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Abstract

The research is motivated by the prostate cancer imaging study conducted at the University

of Western Ontario to classify cancer status using multiple in-vivo images. The prostate cancer

histological image and the in-vivo images were subject to misalignment in the co-registration

procedure, which can be viewed as measurement error in covariates or response. We investigate

methods to deal with this problem.

The first proposed method corrects the predicted class probability when the data has mis-

classified labels. The correction equation is derived from the relationship between the true

response and the error-prone response. The probability for the observed class label is adjusted

so it approaches the probability of the true label. A model can be built with the corrected class

probability and the covariates for prediction purpose.

A weighted model method is proposed to construct classifiers with error-prone response. A

weight is assigned to each data point according to its position, which indicates the data point’s

reliability. We propose the weighted models for different machine learning classifiers, such as

logistic regression, SVM, KNN and classification tree. The weighted model incorporates the

weight for each instance in the model building process, and the weighted classifiers trained with

the error-prone data can be used for future prediction.

The misalignment in the co-registration procedure can also be treated as measurement error

in covariates. A weighted data reconstruction method is proposed to deal with the corrupted

covariates. The proposed method combines two moment reconstruction forms under different

assumptions. We incorporate the weights of the data to build adjusted variables to replace the

error-prone covariates. The classifiers can be trained on the reconstructed data set.

Numerical studies were carried out to assess the performance of each method, and the

methods were applied to the prostate cancer imaging study. The results show all methods have

significantly resolved the misalignment problem.

Keywords: Measurement error, misclassification, classification, imaging data, weighted

model, machine learning, moment reconstruction.
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Lay Summary

This research investigates three methods to improve the prostate cancer detection accuracy

with medical images when the image data was not correctly measured.

The prostate cancer is the most common cancer among Canadian men, but the current

detection methods suffer from low accuracy and high variability. Using medical images like

MRI to build statistical models to predict cancer status is a promising solution. The prostate

cancer image research team at the University of Western Ontario collected image data for this

modelling purpose, but the data had measurement error. The error can be viewed as the cancer

labels (response) are wrong or the image intensity measurements (covariates) are corrupted.

Various previous studies have shown that these kinds of measurement errors decrease the

prediction performance.

The first method we proposed builds the relationship between the true cancer status and the

mislabelled status. Through this relationship we can correct the predicted cancer label.

We define the reliability of each data point by its position in the medical image. This

reliability is a probability that reflects how likely this point is correctly measured. We propose

to combine this reliability measure with the statistical models so that the new models are less

vulnerable to the measurement error problem.

Last we propose to combine the reliability of the data with the moment reconstruction

method proposed by Freedman et al. (2004). The moment reconstruction method creates an

“adjusted” value for the error-corrupted covariate such that the “adjusted” value is close to

the true value. The form of moment reconstruction depends on the assumption of the type of

the error. We have found out that the prostate image measurement error corresponds to two

different error types, and the reliability reflects how likely is each error type. We combined

these two error types to create the adjusted values for the covariates, with the proportion for

each error-type determined by the reliability.

The simulation studies and the real data application have shown the proposed methods

significantly improve the prediction performance.
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Chapter 1

Introduction

1.1 The prostate cancer imaging study

The prostate gland is a part of the male reproductive system. It adds nutrients and fluid to

sperm. Prostate cancer is one of the most common cancers that affect Canadian men (Stewart

et al., 2014). The known risk factors of prostate cancer are age, family history and diet, while

obesity and some other factors like exposure to high levels of testosterone are possible risk

factors (Stewart et al., 2014, chapter 5.11).

Prostate cancer can be slow-growing, and the signs and symptoms are not obvious in

the early stage of the cancer (Filson et al., 2015). The common diagnose tests for prostate

cancer include health history and physical exam, prostate-specific antigen (PSA) test, transrectal

ultrasound (TRUS), biopsy, complete blood count, magnetic resonance imaging (MRI), bone

scan, computed tomography (CT) scan (Alberts et al., 2015; Bonekamp et al.,2011; Makarov

et al.,2012). Usually the patient suspected of prostate cancer takes prostate-specific antigen

(PSA) test, which measures an enzyme in a man’s blood produced exclusively by prostate cells

(Alberts et al., 2015). A higher than normal PSA level can have many causes, and one of them

is prostate cancer. To diagnose whether the patient with a high PSA level has prostate cancer,

the patients may be asked to take medical images and/or biopsy.

1
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Figure 1.1: An illustration of the different diagnosis results with different observers and different image

types.

The medical imaging techniques such as MRI and CT generate the images of the organs of

the body, and the contours of possible cancer area marked by radiologists on these images help

doctors to detect the cancerous lesions. However, the image diagnosis results vary largely upon

both doctors’ experiences and the types of medical images. Figure 1.1 shows the diagnosis

results for different observers with different image types. The three horizontal rows represent

three different observers, and the three vertical columns represent the three different imaging

types (T2w, T1wDCE and ADC) for the same prostate slice. The white dashed circles in each

image are the marked prostate cancer contour by certain observers with a certain medical image.

The image in the centre is the histological image of that prostate slice, and the yellow contour

is the exact cancer contour marked by pathologist and serves as the gold standard for cancer.
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The marked cancer contours by different observers are different, and the same observer marked

different contours on different medical images. None of the marked contour is the same as the

true cancer contour on the histological image.

Biopsy involves extracting some sample cells or tissues from the body with a needle, and

the cells or tissues are examined by pathologists to determine the presence or extent of a disease

(Patel and Jones, 2009). The extraction of the cells or tissues in biopsy is usually guided with

the 2D ultrasound, but depending on the experience of the technicians and the quality of the

ultrasound image, the 2D ultrasound may not guide the needle to the correct location, thus the

biopsy may not yield accurate results (see Pokorny et al., 2014, for instance).

To address the issues for the standard diagnosis procedure, there is a need to build a more

reliable method to detect prostate cancer with limited access to the organ. One promising

solution is to build correspondence between real cancer status and the in-vivo medical images

of the prostate. Once the reliable relationship of prostate cancer status and medical images is

established, it can be used not only to diagnose the prostate caner existence, but also to guide

biopsy and targeted treatment for future patients.

In the prostate cancer imaging study conducted by the prostate cancer imaging research

team at the University of Western Ontario, the researchers aimed to build statistical predict

models to identify cancer position, size and grade with multiple medical images, such as MRI,

CT and ultrasound image. This ability is crucial in the diagnosis and treatment to the patients.

The study protocol includes several steps. The in-vivo prostate images (multiple MRIs,

ultrasound and CT) were taken for each patient, the prostate gland of each patient was then

surgically removed from the body. After histoprocessing, ten strand-shaped fiducial markers

were inserted into each specimen and the ex-vivo MR image of each prostate was taken. Then

each prostate gland was sliced into three to five sections and the researchers took the histology

image of each slice. The exact cancer contour on each slice was identified by pathologists

using high resolution microscopes. The correspondence of the in-vivo images and the ex-vivo

histological images was then conducted through a co-registration process (Gibson et al., 2012).
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The co-registration process includes several steps. In the first step, the histology sections

were reconstructed into a 3D ex-vivo context, by first using the fiducial markers to get an initial

alignment between the histology and the ex-vivo MR images. The alignment was refined by a

local optimization algorithm (Gibson et al., 2012) . In the second step, the ex-vivo MR image

was registered to the in-vivo T2W MR image based on landmarks on the specimen (Ward et al.,

2012). In the third step, the in-vivo T2W MR image was registered to other images such as

the DCE and ADC images. After the registration, the multiple in-vivo medical images and the

histology image were aligned for each position of the prostate. The whole prostate was then

digitalized into voxels. Both cancer status and in-vivo image information were obtained for

each prostate voxel with the aligned data.

(a) In-vivo MRI (b) Histology image

Figure 1.2: The in-vivo T2W MRI and histology image for the same prostate slice. (a) is the in-vivo 2DT2

image, (b) is the corresponding histology image. The coloured area in (b) is the diagnosed prostate

cancer tissue.

As presented in Figure 1.2, the histology image (b), which clearly presents the exact

cancerous tissue, serves as the response variable. The in-vivo image (a), which has measures

including 2DT2, 3DT2, ADC and DCE of the prostate before it was taken out of the body, serves

as the predictor variable. By building a model taking the in-vivo prostate image measurements

as covariates and predicting the cancerous part on the histology image, the existence and position

of prostate cancer for future patients can be predicted with the in-vivo image. The diagnosis

and treatment of prostate cancer will then be expected to be largely improved and simplified.

However, the mapping of the histology image to the in-vivo image induced registration
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error. In the mapping process of the ex-vivo image to the histology image (Gibson et al., 2012),

ten fiducial markers were inserted into each prostate, and the mapping algorithm relied on

finding the fiducial markers on the ex-vivo image and the histology image. This step depended

largely on the experience of the researcher, and it was almost sure that there was a distance

shifted in the mapping of the two images. Besides, the mapping algorithm assumed that an

affine transformation exists between the histology and the ex-vivo images (Gibson et al., 2012).

If this assumption was violated, which was usually the case, then the two images would not

be perfectly co-registrated. The process of registering the ex-vivo image to in-vivo T2W MR

image was landmark guided, which was more likely to induce registration error (Ward et al.,

2010; Ward et al., 2012). The registration error was about 0.71 (0.38) mm from histology

image to ex-vivo MR image, and 1.4 (0.2) mm from ex-vivo image to in-vivo T2W MR image.

Since the T2W MR image was then registered to DCE and ADC, more measurement error was

induced to ADC and DCE. The errors for this step were 1.0 (0.5) mm for DCE and 1.0 (0.2)

mm for ADC. This registration error caused the true cancer status on the in-vivo images to shift

for a certain distance from the registrated cancer status (Gibson et al., 2012).

Figure 1.3: An illustration in Gibson et al. (2013). On the MRI of a brain, the true region of interest is

R in red. Due to registration error, the sampling region is R′ (shown in purple). B′ (shown in cyan) is

the background tissue.

Another aspect associated with this data set is that the cancer voxels only consist around

10% of all the data points. Measurement error combined with the highly imbalanced data may

cause a much serious problem for classification.

The main objective of the prostate cancer imaging study is to build a reliable correspondence
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between the cancer status and the in-vivo image information for each voxel of the prostate,

meanwhile to account for the misalignment of the registration process. The first part corresponds

to the classification problem, and the second part relates to the measurement error.

1.2 Review of classification methods

In this section some frequently used classification methods are briefly introduced, and the

assessments of the classification performance are described.

For a voxel i, let Yi denote a categorical response which can take K possible distinct values,

such as cancer status (binary, K = 2) or cancer grade in the prostate cancer study (discrete,

K ≥ 2). Let Xi be a vector of covariates with dimension p representing the in-vivo image

measurements. {xi, yi} is the realization of {Xi,Yi}, i = 1, 2, . . . , n.

1.2.1 Logistic regression

The logistic regression models the K − 1 log-odds for the K classes with linear functions:

log
Pr(Yi = 1|Xi = xi)
Pr(Yi = K |Xi = xi)

= β10 + βT
1 xi

log
Pr(Yi = 2|Xi = xi)
Pr(Yi = K |Xi = xi)

= β20 + βT
2 xi

...

log
Pr(Yi = K − 1|Xi = xi)

Pr(Yi = K |Xi = xi)
= β(K−1)0 + βT

K−1xi,

where θ = {β10, β
T
1 , . . . , β(K−1)0, βT

K−1} is the vector of the regression coefficients. Denote

pk(xi; θ) = Pr(Yi = k |Xi = xi; θ), then the log-likelihood for the data set is

L(θ) =
!

i

li(θ) =
!

i

log pyi (xi; θ),

where li(θ) = log pyi (xi; θ) is the log likelihood for each observation. Maximizing the log-

likelihood gives the maximum likelihood estimation θ̂ = { β̂10, β̂
T
1 , . . . , β̂(K−1)0, β̂T

K−1} of θ.
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To classify a new data point with xnew, we calculate the K probabilities

"Pr(Y = k |X = xnew) =
exp(β̂k0 + β̂T

k xnew)
1 +

#K−1
l=1 exp(β̂l0 + β̂T

l xnew)
, k = 1, . . . ,K − 1,

"Pr(Y = K |X = xnew) =
1

1 +
#K−1

l=1 exp(β̂l0 + β̂T
l xnew)

,

and assign the data point to the class k for which "Pr(Y = k |X = xnew) has the largest value.

1.2.2 Support vector machine

Support vector machine (SVM) is a widely used classifier which produces decision boundaries

to do classification (Boser et al., 1992; Cortes and Vapnik, 1995). The SVM classifier uses

the kernel functions to map the original data set into a higher dimensional space, and finds a

hyperplane which has the largest margin between the different classes in the projected space.

This hyperplane serves as the future decision boundary. One attractive feature of SVM is that

rather than using the whole data set, the hyperplane is determined by much fewer data points

close to the hyperplane, termed as support vectors (Girosi, 1998).

In many situations, SVM classifier may not be able to separate the classes perfectly, but

allow some misclassification in order to attain a larger margin. There is a trade-off between a

larger margin and a smaller misclassification error, which can be controlled by a non-negative

tuning parameter. To get a more flexible decision boundary with high dimensional features, the

kernel function is used to extend the classifier to the enlarging feature space.

Specifically, consider the case that Yi is binary, and takes values -1 and 1, the support vector

classifier is a hyperplane defined by

{x : f (x) = xTβ + β0 = 0},

where β is the vector of coefficients with unit value: #β# = 1. The decision rule is

sign[xTβ + β0].

The maximization of the margin is equivalent to the constrained optimization problem

min
β

$
1
2
#β#2 + C

!
i

ξi

%
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subject to

ξi ≥ 0, yi(xT
i β + β0) ≥ 1 − ξi i = 1, . . . , n.

Here ξi is a non-negative value that controls the tolerance of observation i falling in the wrong

side of the margin. The value of ξi larger than 1 leads to misclassification. The parameter C is

the cost of violation, which controls the margin size.

The optimization problem can be rewritten into a Lagrangian dual objective function (Fried-

man et al., 2001):

LD =
!

i

αi −
1
2

!
i

!
j

αiα j yiy j x
T
i x j

subject to !
i

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n

where α is the Lagrangian parameter, and

β =
!

i

αiyixi .

The support vector machine extends the support vector classifier to the enlarged feature

space by the kernel functions. The Lagrangian dual objective function can be expressed as

LD =
!

i

αi −
1
2

!
i

!
j

αiα j yiy j 〈h(xi), h(x j)〉

=
!

i

αi −
1
2

!
i

!
j

αiα j yiy jK(xi, x j)

subject to !
i

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , n

where C is the non-negative tuning parameter, h() is the basis function to enlarge the feature

space, 〈·,·〉 produces the inner product and K() is the kernel function which can be expressed as

K(x, x′) = 〈h(x), h(x′)〉.

The decision function (separating hyperplane) can be written as

f (x) =
!

i

αiyiK(xi, x) + β0,
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where β0 can be estimated by solving yi f (xi) = 1 for any xi with 0 < αi < C. For a new

observation xnew, one calculates

f̂ (xnew) =
!

i

α̂iyiK(xnew, xi) + β̂0,

and assigns xnew according to the sign of f̂ (xnew).

Some common choices of the kernel function K() are

dth − Degree polynomial : K(x, x′) = (1 + 〈x, x′〉)d,
Radial basis : K(x, x′) = exp(−γ | |x − x′| |2),

Neural network : K(x, x′) = tanh(κ1〈x, x′〉 + κ2).

The support vector machine can be extended into a regression method (Drucker et al., 1997).

The basic idea of support vector regression is similar to support vector machine: maximize the

margin of tolerance # , which is the threshold that all fitted values must be within this range of

the true values. Mathematically, this means solving

max

$
−1

2
#

i
#

j(αi − α∗i )(α j − α∗j )K(xi, x j)
−# #i(αi + α

∗
i ) +

#
i yi(αi − α∗i )

subject to
$ #

i(αi − α∗i ) = 0
αi, α

∗
i ∈ [0,C]

where yi is a continuous number with covariate xi. The constant C is the tuning parameter.

The SVM regression function can be written as

f (x) =
!

i

(αi − α∗i )K(xi, x) + β0.

The intercept β0 can be computed through KKT conditions (Kuhn, 1951; Karush, 1939).

1.2.3 Classification tree and random forest

The basic idea of a classification tree is to divide the feature space into some disjoint regions,

and classify an observation based on the class of the region it belongs to (Breiman, 2001).
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Specifically, suppose there are M regions R1, R2, . . . , RM , the classification tree has the form

f (x) =
M!

m=1
cmI(x ∈ Rm),

where I() is the indicator function, and cm is the class label for region m. The value of cm is

determined by the dominant class for the points in region m. For example, if the region has

more observations of cancer voxels (class 1), then the class label ĉm for this region is 1 (cancer).

Consider the first split of the tree, and assume, for simplicity, the covariates X = (X1, . . . , Xp)

are continuous. Two regions can be formed with covariate j and split point s:

R1( j, s) = {X |X j ≤ s} and R2( j, s) = {X |X j > s}. (1.1)

The two regions R1( j, s) and R2( j, s) are referred to as the nodes. The value of j and s can be

solved by

min
j∈1,...,p, s∈Pj

(Q1 +Q2).

Here Pj can be any realized value of X j , and Qm, m = 1, 2 is the impurity measure for each of

the two split nodes.

The popular choices of the impurity measure Qm are

Misclassification error:
1

Nm

!
i∈Rm

I(yi ! k(m)),

Gini index:
!
k!k ′

p̂mk p̂mk ′,

Cross-entropy or deviance: −
K!

k=1
p̂mk log p̂mk,

where

p̂mk =
1

Nm

!
xi∈Rm

I(yi = k)

is the observed proportion of class k in node m with Nm observations and k(m) = arg maxk p̂mk

is the majority class in node m. After the first split, the same procedure is repeated to subsequent

node until the terminal condition is met: the pre-set maximum number of nodes is achieved or

the number of observations in a node is below the pre-set minimum number.
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The tree method can be used to capture the complex structure of the data, and if it grows deep,

the bias for the fitting can be very low. Yet the low bias would lead to high variation. Random

forest classifier is proposed to improve the performance of classification tree by decreasing the

variance of the prediction. It generates new training samples through bootstrap and builds a

classification tree on each bootstrap sample. When constructing these classification trees, in

each split only a small number of predictors are considered, which are randomly drawn from

all the predictors. The prediction is the majority vote of the trees. This averaging idea of

random forest can significantly reduce the variance of the classification tree, and in the same

time preserve the low bias feature of the tree method.

The regression tree only changes the splitting criteria. The splitting variable j and splitting

point s for the regions in (1.1) can be found by solving

min j,s

&''(
'')

minc1

!
xi∈R1( j,s)

(yi − c1)2 +minc2

!
xi∈R2( j,s)

(yi − c2)2
*''+
'',
,

where

R1( j, s) = {X |X j ≤ s} and R2( j, s) = {X |X j > s}

are the pair of half spaces of a splitting variable j and split point s, and yi is a continuous response.

Random forest regression is similar to the random forest classifier. The only difference is the

output value for a random forest regression is the average value of the outputs for all the trees.

1.2.4 K-nearest neighbors

The K-nearest neighbors (KNN) classifier is a very simple yet powerful classification method.

Given an observation, the KNN classifier first finds out the closest K data points to the obser-

vation, then the observation will be classified to the most common class among the K points.

For continuous covariates, a commonly used distance is Euclidean distance. Hamming distance

can be used for discrete covariates.

For a new observation xnew, K nearest points are first identified, and the fitted value for this
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new observation is obtained as

ŷ = argmaxr

&'(
')

K!
j=1

I(y j = r)
*'+
', ,

where r is the set of all classes in the K data points, and r = {0, 1} for binary class case.

KNN can be used for regression by changing the vote in the K points to the average value

of their continuous responses.

1.2.5 Assessment of classification results

Some commonly used measures for evaluating the classification performance are introduced in

this section.

Let ŷ denote the predicted class label, and y is the corresponding true class label. Classifi-

cation error rate is defined by

err =
1
n

n!
i

(ŷi ! yi),

where n is the number of responses predicted. Classification error rate measures the proportion

of predicted results that are in the wrong class. It is an overall error and a straightforward

measure that indicates how good the classifier performs for all the classes.

Sometimes the overall error may not be good enough, especially for imbalanced data. The

sensitivity and specificity work as a pair that measures how well each class is correctly classified

in a binary classification problem. Sensitivity is defined as

number of true positives
number of true positives + number of false negatives

,

and specificity is defined as

number of true negatives
number of true negatives + number of false positives

.

The terms “true positive”, “true negative”, “false positive”, and “false negative” are generally

used in medical data classification. In the prostate cancer prediction scenario, the relations of

the terms can be viewed in Table 1.1.
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true cancer status

predict

cancer

status

cancer no cancer

cancer true positive false positive

no cancer false negative true negative

Table 1.1: The relationship of true positive, true negative, false positive and false negative in the prostate

cancer prediction scenario.

In the prostate cancer scenario, sensitivity measures the proportion of true cancer voxels

that are correctly classified, and specificity measures the proportion of non-cancer voxels that

are correctly identified.

F1 score and G score measure the agreement between true response and predicted response.

F1 score is calculated by

F1 = 2
sensitivity · precision
sensitivity + precision

,

where precision is

number of true positives
number of true positives + number of false positives

.

The G score is defined by

G =
-

sensitivity · precision.

F1 score is the harmonic mean of sensitivity and precision, while G score is the geometric

mean.

Classification error rate serves as an overall measure of classification performance, a low

value of classification error rate usually indicates a good classifier. Yet classification error rate

does not tell how each class is correctly classified, and for imbalanced data set, classification

error rate can be misleading. Sometimes the researchers may focus more on one class than the

other. For example, in the prostate cancer data, more interest is put on correctly predicting the

cancer voxels, other than the non-cancer voxels. In this case, one can refer to the sensitivity and
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specificity. F1 score and G score also focus on the classification performance for each class. A

high F1 score or G score (close to 1) indicates there is a high agreement between the predicted

results and the true response. If the F1 score or G score get close to 0, there must be a huge

difference between the predicted value and the true value. In this study, low error rate, high

sensitivity, F1 score and G score will be of interest.

1.3 Review of measurement error models

In real application it is well known that epidemiology data is particularly common with the

problem of measurement error (Michels, 2001), both in covariates and in response. In Yi (2017)

the term “measurement error” is defined as any situation that the observed value of a variable is

different from its true value. If the error-prone variable is a categorical variable, then one may

use the term misclassification to refer to the measurement error problem.

In the prostate cancer imaging study, the misalignment issue can be viewed in two aspects.

First, since the registered cancer status is shifted from the true cancer status on the in-vivo

image, the observed cancer status on some voxels may be wrong. This can be viewed as an

error in response, or specifically, misclassification in response. Another aspect to view this

problem is that, for a voxel on the prostate, the true covariates corresponding to the voxel is

shifted by a distance. As a result, if the response is treated error free, then the covariates are

measured with error. Figure 1.4 shows the two ways of viewing the misalignment problem in

the prostate cancer image data. In plot (a), the misalignment causes the true covariates in the

in-vivo image mapping to Y ∗ instead of Y . In plot (b) the true cancer status Y in the histology

data corresponds to the covariates X in the in-vivo data, while the misalignment leads to the

shift of the covariates such that Y now is mapped to X∗ instead.

From the definition of measurement error and misclassification it is easy to see the causes

of measurement error vary greatly. Accordingly, the models of measurement error need to

be flexible. In the following, we introduce some frequently used measurement error and
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(a) (b)

Figure 1.4: Two ways of understanding the measurement error in the prostate cancer image data.

misclassification models.

1.3.1 Measurement error in covariates

Denote the true covariate X , and the surrogate observation of X to be X∗, then the classical

additive error model can be expressed as

X∗ = X + e,

where the error term e is assumed with mean 0 and covariance matrix Σe, and is independent of

X . Since Var(X∗) = Var(X) + Σe, the error-prone variable X∗ in this model is more variable

than the true covariate X .

If the above model is written in an opposite form

X = X∗ + e,

then it is referred to as Berson model. Similar to the classical additive error model, the error

term e is assumed with mean 0 and covariance matrix Σe, and is independent of X∗. As a

result, Var(X) = Var(X∗) + Σe, so the true value X in Berson model is more variable than

the error-prone variable X∗. The variation relationship may be used to specify the appropriate

measurement error model.

The latent variable model is a mixture of the classical additive error model and Berson
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model, yet yields more flexibility:

X = u + eC and X∗ = u + eB,

where the latent variable u has mean µu and covariance matrix Σu. The error terms eB and eC

have mean 0 and covariance matrix ΣB and ΣC respectively.

A more general form of the classical additive error model proposed by Eckert et al. (1997)

called transformed additive model is given by

g(X∗) = g(X) + e,

where g(·) is a monotone function, and e is independent of X .

The measurement error models introduced above are all additive models, similarly, multi-

plicative models may also be used (Iturria et al., 1999). A simple multiplicative model is of the

form

X∗ = Xe,

where e is independent of X and has mean 1.

In the case that the error-corrupted variable X∗ depends on some other error-free covariates,

a regression model may be used to describe their relationship. Suppose an error-free covariate

Z is related to the error-corrupted variable X∗, then the regression model of measurement error

can be assumed the form

X∗ = α0 + ΓxX + ΓzZ + e,

where e has mean 0 and covariance matrix Σe, and is independent of X and Z . α0 is a px × 1

vector, Γx is a px × px matrix, Γz is a px × pz matrix, px and pz are dimensions of X and Z ,

respectively.

The regression model of measurement error can be viewed as an extension of the classical

additive error model. Switching the position of X and X∗ in the above equation gives the

regression version of Berson model.

The foregoing models consider the case of a continuous variable. When the error-prone

variable is a categorical variable, i.e. it takes discrete values, one may consider modelling the

misclassification process.
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1.3.2 Misclassification in response

In the case of misclassification in response or so called label noise, let Y denote the binary

response variable. There are two commonly used methods to model the misclassification

process. One method is to model the conditional probability Pr(Y = y |Y ∗ = y∗, Z), and

another one is through Pr(Y ∗ = y∗ |Y = y, Z). The first conditional probability assumes that Y

depends onY ∗, and vice versa. These two conditional probabilities are called (mis)classification

probabilities. In the prostate cancer image data case, Y can be viewed as the unobserved exact

cancer status on the in-vivo image, and Y ∗ is the observed version of Y .

1.3.3 Analysis methods for data with measurement error

There has been extensive research in the field of measurement error, and a large amount focuses

on correcting the bias of the parameter estimation caused by measurement error (Yi, 2017 and

Carroll et al.,2006). Yi (2017) discussed induced model method (observed likelihood method).

The induced model method or observed likelihood method first models the relationship of the

response Y and the observed error-prone covariate X∗ and error-free covariate Z through the

underlying response distribution model and the measurement error model. This relationship is

used to construct the likelihood and the parameters is estimated by maximizing the likelihood.

The EM algorithm incorporating measurement error is a simplification of the induced model

method/observed likelihood method. When estimating the parameters, instead of maximizing

the complete likelihood, EM algorithm simplifies the process by separating the optimization

into E step and M step. Iteratively applying the E step and M step leads to the converged

parameters. The conditional score method (Lindsay, 1982) further simplifies the estimation

process by using a complete sufficient statistic instead of all the covariates in the E step.

The preceding methods can be viewed as likelihood-based correction methods, whose full

distribution form for the response process is necessary. The unbiased estimating function meth-

ods relaxes the condition by requiring only the unbiased estimating functions in the estimation
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process. For example, the subtraction correction method, discussed by Yi and Reid (2010), cor-

rects the estimating function based on the error-prone covariate by subtracting the conditional

expectation of the observed estimating function. A related method, expectation correction

method was proposed to build a workable estimating function by calculating the expectation

of the true estimating function conditional on the observed covariates and response. It has

been proved that this estimating function is an unbiased estimate of the error-free estimating

function. Another method called insertion correction method is opposite to the expectation

correction method. The basic idea of insertion correction method is to find a computable

estimating function for parameter estimation. As long as the conditional expectation of this

estimating function, given the true covariate, error-free covariate and response, is the same as

the estimating function of interest, consistent estimation of the parameters can be obtained.

A third class of correction methods is to directly correct the naive estimators which are

obtained by treating the X∗ as X and carrying out the usual estimating procedure. The

naive estimator correction strategy, discussed by Stefanski and Carroll (1985), Yi and Reid

(2010) and Yan and Yi (2016), is a typical way to correct the naive estimators. The basic

idea of naive estimator correction strategy is to obtain a working estimator using estimating

equations with the observed error data. Then the relationship between the true estimator and the

working estimator is investigated, assuming the true data is known. The working estimator can

then be corrected through the relationship established. Another approach called simulation-

extrapolation (SIMEX), which was proposed by Cook and Stefanski (1994), can also be used

to reduce the bias of the naive estimators. The SIMEX method first builds the trend of bias that

induced by measurement error through simulation. Then the trend is extrapolated back to the

case without measurement error.

Another class of correction method deals directly with the error-prone data. Prentice (1982),

Carroll et al. (2006) discussed a method called regression calibration. This method replaces the

error-prone covariate X∗ with the conditional expectation E(X |X∗, Z). Working with the new

covariate E(X |X∗, Z) instead of X∗ reduces the bias. Based on the similar idea, Freedman et al.
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(2004) introduced moment reconstruction method. This method is an extension of regression

calibration that the error-prone variables are replaced by reconstructed values which retain the

same first two moments of the error-free variables.

There are some other methods that correct the specific model. For example, Sexton and

Laake (2007) proposed a method to estimate the true parameters in boosted regression trees with

errors in covariates. The proposed method has a similar idea as insertion correction method,

and it takes advantage of the specific form of the tree model to estimate the parameters.

The foregoing literature focuses on the estimation of model parameters for error in covariates.

Yet much less attention has been paid to the impact of measurement error on prediction. Carroll

et al. (2006) suggested that there is no need to worry about the impact of measurement error on

prediction using linear models if future observations of predictors are also measured with error.

When the covariate measurement error has a different distribution in the prediction set, Carroll

et al. (2009) introduced a nonparametric method to estimate the prediction. Khudyakov et al.

(2015) conducted numerical study to investigate the impact of covariate measurement error

on risk prediction, which suggests that reducing measurement error in covariates improves the

ensuing risk prediction.

There is an increasing discussion of misclassification in response or label noise in the recent

years. Zhu and Wu (2004) pointed out that misclassification in response may cause worse results

than measurement error in covariates. Yi (2017) discussed how misclassification on response

may change the model structure. With univariate binary response with misclassification in a

generalized linear model, Yi (2017) showed the link function changes from the error-free case.

If the covariates are also measured with error, then even with certain simplified assumptions,

the model of the observed data does not possess the same regression form as the true model.

Neuhaus (1999) discussed how misclassification in response would induce bias and efficiency

loss in coefficient estimation.

When the response has misclassification, there are roughly three approaches to deal with

the problem. The first approach is to use a misclassification robust method for classification.
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Although complete robustness is almost impossible to achieve (Frénay and Verleysen, 2013),

there are some methods that work better than others with misclassification in response. In

the paper of Folleco et al. (2008), the author compared 11 classifiers in the presence of

misclassification in response, and random forest was shown to be the most robust method.

Classification tree is a method that is sensitive to the misclassification in response (Abellán and

Masegosa, 2010), but the imprecise info-gain as a node split criterion is shown to outperform

other split criteria (Abellán and Masegosa, 2009) and makes the classification tree more robust.

The second approach to the misclassification in response problem is to filter and cleanse the

training data. For example, Sun et al. (2007) proposed to use Bayesian classifier to estimate the

probabilities for each instance falling in all possible classes, and the information entropy is then

calculated. The instances with low entropy, but with a predicted label conflict to the observed

label would be regarded as mislabeled cases. Miranda et al. (2009) proposed to train four

different machine learning classifiers on the original data, then do a voting of the predictions

of all these classifiers to detect the mislabeled cases. The voting filter can also be extended to

local models. Sánchez et al. (2003) used the k-nearest centroid neighbors to predict the label

of an instance while this instance is removed from the training set. If the predicted label is

different from the observed label, then this instance is removed. Another method that use the

property of AdaBoost was proposed by Verbaeten and Van Assche (2003). Since AdaBoost will

increase the weight for the instances that cannot be well predicted, so the mislabeled instances

will receive much larger weights in later iterations. Verbaeten and Van Assche (2003) proposed

to remove the instances with highest weights after certain iterations.

The third approach is to combine the information of the mislabeled data in the modelling

process. Eskin (2000) proposed a mixture model for the data: the instances are assumed

generated either by a majority (normal) distribution or an anomalous distribution. At first all

the instances are assumed in the majority class. Then for each instance, the change of the

log likelihood of it is removed from the majority distribution and included in the anomalous

distribution is calculated. If the difference of the log likelihood is deemed large enough, then
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this instance is treated as an anomaly. Xu et al. (2006) proposed a robust SVM to deal with

misclassification in response, which changes the loss function in the SVM objective to a more

robust loss function. Yang et al. (2007) proposed a weighted SVM in the case of data set

containing outliers and noises. The method calculates a weight between 0 and 1 for each data

instance, measuring the reliability of the instance: a larger weight assigns to the more important

instance. The weighted SVM then incorporates the weight in the slack variable ξ to control

the level of violation of each point to the wrong side of the margin. Similarly, the weight idea

can be used in the weighted KNN (Hechenbichler and Schliep, 2004), which finds the label for

the new instance by the weighted votes of the nearest K points. If the distribution model of

the data can be specified, then likelihood method, which models the likelihood of the observed

data, can be used to find the true model parameters by maximizing the likelihood (Hausman

et al., 1998). However, the integral calculating or approximating in likelihood method is usually

a difficulty. To get around this problem, EM algorithms, or mean score method (Pepe et al.,

1994) can be applied. Pepe (1992) extended the mean score method into more general settings,

and Yi (2017) elaborated it into a semi-parametric method. Küchenhoff et al. (2006) extended

the algorithm simulation and extrapolation (SIMEX) from measurement error in covariate to

misclassification in response. Neuhaus (2002) presented how to deal with misclassification in

response for clustered and longitudinal data. When misclassification arises in count response,

Mwalili et al. (2008) proposed a method to correct for the the zero-inflated negative binomial

regression model. When the response is continuous and contains measurement error, then least

square method can be applied to find the true model (Yi, 2017; Sepanski and Lee,1995).

Yet the problem of the prostate cancer imaging study cannot be easily solved with the

existing methods.

If the misalignment problem is viewed as the measurement error in covariates, the methods

that deal with error in covariates are applied. The likelihood correction methods require

the specification of the distribution form for the response process. The unbiased estimating

function methods require the specification of the unbiased estimating function for the parameter



22 C"#$%&' 1. I(%')*+,%-)(

estimation. The distribution function or the estimating functions are very difficult or even

impossible to specify for machine learning classifiers.

The methods to correct the naive estimators, such as SIMEX, assume that

X∗
i = Xi + ei, i = 1, . . . , n,

where ei is independent of Xi, follows a N(0, Σe) distribution with the covariance matrix Σe

known. This assumption is violated in the prostate cancer image data as the misalignment causes

the true covariate observation to shift for a distance for each prostate voxel. If the covariates

for a cancer voxel are shifted to a non-cancer covariates, then the error does not have mean

0. The regression calibration and moment reconstruction do not apply for the similar reason.

These two methods assume that the error prone covariates X∗ is an unbiased measurement of

X : E(X∗ |Y ) = E(X |Y ), which is not appropriate in the prostate cancer image data. The method

proposed by Sexton and Laake (2007) to correct boosted regression tree with error in covariates

is hard to apply since the method require the knowledge of Pr(X |X∗), and in the prostate cancer

image data this relationship is difficult to model.

When the misalignment problem is treated as misclassification in response, the likelihood

method, mean score method, and semi-parametric method are not applicable since the dis-

tribution forms or response models are hard or impossible to write out for machine learning

classifiers. The data cleansing methods mentioned previously have the drawback of removing

too many instances (Teng, 2000), and this problem becomes even more severe in the imbalanced

dataset (Van Hulse and Khoshgoftaar, 2009). The extended SIMEX for misclassification in

response (Küchenhoff et al., 2006) cannot be directly used here. The method assumes known

and fixed misclassification probabilities for all points:

πi j = Pr(Y ∗ = i |Y = j),

However, when the responses are shifted for a distance, the misclassification probabilities for

points in different position is different, so this assumption does not hold in the prostate cancer

image data.
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Another important feature of the prostate cancer imaging study is that the measurement

error or misclassification in response relates to the spacial information of the data, since the

error is caused by the misalignment of the images. Yet none of the above methods can take

advantage of the spacial information of the image data.

1.4 Objectives and organization

In this research, the motivating prostate cancer imaging study has the misalignment problem in

the registration process. The main interest of the study is to build a reliable model between the

in-vivo medical images and histology cancer status for each voxel of the prostate so that in the

future accurate detection and treatment of cancer tissues are possible with in-vivo image data.

Based on the above main interest, the goal of the thesis is to eliminate the influence of

the misalignment for different classification methods. Both situations of misclassification in

response and measurement error in covariates are considered and methods that work for different

types of classifiers are of interest.

The rest of the thesis is organized as follows. In Chapter 2 we propose a predict probability

correction method which corrects the predicted classification probability under the situation of

misclassification in response. The classification probability of the observed class label given the

covariate is corrected so that it is close to the probability of true class label given the covariates.

Then by modelling the probability of true class label with the covariates, the classification

probabilities for future observations can be calculated. A weighted model method is proposed

in Chapter 3 which incorporates the weight for each data point under misclassification in

response. The weight measures the reliability of each data point, and the weighted classifiers

like weighted logistic regression, weighted KNN, weighted SVM and weighted classification

tree are introduced. The weighted model construction process takes the reliability of each

observation into consideration, and produces a classifier that can be used to classify future

observations. In Chapter 4 we change the view to measurement error in covariates, and modify
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the moment reconstruction method to combine it with the weight for each data point. Working

with the reconstructed data eliminates the impact of measurement error on the model fitting.

At last, the conclusion and future work is described in Chapter 5.



Chapter 2

Predict probability correction method

2.1 Introduction

In this chapter, we investigate the scenario that the response has misclassification and the

covariates are error-free.

We propose a predict probability correction method that corrects the conditional proba-

bility of the observed class label given the predictors. The correction method constructs the

relationship of the probabilities for the true response and the observed response using mis-

classification probabilities, so the classification probability for the error-prone response in the

training set can be corrected through this relationship. The corrected probability is close to

the conditional probability of the true class label given the predictors. A model can be built

between the corrected probability and the covariates so that in the future this model can be

used to predict the probability for each class given a new observation. The estimation methods

for the misclassification probabilities in different scenarios are outlined. The numerical studies

show the proposed correction strategy gives much better prediction results than those methods

that ignore the misclassification in response.

The rest of the chapter is organized as follows. Section 2.2 describes the misclassification

probabilities, and introduces the probability calculation for different classifiers. In section

25
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2.3 the proposed predict probability correction method is presented and estimation of the

misclassification probabilities in different settings is described. The simulation studies and the

application to the prostate cancer imaging data are carried out to evaluate the proposed method

for different classifiers in section 2.4. The chapter is concluded in section 2.5.

2.2 Notation and framework

Let Y = {0, 1} denote the true binary response that may not be directly observed, and Z the

vector of covariates with dimension p that is error-free. The observed version of Y is Y ∗.

For instance i, there are two misclassification probabilities that are associated with Yi and

Y ∗
i given covariate Z i , denoted by

γ10(Z i) = Pr(Yi = 1|Y ∗
i = 0, Z i) and γ01(Z i) = Pr(Yi = 0|Y ∗

i = 1, Z i). (2.1)

In this chapter the classification probability is central to the proposed method. The calcu-

lation of the probability for predicted class for different classifiers is discussed below.

Logistic regression

The definition of logistic regression can be found in 1.2.1. In the binary scenario, the probability

of getting class 1 is

Pr(Y = 1|Z = z) = exp(β0 + βT z)
1 + exp(β0 + βT z) .

SVM

As discussed in 1.2.2, the classification rule of support vector machine (suppose Y takes values

−1 and 1) is the sign of the decision function

f (z) =
!

i

αiyiK(zi, z) + β0. (2.2)
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In order to get a probability output for the SVM classifier, Platt (1999) proposed to fit a

sigmoid function to the response and the value of f , and Lin et al. (2007) further improved it

as:

Pr(y = 1| f ) = 1
1 + exp(A f + B),

where f is the fitted value of (2.2). The parameters A and B are estimated with the training set

( fi, yi) by solving the negative log likelihood function:

min
A,B

$
−
!

i

ti log(pi) + (1 − ti) log(1 − pi)
%
,

where

ti =
yi + 1

2
and pi =

1
1 + exp(A fi + B) .

Random forest

The random forest classifier is based on the classification tree (1.2.3). The classification tree

divides the feature space into disjoint regions and a new observation is assigned with the class

label according to the region it belongs to. To determine the classification result of a new

observation using the random forest, the class labels of all trees in the forest are recorded, and

the majority predicted class is assigned to the observation. The class probability is calculated

as the proportion of that class in all trees (Malley et al., 2012).

KNN

The probability calculation for K-nearest neighbors (1.2.4) is similar to the averaging idea of

random forest. When the nearest K points are found for the data point, the class label for

that point is determined by the majority class in the K nearest points. The probability of the

observation belongs to a class is the proportion of that class label in those K points (Malley

et al., 2012).
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2.3 Method description

2.3.1 Predict probability correction method

The relationship between the conditional probabilitiesY ∗
i given Zi andYi given Zi can be derived

with the two misclassification probabilities γ01(Zi) and γ10(Zi):

Pr(Yi = 1|Zi) = Pr(Yi = 1,Y ∗
i = 1|Zi) + Pr(Yi = 1,Y ∗

i = 0|Zi)

=
Pr(Yi = 1,Y ∗

i = 1, Zi)
Pr(Y ∗

i = 1, Zi)
Pr(Y ∗

i = 1, Zi)
Pr(Zi)

+
Pr(Yi = 1,Y ∗

i = 0, Zi)
Pr(Y ∗

i = 0, Zi)
Pr(Y ∗

i = 0, Zi)
Pr(Zi)

= {1 − Pr(Yi = 0|Y ∗
i = 1, Zi)}Pr(Y ∗

i = 1|Zi) + Pr(Yi = 1|Y ∗
i = 0, Zi)Pr(Y ∗

i = 0|Zi)
= {1 − γ01(Zi)}Pr(Y ∗

i = 1|Zi) + γ10(Zi){1 − Pr(Y ∗
i = 1|Zi)}

= γ10(Zi) + {1 − γ01(Zi) − γ10(Zi)}Pr(Y ∗
i = 1|Zi). (2.3)

The left hand side of (2.3) is the probability of interest. Once we know the probability

Pr(Yi |Zi), we can classify the data point to the class with a larger probability by the Bayes

classification rule. The right hand side of (2.3) is workable as it only involves the known

observed variables Y ∗
i and Zi, and the equation does not require the knowledge of the specific

model form. This equation provides a strategy to correct the predicted probability for the dataset

with misclassification in response.

Given a training data set {(y∗i , zi), i = 1, . . . , n}, a classifier can be trained, and the probability

Pr(Y ∗
i = 1|Zi) can be obtained with the methods discussed in section 2.2. Based on equation

(2.3), once the misclassification probabilities γ01(zi) and γ10(zi) are obtained, substituting

Pr(Y ∗
i = 1|Zi), γ01(zi) and γ10(zi) into the right hand side of (2.3) gives the estimate of

Pr(Yi = 1|Zi).

2.3.2 Estimation of misclassification probabilities

The model specification and estimation of γ01(Z) and γ10(Z) depend on the data generating

process and assumptions. If the misclassification probabilities γ01(Z) and γ10(Z) depend on

the covariates, a validation set is usually required to estimate them. The validation set contains

(yi, y
∗
i , zi), i ∈ Svali, where Svali is the index set of the data in the validation set.
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γ01(Z) and γ10(Z) usually can be modelled through a logistic regression to postulate their

dependence on Z . For the validation set, a dummy variable I01i is obtained as I(yi = 0|y∗i = 1),

i ∈ Svali, where I() is the indicator function. Fitting a logistic regression to (I01i, zi), i ∈ Svali

gives the model of I01 and Z : Pr(I01 = 1|Z) = exp(β001 + βT
01Z)/(1 + β001 + βT

01Z), and

"Pr(I01 = 1|Z) gives the estimate of γ01(Z). Similarly, one can replace the dummy variable I01i

to I10i which is defined as I(yi = 1|y∗i = 0), i ∈ Svali, then the fitted logistic regression gives the

model form of γ10(Z).

If more complex relationship of Z and misclassification probabilities is required, generalized

additive model (GAM) or other non-linear models like random forest can be applied to capture

the relationship through I01i and I10i.

In the prostate cancer image data, it is reasonable to assume that the misclassification

probabilities γ01 and γ10 do not depend on the covariate Z . In addition, although there is no

true validation set for the prostate cancer image data available, the two dimensional coordinates

that specify the position of each voxel are available. The misalignment of the in-vivo image

and histology image can be viewed as the shift of the true cancer unit from the observed one.

The mean and standard deviation of the shift distance were reported by Gibson et al. (2012),

with the direction of the shift unknown. In order to estimate the misclassification probabilities

γ01 and γ10 for the prostate cancer image data, we propose the following procedures.

For ith data point, a circle with the data point’s coordinates being the centre and the shift

distance being the radius is drawn. The weight ωi is defined as

ωi =

#
j I(y∗j = y∗i )

ni
, (2.4)

where j ranges among the voxels inside the circle, and ni is the number of voxels in the circle

of the ith observation.

Since the observed cancer status can be viewed as the true voxel shifted for a distance,

the circle with the data point’s coordinates as the centre and the shift distance as the radius

indicates the area that the true response would be. If the circle contains more points with the

same observed class label as for point i, then it is more likely that the true response yi is the
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same as the observed one y∗i , and vice versa. This weight can be viewed as an estimate of

the probability that measures how likely the true response Y is equal to the observed one Y ∗.

As a result, 1 − ωi can be viewed as the estimate of misclassification probability for point i.

Specifically, if y∗i = 1, then γ̂01 = "Pr(Yi = 0|Y ∗
i = 1) = 1 −ωi, and γ̂10 = "Pr(Yi = 1|Y ∗

i = 0) = 0;

if y∗i = 0, then γ̂10 = "Pr(Yi = 1|Y ∗
i = 0) = 1 − ωi, and γ̂01 = "Pr(Yi = 0|Y ∗

i = 1) = 0.

In the scenario of the prostate cancer imaging study, the point that is far away from the

cancer and non-cancer boundary has a large weight. This point is more reliable than the one

near the boundary since the misalignment is more likely to influence the points near the cancer

and non-cancer boundary. Based on the definition, the points with weight 1 are surrounded by

the same class within the shift region, so their class labels are not likely to be misclassified. By

this method we are able to update the weight with the following steps.

• step 1: calculate the raw weights for all the points using equation (2.4);

• step 2: find the set M of points (y∗i , zi) with weight equal to 1 to build a preliminary clas-

sification model (such as logistic regression) between Y ∗ and Z , denote the preliminary

model by m1;

• step 3: fit the preliminary model m1 on the points with weight less than 1 (denoted set

V), and get the estimated classification probability p∗ that the fitted value ŷ equals the

observed one y∗;

• step 4: update the weights for the points in the set V . The new weight is set to be the

probability p∗ in step 3.

In step 2 the set M contains all points with weight 1, so it can be viewed as an error-free

data set (yi, zi). Then the preliminary model m1 is a preliminary classifier for (Y, Z). Fitting

this model on the covariates zi, i ∈ V gives the preliminary predicted class label ŷi for the

points in the set V . If the probability that the predicted class label ŷi being y∗i is p∗i , then we can

treat this point with probability p∗i to be correctly classified. The basic idea of the new weight
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calculation method is using the correct data (the data with weight 1) to fit a rough model and

then use the rough model to predict the reliability of the unsure data. The preliminary model,

though not accurate enough, can still provide a better estimation to the unsure data than the raw

weights because it contains more information.

In the case that there might not be enough data points with weight being 1 to build a

preliminary model in step 2 due to the fact that the data set is very imbalanced, or the overlap

between the true response Y and the observed response Y ∗ is very small, the preliminary model

may not be very reliable. One possible solution is to use the points with weight being larger or

equal to 0.9 or even 0.8. Another solution is to combine the new weights with the raw weights

estimated by equation (2.4) by giving them different proportions, for example, the sum of the

new weight and the raw weight each with weight 0.5 (but need to make sure the combined

weight is in the range 0 to 1).

Denote the updated weight ω∗, then more accurate estimation of the misclassification

probabilities can be found through ω∗: if y∗i = 1, then γ̂01i = "Pr(Yi = 0|Y ∗
i = 1) = 1 − ω∗

i ,

and γ̂10i = "Pr(Yi = 1|Y ∗
i = 0) = 0; if y∗i = 0, then γ̂10i = "Pr(Yi = 1|Y ∗

i = 0) = 1 − ω∗
i , and

γ̂01i = "Pr(Yi = 0|Y ∗
i = 1) = 0.

2.3.3 Correction procedure

When only the in-vivo image is available to predict cancer status for future patients, the

covariates Z can be viewed as error-free. As a result, we need to build a reliable model

Pr(Y |Z) = f (Z) with the available data set (y∗i , zi), i = 1, . . . , n. The proposed correction

procedure is as follows.

• step 1: fit the classifier on (y∗i , zi), i = 1, . . . , n and get the fitted probabilities "Pr(Y ∗
i =

1|Zi = zi);

• step 2: obtain the estimated values γ̂10i and γ̂01i, i = 1, . . . , n by the methods described

in 2.3.2;
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• step 3: estimate the probability "Pr(Yi = 1|Zi = zi) with the value of "Pr(Y ∗
i = 1|Zi = zi),

γ̂10i and γ̂01i by equation (2.3);

• step 4: a regression model can be built with "Pr(Yi = 1|Zi = zi) and Zi, i = 1, . . . , n.

The model in step 4 is an estimate for Pr(Y = 1|Z), thus can be used in future prediction with

covariate Z = znew. The new observation can be classified to the class with a larger predicted

probability.

In step 4 we need to capture the relationship between the corrected class probability and

the covariate. Since the probability is a continuous variable ranges from 0 to 1, so regression

models can be applied. The machine learning methods like SVM, random forest and KNN can

be used to model the probability given the covariates, and the brief introduction of machine

learning regression can be found in Chapter 1.2. Linear regression can also be employed to

model this relationship. To ensure the predicted value lies between 0 and 1, we can model the

log-odds of the corrected probability and the covariate with linear regression.

2.4 Numerical investigation

In this section we describe both the simulation studies and real data application of the proposed

method. The numerical studies were done using R 3.5.2 (R Core Team, 2018). The packages

e1071 (Meyer et al., 2019), randomForest (Liaw et al., 2002), FNN (Beygelzimer et al., 2018),

class (Venables and Ripley, 2002) and kernlab (Karatzoglou et al., 2004) were used to perform

the corresponding analysis using SVM, random forest and KNN.

2.4.1 Simulation study

To evaluate the performance of the proposed predict probability correction method, simulation

studies were carried out for a variety of scenarios.
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Misclassification probabilities depend on covariates

In each run of the simulation study, a data set (yi, zi), i = 1, . . . , n with size n = 1000 or

5000 was simulated. Here Y was a binary response that took value 0 and 1. The covariate

Z = (Z1, Z2) followed a bivariate normal distribution, and for each class of Y , the mean of Z

was different while the variance was the same. Specifically, when Y = 0, Z ∼ Normal(µ0, Σzz),

and when Y = 1, Z ∼ Normal(µ1, Σzz). In this simulation study, µ0 was set to (−0.8, 0.8), and

µ1 is (0.8,−0.8). The variances of Z1 and Z2 were fixed at 1, and the correlation between the

two covariates was 0.5. In this case, the two classes were separated by a 45 degree straight

line. Different class proportions were considered in the simulation. Denote φ = Pr(Y = 1) the

proportion of class 1 in all the observations, and the value of φ was set to 0.2, 0.15 and 0.1.

In the first scenario, we considered that the misclassification probabilities γ01 and γ10 depend

on the covariates Z , i.e. γ01 = γ01(Z) and γ10 = γ10(Z). In the simulation two methods were

considered for the generation of γ01(Z) and γ10(Z). First, the misclassification probabilities

were generated through a linear form of Z . The detailed generation process was as follows:

γ∗01(Z) = g1
01(Z) and γ∗10(Z) = g1

10(Z),

where in the situation that Z was a vector of covariates with order 2, i.e. Z = (Z1, Z2), we let

g1
01(Z) = Z2 − Z1 and g1

10(Z) = Z1 − Z2.

Linear transformations were employed to get γ01(Z) and γ10(Z) from γ∗01(Z) and γ∗10(Z):

γ10(z i) = λ
γ∗10(z i) − min{γ∗10(z1), . . . , γ∗10(zn)}

max{γ∗10(z1), . . . , γ∗10(zn)} − min{γ∗10(z1), . . . , γ∗10(zn)}
,

γ01(z i) = λ
γ∗01(z i) − min{γ∗01(z1), . . . , γ∗01(zn)}

max{γ∗01(z1), . . . , γ∗01(zn)} − min{γ∗01(z1), . . . , γ∗01(zn)}
,

(2.5)

where λ (< 1) was a parameter that controlled the overall error level # = Pr(Y ! Y ∗). In

this simulation study λ was chosen so that the overall error level varied from 0.1 to 0.4. The

equation (2.5) gives the misclassification probabilities γ01(Z) and γ10(Z).

The nonlinear generation of misclassification probabilities was also considered, i.e., γ01(Z)

and γ10(Z) did not depend on Z linearly. Let

γ∗01(Z) = g2
01(Z) and γ∗10(Z) = g2

10(Z),
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where

g2
01(Z) =

&'(
')

1√
|Z1 |+0.8

+ 1√
|Z2 |+0.8

if Z2 > 0.9|Z1 |,

0 else,

g2
10(Z) =

&'(
')

1√
|Z1 |+0.8

+ 1√
|Z2 |+0.8

if Z2 < −0.9|Z1 |,

0 else,

for the situation where Z was a vector of covariates with order 2. The linear transformation

(2.5) was applied to γ∗01(Z) and γ∗10(Z) to get the misclassification probabilities γ01(Z) and

γ10(Z).

The error-prone responseY ∗ was generated based on the misclassification probability γ01(Z)

and γ10(Z). After the misclassification probabilities γ01(Z) and γ10(Z) were set, Y ∗ was

simulated according to the Bernoulli distribution: for individual i, a random number qi ∼ U(0, 1)

was generated. If Y = 1, then Y ∗ = 1 − I{qi < γ10(Z)}, otherwise Y ∗ = I{qi < γ01(Z)}. The

error level # = Pr(Y ! Y ∗) varied among 0.1, 0.2, 0.3 and 0.4.

The classifiers considered in this simulation study were K-nearest neighbours (KNN),

support vector machine (SVM), random forest (RF) and logistic regression. The number of

neighbours for K-nearest neighbours classifier was set to be 5. The number of trees to grow

for random forest method was 500, and the number of parameters considered in each split was

set to be the nearest integer of √p, where p was the dimension of the feature space. In the

simulation setting p was equal to 2, so in each split only one covariate was considered. The

kernel function for SVM was radial basis with gamma parameter being set to 0.5, and the cost

being set to 100.

In step 4 of the correction procedure in 2.3.3, one needs to model the relationship of

"Pr(Yi = 1|Zi) and Zi, i = 1, . . . , n. In the simulation study, if the classifier used in step 1 was

SVM, then SVM regression was used to model the corrected probability. If random forest

classifier was used to do classification, then random forest regression was used to model the

corrected probability. If KNN was the classifier used in step 1, then the corrected probability

was modelled with KNN regression. If logistic regression was fitted to classify the training

data in step 1, then we fitted the log-odds of the corrected probability and the covariate Z with
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linear regression.

An independent sample of validation set (yi, y
∗
i , zi) with size 100 or 200 was also generated

with the same method of generating yi and y∗i . This validation set was used to estimate

misclassification probability models γ01(Z) and γ10(Z) for the proposed method. Logistic

regression or random forest were fitted on the validation set to estimate γ01(Z) and γ10(Z).

In each simulation the generated data set was randomly separated into two folds with equal

sizes, denoted Strain and Stest . Strain was used to train the classifier and Stest was used to test

the performance of the method.

The following situations were simulated and tested in the study:

• T: the classifier is applied to the error-free training set (yi, zi), i ∈ Strain. The fitted model

is tested on the testing set (zi), i ∈ Stest .

• E: the classifier is applied to the error-corrupted training data set (y∗i , zi), i ∈ Strain. The

fitted model is tested on the testing set (zi), i ∈ Stest .

• C0: the proposed correction procedure described in 2.3.3 is applied to the error-corrupted

training data set (y∗i , zi), i ∈ Strain, with the misclassification probabilities γ01(zi) and

γ10(zi) being assumed known.

• C1: the proposed correction procedure described in 2.3.3 is applied to the error-corrupted

training data set (y∗i , zi), i ∈ Strain, with the misclassification probabilities γ01(zi) and

γ10(zi) being estimated with the validation set by logistic regression model.

• C2: the proposed correction procedure described in 2.3.3 is applied to the error-corrupted

training data set (y∗i , zi), i ∈ Strain, with the misclassification probabilities γ01(zi) and

γ10(zi) being estimated with the validation set by random forest model.

The measures of performance considered were classification error rate, sensitivity, speci-

ficity, F1 score and G score. Each scenario was repeated 1000 times, and the mean and standard

deviation of the measures were recorded.
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Simulation results for misclassification probabilities with linear form of Z

Table 2.1 reports the simulation results for KNN classifier with class 1 proportion being

15%, sample size being 5000, and the validation size being 200. Simulation results show

that the classification performances depend largely on the error level. When misclassification

probabilities depend linearly on the covariates, the error impact is not significant for error

level # being 0.1 or 0.2. The impact of misclassification in response is much more serious

when the error level # is larger than or equal to 0.3. The classification error rate has large

increase, and sensitivity, F1 score and G score drop significantly. Different classifiers had

similar performance for error-free data, but SVM and logistic regression were less vulnerable

to the misclassification in response (except for logistic regression in the most imbalanced data

scenario). Similar results were observed with class 1 proportion being 10% and 20%, but the

imbalanced classes proportions made the impact of misclassification even larger.

The proposed correction procedure was employed to reduce the impact of misclassification

in response. The simulation results show that the performance of the proposed method depends

on the estimation accuracy of the misclassification error rate. When γ01(Z) and γ10(Z) are

assumed known, the proposed correction method provides the classification performance close

to the error-free scenario. When γ01(Z) and γ10(Z) are estimated through the validation set with

logistic regression, the improvement is not significant for # being 0.1 or 0.2. For # equals 0.3 or

0.4, the proposed correction procedure provides much larger improvement over sensitivity, F1

score and G score, but the variation is also large. The proposed correction procedure had better

performance on KNN and random forest when γ01(Z) and γ10(Z) depend linearly on Z . The

improvement for SVM and logistic regression was very limited except for the error level being

0.4, but this is not a big problem since SVM and logistic regression were not very vulnerable to

the misclassification problem. Figure 2.1 shows the simulation results for KNN when γ01(Z)

and γ10(Z) depend linearly on Z , class 1 proportion being 0.15, and the sample size being 5000

with validation size being 200. The plots for other classifiers can be found in Figure 2.2, 2.3

and 2.4.
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Decreasing the sample size from 5000 to 1000 did not change the conclusion, but the

variation for all the measurements increased significantly (see Table 2.2).

Simulation results for misclassification probabilities with nonlinear dependence of Z

Table 2.3 shows the KNN classification results when the misclassification probabilities depend

nonlinearly on the covariate Z . The results indicate that the error impact is larger when

misclassification probabilities depend nonlinearly on the covariate, compared with the linear

scenario. When # is 0.4, the F1 score would be less than one third compared to the error-free

case when the misclassification error is ignored. The imbalanced class proportions also make

the performance of all measures worse for all error levels.

Similar to the linear misclassification error scenario, the performance of the proposed

correction procedure depended on the estimation of γ01(Z) and γ10(Z). Figure 2.6 shows the

simulation results for KNN when γ01(Z) and γ10(Z) depend nonlinearly on Z , class 1 proportion

being 0.15, and the sample size being 5000 with validation size being 200. When γ01(Z) and

γ10(Z) are assumed known, there is a significant improvement with the proposed correction.

In the scenario the misclassification probabilities are estimated with logistic regression in the

validation set, some improvement is shown for sensitivity, F1 score and G score when # is

0.3 or 0.4, but with quite large standard deviations. If the misclassification probabilities are

estimated with random forest regression in the validation set, there is much more improvement

for all error levels, and the standard deviations for the measures are smaller. This difference in

performance is expected since the true γ01(Z) and γ10(Z) depend nonlinearly on Z , so random

forest is better to capture the relationship than logistic regression.

The validation size is crucial in the performance of the proposed correction method since

the estimation of γ01(Z) and γ10(Z) is the key. Larger validation set provides much larger and

more stable improvement than a small validation set.

The simulation results for other classifiers are shown in Figure 2.5, 2.6, 2.7 and 2.8, the

findings are similar to our report above.
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Misclassification probabilities from misalignment

The data generation process was as follows.

The Cartesian coordinates (w1i,w2i), i = 1, . . . , n were generated with data size n being

1000 or 5000. w1 and w2 were simulated from a bivariate normal distribution, with mean being

set to (0,0), and covariance an identity matrix. Denoting the cancer status as class 1, and the

non-cancer status as class 0, the binary response Y was generated as yi = I(w2
1i + w2

2i ≤ r2),

i = 1, . . . , n. The value of r determined the class proportion φ = Pr(Y = 1), and the value of φ

ranged among 0.05, 0.1, 0.15, and 0.2. The layout of the simulated (w1,w2) mimics the shape

of the prostate.

The covariate Z = (Z1, Z2) was simulated following a bivariate normal distribution with

fixed variance and different means for each response class. If Y = 0, Z ∼ Normal(µ0, Σzz),

otherwise, Z ∼ Normal(µ1, Σzz). The value µ0 was set to (−0.8, 0.8), and µ1 was (0.8,−0.8).

The variances of Z1 and Z2 were 1, and the correlation between the two covariates was 0.5.

The misclassified response Y ∗ was simulated similar to the misalignment mechanism. For

simplicity, only the cancerous lesion (y = 1) was shifted. The error-prone response Y ∗ was

generated as y∗i = I{(w1i + a)2 + (w2i + a)2 ≤ r2}, i = 1, . . . , n, where a was a positive value

that controlled the shift distance
√

2a. The value of a was determined by the overlap proportion

of the true cancerous tissue (y = 1) and the observed value (y∗ = 1). A small value of a shifts

the observed response for a small distance, which leads to a large overlap between the area of

y = 1 and y∗ = 1. The overlap proportion was defined as Pr(Y ∗ = Y |Y = 1), and its values were

set to 0.5, 0.6, 0.7 and 0.8.

In each run the data set was randomly divided into half training Strain and half testing Stest .

The following scenarios were investigated:

• T: the classifier is fitted on the error-free training set (yi, zi), i ∈ Strain and the fitted model

is tested on the testing set (zi), i ∈ Stest .

• E: the classifier is fitted on the error-corrupted training set (y∗i , zi), i ∈ Strain and the fitted
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model is tested on the testing set (zi), i ∈ Stest .

• C1: the proposed correction procedure procedure described in 2.3.3 is applied to the

training set (y∗i , zi), i ∈ Strain, with γ01 and γ10 being estimated by raw weight. The fitted

model is tested on the testing set (zi), i ∈ Stest .

• C2: the proposed correction procedure described in 2.3.3 is applied to the training set

(y∗i , zi), i ∈ Strain, with γ01 and γ10 being estimated by updated weight. The fitted model

is tested on the testing set (zi), i ∈ Stest .

The predicted class label was compared to the true class label for the testing set. The

measures of performance considered were classification error rate, sensitivity, specificity, F1

score and G score. Each scenario was repeated 1000 times, and the mean and standard deviation

of the measures were recorded.

In the simulation study, logistic regression, SVM, KNN and random forest were considered.

For KNN classifier, 5 nearest neighbors was considered. The number of trees to grow for

random forest classifier was 500, and in each split one covariate was considered. The radius

kernel function was used for SVM with gamma being set to 0.5, and the cost being set to 100.

Similar to the scenario that the misclassification probabilities depend on the covariates, we

applied SVM regression, random forest regression, KNN regression or linearly modelled the

log-odds of the corrected probability in step 4 in the proposed correction procedure in 2.3.3.

Table 2.4 presents the simulation results for random forest classifier with data size being

5000. The different scenarios are summarized in the table. The overlap proportion has a great

impact on the performance of the random forest classifier. Smaller overlap proportion produces

worse classification results. The impact is also larger for more imbalanced data set. For all class

1 proportions, a low overlap proportion (50% or 60%) doubles or even triples the classification

error rate, and the sensitivity drops to less than half compared to the error-free scenario. The

F1 score and G score also decrease significantly. The impact of misalignment is much less for

moderate and high overlap proportions (70% or 80%). For a relatively large class 1 proportion,
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the 80% overlap produces only slightly worse classification results compared to the error-free

scenario.

The classification results for different classifiers are shown in Figure 2.9, 2.10, 2.11 and

2.12. Different classifiers reacts differently to the misalignment problem. SVM and logistic

regression are more vulnerable to low overlap proportions, especially when the overlap is only

50%.

The simulation results indicate that the estimation of the weight has a huge impact on the

proposed correction procedure. If the weight is estimated by equation (2.4), no improvement

or even worse results are observed with the proposed correction procedure (C1). Yet if the

weight is updated, the proposed correction (C2) produces really good improvement. With

updated weights, the classification error rate drops significantly compared to the scenario when

the misalignment problem is ignored. The sensitivity, F1 score and G score all increase

significantly. The only exception was SVM when the overlap proportion is relatively high (70%

or 80%). In this case the proposed correction procedure does not provide improvement (see

Figure 2.10).

The proposed correction procedure with updated weights produced the most significant

improvement for random forest classifier. The improvement for KNN and logistic regression

was also large. If the overlap proportion was only 50%, the standard deviations of sensitivity

and F1 score for the proposed method were large, especially for logistic regression and random

forest classifier. Table 2.5 indicates the sample size of 5000 or 1000 does not lead to different

conclusions, but a larger sample size decreases the standard deviations for all measurements.

One drawback of the proposed method is that the model is not very robust when the true

data is error-free but fitted under the correction procedure (see Table 2.6). The error induced

by fitting the error-free data with the predict probability correction method was relatively large

for small overlap proportion (50% or 60%), but negligible for large overlap proportion (70% or

80%).
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2.4.2 Application to the prostate cancer image data

The proposed predict probability correction method was applied to the prostate cancer imaging

study. The ongoing study was conducted by the research team supported by a team grand from

the Canadian Institutes of Health Research. There were 43 patients who had been diagnosed

prostate cancer enrolled in the study. The prostate gland for each patient was sliced into 3 to 5

slices, and each slice of the prostate had a histology MR image and several co-registered in-vivo

MR images. The in-vivo MR images, which serve as the predictors, have intensity measures

as 2DT2W, 3DT2W, ADC and DCE. These measures were standardized before analysis. The

registration error induced in the mapping process of the histology image and the in-vivo image

was measured as the 3D misalignment distance of the small anatomical landmarks identified

on the histology and MR images. The mean registration error was 1.86 mm with standard

deviation of 0.47 mm, according to the report from the research group (Gibson et al., 2012).

Since there is no testing set for the prostate cancer image study, the validation of the proposed

method is difficult. We propose to construct the testing set by the following method. For each

patient, one slice of the prostate images was isolated for testing, and the rest slices were used

for training. On the isolated testing slice, the weight for each point was calculated given the

shift distance (registration error) with the method introduced in 2.3.2. The points with weight

1 were by definition the points with correct cancer labels, so these points were grouped as the

testing set.

Among the 43 patients, 32 had valid data sets for classification. In this 32 data sets, we

applied the proposed method on 5 of them that have relatively large training and testing sets.

In the real data fitting procedure, three different registration errors were considered: the mean

registration error 1.86 mm, and the values at one standard deviation, i.e. 1.39 mm and 2.33

mm. The machine learning classifiers logistic regression, KNN, SVM and random forest were

fitted and tested. In the application, the updated weights were used to estimate γ10 and γ01.

The classification results are summarized in Table 2.7, 2.8, 2.9, 2.10 and 2.11. The proposed

predict probability correction method shows improvement for almost all classifiers on at least
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one registration error distance. With the proposed correction method, the classification error rate

decreases, sensitivity, specificity, F1 score and G score increase. Specifically, the classification

error rate drops for all classifiers applied on all patients, and the specificity increases for almost

all classifiers and all patients.

For patient 1015, the data in the second slice of the prostate was used for testing (8761

to 8792 instances, depending on the registration error), and the data in the rest slices were

used for training (23023 instances). Table 2.7 shows that almost all measures for all classifiers

get improved with the proposed method. The improvement under three registration error

assumptions does not differ much.

For patient 2008, the data in the third slice was used for testing (9709 to 9893 instances,

depending on the registration error), and the rest slices were used for training (46950 instances).

In Table 2.8, the classification results for patient 2008 show that the sensitivity and F1 score

are largely improved under the proposed method, and the improvement varies under different

registration error assumptions. For example, the assumption of registration error being 2.33 mm

works best for patient 2008. Almost all classifiers have the most significant improvement under

this assumption. As a result, it is very likely that for patient 2008, the registration error was

close to 2.33 mm. In this scenario, the sensitivity under random forest classifier increases by

over 38%, and the F1 score is almost doubled. The logistic regression performs unsatisfactorily

in the classification, probably due to the non-linear relationship in the covariates and the cancer

status. In this case, the proposed method was not able to provide any improvement since the

probability estimation under logistic regression was not reliable.

The third slice of patient 1012 was used for testing (12257 to 12374 instances, depending on

the registration error), and only the forth slice was used for training (11003 instances) since the

first and second slices had very few cancer instances. In Table 2.9, the classification results get

the most improvement with the proposed method under the assumption of 1.39 mm registration

error, except for logistic regression. The increase of sensitivity is not large, but the error rate,

specificity and F1 score are much improved.
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The first and forth slice of patient 1035 were used for training (16639 instances), and the

second slice was used for testing (8209 to 8569 instances, depending on the registration error).

It can be seen from Table 2.10 that the proposed method improves almost all measures of all

classifiers in all assumed registration error (except for logistic regression, which gets improved

only with 2.33 mm registration error). The improvement is very large, especially for random

forest classifier. For example, under the 1.86 mm registration error, the sensitivity of random

forest raises from 0.643 to 0.990 with the proposed method, and the F1 score is more than

doubled.

For patient 2009, the third slice was used for testing (14862 to 15268 instances, depend-

ing on the registration error), and the second and forth slice were used for training (33118

instances). Table 2.11 presents the classification results for patient 2009. It can be seen that the

proposed method improves the classification results for KNN and random forest for all assumed

registration distances, but logistic regression and SVM are barely improved.

The results of all the 5 patients indicated that random forest benefited the most from the

proposed method, which was consistent with the simulation results. Logistic regression, by

contrast, got the least improvement, partly due to the fact that the linear relationship did not

hold for some patients.

2.5 Conclusion

In this chapter we come up with a predict probability correction method that can directly correct

the predicted class probability for each data point in the case of misclassification in response.

This correction method is built with the relationship of conditional probabilities Pr(Y ∗ = 1|Z)

and Pr(Y = 1|Z) through the misclassification probabilities γ01(Z) and γ10(Z).

We propose a method to estimate γ01 and γ10 in the setting of misalignment of the im-

ages. The proposed correction procedure corrects the predicted probability Pr(Y ∗ = 1|Z) in the

training set, and models the relationship of the corrected probability and the covariates. Sim-
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ulation studies and real data application show that the proposed correction procedure provides

improvement compared to training directly with (Y ∗, Z).

This predict probability correction method has the advantage of a very simple correction

procedure. However, it is not very robust when the data set is error-free but corrected with the

proposed method. Thus the existence of the misclassification error needs to be verified before

the application of the proposed method.
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2.6 Appendix

(a) (b)

(c)

Figure 2.1: Simulation results for KNN with class 1 proportion φ=15%, sample size being 5000 and

validation size being 200. The misclassification error depends linearly on the covariates.
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(a) (b)

(c)

Figure 2.2: Simulation results for logistic regression with class 1 proportion φ=15%, sample size being

5000 and validation size being 200. The misclassification error depends linearly on the covariates.
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(a) (b)

(c)

Figure 2.3: Simulation results for SVM with class 1 proportion φ=15%, sample size being 5000 and

validation size being 200. The misclassification error depends linearly on the covariates.
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(a) (b)

(c)

Figure 2.4: Simulation results for random forest with class 1 proportion φ=15%, sample size being 5000

and validation size being 200. The misclassification error depends linearly on the covariates.
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(a) (b)

(c)

Figure 2.5: Simulation results for logistic regression with class 1 proportion φ=15%, sample size being

5000 and validation size being 200. The misclassification error depends nonlinearly on the covariates.
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(a) (b)

(c)

Figure 2.6: Simulation results for KNN with class 1 proportion φ=15%, sample size being 5000 and

validation size being 200. The misclassification error depends nonlinearly on the covariates.
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(a) (b)

(c)

Figure 2.7: Simulation results for SVM with class 1 proportion φ=15%, sample size being 5000 and

validation size being 200. The misclassification error depends nonlinearly on the covariates.
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(a) (b)

(c)

Figure 2.8: Simulation results for random forest with class 1 proportion φ=15%, sample size being 5000

and validation size being 200. The misclassification error depends nonlinearly on the covariates.
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(a) (b)

(c)

Figure 2.9: Simulation results for logistic regression with class 1 proportion φ=10%, and sample size

being 5000. The misclassification error is caused by shifting the class 1 data by a distance.
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(a) (b)

(c)

Figure 2.10: Simulation results for SVM with class 1 proportion φ=10%, sample size being 5000. The

misclassification error is caused by shifting the class 1 data by a distance.
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(a) (b)

(c)

Figure 2.11: Simulation results for KNN with class 1 proportion φ=10%, sample size being 5000. The

misclassification error is caused by shifting the class 1 data by a distance.
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(a) (b)

(c)

Figure 2.12: Simulation results for random forest classifier with class 1 proportion φ=10%, sample size

being 5000. The misclassification error is caused by shifting the class 1 data by a distance.
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Table 2.1: Simulation results for KNN classifier with linear γ01(Z) and γ10(Z). The data size is 5000,

class 1 proportion is 15%, and the validation size for C1 is 200.

T

error level classification error rate sensitivity specificity F1 G score

0.1 0.040(0.004) 0.842(0.022) 0.981(0.004) 0.864(0.014) 0.864(0.014)

0.2 0.040(0.004) 0.842(0.022) 0.981(0.004) 0.864(0.014) 0.864(0.014)

0.3 0.040(0.004) 0.842(0.022) 0.981(0.004) 0.864(0.014) 0.864(0.014)

0.4 0.040(0.004) 0.842(0.022) 0.981(0.004) 0.864(0.014) 0.864(0.014)

E

error level classification error rate sensitivity specificity F1 G score

0.1 0.053(0.006) 0.822(0.026) 0.970(0.006) 0.824(0.018) 0.825(0.018)

0.2 0.109(0.011) 0.773(0.035) 0.912(0.013) 0.681(0.028) 0.687(0.028)

0.3 0.218(0.019) 0.701(0.047) 0.796(0.024) 0.491(0.031) 0.515(0.030)

0.4 0.374(0.027) 0.615(0.061) 0.628(0.034) 0.331(0.028) 0.373(0.031)

C0

error level classification error rate sensitivity specificity F1 G score

0.1 0.041(0.004) 0.838(0.024) 0.980(0.004) 0.859(0.015) 0.859(0.015)

0.2 0.052(0.006) 0.841(0.026) 0.967(0.007) 0.829(0.019) 0.829(0.019)

0.3 0.069(0.009) 0.859(0.026) 0.944(0.011) 0.790(0.024) 0.793(0.023)

0.4 0.078(0.014) 0.902(0.023) 0.925(0.018) 0.777(0.030) 0.785(0.026)

C1

error level classification error rate sensitivity specificity F1 G score

0.1 0.067(0.086) 0.835(0.094) 0.951(0.104) 0.813(0.027) 0.819(0.010)

0.2 0.099(0.128) 0.821(0.124) 0.916(0.154) 0.756(0.158) 0.766(0.138)

0.3 0.127(0.141) 0.788(0.160) 0.888(0.165) 0.691(0.175) 0.705(0.158)

0.4 0.112(0.108) 0.734(0.206) 0.915(0.131) 0.679(0.181) 0.693(0.167)
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Table 2.2: Simulation results for KNN classifier with linear γ01(Z) and γ10(Z). The data size is 1000,

class 1 proportion is 15%, and the validation size for C1 is 200.

T

error level classification error rate sensitivity specificity F1 G score

0.1 0.041(0.009) 0.827(0.052) 0.982(0.008) 0.857(0.033) 0.858(0.032)

0.2 0.041(0.009) 0.827(0.052) 0.982(0.008) 0.857(0.033) 0.858(0.032)

0.3 0.041(0.009) 0.827(0.052) 0.982(0.008) 0.857(0.033) 0.858(0.032)

0.4 0.041(0.009) 0.827(0.052) 0.982(0.008) 0.857(0.033) 0.858(0.032)

E

error level classification error rate sensitivity specificity F1 G score

0.1 0.055(0.013) 0.804(0.059) 0.970(0.013) 0.814(0.042) 0.816(0.042)

0.2 0.111(0.023) 0.755(0.077) 0.913(0.026) 0.672(0.060) 0.678(0.059)

0.3 0.220(0.038) 0.682(0.103) 0.797(0.043) 0.483(0.069) 0.505(0.070)

0.4 0.379(0.048) 0.592(0.121) 0.626(0.055) 0.319(0.060) 0.359(0.067)

C0

error level classification error rate sensitivity specificity F1 G score

0.1 0.044(0.010) 0.814(0.057) 0.982(0.009) 0.848(0.036) 0.849(0.035)

0.2 0.055(0.014) 0.817(0.059) 0.968(0.015) 0.818(0.044) 0.819(0.043)

0.3 0.071(0.020) 0.839(0.059) 0.945(0.024) 0.782(0.053) 0.785(0.050)

0.4 0.080(0.024) 0.891(0.049) 0.926(0.030) 0.773(0.055) 0.782(0.049)

C1

error level classification error rate sensitivity specificity F1 G score

0.1 0.087(0.132) 0.815(0.102) 0.931(0.158) 0.788(0.149) 0.798(0.126)

0.2 0.098(0.124) 0.807(0.119) 0.919(0.149) 0.752(0.149) 0.763(0.130)

0.3 0.114(0.107) 0.770(0.171) 0.907(0.128) 0.694(0.166) 0.706(0.152)

0.4 0.114(0.108) 0.721(0.209) 0.916(0.132) 0.671(0.183) 0.687(0.169)
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Table 2.3: Simulation results for KNN classifier with nonlinear γ01(Z) and γ10(Z) and # = 0.3. The

data size is 5000, and the validation size for C1 and C2 is 200.

T

proportion classification error rate sensitivity specificity F1 G score

0.20 0.047(0.004) 0.866(0.018) 0.975(0.004) 0.881(0.011) 0.882(0.011)

0.15 0.040(0.004) 0.842(0.022) 0.981(0.004) 0.864(0.014) 0.864(0.014)

0.10 0.032(0.004) 0.803(0.030) 0.987(0.003) 0.835(0.019) 0.836(0.019)

E

proportion classification error rate sensitivity specificity F1 G score

0.20 0.372(0.016) 0.574(0.034) 0.642(0.018) 0.382(0.021) 0.405(0.022)

0.15 0.366(0.016) 0.559(0.038) 0.647(0.017) 0.314(0.022) 0.350(0.023)

0.10 0.361(0.016) 0.533(0.048) 0.651(0.017) 0.228(0.021) 0.278(0.025)

C0

proportion classification error rate sensitivity specificity F1 G score

0.20 0.050(0.004) 0.908(0.016) 0.960(0.005) 0.879(0.010) 0.879(0.010)

0.15 0.046(0.004) 0.895(0.019) 0.964(0.005) 0.852(0.013) 0.854(0.013)

0.10 0.042(0.004) 0.873(0.025) 0.967(0.004) 0.806(0.018) 0.808(0.018)

C1

proportion classification error rate sensitivity specificity F1 G score

0.20 0.334(0.139) 0.633(0.165) 0.674(0.178) 0.445(0.122) 0.470(0.117)

0.15 0.337(0.144) 0.628(0.160) 0.669(0.175) 0.378(0.113) 0.415(0.106)

0.10 0.340(0.163) 0.620(0.153) 0.664(0.183) 0.295(0.109) 0.347(0.100)

C2

proportion classification error rate sensitivity specificity F1 G score

0.20 0.147(0.057) 0.819(0.065) 0.861(0.073) 0.697(0.072) 0.707(0.064)

0.15 0.147(0.064) 0.808(0.060) 0.861(0.078) 0.635(0.083) 0.653(0.071)

0.10 0.142(0.068) 0.790(0.070) 0.865(0.077) 0.545(0.096) 0.575(0.080)
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Table 2.4: Simulation results for different scenarios with random forest classifier and sample size being

5000. The misclassification error is caused by shifting the class 1 data by a distance.

T
class 1 proportion classification error rate sensitivity F1 score G score

0.10 0.033(0.004) 0.800(0.030) 0.831(0.020) 0.832(0.019)
0.15 0.041(0.004) 0.839(0.024) 0.860(0.014) 0.860(0.014)
0.20 0.047(0.004) 0.866(0.018) 0.880(0.011) 0.880(0.011)

E
overlap class 1 proportion classification error rate sensitivity F1 score G score
50% 0.10 0.071(0.007) 0.350(0.058) 0.494(0.061) 0.545(0.052)

0.15 0.103(0.009) 0.380(0.050) 0.523(0.051) 0.566(0.043)
0.20 0.136(0.010) 0.397(0.044) 0.538(0.043) 0.576(0.037)

60% 0.10 0.060(0.007) 0.477(0.059) 0.614(0.052) 0.644(0.044)
0.15 0.084(0.008) 0.515(0.051) 0.646(0.042) 0.669(0.036)
0.20 0.108(0.010) 0.540(0.045) 0.665(0.036) 0.685(0.032)

70% 0.10 0.049(0.006) 0.596(0.052) 0.708(0.039) 0.722(0.035)
0.15 0.066(0.007) 0.640(0.043) 0.742(0.031) 0.752(0.028)
0.20 0.082(0.008) 0.672(0.038) 0.765(0.026) 0.773(0.024)

80% 0.10 0.041(0.005) 0.693(0.043) 0.773(0.029) 0.779(0.027)
0.15 0.053(0.006) 0.739(0.035) 0.806(0.022) 0.810(0.021)
0.20 0.064(0.006) 0.770(0.030) 0.828(0.019) 0.831(0.018)

C1
overlap class 1 proportion classification error rate sensitivity F1 score G score
50% 0.10 0.083(0.009) 0.178(0.081) 0.293(0.114) 0.402(0.098)

0.15 0.120(0.013) 0.211(0.077) 0.339(0.102) 0.442(0.084)
0.20 0.155(0.016) 0.236(0.074) 0.373(0.095) 0.460(0.070)

60% 0.10 0.060(0.010) 0.431(0.097) 0.586(0.095) 0.634(0.074)
0.15 0.080(0.012) 0.496(0.084) 0.647(0.074) 0.683(0.059)
0.20 0.098(0.015) 0.542(0.076) 0.687(0.063) 0.659(0.057)

70% 0.10 0.043(0.006) 0.625(0.065) 0.745(0.047) 0.761(0.040)
0.15 0.054(0.008) 0.691(0.053) 0.793(0.035) 0.803(0.031)
0.20 0.062(0.008) 0.740(0.043) 0.826(0.026) 0.785(0.035)

80% 0.10 0.035(0.005) 0.724(0.045) 0.806(0.028) 0.812(0.025)
0.15 0.043(0.005) 0.780(0.033) 0.843(0.019) 0.846(0.017)
0.20 0.050(0.005) 0.817(0.027) 0.867(0.015) 0.844(0.020)

C2
overlap class 1 proportion classification error rate sensitivity F1 score G score
50% 0.10 0.061(0.012) 0.397(0.118) 0.556(0.130) 0.618(0.104)

0.15 0.080(0.016) 0.473(0.103) 0.633(0.100) 0.680(0.079)
0.20 0.094(0.018) 0.539(0.087) 0.693(0.076) 0.728(0.061)

60% 0.10 0.043(0.007) 0.590(0.065) 0.732(0.051) 0.755(0.041)
0.15 0.054(0.007) 0.662(0.047) 0.786(0.032) 0.801(0.027)
0.20 0.062(0.008) 0.710(0.041) 0.820(0.026) 0.831(0.022)

70% 0.10 0.035(0.005) 0.686(0.045) 0.795(0.029) 0.805(0.025)
0.15 0.044(0.005) 0.746(0.033) 0.835(0.020) 0.842(0.018)
0.20 0.050(0.005) 0.788(0.027) 0.862(0.015) 0.866(0.014)

80% 0.10 0.033(0.004) 0.740(0.037) 0.820(0.023) 0.825(0.021)
0.15 0.040(0.004) 0.793(0.028) 0.855(0.016) 0.857(0.015)
0.20 0.046(0.005) 0.827(0.023) 0.877(0.013) 0.879(0.012)
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Table
2.5:

The
effectofsam

ple
size

on
the

proposed
m

ethod
forK

N
N

classifierw
ith

class1
proportion

being
15%

and
overlap

proportion
being

70%
.

sam
ple

size
m

ethods
classification

errorrate
sensitivity

specificity
F1

score
G

score

1000

T
0.040(0.009)

0.828(0.052)
0.983(0.007)

0.859(0.032)
0.860(0.032)

E
0.065(0.016)

0.636(0.102)
0.988(0.007)

0.740(0.076)
0.754(0.067)

C1
0.060(0.017)

0.642(0.118)
0.992(0.006)

0.755(0.089)
0.772(0.075)

C2
0.057(0.015)

0.656(0.102)
0.994(0.005)

0.771(0.075)
0.787(0.063)

5000

T
0.040(0.004)

0.843(0.023)
0.981(0.004)

0.864(0.015)
0.865(0.014)

E
0.063(0.007)

0.654(0.044)
0.987(0.003)

0.755(0.031)
0.765(0.028)

C1
0.054(0.008)

0.688(0.052)
0.991(0.003)

0.790(0.035)
0.800(0.031)

C2
0.047(0.005)

0.732(0.036)
0.992(0.003)

0.824(0.023)
0.831(0.020)
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Table 2.6: Simulation results for the robustness of the proposed method on random forest classifier with

class 1 proportion being 15% and sample size being 5000. The data is error-free and is corrected with

the proposed method for different overlap proportions.

T

classification error rate sensitivity specificity F1 G score

0.041(0.004) 0.840(0.023) 0.980(0.004) 0.860(0.014) 0.860(0.014)

C1

overlap classification error rate sensitivity specificity F1 G score

50% 0.046(0.006) 0.758(0.042) 0.988(0.003) 0.830(0.024) 0.834(0.022)

60% 0.044(0.005) 0.786(0.033) 0.986(0.004) 0.843(0.018) 0.846(0.017)

70% 0.042(0.004) 0.806(0.030) 0.985(0.004) 0.851(0.017) 0.852(0.016)

80% 0.042(0.004) 0.819(0.027) 0.983(0.004) 0.854(0.016) 0.855(0.015)

C2

overlap classification error rate sensitivity specificity F1 G score

50% 0.067(0.011) 0.561(0.071) 0.998(0.001) 0.712(0.058) 0.741(0.047)

60% 0.050(0.006) 0.695(0.040) 0.995(0.002) 0.807(0.026) 0.818(0.022)

70% 0.043(0.005) 0.759(0.031) 0.992(0.002) 0.841(0.018) 0.846(0.017)

80% 0.041(0.004) 0.798(0.028) 0.988(0.003) 0.855(0.016) 0.857(0.015)
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Table
2.7:

C
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resultsforpatient1015
w

ith
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regression
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N

N
SV

M
random
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d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.076
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0.100
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0.084
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0.077

sensitivity
0.745

0.782
0.615

0.671
0.595

0.635
0.565

0.610

specificity
0.946

0.935
0.935

0.944
0.895

0.949
0.961

0.962
1.86

F1
score

0.682
0.677

0.573
0.630

0.486
0.621

0.599
0.635

classification
error

0.089
0.092

0.114
0.102

0.151
0.104

0.102
0.101

sensitivity
0.669

0.694
0.550

0.549
0.542

0.588
0.480

0.515

specificity
0.947

0.940
0.936

0.944
0.896

0.948
0.961

0.957
1.39

F1
score

0.663
0.664

0.558
0.601

0.486
0.580

0.552
0.573

classification
error

0.065
0.067

0.089
0.071

0.129
0.072

0.071
0.060

sensitivity
0.855

0.890
0.691

0.739
0.661

0.700
0.638

0.704

specificity
0.944

0.937
0.934

0.949
0.893

0.951
0.959

0.964
2.33

F1
score

0.712
0.713
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0.661

0.490
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0.627
0.687

ad:registration
error
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1 :proposed
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ethod
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Table
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0.266
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0.998
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0.903

0.985
0.961

0.986
0.940

0.994
1.86
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score

0.000
0.000

0.330
0.545

0.612
0.670

0.314
0.401
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0.104
0.242

0.144
0.087

0.077
0.072

0.123
0.089
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0.000

0.000
0.398

0.377
0.550

0.530
0.301

0.281
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0.999

0.845
0.908

0.974
0.965

0.973
0.942

0.983
1.39

F1
score

0.000
0.001

0.362
0.469

0.594
0.600

0.334
0.392

classification
error

0.083
0.082

0.141
0.055

0.065
0.037

0.116
0.053

sensitivity
0.000

0.000
0.375

0.473
0.638

0.616
0.278

0.386

specificity
0.998

1.000
0.902

0.986
0.961

0.994
0.938

0.997
2.33

F1
score

0.000
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0.303
0.582

0.615
0.730

0.281
0.544
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0.754

0.307
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0.794

0.688
0.794
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0.911

0.985
0.905

0.981
0.858

0.987
0.948

0.988
1.86

F1
score

0.210
0.275

0.219
0.486

0.152
0.560

0.321
0.400

classification
error

0.095
0.035

0.099
0.027

0.145
0.018

0.057
0.021

sensitivity
0.691

0.303
0.763

0.723
0.763

0.773
0.766

0.727

specificity
0.911

0.982
0.905

0.979
0.857

0.987
0.947

0.985
1.39

F1
score

0.264
0.301

0.275
0.566

0.205
0.679

0.399
0.630

classification
error

0.089
0.018

0.096
0.019

0.144
0.014

0.054
0.009

sensitivity
0.861

0.267
0.960

0.881
0.881

0.911
0.960

0.941

specificity
0.911

0.987
0.904

0.982
0.856

0.987
0.946

0.991
2.33

F1
score

0.137
0.194

0.142
0.440

0.092
0.517

0.228
0.617

ad:registration
error
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0 :no

correction
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Table
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1

R
0

R
1

R
0

R
1

classification
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0.011
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0.029

0.107
0.014

0.060
0.021

sensitivity
0.653

0.173
0.918

0.959
0.643

0.765
0.643

0.990

specificity
0.995

0.998
0.892

0.972
0.895

0.989
0.943

0.979
1.86

F1
score

0.637
0.260

0.163
0.434

0.120
0.562

0.196
0.519

classification
error

0.009
0.011

0.098
0.050

0.100
0.027

0.057
0.037

sensitivity
0.663

0.529
0.817

0.885
0.538

0.750
0.519

0.885

specificity
0.995

0.994
0.903

0.951
0.905

0.976
0.948

0.964
1.39

F1
score

0.654
0.539

0.173
0.309

0.119
0.411

0.184
0.372

classification
error

0.021
0.023

0.085
0.045

0.134
0.028

0.052
0.043

sensitivity
0.367

0.480
0.803

0.834
0.755

0.742
0.537

0.699

specificity
0.997

0.992
0.919

0.958
0.870

0.979
0.959

0.964
2.33

F1
score

0.499
0.543

0.347
0.506

0.240
0.596

0.364
0.473
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0.966
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0.503
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0.621
0.626

0.537
0.609
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0.063
0.062

0.061
0.050

0.039
0.036

0.047
0.041
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0.000

0.000
0.735

0.743
0.749

0.705
0.678

0.673

specificity
0.982

0.984
0.949

0.960
0.971

0.976
0.966

0.973
1.39

F1
score

0.000
0.000

0.529
0.579

0.639
0.642

0.571
0.603

classification
error

0.048
0.049

0.053
0.042

0.033
0.030

0.041
0.031

sensitivity
0.000

0.000
0.770

0.805
0.787

0.758
0.696

0.760

specificity
0.984

0.983
0.953

0.963
0.973

0.978
0.968

0.976
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score

0.000
0.000

0.485
0.553
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0.526
0.611

ad:registration
error

bR
0 :no

correction
situation

cR
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Chapter 3

Weighted correction model

3.1 Introduction

In the previous chapter, we proposed a predict probability correction method and investigated

its performance in different scenarios. We estimated the misclassification probabilities by the

position of each data point. In this chapter, we further extend this idea and propose a weighted

model method for different classifiers. This weighted model method incorporates the weight for

each data point in the model building process. A point with a larger weight has more influence

in the model parameter estimation. The numerical study shows the proposed method has great

performance when misclassification appears in response.

The rest of the section organizes as follows. The proposed weighted models for different

classifiers are introduced in section 3.2. In section 3.3 simulation studies and the application to

the prostate cancer imaging data are carried out to test the performance of the proposed method.

Conclusions are made in 3.4.

3.2 Framework and Method description

Let Y = {0, 1} denote the true binary response that may not be directly observed, and Z the

covariate vector that is error-free with dimension p. The observed version of Y is Y ∗.

68
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In Chapter 2.3.2, the weight calculation was proposed for each data point. The weight ω

is defined as the proportion of points in the circle that have the same class labels as the centre

point. The circle represents the possible area of the true response for the centre point, so

the weight can be viewed as an estimate of the probability that measures how likely the true

response Y is equal to the observed Y ∗: ωi ≈ Pr(Y ∗
i = Yi), i = 1, . . . , n. The weight reflects the

importance of each data point, which inspires us to fit weighted models to the data.

3.2.1 Weighted logistic regression

The weighted likelihood for logistic regression can be written as

L∗(θ) =
n!

i=1
g(ωi)li(θ)

where θ is the regression coefficient to be estimated, li(θ) is the original likelihood for each data

point without weight, and g(ωi) is a data-adaptive weight function. The detailed calculation of

li(θ) can be found in 1.2.1.

The function g can be the identity function, in this case the weighted likelihood becomes

L∗(θ) =
n!

i=1
ωili(θ),

which is the traditional weighted logistic regression. In the simulation study, we have found

that using a different weight function rather than the identity function could lead to better fitting

results. For example, let

g(ωi) =
$
ωi if ωi ≥ w,
0 if ωi < w,

where w is chosen so that only points with weights greater than or equal to w will be used in

the model fitting. If w = 1, then only the points that have probability 1 that the true response

equals to the observed response are used for fitting, which is the same as the preliminary model

m1 discussed in the new weight calculation in 2.3.2. On the other hand, if w = 0, then all points

are used, which corresponds to the traditional weighted logistic regression. The value of w can

be decided using cross-validation.
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3.2.2 Weighted SVM

Yang et al. (2007) proposed a weighted support vector machine method.

The original SVM can be written as a quadratic programming problem

LD =

l!
i=1
αi −

1
2

l!
i, j=1
αiα j yiy j 〈h(zi), h(z j)〉

=

l!
i=1
αi −

1
2

l!
i, j=1
αiα j yiy jK(zi, z j)

subject to

l!
i=1

yiαi = 0, 0 ≤ αi ≤ C, i = 1, . . . , l

where α is the Lagrangian parameter, C is the penalty parameter, and l is the training data size.

The weighted model proposed by Yang et al. (2007) is

LD =

l!
i=1
αi −

1
2

l!
i, j=1
αiα j yiy jK(z i, z j)

subject to

l!
i=1

yiαi = 0, 0 ≤ αi ≤ ωiC, i = 1, . . . , l .

The basic idea of the weighted SVM is to put a weighted penalty for each data point in the

training set. If a data point has a small weight, it means the observed response of this point is

unlikely to be the same as the true response, so the penalty for misclassifying this point is small.

Consequently, this data point will have a small influence in the estimation of the parameters. In

this way, the influence of misclassification in response is reduced.

We can replace the weight ω by a function g(ω), then the restriction becomes:

l!
i=1

yiαi = 0, 0 ≤ αi ≤ g(ωi)C, i = 1, . . . , l .



3.2. F'#/&4)': #(* M&%")* *&.,'-$%-)( 71

3.2.3 Weighted KNN

In the original KNN, the class of the new observation with K nearest points is decided by

ŷ = argmaxr

&'(
')

K!
j=1

I(y j = r)
*'+
', ,

where r = {0, 1} for binary class case. The weighted KNN model proposed by Hechenbichler

and Schliep (2004) changes the decision rule to

ŷ = argmaxr

&'(
')

K!
j=1
ωi I(y j = r)

*'+
', .

Similarly, we will modify it to

ŷ = argmaxr

&'(
')

K!
j=1

g(ωi)I(y j = r)
*'+
',

to make it a data-adaptive weighted KNN model.

3.2.4 Weighted classification tree

In classification tree the node impurity measure serves as the criteria for splitting nodes and

pruning the tree. In a node m of a classification tree, let Rm denote a region with Nm observations,

then

p̂mk =
1

Nm

!
zi∈Rm

I(yi = k)

is the observed proportion of class k in node m. The observations in node m are classified to

class k(m) = arg maxk p̂mk , which is the majority class in node m. For an original classification

tree, the commonly used node impurity measures are misclassification error, gini index, and

cross-entropy or deviance (Friedman et al., 2001):

Misclassification error:
1

Nm

!
i∈Rm

I{yi ! k(m)}.

Gini index:
!
k!k ′

p̂mk p̂mk ′ .

Cross-entropy or deviance: −
K!

k=1
p̂mk log p̂mk .



72 C"#$%&' 3. W&-0"%&* ,)''&,%-)( /)*&6

Usually gini index and cross-entropy are preferred.

In order to add weight for each observation in the classification tree, we propose the weighted

impurity measures. Denote

p̃mk =

#
zi∈Rm

ωi I(yi = k)#
zi∈Rm

ωi

as the weighted observed proportion of class k in node m. Then the weighted impurity measures

are:

Misclassification error:
#

zi∈Rm
ωi I(yi ! k)#
zi∈Rm

ωi
.

Gini index:
!
k!k ′

p̃mk p̃mk ′ .

Cross-entropy or deviance: −
K!

k=1
p̃mk log p̃mk .

Substituting ωi to g(ωi) gives the data-adaptive weighted impurity measures.

3.3 Numerical investigation

Both simulation studies and real data application of the proposed method are presented in this

section. The numerical studies were done using R 3.5.2 (R Core Team, 2018). The packages

e1071 (Meyer et al., 2019), class (Venables and Ripley, 2002) and kernlab (Karatzoglou et al.,

2004) were used to perform the corresponding analysis using SVM, classification tree and

KNN.

3.3.1 Simulation study

Simulation studies were carried out to test the performance of the weighted model method.

The data generation procedure was the same as described in Chapter 2.4.1. The cancer

tissue, which was the set of data with class label 1, was approximated by a circle. The size

and position of the circle were determined by the external source W , in this case the Cartesian

coordinates w1 and w2, i.e. W = (w1,w2). The class 1 proportion φ ranged among 0.1, 0.15, and
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0.2 (for logistic regression φ being 0.05 was also tested), and the overlap proportion between

the true cancer area and the observed cancer area was set to 0.5, 0.6, 0.7, and 0.8. The shift

distance determined by the overlap proportion was assumed known.

The data of size 1000 or 5000 was randomly split into half training set and half testing set.

In each fitting process the training set was used to train the model, and the testing set was used

to test the performance by comparing the predicted class labels to the true class labels. The

misclassification error rate, sensitivity, specificity, F1 score, and G score were recorded.

To evaluate the performance of the proposed weighted model for different classifiers, logistic

regression, SVM, KNN and classification tree were considered in the simulation study. The

number of nearest neighbors for KNN was set to 5. In splitting the classification tree, gini index

was used. The maximum depth for splitting the tree was 10, and in the terminal node at least

5 data points were needed to make a decision. Radius kernel was considered for SVM, with

gamma being 0.5, and the cost being 100.

The simulation procedure was as follows:

• step 1: generate the true data set (yi, zi), i = 1, . . . , n;

• step 2: shift the circle of class 1 in the true data by a distance to create the error-prone

data (y∗i , zi), i = 1, . . . , n;

• step 3: calculate the raw weights with equation (2.4);

• step 4: update the raw weights with previously described method in Chapter 2.3.2. Logis-

tic regression is served as the preliminary model to estimate the new weight (probability)

in step 2.

The following scenarios were considered in the simulation:

• T: the classifier is trained and tested on the error-free data set (yi, zi), i = 1, . . . , n.

• E: the classifier is trained and tested on the error-corrupted data set (y∗i , zi), i = 1, . . . , n.
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• W1: the proposed weighted classifier is trained and tested on the error-corrupted data set

(y∗i , zi), i = 1, . . . , n with raw weights.

• W2: the proposed weighted classifier is trained and tested on the error-corrupted data set

(y∗i , zi), i = 1, . . . , n with updated weights.

In W1 and W2 we considered to use the data-adaptive weight function g(ω) instead of

directly using the weights ω. In this simulation study, we let

g(ωi) =
$
ωi if ωi ≥ w,
0 if ωi < w,

(3.1)

where w was a tuning parameter which was determined with 5-fold cross-validation.

As discussed in Chapter 2.4, the misclassification in response caused by the misalignment

drastically decreased the classification performance. Small overlap proportion between y and

y∗ or highly imbalanced class proportions decreased the sensitivity, F1 score and G score

significantly.

Figure 3.1 shows the F1 score against overlap proportion for different scenarios of logistic

regression. Compared with the original logistic regression, the proposed weighted method,

either with raw weights or with updated weights, achieves much better F1 scores. The proposed

method with updated weights improves the results even further. More significant improvement

is observed when the overlap proportion is more than 0.7. The class 1 proportion does not

influence much the performance of the proposed method. The sample size 1000 gave similar

results as these for sample size 5000, but with larger standard deviations for all measurements,

as expected (see Table 3.1 for example).

The simulation results for classification error rate and sensitivity against overlap proportion

for weighted logistic regression can be found in Figure 3.5 and Figure 3.6. The improvement

of the error rate and sensitivity is very impressive with the weighted logistic regression, either

with raw weights or updated weights.

The proposed weighted method also provided very good performance for SVM, KNN and

classification tree (see Figure 3.2, Figure 3.3, Figure 3.4, Figure 3.7, Figure 3.8, Figure 3.9,



3.3. N+/&'-,#6 -(3&.%-0#%-)( 75

Figure 3.10, Figure 3.11, and Figure 3.12).

The proposed method for SVM classifier did not necessarily drop the misclassification error

rate, but the increase of the sensitivity, F1 score and G score was very significant. The weighted

SVM with updated weights produced similar results compared to the case with raw weights.

The weighted KNN classifier with updated weights produced slightly better results compared

to the case with with raw weights, and in both cases predicted results were improved compared

to the original KNN. The performance of the proposed weighted KNN was less sensitive to the

overlap proportion compared to the other methods. For example, the other weighted classifiers

did not provide large improvement at 50% overlap, and better results were observed when

the overlap proportion was higher. In contrast the KNN classifier provided rather consistent

improvement over all overlap proportions.

The weighted classification tree provided very large improvement when the overlap was

high, and the updated weights introduced better result compared to the raw weights.

The robustness of the weighted model method was also tested in the simulation study (see

Table 3.2). When the data was actually error-free, the weighted models were trained based on

different overlap proportion assumptions. It was found that the weighted model method was

quite robust to this mis-specification situation and the classification results barely changed.

3.3.2 Application on the prostate cancer image data

The proposed weighted models, i.e. the weighted logistic regression, weighted SVM, weighted

KNN and weighted classification tree were applied on the prostate cancer image data. The

construction of the testing set was the same as in Chapter 2.4.2. In this application we used the

updated weights to fit the classifiers, and the data-adaptive function of the form (3.1) was used.

The classification results for patient 1015 are summarized in Table 3.3. The proposed

weighted classifiers provide improvement on all measures and under all assumed error levels

(except for weighted classification tree, for which the sensitivity is slightly decreased).

Table 3.4 shows the classification results for patient 2008. The weighted logistic regression
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has no improvement, and the reason may be that the linear relationship of response and covariates

does not hold. The largest improvement for the other classifiers is observed under the registration

error assumption 2.33 mm, which conforms the conclusion that the registration error for patient

2008 was close to 2.33 mm. The sensitivity of weighted SVM is increased by 29% under 2.33

mm registration error, and the F1 score of weighted tree is increased by 51%.

The classification results for patient 1012 are shown in Table 3.5. It can be seen the proposed

weighted classifiers improve the results under all assumed registration errors. In the cases of

weighted SVM under 1.39 mm and 1.86 mm registration error, the sensitivity may not be

increased or even worse, but the specificity is increased significantly. The resulting F1 score is

doubled or even tripled.

The classification results for patient 1035 in Table 3.6 indicate that the weighted classifiers

provide very good improvement on almost all classifiers and all assumed registration errors.

The exception is weighted logistic regression under 1.39 mm and 1.86 mm registration error

assumptions. In these cases, the sensitivity drops. The weighted SVM and weighted classifica-

tion tree benefit most from the weighted models. For example, the weighted classification tree

roughly doubles the sensitivity with registration error 1.39 mm or 1.86 mm. The F1 score for

weighted SVM with registration error 2.33 mm is 2.67 times the original.

Table 3.7 presents the classification results for patient 2009. The proposed weighted models

improve all measures under all assumed error levels. The improvement is the largest when

the registration error is assumed 2.33 mm. Similar to the patient 1035, weighted SVM and

weighted classification tree provide more improvement than weighted KNN and weighted

logistic regression.

3.4 Conclusion

In this section we propose a weighted model method to eliminate the impact of misclassification

in response on the model construction process. The weight is calculated and updated according
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to the position of the data point. The weighted models for different classifiers are based

on the idea of emphasizing more on the data with larger weights. The simulation studies

indicate that the weighted model method is a very good strategy for handling misclassification

in response. The updated weights usually produce better results than the raw weights scenario.

The application of the weighted models on the prostate cancer image data conformed that this

weighted model method could improve the classification performance comparing to directly

fitting the original classifier on the error-prone data.

An important advantage of the proposed weighted model method is that it is very robust

to the situation of model mis-specification. The weighted model has a limitation that it is

complicated and the specific weighted model form needs to be specified before applying a

classifier. In the next chapter we investigate the method that corrects the data directly so that

the fitting process can be largely simplified.



78 C"#$%&' 3. W&-0"%&* ,)''&,%-)( /)*&6

3.5 Appendix

(a) (b)

(c) (d)

Figure 3.1: Simulated F1 score for logistic regression with different class 1 proportions. The sample

size is 5000. Plot (a), (b), (c), and (d) correspond to class 1 proportion 0.05, 0.10, 0.15 and 0.20,

respectively.
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(a) (b)

(c)

Figure 3.2: Simulated F1 score for SVM classifier with different class 1 proportions. The sample size is

5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and 0.20, respectively.
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(a) (b)

(c)

Figure 3.3: Simulated F1 score for KNN classifier with different class 1 proportions. The sample size is

5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and 0.20, respectively.
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(a) (b)

(c)

Figure 3.4: Simulated F1 score for classification tree with different class 1 proportions. The sample size

is 5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and 0.20, respectively.
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(a) (b)

(c) (d)

Figure 3.5: Classification error rate against overlap proportion for logistic regression with different

class 1 proportions. The sample size is 5000. Plot (a), (b), (c), and (d) correspond to class 1 proportion

0.05, 0.10, 0.15 and 0.20, respectively.
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(a) (b)

(c) (d)

Figure 3.6: Sensitivity against overlap proportion for logistic regression with different class 1 propor-

tions. The sample size is 5000. Plot (a), (b), (c), and (d) correspond to class 1 proportion 0.05, 0.10,

0.15 and 0.20, respectively.
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(a) (b)

(c)

Figure 3.7: Classification error rate against overlap proportion for SVM with different class 1 propor-

tions. The sample size is 5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and

0.20, respectively.
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(a) (b)

(c)

Figure 3.8: Sensitivity against overlap proportion for SVM with different class 1 proportions. The sample

size is 5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and 0.20, respectively.
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(a) (b)

(c)

Figure 3.9: Classification error rate against overlap proportion for KNN with different class 1 propor-

tions. The sample size is 5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and

0.20, respectively.
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(a) (b)

(c)

Figure 3.10: Sensitivity against overlap proportion for KNN with different class 1 proportions. The

sample size is 5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and 0.20,

respectively.
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(a) (b)

(c)

Figure 3.11: Classification error rate against overlap proportion for classification tree with different

class 1 proportions. The sample size is 5000. Plot (a), (b), and (c) correspond to class 1 proportion

0.10, 0.15 and 0.20, respectively.
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(a) (b)

(c)

Figure 3.12: Sensitivity against overlap proportion for Classification tree with different class 1 propor-

tions. The sample size is 5000. Plot (a), (b), and (c) correspond to class 1 proportion 0.10, 0.15 and

0.20, respectively.
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Table
3.1:

The
effectofsam

ple
size

on
the

proposed
m

ethod
forlogistic

regression
w

ith
class1

proportion
being

20%
and

overlap
proportion

being

70%
.

sam
ple

size
m

ethods
classification

errorrate
sensitivity

specificity
F1

score
G

score

1000

T
0.042(0.009)

0.878(0.037)
0.979(0.008)

0.894(0.023)
0.894(0.023)

E
0.080(0.020)

0.607(0.098)
0.998(0.003)

0.747(0.077)
0.771(0.063)

W
1

0.055(0.015)
0.754(0.078)

0.993(0.005)
0.844(0.049)

0.852(0.043)

W
2

0.051(0.014)
0.776(0.073)

0.992(0.006)
0.856(0.045)

0.862(0.040)

5000

T
0.041(0.004)

0.879(0.016)
0.979(0.004)

0.895(0.010)
0.896(0.010)

E
0.078(0.009)

0.618(0.045)
0.998(0.001)

0.759(0.034)
0.780(0.028)

W
1

0.049(0.005)
0.788(0.027)

0.992(0.003)
0.865(0.015)

0.869(0.014)

W
2

0.046(0.005)
0.807(0.025)

0.990(0.003)
0.874(0.014)

0.877(0.013)
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Table 3.2: Simulation results for the robustness of the proposed method on SVM classifier with class

1 proportion being 15% and sample size being 5000. The data is error-free and is corrected with the

proposed method for different overlap proportions.

T

classification error rate sensitivity specificity F1 G score

0.037(0.004) 0.837(0.025) 0.985(0.004) 0.871(0.014) 0.872(0.014)

W1

overlap classification error rate sensitivity specificity F1 G score

50% 0.037(0.004) 0.868(0.023) 0.980(0.005) 0.876(0.013) 0.876(0.013)

60% 0.037(0.004) 0.870(0.024) 0.980(0.005) 0.876(0.013) 0.877(0.013)

70% 0.037(0.004) 0.869(0.023) 0.980(0.005) 0.876(0.012) 0.877(0.012)

80% 0.036(0.004) 0.867(0.023) 0.981(0.005) 0.877(0.012) 0.878(0.012)

W2

overlap classification error rate sensitivity specificity F1 G score

50% 0.041(0.005) 0.776(0.038) 0.991(0.004) 0.849(0.021) 0.853(0.019)

60% 0.037(0.004) 0.839(0.028) 0.985(0.005) 0.871(0.014) 0.872(0.013)

70% 0.036(0.004) 0.856(0.025) 0.983(0.005) 0.876(0.013) 0.877(0.012)

80% 0.036(0.004) 0.860(0.023) 0.982(0.004) 0.878(0.012) 0.878(0.012)
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Table
3.3:

C
lassification

resultsforpatient1015
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
classification

tree

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.076
0.058

0.100
0.095

0.137
0.103

0.116
0.098

sensitivity
0.745

0.792
0.615

0.660
0.595

0.672
0.616

0.542

specificity
0.946

0.961
0.935

0.935
0.895

0.925
0.917

0.946
1.86

F1
score

0.682
0.751

0.573
0.604

0.486
0.588

0.537
0.547

classification
error

0.089
0.077

0.114
0.104

0.151
0.128

0.129
0.121

sensitivity
0.669

0.718
0.550

0.571
0.542

0.597
0.554

0.536

specificity
0.947

0.954
0.936

0.945
0.896

0.914
0.918

0.930
1.39

F1
score

0.663
0.709

0.558
0.591

0.486
0.551

0.529
0.537

classification
error

0.065
0.052

0.089
0.072

0.129
0.100

0.107
0.103

sensitivity
0.855

0.885
0.691

0.722
0.661

0.720
0.679

0.579

specificity
0.944

0.955
0.934

0.949
0.893

0.918
0.916

0.929
2.33

F1
score

0.712
0.763

0.593
0.652

0.490
0.573

0.544
0.512

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
3.4:

C
lassification

resultsforpatient2008
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
classification

tree

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.089
0.088

0.141
0.077

0.069
0.039

0.110
0.054

sensitivity
0.000

0.000
0.400

0.483
0.621

0.765
0.409

0.771

specificity
0.998

0.999
0.903

0.965
0.961

0.980
0.936

0.962
1.86

F1
score

0.000
0.000

0.330
0.523

0.612
0.776

0.393
0.711

classification
error

0.104
0.109

0.144
0.100

0.077
0.063

0.102
0.076

sensitivity
0.000

0.000
0.398

0.411
0.550

0.700
0.390

0.581

specificity
0.999

0.993
0.908

0.956
0.965

0.965
0.956

0.963
1.39

F1
score

0.000
0.000

0.362
0.458

0.594
0.697

0.439
0.611

classification
error

0.083
0.0816

0.141
0.071

0.065
0.033

0.109
0.075

sensitivity
0.000

0.000
0.375

0.480
0.638

0.824
0.391

0.592

specificity
0.998

1.000
0.902

0.968
0.961

0.979
0.936

0.954
2.33

F1
score

0.000
0.000

0.303
0.523

0.615
0.801

0.369
0.561

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod



94 C"#$%&' 3. W&-0"%&* ,)''&,%-)( /)*&6

Table
3.5:

C
lassification

resultsforpatient1012
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
classification

tree

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.091
0.056

0.096
0.029

0.144
0.023

0.142
0.049

sensitivity
0.754

0.849
0.834

0.804
0.794

0.779
0.352

0.769

specificity
0.911

0.946
0.905

0.973
0.858

0.981
0.866

0.954
1.86

F1
score

0.210
0.329

0.219
0.470

0.152
0.525

0.074
0.335

classification
error

0.095
0.035

0.099
0.034

0.145
0.028

0.097
0.057

sensitivity
0.691

0.303
0.763

0.747
0.763

0.684
0.230

0.743

specificity
0.911

0.982
0.905

0.971
0.857

0.979
0.920

0.948
1.39

F1
score

0.264
0.301

0.275
0.518

0.205
0.542

0.104
0.391

classification
error

0.089
0.018

0.096
0.026

0.144
0.021

0.207
0.038

sensitivity
0.861

0.267
0.960

0.921
0.881

0.931
0.990

0.931

specificity
0.911

0.987
0.904

0.975
0.856

0.980
0.791

0.962
2.33

F1
score

0.137
0.194

0.142
0.372

0.092
0.423

0.073
0.286

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
3.6:

C
lassification

resultsforpatient1035
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
classification

tree

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.009
0.014

0.108
0.051

0.107
0.010

0.141
0.065

sensitivity
0.653

0.367
0.918

0.949
0.643

0.888
0.459

1.000

specificity
0.995

0.992
0.892

0.949
0.895

0.991
0.863

0.934
1.86

F1
score

0.637
0.364

0.163
0.300

0.120
0.667

0.069
0.261

classification
error

0.009
0.010

0.098
0.061

0.100
0.029

0.124
0.046

sensitivity
0.663

0.644
0.817

0.885
0.538

0.721
0.490

0.923

specificity
0.995

0.994
0.903

0.939
0.905

0.974
0.881

0.954
1.39

F1
score

0.654
0.618

0.173
0.266

0.119
0.383

0.090
0.334

classification
error

0.021
0.019

0.085
0.053

0.134
0.023

0.114
0.042

sensitivity
0.367

0.585
0.803

0.852
0.755

0.725
0.633

0.917

specificity
0.997

0.992
0.919

0.950
0.870

0.984
0.893

0.959
2.33

F1
score

0.499
0.634

0.347
0.472

0.240
0.640

0.237
0.548

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
3.7:

C
lassification

resultsforpatient2009
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
classification

tree

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.055
0.055

0.057
0.047

0.037
0.051

0.060
0.046

sensitivity
0.000

0.015
0.747

0.791
0.769

0.834
0.615

0.726

specificity
0.984

0.982
0.951

0.960
0.971

0.954
0.954

0.963
1.86

F1
score

0.000
0.021

0.503
0.569

0.621
0.562

0.446
0.552

classification
error

0.063
0.064

0.061
0.050

0.039
0.064

0.057
0.054

sensitivity
0.000

0.021
0.735

0.739
0.749

0.803
0.621

0.740

specificity
0.982

0.981
0.949

0.961
0.971

0.943
0.959

0.956
1.39

F1
score

0.000
0.030

0.529
0.580

0.639
0.540

0.503
0.558

classification
error

0.048
0.050

0.053
0.042

0.033
0.048

0.055
0.037

sensitivity
0.000

0.006
0.770

0.814
0.787

0.845
0.617

0.841

specificity
0.984

0.982
0.953

0.963
0.973

0.955
0.956

0.967
2.33

F1
score

0.000
0.008

0.485
0.559

0.610
0.533

0.420
0.598

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod



Chapter 4

Data reconstruction method

4.1 Introduction

In the previous two chapters, we proposed to solve the misalignment problem of the prostate

cancer image data in the aspect of misclassification in response. In this chapter, we consider the

misalignment in the aspect of measurement error in covariates. A weighted data reconstruction

method is proposed to correct the error-prone data directly. This data reconstruction method

is originated from the moment reconstruction method, but combines two forms of the moment

reconstruction under two assumptions. The numerical studies show the proposed method works

very well in the misalignment situation.

The rest of the chapter is organized as follows. Section 4.2 describes the notations and the

moment reconstruction method. In section 4.3 the details of the proposed method is presented.

Simulation studies and real data application are carried out in 4.4 for different classifiers. Finally

this chapter is concluded in 4.5.

4.2 Notation and framework

Let Y denote the true binary response that may not be directly observed, and the observed

version of Y is Y ∗. Denote X the true covariate that may not be correctly measured, and the

97
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observed version is X∗. A weightω between 0 and 1 is assigned for each data point. The details

of how to calculate the weight is discussed in section 2.3.2.

The moment reconstruction proposed by Freedman et al. (2004) introduces a moment

matching method to construct an “adjusted” value for the error-prone covariate X∗. The

constructed variable Xmr is a function of X∗ and Y :

Xmr(X∗,Y ) = E(X∗ |Y )(Ipx − G) + X∗G, (4.1)

where G = G(Y ) = {cov(X∗ |Y )1/2}−1cov(X |Y )1/2 and A1/2 is the Cholesky decomposition

of A, with Ipx being the identity matrix where px stands for the dimension of X . Under the

assumption

E(X∗ |Y ) = E(X |Y ), (4.2)

(Xmr,Y ) has the same first two moments as (X,Y ). Freedman et al. (2004) also extended the

moment reconstruction method to the situation that X∗ is not an unbiased measurement of X ,

with

E(X∗ |Y ) = a(Y ) + b(Y )E(X |Y ), (4.3)

where a(Y ) and b(Y ) are known functions of Y . Under this assumption, the moment reconstruc-

tion becomes:

X∗
mr(X∗,Y ) = E(X∗ |Y ) − a(Y )

b(Y ) (Ipx − G∗) + X∗ − a(Y )
b(Y ) G∗, (4.4)

where G∗ = G∗(Y ) = b(Y ){cov(X∗ |Y )1/2}−1cov(X |Y )1/2 and A1/2 is the Cholesky decomposi-

tion of A, with Ipx being the identity matrix where px is the dimension of X .

4.3 The proposed method

The misalignment problem of the prostate imaging data can be viewed as the true covariates

being shifted for a distance, assuming the response is correctly classified (see Figure 1.4). For

example, the observed covariate value X∗
i for the point i comes from the value X j of a nearby
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point j. The weight ωi can be viewed as a measure of how likely Xi and X j belong to the same

class:

ωi ≈ Pr(Yi = Yj |X∗
i = X j).

Assuming X has different distributions for different classes, then whether Xi and X j come

from the same class has an impact on the measurement error assumption. If the mis-measured

covariate X j : X∗
i = X j has the same class label as Xi, then Xi and X j have the same distribution.

Thus the assumption E(X∗ |Y ) = E(X |Y ) is valid; if the mis-measured covariate comes from

the opposite class, i.e. Xi and X j have different class labels, then they are generated from

different distributions. In this circumstance the assumption E(X∗ |Y ) = a(Y ) + b(Y )E(X |Y ) is

appropriate.

Based on the above discussion, we proposed a weighted data reconstruction method with

binary response Y :

X̃mr(X∗,Y ) = ωXmr(X∗,Y ) + (1 − ω)X∗
mr(X∗,Y ), (4.5)

where Xmr(X∗,Y ) and X∗
mr(X∗,Y ) are defined in equations (4.1) and (4.4).

The basic idea of the data reconstruction method is to combine the moment reconstruction

from two assumptions ((4.2) and (4.3)), and the proportion assigned to each assumption is

determined by the weight. For a point (x∗i , yi) with weight ωi, if yi = 1, the value of x∗i comes

from a point with class label 1 is ωi, and the value of x∗i comes from a point with class label 0

is with probability 1 − ωi. The assumptions under the two situations are different. If x∗i comes

from the same class, then E(X∗ |Y ) = E(X |Y ) is assumed, and equation (4.1) can be applied

to find an unbiased estimate for x∗i , i.e. Xmr(X∗ = x∗i ,Y = 1). If x∗i comes from the different

class, then it is appropriate to assume E(X∗ |Y ) = a(Y )+b(Y )E(X |Y ), and equation (4.4) should

be used. In this case

X̃mr(X∗ = x∗i ,Y = 1) = ωi Xmr(X∗ = x∗i ,Y = 1) + (1 − ωi)X∗
mr(X∗ = x∗i ,Y = 1).

There is a key difference between the proposed data reconstruction method and the original

moment reconstruction. There is only one error assumption in the original moment reconstruc-

tion method, while in our proposed method both assumptions are considered. This flexible
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model has a drawback: the reconstructed variable X̃mr(X∗,Y ) is not necessarily an unbiased

estimate for X given Y :

E(X̃mr |Y ) = ωE(Xmr |Y ) + (1 − ω)E(X∗
mr |Y ). (4.6)

If the observed value X∗ comes from the covariate in the same class of Y , then the assumption

E(X∗ |Y ) = E(X |Y ) holds. In this case the conditional expectation (4.6) becomes

E(X̃mr |Y ) = ωE(X |Y ) + (1 − ω)E(X |Y ) − a(Y )
b(Y ) .

The expectation E(X̃mr |Y ) does not equal to E(X |Y ) unless ω = 1. If the value of X∗ comes

from the covariate in the different class ofY , then the assumption E(X∗ |Y ) = a(Y )+b(Y )E(X |Y )

holds. The conditional expectation becomes

ω{a(Y ) + b(Y )E(X |Y )} + (1 − ω)E(X |Y ).

It does not equal to E(X |Y ) unless ω is 0. This indicates that the proposed constructed method

produces unbiased estimates for the points far away from the cancer and non-cancer boundary.

For the points near the cancer and non-cancer boundary, the proposed constructed estimates

will be different.

When we predict the cancer status for a patient in the future, there is no misalignment issue

since the in-vivo data is used directly without any alignment. As a result, the covariates of

the future data can be viewed as error-free. Therefore, the goal is to reconstruct the training

data such that the classifiers trained on the reconstructed data is close to the one trained on the

error-free data. This classifier can be used for prediction purpose in the future.

When implementing the proposed method, the values of a(Y ) and b(Y ) can be estimated

through the relation (4.3). The terms E(X∗ |Y ) and cov(X∗ |Y ) can be estimated with those

training data with weight not being 1, and cov(X |Y ) can be estimated by those training data

with weight being 1.
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4.4 Numerical investigation

We present the simulation studies and real data application of the proposed method in this

section. The numerical studies were done using R 3.5.2 (R Core Team, 2018). The packages

e1071 (Meyer et al., 2019), randomForest (Liaw et al., 2002) and class (Venables and Ripley,

2002) were used to perform the analysis using SVM, random forest and KNN.

4.4.1 Simulation study

We performed the simulation studies to test the performance of the proposed weighted data

reconstruction method. The data generation procedure was the same as described in 2.4.1.

The detailed simulation procedure was as follows:

• step 1: simulate the true data (xi, yi), i = 1, . . . , n, n = 1000 or 5000;

• step 2: shift the circle of class 1 in the true data by a distance to create the error-prone data

(xi, y
∗
i ) according to different overlap proportions of the true class label and the observed

class label. Treat the misaligned data as measurement error in covariates, i.e. (x∗i , yi);

• step 3: calculate the raw weights with equation (2.4) and reconstruct the data with the

proposed method with the raw weights;

• step 4: update the raw weights with method described in Chapter 2.3.2. The model used

to estimate the new weight (probability) is logistic regression. Reconstruct the data with

the updated weights.

To compare the proposed method and the original moment reconstruction method, the

following scenarios were considered in the simulation:

• T: the classifier is trained and tested on the error-free data set (xi, yi), i = 1, . . . , n.

• E: the classifier is trained and tested on the error-corrupted data set (x∗i , yi), i = 1, . . . , n.
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• MR0: the original moment reconstruction (4.4) is used to reconstruct the data set, and

the classifier is trained on the reconstructed data set.

• MR1: the proposed moment reconstruction with raw weights is used for reconstruction,

and the classifier is trained on the reconstructed data set.

• MR2: the proposed moment reconstruction with updated weights is used for reconstruc-

tion, and the classifier is trained on the reconstructed data set.

The data was randomly split into half training and half testing data, so in each fitting process

the training set was reconstructed and used to train the model, and the testing set was used to test

the performance by comparing the predicted class labels to the true class labels. The overlap

proportion of the true response and the observed response ranged from 0.5 to 0.8. The class 1

proportion φ took the value of 0.1, 0.15, and 0.2. Each scenario was repeated 1000 times. The

classification error rate, sensitivity, specificity, F1 score, and G score were recorded.

Logistic regression, SVM, KNN, and random forest classifier were considered in the simula-

tion. The kernel used for SVM was radius basis, with gamma being 0.5, and penalty parameter

being 100. The number of nearest neighbors considered for KNN was 5. The number of trees

built for random forest classifier was 500, and in each split only one covariate was considered.

In the simulation studies there were two parameters need to be estimated for the proposed

model: a(Y ) and b(Y ). To simplify the estimation procedure, we set b(Y ) to be a vector of 1 for

both values of Y , and a(Y ) was estimated by E(X∗ |Y )− E(X |Y ), where E(X∗ |Y ) was estimated

by the mean value of the points with weight less than 1, and E(X |Y ) was estimated as the mean

value of the points with weight being 1.

Figure 4.1 shows the simulation results for KNN classifier with class 1 proportion φ being

0.15, and sample size being 5000. It can be seen that the estimation of the weight for each

point has a huge impact on the correction for the proposed method. The method MR1 is

the proposed method with the raw weights, which shows some improvement compared to the

scenario without correction. The improvement is smaller than the method MR0, which is the
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original moment reconstruction method proposed by Freedman et al. (2004). With updated

weights, the proposed method MR2 shows significant improvement in all measures and the

improvement is much larger than that from MR0 or MR1. Similar results were observed for

SVM and random forest classifier (see Figure 4.2 and 4.3). The improvement brought by the

proposed method with updated weights is more obvious for smaller overlap proportions, and

the improvement is consistent for all class 1 proportions.

The proposed method with updated weights (MR2) performs less effectively for logistic

regression. In Figure 4.4 the performance of MR2 is only slightly better than the original

moment reconstruction method MR0. Compared to the other classifiers, it can be seen that

MR2 does not outperform MR0 not because MR2 does not perform well, but MR0 is really

effective with logistic regression.

The simulation study was also carried out to test the robustness of the weighted data recon-

struction method (Table 4.1). It was found when the data was error-free, but was reconstructed

under different error-levels, the performance of the classifiers trained on the reconstructed data

set suffered. This is due to the fact that the reconstructed data is not unbiased of the true data,

so reconstruct the error-free data may introduce a biased covariate error to the data set.

4.4.2 Application on the prostate cancer image data

The proposed weighted data reconstruction method was applied on the prostate cancer image

data. The detailed data processing and testing set constructing procedure can be found in section

2.4.2. The updated weights were used to reconstruct the data set.

Table 4.2 summarizes the classification results for patient 1015. It can be seen the proposed

data reconstruction method improves the classification results for all classifiers under all error

levels. The improvement does not differ too much among three registration errors.

In Table 4.3, the classification results for patient 2008 are presented. All classification

results get improved with the proposed method except for logistic regression. It can be found

that the greatest improvement is achieved when the registration error is 2.33 mm, which is
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consistent with the findings in Chapter 2 and Chapter 3. The sensitivity is doubled with KNN

when the registration error is assumed 2.33 mm compared to the result on the original data, and

the sensitivity and F1 score with SVM are more than doubled.

For patient 1012, the classification results are summarized in Table 4.4. The table indicates

that almost all classification results are improved with the reconstructed data, especially for

logistic regression. For example, when the registration error is 2.33 mm, the sensitivity of

logistic regression with the reconstructed data is improved by 16%, and the F1 score is doubled.

Table 4.5 presents the results for patient 1035 with the proposed method. The reconstructed

data improves the classification results significantly for all classifiers with all three error levels.

Similar to patient 1035, the proposed method produces significant improvement for all

classifiers for patient 2009, as shown in Table 4.6. Particularly, the sensitivity for logistic

regression increases from 0 to more than 0.45 for all three error levels.

Compared to the previous two correction methods, the data reconstruction method provided

the most significant improvement, especially in sensitivity.

4.5 Conclusion

In this chapter we propose a weighted data reconstruction method to eliminate the effect of

misalignment problem. The response is treated error-free while the true value of the covariate

is not observed. The proposed method is based on the original moment reconstruction method

proposed by Freedman et al. (2004), but considers different assumptions. The weight for

each data point is used to combine the two assumptions and make the reconstructed data set

a weighted version for both cases. The simulation studies show the proposed method works

very well on all the classifiers. The proposed method depends on the correct estimation of

the weights, once the estimation of the weights is relatively good, it outperforms the original

moment reconstruction method.

The application of the proposed method on the prostate cancer image data also shows
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significant improvement compared to directly using the original data.

The weighted data reconstruction method has a simple implementation. There is no need to

change the forms of the classifiers, and only the training set is reconstructed. The shortcoming

of this method is that it is not robust when the data is actually error-free, but is reconstructed

with a registration error assumption.



106 C"#$%&' 4. D#%# '&,)(.%'+,%-)( /&%")*

4.6 Appendix

(a) (b)

(c)

Figure 4.1: Classification error rate, sensitivity, and F1 score against overlap proportion for KNN

classifier with class 1 proportion φ being 0.15 and sample size being 5000.
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(a) (b)

(c)

Figure 4.2: Classification error rate, sensitivity, and F1 score against overlap proportion for SVM

classifier with class 1 proportion φ being 0.15 and sample size being 5000.
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(a) (b)

(c)

Figure 4.3: Classification error rate, sensitivity, and F1 score against overlap proportion for random

forest classifier with class 1 proportion φ being 0.20 and sample size being 5000.
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(a) (b)

(c)

Figure 4.4: Classification error rate, sensitivity, and F1 score against overlap proportion for logistic

regression with class 1 proportion φ being 0.10 and sample size being 5000.
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Table 4.1: Simulation results for the robustness of the proposed method on KNN classifier with class

1 proportion being 10% and sample size being 5000. The data is error-free and is corrected with the

proposed method for different overlap proportions.

T

classification error rate sensitivity specificity F1 G score

0.032(0.004) 0.803(0.030) 0.987(0.003) 0.835(0.019) 0.836(0.019)

MR2

overlap classification error rate sensitivity specificity F1 G score

50% 0.034(0.005) 0.725(0.045) 0.993(0.003) 0.810(0.029) 0.817(0.026)

60% 0.032(0.004) 0.748(0.035) 0.992(0.002) 0.823(0.022) 0.827(0.021)

70% 0.032(0.004) 0.765(0.035) 0.991(0.003) 0.828(0.021) 0.831(0.020)

80% 0.032(0.004) 0.779(0.034) 0.989(0.003) 0.831(0.020) 0.834(0.019)

MR3

overlap classification error rate sensitivity specificity F1 G score

50% 0.050(0.008) 0.512(0.078) 0.999(0.001) 0.669(0.067) 0.706(0.053)

60% 0.041(0.005) 0.618(0.053) 0.997(0.001) 0.751(0.039) 0.771(0.032)

70% 0.035(0.004) 0.696(0.042) 0.995(0.002) 0.798(0.027) 0.808(0.024)

80% 0.033(0.004) 0.747(0.037) 0.992(0.003) 0.820(0.023) 0.825(0.021)
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Table
4.2:

C
lassification

resultsforpatient1015
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
random

forest

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.076
0.078

0.100
0.093

0.137
0.105

0.083
0.085

sensitivity
0.745

0.816
0.615

0.649
0.595

0.697
0.565

0.631

specificity
0.946

0.935
0.935

0.939
0.895

0.919
0.961

0.950
1.86

F1
score

0.682
0.697

0.573
0.604

0.486
0.592

0.599
0.619

classification
error

0.089
0.090

0.114
0.108

0.151
0.131

0.102
0.109

sensitivity
0.669

0.731
0.550

0.575
0.542

0.588
0.480

0.518

specificity
0.947

0.937
0.936

0.940
0.896

0.912
0.961

0.947
1.39

F1
score

0.663
0.681

0.558
0.583

0.486
0.542

0.552
0.554

classification
error

0.065
0.062

0.089
0.078

0.129
0.090

0.071
0.066

sensitivity
0.855

0.923
0.691

0.721
0.661

0.749
0.638

0.716

specificity
0.944

0.940
0.934

0.943
0.893

0.927
0.959

0.957
2.33

F1
score

0.712
0.737

0.593
0.635

0.490
0.609

0.627
0.671

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
4.3:

C
lassification

resultsforpatient2008
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
random

forest

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.089
0.156

0.141
0.097

0.069
0.072

0.116
0.086

sensitivity
0.000

0.002
0.400

0.719
0.621

0.743
0.304

0.714

specificity
0.998

0.924
0.903

0.921
0.961

0.945
0.940

0.933
1.86

F1
score

0.000
0.003

0.330
0.563

0.612
0.642

0.314
0.590

classification
error

0.104
0.175

0.144
0.130

0.077
0.077

0.123
0.121

sensitivity
0.000

0.000
0.398

0.413
0.550

0.590
0.301

0.365

specificity
0.999

0.919
0.908

0.923
0.965

0.961
0.942

0.937
1.39

F1
score

0.000
0.000

0.362
0.395

0.594
0.612

0.334
0.382

classification
error

0.083
0.148

0.141
0.090

0.065
0.062

0.116
0.084

sensitivity
0.000

0.010
0.375

0.756
0.638

0.743
0.278

0.713

specificity
0.998

0.926
0.902

0.924
0.961

0.956
0.938

0.934
2.33

F1
score

0.000
0.011

0.303
0.579

0.615
0.663

0.281
0.579

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
4.4:

C
lassification

resultsforpatient1012
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
random

forest

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.091
0.053

0.096
0.038

0.144
0.032

0.054
0.032

sensitivity
0.754

0.844
0.834

0.834
0.794

0.799
0.794

0.869

specificity
0.911

0.948
0.905

0.964
0.858

0.971
0.948

0.970
1.86

F1
score

0.210
0.339

0.219
0.416

0.152
0.450

0.321
0.469

classification
error

0.095
0.074

0.099
0.040

0.145
0.039

0.057
0.040

sensitivity
0.691

0.776
0.763

0.757
0.763

0.720
0.766

0.796

specificity
0.911

0.929
0.905

0.965
0.857

0.968
0.947

0.964
1.39

F1
score

0.264
0.339

0.275
0.481

0.205
0.479

0.399
0.493

classification
error

0.089
0.041

0.096
0.030

0.144
0.029

0.054
0.027

sensitivity
0.861

1.000
0.960

0.960
0.881

0.960
0.960

0.980

specificity
0.911

0.959
0.904

0.970
0.856

0.971
0.946

0.973
2.33

F1
score

0.137
0.287

0.142
0.342

0.092
0.350

0.228
0.376

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
4.5:

C
lassification

resultsforpatient1035
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
random

forest

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.009
0.034

0.108
0.038

0.107
0.019

0.060
0.023

sensitivity
0.653

0.786
0.918

1.000
0.643

0.969
0.643

0.918

specificity
0.995

0.968
0.892

0.962
0.895

0.981
0.943

0.977
1.86

F1
score

0.637
0.346

0.163
0.377

0.120
0.538

0.196
0.474

classification
error

0.009
0.033

0.098
0.057

0.100
0.042

0.057
0.039

sensitivity
0.663

0.817
0.817

0.885
0.538

0.702
0.519

0.885

specificity
0.995

0.969
0.903

0.942
0.905

0.960
0.948

0.962
1.39

F1
score

0.654
0.386

0.173
0.275

0.119
0.292

0.184
0.363

classification
error

0.021
0.025

0.085
0.059

0.134
0.037

0.052
0.039

sensitivity
0.367

0.721
0.803

0.852
0.755

0.751
0.537

0.799

specificity
0.997

0.982
0.919

0.944
0.870

0.969
0.959

0.966
2.33

F1
score

0.499
0.613

0.347
0.447

0.240
0.532

0.364
0.533

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod
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Table
4.6:

C
lassification

resultsforpatient2009
w

ith
differentclassifiers.

logistic
regression

K
N

N
SV

M
random

forest

d
a

R
0

b
R

1
c

R
0

R
1

R
0

R
1

R
0

R
1

classification
error

0.055
0.049

0.057
0.047

0.037
0.041

0.045
0.036

sensitivity
0.000

0.456
0.747

0.897
0.769

0.858
0.675

0.891

specificity
0.984

0.970
0.951

0.955
0.971

0.963
0.966

0.967
1.86

F1
score

0.000
0.417

0.503
0.598

0.621
0.619

0.537
0.661

classification
error

0.063
0.057

0.061
0.053

0.039
0.043

0.047
0.042

sensitivity
0.000

0.461
0.735

0.876
0.749

0.894
0.678

0.860

specificity
0.982

0.967
0.949

0.950
0.971

0.960
0.966

0.963
1.39

F1
score

0.000
0.431

0.529
0.605

0.639
0.656

0.571
0.655

classification
error

0.048
0.047

0.053
0.044

0.033
0.037

0.041
0.033

sensitivity
0.000

0.453
0.770

0.870
0.787

0.849
0.696

0.892

specificity
0.984

0.970
0.953

0.959
0.973

0.967
0.968

0.969
2.33

F1
score

0.000
0.387

0.485
0.565

0.610
0.599

0.526
0.635

ad:registration
error

bR
0 :no

correction
situation

cR
1 :proposed

m
ethod



Chapter 5

Conclusion and future work

5.1 Conclusions and discussions

This thesis was motivated by the prostate cancer imaging study performed in the University of

Western Ontario. In the study the in-vivo and histology images of all prostate cancer patients

were taken, and the goal was to build a relationship between the in-vivo measurements and the

cancer status on the histology.

In the study the in-vivo image was aligned to the histology image with certain registration

procedures. However, the mapping of the two images was not perfect, and registration error was

introduced in the alignment process. The registration error was caused by the shift of the two

images, and could be viewed either as misclassification in response or as measurement error in

covariates. The simulation studies showed the registration error may cause a large decrease in

the classification performance for different classifiers.

The objective of the research was then to build classifiers to classify cancer status on

histology based on the in-vivo measurements, and at the same time eliminate the impact of

registration error on the classification performance.

Three methods were discussed to achieve this objective. First, the predict probability

correction method based on the relationship of the probability of the observed class label and

116
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the probability of the true class label was proposed. This method corrects the classification

probability of the observed class label so that the corrected result is close to the classification

probability of the true class label. The predicted class probability of the training set is corrected

so that a model can be built with the estimated true class label probability and the covariates.

With this model the true class probability of a new instance can be predicted.

Second, we proposed to incorporate the weight of each data point in the model construction.

The weight is calculated with the position information of each data point, and it represents

the reliability of each instance. Weighted logistic regression, weighted SVM, weighted KNN

and weighted classification tree were introduced in Chapter 3. These weighted models can be

directly used for future classification.

Lastly, the weight was incorporated in the weighted data reconstruction method to combine

the different forms of moment reconstruction under two assumptions. The training set is

reconstructed using the proposed weighted data reconstruction method, and the reconstructed

set can be used to train different classifiers.

The above three proposed methods deal with the registration error differently. The predict

probability correction method takes the registration error as misclassification in response, and

works with the predictions. The weighted model method also treats the registration error as

misclassification in response, but modifies the classifiers so that the misclassification in response

is embedded in the model construction. The weighted data reconstruction method treats the

registration error differently as the measurement error in covariates, and it creates an “adjusted”

value of the error-corrupted covariates for each instance in the training set before any attempts

of model fitting.

The three methods have different advantages and shortcomings. The predict probability

correction method and the weighted data reconstruction method are relatively simple to imple-

ment, but suffer in the lack of robustness. The weighted models are quite robust, but is more

complicated compared to the other two.

All the three proposed methods showed significant improvement in the classification per-
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Table 5.1: The comparison of the three proposed methods on patient 2008 with KNN classifier.

da R0
b R1

c R2
d R3

e

1.86

classification error 0.141 0.063 0.077 0.097
sensitivity 0.400 0.432 0.483 0.719
specificity 0.903 0.985 0.965 0.921
F1 score 0.330 0.545 0.523 0.563
G score 0.335 0.565 0.524 0.577

1.39

classification error 0.144 0.088 0.100 0.130
sensitivity 0.398 0.378 0.411 0.413
specificity 0.908 0.974 0.956 0.923
F1 score 0.362 0.469 0.458 0.395
G score 0.363 0.484 0.461 0.396

2.33

classification error 0.141 0.055 0.071 0.090
sensitivity 0.375 0.473 0.480 0.756
specificity 0.902 0.986 0.968 0.924
F1 score 0.303 0.582 0.523 0.579
G score 0.308 0.598 0.525 0.595

ad: registration error
bR0: no correction situation
cR1: predict probability correction method
dR2: weighted model method
eR3: data reconstruction method

formance in both simulation studies and real data application.

The Figure 5.1 compares the three proposed correction methods on logistic regression in the

simulation study. T is the classification results on the error-free data, and E is the results for the

error-prone data without any correction. C2, W2 and MR2 show the classification performance

for prediction correction method, weighted model and data reconstruction method with updated

weights, respectively. All three methods improve the classification performance compared to

directly fitting the logistic regression on the error-prone data. The data reconstruction method

shows the most significant improvement, and the predict probability correction method improves

the least.

Table 5.1 summarizes the classification results for K-nearest neighbors on patient 2008 with
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(a) (b)

(c)

Figure 5.1: The comparison of the three proposed methods on logistic regression with simulation study.

The class 1 proportion is 0.15 and sample size is 5000.

different correction methods. All three proposed correction methods show large improvement

compared to the no correction situation. The predict probability correction method almost

always achieves the best performance for classification error rate, specificity, F1 score and G

score, but the best sensitivity is always achieved by the data reconstruction method.
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5.2 Future work

5.2.1 Different registration error for different covariates

In the thesis we simplified the registration error by assuming the registration errors for dif-

ferent in-vivo measurements were the same. In the real mapping process, different in-vivo

measurements may have different registration errors. For example, the mean registration error

for histology to T2W was reported to be 1.57 mm, but since there was one more registration

step for ADC and DCE, the mean registration error for histology to ADC or DCE was 1.86 mm.

The current weight calculation only takes one registration error, so the prediction is not

perfect. One possible solution is to reconstruct different covariates with different registration

errors in the data reconstruction method. So for each covariate, the weight is calculated based

on its own registration error, and then this covariate is reconstructed based on its own weight.

5.2.2 Weighted loss functions

The SVM classifier can be expressed as an optimization problem that minimizes a loss function

subject to some constraints. In the weighted model method, the weighted SVM incorporated the

weight in the constraints. It is also possible to construct weighted loss function that incorporates

the weight in the loss function, so that reliable instance contributes more in the loss function.

This should also help eliminate the impact of the misclassification in response.

5.2.3 Multi-class classification

The prostate cancer is usually labelled as different degrees (i.e. Gleason Scores) in order to

distinguish the level of the cancer. In our proposed methods, we treated the cancer status as

a binary variable: cancer and non-cancer. If more accurate detection is needed, it would be

necessary to do multi-class classification.

For the predict probability correction method, the two misclassification probabilities (2.1)
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are exclusive. In order to persist the relationship of the observed class probability and the

true class probability, we suggest to use a one-versus-all scheme: when constructing the model

for the kth class, treat the rest classes as one label and then perform the predict probability

correction method.

The weighted model method and the weighted data reconstruction method are more flexible,

so both one-versus-one and one-versus-all schemes can be applied.
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