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Abstract 

Various circulating fluidized bed (CFB) systems including gas-solid fluidization, liquid-

solid fluidization, and gas-liquid-solid three-phase fluidization are numerically studied. 

With a comprehensive knowledge from the experiments, improved computational fluid 

dynamic (CFD) models are developed for detailed investigations on a wide operating range 

in the gas-solid CFB (GSCFB) system. The CFD model developed is also extended to study 

two new types of fluidized beds, an inverse liquid-solid circulating fluidized bed (ILSCFB) 

and a bubble induced fluidized bed (BIFB), as a supplement to the experimental work. 

Flow structures and transitions from low-density operations to high-density operations in 

both GSCFB riser and downer are characterized based on numerical results and validated 

by experimental data. Correlations on the overall bed density in the GSCFB riser and 

downer under different operating conditions are developed respectively. The solid inlet 

geometry is found to have profound impacts on the flow structure in the GSCFB riser, 

which leads to the modifications on the inlet boundary conditions in the CFD model. 

A cluster-driven drag model, which includes the information of clusters, is proposed for 

the simulation of the GSCFB riser. With more realistic physical meanings of the gas-solid 

interactions provided, a good agreement with the experimental results is also achieved. The 

clustering effects on the flow development, and solids distribution are discussed based on 

the numerical results. 

The CFD approach is also extended to study an ILSCFB system where light particles are 

used and validated by experimental results. The flow structures from the CFD simulations 

in the ILSCFB riser and downer are compared. CFD results show that the flow structure in 

the ILSCFB is more uniform compared with the GSCFB system. Numerical results also 

show that the binary particle system in the ILSCFB shares many similarities with the 

single-particle system.  

A three-phase Eulerian-Eulerian CFD model is developed and validated by the 

experimental results for a newly invented BIFB. Three flow regimes and the corresponding 
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transition gas velocities in the BIFB are defined based on the experimental and numerical 

results. Effects form the particle density, solids loading, and superficial gas velocity are 

also studied. 

Keywords 

Circulating fluidized bed, numerical study, CFD modelling, gas-solid fluidized bed, gas-

liquid-solids fluidized bed, inverse liquid-solid fluidized bed, bubble induced inverse 

fluidized bed, particle cluster, high-density/low-density operation, flow structure 
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Summary for lay audience 

Several types of circulating fluidized bed (CFB) systems are studied via computational 

fluid dynamics (CFD) approach in this work. CFB is a kind of chemical reactor to 

continuously handle granular materials. By introducing a fluid, such as gas, liquid, or even 

both gas and liquid, particles will be suspended, resulting in multiphase flows in a CFB. 

Except for the commonly seen gas-solid CFB systems, new types of CFBs, such as the 

inverse liquid-solid CFB and the bubble induced inverse gas-liquid-solid three-phase 

fluidized bed, have been developed recently by changing the flow directions or the particle 

properties.  

CFD approach is a numerical method that solves a set of governing equations, which 

describe the velocity and pressure fields of the multiphase flows, to simulate the flow 

mechanisms in the CFB systems. Due to the fast development of the computer technology, 

CFD modelling has become an effective and economical tool to investigate the flow 

structures in various CFB systems. Different CFD models have been developed in this 

work for the gas-solid CFB riser and downer reactors, an inverse liquid-solid CFB, and a 

bubble-induced three-phase fluidized bed, respectively. The flow structures, such as 

profiles of solids concentration and velocity, flow development, and the interactions 

between particles and fluid are investigated. .A cluster-driven drag model for the 

simulation of gas-solid CFB risers is proposed, which includes the characteristics of 

particle clusters based on the data obtained from experiments.  

The expansion of the fluidization technology relies on both experimental and numerical 

works. Experimental work can help improve the numerical theories by providing more 

accurate descriptions of the underlying physics with a comprehensive knowledge of the 

fluidized bed systems. CFD modelling can supplement to the experimental study by 

carrying out the simulations under a wider operating window and provide more information 

in the micro or meso scale. The fulfillment of the fluidization map can be achieved by the 

co-work from experimental studies and numerical simulations. 
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Chapter 1  

1 Introduction  

Hydrodynamics and the underlying flow mechanisms of multiphase flows including gas-

solid, liquid-solid, and gas-liquid-solid systems in various types of circulating fluidized 

beds are studied via the computational fluid dynamic (CFD) approach in this work. 

Numerical studies done on the wide range of fluidization systems and the data exchange 

between the experimental and numerical studies provide more insight into the fundamental 

studies of fluidization technology on a high-level and big-picture view. 

The research background, objectives, and the structure of this thesis are briefly presented 

in this chapter. 

 Background 

Fluidization phenomenon is commonly seen in our daily life and has been applied in a wide 

range of fields in industries over nearly a century since the first fluidized bed reactor was 

developed for coal gasification in the 1920s (Kunii & Levenspiel, 1969). An efficient and 

easy operation of granular materials can be achieved in a fluidized bed by introducing 

fluids into the equipment at a certain velocity. Various types of fluidized bed reactors 

operated under different conditions are designed for applications in many areas such as oil 

refinery, coal combustion and gasification, particle coating, pharmaceutical processes, and 

wastewater treatment (Jahnig, et al., 1980; Fan, et al., 1982 and Zhu & Cheng, 2005). 

Since the 1970s, computational fluid dynamic (CFD) approach has become an effective 

and more economic tool used for the research of fluidization phenomenon with the 

development of computer science (Berruti & Kalogerakis, 1989; Gidaspow & Ding, 1990; 

Sinclair & Jackson, 1989; and Tsuo & Gidaspow, 1990a). CFD modelling helps researchers 

better understand the flow mechanisms in different types of fluidized beds and provides 

more flow details when experimental measuring technology is limited. Nowadays, the fast 

growth of computational energy makes numerical simulations to play a more significant 

role in the fundamental studies of fluidization (Luo, et al., 2015; Stroh et al., 2019; Tsuji, 
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et al., 1993; Tsuo & Gidaspow, 1990b; Zhang, et al., 2015). In this work, CFD modelling 

is used as the main approach for studying the flow structures of various fluidized beds. 

During the development of fluidization technology, the most successful commercial 

applications are found in the upward gas-solid fluidization process for gas-solid reactions 

such as coal combustion and gasification or catalytic gas-phase reactions such as FCC 

process (Horio, et al., 1992; Zhu & Cheng, 2005). As a result, the fundamental research 

has focused on the gas-solid fluidized bed reactors since the 1920s revealing more details 

in the hydrodynamics of the gas-solid flow in different types of fluidized beds and guiding 

the following expansion of fluidization.  

Over the years, fluidization technology went through many developments, from low-

velocity operation to high-velocity operation by increasing fluid velocity, and from low-

density operations to high-density operations by increasing solids flux (Bi & Grace, 1999; 

Yerushalmi & Cankurt, 1979; Zhu & Bi, 1995). Furthermore, by changing the fluidizing 

agent, the flow regime map of fluidization has expanded from gas-solid to liquid-solid and 

gas-liquid-solid three-phase fluidizations (Li & Kwauk, 2003; Richardson & Zaki, 1997). 

In addition, when lighter particles were used, inverse liquid-solid or gas-liquid-solid three-

phase fluidizations were developed by changing the particle or fluid properties (Fan, et al., 

1982; Karamanev & Nikolov, 1992).  

During the operation of the fluidization process, solid particles will be suspended by the 

pass-through fluid flow and will behave like a fluid after minimum fluidization, so that a 

conventional low-velocity fluidized bed can be constructed for the batch operation of 

fluidization. Further increasing the fluid velocity could lead to an entrainment of particles 

at some point and a circulating fluidized bed (CFB) with the recycling of the entrained 

particles was developed for high-velocity continuous fluidization operations in contrast to 

the conventional low-velocity batch operations. A circulating fluidized bed system usually 

consists of a riser and a downer where both the upward and downward fluidizations can be 

operated respectively. 

For gas-solid fluidization, by increasing gas velocity, the gas-solid fluidized beds can be 

classified into bubbling fluidized bed, slugging fluidized bed, turbulent fluidized bed 
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corresponding to conventional low-velocity operations, and circulating fluidized bed 

corresponding to continuous high-velocity operations (Bai, et al., 1993; Grace, 1990; Horio, 

et al., 1992; Ishii & Horio, 1991; Yerushalmi & Cankurt, 1979). Both conventional 

fluidized beds and the circulating fluidized beds have been widely applied in industries 

including chemical, food and pharmaceutical, mineral and energy processes (Jahnig et al., 

1980; Zhu & Cheng, 2005). 

Under a high-velocity gas-solid fluidization operation, solids circulation rate (Gs) becomes 

another important parameter affecting the overall flow structures together with the 

superficial fluid velocity in a circulating fluidized bed. It has been pointed out that in a gas-

solid CFB riser, a higher solids circulation rate results in a higher overall bed density and 

distinct gas-solid flow structures from the low-density CFB riser. The high-density CFB 

riser usually operates under a solids circulation rate higher than 400kg/m2s for Group A 

particles has been distinguished as new type of fluidization operation from the low-density 

CFB riser in 1995 (Grace, et al., 1999; Wang, et al., 2014; Zhu & Bi, 1995). A high-density 

operation performed under higher gas velocity in a HDCFB riser makes it a very desirable 

reactor for catalytic gas-phase reactions accompanying with quick catalyst deactivation 

process such as the FCC process for its better gas-solid contacting and higher conversion. 

However, severe particle clustering phenomenon is observed in CFB riser reactors due to 

the hydrodynamic and cohesive effects. The existence of particle clusters aggravates the 

non-uniformity of the gas-solid flow structure in the CFB riser and hampers the gas-solid 

mass and heat transfers (Wang, et al., 2014a; 2014b).  

With the disadvantages of the GSCFB riser reactor in mind, the GSCFB downer, which 

used to only act as the solids recycling apparatus, was employed as a new type of fluidized 

bed chemical reactor to provide a more uniform flow condition. In a gas-solid CFB downer 

reactor, both gas and particles travel downward with a short developing region because 

particles accelerate very fast due to gravity (Wang, et al., 2015). Less particle clusters are 

found in the GSCFB downer and the gas-solid flow structure is uniform both axially and 

radially with less back-mixing of gas and solids (Wang, et al., 2015). A short and uniform 

residence time distribution of gas and solids in the GSCFB downer makes it more suitable 

for chemical reactions as it requires short reaction time, for example, when intermediates 
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in the reaction are valuable. Although many of the fundamental research and experiments 

have been carried out in gas-solid fluidization, the flow mechanisms under high-density 

operations in CFB systems are still not fully studied due to the restriction of experimental 

and measuring techniques. CFD approach can extend the research of high-density CFB 

operations to some extremely dense conditions simply by simulation and provide better 

understanding of the flow mechanisms. 

Although the gas-solid circulating fluidization technology has been well utilized, 

fluidization has expanded to liquid-solid circulating fluidization since the 1990s and shortly 

afterwards into gas-liquid-solid three-phase fluidization (Fan, 1985; Razzak, et al., 2009; 

2010; Renganathan & Krishnaiah, 2004). By changing the fluidizing agent from gas to 

liquid, particles can uniformly disperse in the liquid flow and the above-mentioned particle 

clustering phenomenon becomes insignificant in (gas)-liquid-solid fluidized beds.  

Similar to the gas-solid CFB system, high-velocity operations can be achieved in a 

circulating liquid-solid fluidized bed (LSCFB) and a circulating gas-liquid-solid three-

phase fluidized bed (GLSCFB) (Razzak et al., 2009). Traditional industrial applications 

such as leaching and washing, adsorption and ion exchange, or some bioprocesses widely 

take place in the LSCFB or GLSCFB when heavier particles are used. By changing the 

particle density to be lower than the liquid density, the so-called inverse liquid-solid 

fluidized bed (ILSFB) is developed in which both the solids and liquid flow downward 

(Choi & Shin, 1999). In the inverse liquid-solid fluidized bed, light particles are initially 

packed in the top of the reactor and then are fluidized and move downward by the by 

downward flowing liquid. When the downward flowrate of the liquid is high enough, 

entrainment of the particles also occurs and an inverse circulating fluidized bed (ILSCFB) 

system is developed.  

Gas bubbles also can be introduced in to the inverse liquid-solid fluidized bed reactor as a 

fluidizing agent other than the liquid, leading to the bubble induced inverse gas-liquid-solid 

three-phase fluidized bed reactor. Increasing interests from the biochemical fields 

especially the area of wastewater treatment are found in the bubble induced inverse 

fluidized bed (BIFB) in which a film of biomass can form and attach to the surface of 
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particles and react with the wastewater with the movements of particles. Compared to the 

upward gas-liquid-solid (GLS) three-phase fluidized bed reactor, the BIFB provides a more 

flexible oxygen supply, less clogging of the biomass, reduced shearing effects to the bio-

film caused by liquid flow, and longer residence time of the liquid, with a lower or even 

negligible liquid velocity under a homogeneous flow condition.  

Currently, less modelling work has focused on the LSCFB and bubble induced GLSFB 

most likely because of the lack of enough experimental data. However, the future 

applications of these two new types of fluidized beds are very promising and CFD approach 

is a helpful tool urgently needed in industrial design, optimization, and scale-up. Therefore, 

in this work, reliable CFD models studying the hydrodynamics in a LSCFB and bubble 

induced GLSFB needs to be developed respectively and validated with the experimental 

data collected in the same group. 

Additionally, numerical studies on fluidized bed reactors can be generally classified into 

two approaches: the Eulerian-Lagrangian (EL) method and Eulerian-Eulerian (EE) method. 

The Eulerian-Lagrangian (EL) method tracks the movements of every particle and less 

assumptions are used, but costs more computational resources (Benyahia et al., 2000; 

Hartge, et al., 2009; Tsuji et al., 1993; Van Der Hoef, et al., 2004; Zhou, et al., 2002; Zhu, 

et al., 2008). The Eulerian-Eulerian (EE) method treats the particles as a secondary fluid 

phase by coupling the kinetic theory of granular flow model for the solids phase so that it 

is more desirable for simulations on large-scale fluidized bed equipment due to less 

computational costs.  

The numerical theories of the multiphase flow in fluidized beds employed many 

simplifications and empirical correlations so that discrepancies are found between the 

experimental and simulation results. Especially in gas-solids CFB systems in which the 

existence of particle clusters cannot be ignored, the underlying physics in the gas-solids 

interactions are not fully understood both experimentally nor numerically due to its 

complexity. The particle clusters consists of a group of single particles with a denser solids 

concentration than the surrounding dilute gas-solid suspension due to the hydrodynamic or 

cohesive effects (Cocco, et al., 2010). The clustering phenomenon is one of the most 



6 

 

remarkable characteristics of a gas-solid CFB reactor, which results in the non-uniform 

distributions of the solids holdup and particle velocity. The effects of clusters are usually 

included in the drag calculation, which accounts for the gas-solids interactions in CFD 

models (Agrawal, et al., 2001; Li et al., 2002; Syamlal & O’Brien, 1994; Tsuo & Gidaspow, 

1990). Since the clusters have different properties from freely moving single particles such 

as larger size and higher solids holdup, the ideal drag law for the dispersed particulate 

system is longer applicable in a GSCFB. Knowing the existence of particle clusters, various 

drag models are developed by researchers based on their own understanding of the 

clustering phenomenon. Most of the current drag models were developed in the 1990s 

when the experimental work on gas-solids fluidization hasn’t expanded to the high-density 

operations. Therefore, the modified drag calculations which rely on the experimental 

results mainly in the low-density operations appear to be not very accurately predict the 

flow structures under high-density operations. Furthermore, with the development of 

measuring techniques, more characteristics of clusters can be extracted and analyzed by 

new approaches such as image processing by high-speed cameras and wavelet analysis of 

the optical probe data. Therefore, properties of clusters can be statistically characterized 

and were explicitly used into the calculation of the drag force in this work for the gas-solid 

CFB system.  

 Research objectives 

The overall objective is to comprehensively study the hydrodynamics and the underlying 

flow mechanisms of the multiphase flows in various types of circulating fluidized bed 

(CFB) systems under a wide range of operating conditions via computational fluid dynamic 

(CFD) approach. 

With the overall objective in mind, the following objectives are included: 

 To investigate the gas-solid flow structures in both the riser and downer reactors of a 

gas-solid circulating fluidized bed system via a validated CFD model. (Chapters 3, 4 

& 5) 
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 To study the effects of the entrance geometric structure of the CFB riser on the 

simulation results.  

 To compare the solids holdup distributions, particle velocity profiles both axially 

and radially between the CFB riser and downer.  

 To study the transition phenomenon in the CFB riser and downer reactors from 

dilute to dense flow conditions respectively.  

 To investigate the combined effects of the superficial gas velocity and solids 

circulation rate on the overall bed density and local solids distribution between low-

density fluidization operations and high-density fluidization operations. 

 To develop a cluster-driven drag model, which directly employs the characteristics of 

particle clusters into the calculation of the drag force in a gas-solid CFB reactor with 

the help of the image and wavelet analysis from the experimental data. (Chapters 6&7) 

 To validate the proposed cluster-driven drag model with the experimental data.  

 To obtain a better understanding of the effects of the clustering phenomenon on 

gas-solids flows.  

 To give further parametric studies of the proposed cluster-driven drag model by 

studying the effects of cluster size and density. 

 To develop a validated CFD model for an inverse liquid-solid circulating fluidized bed 

(ILSCFB). (Chapter 8) 

 To study the effects of different superficial liquid velocity, solids circulation rate, 

and particle types on the distributions of solids holdup and particle velocity in an 

ILSCFB.  

 To compare the flow structures between the binary-particle system and the single-

particle system via CFD approach. 
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 To propose a three-phase Eulerain-Eulerian CFD model for the bubble-induced 

inverse gas-liquid-solid fluidized bed. (Chapter 9) 

 To study the flow regimes under different gas velocities and the transitions between 

the flow regimes in the bubble-induced inverse fluidized bed (BIFB) via both the 

experimental and numerical works.  

 To study the instantaneous distributions solids and liquid in the BIFB by CFD 

model.  

 To study the effects of different types of particles on the solids distribution and 

transition gas velocity between the flow regimes in the BIFB. 

 Thesis structure 

Chapter 1 provides a general introduction of this research work. 

Chapter 2 gives a detailed literature review on the experimental and numerical work of 

circulating fluidization systems, the clustering phenomenon in gas-solid circulating 

fluidized bed, and the CFD treatments on the clustering effects. 

Chapter 3 investigates the effects of inlet boundary conditions in CFD modeling on flow 

structures inside circulating fluidized bed risers  

Chapter 4 compares the hydrodynamics and flow structures between high-density and low-

density operations in a gas-solid CFB riser via numerical simulations.  

Chapter 5 numerically studies the hydrodynamics and flow structures of low-density 

conditions to high-density conditions in a gas-solid CFB downer. The scale-up effects in 

the gas-solid CFB downer are also investigated via CFD approach. 

Chapter 6 proposes a cluster-driven drag model for gas-solids circulating fluidized bed riser 

by directly employing the properties of particle clusters into the calculation of the drag 

force. 
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Chapter 7 provides a detailed study of the clustering phenomenon in the gas-solid CFB 

riser via the proposed cluster-driven drag calculation. The clustering effects of cluster size, 

density, and slip velocity are discussed. 

Chapter 8 numerically studies the hydrodynamics and flow structures in an inverse liquid-

solid circulating fluidized bed. 

Chapter 9 develops a validated CFD model for the bubble-induced inverse gas-liquid-solid 

three-phase model.  

Chapter 10 presents the conclusions of this study and recommendations for the future work. 
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Chapter 2  

2 Literature review 

 Introduction to fluidization systems  

Fluidization process is widely applied not only in the industries but also in our daily life to 

easily handle granular materials. A fluidized bed is an equipment for stationary packed 

particles in a column to be blew-up or suspended and then can behave like liquid by 

introducing a flowing fluid such as gas or liquid.  

Various fluidization systems have been developed with the expansion of the fluidization 

technology since the 1920s (Zhu & Cheng, 2005). By changing the fluid media, solid 

particles can be fluidized either by a liquid like water or a gas like air to form a liquid-solid 

or a gas-solid fluidization system, and even by both the gas and liquid to form a gas-liquid-

solid three-phase fluidization system (Fan, 1985). By changing the fluid velocity, the 

fluidization system can be classified into a conventional low-velocity fluidized bed and a 

high-velocity continuous fluidized bed with the increase in fluid velocity (Yerushalmi, et 

al., 1976). Under the high-velocity operation, the entrainment of particles will occur 

because the fluid flow rate is high enough. A circulating fluidized bed is developed if the 

entrained particles are collected and recycled back to the column so that the continuous 

operation of particles is accomplished (Reh, 1995). By changing the particle density, 

inverse liquid-solid fluidized bed has been developed when lighter particles were used 

(Fan, et al., 1982). Further introducing gas bubbles into the liquid-solid fluidized bed, a 

bubble-induced inverse three-phase fluidized bed is developed (Fan, et al., 1982). By 

changing the flow directions, a fluidized bed downer reactor with both the fluid and 

particles flowing downward in the column is also developed for some quick reactions 

(Zhang, et al., 2001). With the development of the fluidization technology, the expansion 

of the fluidization map has provided various fluidized bed systems for different industrial 

uses and also more extensive fundamental researches are needed especially by numerical 

studies.   
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 Gas-solids circulating fluidized bed systems 

In upward gas-solids fluidization, the fluidized bed systems can be divided into the 

conventional fluidized beds including the bubbling bed, slugging bed, and turbulent bed 

corresponding to the low-velocity operations and the continuous high-velocity “fast” 

fluidized bed which stands for the circulating fluidized bed riser operating under a gas 

velocity beyond the transport velocity as shown in Figure 2-1 (Bi & Grace, 1995; Grace, 

1990; Yerushalmi & Cankurt, 1979). Under the high-velocity operation, the circulating 

fluidized bed (CFB) system has been successfully applied into many chemical processes 

since the 1940s when the first CFB was constructed by Winkler because of its higher gas 

throughput and the continuous handling of the solid materials (Zhu & Cheng, 2005). 

Nowadays, the CFB system enjoys numerous applications in the industries including gas-

solids reactions such as coal combustion and gasification, gas phase catalytic reactions 

such as fluid catalytic cracking (FCC) process, fine powder process such as pharmaceutical 

coating and drug delivery, and some physical processes such drying (Zhu & Cheng, 2005).  

 

Figure 2-1 Upward gas-solid fluidized bed systems with increasing gas velocity 
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A circulating fluidized bed (CFB) system as shown in Figure 2-2 usually consists a riser 

column where most of the chemical reactions take place in and a downer column which 

used to be simply a returning pipe for the recycle of the particles and now becomes a reactor 

in some cases for quick chemical reactions.  

 

Figure 2-2 Typical sketch of a CFB system 

2.2.1 General flow structure in CFB risers 

In a CFB riser reactor, both the gas and solid particles flow upward under a high gas 

velocity so that less back-mixing of particles is achieved compared with the conventional 

fluidized beds. The dilute phase plays the dominant role in the CFB riser which results in 

a wide dilute core region of upward flowing solids suspension in the center of the riser 

(Wang, et al., 2014a). On the other hand, a denser annular layer with higher solids holdup 

exists in the wall region of the CFB riser due to the wall effects and more severe particle 

clustering phenomenon near the wall (Ishii & Horio, 1991). Traditionally, the above-

mentioned radial gas-solid flow structure in a CFB riser is called a “core-annulus” flow 

structure as shown in Figure 2-3. Axially, the gas-solid flow in a CFB riser can be either 
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exponential or bottom-dense and upper-dilute as known as the “S shape” profile of the 

solids holdup depending on the solids circulation rate and inventory in the standpipe as 

shown in Figure 2-4. The non-uniform structures inside a CFB riser is due to the existence 

of particle clustering phenomenon (Horio, et al., 1992). Particle clusters are a group or a 

denser cloud of particles which are closely constrained and have an obviously higher local 

solids holdup than the surrounding dilute suspensions due to the hydrodynamic effects or 

cohesive effects (Cocco, et al., 2010). More details about the particle clusters inside a CFB 

riser will be discussed in the next section.    

With increasing solids circulation rate, the CFB riser expands from low-density operation 

to high-density operation. The hydrodynamics inside a low-density CFB (LDCFB) riser 

and a high-density CFB (HDCFB) riser are quite different due to the increased overall 

solids holdup as shown in Figure 2-5 (Wang, et al., 2014b). As a result, the high-density 

CFB riser has been distinguished as a unique flow regime from the LDCFB riser since the 

1995 (Zhu & Bi, 1995). In an HDCFB riser, the solid circulation rate is usually higher than 

Gs = 400 kg/m2s leading to a higher overall bed density higher than εs = 0.05, which 

contributes to a higher mass and heat transfer efficiency and more intensive gas and solids 

contacting for a higher conversion (Wang, et al., 2014b). Fundamental studies revealed that 

the dilute core region shrinks to be less than r/R = 0.5 in an HDCFB riser, in the meantime, 

the wall layer of an HDCFB riser becomes wider and much denser, and even can reach a 

local solids holdup as high as εs=0.05 under some extremely high solids fluxes (Wang, et 

al., 2014b). Also, a longer bottom denser region with higher solids holdup is found in the 

HDCFB riser due to the high Gs, however, sometimes the axial profile of solids holdup 

could become exponential shape again with a much higher solids holdup from the entrance 

of the riser to the top under the extremely high solids circulation rate (Gs ≥ 800 kg/m2s) as 

shown in Figure 2-6 (Wang, et al., 2014b). The transition from LDCFB regime to HDCFB 

regime was comprehensively studied by the detailed measurement of solids flux, particle 

velocity, and radial and axial development of solids holdup in a macroscope view with the 

help of the optical fiber probe (Wang, et al., 2014a; 2015a). However, more detailed flow 

development from the microscope view and the effects of the underlying gas-solids 

interactions to the formation of the particle clusters and the corresponding transition from 

LDCFB to HDCFB still need more extensive studies.  
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Figure 2-3 Typical radial flow structures in a CFB riser 

 

Figure 2-4 Typical axial flow structures in a CFB riser 

 

Figure 2-5 Flow structures in HDCFB riser and LDCFB riser 
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Figure 2-6 Typical axial solids holdup profiles in HDCFB risers and LDCFB risers 

(Wang, et al., 2014a) 

2.2.2 General flow structure in CFB downers 

In contrast to the CFB riser reactor where the gas-solids suspension flows upwardly, a CFB 

downer reactor in which both the gas and solids flow concurrently downward also shows 

promising potential in some quick chemical reactions due to its much shorter and uniform 

residence time distribution of gas and solids. The gas-solid flow structure becomes much 

uniform in a CFB downer since the gas and particles flow with the same direction of the 

gravity. Consequently, a much wider and more uniform dilute region which almost 

occupies the whole cross-sectional area of the CFB downer with a slightly higher solids 

holdup at the wall is found radially inside a downer as shown in Figure 2-7 (Wang, et al., 

2016). Axially, a much shorter entrance denser region below the gas distributor followed 

by a uniform fully developed region along the downer is recognized in the downer reactor 

as shown in Figure 2-8 (Wang, et al., 2015b). Since the gas and solids flow with the same 

direction as the gravity, the acceleration of the gas and particles is very fast so that the slip 

velocity between the gas and particles becomes smaller and there is almost no back-mixing 

of the gas and solids in a downer comparing with the CFB riser.   
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Figure 2-7 Typical radial distributions of solids holdup in a CFB downer (Wang et 

al., 2016) 

 

Figure 2-8 Typical axial distributions of solids holdup in a CFB downer (Wang et 

al., 2015b) 

 Inverse liquid-solid and gas-liquid-solid fluidized bed  

Inverse fluidization usually can be achieved in liquid-solid and gas-liquid-solid fluidized 

bed systems where light particles with a density lower than liquid are used. Since the 

particles are lighter than liquid, a downward flow of liquid is required to overcome the net 

buoyancy of the particles and so that to fluidize them. Such type of fluidization operation 

is name as inverse liquid-solid fluidization (Fan, et al., 1982). 
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In the inverse liquid-solid fluidized bed (ILSFB), light particles are initially packed at the 

top of the fluidized bed and flow downward after being fluidized when gradually increasing 

the liquid velocity as shown in Figure 2-9. The local solids holdup distributions are much 

more uniform both axially and radially with less fluctuations in an inverse LSFB comparing 

with the gas-solid system (Renganathan & Krishnaiah, 2005). The uniform liquid-solid 

flow structures inside an ILSFB contributes to a narrower spread in residence time 

distribution (RTD) curve since relatively less dispersion or back-mixing of the liquid phase 

exists in the ILSFB. However, higher liquid velocity, larger Archimedes number, and a 

wider size distribution of particles are found to aggravate the liquid phase dispersion in a 

ILSFB (Renganathan & Krishnaiah, 2004). Fan et al. (1982) developed a correlation of the 

bed voidage in an inverse liquid-solid fluidized bed (ILSFB) based on the relationship of 

the velocity ratio (Ur) and the liquid phase holdup (εl). Karamanev and Nikolov (1992) 

developed a correlation of the bed expansion associating with the Richadson and Zaki 

equation (Richardson and Zaki, 1954) in an ILSFB based by the studies on twelve kinds of 

particles. They also found that the drag on a freely rising light particle is different from a 

falling heavy sphere and more intensive fluctuations of light particles will occur so that a 

less minimum fluidization velocity is needed in the ILSFB than the upward LSFB 

(Karamanev & Nikolov, 1992). The minimum fluidization velocity (Umf) in an ILSFB is 

also found to be independent with the initial packed bed height while increase with 

increasing particle diameter and decreasing particle density (Lakshmi, et al., 2000).    
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Figure 2-9 A typical schematic diagram of an inverse liquid-solid fluidized bed 

(Renganathan & Krishnaiah, 2004) 

Once the liquid velocity is high enough, the particles could reach the bottom of the fluidized 

bed and might accumulate above the retaining mesh, while the entrainment of particles 

actually will happen if the retaining mesh is removed. The circulation of particles can be 

easily realized by connecting a upcomer column with upward flowing solids suspension to 

the inverse fluidized bed so that an inverse liquid-solid circulating fluidized bed (ILSCFB) 

system is developed as shown in Figure 2-10. Not too much research work has been 

reported on ILSCFB until recently Sang (2013) conducted a comparison between 

conventional upward liquid-solid fluidization and inverse liquid-solid fluidization in an 

ILSCFB system. The hydrodynamics in the ILSCFB downer is very similar to the inverse 

LSFB where a uniform liquid-solid flow structure is found. Two different kinds of liquid 

can be operated separately in the downer and upcomer with the circulation of the particles 

so that industrial applications such as wastewater treatment or ion exchange process can be 

accomplished in an ILSCFB system. Since less work has been done on the ILSCFB system, 
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the detailed liquid-solid flow structures under a wide operating range with different types 

of particles still need a comprehensive study.   

 

Figure 2-10 A typical sketch of an inverse liquid-solid circulating fluidized bed 

system 

By introducing gas bubbles into the inverse liquid-solid fluidized bed form the bottom gas 

distributor, a bubble-induced inverse gas-liquid-solid three-phase fluidized bed is 

developed as shown in Figure 2-11 (Sun, 2017). A gas distributor was added to the bottom 

of the liquid-solid fluidized bed column which can continuously introduces gas bubbles 

into the column. During the operation of the bubble-induced inverse fluidized bed (BIFB), 

there can be a zero liquid velocity which stands for a batch mode of the liquid phase and 

the fluidization of the particles happens layer by layer once the gas bubble flow reaches 

and fluidize the bottom layer of the packed particles. The measurements of the bed pressure 

drop, phase holdups, and the onset gas velocities of every flow regime in the three-phase 

BIFB have recently been done by Sun (2017). With increasing gas velocity, the BIFB will 
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go through the fixed bed regime, bed expansion regime, transition regime, complete 

fluidization regime, and a freeboard regime as shown in Figure 2-12.  

In the bed expansion regime and the transition flow regime of BIFB, the fluidized bed has 

a top-dense and bottom-dilute distribution of solid particles due to the incompletion of the 

particle fluidization under lower gas velocity. When the superficial gas velocity is beyond 

the complete fluidization velocity, the particles will uniformly distribute in the BIFB. Once 

the gas velocity increases too high to reach the freeboard regime, the entrainment of 

particles could happen if there is no restriction for particles at the bottom of the BIFB and 

a top only gas-liquid two-phase will occur. The transitional gas velocities to the flow 

regimes are found to increase by reducing the light particle density, and by decreasing the 

particle size or particle loading. Apparently, the average gas holdup increases with 

increasing gas velocity, while the liquid phase holdup decreases and the solids holdup 

remains constant. Currently, only preliminary experimental results on the BIFB are 

collected and the transitional gas velocities are mainly obtained by eye observation. The 

fluidization mechanism in the BIFB and the gas-liquid-solid three-phase flow structures 

still needs more investigation.       

 

Figure 2-11 A typical sketch of a bubble-induced inverse gas-liquid-solid three-

phase fluidized bed system (Sun, 2017) 
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Figure 2-12 A flow regime diagram of bubble-induced inverse three-phase 

fluidization system (Sun, 2017) 

 Numerical work on fluidized bed systems 

With the fast development of computer technology, numerical modelling has become an 

effective tool to study the flow mechanism in a fluidized bed since the 1980s (Sinclair & 

Jackson, 1989; Tsuo & Gidaspow, 1990). The Eulerian-Lagrangian (EL) and Eulerian-

Eulerian (EE) methods are the two major numerical theories for the simulation of the flows 

in a fluidized bed system.  

In the EL approach, the fluid phase is treated as continuum and the solids phase is regarded 

as a discrete phase. The so-called discrete element method (DEM) is applied to track each 

particle based on the Lagrangian force balance equation. Some researchers used EL method 

to simulate CFBs where solids-phase is very dilute and the equipment is not very large, 

such as Tsuji et al. (1993) and Hoomans et al. (1996). Although a clear and simple physical 

mechanism of solids-phase is obtained by the EL approach because less assumptions and 

empirical correlations are made, the high computational cost and time because every 

particle in the system has to be tracked become the biggest obstacle for this method. For 

large-scale CFB reactors, which always contains more than one million particles, EL 

method is not very suitable. 
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The Eulerian-Eulerian (EE) approach, which also simply referred to as the two-fluid model 

(TFM) approach, treats both the fluid and solids phases as interpenetrating continua. The 

conservation equations of mass, momentum and energy are applied as governing equations 

for all the phases. All the governing equations are closed either by providing constitutive 

relations obtained from empirical information, or, in the case of granular flows, by 

application of kinetic theory. Due to the assumption of continuum, the properties of solid 

phase such as phase pressure, shear viscosity, and bulk viscosity need to be defined 

explicitly. The EE method is widely used for simulations of two-phase flows in fluidized 

beds, for example, the works by Sinclair & Jackson (1989), Ding & Gidaspow (1990), Tsuo 

& Gidaspow (1990), Benyahia et al. (2000), Van Wachem et al. (2001). CFD-TFM 

approach occupies an important position in the design, optimization, and scale-up of the 

fluidized bed. Compared with the EL method, the EE approach costs less computational 

time and energy, which makes it more favorable for the simulation on large-scale fluidized 

bed. In addition, the flow structures in the pilot or industrial scale equipment are different 

from that in the lab-scale ones due to the scale-up effects of the chemical reactor, EE 

approach is selected in this work because the tested CFB systems are in pilot scale. 

2.4.1 The kinetic theory of granular flow 

The kinetic theory of granular flow (KTGF) was introduced to the CFD-TFM approach to 

predict the random motions of particles. Granular temperature is proportional to the kinetic 

energy of the particle random motions taking the analogy to the temperature of the gas 

(Ding and Gidaspow, 1990). This granular kinetic theory explains the mechanism of solids 

viscosity which is widely used in studies for fluid-solid two-phase flows (Hosseini et al, 

2013). The EE approach with the kinetic theory of granular flow is the most acceptable 

method to simulate fluid-solid flows in a CFB. With an additional transport equation 

coupled in the CFD-TFM model, the granular temperature associating with the solids 

fluctuating energy is calculated and further the pressure and bulk viscosity of the solids 

phase are also obtained. Sinclair & Jackson (1989) first introduced kinetic theory to deal 

with the solids phase stress. Kinetic energy associated with the single particle velocity 

fluctuations is represented by a granular temperature, which is proportional to the mean 

square of the random velocity fluctuations of particles. 
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where 𝛩  is granular temperature, 𝑣𝑠𝜏
′  denotes the random component of the particle 

velocity. By solving the granular temperature, solids viscosity and solids pressure can be 

calculated as the functions of granular temperature.   

2.4.2 Turbulence model 

In EE approach, conservation equations are solved for both the gas and solids phases. 

While dealing with the momentum equations, the Reynolds averaging method is employed 

to separate the instantaneous velocity into the mean and fluctuating components. The 

Reynolds-averaged Navier-Stokes (RANS) equation is shown as below.  
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where 𝑈𝑖, and P represent the mean motion and the phase pressure, and 𝑢𝑖⃗⃗  ⃗ and 𝑢𝑗⃗⃗  ⃗ are the 

fluctuating motions. It is too complicated to simulate the instantaneous motions. Therefore, 

a so-called Reynolds stress 𝜌(𝑢𝑖⃗⃗  ⃗𝑢𝑗⃗⃗  ⃗) which is a re-worked version of the fluctuating 

contribution to the non-linear acceleration terms in the momentum equations for averaged 

motion is used.   

To calculate the Reynolds stress, turbulence model is introduced in the CFD-TFM model. 

The turbulence model can be applied in both the fluid and solids phases or only in the fluid 

phase. Besides, a laminar model can also be used to each phase but is not suitable for the 

multiphase flows in a high-velocity fluidized bed. Two-equation turbulence models are one 

of the commonly used type of turbulence models based on Boussinesq eddy viscosity 

assumption (Pitsch, 2014). Models like the k-epsilon model and the k-omega model have 

become industrial standard models and are commonly used for most types of engineering 

problems. Two-equation turbulence models are an active area of research and new refined 

two-equation models are still being developed.  

By definition, two-equation models include two extra transport equations to represent the 

turbulent properties of the flow. This allows a two-equation model to account for history 

http://www.cfd-online.com/Wiki/K-epsilon_models
http://www.cfd-online.com/Wiki/K-omega_models
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effects like convection and diffusion of turbulent energy. Most often one of the transported 

variables is the turbulent kinetic energy, 𝑘 . The second transported variable varies 

depending on what type of two-equation model it is. Common choices are the 

turbulent dissipation, ε, or the specific dissipation, ω. The second variable can be thought 

of as the variable that determines the time and special scales of the turbulence, whereas the 

first variable, k, determines the energy in the turbulence. 

Among all the turbulence models, the k-epsilon model is very popular for industrial 

applications due to its good convergence rate and relatively low memory requirements 

(Hartge, 2009). Although the turbulence model for each phase is much more complicated 

than other models, it has the better prediction ability. Thus, turbulence model for each 

phase cooperated with KTGF in the EE approach is the most effective method for 

simulations on multiphase flows in fluidized beds.  

2.4.3 Drag model 

The interphase force term from the momentum exchange represents the interactions 

between the fluid and solids phases, which mainly stands for the drag force associating 

with the clustering phenomenon in a fluidized bed.  

There are several empirical or semi-empirical correlations for the drag force calculation 

either based on the experimental data of the pressure drop or relative velocity of the 

fluidized bed, or based on numerical theories such as the energy minimization multi-scale 

concept. However, how to validate the choice of drag model is the biggest problem we are 

facing because the drag model is strongly dependent on particle diameter and shape.  

Comparing different drag models in CFD, the commonly used drag models such as 

Gidaspow model (Gidaspow, 1994), Syamlal-O’Brien model (Syamlal & O’Brien, 1994), 

and EMMS model (Li et al., 2002), can predict the solids holdup along the circulating 

fluidized bed systems well to some extent. But, they still lack validations and some of the 

parameters in the correlations have no specific physical meanings (Lundberg et al. 2008, 

Liu, 2014, Wang, 2010). More discussion related with the clustering phenomenon 

especially in the gas-solid fluidization system will be provided in the next section. 

http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
http://www.cfd-online.com/W/index.php?title=Dissipation&action=edit&redlink=1
http://www.cfd-online.com/W/index.php?title=Specific_dissipation&action=edit&redlink=1
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 Clustering phenomenon in gas-solid CFB risers 

In a gas-solid fluidization system, solid particles tend to form particle clusters which are a 

group of particles constrained in a dense cloud and have an obvious higher solids holdup 

than the surrounding dilute suspensions (Horio & Clift, 1992). The non-uniformity of the 

flow structures in a gas-solid CFB riser such as the bottom dense region and the “core-

annulus” radial distribution of the solids can be attributed to the existence of clusters. The 

clustering phenomenon is of great importance in the operation of a gas-solids fluidized bed. 

On the one hand, the contacts between the gas and solids and the mass and heat transfers 

are hindered due to the clusters since the particles captured inside a cluster have less 

opportunities to contact with the gas phase. On the other hand, the existence of clusters on 

the contrast helps achieve a more throughput of the reaction products since more particles 

could be “preserved” in the CFB riser in forms of clusters.   

Both the hydrodynamic effects and the cohesive effects can account for the formation of 

clusters in the gas-solid system (Cocco et al., 2010; Horio & Clift, 1992). With the help of 

the advanced experiment techniques, researchers are able to detect the clusters inside a 

CFB riser by many means such as the image processing through high-speed camera or a 

laser-sheet technique, and wavelet decomposition of the optical fiber probe data (Guenther 

& Breault, 2007; Horio & Kuroki, 1994; Li, et al., 1991). The size, density (solids holdup), 

shape or duration time of the clusters are identified under different operating conditions 

(Cahyadi et al., 2017; Mondal, et al., 2016; Yang & Zhu, 2014). However, for a long time 

until now, the characteristics of the clusters vary in a wide range due to the different 

identification and detection methods. The size of the clusters could vary in two orders-of-

magnitude from a millimeter scale to a centimeter scale as shown in Figure 2-13 (Cahyadi 

et al., 2017). Even the axial and the radial trends of the cluster size could not find a unified 

description form different experiments results as shown in Figure 2-13. Similar variations 

are also found in the voidage of the clusters as shown in Figure 2-14. Factors such as the 

superficial gas velocity, the solids circulation rate and the properties of particles all have 

big impacts on the size and voidage distributions of the particle clusters.  
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Figure 2-13 Radial trends of cluster size at (a) h/H≈0.2-0.3, (b) h/H≈0.5-0.6. 

(Cahyadi et al., 2017) 

 

 

Figure 2-14 Radial trends of cluster voidage at (a) h/H≈0.1, (b) h/H≈0.6-0.7. 

(Cahyadi et al., 2017) 

With the help of both the image processing of the high-speed video and wavelet analysis 

of the optical fiber probe data, two types of the clusters are classified: The “core” clusters 

in which particles are tightly packed and the “cluster of clusters” which consists of a series 
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of core clusters (Xu & Zhu, 2012; Yang & Zhu, 2015). The “core” clusters can be 

considered as stably existed with constant size and shape while ring up in the gas-solid 

CFB riser. The “cluster of clusters” mainly stands for the loosely aligned “core” clusters 

with changeable shapes and sizes in the CFB riser. Statistical data through image 

processing and wavelet decomposition on the size, density, and distributions of the “core” 

clusters under various operating conditions in a gas-solid CFB system can be obtained 

(Wei, 2019).  

 Numerical treatments on clustering phenomenon in 
GSCFB riser 

Hydrodynamic studies by experiments reveal many details of the gas-solid flow inside a 

CFB and therefore give rise to the fast development of computational fluid dynamic (CFD) 

models of CFBs (Sinclair & Jackson, 1989; Ding & Gidaspow, 1990; Tsuo & Gidaspow, 

1990; Benyahia, et al., 2000; Deen, 2007; Hartge, et al., 2009; Wang, et al., 2010). However, 

the CFD models have suffered a lot of obstacles to predict the multiphase flow mechanisms 

at the very beginning and the agreement between experimental work and numerical results 

has not been fully achieved due to the inaccurate prediction on the non-uniform flow 

structures in the CFBs (Agrawal, et al, 2001; Ibsen, et al.,2004; Helland, et al.,2007). With 

the help of the innovative experimental techniques, the clustering phenomenon has been 

observed and carefully investigated since the 1990s (Horio & Clift, 1992; Li, et al., 1991; 

Zou, et al., 1994). Modelling people also take the clustering phenomenon into account 

when refining the numerical models.  
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Figure 2-15: An overview of numerical attempts for cluster prediction 

The dynamic nature and unclear physics of clusters in a CFB riser give rise to a variety of 

modified CFD models taking clusters into account based on different understandings of the 

clustering phenomenon. Both the EL and EE methods treat the fluid-particle interactions 

by the calculation of the drag force. Modifications to the drag models are made to differ 

the cluster behavior from single particles (Lu et al., 2014). Also in EE approach, the 

granular temperature model sometimes were also modified to include a cluster’s granular 

temperature (Ding & Gidaspow, 1990; Benyahia et al., 2000). The current CFD models 

can be classified based on how the features of clusters are implemented in the simulations 

as shown in Figure 2-15: one is the explicit way that modifies the CFD models by adding 

the formation mechanism of clusters numerically, the other one is the implicit way that 

only modifies the properties of the mean flow by experimental work of clusters aiming to 

obtain more accurate results (Crowe, et al.,2011; Deen, et al.,2007; Tsuji et al., 1998; 2008; 

Helland et al, 2000; 2005; 2007; Wassen et al., 2001; Zhou et al., 2002; Ibsen et al., 2004; 

Shuyan et al., 2005; Zou et al., 2008; Liu and Lu, 2009; Mehrabadi et al., 2016; Carlos 

Varas et al., 2017).  

2.6.1 Implicit ways of drag model modifications 

The implicit way takes the ideal particulate system as the benchmark and makes corrections 

to the numerical equations to present the clustering phenomenon indirectly. The effects of 
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clusters are added into the modifications on the macro-scale level so that it seems like a 

correction of the overall gas-solid system but no particular properties of clusters such as 

the cluster size, cluster velocity, and cluster density are used. Because of the lack of the 

experimental conclusion of the clusters, modelling people have to add a correction factor 

into the calculation of the uniform particulate system based on their own understanding of 

the formation mechanism of clusters. These correction factors are usually some empirical 

correlations to solve the discrepancy between the realistic system and the ideal particulate 

system. Many traditional drag modifications dealing with the correction on the particle slip 

velocity can be categorized into this group. And the modifications on particle granular 

temperature are also considered as implicit ways because none of the cluster properties are 

used in the correction. 

The averaged drag force of the gas-solid system can be presented as following: 

β =
3

4
𝐶𝐷𝑠

𝜌𝑔𝛼𝑠𝛼𝑔|𝑣𝑔−𝑣𝑠|

𝑑𝑝
𝛼𝑔

−𝑛 (2-3) 

where 𝐶𝐷𝑠 is the drag coefficient, 𝜌𝑔 is the gas density, 𝛼𝑠 and 𝛼𝑔 are the volume fraction 

of the solids phase and gas phase respectively, 𝑣𝑔 and 𝑣𝑠 are the gas and particle velocities 

respectively, and 𝑑𝑝 is the particle diameter. The value of 𝐶𝐷𝑠 is different from the drag 

coefficient of a single particle due to the existence of clusters. Corrections to the drag 

coefficient imply the different understandings of the clustering effects on the uniformity of 

the multiphase flow. Three types of the modifications on the drag models are concluded as 

following: 

(1) Drag modifications from Ergun equation 

If the pressure drop difference is considered as the main consequence from the clusters, the 

correlation of pressure drop will be applied to correct the drag coefficient. For example, 

Gidaspow (1990) combined the Ergun equation and Wen and Yu correlation to calculate 

the overall drag in a gas-solid system.  

(2) Drag modifications from R-Z equation 
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The slip velocity is also considered as the main difference between homogeneous 

particulate system and the non-uniform system. More residence is for gas when penetrating 

a denser suspension of particles so that the terminal velocity of particles changes with the 

voidage as the Richardson-Zaki correlation (Richardson and Zaki, 1954) shows. Syamlal 

and O'Brien (1994) and Gibilaro et al. (1985) have correlated the multiparticle drag 

coefficient as functions of particle terminal velocity and voidage inspired by the RZ 

equation. The concept of the relative velocity is introduced which expresses the ratio of the 

terminal settling velocity of a multiparticle system to that of an isolated particle as a 

function of the void fraction: 

 𝑣𝑟 = 𝛼𝑔
𝑛−1 (2-4) 

The correlated drag coefficient is not only a function of Reynolds number and voidage, but 

also depends on the relative velocity which accounts for the effects of slip velocity. 

(3) The Lattice-Boltzmann method (LBM) 

Lattice-Boltzmann method (LBM) is adopted by Hill et al. (2001) to calculate the exact 

drag in the gas-solid flow. Particles are fixed and randomly dispersed in the system and a 

range of Reynolds numbers (Re) and solids volume fraction, ϕ, are selected to calculate the 

drag force exerted by the surrounding fluid (Benyahia et al., 2006). Precisely fitting 

equations of the dimensionless drag factor, F, are derived from the LBM and the drag 

coefficient 𝐶𝐷𝑠 is a function of F as Eq (2-6) shows: 

 𝐶𝐷𝑠 = 12
𝛼𝑔

2

𝑅𝑒𝑟
𝐹 (2-5) 

Generally, the modified drag models are in good agreement with the experimental findings 

for the upper dilute region of the riser of CFBs. However, in most cases, the simulations 

fail to describe the lower part of the riser.  

By examining Eq (2-4) again, the implicit corrections to the drag usually focus on the drag 

coefficient, CDs, and the voidage function, 𝛼𝑔
−𝑛. The non-uniformity of the gas-solid flow 

is concluded into these two terms because in the early time researchers attributed the effects 
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of clusters to the concentration difference based on macro-scale level. So the CDs and 𝛼𝑔
−𝑛 

are widely studied to correct the deviation of the macro-scale profiles of velocity and 

volume fractions from the particulate system. However, these corrections haven’t separate 

the properties of clusters from single particles, which is a big limitation of these drag 

models. 

2.6.2 Explicit ways of drag model modifications 

Unlike the implicit way, the explicit way intends to adopt the characteristics of clusters into 

calculation directly and present the numerical generation of clusters by calculations, such 

as the mesoscale structure drag models and the combined drag model (Harris, 2002; 

Cahyadi, et al., 2017).  

Clusters are considered as a mesoscale structured particle clouds and the gas flow can 

hardly penetrate a cluster. Unlike the averaged drag models, concepts such as cluster 

diameter, dcl, cluster density, 𝛼sc, are introduced into the drag calculations and the drag 

force of the system is the sum of single particles and dense suspensions which mainly 

denotes to the clusters.  

This type of drag models divides the gas-solid flow inside a CFB riser into a dense phase 

which contains clusters and a dilute phase which only has single particles in it. Li et al. 

(1999) came up with the concept that the interactions between the gas and solids have three 

scales: micro-scale which denotes for individual single particles, mesoscale which 

represents the cluster size with the interactions between the dilute and dense phases, and 

macro-scale which is the global gas-solid suspension system. The behavior of particles is 

complex due to the multi-scale of gas-solid interactions. Eight parameters are used to 

describe this multi-scale flow structure as shown in Figure 2-16. Clusters are detected when 

the energy dissipation by the overall drag is minimum which means the desirable clusters 

only occur at the steady state of the whole system. Two commonly used mesostructured 

drag models are developed from this theory: the energy minimization multiscale model 

(EMMS) (Li, et al., 1999) and the cluster structure dependent model (CSD) (Lu, et al., 

2005).  
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Figure 2-16: Eight parameters and three scales of interaction in heterogeneous flow 

structure of CFB. (Li et al., 1999)  

Yang et al. (2003) further developed the EMMS model coupled in the two-fluid approach 

to calculate the drag coefficient from structure parameters and later the EMMS model is 

adopted in EL models. Li, et al. (2011) developed their own drag models based on the 

EMMS model and the local particle force balance was revised by introducing particle 

acceleration. Wang, et al. (2008) employed a revised EMMS model in Eulerian approach 

and predicted the cluster size as a function of solids concentration and the mean solids 

holdup plus 2 times of its standard deviation is selected to define the concentration inside 

a cluster which has a good agreement with the correlations by Zou et al. (2008). The EMMS 

model and CSD model define the diameter of clusters to be infinite at minimum fluidization 

which is still questionable and some uncertainties about the accuracy of EMMS models to 

predict the cluster size and porosity remain (Chen et al., 2016). Some assumptions remain 
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unclear and unconvinced and are questioned by many researchers, for example, the EMMS 

model assumed that the solids concentration in the clusters is close to the maximum 

packing and the particles are homogeneously dispersed in a cluster which is unrealistic 

(Helland, et al., 2007; Hartge, et al., 2009; Goldschmid,t et al., 2004).  

Helland et al. developed a combined drag model calculating the drag of dilute clusters 

(lp/dp>2) and dense clusters (lp/dp<2) respectively. Two combined drag models taking the 

clustering effects into account are examined with experimental results and a solid 

concentration value (0.9, 0.95) is set as a switch from a dilute cluster to a dense cluster. 

The U-shaped clusters are recognized and cluster rising velocity is compared with the 

experimental data from Van Den Moortel and the same trends are achieved but the 

quantitive agreement is unsatisfied (Helland, et al., 2000a; Helland, et al., 2005).  

Zou et al. proposed a new cluster-based drag model based on DSMC method which 

calculates the Reynolds number of clusters from an equivalent diameter of clusters 

correlated by Xu and Kato (1999): 

     𝑑𝑐𝑙 = 𝑑𝑝
𝐴𝜌𝑝

𝜌𝑠𝑢𝑠
     (2-6) 

where A is a correction parameter and 𝜌𝑠𝑢𝑠  is the suspension density of clusters both 

derived from the EMMS model. They correlated the cluster diameter and cluster drag 

coefficient with the local solid concentration in a CFB riser. The improvement of the 

cluster-based drag model is obvious when comparing with the traditional drag model but 

the agreement with the experimental data is not very good.  

Noymer et al. (2000) proposed a drag model which neglects the particle-wall interactions 

and only considers the descent velocity of clusters and the drag is calculated based on the 

flow passing through and around the clusters. Although a good agreement of cluster 

velocity between simulation and experiments is obtained, many details are lost due to too 

many simplifications are used and none of the CFD models uses this simplified drag model 

until now. 
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Table 2-1 EE models for cluster prediction 

Models by EE 

approach 

Height,

m 

Width, 

m 

dp, m Density, 

kg/m3 

Ug, 

m/s 

Drag 

model 

Identification/Detec

tion 

Gidaspow&Tsuo, 

1990 

5.5 0.0762 5.20E-04 2620 4.9 Gidaspow NA 

S. BENYAHIA et 

al., 2001 

14.2 0.2 7.60E-05 1712 5.2 Arastoopour Arastoopour et al. 

(1990) 

N. Yang et al., 2003 10.5 0.09 5.40E-05 930 1.52 EMMS EMMS 

L. Cabezas-Go'mez 

et al.,2003 

5.5 0.076 5.20E-04 2620 5 
 

Sharma et al., 

(2000) 

C.H. Ibsen et al., 

2004 

1 0.032 1.64E-04 2400 1 Gidaspow 
 

L. Huilin et al., 

2005 

10 0.076 6.70E-05 1500 8 CSD CSD 

L. Cabezas-Go'mez 

et al., 2008 

5.5 0.0762 5.20E-04 2620 5 Gidaspow Sharma et al. 

J. Wang et al.,2008 10.5 0.09 5.40E-04 930 1.52 EMMS EMMS/Sharma et 

al. (2000) and Liu 

(2005) 

16.5 0.3 1.80E-04 1420 3.22,

4.78 

EMMS 

7.2 0.09 1.00E-04 2560 4 EMMS 

W. Shuai et al., 

2012 

10 0.076 6.70E-05 1500 3.5 modified 

CSD 

equivalent cluster 

diameter 

(Gu&Chen,1998) 

C. Chen et al.,2016 10.5 0.09 5.40E-05 930 1.52 QL-EMMS QL-EMMS 

S. Wang et al., 2016 8.5 0.4 3.00E-04 2500 7.76 CSD CSD 

Table 2-2: EL models for cluster prediction 

Models by EL 

approach 

Height/

Width/ 

Depth, 

m 

dp,m 
Density

, kg/m3 
Ug, m/s 

Number 

of 

particles 

Drag model 
Identification/Det

ection 

Y. Tsuji et al., 

1998 

4 

0.0762 
5.20E-04 2620 4,5,6   porosity function, 

n=2.7 

E. Helland et al, 

2000 

1 

0.1 
1.26E-04 2400 1 250000 

Schiller and 

Naumann 

porosity function, 

n=4.7  

E. Wassen et al., 

2001 

0.8 

0.03 
1.00E-04 2620 25.5  

Morsi and 

Alexander 

(1972) 

particle to gas 

mass loading 

ratios n>5 

H. Zhou et al., 

2002 

0.38 

0.07 

7E-04/ 

1.2E-03 

2650/1

350 
6.5/7.2 >7000 Wen&Yu 

porosity function, 

n=4.7 ,2.3 

C.H. Ibsen et 

al., 2004 

1 

0.032 
1.64E-04 2400 1 40500 

Schiller and 

Naumann 

potosity function, 

n=4.7  

W. Shuyan et 

al., 2005 

1 

0.08 
1.00E-03 1700 4.9 1000000 

Schiller and 

Naumann 

with 

porosity 

function 

Soong et al, 1995 

E. Helland et al., 

2005 

0.5 

0.05 
1.33E-04 2400 1 7.2E+04 

combined 

drag model 

Sharma et al., 

(2000) 

E. Helland et al., 

2007 

2 

0.2 
1.26E-04 2400 0.9/1.1  combined 

drag model 
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L.M. Zou et al., 

2008 

3 

0.15 
7.40E-05 1770 4  

Cluster-

based drag 

coefficient 

model 

hydrodynamic 

equivalent cluster 

diameter by Xu 

and Kato (1999) 

T. Tsuji et 

al.,2008 

periodi

c,0.128 

0.256 

0.256 

1.28E-04 2470  16,127,3

88 

Schiller and 

Nauman 

SVF spectrums 

wave number 

H. Liu, H. Lu, 

2009 

1 

0.08 
1.26E-04 2600 1.5  

Schiller and 

Naumann 

with 

porosity 

function 

Sharma et al. 

T. Wang et 

al.,2015 

0.3 

0.032 

0.0012 

1.2e-

04/1.85e-

04 

2400 1 201,000 

Beetstra et 

al./Gidaspo

w 

Cluster granular 

temp. 

M. Mehrabadi et 

al., 2016 

L/Dp=

10 
    191/515/

668 

drag 

comparison 
Cocco et al.(2010) 

A.E.Carlos 

Varas et al., 

2017 

1.57 

0.07 

0.0006 

8.50E-04 2500 
5.55-

6.74 
 N/A 

dense core>0.4, 

local solids 

holdup>0.2 

Table 2-1 and Table 2-2 list out the CFD models regarding the clustering phenomenon 

either by the EE or EL approach. The particles selected in EL models are larger than the 

ones in EE approach and superficial gas velocity in EL method is also relatively lower 

which means the solid suspension in EL models are usually denser. Since the cluster 

properties vary from the operating conditions, particle properties, and equipment size, the 

cluster behavior in large scale and high-density CFBs by EL simulations are still lacking. 

Whilst, the EE models take many attempts on large equipment and smaller particles 

because they are less restricted by the computational energy. But most of the modifications 

in EE approach are implicit and the validation is still questionable.   

Many correlations of cluster size and velocity have been claimed by different CFD models 

but the detection methods of clusters used in the calculation vary from different criteria so 

the comparability and the consistency of the correlations of cluster size, velocity, shape, 

and concentration remain further validations.  

 Conclusions  

For gas-solid CFB systems, the flow structures and the flow developments differ a lot 

between high-density operation and low-density operation. The general flow structure in a 

GSCFB riser is less uniform than that in the GSCFB downer. Both the superficial gas 
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velocity and solids circulation rate have significant impacts on the transition from dilute 

condition to dense condition. CFD approach can provide more details when comparing the 

high-density and low-density operations in the GSCFB riser and downer. 

Two new types of the fluidized beds, the inverse liquid-solid CFB and the bubble induced 

fluidized bed were experimentally studied. Uniform flow structures are found in these two 

fluidized bed systems. However, less information on the detailed hydrodynamics in these 

two new fluidized beds is provided by experimental studies. Currently, numerical studies 

are lacking on these two new fluidized bed systems. 

The clusters in the gas-solid CFB riser results in the non-uniform flow structure. The 

dynamic nature and unclear physics of clusters in a CFB riser give rise to a variety of CFD 

models taking clusters into account based on different understandings of the clustering 

phenomenon.  

However, the fidelity of the models is still questionable. It seems that experimental works 

on particle clusters are an empirical process from macro-scale to micro-scale, and the 

identification of clusters in numerical calculations is usually a process from micro-scale to 

macro-scale to the contrary. The two opposite ways dealing with the cluster phenomenon 

by experiments and modelling also resulted in the discrepancy on cluster predictions 

between CFD and experiments. 

 

Nomenclature 

𝐶𝐷𝑠 Drag coefficient of the gas-solid system 

𝑑𝑐𝑙 Equivalent diameter of clusters, m 

𝑑𝑝 Particle diameter, m 

Gs Solids circulation rate, kg/m2s 

h/H Relative axial position 

𝑘 Turbulent kinetic energy, m2/s2 

r/R Relative radial position  

http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
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𝑅𝑒𝑟 Relative particle Reynolds number, = 
𝜌𝑔𝑣𝑟𝑑𝑝

𝜇𝑔
 

𝑢𝑖,𝑗⃗⃗ ⃗⃗  ⃗ Fluctuating velocity of the flow, m/s 

Ug Superficial gas velocity, m/s 

Ui.j Mean velocity of the flow, m/s 

Ul Superficial liquid velocity, m/s 

Umf Minimum fluidization velocity, m/s 

Utr Transport superficial gas velocity to fast fluidization, m/s 

𝑣𝑔 Gas phase velocity, m/s 

𝑣𝑟 (Ur) Relative velocity: the ratio of the terminal settling velocity of a 

multiparticle system to that of an isolated particle 

𝑣𝑠 Solid phase velocity, m/s 

𝑣𝑠𝜏
′  Random component of the particle velocity, m/s  

𝛼𝑔 Gas phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

β Momentum exchange coefficient 

ε Dissipation rate of the turbulent kinetic energy 

εl Liquid holdup in fluidized bed 

εs Solids holdup in fluidized bed 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑝 Particle density, kg/m3 

𝜌𝑠𝑢𝑠 Suspension density of clusters in EMMS model, kg/m3  

𝛩 Granular temperature of particles, m2/s2  

ω Specific rate of dissipation turbulent kinetic energy 
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Chapter 3  

3 Numerical study of the effects of inlet boundary 
conditions on gas-solid flows in a  

circulating fluidized bed riser 

 Introduction 

Fluidization is a process that static granular materials become flowable and behave like a 

liquid when a fluid is introduced into the column and passes through the packed solid 

particles. One application of fluidization is the gas-solid fluidized bed, which is commonly 

used in modern chemical processes like conveying particles, performing continuous 

reactions (Kunii & Levenspiel, 1969). By gradually increasing the gas flow rate, a 

conventional gas-solid fluidized bed goes through the following flow regimes: bubbling 

fluidization, slugging fluidization and turbulent fluidization (Grace, 1986). Further 

increasing the superficial gas velocity leads to the fast fluidization where the solids will be 

entrained out of the column once the gas velocity exceeds the terminal velocity of particles 

(Bi & Grace, 1995; Lim et al., 1995). If the entrained particles are collected and recycled 

back into the bed, a circulating fluidized bed reactor will be developed, which can handle 

the particles continuously. A typical circulating fluidized bed usually consists of two parts: 

the riser where chemical reactions take place and the downer where particles are recycled 

to the riser (Grace & Bi, 1997; Berruti, 1995; Zhang et al., 2001).    

The applications of circulating fluidized bed (CFB) reactors have widely spread out across 

the chemical industries since the 1940s including fluid catalytic cracking (FCC), biomass 

gasification and coal combustion due to its numerous benefits (Grace et al., 2003). 

Comparing with the conventional fluidized beds, CFB reactors can operate with higher gas 

velocities resulting in better gas and solids contacting efficiency, more intensive and 

uniform solids mixing and effective gas-solid mass and heat transfer (Wang et al., 2014; 

2015). Comprehensive studies on the hydrodynamics inside a CFB riser by experiments 

can be dated back to the early 1940s. Axial profiles of solids concentration show that a 

typical CFB riser has a bottom-dense and upper-dilute profile which is known as the S-

Shape profile (Wang et al., 2014; 2015).  Other profiles like C-shape and exponential shape 
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mainly come from the effects of entrance and exit (Pugsley et al., 1997; Cheng, 1998). The 

radial profile of solids concentration is known as the core-annulus structure which 

describes a center dilute and dense layer of solids suspension near the wall. The dimension 

of the center uniform region of solids holdup also depends on the operating conditions 

(Wang et al., 2014; 2015; Huang et al., 2006; Qi, et al., 2003).  

Recently, computational fluid dynamics (CFD) modeling has become an effective tool to 

investigate the hydrodynamics inside a CFB riser with the fast development of computer 

science and multiphase flow models (Wang et al., 2010; Hartge et al., 2009). The advantage 

of CFD modeling is that it allows observation of flow properties at locations which may 

not be accessible to (or harmful for) measuring instruments without disturbing the flow 

itself. Moreover, CFD can be used as a qualitative tool for narrowing down the choices 

between various designs. Designers and analysts can study prototypes numerically, and 

then test the designs by experiments only for those which show promise. 

Various models have been implemented in CFD simulations to better understand the flow 

structure in the riser reactors since the 1980s (Ding & Gidaspow, 1990; Tsuo et al., 1990). 

Also, more specified inlet boundary conditions of both the gas and solids phases are needed 

since many researchers have observed the influences of the entrance and exit geometry of 

CFB risers by experiments (Grace, 1996; Cheng et al., 1998; Zhu & Zhu, 2008; Zhu et al., 

2010). However, from the modeling aspect, the effects of the geometry of the entrance of 

a riser are rarely reported and only a few researchers pay attention to specifying a more 

realistic geometry structure and inlet boundary conditions (Li & Guenther, 2012). Uniform 

velocity inlet boundary conditions of both the gas and solids phases are often applied to 

the CFD models for easier convergence and faster solutions (De Wilde et al., 2005; Peng 

et al., 2011). Many studies have showed that the solids holdup distributions along the radial 

and axial directions of the risers depend on the geometric structure of the entrance (Breault 

et al., 2017; Cheng et al., 1998; Zhu & Zhu, 2008; Zhu et al., 2010). Therefore, a more 

realistic inlet boundary conditions based on the entrance structure of a CFB riser reactor is 

critical to obtain a more accurate gas-solid flow structure. 
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 Configuration of the CFB riser 

 

Figure 3-1 Configuration of the CFB riser 

(Li, 2010) 

 

Figure 3-2 Geometric structure at the 

inlet of the riser 

 

Figure 3-3 Gas distributor of the 

riser 

Based on the hydrodynamic experiments from Li (2010), the circulating fluidized bed riser 

tested via CFD model is of 10 m high with a diameter of 7.62 cm (3in) as shown in Figure 

3-1. Figure 3-2 shows a zoomed in schematic diagram of the red-circled part in Figure 3-1 

of the geometric structure at the entrance region of the riser. During the operation, gas 

enters the riser through a perforated gas distributor as shown in Figure 3-3 from the bottom 

to provide better gas-solid mixing and avoid the defluidized zones. The distributor arranges 
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272 nozzles with a diameter of 2mm opening area of 18%, which helps form a uniform gas 

inlet distribution. The circulated particles return to the riser through the side pipe which 

connects the riser and the storage tank. This side feeding pipe is 5.08 mm (2 in) in diameter 

with an angle of 30o to the riser. During the operation, the air enters the riser from every 

nozzle of the gas distributor and accelerates the solids from the returning pipe with a high 

velocity. 

 CFD model descriptions 

A set of basic governing equations consisting of the mass and momentum conservation 

equations of both phases are used to solve the gas-solid flows (ANASYS, 2013).  

3.3.1 Governing equations 

Continuity equation of gas phase:  

    
∂

∂t
(𝛼𝑔𝜌𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) = 0   (3-1) 

where 𝛼𝑔 is the volume fraction of gas phase, 𝑣𝑔⃗⃗⃗⃗  is the velocity vector and 𝜌𝑔 is the density 

of the gas phase. 

Continuity equation of solids phase:  

    
∂

∂t
(𝛼𝑠𝜌𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) = 0    (3-2) 

where     𝛼𝑔 + 𝛼𝑠 = 1     (3-3) 

and 𝛼𝑠 is the volume fraction of solid phase, 𝑣𝑠⃗⃗  ⃗ is the velocity vector and 𝜌𝑠 is the density 

of the solid phase. 

Momentum equation of gas phase: 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) + 𝛻 ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑣𝑔⃗⃗⃗⃗ ) = −𝛼𝑔𝛻𝑃 + 𝛻 ∙ 𝜏𝑔 + 𝛼𝑔𝜌𝑔𝑔 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) (3-4) 

where 𝜏𝑔 is the gas phase stress-strain tensor, P is the phase pressure.  
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  𝜏𝑔 = 𝛼𝑔𝜇𝑔(𝛻 ∙ 𝑣𝑔⃗⃗⃗⃗ + ∇ ∙ 𝑣𝑔⃗⃗⃗⃗ 
𝑇
) + 𝛼𝑔(𝜆𝑔 −

2

3
𝜇𝑔)∇ ∙ 𝑣𝑔⃗⃗⃗⃗ 𝐼  (3-5) 

where 𝑣𝑔⃗⃗⃗⃗  and 𝑣𝑠⃗⃗  ⃗ are the velocities of the gas phase and solid phase, 𝜇𝑔 and 𝜆𝑔 are the shear 

and the bulk viscosity of gas phase, and 𝐾𝑠𝑔(= 𝐾𝑠𝑔) is the interphase momentum exchange 

coefficient. 

Momentum equation of solids phase: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑣𝑠⃗⃗  ⃗) = −𝛼𝑠∇𝑃 − ∇P𝑠 + ∇ ∙ 𝜏𝑠 + 𝛼𝑠𝜌𝑠𝑔 + 𝐾𝑠𝑔(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) (3-6) 

where 𝜏𝑠 is the solid phase stress-strain tensor 

   𝜏𝑠 = 𝛼𝑠𝜇𝑠(𝛻 ∙ 𝑣𝑠⃗⃗  ⃗ + ∇ ∙ 𝑣𝑠⃗⃗  ⃗
𝑇
) + 𝛼𝑠(𝜆𝑠 −

2

3
𝜇𝑠)∇ ∙ 𝑣𝑠⃗⃗  ⃗𝐼  (3-7) 

To calculate the solid phase pressure, Ps, solids shear viscosity, 𝜇𝑠, and bulk viscosity, 𝜆𝑠 

in the solids phase momentum equation, the kinetic theory of granular flow is used (Sinclair 

and Jackson, 1989).  

3.3.2 Granular temperature model  

The granular temperature of solid phase associates with the kinetic energy of the random 

movements of the particles, which can be expressed as: 

      Θ𝑠 =
1

3
𝑣𝑠𝜏

′ 𝑣𝑠𝜏
′      (3-8) 

where 𝑣𝑠𝜏
′  is the fluctuation velocity of particles which associates with the collisions 

between the particles. 

Granular temperature equation (Ding & Gidaspow, 1990): 

3

2
[
𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠Θ𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗Θ𝑠)] = (−𝑃𝑠𝐼 + 𝜏𝑠) : ∇ 𝑣𝑠⃗⃗  ⃗ + ∇ ∙ (𝑘Θ𝑠∇Θ) − 𝛾Θ𝑠 + ∅𝑔𝑠 (3-9) 
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where (−𝑃𝑠𝐼 + 𝜏𝑠) is the generation of energy by the solid stress tensor, 𝑘Θ𝑠∇Θ stands for 

the diffusion energy, 𝛾Θ𝑠  is the collisional dissipation of energy, and  

∅𝑔𝑠 = −3𝑘g𝑠Θ𝑠 is the energy exchange between the gas phase and the solid phase. 

The collisional energy can be obtained by Lun et al. (1984): 

    γΘs =
12(1−ess

2 )go,ss

d𝑝√π
ρ𝑠αs

2Θs
3/2

    (3-10) 

where 𝑑𝑝 is the particle diameter, ess is particle-particle restitution coefficient, go,ss is the 

radial distribution function of particles. 

3.3.3 Turbulence model 

The gas-solid two-phase flows are very complicated due to the vigorous interactions 

between the gas and solids. The motions of the particles are affected by the mean solids 

velocity, single particle fluctuations and the particle-particle collisions. Therefore, a 

turbulence model for per phase which is more accurate than the mixture turbulence model 

should be used in the simulation. 

The standard k-𝛆 turbulence model is applied into both the gas and solid phases (Launder 

& Spalding, 1974). 

k equation of gas phase: 

∂

∂t
(𝛼𝑔𝜌𝑔𝑘𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑘𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝑘𝑔) + (𝛼𝑔𝐺𝑔,𝑘 − 𝛼𝑔𝜌𝑔𝜀𝑔) + 𝐾𝑠𝑔(𝐶𝑠𝑔𝑘𝑠 −

𝐶𝑔𝑠𝑘𝑔) − 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔   (3-11) 

ε equation of gas phase: 

∂

∂t
(𝛼𝑔𝜌𝑔𝜀𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝜀𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝜀𝑔) +

𝜀𝑔

𝑘𝑔
(𝐶𝑙𝜀𝛼𝑔𝐺𝑔,𝑘 − 𝐶2𝜀𝛼𝑔𝜌𝑔𝜀𝑔 +

𝐶3𝜀(𝐾𝑠𝑔(𝐶𝑠𝑔𝑘𝑠 − 𝐶𝑔𝑠𝑘𝑔) − 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑠⃗⃗  ⃗) ∙  

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔)) (3-12) 
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where the turbulent viscosity, 𝜇𝑔,𝑡 = 𝜌𝑔𝐶𝜇
𝑘𝑔

2

𝜀𝑔
 

k equation of solids phase: 

 
∂

∂t
(𝛼𝑠𝜌𝑠𝑘𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑘𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝑘𝑠) + (𝛼𝑠𝐺𝑠,𝑘 − 𝛼𝑠𝜌𝑠𝜀𝑠) +

𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) − 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠  (3-13) 

ε equation of solids phase: 

 
∂

∂t
(𝛼𝑠𝜌𝑠𝜀𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝜀𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝜀𝑠) +

𝜀𝑠

𝑘𝑠
(𝐶𝑙𝜀𝛼𝑠𝐺𝑠,𝑘 − 𝐶2𝜀𝛼𝑠𝜌𝑠𝜀𝑠 +

𝐶3𝜀 (𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) − 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠) (3-14) 

where the turbulent viscosity, 𝜇𝑠,𝑡 = 𝜌𝑠𝐶𝜇
𝑘𝑠

2

𝜀𝑠
. 

3.3.4 Drag model  

The interactions between the gas and solids can be included into a drag model. In the two-

fluid CFD model, the momentum exchange, Kgs (=Ksg) is calculated by the drag model. 

The drag force of the gas-solid flow is related to the particle properties, flow regimes, and 

the Reynolds number. For FCC process in the riser, the Syamlal and O'Brien (SO) drag 

model (Syamlal & O’Brien, 1987) is found to simulate the drag coefficient more 

accurately. The SO drag model is derived from the measurements of the terminal velocity 

of the particles and the momentum exchange coefficient can be expressed as: 

𝐾𝑔𝑠 =
3𝛼𝑠𝛼𝑔𝜌𝑔

4𝑣𝑟,𝑠
2 𝑑𝑝

(0.63 +
4.8

√
𝑅𝑒𝑟
𝑣𝑟

)

2

(
𝑅𝑒𝑟

𝑣𝑟
) |

𝑣𝑠
→ −

𝑣𝑔
→ |   (3-15) 

where 𝑅𝑒𝑠 is the relative Reynolds number:  𝑅𝑒𝑟 =
𝜌𝑔𝑑𝑝|𝑣𝑠⃗⃗⃗⃗ −𝑣𝑔⃗⃗ ⃗⃗  |

𝜇𝑔
   (3-16) 
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and 𝑣𝑟,𝑠 is the velocity ratio of the terminal velocity of a multiparticle system to that of a 

single particle in the fluid, which is a correlation of the volume fraction and the terminal 

velocity of the particles: 

 𝑣𝑟 = 0.5(𝐴 − 0.06𝑅𝑒𝑠 + √(0.06𝑅𝑒𝑠)2 + 0.12𝑅𝑒𝑠(2𝐵 − 𝐴) + 𝐴2  (3-17) 

with  

     𝐴 = 𝛼𝑔
4.14     (3-18) 

and 

     𝐵 = 0.8𝛼𝑔
1.28     (3-19) 

for 𝛼𝑔 ≤ 0.85, and 

     𝐵 = 𝛼𝑔
2.65     (3-20) 

for 𝛼𝑔 > 0.85. 

 Mesh and solver information 

Both the two-dimensional and three- dimensional CFD models were found to have good 

agreement with the experimental data for the general flow structure as reported from the 

comparison work done by Ekambara, et al. (2005). Therefore, the 2D CFD model is 

selected for the simulation of the CFB riser reactor for saving the computational cost. The 

two-dimensional quad grid system with finer mesh near the wall and the inlet as shown in 

Figure 3-4 is constructed because the parameters of a CFB riser change more greatly near 

those regions. For the original CFD case, the mesh was constructed based on the 

axisymmetric domain of the CFB riser and consists of 120000 cells with 60 nodes in the 

radial direction and 2000 nodes in the axial direction as shown in Figure 3-4 (a). The gas 

and solids inlets located at the bottom of the CFB riser and the outlet is located at the top. 

For the modified CFD case, the mesh was constructed based on the central domain of the 

CFB riser and consists of 320000 cells with 80 nodes in the radial direction and 4000 nodes 

in the axial direction. The gas inlet was located at the bottom of the CFB riser while the 
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solids inlets were moved to the sides of the CFB riser as shown in Figure 3-4 (b). The 

outlets for both the gas and solids phases were located at the top of the CFB riser. 

The commercial software Fluent V14.5 is used for the simulation. Solid particles used in 

the simulation are FCC type particles with a density of 1500 kg/m3 and diameter of 67 µm. 

The turbulent kinetic energy and turbulent dissipation rate and other convection terms are 

discretized by the second order upwind scheme, and the momentum equation is discretized 

by the QUICK scheme. The convergence criterion for each scaled residual component is 

specified of 5x10-4. The simulation is carried out as a transient case which calculated for 

over 40s of the real time with a time step size of 0.0001s. The time averaged results are 

processed after the CFD case reaches a steady state when the mass flow rate at the outlet 

equals to the inlet.  

 

(a) Mesh for the original case   (b) Mesh for the modified case 

Figure 3-4: Meshes for the calculation domain in the testing riser 
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 Boundary conditions and operating conditions 

Gas is introduced into the riser from the bottom of the riser through the perforated gas 

distributor which form many small air jets with a very high gas velocity through the holes 

of the distributor. Therefore, a jet region is found to exist at the entrance part of the CFB 

riser. A jet inlet profile of the gas velocity is used for the gas phase to account for the jet 

effects and the number of jets is defined by the most jets which can be seen from the radial 

direction (Peng et al., 2010). The inlet gas velocity for the jet profile inlet boundary 

condition can be derived from the superficial gas velocity: 

 𝑉𝑔,𝑖𝑛 = 𝑈𝑔/𝜙 (3-21) 

where ϕ is the ratio of the opening area in the gas distributor. 

For the solids phase, two different inlet boundary conditions are compared in this work as 

Figure 3-5 shows. The original solids inlet is at the bottom of the riser with uniform 

velocity. The modified solids inlet located on the side of the riser, two symmetric inlets are 

applied in the 2-D simulation referring to the solids returning pipe of the 3-D experimental 

equipment. The width and the location of the side solids inlets are defined by the real 

geometric structure of the returning pipe which has a diameter of 5 mm (2in) as Figure 3-2 

shows. The inlet solids velocity is calculated from the constant solids circulation rate. 

For the original inlet boundary conditions, the inlet velocity of the solid phase can be 

expressed as: 

 𝑉𝑠,𝑖𝑛_𝑜 =
𝐺𝑠∙𝐴𝑜𝑢𝑡

𝜌𝑝∙𝜀𝑠,𝑖𝑛∙𝐴𝑖𝑛,𝑏𝑡𝑚
 (3-22) 

where 𝐺𝑠 is the solids circulation rate, 𝐴𝑜𝑢𝑡 is the cross-sectional area of the riser outlet, 

𝜀𝑠,𝑖𝑛 is the solid phase volume fraction at the inlet which is defined as 0.30, and 𝐴𝑖𝑛,𝑏𝑡𝑚 is 

the cross-sectional area of the riser inlet. For the original boundary condition which sets 

the solid phase inlet at the bottom of the riser, 𝐴𝑖𝑛,𝑏𝑡𝑚=𝐴𝑜𝑢𝑡. 

For the modified solids inlet boundary condition, the inlet velocity of the solid phase can 

be derived from the following: 
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 𝑉𝑠,𝑖𝑛_𝑚 =
𝐺𝑠∙𝐴𝑜𝑢𝑡

𝜌𝑝∙𝜀𝑠,𝑖𝑛∙𝐴𝑖𝑛,𝑠𝑖𝑑𝑒
 (3-23) 

where 𝐴𝑖𝑛,𝑠𝑖𝑑𝑒 stands for the total area of the two symmetric solids inlets at the sides of the 

2D computational domain. 

 

(a) 

 

(b) 

Figure 3-5 Inlet structure: (a): original inlet structure; (b): modified inlet structure  

Table 3-1 Boundary conditions of the CFD model 

Inlet of gas phase 

Position The bottom of the riser 
Type Profile of velocity inlet 

Gas velocity=Ug/opening ratio of the gas distributor 

Inlet of solids phase 

Position Original: the bottom of the riser 
Modified: at the side of the riser 

Type Uniform velocity inlet 
Solids velocity=Gs/ (εs ×𝜌𝑠×A,in) 

where εs is the solid phase volume fraction at the inlet 

Wall 

Gas phase No-slip velocity 
Solids phase Partial slip 

Specularity coefficient: 0.0001 
Particle-wall restitution coefficient: 0.9 

Outlet 

Gas phase Outflow 
Solids phase Outflow 
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Table 3-1 shows the specified boundary conditions of the gas and solids phase in the CFD 

model. The operating conditions and simulation parameters are shown in Table 3-2. The 

gas-solid CFB riser operated under a superficial gas velocity of 4, 5, 7 m/s, and a solids 

circulation rate of 100, 500 kg/m2s are selected in the simulation. 

Table 3-2 Summaries of operating conditions 

Gas density (kg⁄m3) 1.225 

Particle density (kg⁄m3) 1500 

Particle diameter (μm) 67 

Superficial gas velocity (m⁄s) 4,5,7 

Particle circulation rate (kg⁄m2∙ s) 100,500 

Particle-particle restitution coefficient 0.95 

Specularity coefficient 0.0001 

 Results and discussion 

3.6.1 Results from the original boundary conditions 

The contours of the solid phase volume fraction at the entrance region and the outlet region 

of the CFB riser from the simulations with original inlet boundary conditions are plotted 

in Figure 3-6. The structure of the inlet gas distributor has a significant impact on the gas-

solid flow structure and a jet region forms at the entrance region of the CFB riser due to 

the distributor effects as shown in Figure 3-6. When the gas entering the riser through the 

small holes of the distributor, the absolute gas velocity in every hole is far greater than the 

superficial gas velocity which is commonly used as the value of the uniform velocity inlet 

boundary condition of the gas phase. Therefore, the jet region cannot be predicted by using 

the uniform inlet velocity boundary condition and result in less lateral interactions between 

the gas and solids at the entrance region of the riser. In order to obtain the jet effects, 

profiles of velocity for the gas phase at the inlet are implemented in this work. The profile 

inlets do help achieve a more distinct core-annulus flow structure and a greater lateral 

dispersion of solids comparing with the simulation results from uniform velocity inlet. The 

velocity vector profiles of the gas and solids phase at the entrance region of the CFB riser 

also reveal the impacts from the jet profile as shown in Figure 3-7. The gas velocity is 

much higher in the air jets which results in a low-velocity area between the two adjacent 

air jets as shown in Figure 3-7 (a). For the solid phase, since the inlet solids velocity is 
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much smaller than the inlet gas velocity, the development of the solids flow depends greatly 

on the gas flow. Although the inlet velocity is uniform, the particles also present a higher 

velocity in the air jets due to the faster acceleration of the high-velocity gas and a much 

smaller particle velocity is found in the area between the adjacent jets as shown in Figure 

3-7 (b). Correspondingly, denser solids suspensions can be found between two adjacent 

jets as shown in Figure 3-6 with the formation of the so-called jet region because the 

particles are pushed away from this region by the lateral gas flow. 

However, those denser solids suspension regions which can be considered as the squeeze 

effects caused by air jets exist along the entire riser from the entrance to the exit as Figure 

3-6 shows. This phenomenon has no physical significances because the gas-solid mixing 

and interactions are usually very vigorous in the riser and the jet region should disappear 

since the flow becomes fully developed after about 2m from the entrance. The reason why 

the numerical jet effects exists in the entire riser lies in the inaccurate solids phase inlet 

boundary condition which uses the same inlet velocity profile as the gas phase, but a much 

lower particle velocity in the jets than gas velocity. Gas and solids come into the riser at 

the same position, but obviously gas has more momentum due to its higher velocity. The 

velocity profiles of both gas and solids phase at the inlet region shown in Figure 3-7 prove 

that the gas velocity can be as high as about 30m/s in the hole of the distributor. However, 

the uniform solids inlet velocity of the original model is calculated by Gs / (εs ×𝜌𝑠), which 

is much lower. For instance, when Gs = 100 kg/m2s, the inlet solids velocity is only 

0.222m/s if the solids volume fraction at the inlet is set as 0.3. In this way, solids are easily 

guided by the gas flow and less lateral gas-solid interactions take place. Therefore, more 

realistic inlet boundary conditions are needed to better investigate the flow structure inside 

a riser reactor.     
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Figure 3-6 Contours of solids phase volume fraction, Ug= 5 m/s, Gs=100 kg/m2s 

 

(a) Gas phase 

 

(b) Solid phase 

Figure 3-7 Velocity vectors of the gas and solids at the entrance region of the CFB 

riser, Ug= 5 m/s, Gs=100 kg/m2s 



64 

 

3.6.2 Results from the modified boundary conditions 

 
(a) Gas phase 

 
(b) Solid phase 

Figure 3-8 Contours of velocity of gas and solid phases at inlet, Ug = 7 m/s, Gs = 500 

kg/(m2s) 

 

Figure 3-9 Velocity vector profile of solid phase with the modified inlet boundary 

conditions at the entrance region of the CFB riser Ug= 7 m/s, Gs=500 kg/m2s 

A modification to the inlet boundary conditions is shown in Figure 3-5 (b), which keeps 

the profile inlet for the gas velocity at the bottom unchanged and moves the solids inlet to 

the sides of the riser. This modification is based on the actual geometric structure of the 

solids returning pipe of the CFB riser as Figure 3-2 shows. Analogous to the 3-D cylindrical 
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experimental equipment with solids entering from one side only, two symmetric inlets of 

solids which are at the same height with the position of the returning pipe are implemented 

by the 2-D simulation.   

Figure 3-8 shows the velocity contours of both gas and solids phases by the modified inlet 

boundary conditions. The velocity contours indicate that the squeeze effects can be 

eliminated when the solids enter the riser form the side. It can be found from the contours 

of gas velocity that the air jets effect still works and gas accelerates quickly from every jet 

at the bottom and form a main gas flow with higher velocity in the center before the side 

solids inlets. The modified solids inlets allow particles coming into the riser with a radial 

velocity at a higher position than the gas inlet as shown in Figure 3-8 (a) (b), so that the 

particles can be pushed up directly by the gas main flow and are not influenced by air jets.  

The velocity vector profile of the particles at the inlet further reveals a more realistic flow 

development of the solid flow with the modified model as shown in Figure 3-9. After the 

particles enter the CFB riser from the sides, the particle velocity is very small at the wall 

initially and increases quickly once the solid flow encounters the main gas flow. The vector 

profile shows that the particles obtained a large amount of the momentum form the upward 

flowing gas main flow so that the particles not only accelerate fast but also turn into the 

upward velocity direction with the gas in a very short time as shown in Figure 3-9.    

The contours of solids volume fraction at the entrance region shown as Figure 3-10 further 

prove the improvements of the modified inlet boundary conditions which shows a better 

lateral gas-solid mixing and a clear core-annulus flow structure. The profile velocity inlet 

for the gas phase still works comparing with a uniform inlet since all the small gas jets 

converge together through the bottom of the riser to form a main gas flow with a clear 

power-law velocity profile of gas. It can be found that only a very short length of the riser 

is occupied for the formation of the main gas flow. No squeeze effects can be seen by the 

modified inlet boundary conditions because the main gas flow has already formed before 

the solids inlets. Thus, unlike the original inlet settings which the air jets dominate the trend 

of solids flow, solids have no chances to directly contact the gas jets and interact with the 
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converged gas flow instead. On the other hand, more lateral momentum carried by the 

solids contributes significantly to the gas-solid mixing when the modifications are applied. 

 

Figure 3-10 Contours of solids volume fraction at inlet, Ug = 7 m/s, Gs = 500 kg/m2s 

More details are revealed in Figure 3-11 where the radial velocity profiles of gas and solids 

phases at different heights near the inlets are presented. From the velocity profiles of gas, 

it can be seen that the air jets converged before h=0.05 m of the riser which is lower than 

the side solids inlets. The velocity profiles of solids phase clearly show the enhancement 

of lateral gas-solid mixing along the riser at the inlet. The symmetric solids inlets located 

from h=0.05 m to h=0.15 m, Figure 3-11 (b) indicates that initially most of the particles 

move near the wall region, and accelerate upward and gradually move to the center of the 

riser with the increasing of lateral momentum transfer. And a main solid flow also forms 

after h=1.0 m which proves a good lateral mixing between gas and solids phases and agrees 

with the experimental descriptions of the jet region in the riser as well.  

The simulation results of the solids holdup profiles between the original and modified inlet 

boundary conditions at the height as 4.81 m and 7.35 m of the riser are presented in Figure 

3-12. Although both the original and the modified CFD results don’t agree with the 

experimental data very well which means more efforts need to be done in the future, the 

results from modified boundary conditions show a same trend with the experimental data. 
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The modified CFD model shows a much higher solid holdup than the original case near 

the wall region which means more lateral dispersions of solids are obtained. The results 

from the modified case agree with the experimental results better than the original case 

because the inlet boundary conditions are more realistic and can present the actual gas-

solid flow structure at the entrance of the riser.   

  

Ug = 7 m/s, Gs = 500 kg/(m2·s) Ug = 7 m/s, Gs = 500 kg/(m2·s) 

  

Ug = 4 m/s, Gs = 100 kg/(m2·s) Ug = 4 m/s, Gs = 100 kg/(m2·s) 

  

Ug = 5 m/s, Gs = 100 kg/(m2·s) Ug = 5 m/s, Gs = 100 kg/(m2·s) 
(a) Radial profile of gas velocity (b) Radial profile of particle velocity 

Figure 3-11 Velocity profiles of gas and solids phases at different heights 
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Figure 3-12 Comparison of the solids holdup profiles at (a): h=4.81m; (b): h=7.35m 

(Ug = 5 m/s, Gs = 100 kg/m2s) 

 Conclusion  

The effects of the inlet boundary conditions on the gas-solid flow structure in a circulating 

fluidized bed riser are investigated by numerical simulations. The position and the structure 

of the inlets are critical to the gas and solids flow structures in a circulating fluidized bed 

riser. A more realistic modification to both the gas and solids inlet boundary conditions 

based on the configuration of the experimental equipment is proposed and a more realistic 

flow structure is achieved. Instead of the velocity profile inlet boundary conditions of both 

the gas and solids phases, the modified inlet boundary conditions take geometry effects of 

the solids returning pipe into account and make the connect port between the riser and the 

solids returning pipe as the inlet of the solids in the numerical simulations. The CFD results 

show that a main gas flow forms due to the effects of the gas distributor and the unrealistic 

squeeze effect is eliminated with the help of the modified solids inlet boundary conditions. 

The interactions between the gas and particles are improved and the lateral dispersion of 

solids is enhanced as well. The CFD model with modified inlet boundary conditions also 

achieves a better agreement with the experimental results on the local solids holdup 

distribution. 

 

Nomenclature 

𝐴𝑜𝑢𝑡 Cross-sectional area of the riser outlet, m2 
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𝐴𝑖𝑛,𝑏𝑡𝑚 Cross-sectional area of the riser inlet for gas phase, m2 

𝐴𝑖𝑛,𝑠𝑖𝑑𝑒 Total area of the two solids inlets at the sides of the riser, m2 

𝑑𝑝 Particle diameter, m 

ess Coefficient of particle-particle restitution 

go,ss Radial distribution function of particles  

Gs Solids circulation rate, kg/m2s 

𝐼 
unit tensor 

h Axial distance from the gas distributor, m 

H Total height of the CFB riser, m 

𝑘 Turbulent kinetic energy, m2/s2 

P Fluid phase pressure, Pa 

Ps Solids phase pressure, Pa 

r Radial position of the CFB riser, m 

R Radius of the CFB riser, m  

𝑅𝑒𝑟 
Relative particle Reynolds number, = 

𝜌𝑔𝑑𝑝|𝑣𝑠⃗⃗⃗⃗ −𝑣𝑔⃗⃗ ⃗⃗  |

𝜇𝑔
 

Ug Superficial gas velocity, m/s 

𝑣𝑔 Gas phase velocity, m/s 

𝑣𝑟 (Ur) Relative velocity: the ratio of the terminal settling velocity of a 

multiparticle system to that of an isolated particle 

𝑣𝑠 Solid phase velocity, m/s 

𝑣𝑠𝜏
′  Random component of the particle velocity, m/s  

𝑉𝑔,𝑖𝑛 Inlet gas velocity, m/s 

𝑉𝑠,𝑖𝑛_𝑜 Original inlet velocity of the solid phase, m/s   

𝑉𝑠,𝑖𝑛_𝑚 Modified inlet velocity of the solid phase, m/s   

𝛼𝑔 Gas phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

𝛾Θ𝑠 Collisional dissipation of energy 

 Ksg=Kgs Interphase momentum exchange coefficient 

ε Dissipation rate of the turbulent kinetic energy 

http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
http://www.cfd-online.com/W/index.php?title=Dissipation&action=edit&redlink=1
http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
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𝜆𝑔 Gas phase bulk viscosity, kg/ms 

𝜆𝑠 Solids phase bulk viscosity, kg/ms 

𝜇𝑔 Gas shear viscosity, kg/ms 

𝜇𝑔,𝑡 Gas phase turbulent viscosity, kg/ms  

𝜇𝑠 Solids shear viscosity, kg/ms 

𝜇𝑠,𝑡 Solids phase turbulent viscosity, kg/ms 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑠 Particle density, kg/m3 

𝛩 Granular temperature of particles, m2/s2  

𝜏𝑔 Gas phase stress-strain tensor, kg/s2 

𝜏𝑠 Solid phase stress-strain tensor, kg/s2 

ϕ Ratio of the opening area in the gas distributor  

Subscripts  

g Gas phase 

s Solids phase 
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Chapter 4  

4 Comparisons of HDCFB and LDCFB risers via numerical 
simulations 

 Introduction 

Gas-solids fluidization processes under high-velocity conditions are commonly applied in 

industries for its advantages of better gas-solids contacting, effective gas-solids mass and 

heat transfer, and higher gas throughput and so on (Grace, 1990). Under a high superficial 

gas velocity, the solids will be entrained out of the column once the gas velocity exceeds 

the terminal velocity of particles and the fluidized bed reactor becomes a circulating 

fluidized bed (CFB) if the entrained particles are collected and recycled back into the 

fluidized bed (Kunii & Levenspiel, 1997). CFB reactors, as the major application in the 

high-velocity fluidization regimes, are more favorable than conventional fluidized beds for 

many gas-phase catalytic reactions with quick deactivation of catalysts and continuously 

handling of the particles (Jahnig, et al., 1980). A typical CFB usually consists of two parts: 

the riser where chemical reactions take place and the downer where particles are recycled 

to the riser.    

Gas-solids CFB systems have been studied extensively over the past decades with some 

new flow regimes such as the high-density CFB (HDCFB) being paid more attention to 

(Zou et al. 1994; Wang et al. 2014; 2015). The HDCFB was first academically 

distinguished from the low-density CFB (LDCFB) by the different profiles of the solids 

holdup in 1995 (Zhu & Bi 1995). After that, more comprehensive studies on the 

hydrodynamics in both HDCFB and LDCFB risers by experiments revealed different 

characteristics between low-density and high-density conditions (Bai & Kato 1999; Wang, 

et al. 2014a; 2014b; 2015). A LDCFB riser reactor for typical FCC particles operates 

usually under a solids circulation rate lower than 400 kg/m2s, which has a dilute gas-solids 

suspension in the riser. On the contrast, an HDCFB operates under a higher solid 

circulation rate (Gs ≥ 400 kg/m2s), so that the overall bed density can achieve over 0.10 

(Wang, et al. 2014a). A bottom-dense and upper-dilute distribution of the solids holdup in 

the axial direction is commonly seen in an HDCFB riser due to the higher Gs, however, an 
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exponential shape of the solids distribution is more likely to be found in a LDCFB at a less 

Gs (Wang, et al., 2015). A typical core-annulus flow structure in the radial direction which 

describes a center dilute and denser annular layer of solids suspension near the wall of the 

riser exists in both the HDCFB and LDCFB. However, the HDCFB has a shrinking core 

region compared with a LDCFB because of the higher Gs in the HDCFB as well (Bi & 

Grace, 1995).  

Although the general flow structures between the LDCFB and HDCFB have been carefully 

investigated with the help of experimental studies during the past two decades, some flow 

details such as the velocity profiles of gas phase and the local slip velocity between the gas 

and particles still need further studies but are limited by the measuring techniques (Hensler 

et al. 2016; Horio 2010; Ullah, et al., 2013; Wang, et al. 2014; Zhang et al. 2015). With the 

development of computational fluid dynamic (CFD), more details on the flow structures in 

CFB riser can be revealed as well as the gas-solids interactions, mass and momentum 

transfers (Carlos, et al., 2017; Shah et al. 2016; Upadhyay & Park 2015). On the other hand, 

since the high-velocity fluidization system has expanded to high-density operations, a 

wider operating range of CFB risers under higher Gs and Ug is expected. The transition 

between the HDCFB riser and LDCFB riser was rarely studied and more detailed 

information on the hydrodynamics in CFB risers is needed to better distinguish the 

differences between the HDCFB and LDCFB instead of merely general flow structures. 

Furthermore, it is easy to compare the flow conditions in a CFB riser under the same 

superficial gas velocity or the same solids circulation rate. However, the prediction of the 

overall bed density in CFB risers under different operating conditions with various Gs-Ug 

pairs is also critical for industrial uses, but there are not enough experimental data 

available. Although some numerical work has been carried out on the HDCFB recently, 

detailed comparison between the HDCFB and the LDCFB is still rare in the reported 

literature (Armellini et al. 2015; Bakshi et al. 2015; Zhang et al. 2015). Therefore, the 

comparison of the gas and solids flow structures between the HDCFB and LDCFB risers 

and the relationship of the bed density under various conditions are investigated 

numerically in this work.  
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 CFD model descriptions 

A transient Eulerian-Eulerian approach of two-fluid model coupled with the kinetic theory 

of granular flow is employed to conduct the numerical study of the CFB riser. The basic 

governing equations of the mass and momentum conservations for both the gas and solids 

phases are shown as following (ANSYS 2013):  

Continuity equation of the gas phase:  

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔) + 𝛻 ∙ (𝛼𝑔𝜌𝑔𝑣𝑔̅̅ ̅) = 0                                                                                       (4-1) 

Continuity equation of the solids phase:  

∂

∂t
(𝛼𝑠𝜌𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠̅) = 0                                                                                          (4-2) 

where 𝛼𝑔 + 𝛼𝑠 = 1                                                                                                         (4-3)   

Momentum equation of the gas phase: 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) + 𝛻 ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑣𝑔⃗⃗⃗⃗ ) = −𝛼𝑔𝛻𝑃 + 𝛻 ∙ (𝛼𝑔 (𝜏𝑔

𝑚 + 𝜏𝑔
𝑅𝑒)) + 𝛼𝑔𝜌𝑔𝑔 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ −

𝑣𝑔⃗⃗⃗⃗ )                           (4-4) 

where  

𝜏𝑔
𝑚 = −

2

3
𝜇𝑔.𝑚∇ ∙ 𝑣𝑔⃗⃗⃗⃗ 𝐼 + 𝜇𝑔.𝑚(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
)                                                                   (4-5)   

𝜏𝑔
𝑅𝑒 = −

2

3
(𝜌𝑘𝑔 + 𝜇𝑔,𝑡∇ ∙ 𝑣𝑔⃗⃗⃗⃗ )𝐼 + 𝜇𝑔.𝑡(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
)                                                       (4-6) 

Momentum equation of the solids phase: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑣𝑠⃗⃗  ⃗) = −𝛼𝑠∇𝑃 − ∇P𝑠 + ∇ ∙ (𝛼𝑠 (𝜏𝑠

𝑚 + 𝜏𝑠
𝑅𝑒)) + 𝛼𝑠𝜌𝑠𝑔 +

𝐾𝑠𝑔(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗)                                                                                                                   (4-7) 
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where 

𝜏𝑠
𝑚 = (𝜆𝑠 −

2

3
𝜇𝑠)𝛻 ∙ 𝑣𝑠⃗⃗  ⃗𝐼 + 𝜇𝑠(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
)                                                                   (4-8) 

𝜏𝑠
𝑅𝑒 = −

2

3
(𝜌𝑘𝑠 + 𝜇𝑠,𝑡𝛻 ∙ 𝑣𝑠⃗⃗  ⃗)𝐼 + 𝜇𝑠.𝑡(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
)                                                         (4-9) 

where Ps, is the solids phase pressure, ,𝜇𝑠 is the shear viscosity and 𝜆𝑠 is the bulk viscosity 

in the solids phase momentum equation. The fluctuation velocity of particles can be 

calculated by the granular temperature model. 

Granular temperature equation (Gidaspow & Ding 1990): 

3

2
[
𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠Θ𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗Θ𝑠)] = (−𝑃𝑠𝐼 + 𝜏𝑠)∇ 𝑣𝑠⃗⃗  ⃗ + ∇ ∙ (𝑘Θ𝑠∇Θ) − 𝛾Θ𝑠 + ∅𝑔𝑠   (4-10) 

where 

∅𝑔𝑠 = −3𝑘g𝑠Θ𝑠                                                                                                             (4-11) 

The collisional energy can be obtained by: 

γΘs =
12(1−ess

2 )go,ss

dp√π
ρsαs

2Θs
3/2

                                                                                         (4-12) 

The gas-solids two-phase flows are very complicated due to the vigorous interactions 

between the gas and solids. The motions of the particles are affected by the mean solids 

velocity, single particle fluctuations and the particle-particle collisions. Therefore, a 

turbulence model for each phase which is more accurate, is used in the simulation. 

The standard k-𝛆 turbulence model is applied into both the gas and solid phases. 

k equation of the gas phase: 

∂

∂t
(𝛼𝑔𝜌𝑔𝑘𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑘𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝑘𝑔) + (𝛼𝑔𝐺𝑔,𝑘 − 𝛼𝑔𝜌𝑔𝜀𝑔) + 𝐾𝑠𝑔(𝐶𝑠𝑔𝑘𝑠 −

 𝐶𝑔𝑠𝑘𝑔) − 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔                                     (4-13) 
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ε equation of the gas phase: 

∂

∂t
(𝛼𝑔𝜌𝑔𝜀𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝜀𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝜀𝑔) +

𝜀𝑔

𝑘𝑔
(𝐶𝑙𝜀𝛼𝑔𝐺𝑔,𝑘 − 𝐶2𝜀𝛼𝑔𝜌𝑔𝜀𝑔 +

𝐶3𝜀(𝐾𝑠𝑔(𝐶𝑠𝑔𝑘𝑠 − 𝐶𝑔𝑠𝑘𝑔) − 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔))     (4-14) 

where the turbulent viscosity for the gas phase, 𝜇𝑔,𝑡 = 𝜌𝑔𝐶𝜇
𝑘𝑔

2

𝜀𝑔
 

k equation of the solids phase 

∂

∂t
(𝛼𝑠𝜌𝑠𝑘𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑘𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝑘𝑠) + (𝛼𝑠𝐺𝑠,𝑘 − 𝛼𝑠𝜌𝑠𝜀𝑠) + 𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 −

𝐶𝑠𝑔𝑘𝑠) − 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠                                      (4-15) 

ε equation of the solids phase 

∂

∂t
(𝛼𝑠𝜌𝑠𝜀𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝜀𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝜀𝑠) +

𝜀𝑠

𝑘𝑠
(𝐶𝑙𝜀𝛼𝑠𝐺𝑠,𝑘 − 𝐶2𝜀𝛼𝑠𝜌𝑠𝜀𝑠 +

𝐶3𝜀 (𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) − 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝐾𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠)      (4-16) 

where the turbulent viscosity for the solids phase, 𝜇𝑠,𝑡 = 𝜌𝑠𝐶𝜇
𝑘𝑠

2

𝜀𝑠
. 

The interactions between the gas and solids is included into a drag model. In the two-fluid 

CFD model, the momentum exchange, Kgs, is calculated by a drag model. The drag force 

of the gas-solids flow is related to the particle properties, flow regimes, and the Reynolds 

number. For FCC process in risers, the Syamlal and O'Brien drag model (Syamlal & 

O’Brien 1989) is found to give a more accurate drag coefficient than other drag models 

and is used in this work. 

 𝐾𝑔𝑠 =
3𝛼𝑠𝛼𝑔𝜌𝑔

4𝑣𝑟,𝑠
2 𝑑𝑠

(0.63 +
4.8

√
𝑅𝑒𝑠
𝑣𝑟,𝑠

)

2

(
𝑅𝑒𝑠

𝑣𝑟,𝑠
) |𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ |                                                            (4-17) 
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 Configuration of the CFB riser and the mesh setup 

 

Figure 4-1: Configuration of 

the CFB riser (Li 2010)   

 

Figure 4-2: Mesh for the computational domain 

of the CFB riser 

The CFB riser used in this study is of 10 m high with a diameter of 7.62 cm (3 in) as shown 

in Figure 4-1. A quad grid system with finer mesh near the wall and the inlet as shown in 

Figure 4-2 is used. The commercial software Fluent V16.5 is used for the simulation. Solids 

particles used in the simulation are FCC particles with a density of 1500 kg/m3 and 

diameter of 67 µm (Li 2010; Wang 2013). The second-order discretization scheme is used 

for turbulent kinetic energy and turbulent dissipation rate and other convection terms with 

QUICK for momentum equation. A convergence criterion of 5×10-4 for each scaled 

residual component and the time step size of 0.0001s are specified. 
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 Boundary and operating conditions  

The boundary conditions used in the CFD simulations are listed in Table 4-1 based on the 

geometric structure and the operating conditions of the CFB riser system. A jet inlet profile 

is used to account for the jet effects and the number of jets is defined by the most jets which 

can be seen from the radial direction. For the solids phase, two symmetric solids inlets are 

applied on the two sides of the riser in the 2D simulation to represent the solids returning 

pipe of the 3D experimental equipment. The width and the location of the side solids inlets 

are defined by the actual geometric structure of the returning pipe used in the experiments, 

which has a diameter of 2in (5 mm). The inlet solids velocity is calculated based on the 

solids circulation rate. The operating conditions and simulation parameters are shown in 

Table 4-2. 

Table 4-1: Boundary conditions 

Inlet of the gas phase 

Position The bottom of the riser 
Type Velocity profile 

Gas velocity=Ug / opening ratio of the gas distributor 

Inlet of the solids phase 

Position The sides of the riser 
Type Uniform velocity 

Solids velocity=Gs/ (εs ×𝜌𝑠)  
where εs is the solids volume fraction. 

Wall 

Gas phase No-slip velocity 
Solids phase Partial slip 

Specularity coefficient: 0.0001 
Particle-wall restitution coefficient: 0.9 

Outlet 

Gas phase Outflow 
Solids phase Outflow 

Table 4-2: Operating conditions 

Gas density (kg⁄m3) 1.225 

Particle density (kg⁄m3) 1500 

Particle diameter (μm) 67 

Superficial gas velocity (m⁄s) 3, 5, 7, 9 

Particle circulation rate (kg⁄m2 s) 100, 300, 400, 500, 700 

Particle-particle restitution coefficient 0.95 

Specularity coefficient 0.0001 
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 Grid independent test and data processing  

Three sizes of 2D meshes from coarse to fine are used for the grid independent test and the 

comparison results are listed in Error! Reference source not found.. The time-averaged m

ass flow rate, superficial velocity, and pressure for both the gas and solids phases at the 

riser outlet from these three meshes are compared and the results show that all of the 

differences between the coarse and fine meshes are less than 3%. Therefore, the medium 

mesh and the fine mesh can provide the grid independent results and are applied in CFD 

simulations in this work.  

Table 4-3 Grid information and results of independent test 

Mesh 
# 

Nodes 

Mass flow 
rate of solids 
at outlet, 
kg/s 

Mass flow 
rate of gas at 
outlet, kg/s 

Absolute 
pressure, 
Pa 

Average Ug 
at outlet, 
m/s 

Average Us 
at outlet, 
m/s 

Average 
volume 
fraction of 
solids phase 

1 60×1600 7.722675 0.473682 98504.23 5.150485 4.928585 0.015731 

2 80×2500 7.758255 0.473103 98467.92 5.144864 4.946518 0.015762 

3 120×4000 7.880415 0.475582 98376.93 5.18047 4.937413 0.016146 

1 vs. 2 Difference  0.46% 0.12% 0.04% 0.11% 0.36% 0.19% 

2 vs. 3 Difference 1.55% 0.52% 0.09% 0.69% 0.18% 2.38% 

The variations of the bed static pressure drop and solids mass flow rate at the riser outlet 

with time are shown as Figure 4-3. The transient data show strong fluctuations at the 

beginning. Then, the results reach a quasi-steady state where the mean values are almost 

constant.  The numerical results presented in this work are taken from the time averaged 

data after the simulation reaches a quasi-steady state as shown in Figure 4-3.  

  

(a) Bed pressure drop (b) Solids mass flow rate of at the outlet  
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Figure 4-3 Variations of the predicted bed pressure drop and solids mass flow rate 

at the outlet with time 

 Results and discussion 

4.6.1 Radial and axial profiles of the solids holdup 

The numerical results of the radial profiles of the solids holdup under low-density and high-

density conditions at the height of 7.35m from the bottom of the riser are compared with 

the experimental data from Li (2010) and Wang (2013) as shown in Figure 4-4. A typical 

core-annulus the solids distribution structure with a dilute center and a dense wall layer of 

solids suspension can be observed in both the LDCFB and HDCFB risers, which agrees 

with the experimental observations well. Figure 4-4 (a) shows that the LDCFB has a more 

dilute gas-solids suspension and a wider and flatter core region (r/R = o to 0.7) in the riser 

due to the lower solids circulation rate. However, a much higher solids concentration is 

achieved in the HDCFB and the core region shrinks to r/R = 0 to 0.5 with a higher solids 

holdup as well. Comparing with the LDCFB, the HDCFB has a less uniform radial flow 

structure with a thicker region near the wall where the solids holdup rises dramatically to 

the wall, and even exceeds ε𝑠 =0.20 under some much denser conditions. The radial 

uniformity can be improved but the local bed density is reduced by a higher gas velocity 

under the same Gs or a lower solids circulation rate under the same Ug, which is consistent 

with the experimental results. At the same superficial gas velocity, when increasing solids 

circulation rate to the high-density conditions of the CFB riser, the Gs has a greater impact 

on the wall region than the center of the riser so that an extremely high solid concentration 

can be found near the wall in the HDCFB.   
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(a) LDCFBs (Ug = 3, 5, 7, and 9 m/s, Gs = 100 kg/m2s) 

 

(b) HDCFBs (Ug = 5, 7, and 9 m/s, Gs = 400, 700 kg/m2s) 

Figure 4-4: comparison of the radial solids holdup profiles in the LDCFB and 

HDCFB at height = 7.35 m 
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Figure 4-5: Axial solids holdup profiles under different solids circulation rates 

 

Figure 4-6: Axial solids holdup profiles under different superficial gas velocities 

The axial profiles of the solids holdup under the same Ug or the same Gs are compared in 

Figure 4-5 and Figure 4-6, respectively. A more distinct dense bottom region can be found 

under dense conditions indicating that increasing Gs will let more solids accumulated at the 

bottom of the riser, which increases the overall bed density and results in a higher gas-

solids contacting. The fully developed flow is achieved at h=3 m, both the LDCFB and 

HDCFB risers, ie. the solids distribution is uniform in the axial direction after h = 3 m.    

Compared with the numerical results of the radial profiles, although the same tendency 

with the experimental data is achieved by the numerical simulations, deviations are found 

especially under dense conditions. For example, the cross-sectional solids holdup at the 

lower part of the riser under Ug = 5m/s and Gs = 300 kg/m2s from the CFD results is around 
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0.07, which is lower than the cross-sectional solids holdup (εs,EXP = 0.08) measured in 

experiments as shown in Figure 4-5. Such a deviation of 12.5% between the simulation 

results and the experimental data is acceptable for the prediction of the overall tendency of 

the axial and radial distribution of the solids phase. A more accurate model is still needed 

and the reason of the discrepancy between the simulation results and the experimental data 

needs to be discovered. The lower solids holdup predicted by the CFD model might be due 

to the underestimation of the clustering effects by the current drag model in the CFB riser. 

On the other hand, the current drag model used in the simulations was developed based on 

the experimental data for LDCFB since most of the HDCFB experiments were conducted 

in the lately 20 years. The prediction of the solids holdup in the HDCFB riser in which 

more severe clustering effects are found is more likely to be underestimated. More 

discussion on the reason of the deviations of the simulation results from the experimental 

data will be stated in Chapter 6. Future work on the drag model modifications for a wider 

range of operating conditions will be performed in Chapters 6 and 7.     

4.6.2 Transition from the LDCFB to HDCFB 

4.6.2.1 Axial uniformity of the solids holdup distribution 

Studies on the transition from low-density to high-density operating conditions in high 

velocity fluidization systems can be dated back to the 1990s, high bed density is the most 

remarkable characteristic under a high-density condition so that generally an overall bed 

density of ε𝑠= 0.1 is considered as the boundary to separate the LDCFB and HDCFB 

operations (Wang, et al., 2015). However, the flow details in an HDCFB have not been 

compared with the ones in LDCFB, and the transition between the LDCFB and HDCFB 

has not been specified.  

Merely an overall bed density is not enough to distinguish the HDCFB from the LDCFB, 

Bai and Kato (1999) pointed out a saturation carrying capacity of gas, Gs
*, which describes 

the flow conditions by the shape of the axial solids holdup profile in the riser quantitatively. 

The saturated carrying solids circulation rate, Gs
*, is determined when the solids holdup at 

the bottom of the riser becomes constant and more solids accumulate at the bottom of the 

riser. Based on Bai and Kato’s statement, the proposed saturation carrying solids 
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circulation rate, Gs
*, where the axial profile of solids distribution turns from an exponential 

shape to a S-shape marks the maximum achievable solids concentration in the dense region 

of the CFB riser. However, most of the experiments from Bai and Kato’s study operated at 

Gs ≤ 200kg/m2s, which nowadays can only be considered as an intermediate dense 

condition between LDCFB and actual HDCFB and the so-called saturation solids 

concentration can be bridged, so that more studies on the axial profiles are needed. 

Numerical results of the axial profiles of the solids distributions under the same gas 

velocity and different solids circulation rates are compared as shown in Figure 4-7, in 

which a low-density condition (Gs = 100 kg/m2s), a high-density condition (Gs = 700 

kg/m2s), and an intermediate condition (Gs = 300 or 400 kg/m2s) are selected for the 

comparison purpose. A typical exponential axial structure of solids holdup is found in a 

LDCFB as shown in Fig. 4-6 (Gs=100 kg/m2s), the solids suspension is dilute and 

uniformly distributed along the riser except for a very short entrance region under the low 

Gs. Under the intermediate Gs around the saturated carrying Gs
*, both the exponential 

profile (Ug = 7 m/s, Gs = 300 kg/m2s) and the S-shape profile (Ug = 9 m/s, Gs = 400 kg/m2s) 

of the solids holdup can be found. The solids tend to accumulate at the bottom of the riser 

when Gs exceeds Gs
* and the denser bottom zone enlarges with the increase in Gs to form 

a typical S-shape axial profile of solids under a relatively high-density condition, which is 

consistent as the descriptions from Bai and Kato (1999). However, in an HDCFB when Gs 

reaches 700 kg/m2s, the entire riser is occupied by the denser and relatively more uniform 

solids suspension flow and the exponential shape of the axial profile reoccurs instead of 

the S-shape profile with a much higher solids holdup as shown in Figure 4-7. With the 

increase in solids circulation rate, both the LDCFB and HDCFB show a relatively more 

uniform exponential axial profile of solids holdup but the solids holdup is much higher in 

the HDCFB, however, a less uniform S-shape profile with a denser bottom zone in the riser 

is often found under intermediate conditions. With the transition from the LDCFB to 

HDCFB, the accumulation of solids at the bottom of the riser occurs beyond the saturated 

carrying Gs
*, which increases the nonuniformity of the gas-solids flow when increasing Gs. 

However, further increasing Gs to a typical HDCFB, the inflection of the upper dilute and 

bottom dense zones disappears because the denser solids suspension occupies the entire 

riser and the gas-solids flow becomes homogeneous again with a much higher density.    
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(a) Ug = 5m/s, Gs = 100, 300, 700 kg/m2s (Gs
* = 150 kg/m2s) 

 

(b) Ug= 7 m/s, Gs = 100, 300, 700 kg/m2s (Gs
* = 278 kg/m2s) 

 

(c) Ug = 9m/s, Gs = 100, 400, 700 kg/m2s (Gs
* = 442 kg/m2s) 

Figure 4-7: Axial distributions of the solids holdup under different operating 

conditions 
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4.6.2.2 Radial uniformity of the solids holdup distribution  

In the LDCFB, the solids holdup at wall decreases obviously from nearly 0.10 to 0.01 and 

increases gradually in the center region along the riser from the bottom to the upper zone 

as shown in Figure 4-8(a). Correspondingly, the center dilute region has a low solids 

concentration expands from r/R = 0 - 0.58 to r/R = 0 - 0.85, indicating a more uniform local 

solids distribution in the radial direction from the entrance region to the fully developed 

region of the LDCFB riser. However, such an obvious decrease in the solids holdup at the 

wall does not happen in the HDCFB as shown in Figure 4-8 (b). A denser and thicker wall 

region was developed at the entrance region of the HDCFB riser and the solids holdup only 

drops slightly along the riser, i.e. the denser wall layer due to the high Gs exists along the 

entire HDCFB riser. Unlike the LDCFB where the center dilute region becomes wider in 

the upper zone of the riser, the dilute core region in the HDCFB even shrinks from the 

bottom to the exit of the riser as shown in Figure 4-8 (b). Except for a dilute core region 

with a flat solids holdup distribution and a wall region with dramatically increased solids 

holdup, a transition region between the core and the wall layer is from r/R = 0.4 to r/R = 

0.6 in the HDCFB where the solids holdup gradually increases form the center to the wall.  

  

(a)  (b) 

Figure 4-8: Local profiles of solids holdup at different heights (a) LDCFB (Ug = 7 

m/s, Gs = 100 kg/m2s); (b) HDCFB (Ug = 7 m/s, Gs = 700 kg/m2s)  
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Radial profiles of gas velocity at different heights under Ug = 9m/s, Gs = 100, 400, 700kg/(m2s) 

 
 

 

Radial profiles of particle velocity at different heights under Ug = 9m/s, Gs = 100, 400, 700 kg/(m2s) 

   

Radial profiles of slip velocity at different heights under Ug = 9m/s, Gs = 100, 400, 700 kg/(m2s) 
(a) LDCFB                                                          (b) Intermediate condition                                  (c) HDCFB 

Figure 4-9: Profiles of the axial velocities for gas and solids phases, and slip 

velocities between the gas and particles in the LDCFB and HDCFB (a) LDCFB; (b) 

Intermediate condition; (c) HDCFB 

Although sharing some similar characteristics of the local flow structures such as the 

typical core-annulus distribution of solids, higher solids circulation rates display impacts 
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not only on the bed density but also on the uniformity of the velocity profiles as shown in 

Figure 4-9. The axial velocity profiles of the gas and solids phases, and the slip velocity 

between the gas and particles also reveal the transitions of the flow structure from low-

density operations to high-density operations as shown in Figure 4-9.  

Generally, both the axial velocity profiles of gas and particles show a power-law profile 

with a higher velocity in the center and lower velocity at wall as shown in Figure 4-9. Both 

the gas and particle velocity profiles along the radial direction are more uniform in the 

entire riser in the LDCFB than those in the HDCFB, where a higher axial velocity in the 

center of the riser and a lower axial velocity near the wall region can be found. Therefore, 

in the HDCFB, more solids particles flow through the wider annulus layer which 

contributes a thicker and denser wall region of the solids distribution as shown in Figure 

4-8 (b). The development process of the flow uniformity from LDCFB to HDCFB can be 

illustrated by the diagram for the intermediate condition (Ug = 9m/s, Gs = 400 kg/m2s) as 

shown in Figure 4-9 (b), under a moderate solids circulation rate, the axial velocity profile 

is less flatter at the bottom of the riser while becomes flatter at the upper zone which echoes 

the s-shape axial profile of the solids holdup in Figure 4-7 (c).    

The slip velocities which are the difference from the axial velocities between gas and 

particles from the low-density conditions to the high-density conditions are also plotted in 

Figure 4-9. The slip velocity becomes lower and more uniform along the axial direction in 

the riser, which is reasonable since the gas-solids flow gradually develops to a fully 

developed state after the entrance region. However, the slip velocity under the intermediate 

condition has the least uniform distribution and a much higher slip velocity in the center 

region at the bottom dense zone of the riser, which indicates a more active gas-solids 

interactions and a transition state from the LDCFB to HDCFB in that region of the riser.  

Besides, the axial solids velocity is found to be larger than the axial gas velocity close to 

the wall of the CFB riser under some cases, which results in the slip velocities to be 

negative near the wall region. In fact, it should be noted that the velocity magnitude of the 

gas phase is still larger than the one of the solids phase near the wall region, while the 

lateral velocity of the gas phase is much larger than the lateral particle velocity, leading to 
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a smaller axial gas velocity than the axial particle velocity there. Future study should be 

carried out on the more accurate wall boundary conditions for the gas-solids CFB riser. 

4.6.2.3 Flow development of the solids phase 

With the help of numerical results, the gradients of particle velocity (∆𝑉𝑝 =
|𝑉𝑝𝑥,𝑦+1

−𝑉𝑝𝑥,𝑦
|

𝑉𝑝𝑥,𝑦

×

100%) can be derived based on the solids velocity difference between the two axial 

neighboring grids. The solids flow with the gradients less than 2% is defined as the fully 

developed state. The lowest positions with the time averaged results of ∆𝑉𝑝<2% along the 

CFB riser are marked as shown in Figure 4-10 which indicate the positions for the solid 

flow firstly becomes fully developed. Three operating conditions (Ug = 5m/s, Gs = 100, 

400, 700 kg/m2s) from the low-density operating condition to the high-density operating 

condition in the CFB riser are compared in Figure 4-10. The trendlines of scattered 

positions of the fully developed flow are also fitted as shown in Figure 4-10.  

 

Figure 4-10 Local positions of ∆𝑽𝒑<2% in the CFB riser for the fully developed 

solids flow 

Generally, the developing region of the solids flow in the CFB riser is less than a half of 

the length of the CFB riser due to the high-velocity conditions. The increase in the solids 

velocity is faster in the center region of the riser and gradually become slower towards the 
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wall due to the wall effects, and the effect of clusters near the wall since more clusters exist 

in the near wall region. So the solids holdup in the fully developed region is lower in the 

center and higher near the wall of the riser as shown in Figure 4-10. From a low-density 

operating condition to a high-density operating condition, the solids flow takes a longer 

development region in the CFB riser since more particles need to be accelerated under a 

higher solids circulation rate. As shown in Figure 4-10, the trendline of the marked fully 

developed positions in the LDCFB (Gs=100 kg/m2s) seems to be parallel with the trendline 

in the HDCFB (Gs=700 kg/m2s) but with different entrance lengths, indicating that the 

developments of the solids flow are similar in the radial direction between the dilute and 

dense flow conditions. However, when the CFB riser is operated under the intermediate 

condition (Gs = 400 kg/m2s), the profile of the marked fully developed positions for the 

solids flow is less flatter than the cases for LDCFB and HDCFB as shown in Figure 4-10. 

Under the intermediate condition (Gs = 400 kg/m2s), the solids flow in the center region of 

the CFB riser is closer to the LDCFB while the flow in the wall region is closer to the 

HDCFB, which also indicates that the impacts of the high-density operation act in the wall 

region at first and then intrude to the center region of the CFB riser.    

4.6.3 Prediction of the overall bed density     

The numerical simulations for a wide operating range of CFB risers from dilute to dense 

conditions are conducted in this work and Figure 4-11 and Figure 4-12 show the numerical 

results of the axial solids holdup distribution and overall bed density under different 

operating conditions. It can be found that the solids holdup tends to have a greater increase 

when increasing Gs while less increase is caused by increasing Ug, which indicates that the 

solids circulation rate has a greater impact on the transition of the overall bed density than 

the superficial gas velocity. Higher Gs in a HDCFB results in more particle clusters, so that 

a higher bed density is achieved since the denser clusters move slower than single particles 

in the riser.  

As discussed before, the general gas-solids flow structure and the overall bed density of a 

CFB riser under the same superficial gas velocity or the same solids circulation rate are 

similar. However, the relationship between the flow conditions operated under different 

Gs-Ug pairs is unclear due to lacking enough experimental data. Although several 
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correlations of the overall bed density have been proposed before (Issangya et al. 1999), 

none of them covered the high-density conditions (Gs> 400 kg/m2s) in a CFB riser. 

Therefore, the combined effects of Ug and Gs on the overall bed density of the CFB riser is 

investigated in this study. Since different flow structures between the HDCFB and LDCFB 

have been revealed in literatures due to the much higher solids circulation rate in the 

HDCFB, a more accurate correlation to predict the overall bed density covering both the 

LDCFB and HDCFB regimes is needed.  

 

Figure 4-11: Axial solids holdup distribution in LDCFBs and HDCFBs 

 

Figure 4-12: Overall bed density of LDCFBs and HDCFBs 

The CFD results of the overall bed density, which are obtained by the averaged volume 

fraction of the solids phase in the whole computational domain, agree with the 
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experimental data within a deviation of 30% for most of the cases as shown in Error! R

eference source not found. although there are some small deviations for the overall bed 

density in several cases since the particle clustering phenomenon is underestimated under 

extremely higher Gs conditions. The overall bed densities under different Ug-Gs conditions 

are listed in Table 4-4. 

The overall bed density can be considered as a function of the superficial gas velocity and 

solids circulation rate. Under ideal homogeneous flow condition in which particles are 

uniformly dispersed, the overall solids holdup in the dispersed gas-solids system without 

including the clustering effects can be derived as: 

𝜀𝑠
′ =

𝐺𝑠

𝜌𝑝∙𝑉𝑝
                                                                                                                     (4-18) 

where 𝜀𝑠
′  is the overall bed density in the homogeneous gas-solids system, 𝑉𝑝 is absolute 

particle velocity. In the gas-solids CFB riser where particle clusters exist causing a larger 

slip velocity between gas and particles, the particle velocity is assumed as a function of the 

superficial gas velocity. Thus, the overall solids holdup in a gas-solids CFB riser can be 

roughly estimated as: 

𝜀𝑠 = (
𝐺𝑠

𝜌𝑝∙𝑈𝑔
)𝑚                  (4-19) 

where 𝜀𝑠 represents the overall bed density in the heterogeneous gas-solids system in the 

CFB riser. However, under extremely dense conditions, the clustering phenomenon is 

much more severe which results in the accumulation of solids inside the CFB riser as 

known as the saturation of particles described by Bai and Kato (1995). Under high-density 

conditions, Gs has a greater impact on the overall bed density than Ug especially when Gs 

is much greater than Gs
* as discussed before, so a correction factor based on the exceeded 

Gs of the saturation carrying capacity is needed in the calculation. The correction factor 

related to the saturation capacity and the Froude number (Fr =
𝑈𝑔

√𝑔𝑑𝑝
) is included to adjust 

the overall solids holdup under high-density conditions and can be expressed as: 

(
𝐺𝑠−𝐺𝑠

∗

𝐺𝑠∙𝐹𝑟
)𝑛          (4-20) 
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By fitting with the experimental data, the two exponents are selected as: m=0.9, and n is 

decided by the ratio of the excess solids circulation rate and the Stokes number of the gas-

solids flow. Froude number and Stoke number are taken into consideration because they 

both present the impacts from the external flow field on the particles. 

Therefore, an index for predicting the average bed solids holdups under different operating 

conditions is developed based on the numerical results as shown in the following:  

𝐼 = (
𝐺𝑠

𝜌𝑝∙𝑈𝑔
)0.9 + (

𝐺𝑠−𝐺𝑠
∗

𝐺𝑠∙𝐹𝑟
)𝑛,  n=

{
 
 

 
 2,                  

𝐺𝑠−𝐺𝑠
∗

𝑆𝑡𝑟
< 0;

0.45, 0 <
𝐺𝑠−𝐺𝑠

∗

𝑆𝑡𝑟
< 1.5;

0.85,         
𝐺𝑠−𝐺𝑠

∗

𝑆𝑡𝑟
≥ 1.5  

                             (4-21) 

where Fr is Froude number: Fr = 
𝑈𝑔

√𝑔𝑑𝑝
, Gs

* is the saturation carrying capacity from Bai and 

Kato (1995). The index consists of a general correlation of the overall bed density (
𝐺𝑠

𝜌𝑝∙𝑈𝑔
)0.9 

in a CFB riser and a correction factor (
𝐺𝑠−𝐺𝑠

∗

𝐺𝑠∙𝐹𝑟
)𝑛 due to the high-density condition.  

Table 4-4: Overall bed densities of different Gs-Ug pairs 

Ug, m/s Gs, kg/m2s CFD-𝜀𝑠 EXP-𝜀𝑠 I 

5 50 0.0140 0.0120 0.010791 

7 70 0.0150 0.0100 0.010807 

10 100 0.0097 NA 0.010815 

9 100 0.0102 NA 0.011845 

3 50 0.0180 0.0180 0.016921 

7 100 0.0186 0.0150 0.014771 

5 100 0.0220 0.0230 0.019942 

4 100 0.0200 0.0260 0.024588 

9 200 NA 0.0320 0.021931 

7 200 0.0390 0.0400 0.027484 

9 300 0.0690 0.0600 0.031571 

7 300 0.0480 0.0630 0.064592 

10 400 0.0500 NA 0.037202 

9 400 0.0490 0.0700 0.040901 

5 300 0.0460 0.0880 0.122671 

7 400 0.0540 0.0960 0.098711 
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9 500 NA 0.1010 0.077316 

5 400 0.0750 0.1040 0.077169 

7 500 0.0850 0.1070 0.118841 

9 600 NA 0.1170 0.098503 

9 700 0.0884 0.1340 0.113758 

7 600 NA  0.1280 0.135016 

5 700  NA 0.1130 0.124271 

10 1400  NA 0.1198 0.119107 

Figure 4-13 compared the overall bed densities from the volume-weighted CFD results of 

the solids phase volume faction and from the experimental data with the proposed index 

(I), respectively. It can be seen that most of the results from CFD and experiment agree 

well with that from the proposed index (I) within a deviation of 30%, indicating the 

promising practicability of the proposed index for comparing the overall bed density under 

different operating conditions.  

 

Figure 4-13 Comparisons of the proposed index (I), experimental data, and CFD 

results 

It should be noted that the index (I) has little deviations from the experimental data of the 

overall bed density under very dilute or extremely dense flow conditions because the 

saturation capacity (Gs
*) from Bai and Kato (1995) was correlated based on the 

experiments operated under a Gs ≤ 120 kg/m2s, which needs further correction for high-

density operating conditions. However, the index (I) still can be used to indicate the rank 
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of the overall bed density in the CFB riser under different Ug-Gs pairs because it shows a 

good consistence with the experimental results of the overall bed density as shown in Table 

4-5. A 3D map of the predicted overall bed density by Eq. (4-21) under different Ug-Gs 

pairs is plotted as Figure 4-14. A plane of 𝜀𝑠=0.10 almost evenly divides the 3D map into 

a low-density regime and a high-density regime as shown in Figure 4-14. Obviously, the 

greater curvature of the 3D map takes place in the HDCFB regime indicating that the high-

density operations have a significant impact on the increase in the overall bed density in a 

CFB riser. More details are provided in Figure 4-15 where a 2D map with a series of overall 

solids holdup lines (𝜀𝑠=0.05, 0.10, 0.15, 0.20) is plotted according to the top view of the 

3D map (Figure 4-14).  

 

Figure 4-14: 3D map of the predicted overall bed density 

 

Figure 4-15: 2D map of the predicted overall bed density 
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 Conclusion  

The comparisons between LDCFBs and HDCFBs are discussed based on the CFD results. 

The high-density conditions in a CFB riser show many different distinct characteristics 

from the low-density conditions. The typical core-annulus radial flow structure appears in 

both LDCFBs and HDCFBs, however, a HDCFB has a much denser and wider annulus 

layer. Both the LDCFB and HDCFB have an exponential shape of the axial solids holdup 

profile while the S-shape profile can be found under intermediate conditions, indicating the 

transition between the LDCFB and HDCFB. Velocity profiles of gas, particles, and slip 

velocity also show the transition between the LDCFB and HDCFB in which both the 

LDCFB and HDCFB have a relatively higher uniformity of the gas-solids flow and the one 

under intermediate condition shows the worst uniformity. An index is developed as a 

function of the superficial gas velocity and solids circulation rate to predict the overall bed 

density under different Ug-Gs operating conditions.    

 

Nomenclature  

𝑑𝑝 Particle diameter, m 

ess Coefficient of particle-particle restitution 

Fr Froude number, =
𝑈𝑔

√𝑔𝑑𝑝
 

go,ss Radial distribution function of particles  

Gs Solids circulation rate, kg/m2s 

Gs
* Saturation carrying capacity of gas, kg/m2s 

𝐼 
unit tensor 

h Axial distance from the gas distributor, m 

H Total height of the CFB riser, m 

𝑘 Turbulent kinetic energy, m2/s2 

P Fluid phase pressure, Pa 

Ps Solids phase pressure, Pa 

r Radial position of the CFB riser, m 

http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
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R Radius of the CFB riser, m  

𝑅𝑒𝑟 
Relative particle Reynolds number, = 

𝜌𝑔𝑑𝑝|𝑣𝑠⃗⃗⃗⃗ −𝑣𝑔⃗⃗ ⃗⃗  |

𝜇𝑔
 

Ug Superficial gas velocity, m/s 

𝑣𝑔 Gas phase velocity, m/s 

𝑣𝑟 (Ur) Relative velocity: the ratio of the terminal settling velocity of a 

multiparticle system to that of an isolated particle 

𝑣𝑠 Solid phase velocity, m/s 

𝑣𝑠𝜏
′  Random component of the particle velocity, m/s  

∆𝑉𝑝 Gradients of particle velocity,  

𝑉𝑝 Absolute particle velocity, m/s 

𝑉𝑝𝑥,𝑦
 Particle velocity in every grid, m/s 

𝑉𝑔,𝑖𝑛 Inlet gas velocity, m/s 

𝑉𝑠,𝑖𝑛 Inlet velocity of the solid phase, m/s   

𝛼𝑔 Gas phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

𝛾Θ𝑠 Collisional dissipation of energy 

 Ksg=Kgs Interphase momentum exchange coefficient 

ε Dissipation rate of the turbulent kinetic energy 

𝜀𝑠
′  Overall solids holdup in the dispersed gas-solids system 

𝜀𝑠 Overall solids holdup in a gas-solids CFB riser 

λ Phase bulk viscosity, kg/ms 

μ Phase shear viscosity, kg/ms 

𝜇𝑔,𝑡 Gas phase turbulent viscosity, kg/ms  

𝜇𝑠,𝑡 Solids phase turbulent viscosity, kg/ms 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑠 Particle density, kg/m3 

∅𝑔𝑠 Granular temperature of particles, m2/s2  

𝜏 Phase stress-strain tensor, kg/s2 

ϕ Ratio of the opening area in the gas distributor  

http://www.cfd-online.com/W/index.php?title=Dissipation&action=edit&redlink=1
http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
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Subscripts:  

g Gas phase 

s Solids phase 

x x axis 

y y axis 

p Particles  
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Chapter 5  

5 Numerical study on a gas–solid circulating fluidized bed 
downer reactor  

 Introduction 

With the increasing demand for petroleum products, chemical industry has seen more 

applications of high-velocity gas-solid circulating fluidized bed (CFB) reactors in the fast 

fluidization regime since the 1990s (Lehner & Wirth, 1999; Zhang, et al., 2001; Zhu, et al., 

1995). A CFB system consists of a riser where chemical reactions take place and a downer 

that is usually used to recycle particles. However, the CFB downer reactor has attracted 

much more attention for chemical reactions in recent years due to its advantages compared 

with CFB risers such as more uniform flow structures, shorter residence time, and less back 

mixing (Zhu et al., 1995). Both the gas and solids flow downward concurrently in the CFB 

downer reactor in which the gravity also helps promote the relatively homogeneous flow 

development of the gas-solid suspension (Zhu et al., 1995). A remarkable fully developed 

region with nearly plug-flow condition was characterized and correlations on in the downer 

reactor, which is welcomed for gas phase catalytic reactions due to the less back-mixing 

(Lehner & Wirth, 1999; Li, et al., 2011; and Qi, et al., 2008). The hydrodynamic 

characteristics including axial and radial flow structures, mass and heat transfers, and 

reaction performances inside CFB downer have been comprehensively studied and 

compared with the CFB riser experimentally (Li et al., 2011; Lu et al., 2005; Ma & Zhu, 

1999; Tuzla et al., 1998; Vaishali, et al., 2008; Wei, et al., 1994 and Zhang et al., 2001). 

On the other hand, the gas-solid fluidization has reached a high-density operating condition 

in the CFB downer experimentally resulting in a more promising future application of 

downer reactor (Chen, et al., 2005; Guan et al., 2011; and Wang, et al., 2015). Compared 

to the low-density downer rector in which the solids holdup is too low to a high throughput, 

the high-density downer reactor under denser flow conditions is able to achieve a higher 

solids holdup with the help of the large solids circulation rate (Guan et al., 2011; Wang, et 

al., 2015). The hydrodynamics are found to be affected by the operating conditions in the 

downer reactor, which results in that both the radial and axial profiles of the solids holdup 
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and the particle velocity in the high-density downer are quite different from that in the low-

density downer (Wang, et al., 2015a; 2015b and 2016). However, less numerical work has 

been conducted on CFB downers and only a few papers published with low solids 

circulation rate (Bolkan, et al., 2003; Cheng et al., 2014; Khongprom, et al., 2012; Liu, et 

al., 2017; Samruamphianskun, et al., 2012). Although both Eulerian-Eulerian two-fluid 

approach and Eulerian-Lagrangian discrete element method have been used for simulations 

of CFB downer reactor, the majority of them were focused on parametric studies on the 

numerical models by comparing different turbulence models, drag models, or the granular 

temperature models (Chalermsinsuwan, et al., 2012; Cheng, et al., 1999; Shu et al., 2014). 

Very few numerical studies on the gas-solid flow mechanism in downer reactors for gas 

phase catalytic reactions requiring smaller particles such as FCC have been carried out. 

Also, the CFD approach is considered as an effective tool for design and scale-up of 

chemical reactors with less cost and pollution. Most of the current experimental work on 

downer rectors were in lab-scale and better understanding of the scale-up effects in the 

downer is needed for industrial uses. Thus, a CFD model on a downer reactor for FCC 

particles is developed in this work and the scale-up effects are studied numerically as well. 

 Configuration of the CFB downer 

5.2.1 Experimental CFB systems 

The downer reactor simulated in this work is a part of a multifunctional circulating 

fluidized bed (MCFB) system as the red circled part shown in Figure 5-1 (Wang, 2013). 

The downer rector is 5.8 m high with a diameter of 7.62cm (3in), which is connected with 

a riser to complete the solids circulation. Figure 5-2 shows a zoomed in schematic diagram 

of the gas distributor and solids feeding tubes at the entrance region of the CFB downer. A 

premixing for the particles to reach a minimum fluidization stage happens above the gas 

distributor as shown in Figure 5-2. The main gas distributor located at the top of the downer 

reactor with multiple holes which has an opening area of 50% to provide uniform gas inlet 

distribution. Several solids feed tubes introduce particles into the downer from the top at 

the same height of the gas distributor as shown in Figure 5-2. A high solids inventory of 

FCC particles up to 450 kg is equipped in the CFB system to provide enough pressure for 

high-density CFB operations with large solids circulation rate (Wang, 2013). Particles are 
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entrained out of the riser under a high superficial gas velocity, following with a pre-

fluidization process by the auxiliary gas supply to achieve a smooth gas-solid suspension, 

and then enter into the downer reactor through the solids feed tubes with inlet gas through 

the main gas distributor simultaneously at the top. Solids particles used in the experiment 

are FCC particles with a density of 1500 kg/m3 and diameter of 67 µm (Wang, 2013). 

5.2.2 Mesh of the CFB downer 

 

Figure 5-1 Configuration 

of the CFB system 

(Wang, 2013) 

 

Figure 5-2 Schematic diagram 

of the gas distributor and 

solids inlet of the downer 

(Wang, 2013) 

  

Figure 5-3 Mesh of 

the computational 

domain 

A quad grid system with finer mesh near the wall and the inlet as shown in Figure 5-3 is 

applied because the flow parameters in a CFB change greatly near those regions. Two sizes 

of meshes for the experimental downer and a scaled-up downer are setup in this work. The 

scaled-up downer has an inner diameter of 0.2m (8in) and the same height (5.8m) as the 

experimental downer. The mesh consists of 160000 cells with 80 nodes in the radial 
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direction and 2000 nodes in the axial direction. The minimum orthogonal quality of the 

mesh is 1.00 and the maximum aspect ratio is 3.8052, which indicate a good quality of the 

mesh. Because the grid systems are very similar between the CFB riser and downer 

reactors, detailed information of the grid independent test results can be found in Chapter 

4.   

 Numerical method 

5.3.1 Governing equations 

A set of basic governing equations consisting of the mass and momentum conservation 

equations of both phases are used to solve the gas-solid flows (ANSYS, 2013).  

Continuity equation for the gas phase:  

∂

∂t
(𝛼𝑔𝜌𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔̅̅ ̅) = 0                                                                (5-1) 

Continuity equation for the solids phase:  

∂

∂t
(𝛼𝑠𝜌𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠̅) = 0                                                                           (5-2) 

where 𝛼𝑔 + 𝛼𝑠 = 1                                                                          (5-3) 

Momentum equation for the gas phase: 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) + 𝛻 ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑣𝑔⃗⃗⃗⃗ ) = −𝛼𝑔𝛻𝑃 + 𝛻 ∙ (𝛼𝑔 (𝜏𝑔

𝑚 + 𝜏𝑔
𝑅𝑒)) + 𝛼𝑔𝜌𝑔𝑔 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ −

𝑣𝑔⃗⃗⃗⃗ )                                               (5-4) 

where  

𝜏𝑔
𝑚 = −

2

3
𝜇𝑔.𝑚∇ ∙ 𝑣𝑔⃗⃗⃗⃗ 𝐼 + 𝜇𝑔.𝑚(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
)                 

𝜏𝑔
𝑅𝑒 = −

2

3
(𝜌𝑘𝑔 + 𝜇𝑔,𝑡∇ ∙ 𝑣𝑔⃗⃗⃗⃗ )𝐼 + 𝜇𝑔.𝑡(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
) 
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Momentum equation for the solids phase: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑣𝑠⃗⃗  ⃗) = −𝛼𝑠∇𝑃 − ∇P𝑠 + ∇ ∙ (𝛼𝑠 (𝜏𝑠

𝑚 + 𝜏𝑠
𝑅𝑒)) + 𝛼𝑠𝜌𝑠𝑔 +

𝐾𝑠𝑔(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗)                                                                               (5-5) 

where 

𝜏𝑠
𝑚 = (𝜆𝑠 −

2

3
𝜇𝑠)𝛻 ∙ 𝑣𝑠⃗⃗  ⃗𝐼 + 𝜇𝑠(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
) 

𝜏𝑠
𝑅𝑒 = −

2

3
(𝜌𝑘𝑠 + 𝜇𝑠,𝑡𝛻 ∙ 𝑣𝑠⃗⃗  ⃗)𝐼 + 𝜇𝑠.𝑡(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
) 

where the solid phase pressure (Ps), the solids shear viscosity (𝜇𝑠), and the solids bulk 

viscosity (𝜆𝑠) in the momentum equation are derived from the kinetic theory of granular 

flow model (Gidaspow & Ding, 1990). The fluctuation velocity of particles, which comes 

from the collisions between the particles, also can be calculated by the granular 

temperature. 

Transport equation for the granular temperature (Gidaspow & Ding, 1990):  

3

2
[
𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠Θ𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗Θ𝑠)] = (−𝑃𝑠𝐼 + 𝜏𝑠) : ∇ 𝑣𝑠⃗⃗  ⃗ + ∇ ∙ (𝑘Θ𝑠∇Θ) − 𝛾Θ𝑠 + ∅𝑔𝑠   (5-6) 

where 

∅𝑔𝑠 = −3𝑘g𝑠Θ𝑠 

The collisional energy can be obtained by: 

γΘs =
12(1 − ess

2 )go,ss

ds√π
ρsαs

2Θs
3/2

 

The gas-solid two-phase flows are very complicated due to the vigorous interactions 

between the gas and solids. The motions of the particles are affected by the mean solids 
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velocity, single particle fluctuations and the particle-particle collisions. Therefore, a 

turbulence model for per phase, which is more accurate, is used in the simulation. 

The standard k-𝛆 turbulence model is applied into both the gas and solid phases. 

k equation of the gas phase: 

∂

∂t
(𝛼𝑔𝜌𝑔𝑘𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑘𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝑘𝑔) + (𝛼𝑔𝐺𝑔,𝑘 − 𝛼𝑔𝜌𝑔𝜀𝑔) + 𝐾𝑠𝑔(𝐶𝑠𝑔𝑘𝑠 −

 𝐶𝑔𝑠𝑘𝑔) − 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔   (5-7) 

ε equation of the gas phase: 

∂

∂t
(𝛼𝑔𝜌𝑔𝜀𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝜀𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝜀𝑔) +

𝜀𝑔

𝑘𝑔
(𝐶𝑙𝜀𝛼𝑔𝐺𝑔,𝑘 − 𝐶2𝜀𝛼𝑔𝜌𝑔𝜀𝑔 +

𝐶3𝜀(𝐾𝑠𝑔(𝐶𝑠𝑔𝑘𝑠 − 𝐶𝑔𝑠𝑘𝑔) − 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝐾𝑠𝑔(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔)) (5-8)  

where the turbulent viscosity, 𝜇𝑔,𝑡 = 𝜌𝑔𝐶𝜇
𝑘𝑔

2

𝜀𝑔
 

k equation of the solids phase: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑘𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑘𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝑘𝑠) +   (𝛼𝑠𝐺𝑠,𝑘 − 𝛼𝑠𝜌𝑠𝜀𝑠) + 𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 −

𝐶𝑠𝑔𝑘𝑠) − 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠   (5-9) 

ε equation of the solids phase: 

∂

∂t
(𝛼𝑠𝜌𝑠𝜀𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝜀𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝜀𝑠) + 

𝜀𝑠

𝑘𝑠
(𝐶𝑙𝜀𝛼𝑠𝐺𝑠,𝑘 − 𝐶2𝜀𝛼𝑠𝜌𝑠𝜀𝑠 +

𝐶3𝜀 (𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) − 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠) (5-10) 

where the turbulent viscosity, 𝜇𝑠,𝑡 = 𝜌𝑠𝐶𝜇
𝑘𝑠

2

𝜀𝑠
. 

The interactions between the gas and solids is included into a drag model. In the two-fluid 

CFD model, the momentum exchange, Kgs is calculated by the drag model. The drag force 
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of the gas-solid flow is related to the particle properties, flow regimes, and the Reynolds 

number. For FCC process in the riser, the Syamlal and O'Brien drag model (Syamlal & 

O’Brien, 1994) was found to calculate the drag coefficient more accurately and is used in 

this work. 

 𝐾𝑔𝑠 =
3𝛼𝑠𝛼𝑔𝜌𝑔

4𝑣𝑟
2𝑑𝑠

(0.63 +
4.8

√
𝑅𝑒𝑟
𝑣𝑟

)

2

(
𝑅𝑒𝑟

𝑣𝑟
) |

𝑣𝑠
→ −

𝑣𝑔
→|     (5-11) 

5.3.2 Boundary conditions 

A profile velocity inlet boundary condition is used to both gas and solid phases at the top 

of the downer according to configurations of the gas distributor and solid feed tubes as 

shown in Fig. 7-3. For the solids phase, the actual solid inlet velocity in the feed tubes can 

be calculated based on the solids circulation rate, Gs, which is  

Vs,in = Gs / (εmf × ρs)          (5-12) 

where εmf = 0.58, is the overall solids holdup under the minimum fluidization condition. 

The gas phase is assumed to have the same inlet velocity in the solid feed tubes. The gas 

inlet velocity at the jets of the gas distributor can be obtained from the superficial gas 

velocity, Ug, which is 

Vg, in = (Ug × AT) – (Vs × AT × (1-φ)) / (AT × φ)      (5-13) 

where AT is the cross-sectional area of the downer, and φ is the opening ratio of the gas 

distributor. No slip wall boundary condition is applied to the gas phase and partial slip wall 

boundary condition with a specularity coefficient of 0.0001 and a particle-wall restitution 

coefficient of 0.95 is applied to the solid phase in the simulation. The outflow boundary 

condition is used for both the gas and solids outlets located at the bottom of the downer. 

5.3.3 Operating conditions  

CFD simulations for a total of 13 cases are conducted under a superficial gas velocity from 

3 to 7 m/s and a solids circulation rate from 100 to 700 kg/m2s in both the experimental 

and the scaled-up downers as shown in Table 5-1. Time averaged data was collected after 
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the simulation reaches a steady condition and the numerical results are compared with the 

available experimental data to validation the CFD model used in this work.  

Table 5-1. CFD cases under different operating conditions 

Cases # Superficial gas 
velocity, Ug, m/s 

Solids circulation 
rate, Gs, kg/m2s  

Downer ID, m 

1 3 100 0.762 

2, 3 5 100 0.0762, 0.2 

4, 5 5 200 0.0762, 0.2 

6, 7 5 300 0.0762, 0.2 

8 5 500 0.0762 

9, 10 5 700 0.0762, 0.2 

11, 12 7 100 0.0762, 0.2 

13, 14 7 200 0.0762, 0.2 

15, 16 7 300 0.0762, 0.2 

17 7 500 0.0762 

18, 19 7 700 0.0762, 0.2 

 Results and discussion 

5.4.1 Axial distribution of solids holdup 

The general axial profiles of the solids holdup in the downer are shown in Fig. 5-4 under 

different superficial gas velocities at a same solids circulation rate. Figs. 5-5 and 5-6 show 

the axial solids holdup profiles from dilute to dense conditions under the superficial gas 

velocities of 5 m/s and 7m/s, respectively. A good agreement between the numerical results 

and the experimental data is achieved as shown in Figs. 5-4 to 5-6. It is clear that the overall 

solids concentration in a downer increases with the increase in the solids circulation rate 

and decrease in the gas velocity as shown in Figs. 5-4 to 5-6. The gas-solid suspension in 

the downer is very dilute, which usually has a solids holdup less than 0.05, because the 

particles move downward in the same direction of the gravity, so that they are accelerated 

to a high velocity quickly.  



111 

 

 

Figure 5-4 Axial profiles of the solids holdup under Gs = 100 kg/m2s 

 

Figure 5-5 Axial profiles of the solid holdup in the 3 in downer under Ug = 5 m/s 

 

Figure 5-6 Axial profiles of the solid holdup in downer (ID = 3 in) under Ug = 7 m/s 
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Generally, the axial solids holdup prolife in the downer has an exponential profile with a 

distinct inflection point dividing the dense region and dilute region along the downer as 

shown in Figs. 5-4 and 5-5. A short dense entrance region forms near the gas distributor 

because the particles are under acceleration and then the solids holdup gradually decreases 

and reaches a uniform and much more dilute distribution to the outlet at the bottom of the 

downer indicating the formation of the fully developed solids flow. With the increase in 

the solids circulation rate or decrease in the superficial gas velocity, a longer dense region 

is found in the downer suggesting a longer flow development stage.  

 

Figure 5-7 Radial profiles of the solid concentration in the 3 in downer at different 

superficial gas velocities under Gs = 100 kg/m2s 

 

Figure 5-8 Radial profiles of the solid concentration in the 3 in downer at different 

solids circulation rates under Ug = 5 m/s 
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Since the experimental data were collected only at six radial positions (r/R = 0, 0.316, 

0.548, 0.707, 0.837, 0.950) across the downer, more detailed flow information can be 

obtained from the numerical results as shown in Fig. 5-7. Generally, the solids distribution 

in the radial direction is uniform with a wide and flat core (r/R = 0 - 0.9) and there is a thin 

but dense annular region near the wall with a much higher solids concentration due to the 

wall friction and possibly some clustering effects in that region. Comparing with the typical 

core-annulus radial flow structure in a CFB riser, which has a thick and much denser wall 

region with a solids concentration up to 0.4 (Wang, et al., 2015), the gas-solid suspension 

in the downer is much more uniform in the CFB downer. By increasing the solids 

circulation rate or decreasing the superficial gas velocity, the radial flow structure still 

exhibits a uniform profile in the downer. In contrast to the CFB riser reactor in which the 

flow structures differ a lot when increasing Gs, both the axial and radial flow structures in 

the downer from the numerical results are similar when Gs increases while only the overall 

solids holdup increases as shown in Figs. 5-5 to 5-8. As reported in the literature, one of 

the factors caused the non-uniformity of the gas-solid flow structure in a CFB system is 

due to the clustering phenomenon. The relatively uniform radial profile in the downer 

indicates a more homogeneous gas-solid flow existing with less significant gas-solid 

interactions and less particle agglomerations.  

5.4.2 Prediction of the overall bed density 

Numerical results for the axial profiles of the solids holdup in the downer covering a wide 

range of the operating conditions have a good agreement with the experimental data as 

shown in Fig. 5-9. Therefore, the CFD model is believed to be reliable enough to predict 

the overall bed density inside a downer. The overall bed densities sorted in an ascending 

order under different operating conditions in the downer are obtained from the CFD 

simulations as shown in Tab. 5-2. Under different Ug-Gs pairs, the gas-solid suspension 

goes through very dilute conditions to some dense conditions with the overall bed density 

ranging from εs = 0.005 to 0.08. Also, an average superficial solids velocity along the 

downer reactor can be obtained from numerical calculation as listed in Tab. 5-2. A 

systematic slip factor (Fslip) indicating the excess of the solids velocity compared with the 
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superficial gas velocity due to the acceleration of the particles inside the downer is found 

to be: 

    𝐹𝑠𝑙𝑖𝑝 =
1

𝑛
∑

𝑈𝑠̅̅ ̅

𝑈𝑔

𝑛
𝑖=0 ≈ 1.45    (5-14) 

 

Figure 5-9 Comparison of the axial solids holdup distributions between the CFD 

results and experimental data  

The overall bed density is one of the most important parameters when determining the 

operation conditions for a downer reactor. The prediction of the overall bed density under 

different Ug-Gs pairs plays a significant role in the industries, however, it is difficult to 

derive the relationship of the overall bed densities under different operating conditions 

simply by experiments. A correlation to predict the overall bed density in the downer 

reactor is developed based on the numerical results from the overall bed density and the 

average slip factor as the following: 

𝜀𝑠̅ = 𝐺𝑠/(𝜌𝑠 ∙ 𝑈𝑔 ∙ 𝐹𝑠𝑙𝑖𝑝)     (5-15) 

where Ug ≥ 1m/s. The comparison between the numerical results and the results from the 

proposed correlation for the overall bed density is plotted in Fig. 5-10. The differences 

between the numerical results and the results from the correlation under various operating 
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conditions are within ±15% indicating the validation of the proposed correlation for the 

overall bed density in the downer with a slip factor of 1.45. 

Table 5-2 Comparison of the overall bed densities between the CFD results and the 

results from the propose correlation in ascending order  

ranking  
Overall bed 

density 
(CFD results) 

Overall bed 
density 

(Correlation) 
𝜀𝑠̅ 

Ug 

(m/s) 
Gs 

(kg/m2s) 
𝑈𝑠
̅̅ ̅ (m/s) 

(CFD results) 

Gs/Ug 

(kg/m3) 

1 0.0066 0.0066 7 100 10.1040 14 

2 0.0097 0.0092 5 100 6.8729 20 

3 0.0130 0.0153 3 100 5.1277 33 

4 0.0133 0.0131 7 200 10.0246 29 

5 0.0170 0.0184 5 200 7.8431 40 

6 0.0193 0.0197 7 300 10.3634 43 

7 0.0268 0.0276 5 300 7.4627 60 

8 0.0344 0.0328 7 500 9.6901 71 

9 0.0485 0.0460 5 500 7.0175 100 

10 0.0497 0.0460 7 700 9.3147 100 

11 0.0689 0.0644 5 700 6.7731 140 

 

Figure 5-10 Comparison of the overall bed density between the CFD results and the 

results from the proposed correlation 
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Figure 5-11 2D map of the predicted overall bed density in the downer reactor 

A two-dimensional map of the overall bed density in the downer obtained by the proposed 

correlation, which covers the superficial gas velocities of 1-10 m/s and the solids 

circulation rates of 0-800 kg/m2s, is generated as shown in Fig. 5-11. A series of iso-

potential lines presenting the same overall bed density under the operations from a low-

density condition to a high-density condition with different Ug-Gs pairs are also marked on 

the 2D map. In addition to the correlation for the overall bed density, the ratio of the solids 

circulation rates (Gs) to the superficial gas velocities (Ug) is actually more important in the 

industrial applications to predict the actual flow condition in the downer since Ug and Gs 

are the two operating parameters that can be directly obtained from measurements. For 

downer reactors operated with a same overall bed density under different Ug-Gs pairs, the 

Gs/Ug ratio should be a constant since these iso-potential lines of the overall bed density 

are nearly linear as shown in the 2D map. However, as the overall bed density increases, 

the slope (Gs/Ug) of the iso-potential overall bed density lines increases rapidly from a low-

density operations to a high-density operations in the downer indicating that decreasing Ug 

has a greater affect than increasing Gs to promote the gas-solid flow transitions from a 

dilute condition to a dense condition in the downer. The overall bed density of 0.03 with a 

Gs/Ug ratio around 65kg/m3 can be considered as the boundary between the low-density 
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downer and the high-density downer because the iso-potential line for the overall bed 

density of 0.03 almost divides the 2D map into two operating windows with the same area.   

 

Figure 5-12 3D map of the predicted overall bed density in the downer reactor 

A three-dimensional map of the overall bed density in the downer reactor also can be 

generated as shown in Fig. 5-12. The impacts from Gs and Ug on the bed density can be 

further discussed separately by the 3D map. Under low-velocity operations where Ug is less 

than 4m/s, the superficial gas velocity has a greater impact than the solids circulation rate 

on the overall bed density so that a small decrease of Ug can result in a significant increase 

of the overall bed density. However, under high-velocity operations with Ug greater than 

4m/s, the superficial gas velocity and the solids circulation rate tend to have similar affects 

on the increase of the bed density. Also, the transition in the downer from low-density 

condition to the high-density condition becomes more gradual under the high-velocity 

operation. Therefore, gas-solid reactions requiring large throughput of gas or solids such 

as coal combustion are more suitable to be operated under high-velocity operations, while 

catalytic reactions requiring a higher contacting efficiency are more suitable to be operated 

under relatively low-velocity operations.  
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5.4.3 Solids phase flow development  

 

Figure 5-13 Sketch of the development of the solids flow 

The solids flow development in a downer reactor can be divided into three stages based on 

the relationship between the drag force and gravity acting on the particle as sketched in 

Fig. 5-13. Generally, the solids enter the downer at a low velocity and can be quickly 

accelerated through two acceleration stages to reach a constant velocity in the fully 

developed zone. The acceleration of the particles in the downer can be illustrated by the 

profiles of the cross-sectional particle velocity and the slip velocity between particles and 

gas under different operating conditions as shown in Figs. 5-14 and 5-15.  

The solids flow goes through a first acceleration region at the entrance region of the downer 

where the gas velocity is greater than the particle velocity, so that both the drag force and 

the gravity force are downward as shown in Fig. 5-13. The inlet velocity of the solids flow 

at the top of the downer decreases with the increase in the solids circulation rate as shown 

in Fig. 5-14. The reason might because that the agglomeration of particles becomes more 

severe at the entrance region of the downer under a higher solids circulation rate, resulting 

a lager slip velocity as shown in Fig. 5-15. The particles accelerate quickly in the first 

acceleration stage due to the large downward acceleration from the combined effects of the 

drag force and the gravity. Once the particle velocity increases to the same value as the 

superficial gas velocity, there is no slip velocity between the particles and gas as shown in 
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Fig. 5-15, resulting in a zero drag force which is the boundary between the first and the 

second acceleration stages in the downer. In the second acceleration stage, the drag force 

changes to the upward direction because particles will have greater velocity than the gas 

phase, so that a positive slip velocity along the downer is obtained and it increases along 

the downer as shown in Fig. 5-15. The upward drag force gradually increases with the 

increase in the slip velocity, but it still less than the gravity in the second stage, resulting 

in a smaller acceleration than the one in the first stage. Correspondingly, the increase in 

the particle velocity becomes more gradual in the second acceleration stage as shown in 

Fig. 5-13. Once the upward drag force increases to balances the gravity of the particles, the 

gas-solid flow reaches the fully developed region where the particle velocity and the slip 

velocity are almost constant since there is no acceleration as shown in Figs. 5-14 and 5-15. 

However, under some extremely high-density operation conditions, the velocities still vary 

significantly due to more severe agglomeration effects in the downer, which might have a 

significant impact on the force balance on the particles. 

Therefore, the zero slip velocity is marked as the boundary between the first and the second 

acceleration regions in the downer as the dotted arrows shown in Fig. 5-15. The onset of 

the fully developed region is at the point when the gradient of the positive slip velocity 

firstly becomes less than 0.01 as the solid arrows shown in Fig. 5-15.  

 

(a) 

 

(b) 

 Figure 5-14 Cross-sectional particle velocity along the downer (a) Ug = 5 m/s and (b) 

Ug = 7 m/s 
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 (a) 

 

(b) 

Figure 5-15 Cross-sectional slip velocity along the downer (a) Ug = 5 m/s (b) Gs = 100 

kg/m2s 

 

Figure 5-16 Tendency of the lengths of the three stages in the downer under 

different operating conditions 

More detailed data on the boundaries of the three regions in the downer under various 

operating conditions are marked as shown in Fig. 5-16. It can be seen from Fig. 5-16 that 
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from a low density to a high density operation condition, both lengths of the first and 

second acceleration regions increase. 

After entering the downer from the top inlet, the solids suspension undergoes a very quick 

first acceleration stage, resulting in a dense and short entrance region that is always less 

than 1m (h1-h0 < 1m) from the gas distributor. The length of the second acceleration region 

increases significantly with the increase in the overall bed density from a low-density 

operation condition to a high-density operation condition. Under dilute conditions (Gs ≤ 30 

0kg/m2s), the total length of the two acceleration regions is less than half of the length of 

the entire downer, which means that the fully developed region occupies the major part of 

the downer. Such a low-density downer reactor is more favorable for reactions in which 

the mass transport or diffusion is the control step of the kinetics in the chemical reaction. 

Under dense conditions (Gs > 300 kg/m2s), more fluctuations in the solids holdup and 

particle velocity are noticed from Figs. 5-16 and 5-14 due to the more severe agglomeration 

effects. When the solids circulation rate is extremely high (Gs = 700 kg/m2s), the 

fluctuations of the flow are stronger, which results in a longer second acceleration region 

that even occupies almost the entire downer. Although the fluctuations increase in a high-

density downer, the solids holdup distribution is still more uniform than the one in a CFB 

riser, so that reactions in which the intermediate product is more valuable and requiring 

higher throughput are more suitable to be conducted in a high-density downer.   

5.4.4 Scale-up effects 

The scale-up effects are studied in this work by comparing the numerical results from a 

downer of 0.0762 m (3 in) ID and a wider downer of 0.2 m (8 in) ID. The general flow 

structures and radial solids distributions at different axial locations from the distributor are 

compared in Fig. 5-17. Generally, the overall axial gas-solid flow structures are close 

between the 3 in downer and 8 in downer as shown in Fig. 5-17. However, by increasing 

the downer diameter, the axial non-uniformity is increased, especially in the fully 

developed region where slight fluctuations of the cross-sectional solids holdup are found. 
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Figure 5-17. Comparison of the axial solids holdup profiles between the 3 in and 8 in 

downers 

 

Figure 5-18. Comparison of the radial solids holdup profiles between the 3 in and 8 

in downers under dilute conditions (Ug = 5 m/s and Gs = 200 kg/m2s) 
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Figure 5-19 Comparison of the radial solids holdup profiles between the 3 in and 8 

in downers under high-density conditions (Ug = 5m/s and Gs = 700kg/m2s) 

The radial solids holdup profiles show that the dilute and uniform core region of the downer 

shrinks with the increase in the diameter of the downer under both the dilute and dense 

operation conditions as shown in Figs. 5-18 and 5-19. The solids holdups in the center 

region are still close between the 3in downer and the scaled-up downer under dilute flow 

condition as shown in Fig. 5-18. However, a lower solids holdup in the center region is 

found in the scaled-up downer under the high-density condition since the solids holdup 

near the wall is much higher than that under the low-density condition as shown in Fig. 5-

19. Slight fluctuations of the radial solids holdup distribution are found in the developing 

region near the solids entrance of the scaled-up downer as shown in Fig. 5-18 (a) and Fig. 

5-19 (a), indicating that the distributor effect are promoted in the scale-up downer.  

The wall effects also promoted in the scale-up downer, which is consistent with the 

experimental observations (Yan & Zhu, 2004). The scaled-up downer reactor has a wider 

and denser wall region with a solids holdup greater than 0.05 near the wall which is about 

three times of the one in the smaller downer. The wall effects are more severe in the fully 

developed region than the entrance region of the downer where a much higher solids 

concentration up to 0.08 can be seen in Fig. 5-18 (b).  

Similar scale-up effects are found in both CFB risers and downers experimentally and 

numerically, which reveal that the wall effects become more important in scale-up 
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downers. Particles in the scaled-up downer tend to lose more momentum due to the wall 

friction and particle-wall interactions, resulting in a lower velocity and more intensive gas-

solid interactions. Consequently, more particle clusters are formed in the scaled-up downer, 

which move upward slower, so that solids holdup is higher. However, comparing with the 

severe clustering phenomenon in the CFB riser, the clusters effects in the scaled-up downer 

are relatively insignificant since the bulk of the scaled-up downer is still under uniform 

distribution for good mass and heat transfer. Moreover, with more particles retained in the 

scaled-up downer due to the clustering phenomenon, more total gas-solid contacting area 

is obtained, which is favorable for gas-phase catalytic reactions.   

 Conclusion 

The axially and radially flow structures are uniform in a CFB downer reactor, which is 

desirable for gas phase catalytic reactions requiring shorter reaction time and less back-

mixing. The radial uniformity of the solids holdup in the downer reactor also suggests a 

less significant clustering phenomenon in the CFB downer.  

The development of the gas-solid flow along the downer reactor can be divided into three 

stages including the first and second acceleration regions and the fully developed region 

based on the relationship between the drag force and the gravity on the particles. Under 

low-density operation conditions, the fully developed region occupies the major part of the 

downer. Under high-density operation conditions, the length of the second acceleration 

region increases with the increase in the overall bed density and gradually occupies the 

major part of the downer.  

A correlation to predict the overall bed density in the downer is developed based on the 

numerical results. A 2D map and 3D map of the overall bed density are generated based 

on the proposed correlation. An overall bed density of 0.03 corresponding to a ratio of 

solids circulation rate to the superficial gas velocity, Gs/Ug, around 65 kg/m3 can be 

considered as the boundary of the low-density operation and high-density operation of the 

downer.   
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The scale-up effects on the CFB downer are studied numerically and similar conclusions 

to the scale-up effects on the CFB riser are found. The wall effects are promoted in the 

scale-up downer reactor. A wider and denser annulus region is found in the scaled-up 

downer. However, comparing with the CFB downer, the enhanced non-uniformity by 

scale-up effects on the downer reactor is negligible. Higher gas throughput can be obtained 

in the scaled-up downer, which indicates a promising future for the industrial use of the 

CFB downer reactors. 

 

Nomenclature  

AT Cross-sectional area of the downer, m2 

𝑑𝑝 Particle diameter, m 

ess Coefficient of particle-particle restitution 

𝐹𝑠𝑙𝑖𝑝 Slip factor 

go,ss Radial distribution function of particles  

Gs Solids circulation rate, kg/m2s 

𝐼 
unit tensor 

h Axial distance from the gas distributor, m 

H Total height of the CFB downer, m 

𝑘 Turbulent kinetic energy, m2/s2 

P Fluid phase pressure, Pa 

Ps Solids phase pressure, Pa 

r Radial position of the CFB downer, m 

R Radius of the CFB downer, m  

𝑅𝑒𝑟 
Relative particle Reynolds number, = 

𝜌𝑔𝑑𝑝|𝑣𝑠⃗⃗⃗⃗ −𝑣𝑔⃗⃗ ⃗⃗  |

𝜇𝑔
 

Ug Superficial gas velocity, m/s 

𝑈𝑠
̅̅ ̅ Superficial solids velocity, m/s 

𝑣𝑔 Gas phase velocity, m/s 

http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
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𝑣𝑟 (Ur) Relative velocity: the ratio of the terminal settling velocity of a 

multiparticle system to that of an isolated particle 

𝑣𝑠 Solid phase velocity, m/s 

𝑣𝑠𝜏
′  Random component of the particle velocity, m/s  

𝑉𝑔,𝑖𝑛 Inlet gas velocity, m/s 

𝑉𝑠,𝑖𝑛 Inlet velocity of the solid phase, m/s   

𝛼𝑔 Gas phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

𝛾Θ𝑠 Collisional dissipation of energy 

 Ksg=Kgs Interphase momentum exchange coefficient 

ε Dissipation rate of the turbulent kinetic energy 

𝜀𝑠 Overall solids holdup in a gas-solids CFB riser 

𝜀𝑠̅ Correlated overall bed density 

λ Phase bulk viscosity, kg/ms 

μ Phase shear viscosity, kg/ms 

𝜇𝑔,𝑡 Gas phase turbulent viscosity, kg/ms  

𝜇𝑠,𝑡 Solids phase turbulent viscosity, kg/ms 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑠 Particle density, kg/m3 

∅𝑔𝑠 Granular temperature of particles, m2/s2  

𝜏 Phase stress-strain tensor, kg/s2 

ϕ Ratio of the opening area in the gas distributor  

Subscripts:  

g Gas phase 

s Solids phase 

x x axis 

y y axis 

p Particles  

 

http://www.cfd-online.com/W/index.php?title=Dissipation&action=edit&redlink=1
http://www.cfd-online.com/W/index.php?title=Turbulent_kinetic_energy&action=edit&redlink=1
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Chapter 6  

6 A cluster-driven drag model for gas-solids two-phase 
flows in circulating fluidized bed risers 

 Introduction 

A gas-solids circulating fluidized bed (CFB) riser reactor has a large number of 

applications in the industries including fluid catalytic cracking, combustion and 

gasification, pharmaceutical and food processes, and physical process such as drying 

(Grace, et al., 2003). A CFB riser usually operates under a high gas velocity, so that solids 

will be entrained out of the column and circulated through a downer. Consequently, the 

interactions between gas and particles are more intensive and the gas-solids flow structure 

is more complicated than the conventional low-velocity fluidized beds (Horio, et al., 1992; 

Takeuchi et al. 1986; Yerushalmi, et al., 1976).     

Computational fluid dynamics (CFD) modeling has become an effective tool for 

researchers to design and study gas-solids CFB riser reactors since the 1970s when the 

Eulerian-Eulerian (EE) two-fluid model was developed by Lyczkowski et al. (1978). 

Unlike the Eulerian-Lagrangian (EL) method which tracks particles by a force balance 

equation, EE approach treats both the gas and solids phases as interpenetrating continua 

and the kinetic theory of granular flow has been introduced into the model to calculate the 

properties of solids phase. For the simulations of large-scale gas-solids CFB risers, the EE 

two-fluid method (TFM) is more widely used since it requires less computational time 

compared with EL method. In the past decades, numerical results have achieved good 

agreements with the experimental observations in the general trend of flow structure in a 

CFB riser such as the core-annulus radial structure of solids holdup and the power-law 

velocity distribution of particles (Almuttahar & Taghipour 2008; Benyahia et al. 2000; 

Samuelsberg & Hjertager 1996; Tsuji, et al., 1998). However, when it comes to the detailed 

local flow structures such as the radial solids holdup distribution, discrepancies between 

the numerical results and the experimental data are commonly seen because it is always 

difficult to accurately model the interactions between gas and particles, which is needed in 

CFD simulations. Based on experimental observations, individual particles tend to 
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agglomerate to clusters when moving in the riser resulting in the hydrodynamics of the gas-

solids flow in a CFB riser too complicated to be numerically modelled.  

6.1.1 Particle clustering phenomenon in CFB risers 

Particle clustering phenomenon is a typical microscopic characteristics in gas-solids CFB 

riser due to strong hydrodynamic effects and cohesive forces (Cocco et al. 2010; Horio & 

Clift 1992). A cluster usually consists of a group of single particles with a higher solid 

concentration than the surrounding gas-solids suspension (Sharma et al. 2000). Parametric 

studies on cluster characteristics such as its size, shape, and solids concentration have been 

done experimentally with the development of the measuring techniques (Lackermeier et al. 

2001; Manyele, et al., 2002; Mondal et al. 2016; Xu & Zhu 2012). The clusters are found 

to have irregular shapes including large pieces such as strands and smaller spheres at 

different positions of the riser (Zou et al. 1994). Various sizes of clusters ranging from 

0.001m to 0.1m are detected in a FCC CFB  depending on the operating conditions and the 

corresponding identification method (Cahyadi et al. 2017). Both upward and downward 

moving clusters are detected in CFB risers at different positions under either dilute or dense 

conditions (Cahyadi et al. 2017). The cluster velocity measured experimentally for FCC 

particles also varies a lot form 0.25m/s to 3m/s (Harris, et al., 2002). A higher solids holdup, 

which even reaches 0.40 under certain high-density operations indicates the existence of 

clusters in a CFB riser. The average solids concentration of a cluster usually decreases 

along the axial direction of the riser and increases radially from the center towards the wall 

(Liu, et al., 2005; Yang & Zhu 2015; Yang & Leu 2009). 

Particle clusters in the fluidized bed have significant impacts on their surrounding flow 

field due to their higher concentration, lower rising velocity, and other dynamic behaviors 

such as the continuously changing shape and size. The intensive gas-solids interactions 

result in the continuous formation and breakup of particle clusters in the CFB riser. On the 

one hand, less gas can penetrate the clusters because of the large shear force at their 

boundaries resulting in a larger slip velocity than freely moving individual particles. A 

lower conversion of chemical reactions is expected due to less exchange of fresh gas and 

the reacting gas in the clusters. On the other hand, more particles can stay in the CFB riser 

under higher gas flowrate due to the existence of clusters, so that higher gas throughput is 
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achieved for gas-phase reactions. However, the complex gas-particle and inter-particle 

interactions contribute the difficulties in numerical simulations of CFB risers. 

6.1.2 CFD modelling on clustering phenomenon 

When it comes to numerical simulations on the gas-solids flow in the CFB riser by TFM, 

gas-solids interactions are usually included into the calculation of the momentum transfer 

which associates with the drag force in the gas-solids system. Therefore, many efforts have 

been put into the modification of the drag models to include the clustering effects in CFB 

risers.  

Most of the current drag models that include the clustering effects can be generally 

classified into three groups based on different understandings on the formation of clusters. 

In the first group, the drag model was developed based on the pressure drop of the fluidized 

bed, such as Wen and Yu model (1966), Gidaspow model (1990), and Huilin-Gidaspow 

model (2003). In the second group, modified drag models were obtained based on the 

concept of the Richardson-Zaki equation which relates the bed voidage with the terminal 

velocity of particles in fluidized beds, using different correlations for the volume fraction 

and particle relative velocity, such as the commonly used Syamlal-O’Brien model (1989) 

and Gibilaro model (1985). In both the above-mentioned groups, although the drag models 

were developed to include the clustering effect for the gas-solid system, only the properties 

of single particle were used as the input parameters into the models resulting in the 

deviations from the experimental data especially under denser conditions where more and 

larger clusters exist. On the other hand, the above-mentioned drag models were developed 

with the help of the experimental data which were collected before 2000, with the 

expansion of the gas-solids fluidization system since the new century, those drag models 

become not capable enough for wider operating ranges. In the third group, the meso-scale 

heterogeneity theory for the gas-solids system was used in the modified drag model and 

the size and density of a “numerical” cluster can be calculated from the modified drag 

model, such as the EMMS model (Li & Kwauk 2003) and CSD model (Shuai et al. 2011). 

Although “numerical” clusters were calculated based on the minimum energy dissipation 

theory form EMMS/CSD model, it has not been validated that those “numerical” clusters 

have the same properties as the real “observed” clusters existing in a fluidized bed.  
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6.1.3 Research gap between numerical work and experimental work 

For numerical simulations, proper data of the cluster properties are not readily available 

since the size, shape, and density of clusters vary not only with the positions in the riser 

but also with the operating conditions as mentioned above, let along that there is no unified 

cluster identification method until now. Although the effects of clustering phenomenon on 

the overall flow structures in the riser were well accepted, the understanding on the 

formation and the dynamic natures of clusters from the point view of the CFD modelling 

is quite different from the experimental studies. The clustering effects are included into the 

gas-solids interactions through the drag models or granular temperature in numerical 

simulations. Most of the modified drag models only tried to include the clustering effect 

by adding a factor to the drag models developed for the uniformly distributed particles 

because of lack of fully understanding of the experimental data on clusters. However, the 

properties of single particles were still used in those modified drag models. Some of those 

modified drag models work well under certain flow conditions in fluidized beds, but they 

are not suitable for general cases. On the other hand, the circulating gas-solids fluidization 

has expanded into a wider operating range with high-density conditions where larger and 

more frequent clusters have been seen, however, most of the current drag models developed 

before 2000 failed for the high-density CFB riser and often underestimate the solids holdup 

inside a riser.    

With more details of particle clusters inside a gas-solids fluidized bed have been revealed 

by advanced measurement technologies such as the high-speed video camera, the actual 

size, density, frequency, and concentration of the clusters can be detected nowadays. 

Directly including the properties of clusters into the calculation of the overall gas-solids 

drag force is a more efficient and realistic method to accurately predict the gas-solids 

interactions. A cluster-driven drag model that includes the clustering effect in gas-solids 

fluidization systems is developed in this study based on the statistical data of the clusters 

with the help of image analytical experiments.   
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 The concept of cluster-driven drag correlation 

Although clusters in CFB risers are detected to have various structures such as U-shape, 

strand, stripe, and sphere, a stable “core” with particular higher solids concentration exists 

and keeps constant both in size and solids holdup surrounded by the instantaneously 

transforming denser layers of particles (Xu & Zhu 2012; Yang & Zhu 2015). Smaller 

clusters might be more sphere-like because the majority of them is the highly concentrated 

“core” and the surrounding denser layer is very thin. Larger floc-like clusters consisting of 

multiple “cores” are commonly seen since smaller clusters tend to adhere together while 

moving and transforming in the riser (Xu & Zhu 2012). Those larger pieces of clusters can 

be considered as “cluster of core clusters”. Therefore, particle clusters inside a CFB riser 

can be generally classified into two types based on its structures and behaviors when 

moving in the riser. One is “core” cluster in which particles are tightly packed by fluid so 

that can hardly breakup during rising in the CFB riser. Another type is “cluster of core 

clusters” consisting of many loosely aligned “core” clusters which frequently form and 

breakup in the riser. The “core” clusters are relatively smaller and more stable with higher 

solids concentration than the loose large “cluster of core clusters”. In a gas-solids fluidized 

bed, only a certain portion of particles can move in the form of free individual particles and 

the particles captured inside a “core” cluster have less opportunities to contact with the 

surrounding fluid. Correspondingly, higher solids holdup and more nonuniform flow 

structure are detected in the CFB riser due to the clustering effects.  

The early experimental work has been done to quantify the stable “core” clusters in the 

riser and tried to provide the drag models with more properties of clusters such as the size, 

density, velocity, volume fraction. Li et al., (1991) reported a “core” cluster size of 1mm 

under a dilute low-velocity CFB condition (Ug < 3.5m/s, Gs < 35kg/m2s) by an image 

approach (Li et al. 1991). Cocco et al. (2010) found the clusters have an average size of 21

±1.7 particles and occupies 41% of the solids phase in a fluidized system for FCC particles 

via a high-speed video (Cocco et al. 2010). With the development of the measurement 

technologies and more experimental data collected especially under high-density 

conditions, the statistical results of the equivalent diameter and density of the “core” 
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clusters, and the portion of the “core” clusters in the total solids phase can be obtained from 

an image analysis. 

 

Figure 6-1: Sketch of a gas-solids fluidization system considering the existence of 

clusters 

Several assumptions based on the experimental observations of clusters are made to 

construct the proposed cluster-driven drag model. Stable and spherical “core” clusters exist 

in the entire CFB riser and the mass and momentum transfers are negligible for the fluid 

and single particles captured inside a “core” cluster.  

As shown in Figure 6-1, the gas-solids suspension in a CFB riser can be divided into a 

single particle phase (𝜑𝑝) which only contains freely moving individual particles, a cluster 

phase (𝜑𝑐𝑙) which consists of stable “core” clusters, a pure gas phase which represents the 

gas bypassing the individual particles or clusters since part of the total gas is captured into 

the clusters (𝜑𝑔). Therefore, the gas-solids interactions inside a CFB riser can be divided 

into two classes based on the types of solid phase as shown in Figure 6-2. Class 1 considers 

the interaction between the clusters and the pure gas phase with the assumption that the 

clusters are stable spherical clouds of single particles existing in the fluidized bed (“core” 

clusters). Class 2 considers the interaction between the freely moving individual particles 

and the pure gas phase. The total drag force between gas and solids can be obtained from 

the summation of the drag forces from Class 1 and Class 2.  
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Figure 6-2: Schematic diagram of the cluster-driven drag model 

6.2.1 Derivation of the correlation for the drag force 

 

Figure 6-3: Drag force on a particle in ideal system and homogeneous dilute 

suspension 

The derivation of the correlation for the drag force on a single particle in the ideal gas-

solids system with a homogeneous dilute suspension is illustrated in Figure 6-3. Under the 
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most ideal condition where there is only one particle in the fluid as shown in Figure 6-3 

(a), the drag force for a single particle can be determined based on the force balance: 

 𝐹𝑑 = 𝑉𝑙_𝑝 ∙ 𝑔 ∙ (𝜌𝑠 − 𝜌𝑔) (6-1) 

where Fd is the drag force exerted on the particle in an ideal system, Vl_p is the volume of 

a particle, 𝜌𝑠 and 𝜌𝑔 represent the density of the particle and fluid respectively. Based on 

the definition of the drag force, which is in the direction of the flow velocity, the drag force 

on a particle also relates with the fluid velocity (Gidaspow, 1994): 

 𝐹𝑑 =
1

2
∙ 𝐶𝑑 ∙ 𝜌𝑔 ∙ |𝑈𝑠𝑙𝑖𝑝| ∙ 𝑈𝑠𝑙𝑖𝑝 ∙ 𝐴𝑝 (6-2) 

where 𝐶𝑑 is the drag coefficient for a single particle in a fluid, 𝑈𝑠𝑙𝑖𝑝 is the slip velocity 

between fluid and particle, and 𝐴𝑝 =
𝜋∙𝑑𝑝

2

4
 is the reference area of a particle projecting to 

the fluid. 

In a dilute homogeneous gas-solids system with multiple particles as shown in Figure 6-3 

(b), particles are uniformly dispersed in the system so that the gas-solids suspension can be 

considered as mixture and the mixture density can be expressed as: 

 𝜌𝑠𝑢𝑠 = 𝜀𝑔𝜌𝑔 + (1 − 𝜀𝑔)𝜌𝑠 (6-3) 

where 𝜀𝑔 is the volume fraction of gas. For a single particle in the dilute homogeneous gas-

solids suspension as shown in Figure 6-3 (b), solid particles are sparsely distributed so that 

the forces from other particles are negligible and the drag force exerted on a single particle 

is derived as: 

 𝐹𝑑
′ = 𝑉𝑙_𝑝 ∙ (𝜌𝑠 − 𝜌𝑠𝑢𝑠)𝑔 = 𝑉𝑙_𝑝 ∙ 𝜀𝑔 ∙ (𝜌𝑠 − 𝜌𝑔)𝑔 =  𝜀𝑔 ∙ 𝐹𝑑 (6-4) 

Therefore, the total drag force per unit volume in the homogeneous gas-solids suspension 

can be calculated as: 



138 

 

 𝐹𝐷 = 𝑛𝑝 ∙ 𝐹𝑑
′  (6-5) 

where 𝑛𝑝 is the number of the particles per unit volume in the system and 𝑛𝑝 =
6(1−𝜀𝑔)

𝜋∙𝑑𝑝
3  . 

The total drag per unit volume in the homogeneous gas-solids suspension can be written 

as: 

 𝐹𝐷 = 
3

4
∙ 𝐶𝑑

′ ∙
𝜀𝑔∙(1−𝜀𝑔)∙𝜌𝑔∙|𝑈𝑠𝑙𝑖𝑝|∙𝑈𝑠𝑙𝑖𝑝

𝑑𝑝
 (6-6) 

where 𝐶𝑑
′  is the drag coefficient in the homogeneous dilute gas-solids system, 𝑑𝑝 is the 

diameter of the particles. 

In Eulerian-Eulerian two-fluid approach, the drag force is included in the momentum 

transfer term in the conservation equation of momentum for each phase: 

 𝐹𝐷 = 𝛽 ∙ (𝑉𝑔 − 𝑉𝑠) (6-7) 

where 𝛽 is the momentum transfer coefficient. Since the slip velocity between gas and 

solids can be presented as (𝑉𝑔 − 𝑉𝑠) locally, the momentum transfer coefficient can be 

derived based on Eq. (6-6): 

 𝛽 =
3

4
∙ 𝐶𝑑

′ ∙
𝜀𝑔∙(1−𝜀𝑔)∙𝜌𝑔∙|𝑈𝑠𝑙𝑖𝑝|

𝑑𝑝
 (6-8) 

6.2.2 Cluster-driven drag model  

Generally, in a gas-solids system, 𝛼𝑔 is the volume fraction of the gas phase, and 𝛼𝑠 =

(1 − 𝛼𝑔) is the volume fraction of the total solids phase which consists of the individual 

particles in Class 1 and the captured particles in the clusters of Class 2 as shown in Figure 

6-2. To include the clustering effects in the drag model, the cluster size (𝑑𝑐𝑙 ), solid 

concentration in the cluster (𝑑𝑒𝑛_𝑐𝑙), and the percentage of the total solids captured in the 

cluster phase (𝑃𝑐𝑙) are collected experimentally from the statistical data via clusters image 

analysis. 
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The portion of the freely moving individual particles in the total solids phase which is the 

volume fraction of the single particle phase inside the CFB riser is: 

 𝜑𝑝 = (1 − 𝑃𝑐𝑙)(1 − 𝛼𝑔) (6-9) 

The portion of the captured particles inside the clusters in the gas-solids system is: 

 𝜀𝑐𝑙 = 𝛼𝑠 − 𝜑𝑝 = 𝑃𝑐𝑙(1 − 𝛼𝑔) (6-10) 

Since the solids holdup in a cluster is 𝑑𝑒𝑛_𝑐𝑙, the volume fraction of the cluster phase is: 

 𝜑𝑐𝑙 =
𝑃𝑐𝑙(1−𝛼𝑔)

𝑑𝑒𝑛_𝑐𝑙
 (6-11) 

The portion of the captured gas inside the clusters is: 

 𝜀𝑔_𝑐𝑙 = 𝜑𝑐𝑙 ∙ (1 − 𝑑𝑒𝑛𝑐𝑙
) =

𝑃𝑐𝑙(1−𝛼𝑔)∙(1−𝑑𝑒𝑛𝑐𝑙
)

𝑑𝑒𝑛_𝑐𝑙
 (6-12) 

The volume fraction of the pure gas phase outside of the clusters is: 

 𝜑𝑔 = 𝛼𝑔 − 𝜀𝑔_𝑐𝑙 (6-13) 

The correlation for sparsely distributed particles (Schiller & Naumann, 1935) is used for 

the calculation of the drag coefficients for both the cluster phase and single particle phase, 

but with different parameters for those two phases. When calculating the drag force for the 

cluster phase, the clusters are assumed as stable spheres (“core” clusters) with a constant 

diameter, dcl and density, 𝜀𝑐𝑙, based on statistical data from the experiments. The volume 

fraction of the clusters phase is also obtained from the statistical experimental data by the 

image analysis. The slip velocity of the clusters is determined based on different operating 

conditions.  

Drag model for Class 1: 

The drag force in Class 1 comes from the interactions between the clusters (𝜑𝑐𝑙) and the 

bypassing gas (𝜑𝑔). Numerically in two-fluid model, the momentum transfer coefficient 

between clusters and the bypassing gas is: 
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 𝛽𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
3

4
∙ 𝐶𝐷_𝑐𝑙 ∙

𝜑𝑔∙𝜑𝑐𝑙∙𝜌𝑔∙|𝑈𝑠𝑙𝑖𝑝_𝑐𝑙|

𝑑𝑐𝑙
 (6-14) 

where 𝐶𝐷_𝑐𝑙 is the drag coefficient of clusters in the gas-solid system, 𝑑𝑐𝑙 is the average 

diameter of the “core” clusters, and 𝑈𝑠𝑙𝑖𝑝_𝑐𝑙  is the slip velocity between clusters and 

surrounding fluid. Currently, the terminal velocity of clusters is assumed the same as its 

slip velocity associating with its size and the operating condition as shown in the following 

equation (Kunii and Levenspiel 1969): 

 𝑈𝑠𝑙𝑖𝑝_𝑐𝑙 = √
4

3
∙
𝑑𝑐𝑙∙𝑔

𝐶𝐷_𝑐𝑙
∙
(𝜌𝑐𝑙−𝜌𝑔)

𝜌𝑔
 (6-15) 

The drag coefficient of clusters (𝐶𝐷_𝑐𝑙) is a function of cluster’s Reynolds number since the 

clusters are treated as stable solid spheres in Class 1. According to Schiller & Naumann’s 

correlation, for 1<𝑅𝑒𝑐𝑙<1000, the drag coefficient of the clusters is: 

 𝐶𝐷_𝑐𝑙 =
24

𝑅𝑒𝑐𝑙
(1 + 0.15𝑅𝑒𝑐𝑙

0.687) (6-16) 

For 𝑅𝑒𝑐𝑙>=1000, the drag coefficient of the clusters is: 

 𝐶𝐷_𝑐𝑙 = 0.44 (6-17) 

The cluster’s Reynolds number is based on the properties of clusters and the fluid is: 

 𝑅𝑒𝑐𝑙 =
𝜌𝑔∙𝑈𝑠𝑙𝑖𝑝_𝑐𝑙∙𝑑𝑐𝑙

𝜇𝑔
 (6-18) 

The drag model for Class 2: 

In Class 2, the drag force is due to the interaction between the pure gas (𝜑𝑔) and he freely 

moving single particles (𝜑𝑝). The momentum transfer coefficient between freely moving 

individual particles and pure gas is: 

 𝛽𝑝 =
3

4
∙ 𝐶𝐷_𝑝 ∙

𝜑𝑔∙𝜑𝑝∙𝜌𝑔∙|𝑈𝑠𝑙𝑖𝑝|

𝑑𝑝
 (6-19) 

where 𝑑𝑝 is the diameter of single particles, the slip velocity in Class 2 is 
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 𝑈𝑠𝑙𝑖𝑝 = (𝑉𝑔 − 𝑉𝑠) =  √(𝑈𝑔𝑥
− 𝑈𝑠𝑥)

2 + (𝑈𝑔𝑦
− 𝑈𝑠𝑦)

2 (6-20) 

𝐶𝐷_𝑝 is the drag coefficient for freely moving particles based on the Reynold’s number of 

single particles. For 𝑅𝑒𝑝 < 1000: 

 𝐶𝐷_𝑝 =
24

𝑅𝑒𝑝
(1 + 0.15𝑅𝑒𝑝

0.687) (6-21) 

where 𝑅𝑒𝑝 =
𝜌𝑔∙𝑈𝑠𝑙𝑖𝑝∙𝑑𝑝

𝜇𝑔
. For 𝑅𝑒𝑝≥1000, the drag coefficient of the clusters is: 

 𝐶𝐷_𝑝 = 0.44 (6-22) 

Therefore, the total momentum transfer coefficient for the gas-solid CFB riser is the 

summation of Class 1 and Class 2: 

 𝛽𝑔𝑠 = 𝛽𝑝 + 𝛽𝑐𝑙 (6-23) 

The total drag for the gas-solids fluidization system in a CFB riser is: 

 𝐹𝐷 = (𝛽𝑝 + 𝛽𝑐𝑙) ∙ (𝑉𝑔 − 𝑉𝑠) (6-24) 

 CFD model descriptions  

6.3.1 Governing equations 

The Eulerian-Eulerian two-fluid model coupling with the kinetic theory of granular flow is 

used for the simulation of the gas-solids flow in a CFB riser. A set of governing equations 

consisting of the mass and momentum conservation equations for both gas and solids 

phases are solved as listed in Table 6-1. 

6.3.2 Configuration of the CFB riser and mesh description 

The circulating fluidized bed riser is of 10 m high with a diameter of 7.62cm (3 in) as 

shown in Figure 6-4. Gas enters the riser through a perforated gas distributor from the 

bottom of the riser with an opening area ratio ( 𝛾) of 18%. The circulated particles return 

to the riser from the side pipe with an inner diameter of 5.08 mm (2 in). A quad grid system 
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with finer mesh near the wall and the inlet as shown in Figure 6-5 is used because the flow 

parameters in a CFB change greatly near those regions. The mesh information and gird 

independence test results were stated in Chapter 4. The commercial software Fluent V17 

is used for the simulation. 
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Table 6-1: Governing equations 

Continuity equation 

of gas and solids:  

∂

∂t
(𝛼𝑔𝜌𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔̅̅ ̅) = 0 (6-25) 

Continuity equation 

of solids: 

∂

∂t
(𝛼𝑠𝜌𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠̅) = 0 (6-26) 

Momentum equation 

of gas: 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) + 𝛻 ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑣𝑔⃗⃗⃗⃗ ) = −𝛼𝑔𝛻𝑃 + 𝛻 ∙ (𝛼𝑔 (𝜏𝑔

𝑚 + 𝜏𝑔
𝑅𝑒)) + 𝛼𝑔𝜌𝑔𝑔 + 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ )   

where 𝜏𝑔
𝑚 = −

2

3
𝜇𝑔.𝑚∇ ∙ 𝑣𝑔⃗⃗⃗⃗ 𝐼 + 𝜇𝑔.𝑚(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
), and 𝜏𝑔

𝑅𝑒 = −
2

3
(𝜌𝑘𝑔 + 𝜇𝑔,𝑡∇ ∙ 𝑣𝑔⃗⃗⃗⃗ )𝐼 + 𝜇𝑔.𝑡(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
). 

(6-27) 

Momentum equation 

of solids: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑣𝑠⃗⃗  ⃗) = −𝛼𝑠∇𝑃 − ∇P𝑠 + ∇ ∙ (𝛼𝑠 (𝜏𝑠

𝑚 + 𝜏𝑠
𝑅𝑒)) + 𝛼𝑠𝜌𝑠𝑔 + 𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) 

where 𝜏𝑠
𝑚 = (𝜆𝑠 −

2

3
𝜇𝑠)𝛻 ∙ 𝑣𝑠⃗⃗  ⃗𝐼 + 𝜇𝑠(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
), and 𝜏𝑠

𝑅𝑒 = −
2

3
(𝜌𝑘𝑠 + 𝜇𝑠,𝑡𝛻 ∙ 𝑣𝑠⃗⃗  ⃗)𝐼 + 𝜇𝑠.𝑡(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
). 

(6-28) 

Granular temperature 

equation 

3

2
[
𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠Θ𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗Θ𝑠)] = (−𝑃𝑠𝐼 + 𝜏𝑠) : ∇ 𝑣𝑠⃗⃗  ⃗ + ∇ ∙ (𝑘Θ𝑠∇Θ) − 𝛾Θ𝑠 + ∅𝑔𝑠 

where ∅𝑔𝑠 = −3𝑘g𝑠Θ𝑠. The collisional energy can be obtained by: γΘs =
12(1−ess

2 )go,ss

ds√π
ρsαs

2Θs
3/2

. 

(6-29) 

k equation for gas: 

∂

∂t
(𝛼𝑔𝜌𝑔𝑘𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑘𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝑘𝑔) + (𝛼𝑔𝐺𝑔,𝑘 − 𝛼𝑔𝜌𝑔𝜀𝑔) + 𝛽𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) −   𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔       

where the turbulent viscosity, 𝜇𝑔,𝑡 = 𝜌𝑔𝐶𝜇
𝑘𝑔

2

𝜀𝑔
,                                                                                

(6-30) 

ε equation for gas: 

∂

∂t
(𝛼𝑔𝜌𝑔𝜀𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝜀𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝜀𝑔) +

𝜀𝑔

𝑘𝑔
(𝐶1𝜀𝛼𝑔𝐺𝑔,𝑘 − 𝐶2𝜀𝛼𝑔𝜌𝑔𝜀𝑔 + 𝐶3𝜀(𝛽𝑔𝑠(𝐶𝑠𝑔𝑘𝑠 −    𝐶𝑔𝑠𝑘𝑔) −

𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔))      

(6-31) 

k equation for solids: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑘𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑘𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝑘𝑠) +   (𝛼𝑠𝐺𝑠,𝑘 − 𝛼𝑠𝜌𝑠𝜀𝑠) + 𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) −   𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠       

where the turbulent viscosity, 𝜇𝑠,𝑡 = 𝜌𝑠𝐶𝜇
𝑘𝑠

2

𝜀𝑠
 

(6-32) 

ε equation for solids: 

∂

∂t
(𝛼𝑠𝜌𝑠𝜀𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝜀𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝜀𝑠) +

𝜀𝑠

𝑘𝑠
(𝐶1𝜀𝛼𝑠𝐺𝑠,𝑘 − 𝐶2𝜀𝛼𝑠𝜌𝑠𝜀𝑠 + 𝐶3𝜀(𝛽𝑠𝑔(𝐶𝑠𝑔𝑘𝑔 −    𝐶𝑔𝑠𝑘𝑠) − 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ −

𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠))      

(6-33) 
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Figure 6-4: Configuration of the CFB 

riser (Li 2010) 

 

Figure 6-5: Mesh for the computational 

domain of the CFB riser 

6.3.3 Boundary conditions and solver descriptions 

Both the turbulent kinetic energy and turbulent dissipation rate term are discretized by the 

second order scheme and QUICK scheme is used for convection terms in the momentum 

equation. A time step size of 0.0001s and a convergence criterion of 5×10-4 for each scaled 

residual component are specified. The operating conditions of the fluidization system and 

properties of gas and solids phases are summarized in Table 6-2. A velocity profile based 

on the gas distributor of the CFB riser is employed as the inlet boundary condition for the 

gas phase, which is located at the bottom of the computational domain as shown in Figure 

6-5. The inlet gas velocity profile is calculated as:  

 𝑉𝑔_𝑖𝑛 = 𝑈𝑔/ϕ (6-34) 

where ϕ is the opening ratio of the gas distributor. Two symmetric solid phase inlets are 

located at the same height on both sides of the computational domain which are analogous 

to the solids returning pipe of the 3D column as illustrated in Figure 6-5. The solid phase 

inlets have the same diameter as the solids returning pipe with a uniform inlet velocity: 
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 𝑉𝑠_𝑖𝑛 = 𝐺𝑠/(𝜀𝑠 × 𝜌𝑠) (6-35) 

where Gs is the solids circulation rate, 𝜌𝑠 is particle density, and 𝜀𝑠 (=0.3) is the volume 

faction of solid phase at the inlet. No slip velocity boundary condition is applied at the wall 

for the gas phase and slip boundary condition with a specularity coefficient of 0.0001 and 

a restitution coefficient of 0.9 is employed for the solids phase at the wall. The outflow 

boundary condition is used for both the gas and solids phases at the outlet, which is at the 

top of the riser as shown in Figure 6-5.   

Table 6-2: Operating conditions and properties of gas and solids 

Gas density (kg⁄m3) 1.225 

Gas viscosity (kg⁄m∙s) 1.7894x10-5 

Solids particles FCC 

Particle density (kg⁄m3) 1550 

Particle diameter (μm) 67 

Particle-Particle restitution coefficient 0.9 

Particle-Wall restitution coefficient 0.95 

Specularity coefficient 0.0001 

 Results and discussion 

6.4.1 CFD cases for simulations 

Different cases as shown in Table 6-3 are used to validate the proposed cluster-driven drag 

model by comparing the results with experimental data as well as the numerical results 

from some commonly used drag models. The parameters of the “core” clusters such as 

cluster size, 𝑑𝑐𝑙, cluster solids holdup, 𝜀𝑐𝑙, are obtained from the experimental data for a 

CFB riser operated under the same conditions (Yang & Zhu 2014, 2015;  Wei, 2019). The 

ratio of the solids in the cluster phase to the total solids phase is set as 0.5 since many 

studies reported that about 40%-60% of the particles are captured in clusters in the gas-

solids CFB riser for FCC particles (Cocco et al. 2010; Yang & Zhu 2015). A wide operating 

window from dilute to denser conditions with the solids circulation rate, Gs, ranging from 

100 to 300 kg/m2s under a high superficial gas velocity (Ug=5-7 m/s) is selected for the 

numerical study on the gas-solids CFB system as shown in Table 6-3. The experimental 

results are collected from Li (2010) and Wang (2013) conducted on the same gas-solids 

CFB riser as shown in Figure 6-4. 
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Table 6-3: Summary of CFD cases used in simulations 

Case 
# 

Ug, 
m/s 

Gs, 
kg/m2s 

Drag model 
Cluster 

diameter, 
𝑑𝑐𝑙, m 

Custer solids 
holdup, 𝜀𝑐𝑙 

Solids ratio in 
clusters, p 

1 5 100 Syamlal-O’Brien model (OS) NA NA NA 

2 5 100 Schiller&Naumann model NA NA NA 

3 5 100 Gidaspow model NA NA NA 

4 5 100 Cluster-driven model 0.006 0.052 0.5 

5 5 300 Syamlal-O’Brien model (OS) NA NA NA 

6 5 300 Cluster-driven model 0.0052 0.185 0.5 

7 7 300 Syamlal-O’Brien model (OS) NA NA NA 

8 7 300 Cluster-driven model 0.0051 0.1196 0.5 

6.4.2 Evaluations of current commonly used drag models  

Three commonly used drag models, the Gidaspow model that is from the combination of 

Wen & Yu correlation and Ergun equation (Tsuo & Gidaspow 1990), the Syamlal-O’Brien 

model that is based on the voidage correlation with particle terminal velocity (Syamlal & 

O’Brien 1994), and Schiller & Naumann model (ANSYS 2013) that is originated for a 

homogenous particulate system, are selected  for the simulations of the gas-solids 

fluidization system. The results from those three drag models are compared with the 

experimental data for the radial profiles of solids holdup at different heights from the gas 

distributor as shown in Figure 6-6. 

Among them, the Schiller & Naumann model is considered as a general form of the drag 

model for a system of sparsely distributed solid particles, which has a homogeneous gas-

solids flow without particle agglomerations or clustering phenomenon. That is why the 

result from the Schiller & Naumann model has the worst agreement with the experimental 

data as shown in Figure 6-6, especially in the bottom zone or the wall region of the riser 

since more clusters are formed there. Both the Gidaspow model and the Syamlal-O’Brien 

model are found to agree with the experimental results well as shown in Figure 6-6. 

However, the Gidaspow model employs a correction factor (𝜀𝑔
−2.65) in the calculation of 

momentum transfer, which only associates with the voidage of the system and ignores the 

effects of slip velocity due to clusters. On the other hand, the Gidaspow model is 

discontinuous at 𝜀𝑔=0.8 so that it is not applicable for high-density CFB riser which usually 

has a gas holdup less than 0.8 in the wall region. The numerical results from the Syamlal-
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O’Brien model have the same tendency with the experimental data but underestimate the 

solids holdup in the center of the riser at the entrance region. By adjusting the drag model 

with the empirical correlation of both the voidage and velocity, the Syamlal-O’Brien model 

performs better than the Gidaspow model at the annulus region of the riser, but there are 

still little bit deviations with the experimental data near the wall.  

Simulation results for the axial solids holdup profiles from the proposed cluster-driven drag 

model and the three typical drag models are compared with the experimental data as shown 

in Figure 6-7. A uniform axial solids distribution is predicted by the Schiller & Naumann 

model, which underestimates the solids holdup and does not agree with the exponential 

profile from the experimental data since this drag model was developed for a homogeneous 

particulate system. Both the Gidaspow model and the Syamlal-O’Brien model predicted 

an exponential shape of the axial solids holdup profile which have the same tendency as 

the experimental data. However, although the simulation results at the dense bottom region 

of the riser agree well with the experimental data, the solids holdup at the upper dilute zone 

of the riser was underestimated by both the Gidaspow model and the Syamlal-O’Brien 

model as shown in Figure 6-7. The reason lies in the underestimation of the radial solids 

holdup in the annulus region of the riser in the upper zone as shown in Figure 6-6 (d)-(f), 

so that the cross-sectional solids holdup is lower comparing with the experimental data. In 

conclusion, the simulation results of the solids holdup profiles show that all the three 

typical drag models can predict accurately in the upper fully developed region (above 

h=6m) of the CFB riser as shown in Figure 6-6 (e) and (f). However, the solids holdup is 

underestimated in the annulus region comparing with the one in the center of the riser using 

all the three typical drag models.  

6.4.3 Validation of the cluster-driven drag model   

The commonly drag models failed to directly include the effects of clusters from the drag 

model since the drag models for a homogeneous system are usually modified by adding a 

correction factor to the total drag of the system. However, those empirical factors were 

developed before 2000 when the operating range of gas-solids CFB risers was yet to 

expand into high-density conditions, and the experiments data collected were from small-

scale equipment such as a CFB riser lower than 6 m high. When more and larger clusters 
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are formed in the CFB riser under denser conditions, such as in an HDCFB or in the wall 

region, larger deviations are detected since the effects of particle clusters in the CFB riser 

are still not correctly incorporated in those drag models. Therefore, although a reliable 

agreement can be achieved by those drag models for certain cases, the cluster-driven drag 

model covering a wider operating range from dilute to dense conditions of a CFB riser is 

proposed in this work.  

The predicted axial solids holdup profile using the proposed drag model is compared with 

those from the three typical drag models as well as the experimental data as shown in Figure 

6-7.  It can be seen that an exponential profile of the axial solids holdup is also predicted 

by the proposed drag model. A better agreement with the experimental data is achieved 

than those from other commonly used drag models as shown in Figure 6-7. 

  
(a) Height=1.96m (d) Height=5.85m 

  
(b) Height=2.88m (e) Height=7.35m  
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(c) Height=3.77m (f) Height=9.63m 

Figure 6-6: Comparison of the numerical results by commonly used drag models 

with the experimental data for the radial solids holdup profiles 

 

Figure 6-7: Comparison of numerical results by different drag models with the 

experimental data for the axial solids holdup profiles 

6.4.4 Flow structures in the CFB riser 

The results of the radial profiles of the solids holdup in the riser form the proposed cluster-

driven drag model are compared with those from the Syamlal-O’Brien drag model as 

shown in Figure 6-8. The radial profiles of the solid phase velocity from the proposed drag 

model are plotted and achieved a good agreement with the experimental results as shown 
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in Figure 6-9. The clustering phenomenon is more severe in the wall region due to the 

lower particle velocity, so that a core-annulus profile of the solids distribution with a dilute 

suspension in the center and a dense layer near the wall is formed in the CFB riser. A better 

agreement with experimental results is achieved by the cluster-driven drag model than that 

from the Syamlal-O’Brien model, especially in the near wall region and the entrance region 

(Figure 6-8 (a)), where more clusters tend to form, and the local solids holdup is 

underestimated by the Syamlal-O’Brien model in those regions. In the upper fully 

developed zone of the riser, both the proposed cluster-driven model and the Syamlal-

O’Brien drag model predict a dilute and flat core region in the riser, which agrees with the 

experimental results well. However, severe underestimation of the solids holdup near the 

wall region from the Syamlal-O’Brien drag model is found in the upper zone of the riser. 

It has been reported more and larger clusters are found near the wall of the riser (Manyele, 

Pärssinen, and Zhu 2002; Xu and Zhu 2012; Yang and Zhu 2015), the voidage and velocity 

correlation in the Syamlal-O’Brien drag model failed to predict the solids holdup under 

denser conditions with more severe clustering phenomenon near the wall region. The 

proposed cluster-driven drag model improves the prediction of the local solids holdup in 

the wall region as shown in Figure 6-8 (c) and (d). 

  
(a) H= 1.96m (a) H = 1.96m 
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(b) H = 3.77m (b) H = 3.77m 

  
(c) H= 7.35m (c) H = 7.35m 

  

(d) H= 9.63m (d) H = 9.63m 

Figure 6-8: Comparison of the Radial 

solids holdup profiles from the cluster-

driven drag model and the Syamlal-

O’Brien drag model 

Figure 6-9 Radial profiles of solids 

holdup from cluster-driven drag model 
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Axial profiles of the solids holdup under different operating conditions are plotted in Figure 

6-9. The overall bed density increases with the increase in the solids circulation rate or the 

decrease in the superficial gas velocity as shown in Figure 6-10. Generally, an exponential 

profile of the axial solids distribution with a denser bottom and a dilute upper zone is found 

in the riser. With the increase in the solids circulation rate, a clearer and relatively longer 

denser bottom region forms in the riser as shown in Figure 6-10, which also indicates that 

more severe clustering phenomenon takes place in the lower developing region of the riser. 

In the upper fully developed region of the riser, a good agreement with experimental data 

is achieved by the proposed cluster-driven model as shown in Figure 6-10. However, 

deviations are found in the bottom entrance region indicating that the clustering effect is 

still underestimated. Improvements including the axial cluster size distribution into the 

cluster-driven model will be made in the future.   

 

Figure 6-10: Axial profiles of the solids holdup under different operating conditions  
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Figure 6-11: Axial profile of the gas phase and solid phase velocities 

Further comparisons of gas and particle velocities and the slip velocity between the 

proposed cluster-driven model and the Syamlal-O’Brien model are illustrated in Figure 

6-11 and Figure 6-12. The predicted velocity profiles of the gas and particles from the 

proposed cluster-driven model and the Syamlal-O’Brien are very close to each other as 

shown in Figure 6-11. For the solids velocity profile along the riser, although the predicted 

solids velocity slightly deviate from the experimental the data, same trend of the solids 

velocity acceleration along the CFB riser is achieved as shown in Figure 6-11. Both the 

proposed cluster-driven model and the Syamlal-O’Brien model predict an acceleration 

region which is around 2 m from the gas distributor. The proposed cluster-driven model 

predicts a lower solids velocity than the one obtained by the Syamlal-O’Brien model as 

shown in Figure 6-11 indicating greater momentum transfer is obtained by the cluster-

driven drag model.  

When it comes to the slip velocity between gas and solids, a larger slip velocity is predicted 

by the cluster-driven drag model than that from the Syamlal-O’Brien model, especially in 

the bottom developing zone and the middle part of the riser as shown in Figure 6-12. 

Generally, the gas velocity is greater than solids velocity in the CFB riser, which results in 

the upward drag force exerted on the particles. For particle clusters with larger size than 

the individual particles, the upward drag force on the clusters per unit volume reduces with 

the increase of the diameter since the drag force is proportional to the projected area of the 
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particles. Therefore, the slip velocity of the clusters becomes larger with the reduction of 

the drag force per unit volume. The larger slip velocity of the solid phase from the cluster-

driven drag model indicates a more severe clustering effect in the CFB riser.     

The same effect using the cluster-driven drag model also can be seen from the profile of 

the granular temperature of solids in Figure 6-13, where the from cluster-driven drag model 

is obviously greater than the one calculated by the Syamlal-O’Brien model.  

From the view of clustering phenomenon in the CFB riser, the effect of the significant 

clustering phenomenon is captured by the cluster-driven model, so that a larger slip 

velocity is obtained since the clusters always move slower than single particles due to their 

larger size and higher concentration. Since the granular temperature associates with the 

particle fluctuations, a higher granular temperature of solids as shown in Figure 6-13 

indicates more intensive fluctuations, and resulting in more intensive gas-particle and 

particle-particle interactions in the riser. On the other hand, continuously formation and 

breakup of clusters lead to more gas-particle or particle-particle interactions which enhance 

the momentum transfer between gas and solids, which results a higher granular temperature. 

Based on Figure 6-11 and Figure 6-12, it can be seen that more clusters tend to be formed 

in the acceleration region, which was also reported Pärssinen and Zhu (2001), Wang,  et 

al. (2014), and Wang, et al. (2014). Therefore, both the slip velocity and granular 

temperature are higher at the bottom region due to the existence of clusters.   

 
Figure 6-12: Comparison of the slip velocity from the Syamlal-O’Brien model and 

cluster-driven model 
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Figure 6-13: Comparison of the granular temperature from the Syamlal-O’Brien 

model and cluster-driven model 

6.4.5 Effects of cluster size 

The effects of the cluster size is the first factor numerically studied by the cluster-driven 

drag calculation as shown in Figure 6-14 and Figure 6-15. Three sizes of clusters are 

selected in the cluster-driven drag model: 𝑑𝑐𝑙 = 0.0007m which is the same diameter of an 

individual FCC particle, 𝑑𝑐𝑙  = 0.0051m which is the median size from the statistical data 

of a cluster from image analysis, and 𝑑𝑐𝑙 = 0.01m which is about 150 times of an individual 

particle and close to the maximum size from the statistical data. The numerical results of 

the local solids holdup profiles from these three cases at the bottom, middle, and upper 

parts of the CFB riser under a high-density operating condition (Ug=7m/s, Gs=300kg/m2s) 

are compared with the results from Syamlal-O’Brein drag model and experimental data 

plotted in Figure 6-14.  

 
(a) H=2.88m 
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(b) H=5.85m 

 
(c) H=9.63m 

Figure 6-14: Numerical results from different cluster size by the proposed cluster-

driven drag calculation 

 

Figure 6-15: Results from simulations and experiments of overall solids holdup  

Generally, all the drag calculations perform well in the numerical simulations with a well 

predicted core-annulus structure of local solids holdup in the riser which has the same 

tendency with the experimental data as shown in Figure 6-14. Certainly, a higher solids 
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holdup is obtained by the cluster-driven model with larger cluster size which is reasonable 

since the relative Reynolds number increases with the increasing size of the cluster and 

resulting in a reduction of drag per unit volume. In the center region of the riser, the effects 

of cluster size are less significant and only with the extremely large cluster (dcl = 0.01m) 

the numerical results show a distinct deviation with the ones applying the statistical median 

cluster size or single particle diameter. Also, the effects of the cluster size are more distinct 

in the annulus layer than the center region of the riser, and the local solids holdup can be 

greatly enlarged for a better agreement with the experimental data by increasing the cluster 

size used in the calculation of drag. In the lower and middle parts of the riser, a good 

agreement in the center region is achieved by the drag calculations with smaller cluster size 

which is reasonable since smaller clusters tend to occur in the center dilute and high-

velocity region of the riser. The cluster-driven drag model using single particle diameter as 

the cluster size and the Syamlal-O’Brien model work better in the center region of the riser, 

than the ones with large cluster diameter. However, an underestimation still happens in the 

wall region for all the drag calculations especially in the lower part of the riser but well 

improved by the drag calculation with extremely large clusters while an overestimation is 

detected in the center region in the meanwhile as shown in Figure 6-14 (a) and (b).  

Near the top of the riser, all the drag models overestimate the local solids holdup in the 

center dilute region except for the cluster-driven drag model using the single particle 

diameter as cluster diameter indicating that less and smaller clusters occur in the center 

dilute region near the outlet since the flow is fully developed. Also, comparing with the 

well-established Syamlal-O’Brien drag model, an improvement in the wall region of the 

riser is achieved by increasing the cluster size in the cluster-driven model and the 

overestimation is much more severe by the Syamlal-O’Brien drag model than the other 

cluster-driven drag calculations in the center region at the top of the riser. In an HDCFB 

riser where the solids holdup increases dramatically in the wall region, the empirical 

voidage function used in Syamlal-O’Brien drag model might over-predict the uniformity 

of the flow structure in the dilute region resulting in an overestimation of the solids holdup 

in the center of the riser but an underestimation in the wall region as shown in Figure 6-14 

(c).      
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Figure 6-15 shows comparison of the axial solids holdup profiles from all the drag models 

with the experimental data. In the upper dilute region of the riser (h>5m), increasing the 

size of clusters in the drag calculation has an insignificant impact on the overall solids 

holdup except for the one using dcl=0.00007m and a good agreement with the experimental 

data is achieved by all the drag models as shown in Figure 6-15. A much denser suspension 

in the lower region of the riser is one of the remarkable characteristics in an HDCFB riser 

as shown in Figure 6-15, however, the commonly used Syamlal-O’Brien drag model failed 

to predict such a denser condition since the major part of the data it collected for the 

empirical correlation came form low-density operations (Syamlal and O’Brien 1994). A 

higher overall solids holdup can be obtained by increasing the size of cluster in the cluster-

driven model although an underestimation still exists comparing with the experimental data 

revealing the improvement achieved by including the cluster properties in the calculation 

of the drag as shown in Figure 6-15.   

 Conclusion  

A cluster-driven drag model that directly employs the properties of particle clusters inside 

the CFB riser in the drag model is proposed for numerical simulations of the gas-solids 

circulating fluidized bed riser. With the help of statistical analysis of the clusters through 

image processing based on the experimental data, the characteristics of clusters including 

the size, density, and volume fraction of the clusters under different operating conditions 

in the CFB riser are used in the drag model. The drag force is obtained by the summation 

of the drag force from clusters and the drag from freely moving single particles in the CFB 

riser. Improvements in the prediction accuracy are achieved by employing more realistic 

properties of clusters in the cluster-driven drag model, such as a good agreement of the 

axial solids holdup profile with the experimental data and a better agreement of local solids 

distribution especially in the wall region of the riser. Larger slip velocity and higher 

granular temperature are predicted by the proposed cluster-driven model than that those 

from the commonly used drag model suggesting more intensive interactions between gas 

and particles due to the existence of clusters. Effects of the cluster size are discussed by 

the cluster-driven drag model, a larger cluster size results in a higher overall solids holdup, 

especially in the bottom part of the gas-solid CFB riser. 



159 

 

 

Nomenclature  

𝐴𝑝 =
𝜋 ∙ 𝑑𝑝

2

4
 Reference area of a particle projecting to the fluid, m2 

𝐶𝐷_𝑐𝑙 Drag coefficient of clusters in the gas-solid system 

𝐶𝐷_𝑝 Drag coefficient of single particles in the gas-solid system 

𝐶𝑑 Drag coefficient for a single particle in a fluid 

𝐶𝑑
′  Drag coefficient in the homogeneous dilute gas-solids system 

𝐹𝐷 
Total drag force per unit volume in the homogeneous gas-solids 

suspension 

𝐹𝑑 Drag force for a single particle in the ideal gas-solids system 

𝐹𝑑
′  Drag force exerted on a single particle in multi-particle system 

𝑃𝑐𝑙 Percentage of the total solids captured in the cluster phase 

𝑅𝑒𝑐𝑙 Reynolds number of clusters 

𝑅𝑒𝑝 Reynolds number of single particles 

𝑈𝑠𝑙𝑖𝑝 Slip velocity between fluid and particle, m/s 

𝑈𝑠𝑙𝑖𝑝_𝑐𝑙 Slip velocity between clusters and surrounding fluid, m/s 

𝑉𝑔,𝑖𝑛 Inlet gas velocity, m/s 

𝑉𝑠,𝑖𝑛 Inlet velocity of the solid phase, m/s   

𝑉𝑠,𝑖𝑛_𝑚 Modified inlet velocity of the solid phase, m/s   

𝑑𝑐𝑙 Equivalent cluster diameter, m  

𝑑𝑒𝑛_𝑐𝑙 Solid concentration in the cluster 

𝑑𝑝 Particle diameter, m 

𝑛𝑝 =
6(1 − 𝜀𝑔)

𝜋 ∙ 𝑑𝑝
3  Number of the particles per unit volume 

𝛼𝑔 Gas phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

𝛽𝑐𝑙𝑢𝑠𝑡𝑒𝑟 Momentum transfer coefficient between clusters and the bypassing gas 

𝛽𝑔𝑠 Total momentum transfer coefficient between gas and solids 
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𝛽𝑝 
Momentum transfer coefficient between freely moving individual 

particles and pure gas 

𝜀𝑐𝑙 
Portion of the captured particles inside the clusters in the gas-solids 

system 

𝜀𝑔 Gas holdup 

𝜀𝑔_𝑐𝑙 Portion of the captured gas inside the clusters 

𝜀𝑠
′  Solids holdup in a homogeneously dispersed gas-solids system 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑠 Particle density, kg/m3 

𝜌𝑠𝑢𝑠 Mixture density of the gas-solid suspension, kg/m3 

𝜑𝑐𝑙 Volume fraction of cluster phase 

𝜑𝑔 
Volume fraction of pure gas phase bypassing the individual particles 

or clusters 

𝜑𝑝 Volume fraction of single particle phase 

g Gravity acceleration, m/s2 

Gs Solids circulation rate, kg/m2s 

h Height from the gas distributor, m 

h/H Relative axial position 

r/R Relative radial position  

Ug Superficial gas velocity, m/s 

Vl_p Volume of a particle 

ε Gas voidage 

εs Solids holdup in the CFB riser 

ϕ Ratio of the opening area in the gas distributor 
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Chapter 7  

7 Numerical study on particle clustering phenomenon in 
gas-solids circulating fluidized bed riser  

 Introduction 

The past 100 years have witnessed the global blossom of the gas-solids fluidization 

technology in various fields including catalytic cracking of oil, coal combustion and 

gasification, calcination of mineral materials, and physical processes like drying (Grace, et 

al., 2003). A gas-solids fluidization process operates by continuously introducing gas flow 

through the granular materials at a certain velocity, so solids particles will be suspended 

and turn into a fluid-like state. With the expansion of fluidization technology, high-velocity 

gas-solids fluidized beds especially the circulating fluidized bed (CFB) has wide 

applications due to its advantages over the conventional low-velocity fluidized beds, such 

as the uniform temperature distribution, better gas-solids contacting, high mass and heat 

transfers (Grace 1990). A typical gas-solids CFB system consists of a riser where 

suspended particles flow upward and a downer where entrained particles flow downward. 

CFB risers are more commonly used as a chemical reactor, which attracted considerable 

fundamental studies on the flow structures inside it (Ommen & Ellis 2010, Yerushalmi & 

Cankurt 1979, Yerushalmi, et al., 1976). Radial and axial non-uniformity is one of the 

notable characteristics inside a CFB riser due to the existence of particle clusters (Grace 

1986). In a gas-solids flow system, solids particles tend to agglomerate and form the so-

called “clusters” inside a fluidized bed due to hydrodynamic or cohesive effects (Cocco et 

al., 2010).  

Cluster is a group of particles which is highly concentrated than its surrounding dilute 

suspended particles in CFB risers (Horio & Clift, 1992). The shapes of clusters are 

characterized as sphere, U-shaped, and elongated strands or streams. Clusters are found to 

continuously form and breakup in the gas-solids CFB riser resulting in inevitable impacts 

on the flow structures. The dynamic behavior, irregular shapes, and higher concentration 

of clusters make the hydrodynamics in the CFB riser more complex. Therefore, studies on 
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clustering phenomenon have emerged rapidly in the past decades (Cocco et al. 2010; 

Sharma et al. 2000; Tsuji, et al., 1998).  

Although different interpretations of data existed for years, the size, density, velocity, 

frequency, and axial and radial distributions of clusters are characterized with the help of 

some novel experimental techniques and analysis approaches (Lackermeier et al. 2001; 

Mondal et al. 2016; Xu & Zhu 2012). Cluster size is reported to vary from 0.001 m to 0.1 

m and the cluster voidage is found to range from 0.4 under extremely dense conditions to 

over 0.9 in some dilute cases. Both increasing and decreasing trends of cluster size and 

voidage are observed axially and radially in CFB risers. Both upward and downward 

moving clusters are detected due to the local flow conditions and particle properties.  

Despite the dynamic nature of clustering phenomenon, “core” clusters with more spherical 

shape and relatively smaller size are detected to stably move in CFB riser (Yang & Zhu 

2015). A series of small “core” clusters connected by denser wakes of particles usually 

form a larger piece of cluster whose shape transforms frequently since the “core” clusters 

are loosely aligned.  

Being fully aware of the existence of particle clusters inside a gas-solids CFB riser, 

researchers have put lots efforts into better describing the clustering phenomenon in 

numerical models since the 1970s (Sinclair & Jackson 1989; Tsuo & Gidaspow 1990; Wen 

& Yu 1966). The clustering effects are included into the interactions between gas and 

particles in computational fluid dynamic (CFD) models. Comparing with the Eulerian-

Lagrangian method, which requires higher computational time, the Eulerian-Eulerian (EE) 

approach is more applicable for simulations of large-scale CFB risers. The EE two-fluid 

model (TFM), which treats both the gas and solid phases as interpenetrating continua, has 

become an effective tool to simulate the gas-solids flow in a CFB riser. In the TFM, an 

accurate drag model is required to account for the clustering effects. Larger drag force is 

expected for a cluster due to its larger size and correspondingly lager slip velocity than a 

single particle. Unlike a homogeneous particulate system in which the drag force can be 

derived analytically, the drag force in a gas-solids CFB riser can be considered as a 

combination of the drag forces from freely moving single particles and the clusters. Current 

drag models used in gas-solids CFB riser simulations are mainly based on empirical 



167 

 

correlations in which a voidage function accounting for the clustering effects is commonly 

used, however, the underlying physics of those empirical correlations are still unclear. On 

the other hand, the operations of gas-solids CFB risers have expanded to high-density (HD) 

conditions with different flow structures as well as clustering phenomena from low-density 

(LD) conditions. Previous correlations used to account for the clustering phenomenon are 

not appropriate to describe the gas-solids interactions in a HDCFB because most of them 

were developed based on experimental data under more dilute conditions. Therefore, a 

more accurate drag model to include the clustering effect, which is named as cluster-driven 

drag model, is developed in this study with the help of image analysis in CFB risers based 

on the experimental date. In this cluster-driven drag model, the drag force is calculated by 

a summation of the drag force due to clusters and the drag force due to freely moving 

particles. The cluster size, voidage, and portion of particles captured in clusters, which are 

obtained from the statistical data via image analysis based on the experimental data, are 

employed in the proposed drag model. Numerical simulations using the proposed cluster-

driven drag model for the gas-solids two-phase flows in a CFB riser from conditions to 

high-density conditions are carried out and the effects of clusters on the flow structures are 

investigated based on the numerical results.  

 CFD model descriptions 

7.2.1 Governing equations and mesh setup 

Experimental studies were conducted in a gas-solids CFB riser as shown in Figure 7-1 (Li, 

2010; Wang, 2013). The CFB riser has an inner diameter of 0.0762 m (3 in) and is of 10 m 

in height (Li, 2010). The radial and axial data of solids holdups and particle velocities are 

obtained by optical fiber probes at different positions in the CFB riser. Since the 

experimental column is too large for a 3D simulation, two-dimensional CFD simulation is 

selected. A 2D mesh consisting of 120×4000 grids with finer grids near the wall and the 

inlets as shown in Figure 7-2 is used because the flow parameters in a CFB change greatly 

near those regions. The gird independent test was done in the previous work.  

An Eulerian-Eulerian two-fluid model (TFM) is employed to simulate the gas-solids flows 

in a CFB riser. Both the gas and solids phases are treated as interpenetrating continua in 
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the TFM. The kinetic theory of granular flow (KTGF) is used in the TFM to obtain the 

pressure and bulk viscosity of the solids phase based on the granular temperature of the 

solids particles. The k-ε turbulence model is applied for both gas and solids phases. Table 

7-1 lists the governing equations for the simulation of the gas-solids two-phase flow in a 

CFB riser. The commercial software ANSYS Fluent V17 is used for the simulations. The 

second order discretization scheme is selected for the turbulence equations and QUICK 

scheme is used for convection terms in the momentum equations. The convergence 

criterion is specified as 5×10-4 for each scaled residual component. 

 

Figure 7-1: Configuration of the CFB 

riser (Li 2010) 

 

Figure 7-2: Mesh for the computational 

domain of the CFB riser 

7.2.2 Boundary conditions  

A velocity profile based on the gas distributor of the CFB riser is employed as the inlet 

boundary condition for the gas phase, which is located at the bottom of the computational 

domain as shown in Figure 7-2. Two symmetric solid phase inlets are located at the same 

height on both sides of the computational domain, which are analogous to the solids 

returning pipe of the 3D column as shown in Figure 7-1. The solid phase inlets have the 

same diameter as the solids returning pipe with a uniform inlet velocity. No slip velocity 

boundary condition is applied at the wall for the gas phase and partial slip boundary 
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condition with a specularity coefficient of 0.0001 and a restitution coefficient of 0.9 is 

employed for the solids phase at the wall. The outflow boundary condition is used for both 

the gas and solids phases at the outlet, which is at the top of the riser as shown in Figure 

7-2.   

7.2.3 Cluster-driven drag model 

A cluster-driven model is proposed to include the clustering effect on the drag force in the 

gas-solids two-phase flow in the CFB riser. The gas-solids interactions inside a CFB riser 

can be divided into two classes based on the types of solid phase as shown in Figure 7-3, 

(1) the drag force between the single particles and the gas phase and (2) the drag force 

between the clusters and the gas phase with the assumption that the clusters are stable 

spherical clouds of single particles existing in the fluidized bed (“core” clusters). The total 

drag force between the gas and solids is the summation of those two drag forces. The 

detailed derivation of the cluster-driven drag model was given in the previous work. The 

drag coefficients for both the single particle and clusters are from the Schiller & 

Naumann’s correlation (ANSYS 2013). Table 7-2 lists the equations and parameters used 

in the cluster-driven model.  

 

Figure 7-3: Schematic diagram of the cluster-driven drag model 
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Table 7-1: Governing equations  

Continuity equation 
of gas and solids:  

∂

∂t
(𝛼𝑔𝜌𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔̅̅ ̅) = 0 

(7-1) 

Continuity equation 
of solids: 

∂

∂t
(𝛼𝑠𝜌𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠̅) = 0 

(7-2) 

Momentum 
equation of gas: 

𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) + 𝛻 ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑣𝑔⃗⃗⃗⃗ ) = −𝛼𝑔𝛻𝑃 + 𝛻 ∙ (𝛼𝑔 (𝜏𝑔

𝑚 + 𝜏𝑔
𝑅𝑒)) + 𝛼𝑔𝜌𝑔𝑔 + 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ )   

where 𝜏𝑔
𝑚 = −

2

3
𝜇𝑔.𝑚∇ ∙ 𝑣𝑔⃗⃗⃗⃗ 𝐼 + 𝜇𝑔.𝑚(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
), and 𝜏𝑔

𝑅𝑒 = −
2

3
(𝜌𝑘𝑔 + 𝜇𝑔,𝑡∇ ∙ 𝑣𝑔⃗⃗⃗⃗ )𝐼 + 𝜇𝑔.𝑡(∇𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 

𝑇
). 

(7-3) 

Momentum 
equation of solids: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑣𝑠⃗⃗  ⃗) = −𝛼𝑠∇𝑃 − ∇P𝑠 + ∇ ∙ (𝛼𝑠 (𝜏𝑠

𝑚 + 𝜏𝑠
𝑅𝑒)) + 𝛼𝑠𝜌𝑠𝑔 + 𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) 

where 𝜏𝑠
𝑚 = (𝜆𝑠 −

2

3
𝜇𝑠)𝛻 ∙ 𝑣𝑠⃗⃗  ⃗𝐼 + 𝜇𝑠(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
), and 𝜏𝑠

𝑅𝑒 = −
2

3
(𝜌𝑘𝑠 + 𝜇𝑠,𝑡𝛻 ∙ 𝑣𝑠⃗⃗  ⃗)𝐼 + 𝜇𝑠.𝑡(𝛻𝑣𝑠⃗⃗  ⃗ + 𝛻𝑣𝑠⃗⃗  ⃗

𝑇
). 

(7-4) 

Granular 
temperature 
equation 

3

2
[
𝜕

𝜕𝑡
(𝜌𝑠𝛼𝑠Θ𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗Θ𝑠)] = (−𝑃𝑠𝐼 + 𝜏𝑠) : ∇ 𝑣𝑠⃗⃗  ⃗ + ∇ ∙ (𝑘Θ𝑠∇Θ) − 𝛾Θ𝑠 + ∅𝑔𝑠 

where ∅𝑔𝑠 = −3𝑘g𝑠Θ𝑠. The collisional energy can be obtained by: γΘs =
12(1−ess

2 )go,ss

ds√π
ρsαs

2Θs
3/2

. 

(7-5) 

k equation for gas: 

∂

∂t
(𝛼𝑔𝜌𝑔𝑘𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝑘𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝑘𝑔) + (𝛼𝑔𝐺𝑔,𝑘 − 𝛼𝑔𝜌𝑔𝜀𝑔) + 𝛽𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) −

   𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔       

where the turbulent viscosity, 𝜇𝑔,𝑡 = 𝜌𝑔𝐶𝜇
𝑘𝑔

2

𝜀𝑔
,                                                                                

(7-6) 

ε equation for gas: 

∂

∂t
(𝛼𝑔𝜌𝑔𝜀𝑔) + ∇ ∙ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ 𝜀𝑔) = ∇ ∙ (𝛼𝑔

𝜇𝑔,𝑡

𝜎𝑘
∇𝜀𝑔) +

𝜀𝑔

𝑘𝑔
(𝐶1𝜀𝛼𝑔𝐺𝑔,𝑘 − 𝐶2𝜀𝛼𝑔𝜌𝑔𝜀𝑔 + 𝐶3𝜀(𝛽𝑔𝑠(𝐶𝑠𝑔𝑘𝑠 −

    𝐶𝑔𝑠𝑘𝑔) − 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔))      

(7-7) 

k equation for 
solids: 

∂

∂t
(𝛼𝑠𝜌𝑠𝑘𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝑘𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝑘𝑠) + (𝛼𝑠𝐺𝑠,𝑘 − 𝛼𝑠𝜌𝑠𝜀𝑠) + 𝐾𝑔𝑠(𝐶𝑔𝑠𝑘𝑔 − 𝐶𝑠𝑔𝑘𝑠) −

   𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙
𝜇𝑔,𝑡

𝛼𝑔𝜎𝑔
∇𝛼𝑔 + 𝛽𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠       

where the turbulent viscosity, 𝜇𝑠,𝑡 = 𝜌𝑠𝐶𝜇
𝑘𝑠

2

𝜀𝑠
 

(7-8) 

ε equation for 
solids: 

∂

∂t
(𝛼𝑠𝜌𝑠𝜀𝑠) + ∇ ∙ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗𝜀𝑠) = ∇ ∙ (𝛼𝑠

𝜇𝑠,𝑡

𝜎𝑘
∇𝜀𝑠) +

𝜀𝑠

𝑘𝑠
(𝐶1𝜀𝛼𝑠𝐺𝑠,𝑘 − 𝐶2𝜀𝛼𝑠𝜌𝑠𝜀𝑠 + 𝐶3𝜀(𝛽𝑠𝑔(𝐶𝑠𝑔𝑘𝑔 − 𝐶𝑔𝑠𝑘𝑠) −

𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙
𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠 + 𝛽𝑔𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑔⃗⃗⃗⃗ ) ∙

𝜇𝑠,𝑡

𝛼𝑠𝜎𝑠
∇𝛼𝑠))      

(7-9) 
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Table 7-2: Cluster-driven drag model  

Momentum transfer coefficient for 

clusters 𝛽𝑐𝑙 =
3

4
∙ 𝐶𝐷_𝑐𝑙 ∙

𝜑𝑔 ∙ 𝜑𝑐𝑙 ∙ 𝜌𝑔 ∙ |𝑈𝑠𝑙𝑖𝑝_𝑐𝑙|

𝑑𝑐𝑙
 (7-10) 

Slip velocity of clusters: 

𝑈𝑠𝑙𝑖𝑝_𝑐𝑙 = √
4

3
∙
𝑑𝑐𝑙 ∙ 𝑔

𝐶𝐷_𝑐𝑙
∙
(𝜌𝑐𝑙 − g)

𝜌𝑔
 

(7-11) 

Drag coefficient of clusters: 𝐶𝐷_𝑐𝑙 =
24

𝑅𝑒𝑐𝑙
(1 + 0.15𝑅𝑒𝑐𝑙

0.687) for 𝑅𝑒𝑐𝑙<1000 

𝐶𝐷_𝑐𝑙 = 0.44 for 𝑅𝑒𝑐𝑙≥1000 

where: 𝑅𝑒𝑐𝑙 =
𝜌𝑔∙𝑈𝑠𝑙𝑖𝑝_𝑐𝑙∙𝑑𝑐𝑙

𝜇𝑔
 

(7-12) 

Momentum transfer coefficient for 

single particles 
𝛽𝑝 =

3

4
∙ 𝐶𝐷_p ∙

𝜑g ∙ 𝜑𝑝 ∙ 𝜌𝑔 ∙ |𝑈𝑠𝑙𝑖𝑝|

𝑑𝑝
 (7-13) 

Drag coefficient of single particles: 𝐶𝐷_p =
24

𝑅𝑒𝑝
(1 + 0.15𝑅𝑒𝑝

0.687) for 𝑅𝑒𝑝<1000 

𝐶𝐷_p = 0.44   for 𝑅𝑒𝑝>=1000 

where: 𝑅𝑒𝑝 =
𝜌𝑔∙𝑈𝑠𝑙𝑖𝑝∙𝑑𝑝

𝜇𝑔
 

(7-14) 

Momentum transfer coefficient for gas-

solids system: 𝛽𝑔𝑠 = 𝛽𝑝 + 𝛽𝑐𝑙 (7-15) 
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 Results and discussion 

7.3.1 Flow development 

7.3.1.1 Solids holdup profiles 

   

   

   

   
(a) Ug=5m/s, 

Gs=100kg/m2s 
(b) Ug=5m/s, 

Gs=300kg/m2s 
(c) Ug=5m/s, 

Gs=400kg/m2s 

Figure 7-4: Solids holdup profiles in the radial direction at different heights of the 

CFB riser 
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Three cases of the gas-solids flows in the high-velocity CFB regime covering from dilute 

conditions to dense conditions under the same superficial gas velocity (Ug = 5 m/s, Gs = 

100, 300, 400 kg/m2s) are selected as shown in Figure 7-4. The numerical results of the 

radial solids holdup profiles at different heights along the CFB riser (h=1.96, 3.77, 7.35, 

and 9.63m from the gas distributor) using both the proposed cluster-driven drag model and 

the well-accepted Syamlal-O’brien drag model (1989) are plotted and compared with 

experimental data in Figure 7-4.  

Generally, the gas-solids suspension is more dilute in the center of the riser and dense near 

the wall since the gas velocity is high in the center of the riser and low near the wall. 

Therefore, more severe clustering phenomena take place at the near wall region. In the 

axial direction, the dilute solids at the center of the riser with flat distribution in the radial 

direction expands along the riser due to the development of flow as shown in Figure 7-4. 

The dilute core region also shrinks with the increase in the solids circulation rate from r/R 

= 0-0.7 under a low-density condition as shown in Figure 7-4 (a) to r/R = 0-0.5 under high-

density conditions as shown in Figure 7-4 (c). Both the cluster-driven model and Syamlal-

O’brien drag model give a good agreement with the experimental data in the dilute center 

region of the riser, however, the Syamlal-O’brien drag model underestimates the solids 

holdup near the wall, especially in the upper zone of the riser (h > 6 m). Under a HDCFB 

condition (Gs ≥ 300 kg/m2s), more solids tend to agglomerate together, which results in a 

less uniform gas-solids flow structure along the radial direction compared with the LDCFB. 

A thicker and much denser annulus layer is found in the riser where 𝜀𝑠 near the wall even 

reaches as high as 0.4 in some extremely dense cases although the solids holdups in the 

core region of the LDCFB and HDCFB are roughly the same as shown in Figure 7-4 (b) 

and (c). 
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7.3.1.2 Velocity profiles of gas and particles 

 

(a) Solids holdup  (b) Gas velocity, m/s  (c) Particle velocity, m/s 

Figure 7-5: Velocity profiles of gas and particles in the radial direction at different 

heights of the CFB riser (Ug = 7 m/s, Gs = 400 kg/m2s) 
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More details on the flow structures can be revealed by the velocity profiles of both the gas 

and particles and the corresponding solids holdup profiles in the radial direction at different 

heights along the CFB riser, which are shown in Figure 7-5 under a high-density condition 

(Ug = 7 m/s, Gs = 400 kg/m2s). A typical downward power-law structure with higher 

velocity in the center of the riser and much lower velocity at the wall is found for both the 

gas and solids phases as shown in Figure 7-5 (b) and (c). Both the gas and particle velocity 

profiles become more uniform in the radial direction from the bottom to the top along the 

CFB riser. Also, the maximum velocity gradually reduces for both phases, and in the 

contrast, the boundary layer becomes thinner at the near wall region. Correspondingly, 

Figure 7-5 (a) shows more uniform solids holdup profiles in the upper dilute zone in the 

riser indicating that the flow structure becomes more uniform due to the less significant 

clustering effects.  

Comparing with the gas velocity profile, the particle velocity profile is more uniform with 

a lower maximum velocity at the center of the riser. A larger slip velocity between the gas 

and solids can be found in the bottom zone of the riser (h < 5 m) as shown in Figure 7-5 

(b) and (c), which means the gas-solid flow is under developing. The clustering effect could 

be more significant in the developing region due to the more intensive interactions between 

the gas and particles, so, the solids holdup is higher there as shown in Figure 7-5 (a). 

However, the gas and particle velocities becomes very close to each other with a nearly 

zero slip velocity in the upper zone of the riser, resulting in a fully developed region for 

the gas-solid flow with lower solids concentration. Due to the size of clusters, the rising 

velocities of clusters are lower compared with freely moving particles. Consequently, the 

local solids holdup will be higher due to a reduced particle velocity. Therefore, higher local 

solids holdup indicates more likely the formation of clusters, such as at the near wall region 

and the bottom region of the riser.  

The major deviation between the numerical results and experimental data happens at the 

dense wall region of the riser where more clusters exist. The cluster-driven model predicts 

a narrower power-law profile of the gas velocity with a higher maximum velocity at the 

center of the riser and lower velocity at the near wall region than those from the Syamlal-

O’Brien drag model in the entrance region of the riser (h = 1.04, 2.88 m). A better 
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agreement with the experimental data for the solids holdup at the near wall region is 

achieved using the cluster-driven model than that from the Syamlal-O’Brien drag model as 

shown in Figure 7-5 (a). The gas velocity profiles from the proposed cluster-driven model 

and Syamlal-O’Brien drag model are very close to each other in the upper part of the riser 

(h > 3.77 m), except for a lower maximum gas velocity in the center of the riser by the 

cluster-driven model. A distinct lower solids velocity is predicted by the cluster-driven 

model near the wall region along the entire riser, which results in a higher solids holdup 

there as shown in Figure 7-5 (a).  

In summary, by including the average diameter of clusters and solid concentration of the 

clusters into the drag model, a better agreement with the experimental data was achieved 

for the solids holdup in the near wall region using the cluster-driven drag model, especially 

in a HDCFB. A slight underestimation in the wall region still happened because the actual 

size and density of the clusters in the annulus layer of the riser are usually higher than the 

average values, which are used in the cluster-driven model. 

Table 7-3: Cluster properties under different operating conditions based on 

statistical data from experiments 

Ug, 
m/s 

Gs, 
kg/m2s 

𝑑𝑐𝑙, m 𝑉𝑐𝑙, m
3 𝜀𝑐𝑙 𝑑𝑝, m 𝑉𝑙_𝑝, m3 Number of particles 

5 100 0.006 9.04779E-07 0.0520 0.000067 1.26E-12 37345 

5 300 0.0052 5.88977E-07 0.1850 0.000067 1.26E-12 86488 

5 400 0.0045 3.81704E-07 0.2450 0.000067 1.26E-12 74229 

7 300 0.0051 5.55647E-07 0.1196 0.000067 1.26E-12 52749 

7 400 0.0047 4.34893E-07 0.1550 0.000067 1.26E-12 53505 

Table 7-3 lists the cluster properties under different operating conditions, such as the 

equivalent diameter (𝑑𝑐𝑙), the solid concentration (𝜀𝑐𝑙), the volume of a cluster (𝑉𝑐𝑙), and 

the number of individual particles inside a cluster based on the data obtained from 

experiments.  

With the increase in Gs under the same gas velocity, the size of cluster decreases slightly 

while its solid concentration (𝜀𝑐𝑙) increases dramatically as shown in Table 7-3, which 

explains why the commonly used drag models such as Syamlal-O’Brien drag model do not 

perform well in the high-density case. The empirical correlations used in those drag models 
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are mainly based on the voidage function, which is related to the velocity ratio, not the 

cluster density. Although the Syamlal-O’Brien drag model used a voidage function in the 

near wall region the solid holdup under a much denser condition in a HDCFB is still 

underestimated. In the upper dilute zone of the riser, the non-uniformity of the radial solids 

distribution is under-predicted as well by the Syamlal-O’Brien drag model, which indicates 

that the use of the voidage function alone cannot correctly predict the drag force at the wall.    

In the near wall region, the flow structures in the LDCFB and HDCFB differ a lot as shown 

in Figure 7-4. A much higher solids holdup and a wider wall layer are found in the HDCFB 

as shown in Figure 7-4 (b) and (c). From the point view of the clustering phenomenon, 

higher Gs results in smaller, but denser “core” clusters as shown in Table 7-3 and more 

“core” clusters tend to form in near the wall region, therefore, large “cluster of clusters” at 

the wall is formed.  

7.3.2 Cluster distributions 

7.3.2.1 Fidelity of the CFD models  

 

 

H=1-2m  



 

178 

 

  
H=2-3m  

  
H=3-4m  
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H=5-6m  

 
 

H=7-8m  
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H=9-10m  
(a): results from the cluster-driven model (b): results from the Syamlal-O’Brien model 

Figure 7-6: Instantaneous solids holdup contours of the riser (Ug = 5 m/s, Gs = 300 

kg/m2s) 

The contours of the solids holdup of a high-density flow case (Ug = 5 m/s, Gs = 300 kg/m2s) 

using the cluster-driven drag model is compared with the results from the Syamlal-O’Brien 

drag model as shown in Figure 7-6. The area with solids holdup less than 0.02 is cut off as 

the white regions as shown in Figure 7-6 to better display the denser regions, which indicate 

the locations of clusters. Clearly, both the cluster-driven drag model and Syamlal-O’Brien 

model predict various highly concentrated regions inside the CFB riser, indicating the 

existence of particle clusters as shown in Figure 7-6. However, the cluster behaviors are 

quite different from these two drag models as shown in Figure 7-6 although the solids 

holdup profiles are similar as shown in Figure 7-4. In the upper zone of the riser, similar 

contours of the solids holdup are obtained by both the cluster-driven model and Syamlal-

O’Brien model as shown in Figure 7-6. The solids concentration of the denser regions 

reduces with smaller “core” clusters in the upper fully developed zone indicating the 

clustering effects are mitigated due to the flow development. However, in the lower part of 

the riser, elongated streamers and larger pieces of clusters are predicted by the Syamlal-

O’Brien model as shown in Figure 7-6 (b). Comparing with the contours of the cluster-
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driven model where more space in the riser is occupied by denser regions with smaller 

“core” clusters embedded, the numerical results from the Syamlal-O’Brien model show 

highly concentrated dense regions that occupy less space in the riser, which are different 

from that reported by experimental observations.  

  
(a): Cluster-driven drag model (b): Syamlal-O’Brien drag model 

Figure 7-7: Comparison of the probability density distributions of the overall solids 

holdup in the CFB riser (Ug = 5 m/s, Gs = 400 kg/m2s) by the cluster-driven drag 

model and the Syamlal-O’Brien drag model 

The time averaged probability density distributions of the overall solids holdup from the 

cluster-driven model and Syamlal-O’Brien model are compared as shown in Figure 7-7. 

Generally, two peaks of the solids holdup density distribution can be found in the results 

from both the cluster-driven model and Syamlal-O’Brien model. The first peak is located 

at a lower solids holdup around 0.01, which represents the dilute solids suspension with 

freely moving single particles. The second peak of the probability density takes place at a 

higher solids holdup around 0.06, which can be considered as the cluster phase with a 

higher solid concentration corresponding to the denser regions as shown in Figure 7-6. A 

higher and wider peak for the cluster phase is obtained by the cluster-driven drag model as 

shown in Figure 7-7(a), indicating that more solids are captured inside the denser cluster 

phase. However, a thinner and lower peak of the solids holdup for the cluster phase and a 

much higher peak of the dilute phase are obtained by the Syamlal-O’Brien model as shown 

in Figure 7-7 (b). The numerical result from the Syamlal-O’Brien model indicates that the 
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volume fraction of the cluster phase is lower and there are more freely moving particles in 

the dilute phase. A higher overall solids holdup of 0.053 is predicted by the cluster-driven 

model, which agrees with the experimental data better since the clustering effects are 

enhanced in the drag model. Therefore, higher fidelity is believed to be achieved by the 

proposed cluster-driven drag model based on the contours of instantaneous solids holdup 

where the clustering phenomenon is close as the experimental descriptions (Xu & Zhu 

2012, Yang & Zhu 2014). 

7.3.2.2 Instantaneous cluster behavior  

More detailed information on the gas-solids flow structure and cluster behavior can be 

obtained from numerical results by the cluster-driven model as shown in Figure 7-6 (a). 

The regions with higher solids concentration, which consist of one or several extremely 

dense cores with a solids holdup over 0.10 and a surrounding cloud of relatively denser 

solids suspension as shown in Figure 7-6 (a), can be considered as clusters since they match 

the typical descriptions of clusters from the experimental observation (Yang & Zhu 2014).  

The distribution and concentration of clusters also differ a lot in the axial direction as 

shown in Figure 7-6 (a). In the bottom zone of the riser, smaller, but more concentrated 

clusters that are more like elongated streamers appear frequently and an extremely denser 

core (𝜀𝑠 > 0.1) of particles is detected as shown in Figure 7-6 (a) (H<3 m). However, the 

dilute region (𝜀𝑠 < 0.02) shown as the white area on the contour occupies more space than 

the denser clustering phase inside the riser at the lower region of the riser. Meanwhile, 

since a denser bottom region of the riser has already been reported in the literature (Wang, 

Li, and Zhu 2015), it is believed that more particles are captured inside clusters, i.e. the 

solids concentration inside clusters is high, although the dilute phase with freely moving 

individual particles is volumetrically dominant. In the upper zone of the riser, clusters 

become larger and slightly more dilute inside and the above-mentioned denser core of 

particles in the center of the clusters does not appear as frequently as the ones in the bottom 

zone. Unlike the streamer shape clusters in the bottom of the riser, the clusters in the upper 

zone appear as large pieces with irregular shapes as shown in Figure 7-6 (a) (H>4m). 

Correspondingly, the volume fraction of cluster phase increases and the solids 
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concentration inside the cluster drops. Particles inside the clusters in the upper zone are 

loosely packed and the solids concentration gradients are smoother from the center to the 

boundary of the clusters compared with the ones in the bottom zone. Large pieces of 

clusters tend to link together and have blurred boundaries since the concentration of 

particles at the boundary of the cluster are close to the solids holdup in the surrounding 

dilute phase. The clusters appear randomly in the riser from the center to the wall and are 

continuously connected to form large clusters along the riser as shown in Figure 7-6 (a). 

Also, the shape, size, and the solids concentration of the denser regions changes greatly in 

the axial direction as shown in Figure 7-6 (a), indicating the dynamic nature of the clusters 

and the vigorous interactions between the gas and particles in the high-velocity CFB riser.  

 
 

Figure 7-8: Example of typical clusters at the bottom zone of the riser (h=1-3 m) 
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Figure 7-9: Examples of typical clusters in the middle of the riser (h>5m) 

Figure 7-8 and Figure 7-9 show some typical structures of clusters in the CFB riser and 

provide more details in the shape, size, and other dynamic behavior of clusters under a 

high-density condition. In the lower part of the riser, a long and narrow streamer type of 

cluster is more likely to appear at the wall of the riser as shown in Figure 7-8. Clearly, the 

elongated streamer is highly concentrated with a higher solids holdup than the surrounding 

suspension which can be considered as a typical type of particle clusters inside CFB risers 

as reported in the literature (Sharma et al. 2000). Typical U-shaped clusters with a clear 

boundary from the surrounding dilute solids suspension occur at the bottom of the riser as 

shown in Figure 7-8. The U-shaped cluster is also highly concentrated and more packed 



 

185 

 

with a solids holdup as high as 0.15 at the core. The upward gas flow tends to bypass the 

U-shaped cluster due to the large flow resistance inside the cluster, which means the 

captured particles inside the cluster have less opportunities to contact with the bypassing 

fresh gas. In the higher part of the riser, oval-shaped clusters are found where the gas-solids 

flow is more developed and solids suspension becomes dilute as shown in Figure 7-8. The 

oval-shaped cluster is also highly concentrated like the U-shaped cluster, but the high-

velocity gas flow elongates the cluster to a more oval and stretched-out shape. Both the U-

shaped and oval-shaped clusters are mostly formed in the center of the riser and usually 

have a large size close to the radius of the riser, which agrees with the statistical equilibrium 

diameter of clusters (dcl=0.0052m, Ug=5m/s, Gs=300kg/m2s) from the image analysis based 

on the experimental data under the same operating condition as shown in Table 7-3.    

Series of much smaller “core clusters” are more commonly seen in the upper zone of the 

riser as shown in Figure 7-9. Small “core” clusters are more spherical and also highly 

concentrated with a size around a quarter of the riser diameter. The small “core” clusters 

appear more frequently and tend to link together to form a long and denser streamer of 

solids as shown in Figure 7-9. Unlike the streamers seen in the lower part of the riser in 

which the particles are more homogeneously distributed, streamers in the upper part usually 

consist of several cores with much higher solids concentration, which agrees with the 

description of the large and unstable “cluster of clusters” mentioned by Royer et al. (2009). 

The volume fraction of the cluster phase increases in the upper zone of the riser due to the 

streamers and large pieces of particle clouds as shown in Figure 7-6, which indicates that 

there is less space for the bypassing gas and the dilute phase. However, the high-velocity 

field in the upper part of the riser results in an irregular and blurred boundary of the 

streamers and causes a large gradient for the concentration of the streamer from the “core” 

clusters to the surrounding dense layer of particles. Therefore, although the “core” clusters 

embedding in the streamers are stable and highly concentrated, the concentration of the 

surrounding dense layer is much lower and the shape and size of the streamers also change 

greatly while moving up in the riser. Consequently, the interactions between the gas and 

particles in the denser layer are actually more vigorous since the gas flow is more likely to 

penetrate into the cluster.    
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The dynamic behavior and characteristics of clusters in the riser can be further explained 

by combining the local profiles of solids holdup, and the gas and particle velocities from 

Figure 7-4 and Figure 7-5. The formation of a cluster usually relates with the local velocity 

field. An increase in the slip velocity between the surrounding fluid and the cluster is 

expected since a cluster rises slower than the freely moving individual particles due to its 

higher density. The more power-law and narrower velocity profiles of both the gas and 

solids phases in the lower part of the riser as shown in Figure 7-5 indicates that the gas-

solids flow is developing in the entrance region of the riser resulting in a much denser wall 

region where long streamers of clusters occur as shown in Figure 7-8.  

In the lower part of the riser, larger clusters such as U-shaped and oval-shaped clusters tend 

to generate in the center of the riser where a larger slip velocity is found as shown in Fig. 

8 since the particles are still in the acceleration stage by the gas flow. On the other hand, 

the large clusters with lower rising velocity also contribute a higher local solid holdup as 

shown in Figure 7-5. Comparing with the smaller clusters linking together inside a long 

streamer in the upper part of the riser, the U-shaped or oval-shaped clusters are more 

dispersed because the dilute phase consisting of gas and freely moving particles is 

dominant in this region. In the upper zone of the CFB riser, the gas-solids flow is fully 

developed with a more uniform velocity distribution, smaller and more uniform slip 

velocity allows smaller clusters to form either in the center or at the wall region of the riser. 

On the other hand, small clusters rise faster than the large U-shaped and oval-shaped 

clusters and have more irregular trajectories while moving up so that having more 

opportunities to collides with each other or interact with the surrounding dilute suspension.  

It is difficult to tell whether the dilute phase with freely moving particles or the cluster 

phase dominates the gas-solids flow in the upper part of the riser due to the lower and 

uniform slip velocity distribution and more dilute local solids distribution for the fully 

developed flow. For the behavior of clusters in the upper part of the riser, large pieces of 

denser regions of solids suspensions occupy much space of the riser, however, the gradients 

of solids holdup between the dense and dilute regions is not as obvious as the one in the 

lower part. Therefore, more gas can penetrate the relatively dilute region of the loosely 

packed large pieces of clusters except for the highly concentrated “core” clusters packed 
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in the streamers. Under such a circumstance, the clustering phenomenon is welcomed in 

chemical processes because a higher conversion can be achieved with the help of more 

contacting between gas and solids in the relatively dilute region of clusters, which actually 

has a higher solids concentration than the dilute phase, especially under a high-density 

operating condition for CFB riser.  

7.3.3 Clustering phenomenon difference between HDCFB and 
LDCFB 

 
(a) Ug=5 m/s and Gs=100 kg/m2s 

 
(b) Ug=5 m/s and Gs=300 kg/m2s 
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(c) Ug=7 m/s and Gs=400 kg/m2s 

Figure 7-10: Probability distribution function (PDF) of the solids holdup in LDCFBs 

and HDCFBs 

The clustering phenomena in CFB riser are also different between low-density conditions 

and high-density conditions as the probability distributions function (PDF) of solids holdup 

shown in Figure 7-10. 

In a LDCFB, the phase separation between the dilute phase and cluster phase is not as 

obvious as the one in a HDCFB. The PDF curve of the solids holdup for a LDCFB is more 

unimodal with a narrow and concentrated peak representing freely moving single particles 

located at a lower solids holdup around 0.01 as shown in Figure 7-10 (a). The reason might 

be that the average solids concentration of clusters in the LDCFB is only a bit higher than 

the surrounding dilute suspensions due to the low solids circulation rate. The boundary of 

the dense layers surrounding with the “core” clusters is unclear from the dilute phase. As 

a result, only a very small peak around 𝜀𝑠=0.05 is found in Figure 7-10 (a) which might 

represents the “core” clusters in the LDCFB. The unimodal PDF curve also indicates a 

more uniform gas-solids flow structure in the LDCFB since less clustering effect is found. 

In the HDCFB, phase separation is clear and than the LDCFB two peaks of the solids 

holdup are found as shown in Figure 7-10 (b) and (c). A thinner peak with lower solids 

holdup around 𝜀𝑠=0.01 represents the dilute phase for freely moving single particles in the 
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HDCFB. A wider peak with a higher solids holdup indicates the existence of the cluster 

phase in a HDCFB. More space is covered by the wider peak of the PDF curve with higher 

solids holdup suggesting that more solid particles are captured in clusters. The solid holdup 

of the peak for the cluster phase can be considered as the solid concentration of the “core” 

clusters. The area under the cluster phase peak can also be recognized as the volume 

fraction of the solids in clusters corresponding to the denser regions as shown in the solids 

holdup contours (Figure 7-6 (a)). When the CFB becomes denser with a higher bed density, 

the peak for cluster phase of the PDF curve swifts to the right for a higher solids holdup 

compared with Figure 7-10 (b) and (c), which indicates that the solid concentration of the 

“core” clusters increases with the increase in the bed density. In the meanwhile, the 

clustering effects are more severe under higher density conditions as the volume fraction 

of the cluster phase also increases with the increase of the bed density.  

 Conclusion 

A cluster-driven drag model is applied into the Eulerian-Eulerian two-fluid model to 

numerically study the gas-solids circulating fluidized bed riser. The drag force in a gas-

solids CFB riser can be obtained by the summation of the drag force from freely moving 

single particles and the drag from clusters. Statistical data of the particle clusters such as 

cluster diameter, average solid concentration of clusters, and the portion of solids in 

clusters are from the image processing of the experimental data and are employed into the 

drag model of clusters. CFD results show that the clustering effects are more severe near 

the wall region where the slip velocity is larger and the solids holdup is higher. 

Instantaneous contours of solids holdup in the CFB riser from CFD simulations show that 

typical types of clusters are strands, U-shaped, and spherical clusters are found in the CFB 

riser. Larger and more clusters tend to appear at the bottom developing region of the CFB 

riser. Elongated denser streamers consisting of several small “core” clusters are more likely 

to occur in the upper fully developed zone of the CFB riser. More severe clustering 

phenomenon is found under high-density conditions of the CFB riser compared with low-

density CFB risers. A clear phase separation between the dilute single particles and denser 

clusters is found based on the probability distribution function of the solids holdup in the 

CFB riser. 
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Nomenclature  

𝐴𝑝 =
𝜋 ∙ 𝑑𝑝

2

4
 Reference area of a particle projecting to the fluid, m2 

𝐶𝐷_𝑐𝑙 Drag coefficient of clusters in the gas-solid system 

𝐶𝐷_𝑝 Drag coefficient of single particles in the gas-solid system 

𝐶𝑑 Drag coefficient for a single particle in a fluid 

𝐶𝑑
′  Drag coefficient in the homogeneous dilute gas-solids system 

𝐹𝐷 
Total drag force per unit volume in the homogeneous gas-solids 

suspension 

𝑃𝑐𝑙 Percentage of the total solids captured in the cluster phase 

𝑅𝑒𝑐𝑙 Reynolds number of clusters 

𝑅𝑒𝑝 Reynolds number of single particles 

𝑈𝑠𝑙𝑖𝑝 Slip velocity between fluid and particle, m/s 

𝑈𝑠𝑙𝑖𝑝_𝑐𝑙 Slip velocity between clusters and surrounding fluid, m/s 

𝑉𝑔,𝑖𝑛 Inlet gas velocity, m/s 

𝑉𝑠,𝑖𝑛 Inlet velocity of the solid phase, m/s   

𝑑𝑐𝑙 Equivalent cluster diameter, m  

𝑑𝑒𝑛_𝑐𝑙 Solid concentration in the cluster 

𝑑𝑝 Particle diameter, m 

𝑛𝑝 =
6(1 − 𝜀𝑔)

𝜋 ∙ 𝑑𝑝
3  Number of the particles per unit volume 

𝛼𝑔 Gas phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

𝛽𝑐𝑙𝑢𝑠𝑡𝑒𝑟 Momentum transfer coefficient between clusters and the bypassing gas 

𝛽𝑔𝑠 Total momentum transfer coefficient between gas and solids 

𝛽𝑝 
Momentum transfer coefficient between freely moving individual 

particles and pure gas 

𝜀𝑐𝑙 
Portion of the captured particles inside the clusters in the gas-solids 

system 

𝜀𝑔 Gas holdup 
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𝜀𝑔_𝑐𝑙 Portion of the captured gas inside the clusters 

𝜀𝑠
′  Solids holdup in a homogeneously dispersed gas-solids system 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑠 Particle density, kg/m3 

𝜌𝑠𝑢𝑠 Mixture density of the gas-solid suspension, kg/m3 

𝜑𝑐𝑙 Volume fraction of cluster phase 

𝜑𝑔 
Volume fraction of pure gas phase bypassing the individual particles or 

clusters 

𝜑𝑝 Volume fraction of single particle phase 

g Gravity acceleration, m/s2 

Gs Solids circulation rate, kg/m2s 

h Height from the gas distributor, m 

h/H Relative axial position 

r/R Relative radial position  

Ug Superficial gas velocity, m/s 

Vcl Volume of a cluster, m3 

Vl_p Volume of a particle, m3 

ε Gas voidage 

εs Solids holdup in the CFB riser 

ϕ Ratio of the opening area in the gas distributor 
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Chapter 8  

8 Numerical study on liquid-solid flow characteristics  
in inverse circulating fluidized beds 

 Introduction 

Inverse liquid-solid fluidization is an operation in which solid particles with density lower 

than that of the liquid are suspended downwards by the continuous downward liquid flow 

in the opposite direction of buoyancy (Renganathan & Krishnaiah, 2004; Jaberi, 2014). 

Inverse fluidized beds can be used in biochemical processes, catalytic hydrogenation, 

adsorption, biological wastewater treatment industry, etc. It is characterized by advantages 

such as higher mass transfer rates, less solids attrition, efficient control and easy 

refluidization (Fan, 1989).  

Previous studies on liquid-solid two-phase inverse fluidized beds focused on the 

hydrodynamic characteristics such as minimum fluidization velocity, pressure drop and 

bed expansion. Fan et al. (1982) studied the bed expansion in a liquid-solid two-phase 

inverse fluidized bed experimentally and found that the bed expansion increases with the 

increasing fluidization velocity and particle density and decreases with the increasing 

particle size. Renganathan and Krishnaiah (2005) studied the voidage fluctuations, axial 

voidage profile and bed expansion by measuring the local void fraction in a liquid-solid 

inverse fluidized bed, as the quality of fluidization is also elucidated by the local voidage 

fluctuations. However, most previous studies were carried out in conventional inverse 

fluidized bed reactors and the heights of the test reactors were lower than 3 meters, which 

cannot reflect the actual industrial situations.  

In the inverse liquid-solid circulating fluidized bed, particles can circulate in the bed. The 

inverse liquid-solid circulating fluidized bed also has the advantage of controlling a large 

quantity of particles easily. Sang (2013), Jaberi (2014) and Nan (2019) studied the axial 

particle distribution, radial structure and solids circulation rate in a downer of a liquid-solid 

inverse circulating fluidized bed whose height was 5.4 meters under different particle 

densities and different velocities of liquid and particles. 
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With the development of mathematical modeling, computational fluid dynamics (CFD) has 

become an important tool to study the hydrodynamics in fluidized beds (Hartge, et al., 

2009; Wang, et al., 2010). Wang et al. (2014; 2018) simulated flow behavior of particles 

in conventional inverse liquid-solid fluidized beds by means of two-fluid model and found 

that axial velocities of particles and the bed expansion height increase with the increasing 

liquid velocity. The granular temperatures increase, reach the maximum and then decrease 

with the increasing solids volume fraction. Some hydrodynamic characteristics of the 

inverse fluidized beds, such as pressure drop, solids holdup, and minimum fluidization 

velocity, have been investigated in previous studies either experimentally and numerically 

and some empirical correlations have been developed. However, studies related to the 

hydrodynamic characteristics of the inverse circulating fluidized beds of large size using 

CFD have not been reported in the literature. Such information is required to design, scale 

up and operate the inverse liquid-solid continuous systems. 

In this study, hydrodynamic characteristics of the large size inverse circulating fluidized 

beds are investigated numerically using a single type of particles and mixed types of 

particles. Two-dimensional Eulerian-Eulerian approach incorporating the kinetic theory of 

granular flow is selected and the CFD software Ansys/Fluent is the numerical platform 

used in this study. Through CFD simulations, some detailed information on the local 

holdups and velocities of each phase, which is either impossible or difficult to be measured 

experimentally, can be captured (Xu, et al., 2017). Such information is of great importance 

in understanding the hydrodynamics in inverse liquid-solid circulating fluidized beds (Roy, 

et al., 2014). The simulation results are compared with the experimental data obtained by 

Jaberi (2014) and Nan (2019). 

 Configuration and operating conditions  

The configuration of the liquid-solid inverse circulating fluidized bed used by Jaberi (2014) 

and Nan (2019) in their experiments is used in this work in order to compare the numerical 

results with the experimental data from Jaberi (2014) and Nan (2019). 

Figure 8-1 shows the schematic diagram of the inverse liquid-solid circulating fluidized 

bed (Jaberi, 2014; Nan, 2019). Along the circulation loop, the liquid-solid inverse 
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circulating fluidized bed consists of a downer with an inner diameter of 76mm and a height 

of 5400mm, a liquid-solid separator, a water tank and an upcomer with an inner diameter 

of 200mm and two connecting pipes. When the liquid velocity in the downer is higher than 

the transport fluidization velocity, particles from the solids control will flow downwards 

carried by the downward liquid flow and then be separated from the liquid by the liquid-

solid separator at the bottom of the downer. The liquid flows to the water tank and then 

returns to the inlet of the downer through a pump. The upcomer and connecting pipes are 

filled with the liquid. The particles move from the separator to the upcomer through the 

lower connecting pipe. Then the particles move up in the upcomer because of their 

buoyancy and are stored in the upcomer. The solids flowrate at the top of the downer can 

be adjusted by the solids control. The temperature of the liquid was monitored during the 

experiments to make sure that all the experiments were performed under the same 

condition.  

 

Figure 8-1 Schematic diagram of the liquid-solid inverse circulating fluidized bed 
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In the study carried out by Jaberi (2014), the solids particles were spherical Styrofoam with 

a mean diameter of 0.8mm and a density of 28kg/m3. In the study carried out by Nan 

(2019), the solids particles are spherical Styrofoam with a mean diameter of 1.1mm and a 

density of 640kg/m3. The liquid phase was tap water. Three different operating conditions 

used by Nan (2019) and four different operating conditions used by Jaberi (2014) are 

selected to conduct the numerical simulations.  

 CFD model  

Generally, there are two major approaches to simulate liquid-solid two-phase flows, the 

Eulerian-Lagrangian approach and the Eulerian-Eulerian approach (Pan, et al., 2016). The 

Eulerian-Lagrangian approach tracks the motions of individual particles using a 

Largrangian force balance equation, and the liquid flow is treated as a continuum by two-

fluid CFD model (Liu, et al., 2016). The Eulerian-Eulerian approach treats both liquid and 

solids phases as interpenetrating continua, the motion of each phase is solved using a 

continuum based CFD approach with suitable closure terms (Feng, et al., 2012). The 

Eulerian-Lagrangian approach can predict the detailed behavior of the particles but 

requiring much more computing power. The Eulerian-Eulerian approach costs less 

computational time, but its accuracy depends on the closure model used to describe 

properties such as solids viscosity and solids pressure (Zhang, et al., 2012). The former 

approach is suitable for fundamental research while the latter is for process design 

(Montastruc, et al., 2009). In this work, the Eulerian-Eulerian approach is employed since 

the simulated domain is large. 

8.3.1 Governing equations 

The Eulerian-Eulerian two-fluid model has been adopted for the solids and liquid phases. 

The kinetic theory of granular flow has been used for closure. The governing equations are 

given below. 

The continuity equation for phase i (i=s for solids phase or i=l for liquid phase) is: 

    
𝜕

𝜕𝑡
(𝜀𝑖𝜌𝑖) + 𝛻 ⋅ (𝜀𝑖𝜌𝑖𝑢⃗ 𝑖) = 0     (8-1) 
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where εi is the volume fraction, u  is the velocity vector and ρ is the density. 

The momentum equation for the liquid phase is: 

 
𝜕

𝜕𝑡
(𝜀𝑙𝜌𝑙𝑢⃗ 𝑙) + 𝛻 ⋅ (𝜀𝑙𝜌𝑙𝑢⃗ 𝑙𝑢⃗ 𝑙) = −𝜀𝑙𝛻𝑝 + 𝛻(𝜀𝑙 ⋅ 𝜏𝑙) + 𝜀𝑙𝜌𝑙𝑔 + 𝛽(𝑢⃗ 𝑠 − 𝑢⃗ 𝑙)  (8-2) 

where p is the fluid pressure, g  is the gravity acceleration, β is the interphase momentum 

transfer coefficient, and 
l  is the stress tensor of liquid phase, given by 

   𝜏𝑙 = 𝜇𝑓[𝛻 ⋅ 𝑢⃗ 𝑙 + (𝛻 ⋅ 𝑢⃗ 𝑙)
𝑇] −

2

3
𝜇𝑓(𝛻 ⋅ 𝑢⃗ 𝑙)𝐼    (8-3) 

The momentum equation for the solids phase is: 

 
𝜕

𝜕𝑡
(𝜀𝑠𝜌𝑠𝑢⃗ 𝑠) + 𝛻 ⋅ (𝜀𝑠𝜌𝑠𝑢⃗ 𝑠𝑢⃗ 𝑠) = −𝜀𝑠𝛻𝑝 − 𝛻𝑝𝑠 + 𝛻(𝜀𝑠 ⋅ 𝜏𝑠) + 𝜀𝑠𝜌𝑠𝑔 + 𝑓𝑚 +

𝛽(𝑢⃗ 𝑙 − 𝑢⃗ 𝑠)           (8-4) 

where ps is the particle pressure which represents the particle normal forces due to particle-

particle interactions, and 
s  is the solids stress tensor given by  

  𝜏𝑠 = 𝜇𝑠 {[𝛻 ⋅ 𝑢⃗ 𝑠 + (𝛻 ⋅ 𝑢⃗ 𝑠)
𝑇] −

2

3
(𝛻 ⋅ 𝑢⃗ 𝑠)𝐼} + 𝜉𝑠𝛻 ⋅ 𝑢⃗ 𝑠𝐼   (8-5) 

The turbulent kinetic energy (k) and dissipation rate (ε) of liquid phase and solids phase 

are calculated by a per phase standard k- ε turbulence model (Ansys Inc., 2011). 

The virtual mass force acting on a particle is given by Drew and Lahey (Roco, 1993): 

    𝑓𝑚 = −0.5𝜀𝑠𝜌𝑙 (
𝑑𝑢𝑙

𝑑𝑡
−

𝑑𝑢𝑠

𝑑𝑡
)     (8-6) 

The granular temperature (θ) is defined as: θ=C2/3, where C is the particle fluctuating 

velocity. The equation of solids fluctuating energy can be expressed: 

 
3

2
[
𝜕

𝜕𝑡
(𝜀𝑠𝜌𝑠𝜃) + 𝛻 ⋅ (𝜀𝑠𝜌𝑠𝜃𝑢⃗ 𝑠)] = (−𝛻𝑝𝑠𝐼 + 𝜏𝑠) : 𝛻 𝑢⃗ 𝑠 + 𝛻 ⋅ (𝑘𝑠𝛻𝜃) − 𝛾𝑠 − 3𝛽𝜃 +

𝐷𝑙𝑠            (8-7) 



 

199 

 

where the conductivity of granular energy (ks), the collisional energy dissipation (γs) and 

the energy exchange between the liquid and the solids (Dls) are summarized in Table 

8-1(Ansys Inc., 2011). 

Table 8-1 Closure equations for the solids phase 

Solids pressure 22 (1 )s s s s s op e g         (8-8) 

Solids shear viscosity 
2

2
104 4

(1 ) 1 (1 )
5 96(1 ) 5

s p

s s s p o s o

s o

d
d g e g e

e g

 
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 

 
       

 (8-9) 

Solids bulk viscosity 24
(1 )

3
s s s p od g e


  


   (8-10) 

Conductivity of granular 
energy 
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Collisional energy 
dissipation 
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Rate of energy 
exchange 
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Radial distribution 
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Drag model 
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 (8-15) 

The drag force is one of the important terms in the momentum equations (Loha, et al., 

2012). A model for the drag force is required to calculate the rate of the momentum transfer 

between the liquid phase and solids phase. Syamlal-O’Brien drag model (Syamlal & 

O’Brien, 1989) is employed in the present work, which has been widely used by previous 

researchers. And a previous research work (Luo, 2017) showed that Syamlal-O’Brien drag 
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model worked well in liquid-solid fluidization simulations compared with other drag 

models. 

8.3.2 Mesh information 

The downer of the inverse liquid-solid circulating fluidized bed shown in Figure 8-1 is 

simplified to a 2D planar model because of its axial symmetry. In order to correctly 

represent the complex flow structures at the inlet and near the wall, the mesh in the inlet 

region and near the wall has been refined. The mesh independence study has been done by 

other group members for the same bed that is used in this work (Luo, 2017). Two meshes 

were selected to be applied in this work based on the previous mesh independence study. 

The information of the selected meshes is given in Table 8-2. 

Table 8-2 Mesh information for different operating conditions 

Parameters 
Domain size 
(m) 

Number 
of control 
volumes 

Increasing 
ratio along 
axis 

Increasing 
ratio along 
radius 

Maximum 
aspect ratio 

Mesh 1 0.076×5.4 50×2000 1.05 1.05 6.9 

Mesh 2 0.2×5.4 40×1000 1.03 1.03 2.44 

8.3.3 Boundary conditions 

The governing equations are numerically solved with appropriate boundary and initial 

conditions. At the inlet, which is at the top of the downer, both the liquid and solids are of 

uniform velocities. At the outlet, due to the fully developed flow condition, the outflow 

condition is used for both liquid and solids phases. At the wall, the no-slip condition is used 

for the liquid phase and the partial slip Johnson and Jackson boundary condition (Johnson 

& Jackson, 1987) is used for the solids phase. The particle-particle collision restitution 

coefficient for the solids phase is set as 0.9 and the specularity coefficient is set as 1×10-5. 

The phase coupled SIMPLE scheme is used for the pressure-velocity coupling, the second 

order upwind is chosen to discretize the convection terms for the k-ε turbulence model, 

granular temperature and momentum governing equations. The set of governing equations 

is solved by Ansys Fluent 17. In all simulations, the time step size is set as 1×10-5 s and 
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the convergence criteria are set as 5×10-5. The results are time averaged for 20s after the 

simulations reaching the stable condition. 

Detailed information of the simulation cases is given in Table 8-3. In cases #10, #11 and 

#12, mixed particles of different densities enter the simulated domain with the same 

volume fraction as other cases. 

Table 8-3 Detailed information of the simulation cases and experiments 

Case 
Number 

Particle 
diameter dp 
(mm) 

Particle 
density ρp 
(kg/m3) 

Mesh 
Superficial liquid 
velocity ul (cm/s) 

Superficial solid 
velocity us 
(cm/s) 

Corresponding 
experiment 

#1 1.1 640 Mesh 1 16.68 1.35 Nan # 1 
#2 1.1 640 Mesh 1 19.46 0.71 Nan # 2 
#3 1.1 640 Mesh 1 19.46 1.35 Nan # 3 

#4 0.8 28 Mesh 1 25.09 0.48 Jaberi # 1 
#5 0.8 28 Mesh 1 27.84 0.48 Jaberi # 2 

#6 0.8 28 Mesh 1 27.84 0.64 Jaberi # 3 
#7 0.8 28 Mesh 1 29.2 1.05 Jaberi # 4 

#8 3 850 Mesh 2 20 1  

#9 3 950 Mesh 2 20 1  

#10 3 850&950 Mesh 2 20 1  

#11 3 850&950 Mesh 2 12 1  
#12 3 850&950 Mesh 2 12 0.5  

In addition, in Cases #10-#12, two different kinds of particles with densities of 850kg/m3 

and 950kg/m3 flow into the inverse circulating fluidized bed together. Therefore, the 

system has three phases, one liquid phase and two solids phases. The flow behavior of the 

particles is simulated using the Eulerian-Eulerian multi-phase approach incorporating the 

kinetic theory of the granular flow. In the numerical simulation, the liquid (water) is set as 

the primary phase. The two solids phases are both set as secondary phases. The Syamlal-

O’Brien drag model (Syamlal & O’Brien, 1989) is employed for the interphase interaction 

between the liquid phase and each solids phase. The drag coefficient for the interphase 

interaction between the two solids phases is given as follows (Syamlal & O’Brien, 1988): 

  𝐶𝐷,𝑎𝑏 =
3(1+𝑒𝑎𝑏)(

𝜋

2
+𝐶𝑓,𝑎𝑏

𝜋2

8
)𝜀𝑎𝜌𝑎𝜀𝑏𝜌𝑏(𝑑𝑝,𝑎+𝑑𝑝,𝑏)

2
𝑔𝑜,𝑎𝑏

2𝜋(𝜌𝑎𝑑𝑝,𝑎
3 +𝜌𝑏𝑑𝑝,𝑏

3 )
|𝑢⃗ 𝑎 − 𝑢⃗ 𝑏|  (8-8) 
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The radial distribution function in binary particle system go, ab is: 

    𝑔𝑜,𝑎𝑏 =
𝑑𝑝,𝑎𝑔𝑜,𝑏+𝑑𝑝,𝑏𝑔𝑜,𝑎

𝑑𝑝,𝑎+𝑑𝑝,𝑏
     (8-9) 

Previous studies by Geng et al. (2016) and Khan et al. (2017) showed that this solid-solid 

drag coefficient performs well in binary particle systems. 

 Results and discussion 

8.4.1 Flow characteristics of the particles in the inverse liquid-solid 
flow 

8.4.1.1 Solids hold up along the axial direction 

 

Figure 8-2 Axial distributions of the cross-sectional average solids holdup for Cases 

#1-#3 

In Cases #1-#3, the density of the particles is 640 kg/m3 and the axial distributions of cross-

sectional average solids holdup are shown in Figure 8-2. The numerical results are 

compared with the experimental data under the same operating conditions. It can be seen 

that the numerical results and experimental results agree well. It is noticed that the 

predicted average solids holdup along axis is uniform, as also observed by Liang et al. 
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(1997) and Zheng (1999). The deviation between the numerical results and experimental 

data for Cases #1-#3 are 4.3%, 3.5% and 4.1%, respectively. In addition, it can be 

concluded based on the results from Cases #1 and #3 that under the same us, the average 

solids holdup decreases with the increasing ul. This is expected since under the same us, 

the amount of the particles entering the fluidized bed is constant. The liquid flow with 

higher velocity will bring more particles out of the fluidized bed, leading to a lower average 

solids holdup (Razzak, et al., 2010) Similarly, it can be seen from Cases #2 and #3 that 

under the same ul, the average solids holdup increases with the increasing us. When the 

velocity of the liquid is remained the same, higher us means more particles flowing into the 

fluidized bed, resulting in the increase of the solids holdup. 

 

Figure 8-3 Axial distributions of the cross-sectional average solids holdup for Cases 

#4-#6 

Figure 8-3 shows the axial distributions of cross-sectional average solids holdup of Cases 

#4-#6 where the particles have a density of 28 kg/m3. Unlike the axial distributions of the 

cross-sectional average solids holdup in Cases #1-#3, the numerical results of Cases #4-#6 

show that the average solids holdup along the axis decreases during the acceleration 

process, then remains close to being uniform. Due to the large density difference between 

the solids and liquid, the acceleration caused by the sum of the drag force, gravitational 
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force and buoyancy acting on the particles with a particle density of 28kg/m3 is much 

smaller than that on the particles with a density of 640kg/m3. Therefore, the acceleration 

process of the particles with a density of 28kg/m3 is longer and more evident than that of 

the particles with a density of 640kg/m3 before the slip velocity of the particles becomes 

unchanged. Table 4 shows the average solids holdup of entire bed for Cases #4-#6 and the 

corresponding experiments, Jaberi #1-#3 (Jaberi, 2014). It can be seen from Figure 8-4 that 

there is a good agreement between the numerical and experimental results. 

Table 8-4 Average solids holdup of the entire bed for Cases #4-#6 and experiments 

Jaberi #1-#3 

Numerical (Case #4) 0.033 (Case #5) 0.024 (Case #6) 0.034 
Experimental (Jaberi #1) 0.035 (Jaberi #2) 0.026 (Jaberi #3) 0.037 
Deviation 5.71% 7.69% 8.11% 

8.4.1.2 Solids holdup along the radial direction 

  
 

(a) Case #1-ρp=640kg/m3-
dp=1.1mm-ul=16.68cm/s-
us=1.35cm/s 

(b) Case #2-ρp=640kg/m3-
dp=1.1mm-ul=19.46cm/s-
us=0.71cm/s 

 (c) Case #3-ρp=640kg/m3-
dp=1.1mm-ul=19.46cm/s-
us=1.35cm/s 

Figure 8-4 Radial distributions of solids holdup at different axial locations 
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Figure 8-5 Comparisons of the solids holdup radial distributions between the 

numerical and experimental results at h=2.1m for Cases #1-#3 

The solids holdup distributions along the radial direction at different bed heights for Cases 

#1-#3 are presented in Figure 8-4 and the comparison with the experimental data is given 

in Figure 8-5. The radial non-uniformity for solids holdup, dilute in the near wall region 

and dense in the center, can be clearly observed at each bed height. Due to the wall effect, 

the liquid velocity along the radial direction is higher in the center and lower near the wall. 

Likewise, the particles will accelerate to the similar velocity as that for the liquid. The wall 

effect also leads to a lower solids holdup at the wall region and increasing towards to the 

center (Razzak, 2009). It is shown in Figure 8-4 that the radial non-uniformity is lower at 
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the inlet region of the bed and increases towards to the exit of the bed. This is because that 

the liquid and solids velocities are assumed as uniform at the inlet of the bed. In addition, 

it can be seen in Figure 8-5 that the average solids holdup of case #1 is higher than that of 

Case #3 and higher than that of Case #2, which is consistent with the results shown in 

Figure 8-2. Furthermore, it is evident from Figure 8-5 that the agreement between 

numerical predictions and experimental data is good for solids holdup. 

   
(a) Case #4-ρp=28kg/m3-dp=0.8mm-
ul=25.09cm/s-us=0.48cm/s 

(b) Case #5-ρp=28kg/m3-dp=0.8mm-
ul=27.84cm/s-us=0.48cm/s 

(c) Case #6-ρp=28kg/m3-dp=0.8mm-
ul=27.84cm/s-us=0.64cm/s 

Figure 8-6 Radial distributions of solids holdup at different axial locations  



 

207 

 

 

Figure 8-7 Comparisons of the solids holdup radial distributions between the 

numerical results at different time and experimental results at h=2.1m and h=3.4m 

for Case #7 

 

Figure 8-8 Velocity vector of the solids phase for Case #4 at t=232s 
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The solids holdup distributions along the radial direction at different bed heights for Cases 

#4-#6 are presented in Figure 8-6 and the comparison between the numerical results at 

different time for Case #7 with the experimental data is given in Figure 8-7. Unlike the 

solids holdup radial distributions in Cases #1-#3, the flow structures for Cases #4-#6 at 

each cross section of the bed are asymmetrical. From the flow structures from 232s to 238s, 

it can be seen that some vortexes in the solids phase are randomly generated in the bed and 

the positions of the vortexes change with the time. A vortex is shown in Figure 8-8. This 

is mainly because of the large density difference between the solids and liquid, the drag 

force and gravity cannot keep the particles flowing downwards all the time. When a vortex 

is generated, the velocities of the particles within the vortex become lower, which results 

in a higher solids holdup in the region of the vortex. As shown in Figure 8-6, because of 

the randomness and irregularity of the vortexes, the solids holdup radial distributions are 

irregular. 

  
(a) Case #8-ρp=850kg/m3-dp=3mm-ul=20cm/s-
us=1cm/s 

(b) Case #9-ρp=950kg/m3-dp=3mm-ul=20cm/s-
us=1cm/s 

Figure 8-9 Radial distributions of solids holdup at different axial locations 

Figure 8-9 shows the radial distributions of solids holdup at different bed heights for Cases 

#8 and #9. Similar to Cases #1-#3, the solids holdup distributions along the radial direction 
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for Cases #8 and #9 are dilute in the near wall region and dense in the center. As discussed 

in Figure 8-4, the wall effect leads to this phenomenon. The radial non-uniformity is lower 

at the inlet region of the bed and increases along the axial direction. Additionally, it is 

apparent that the solids holdup in Case #8 is larger than that in Case #9, which is expected 

since the particles with higher density have a higher gravitational force. Therefore, it is 

easier for the particles with higher density to flow out of the bed, resulting in a lower solids 

holdup. 

8.4.1.3 Lateral velocities of particles at different bed heights 

Figure 8-10 shows the lateral velocities of particles at different bed heights for Cases #1-

#3 respectively. It can be seen from Figure 8-10 that at each bed height, the lateral velocities 

of solid particles are positive at the left hand side of symmetry axis of bed and negative at 

the right hand side. That indicates that particles move from the both the left hand side wall 

and right hand side wall to the centre of the bed, which is also observed by Wang et al. 

(2014). It is noticed that the lateral velocity of particles increases from zero at the wall to 

a maximum value, and then decreases to zero at the center due to the boundary conditions. 

The lateral velocity decreases along the axial direction and becomes zero when the flow is 

fully developed as shown in the Figure 8-10. This indicates that the transverse mixing of 

the particles decreases gradually along the axial direction. Based on Cases #1 and #3, it can 

be concluded that under the same us, the lateral velocity of particles increases with ul. Also, 

from Cases #2 and #3, under the same ul, the lateral velocity of particles increases with us. 

This is because the increase in ul or us increases the kinetic energy of the liquid or particles 

flowing into the bed, leading to the increase in the motion of particles in the bed.  

The lateral velocities of particles at different bed heights for Cases #4-#6 are shown in 

Figure 8-11. Different from Cases #1-#3, the lateral velocities of particles in Cases #4-#6 

are random and irregular. Similar to the results shown in Figure 8-6, due to the large density 

difference between the solids and liquid, vortexes of particles are generated in the bed 

which leads to the random changes of lateral velocities.  
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Figure 8-10 Lateral velocities 

of particles at different bed 

heights for Cases #1-#3 

 

Figure 8-11 Lateral velocities 

of particles at different bed 

heights for Cases #4-#6 

 

Figure 8-12 Lateral velocities 

of particles at different bed 

heights for Cases #8 and #9 

Figure 8-12 shows the lateral velocities of particles at different bed heights for Cases #8 

and #9. It can be seen from Figure 8-12 that the trend of lateral velocities in Cases #8 and 

#9 is the same as those of Cases #1-#3. Furthermore, the lateral velocities of Case #9 are a 

little bit higher than those of Case #8. This is reasonable since under the same ul and us, the 

kinetic energy of particles increases with the increasing particle density, which further 

increases the motion of particles in the bed. 

8.4.1.4 Axial velocities of particles at different bed heights 

Figure 8-13 shows the distributions of the axial velocities of particles at different bed 

heights for Cases #1-#3. It can be seen that the axial velocities of particles are higher in the 

center than that near the walls. In the downer of the inverse liquid-solid circulating 

fluidized bed, the sum of drag force and the gravitational force of the particles is larger 

than the buoyancy, which causes particles to flow down into the bed, while the friction 

between particles and wall resists the downward flow of particles. As mentioned before, 

due to the wall effect, both liquid and solids will have similar axial velocity distributions, 

which is higher in the center and lower near the wall. Moreover, it can be observed that 

along the axial direction, the axial velocity distribution of particles becomes steeper as the 
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solids velocity is assumed as uniform at the inlet of the bed. In addition, from Cases #1 and 

#3, it is evident that under the same us, the axial velocity of particles increases with the 

increasing ul. Also, from Cases #2 and #3, it is noticed that under the same ul, the axial 

velocity of particles increases with the increase in us. This is also due to the fact that the 

increase in ul or us increases the kinetic energy of the liquid and solids into the bed, leading 

to an increase in the motion of particles. 

 

Figure 8-13 Axial velocities of particles 

at different bed heights for Cases #1-#3 

 

Figure 8-14 Axial velocities of particles 

at different bed heights for Cases #8 

and #9 

The axial velocities of particles at different bed heights for Cases #8 and #9 are shown in 

Figure 8-14. The trend of axial velocities in Cases #8 and #9 is the same as that in Cases 

#1-#3. Additionally, the values of the axial velocities of Case #9 are higher than those of 

Case #8, which is due to the fact that higher particle density leads to higher gravity and 

further increases the acceleration. 
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8.4.2 Liquid-solid flow characteristics of mixed particles 

8.4.2.1 Solids hold up along the axial direction 

 

Figure 8-15 The distributions of the 

average solids holdup along axis for 

Cases #8-#10 

 

Figure 8-16 The distributions of the 

average solids holdup along axis for 

Cases #10-#12 

Figure 8-15 shows the distributions of the average solids holdup along axis for Cases #8-

#10. In Cases #8 and #9, single-density particles are used with a density of 850kg/m3 and 

950kg/m3, respectively. The volume fractions of solids phase at the inlet are both 30% in 

Cases #8 and #9. In Case #10, mixed particles, which are composed of two different 

particles with a density of 850kg/m3 (P850) and 950kg/m3 (P950) are used. The volume 

fractions of P850 and P950 at the inlet are both 15% in Case #10. It can be seen from Figure 

8-15 that the cross-sectional average solids holdups along the axis for these cases are all 

uniform. In Case #10, the cross-sectional average solids holdup for P850 is larger than that 

of P950, which is expected since the higher particle density leads to higher gravity. 

Therefore, it is easier for P950 to flow out of the bed, resulting in a lower solids holdup 

[23]. The total solids holdup of P850 and P950 in Case #10 is higher than the solids holdup 

in Cases #8 and #9. 

The distributions of the average solids holdup along axis of P850 and P950 for Cases #10-

#12 is shown in Figure 8-16. The cross-sectional average solids holdup of each particle 

group in these cases is uniform along the axis. From Cases #10 and #11, it is clear that 

under the same us, the average solids holdup of P850 and P950 decreases with the 
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increasing ul. And based on Cases #11 and #12, under the same ul, the average solids 

holdups of P850 and P950 increase with the increase in us, which has the same trend as 

Cases #1-#3. 

8.4.2.2 Solids hold up along the radial direction 

 

Figure 8-17 Radial distributions of solids holdup at different axial locations for 

Case#10 
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Figure 8-18 Radial distributions of solids holdup for Cases #10-#12 at h=3.22m 

Solids holdup radial distributions of P850 and P950 at different axial locations for Cases 

#10-#12 are shown in Figure 8-17 and Figure 8-18. Evidently, the trend of solids holdup 

radial distribution of each particle group for the cases using the mixed particles is as the 

same as that in the cases using the single-density particles. As discussed before, the solids 

holdup of P850 is higher than that of P950 in each case.  

8.4.2.3 Lateral velocities of particles at different bed heights 

Figure 8-19 and Figure 8-20 show the lateral velocities of P850 and P950 at different bed 

heights for Cases #10-#12. It can be seen from Figure 8-19 and Figure 8-20 that the trend 

of the lateral velocities of each particle group in the case using mixed particles is the same 

as that in the case using single-density particles. Also, the lateral velocities of P850 and 

P950 are almost the same at the same bed height in each case. Furthermore, from Cases 

#10 and #11, it can be concluded that under the same us, the lateral velocity increases with 

the increasing ul. In addition, it can be seen from Cases #11 and #12, under the same ul, the 

lateral velocity increases a little bit with the increasing us. As mentioned before, this is due 

to the higher liquid and solids kinetic energy when increasing ul or us 
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Figure 8-19 Lateral velocities of P850 

and P950 at different bed heights for 

Cases #10 

 

Figure 8-20 Lateral velocities of P850 

and P950 for Cases #10-#12 at h=3.22m 

8.4.2.4 Axial velocities of particles at different bed heights 

Figure 8-21 and Figure 8-22 show the axial velocities of P850 and P950 at different bed 

heights for Cases #10-#12. The trend of axial velocity for each particle group for the cases 

using the mixed particles is similar to that for the case using the single-density particles. It 

can be seen from Figure 8-21 and Figure 8-22 that at the same bed height, the axial velocity 

of P950 is higher than that of P850. Also, the motion of particles is increased with the 

increase in ul or us. 
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Figure 8-21 Axial velocities of P850 and 

P950 at different bed heights for Cases 

#10 

 

Figure 8-22 Axial velocities of P850 and 

P950 for Cases #10-#12 at h=3.22m 

 Conclusion 

A numerical study has been carried out in this work on the liquid-solid multi-phase flow 

characteristics in inverse circulating fluidized beds using single-density and mixed-density 

particles. Two-dimensional Eulerian-Eulerian model incorporating the kinetic theory of 

granular flow is selected as the modeling technique and the CFD package Ansys/Fluent is 

the numerical platform used in this study. The predictions under different operating 

conditions are compared with previous experimental data. The following specific 

conclusions can be drawn from this study: 

(1) A good agreement between the numerical simulation results and experimental date has 

been achieved. 
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(2) The hydrodynamics of particles with a density of 950 kg/m3, 850 kg/m3 and 640 kg/m3 

in the inverse liquid-solid circulating fluidized bed downers under different operations have 

similar features. The cross-sectional average solids holdup along the axis is uniform and 

the radial flow structures at different bed heights are similar. For the flow structures in the 

radial direction, due to the wall effect, the solids holdup is not uniform in the radial 

direction, which is lower at the wall region and higher in the center of the bed. The radial 

non-uniformity is lower at the entrance region of the bed and increases towards to of the 

exit of the bed. Particles move from the wall to the center. Such tendency diminishes as the 

flow becomes full developed. The axial velocities of particles are higher in the center and 

lower near the walls. Under the same us, the cross-sectional average solids holdup 

decreases with the increasing ul, and the lateral and axial velocities of particles increase 

with the increase in ul. Under the same ul, the cross-sectional average solids holdup, the 

lateral velocity and axial velocity of particles increase with the increasing us.  

(3) The flow patterns of the particles with a density of 28 kg/m3 in the inverse liquid-solid 

circulating fluidized bed downers are irregular. The cross-sectional average solids holdup 

along the axis decreases during the acceleration process then remains close to uniform. Due 

to the large density difference between the solids and liquid, the drag force and gravity 

cannot keep the particles flowing downwards all the time. Therefore, vortexes of particles 

are randomly generated in the bed and the positions of the vortexes change over time. 

Because of the randomness and irregularity of the vortexes, the solids holdup radial 

distributions and the particle velocities are irregular. 

(4) Hydrodynamics of mixed particles with a density of 850 kg/m3 and 950 kg/m3 in the 

inverse liquid-solid circulating fluidized bed downer are also studied in this work. The 

cross-sectional average solids holdup of P850 is higher than that of P950. The radial 

distribution trend of the solids holdup, the trend of the lateral and axial velocities of each 

particle group in the simulation using mixed particles are similar to those in the case using 

single-density particles. 
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Nomenclature  

CD drag coefficient 

CD,ab solid-solid drag coefficient in binary particle system 

Cf,ab coefficient of friction between solids in binary particle system 

dp particle diameter, mm 

e coefficient of restitution 

eab solid-solid interaction restitution coefficient in binary particle system 

fm virtual mass force, N 

g gravity acceleration, m/s2 

go radial distribution function 

go,ab radial distribution function in binary particle system 

h distance from the distributer, m 

I  
unit tensor 

K turbulent kinetic energy, m2/s2 

P fluid pressure, Pa 

ps solids pressure, Pa 

r rayon, m 

Res relative Reynolds number 

T time, s 

U superficial velocity, cm/s 

β interphase momentum transfer coefficient, kg/m2s2 

γs collisional energy dissipation, kg/ms3 

ε turbulent dissipation rate, m2/s3 

εa volume fraction of particle a 

εb volume fraction of particle b 

εl volume fraction of liquid 

εs volume fraction of solids 

εs,max maximum solids volume fraction 

θ granular temperature, m2/s2 

μf effective viscosity of fluid, kg/ms 
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μl molecular viscosity of fluid, kg/ms 

μs solid shear viscosity, kg/ms 

ρ density, kg/m3 

l  stress tensor of liquid phase, kg/s2 

s  stress tensor of solids phase, kg/s2 

Subscripts 

a solids particle a in binary particle system 

b solids particle b in binary particle system 

l liquid phase 

p particle 

s solids phase 
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Chapter 9  

9 Experimental and numerical studies on a bubble-
induced inverse gas-liquid-solids fluidized bed 

 Introduction  

The expansion of the fluidization technology resulted in many new types of the fluidized 

bed reactors from gas-solids to liquid-solids and even gas-liquid-solids three-phase 

fluidization by changing the fluidizing agent since the 1940s (Werther, et al., 2014). Also, 

by using the lighter particles with a lower density than the liquid, the inverse liquid-solid 

fluidization with particles downward flowing from the top of the fluidized bed has been 

developed in the 1980s (Fan, et al., 1982; Wen & Xu, 1998). Further by introducing gas 

bubbles into the inverse liquid-solid fluidization system from the bottom of the column, 

the packed light particles at the top of the fluidized bed will be fluidized when gas bubbles 

reach the bottom layer of the particles due to the reduced gas-liquid mixture density or the 

turbulence induced by the gas bubbles (Grevskott, et al., 1996; Wei, et al., 2005; Comte, et 

al., 1997; Cho, et al., 2002; and Buffière, et al., 1999). Such a new type of fluidized bed is 

called a bubble induced inverse gas-liquid-solid fluidized bed (BIFB) in which a three-

phase fluidization is operated. Compared to the upward flow three-phase fluidization, the 

inverse three-phase fluidization can reduce energy consumption and minimum solids 

attrition as the solid phase can be fluidized under low liquid and gas velocities, and the 

particle entrainment problem can be eliminated without using any external equipment 

(Ibrahim et al. 1996). In addition, since the particles can be simply fluidized by the gas 

bubbles in the BIFB, only a very small or even a zero liquid velocity is needed which makes 

the BIFB very favourable in the wastewater treatment because a long residence time of the 

liquid is achieved. Compared with the traditional methods of the wastewater treatment such 

as activated sludge process which requires longer retention time and large space, the 

retention time can be reduced in fluidized bed reactor due to high biomass concentration, 

and another problem of excessive growth of biomass on particles can be fixed by using 

light particles in inverse fluidized beds as well (Sokół & Korpal, 2006; Lee, et al., 2000).   
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With the rapid development of computer technology, CFD has become a powerful tool to 

simulate the multiphase flow and provide more details on the three-phase fluidization 

process. In addition, CFD is considered to be more time and economic efficient to simulate 

complex flows compared with the experimental method. Two approach are mainly used to 

simulate the multiphase flow in fluidized bed, which are the Eulerian-L Eulerian (E-E) 

approach and Eulerian-Lagrangian (E-L) approach. The E-L approach treats the liquid and 

gas as a continuous phase by solving the Navier-Stokes equations, and the solid phase is 

treated as a discrete phase. which can be solved by tracking the trajectories of each particle 

based on the Lagrangian force balance equation (ANSYS, 2014). The E-E approach treats 

all phases as the interpenetrating continuum, and all phases are solved using governing 

equations which are closed by additional closure laws and constitutive relations. Compared 

to the E-E approach, the computational resource needed for the E-L approach to simulate 

multiphase flows will be high if the discrete phase volume fraction is high (Pan et al. 2016). 

Therefore, the E-E approach will be used in the present study, since the volume fraction of 

the solid phase is higher than 10% in BIFB. 

Hamidipour et al. (2012) developed a CFD model for the simulation of the three-phase 

inverse fluidized bed based on a three-fluid model combined with the kinetic theory of 

granular flow (KTGF) to investigate the performance of different turbulence models and 

solid wall conditions. The results showed the dispersed RNG k model gives a better 

performance on predicting the axial solids velocity and gas velocity than the other k 

models. According to this study, it was also found that both the three-dimensional and two-

dimensional models are capable of predicting the flow field, but the three-dimensional 

model is slightly more accurate than the two-dimensional model. However, the 

computational cost of the three-dimensional simulation is also high. The no-slip wall 

condition for the liquid phase, and free-slip for the gas and solids phases were 

recommended. Li and Zhong (2015) investigated the performance of different drag models 

on predicting the hydrodynamics of the three-phase phase bubble columns. The study 

found that the best drag model for the liquid and gas phases is the Zhang-Vanderheyden 

model (Zhang & Vanderheyden, 2002), between liquid and solid phases is the Schiller-
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Naumann drag model (Schiller & Naumann, 1935), and the drag force between the gas and 

solid phases was not considered.  

It is noticed that the hydrodynamics of the inverse fluidized bed has been studied 

experimentally by many researchers, but most studies were focused on the flow 

characteristics, such as the average phase holdup, axial phase holdup, and minimum 

fluidization velocity. However, few of them reported the details of the flow patterns and 

local flow characteristics, such as local radial phase holdup, radial solid phase velocity etc. 

In addition, few researchers investigated the development process of the inverse three-

phase fluidization process.  

For CFD models, only a few models were developed and validated for the three-phase 

fluidization process based on the three-fluid E-E approach (Wu & Gidaspow, 2000; 

Renganathan, et al., 2008; Li, et al., 1999). The complicated interactions between each 

phase are still not well understood, and there is no clear guideline to follow when setting 

up a CFD model for the simulation of the three-phase fluidization process. In addition, few 

CFD models has been developed to predict the hydrodynamics and flow structures in the 

BIFB.  

Therefore, the objective of this study is to develop a CFD model for the simulation of the 

inverse three-phase fluidized bed based on the three-fluid Eulerian-Eulerian approach in 

order to study the flow details and fluidization development process in the BIFB, which 

have not been reported by experimental studies. 

 Experimental setup and operating conditions 

The configuration of the BIFB used by Sun (2017) is shown in Figure 9-1. The column is 

made of PVC with 0.153 m in diameter and 3 m in height. The ring shape porous quartz 

gas distributor with an 8.7 cm outer diameter and a 2.7 cm inner diameter, which can 

generate very small bubbles, is placed at the bottom of the column.  

The tap water, air and light particles are used as liquid, gas and solid phases in the 

experiment. The tap water and particles are injected into the column before the experiment 

starts, resulting in the floated particles at the top surface of the water because the particle 
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density is lower than the density of water. During the experiment, only the gas is 

continuously introduced into the column through the gas distributor, and there is no outflow 

for particles and liquid. The gas phase is injected into the column as small bubbles from 

the bottom of the column through the gas distributor, and bubbles leaves the column 

through the top of the column. The superficial gas velocity at the inlet is from 0 mm/s to 

60 mm/s. With an increase in the inlet superficial gas velocity, the coalescence of small 

bubbles can be observed. The experiment is carried out under ambient temperature and 

pressure. 

In this study, the hydrodynamics in the BIFB will be simulated under different inlet 

superficial gas velocities, which will results in different bubble sizes. Therefore, different 

bubble sizes will be used in the simulations under different inlet superficial gas velocities. 

The summary of the operating conditions and properties of each phase are shown in Table 

9-1.  

 

Figure 9-1: Schematic diagram of gas-driven inverse gas-liquid-solid fluidized bed.   

(1) column, (2) bubble, (3) liquid, (4) solid particles, (5) rotameters, (6) pressure 

gauge, (7) gas distributor, (8) liquid inlet/outlet valve, (9) manometer. 
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Table 9-1: Operating conditions and physical properties of each phase 

Sun (2017) 

Bubble column size (m) 
Diameter: 0.153 

Total height: 3 

Ul (mm/s) 0 

Ug (mm/s) 9-60 

Us (mm/s) 0 

Liquid phase  water  

Liquid phase density (kg/m3) 998 

Liquid phase viscosity (kg/m-s) 0.001003 

Gas phase  Air 

Gas phase density (kg/m3) 1.225 

Gas phase viscosity (kg/m-s) 1.7984 × 10−5 

Solid phase  Polypropylene 

Particle diameter (mm) 3.5, 4.6 

Particle density (kg/m3) 904, 930, 950 

Solid phase loading 5%, 10%, 15%, 20%, 25% 

Pressure  Atmospheric pressure  

Temperature Ambient temperature 

 CFD model 

9.3.1 Governing Equations  

The CFD model developed in this study to simulate the inverse gas-liquid-solid three-phase 

fluidized bed is based on the three-fluid E-E approach coupled with the KTGF. Each phase 

is treated as interpenetrating continua. The liquid phase is selected as the primary phase 

because it is the continuous phase with the volume fraction of the liquid is over 70% in the 

BIFB. Gas and solid phases are considered as the secondary phases in the simulation. A 

constant gas bubble diameter of 3mm which is obtained from the experimental observation 

is set for the simulation. The governing equation for each phase and corresponding closure 

law and constitutive relations are shown as following.  
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Conservation equation of mass for the liquid phase   

 
𝜕

𝜕𝑡
(𝛼𝑙𝜌𝑙) + ∇ (𝛼𝑙𝜌𝑙𝑣𝑙⃗⃗  ⃗) = 0  (9-1)                                                                                                             

Conservation equation of mass for the gas phase  

 
𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔) + ∇ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) = 0  (9-2)                                                                                                          

Conservation equation of mass for the solid phase  

 
𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠) + ∇ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) = 0  (9-3)                                                                                                           

where 𝛼 , 𝜌 , and 𝑣  are the volume fraction, density and velocity of each phase. The 

subscripts of 𝑙, 𝑔 land s represent liquid, gas and solid phase respectively. The sum of 

volume fraction for each phase should be equal to one.  

 𝛼𝑙 + 𝛼𝑔 + 𝛼𝑠 = 1  (9-4)                                                                                                                          

Conservation equation of momentum for the liquid phase  

 
𝜕

𝜕𝑡
(𝛼𝑙𝜌𝑙𝑣𝑙⃗⃗  ⃗) + ∇ (𝛼𝑙𝜌𝑙𝑣𝑙⃗⃗  ⃗ 𝑣𝑙⃗⃗ ⃗⃗ ) = − 𝛼𝑙∇𝑝 + ∇ 𝜏𝑙̿ + 𝛼𝑙𝜌𝑙ɡ⃗ + 𝑀𝑙   (9-5)                                                        

 𝜏𝑙̿ = 𝛼𝑙𝜇𝑙(∇ 𝑣𝑙⃗⃗  ⃗ + ∇𝑣𝑙⃗⃗  ⃗
𝑇
) − 𝛼𝑙

2

3
𝜇𝑙(∇ 𝑣𝑙⃗⃗ ⃗⃗ )𝐼 ̿       (9-6)                                                                       

Conservation equation of momentum for the gas phase 

 
𝜕

𝜕𝑡
(𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗ ) + ∇ (𝛼𝑔𝜌𝑔𝑣𝑔⃗⃗⃗⃗  𝑣𝑔⃗⃗⃗⃗  ⃗) = − 𝛼𝑔∇𝑝 + ∇ 𝜏𝑔̿ + 𝛼𝑔𝜌𝑔ɡ⃗ + 𝑀𝑔       (9-7)                                            

 𝜏𝑔̿ = 𝛼𝑔𝜇𝑔(∇ 𝑣𝑔⃗⃗⃗⃗ + ∇𝑣𝑔⃗⃗⃗⃗ 
𝑇
) − 𝛼𝑔

2

3
𝜇𝑔(∇ 𝑣𝑔⃗⃗⃗⃗  ⃗)𝐼 ̿       (9-8)                                                                             

Conservation equation of momentum for the solid phase  

 
𝜕

𝜕𝑡
(𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗) + ∇ (𝛼𝑠𝜌𝑠𝑣𝑠⃗⃗  ⃗ 𝑣𝑠⃗⃗ ⃗⃗  ) = − 𝛼𝑠∇𝑝 + ∇𝑝𝑠 + ∇ 𝜏𝑠̿ + 𝛼𝑠𝜌𝑠ɡ⃗ + 𝑀𝑠   (9-9)                                                       
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9.3.2 Drag model  

Only the drag force and virtual mass force will be considered in the present study since the 

other two forces are negligible. Regarding the drag force between the liquid and gas phases, 

the equation is written as the following 

 𝐹𝑑𝑟𝑎𝑔,𝑔𝑙 = 𝐾𝑔𝑙(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑙⃗⃗  ⃗)       (9-10)                                                                                                           

where 𝐾𝑔𝑙  is the momentum exchange coefficients between the liquid and gas phases, 

which is calculated by  

 𝐾𝑔𝑙 = 𝐶𝐷,𝑔𝑙
3

4
𝜌𝑙

𝛼𝑔𝛼𝑙

𝑑𝑏
|𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑙⃗⃗  ⃗|   (9-11)                                                                                                    

where 𝑑𝑏 is the diameter of bubble or droplet, and 𝐶𝐷,𝑔𝑙 is the drag coefficient between the 

gas and liquid phases, and the Schiller-Naumann drag model (Schiller and Naumann 1935) 

is used to calculate 𝐶𝐷,𝑔𝑙, which is shown as  

  𝐶𝐷,𝑔𝑙 = {
24(1 + 0.15𝑅𝑒1

0.687)/𝑅𝑒1    𝑅𝑒1 ≤ 1000
0.44                                             𝑅𝑒1 > 1000

      (9-12)                                                               

 𝑅𝑒1 =
𝜌𝑙𝑑𝑏|𝑣𝑔⃗⃗ ⃗⃗  −𝑣𝑙⃗⃗  ⃗|

𝜇𝑙
      (9-13)                                                                                                                         

The drag force between the liquid and solid phases can be expressed as   

 𝐹𝑑𝑟𝑎𝑔,𝑙𝑠 = 𝐾𝑙𝑠(𝑣𝑠⃗⃗  ⃗ − 𝑣𝑙⃗⃗  ⃗)      (9-14)                                                                                                                

 𝐾𝑙𝑠 = 𝐶𝐷,𝑙𝑠
3

4
𝜌𝑙

𝛼𝑙𝛼𝑠

𝑑𝑝
|𝑣𝑠⃗⃗  ⃗ − 𝑣𝑙⃗⃗  ⃗|  (9-15)  

where 𝑑𝑝 is the diameter of  the particles, and the drag model used to calculate the drag 

force between liquid and solid phases is also based on the Schiller-Naumann model 

(Schiller and Naumann 1935). The equations are listed as following 

 𝐶𝐷,𝑙𝑠 = {
24(1 + 0.15𝑅𝑒2

0.687)/𝑅𝑒2    𝑅𝑒2 ≤ 1000
0.44                                             𝑅𝑒2 > 1000

  (9-16)                                                               
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 𝑅𝑒2 =
𝜌𝑙𝑑𝑝|𝑢𝑠⃗⃗ ⃗⃗  −𝑢𝑙⃗⃗⃗⃗ |

𝜇𝑙
    (9-17)                                                                                                                          

The drag force between the solid and gas phases is shown as   

 𝐹𝑑𝑟𝑎𝑔,𝑔𝑠 = 𝐾𝑔𝑠(𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗)   (9-18)                                                                                                                                                       

 𝐾𝑔𝑠 = 𝐶𝐷,𝑔𝑠
3

4
𝜌𝑔

𝛼𝑔𝛼𝑠

𝑑𝑝
|𝑣𝑔⃗⃗⃗⃗ − 𝑣𝑠⃗⃗  ⃗|  (9-19)                                                                                                    

 𝐶𝐷,𝑔𝑠 = {
24(1 + 0.15𝑅𝑒3

0.687)/𝑅𝑒3    𝑅𝑒3 ≤ 1000
0.44                                             𝑅𝑒3 > 1000

       (9-20)                                                               

 𝑅𝑒3 =
𝜌𝑔𝑑𝑝|𝑣𝑠⃗⃗⃗⃗ −𝑣𝑔⃗⃗ ⃗⃗  |

𝜇𝑔
   (9-21)                                                                                                                         

9.3.3 Turbulence model  

In this work, the dispersed RNG k-ɛ turbulence model is used for the liquid phase, since it 

performs better than the standard and realizable k-ɛ models and per-phase RNG k-ɛ model 

(Hamidipour, Chen and Larachi 2012).  

𝜕

𝜕𝑡
(𝛼𝑙𝜌𝑙𝑘𝑙) + ∇ (𝛼𝑙𝜌𝑙𝑘𝑙𝑣𝑙⃗⃗  ⃗) = ∇ (𝛼𝑙 (

𝜃𝑘𝜇+𝜇𝑡

𝜎𝑘
) ∇𝑘) + 𝛼𝑙𝐺𝑘,𝑞 − 𝛼𝑙𝜌𝑙𝜀𝑙 + Π𝑘       (9-22)                         

 
𝜕

𝜕𝑡
(𝛼𝑙𝜌𝑙𝜀𝑙) + ∇ (𝛼𝑙𝜌𝑙𝜀𝑙𝑣𝑙⃗⃗  ⃗) = ∇ (𝛼𝑙 (

𝜃1,𝜀𝜇+𝜇𝑡

𝜎𝜀
) ∇𝜀) + 𝛼𝑙

𝜀𝑙

𝑘𝑙
(𝐶1𝜀𝜃2,𝜀𝐺𝑘,𝑞 − 𝐶2𝜀𝜃3,𝜀𝜌𝑙𝜀𝑙) +

𝐶3,𝜀𝛼𝑙𝜌𝑙Π𝑘 − 𝛼𝑙𝑅𝜀   (9-23)                                                                                                                         

where 𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
, 𝑘 is the turbulence kinetic energy, ɛ is the turbulence kinetic energy 

dissipation, and Π𝑘 is the source term to account for the turbulence interaction between 

phases which is neglected in the dispersed model, and 𝐺𝑘 is the turbulence kinetic energy 

generated by mean velocity gradient is given as   

 𝐺𝑘 = 𝜇𝑡𝑆
2  (9-24)                                                                                                                                      

 𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗   (9-25)                                                                                                                                
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 𝑆 =
1

2
(∇𝑣 + (∇𝑣 )𝑇)      (9-26)   

The RNG k-ɛ model has a better performance on predicting rapid strained flows and 

swirling flow, and the RNG k-ɛ model can simulate the flow in a low-Reynolds region 

accurately by using an analytical formula to calculate the effective viscosity 

(ANSYS,2014). The parameters of the standard k-ɛ turbulence model will be modified as 

following when it is used as a dispersed RNG k-ɛ turbulence model  

𝜃𝑘 is set to one  and  𝜎𝑘 is calculated based on 𝜎𝑒𝑓𝑓 which is the effective Schmidt number, 

and it is shown by equation  

 |
(

1

𝜎𝑒𝑓𝑓
)−1.3929

(
1

𝜎0
)−1.3929

|

0.6312

|
(

1

𝜎𝑒𝑓𝑓
)+2.3929

(
1

𝜎0
)+2.3929

|

0.3679

=
𝜇

𝜇+𝜇𝑡

     (9-27)                                                                         

where 
1

𝜎0
≈ 1 and 𝜃𝑘 = 1 

Then 𝜃1,𝜀  is also set to one and 𝜎𝜀  is defined based on 𝜎𝑒𝑓𝑓  as well which can be also 

calculated by Eq (9-27). 𝑅𝜀 is the addiction model parameter calculated by 

 𝑅𝜀 =
𝜌𝐶𝜇𝜂3(

1−𝜂

𝜂0
)

1+𝛽𝜂3

𝜀2

𝑘
   (9-28)                                                                                                                       

 where η is the dimensionless strain rate coefficient, which is calculated by  

 𝜂 =
𝑆𝑘

𝜀
   (9-29)                                                                                                                                           

So the equations for the RNG k-ɛ turbulence model can be write as following  

 
𝜕

𝜕𝑡
(𝜌𝑙𝑘) + ∇ (𝜌𝑙𝑘𝑙𝑣𝑙⃗⃗  ⃗) = ∇ (𝛼𝑘𝜇𝑒𝑓𝑓∇𝑘) + 𝐺𝑘 + 𝐺𝑏 − 𝜌𝜀 − 𝑌𝑀 + 𝑆𝑘  (9-30)                                           

𝜕

𝜕𝑡
(𝜌𝑙𝜀) + ∇ (𝜌𝑙𝜀𝑙𝑣𝑙⃗⃗  ⃗) = ∇ (𝛼𝜀𝜇𝑒𝑓𝑓∇𝜀) + 𝐶1𝜀

𝜀

𝑘
(𝐺𝑘 + 𝐶3𝜀𝐺𝑏) − 𝜌𝐶2𝜀

𝜀2

𝑘
− 𝑅𝜀 + 𝑆𝜀  (9-31) 

The relevant parameters of the dispersed RNG k-ɛ model is listed in Table 9-2. 
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Table 9-2: Parameters of the RNG k-ɛ models 

Parameters 𝜃𝑘 𝜃1,𝜀 𝜎𝜀 𝜎𝑘 𝐶1𝜀 𝐶2𝜀 

Values 1 1 Eq. (9-27) Eq. (9-27) 1.42 1.68 

Parameters 𝐶𝜇 𝑅𝜀 𝜃3,𝜀 𝜃2,𝜀 𝐶3,𝜀 Π𝑘 

Values 0.085 Eq. (9-28) 1 1 0 0 

9.3.4 Kinetic theory of granular flow for the solid phase 

To describe the solid phase motion, the KTGF is used in the E-E approach in order to close 

the solid phase governing equations. The granular temperature is introduced in the KTGF, 

which is related to the particle random motion, and solid phase stress and pressure can be 

calculated by using the granular temperature (Gidaspow & Ding, 1990). The constitutive 

equations related to the KTGF are shown as following: 

Table 9-3 Constitutive equations of the solid phases 

Solid pressure (Lun et al. 1984) 𝑃𝑆 = 𝛼𝑆𝜌𝑆Θ𝑆 + 2𝜌𝑆(1 + 𝑒𝑠𝑠)𝛼𝑠
2𝑔0,𝑠𝑠Θ𝑠 (9-32)               

Radial distribution function 

(Gidaspow & Ding 1990) 𝑔0,𝑠𝑠 = [1 − (
𝛼𝑠

𝛼𝑠,𝑚𝑎𝑥
)

1/3

]

−1

 

(9-33)                                                                                                     

Solid shear stress  𝜇𝑠 = 𝜇𝑠,𝑐𝑜𝑙 + 𝜇𝑠,𝑘𝑖𝑛 + 𝜇𝑠,𝑓𝑟 (9-34)                                                                                                            

Collisional viscosity (Gidaspow 

1994)   𝜇𝑠,𝑐𝑜𝑙 =
4

5
𝛼𝑠𝜌𝑠𝑑𝑠𝑔0,𝑠𝑠(1 + 𝑒𝑠𝑠)√

Θ𝑠

𝜋
 

(9-35)                                                                                              

Kinetic viscosity (Syamlal, et al., 

1993) 

 

𝜇𝑠,𝑘𝑖𝑛 =
𝛼𝑠𝜌𝑠𝑑𝑠√Θ𝑠𝜋

6(3+𝑒𝑠𝑠)
[1 +

2

5
(1 +

𝑒𝑠𝑠)(3𝑒𝑠𝑠 − 1)𝛼𝑠𝑔0,𝑠𝑠]     

(9-36)                                                             

Frictional viscosity (Schaeffer 

1987) 
𝜇𝑠,𝑓𝑟 =

𝑃𝑠 sin𝜙

2√𝐼2𝐷

 
(9-37) 

Bulk viscosity (Lun et al. 1984) 

𝜆𝑠 =
4

3
𝛼𝑠

2𝜌𝑠𝑑𝑠𝑔0,𝑠𝑠(1 + 𝑒𝑠𝑠)√
Θ𝑠

𝜋
 

(9-38)                                                                                               

Granular conductivity (Syamlal, et 

al.,1993) 𝑘Θ𝑠
=

15𝑑𝑠𝜌𝑠𝛼𝑠√Θ𝑠𝜋

4(41 − 33𝜂)
[1

+
12

5
𝜂2(4𝜂 − 3)𝛼𝑠𝑔0,𝑠𝑠

+
16

15𝜋
(41 − 33𝜂)𝛼𝑠𝑔0,𝑠𝑠𝜂] 

(9-39) 

Collisional dissipation of energy 

(Lun et al. 1984) 𝛾Θ𝑠
=

12(1 − 𝑒𝑠𝑠
2𝑔0,𝑠𝑠)

𝑑𝑠√𝜋
𝜌𝑠𝛼𝑠

2Θ𝑠
3/2

 
(9-40) 
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9.3.5 Mesh set up and boundary conditions  

The gas inlet is located at the bottom of the column, and the uniform velocity is used as the 

inlet boundary condition for the gas phase based on the inlet superficial gas velocity used 

in the experiment. For the liquid and solid phases, the inlet velocity is zero for a batch 

liquid mode operation. The outflow is selected as outlet boundary condition for all three 

phases on the top of the column. The no-slip boundary condition is set for the liquid phase 

as wall the boundary condition, and the free-slip condition on the wall is used for both the 

gas phase and solid phase, so the specularity coefficient of solid phase is set to zero which 

corresponds to the free-slip boundary condition. The particle-particle restitution coefficient 

is set as 0.95. 

The particles have a mean diameter of 3.5 mm. A total of 9 CFD cases as listed in Table 9-

4 are used to study the effects of the superficial gas velocity, particle density, and the solids 

loading on the flow development.   

Table 9-4: CFD cases under different operating conditions 

Case # Ug, mm/s Particle density, kg/m3 Solids loading, %  

1 9 930 15 

2 12.5 930 15 

3 15 930 15 

4 20 930 15 

5 40 930 15 

6 15 930 5 

7 15 930 20 

8 15 904 15 

9 15 950 15 

The initial conditions of the BIFB under the batch liquid operating condition are shown in 

Figure 9-2, which are different from the conventional or circulating fluidized beds. To 

mimic the experimental condition, the liquid is initially patched inside the column, and 

particles are patched at the top surface of the liquid because the density of the particles is 

less than the density of the liquid phase. 

The simulation is conducted using the commercial software Fluent 16.0. The double 

precision segregated, transient, implicit formulation are used. The phase coupled SIMPLE 

algorithm is used for the pressure-velocity coupling. The second order upwind scheme is 
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used to discretize the momentum equations while the first order upwind discretization 

method is used for all other convection terms. The convergence criterion is set as 5×10-4 

and the time step size is set as 0.0001 s.  

 

Figure 9-2: Computational domain of the inverse three-phase fluidized bed under 

the batch liquid mode 

9.3.6 Grid independent test  

The grid independent study is performed under Ug=20 mm/s. The information on three 

different meshes is listed in Table 9-5, and the average gas holdup is used to check the grid 

independence. The results from the three meshes are listed in Table 9-6. The difference of 

average gas holdup between the medium mesh and fine mesh is less than 1%. Therefore, 

the medium size mesh is selected in this study for further simulations since it can give grid 

independent results.  

Table 9-5: Mesh information of the computational domain 

Mesh info 

Size Coarse  Medium  Fine  

Face 44815 73906 286680 

Node  22750 37400 144000 

Cell  22066 36507 142681 
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Table 9-6 Average gas holdups from different meshes 

Mesh  Average gas holdup Difference% of gas holdup 

Coarse mesh  0.0856  

Medium mesh  0.0819 4.5% 

Fine mesh  0.0816 0.4% 

 Results and discussion  

9.4.1 Experimental observations of the flow regimes 

Three flow regimes are observed in the BIFB during the experiment when increasing the 

gas flowrate as illustrated in Figure 9-3. Initially, light particles are packed as a fixed bed 

on the top of the column when there is no gas flow or only a few gas bubbles are introduced 

into the BIFB. With more bubbles rise up from the bottom gas distributor and reach the 

bottom of the packed particles, the lowest layer of the pecked particles in the fixed bed 

began to fluidize and a bed expansion regime is characterized in the BIFB. An initial 

fluidization velocity (Ug1) marking the onset of the bed expansion regime in the BIFB is 

defined as the minimum superficial gas velocity required to break the fixed bed, while the 

particles in the lower position begin to fluidize.  

By gradually increasing the superficial gas velocity in the bed expansion regime, the 

packed particles are fluidized layer by layer with more particles moving downward to the 

bottom of the BIFB when more gas bubbles reach the top of the column. In the bed 

expansion regime, the solids distribution is not uniform in the BIFB with more particles 

concentrated at the upper zone of the BIFB and less particles at the lower region of the 

BIFB. A full expansion velocity (Ug2) is defined when a few particles first reached the 

bottom of the column while the distribution of solids concentration is still not uniform in 

the BIFB. Beyond Ug2, the BIFB goes into the complete fluidization regime where the 

particles gradually become uniformly distributed along the BIFB when increasing Ug.  

A complete fluidization velocity (Ug3) is defined to mark the stable stage when all the 

particles are maintained a uniform distribution in the BIFB. Further increasing Ug to a very 

high value, particles tend to accumulate at the lower part of the BIFB resulting in a 

freeboard with a gas-liquid two-phase only region occurs at the top of the BIFB. A 

freeboard velocity (Ug4) is defined once the freeboard with a gas-liquid two-phase only 
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region appears, which marks the transition of the BIFB from the complete fluidization 

regime to a freeboard regime. 

 

Figure 9-3: Flow regime map in the bubble-induced inverse fluidized bed 

Contours of the solids holdup in the BIFB under a wide range of the superficial gas velocity 

from 5 mm/s to 40 mm/s are plotted in Figure 9-4. Those contours are the average values 

after the simulations reach the steady (t=160 s to 200 s). Different flow regimes can be 

clearly seen in Figure 9-4.  

For a BIFB with 15% solids loading and the particle density of 930 kg/m3, the superficial 

velocity is found to have a significant effect on solids axial distribution. At Ug ≤ 9 mm/s, 

the BIFB is in the fixed regime where the particles remain packed as shown in Figure 9-4 

because the sum of the gravity and drag force acting on the particles is too small to 

overcome the buoyance force. The operating window of the bed expansion regime is quite 

narrow with the initial fluidization velocity (Ug1) around 10mm/s and full expansion 

velocity (Ug2) around 12.5mm/s based on the simulation results. Particles are partially 
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fluidized in the bed expansion regime of the BIFB when increasing Ug to 12.5 mm/s and 

most particles are still in the packed bed state. 

The complete fluidization velocity (Ug3) is around 15 mm/s, thus, a uniform distribution of 

the solid phase can be seen at this Ug as shown in Figure 9-4. By further increasing Ug 

beyond 20 mm/s, the axial solids distribution becomes less uniform where the solid phase 

is dense at the lower section and dilute at the upper section of the column as shown in 

Figure 9-4 although all the particles are still fluidized in the entire column. The stable 

operating window to maintain a uniform flow structure within the complete fluidization 

regime of the BIFB ranges from Ug =15-20 mm/s as shown in Figure 9-4, which is narrower 

than the experimental observation because the actual turbulences induced by the gas 

bubbles are underestimated in the simulation. When Ug increases to 40mm/s, a distinct 

freeboard region can be found from the contours of the solids holdup as shown in Figure 

9-4. The non-uniformity of the particle distribution becomes worse in the freeboard regime 

where more particles are accumulated at the bottom of the column when Ug= 40 mm/s. 

 

Figure 9-4 CFD contours of the solid phase volume fraction under different Ug with 

15% solids loading and ρs=930 kg/m3  
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9.4.2 Regime transitions under different solids loadings  

 

Figure 9-5: Experimental results of the variation of the transition superficial gas 

velocities with the solids loadings 

The transition superficial gas velocities, Ug1, Ug2 and Ug3, vary with the particle loading as 

shown in Figure 9-5. All the three transition gas velocities (Ug1, Ug2 and Ug3) decrease with 

the increase of the solids loading. The reason is that when more particles are immersed into 

the water, a greater downward force due to the weight of the particles is exerted on the 

particles at the lower position  when the loading is larger. Therefore, less amount of gas is 

required to reduce the upward buoyance to achieve a force balance on the particles, so Ug 

is smaller. A larger solids loading also results in a faster transition for the three-phase flow 

to the complete fluidization regime as shown in Figure 9-5.   
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Figure 9-6: Comparison of the axial solids holdup profiles under different solids 

loadings in the complete fluidization regime between the CFD results and 

experimental data 

Numerical and experimental results of the axial solids holdup profiles under different solids 

loadings in the complete fluidization regime are plotted in Figure 9-6. A good agreement 

between the CFD results and the experimental data is achieved. Generally, the solids 

particles are uniformly distributed along the BIFB in the complete flow regime. The overall 

solids holdup in the BIFB increases with the increase in the solids loading, which is 

expected since all the particles are dispersed in the BIFB in the complete flow regime. 

9.4.3 Regime transitions under different particle properties 

The effects of the types of the particles on the flow regime transitions are experimentally 

studied as shown in Figure 9-7. Particles with a density of 930 kg/m3 has the lowest 

transition superficial gas velocities, which indicates this type of the particles are the easiest 

to be fluidized in the BIFB. The underlying reasons still need to be investigated with more 

experimental work in the future. 
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Figure 9-7: Experimental results of the variation of the transition superficial gas 

velocities with particle densities at solids loading=15% 

   

(a) 904 kg/m3 (b) 930 kg/m3 (c) 950 kg/m3 

Figure 9-8: CFD contours of the solid phase volume fractions for different particle 

densities at Ug =15 mm/s and 15% solids loading 
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Figure 9-8 shows the contours of the solid phase volume fraction from t=30 s to 250 s with 

different particle densities under Ug =15 mm/s and 15% solids loading. It is noted that 

particles with a mean density of 904 kg/m3 are only partially fluidized, and most particles 

still remain packed as shown in Figure 9-8 (a). The particles with a mean density of 930 

kg/m3 are uniformly distributed along the column shown in the Figure 9-8 (b). The contours 

of the volume fraction of particles with a mean density of 950 kg/m3 (Figure 9-8 (c)) 

indicate that the concentration of the solid phase is dense at the lower section and dilute at 

the upper part of the column. Thus, the particles with a higher density are easier to be 

fluidized in the BIFB. 

9.4.4 Local flow structures under complete fluidization regime 

9.4.4.1 Flow development in the BIFB 

The complete fluidization regime in the BIFB is of critical importance in the applications 

of the BIFB especially in the wastewater treatment because the distribution of the particles 

along the entire column provides a good contact between the biomass and the liquid. While 

during the operation, the flow developments in the complete fluidization regime also 

attracts increasing interest in the industrial uses because a quick development to the 

uniform flow condition in the BIFB saves the cost and energy. Instantaneous contours of 

the solids phase volume fraction at different time are extracted from the CFD results as 

shown in Figure 9-9. The simulation was carried out for a total of 300 s. Particles are firstly 

fluidized layer by layer when gas bubbles reach the packed particles at the top of the BIFB, 

which can be considered as the developing stage and agrees with the experimental 

observations. The developing stage takes about 60 s for the particles to break the packed 

bed state and reach the bottom of the BIFB time at Ug =15mm/s with 15% solids loading 

as shown in Figure 9-9. All the particles are fully fluidized at about 80 s with a higher 

solids concentration around 0.40 in the upper zone and a much diluter suspension with a 

solids concentration less than 0.15 in the lower zone of the BIFB. At the time of 200 s, a 

uniform distribution of the particles along the entire BIFB is formed as shown in Figure 

9-9. After 200 s, the three-phase flow in the BIFB can be considered as fully developed 

which can maintain a uniform flow structure under a constant gas flow rate.  



 

241 

 

 

Figure 9-9: CFD contours of the solid phase volume fraction VS. time at Ug 

=15mm/s, 15% solids loading, and ρs=930 kg/m3 

 

Figure 9-10 Time averaged (t>200 s) radial velocity profile of the solid phase at 

different heights at Ug =15mm/s, 15% solids loading, and ρs=930 kg/m3 
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Figure 9-11 Time averaged radial profile of the solid volume fraction at different 

heights at Ug =15mm/s, 15% solids loading, and ρs=930 kg/m3 

The radial profiles of the particle velocity, solids holdup at different heights along the BIFB 

after the three-phase flow is fully developed are plotted in Figure 9-10 and Figure 9-11 

respectively. In the axial direction, both the particle velocity and the solids holdup profiles 

are similar at different heights in the BIFB, which indicates a uniform flow structure along 

axial direction in the BIFB. In the radial direction, the flow is less uniform due to the wall 

effects, therefore, the velocity magnitude is higher at the near wall region and lower at 

center region, while the solid holdup is dense at center and dilute at the near wall region. 

From the radial velocity profile shown in Figure 9-10 and the solid holdup profile shown 

in Figure 9-11, it can be seen when particles move downward with a large velocity, the 

concentration of the solid phase is low. By contrast, when particles with large velocity 

move in the upward direction, the corresponding concentration of the solid phase is high. 

These radial non-uniform velocity and holdup profiles are different with the profiles in 

traditional inverse liquid-solid circulating fluidized bed where a high solid velocity leaded 

to a low solid concentration. The reason lies in that the existence of particle inner 

circulation. 
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Figure 9-12 Time-averaged radial velocity profile of the solid phase and liquid phase 

at H=1 m, Ug =15 mm/s, 15% solids loading, and ρs=930 kg/m3 

The comparison between liquid velocity and solid velocity at same height (H=1 m) is 

shown in Figure 9-12. It is found that the velocity of the liquid phase and solid phase are 

almost identical. Therefore, particles are considered to move with liquid circulation once 

the three-phase flow in the BIFB is fully developed. 

The investigation on the effect of the solids loading on the flow development and 

hydrodynamics in the BIFB is carried out under Ug =15 mm/s and ρs=930 kg/m3. Figure 

9-13 shows the time required for the three-phase flow under development and to reach the 

fully developed state under different solids loadings. It is found that a larger solids loading 

takes a longer time for the development of the three-phase flow. The possible reason lies 

in that with higher inventory of particles, it will take longer time to fluidize all particles. In 

addition, a high solids loading also hindered the liquid flow, which results in a higher 

fraction loss. 
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Figure 9-13: Effects of the solids loading on the flow development time 

9.4.4.2 Internal circulation  

In an inverse three phase fluidized bed under batch liquid model (Ul=0), the gas phase is 

injected from bottom into the reactor as bubbles, and the bubbles flow upward. The rising 

gas bubbles induced turbulence, which are considered to cause inner circulation of liquid 

and solid phase. Thus, internal circulation of liquid and solid phase is an important 

characteristic of the flow pattern that can influence the heat and mass transfer. The vortex 

and particle circulation is also observed in the experiment by Sun (2017). Therefore, the 

investigation of the internal circulation of particles through CFD modeling is carried out. 

The simulation is conducted with 15% solid loading and 930 kg/m3 particle density at 

different superficial velocities.  

Figure 9-14 is the time averaged radial profile of solids velocity at the fully developed 

stage. The radial non-uniform distribution of the solids velocity can be seen under all 

superficial gas velocities. At Ug=15 mm/s, particles are found to descent at the near wall 

region and the core region of column, but the particle rising phenomenon can be found at 

the region between wall and center of column. Particles flow upward at core region and 

flow downward at the near wall region at Ug=20 mm/s, and particles under Ug=40 mm/s 

also move in both upward and downward direction. The internal circulation of particles 
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can be observed under all superficial gas velocities through the radial profiles of the solids 

velocity. Besides, the case at Ug=40 mm/s has the most non-uniformity in the solid velocity 

in the radial direction. Thus, when increasing the superficial gas velocity, the radial non-

uniformity of the solid velocity increases. The maximum solid velocity magnitude is 

observed under Ug= 40 mm/s at H=1.5 m because with the increase in the superficial gas 

velocity, the liquid and solid phases get more momentum from the gas phase. The radial 

profile of the solid velocity under different solids loadings as shown in Figure 9-14 also 

shows that the internal circulation of particles exists under different solid loadings.  

 
 (a) H=1.5 m  

 
(b) H=0.5 m 

Figure 9-14 Radial velocity profiles of the solid phase under different Ug (a) 

H=1.5m; (b) H=0.5m  
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To further investigate the internal circulation in an inverse three phase fluidized bed, the 

flow details at different times of the flow development, which is under the condition of 

Ug=15 mm/s, 15% solid loading and 930 kg/m3 particle density, are also studied. Figure 

9-15 (a) is the veolcity vector of the solid phase at t = 17 s, where only a few particles are 

fluidized in the BIFB. An inner circulation of particles can be observed at the bottom part 

of the packed bed, which descend at the near wall region and rise at the center of the 

column, and the particle velocity at the bottom part of the packed bed is higher than that at 

the middle part of the packed bed. It implies that particles at the near wall region are 

fluidized first in the inverse three phase fluidized bed. The instanenous velocity vectors of 

the solid phase at t = 60s, where all the particles are fluidized with a non-uniform 

distribution in the BIFB, is shown in Figure 9-15 (b). A large circulation of particels can 

be seen at the middle and upper part of the reactor. Besides,  more vortex is found at the 

lower section of the column closed to the gas distributor, so the flow of particles is more 

disordered and the cirulation is more intense at the region close to gas inlet. Figure 9-15 

(c) is the instantons velocity vector of the solid phase which revealed to flow details at the 

fully developed stage at t = 270 s in the inverse three phase fluidized bed. It can be seen 

clearly that the large inner circulations of particles in the column. Therefore, it can conclude 

that internal circulations of particles exist at all three stages of the flow development 

process. 

                                                      

 
(a) 
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Figure 9-15 Instantaneous volume fraction contour (left) and particle velocity vector 

contour (right) at (a) t=17 s (b) t = 60 s (c) t = 270 s  

 Conclusions  

The bubble induced inverse fluidized bed is experimentally studied in this work. Three 

flow regimes from the bed expansion regime, the complete fluidization regime, to the 
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freeboard regime due to the increase in the superficial gas velocity are defined in the BIFB. 

Four transition gas velocities: the initial fluidization gas velocity (Ug1) when the packed 

bed of particles first breakups, the full expansion gas velocity (Ug2) when a few particles 

first reach the bottom of the BIFB, the complete fluidization gas velocity (Ug3) when all 

the particles are uniformly distributed, and the freeboard fluidization velocity (Ug4) when 

a gas-liquid only two-phase region occurs at the top of the BIFB, are also defined to mark 

the characteristics in each flow regime of the BIFB based on the observations from the 

experiments. 

A three-phase Eulerian-Eulerian CFD model is developed to simulate the hydrodynamics 

in the BIFB. Numerical results show a good agreement with the experimental data. Both 

the experimental and numerical results show that a larger solids loading leads to an easier 

fluidization operation and a faster flow development to the complete fluidization regime. 

Local flow structures in the BIFB are studied by the CFD modelling and the numerical 

results show that the radial flow structure is less uniform compared with the axial flow 

structure in the BIFB and inner circulation of the liquid exists after introducing bubbles 

into the BIFB. 

 

Nomenclature  

𝐶1𝜀 Turbulence constants, dimensionless 

𝐶2𝜀 Turbulence constants, dimensionless 

𝐶3𝜀 Turbulence constants, dimensionless 

𝐶𝐷 Drag coefficient, dimensionless 

𝐺𝑏 Generation of turbulence kinetic energy due to buoyancy, m2/s2 

𝐺𝑘 Generation of turbulence kinetic energy due to the mean velocity gradients, 

m2/s2 

𝑑𝑝 Mean particles diameter, m 

𝑘Θ𝑠
 Granular conductivity, kg/m3s 

𝛼𝑔 Gas phase volume fraction 
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𝛼𝑙 Liquid phase volume fraction 

𝛼𝑠 Solid phase volume fraction 

𝜀𝑔 Gas holdup, dimensionless 

𝜌𝑔 Gas density, kg/m3 

𝜌𝑙 Liquid density, kg/m3 

𝜌𝑠 Particle density, kg/m3 

D Column diameter, m 

h Height from the gas distributor, m 

H Column height from bottom to top, m 

Ug Superficial gas velocity, mm/s 

Ug1 Initial fluidization velocity, mm/s 

Ug2 Full expansion velocity, mm/s 

Ug3 Complete fluidization velocity, mm/s 

Ug4 Freeboard velocity, mm/s 

Ul Superficial liquid velocity, mm/s 

Us Superficial solids velocity, mm/s 

Θ Granular temperature, m2/s2  

𝑒 Restitution coefficient for particle-particle collision, dimensionless 

𝛾 Collision dissipation rate of energy, kg/ms3 

𝜀 Turbulent energy dissipation rate, m2/s2 

𝜆 Bulk viscosity, kg m/s 

𝜇 Dynamic viscosity, kg/m-s 

𝜌 Density kg/m3 

𝜏 Stress sensor, Pa 

Subscripts 

𝑔 Gas phase 

𝑙 Liquid phase 

𝑠 Solid phase 
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Chapter 10  

10 Conclusions and recommendations 

 General discussion 

In contrast with the conventional fluidized bed reactor that mostly contains particles in a 

defined space, the circulating fluidized bed operates at high velocities and entrain the 

particles out of the bed continuously while adding more particles at the same time. 

Circulating fluidized beds have some unique advantages over other types of fluidized bed, 

such as high throughput and reduced back-mixing for both fluid and particles, albeit still 

having its own limitations. Among the various CFB systems studied in this work, the gas-

solid CFB system has seen the most successful applications in the chemical industry. Gas-

solid CFB systems are usually designed for two types of chemical reactions: gas-solid 

reactions if solids act as reactant such as the coal combustion and gas-phase catalytic 

reactions if solids act as catalyst such as the FCC process.  

There are two types of gas-solids CFB, the riser and downer. The GSCFB riser has been 

more popular in industrial applications so far as a chemical reactor than the downer, mostly 

based on a fact that it has relatively higher overall solids holdup. This may, however, be a 

mishap, as detailed investigation on the solids holdup distributions inside the CFB riser 

and downer conducted in this work shows that the GSCFB riser and downer could have 

similar overall solids holdups or even the same axial solids holdup distribution by adjusting 

the Ug-Gs pair as shown in Figure 10-1. Comparing CFB riser with the downer, by 

increasing Ug by 2 m/s at the same Gs
 or lowering Gs by 200 kg/m2s at the same Ug seems, 

deriving from the studies conducted in Chapters 4 & 5, to make the riser and downer share 

the same axial profiles of solids holdup. Thus, the performance of the GSCFB reactors is 

only determined by the radial distribution of the solids which relates to the degree of back-

mixing of the particles and the clustering effects on the local distribution of solids.  

Since the radial solids holdup profiles in the CFB riser are less uniform compared with that 

in the CFB downer, as shown in Chapters 4 & 5, due to the more severe clustering effects, 

the conversion and selectivity of the reactions are believed to be lower in the CFB riser due 
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to less contacting efficiency when compared with the downer with the same overall solids 

holdup. Therefore, the use of the GSCFB downer reactor can potentially bring more 

benefits if it is designed to have the same overall bed density with the riser while having a 

relatively more uniform flow condition.  

 

Figure 10-1 Axial solids holdup distributions between gas-solid CFB riser (Ug = 5, 7 

m/s, Gs = 100, 400 kg/m2s) and downer (Ug = 5, 7 m/s, Gs = 100, 600 kg/m2s)  

The application of the CFD approach has allowed us to examine the flow conditions in the 

riser and downer covering a wider operating window from low-density to high-density 

conditions, which helps revisit the flow structures in the GSCFB system and reveal the 

similarity of the solids holdup distributions between the riser and downer. The 

improvements on the CFD model which considered the entrance geometric structure effect 

that is critical and the cluster-driven drag model that is more realistic also provide more 

reliable simulation results for comparing the uniformity of the gas-solid flow between the 

riser and downer. The similarity shared by the riser and downer in the overall bed density 

and axial solids distribution by adjusting the Ug-Gs pair demonstrates a new possible 

strategy to the future design of a CFB reactor. 

Building on the strength accumulated through the GSCFB work and utilizing the large 

amount of the experimental data from the same group, CFD models under the same 

framework are firstly constructed in this work for the liquid-solid and three-phase inverse 
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fluidized bed. When compared with the GSCFB system, the liquid has a density closer to 

the particles and has a larger viscosity than the gas at the meantime, leading to a lower 

terminal velocity of the particles in the liquid. The fluidization of the particles can be 

initiated at a low liquid velocity and go through a smoother expansion in the LSCFB. Both 

the axial and radial profiles of solids holdup are generally uniform and only a thin but 

denser layer of particles near the wall is found, which may be considered as a minor 

clustering of the particles. Therefore, it is easier to predict the overall solids holdup and 

manipulate similar flow conditions in the upward and inverse fluidization systems. 

The introduction of gas bubbles into the inverse liquid-solid fluidized bed decreases the 

system uniformity and leads to inner circulations of the liquid and solids, resulting in the 

three-phase fluidized bed possessing a heterogeneity in between the particulate LSCFB 

system and the aggregative GSCFB system. It is possible that by increasing the gas flow 

rate and enlarging the density difference between the particles and liquid, the three-phase 

system will become less uniform because the flow conditions transit to be closer to the gas-

solid system. The inverse fluidized beds are typically designed for wastewater treatment 

because a high overall bed density and a high bed expansion ratio at low Ul can be achieved. 

The CFD work carried out in this work is paving the way for the design in future industrial 

applications of the inverse LSCFB and BIFB because it allows the properties of the fluid 

and particles to change freely. 

The CFB reactor also has higher fluid-particle contact efficiency given the relatively higher 

inter-phase slip velocity. But the utilization of this advantage also depends on the uniform 

distributions of the local and overall solids holdups. A higher overall solids holdup with 

relatively uniform solids distribution under high superficial fluid velocity in the CFB 

systems is ideal for chemical reactions. Higher overall solids holdup contributes to a higher 

total specific area of the particles, and the uniform distribution of the particles results in a 

higher contact efficiency due to reduced back-mixing of the solids. Furthermore, the CFB 

systems allow the fluid phase to have a higher throughput given the high-velocity 

fluidization operation. Therefore, the overall solids holdup and the uniformity of the 

multiphase flow are the two key parameters for judging the performance of a CFB reactor.  
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Multiple factors play a role in determining the effectiveness of a fluidized bed reactor not 

only including the overall operating conditions such as the superficial fluid velocity, solids 

circulation rate and particle properties, but also relating to the fluctuations of the 

multiphase flows in a fluidized bed reactor. How and how much impacts for all these 

factors on the contacting efficiency in the fluidized bed are still unclear. Extensive amount 

of the experimental and modelling work done on the CFBs in our group including the CFD 

studies in this study allows us to extract the similarity of dynamic behavior of the particles 

among the fluidization systems and better understand the effects of the surrounding fluid 

and particles from the simulation results.  

A system uniformity index combining with the above-mentioned factors either obtained 

from experiments or simulations is proposed to describe the effectiveness of a fluidized 

bed reactor. The system uniformity should reflect the flow conditions in a fluidized bed 

from multi-levels including overall distribution of the fluid and solids from macro scale, 

the instantaneous features such as the fluctuating velocity, inner circulations, clustering 

effects, etc. from the meso and micro scales.   

The general idea of the system uniformity of the fluidized bed is that it is a function of 

multiple factors as shown in Eq (10-1). 

𝐼𝑢 = f (𝑆𝑡𝑘, 
𝜀𝑠̅̅̅

𝜀𝑠
, 𝜃𝑠, 𝐺𝑠, 𝑈𝑓, ∆𝜌, ∆𝑃𝑖𝑚) = 1 – (𝑆𝑡𝑘

𝑎∙(
𝜀𝑠̅̅̅

𝜀𝑠
)𝑏∙𝜃𝑠

𝑐∙𝐺𝑠
𝑑∙ 𝑈𝑓

𝑒∙∆𝜌𝑓∙∆𝑃𝑖𝑚
𝑔) (10-1) 

where 𝑆𝑡𝑘 (= 
𝑡0𝑢0

𝑙0
) is Stokes number, 𝑡0 (=

𝜌𝑝𝑑𝑝
2

18𝜇𝑔
) is the particle relaxation time, 𝑢0= (𝑈𝑓) is 

the fluid velocity, 𝑙0  is the characteristic length of the fluidized bed. 𝜀𝑠̅  and 𝜀𝑠  are the 

overall solids holdup and the cross-sectional solids holdup. 𝜃𝑠 is the granular temperature 

of the particles associating with the particle fluctuations from CFD results. 𝐺𝑠 is the solids 

circulation rate, 𝑈𝑓 is superficial fluid velocity, ∆𝜌 is the density difference between the 

particle and fluid, and ∆𝑃𝑖𝑚 is the pressure imposed in the system.  
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Figure 10-2 The general idea on the system uniformity among various types of 

fluidized beds 

 

The system uniformity among various types of fluidized beds is briefly sketched as shown 

in Figure 10-2. Certainly, the ideal homogeneous fluid-particle system can be considered 

to have the highest uniformity, while the fixed bed is also considered as a perfect uniform 

state in which Iu = 1 at Stk = 0, Uf = 0, Gs = 0, 
𝜀𝑠̅̅̅

𝜀𝑠
 = 1 and 𝜃𝑠 = 0. The LSCFB system with a 

small density difference between the particles and fluid is close to a homogeneous fluid-

particle system because almost all particles are uniformly distributed in the fluidized bed, 

so that it has a high Iu. However, as the results show in Chapter 8, when the density 

difference becomes larger, the uniformity of the LSCFB decreases with more inner 

circulations occurring. The gas-liquid-solids systems such as the BIFB at the complete 

fluidization velocity can be considered to have a system uniformity in between the LSCFBs 

with a smaller ∆𝜌 and with larger ∆𝜌 because all the particles are uniformly distributed and 

the only turbulence introduced from the gas bubbles is slight. While being less uniform 

when compared with the LSCFB system, the GSCFB downer has a slightly more uniform 

flow structure than the GSCFB riser reactor. The LDCFB riser is considered to have better 

uniformity than the HDCFB riser because the local flow structure is relatively more 

uniform. The GSCFB riser under the solids circulation rate around Gs,tr
* is considered to 

have the least uniformity among all the fluidized beds because it is under the transition 

from the LDCFB riser to the HDCFB riser and the changeover between the dense phase 

and dilute phase is very dynamic. More future work is needed on the detailed correlation 

with more simulation and experimental data collected.  
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 Conclusions 

This thesis work covers the numerical work on various circulating fluidized bed systems 

including gas-solid, liquid-solid, and gas-liquid-solid three-phase fluidization systems. The 

hydrodynamics in different types of fluidized bed reactors under a wide range of operating 

conditions are numerically studied.  

To have a deeper understanding of the underlying flow mechanisms at different scales in 

the gas-solid fluidization system, a numerical study was initially comprehensively carried 

out in a gas-solid circulating fluidized bed (CFB) riser reactor. The effects of the inlet 

boundary conditions on the flow structures in a gas-solid CFB riser are investigated. A 

more realistic inlet boundary condition which considers the real geometry structure of the 

gas distributor and the solids returning pipe is applied in the CFD model. The unrealistic 

squeeze effects with air jets along the entire CFB riser are eliminated and are replaced with 

a small jet region in the entrance region of the riser by the modified inlet boundary 

condition.  

Hydrodynamics under high-density operating conditions and low-density operating 

conditions in a gas-solid CFB riser are further studied via the CFD model with the modified 

inlet boundary conditions. A good agreement with the experimental results is achieved. 

The exponential shape of the axial solids holdup profile is found either under the very dilute 

or extremely dense flow condition in the GSCFB riser However, the S-shape profile of the 

solids holdup distribution is more likely to be found under the intermediate solids 

circulation rate. Compared with the low-density CFB riser, the overall bed density is higher 

in the high-density CFB riser with a wider and denser wall region. An index is developed 

as a function of the superficial gas velocity and solids circulation rate to predict the 

relationship of the overall bed density under different Ug-Gs operating conditions. 

The hydrodynamics in the gas-solid CFB downer reactor are also numerically studied and 

the results agree well with the experimental data. Compared with the GSCFB riser, the 

flow structures are relatively uniform in the GSCFB downer, however, the gas-solids 

suspension is much more dilute. The axial solids holdup distribution is relatively uniform 

in the CFB downer, while the radial solids holdup distribution is generally uniform from 
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the center to the wall of the downer but with a slight increase at the wall due to the wall 

effects. The flow development can be divided into the first and second acceleration stages 

and a fully developed stage along the downer reactor. A correlation of the overall bed 

density inside the downer is proposed. The scale-up effects are also numerically studied, 

and the results show that a higher solid holdup at the wall is achieved in the scaled-up 

downer while the overall bed densities are similar.  

The gas-solid flow structures under high-density operations are found to have distinct 

characteristics from the low-density conditions in both the GSCFB riser and downer 

reactors. A higher overall bed density is achieved in both HDCFB riser and downer when 

compared with the LDCFB operations, which contributes a higher conversion for chemical 

reactions. For both the HDCFB riser and downer, a longer and denser developing region 

in the entrance part close to the gas distributor is found along the axial direction, and a 

wider and denser wall region with higher local solids holdup is found in the radial direction. 

A cluster-driven drag model is developed for the gas-solid CFB riser reactor. With the help 

of the image processing and the wavelet analysis approaches, the size, solids concentration 

of the clusters, and the solids volume fraction of the cluster phase can be obtained and then 

directly included into the calculation of the drag force in the gas-solid system. An 

agreement with the experimental data and an improvement of the solids holdup at the wall 

comparison with the commonly used Syamlal-O’Brien drag model are achieved by the 

proposed cluster-driven drag model. Higher slip velocity and higher granular temperature 

of the particles are predicted by the cluster-driven model, which indicates more intensive 

gas-particle interaction due to the clustering phenomenon. Further study shows that the 

clustering effects are more severe in the lower part or near the wall region of the CFB riser. 

Typical types of clusters such as strands, U-shaped, and spherical clusters are found in 

instantaneous contours of the solids holdup in the CFB riser. The effects of cluster size, 

and the distribution of the clusters are further discussed, and still needs more investigations 

in the future. 

To provide more supplementary discoveries to the experimental studies, CFD models in 

Eulerian-Eulerian approach are developed for two new types of circulating fluidized bed 
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reactors: an inverse liquid-solid CFB reactor and a bubble induced inverse three-phase 

fluidized bed reactor.  

CFD approach is applied to the hydrodynamic study of the inverse liquid-solid CFB system 

in which light particles are used, and achieves a good agreement with the experimental 

data. Numerical results from the ILSCFB show that the general flow structure is uniform 

in the inverse LSCFB downer. In the radial direction of the inverse LSCFB downer, the 

major part of the solids holdup distribution is uniform with a slight decrease at the wall due 

to the wall effects. Radial profiles of particle velocity from simulation results show that the 

solids suspension has a larger velocity in the center and a lower velocity near the wall in 

the inverse LSCFB. The flow structures become irregular when very light particles with a 

density of 28 kg/m3 is used in the inverse LSCFB because the density difference between 

the liquid and the particles is too large, resulting in more irregular vortexes. A binary-

particle system in the inverse LSCFB is also studied via numerical simulations and the 

results show similarities in flow structures with the single-particle system. A further study 

on the comparison of the flow structures between the ILSCFB riser and downer is carried 

out by numerical simulations and is included in the Appendix. 

A bubble induced inverse fluidized bed is studied both experimentally and numerically. A 

three-phase CFD model is developed for the BIFB using EE approach in which the gas 

phase is treated as the primary phase and both the liquid and solids phases are treated as 

secondary phases. With increasing superficial gas velocity, the BIFB will go through a bed 

expansion regime, a complete fluidization regime, and a freeboard regime. An initial 

fluidization gas velocity (Ug1), a full expansion gas velocity (Ug2), and a freeboard 

fluidization velocity (Ug4) are defined as the onsets of the three flow regimes. A complete 

fluidization gas velocity (Ug3) is also defined to characterize the optimized operating 

condition of the BIFB when all the particles are uniformly distributed. Numerical results 

show a good agreement with the experimental observations. In the complete fluidization 

regime, the three-phase flow is generally uniform, however, numerical results show that 

the radial solids holdup distribution is slightly less uniform than the axial one due to the 

inner circulation of the liquid. CFD results also show that a larger solids loading helps an 
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easier fluidization operation with a smaller complete fluidization gas velocity and a faster 

flow development.  

 Recommendations 

The underlying physics inside the gas-solid CFB system is still unclear although much of 

the numerical and experimental works have been done. The proposed cluster-driven drag 

model provides a more direct way to include the information of the clustering phenomenon 

obtained from the experiments into the CFD models. That said, however, more future work 

on the refinery of the proposed drag model is needed: 

Firstly, a proper description of the cluster slip velocity is needed. The cluster slip velocity 

is assumed be the same as the terminal velocity of the cluster in the current cluster-driven 

drag model since the actual slip velocity of clusters is not readily available from the 

experiments. With further analysis on the signals of the optical fiber probe, it is possible to 

extract the absolute velocity of the clusters and then the slip velocity of clusters can be 

derived. Secondly, a more meticulous size and density distribution of the clusters should 

be added into the calculation of the drag force. Numerical results from the modified cluster-

driven model which use smaller and diluter clusters in the center and larger and denser 

clusters in the wall region of the CFB riser has already show some improvements for a 

more accurate prediction. In the future, a correlation on the size and density of the clusters 

based on the position in the riser can be taken into account for the drag model.  

Although it is widely accepted that little clustering phenomenon occurs in the CFB downer 

in the past due to its very dilute flow conditions with less back-mixing, particles still tend 

to agglomerate resulting in a clustering effect under the high-density operations in the 

downer reactor. With more data collected by the experiments, the cluster-driven drag 

model can likely be used in the gas-solid CFB downer reactors.  

With enough hydrodynamics studied in the circulating fluidized bed systems, chemical 

reactions should be added into the CFD model. The next step after the hydrodynamic study 

of the fluidized bed reactor is the hot-mode study which investigate the performance of the 

chemical reactions in the CFBs. With more knowledge obtained on the flow regimes and 
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the flow development in the CFBs, potential applications need to be studied. For example, 

a high-density CFB downer could operate the FCC process with less back-mixing, and the 

BIFB may be welcomed in the wastewater treatment field due to its longer residence time 

of the liquid. From the view of CFD modelling, an accurate description of the reaction 

kinetics is of crucial importance and the coupling work of the chemical reactions into the 

hydrodynamic model deserves more attentions in the future.   

Scale-up work on the circulating fluidized bed systems can be continued for industrial uses 

with the accelerated growth of computational power. Some newly developed algorithms 

such as the coarse grid approach or the MP-PIC method can be implemented in the 

simulations. The fundamental study which aims to dig into more advanced theories for the 

underlying physics can be firstly numerical investigated in the micro-scale with finer grid 

system and more accurate methods such as the discrete element method (DEM) or direct 

numerical simulation (DNS) approaches. The scale-up effects can be simulated by some 

more applied approaches coupled with the initial numerical results from the micro-scale 

CFD models for saving the time and cost.  

More experiments done on the circulating fluidized bed systems especially for some newly 

invented fluidized beds are still needed to reveal the underlying physics with development 

of the measuring techniques.  
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Appendices 

Two published articles are included in the appendices part as the supporting materials to 

present a better integrality of this thesis. 

Article 1: Comparison of liquid-solid flow characteristics in upward and downward 

circulating fluidized beds by CFD approach (published in Chemical Engineering Science) 

Authors: Yangfan Song, Jesse Zhu, Chao Zhang, Zeneng Sun, Xiaofeng Lu 

This paper is an extended work of Chapter 8, in which the hydrodynamics in the inverse 

liquid-solid CFB riser and downer are compared by CFD approach. A good agreement is 

achieved between the numerical and experimental results. Similarities and differences are 

presented between the upward and downward CFB. The previous Sang and Zhu model is 

proven to be useful in predicting solids holdup. 

 

Article 2: A Consolidated Flow Regime Map of Upward Gas Fluidization (published in 

AIChE Journal) 

Authors: Zeneng Sun and Jesse Zhu 

This paper is a review article of the upward gas-solids fluidization systems, which is a 

supplementary work to Chapter 3-7. A consolidated flow regime map is proposed to 

reflect the expansion of upward gas fluidization. New types of fluidized beds such as CTFB 

and HDCFB are included and CFB operating region is reclassified. The corresponding 

transitions between the regimes are discussed. The dynamic changeover of the continuous 

phase between the flow regimes is discussed. 
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