning function as well as all the initial conditions 

for the internal models and the integrators incorporated in the system.

%%%%%%%⅝ Generate synthesized resistance %%%%%%%%%%%

res= [70e-6 67e-6 62e-6 57e-6 52e-6 49e-6 46e-6 45e-6 44e-6 

44e-6 45e-6 47e-6 51e-6 57e-6 64e-6 68e-6 69e-6 70e-6 

70e-6 70e-6 70e-6];

tl= (0:.01:0.2); p=polyfit(tl,res,3); res2=polyval(p,tl); 

y=interpft(res2, 25*200+1); t2=0:1/25000:.2; pf=polyfit(t2,y,5); 

r=polyval(pf,t2);

%%%%%% Generate the measured signals from the model %%%%%%%% 

sim (' siggen_pure ')

%%%%%%%%%%%% Parameters setup %%%%%%%%%%%%%%%%

R0=rtip(l); %R0=7.5816e-005

Rc=161.5e-6; L=0.5675e-6; R=Rc+R0; v_l=4.125; Ksc=.5556*0.8333e-6; 

w=2*pi*60; phi=w*L∕(R0+Rc);

Ieo_l=v_l/sqrt((R0+Rc)^2+ (w*L)^2) *sin(-atan(phi));

Ideo_l=v_l/sqrt( (R0+Rc) ^2+ (w*L) ^2) *cos (-atan (phi) ); 
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%%%%%%%%%%%%% Designed a bandpass filter %%%%%%%%%%%%%%%%% 

w0=2*pi*80; ep=.75; BW=2*pi*160; c1=1.097734*BW;

c2=2*w0 2+1.102510*BW 2; c3=1.097734*BW*w0*2; c4=w0 4;

%%%%%%%%%%%%% Coefficients of L(s)*********%*****%* 

b1=1.102510*BW 2; al=-(-cl*L-2*ep*w*L+R)/L;

a2=L*(2*c4*ep*R+c3*w*R-c4*L*w)/ (R^2*w); a3 = c4*L∕R;

%%%%%%%%%%%%%%%% Kp and K %%%%%%%%%%%%%%%%%

Kp= (2*L^4*c3*ep*w*R^2+L^4*c2*w^2*R^2+R^6-2*L^5*w*c4*ep*R 

-L^5*w^2*c3*R+L^6*w^2*c4-L^3*cl*w^2*R^3+L^2*R^4*w^2 

+2*R^4*w*cl*ep*L^2-2*R^5*w*ep*L-2*R^3*w*L^3*c2*ep 

+R^4*c2*L^2-R^3*L^3*c3+R^2*L^4*c4

-R^5*cl*L) / (bl*L^2*R^2* (w 2*L 2+R 2) ) ;

K(1)=-2*w*L*ep* (-c2*w^2*L+w^2*cl*R+L*w^4-c3*R+c4*L) 

/(bl*(w^2*L^2+R^2));

K(2)=-2*L*ep* (-c2*w^2*R+w^4*R+c4*R-w^4*L*cl+c3*w^2*L) 

/(bl*w*(wλ2*Lλ2+R^2));

K(1)=K(1)/w;

%%%%%%%%%%%%%%% Initial values %%%%%%%%%%%%%%%%%%%

xl_0=-(K(2)*Ideo_l-Ieo_l*K(l))/(K(1)^2+K(2)^2);

x2_0=(K(2)*Ieo_l+Ideo_l*K(l))/(K(1)^2+K(2)^2);

x1v_0= (Ieo_l*R0*K(1)+Ksc*w*Ideo_l*K(1)-Ideo_l*R0*K(2)

+Ksc*w*Ieo_l*K(2)) / (K(2)^2+K(l)^2);

x2v_0=- (-K(1) *Ideo_l*R0+K(1)*Ksc*w*Ieo_l-K (2) *Ieo_1*R0

-K(2)*Ksc*w*Ideo_l)/(K(2)^2+K(l)^2);

numim=1;
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The states of the internal models in the algorithm provide the instantaneous Fourier series 

representation of the current and voltage signal. The MATLAB codes for calculation the 

tip voltage magnitude and the dynamic resistance are given as follows.

for k=1:numim

sx(:,2*k-1)=K(2*k-1)*u(:,2*k-1)+K(2*k)*u(:,2*k);

sx(:,2*k)=-K(2*k)*u(:,2*k-1)+K(2*k-1)*u(:,2*k);

sxv(:,2*k-l) =K(2*k-l)*uv(:,2*k-l)+K(2*k)*uv(:,2*k);

sxv(:,2*k) =-K(2*k) *uv(:,2*k-l)+K(2*k-l)*uv(:,2*k);

smagi(:,k) =sqrt(sx(:,2*k-l).^2+sx(:,2*k).^2);

stip(:,k)=dot([sx(:,2*k-1) sx(:,2*k)],

[sxv(:,2*k-l) sxv(:,2*k)],2)./smagi(:,k);

sdr(:,k) =stip(:,k)./smagi(:,k);

end

%%%%%%%%%%%%% ESTIMATE OF RESISTANCE %%%%%%%%%%%%%%

sdr (: , numim+1) =nanmean ( sdr (: , 1: numim) ' ), ;

figure

plot (tout, rtip, tout, sdr (:,1), ':m')

%%%%%%%%%%%%% OVERALL TIP VOLTAGE MAGNITUDE %%%%%%%%%%%%%%

tip=0;

for n=1:numim

tip=tip+stip(:,n).2;

end stip(:,numim+1) =sqrt(tip); figure

plot (tout_rl,vtip_mag, tout, stip(:, numim+1),'--r')
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