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Abstract

Based on the evolving communications, computing and embedded systems technologies,

Internet of Things (IoT) systems can interconnect not only physical users and devices but also

virtual services and objects, which have already been applied to many different application

scenarios, such as smart home, smart healthcare, and intelligent transportation. With the rapid

development, the number of involving devices increases tremendously. The huge number of

devices and correspondingly generated data bring critical challenges to the IoT systems. To

enhance the overall performance, this thesis aims to address the related technical issues on IoT

data processing and physical topology discovery of the subnets self-organized by IoT devices.

First of all, the issues on outlier detection and data aggregation are addressed through the

development of recursive principal component analysis (R-PCA) based data analysis frame-

work. The framework is developed in a cluster-based structure to fully exploit the spatial

correlation of IoT data. Specifically, the sensing devices are gathered into clusters based on

spatial data correlation. Edge devices are assigned to the clusters for the R-PCA based out-

lier detection and data aggregation. The outlier-free and aggregated data are forwarded to the

remote cloud server for data reconstruction and storage. Moreover, a data reduction scheme

is further proposed to relieve the burden on the trunk link for data uploading by utilizing the

temporal data correlation. Kalman filters (KFs) with identical parameters are maintained at the

edge and cloud for data prediction. The amount of data uploading is reduced by using the data

predicted by the KF in the cloud instead of uploading all the practically measured data.

Furthermore, an unmanned aerial vehicle (UAV) assisted IoT system is particularly de-

signed for large-scale monitoring. Wireless sensor nodes are flexibly deployed for environ-

mental sensing and self-organized into wireless sensor networks (WSNs). A physical topology

discovery scheme is proposed to construct the physical topology of WSNs in the cloud server to

facilitate performance optimization, where the physical topology indicates both the logical con-

nectivity statuses of WSNs and the physical locations of WSN nodes. The physical topology

discovery scheme is implemented through the newly developed parallel Metropolis-Hastings

random walk based information sampling and network-wide 3D localization algorithms, where

UAVs are served as the mobile edge devices and anchor nodes. Based on the physical topology

constructed in the cloud, a UAV-enabled spatial data sampling scheme is further proposed to
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efficiently sample data from the monitoring area by using denoising autoencoder (DAE). By

deploying the encoder of DAE at the UAV and decoder in the cloud, the data can be partially

sampled from the sensing field and accurately reconstructed in the cloud.

In the final part of the thesis, a novel autoencoder (AE) neural network based data outlier

detection algorithm is proposed, where both encoder and decoder of AE are deployed at the

edge devices. Data outliers can be accurately detected by the large fluctuations in the squared

error generated by the data passing through the encoder and decoder of the AE.

Keywords: data processing, topology discovery, machine learning, edge-cloud collaborative
computing, Internet of Things systems
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Lay Summary

Based on the evolving communications, computing and embedded systems technologies,

the Internet of Things (IoT) can interconnect not only physical users and devices but also

virtual services and objects, which have already been pervasively deployed. With the rapid

development, the number of involving devices increases tremendously. The huge number of

devices and generated data bring critical challenges. To enhance the overall performance, this

thesis aims to address the related issues on IoT data processing and physical topology discovery

of the subnets self-organized by IoT devices.

Firstly, the issues on outlier detection and data aggregation are addressed through the de-

velopment of recursive principal component analysis based data analysis framework. The

framework is developed in a cluster-based structure to fully exploit the spatial data correla-

tion. Moreover, a temporal data correlation based reduction scheme is further proposed to

reduce the amount of data uploading, which is implemented by using the data predicted by the

Kalman filters in the cloud instead of uploading all the practically measured data.

Furthermore, an unmanned aerial vehicle (UAV) assisted IoT system is designed for large-

scale monitoring, where UAVs are served as the mobile edge devices. Specifically, wireless

sensor nodes are flexibly deployed for environmental sensing and self-organized into wireless

sensor networks (WSNs). The physical topology of WSNs unveils the logical connectivity sta-

tuses of WSNs and the physical locations of nodes, which can facilitate system performance

optimization. Thus, a physical topology discovery scheme is proposed to construct the phys-

ical topology in the cloud. Moreover, a UAV-enabled spatial data sampling scheme is further

proposed to efficiently sample data from the monitoring area by using denoising autoencoder

(DAE). By deploying the encoder of DAE at the UAV and decoder in the cloud, the data can

be partially sampled from the area and accurately reconstructed in the cloud.

In the final part, a novel autoencoder based data outlier detection algorithm is proposed,

where both encoder and decoder of autoencoder are deployed at the edge devices. Data outliers

can be accurately detected by the large fluctuations in the squared error generated by the data

passing through the encoder and decoder.
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Chapter 1

Introduction

1.1 Overview of Internet of Things Systems

By utilizing the rapidly developing communications, computing, and embedded systems tech-

nologies, Internet of Things (IoT) systems are able to interconnect not only physical users and

devices, but also virtual objects and services, which can finally change the way of living in

many different kinds of scenarios, such as smart city, smart healthcare, and Industry 4.0 [1].

Due to the pervasive deployment and enlarging scale of IoT systems, the number of involving

devices keeps increasing in an explosive trend, which expects to reach 18 billion in 2022 [2].

The tremendous increment in the number of devices brings huge challenges to the perfor-

mance of IoT systems. Before the detailed investigations on the challenges, the fundamentals

of IoT systems are firstly introduced with the conceptual system architecture, which provides

a blueprint of the whole system.

The ultimate goal of IoT systems is to make timely and reliable decisions and provide

customized services by fully utilizing the information collected from objects and environments.

In order to achieve the goal, a paradigm of IoT systems should at least comprise the following

components, i.e., sensing, communication, and analytics layers, as shown in Fig.1.1.

• Sensing layer composed of IoT end devices is the most fundamental component in the

IoT systems, which is responsible for sensing and collecting the environmental infor-

mation, and also reacting to the feedback and instructions. These IoT end devices are

1
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Figure 1.1: Diagram of IoT systems includes sensing, communications, and analytics layers.

heterogeneous with different capabilities of computing, communications, and storage,

which can be self-organized into several subnets, such as vehicular ad hoc networks

(VANETs) and wireless sensor networks (WSNs). Therefore, it is a tough task to effec-

tively coordinate and manage the massive amount of heterogeneous IoT end devices and

subnets in the sensing layer.

• Communication layer supported by multi-services gateways is the backbone network

for IoT data communications, including the uplink for the uploading of sensing data and

the downlink for the delivery of feedback. Due to the heterogeneous feature, multiple

kinds of communication protocols may coexist in the IoT systems. Thus, multi-services

gateways are needed to facilitate the data communications throughout the systems, such

as the femto base stations, wireless access points, and mobile gateways (e.g., unmanned

aerial vehicle (UAV)).

• Analytics layer is responsible for IoT data processing and analysis. In IoT systems,

data analytics can be flexibly executed. IoT data can be locally processed at the IoT end

devices, though the IoT end devices are with limited resources and can only provide ele-

mentary processing. IoT data can also be uploaded to the remote data center, e.g., cloud

computing platform, for comprehensive processing and analysis, while processing and
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communications from the remote platform can lead to high latency. Thus, edge comput-

ing has been introduced into IoT systems as a compromise, which is more close to the

IoT end devices and can provide real-time responses to the local devices. Meanwhile,

edge computing can provide preliminary data processing, so that the tasks of cloud com-

puting can be partially offloaded to the edge and the burden of data uploading on the

trunk link can be relieved. Thus, collaborative computing is a promising solution to the

computation-intensive tasks in the IoT systems, which needs to be seriously analyzed

and designed.

1.2 Challenges in the Explosive Growth of IoT Systems

The pervasive deployment and increasing system scale boost the explosive growth of IoT

systems, which brings huge technical challenges to the IoT systems alongside the enormous

amount of involving devices. In order to enhance the system performance on real-time, relia-

bility and scalability, some of the existing and potential technical challenges in the IoT systems

are unveiled as follows.

• Interoperability among massive and heterogeneous devices: IoT systems typically

comprise a huge number of devices with different capabilities of communications, com-

puting, and storage. Without effective interoperability among these devices, the relia-

bility and scalability of IoT systems would be degraded dramatically. The specific as-

pects of interoperability in the IoT systems include the communications and coordination

among the massive amount of end devices in the sensing layer, the interactions between

the sensing layer and the intermediate multi-services gateways, the communications and

cooperation among the gateways, and the interactions between the gateways and the re-

mote system data and control center. Therefore, multiple communication protocols and

coordination mechanisms need to be customized for the IoT systems to guarantee the

interoperability among the massive and heterogeneous devices.

• Autonomous organization and management: IoT end devices can be self-organized

into subnets, such as VANETs and WSNs, which outstandingly improve the flexibility
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and scalability of IoT systems. However, due to the random and scalable features, the in-

formation of self-organized subnets, e.g., network topology, can hardly be known in the

system control center in advance. Furthermore, the dynamic and resource-constrained

IoT end devices tend to change the subnets in unpredictable ways. Thus, unbiased in-

formation sampling schemes are needed to collect the information of the devices and

subnets, so that the system control center can have a better knowledge of the entire sys-

tem for device management, event management, and system performance optimization.

• IoT data processing and analysis: The huge number of IoT end devices continuously

generate a massive amount of IoT data, which challenges the IoT systems on timely and

reliable data processing and analysis. Providing the weak capabilities of some IoT end

devices, the IoT data has to be uploaded to the remote data center, e.g., cloud computing

platform, for comprehensive data analytics and storage. However, the overwhelming

amount of data uploading imposes a heavy burden on the trunk link, which may even

result in system crashes. Furthermore, given the complex and dynamic environmental

situations of the deployment fields, IoT end devices are vulnerable to different kinds

of attacks and inner malfunctions, which can finally taint the IoT data. The abnormal

IoT data can lead the data-driven IoT systems into unsafe conditions. Therefore, it is

necessary to develop appropriate system architecture and corresponding algorithms for

data processing and analysis in the IoT systems.

• Collaborative computing: In order to reduce system investment and operating costs,

certain IoT devices are built with limited resources. Thus, resource-constrained devices

can hardly be used to complete computation-intensive tasks. Collaborative computing is

a promising solution, which can finally provide timely and reliable services to users and

devices by optimally utilizing the distributed system resources in IoT systems. Specif-

ically, the implementation of collaborative computing in IoT systems relies on the re-

source awareness of individual devices, optimal resource allocation, and task offloading.

Each of the technical fundamentals needs to be seriously investigated.

• Security and privacy protection: The resource-constrained IoT devices are vulnerable

to different kinds of attacks, due to the transparent wireless communication interfaces
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and lack of protection mechanisms. The malicious attacks can easily occur during the

procedure of data communications, which may either steal the IoT data by eavesdropping

or mislead the IoT systems by spoofing, tampering or dropping the IoT data. Moreover,

the privacy of users would also be exposed to the adversaries through the compromised

devices. Considering the pervasive deployment of IoT systems, malicious attacks can

bring huge security and privacy threats to the industry, environment, and society. How-

ever, the existing security and privacy protection mechanisms are too complex to be

applied to the IoT systems directly. Therefore, lightweight and distributed security and

privacy protection mechanisms need to be tailored for the IoT systems to protect data

confidentiality and user privacy.

1.3 Research Objectives of the Thesis

Considering the challenges mentioned above, technical issues on IoT data processing and

topology management of the self-organized subnets would be addressed in the thesis. The

specific research objectives are identified as follows.

• Design of IoT system architecture: The general requirements of IoT system architec-

ture design are dynamic, flexible, and scalable, due to the dynamic and heterogeneous

features of the huge number of IoT end devices [3]. Beyond the general demands, the

specific needs of IoT data processing and topology management should be involved in the

design as well, since the IoT system architecture has deterministic effects on the dataflow

of IoT data processing and also the efficiency of device coordination and management.

The existing conceptual architectures of IoT systems include the cloud-based architec-

ture and edge-cloud collaborative architecture, while the latter is more appropriate for

the IoT systems with requirements of large-scale and real-time analytics. Although the

conceptual architecture exists, the functionalities of each system components and the

collaborations among them still need to be seriously considered and carefully designed

for specific applications.

• Development of IoT data processing algorithms: Due to the explosive increment in
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the number of heterogeneous IoT end devices, data processing in IoT systems meets the

challenges of high volume and taint. Therefore, data processing algorithms, particularly

for data aggregation and data outlier detection, need to be developed in order to reduce

the amount of data uploading and clean the tainted data. Due to the context-aware capa-

bilities of IoT systems and mild change of physical environments, IoT data are generally

labeled with timestamp and location and are temporally and spatially correlated, which

can be exploited to develop the data processing algorithms.

• Development of topology management schemes: Due to the randomly deployed and

self-organized features of IoT end devices, particularly, wireless sensor nodes, it is diffi-

cult to control the physical topology of the subnets in IoT systems. However, awareness

of physical topology is important, since physical topology indicates both the physical lo-

cations and connection statuses of IoT end devices, which can be utilized to facilitate the

IoT systems with performance optimization such as device management and real-time

event detection. Thus, the development of topology management schemes is a necessity.

Since IoT end devices are context-aware, unbiased sampling of the device information

can be exploited to construct the physical topology at the system control center.

1.4 Technical Contributions of the Thesis

The main contributions of this thesis are summarized as follows.

• In order to aggregate the redundant data and detect the outliers in IoT systems, a cluster-

based data analysis framework is proposed using recursive principal component analysis

(R-PCA). More specifically, at a cluster head, spatially correlated sensor data collected

from cluster members are aggregated by extracting the principal components (PCs). The

data outliers are identified by the abnormal squared prediction error (SPE) score, which

is defined as the square of residual value after extraction of PCs. With R-PCA, the

parameters of the PCA model can be recursively updated to adapt to the changes in IoT

systems. The cluster-based data analysis framework also releases the computational and

processing burdens on sensor nodes.
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• Denoising autoencoder (DAE) neural network is an extension of PCA on nonlinear data

correlation. By using DAE, a UAV enabled spatial data sampling scheme is proposed for

large-scale IoT systems. More specifically, a UAV-enabled edge-cloud collaborative IoT

system architecture is firstly developed for data processing in large-scale IoT monitoring

systems, where the UAV is utilized as a mobile edge computing device. Based on the

system architecture, the UAV-enabled spatial data sampling scheme is further proposed,

where wireless sensor nodes of the large-scale IoT systems are clustered by a newly

developed bounded-size K-means clustering algorithm. A neural network model, i.e.,

DAE, is applied to each cluster for data sampling and reconstruction by exploiting either

linear or nonlinear spatial correlation among data samples. Taking advantage of the

DAE neural network model, the accuracy and efficiency of spatial data sampling are

dramatically improved. Furthermore, similar to PCA, the squared error generated by

passing through the autoencoder (AE) neural network can also be used to identify the

data outliers.

• The R-PCA and DAE based algorithms are proposed based on the spatial data correla-

tion, while an edge computing enabled temporal IoT data reduction scheme is further

proposed by the exploitation of temporal data correlation. More specifically, IoT data

are firstly modeled as multivariate normal distribution in the cloud. Dual Kalman filters

(KF) with identical parameters are then deployed at both the cloud and edge platforms.

The same predictions are simultaneously triggered by the dual KFs at both platforms.

Only the measured IoT data out of the predicted range is further uploaded from edge to

cloud. Otherwise, predicted values at both platforms are used instead of measurements.

By using this approach, the amount of data uploading is reduced so that the burden on

the bandwidth of the trunk link is relieved.

• In order to build up the physical topology in the cloud, a cloud-orchestrated physical

topology discovery scheme is proposed for the large-scale IoT systems by using UAV.

More specifically, the large-scale monitoring area is firstly split into several subregions

for UAV-enabled data collection. Within the subregions, parallel Metropolis-Hastings

random walk (MHRW) is developed to gather the information of nodes, including their
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IDs and neighbor tables. The collected information is forwarded to the cloud through

UAV for the initial construction of logical topology. After that, a network-wide 3D lo-

calization algorithm is further developed based on the logical topology and multidimen-

sional scaling method, termed as Topo-MDS, where the UAV equipped with a global po-

sitioning system (GPS) chipset is served as a mobile anchor to locate the sensor nodes.

The physical topology can be successfully formed up by using the proposed scheme.

Based on the physical topology constructed in the cloud, the target areas can be timely

located when abnormal events occur.

1.5 Thesis Outline

The remainder of this thesis is organized as follows.

A comprehensive study of data analytics in IoT systems is conducted in Chapter 2. The fun-

damentals of IoT data analytics are firstly elucidated, which comprises IoT data characteristics,

IoT data challenges and taxonomy of IoT data analytics. Afterwards, the system architectures

that can support effective and efficient data analytics in IoT systems are analyzed, including

the cloud-based architecture and edge-cloud collaborative architecture. Finally, the existing

applications such as smart city and smart healthcare are investigated from the perspectives of

system design and shortcomings of performance.

In Chapter 3, a cluster-based data analysis framework is proposed using R-PCA, which can

aggregate the redundant data and detect the data outliers simultaneously. More specifically, at

a cluster head, sensor data collected from cluster members are highly correlated in the spatial

domain and thus aggregated by extracting the PCs, and potential data outliers are identified

by the abnormal SPE score, which is defined as the square of residual value after extraction

of PCs. With R-PCA, the parameters of the PCA model can be recursively updated to adapt

to the changes in IoT systems. The cluster-based data analysis framework also relieves the

computational and processing burdens on sensor nodes. Practical databases based simulations

have indicated that the proposed framework efficiently aggregates the correlated sensor data

with high recovery accuracy. The data outlier detection accuracy is also improved by the

proposed method compared to other existing algorithms.
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In Chapter 4, a temporal IoT data reduction scheme empowered by edge computing is

proposed to reduce the amount of data uploaded to the cloud. More specifically, IoT data

are firstly modeled as multivariate normal distribution in the cloud. Dual KF with identical

parameters are then deployed at both cloud and edge ends. The same predictions are triggered

by the dual KFs at both ends simultaneously. Only the measurements out of the predicted

ranges are further uploaded from edge to cloud. Otherwise, predicted values at both ends

are used instead of measurements. A simple IoT system prototype has been developed for

performance evaluation. Experimental results indicate that the proposed scheme significantly

reduces the number of packets uploaded to the cloud platform while ensures the data accuracy.

In Chapter 5, a cloud-orchestrated physical topology discovery scheme for large-scale IoT

systems using UAVs is proposed, in order to build up the physical topology in the cloud. More

specifically, first of all, the large-scale monitoring area is split into subregions for UAV-enabled

data collection. Within the subregions, parallel MHRW is developed to gather the information

of nodes, including their IDs and neighbor tables. The collected information is then forwarded

to the cloud through UAV for the initial construction of logical topology. After that, a network-

wide 3D localization algorithm is further developed based on the logical topology and multidi-

mensional scaling method, termed as Topo-MDS, where the UAV equipped with a GPS chipset

is served as a mobile anchor to locate the nodes. Simulation results indicate that the parallel

MHRW improves both the efficiency and accuracy of logical topology construction. Besides,

the Topo-MDS algorithm dramatically improves the 3D localization accuracy, as compared to

the existing algorithms in the literature.

In Chapter 6, a UAV enabled spatial data sampling scheme is proposed using DAE neural

network. More specifically, a UAV-enabled edge-cloud collaborative IoT system architecture

is firstly developed for data processing in large-scale IoT monitoring systems, where the UAV

is utilized as a mobile edge computing device. Based on the system architecture, the UAV-

enabled spatial data sampling scheme is further proposed, where wireless sensor nodes of the

large-scale IoT systems are clustered by a newly developed bounded-size K-means clustering

algorithm. A neural network model, i.e., DAE, is applied to each cluster for data sampling

and reconstruction by the exploitation of either linear or nonlinear spatial correlation among

data samples. Simulations have been conducted and the results indicate that the proposed
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scheme has improved the data reconstruction accuracy under the same sampling ratio without

introducing extra complexity, as compared to the compressive sensing based method.

Based on the system architecture and the dataflow proposed in Chapter 6, an AE neural

network based data outlier detection algorithm is further developed in Chapter 7. By using

AE, the spatial correlation of data can be fully utilized to improve the data outlier detection

accuracy. Performance evaluation has been conducted based on the oceanic atmospheric data.

Simulation results indicate that the developed scheme can accurately detect the data outliers.

Finally, all the contributions are summarized in Chapter 8, where the future research direc-

tions are identified as well.



Chapter 2

Data Analytics in IoT Systems

With the pervasive deployment of IoT technology, the number of connected IoT end devices in-

creases in an explosive trend, which continuously generates a massive amount of data. Timely

data analytics can provide useful information for decision making in the IoT systems, which is

able to enhance both the system efficiency and reliability. More specifically, data analytics in

IoT systems is utilized to effectively and efficiently process the discrete IoT data series and pro-

vide services such as data classification, pattern analysis, and tendency prediction. However,

the continuous generation of data from heterogeneous devices brings huge technical challenges

to IoT data analytics. Thus, how to timely and fully process and analyze the massive and het-

erogeneous IoT data needs to be seriously considered in the design of IoT systems. This chapter

provides a comprehensive study of data analytics in IoT systems. A fundamental introduction

to data analytics in IoT systems is firstly elucidated, including the characteristics of IoT data,

the challenges of IoT data, and the taxonomy of IoT data analytics. IoT system architectures

suitable for data analytics are thoroughly analyzed then. Finally, a comprehensive survey on

the existing applications of data analytics in IoT systems is conducted from the perspectives of

system design and shortcomings of performance.

2.1 Introduction to Data Analytics in IoT Systems

With the rapid development of communications and embedded systems technologies, IoT sys-

tems have been pervasively deployed in different kinds of application scenarios. The number

11
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Figure 2.1: Three Vs of big data: volume, velocity, and variety.

of involving IoT end devices keeps increasing in an explosive trend. These devices directly

interact with the real world and continuously generate a massive amount of data, which brings

huge challenges to the data analytics in IoT systems, particularly the data analytics with a crit-

ical requirement of completion time. Thus, data analytics needs to be seriously considered in

the IoT systems. In this section, data analytics in IoT systems is analyzed from the perspectives

of IoT data characteristics, IoT data challenges and taxonomy of IoT data analytics.

2.1.1 IoT Data Characteristics

With the tremendous increment in the number of IoT end devices, a massive amount of IoT

data are generated as a consequence. However, due to the unique characteristics of IoT data,

data analytics in IoT systems is not identical to the conventional big data analytics. Thus, the

characteristics of IoT data are firstly identified in this subsection.

The renowned properties of big data are the three Vs, namely, volume, velocity, and variety,

as depicted in Fig.2.1 [4]. Though they have three Vs in common, IoT data still have several

aspects different from the conventional big data [5]. The unique characteristics of IoT data are

listed as follows [6].
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• Large scale: With the pervasive deployments of large-scale IoT systems, a large number

of IoT end devices are involved in the systems and continuously generate a massive

amount of data. In most of IoT systems, not only the real-time data but also the historical

data are needed to provide the descriptions of user patterns, environmental trends, etc.

Thus, both the real-time and historical data have to be processed, analyzed and stored in

the IoT systems, which finally labels the characteristic of large scale to IoT data.

• Heterogeneity: The sensing layer of an IoT system as shown in Fig.1.1 is in high diver-

sity, which comprises heterogeneous devices and subnets. Different from the traditional

homogeneous wireless networks, data generated by the heterogeneous IoT devices are

not identical in formats and even unstructured, which finally results in heterogeneity.

• Temporal and spatial correlation: IoT data are generally labeled with both location infor-

mation and timestamp, as most of the IoT systems are context-aware. The labeled IoT

data are highly correlated in temporal and spatial domains because the environmental pa-

rameters sensed and sampled by the IoT end devices are varied in mild trends. Providing

the statistical characteristic of temporal and spatial correlation, IoT data can be easily

processed with the statistical tools and the machine learning methods.

• Taint: Due to the low-cost feature of IoT end devices, these tiny devices are vulnerable to

different kinds of attacks and also inner malfunctions, which can finally lead to abnormal

IoT data. Therefore, data pre-processing, particularly data cleaning, is generally needed

before eventually performing data analysis.

2.1.2 IoT Data Challenges

Providing the unique characteristics of IoT data, the technical challenges on data collection,

data analytics and data usage that IoT systems can meet are stated as follows.

• Data collection: In the large-scale IoT systems, “things”, namely, the connected IoT

end devices are the most fundamental components. So the first challenge comes with

data collection from the massive amount of heterogeneous end devices. It has to be
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Figure 2.2: Taxonomy of data analytics in IoT systems.

recognized who, where, when and why generating these data. Besides, during the stage

of data collection, data accuracy, integration and security need to be ensured as well.

• Data analytics: The collected IoT data are then uploaded to the cloud platform through

edge devices. During this stage, it is necessary to seriously consider how to store the

data with different structures and formats, and how to process and analyze the data with

appropriate tools.

• Data usage: Since most of the IoT applications are data-driven, how to manage the own-

ership of data, how to legally share data with others and how to provide efficient and

useful feedback to the actuators need to be considered in the system design as well.

2.1.3 Taxonomy of IoT Data Analytics

Analytics refers to “the scientific process of transforming data into insights for the purpose of

making better decisions” [7]. In terms of IoT data analytics, it is the computational process

of transforming the IoT data collected from the heterogeneous IoT end devices into insights

through data processing and analysis, for decision making in the IoT systems. The history of

IoT data analytics is as long as the emergence of IoT systems. Therefore, several efforts have

been spared on the processing and analysis of IoT data. According to the different requirements

of dataset and completion time, data analytics in IoT systems can be classified into historical

analytics and real-time analytics as shown in Fig.2.2. Moreover, in conventional big data an-

alytics, considering the different processing stages, the analytics can be categorized into four
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types, namely, descriptive analytics, diagnostic analytics, predictive analytics, and prescriptive

analytics [8]. These four types are also integrated into the taxonomy diagram of IoT data ana-

lytics, according to the type of dataset usage, the requirement of processing time and the stage

of the processing procedure.

Historical analytics is based on the IoT data that have been collected and stored in the

database for a certain while, which can be further classified into descriptive analytics and di-

agnostic analytics. Descriptive analytics is the fundamental of IoT data processing, which

uncovers the patterns behind the raw data. Diagnostic analytics is used to discover the reasons

behind certain patterns.

• Descriptive analytics: Descriptive analytics is the process of transforming raw data col-

lected from multiple data sources into useful information, which describes the past. For

example, a clinic records the number of patients that were hospitalized last month. How-

ever, the findings of the descriptive analytics simply describe the fact, without inferring

the reasons behind. Therefore, descriptive analytics only can hardly support the highly

data-driven application scenarios of the IoT systems, where other types of data analytics

are still needed.

• Diagnostic analytics: At the stage of diagnostic analytics, historical data from multiple

data sources are jointly analyzed with the diagnostic tools to find out the reasons behind

the facts provided by descriptive analytics. By exploitation of diagnostic analytics, it is

possible to identify the hiding data patterns and underlying relations among data, which

can provide in-depth insights into a particular problem. In the meantime, IoT systems

should have detailed information at their disposal, otherwise, data collection may turn

out to be individual for every issue and time-consuming.

Real-time analytics in IoT systems focuses on the design of IoT system architecture that

must complete the data analytics and return responses within a certain time frame, which is

known as the deadline. According to the requirements of different applications, the deadline

could range from nanosecond in computer network communications to millisecond in med-

ical diagnosis. Missing the deadline will violate the system requirements, while completion
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of a task much earlier than the deadline may also deteriorate the system performance. Fast

responses and precise timing control are typical features of real-time analytics.

Real-time analytics can be further classified into predictive analytics and prescriptive ana-

lytics, which have more critical requirements on real-time responses as compared to descriptive

and diagnostic analytics. Besides, instead of the historical data stored in the database, predic-

tive and prescriptive analytics rely more on the real-time data continuously and timely collected

from the IoT end devices. Based on the patterns identified by descriptive analytics, predictive

analytics can predict future patterns by using real-time data. Prescriptive analytics is the final

stage of IoT data analytics, which makes decisions based on the results of predictive analytics

and provides the corresponding reaction and feedback.

• Predictive analytics: Based on the findings of descriptive and diagnostic analytics, pre-

dictive analytics serves as a forecasting tool, which can support the detection of tenden-

cies and the prediction of future trends. Taking advantage of the predictive analytics,

an industrial IoT system, for instance, can identify the machines that are most likely to

break down, and prepare reactions in advance to minimize the potential loss. Although

predictive analytics has numerous advantages, it is worth to aware of the risks of wrong

predictions, since the accuracy of prediction highly depends on the data quality and sta-

bility of the situation. Therefore, it is necessary to treat the prediction carefully and

optimize it continuously.

• Prescriptive analytics: The objective of prescriptive analytics is to prescribe what actions

to take so that a potential issue can be eliminated and a promising trend can be fully uti-

lized. An example of prescriptive analytics is that a large-scale IoT surveillance system

can timely prevent the occurrence of bad accidents and react to unpreventable emergen-

cies with prepared plans. However, prescriptive analytics requires not only historical

data, but also external information due to the nature of statistical algorithms. Further-

more, prescriptive analytics generally uses sophisticated tools, such as the deep learning

methods, which brings high computational complexity to the system. Therefore, the

design of an IoT system should jointly consider the expected added values brought by

prescriptive analytics and the additional consumptions alongside.
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Figure 2.3: A general cloud-based IoT system architecture.

2.2 Architectures for Data Analytics in IoT Systems

The design of system architecture determines the dataflow in the IoT systems, which finally

affects the processing and completion time of data analytics. Therefore, the architecture design

needs to be seriously considered for data analytics in IoT systems. In this section, the general

architectures of IoT systems that are able to support effective and efficient data analytics are ex-

tensively surveyed and analyzed, which migrates from the traditional cloud-based architecture

to the newly developed edge-cloud collaborative architecture.

2.2.1 Cloud-based IoT System Architecture

In the initial deployment stage of IoT systems, cloud-based IoT system architecture is the

dominating architecture. As shown in Fig.2.3, the system architecture consists of two major

parts, namely, IoT end devices and the cloud computing platform.

• IoT end devices and the self-organized subnets are the fundamental components of the

IoT systems, which have direct interactions with the physical environments through sen-

sors and actuators. For example, in the case of a smart home system, temperature sensors

sample the indoor temperature and upload the measurements to the cloud through either

a wired gateway or wireless access point. The air conditioner can react to the feedback

from the cloud, and adjust the temperature accordingly.
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• Cloud computing platform is the remote data and control center in the IoT systems. IoT

data collected from the IoT end devices are comprehensively processed at the cloud,

while the results are sent back to the IoT end devices as feedback. Given the strong

computing capability of the cloud server, it can support the comprehensive IoT data

analytics and the massive amount of IoT data storage.

However, with the tremendous increase in the number of IoT end devices, the cloud-based

IoT systems have met the following limitations which prevent them from being pervasively

deployed in the large-scale application scenarios with critical requirements of real-time pro-

cessing and analysis [9]:

• Unstable cloud connection: Cloud computing platform is remotely located, which can

lead to the weak stability of the connections between cloud and IoT end devices. For

example, in VANETs, handover of the fast-moving vehicles can result in the temporary

absence of cloud computing service. The unstable cloud connection can lead to messy

coordination of smart vehicles and finally incur bad traffic accidents. Thus, the IoT

systems face a huge challenge – how to ensure normal operations in the absence of cloud

connection.

• Limited bandwidth: Although the cloud server has the capability of processing the mas-

sive amount of data, the procedure of data uploading still challenges the bandwidth of

the trunk link. In the case of industrial IoT systems, the huge amount of data imposes

a heavy burden on the underlying network bandwidth, while overwhelming data can fi-

nally lead to system crash. Therefore, it is necessary to pre-process, especially effectively

compress the IoT data first, instead of simply uploading all the data to the cloud.

• High latency: The data processing, analysis, and storage center is remotely located at the

cloud server, which incurs unavoidable latency due to the procedure of data processing

and communication. While in some systems, for instance, smart healthcare, real-time

responses are needed for emergency cases, especially for elders living alone. Hence,

how to reduce latency and provide real-time responses is also a critical challenge in

certain IoT systems.
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Figure 2.4: A general edge-cloud collaborative system architecture.

Due to the technical limitations, the cloud-based architecture can hardly meet the critical

requirements of real-time and massive data analytics in large-scale IoT systems. In this con-

dition, edge computing has been introduced into the system as a promising solution, which

enables the local and real-time processing for IoT end devices and offloading computational

tasks from the cloud platform [10]. The correspondingly developed edge-cloud collaborative

IoT system architecture is presented in the next subsection.

2.2.2 Edge-Cloud Collaborative IoT System Architecture

A general edge-cloud collaborative architecture for data analytics in heterogeneous IoT sys-

tems is depicted in Fig.2.4. The system architecture mainly consists of heterogeneous IoT end

devices, edge computing devices, and the cloud computing platform, which are detailed below.

• Heterogeneous IoT end devices and subnets are still functioning as the fundamental layer

in the edge-cloud collaborative architecture and directly interact with the physical envi-

ronments. Due to the pervasive deployments of IoT systems, IoT end devices are hetero-
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geneous with quite different capabilities (e.g., computing, communication, and storage).

Hence, device-to-device (D2D) communications among these devices request the sup-

port of multiple communication protocols (e.g., ZigBee, LTE, and WiFi).

• Edge computing devices (“edge devices” for short) have been introduced into the IoT

systems as a potential and promising solution, considering the technical limitations of

cloud-based IoT systems. In the newly developed edge-cloud collaborative IoT system,

edge computing devices locate in the intermediate layer, which can provide local and

real-time processing to IoT end devices and can also execute preliminary data analytics

so that the tasks can be offloaded from the cloud platform and the burden of trunk link

can be relieved. In the system architecture proposed in Fig.2.4 [11], the lightweight

cloudlet servers are utilized as the edge computing devices. In addition to the cloudlet

server, any device that has the capabilities of computing, communication, and storage

can be utilized as the edge device, for example, a femto base station, lightweight server

and smart gateway. Even the UAV can serve as a mobile edge device.

• Cloud computing platform is the legacy of cloud-based architecture, which still serves

as the remote data and control center in the edge-cloud collaborative IoT system archi-

tecture. Since edge devices have limited computing and storage capabilities, the cloud

platform is responsible for the complex and comprehensive data analytics and the mas-

sive amount of data storage.

Functions of the major components in the system architecture have been explained in detail.

The interactions, namely, data communications, among them are further given as follows.

• IoT end devices and edge devices: Edge devices are equipped with RF modules of differ-

ent communication protocols, which can support the data uploading from heterogeneous

IoT end devices. As aforementioned, edge devices serve as the intermediate layer in the

edge-cloud collaborative IoT system architecture. Therefore, besides the data upload-

ing, edge devices are also responsible for sending and relaying the reaction and feedback

generated by either edge devices or the cloud platform back to the IoT end devices.

• Edge devices and cloud platform: Edge devices upload the pre-processed data to the
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cloud so that the burden on the trunk link can be relieved. Cloud platform sends back the

results of comprehensive data processing and analysis then. As compared to the cloud

platform, the capabilities of edge devices are weaker. Thus, the data processing speed of

the edge is slower than that of the cloud. While as mentioned in the previous subsection,

data offloading to the cloud can incur extra latency due to the procedure of data commu-

nication. Therefore, it is necessary to balance the trade-off between processing time and

communication time, when optimizing the task offloading of data analytics.

2.3 Applications of Data Analytics in IoT Systems

A comprehensive survey on the existing applications of data analytics in IoT systems is con-

ducted in this section, which includes smart city, smart healthcare, industrial IoT, social net-

work, and environmental monitoring. These applications are analyzed from the perspectives of

system design and shortcomings of performance.

2.3.1 Smart City

Hut architecture as depicted in Fig.2.5 is specifically designed for the smart city, which can

provide the service of real-time data processing based on the historical data analytics [12].

For example, in abnormal event detection, the historical batch data are used to learn the nor-

mal patterns so that the abnormality of real-time data streams can be timely and accurately

identified. Two specific use cases using hut architecture are analyzed as instances. One is the

Madrid transportation system, where 3000 traffic sensors are deployed on the M30 ring road by

Madrid city council. Based on the descriptive analytics of the historical traffic data collected by

the sensors, bad traffic is detected in real-time in order to prevent the worse congestion and fa-

cilitate public transportation. The other case is the Taiwan energy management system, where

malfunctioning electronic devices and unusual appliance usages are monitored and detected in

real-time through excessive power dissipation.

There is another work that also focuses on the prevention of traffic congestions in Madrid

[13]. Different from the above work [12], not only traffic data from the city council of Madrid

but also media data from Twitter and weather data are jointly considered to predict and prevent
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Figure 2.5: Hut architecture for data analytics in smart city.

traffic congestions using the Bayesian network in a real-time way. With the comprehensive

consideration of multiple factors and utilization of the Bayesian network model, the prediction

of traffic congestions is more accurate. In [13], multiple data streams are jointly utilized for the

same aim, namely, prediction of traffic congestions. In order to fully extract the relations among

multiple data streams in the smart city, latent Dirichlet allocation (LDA), a topic extraction

method that is generally used in text analysis, is exploited to uncover the underlying structure

of the multiple data streams [14].

Although several efforts have been spared on the application of data analytics in the smart

city, there are some challenges remaining as listed below.

• Factor selection: Smart city is a complex scenario with multiple data streams of different

physical factors. It is a critical challenge to select the proper factors for the specific

target. In [13], traffic, media and weather data streams are utilized to predict the traffic

congestions. In [14], LDA based method is utilized to uncover the relation between

traffic and weather data streams. The relations among the mentioned factors may be

easy to aware from common senses. While for some other data streams, the underlying

relations may not be perceptual. It is necessary to discover a scientific way to uncover
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the underlying relations so as to improve the accuracy of prescriptive analytics.

• Time window selection: In the smart city, most of the applications have requirements

of real-time analytics, e.g., traffic coordination. However, the amount of data generated

is huge, which imposes a heavy burden on data communications and can lead to the

high latency of data analytics. Therefore, the selection of a proper time window for data

collection is also among the most critical challenges. It is necessary to develop a method

that can adaptively adjust the time window, which can automatically decrease to capture

times of high interest in a finer granularity and adjust again in times of low interest.

2.3.2 Smart Healthcare

Smart healthcare is among the most promising application scenarios where IoT systems can

change the way of living [15]. IoT technology enabled smart healthcare system has already
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been utilized to do long-term monitoring of chronic diseases. While for spasmodic diseases,

particularly the real-time emergency event detection for elders living alone, it has higher re-

quirements on the capability of real-time analytics, which needs to be seriously considered in

the design of IoT-enabled smart healthcare system. There have been a few works in this area

as analyzed below.

In [16], a real-time monitoring architecture is proposed for obstructive sleep apnea (OSA,

a severe sleep disorder) detection based on the collaboration of edge and cloud computing,

as depicted in Fig.2.6. For real-time OSA detection, multiple related factors are monitored in-

cluding sleep environment (collected by smart city system), sleep status, physical activities and

physiological parameters (collected by the smart home system). Edge and cloud play different

roles in processing the measurements of these factors. More specifically, cloud computing with

stronger capability is responsible for batch processing enabled pattern recognition and event

prediction. Edge computing as analyzed in the section of architecture design is more close to

the monitoring devices, which is utilized to implement the real-time OSA detection and reduce

the latency of reaction and feedback. Through the edge computing enabled real-time detection,

lives can be saved from OSA.

Another commonly occurred disease of elders is dementia, which affects 46 million people

around the world. In [17], an IoT system is specifically designed for dementia care, termed

as TIHM (technology integrated healthcare management). TIHM involves the families with

dementia patients, clinics and hospitals with healthcare experts, small and medium-sized IoT

companies, and academic groups with healthcare, economic, security, and technical experts.

The system architecture of TIHM is quite similar to the OSA detection system (Fig.2.6), real-

time data of environments, patients’ physiological parameters, and their daily lifestyles are

collected through environmental sensors, medical devices, wearable technologies, and interac-

tive applications. Lightweight servers provided by the IoT companies are functioned as edge

computing devices, while the TIHM project has a more powerful backend server providing the

service of cloud computing. Based on the data analytics, the needs of dementia patients can

be identified in an early stage, which allows the clinical team to provide a timely response and

prevent the patients from exacerbating ill health.

Smart healthcare systems can improve the quality of life and scientifically extend the life-
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time of patients. However, the issue of the privacy protection of patients’ information is re-

maining unsolved.

2.3.3 Industrial IoT

Industrial IoT (IIoT) is the leverage and reality of IoT technology in the context of industrial

transformation. On one hand, the transformation can optimize the performance and boost

productivity while cutting the total cost. On the other hand, it is able to predict and prevent

potential machinery failures [18].

From the technical perspective, IIoT paves the way to connect all the industrial assets,

such as machines and control systems, through the evolving machine-to-machine (M2M) and

industrial communication technologies [19]. More specifically, the IIoT can facilitate the pro-

cess automation domain in the following three aspects, namely, supervision, closed-loop net-

worked control, and interlocking. However, closed-loop networked control and interlocking

are highly sensitive to delay and require bounded delay at the millisecond level (10-100 ms),

which imposes a heavy burden on the real-time analytics in IIoT systems [20]. In order to meet

the critical requirement of real-time analytics, a three-tier IIoT system architecture has been

specifically designed for delay mitigation, as depicted in Fig.2.7 [19]. In terms of the functions

of each tier in the architecture, the edge tier defines the domain in which IIoT components

interact with each other, which consists of sensors, actuators, and controllers interconnected

by independent local area networks to an IIoT edge gateway. The IIoT edge devices are in turn

connected to the platform tier for global coverage. Finally, the platform tier takes advantage of

the service network to establish connections with the enterprise tier that implements domain-

specific applications and provides interfaces to the end-users. The latency level incurred by

the processing at each tier is also labeled in Fig.2.7. It can be seen that the edge tier can com-

plete tasks within milliseconds, which can meet the critical requirements of bounded delay in

closed-loop networked control and interlocking applications.

Although the three-tier IIoT system architecture has been widely accepted for delay miti-

gation, the explosive growth of IIoT applications, especially in terms of their scale and com-

plexity, has dramatically increased the difficulty in ensuring the desired real-time performance.
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In addition to the challenge of real-time performance, energy-efficient operations, interoper-

ability among heterogeneous IIoT devices, and security and privacy all need to be seriously

considered in the IIoT systems.

2.3.4 Social Network

With the pervasive deployment of IoT, not only people but also physical and virtual objects

are interconnected through the evolving communications and embedded systems technolo-

gies [21]. In such a condition, the social IoT (SIoT) system has been proposed [22]. Similar

to the online social network (OSN) for people, SIoT introduces the concept of social relation-

ships into objects. However, before fully implementing the concept of SIoT, an SIoT system

architecture needs to be developed, where IoT end devices can be controlled, managed and

monitored in a real-time and cognitive way. There have been a few works focusing on this
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problem as analyzed below.

As shown in Fig.2.8, an SIoT system architecture has been proposed to intelligently and

cognitively create, manage, control and monitor the SIoT objects in real-time [23]. In the pro-

posed architecture, real-world objects are termed as physical objects (POs), while the services

that need special skills are termed as abstract objects (AOs). PO and AO jointly compose tier

1 of the system architecture, which have direct interactions with the real-world and are then

virtually represented as virtual objects (VOs) in tier 2. The new services incurred by the com-

bination of VOs are termed as composite VOs (CVOs). Tier 3 is the most important component

in the system architecture, namely, stream processing engines, which is the part that enables

real-time analytics. Tier 4 is the decision making layer, which is executed based on the results

provided by the stream processing engines. Tier 5 indicates the applications and services that

the SIoT system can provide. The architecture provides a social interaction framework for IoT

end devices functioning similar to the OSN for people and supports the real-time data stream

processing in the meantime. However, there are still many aspects, especially the applications

in tier 5 that need to be further investigated.

Anomaly detection in the cross-platform SIoT systems has already been analyzed as a case

study [24]. In the enlarging cross-platform SIoT systems, the number of heterogeneous con-

nected devices has been increasing tremendously, which brings a high risk of information loss

and malicious access to the systems. In [24], an intelligent sensing model for anomaly detec-

tion (ISMA) has been proposed for the cross-platform SIoT systems, where anomalies refer to

the malicious users misleading the systems with fraudulent information. The ISMA strategy

deliberately induces faulty data (termed as cognitive tokens) to attract malicious users and then

identifies and classifies the anomalies with the error-based outlier filters. A common login sys-

tem for different platforms in SIoT system is introduced into the whole architecture as a part

of collaborative anomaly identification across different platforms. A fair play point approach

is used for the determination of anomalies, which improves the anomaly detection accuracy, as

compared to the existing methods, for example, SVM-RBF (support vector machine-radial ba-

sis function) and sigmoid approach. However, this work still depends on the historical data for

off-site evaluations, which needs to be further developed to meet the requirements of real-time

services to provide anomaly detection with continuous user monitoring.
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2.3.5 Environmental Monitoring

IoT technology has been pervasively applied to environmental monitoring such as oceanic at-

mosphere monitoring and forest fire surveillance, taking the advantages of low cost and flexible

deployment of IoT enabled systems [25, 26]. In [27], an edge-cloud collaborative IoT system

architecture is proposed for data analytics in environmental monitoring, where UAVs are de-

ployed and utilized as mobile edge devices. Wireless sensor nodes and the cloud platform are

involved for environmental sensing and complex data analytics respectively. Moreover, a UAV-

enabled spatial data sampling scheme is further developed based on the system architecture,

in order to overcome the challenge of accurate and efficient data sampling and reconstruction.

Taking advantage of the UAVs, urgent tasks of data analytics can be timely completed at the

mobile edge devices.

Furthermore, one of the most significant functions of data analytics in IoT-enabled environ-

mental monitoring system is disaster detection and management. IoT enabled natural disaster

management approaches have been surveyed and summarized in [28], such as early warning,

notification, knowledge aggregation, remote monitoring, and victim localization. Data analyt-

ics, particularly real-time analytics, plays a key role in the disaster management system for

real-time decision making, which can save lives and protect personal belongings.

The main technical challenge in such systems is also the issue of security, since personal

and private data are collected for environmental monitoring and disaster detection. Thus, be-

yond efficient and collaborative, the system architecture needs to be secure.

2.4 Chapter Summary

In this chapter, data analytics in IoT systems has been thoroughly studied. The characteristics

of data analytics in IoT systems have been elucidated firstly. Afterwards, the IoT system archi-

tectures for data analytics are investigated, where both the traditional cloud-based architecture

and the newly developed edge-cloud collaborative architecture are analyzed. By exploitation

of the edge-cloud collaborative architecture, data analytics have been applied in several appli-

cation scenarios, which have been extensively surveyed and analyzed from the perspectives of

system design and shortcomings of performance.
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Recursive Principal Component Analysis

based Data Outlier Detection and Sensor

Data Aggregation in IoT Systems

IoT is emerging as the underlying technology of our connected society, which enables many

advanced applications. In IoT-enabled applications, information of application surroundings is

gathered by networked sensors, especially wireless sensors due to their advantage of infrastructure-

free deployment. However, the pervasive deployment of wireless sensor nodes generates a mas-

sive amount of sensor data, and data outliers are frequently incurred due to the dynamic nature

of wireless channels. As the operation of IoT systems relies on sensor data, data redundancy

and data outliers could significantly reduce the effectiveness of IoT applications or even mis-

lead systems into unsafe conditions. In this chapter, a cluster-based data analysis framework is

proposed using R-PCA, which can aggregate the redundant data and detect the outliers in the

meantime. More specifically, at a cluster head, spatially correlated sensor data collected from

cluster members are aggregated by extracting the PCs, and potential data outlier is determined

by the abnormal SPE score, which is defined as the square of residual value after extraction of

PCs. With R-PCA, the parameters of the PCA model can be recursively updated to adapt to

the changes in IoT systems. The cluster-based data analysis framework also relieves the com-

putational and processing burdens on sensor nodes. Practical databases based simulations have

confirmed that the proposed framework efficiently aggregates the correlated sensor data with

30



3.1. Introduction 31

high recovery accuracy. The data outlier detection accuracy is also improved by the proposed

method as compared to the other algorithms in the literature.

3.1 Introduction

In the anticipated era of IoT, not only people but also physical and virtual things are inter-

connected based on the evolving sensing, communication and processing technologies, which

directly enables many advanced applications in the connected society, including intelligent

transportation systems, smart buildings, and smart grids [29–31]. In IoT-enabled applications,

sensor networks are the most important component, since critical information from both exter-

nal surroundings and inner systems is sampled by networked sensors. Currently, more wireless

sensors are applied than wired sensors in IoT applications, as wireless sensors can be self-

organized into WSNs and randomly deployed without the requirement of additional infrastruc-

ture. From the technical point of view, WSNs are supported by the low-power and low-cost

devices using ZigBee, Bluetooth and Wi-Fi technologies, which normally work in unlicensed

bands. The use of unlicensed bands brings additional deployment flexibility of WSNs but in-

troduces uncontrollable interference simultaneously [32]. Given the low processing capability

of sensor nodes, data outliers could occur as a result of the increased interference, the delay

incurred by uncoordinated channel access, or simply the malfunctions of sensor nodes.

Data outliers are the sensor readings that do not follow the normal pattern of sensor data

in IoT systems, namely, deviate dramatically from the ground truth [33]. According to the

frequency of occurrence, data outliers can be classified into random outliers and continuous

outliers. A random outlier may be caused by occasionally failed communication. Continu-

ous outliers are possibly caused by the low battery or malfunction on hardware. In industrial

IoT systems, these collected data outliers could mislead the whole IoT system into unsafe

conditions, since the actuators are driven by the information inferred from sensor data [34].

Therefore, data outliers have to be detected in real-time in order to avoid erroneous decisions

made by the IoT systems.

Furthermore, pervasive and redundant deployment of wireless sensor nodes imposes a chal-

lenge for efficient sensor data collection. Normally, IoT systems are resource-constrained,
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while a significant proportion of network resources are consumed by data transmissions [35].

Hence, a well-designed data aggregation algorithm could reduce the number of data transmis-

sions while ensuring data accuracy [36, 37]. Since data outlier detection and data aggregation

are among the most critical requirements of IoT data processing [38, 39], there are increasing

research interests in this area, which are summarized in Section 3.2. Considering the low detec-

tion accuracy and high computational complexity of existing algorithms, a novel data analysis

framework is still needed for performance enhancement of data outlier detection schemes.

In this chapter, a cluster-based real-time data analysis framework using R-PCA is proposed

for data outlier detection and data aggregation, which exploits the spatial correlation in sensor

data. With R-PCA, spatially correlated sensor data can be aggregated by extracting the PCs,

and the transformation basis is recursively updated to track the IoT system changes. In the

meantime, SPE score, which is defined as the square of residual value after extraction of PCs,

can be used to identify the data outliers since any abnormal data could lead to significantly

increased SPE score. As compared to the previous work [40], an outlier detection threshold

and an R-PCA based outlier diagnosis algorithm are further proposed to accurately identify the

specific data outlier.

The proposed data analysis framework works along with cluster-tree network topology.

Sensor data are diagnosed and aggregated by R-PCA based algorithms at the cluster head, and

then outlier-free and aggregated sensor data are forwarded to the data center. All the sensor

data are recovered at the data center for further analysis. Simulations have been conducted

based on the databases provided by NDBC-TAO [41] and Intel Lab [42]. Simulation results

confirm that the proposed data analysis framework improves the outlier detection accuracy, as

compared to univariate and multivariate outlier detection algorithms in the literature. Besides

the accurate outlier detection, our proposed scheme can efficiently aggregate the redundant

data and ensure the recovery accuracy at the data center as well.

The rest of the chapter is organized as follows. In Section 3.2, the related work on data

outlier detection and sensor data aggregation are surveyed and summarized. The concept of

PCA is clarified in Section 3.3. Section 3.4 elaborates the details of the proposed data analysis

framework. The performance evaluation of the proposed framework is analyzed in Section 3.5.

Finally, all the contributions of this chapter are summarized in Section 3.6.
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3.2 Related Work

Data outlier detection and sensor data aggregation have been widely considered as the main

technical challenges of IoT systems. Several studies have been carried out in this area using

different methods. Since the proposed R-PCA based data outlier detection and aggregation

method mainly utilizes the spatial correlation of sensor data, spatial correlation based data

outlier detection algorithms and data aggregation algorithms are briefly overviewed below.

3.2.1 Spatial Correlation based Data Outlier Detection

Existing studies on spatial correlation based outlier detection can be summarized into the fol-

lowing categories.

• Majority Voting is a classical spatial correlation based data outlier detection method. A

local sensor node is detected as abnormal when its reading is substantially different from the

majority of its neighbors. For instance, in distributed fault detection (DFD) algorithm [43],

general and differential Euclidean distances between sensor data generated from local sensor

node and its neighbors were used as outlier detection criteria. The local node was detected

as abnormal when the Euclidean distances between most of its neighbors were over a certain

threshold. However, due to the excessive dependence of a sensor node on its neighbors, the

data outlier detection accuracy was low when the network was sparse.

• Classifiers are applied to detect data outlier by training a “normal” model and then clas-

sifying the under detecting data into normal and abnormal. Support vector machine (SVM)

is among the most commonly used classifiers, especially the lightweight quarter-sphere SVM.

Generally, the radius of the quarter sphere is trained by “normal” data, and any sensor data

that falls out of the quarter sphere is detected as abnormal [44, 45]. The major concern of the

classifier-based outlier detection is its high computational complexity, since the local-based

algorithms are processed at sensor nodes.

• PCA Data outliers can generate dramatic variations in the residual value after the ex-

traction of principal components. Therefore, PCA combined with detection criteria (e.g., SPE

score, T 2 score) can be used to detect data outliers. In [46], an anomaly detection algorithm

was proposed based on the combination of the conventional PCA method and the SPE score.
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The abnormal data was detected by the significant SPE score. In [47], kernel PCA was adopted

to mitigate the linear limitation of sensor data, where the geometric information was consid-

ered as well. Given the dynamic conditions in WSNs, PCA with a static transformation basis

could not track the variations [46, 47]. Hence, a robust recursive fault detection algorithm was

proposed by S.Chan et al. [48], which particularly focused on the sensitivity to minor system

changes and robustness to dramatic data faults. However, the robust recursive fault detection

algorithm in [48] was loaded on a single sensor node. Given the constrained processing ca-

pacity and power supply of a sensor node, the proposed algorithm in [48] was too complex to

be implemented. In this chapter, R-PCA [49] is applied to track the changes in the IoT sys-

tems, while outlier detection and diagnosis algorithms are proposed based on the clusters that

typically have more computational resources.

3.2.2 Spatial Correlation based Sensor Data Aggregation

In this subsection, existing studies on sensor data aggregation are summarized. Besides the

conventional spatial correlation based data aggregation algorithms, both compressive sensing

and PCA based algorithms are also reviewed.

• In Conventional Data Aggregation algorithms, sensor nodes are clustered by spatial cor-

relation, but sensor data are simply aggregated by basic operations, such as mean and median,

without full exploitation of data correlation and accuracy for data aggregation. For instance,

Sun et al. [50] proposed a trust-based framework for data aggregation in WSNs. Every sensor

data was assigned a weight, according to the trustworthiness ranked by comparison with histor-

ical data and neighbor data. Afterwards, the weighted mean value calculated at the aggregator

was used as the aggregated data.

• Compressive Sensing (CS) transforms raw sensor data into the sparse domain at the

sender, to reduce the overall communication overload, while increases the complexity of re-

ceiver for data recovery. Xiang et al. [51] proposed a CS-based data aggregation scheme.

Particularly, they adopted diffusion wavelets to sparsify the raw sensor data, which further

reduced the communication overload while the data recovery faced high computational com-

plexity. Besides, sparsity might exist in the environments, but the compressive sensing method
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was still limited by the restricted isometry property [52].

• PCA has been widely used to aggregate sensor data, due to the essence of principal com-

ponent extraction. A PCA-based hierarchical data aggregation algorithm was proposed in [53].

At each level, sensor data from the lower level was aggregated and forwarded. However, only

the temperature reading was investigated without consideration of multivariate sensor read-

ings in current IoT systems. Considering the multivariate data aggregation, a novel principal

components-based context compression (PC3) algorithm was proposed [54]. PC3 algorithm

was also able to adaptively update the transformation basis of PCA by alternating the learning

and compression operations at sensor nodes. However, PC3 was too complex to be deployed

on a sensor node with limited computational capacity. In this chapter, an improved R-PCA

algorithm is proposed relying on cluster processing, which recursively updates the transforma-

tion basis with only the newest data so that the memory occupied by historical data in [54]

could be released.

3.3 Principal Component Analysis

Before developing the R-PCA and the data analysis framework, conventional PCA is intro-

duced in this section for clarification of the concept. PCA is a normally used mathematical tool

for correlated data aggregation [55]. The reduction in data dimension is obtained by projecting

the raw data matrix (X) into a subspace defined by the extracted PCs. That is

Y[l×n] = P[l×m]X[m×n] (l < m), (3.1)

where X is the raw data matrix consisted of m physical variables and n samples, P is the

transformation basis consisted of PCs, and Y is the projection of X in the subspace termed

as score matrix. In other words, the aim of PCA is to derive a transformation basis P that

can make the projection of X, i.e., Y = PX, linearly uncorrelated and less-dimensional. P is

obtained through the following calculations.
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First, the covariance matrix of X is calculated as

CX =
1

n − 1
X X

T
, (3.2)

where X is normalized to a zero-mean and unit-variance matrix X, in order to mitigate the

impact of different scales.

Afterwards, the covariance matrix CX is decomposed by eigenvalue decomposition,

CX = EΛET , (3.3)

where the eigenvectors {ei, i = 1, 2, . . . ,m} of CX are organized as columns in E =
[
eT

1 , e
T
2 , . . . , e

T
m

]
and Λ is a diagonal matrix with the eigenvalues {λi, i = 1, 2, . . . ,m} of CX.

The first l(l < m) largest columns in E are considered as principal components. l is the

number of principal components and determined by the cumulative percentage formula as

γ =

∑l
i=1 λ̃i∑m
i=1 λ̃i

× 100%, (3.4)

where λ̃i is the ith largest diagonal element in the reordered eigenvalue matrix (Λ̃) and γ is de-

termined by the specific application requirements, e.g., 80%. Eigenvector and eigenvalue ma-

trices are then reordered and reduced into Ẽl =
[
ẽT

1 , ẽ
T
2 , . . . , ẽ

T
l

]
, and Λ̃l = diag([λ̃1, λ̃2, . . . , λ̃l])

accordingly.

Finally, transformation basis P is set to the transposition of the reordered and reduced

eigenvector matrix, i.e., P = ẼT
l . Since the subspace is defined by the extracted principal

components, data matrix X can be projected into the subspace by the transformation basis P as

Y = PX = ẼT
l X.

Residual value is the remaining after extracting principal components from raw data matrix,

which is formulated as

ε = X − PT Y = X − ẼlẼT
l X. (3.5)

Since principal components are the variables with largest variances, the residual value (3.5)

tends to be small.
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Figure 3.1: R-PCA based multivariate data analysis framework for outlier detection and data
aggregation.

SPE score is defined from the residual value and used as the outlier detection criterion,

S PE = ‖ε‖22 = ‖X − ẼlẼT
l X‖22. (3.6)

SPE score is sensitive to data outliers, since a potential data outlier can generate a dramatic

variation on the residual value.

3.4 Proposed Data Analysis Framework Using Recursive Prin-

cipal Component Analysis

In order to detect data outliers and aggregate sensor data, a cluster-based data analysis frame-

work is proposed here by using R-PCA, as shown in Fig.3.1.

As discussed in Section 3.3, the dimension of sensor data can be aggregated by projecting

raw sensor data into a subspace defined by principal components, and data outliers can be de-

tected by the abnormal SPE score. However, due to the dynamic conditions in IoT systems, the

static transformation basis in conventional PCA cannot adapt to the system changes. There-

fore, R-PCA is further developed, where all the parameters in the PCA model are recursively
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updated to adapt to the variations in the IoT systems. Although R-PCA introduces extra com-

putations into the IoT systems, these computations are offloaded to cluster heads and the IoT

data center instead of creating an additional burden on sensor nodes, which are more affordable

and practical in IoT systems.

By exploitation of R-PCA, a data analysis framework is proposed along with the cluster-tree

network topology, as shown in Fig.3.1. Sensor nodes are gathered into clusters by a clustering

algorithm, such as the adaptive k-means algorithm [56]. Edge devices with stronger computa-

tional capacity are assigned to the clusters and served as cluster heads, which are responsible

for sensor data aggregation and data outlier detection. The cloud computing platform is served

as the data center of the whole IoT system. At the IoT data center, all the aggregated sensor

data are recovered and outliers are recorded for further analysis.

More details on the data processing at each component of the proposed data analysis frame-

work are explained as follows.

3.4.1 Data Sampling at Sensor Nodes

Given the limited computational capacity and power supply of a sensor node, a sensor node is

designed to be simply responsible for sampling the application surroundings and transmitting

the sampled sensor data to its cluster head in the proposed data analysis framework.

Considering the general condition that multiple sensors are embedded on one sensor node,

the data matrix generated by a sensor node i is multivariate and mathematically expressed as

Xi =



xi,1(1) xi,1(2) . . . xi,1(n)

xi,2(1) xi,2(2) . . . xi,2(n)
...

...
. . .

...

xi,m(1) xi,m(2) . . . xi,m(n)


, (3.7)

where m is the number of physical variables (like temperature and humidity), while n is the

number of samples.

At a certain time t, data vector generated by sensor node i is Xi(t) =
[
xi,1(t), xi,2(t), . . . , xi,m(t)

]T .
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3.4.2 Data Outlier Detection and Aggregation at Cluster Head

At cluster head, sensor data from its members are collected {X1, . . . ,Xk}, where k is the number

of nodes in the cluster. Since the correlation between neighbor sensor data with the same phys-

ical property is higher, the cluster head then reorganizes the sensor readings into {X̂1, . . . , X̂m}

according to the physical properties, where m is the number of physical variables. Each new

matrix X̂ j ( j = 1, 2, . . . ,m) becomes

X̂ j =



x̂1, j(1) x̂1, j(2) . . . x̂1, j(n)

x̂2, j(1) x̂2, j(2) . . . x̂2, j(n)
...

...
. . .

...

x̂k, j(1) x̂k, j(2) . . . x̂k, j(n)


. (3.8)

Data processing on X̂ j is listed in Algorithm 1 and 2, which can be parted into two major

phases, namely, initialization and recursion. In initialization phase, parameters in R-PCA

model are initialized. In the recursion phase, parameters are kept updating for data outlier

detection and sensor data aggregation. Details are explained as follows. For simplification, X̂ j

is remarked as X[k×n] in the following statements.

3.4.2.1 Initialization Phase

Normalization Given the raw sensor data matrix X =
[
xT

1 , x
T
2 , . . . , x

T
k

]T
, where k is the num-

ber of sensor nodes and xi (i = 1, 2, . . . , k) is the vector of n samples from sensor node i,

xi = [xi(1), xi(2), . . . , xi(n)]. X is normalized to a zero-mean and unit-variance matrix X, in

order to mitigate the impact of different scales. The normalization is given by

xi( j) =
xi( j) − µi

σi
, j = 1, . . . , n, (3.9)

where µi and σi are the mean and standard deviation of xi.

Parameters Initialization The eigenvector matrix E and eigenvalue matrix Λ of CX are ini-

tialized by (3.2)-(3.3).

µS PE and σS PE are initialized by calculating the mean and standard deviation of series
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{S PE( j), j = 1, 2, . . . , n}, while S PE( j) is calculated as

S PE( j) = ‖x( j) − ẼlẼT
l x( j)‖22, (3.10)

where x( j) =
[
x1( j), x2( j), . . . , xk( j)

]T .

3.4.2.2 Recursion Phase

Normalization The newly collected sensor data at time instance t, x(t) = [x1(t), x2(t), . . . , xk(t)]T

need to be normalized as well. However, before normalization, the mean and variance of raw

sensor data are updated first. Since µi = 1
n

∑n
j=1 xi( j) , therefore the mean value is recursively

updated by

µi(t) = (1 − β) · µi(t − 1) + β · xi(t), (3.11)

where β = 1
t is the forgetting factor [57]. Similarly, the variance is recursively updated by

σ2
i (t) = (1 − β) · σ2

i (t − 1) + β · (xi(t) − µi(t))2. (3.12)

xi(t) is normalized to xi(t) by µi(t) and σi(t) then.

Outlier Detection SPE score of x(t) is calculated by (3.10). The estimated range of S PE(t)

is relative to the confidence level (1 − α) as

P{|S PE(t) − µS PE | ≤ ξα · σS PE} = 1 − α, (3.13)

since the SPE score follows Gaussian distribution. The value of ξα is set to 3 here, which means

the SPE score falls in the range
[
µS PE − ξα · σS PE, µS PE + ξα · σS PE

]
with 99.7% confidence.

It is still an adaptive threshold, since the mean value (µS PE) and standard deviation (σS PE) of

SPE score are kept updating with the newly collected sensor data.

If the SPE score (S PE(t)) is out of the estimated range, an outlier is detected and Algorithm

2 is called for further outlier diagnosis. Otherwise, parameters are updated with the newly

collected sensor data.
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Outlier Diagnosis The outlier diagnosis algorithm is further proposed, since the over-threshold

SPE(t) in Algorithm 1 can only indicate the abnormal of x(t). With Algorithm 2, the spe-

cific abnormal component xi(t) is diagnosed. Calculate SPE score of each component in

x(t) =
[
x1(t), x2(t), . . . , xk(t)

]
by

S PEi(t) = ‖xi(t) − Ẽl,iẼT
l,ixi(t)‖22, i = 1, 2, . . . , k, (3.14)

where k is the number of sensor nodes, and Ẽl,i is the corresponding row vector in eigenvector

matrix Ẽl. And then divide it by SPE(t),

ηi = S PEi(t)/S PE(t), i = 1, 2, . . . , k. (3.15)

If the result ηi is over a pre-defined weight ξ, the specific component xi(t) is diagnosed as

an outlier. Record the time and label of data outlier with (t, i) for further statistical analysis.

Sensor node that frequently generates outliers should be manually diagnosed.

Parameters Update of SPE Score µS PE and σS PE are updated by (3.16) and (3.17),

µS PE(t) = (1 − β) · µS PE(t − 1) + β · S PE(t), (3.16)

σ2
S PE(t) = (1 − β) · σ2

S PE(t − 1) + β · (S PE(t) − µS PE(t))2, (3.17)

where β = 1
t is the forgetting factor.

Eigenvectors and Eigenvalues Update The covariance matrix of X at time instance t is

CX(t) =
1

t − 1

t∑
j=1

x( j)xT ( j)

= (1 − ε)CX(t − 1) + ε · x(t)xT (t)

= CX(t − 1) + ε · (x(t)xT (t) − CX(t − 1)),

(3.18)

where ε is the modifying factor and usually < 0.01.
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The eigenvector decomposition of covariance matrix at time t is given by

CX(t) = E(t)Λ(t)ET (t)

= E(t − 1)Λ(t − 1)ET (t − 1) + ε(x(t)xT (t)

− E(t − 1)Λ(t − 1)ET (t − 1))

= E(t − 1)[(1 − ε)Λ(t − 1)]ET (t − 1) + εx(t)xT (t),

(3.19)

let A(t) = xT (t)E(t − 1), then

CX(t) = E(t − 1)[(1 − ε)Λ(t − 1) + εAT (t)A(t)]ET (t − 1). (3.20)

It can be further decomposed as

(1 − ε)Λ(t − 1) + εAT (t)A(t) = U(t)Σ(t)UT (t). (3.21)

Therefore, the eigenvectors and eigenvalues are updated by

E(t) = E(t − 1)U(t), (3.22)

Λ(t) = Σ(t). (3.23)

Let

U(t) = I + H1(t), (3.24)

Σ(t) = (1 − ε)Λ(t − 1) + H2(t). (3.25)

Based on the first-order perturbation theory [58], the H1 and H2 are derived as

H1(t) =


0 , i = j,

εAi(t)A j(t)
(1−ε)(Λ2

j (t−1)−Λ2
i (t−1))+ε(A2

j (t)−A2
i (t))

, i , j.
(3.26)

and

H2(t) =

 εA2
i (t) , i = j,

0 , i , j.
(3.27)
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Finally, E and Λ are updated by (3.22)-(3.27).

Data Aggregation After outlier detection and outlier diagnosis, the outlier-free sensor data

are further aggregated and transmitted to the data center,

y(t) = ẼT
l (t)x(t), (3.28)

where the dimension of sensor data is reduced from k to l.

Algorithm 1 R-PCA based Outlier Detection Algorithm
1: Initialization:
2: normalize X⇒ X ∼ N(0, 1)
3: calculate E and Λ of 1

n−1X X
T

4: initialize µS PE and σS PE

5: Recursion:
6: update µ, σ and normalize x(t)
7: rank Λ, E and calculate the number of PCs, l
8: reduce Ẽ→ Ẽl and Λ̃→ Λ̃l

9: calculate S PE(t)
10: if |S PE(t) − µS PE | > ξα · σS PE then
11: outlier detected
12: call Algorithm 2
13: else
14: update E and Λ
15: update µS PE and σS PE

16: end if

Algorithm 2 Outlier Diagnosis Algorithm
1: for i = 1 : k do
2: calculate S PEi(t) and ηi

3: if ηi > ξ ·
∑k

j=1 η j then
4: outlier detected
5: record outlier with time t and label i
6: end if
7: end for
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3.4.3 Data Recovery at IoT Data Center

In initialization phase, the initialized eigenvector matrix E and eigenvalue matrix Λ are trans-

mitted to IoT data center. The data center simultaneously updates the eigen matrices for accu-

rate recovery of the aggregated sensor data,

X̃ = ẼlY. (3.29)

In terms of the data outliers, each received outlier (t, i) is recorded. Further investigations

need to be conducted to analyze the possible reasons, to restore the abnormal behaviors.

3.5 Performance Evaluation

In this section, practical databases based simulations have been conducted to evaluate the per-

formance of the proposed data analysis framework. Since the framework is proposed for data

outlier detection and aggregation, the detection accuracy of data outlier and recovery accu-

racy of aggregated data are investigated in the first two subsections. Given the cluster-based

structure of the proposed framework, the influence of different numbers of clusters within the

network is further evaluated. The complexity analysis is done at the end.

3.5.1 Detection Accuracy of Data Outlier

Data outlier detection is one of the major functions of the data analysis framework. Thus, the

accuracy of outlier detection is investigated in detail. More specifically, the practical databases

and evaluation metrics used are first introduced. Afterwards, the detection accuracy of the pro-

posed algorithm is compared with both univariate and multivariate outlier detection algorithms.

The developed outlier detection threshold is compared with the conventional threshold as well.

3.5.1.1 Databases & Metrics

In order to evaluate the outlier detection accuracy, two practical databases are used, namely,

NDBC-TAO [41] and Intel Lab [42].
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Figure 3.2: Sea surface temperature measurements collected from the NDBC-TAO project with
random and continuous outliers.

NDBC-TAO In the NDBC-TAO project, meteorological and oceanographic sensors are de-

ployed at the Pacific Ocean to monitor the climate. In the univariate test, sea surface tempera-

ture readings from 7 stations at 170W are used. The missing data in the original database are

treated as outliers. The sensor readings including outliers are shown in Fig.3.2.

Intel Lab 54 sensor nodes are distributed in an indoor environment and sensor readings are

regularly collected every 30s. In the multivariate test, temperature, humidity and voltage read-

ings are used. Outliers are simulated by randomly generating missing data in the database. The

randomly selected outliers are set to 0, and data outliers randomly occur with 3% to 30% times

of the period.

In terms of the evaluation metrics, true positive rate (TPR) and false positive rate (FPR)

are adopted, where TPR refers to the ratio of outliers successfully detected to the total number

of outliers and FPR is the ratio of normal data mistakenly detected as abnormal to the total

amount of normal data.
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Table 3.1: [NDBC-TAO] Random Outlier Detection

True Positive Rate False Positive Rate
DFD 0.6296 0.0036
iDFD 1.0000 0.2813
PCA 1.0000 0.2162

R-PCA 1.0000 0.0386

Table 3.2: [NDBC-TAO] Mixed Outlier Detection

True Positive Rate False Positive Rate
DFD 0.0846 0.0030
iDFD 1.0000 0.3473
PCA 1.0000 0.2340

R-PCA 1.0000 0.0331

3.5.1.2 Univariate Outlier Detection

To evaluate the performance of univariate outlier detection, R-PCA based algorithm is com-

pared to the existing spatial correlation based algorithms, DFD [43], iDFD [59] and PCA-based

algorithm with SPE score as outlier detection criterion [46].

As shown in Fig.3.2, in the NDBC-TAO database, there are two types of data outliers. One

is the randomly missing data, which may be incurred by the occasionally failed communication.

The other is the continuously missing data, which may be caused by the malfunctions of the

sensor node. In the first test, we focus on the detection of randomly missing data by using

the first half of the data in Fig.3.2. The test result is listed in Table 3.1. From Table 3.1, we

can see that iDFD, PCA and R-PCA based algorithms all accurately detect the missing data

in the NDBC-TAO database, while the FPR of R-PCA is the lowest. This result indicates that

the R-PCA makes the fewest mistakes on the classification of normal and abnormal data. The

reason is that the recursively updated transformation basis not only accurately captures the

spatial correlation between sensor readings but also tracks the trend of data variations.

In another test, all the data shown in Fig.3.2 are included, where both randomly and con-

tinuously missing data exist. This test brings more challenges to the outlier detection algo-

rithms. The test result is listed in Table 3.2. From Table 3.2, we can tell that the conventional

DFD algorithm can hardly handle the continuously missing data detection, since the TPR is
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Figure 3.3: Statistical results of the univariate data outlier detection in the NDBC-TAO.

about 8.46%. All the other three algorithms detect the outliers accurately with 100% TPR.

The R-PCA based algorithm still outperforms iDFD and PCA on FPR, with the existence of

continuous data missing.

The time and label of detected data outliers and the statistical results of sensor nodes are

plotted in Fig. 3.3. From the “outlier record”, we can notice that the continuous data missing

has occurred at sensor node “8N170W” since the 1000th time step. Besides, the number of out-

liers in the “outlier stats” at “8N170W” is much larger than other sensor nodes. Many possible

reasons may lead to the lasting missing, like out of battery, malfunction in the communication

module, which needs further manual restoration.

3.5.1.3 Multivariate Outlier Detection

In the multivariate test, the outlier detection algorithm implemented based on sensor nodes

locally is selected as benchmark [48], termed as conventional R-PCA based algorithm (CR-

PCA). As compared to CR-PCA, the outlier detection algorithm in the proposed cluster-based
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Figure 3.4: Comparison on the TPR (left) and FPR (right) between the CR-PCA and the PR-
PCA with different numbers of clusters (#C) under different outlier probabilities.

data analysis framework is termed as the proposed R-PCA based algorithm (PR-PCA). Con-

sidering the PR-PCA is cluster-based, different numbers of clusters are considered. The com-

parisons on detection accuracy are shown in Fig.3.4.

From Fig.3.4, it can be seen that the TPR of PR-PCA outperforms that of CR-PCA. The

performance is even better with fewer numbers of clusters. These results indicate that in the

Intel database, the correlation between temperature, humidity and voltage readings of a sensor

node, is not as strong as the spatial correlation between neighbor sensor readings. Besides,

fewer numbers of clusters mean larger cluster size, which implies that more neighbors within

a cluster improve the detection accuracy.

3.5.1.4 Threshold

In Algorithm 1, a detection threshold of abnormal SPE score is proposed by exploitation of the

mean and standard deviation values of SPE score. Here, the proposed threshold (termed as σ)

is compared to the conventional detection threshold of SPE score (termed as δ2) [55]. The δ2
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Figure 3.5: Comparison on the TPR (left) and FPR (right) between different detection thresh-
olds of SPE score with different numbers of clusters (#C) under different outlier probabilities.

threshold is defined by

δ2
α = θ1(

cα
√

2θ2h2
0

θ1
+ 1 +

θ2h0(h0 − 1)
θ2

1

)1/h0 , (3.30)

where cα is the coefficience for the Gaussian distribution with confidence level (1 − α), and

h0 = 1 − 2θ1θ3/3θ2
2,

θ1 =

k∑
j=l+1

λ̃ j, θ2 =

k∑
j=l+1

λ̃2
j , θ3 =

k∑
j=l+1

λ̃3
j . (3.31)

Specifically, SPE score is detected by

 i f S PE > δ2
α outlier,

i f S PE ≤ δ2
α normal.

(3.32)

We assume that both detection thresholds work at the same confidence level 99.7%, namely, ξα

and cα are equal to 3. Comparisons are made between σ and δ2 thresholds on outlier detection
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accuracy without outlier diagnosis (Algorithm 2), and results are shown in Fig.3.5. From

Fig.3.5, it can be concluded that the proposed σ detection threshold improves the TPR by about

9% as compared to the δ2
α threshold, while the FPR of the proposed σ detection threshold is

about 5% higher. Although each threshold has its advantage, the proposed σ threshold is less

complex in computation than δ2 threshold.

3.5.2 Recovery Accuracy of Aggregated Data

In the proposed data analysis framework, sensor data are aggregated by R-PCA at cluster heads,

so that the network resources consumed by correlated and redundant sensor data transmissions

can be reduced. The aggregated sensor data are finally recovered at the IoT data center. Recov-

ery accuracy is a normally used metric to evaluate the quality of data aggregation algorithms. In

this work, recovery accuracy is mathematically defined by relative recovery error (rre), which

is the relative difference between original and recovered data matrices. More specifically, as

mentioned in Section 3.3, the reduced-dimensional matrix Y is generated by projecting X into

the subspace as Y = ẼT
l X. At the IoT data center, the data matrix is then recovered by the

inverse processing, i.e., X̃ = ẼlY. So the rre is mathematically given by

rre =
‖X̃ − X‖2
‖X‖2

. (3.33)

In this test, the sensor data provided by the Intel lab are used. Details of the database are

explained in Subsection 3.5.1.1. The comparison between PR-PCA and the benchmark CR-

PCA is shown in Fig.3.6, which demonstrates the instant rre along the timeline. The statistical

values of Fig.3.6 are summarized in Table 3.3.

Table 3.3: Relative Recovery Error

rre mean rre min rre median rre max
CR-PCA 0.0995 0.0699 0.0989 0.1364
PR-PCA 0.0849 0.0313 0.0796 0.1883

From Fig.3.6, it can be seen that the rre curves of both CR-PCA and PR-PCA based al-

gorithms fluctuate dramatically. But it can still tell that nearly 90% rre values of PR-PCA are

below those of CR-PCA, which is proved by Table 3.3 as well. Table 3.3 indicates that the
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Figure 3.6: Comparison on the relative recovery error between the CR-PCA and the PR-PCA.

mean value of the PR-PCA based algorithm is about 15% smaller than that of CR-PCA based

algorithm. This result further strengthens the conclusion in Subsection 3.5.1 that the correla-

tion between temperature, humidity and voltage readings of a sensor node, is not as strong as

the spatial correlation between neighbor sensor readings.

3.5.3 Discussion on the Number of Clusters

The data analysis framework is proposed based on cluster-tree topology. From Fig.3.4, we can

notice that the performance of outlier detection varies with different numbers of clusters. Thus,

in this subsection, we further investigate the influence of different numbers of clusters on data

recovery accuracy and network energy consumption.

Data recovery accuracy is still evaluated by the rre (3.33). In terms of the network energy

consumption, energy consumed by all sensor nodes and cluster heads are considered. Micaz

mote is used as the node energy consumption model [54]. More specifically, the energy con-

sumed by transmitting and receiving are 720 and 110 nJ/bit, respectively. Each CPU instruction

costs 4 nJ/instruction. Given the data packet, we assume that the packet header is 56 bits, the
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Figure 3.7: Comparison on the relative recovery error and the network energy consumption of
the CR-PCA and the PR-PCA under different numbers of clusters.

preamble overhead is 160 bits and each component occupies 32 bits of payload. The network

energy consumed by the baseline network without any data aggregation algorithm (None) and

the network energy consumed by a network with CR-PCA are selected as benchmarks.

Fig.3.7 shows the influence of different numbers of clusters on rre and network energy

consumption with different data aggregation algorithms.

From Fig.3.7, we can see that in terms of the number of clusters, there is a trade-off be-

tween the rre and network energy consumption. That is with the increment in the number of

clusters, the rre decreases while the network energy consumption increases. The reason is that

with more clusters, the average number of sensor nodes within a cluster decreases. With fewer

sensor nodes in a cluster, the aggregation degree of sensor data decreases, which means a larger

amount of sensor data is transmitted throughout the network. The network energy consumption

increases as a result. Network energy consumption of PR-PCA based algorithm is even higher

than that of CR-PCA when the 54 sensor nodes are clustered into 13 clusters. However, with

a larger number of clusters, the rre decreases. This is because, with stricter clustering thresh-
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old, fewer sensor nodes are gathered into the same cluster, but the spatial correlation between

sensor data generated by these sensor nodes is stronger, which further improves the recovery

accuracy of aggregated data. In practical scenarios, the number of clusters is determined by the

requirements of specific applications.

3.5.4 Complexity Analysis

In this work, R-PCA is exploited instead of PCA, to recursively update the parameters in the

PCA model to track the changes in the IoT systems. Simultaneously, extra computations are

introduced as a consequence. Given a data matrix X[k×n], the computational complexity of PCA

is O(k3), which is dominated by the eigenvalue decomposition. In R-PCA, the complexity of

the initialization phase is still O(k3). In terms of the recursion phase, a single round of recursion

is not computational-complex as O(k3), since eigenvectors and eigenvalues are obtained by

first-order perturbation theory based update instead of eigenvalue decomposition. But the t

times of recursion brings extra time complexity of O(k2t).

The mathematical calculations in R-PCA, including matrix multiplication, eigenvalue de-

composition, and the sorting, are affordable for a full-functioned CPU. However, given the

weak computational capacity of the sensor node, the calculations are quite heavy burdens. The

previous algorithms with adaptively updated PCA [48, 54] loaded on sensor nodes can lead to

long computational delay and fast battery draining. The cluster-based data analysis framework

proposed in this work offloads the complex calculations from sensor nodes to cluster heads and

the IoT data center, which relieves the heavy burden on sensor nodes.

3.6 Chapter Summary

In this chapter, a cluster-based data analysis framework using R-PCA to overcome the chal-

lenges of data outlier detection and redundant sensor data aggregation in the IoT systems has

been proposed. More specifically, sensor nodes are gathered into clusters, and all sensor data

are transmitted to cluster heads. At a cluster head, spatially correlated sensor data are diagnosed

and aggregated by the R-PCA based algorithms, and then the outlier-free and aggregated data

are forwarded to the IoT data center. All the aggregated data are recovered and outliers are
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recorded for further analysis at the data center. With the development of R-PCA, the parame-

ters of the PCA model are able to be recursively updated in real-time, which finally improves

the performance of the data analysis framework. The cluster-based framework also relieves

the computational burden on sensor nodes. Simulation results prove that the proposed data

analysis framework precisely aggregates sensor data with high recovery accuracy. Besides, the

outlier detection accuracy is also improved compared to other existing data outlier detection

algorithms.



Chapter 4

A Novel Edge Computing Enabled

Temporal Data Reduction Scheme in IoT

Systems

The recent advancement of IoT technologies has enabled many emerging applications. These

advanced applications generate a massive amount of data at the edge of IoT networks, which

usually need to be relayed to the cloud for data analytics. However, uploading all these IoT

data to the cloud platform imposes a heavy burden on the underlying network. The unavoidable

long delay from data exchange and processing significantly reduces the time-responsiveness of

real-time IoT applications. Thus, edge computing has been introduced to IoT applications as an

intermediate between end devices and cloud for primary IoT data processing. In this chapter,

a temporal IoT data reduction scheme through edge computing is proposed to reduce the total

amount of IoT data uploaded to the cloud. More specifically, IoT data are firstly modeled

as multivariate normal distribution by the cloud. Dual Kalman filters (KFs) with identical

parameters are then deployed at both the edge and cloud platforms. The same predictions are

simultaneously triggered by the dual KFs at both platforms. Only the measured IoT data out of

the predicted range is further uploaded from edge to cloud. Otherwise, predicted values at both

platforms are used instead of measurements. A simple prototype IoT system is developed for

performance evaluation. Experimental results indicate that the proposed scheme significantly

reduces the number of packets uploaded to the cloud platform with high data accuracy.

55
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4.1 Introduction

With the rapid development of sensing and communication technologies, IoT can interconnect

not only people but also physical objects and virtual processes, which creates many emerging

applications including smart healthcare, smart home, and smart cities [60, 61]. The real-time

data processing nature of these advanced applications impose new challenges on current IoT

architectures, particularly in meeting the latency, privacy and bandwidth requirements of IoT

applications [10]. For instance, a smart healthcare system requires high privacy and security of

user data, real-time response to the emergency situation and high bandwidth for uploading the

massive amount of daily monitoring sensor data. The current IoT architecture cannot suffice

these requirements, due to the limitation of bandwidth, unavoidable long delay and high cost

for massive data uploading. Due to these challenges, edge computing has been proposed as a

complement, and a number of institutions have made joint efforts on its development.

Edge computing can be considered as an extension of cloud computing from the core net-

work to edge network, which generally provides services of data computing, storage, and anal-

ysis between end devices and traditional cloud computing platform [62]. In terms of the afore-

mentioned challenges, primary data processing at edge computing platform can provide timely

response to end devices at local networks, and also reduce the amount of data uploaded to

the cloud platform so as to save the network bandwidth, as shown in Fig.4.1. As summarized

in [35], the advantages of edge computing are highlighted by better cognition, high efficiency,

high agility, and low latency, since edge devices can be flexibly located to provide its services.

There are a few recent studies focused on edge computing enabled data processing frame-

works in IoT systems. A smart data structure for big data management deployed on edge de-

vices has been proposed in [63]. Similarly, a pre-cloud data processing module was proposed

in [64], which acted as an edge engine. The engine supported several data processing units,

including data collection, storage, mining, etc. The proper location of the engine in the IoT

architecture was investigated as well. However, most of the existing works, like [63, 64], are

still focused on the general frameworks of edge computing enabled data processing in IoT sys-

tems without further theoretical analysis, operation process design or performance verification.

Based on a commonly used edge-enabled IoT system framework, a data reduction scheme is
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Figure 4.1: An edge computing enabled IoT system architecture.

designed based on the temporal correlation between time-series IoT data, and an experimental

platform is developed for performance evaluation.

In this chapter, a novel temporal data reduction scheme is proposed by the exploitation of

the primary data processing at edge computing platform, so that the total amount of IoT data to

be uploaded could be minimized. More specifically, IoT data are firstly modeled as multivariate

normal distribution by the cloud. Dual KFs with identical parameters are then deployed at both

the edge and cloud platforms. The same predictions for the data measured by end devices

are simultaneously triggered by the dual KFs at both platforms, based on historical data and

intrinsic temporal data correlation. Only the measured data out of the predicted range is further

uploaded from edge to cloud. Otherwise, predicted values at both ends are used instead of

measurements. A simple prototype IoT system is developed for experimental evaluation, which

consists of end devices, edge devices, and the cloud platform. Experimental results indicate

that the proposed scheme minimizes the number of packets uploaded to the cloud platform

with identical data accuracy, as compared to the benchmarks, GM and ARMA.

The rest of this chapter is organized as follows. The model of the edge computing enabled
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IoT system is presented in Section 4.2. In Section 4.3, the novel temporal data reduction

scheme is further proposed. Practical experiments based performance evaluation is investigated

in Section 4.4. Finally, all the contributions are summarized in Section 4.5.

4.2 System Model

As shown in Fig.4.1, an edge computing enabled IoT system architecture normally consists of

the following functional blocks, end devices, edge computing devices, and the cloud computing

platform, and the interactive interfaces between these blocks [35].

• End devices are the most fundamental and important component in IoT systems. Gener-

ally, IoT end devices are equipped with sensing and communication modules, such as wireless

sensor nodes and smartphones. Due to the weakness in computational capacity, IoT end de-

vices are mainly responsible for sensing and reporting the physical surroundings. In this work,

wireless sensor nodes are regarded as the IoT end devices, which periodically transmit the

physical measurements to edge platform. Sensor data sampled from n sensor nodes at time

instance t are marked as X{1,...,n},t =
[
x1,t, x2,t, . . . , xn,t

]T .

• Edge computing devices are located at the network edge and act as an intermediate be-

tween end devices and the remote cloud platform, as shown in Fig.4.1. Since the edge is

enabled for primary data collection, storage and processing, it can not only provide real-time

response to end devices but also save the bandwidth by reducing the amount of data uploaded

to the cloud [65]. In this work, dual KFs with identical parameters are set up at both the edge

and cloud ends. The same predictions are simultaneously triggered at both ends. Instead of up-

loading all the IoT data indiscriminately, only the data out of the predicted confidence interval

are uploaded from edge to cloud for further analysis. In most cases, predicted values are used

at both ends.

• Cloud computing platform plays the role of a remote data center, which is generally

responsible for complex processing and analysis of IoT data. Although the cloud meets the

challenges of bandwidth limitation and high latency, it still cannot be substituted given its

strong computational capacity. In the cloud, IoT data are modeled as multivariate normal

distribution and kept update by KFs, which makes data query and data management easier.
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4.3 A Novel Edge Computing Enabled Temporal Data Re-

duction Scheme

In this section, the novel edge computing enabled temporal data reduction scheme is proposed,

which consists of three major phases. Firstly, sensor data are modeled as multivariate normal

(MVN) distribution based on historical data in the cloud. Afterwards, Kalman filters with

identical parameters are deployed at both edge and cloud, which simultaneously predict and

update the mean vector and covariance matrix of the MVN model. In the running phase, the

confidence interval of the future data measured by sensor nodes is estimated by the predicted

mean vector and covariance matrix. Only the measured data out of predicted interval is further

uploaded from edge to cloud. Otherwise, predicted values are used on both platforms. More

details on these three phases are explained as follows.

Phase I In phase I, all the measured sensor data are uploaded to cloud through edge devices,

and modeled as multivariate normal distribution at cloud based on the normality analysis of

collected sensor data. Suppose that m samples are collected from n sensor nodes, and then these

data are modeled as a data matrix X with n × m dimensions at cloud, e.g., Xi, j(i ∈ [1, n] , j ∈

[1,m]) is the jth sensor reading from node i.

However, n can be huge for a large-scale IoT system. It is inefficient and meaningless to

set up an MVN model with n variables, so several downsized MVN models with k variables

are built instead. The value of k is determined by the multivariate normality test. In our work,

k is the largest value that can make the submatrix X′[k×m](k < n) pass the Mardia’s normality

test [66]. Specifically, Mardia’s skewness and kurtosis of submatrix X′[k×m](k < n) and corre-

sponding p-values are calculated. The skewness is calculated as

S =
1

6m

m∑
i=1

m∑
j=1

[
(xi − µ)TΣ−1(x j − µ)

]3
, (4.1)

where xi[k×1] is the ith column vector of X′, µ is the mean vector and Σ is the covariance matrix

of X′,

Σ =
1

m − 1

m∑
i=1

(xi − µ)(xi − µ)T . (4.2)
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The corresponding p-value is given by

pS = 1 − Fχ2(S , v), (4.3)

where Fχ2 is the cumulative distribution function (CDF ) of chi-square distribution, and v is the

degrees of freedom,

v =
1
6

k(k + 1)(k + 2). (4.4)

Mardia’s kurtosis is calculated as

K =

√
m

8k(k + 2)

 1
m

m∑
i=1

[
(xi − µ)TΣ−1(xi − µ)

]2
− k(k + 2)

 , (4.5)

and p-value of kurtosis is given by

pK = 2 × (1 − Φ(|K|)), (4.6)

where Φ is the CDF of standard normal distribution.

If p-values of the skewness and kurtosis, pS , pK , are larger than a certain significant level,

then the k-variate X′ is considered to be following the multivariate normal distribution. The

probability density function f (x) is given by

f (x) =
1

(2π)k/2|Σ0|
1/2 exp(−

1
2

(x − µ0)TΣ−1
0 (x − µ0)), (4.7)

where µ0 ∈ <
k and Σ0 ∈ Sk

++ are the initial mean vector and covariance matrix of the multi-

variate normal distribution, which are calculated by the historical sensor data.

Phase II In phase II, Kalman filters with identical parameters are simultaneously built at

both the edge and cloud platforms, in order to keep predicting and updating the mean vector

and covariance matrix of the MVN model built in phase I. Maintaining a Kalman filter consists

of two major procedures: prediction and update. In the prediction procedure, mean vector at

time t (µ̂t|t−1) is estimated by

µ̂t|t−1 = Ftµ̂t−1|t−1 + BtUt, (4.8)
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and its corresponding covariance (Pt|t−1) is calculated as

Pt|t−1 = FtPt−1|t−1FT
t + Qt, (4.9)

where Ft is the state transition model, Bt is the control-input model applied to the control vector

Ut, and Qt is the covariance of white Gaussian noise in prediction procedure. Based on (4.8)

(4.9), the optimal Kalman gain is calculated as

Kt = Pt|t−1HT
t (HtPt|t−1HT

t + Rt)−1, (4.10)

where Ht is the observation model and Rt is the covariance of observation noise. Accordingly,

µ̂t|t and Pt|t are updated with the optimal Kalman gain (Kt) and the mean vector of measured

data (µt) by

µ̂t|t = µ̂t|t−1 + Kt(µt −Htµ̂t|t−1), (4.11)

Pt|t = (I −KtHt)Pt|t−1. (4.12)

Simultaneously, the covariance matrix Σ is kept predicting and updating in the same way.

Namely, both mean vector and covariance matrix are predicted by the values from previous

time instance, and are updated after receiving newly measured data. However, the specific

values used to update the model are determined by the edge computing platform in Phase III.

Phase III In phase III, the newly measured sensor data, xt, is transmitted to edge first. Based

on the mean vector and covariance matrix predicted by Kalman filters, N(µt|t−1,Σt|t−1), the

confidence interval of xt is further derived at edge. The edge device determines whether the

received xt falls in the confidence interval. Only when xt is out of the predicted interval, it

would be further uploaded to the cloud.

Given a MVN model, the confidence interval C is determined by

C = µ̂t|t−1 ±

√
χ2

k(α)λiei, i = 1, . . . , k, (4.13)
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where χ2
k(α) is the chi-square distribution with k degrees of freedom and 1−α confidence level.

µ̂t|t−1 is the predicted mean vector. λi and ei are the eigenvalue and eigenvector of the predicted

covariance matrix Σ̂t|t−1,

Σ̂t|t−1 = EΛET . (4.14)

In order to simplify the determination, xt is transformed from the original coordinate system

into the coordinate system defined by eigenvectors, namely,

x̃t = ET (xt − µ̂t|t−1). (4.15)

Correspondingly, the bounds of confidence interval in the new coordinate system are

C = (0, . . . , 0︸  ︷︷  ︸
i−1

,±
√
χ2

k(α)λi, 0, . . . , 0︸  ︷︷  ︸
k−i

), i = 1, . . . , k. (4.16)

If xt falls in the confidence interval, Kalman filters are updated with the predicted values

(µ̂t|t−1, Σ̂t|t−1) at both the edge and cloud platforms, and error caused by the substitution is calcu-

lated. Otherwise, xt is forwarded to the cloud platform, and Kalman filters at both the edge and

cloud platforms are updated with xt in the meantime. The pseudocode of all the three phases is

summarized in Algorithm 3.

4.4 Performance Evaluation

In the first part of this section, multivariate normality of sensor data is analyzed using the

practical database provided by Intel lab [67]. Afterwards, a simple prototype IoT system is

developed for the performance evaluation of the proposed temporal data reduction scheme.

4.4.1 Multivariate Normality Analysis

Mardia’s skewness and kurtosis (4.1)-(4.6) are used to test the multivariate normality of sensor

data [66]. In order to evaluate the effect of the number of variables on normality, p-values

of skewness and kurtosis are calculated with temperature readings from different numbers of

sensor nodes, where the sensor data are provided by Intel lab. Significant level is set to 0.05
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Algorithm 3 A Novel Edge Computing Enabled Temporal Data Reduction Scheme
1: PHASE I: (In Cloud, Historical Data)
2: set up N(µ0,Σ0)
3: PHASE II: (At Edge and Cloud, Historical Data)
4: set up KFs with trained Fts and Hts
5: PHASE III: (At Edge, End Devices→ Edge, xt)
6: predict by KFs, µ̂t|t−1 and Σ̂t|t−1

7: calculate confidence interval C of N(µ̂t|t−1, Σ̂t|t−1)
8: Σ̂t|t−1 = EΛET

9: C = µ̂t|t−1 ±

√
χ2

k(α)λiei, i = 1, . . . , k
10: if xt < bounds C then
11: edge→ cloud, xt

12: update models with xt

13: else
14: update models with µ̂t|t−1 and Σ̂t|t−1

15: calculate error
16: end if

Table 4.1: P-Values of Skewness and Kurtosis

k 1 2 3 4 5
pS 0.4948 0.2704 0.1343 0.0882 0.0415
pK 0.2185 0.2611 0.2998 0.2802 0.2702
k 6 7 8 9 10
pS 0.0143 0.0095 0.0036 0.0057 0.0105
pK 0.2678 0.2768 0.2925 0.2640 0.2503

without losing the generality. P-values (pS and pK) are listed in Table 4.1. From Table 4.1, it

can be seen that pS decreases with the increment in the number of variables, and it cannot even

pass the test when the number of variables is larger than 4.

For better visualization of the multivariate normality, chi-square quantile-quantile (Q-Q)

plot is introduced here. If k-variate sensor data follow the multivariate normal distribution,

then the squared Mahalanobis distance of sensor data follows the chi-square distribution with

k degrees of freedom, where the squared Mahalanobis distance is calculated as

d2
i = (xi − µ)TΣ−1(xi − µ), i = 1, . . . ,m. (4.17)

If d2 ∼ χ2
k , the chi-square Q-Q plot should be approximately a straight line through the
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Figure 4.2: Chi-square Q-Q plot generated by the squared Mahalanobis distance among data
from different numbers of sensor nodes (k=1,2,3,4).

origin with slope 1. The Q-Q plots of k = 1, 2, 3, 4 are shown in Fig.4.2. It can be visualized

that the slope deviates from 1 more dramatically with the increment in the number of variables,

which matches the trend of p-values.

4.4.2 Experimental Evaluation

4.4.2.1 Experimental Platform Setup

A simple IoT system prototype is developed, which consists of four sensor nodes (end devices),

a gateway (edge device) and the Google BigQuery database (cloud platform). Each sensor

node embeds temperature (TMP36), humidity (HIH5031) and brightness (TEMT6000) sen-

sors, while XBee-S2 is used as the ZigBee RF module. One Raspberry Pi gateway is deployed

as the edge device [68], and the Google BigQuery database acts as the cloud platform [69].

Four sensor nodes are randomly deployed in an indoor room. Sensor data are sampled every

30s, transmitted to Raspberry Pi for primary analysis and later uploaded to Google BigQuery.



4.4. Performance Evaluation 65

4.4.2.2 Evaluation Metrics

In the experiments, two evaluation metrics are considered. One is the number of packets up-

loaded from edge to cloud, since the aim of our proposed scheme is to reduce the data trans-

mission. The other is the mean squared error (MSE) caused by downsized data transmission,

ε =
1
q

q∑
i=1

‖x̂i − xi‖
2
2. (4.18)

4.4.2.3 Analysis of Confidence Level

The effect of different confidence levels (1 − α) and different numbers of variables (k) on the

performance of the proposed scheme are shown in Fig.4.3. From Fig.4.3, we can see that

the number of packets uploaded reduces with the increment in confidence level. This is due

to that the increment in confidence level enlarges the confidence interval, which results in

more measured data falling in the confidence interval and fewer data transmissions. Since

less measured data are uploaded, the models at both the edge and cloud platforms have fewer

opportunities to be updated with the measured data, which finally makes the MSE of data

increase. Furthermore, with the increment in the number of variables (k), the number of packets

uploaded reduces and the error increases correspondingly.

4.4.2.4 Comparisons with GM and ARMA

GM (grey model) and ARMA (autoregressive and moving average) are two normally used

prediction models for time series and introduced in this experiment as benchmark methods.

Since the confidence interval used in the proposed scheme is not applicable in GM and ARMA,

the bias of measured data from predicted value (threshold ξ, |xt− x̂t| ∈
[
0, ξ ∗ x̂t

]
) is used instead

as the transmission threshold. Here, k is set to 4.

The experimental results are shown in Fig.4.4 and Fig.4.5, where Fig.4.4 shows the com-

parison on the number of packets uploading and Fig.4.5 is on the MSE caused by downsized

data transmission. From these two figures, we can see that with the increment in the threshold,

the number of packets uploaded decreases and the MSE increases, which are in the same trends

as the results in Fig.4.3 and reasons behind these trends are identical.
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Figure 4.3: The effect of the confidence level (1 − α) on the number of packets uploading to
the cloud and the mean squared error (MSE).

In terms of the comparisons between the proposed scheme (marked as MVN) and the

benchmark methods (GM and ARMA), with the application of MVN, the number of packets

uploading is 77.9% and 97% fewer than GM and ARMA, but the MSE generated correspond-

ingly is 50% and 12.5% higher. However, the mean squared error generated by MVN is the

lowest in the extreme case that no packets are uploaded from edge to cloud and all the sensor

data recorded at cloud are the values predicted by the models, which is 92.8% and 95.5% lower

than GM and ARMA respectively. Given the joint analysis of the number of packets uploaded

and the mean square error, the proposed scheme outperforms the benchmark methods.

4.5 Chapter Summary

In this chapter, a novel edge computing enabled temporal data reduction scheme has been pro-

posed, which has significantly reduced the number of packets uploaded to the cloud platform in

current IoT systems. More specifically, sensor data are firstly modeled as multivariate normal
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Figure 4.4: Comparison on the number of packets uploading between the proposed MVN-
based scheme and the benchmark methods (GM and ARMA).

distribution by the cloud. Dual KFs with identical parameters are then deployed at both the

edge and cloud platforms for prediction. The same predictions for the future data measured by

end devices are simultaneously triggered at both platforms. Only the measured data out of the

predicted range is further uploaded to the cloud. Otherwise, predicted values at both platforms

are used instead of measurements. In order to evaluate the performance, a simple prototype IoT

system is developed and GM and ARMA are selected as benchmark methods. Experimental

results indicate that the proposed scheme significantly reduces the number of packets uploaded

to the cloud platform with high data accuracy.
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Chapter 5

Cloud-Orchestrated Physical Topology

Discovery of Large-Scale IoT Systems

Using UAVs

WSNs have been rapidly integrated into IoT systems, empowering rich and diverse applica-

tions such as large-scale environmental monitoring. However, due to the random deployment

of sensor nodes, the physical topology of the WSNs cannot be controlled and typically remains

unknown to the IoT cloud server. Therefore, in order to derive the physical topology at the

cloud for effective real-time event detection, a cloud-orchestrated physical topology discovery

scheme for large-scale IoT systems using UAVs is proposed in this chapter. More specifically,

the large-scale monitoring area is firstly split into a number of subregions for UAV-enabled data

collection. Within the subregions, parallel Metropolis-Hastings random walk (MHRW) is de-

veloped to gather the information of WSN nodes, including their IDs and neighbor tables. The

collected information is then forwarded to the cloud through UAVs for the initial generation

of logical topology. Thereafter, a network-wide 3D localization algorithm is further devel-

oped based on the discovered logical topology and multidimensional scaling method, termed

as Topo-MDS, where the UAVs equipped with GPS are served as mobile anchors to locate the

sensor nodes. Simulation results indicate that the parallel MHRW improves both the efficiency

and accuracy of logical topology discovery. In addition, the Topo-MDS algorithm dramatically

improves the 3D location accuracy, as compared to the existing algorithms in the literature.

69
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5.1 Introduction

With the rapid development of sensing, communications and computing technologies, large-

scale IoT systems have been gradually deployed in diverse applications, including environ-

mental monitoring such as forest and ocean surveillance [70, 71]. In enabling large-scale en-

vironment monitoring, wireless sensor nodes are pervasively used due to their advantages of

low power, low cost, and ease of deployment. These nodes are generally self-organized into

WSNs for cost-effective data collection. Due to limited coverage and computing resources of a

single WSN, standalone WSNs are gradually integrated into interconnected complex systems

enabled by IoT technology [72]. This development brings the capability of large-scale network

monitoring and management, as well as abundant computational resources of the IoT cloud

platform [73]. Particularly, by the exploitation of cloud computing, sensor data gathered by the

WSN nodes in target areas can be visualized and processed ubiquitously, so that unexpected

events can be promptly detected and located.

The physical topology of the large-scale IoT system is often needed in the cloud, since it

indicates not only the logical connectivity statuses (i.e., logical topology) but also the physical

locations of sensor nodes. However, due to the random deployment nature of WSNs, the phys-

ical topology of a large-scale IoT system is extremely hard to control during the deployment

stage. Therefore, the development of a physical topology discovery scheme becomes an urgent

necessity in improving the operational effectiveness of large-scale IoT applications.

In the literature, several studies have investigated logical topology discovery in WSNs.

In [74], a topology map was derived from the virtual coordinate system of the WSN by singular

value decomposition (SVD). Different from the virtual coordinate based method, the number of

nodes estimation and topology discovery were implemented based on gathering the node IDs

and coordinates in [75]. However, both efficiency and accuracy of these algorithms were not

ideal, especially for the large-scale IoT systems. To overcome this difficulty, a parallel MHRW

based logical topology discovery algorithm is developed in this chapter. More specifically, the

target area is divided into several subregions by the cloud. The centroid of each subregion

is selected as UAV [76] hovering point, while the beacon signal is broadcast. Sensor nodes

are clustered into these subregions according to the received signal strength (RSS) of detected
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Figure 5.1: A general architecture of the cloud-orchestrated large-scale IoT systems.

beacons. Parallel MHRW paths are simultaneously conducted in the subregions to gather the

information of sensor nodes, including IDs and neighbor tables. The collected information is

forwarded to the IoT cloud through the UAV for the initial generation of the logical topology.

In addition to the logical topology, the physical locations of sensor nodes are essential for

the physical topology construction of WSNs. In the proposed system, one or multiple UAVs are

utilized as mobile anchors to facilitate the localization. Given the UAVs equipped with GPS

chipsets, 3D coordinates of sensor nodes can be estimated (3D, i.e., latitude, longitude and

altitude). There have been several studies focused on UAV-assisted 3D localization. In [77],

multi-lateration method was used to derive the 3D coordinates. Each sensor node captured the

broadcast beacons from the UAVs, which contained the real-time 3D location information of

the UAVs. In [78], a mobile beacon-based 3D localization algorithm using the multidimen-

sional scaling method was proposed, termed as MBL-MDS. Similarly, beacons from UAVs

were captured for localization. The major difference was the exploitation of the multidimen-

sional scaling method. In both works, each sensor node has to record the beacons and locate

itself by the proposed algorithms. However, such methods would significantly increase the

load of complexity and cost on the sensor nodes.

A network-wide 3D localization algorithm is then proposed based on the discovered logical
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topology and multidimensional scaling method, termed as Topo-MDS. By contrast, the local-

ization is processed in the cloud in a centralized way. In the proposed Topo-MDS, distance

matrices of subregions are established firstly. Multidimensional scaling and linear transforma-

tion methods are then used in turn to derive the physical coordinates. Combined with the logical

topology discovered by parallel MHRW, the physical topology of the WSNs is finally built in

the IoT cloud. Numerical simulations have been conducted in 3D-space scenarios. Simula-

tion results have indicated that the parallel MHRW based logical topology discovery algorithm

improves both estimation efficiency and accuracy. Additionally, the proposed Topo-MDS al-

gorithm dramatically improves the 3D localization accuracy, as compared to the existing 3D

localization algorithms in the literature.

The rest of this chapter is organized as follows. In Section 5.2, the proposed cloud-

orchestrated large-scale IoT system is described in detail. In Section 5.3, the logical topology

discovery algorithm is proposed based on the parallel MHRW. Topo-MDS localization algo-

rithm is developed in Section 5.4. Based on Section 5.2-5.4, Section 5.5 details the proposed

physical topology discovery scheme, which consists of initialization, parallel MHRW and con-

struction procedures. Convergence time and topology estimation accuracy of the proposed

scheme are evaluated in Section 5.6. Section 5.7 concludes this chapter.

5.2 Cloud-Orchestrated Large-Scale IoT Systems Using UAVs

A general architecture of the proposed cloud-orchestrated IoT systems is shown in Fig.5.1,

which consists of three major components, namely, wireless sensor nodes, UAVs and a cloud

platform. Details of each component are given below.

•Wireless sensor nodes are the fundamental components of IoT systems. These nodes are

randomly deployed in monitoring areas and self-organized into WSNs to gather environmen-

tal information. For example, in a forest fire surveillance system, temperature, smoke, and

olfactory sensors are used for fire detection [79]. Since several efforts have been done on the

selection of suitable sensors, this work emphasizes more on the physical topology construction

of the WSNs. In the proposed system as depicted in Fig.5.1, wireless sensor nodes are sup-

posed to be homogeneous and have the capability of peer-to-peer communications. Each node
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Table 5.1: Neighbor Table of Sensor Node vi

Neighbor List Neighbor ID Received Signal Strength (RSS)
Nb(vi)1 idNb(vi)1 RS S (Nb(vi)1 → vi)
Nb(vi)2 idNb(vi)2 RS S (Nb(vi)2 → vi)

...
...

...

Nb(vi)d(vi) idNb(vi)d(vi)
RS S (Nb(vi)d(vi) → vi)

maintains a neighbor table, which contains the IDs of its neighbors and also the corresponding

RSS. Table 5.1 shows an example of the neighbor table of node vi, where d(vi) is the number

of neighbors and Nb(vi) is the set of neighbors.

•GPS-embedded UAVs are served as mobile anchors to facilitate localization and topology

discovery, and as mobile relays to forward information from sensor nodes to the cloud.

In order to reduce the manufacturing cost, sensor nodes are generally built without GPS

chipsets. However, the awareness of location information in the cloud is a necessity for real-

time event detection. With the knowledge of RSS information (e.g., Table 5.1), relative coordi-

nates of sensor nodes can be calculated. To further locate the actual coordinates, several phys-

ical locations known as anchor points are imperative. In this case, GPS-embedded UAVs are

exploited to provide real-time 3D location information. In the cloud-orchestrated IoT system,

the flight paths of UAVs are designed in advance by the cloud. The UAVs are correspondingly

programmed to autonomously fly to the target positions without additional human interven-

tion [80]. Furthermore, UAVs are able to carry different RF modules and support different

wireless communication protocols. For instance, UAVs have the capability of communicating

with sensor nodes in a self-organized way through ZigBee modules [81] and possibly serve as

relays to forward the information to the cloud [82].

• IoT cloud platform is the remote data and control center for the IoT systems, leveraging

cloud computing to achieve complex data processing and analysis, as well as coordination of

UAV flight paths. By exploitation of the proposed scheme, the physical topology of the WSNs

is finally built in the cloud. Benefited from the cloud, sensor data sampled from the target areas

can be timely and efficiently visualized and located, since physical topology illustrates both the

logical topology of the randomly deployed WSNs and the physical locations of actual nodes.
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5.3 Logical Topology Discovery by Subregion-based Parallel

Metropolis-Hastings Random Walk

The physical topology consists of the information of logical topology and physical location.

Thus, a logical topology discovery algorithm is firstly proposed in this section, which is imple-

mented through subregion-based parallel MHRW.

5.3.1 Modeling of a WSN as a Graph

A WSN is modeled as an undirected graph G = (V, E), where V is the set of vertices and E is the

set of edges. In the WSN, sensor nodes are modeled as vertices, and wireless communication

links between nodes are modeled as edges. Given n nodes within a WSN, the set of vertices

is expressed as V = {v1, v2, . . . , vn}, and the number of vertices is represented by |V | = n.

Similarly, the set of edges E = {e1, e2, . . . , em} represents the wireless communication links,

and the number of links is |E| = m. Besides the vertex and edge, the degree of a vertex is also a

non-trivial consideration in graph-based investigations. Here, the degree of a vertex is modeled

by the number of valid neighbors of a sensor node and marked as d(vi). The value of d(vi) may

vary from the initial setup, due to the physical obstacles, malfunctions and dead nodes. Thus,

only the nodes with valid wireless communication capability are defined as valid neighbors.

5.3.2 Metropolis-Hastings Random Walk on a Graph

The simple random walk process biases towards nodes with higher degrees. Hence, MHRW

is developed to modify the transition probability matrix, so that the process can converge to

the desired uniform stationary distribution and remove the degree bias [83]. The transition

probability in MHRW is given by

PMH
vi,v j

=


1

d(vi)
·min(1, d(vi)

d(v j)
), i f v j ∈ Nb(vi),

1 −
∑

k,i PMH
vi,vk

, i f v j = vi,

0, otherwise.

(5.1)

Based on (5.1), we can derive that a packet forwarded along the MHRW path in a WSN
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can return back to the starting node with an expected time of |V |. Let the packet gather the

information of each node that it visits, including node IDs and neighbor tables. By collecting

the returning packets, information specific to the sensor nodes can be collected. Based on the

connected statuses stated in neighbor tables, the logical topology can be established at the IoT

cloud platform. Logical adjacency matrix (C̃) of the WSN is generated by

C̃vi,v j =

 1, i f e(vi, v j) exists,

0, otherwise,
(5.2)

where the existence of e(vi, v j) means that vertices vi and v j can wirelessly communicate.

5.3.3 Logical Topology Discovery by Subregion-based Parallel Metropolis-

Hastings Random Walk Processes

The expected return time |V | indicates that the time is proportional to the number of vertices.

Therefore, with the increment in the scale of WSNs, the convergence time of global MHRW

would be monotonously increased as a consequence. To deal with the low efficiency of global

MHRW, a novel subregion-based parallel MHRW is proposed. Details of the proposed algo-

rithm are stated as follows.

Sensor nodes are firstly clustered into subregions. The target field is uniformly divided

into N subregions by the cloud, and centroids of the subregions are selected as UAV hovering

points. At each hovering point, UAV broadcasts a beacon signal. Each sensor node records

all the detected beacons and selects the certain subregion, from which the RSS of the beacon

signal is the highest. RSS is chosen as the clustering metric, since RSS measurement can be

easily achieved without modifications on sensor nodes.

Afterwards, parallel MHRW processes are simultaneously taken place at the subregions.

In each subregion, the cloud randomly selects a sensor node as the starting point and a packet

is generated correspondingly. Packets are then forwarded within the subregions following the

MHRW rule to gather the information of sensor nodes, as stated in Subsection 5.3.2. After the

packets return, the UAVs are functioned as relays and forward the packets to the IoT cloud. The

logical topology is finally established in the cloud by (5.2) based on the collected information.
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The convergence time of global and parallel MHRW and the accuracy of logical topology

discovery would be investigated in Subsection 5.6.3 and 5.6.4.

5.4 Topo-MDS: Logical Topology and Multidimensional Scal-

ing based 3D Localization

In order to construct the physical topology of the WSNs in the cloud, physical location infor-

mation needs to be aware as well. Based on the logical topology discovered in Section 5.3,

a UAV-assisted network-wide 3D localization algorithm is further developed to estimate the

physical coordinates of sensor nodes. The proposed algorithm exploits UAV hovering points

as anchor locations, so that distance matrices of the subregions can be built. Based on the dis-

tance matrices, the relative and physical coordinates are estimated in turn by multidimensional

scaling and linear transformation methods.

5.4.1 Relative Location Estimation by Multidimensional Scaling

Multidimensional scaling (MDS) method can be used to calculate the relative coordinates,

when the distances between sensor nodes are able to be estimated [84]. Specifically, the dis-

tance matrix D is formulated as

D =



d̃v1,v1 . . . d̃v1,vn

...
. . .

...

d̃vn,v1 . . . d̃vn,vn

d̃v1,a1 . . . d̃v1,am

...
. . .

...

d̃vn,a1 . . . d̃vn,am

d̃a1,v1 . . . d̃a1,vn

...
. . .

...

d̃am,v1 . . . d̃am,vn

da1,a1 . . . da1,am

...
. . .

...

dam,a1 . . . dam,am


, (5.3)

where d̃vi,v j(i, j = 1, 2, . . . , n) is the estimated distance between sensor nodes vi and v j, d̃vi,a j(i =

1, 2, . . . , n, j = 1, 2, . . . ,m) is the estimated distance between sensor node vi and anchor point

a j, and dai,a j(i, j = 1, 2, . . . ,m) is the actual distance between anchor points ai and a j.
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Let B denote the double centralization of D by

B = −
1
2

JD2J, (5.4)

where

J = In+m −
1

n + m
1n+m · 1T

n+m, (5.5)

where In+m is an (n + m) × (n + m) identity matrix and 1n+m = [1, 1, . . . , 1]T is an (n + m) × 1

unit vector.

And then, the relative coordinates ˆ̃P can be obtained by minimizing the squared error ex-

pression,
ˆ̃P = arg min

P
‖B − PP

T
‖2, (5.6)

where P = JP is the centralized coordinate matrix, and P is the coordinate matrix P[(n+m)×3] =

[pv1 , . . . ,pvn , pa1 , . . . ,pam]T .

The minimization problem in (5.6) can be solved by decomposing B using the eigenvalue

decomposition,

B = UΛUT , (5.7)

where Λ is the ordered diagonal eigenvalue matrix Λ = diag(λ1, λ2, . . . , λn+m), λ1 ≥ λ2 ≥ . . . ≥

λn+m, and U is the eigenvector matrix containing the corresponding eigenvectors as columns.

Finally, the relative coordinates are estimated by

ˆ̃P = U3Λ
1/2
3 , (5.8)

where U3 consists of the first three columns in U and Λ1/2
3 = diag(λ1/2

1 , λ1/2
2 , λ1/2

3 ).

5.4.2 Physical Location Estimation by Linear Transformation

ˆ̃P in (5.8) is the relative coordinates. The physical coordinates P̃ can be estimated by

P̃ = cR ˆ̃P + t · 1T
n+m, (5.9)
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where the scale c is set to 1 for simplification, and the parameters R and t can be obtained by

minimizing the squared error of linear transformation of the anchor points as

arg min
c,R,t

m∑
i=1

‖cR ˆ̃pai + t − pai‖
2
2, (5.10)

where ˆ̃pai = [ ˆ̃xai , ˆ̃yai , ˆ̃zai]
T and pai = [xai , yai , zai]

T are the relative and physical coordinates of

anchor point ai. m is the number of anchor points. Arun’s method [85] is introduced to solve

the problem defined by (5.10).

Firstly, the physical and relative coordinate matrices of anchor nodes, P′[3×m] and ˆ̃P′[3×m], are

off-mean by

P′ = P′ − µp · 1
T
m, (5.11)

and
ˆ̃P′ = ˆ̃P′ − µ ˆ̃p · 1

T
m, (5.12)

where µp = 1
m

∑m
i=1 pai and µ ˆ̃p = 1

m

∑m
i=1

ˆ̃pai .

Afterwards, P′ ˆ̃P′
T

is decomposed by SVD,

P′ ˆ̃P′
T

= USVT . (5.13)

Finally, the rotation matrix R and the translation matrix t are calculated as

R = UVT , t = µp − Rµ ˆ̃p. (5.14)

R and t are substituted into (5.9) to estimate the physical coordinates of n sensor nodes.

5.4.3 Topo-MDS: Logical Topology and Multidimensional Scaling based

Network-Wide 3D Localization Algorithm

Based on logical topology discovered in Section 5.3 and multidimensional scaling method,

a network-wide 3D localization algorithm termed as Topo-MDS is further proposed. UAV

hovering points are used as anchor locations to locate the sensor nodes as stated in (5.10). The
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specific procedures of the Topo-MDS algorithm are detailed as follows.

I Given k sensor nodes in a subregion (sensor nodes are clustered in Section 5.3), a distance

matrix is initialized as D1[(k+1)×(k+1)] and the first UAV hovering point is recorded as ml1.

II When the UAV moves to the 2nd location, the distance matrix is expanded to D2[(k+2)×(k+2)]

and the location is recorded as ml2. Similarly, while the UAV moves to the mth location,

the distance matrix is enlarged to Dm[(k+m)×(k+m)] and UAV location is recorded as mlm.

III Given the distance matrix Dm, the relative coordinates can be calculated by (5.3)-(5.8) in

Subsection 5.4.1 through multidimensional scaling method. With m recorded locations

(ml1,...,m) and the relative coordinates, the locations of k sensor nodes can be estimated by

(5.9)-(5.14) through linear transformation in Subsection 5.4.2.

5.5 Proposed Physical Topology Discovery Scheme

The physical topology discovery scheme is proposed in this section, based on the investigations

of parallel MHRW based logical topology discovery and Topo-MDS algorithm based 3D lo-

calization in Section 5.3 and 5.4, respectively. The proposed scheme consists of three phases,

initialization, parallel MHRW and construction, as summarized in Algorithm 4. Moreover,

specific details of each procedure are explained in the following paragraphs.

Initialization According to the IEEE802.15.4e TSCH protocol, sensor nodes indicate their

existence and share information by sending enhanced beacons during the period of network

initialization [86]. Based on received beacons, each node sets up its neighbor table (tb) that

contains neighbor IDs and RSS of signals from its neighbors, as stated in Table 5.1. After-

wards, the target area is uniformly divided into several subregions by the cloud. UAV hovers

at the centroid of each subregion and broadcasts a beacon signal. Sensor nodes are clustered

according to the RSS of beacon signals. In subregion i, a sensor node is selected as the starting

point of MHRW by the cloud, marked as si. A packet (Pki) is generated at the starting node si,

while ID and neighbor table of the node are added to the packet in the meantime.
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Algorithm 4 Physical Topology Discovery Scheme
1: Initialization:
2: uniformly divide the target area into N subregions
3: UAV hovers at the centroid of each subregion and broadcasts a beacon signal
4: sensor nodes are clustered into the subregions according to the RSS of detected beacons
5: generate a packet Pki at the cloud-selected starting node si in subregion i (i = 1, 2, . . . ,N)
6: add ID (idsi) and neighbor table (tbsi) of si to Pki

7: Parallel MHRW:
8: forward packet Pki in subregion i by MHRW rule
9: if node v ∈ subregion i & node v < Pki then

10: add idv and tbv to Pki

11: end if
12: Construction:
13: discover the logical topology⇒ adjacency matrix C̃
14: estimate the physical locations of sensor nodes⇒ coordinate matrix P̃
15: construct the physical topology (C̃, P̃) in the IoT cloud

Parallel MHRW Starting nodes for the N subregions are selected by the cloud in the phase

of initialization. N parallel random walk processes are simultaneously conducted according to

the Metropolis-Hastings rule as defined by (5.1). After each time of packet transmission, the

node ID of the packet receiver is checked. If the node ID (e.g., idv) is not on the list of packet

Pki, then ID and neighbor table of the packet receiver (node v) are added to packet Pki.

Construction After packet Pki returns back to its starting node si, the collected packet would

be forwarded to the IoT cloud platform through UAV. In the cloud, the physical topology is con-

structed by the collected node IDs and neighbor tables. More specifically, the logical topology

is firstly established by the connectivity statuses stated in neighbor tables, as investigated in

Section 5.3. The physical coordinates of sensor nodes are then calculated by the UAV-assisted

Topo-MDS algorithm developed in Section 5.4. Finally, the physical topology is constructed

by the combination of logical topology and estimated 3D locations of sensor nodes.

5.6 Performance Evaluation

Simulations have been conducted to evaluate the proposed physical topology discovery scheme

from different aspects, including convergence time, logical topology estimation accuracy and
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Figure 5.2: Deployment of UAV hovering points and sensor nodes in the 3D scenario.

3D location accuracy. System settings and wireless communication channel models used in the

simulations are firstly given in Subsection 5.6.1 and 5.6.2.

5.6.1 Simulation Settings

In the simulation, 100 sensor nodes are randomly deployed in a 3D space [100m×100m×1m].

These nodes are supposed to be homogeneous with transmitting power ranging from -10, -5 to

0dBm and receiving sensitivity -90dBm [87].

UAV hovering points are deployed as shown in Fig.5.2. In the phase of logical topology

discovery, the UAV hovers at the latitude-longitude centroid of the subregion in 20m height for

sensor nodes clustering and data collection. Later in the localization phase, the UAV hovers

at designed intervals and heights as anchor locations. The hovering bias of UAV is ±1.5m in

latitude and longitude, and ±0.5m in altitude [88].

5.6.2 Wireless Communication Channel Models

For the signal propagation from UAV to sensor nodes (SNs), and peer-to-peer wireless com-

munication channels among SNs, the two-ray ground model and the free-space outdoor model
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are respectively used, taking into account the different signal propagation environments.

For the UAV-SN air-to-ground signal propagation, the two-ray ground model is a commonly

used channel model [77,89], which considers both the line-of-sight (LOS) and ground-reflected

rays. For wireless communications among SNs, the signal propagation channel quality is not

as ideal as UAV-SN, given the potential near-ground scatters. Instead of the two-ray ground

model, the free-space outdoor model (FOM) is thus adopted. This is a channel model designed

specifically for WSNs in the outdoor open areas, which jointly considers the effect of the free-

space propagation, ground reflection, RSS uncertainty, and antenna radiation impact [90].

Two-ray Ground Model For large distance d, the received power Pr (in dBm) can be ex-

pressed by the two-ray ground model as [89],

Pr(dBm) = Pt + 10log(GtGr) + 20log(HtHr) − 40log(d), (5.15)

where Pt is the transmitting power. d is the horizontal distance between transmitter and re-

ceiver. Gt and Gr are the antenna gains of transmitter and receiver, Gt = Gr = 1. Ht and Hr are

the antenna heights of transmitter and receiver.

Free-Space Outdoor Model The received power (in dBm) is modeled by [90],

Pr(dBm) = Pt + 20log(
λ

4πd
) + 10log(K2

1 + K2
2Γ2 + 2K2Γcos(

2π
λ

∆L)) + Xσ, (5.16)

where λ is the propagation wavelength, and K1 and K2 are coefficients irregularity in antenna

radiation pattern. ∆L is the path difference between LOS and ground-reflected rays. Xσ is the

RSS uncertainty that follows Gaussian distribution. Γ is the ground reflection coefficient,

Γ =
sin θ −

√
(ε − jxΓ) − cos2 θ

sin θ +
√

(ε + jxΓ) − cos2 θ
, (5.17)

where parameters of average ground are used without losing generality, ε = 15, xΓ = 3.75 ×

10−2. θ is the reflection angle.
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Table 5.2: Comparison between Global and Parallel MHRW on Convergence Time (Hops)

Transmitting Power, Pt (dBm) -10 -5 0
Global MHRW 666 742 1145
Parallel MHRW (#c=4) 264 309 340
Parallel MHRW (#c=9) 229 271 307

5.6.3 Convergence Analysis

The convergence of random walk is analyzed by the Geweke’s diagnostics [91]. In Geweke’s

diagnostics, convergence is evaluated by the difference between the first 10% and last 50% of

a data sequence. Mostly, the difference is calculated by Z statistics as

Z =
E[X1] − E[X2]

√
Var[X1] + Var[X2]

, (5.18)

where X1 is the first 10% of data sequence X and X2 is the last 50%. The first 10% is determined

as convergence when the Z-score falls in the range [−1, 1]. Here, the number of node IDs that

have been collected is used as the convergence evaluation metric X.

The convergence time is defined as the number of hops that the random walk path has

visited before it is convergent. In terms of the convergence time, the global random walk

is not efficient enough, especially for large-scale WSNs [92]. That is why the subregion-

based parallel MHRW is further proposed. The convergence time of the parallel MHRW is

determined by the number of hops of the longest path. The comparison on the convergence time

between the global MHRW and the subregion-based parallel MHRW with different numbers

of subregions (#c) is listed in Table 5.2, where different transmitting powers are considered.

From Table 5.2, it is clear that the convergence time of parallel MHRW (#c=4) is reduced by

60.4% as compared to the global MHRW. With the number of subregions increasing from 4 to

9, the convergence time saved further increases to 65.6%. This is because the more subregions,

the more parallel random walk processes are simultaneously conducted, leading to the dramatic

reduction in the convergence time. Moreover, in parallel MHRW (#c=4), with the transmitting

power increasing from -10 to 0dBm, the convergence time increases from 264 to 340 hops. The

reason is that the increment in the transmitting power decreases the difference between node

connectivity degree in the WSN. The more uniform network converges the slower [91].
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Table 5.3: Topology Estimation Error of Topology Preserving Map Method

Pt (dBm) case 1 case 2 case 3 case 4
-10 0.9850 1.0377 0.9682 0.8887
-5 0.8696 0.7902 0.8537 0.7240
0 0.9431 0.9431 0.9441 0.3562

5.6.4 Logical Topology Estimation Analysis

In order to evaluate the estimation accuracy of the parallel MHRW based logical topology

discovery algorithm, the estimation error is defined as

εc = ‖C − C̃‖1/‖C‖1, (5.19)

where C and C̃ are the logical adjacency matrices of actual and estimated network topologies.

Before evaluating the proposed algorithm, the topology preserving map method [74] is used

as the benchmark. All four cases proposed in [74] are tested in the randomly deployed scenario.

The transmitting powers (Pt) are set to -10, -5 and 0 dBm, respectively. The experimental

results are listed in Table 5.3. It indicates that case 4 performs the best. However, the lowest

estimation error in case 4 is still as high as 0.3562, which indicates that the method proposed

in [74] is not suitable for the logical topology discovery in the randomly deployed scenario.

The logical topology estimation error of the proposed algorithm with different transmit-

ting powers is shown in Fig.5.3, where #c=9. It can be seen that the estimation error finally

converges to 0, which is much lower than the results in Table 5.3. In terms of Fig.5.3, at the be-

ginning, error generated by Pt =-10 dBm is the largest. This is because, with lower transmitting

power, the average node degree is lower, so that the connectivity information sampled from the

neighbor tables is less. However, given the MHRW converges faster with lower transmitting

power, the path of Pt =-10 dBm converges to 0 the fastest.

5.6.5 Physical Location Estimation Analysis

In Subsection 5.6.5, accuracy of 3D localization is investigated. Before evaluating the pro-

posed Topo-MDS algorithm, RSS-based distance estimation model and evaluation metric are

introduced as follows.
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Figure 5.3: Logical topology estimation error εc with different transmitting powers Pt.

RSS-based Distance Estimation Distance between sensor nodes and distance between sen-

sor node and UAV are both estimated by the RSS. The model in [78, 93] is adopted as the

RSS-based distance estimation model, where the estimated distance d̃vi,v j is assumed to be af-

fected by estimation offset ηvi,v j as

d̃vi,v j = dvi,v j + ηvi,v j , (5.20)

where the offset ηvi,v j follows Gaussian distribution, ηvi,v j ∼ N(0, σ2
vi,v j

) and σ2
vi,v j

= (γ · dvi,v j)
2.

γ is the ratio of standard deviation of the distance estimation offset to the actual distance dvi,v j .

Evaluation Metric Sensor nodes are located in three dimensions by the Topo-MDS algo-

rithm proposed in Section 5.4, while location error is quantified by the average Euclidean

distance between actual and estimated 3D locations,

εp =
1
n

n∑
i=1

‖pvi − p̃vi‖2, (5.21)
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Figure 5.4: Influence of the transmitting power Pt and the distance estimation offset ratio γ on
3D location error.

where pvi is the ground-truth coordinate of node vi, i.e., pvi = (xvi , yvi , zvi), and p̃vi is the esti-

mated coordinate.

Evaluation of Performance Influence Factors Factors that may have effects on the 3D lo-

cation estimation accuracy are investigated, including transmitting power of sensor nodes (Pt),

distance estimation offset ratio (γ), the number of subregions (#c) and UAV hovering inter-

val. UAV hovering interval is the distance between the hovering point at the latitude-longitude

plane. Simulation results are shown in Fig.5.4 and Fig.5.5.

In Fig.5.4, we evaluate the influence of transmitting power and the distance estimation

offset. The transmitting power Pt increases from -10, -5 to 0dBm and distance estimation

offset ratio γ ranges from 5% to 25%, while the interval is fixed to 10m and the number of

subregions is 9. From Fig.5.4, it can be seen that the location error of the proposed Topo-

MDS algorithm decreases with the increment in transmitting power. The reason is that the

increment in transmitting power enlarges the average number of neighbor sensor nodes so



5.6. Performance Evaluation 87

5 10 15 20
UAV Hovering Interval (m)

0

2

4

6

8

10

12

14

E
rr

or
 (m

)

#c=4
#c=9
#c=16

Figure 5.5: Influence of the number of subregions #c and the UAV hovering interval (m) on 3D
location error.

that the fundamental distance matrix (5.3) is expanded. Besides, the location error increases

monotonously with the growth in distance estimation offset ratio γ. As stated in Topo-MDS,

the 3D coordinates of sensor nodes are derived from the distance matrix. Thence, the larger

distance estimation offset finally results in the increasing location error.

In Fig.5.5, the effects of the UAV hovering interval and the number of subregions are in-

vestigated. The UAV hovering interval enlarges from 5 to 20m, and the number of subregions

(#c) increases from 4 to 16, while Pt is set to 0dBm and distance estimation offset ratio is 15%.

Fig.5.5 indicates that the increasing UAV hovering interval enlarges the location error. This

is because UAV hovering points are used as anchors, while the increasing interval reduces the

number of anchors. Furthermore, it can be noticed that more subregions result in larger location

error. The reason is that the larger number of subregions downsizes the fundamental distance

matrix (5.3) of each subregion. Combined with the result from Subsection 5.6.3, the increment

in the number of subregions (#c) accelerates the convergence rate, while decreases the location

accuracy. The trade-off would be balanced by the requirements of specific applications.
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Figure 5.6: Scenario 1 (UAV heights ∈[20m 50m]): comparison between Topo-MDS and
benchmark algorithms (multi-lateration, MDS, MBL-MDS) on 3D location error.

Performance Comparison with Benchmark Methods In order to better evaluate the per-

formance of the proposed Topo-MDS, multi-lateration based 3D localization algorithm [77],

MDS-based algorithm, and mobile beacon based 3D localization with MDS (MBL-MDS) al-

gorithm [78] are selected as the benchmark methods. Two different scenarios of UAV hovering

in the benchmark works [77, 78] are considered. In scenario 1 [77], UAV flies at a random

altitude (range=[20m,50m]). In scenario 2 [78], UAV hovers on a plane, where the altitude is

fixed to 20m. In both scenarios, UAV hovering biases are involved. Transmitting power is set

to 0dBm, the interval is 15m and 9 subregions are separated. Fig.5.6 and Fig.5.7 demonstrate

the location error of the proposed Topo-MDS and benchmark algorithms in two scenarios,

respectively.

From Fig.5.6 and Fig.5.7, we can observe that the location error of the proposed Topo-

MDS algorithm is the lowest in both scenarios. MBL-MDS algorithm [78] performs better in

scenario 2 than scenario 1, since it is particularly proposed for the case that UAV hovers on a

plane. But even in scenario 2, the location error of MBL-MDS is still higher than Topo-MDS.



5.6. Performance Evaluation 89

0.05 0.1 0.15 0.2 0.25
Distance Estimation Offset .

0

50

100

150

200

250

300

350

400

E
rr

or
 (m

)

Multilateration
MDS
MBL-MDS
Topo-MDS

Figure 5.7: Scenario 2 (UAV heights =20m): comparison between Topo-MDS and benchmark
algorithms (multi-lateration, MDS, MBL-MDS) on 3D location error.

The reason is that in MBL-MDS, a sensor node locates itself by recording the beacons and

calculating its distances to UAV hovering points. In Topo-MDS, the distance matrix is set up

based on not only the distances to UAVs but also the distances between neighbor sensor nodes.

The network-wide approach improves the accuracy of 3D localization. Although the location

error of multi-lateration based algorithm [77] is acceptable in scenario 1, the error in scenario

2 is extremely high, which implies that the multi-lateration based algorithm is not suitable for

scenario 2 at all. This is because UAV hovering on a plane leads to the near singularity of the

system equations in the multi-lateration based algorithm.

Complexity Analysis In addition to the aforementioned factors, the computational complex-

ity of the proposed algorithm needs to be analyzed as well. In particular, the complexity of

fundamental multidimensional scaling and linear transformation calculations is dominated by

the eigenvalue decomposition. Given an N × N symmetric matrix, the complexity is O(N3)

for eigenvalue decomposition. Thus, for Topo-MDS algorithm, the complexity is O((k + m)3),
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where k and m are the numbers of sensor nodes and UAV hovering points in a subregion re-

spectively. In terms of MDS-based and MBL-MDS algorithms, the calculation is processed at

each sensor node individually, i.e., the number of sensor nodes is 1 (k = 1) and the complexity

is exponentially relevant to the number of anchor locations received from UAVs (m′). There-

fore, the complexity of the MDS-based algorithm is O(m′3). For MBL-MDS, the complexity

is reduced to O(κ ·m′′3), where m′′ is the number of anchors selected in each subset (m′′ � m′)

and κ is the number of subsets (1 ≤ κ ≤ bm′/m′′c). The multi-lateration based algorithm is also

locally executed, but the computational complexity is much lower as O(m′).

The proposed Topo-MDS algorithm expands the distance matrix to improve location accu-

racy, but the computational complexity is increased in the meantime. Although the complexity

of Topo-MDS is higher than other algorithms, it is implemented in the cloud platform instead

of individual sensor nodes, so the increment in complexity is acceptable.

5.7 Chapter Summary

In this chapter, a cloud-orchestrated physical topology discovery scheme has been developed

for large-scale IoT systems. The proposed discovery scheme consists of two parts, namely,

logical topology discovery and network-wide 3D localization. In terms of the logical topology

discovery, parallel MHRW is developed to improve the accuracy and efficiency of the dis-

covery algorithm. For network-wide localization, a UAV-assisted 3D localization algorithm is

proposed based on discovered logical topology and multidimensional scaling method, termed

as Topo-MDS algorithm. Extensive simulations have been conducted to evaluate the efficiency

and accuracy of the logical topology discovery, as well as the 3D localization. The results in-

dicate that the parallel MHRW improves both the convergence rate and estimation accuracy, as

compared to other benchmark methods. Besides, the 3D localization accuracy is also dramat-

ically improved by the proposed Topo-MDS, as compared to the multi-lateration, MDS-based

and MBL-MDS algorithms.



Chapter 6

UAV-Enabled Spatial Data Sampling in

Large-Scale IoT Systems Using Denoising

Autoencoder Neural Network

IoT technology has been pervasively applied to environmental monitoring, due to the advan-

tages of low cost and flexible deployment of IoT enabled systems. In many large-scale IoT

systems, accurate and efficient data sampling and reconstruction are among the most critical

requirements, since this can relieve the data rate of trunk link for data uploading while en-

suring data accuracy. To address the related challenges, a UAV enabled spatial data sampling

scheme has been proposed in this chapter using denoising autoencoder (DAE) neural network.

More specifically, a UAV-enabled edge-cloud collaborative IoT system architecture is firstly

developed for data processing in large-scale IoT monitoring systems, where UAV is utilized as

a mobile edge computing device. Based on this system architecture, the UAV-enabled spatial

data sampling scheme is further proposed, where the wireless sensor nodes of large-scale IoT

systems are clustered by a newly developed bounded-size K-means clustering algorithm. A

neural network model, i.e., DAE, is applied to each cluster for data sampling and reconstruc-

tion, by the exploitation of either linear or nonlinear spatial correlation among data samples.

Simulations have been conducted and the results indicate that the proposed scheme has im-

proved data reconstruction accuracy under the same sampling ratio without introducing extra

complexity, as compared to the compressive sensing based method.

91
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6.1 Introduction

With the advantages of low cost and flexible deployment, large-scale IoT systems have been

widely applied to environmental monitoring [94]. A general architecture of such system con-

sists of a large number of connected wireless sensor nodes and a cloud platform, where the

sensor nodes as data collection layer are pervasively deployed in the target areas for environ-

mental sensing and sampling, while the cloud platform is utilized as the remote data center for

data processing and analysis [95].

However, considering the harsh environment of operation fields, wireless communications

between sensor nodes are vulnerable to different kinds of obstacles and interference. Addi-

tionally, with the enlarging scale of the IoT system, the tremendous amount of data uploading

imposes a heavy burden on the bandwidth requirement of the trunk link. Thus, accurate and

efficient data sampling and reconstruction are among the most critical technical demands for

the design and operation in the cloud-enabled IoT systems. In order to overcome this chal-

lenge, UAV has been introduced into the large-scale IoT systems as a mobile edge computing

device [82]. Here the UAV-enabled edge device serves as the intermediate layer [35]. Given

the special location of the intermediate layer, the UAV can support real-time responses for

the sensor nodes and offload tasks from the cloud by preliminary data processing and analysis.

Through the deployment of UAV, an edge-cloud collaborative IoT system architecture has been

developed for data processing in large-scale IoT monitoring systems.

Based on this system architecture, a novel spatial data sampling scheme has been further

proposed, which can reduce the amount of data sampled at sensor nodes and relieve the band-

width requirement of the link between UAV and cloud. The principle behind the proposed

scheme is the spatial and temporal correlation between sensor data. In a complex environment,

the correlation between different types of physical sensor data is not as simple as linearity [96].

Therefore, a neural network model, i.e. denoising autoencoder (DAE) [97], is utilized in our

work, which has the capability of compressing both linearly and nonlinearly correlated data.

The proposed sampling scheme consists of three phases, namely, system initialization,

model training, and data sampling. During the first phase, a UAV hovers above the target

area served by the large-scale IoT system and the cloud. All sensor nodes keep active and up-
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load data to the cloud through UAV. Based on the collected data, sensor nodes are clustered by

the newly developed bounded-size K-means clustering algorithm. In the second phase, certain

sensor nodes within each cluster are selected as data sampling representatives. DAE models

for the clusters are trained in the cloud. Parameters of encoders in DAE models are sent to the

UAV, while parameters of decoders are kept in the cloud. In the phase of data sampling, data are

sampled from selected representatives and then encoded by the UAV before being forwarded to

the cloud. The full dataset is finally decoded and reconstructed in the cloud. With the support

of cluster formation and UAV, the efficiency of data sampling can be improved. Performance

evaluation is conducted, where compressive sensing as a conventional data sampling method

in IoT systems is utilized as the benchmark method. According to the numerical results, the

proposed scheme has dramatically improved the data reconstruction accuracy under the same

sampling ratio without introducing additional computational complexity.

The contributions of this chapter are summarized as follows:

• A UAV-enabled edge-cloud collaborative IoT system architecture is developed for data

processing in large-scale IoT systems, which overcomes the critical challenges of cloud-

enabled IoT systems, including high latency, bandwidth overload and unstable connec-

tion to the cloud.

• A novel spatial data sampling scheme has been proposed for efficient data sampling

and reconstruction in the large-scale IoT monitoring systems. In order to fully exploit

the spatial data correlation, DAE neural network has been selected as the fundamental

data sampling and reconstruction model. With DAE, the sampled data can be precisely

reconstructed in the cloud. In the meantime, by locating the encoder in DAE at the UAV,

the amount of data uploaded to the cloud is dramatically reduced and thus the burden on

the trunk link is relieved.

• A novel bounded-size K-means clustering algorithm has been developed specifically for

cluster formation and the cluster-based spatial data sampling in the proposed scheme. In

the novel clustering algorithm, the lower and upper bounds of cluster size are predeter-

mined, which considers the effect of cluster size on the intra-cluster communications and

data sampling.
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The remaining of this chapter is organized as follows. Section 6.2 summarizes the related

work on spatial data sampling in IoT systems. In Section 6.3, DAE neural network model is

detailed. The architecture of the UAV-enabled edge-cloud collaborative IoT system is devel-

oped in Section 6.4. The novel spatial data sampling scheme is then proposed in Section 6.5.

Performance evaluation is conducted in Section 6.6. Finally, Section 6.7 concludes the work.

6.2 Related Work

Spatial correlation based data sampling in the remote sensing field has been well studied in

recent years. According to the different fundamental models used, related work is classified

into the following categories.

Compressive Sensing (CS) is a data compression technique that can map high-dimensional

data into the sparse domain by utilizing a random sensing matrix. In CS-based methods, the

sensing field is considered as sparse domain, where data are sparsely sampled from the field

and fully recovered at the receiver. Compressive data gathering was the first CS-based method

for large-scale WSNs [98]. WSNs were deployed as the data collection layer of IoT systems.

Data were converted to the sparse domain by DCT (discrete cosine transform) and compressed

along the multi-hop routing path. In [99], the authors proposed a well-developed CS-based

framework for data sensing, sampling and recovery, where PCA was used to generate the sparse

domain. A cluster-based random sampling algorithm was proposed in [100]. The sparse matrix

was generated at the sink by random sampling at both intra-cluster and inter-cluster levels.

As stated, several research efforts have been spared on CS-based data sampling in IoT

systems, while the weaknesses of these methods are mostly due to the intrinsic constraints of

CS technique. The application of CS is limited by the restricted isometry property. However,

the sparse domain sometimes may not exist for data sampled from complex circumstances.

Additionally, although mapping data into a special sparse domain can further compress data,

the complexity of the data recovery algorithm will be dramatically increased as a result.

Principal Component Analysis (PCA) is a linear correlation based feature extraction

model. Therefore, PCA and variations of PCA based spatial data aggregation have been widely

used in WSNs and IoT systems. In [101], distributed compressive-project PCA was proposed
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in cooperation with the second-order data-coupled clustering algorithm for efficient data col-

lection in large-scale WSNs. Similarly, the authors in [102] proposed a cluster-based frame-

work as well, aiming at outlier-free data aggregation in IoT systems. The difference was that

recursive PCA was used in [102] for adaptively updating PCA models.

Autoencoder (AE) is a neural network model for feature extraction, which can be consid-

ered as nonlinear PCA. Given the outstanding performance on data modeling and processing,

neural network models have attracted attention from both industrial and academic institutions.

In terms of spatial data sampling in large-scale IoT systems, AE has been used in replace of

PCA given the nonlinear processing capability. In [103], the authors proposed a data compres-

sion algorithm with error bound guarantee, where data were spatially compressed by AE-based

nonlinear feature extraction.

However, both PCA and AE based methods sample full dataset from the sensing field, and

then spatially compress data at a cluster head or fusion center. By contrast, CS-based methods

have the capability of sparsely sampling from the sensing field directly, so that both sampling

and communication related processing and cost can be further saved. By exploitation of DAE,

the proposed scheme can also sample a subset of data directly from the field. As compared to

CS, the data reconstruction accuracy has been improved under the same sampling ratio.

6.3 Denoising Autoencoder Neural Network

The fundamental mathematical model behind the proposed scheme is DAE, which is a neural

network model that can be used to reconstruct the full dataset from the sampled subset [97]. In

this section, DAE is explained based on the introduction to basic AE.

6.3.1 Basic Autoencoder

AE is a neural network model for feature extraction. The difference to the PCA model is that

AE has the capability of dealing with nonlinear data correlation. As a neural network model,

AE is also consisted of input, hidden and output layers, while the special case is that the target

output of AE is exactly its input. A general structure of AE with a single hidden layer is
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Figure 6.1: A general structure of the autoencoder neural network with a single hidden layer.

shown in Fig.6.1, where the projection from the input layer to the hidden layer is termed as the

encoder, while the projection from the hidden layer to the output layer is termed as the decoder.

The mapping function of the encoder is expressed as

y = fθ(x) = f (W · x + b f ), (6.1)

where x is the input vector in n dimensions, while y is the hidden layer readout with k units.

f (·) is a nonlinear activation function, and sigmoid function is generally adopted. W[k×n] is the

input weight matrix, and b f is the input bias vector.

Correspondingly, the mapping function of the decoder is given by

z = gθ′(y) = g(V · y + bg), (6.2)

where z is the output vector with the same dimension as input x. g(·) is the activation function

of the decoder. Both identity and sigmoid function are frequently used. V[n×k] is the output

weight matrix, and bg is the output bias vector.

To find out the optimal parameter sets θ = {W,b f } and θ′ = {V,bg}, the cost function of

basic AE is given by

Jθ,θ′ =
1
m

m∑
i=1

‖z(i) − x(i)‖22, (6.3)

which penalizes the squared error between input x and output z. m is the size of training dataset.
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Figure 6.2: A general structure of the denoising autoencoder.

6.3.2 Denoising Autoencoder

Based on the basic AE, DAE is further proposed by P. Vincent et al. [97] to extract features and

reconstruct original data from corrupted data as shown in Fig.6.2.

Original data x is corrupted to x̃ by

x̃ = qD(x), (6.4)

where qD is corruption function. In our data sampling scheme, qD is defined as a mask function

that makes x̃ a subset of x.

As shown in Fig.6.2, the corrupted data vector x̃ is encoded to y and then decoded to z by

y = fθ(x̃), z = gθ′(y). (6.5)

Since the objective of DAE is to recover the original data x from the corrupted data x̃, the

cost function is defined as the squared error between original x and reconstructed z as

Jθ,θ′ =
1
m

m∑
i=1

‖z(i) − x(i)‖22 =
1
m

m∑
i=1

‖gθ′( fθ(x̃(i))) − x(i)‖22. (6.6)

Mini-batch based gradient descent algorithm [104] is used to solve the problem and learn

the parameters. Though the training procedure occupies certain computational load and mem-

ory, it is executed in the cloud platform and does not impose an additional burden on the sensor

nodes nor the UAVs.
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Figure 6.3: UAV-enabled edge-cloud collaborative architecture for data processing in large-
scale IoT monitoring systems.

6.4 UAV-enabled Edge-Cloud Collaborative IoT System Ar-

chitecture

A UAV-enabled edge-cloud collaborative IoT system architecture for data processing in large-

scale IoT monitoring systems is developed as shown in Fig.6.3, which consists of three major

components, namely, wireless sensor nodes as end devices, UAVs as mobile edge devices and

IoT cloud platform. Details of each component are given below.

• IoT cloud platform is the remote data and control center for the IoT system, leveraging

cloud computing to achieve complex data processing and analysis, cluster formation for wire-

less sensor nodes, as well as coordination of UAV flight paths. Particularly, since the training

process of the DAE models is too complex to be loaded on either sensor nodes or UAVs, the

parameter sets are learned through the training in the cloud. The parameters of encoders in

DAE models are then sent to UAV for data encoding. The parameters of decoders are kept in

the cloud for data reconstruction.
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• UAVs are utilized as mobile edge computing devices, which can support both local pro-

cessing for the local events with critical real-time requirements and preliminary processing to

offload the computational tasks from the cloud so as to relieve the bandwidth requirements of

the underlying trunk link. In terms of wireless communications, UAVs are able to carry dif-

ferent RF modules and support different protocols. For instance, UAVs have the capability of

communicating with sensor nodes in a self-organized way through ZigBee modules and possi-

bly serve as relays to forward the information to the cloud. Therefore, in the proposed scheme,

UAV is utilized to collect and encode the sampled data before uploading them to the cloud.

Depending on the service areas of the large-scale IoT systems, one or multiple UAVs could be

used. Multiple UAVs can improve the efficiency of data sampling and encoding. However, the

exploitation of multiple UAVs introduces more cost on device management and may also incur

the issue of multiple-UAV cooperation to the IoT systems.

• Wireless sensor nodes are the fundamental components in IoT systems, which are nor-

mally deployed in the target areas in a random or predetermined way to sense and sample en-

vironmental information. For instance, in a forest fire surveillance system, temperature, smoke

and humidity sensors are utilized for fire detection. These nodes are able to be self-organized

into WSNs. Furthermore, a WSN is modeled as an undirected graph G = (V, E) here. Sensor

nodes are modeled as vertices V , and wireless communication links between nodes are mod-

eled as edges E. The degree of a vertex is modeled by the number of valid neighbors of a

sensor node. Only the nodes with valid wireless communication capability are defined as valid

neighbors.

6.5 UAV-Enabled Spatial Data Sampling Scheme Using De-

noising Autoencoder Neural Network

A UAV-enabled spatial data sampling scheme for large-scale IoT monitoring systems is pro-

posed in this section. As stated in Algorithm 5, the scheme consists of three phases, namely,

system initialization, model training, and data sampling. The dataflow in three phases is shown

in Fig.6.4. More details are given in the following paragraphs.
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Algorithm 5 UAV-Enabled Spatial Data Sampling Using DAE
1: System Initialization:
2: set up UAV-IoT communication system
3: construct the physical topology of WSN in the cloud
4: UAV hovers above the target area as mobile relay and forwards raw data samples from

sensor nodes to the cloud
5: cluster sensor nodes by Algorithm 6
6: Model Training:
7: rank the link quality based on RSSI and LQI at UAV
8: select communication and data sampling representatives
9: send dissociation notification to the remaining ones

10: train {θ, θ′} with random masks qD in the cloud
11: send θ = {W, b f } to UAV for data encoding
12: Data Sampling:
13: collect data x̃ from representatives to UAV
14: if RSSI or LQI is below threshold then
15: trigger model training procedure
16: else
17: encode data by y = fθ(x̃), and forward y to the cloud
18: end if
19: the original data is reconstructed by gθ′(y) in the cloud
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Figure 6.4: Dataflow of the UAV-enabled spatial data sampling scheme.
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6.5.1 System Initialization

Wireless communications between the components in the IoT system are set up first. More

specifically, wireless sensor nodes embedded with ZigBee RF modules are randomly deployed

in the target area and self-organized into WSNs. UAV hovers above the target area, and wire-

lessly communicates with the nodes and the cloud through ZigBee and Wi-Fi, respectively.

6.5.1.1 Physical Topology Construction

Considering the randomness and self-organization features, the physical topology of the WSNs

cannot be known in advance, which needs to be constructed in the cloud by the exploitation of

the physical topology discovery scheme proposed in the previous work [25]. Physical topology

provides the physical locations of sensor nodes and the logical topology of the WSNs.

6.5.1.2 Raw Data Collection

UAV keeps hovering above the target area and broadcasting beacon signal. According to

IEEE802.15.4, sensor nodes would passively scan the channel, and send association request

to the UAV once the beacon signal is detected [105]. After the association is set up, raw data

packets are transmitted from the sensor node to the UAV. UAV measures and records the RSSI

(received signal strength indicator) and LQI (link quality indicator) of the received data packet,

and then forwards the packet to the cloud.

6.5.1.3 Clustering

Based on the physical locations and raw data obtained in the first two steps, sensor nodes

are clustered by the newly proposed bounded-size K-means clustering algorithm in the cloud.

Pseudocode is listed in Algorithm 6. In the proposed clustering algorithm, sizes of generated

clusters are bounded in the range [MIN CZ, MAX CZ], which are predetermined lower and

upper bounds respectively.

Physical distance between locations and Euclidean distance between data are jointly uti-
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lized as the clustering criterion,

‖li − lC j‖2 + β‖di − dC j‖2 ≤ ε, (6.7)

where li and di are the location and data of sensor node i, while lC j and dC j indicate the average

location and data centroids of cluster j. β is the weight to balance these two metrics and ε is

the threshold. Particularly, all the collected data are normalized first to remove the impact of

different scales.

Algorithm 6 Bounded-Size K-means Clustering Algorithm
1: Input: node set S , lower bound MIN CZ, upper bound MAX CZ, initial value and offset

of ε (εINI , εOFFS ET )
2: initialize K = 1, ε = εINI , S 1 as centroid of cluster 1
3: while minimal cluster size < MIN CZ do
4: for each node S i in S do
5: for cluster j = 1 : K do
6: if Eq.(6.7) satisfied and size of j <MAX CZ then
7: assign S i to cluster j, update centroids of j
8: break
9: end if

10: end for
11: if S i is not assigned to existing clusters then
12: K = K + 1, and assign S i as centroid of cluster K
13: end if
14: end for
15: ε = ε + εOFFS ET

16: end while
17: Output: K and generated clusters

The procedure of cluster formation using Algorithm 6 is further explained as follows.

• The first cluster is formed up by regarding the location and data of the first sensor node

as cluster centroids.

• For the remaining nodes in the network, if a node satisfies the clustering criterion of a

cluster and the cluster size is not beyond the upper bound MAX CZ (line 6 in Algorithm

6), the node is assigned to such cluster and the cluster centroids are updated with the new

average values of location and data. If a node cannot be assigned to any existing clusters,

a new cluster is formed with the location and data of such node as cluster centroids.
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Table 6.1: Record of Link Quality

Device ID MAC Address RSSI LQI Cluster ID

• The proposed bounded-size K-means clustering algorithm is an iterative algorithm, the

condition of termination is that the minimal cluster size of the generated clusters is larger

than or equal to the lower bound MIN CZ.

For the generated clusters, the dataset of cluster j at time t, x(t)
j , is the concatenation of data

from member sensor nodes, which is considered as the original data vector in DAE.

6.5.2 Model Training

Within each cluster, two types of representatives are selected for communication with the UAV

and data sampling, respectively. Communication representatives are chosen by the UAV ac-

cording to link quality, while data sampling representatives are determined by the cloud. Based

on the selections, corresponding DAE models are trained for the clusters.

6.5.2.1 Communication Representative Selection

During the phase of system initialization, RSSI and LQI are measured and recorded at UAV as

shown in Table 6.1.

RSSI and LQI are jointly used to evaluate the link quality, which is calculated as

quality =
RS S I

RS S I MAX
+

LQI
LQI MAX

, (6.8)

where RSSI and LQI indicate the power strength of the received signal and the success of re-

ceived packet demodulation respectively. In communication protocols such as IEEE802.11 and

IEEE802.15.4, RSSI and LQI are both defined in range 0x00∼0xFF, namely, RSSI MAX=0xFF,

LQI MAX=0xFF, where a higher value indicates better quality. In practical applications,

chipset manufacturers can self-define the value of RSSI MAX and LQI MAX. However, by

scaling RSSI and LQI, the quality defined in (6.8) always ranges from 0 to 2 and 2 indicates

the best link quality.
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… ...

Random Mask

Figure 6.5: Masks are randomly generated for the training of DAE models.

Based on the ranking of quality, the sensor node with the best link quality in a cluster

is selected as the communication representative. The working mode of the selected node is

converted to the coordinator. The remaining sensor nodes within the same cluster upload data

through the coordinator instead of communicating with UAV directly. In this way, the time

duration of UAV-enabled data sampling can be reduced.

6.5.2.2 Data Sampling Representative Selection

Given a cluster j ( j = 1, 2, . . . ,K), NC j sensor nodes are contained. NR j out of NC j sensor

nodes are selected as representatives for data sampling. Based on the knowledge of logical

topology, the degree of each sensor node can be calculated. Within each cluster, order the

member sensor nodes according to node degree. Node with the highest degree and the lowest

(NR j − 1) ones are selected as data sampling representatives.

The communication representative only communicates with the selected sampling repre-

sentatives for data uploading, and sends disassociation notification to the remaining ones.

6.5.2.3 Model Training

Random masks are generated to project original data vector x(t)
j to subset x̃(t)

j , as shown in

Fig.6.5. In terms of the masks, a fraction of original x(t)
j would be dropped off, namely, (NC j −

NR j) out of NC j in x(t)
j would be replaced by nan (not a number). Taking Fig.6.5 as an example,

the original data vector is

x(t)
j = [d(t)

1 ; d(t)
2 ; . . . ; d(t)

5 ] = [d(t)
1,1, d

(t)
1,2, . . . , d

(t)
1,p1
,

d(t)
2,1, d

(t)
2,2, . . . , d

(t)
2,p2
, . . . . . . , d(t)

5,1, d
(t)
5,2, . . . , d

(t)
5,p5

],
(6.9)
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and the sampling subset is

x̃(t)
j = [nan; d(t)

2 ; nan; d(t)
4 ; d(t)

5 ] = [nan, . . . , nan, d(t)
2,1, d

(t)
2,2, . . . , d

(t)
2,p2
,

nan, . . . , nan, d(t)
4,1, d

(t)
4,2, . . . , d

(t)
4,p4
, d(t)

5,1, d
(t)
5,2, . . . , d

(t)
5,p5

],
(6.10)

where d(t)
i is the data vector generated by sensor node i in cluster j at time t, and pi is the

number of measured physical variables. Namely, the dimension of d(t)
i is pi.

DAE model parameter sets {θ j, θ
′
j} of cluster j are learned by minimizing the cost function,

Jθ j,θ
′
j
=

1
m

m∑
t=1

‖gθ′j( fθ j(qDt(x(t)
j ))) − x(t)

j ‖
2
2, (6.11)

where qDt is the mask randomly generated at time t. f (·) is sigmoid function, and g(·) is linear

function. m is the amount of historical data samples archived in the cloud for training. Mini-

batch gradient descent algorithm is applied to solve (6.11). θ = {W,b f } is sent to the UAV for

data encoding. θ′ = {V,bg} is maintained in the cloud for data reconstruction.

6.5.3 Data Sampling

Dataflow of spatial data sampling and reconstruction has been shown in Fig.6.4. Data process-

ing at each component is specifically provided as follows.

6.5.3.1 Data Sampling

Based on the clusters setup and representatives selected in Subsection 6.5.1 and 6.5.2, data

are collected from the data sampling representatives to the communication representatives and

then forwarded to the UAV.

6.5.3.2 Data Encoding

The collected data samples are encoded at the UAV by

y(t) =
1

1 + e−(Wx̃(t)+b f )
, (6.12)
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where W and b f are the parameters obtained from the training in Subsection 6.5.2.3. y(t) is

forwarded to the cloud.

Simultaneously, RSSI and LQI of the received data packet are evaluated as well. If either

RSSI or LQI is below a pre-defined threshold, a warning is sent to the cloud. The model

training procedure is re-triggered cooperatively by UAV and cloud.

6.5.3.3 Data Reconstruction

In the cloud platform, data from each cluster is reconstructed by

z(t) = Vy(t) + bg, (6.13)

where V and bg are the parameters learned and maintained from the training in Subsection

6.5.2.3.

6.6 Performance Evaluation

Simulations are conducted in this section to analyze the clustering result and accuracy of final

data reconstruction, based on the simulation settings given in Subsection 6.6.1.

6.6.1 Simulation Settings

6.6.1.1 Fundamental Settings

Fig.6.6 shows both the geographical distribution and temporal variance of the temperature field.

Fig.6.6(a) is a 100m×100m field, where temperature varies continuously. The temporal trend

in Fig.6.6(b) indicates the variance of the mean value of the geographical temperature field

within 10 days. The unit of the horizontal axis in Fig.6.6(b) is an hour. 100 sensor nodes are

randomly deployed in the area (not shown). The altitude coordinate of a sensor node is the

height of the deployed location. The transmitting power of sensor nodes is homogeneously set

to -10dBm and the receiver sensitivity is -90dBm.

UAV flight path is also demonstrated in Fig.6.6(a). UAV hovers above the target area with
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Figure 6.6: Geographical distribution (a) and temporal variance (b) of the temperature field.
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an even interval. The hovering interval has a direct influence on the localization accuracy [25]

but does not have much effect on the following investigations. Hence, the interval is set to 10m

without losing generality. The hovering height is 20m above the field. The hovering bias is

±1.5m in latitude and longitude and ±0.5m in altitude.

6.6.1.2 Wireless Communication Channel Models

For the signal propagation from UAV to sensor nodes and peer-to-peer channels among sensor

nodes, two-ray ground and free-space outdoor models are respectively used, considering the

different signal propagation environments.

For the air-to-ground signal propagation from UAV to the sensor node, the two-ray ground

model is commonly used, which considers both the line-of-sight and ground-reflected rays. For

wireless communications among sensor nodes, the signal propagation channel quality is worse,

given the potential near-ground scatters. Instead of the two-ray ground model, the free-space

outdoor model is thus adopted. This is a channel model designed specifically for WSNs in the

outdoor open areas, which jointly considers the effect of the free-space propagation, ground

reflection, RSS uncertainty, and antenna radiation impact.

Two-ray Ground Model For large distance d, the received power Pr (in dBm) can be derived

by the two-ray ground model as [89],

Pr(dBm) = Pt + 10log(GtGr) + 20log(HtHr) − 40log(d), (6.14)

where Pt is the transmitting power. d is the horizontal distance between transmitter and re-

ceiver. Gt and Gr are the antenna gains of transmitter and receiver, Gt = Gr = 1. Ht and Hr are

the antenna heights of transmitter and receiver.

Free-Space Outdoor Model The received power is modeled as [90],

Pr(dBm) = Pt + 20log(
λ

4πd
) + 10log(K2

1 + K2
2Γ2 + 2K2Γcos(

2π
λ

∆L)) + Xσ, (6.15)
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Figure 6.7: Comparison between traditional threshold-based clustering algorithm (a) ε=3 (b)
ε=5 and the proposed bounded-size K-means clustering algorithm (c) [5, 15] and εINI=3.

where λ is the propagation wavelength, and K1 and K2 are coefficients irregularity in antenna

radiation pattern. ∆L is the path difference between LOS and ground-reflected rays. Xσ is the

RSS uncertainty that follows Gaussian distribution. Γ is the ground reflection coefficient,

Γ =
sin θ −

√
(ε − jxΓ) − cos2 θ

sin θ +
√

(ε + jxΓ) − cos2 θ
, (6.16)

where parameters of average ground are used without losing generality, ε = 15, xΓ = 3.75 ×

10−2. θ is the reflection angle.

6.6.2 Clustering Analysis

The proposed bounded-size K-means clustering algorithm is analyzed in this subsection. Since

the proposed algorithm is threshold-based, the traditional threshold-based clustering algorithm

[56] is selected as the benchmark. The improvement of the proposed clustering algorithm as

compared to the benchmark method is firstly provided. Influence of the parameters including

lower bound, upper bound, εINI and εOFFS ET on the clustering results is further investigated.

With the traditional clustering algorithm, when the threshold ε is set to 3, the number of
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Figure 6.8: Influence of the parameters on clustering results: (a) upper bound (MAX CZ) and
lower bound (MIN CZ); (b) initial value and offset of clustering threshold ε (εINI and εOFFS ET ).

sensor nodes in each of the generated clusters is shown in Fig.6.7(a), which illustrates that

eleven clusters are generated and three of them contain only a single node as highlighted in

red. When ε = 5, five clusters are generated and there is one cluster containing a single node

as shown in Fig.6.7(b). The results in Fig.6.7(a) and (b) indicate that with the increment in

threshold ε, the number of clusters with single node decreases indeed. However, it may result

in some huge clusters in the meantime. The huge cluster refers to the cluster with an extremely

large amount of sensor nodes, for example, in Fig.6.7(b), cluster 1 containing 55 sensor nodes.

In our proposed data sampling scheme, the communication representative in each cluster

is functioned as a coordinator and directly communicates with the UAV, while the other clus-

ter members communicate with the coordinator locally. Therefore, in the huge clusters, the

intra-cluster communications would be overload with multiple hops and also vulnerable to en-

vironmental interference. In addition to the huge clusters, in the cluster with a single node,

the single node has to be regarded as both data sampling representative and communication

representative in the meantime, which can result in the early death of such node. Hence, we

have added new attributes in the proposed clustering algorithm, namely, the upper and lower

bounds of cluster size [MIN CZ, MAX CZ]. As shown in Fig.6.7(c), when the bounds are set

to [5, 15], εINI = 3, and εOFFS ET = 0.01, sizes of the generated clusters are more balanced.
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Influence of the parameters on clustering results is shown in Fig.6.8, where (a) shows the

effect of the lower and upper bounds [MIN CZ, MAX CZ] with εINI = 3 and εOFFS ET = 0.01,

while (b) shows the influence of εINI and εOFFS ET with MIN CZ=2 and MAX CZ=15. From

Fig.6.8(a) it can be seen that with the increment in MIN CZ, the number of clusters generated

(namely, K in Fig.6.8) decreases, which is due to the iteratively increased threshold ε. In

addition, given the fixed MIN CZ, with the increment in MAX CZ, the number of clusters

generated reduces, which is because the clustering result is mainly affected by the setting of

MAX CZ in such condition. From Fig.6.8(b) we can notice that with the increment in εINI ,

the number of clusters generated decreases. In the meantime, with the increasing εOFFS ET , the

value of K converges faster. The reason is that with a higher threshold ε, more sensor nodes

would satisfy the threshold and be gathered into the same cluster and the “huge” clusters are

then bounded by MAX CZ. Overall, the clustering result is jointly affected by these parameters,

which need to be seriously predetermined by the requirements of specific applications.

6.6.3 Data Reconstruction Analysis

Data reconstruction accuracy is investigated in this subsection. Bounds on the clustering algo-

rithm are set to [2,15], εINI = 3, εOFFS ET = 0.01 and β = 0.1, and 10 clusters are generated.

The DAE model of each cluster is trained by the mini-batch gradient descent algorithm, where

the batch size is set to 48. The length of the training dataset is 480 (about 20 days), while the

length of the testing dataset is 120 (5 days).

Fig.6.9 is demonstrated as an example, which shows the original temperature readings from

15 sensor nodes within a cluster (labeled 1∼15), and also the sampled and reconstructed val-

ues. It indicates that with 12 sensor nodes selected as data sampling representatives, the recon-

structed data can have an accurate approximation of the original data.

In order to quantatively evaluate the reconstruction accuracy, data reconstruction error is

defined by the average squared l2-norm of difference between reconstructed and original data,

error =
1
T

T∑
t=1

‖z(t) − x(t)‖22, (6.17)

where z and x are reconstructed and original data vectors. T is the length of the testing dataset.
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Figure 6.9: Original, sampled, and reconstructed temperature values (◦C) from 15 sensor nodes
within a cluster.

Table 6.2: Comparison between Different Data Sampling Representative Selection Criteria

Method Proposed Highest Lowest Random
Sampling Ratio = 0.6 0.0943 0.1056 0.1003 0.1206
Sampling Ratio = 0.7 0.0217 0.0277 0.0241 0.0249
Sampling Ratio = 0.8 0.0137 0.0140 0.0146 0.0165

6.6.3.1 Data Sampling Representative Selection Analysis

As proposed in Subsection 6.5.2.2, the node with the highest degree and the nodes with the low-

est degrees in each cluster are selected as the data sampling representatives. Data reconstruc-

tion error generated by using the proposed selection criterion is evaluated here, as compared

to other selection criteria, including the selection of nodes with highest degrees, selection of

nodes with lowest degrees and random selection. Comparison under different sampling ratios is

listed in Table 6.2, where the sampling ratio refers to the ratio of the number of representatives

over the total number of sensor nodes in the cluster.

It can be seen that the data reconstruction error dramatically decreases with the increment

in the sampling ratio, while for different selection criteria the difference in error is trivial.

The reason is that during the training procedure of the DAE model, random masks are used.

Therefore, from the perspective of data reconstruction, there is only a minor difference between
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Figure 6.10: Comparison on the data reconstruction error between the proposed DAE-based
scheme and the CS-based method under different sampling ratios.

these selection criteria. The proposed scheme mainly concerns the physical meanings of the

data samples in the actual applications. In the clusters of sensor nodes, the node with the

highest degree is located at the hot spot of the cluster and can represent its densely distributed

neighbor nodes, while the nodes with lowest degrees are possibly located at the edge of the

cluster or the area with sparse node distribution which can hardly be represented by others.

That is the reason why the data samples measured by these nodes are collected.

6.6.3.2 Comparison with Compressive Sensing

Comparison on the error generated by two methods under different sampling ratios is shown

in Fig.6.10, where DAE represents our proposed scheme and CS refers to the CS-based bench-

mark method. It can be seen that with the increment in the sampling ratio, the data reconstruc-

tion error decreases. The reason is that with a higher sampling ratio, the uncertain proportion

of collected data is less, which further improves the reconstruction accuracy. Additionally, the

error curves of “DAE” and “CS” indicate that the proposed scheme outperforms the CS-based

method. Especially when the sampling ratio is low as 0.375, the data reconstruction error of

the proposed DAE-based scheme is 89.3% less than that of the CS-based method.
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In terms of the complexity analysis, the computational complexity of the CS-based method

is dominated by the recovery algorithm. Therefore, the overall complexity is determined by the

selection of the recovery algorithm. In our simulation, the iterative reweighted least squares

(IRLS) algorithm is exploited for data recovery [106]. While for the DAE-based method, the

computational complexity of the proposed method is dominated by the model training proce-

dure, where the mini-batch gradient descent (GD) algorithm is used to learn the parameters.

IRLS and mini-batch GD are both iterative algorithms. IRLS algorithm needs fewer iterations

to converge, while the cost of IRLS at each iteration is higher [107]. Therefore, the compari-

son on the computational complexity between IRLS and mini-batch GD is determined by the

features of data.

6.7 Chapter Summary

In order to address the challenge of accurate and efficient data sampling and reconstruction

in large-scale IoT systems, a cluster-based spatial data sampling scheme has been proposed

using DAE neural network, by the exploitation of the spatial data correlation. UAV is utilized

as the mobile edge device and an edge-cloud collaborative data processing architecture is then

developed, where wireless sensor nodes and the cloud platform are involved for environmental

sensing and complex data analysis respectively. In order to form up suitable clusters for the

proposed data sampling scheme, a novel bounded-size K-means clustering algorithm is pro-

posed. A neural network model, DAE, is adopted to fully exploit the spatial data correlation

and perform data sampling and reconstruction for each cluster. More specifically, the encoders

in DAE models are deployed at the UAV for encoding the data collected from sampling rep-

resentatives, while the decoders are located in the cloud for data reconstruction. Simulations

have been conducted, where the proposed bounded-size K-means clustering algorithm and spa-

tial data sampling scheme are both investigated. Numerical results indicate that the proposed

scheme improves the data reconstruction accuracy under the same sampling ratio, as compared

to the compressive sensing based method.



Chapter 7

Autoencoder Neural Network-based Data

Outlier Detection in Edge-Cloud

Collaborative IoT Systems

Due to the advantages of low cost and easy deployment, IoT systems have been pervasively

deployed for large-scale environmental monitoring, where a huge number of IoT end devices

are involved. In such systems, the cloud computing platform is generally utilized as the remote

data and control center. However, the huge number of IoT end devices generate a massive

amount of data, which brings huge challenges to the systems on the underlying network band-

width of the trunk link and real-time data analytics. In order to overcome these challenges, an

edge-cloud collaborative IoT system architecture is proposed in this chapter for the large-scale

environmental monitoring, where edge computing is the intermediate layer. Edge computing

supported by edge devices can provide local and real-time processing to the end devices, and

can also provide preliminary data analytics to offload the computational tasks from the cloud

and reduce the amount of data uploading. Based on the proposed system architecture, an au-

toencoder (AE) neural network-based data outlier detection scheme is newly developed, where

the spatial correlation of data can be fully utilized to improve the data outlier detection accu-

racy by using AE. Performance evaluation has been conducted based on the practical oceanic

atmospheric data. Simulation results indicate that the developed scheme can detect the data

outlier accurately.

115



116Chapter 7. AutoencoderNeuralNetwork-basedDataOutlierDetection in Edge-CloudCollaborative IoT Systems

7.1 Introduction

With the rapid development of IoT technology, IoT systems have been widely used in environ-

mental monitoring. Thus, the number of IoT end devices involved in the systems increases in

an explosive trend, which consequently generates a massive amount of IoT data. Data process-

ing, analysis, and storage of the massive amount of IoT data bring huge technical challenges to

the IoT systems on the network bandwidth, real-time analytics, and connectivity stability [10].

To address the issue, edge computing has been integrated into large-scale IoT monitoring sys-

tems. In the newly developed edge-cloud collaborative IoT systems, edge computing supported

by edge devices, such as smart gateways, lightweight servers, and base stations, is served as

the intermediate layer, which is closer to the IoT end devices than the remote cloud platform.

Therefore, the edge devices can provide local and real-time processing to the end devices, so

that the delay incurred by the interaction between end devices and the remote cloud platform

can be reduced. On the other side, the edge devices can also provide preliminary data analytics,

so that the amount of data uploaded to the cloud platform can be reduced and the bandwidth

burden on the trunk link can be relieved.

In this chapter, the edge-cloud collaborative IoT system architecture for large-scale envi-

ronmental monitoring is firstly proposed, which is composed of wireless sensor nodes, edge

devices, and the cloud computing platform. The functions of each component and the inter-

communications are explained in detail. Based on the system architecture, a novel data outlier

detection algorithm using AE neural network is further developed.

In large-scale IoT monitoring systems, data outlier refers to the data that do not follow the

normal pattern or trend in either spatial or temporal domains. Several factors can incur the data

outliers, such as the abnormal events in the target monitoring area and the inner malfunctions

of sensor nodes. Data outliers can lead the data-driven IoT systems into unsafe conditions.

Therefore, it is necessary to detect the data outliers timely and accurately. Considering the

capabilities of edge devices and their special locations in the IoT systems, a novel edge com-

puting enabled data outlier detection algorithm is proposed. An artificial neural network model

(i.e., AE) is used to fully exploit the spatial correlation of the environmental monitoring data.

The reason why AE is used is the complexity of the monitored environment. Although the
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collected data has strong regularity, it may not be linearly correlated. As a neural network,

AE can deal with both linearly and nonlinearly correlated data. Considering the computational

complexity of neural network model training, the training process is executed at the cloud and

the obtained models and parameters are sent back to the edge devices for data outlier detection.

At the edge devices, the data outliers are detected through the large fluctuations generated by

the process of AE encoding and decoding. Simulations have been conducted based on practical

oceanic atmospheric data, where the numerical results indicate that the AE based data outlier

detection algorithm proposed in this chapter can detect the data outliers accurately.

The remaining of this chapter is organized as follows. In Section 7.2, the edge-cloud col-

laborative IoT system architecture is detailed. The AE-based data outlier detection algorithm

is then developed in Section 7.3. In Section 7.4, performance evaluation based on the practical

oceanic atmospheric database is conducted. Finally, Section 7.5 concludes the work.

7.2 Edge-Cloud Collaborative IoT System Architecture

A general edge-cloud collaborative IoT system architecture for large-scale environmental mon-

itoring is developed as shown in Fig.7.1, which consists of three major components, namely,

wireless sensor nodes, edge devices, and the cloud computing platform. Functions of each

component and the intercommunications are given below.

•Wireless sensor nodes are the most fundamental and important components of the large-

scale IoT monitoring systems. The wireless sensor nodes are randomly deployed in the moni-

toring area, and self-organized into WSNs to timely sense and collect the environmental infor-

mation. For example, in the forest fire surveillance system GreenOrbs, wireless sensor nodes

are deployed on the trees, where each node is built with sensors including temperature, humid-

ity, light intensity, and carbon dioxide titer to monitor the forest and detect the forest fire [108].

In the edge-cloud collaborative IoT system architecture, the wireless sensor nodes mainly com-

municate with the edge devices, and the communication with the cloud platform is also relayed

by the edge devices. On the one hand, requirements on the communication capabilities of wire-

less sensor nodes can be reduced. On the other hand, data processing capabilities of the edge

devices can be fully utilized.
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Figure 7.1: A general architecture of edge-cloud collaborative IoT systems.

• Edge devices In a large-scale IoT monitoring system, ground base stations deployed

around the wireless sensor nodes can serve as edge devices. While in some inaccessible areas

where the infrastructures of base stations can hardly be deployed, UAVs can be utilized as

mobile edge devices to provide edge computing services. From the perspective of system

architecture, the edge devices play the role of the intermediate layer, which can provide local

and real-time processing services to the wireless sensor nodes so that the delay incurred by the

communication with the remote cloud platform can be reduced. In the meantime, it can also

provide preliminary data processing, which can offload the computing tasks from the cloud

platform, and also reduce the amount of data uploaded to the cloud platform to relieve the

bandwidth burden on the trunk link.

In the proposed data outlier detection algorithm, edge devices firstly serve as relay to for-

ward the environmental monitoring data collected by the wireless sensor nodes to the cloud

platform. Afterwards, the data outlier detection is executed at the edge devices. Whenever the

data are uploaded to the edge devices, the data are identified as normal or outlier. Once a data

outlier is detected, the edge device sends an outlier warning and the raw data to the cloud.



7.3. Autoencoder based Data Outlier Detection 119

• Cloud platform serves as the remote data and control center in the systems responsible

for comprehensive data analytics and massive data storage, given its superior computing power

and huge storage space. In the proposed data outlier detection algorithm, an AE model is

used to extract and exploit the spatial correlation of the environmental monitoring data. As an

artificial neural network model for feature extraction, the model training process of AE is in

high computational complexity. Wireless sensor nodes and edge devices can hardly provide the

required computing power and resource consumption. Therefore, the model training process

is executed at the cloud. The obtained model parameters are sent back to the edge devices for

data outlier detection.

7.3 Autoencoder based Data Outlier Detection

In this section, the definition of data outlier in the IoT systems is firstly given. Afterwards, the

structure of AE is explained. Finally, the AE based data outlier detection algorithm is proposed.

7.3.1 Data Outlier

In IoT systems, data outlier refers to the sensor data that do not follow the normal trend, which

means the data that do not conform to the regularity of sensor data in temporal or spatial

domains [33]. Fig.7.2 shows the sea surface temperature data measured from 7 different moni-

toring stations at 170W on the Pacific Ocean by the Tropical Atmosphere Ocean (TAO) project

supported by the National Oceanic and Atmospheric Administration (NOAA). The normal

temperature range is between 28◦C and 30◦C, and the variation is mild. However, when a data

outlier occurs, the temperature measurement abruptly decreases to -9.99◦C. Many factors can

lead to data outliers, which may be abnormal events in the monitoring area such as forest fire,

the inner malfunctions of the sensor nodes such as the damage on hardware modules and low

power, and even the interference during wireless communications. In this chapter, only the

data outlier detection is focused, while the reasons behind the data outliers are not diagnosed.
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Figure 7.2: Sea surface temperature measurements from 7 monitoring stations at 170W in the
TAO project.

7.3.2 Basic Autoencoder

AE is a neural network model for feature extraction. The difference to the PCA model is that

AE has the capability of dealing with nonlinear data. As a neural network model, AE is also

consisted of input, hidden and output layers, while the special case is that the target output of

AE is exactly its input. Particularly, the projection from the input layer to the hidden layer is

termed as the encoder, while the projection from the hidden layer to the output layer is termed

as the decoder.

The mapping function of the encoder is expressed as

y = fθ(x) = f (W · x + b f ), (7.1)

where x is the input vector in n dimensions, while y is the hidden layer readout with k units.

f (·) is a nonlinear activation function, and sigmoid function is generally adopted. W[k×n] is the

input weight matrix, and b f is the input bias vector.

Correspondingly, the mapping function of the decoder is given by

z = gθ′(y) = g(V · y + bg), (7.2)
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where z is the output vector with the same dimension as input x. g(·) is the activation function

of the decoder. Both identity and sigmoid function are frequently used. V[n×k] is the output

weight matrix, and bg is the output bias vector.

To find out the optimal parameter sets θ = {W,b f } and θ′ = {V,bg}, the cost function of

basic AE is given by

Jθ,θ′ =
1
m

m∑
i=1

‖z(i) − x(i)‖22, (7.3)

which penalizes the squared error between input x and output z. m is the size of training dataset.

7.3.3 Proposed Autoencoder based Data Outlier Detection Algorithm

Algorithm 7 Proposed Autoencoder based Data Outlier Detection Algorithm
1: System Initialization:
2: upload raw data samples from sensor nodes to the cloud
3: Model Training:
4: normalize X⇒ X
5: cluster wireless sensor nodes
6: train models and obtain parameter sets θ = {W, b f } and θ′ = {V, bg}

7: send clustering results and parameter sets θ = {W, b f } and θ′ = {V, bg} to edge devices
8: Data Outlier Detection:
9: upload data x to edge devices and normalize to x

10: calculate ε = ‖gθ′( fθ(x(t))) − x(t)
‖22

11: if ε > ξ then
12: trigger warning and upload x to the cloud
13: else
14: upload fθ(x(t)) to the cloud
15: end if

In this subsection, the AE-based data outlier detection algorithm is proposed and explained

in detail. Fig.7.3 shows the dataflow of the proposed data outlier detection algorithm in the

edge-cloud collaborative IoT systems. As shown in Fig.7.3, the algorithm consists of three

main phases, namely, system initialization, model training, and data outlier detection.

7.3.3.1 System Initialization

During the phase of system initialization, the wireless sensor nodes indicate their existence by

broadcasting the beacon signal and self-organized into WSNs. Afterwards, the wireless sensor
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Figure 7.3: Dataflow of the AE-based data outlier detection algorithm.

nodes periodically sense and collect the environmental monitoring data, where the data vector

generated by node i at the time instance t is

x(t)
i = [x(t)

i,1, x
(t)
i,2, . . . , x

(t)
i,p], (7.4)

where p is the number of physical variables measured by node i.

The data are regularly uploaded to the cloud platform through the edge device that is closest

to the node. The data are then stored in the cloud platform. During this phase, the edge devices

only function as relays, which are responsible for collecting the sensing data and uploading the

data directly to the cloud without local processing or other pre-processing operations.

7.3.3.2 Model Training

The model training process is executed in the cloud, considering the computational complexity.

The model training process is based on the historical data stored during the first phase, and the

data matrix of the wireless sensor node i archived during time T is

Xi = [x(1)
i , x(2)

i , . . . , x(T )
i ]. (7.5)

First of all, the data vector is normalized to eliminate the impact of different scales,

x(t)
i, j =

x(t)
i, j −min(xi,j)

max(xi,j) −min(xi,j)
, (7.6)
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where xi, j = [x(1)
i, j , x

(2)
i, j , . . . , x

(T )
i, j ] refers to the historical data vector of physical variable j mea-

sured by node i during time period T . min(xi,j) and max(xi,j) are the minimum and maximum

values of xi, j.

Based on the spatial correlation of the sensing data, a clustering algorithm such as the

bounded-size K-means clustering algorithm proposed in Chapter 6 is used to cluster the wire-

less sensor nodes, which would generate K clusters. Based on the clustering results, an AE

model is built for each cluster, and the model parameters are trained. For a cluster k, k =

1, 2, . . . ,K, the parameters θk = {W,b f } and θ′k = {V,bg} would be obtained. The clustering

results and the parameters of the encoders and decoders obtained from the training process

would be sent back to the edge devices for data outlier detection.

7.3.3.3 Data Outlier Detection

The data outlier detection process is mainly executed at the edge devices, which can improve

the real-time performance of the data outlier detection and relieve the bandwidth burden on the

trunk link connected to the cloud platform.

The AE generates a certain error when decode and reconstruct the data that have passed

through the encoder. If there is a data outlier in the original data, the generated error would

fluctuate significantly as compared to the error generated by the normal data. The data outlier

detection algorithm is proposed by the exploitation of the error fluctuation. At time t, the

squared error is calculated as

ε = ‖gθ′( fθ(x(t))) − x(t)
‖22, (7.7)

where x(t) is the original data at t after normalization, and gθ′( fθ(x(t))) is the data after passing

through the encoder and the decoder.

The specific steps of the data outlier detection algorithm are given as follows. Firstly, the

data are normalized to eliminate the impact of different scales. The normalized data are then

substituted into the squared error equation (7.7), where the parameters of the AE encoders and

decoders stored at the edge devices are used. If the squared error exceeds a preset threshold,

the data sample is identified as an outlier, and then the raw data and an outlier warning are
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Figure 7.4: Deployment of the monitoring stations in the TAO project.

simultaneously uploaded to the cloud platform for further analysis. If the squared error value is

lower than the threshold, the encoded data are uploaded to the cloud platform, and the data are

decoded and reconstructed in the cloud so that the amount of data uploading would be reduced.

The pseudocode of the AE-based data outlier detection algorithm is listed in Algorithm 7.

7.4 Performance Evaluation

7.4.1 Simulation Settings

Sea temperature measurements from the TAO project are used to analyze the detection accu-

racy of the proposed AE-based data outlier detection algorithm [109]. The deployment of the

monitoring stations is shown in Fig.7.4.

Seven monitoring stations located at 170W are selected, and sea temperature measurements

at depths of 25m, 50m, 75m, 100m, 125m, 150m, 175m, 200m, 300m, and 500m are taken at

each station. The measurements are collected every 10min from 8/21/2018 to 8/30/2018. The

selected seven monitoring stations are gathered into one cluster. Thus, at each sampling mo-

ment, a data vector consisted of 70 variables is collected from the cluster. During the selected

sampling period, 1440 samples have been received. The first 1000 data samples are used for

model training. According to the characteristics and quantity of the data, the AE model with

a single hidden layer is used. The mapping function used by the encoder is Sigmoid function,

and the ReLu function is used as the mapping function of the decoder. The mini-batch gradient

descent algorithm is used for model training, and the 1001∼1100 data samples are used to test

the data outlier detection accuracy.
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Figure 7.5: Squared error generated by data reconstruction at 100 selected sampling moments.

The squared error generated during the selected 100 sampling moments is shown in Fig.7.5.

According to statistics, among the 100 selected data samples, there are 44 data samples with

at least one data outlier occurred among the 70 variables. It can be observed from Fig.7.5

that the occurrence of data outlier can generate a large fluctuation in the squared error, and an

appropriate threshold (the red line in Fig.7.5) can be used to accurately identify the data outlier.

7.4.2 Evaluation Metrics

For a preset threshold, the data outlier detection result is evaluated by the true positive rate

(TPR) and the false positive rate (FPR). TPR is the ratio between the number of correctly de-

tected outliers to the total number of outliers. FPR is the ratio between the number of normal

data samples that are erroneously detected as outliers to the total number of normal data sam-

ples. Multiple thresholds can generate multiple sets of TPR and FPR. Based on the multiple

sets of TPR and FPR, the receiver operating characteristic curve (ROC curve) can be drawn,

where the horizontal axis is FPR and the vertical axis is TPR. The area under the ROC curve

(area under the curve, AUC) is generally used to evaluate the data outlier detection algorithm.
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The range of AUC is 0∼1, where the closer the AUC is to 1, the closer the detection algorithm

is to an ideal detector.

7.4.3 Simulation Results

Fig.7.6 shows the multiple ROC curves generated with different numbers of units in the single

hidden layer. It can be seen from Fig.7.6 that the three ROC curves coincide and the AUC

is 1, which indicates that an appropriate threshold can always be found to make TPR of the

data outlier detection to 1 while FPR to 0, whatever the number of units in the hidden layer is.

When the numbers of units in the hidden layer are different, the appropriate thresholds are also

different. When the numbers of units are 70, 50 and 35, the appropriate values of the thresholds

are 0.9, 1.4 and 2, respectively. This is because with the decrement in the number of units in

the hidden layer (from 70 to 35), the extent of data compression done by the encoder increases,

which leads to the decrease in the accuracy of data decoding and the rise in the squared error

of data reconstruction. The overall increment in the error does not affect the accuracy of data

outlier detection as shown in Fig.7.5 but leads to an increase in the appropriate threshold.

Although the squared error of the data reconstruction increases, the amount of data uploading

can be reduced. Thus, there exists a trade-off, which can be determined by the requirements of

specific applications.

7.5 Chapter Summary

In this chapter, an architecture of the edge-cloud collaborative IoT monitoring system is pro-

posed, which consists of the cloud platform, edge devices, and wireless sensor nodes. The

functions of each component and the intercommunications are given in detail. Furthermore, an

AE-based data outlier detection algorithm is proposed. The data outlier detection algorithm is

evaluated by using the practical oceanic atmospheric data. The resulting ROC curves indicate

that the data outlier detection algorithm is close to an ideal detector.
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Figure 7.6: ROC curves of the data outlier detection with different numbers of units in the
single hidden layer.
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Conclusion and Future Work

8.1 Conclusion

With the pervasive deployment and enlarging scale of IoT systems, the number of involving IoT

devices increases in an explosive trend, which generates a massive amount of data. The huge

amount of IoT devices and the correspondingly generated IoT data bring critical challenges to

the IoT systems. The related issues addressed in the thesis are fallen into the following two

major aspects: data processing of the massive amount of IoT data and topology management of

the subnets self-organized by IoT end devices in the large-scale IoT systems. More specifically,

• IoT Data Processing in Large-Scale IoT Systems

The huge number of IoT end devices continuously generate a massive amount of data,

which challenges the IoT systems in data processing and analysis. Providing the weak capa-

bilities of IoT end devices, the IoT data needs to be uploaded to the remote data center, e.g.,

cloud computing platform, for comprehensive data analytics and storage. However, the over-

whelming amount of data imposes a heavy burden on the network bandwidth of the trunk link

for data uploading, which may even result in system crashes. Furthermore, due to the complex

environmental situations of the deployment fields and the low-cost feature of IoT end devices,

the devices are vulnerable to different kinds of attacks and even inner malfunctions, which can

finally lead to the abnormality in IoT data. The tainted IoT data can lead the data-driven IoT

systems into unsafe conditions. Therefore, it is necessary to develop algorithms for real-time

data processing in large-scale IoT systems.

128
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• Topology Management of Self-Organized Subnets in Large-Scale IoT Systems

Due to the self-organized and dynamic features, topology management is among the most

critical challenges in large-scale IoT systems. The physical topology of a large-scale IoT

system indicates not only the logical connectivity statuses (i.e., logical topology) of the self-

organized subnets but also the physical locations of the IoT end devices. Therefore, awareness

of physical topology in the cloud can facilitate the system with performance optimization.

However, due to the features of random deployment and self-organization, the physical topol-

ogy of a large-scale IoT system is extremely hard to control during the deployment stage. In

addition, due to the low-cost feature of IoT end devices, especially the wireless sensor nodes,

the devices are typically built with constrained resources and are vulnerable to malicious at-

tacks. It is not uncommon to witness the malfunction and death of devices, which can finally

change the connectivity statuses and system topology. Besides, associations and disassocia-

tions of the dynamic devices can also lead to the variation of topology. Thus, it is necessary to

develop topology discovery schemes for the large-scale IoT systems in order to construct the

physical topology in the cloud.

To overcome the issues mentioned above, a number of algorithms and schemes for data

processing and topology discovery in the large-scale IoT systems have been developed. The

contributions that have been made in this thesis and the conclusions drawn from these contri-

butions are summarized as follows:

A comprehensive study of data analytics in IoT systems has been conducted in Chapter

2. The fundamentals of IoT data analytics were firstly elucidated. Afterwards, the system

architectures that could support effective and efficient data analytics in IoT systems have been

analyzed. Finally, the existing applications were investigated from the perspectives of system

design and shortcomings of performance.

In Chapter 3, a cluster-based data analysis framework has been proposed using R-PCA,

which could aggregate the redundant data and detect the outliers. More specifically, at a clus-

ter head, spatially correlated sensor data collected from cluster members were aggregated by

extracting the PCs, and potential data outliers were determined by the abnormal SPE score,

which was defined as the square of residual value after extraction of PCs. With R-PCA, the

parameters of the PCA model could be recursively updated to track the changes in IoT systems.
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The cluster-based data analysis framework also relieved the computational and processing bur-

dens on sensor nodes. Practical databases based simulations have confirmed that the proposed

framework efficiently aggregated the correlated sensor data with high recovery accuracy. The

data outlier detection accuracy was also improved by the proposed method as compared to the

benchmark algorithms.

In Chapter 4, an edge computing enabled temporal IoT data reduction scheme has been

proposed to reduce the total amount of IoT data uploaded to the cloud. More specifically,

IoT data were firstly modeled as multivariate normal distribution by the cloud. Dual KFs with

identical parameters were then deployed at both the edge and cloud ends. The same predictions

were simultaneously triggered by the dual KFs at both ends. Only the measured IoT data out

of the predicted range was further uploaded from edge to cloud. Otherwise, predicted values

were used at both ends instead of measurements. A simple prototype IoT system has been

developed for performance evaluation. Experimental results have indicated that the proposed

scheme significantly reduced the number of packets uploaded to the cloud while guaranteed

the data accuracy.

In Chapter 5, a cloud-orchestrated physical topology discovery scheme for large-scale IoT

systems using UAVs has been proposed, in order to construct the physical topology in the

cloud. More specifically, the large-scale monitoring area was firstly split into a number of

subregions for UAV-enabled data collection. Within the subregions, parallel MHRW was de-

veloped to gather the information of wireless sensor nodes, including their IDs and neighbor

tables. The collected information was then forwarded to the cloud through UAVs for the ini-

tial construction of logical topology. Afterwards, a network-wide 3D localization algorithm

was further developed based on the constructed logical topology and multidimensional scaling

method, termed as Topo-MDS, where the UAV equipped with a GPS chipset was served as a

mobile anchor to locate the sensor nodes. Simulation results have indicated that the parallel

MHRW improved both the efficiency and accuracy of logical topology discovery. Besides, the

Topo-MDS algorithm dramatically improved the 3D localization accuracy, as compared to the

existing algorithms in the literature.

In Chapter 6, a UAV enabled spatial data sampling scheme has been proposed using DAE

neural network. More specifically, a UAV-enabled edge-cloud collaborative IoT system archi-
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tecture was firstly developed for data processing in large-scale IoT monitoring systems, where

UAV was utilized as a mobile edge computing device. Based on this system architecture, the

UAV-enabled spatial data sampling scheme was further proposed, where the wireless sensor

nodes of large-scale IoT systems were clustered by a newly developed bounded-size K-means

clustering algorithm. A neural network model, i.e., DAE, was applied to each cluster for data

sampling and reconstruction, by exploiting the spatial correlation among data samples. Simula-

tions have been conducted and the results indicated that the proposed scheme improved the data

reconstruction accuracy under the same sampling ratio without introducing extra complexity,

as compared to the compressive sensing based method.

Based on the system architecture proposed in Chapter 6, an AE neural network based data

outlier detection algorithm has been developed in Chapter 7. By using AE, the spatial correla-

tion of data could be fully utilized to improve the data outlier detection accuracy. Performance

evaluation has been conducted based on the oceanic atmospheric data, where the numerical

results indicated that the developed scheme could detect the data outliers accurately.

8.2 Future Work

The technical issues on IoT data processing and topology management in the large-scale IoT

systems have been resolved in the thesis. Several other challenges still need to be investigated

to further enhance the performance of IoT systems. Some of the future research directions are

identified in this section, including collaborative artificial intelligence (AI), cost-efficient event

management, and security and privacy protection.

8.2.1 Collaborative Artificial Intelligence

In developing the sensing, learning and decision-making capabilities in IoT systems, several

technical issues have been met, including network optimization, resource allocation, and big

IoT data analytics. AI technology is a promising solution to these issues. By using AI, the

distributed system resources can be collaboratively and optimally allocated to provide timely

responses to the demands of users and devices. However, due to the low-cost and distributed

features of IoT systems, the IoT devices are built with limited resources while the whole system
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resources are scattered, which can be hardly used for the computation-intensive AI algorithms

directly. Therefore, collaborative computing needs to be developed to implement the AI algo-

rithms. The specific research issues that need to be addressed in collaborative computing are

analyzed as follows.

• Resource awareness of the IoT system components: The objective of collaborative com-

puting in the IoT systems is to meet the requirements of tasks while minimizing the

consumption of system resources. Therefore, it is necessary to be aware of the available

resources of all the system components, including the communication resources (e.g.,

bandwidth and spectrum), computing resources and power supplies. With the awareness

of available resources, the consumption can be optimally allocated among the compo-

nents while assigning the tasks.

• Task offloading: Computational tasks need to be optimally allocated within the IoT sys-

tems, where the specific responsibilities of each IoT system component have to be deter-

mined to minimize the resource consumption and optimize the time of task completion.

In terms of the real-time requirements, it is better to allocate the tasks to the edge de-

vices, since edge devices are closer to the IoT end devices. However, the service of

edge computing is generally supported by lightweight devices such as cloudlet servers.

The tasks with a massive amount of IoT data and high computing complexity still have

to be partially offloaded to the cloud end. Therefore, it is critical to developing certain

decision-making strategies for task allocation so that the time and resources consumed

by the combination of processing and communications can be minimized.

• Quality of service (QoS) enhancement: In terms of QoS enhancement, firstly, it is neces-

sary to identify the constraints of the IoT systems that possibly lead to the shortcomings

of performance, such as underlying network bandwidth, computing power, and cache

size. Based on the findings, corresponding methods need to be further developed to min-

imize the response time and resource consumption and also enhance the reliability in the

case of system failures.
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8.2.2 Cost-Efficient Event Management

Edge-cloud collaborative IoT systems have already been applied to long-term event monitor-

ing. The long-term event monitoring highly relies on seamless interactions with the real world

through sensing devices [110]. Due to the complex and dynamic features of the monitoring

environments, a large number of sensing devices need to be deployed to fully cover the large

area and adapt to the instantaneous environmental changes.

The data measured and collected by the sensing devices are finally stored in the cloud.

Based on the historical data, comprehensive data analytics can be conducted to extract the

normal patterns of the systems and monitoring targets and predict future trends. The results

of data analytics can be either kept in the cloud or sent back to the edge devices for event

detection, where data that do not follow the normal pattern or trend are detected to identify

the abnormal events. Definitely, event detection executed at the edge devices can improve the

timeliness of responses.

However, long-term event monitoring and detection are resource-draining, where massive

system resources are occupied and consumed. One potential solution is the data-driven event

triggering technique, which enables the actions of communication or computing taken place

only when a particular event or a series of events occur [111]. By using such an approach, the

consumption of system resources can be dramatically reduced, since most of the devices can

be scheduled to sleep when no event occurs. Some of the future research issues in this area are

highlighted below.

• Behavior modeling: Based on the historical data stored in the cloud, behaviors of the

monitoring targets can be learned. However, several concerns still need to be resolved,

including how to define appropriate reference models, how to handle the unpredictable

characteristics of systems, and how to train models with machine learning algorithms.

• Event detection: By the exploitation of behavior modeling, the normal patterns and

trends can be identified. Thus, the sampled data that do not follow the normal patterns

are detected to identify the abnormal events. Machine learning methods [102] and even

neural network models [112] can be applied to the abnormal event detection.

• Timing of event triggering: Event triggering technique can reduce the consumption of
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system resources. However, it is a big issue to determine the timing of event triggering,

since the events are dynamic, which may have recurrent patterns. In other words, how to

identify the states of an event and adjust the system accordingly needs to be investigated.

• On-demand resource allocation: After an event is triggered, how to handle the events

and allocate the system resources (e.g., energy, bandwidth, and spectrum) according to

the demands remains a big technical challenge.

8.2.3 Security and Privacy Protection

Although IoT technology has enabled several conventional systems into intelligent areas, how

to provide real-time security and privacy protection remains a key technical concern [113].

IoT devices are heterogeneous and built with quite different capabilities. Some of the devices

with weak capabilities are vulnerable to security threats, due to the transparent air interfaces

of wireless communications and lack of protection mechanisms. Thus, malicious attacks can

occur at any phase of IoT data processing, including data collection, communications, model-

ing, etc. IoT data are highly related to the privacy of users, since IoT systems register personal

information and monitor the daily behaviors of users [114]. Therefore, it can be inferred that

malicious attacks can unveil the privacy of users.

Furthermore, due to the unique characteristics of IoT systems, the traditional security and

privacy protection mechanisms can hardly be applied to the IoT systems directly. From the

perspective of IoT data characteristics, the intricate patterns and characteristics of IoT data are

seldom considered in the traditional protection mechanisms. Moreover, most of the traditional

protection mechanisms are based on the static databases, while in the IoT systems, data are

dynamically changing due to the unstable system states. In terms of the edge-cloud collabo-

rative system architecture, cloud platform as the remote data and control center can provide

a global view of the system, which is generally used in the centralized security and privacy

protection mechanisms for device authentication and access control. However, due to the het-

erogeneous and dynamic features of IoT end devices, the traditional centralized mechanisms

enabled by the cloud platform are not efficient enough to authenticate the huge number of de-

vices and authorize their access to IoT data. In addition to the IoT end devices, the distributed
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edge devices also bring security risks to the IoT systems. Unlike the cloud platform generally

provided by trustworthy third parties, edge devices are from multiple unauthorized providers,

which imposes an extra burden on the device authentication and access control.

Therefore, it is necessary to develop some new mechanisms to protect the security and

privacy of the edge-cloud collaborative IoT systems. One potential solution is the utilization

of the edge-cloud collaboration, where edge devices are secured by the cloud platform and

function as proxies to protect the resource-constraint IoT end devices [35]. The other one

is developing decentralized protection mechanisms, such as blockchain-based methods [115].

Based on the above discussions, the research directions that need to be seriously considered in

the future are summarized as follows.

• Security enhancement on collaborative computing: Collaborative computing can facili-

tate IoT systems with performance enhancement in several aspects. However, there are

still several security threats needed to be considered, such as how to protect the confiden-

tiality and integrity of IoT data in the procedure of task offloading and how to prevent the

privacy from being unveiled to the service provider when archive and analyze IoT data

in the third-party cloud platform.

• Privacy protection: Since personal information is registered and daily behaviors are mon-

itored, IoT data are highly related to the privacy of users. Therefore, privacy protection

mechanisms such as differential privacy need to be further investigated.

• Access control: Although the cloud platform can provide centralized device authentica-

tion and access control, it is not efficient enough for the IoT systems with a huge amount

of end devices and edge devices. Therefore, both edge-cloud collaborative and decen-

tralized mechanisms need to be further studied to manage the access control of the huge

number of heterogeneous IoT devices.
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analysis to perturbation theory in quantum mechanics. The European Physical Jour-
nal D, 66(1):1–6, 2012.

[59] Peng Jiang. A new method for node fault detection in wireless sensor networks. Sensors,
9(2):1282–1294, 2009.



BIBLIOGRAPHY 141

[60] Valenzuela-Valds Juan F., Lpez Miguel, Angel, Padilla Pablo, Padilla Jos, L, and Min-
guillon Jesus. Human neuro-activity for securing body area networks: Application of
brain-computer interfaces to people-centric Internet of Things. IEEE Communications
Magazine, 55:62 – 67, 2017.

[61] Feng Shuo, Setoodeh Peyman, and Haykin Simon. Smart home: Cognitive interactive
people-centric Internet of Things. IEEE Communications Magazine, 55:34 – 39, 2017.

[62] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog computing: A
platform for internet of things and analytics. In Big Data and Internet of Things: A
Roadmap for Smart Environments, pages 169–186. Springer, 2014.

[63] Farhoud Hosseinpour, Juha Plosila, and Hannu Tenhunen. An approach for smart man-
agement of big data in the fog computing context. In IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), pages 468–471. IEEE, 2016.

[64] Farahd Mehdipour, Bahman Javadi, and Aniket Mahanti. Fog-engine: Towards
big data analytics in the fog. In IEEE International Conference on Depend-
able, Autonomic and Secure Computing, Pervasive Intelligence and Computing,
Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), pages 640–646. IEEE, 2016.

[65] Rongxing Lu, Kevin Heung, Arash Lashkari, and Ali Ghorbani. A lightweight privacy-
preserving data aggregation scheme for fog computing-enhanced IoT. IEEE Access,
2017.

[66] Kanti V Mardia. Measures of multivariate skewness and kurtosis with applications.
Biometrika, pages 519–530, 1970.

[67] Peter Bodik, Wei Hong, Carlos Guestrin, Sam Madden, Mark Paskin, and Romain
Thibaux. Intel lab data. Online dataset, 2004.

[68] Eben Upton and Gareth Halfacree. Raspberry Pi user guide. John Wiley & Sons, 2014.

[69] Google BigQuery IoT platform data. [Online] Available:
https://bigquery.cloud.google.com/dataset/iot-platform-1385 iot platform data, 2016.

[70] GreenOrbs Project. [Online]. Available:http://www.greenorbs.org/.

[71] NDBC-TAO Project. [Online]. Available:http://tao.ndbc.noaa.gov/.

[72] Zhengguo Sheng, Chinmaya Mahapatra, Chunsheng Zhu, and Victor CM Leung. Recent
advances in industrial wireless sensor networks toward efficient management in IoT.
IEEE Access, 3:622–637, 2015.

[73] Li Da Xu, Wu He, and Shancang Li. Internet of Things in industries: A survey. IEEE
Transactions on industrial informatics, 10(4):2233–2243, 2014.



142 BIBLIOGRAPHY

[74] Dulanjalie C Dhanapala and Anura P Jayasumana. Topology preserving maps extracting
layout maps of wireless sensor networks from virtual coordinates. IEEE/ACM Transac-
tions on Networking (TON), 22(3):784–797, 2014.

[75] Ahmed Douik, Salah A Aly, Tareq Y Al-Naffouri, and Mohamed-Slim Alouini. Ro-
bust node estimation and topology discovery algorithm in large-scale wireless sensor
networks. arXiv preprint arXiv:1508.04921, 2015.
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