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Abstract 

Our body’s functioning depends on the ability of cells to sense and react to their local 

mechanical environment; this process is known as mechanotransduction. Despite the 

importance of understanding how cells interact with mechanical stimuli, the specific 

mechanisms governing such processes have yet to be elucidated. Using microscopy to detect 

the early responses of living cells to mechanical loads and forces would be a critical step 

towards further understanding cellular mechanotransduction. Dynamic and high-frequency 

cyclical loads are relevant to human physiology and disease. Yet, modern microscopy 

systems are not capable of delivering the appropriate mechanical stimuli to live cell cultures. 

To address this deficiency, we developed a suite of mechanostimulation platforms that 

provide precise and relevant loads and forces to cell cultures during simultaneous 

microscopic analysis. We developed a motion-control system capable of precisely delivering 

vibrations to live cells during real-time microscopy. Using this system, we found that 

vibration of osteoblastic cells does not elicit acute elevation of cytosolic free calcium, but did 

desensitize responses to later stimulation with extracellular ATP. We next developed and 

validated a technique for the practical fabrication of microfluidic channels. In contrast to the 

effect of vibration, osteoblastic cells were found to respond to changes in fluid shear stress 

with transient elevation in the concentration of cytosolic free calcium. Lastly, we developed a 

system to apply disturbed fluid flow to live cells during real-time imaging. This system was 

used to demonstrate changes in the concentration of cytosolic free calcium in human 

endothelial cells exposed to laminar and disturbed flow. Our findings indicate that different 

forms of mechanical stimuli activate distinct signaling pathways in cells. Moreover, these 

new technologies will facilitate investigations of the signaling pathways activated by 
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dynamic mechanical stimulation of a variety of cell types, in particular those of the skeletal 

and vascular systems.  
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Summary for Lay Audience 

Our bodies have the capability to respond and adapt to mechanical loads and forces. Cells, 

the functional units of our body, have the machinery responsible for sensing and responding 

to these forces. For example, during physical activity such as running, the cells in our bones 

sense the repeated force applied to the body, and can signal to strengthen the bone tissue if 

necessary. Indeed, over time, increases or decreases in physical activity can strengthen or 

weaken our bones, respectively. In general, physical forces play an important role in the 

regular healthy function of the human body, and also in the development of many serious 

diseases, including bone disorders like osteoporosis and vascular diseases like 

atherosclerosis. Therefore, it is important to understand the processes by which cells carry 

out these functions. However, these processes have been difficult to study for many reasons. 

For one, there are several different kinds of forces that can interact with cells, including shear 

stress due to fluid flow and acceleration due to vibration. Another reason is that it is 

technically challenging to observe the immediate changes in cell activity when a specific 

force is applied. 

In this thesis, we describe the development of new technologies that will allow scientists to 

study the early responses of living cells to the application of controlled physical forces. The 

first study describes a tool that allows scientists to vibrate cells back-and-forth hundreds of 

times per second, while only moving them less than the width of a human hair. The second 

study describes a tool that allows scientists to easily and affordably flow fluid over cells in a 

controlled way. The final study describes a tool that allows scientists to apply fluid flow to 

cells in a way similar to that seen in diseased blood vessels. These tools are all integrated 

with existing microscopes and cellular-imaging techniques. Our findings indicate that 
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vibration and fluid flow activate different biological control systems within the interior of the 

cell. Further studies using these devices may aid in the development of new medical 

treatments for diseases like osteoporosis and atherosclerosis. 
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Chapter 1  
 

1 Introduction 
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1.1 Chapter summary  

Cells and tissues can convert physical information from their local mechanical 

environment into biochemical signals through the process known as 

mechanotransduction. Physical forces acting on cells and tissues include strain (e.g. due 

to stretching), acceleration (e.g. during vibration), and fluid shear stress (due to flow of 

extracellular fluid). Mechanotransduction is thought to be ubiquitous in life on earth and 

organisms have developed sophisticated and sometimes specialized mechanisms with 

which to process these various types of mechanical signals. In some cases, mammalian 

cells detect a strain, which is then amplified by release of ATP into the extracellular fluid, 

which in turn signals through cell-surface purinergic receptors, initiating transient 

elevation in the concentration of cytosolic free calcium. Change in cytosolic free calcium 

levels then leads to a cascade of downstream signaling events, affecting cell fate and 

phenotype through the modulation of transcription, translation, and protein activity. The 

immediate and transient nature of such signals makes real-time monitoring of cellular 

responses to mechanical signals imperative for understanding these phenomena.  

Many previous studies of mechanotransduction have investigated its roles in the 

musculoskeletal and circulatory systems. In the case of the musculoskeletal system, 

mechanical stimulation with vibration and fluid flow has been implicated in bone health, 

as anabolic signals fundamental to adequate bone strength. When this signaling is 

perturbed or otherwise disrupted, inadequate remodeling leads to a deficiency in bone 

mass that is diagnosed in humans as osteoporosis. In the case of the vasculature, 
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endothelial cells that line blood vessels are mechanically sensitive. They respond to the 

fluid shear stress caused by blood flow and require this stimulus to maintain a healthy 

phenotype. If hemodynamics are perturbed, which occurs naturally in certain geometries 

of the vasculature (e.g. at bifurcations), then endothelial dysfunction may occur. This 

pathological inflammatory signaling leads to disease states like atherosclerosis. 

Research tools exist to study cellular mechanotransduction. In the case of fluid shear 

stress, flow chambers allow the study of cells responding to changes in fluid flow. 

Microfluidics have allowed more relevant micro-scale geometries, which has increased 

the impact of these studies. However barriers to entry into this field remain high for many 

labs, as custom devices usually require complex and expensive methods of fabrication. 

Custom devices are also required to study real-time cell responses to dynamic mechanical 

stimuli such as vibration and disturbed fluid flow. Most vibration studies are performed 

with whole-body vibration devices, where an entire animal is vibrated. Devices exist to 

study the response of cells to vibration, but they are not readily compatible with real-time 

monitoring. Similarly with respect to disturbed flow, although the potential impact on 

cells has been known for decades, there are few systems available to study the immediate 

effect in real time. 

It is perhaps unsurprising that the ability for cells and tissues to respond to their physical 

surroundings is so essential. More surprising however, may be that relative to other 

sensory-transduction processes, the scientific understanding of mechanotransduction is 

comparatively incomplete; it is for this reason that we contribute to the science 

surrounding mechanotransduction. Therefore, the overall objective of this thesis is to 
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develop a suite of instruments for the dynamic mechanostimulation of live cells, 

integrated with real-time microscopy.  

In this introductory chapter, we discuss the context for mechanotransduction research, 

including, the forces we deem most relevant to biology, mechanotransduction 

mechanisms that have been identified in the literature, tissues in which 

mechanotransduction is known to be highly important, and the methods commonly used 

to study the early events of mechanotransduction in cells and tissues. Lastly, we address 

the specific aims and objectives of this thesis. 

1.2 Overview of mechanotransduction research 

The importance of mechanotransduction in biology is difficult to overstate – this is 

exemplified by its key role in human physiology. The evolutionary development of 

mechanosensation is understood to have a common ancestor phylogenetically preceding 

multicellular organisms. Mechanosensation, the sensitivity of biological systems to 

mechanical stimulation, is thought to be ubiquitous in nature among all 3 domains of life 

(Kloda and Martinac, 2002). Mechanosensitive proteins show homology between 

kingdoms (Martinac, 2001). Examples of these are stretch-activated ion channels, which 

are described in prokaryotes (Blount et al., 1996), archaea (Kloda and Martinac, 2001; Le 

Dain et al., 1998) and eukaryotes (Guharay and Sachs, 1984). This ubiquity among all 

phylogenetic domains underscores the importance for life to have this ability of 

interacting with the physical environment.  
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Although the ability of organisms to interact with their mechanical environment is 

intuitive to humans (i.e. understanding the sense of touch is innate), formal scientific 

inquiry into mechanobiology (aside from that relating to somatosensation of the nervous 

system) likely began with Julius Wolff.  His work “Law of Transformation of the Bone” 

described the propensity of bone to change its shape as a result of loading (Wolff, 2010a; 

Wolff, 2010b; Wolff, 2011; Wolff et al., 1986). Since recognition that mechanical 

loading is essential to the physiology of the skeleton, the same has been realized for other 

tissues (Wall et al., 2017), including but not limited to skeletal muscle (Huxley and 

Hanson, 1954), cardiac muscle (Abraham et al., 2016; Katz, 2002; McCormick and 

Tzima, 2016; Takahashi et al., 2013), blood vessels (Ando and Yamamoto, 2009; Berk, 

2008; Davies, 1995; Davies et al., 1995; Papaioannou and Stefanadis, 2005), the kidneys 

(Nauli et al., 2003; Nauli and Zhou, 2004; Raghavan and Weisz, 2016; Weinbaum et al., 

2010), and the lungs (Alevriadou et al., 2017; Liu et al., 1999; Mahto et al., 2014).  

Various forms of mechanical loading of all these tissues converge on a few key modes of 

mechanical stimulation. While forces applied to tissues and cells may differ in their 

presentation, cells can only respond to these stimuli through a limited number of 

fundamental mechanisms. Here, we suggest that many mechanotransductive phenomena 

are the result of strains arising through one or more of the following mechanical stimuli: 

tensile stress and strain, fluid shear stress, and acceleration.  
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1.3 Mechanical stimuli relevant to 

mechanotransduction 

There are multiple relevant forms of mechanical stimulation (Janmey and McCulloch, 

2007; Scott et al., 2008), including tensile strain (stretching) (Reed et al., 2014), 

acceleration (e.g. vibration) (Zhou et al., 2014b),  and fluid shear stress (Macek Jilkova et 

al., 2014). The literature reveals that these are currently being investigated in multiple 

systems and, at the moment, it is not entirely known which types of forces and stimuli are 

the most relevant to each specific cell type. In nature, the effects of these forces are 

difficult to isolate as they often act simultaneously, and may have multiple effects on cell 

signaling. In this thesis, we attempted to isolate each stimulus, as a reductive approach 

may be key to parsing their individual effects, and for identifying how best to manipulate 

them in the future for medical interventions.  

In determining which parameters of mechanical stimuli are most relevant, the literature 

cites the dynamic nature and the magnitude of the resulting strain as being key attributes. 

A static mechanical stimulus is one that does not vary in magnitude or direction over 

time, whereas a dynamic stimulus may change in magnitude and/or direction over time. It 

has recently been postulated that the most relevant stimuli in cellular 

mechanotransduction are highly dynamic in nature. Although mechanotransduction has 

been investigated for some time, the relevance of dynamic, high frequency stimuli has 

been recognized much more recently (Michel, 1988; Weinbaum et al., 1994).  
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The biological relevance of high-frequency stimuli may not be immediately obvious 

when one considers typical loading scenarios (e.g. walking at a rate of 1 Hz). However, 

this can be explained by the fact that it is the range of frequencies that are actually 

transmitted through the body (Seidel et al., 2001), not the rate of the initial loading, 

which is significant. In the example of the musculoskeletal system, the natural resonance 

of human bone dictates the range of frequencies transmitted through that tissue. Human 

bone has been found to transmit frequencies of approximately 100 Hz (Benirschke et al., 

1993), with more recent research showing transmissibility up to 20 Hz (Meusch and 

Rahmatalla, 2014) (Fig. 1.1). Thus, there is a range of frequencies that could be of 

interest in bone as well as other tissues.  

The dynamic nature of mechanostimulation is also important in other tissues, such as the 

vasculature. The human heart beats approximately once every second, pumping blood 

throughout our vessels, which applies a fluid shear stress to the vascular endothelium. 

Examining an archetypal blood flow waveform (Figure 1.2) of the carotid artery reveals a 

flow rate that is temporally variable and contains high frequency components in the tens 

of Hz. Interestingly, it is not entirely dissimilar in appearance to the impulse waveforms 

of loaded bone seen in Figure 1.1. This similarity in dynamic loading may play a role in 

the cellular mechanotransductive mechanisms used to respond and adapt to these stimuli.  

In this thesis, we focused on vibration and fluid shear stress in bone cells (osteoblasts and 

osteoclasts) as well as vascular endothelial cells. However, the tools developed in these 

studies were designed to be applicable to many different cell models. Strains due to 

tensile stresses were not directly addressed in these studies. However, tensile stress and  
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Figure 1.1 Waveform of an impulse load. Rabbits with femoral implants were 

loaded by dropping an impact mass, with a load of either 500 N (a) or 1000 N (b). 

Impulse loads were detected with a pressure sensor, resulting in a voltage, 

representative of the impact force, over time. Impulse loading results in a rapid 

peak load, and subsequent lower magnitude but high frequency ringing. This 

image is taken from (Diao et al., 2017), and reproduced under the terms of the 

Attributions 4.0 International (CC BY 4.0) license. 

 

Figure 1.2 Average common carotid flow waveform. Two thousand repetitions of 

carotid flow simulated by a pump for the production of physiological flow 

waveforms. This arterial waveform displays the dynamic and time-dependent 

nature of blood flow rate within an artery. Reproduced with permission from 

(Holdsworth et al., 1991).   
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strain are addressed below, due to their relevance to and interconnectedness with the 

other modes of mechanical stimulation. 

1.3.1 Tensile stress and strain 

Strain (𝜀) is the measure of deformation (i.e. change in dimensions) caused by the 

application of an external force when stretching an object (Callister, 2001). It is defined 

as equal to the change in length (D𝐿) of an object divided by the original length (𝐿$) of 

the object (Fig 1.3): 

       𝜀 = 	 D(
()	

     

Therefore, strain is a unitless dimension. Straining an object by stretching is achieved by 

applying a tensile force to the object. The stress (𝜎) imparted upon an object is equal to 

the force (F, in Newtons) that is used to stretch the object, divided by the cross-sectional 

area of the object (A, in square meters): 

         𝜎	 = 	 +
,
     

The magnitude of strain experienced by a particular object at a fixed force is determined 

by the elasticity of the material that makes up the object, which is expressed as Young’s 

modulus (Y). The Young’s modulus (Pa) of a given material is equivalent to the stress 

divided by the strain, within the elastic region of an object’s deformation (i.e. the region 

of strain values within which the object returns to its original shape after cessation of the 

applied force), and is given by: 
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Figure 1.3 Physical strain due to stretching. As a tensile force is applied to the 

object, it changes its length and is strained. The degree of deformation is 

proportional to the material properties, defined by the Young’s modulus, and the 

tensile stress (F/A).  
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𝑌 = .
/
      

This system is governed by Hooke’s Law, which states that, within this elastic region, the 

stress is directly proportional to the strain and the elastic modulus of the object. 

Rearranging the Young’s modulus gives us Hooke’s Law:  

𝜎 = 𝑌 ∙ 𝜀      

Strain deformation is relevant in many human tissues, including both the skeleton (Yu et 

al., 2015) and the vasculature (Back et al., 2013). When a material, such as bone or blood 

vessel is stretched, the cells that adhere to the strained matrix are also deformed (Miller, 

2017).   

1.3.2 Fluid shear stress and fluid flow 

Wall shear stress (WSS) due to fluid flow is the force generated when a viscous fluid 

flows over a surface (Cengel and Cimbala, 2018). When we consider the factors 

contributing to the shear stress (t) generated by a fluid flowing along a surface, we are 

primarily concerned with a few factors of the system, including: the velocity of the fluid, 

the geometry of the fluid container, and the fluid’s characteristics (i.e. viscosity and 

density). To understand the concept of shear stress, we can imagine a fluid-filled 

container with an overlying plate (Fig. 1.4). If we apply a force to the plate to slide it 

across the fluid surface, the layer of fluid in contact with the plate will move with the  
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Figure 1.4 Shear stress is a function of viscosity and the velocity gradient. As the 

upper plate is moved along the surface at a velocity, it drags the fluid in contact 

with it due to viscosity. The stress caused by the interaction of the viscous fluid 

with the moving plate is shear stress and is equal to the slope of the change in 

velocity (v) over the change per increment in height (∆z). 
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plate. This is a no-slip fluid boundary condition that occurs due to viscous forces, where 

micro-scale interactions of the fluid’s molecules with the plate have macro-scale effects 

on fluid behaviour. This viscous drag is proportional to the viscosity coefficient of the 

fluid (µ), which relates to the ratio of shear stress (F/A) applied to the velocity gradient 

(∆v/∆z) generated according to Newton’s equation as:  

µ = 	
𝐹
𝐴4

∆𝑣
∆𝑧4

 

∴ 	
𝐹
𝐴 = µ	

∆𝑣
∆𝑧			 

where F is force (N/m2), A is area in m2, ∆v is the difference in velocity (m/s), and ∆z is 

the increment in height (m). The viscosity coefficient is therefore reported in units of 

Pa•s, and is the coefficient of proportionality between the shear stress applied and the 

resulting velocity gradient, with increasing viscosity coefficient indicating higher shear 

stress for the same velocity gradient. Water (at 20°C) for example, has a viscosity of 

1.0016 mPa•s.  

As the top lamina moves, these viscous forces will also interact within the fluid itself, and 

it will drag the lamina beneath it, and so on. This creates a velocity gradient within the 

fluid. As the velocity gradient reaches the bottom of the container, the final lamina of 

fluid in contact with the wall will have zero velocity. This is the same no-slip condition 

as observed at the wall of the moving plate. Shear stress is generated as a result of this 

velocity gradient, both between fluid laminae, and at the boundary between the fluid and 

the walls.  
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The linear velocity gradient is a simplification, and its true nature will depend upon the 

geometry of the flow container. For example, flow in a pipe (Fig. 1.5) has a maximal 

velocity of two-fold greater than that of the mean velocity. The maximal velocity occurs 

farthest from the effect of viscous drag on the walls, and therefore at the 3D-centre 

(centreline, and central plane) of the pipe. Shear stress at the wall can be calculated by 

evaluating the shear stress where height is equal to zero: 

𝜏 = 	µ	
∆𝑣
∆𝑧:;<$

 

Wall shear stress is an important parameter of fluid flow in biological systems. It is the 

quantity by which physiological responses to flow are evaluated. It is hypothesized to be 

a key force that cells detect in order to respond to flow in their local environment.  

1.3.3 Acceleration and vibration 

When an object in motion translates its position in space it is described as being displaced 

(Halliday et al., 2005). Displacement (D) in one dimension is calculated as:  

𝐷 =	∆𝑥 = 𝑥? − 𝑥$		 

The rate of change of an object’s displacement over time is expressed as the object’s 

velocity (v), which is defined as: 

𝑣 = 𝑑𝐷/𝑑𝑡 

Acceleration (a) is then defined as the rate of change of velocity over time (Fig. 1.6): 

𝑎 = 𝑑𝑣/𝑑𝑡 
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Figure 1.5 Shear stress due to blood flow in a vessel cross section. As fluid is 

pumped through a blood vessel, a velocity gradient is formed relative to the 

geometry of the vessel. The maximal velocity occurs at the centre of the vessel, 

and reaches zero at the vessel wall (no-slip). The vessel wall is lined by vascular 

endothelial cells, which are sheared by the flow of blood. The shear stress (t) is 

equal to the viscosity multiplied by the velocity gradient (i.e. the slope of the 

velocity profile). Fluid flow also commonly occurs within in bone, for example, 

shearing osteocytes lining the lacunar-canalicular network. 
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Figure 1.6 Relationship of acceleration to velocity and displacement during 

simple harmonic oscillations. As an object moves, its motion is described by a 

displacement (D, m), which is the difference between the object’s starting and 

ending position. Velocity (v, m/s) is the rate of change of displacement (first 

derivative, dotted blue tangent) as a function of time. The rate of change of 

velocity (second derivative of displacement, dotted green tangent) is acceleration 

(a, m/s2). In simple harmonic oscillations, an object’s motion is sinusoidal. 

Sinusoids are characterized by their frequency (f) and amplitude (A). Frequency 

is the inverse of the period (T = 2p = 1/f) and is the rate of cycles per unit time in 

Hz. Amplitude is the maximal distance from sinusoidal peak to baseline. 

Frequency, amplitude, and peak acceleration are all defined by the expression 

apeak = A(2pf)2. Dotted black line indicates sinusoidal baseline. 
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Dynamic accelerations (i.e. those that vary over time) can take many forms, the most 

fundamental being sinusoidal oscillations. Oscillating sinusoidal motion (y) described as 

a function of time takes the form of: 

𝑦 = 𝐴	𝑠𝑖𝑛(𝜔𝑡) 

where A is the amplitude (in meters), w is the angular frequency of the motion over time 

(in radians per second), and t is time (in seconds). As we know that the first derivative of 

motion is velocity, we can describe the rate of change of sinusoidal motion as: 

𝑣 = 𝐴	𝜔	cos	(𝜔𝑡) 

The rate of change of velocity can then be described as the acceleration by: 

𝑎 = 	−𝐴	𝜔Msin	(𝑤𝑡) 

We can also describe the angular frequency as: 

𝜔 =
2𝜋
𝑇  

where T is the period of the oscillation, or the time required to complete a sinusoidal 

cycle (in seconds). The period is therefore equal to the inverse of frequency (cycles per 

second or Hz).   

𝑇 = 	
1
𝑓 

Thus angular frequency can also be expressed as: 



18 

 

𝜔 = 2𝜋𝑓 

If we then replace angular frequency with this equivalent expression when describing the 

acceleration of a sinusoidal oscillation, we obtain:  

𝑎 = 	−𝐴	(2𝜋𝑓)Msin	(2𝜋𝑓𝑡) 

The acceleration reaches its peak value when sin(2pft) reaches its peak value and is equal 

to 1, therefore: 

𝑎VWXY = 𝐴(2π𝑓)M 

Thus, the peak acceleration, amplitude, and frequency of a simple harmonic oscillator are 

all related to one another by this expression.  

Acceleration is relevant in biology in several forms. All organisms on earth experience 

gravity, which is the force that of attraction between two masses towards each other. 

Constant acceleration due to the force of gravity (g) is equal to  ~9.8 m/s2 at the surface 

of the Earth. The force of gravity is relevant to biology, and influences organismal 

development and physiology (Morey-Holton, 2003). Less obvious, but still thought to be 

important, are dynamic oscillating accelerations experienced as vibrations. Vibrations are 

commonly experienced in the modern world and can be relevant when operating motor 

vehicles or using power tools (Cardinale and Pope, 2003; Cardinale and Wakeling, 2005; 

Ozkaya et al., 1994). Sometimes these vibrations are of relatively high magnitude (peak 

acceleration >1 g) and may have adverse biological effects (Charles et al., 2018; Kwaku 

Essien et al., 2018; Nilsson et al., 2017; Shen and House, 2017). It has recently been 
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hypothesized that human tissues are sensitive to low magnitude (<1 g), high frequency 

(>15 Hz) vibrations, known as LMHF vibrations (Fritton et al., 1997; Rubin et al., 2001). 

Upon impulse loading, the skeleton is vibrated and experiences high-frequency signals 

determined by the tissue’s material characteristics (Guo and Teo, 2005; Kiiski et al., 

2008; Pope et al., 1997; Randall et al., 1997; Rubin et al., 2003). Additionally, different 

parts of the body appear to have different transmissibility, depending upon their distance 

from the vibrational source and the surrounding structures (Hu et al., 2015; Kiiski et al., 

2008).  

Not only are the immediate mechanisms that detect and transduce vibrational mechanical 

stimuli unclear, their longer-term biological effects are equally murky.  Early studies of 

LMHF vibration and their effects on human tissues were mostly focused on the effects of 

whole-body vibration (WBV) on the musculoskeletal system. Some investigators 

reported that vibration had anabolic effects on bone and catabolic effects on adipose 

tissue (Judex et al., 2003; Rubin et al., 2001; Rubin et al., 2002; Rubin et al., 2007). As 

well, WBV showed promise as a potential non-pharmacological intervention for serious 

pathologies such as osteoporosis (Gilsanz et al., 2006; Judex et al., 2002; Rubin et al., 

2001). However, these findings have been controversial as other investigators have been 

unable to confirm these anabolic effects (Cardinale and Pope, 2003; Castillo et al., 2006; 

Iwamoto et al., 2005; Lynch et al., 2010; Roelants et al., 2004), or the clinical efficacy of 

WBV in populations most at risk (Merriman and Jackson, 2009; Slatkovska et al., 2011). 

Additionally, some investigators have reported that LMHF vibrational exposure has 

negative, degenerative effects on the musculoskeletal system in mouse models (McCann 







217 

 

  



218 

 

Curriculum Vitae 

Name:		 	 Daniel	Lorusso	
	
Post-secondary		 The	University	of	Western	Ontario	
Education	and		 London,	Ontario,	Canada	
Degrees:		 	 2012-Present	Ph.D	Candidate	
	 	 	 Physiology	and	Pharmacology,	

Collaborative	Specialization	in	Musculoskeletal	Health	
Research	

	 	 	 	
	 	 	 The	University	of	Western	Ontario	

London,	Ontario,	Canada	
2008-2012	B.M.Sc,	Honors	
Honors	Specialization	in	Biochemistry	&	Cell	Biology	
	

Honours	and		 Province	of	Ontario	Graduate	Scholarship	
Awards:		 	 2015-2016	
	
	 	 	 CMHR	Transdisciplinary	Bone	&	Joint	Training	Award	
	 	 	 2015-2016	
	

Canadian	Institutes	of	Health	Research	(CIHR)	Joint	Motion	
Program	(JuMP)	Studentship	
2013-2015	
	
Dean’s	Honor	List,	The	University	of	Western	Ontario	
2008-2012	
	
The	Western	Scholarship	of	Distinction,	The	University	of	
Western	Ontario	
2008	

	
Related	Work		 Teaching	Assistant	
Experience:		 	 Cell	Physiology	3140A	

The	University	of	Western	Ontario	
2014,	2016	
	
Research	Assistant	
Dr.	Sandy	Kirkley	Centre	for	Musculoskeletal	Health	Research	
The	University	of	Western	Ontario,	
2012	
	

	



219 

 

Publications:	Lorusso, D., Nikolov, H.N., Holdsworth, D.W., and Dixon, S.J. (2019) 
Vibration of osteoblastic cells using a novel motion-control platform does not acutely 
alter cytosolic calcium, but desensitizes subsequent responses to extracellular ATP. 
Submitted to the Journal of Cellular Physiology, in revision 	
	
D.	R.	Edey,	S.	I.	Pollmann,	D.	Lorusso,	M.	Drangova,	R.	Flemming,	D.	W.	Holdsworth.	
(2019)	Extended	dynamic	range	micro-computed	tomography	of	geomaterials	using	
a	biomedical	scanner.	Journal	of	X-Ray	Science	and	Technology,	in	press.	
	
Liu,	Y.,	Lorusso,	D.,	Holdsworth,	D.W.,	Poepping,	T.L.,	de	Bruyn,	J.R.	(2018)	Effect	of	
confinement	on	the	rheology	of	a	yield-stress	fluid.	Journal	of	Non-Newtonian	Fluid	
Mechanics.	261:	25-32	
	
Lorusso,	D.,	Nikolov,	H.N.,	Chmiel,	T.,	Beach,	R.J.,	Sims,	S.M.,	Dixon,	S.J.,	Holdsworth,	
D.W.	(2017)	A	device	for	real-time	live-cell	microscopy	during	dynamic	dual-modal	
mechanostimulation.	Proc. SPIE 10137, Medical Imaging 2017: Biomedical 
Applications in Molecular, Structural, and Functional Imaging, 101370F. 
	
Lorusso,	D.,	Nikolov,	H.N.,	Milner,	J.S.,	Ochotny,	N.M.,	Sims,	S.M.,	Dixon,	S.J.,	
Holdsworth,	D.W.	(2016)	Practical	fabrication	of	microfluidic	platforms	for	live-cell	
microscopy.	Biomedical	Microdevices.	18(5):	78	
	
Lorusso,	J.,	Fitzgeorge,	L.,	Lorusso,	D.,	and	Lorusso,	E.	(2014)	Examining	
practitioners’	assessments	of	perceived	aesthetic	and	diagnostic	quality	of	high	kVp-
low	mAs	pelvis,	chest,	skull,	and	hand	phantom	radiographs.	Journal	of	Medical	
Imaging	and	Radiation	Sciences.	46,	162-173	
	
Teeter,	M.G.,	Milner,	J.S.,	Au,	J.L.,	Lorusso,	D.,	Naudie,	D.D.,	and	Holdsworth,	D.W.	
(2010)	Regional	measurements	of	surface	deviation	volume	in	worn	polyethylene	
joint	replacement	components.	J	Long	Term	Eff	Med	Implants.	20(1):	49-56.	

	


