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Abstract 

Millions of birds die annually in North America by colliding with windows.  I 

investigated differential vulnerability to window collision among migratory songbird 

species using long-term citizen science datasets from two bird banding stations and the 

fatal light awareness program.  I used negative binomial regressions to model species-

specific catch ratios, a mixed-effects negative binomial regression to model trophic 

guild-specific catch ratios and mixed-effects logistic regressions to model the odds of 

catching different age classes.  Species-specific vulnerability varied significantly.  Blue-

headed Vireos, Yellow-rumped Warblers and Ruby-crowned Kinglets were least 

vulnerable, while Ovenbirds, Common Yellowthroats, Fox Sparrows and Bay-breasted 

Warblers were most vulnerable.  Foraging height influenced vulnerability with ground 

foragers being most vulnerable.  The effect of age varied across species, with only some 

species showing significant effects.  This study contributes to the growing foundation 

that is required for future studies to investigate why these factors influence vulnerability 

and how to minimize future collision mortality. 
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Summary for Lay Audience 

There are many songbirds in North America that migrate in the fall to wintering grounds 

as far south as South America.  During this annual fall migration, millions of birds die by 

colliding with windows.  For my thesis, I investigated if some species of songbirds die 

from window collisions during fall migration more than others.  I investigated this 

differential vulnerability using long-term datasets from three citizen science projects.  

Two of the datasets were from bird banding stations that collect regional bird abundance 

data (Tommy Thompson Park, Toronto, ON and Long Point Bird Observatory, Long 

Point, ON) and one was from the fatal light awareness program that collects bird-window 

collision data (FLAP, Toronto, ON).  I used a variety of statistical models to compare the 

number of birds caught, or collected, by each citizen science program.  These 

comparisons determined if different species of songbirds collided with windows at the 

same rate (equal vulnerability), or if they collided at different rates (differential 

vulnerability).  Using this method, I investigated differential vulnerability in 36 species, 

as well as across 3 trophic guilds and 2 age classes.  I found that species varied 

significantly in their relative vulnerabilities, and that Blue-headed Vireos, Yellow-

rumped Warblers and Ruby-crowned Kinglets were least vulnerable, while Ovenbirds, 

Common Yellowthroats, Fox Sparrows and Bay-breasted Warblers were most 

vulnerable.  Additionally, I found evidence that the trophic guild an individual belong to, 

specifically the height at which the bird forages, influences vulnerability with ground 

foragers being most vulnerable.  Lastly, I found that the extent that age affects 

vulnerability varied across species, with only some species showing significant effects.  

This study contributes to the growing foundation that is required for future studies to 

investigate why these factors (i.e. species, trophic guild and age) influence vulnerability 

and how we can minimize future window collision mortality. 

 

 



 

iv 

 

Co-Authorship Statement 

All work presented in this thesis was completed under the supervision of Dr. Yolanda E. 

Morbey and Dr. Christopher G. Guglielmo at the University of Western Ontario who 

helped develop the study objectives and methodology. Statistical analyses were 

developed in collaboration with Dr. Simon J. Bonner.  Data collection and analysis was 

completed by Olivia M. Colling. This thesis has been written by Olivia M. Colling and 

will be published with Simon J. Bonner, Yolanda E. Morbey and Christopher G. 

Guglielmo. 

  



 

v 

 

Acknowledgments 

First and foremost, I would like to thank my supervisors Dr. Yolanda Morbey and Dr. 

Chris Guglielmo for their guidance, enthusiasm and motivation throughout my M.Sc. 

research.  I would also like to thank my advisory committee members Dr. Keith Hobson 

and Dr. Scott MacDougall-Shackleton for their valuable comments, insights and 

discussions.  And I would like to thank Dr. Simon Bonner for his contributions to my 

statistical analyses.   

I would like to thank Paloma Plant, Michael Mesure and all the staff and volunteers at the 

Fatal Light Awareness Program for their tireless effort and dedication to such an 

important cause.  As well, thank you to the staff and volunteers at Tommy Thompson 

Park Banding Station, Long Point Bird Observatory Banding Station and Bird Studies 

Canada for all their dedication and hard work.  Without these programs this project 

would not have been possible.  I am also thankful to Mark Peck for allowing me to visit 

the Royal Ontario Museum to access FLAP’s collection, and for all of his assistance in 

the aging process.  And I am grateful to Alex Macmillan for teaching me how to skull the 

birds. 

Thank you to all my lab mates and fellow graduate students for their comradery 

throughout this degree.  A special thanks to Jessica Deakin, Andrew Beauchamp, 

Christian Therrien, Kevin Young and Aida Parvizi for the brainstorming sessions, 

feedback, support and stress management. 

I would like to thank my loving parents, John and Debbie Colling, for being 

understanding and more supportive than ever while my pursuit of knowledge pulled me 

further away from home to the distant city of London, Ontario.   

Finally, I would like to thank Josh Brick for his unwavering support and encouragement 

on all fronts throughout the entirety of this milestone.  I cannot imagine a better support 

system to complete a thesis with than this group of outstanding individuals. 



 

vi 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience .............................................................................................. iii 

Co-Authorship Statement ...................................................................................................iv 

Acknowledgments ............................................................................................................... v 

Table of Contents ................................................................................................................vi 

List of Tables ......................................................................................................................ix 

List of Figures ...................................................................................................................... x 

List of Appendices ........................................................................................................... xiii 

List of Abbreviations ........................................................................................................xiv 

Introduction ......................................................................................................................... 1 

1.1 Avian migration in North America .......................................................................... 1 

1.2 The dangers of migration ......................................................................................... 2 

1.3 Bird-window collisions ............................................................................................ 3 

1.4 Differential vulnerability to window collisions ....................................................... 3 

1.5 Using citizen science datasets .................................................................................. 6 

1.6 Study objectives and overview ................................................................................ 8 

Methods ............................................................................................................................. 10 

2.1 Datasets .................................................................................................................. 10 

2.1.1 Window collision data ............................................................................... 10 

2.1.2 Mist net data .............................................................................................. 12 

2.2 Data preparation .................................................................................................... 15 

2.2.1 Filtering & geocoding data ........................................................................ 15 

2.2.2 Species selection & classification .............................................................. 17 



 

vii 

 

2.3 Catch analysis ........................................................................................................ 18 

2.3.1 Conceptual model ...................................................................................... 18 

2.3.2 Conceptual model interpretation ............................................................... 22 

2.3.3 Statistical analysis of catch ........................................................................ 24 

2.4 Age analysis ........................................................................................................... 26 

2.4.1 Spatial extent ............................................................................................. 26 

2.4.2 Species selection ........................................................................................ 26 

2.4.3 Age data collection .................................................................................... 26 

2.4.4 Statistical analysis of age ........................................................................... 27 

Results ............................................................................................................................... 29 

3.1 Catch analysis ........................................................................................................ 29 

3.1.1 Tommy Thompson Park species catch ratio .............................................. 29 

3.1.2 Long Point Bird Observatory species catch ratio ...................................... 38 

3.1.3 Trophic guild catch ratio ............................................................................ 44 

3.1.4 Validation of models ................................................................................. 44 

3.2 Age analysis ........................................................................................................... 51 

3.2.1 The odds of catching a hatch year bird ...................................................... 51 

Discussion .......................................................................................................................... 58 

4.1 Key Findings .......................................................................................................... 58 

4.1.1 Differential vulnerability among migratory songbird species ................... 58 

4.1.2 Differential vulnerability among trophic guilds ........................................ 62 

4.1.3 Differential vulnerability among age classes ............................................. 63 

4.2 Assumptions and limitations ................................................................................. 65 

4.3 Future directions .................................................................................................... 68 

4.3.1 Future research .......................................................................................... 68 



 

viii 

 

4.3.2 Citizen science recommendations ............................................................. 69 

4.4 Conclusions ........................................................................................................... 70 

References ......................................................................................................................... 72 

Curriculum Vitae ............................................................................................................... 81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

List of Tables 

Table 1. Classifications of 36 songbird species used in the catch analysis. ..................... 19 

Table 2.  Estimated coefficients (β) for each site (FLAP: Fatal Light Awareness Program, 

TTP: Tommy Thompson Park, LPBO: Long Point Bird Observatory) with respective 

standard errors (SE), z-values (z) and p-values (p) from each species-specific negative 

binomial regression (Catch ~ Site + offset(log(Net_Days)). ............................................ 32 

Table 3.  Residual deviance due to site (X2) for the species-specific negative binomial 

regressions (Catch ~ Site + offset(log(Net_Days)) with their respective degrees of 

freedom (df) and p-values (p). .......................................................................................... 37 

Table 4.  Estimated coefficients (β) for each site (FLAP: Fatal Light Awareness Program, 

TTP: Tommy Thompson Park, LPBO: Long Point Bird Observatory) with respective 

standard errors (SE), z-values (z) and p-values (p) from the trophic guild negative 

binomial mixed-effects model (Catch ~ Trophic_Guild + Site + Trophic_Guild:Site + 

(1|Species) + offset(log(Net_Days))). .............................................................................. 49 

Table 5.  Estimated coefficients (β) for each site (FLAP: Fatal Light Awareness Program, 

TTP: Tommy Thompson Park, LPBO: Long Point Bird Observatory) with respective 

standard errors (SE), z-values (z) and p-values (p) from each species-specific logistic 

mixed-effects model (Age ~ Site + (1|Year)). .................................................................. 55 

 



 

x 

 

List of Figures 

Figure 1. Comparison of the Fatal Light Awareness Program’s (FLAP) survey areas 

in 2000, 2003, 2006, 2009, 2012 and 2017. .................................................................... 11 

Figure 2. Map showing the three sites of data collection used in the study. ............. 13 

Figure 3. Map of downtown Toronto displaying the spatial extent (black outline) 

and locations of birds (red dots) collected in the fall of 2017. .................................... 16 

Figure 4. Schematic of the catch model used to develop the statistical models used in 

the catch analyses. ........................................................................................................... 21 

Figure 5. Transformed catch ratios between Tommy Thompson Park (TTP) and the 

Fatal Light Awareness Program (FLAP) for 35 songbird species organized from 

largest to smallest catch ratio. ....................................................................................... 31 

Figure 6.  Matrix displaying the p-values from pairwise comparisons of the catch 

ratios between Tommy Thompson Park (TTP) and the Fatal Light Awareness 

Program (FLAP) for 36 songbird species. .................................................................... 34 

Figure 7.  Catch at Tommy Thompson Park (TTP), Long Point Bird Observatory 

(LPBO) and the Fatal Light Awareness Program (FLAP) for the six songbird 

species with the highest catch ratios (based on TTP:FLAP) from 2003-2017. ......... 35 

Figure 8.  Catch at Tommy Thompson Park (TTP), Long Point Bird Observatory 

(LPBO) and the Fatal Light Awareness Program (FLAP) for the six songbird 

species with the lowest catch ratios (based on TTP:FLAP) from 2003-2017. ........... 36 

Figure 9.  Transformed catch ratios between Long Point Bird Observatory (LPBO) 

and the Fatal Light Awareness Program (FLAP) for 35 songbird species organized 

from largest to smallest catch ratio. .............................................................................. 41 

file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604315
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604315
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604320
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604320
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604320
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604322
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604322
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604322


 

xi 

 

Figure 10.  Matrix displaying the p-values from pairwise comparisons of the catch 

ratios between Long Point Bird Observatory (LPBO) and the Fatal Light 

Awareness Program (FLAP) for 36 songbird species.. ............................................... 42 

Figure 11. Correlation between the rank orders of species at TTP and LPBO for the 

catch analysis. .................................................................................................................. 43 

Figure 12.  Transformed catch ratios between Tommy Thompson Park (TTP) and 

the Fatal Light Awareness Program (FLAP) for three trophic guilds (granivore, 

insectivore-not ground and insectivore-ground) organized from largest to smallest 

catch ratio. ....................................................................................................................... 46 

Figure 13.  Transformed catch ratios between Long Point Bird Observatory 

(LPBO) and the Fatal Light Awareness Program (FLAP) for three trophic guilds 

(granivore, insectivore-not ground and insectivore-ground) organized from largest 

to smallest catch ratio. .................................................................................................... 48 

Figure 14.  Catch at Tommy Thompson Park (TTP), Long Point Bird Observatory 

(LPBO) and the Fatal Light Awareness Program (FLAP) for three trophic guilds 

from 2003-2017. .............................................................................................................. 50 

Figure 15.  Comparison of the Tommy Thompson Park (TTP) to the Fatal Light 

Awareness Program (FLAP) changes in odds of catching hatch year (HY) birds for 

the seven aged songbird species. .................................................................................... 53 

Figure 16.  Comparison of the Long Point Bird Observatory (LPBO) to the Fatal 

Light Awareness Program (FLAP) changes in odds of catching hatch year (HY) 

birds for the seven aged songbird species. .................................................................... 54 

Figure 17. Correlation between the rank orders of species at TTP and LPBO for the 

age analysis. ..................................................................................................................... 55 

 

 

 

file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604324
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604324
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604324
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604326
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604326
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604326
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604326
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604327
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604327
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604327
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604327
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604328
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604328
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604328
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604329
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604329
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604329
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604330
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604330
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604330


 

xii 

 

Figure 18.  After-hatch year (AHY) proportion of species-specific catch at Tommy 

Thompson Park (TTP; black), Long Point Bird Observatory (LPBO; light gray) 

and the Fatal Light Awareness Program (FLAP; dark gray) for the seven aged 

songbird species from 2017 and 2018. .......................................................................... 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604332
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604332
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604332
file:///C:/Users/odacl/Documents/MSc%20UWO/Project/Thesis/Thesis_Colling_Revised.docx%23_Toc16604332


 

xiii 

 

List of Appendices 

Appendix 1.  Total net days for each site from 1 September to 31 October from 2003 

to 2017. ............................................................................................................................. 79 

 



 

xiv 

 

List of Abbreviations 

AHY – After-hatch year 

ALAN – Artificial light at night 

API – Application programming interface 

CI – Confidence interval 

CMMN – Canadian Migration Monitoring Network 

DI – Dispersion index 

DR – Dispersion ratio 

FLAP – Fatal Light Awareness Program 

GLM – Generalized Linear Model 

GLMM – Generalized Linear Mixed-effects Model 

GPS – Global Positioning System 

HY – Hatch year 

LPBO – Long Point Bird Observatory 

ROM – Royal Ontario Museum  

TTP – Tommy Thompson Park 

 



1 

 

Introduction 

1.1 Avian migration in North America 

Migration is an adaptation that is driven by temporal and spatial variability of resources 

(Dingle & Drake 2007).  Dingle and Drake (2007) describe four different, non-mutually 

exclusive concepts that define migration: (1) persistent, undistracted and straightened out 

locomotory activity, (2) relocation on a greater scale and movement of longer duration 

than in normal daily activities, (3) seasonal to-and-fro movement between regions that 

alternate between favourable and unfavourable conditions, and (4) movements resulting 

in redistribution within a spatially extended population (Dingle & Drake 2007).  These 

four concepts are applicable to many species across the animal kingdom.  Models for 

studying aspects of migration have ranged from whales to butterflies, however the 

models of greatest interest tend to be fish for their economic value, insects for their 

economic impact on agriculture, and birds for their visibility and impressive distances 

travelled (Dingle & Drake 2007). 

Every year billions of migrating birds traverse North America, and in some cases Central 

and South America as well (Dokter et al. 2018).  Within this group of migratory birds are 

species from the order Passeriformes (the passerines).  Passerines are known as “perching 

birds”, as all individuals within this order have three forward-facing toes and one 

backward-facing toe giving them the characteristic perching ability (Raikow 1982).  

Many species within this order have evolved a specialized vocal organ called the syrinx 

that is capable of high frequency muscle contractions which produce song (Elemans et al. 

2008). The passerines that produce song via the syrinx are collectively referred to as 

songbirds.  North American migratory songbirds generally breed in the northern regions 

of North America during the summer, commonly along the boreal forest, before 

migrating to more southern regions, or to Central or South America depending on the 

species, for the winter (https://birdsna.org/Species-Account/bna/species). 

Thus, within the annual cycle of migratory songbirds there are two migration events: (1) 

the spring migration where birds migrate from their respective wintering grounds to their 
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respective breeding grounds and (2) the fall migration where they migrate back to their 

respective wintering grounds.  During these migrations, individuals need to stop and 

refuel along the way, a phenomenon known as stopover.  Individuals make multiple 

stopovers throughout their migration spending more time on the ground refueling than in 

migratory flight.  Hedenström and Alerstam (1997) estimated that the ratio of time spent 

in migratory flight to the time spent refueling during stopover is approximately 1:7 

during migration (~87.5% of migration time is spent on the ground refueling).  The 

duration of each stopover can vary from hours to days (Moore 2018).   The frequency of 

stopovers and the route travelled also vary among individuals, species and years (Stanley 

et al. 2012).  For example, studies have found that in some species younger birds 

stopover longer than adult birds, possibly due to inexperience and low social status 

resulting in lower rate of refueling (Yong et al. 1998, Rguibi-Idrissi et al. 2003, 

Mackenzie 2010, Dossman et al. 2016, Morbey et al. 2018). 

1.2 The dangers of migration 

Individuals are exposed to multiple dangers during migration.  Some of these dangers are 

naturally occurring such as predation, disease, exhaustion and weather (Newton 2007, 

Sillett & Holmes 2002), while others are anthropogenic dangers that coincide with 

urbanization.  Anthropogenic threats are largely an issue when birds are stopping over in 

urban centers, however they can also affect individuals stopping over in less developed 

suburban and rural areas (Klem 2008, Machtans et al. 2013, Hager et al. 2017).  The most 

significant anthropogenic threats to migrating songbirds in North America include: 

predation by cats, window collisions, power line collisions, vehicle collisions and wind 

turbine collisions (Calvert et al. 2013).  The annual mortality for each of these sources in 

Canada was summarized by Calvert et al. (2013).  They reported that the estimated 

number of birds killed annually by both domestic and feral cats ranged between 76 

million to 418 million.  The number killed annually from collisions with windows ranged 

between 16.1 million and 42 million.  Power line collisions were estimated to be 

responsible for 10.1 million to 41.2 million deaths annually, while annual death tolls 

from vehicle collisions and wind turbine collisions were estimated to range between 8.9 
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million and 18.7 million, and 13 thousand and 22 thousand, respectively (Calvert et al. 

2013). 

1.3 Bird-window collisions 

In Canada, Machtans et al. (2013) estimated that approximately 17.7 million birds die 

annually from window collisions.  Window collisions can occur year-round at any time 

of day.  During the night, it is suspected that artificial light at night (ALAN) attracts and 

disorients nocturnal migrants bringing them into the vicinity of buildings, where their 

probability of collision is increased (Van Doren et al. 2017, Machtans et al. 2013).  

ALAN is suggested to have a beacon effect that traps birds in the apparent safety of the 

light, which can lead to exhaustion, collision and increased stopover duration (Van Doren 

et al. 2017, Machtans et al. 2013, Drewitt & Langston 2008, Avery et al. 1976).  

However, it is becoming more evident that most window collisions occur during the day 

(Gelb & Delacretaz 2009, Aymí et al. 2017, Hager & Craig 2014, Klem 1989).  In the 

daylight, birds behave as if they cannot perceive windows suggesting that, to birds, 

windows are invisible barriers that reflect surrounding trees and sky (Klem 1990, Gelb & 

Delacretaz 2009, Klem et al. 2004).  Some studies have found that the rate of window 

collisions peaks in the hours after dawn when nocturnal migrants are descending to rest 

(Borden et al. 2010, Aymí et al. 2017), while others have found that peak collisions occur 

in daylight when birds are foraging (Gelb & Delacretaz 2009, Hager & Craig 2014).  

Window collisions increase when birds are more abundant overall, such as during spring 

and fall migration, and occur more frequently in the fall than in the spring (Klem 1989, 

Borden et al. 2010, Bracey et al. 2016, Loss et al. 2014, Hager et al. 2008, Ocampo-

Peñuela et al. 2016).   

1.4 Differential vulnerability to window collisions 

Differential vulnerability of birds to window collisions has been suggested among 

feeding guilds, with birds that forage for insects in the canopy having a higher risk than 

birds that forage for insects and/or seeds closer to or on the ground (Wittig et al. 2017, 

Cusa et al. 2015).  This is thought to be due to behavioural differences in foraging 
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techniques between canopy foraging insectivores who dart quickly through small 

openings between branches and ground foragers who hop along the ground (Wittig et al. 

2017, Aymí et al. 2017).  There is also evidence for differential vulnerability between 

migrant and resident species, with migrants having a higher risk of death by collision 

than residents (Hager & Craig 2014, Wittig et al. 2017, Borden et al. 2010, Sabo et al. 

2016).  This difference has been attributed to the degree of familiarity to the area, as 

migrants travel through many unfamiliar areas while residents generally stay within 

familiar territory (Hager & Craig 2014, Wittig et al. 2017, Borden et al. 2010, Sabo et al. 

2016).  Furthermore, within migrant species there are findings that support that nocturnal 

migrants are more vulnerable to window collisions than diurnal migrants based on 

observed proportions of species known to be nocturnal migrants and species known to be 

diurnal migrants in carcass surveys (Nichols et al. 2018, Aymí et al. 2017).  Nichols et al. 

(2018) propose multiple reasons why nocturnal migrants could be at higher risk including 

sleep deprivation, physical and mental exhaustion, low light levels during descent and 

attraction to the artificial light of urban centers drawing individuals into high risk areas.   

Nocturnal flight calling in migratory species as a way of collectively navigating has also 

been found to influence window collision vulnerability, with migratory species that flight 

call in the night being at higher risk than migratory species that do not use nocturnal 

flight calls (Winger et al. 2019).  It is proposed that when birds that use flight calls during 

migration are attracted to the artificial light produced by buildings at night and become 

disoriented, they produce flight calls as an attempt to receive assistance in navigation 

from nearby conspecifics (Winger et al. 2019).  These flight calls attract more individuals 

to the building’s vicinity resulting in higher mortality (Winger et al. 2019).   

Certain species have also been consistent colliders across studies.  For example, 

Ovenbirds (Nichols et al. 2018, Winger et al. 2019, Wittig et al. 2017), Common 

Yellowthroats (Nichols et al. 2018, Winger et al. 2019), Swamp Sparrows (Winger et al. 

2019, Arnold & Zink 2011), Dark-eyed Juncos (Nichols et al. 2018, Winger et al. 2019), 

Fox Sparrows (Winger et al. 2019, Arnold & Zink 2011), Hermit Thrushes (Winger et al. 

2019, Kahle et al. 2016), Lincoln’s Sparrows (Winger et al. 2019, Kahle et al. 2016), 

Swainson’s Thrushes (Winger et al. 2019, Kahle et al. 2016) and Brown Creepers 
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(Winger et al. 2019, Arnold & Zink 2011) were all reported as overrepresented, 

suggesting higher vulnerability to dying from window collisions, in carcass surveys in 

multiple studies.  Red-eyed Vireo (Wittig et al. 2017), Yellow-rumped Warbler (Sabo et 

al. 2016) and Black-throated Blue Warbler (Arnold & Zink 2011) were also 

overrepresented in some studies, however other studies reported that these three species 

were under- or proportionally represented in surveys (Nichols et al. 2018, Winger et al. 

2019).  Thus, there is not enough evidence to classify these three species as consistent 

colliders. 

Despite these findings, differential vulnerability among species has yet to be properly 

measured or understood.  This is likely due to early studies only using carcass surveys to 

estimate vulnerabilities without accounting for local abundance (Borden et al. 2010, 

O’Connell 2001, Klem 1989, Klem 1990).  It is important to consider local abundance 

when investigating differential vulnerability via carcass surveys because without having 

a baseline proportion of a species to compare the carcass survey results to, it is 

impossible to know how many individuals one should expect to find and whether the 

observed amount is greater or less than expected.   

Recent studies of bird-window collisions account for local abundance by conducting 

either point count surveys (counting birds from a specific location over a specified time), 

or mist net surveys (passive capture of flying birds) to estimate differential vulnerability 

(Kahle et al. 2016, Sabo et al. 2016, Wittig et al. 2017, Aymí et al. 2017, Nichols et al. 

2018, Winger et al. 2019).  These studies generally consider local abundance estimates 

based on one or two years of observations, with the exceptions of Aymí et al.’s (2017) 

four-year study and Winger et al.’s (2019) study that used 40 years of window collision 

data at one site and one year of window collision data at another site.  Longer studies are 

ideal for determining the vulnerability of a species as there are significant year to year 

variations in migratory populations that cannot be accurately represented in a single year 

of observations, thus using long-term datasets allows a more accurate representation of 

the various populations of migratory species. 
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In addition to differences among species, there are also differences among individuals 

within species that have the potential to influence window collision vulnerability.  

Whether differential vulnerability to window collision mortality within species is a 

general phenomenon is unknown.  Some findings support differential vulnerability based 

on age (Kahle et al. 2016, Hager & Craig 2013, Hager & Craig 2014), however others do 

not (Klem 1989, Sabo et al. 2016).  Many have proposed that window collision mortality 

is higher in the fall than the spring due to the addition of hatch year birds (or juveniles) to 

the population (Borden et al. 2010, O’Connell 2001, Hager et al. 2008, Loss et al. 2014).  

The inexperience of the hatch year birds has been suggested to play a role in this 

increased mortality (Kahle et al. 2016), however it has also been proposed that it is 

simply the increase in population size that accounts for this higher fall mortality (Hager 

et al. 2008, Hager et al. 2014).  Another difference between hatch year and after-hatch 

year (or adult) birds that could contribute to differential vulnerability, and to my 

knowledge has yet to be investigated, is the degree of cranial pneumatization for each age 

class.  Generally, hatch year skulls are not fully pneumatized in the fall (Pyle 1997).  This 

weaker braincase could increase the probability of death given a collision, since a 

common cause of death after a collision is internal brain injuries (Veltri & Klem 2005).   

1.5 Using citizen science datasets 

The use of citizen science datasets in scientific studies is becoming more common (e.g., 

Arnold & Zink 2011, Nichols et al. 2018, Winger et al. 2019, Hassall et al. 2019, Forrest 

et al. 2019).  A citizen scientist is a volunteer who assists in data collection and/or 

processing (Silvertown 2009).  One of the earliest citizen science projects is the 

Christmas Bird Count which originated in 1900 and consists of volunteer birders 

completing a census of birds over the winter holiday season (Silvertown 2009).  

Nowadays, there is a multitude of citizen science projects that monitor bird populations 

around the globe at various scales, such as eBird (global; https://ebird.org), Breeding 

Bird Survey (continental; https://www.pwrc.usgs.gov/bbs/) and the Fatal Light 

Awareness Program (local; https://www.flap.org/).  These projects monitor many aspects 

of avian ecology including, but not limited to, migration timing, population trends, 

species range and distribution, and sources of mortality (e.g., bird-window collisions).  
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These types of monitoring projects have provided invaluable evidence for scientific 

research (see Dickinson et al. 2010).  For example, citizen science breeding bird atlases 

in Europe provided significant evidence supporting poleward shifts in species ranges as a 

response to climate change (Thomas & Lennon 1999, Brommer 2004, Brommer 2008).  

While birds are a popular topic for citizen science projects, there is a wide range of 

ecological topics that citizen scientists can contribute to, from invasive species, to 

ecological restoration, to water quality monitoring (Silvertown 2009).  Using amateur 

volunteers in the field of ecology has significantly increased and Silvertown (2009) 

attributes this great expansion to three factors: (1) accessibility and user-friendly software 

(i.e., internet and mobile applications), (2) cost-effectiveness (i.e., free labour at a large 

geographic scale), and (3) government research funds that are conditional on project-

related public outreach (e.g., National Science Foundation in the USA).   

There are advantages and disadvantages to using citizen science datasets in scientific 

research.  The main advantage of citizen scientist participation in scientific research 

projects is that the scale of the project can be increased to a size that would be impossible 

without the efforts of the many volunteers (Loss et al. 2015, Silvertown 2009, Tulloch et 

al. 2013).  The main disadvantages of citizen science are inconsistent effort across space 

and time, and diminished data quality.  The inconsistent survey effort is a result of 

variable availability, interest and convenience for volunteers throughout the year 

(Tulloch et al. 2013).  The lowered quality of data stems from inconsistencies and errors 

in surveys and records as a result of varying degrees of structure and direction in 

projects, as well as volunteer background knowledge and skill (Tulloch et al. 2013).  

Biases that also affect data quality are observer biases related to identification and 

detection skill levels, and species preferences (i.e., only looking for and/or recording 

favourite, rare or interesting species), and location biases such as preferences for nearby, 

accessible locations or known high density and diverse areas (Johnston et al. 2019). 

Research on how to develop successful citizen science projects and how to best use the 

resulting data have greatly increased the effectiveness of such datasets.  Some solutions 

are as simple as having a regional program coordinator communicating with volunteers 

and validating the collected data (Tulloch et al. 2013).  Other techniques involve 
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professional scientists assisting program coordinators on data collection design, using a 

stratified sampling design, accounting for variation during modelling via covariates, and 

excluding data from less reliable volunteers, such as first-time volunteers, volunteers 

with erratic submissions and volunteers with erroneous submissions (Loss et al. 2015, 

Dickinson et al. 2010, Johnston et al. 2019).  In the scientific field, solutions to these 

challenges exist in thorough sampling protocols, however the implementation of these 

rigorous protocols in citizen science programs presents a new challenge of keeping 

volunteers interested and capable of participating (Dickinson et al. 2010). 

1.6 Study objectives and overview 

My thesis had two objectives: (1) to determine if there is differential vulnerability to 

dying from window collisions among migratory songbird species using long-term bird 

monitoring data to estimate local abundance, and (2) to determine if there is differential 

vulnerability to dying from window collisions within migratory songbird species, 

specifically looking at the effect of age in the fall.    

For objective (1), I hypothesized that there is differential vulnerability among migratory 

songbird species and that trophic guild contributes to window collision mortality 

vulnerability because some guilds are more active fliers than others (Wittig et al. 2017, 

Hager & Craig 2014, Sabo et al. 2016, Aymí et al. 2017).  I tested differential 

vulnerability among species using three temporally-overlapping datasets (one bird-

window collision monitoring dataset and two bird population monitoring datasets) to 

estimate and compare window and mist net catch ratios for each species using species-

specific negative binomial regressions.  To test the effect of trophic guild, I grouped the 

species by trophic guild and estimated and compared window and mist net catch ratios 

for each guild using a mixed-effects negative binomial regression.  I predicted that if 

trophic guild contributes to window collision mortality vulnerability, then insectivorous 

migrants would be more vulnerable than granivorous migrants, as they are the more 

active feeding guild (Wittig et al. 2017, Hager & Craig 2014).  For objective (2), I 

hypothesized that age contributes to window collision mortality vulnerability because 

hatch years are inexperienced and generally, have less pneumatized skulls (Kahle et al. 
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2016, Pyle 1997).  To test this, I collected age data from the carcasses that were collected 

for the window collision dataset in two years.  Then, using this age data along with the 

age data from the two population monitoring datasets, I estimated the odds of catching a 

hatch year bird at each site using species-specific mixed-effects logistic regressions.  I 

predicted that if age contributes to window collision mortality vulnerability, then hatch 

years would be more vulnerable than after-hatch years. 
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Methods 

2.1 Datasets 

2.1.1 Window collision data 

I used a window collision monitoring dataset spanning the years 2000-2018 from the 

Fatal Light Awareness Program (FLAP; www.flap.org) a citizen science program in 

Toronto, Ontario (43°39'11.6"N 79°22'59.5"W).  FLAP volunteers collect and record 

window collision data by completing daily surveys.  FLAP volunteers survey year-round 

(permitted volunteers are available), however peak window collisions occur during 

spring migration (April-June) and fall migration (August-November).  The peak during 

fall migration is larger than the spring migration peak, with the majority of the fall 

activity occurring in September and October.  Thus, I set the temporal extent of my study 

as 1 September to 31 October for each year to overlap with the period of greatest 

abundance of data.  FLAP began surveying downtown Toronto in 1993 for birds that 

collided with windows and coverage has expanded to include the Greater Toronto Area 

(Figure 1).  Despite starting data collection in 1993, data is only available from 2000 to 

present due to a technical issue with the computer that was storing the 1993-1999 data.  

Volunteers record where a bird was found, the day and time it was found, the species (if 

able), the bird’s status (e.g., dead, alive, sent to rehabilitation center) and any notes of 

interest.  FLAP has developed an online mapping program that enables people to report 

window collisions globally (Global Bird Collision Mapper; https://birdmapper.org/app/), 

which has greatly expanded the surveys beyond the Greater Toronto Area.  Carcasses are 

brought to FLAP headquarters or the Royal Ontario Museum (ROM) for storage at -20°C 

and confirmation of species identification.  FLAP retains carcasses for one year, at the 

end of which they display the collection at an annual layout to raise public awareness, 

and then FLAP donates the carcasses to various interested parties, including, but not 

limited to, the ROM, universities, and environmental consulting firms.  Data is recorded 

throughout the year by FLAP volunteers in an online program designed specifically for 

FLAP.  When the birds are delivered to FLAP headquarters the species identification for 

each individual is verified. 
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Figure 1. Comparison of the Fatal Light Awareness Program’s (FLAP) survey 

areas in 2000, 2003, 2006, 2009, 2012 and 2017.  Shown in red are the locations that 

birds were collected by FLAP in the fall of each year.  The transparency of the dots 

reflects the number of carcasses found at that location, with darker red signifying higher 

numbers.  Outlined in black is the area that my study focuses on as it is consistently 

surveyed over the years.  Map sourced from Google Maps using the ggmap package in 

R (Kahle & Wickham 2013). 
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2.1.2 Mist net data 

I used two different regional mist net datasets to account for local abundance of each bird 

species.  The first mist net dataset came from the Long Point Bird Observatory (LPBO) 

banding program, Long Point, Ontario (42°34'58.5"N 80°23'54.5"W; Long Point Bird 

Observatory 2008).  LPBO is the oldest banding station in Bird Studies Canada’s 

Canadian Migration Monitoring Network (CMMN).  The CMMN is a network of 

independent bird banding stations that was formed in 1998 to improve migration 

monitoring in Canada and to increase the information used to monitor population trends 

of Neotropical migrant birds that have largely inaccessible breeding and wintering 

habitats (https://www.birdscanada.org/volunteer/cmmn/).  At LPBO mist net surveys are 

performed daily (unless rain or wind prevent surveying) during spring and fall migration 

at three field sites: Old Cut, Breakwater and The Tip.  In my study, I used the mist net 

dataset from the Old Cut field site because it is the most reliably surveyed and has the 

most constant survey effort.   

Long Point, Ontario is approximately 145 km southwest of Toronto, Ontario.  Thus, I 

also used a second mist net dataset from Tommy Thompson Park (TTP), which is located 

in Toronto, Ontario (43°37'37.4"N 79°19'50.7"W; Tommy Thompson Park Bird 

Research Station 2008; Figure 2).  TTP is a newer banding station in CMMN that started 

operating in 2003.  Since TTP began operation later than FLAP and LPBO, I excluded 

data prior to 2003 from these two sites in order to achieve consistent timeframes across 

sites.  Thus, in my catch analysis I used the fall data collected at each site from 2003 to 

2017.  TTP has one field site with 20 mist nets (30 mm mesh size) where staff survey 

birds daily (weather permitting) during spring and fall migration for six hours starting 30 

minutes before sunrise.  This banding station is operated by volunteers who are trained 

on-site to capture and band birds, and record measurements.  Standard bird banding 

measurements are taken for each individual, including variables such as species, date, 

time captured, age and mass.  The fall of 2008 was excluded from my TTP analyses as no 

banding data was recorded that season since the program did not have a master bander at 

the time.  Using both the LPBO and TTP mist net datasets allowed me to compare the 

two banding stations to determine if collision vulnerability results differed depending on  
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Figure 2. Map showing the three sites of data collection used in the study.  The mist 

net banding data came from the Long Point Bird Observatory (LPBO) and Tommy 

Thompson Park (TTP), and the window collision data came from the Fatal Light 

Awareness Program (FLAP).  Map sourced from Google Maps using the ggmap package 

in R (Kahle & Wickham 2013). 
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banding station.  When there were differences in results between LPBO and TTP, I 

favoured TTP due to its proximity to downtown Toronto, even though the LPBO dataset 

was more complete.  

Mist net survey effort is recorded in mist net hours (the number of hours a net is open in 

a day) for all nets.  At Old Cut, there are 14 mist nets (30 mm mesh size) that are opened 

daily for six hours starting 30 minutes before sunrise.  This banding station is also 

operated by volunteers who are trained to capture and band birds, and record 

measurements.  The same measurements are taken for each captured individual as at 

TTP.  The hardcopies of all banding records are proofread and, if necessary, corrected by 

a qualified bander (generally, the master bander) before they are scanned and digitized 

using a customized windows-based program.  The digital versions of the records are also 

proofread to ensure that any misinterpretations of the program are corrected.  Copies of 

these verified datasets are backed-up and kept on site.  The data are also sent to the 

Canadian Wildlife Service banding office.  I obtained these banding records and the 

effort dataset, however incomplete entries and a lack of data verification post-digitization 

(all records are originally hand-written) made total net hours an unreliable measure of 

effort.  Instead, I controlled for effort using total net days (number of days the nets were 

open) for each species’ fall catch season (the period in the fall when the species is 

present), assuming that each day the nets were open at least one bird was caught and 

processed.  This measure of effort also worked for the FLAP survey effort, since FLAP 

does not record effort.  For FLAP, I considered the total net days as the total number of 

survey days for each species’ fall catch season, assuming that each day the volunteers 

surveyed at least one bird was recovered (see Appendix 1 for the annual total net days at 

each site from 1 September to 31 October).  I defined the catch season for each species 

and each year as the earliest capture of the species by FLAP, TTP or LPBO to the latest 

capture by FLAP, TTP or LPBO.  Each species requires a unique catch season because 

the timing of migration varies among species; some species are only present in early 

September, while others are only present in late October.  My definition of catch season 

includes all recorded captures at each program and uses the same timeframe across the 

three programs for each species without overestimating effort by using the whole season 

for each species.   
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2.2 Data preparation 

2.2.1 Filtering & geocoding data 

The FLAP data was recorded by various citizen scientists with varying degrees of quality 

within and among years.  As such, there were issues with missing data and 

inconsistencies in how variables were recorded within the dataset that had to be resolved 

before I could use the dataset in my analysis.  Entries with missing data for 

address/location and/or date that a carcass was found were excluded.  Entries that were 

located outside of Toronto, Ontario (e.g. Mississauga, Ontario) were also excluded.  The 

address/location variable required significant quality checking to ensure that each 

location had one address associated with it.  To standardize the addresses I fixed spelling 

errors, removed any additional notes/descriptions following addresses, removed any 

irregular spacings, changed building names to their respective addresses, formatted 

intersection records consistently and changed the various formats of the same address to 

a single, consistent address.   

All data cleaning and filtering steps were completed using R version 3.4.1 in order to 

maintain a record of changes (R Core Team 2017).  I then made a master list of all the 

unique addresses and geocoded these locations using a batch geocoding function 

developed by Shane Lynn using the ggmap package in R and Google’s geocoding API 

(https://www.shanelynn.ie/massive-geocoding-with-r-and-google-maps/).  Once I had the 

longitude and latitude of each address, I added these variables to the cleaned dataset.  

This dataset was filtered to only include entries where the bird’s status was “Dead” since 

my study was focused on window collision mortality.  The data was then further filtered 

for entries within the spatial and temporal extents of my study.  Since the FLAP survey 

area is so far-reaching and variable from year-to-year, I narrowed down the spatial extent 

to an area in Toronto where surveying was consistent from 2000-2017 (Figure 1).  To 

decide where this area would be, I plotted the FLAP data on a map using the ggmap 

package in R (Kahle & Wickham 2013) to evaluate the survey area.  After comparing 

survey areas over the years, I chose to use the core downtown Toronto area as the spatial 

extent of the analysis, since it was consistently surveyed from 2000-2017 (Figure 3).  I 

filtered the data for individuals found between the latitudes 43.644 and 43.652 and the  
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Figure 3. Map of downtown Toronto displaying the spatial extent (black outline) 

and locations of birds (red dots) collected in the fall of 2017.  The transparency of the 

dots reflects the number of carcasses found at that location, with darker red signifying 

higher numbers.  Map sourced from Google Maps using the ggmap package in R (Kahle 

& Wickham 2013). 

 

 

 

 



17 

 

longitudes -79.39 and -79.374, which are the boundaries of downtown Toronto, Ontario, 

and then I filtered for entries between 1 September and 31 October. 

I filtered both the LPBO and TTP banding datasets for mist net records between 1 

September and 31 October, and then selected data for the years 2003-2017.  In addition 

to filtering for temporal extent, I also only included the first capture of individuals that 

were caught multiple times.  This was intended to standardize the trapping results 

between mist nets and windows, since the birds that are recovered in FLAP’s carcass 

surveys can only collide with windows once.  Net days were calculated for each species 

each year within this temporal extent to estimate effort.  Differences in the number of 

nets between sites was not accounted for in net days since it is unknown how many nets 

were open on a given day.  The number of nets opened can vary day-to-day depending on 

the direction of strong winds (nets face different directions thus some can be affected 

while others are not) and the catch volume (if the catch is overwhelming the available 

volunteers some nets will be closed). 

2.2.2 Species selection & classification 

To determine which species to use in the catch analysis, I calculated the total count per 

fall season for each species at LPBO using the LPBO fall mist net data.  I then selected 

species with counts greater than or equal to 20 individuals to prevent uncommon captures 

from skewing the data.  I filtered the remaining species to only include those from the 

Order Passeriformes.  The remaining songbird species were checked against the FLAP 

and TTP data, as well as eBird data (https://ebird.org) to ensure their presence in 

Toronto, Ontario in the fall.  eBird is a citizen science project where volunteer observers 

report bird observations online.  I examined the fall 2017 eBird data for Toronto to 

confirm that each of the remaining songbird species found at LPBO were also seen in 

Toronto during fall migration.  All 37 remaining songbird species occurred in both areas 

in the fall.   

I classified 37 species by Family and trophic guild (i.e. diet and foraging height).  Family 

classifications were obtained from Birds of North America (birdsna.org/Species-

Account/bna/species).  The trophic guild diet and foraging height information was 
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obtained from Gonzalez-Salazar et al. (2014).  If the species was not included in their 

table, then the information was obtained from Birds of North America 

(birdsna.org/Species-Account/bna/species).  One species (Black-capped Chickadee) was 

excluded as it is a resident species, and therefore not a migratory songbird.  The 

remaining 36 species were used in the catch analysis (Table 1). 

2.3 Catch analysis 

2.3.1 Conceptual model 

To compare species-specific catch ratios among sites (FLAP, TTP and LPBO), I made 

several assumptions about the migration process (Figure 4).  In this conceptual model, I 

assumed that the birds present at each site are all part of a metapopulation (N) that breeds 

in Northern Ontario and divides into four subpopulations; birds that fly towards LPBO, 

birds that fly towards downtown Toronto, Ontario (FLAP), birds that fly towards TTP 

and birds that fly elsewhere.  Each subpopulation represents a different migratory route 

and stopover site, each with its own probability that an individual follows it (P1).  Once 

the birds stop at a site they are vulnerable to being captured, and the probability of 

capture depends on the capture efficiency of the program’s trap (mist net or window; Pt).  

These two probabilities determine how many birds are caught at each site: 

Metapopulation (Niy) x Stopover (P1ijy) x Capture Efficiency (Ptijy) = Catch (Cijy) 

where Niy is the population size of species i in year y, P1ijy is the probability of species i 

stopping over at site j in year y, Ptijy is the probability of species i being trapped at site j in 

year y and Cijy is the catch of species i at site j in year y.  For FLAP, the capture 

efficiency is further broken down into two components: 

PtiFy = ϕiy + ρiy     (1) 

where PtiFy is the probability that species i is found by FLAP in year y, ϕiy is the 

probability of species i being killed by a window in year y (window kill rate) and ρiy is 

the probability of species i being detected by a volunteer in the carcass survey in year y 

(detection rate).
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Table 1. Classifications of 36 songbird species used in the catch analysis.  Guild refers to the diet of the species and foraging 

height refers to the canopy height at which the species generally forages.  The average count (± standard deviation) of carcasses 

collected by the Fatal Light Awareness Program from 2003 to 2017 is included for each species. 

Common Name Family Species Guild: foraging height Average Count ± SD 

Brown Creeper Certhiidae Certhia americana Insectivore: bark 11.4 ± 3.96 

Gray Catbird Mimidae Dumetella carolinensis Insectivore: ground 1.80 ± 1.78 

Wilson's Warbler Parulidae Cardellina pusilla Insectivore: lower 1.93 ± 2.22 

Common Yellowthroat Geothlypis trichas Insectivore: lower 15.7 ± 9.95 

Orange-crowned Warbler Oreothlypis celata Insectivore: lower 0.40 ± 0.51 

Tennessee Warbler Oreothlypis peregrina Insectivore: lower 2.40 ± 1.80 

Nashville Warbler Oreothlypis ruficapilla Insectivore: lower 5.53 ± 3.91 

Ovenbird Seiurus aurocapilla Insectivore: ground 26.3 ± 18.1 

Northern Parula Setophaga americana Insectivore: lower 0.53 ± 0.92 

Black-throated Blue Warbler Setophaga caerulescens Insectivore: lower 10.8 ± 11.3 

Bay-breasted Warbler Setophaga castanea Insectivore: lower 2.67 ± 2.13 

Yellow-rumped Warbler Setophaga coronata Insectivore: lower 1.67 ± 1.91 

Magnolia Warbler Setophaga magnolia Insectivore: lower 12.8 ± 9.24 

American Redstart Setophaga ruticilla Insectivore: aerial hawker 3.47 ± 1.96 

Blackpoll Warbler Setophaga striata Insectivore: lower 1.20 ± 1.15 

Cape May Warbler Setophaga tigrina Insectivore: upper 0.27 ± 0.46 

Black-throated Green Warbler Setophaga virens Insectivore: lower 2.87 ± 2.90 

Dark-eyed Junco Passerellidae Junco hyemalis Granivore: ground 13.1 ± 9.02 

Swamp Sparrow  Melospiza georgiana Insectivore: ground 2.00 ± 1.36 

Song Sparrow  Melospiza melodia Granivore: ground 3.53 ± 2.88 

Fox Sparrow  Passerella iliaca Granivore: ground 4.60 ± 5.59 

American Tree Sparrow  Spizelloides arborea Granivore: ground 0.40 ± 0.74 
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Common Name Family Species Guild: foraging height Average Count ± SD 

White-throated Sparrow  Zonotrichia albicollis Granivore: ground 45.1 ± 24.7 

White-crowned Sparrow  Zonotrichia leucophrys Granivore: ground 2.07 ± 2.15 

Ruby-crowned Kinglet Regulidae Regulus calendula Insectivore: lower 3.67 ± 2.79 

Golden-crowned Kinglet Regulus satrapa Insectivore: lower 11.0 ± 8.49 

Red-breasted Nuthatch Sittidae Sitta canadensis Insectivore: bark  2.13 ± 2.13 

Winter Wren Troglodytidae Troglodytes hiemalis Insectivore: lower 2.60 ± 1.84 

Veery Turdidae Catharus fuscescens Insectivore: ground 0.20 ± 0.41 

Hermit Thrush Catharus guttatus Insectivore: ground 14.5 ± 8.25 

Gray-cheeked Thrush Catharus minimus Insectivore: ground 1.27 ± 1.44 

Swainson's Thrush Catharus ustulatus Insectivore: lower 3.67 ± 1.84 

Eastern Phoebe Tyrannidae Sayornis phoebe Insectivore: aerial hawker 0.27 ± 0.59 

Red-eyed Vireo Vireonidae Vireo olivaceus Insectivore: lower 1.47 ± 0.99 

Philadelphia Vireo Vireo philadelphicus Insectivore: lower 0.33 ± 1.05 

Blue-headed Vireo Vireo solitarius Insectivore: lower 0.07 ± 0.26 
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Figure 4. Schematic of the catch model used to develop the statistical models used in 

the catch analyses.  This model assumes that the species (or trophic guild) is one 

metapopulation (Niy) that divides into three distinct subpopulations (NiLy, NiFy and NiTy) 

during fall migration.  It is further assumed that each subpopulation migrates through its 

respective site. (i: species/trophic guild i, y: year y, P1: probability of stopping over at 

specific site, Pt: probability of being trapped at specific site, ϕ: window kill rate, ρ: 

detection rate, C: total catch, L: Long Point Bird Observatory (LPBO) site, F: Fatal Light 

Awareness Program (FLAP) site, T: Tommy Thompson Park (TTP) site). 
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I simplified the conceptual model through the following assumptions: (1) the probability 

of stopping over at one of the programs (P1) is constant over years and species, (2) the 

capture efficiencies for LPBO and TTP (Pt) are constant over years and species, (3) the 

window kill rate for FLAP (ϕ) is constant over years, (4) the detection rate for FLAP (ρ) 

is constant over years and species and (5) all probabilities in this model conform to 

binomial distributions.  After simplifying the model with these assumptions, the resulting 

chain of probabilities becomes: 

        Metapopulation (Niy) x Stopover (P1j) x Capture Efficiency (Ptj) = Catch (Cijy) 

        Metapopulation (Niy) x Stopover (P1F) x Capture Efficiency (ϕi x ρ) = Catch (CiFy) 

where j is the banding program (LPBO or TTP) and F is the FLAP program.   

2.3.2 Conceptual model interpretation 

To determine if there are differences in the species-specific vulnerabilities to window 

collisions, I used the above model to estimate catch ratios between the banding programs 

and FLAP.  This was done by first approximating the distribution of each catch (Cijy) by 

negative binomial distributions: 

CiFy ~ NBinom(μiFy + (μiFy)
2

/k) 

CiTy ~ NBinom(μiTy + (μiTy)
2

/k) 

CiLy ~ NBinom(μiLy + (μiLy)
2

/k) 

where μ is the mean of the distribution and k is the dispersion parameter.  Then, using the 

previously defined chain of probabilities and the approximated distribution, the estimated 

catch (E(Cijy)) is: 

E(CiFy) = μiFy + (μiFy)
2

/k = Niy P1F ϕi ρ   (2) 

E(CiTy) = μiTy + (μiTy)
2
/k = Niy P1T PtT    (3) 

E(CiLy) = μiLy + (μiLy)
2
/k = Niy P1L PtL   (4) 
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Using these equations, two catch ratios can be calculated (TTP:FLAP and LPBO:FLAP) 

for each species: 

𝐸(𝐶𝑖𝑇𝑦)

𝐸(𝐶𝑖𝐹𝑦)
=

P1𝑇 Pt𝑇

P1𝐹 ϕ𝑖 ρ
    (5)

  

𝐸(𝐶𝑖𝐿𝑦)

𝐸(𝐶𝑖𝐹𝑦)
=

P1𝐿 Pt𝐿

P1𝐹 ϕ𝑖 ρ
    (6) 

As window kill rate (ϕi) is the only variable that is species-specific (or trophic guild-

specific), any differences in catch ratios among species (or trophic guilds) is a result of 

differences in window kill rate (ϕi).  Thus, the null hypothesis where there is no 

differential vulnerability among species (or trophic guilds) is: ϕi = ϕm for any pair of 

species (or trophic guilds) where m represents a species different from species i.  

Alternatively, if there is differential vulnerability, then ϕi ≠ ϕm for at least one pair of 

species (or trophic guilds).   

These differences can be inferred by comparing the site effects estimated by a species-

specific (or trophic guild) model, since: 

E(CiFy) = log(μiFy + (μiFy)
2

/k) = βi0   (7) 

E(CiTy) = log(μiTy + (μiTy)
2
/k) = βi0 + βi1   (8) 

E(CiLy) = log(μiLy + (μiLy)
2
/k) = βi0 + βi2   (9) 

And therefore: 

𝐸(𝐶𝑖𝑇𝑦)

𝐸(𝐶𝑖𝐹𝑦)
 = log(μiTy + (μiTy)

2
/k) - log(μiFy + (μiFy)

2
/k) = βi0 + βi1 - βi0 (10) 

𝐸(𝐶𝑖𝐿𝑦)

𝐸(𝐶𝑖𝐹𝑦)
 = log(μiLy + (μiLy)

2
/k) - log(μiFy + (μiFy)

2
/k) = βi0 + βi2 - βi0 (11) 

where β0 represents the site effect of FLAP (reference level), β1 represents the site effect 

of TTP and β2 represents the site effect of LPBO.  In summary: 
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𝐸(𝐶𝑖𝑇𝑦)

𝐸(𝐶𝑖𝐹𝑦)
 = 

P1𝑇 Pt𝑇

P1𝐹 ϕ𝑖 ρ
 = βi1    (12) 

𝐸(𝐶𝑖𝐿𝑦)

𝐸(𝐶𝑖𝐹𝑦)
 = 

P1𝐿 Pt𝐿

P1𝐹 ϕ𝑖 ρ
 = βi2    (13) 

Therefore, if ϕi = ϕm, then βi1 = βm1 and βi2 = βm2, and the null hypothesis is supported.  

Alternatively, if βi1 < βm1, then the mist net catch of species i is more similar to, or less 

than, its respective window catch than the mist net catch of species m is to its respective 

window catch.  This would suggest that species i has a higher window kill rate than 

species m. 

2.3.3 Statistical analysis of catch 

I used species-specific generalized linear models (GLM) to estimate the effect of site (i.e. 

trap type) on catch.  The data are count data, therefore I considered Poisson regression, 

zero-inflated Poisson regression and negative binomial regression for modelling species-

specific catch.  I calculated the dispersion indices (DI) for each of these regressions by 

dividing the residual deviance by the residual degrees of freedom.  The DI should equal 1 

if the model fits well.  I found that the Poisson and zero-inflated Poisson regressions 

were over dispersed (DI > 2), while the negative binomial regression, which accounts for 

over dispersion, fit the data well (0.9 < DI < 1.4).  Thus, I selected the negative binomial 

regression as my GLM.  I used 36 species-specific GLMs to model catch in terms of site 

with an offset term to account for effort (Catch ~ Site + offset(log(Net_Days))).  This 

effort offset term is not estimated by the model but is rather a known value that is added 

to the linear predictor so that each predicted response considers effort. 

I used the same conceptual model to analyze effect of trophic guild, however for this 

analysis instead of using negative binomial regression I used a negative binomial mixed-

effects model.  Using a mixed-effects model allowed me to account for the variation 

among species within each trophic guild by adding a random effect of species.  In this 

analysis, I modeled catch in terms of trophic guild, site, the interaction between trophic 

guild and site, species as a random effect and an offset term to account for effort (Catch ~ 

Trophic_Guild + Site + Trophic_Guild:Site + (1|Species) + offset(log(Net_Days))).  In 
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this analysis, instead of using trophic guild-specific models, all levels were evaluated in 

one model.  Not all levels of trophic guilds had large enough sample sizes to make 

meaningful conclusions, thus I combined the various insectivorous trophic guilds into 

two groups: insectivore-ground and insectivore-not ground (lower canopy, bark gleaners, 

upper canopy, aerial hawkers; Table 1).  I ran the model three times, each time releveling 

the trophic guilds such that each of the three guilds was run once as the intercept.  From 

each run, I recorded the intercept and main site effects along with their associated 

standard errors.  I used these estimates to calculate the catch ratios and 95% confidence 

intervals for the corresponding trophic guild.  I conducted a nonparametric dispersion test 

on this model to evaluate fit using the DHARMa package in R (Hartig 2019).  This test 

calculates a dispersion ratio of fitted residuals versus simulated residuals.  If the model 

fits well it has a dispersion ratio of one. 

I estimated catch ratios using the site effects (species analysis) or trophic guild-site 

interaction effects (trophic guild analysis) of each model.  I natural antilog-transformed 

these estimates and calculated their respective transformed 95% confidence intervals (CI) 

for each catch ratio.  For the species analysis, I performed pairwise comparisons for each 

combination of species to determine if their catch ratios were significantly different.  

This was done using pair-specific GLMs (i.e., the data was filtered to include the two 

species of interest, rather than a single species, and species and the interaction between 

species and site were added to the model; Catch ~ Species + Site + Species:Site + 

offset(log(Net_Days))).  The p-value for the effect of species at each site was evaluated 

using a significance level set to α = 0.05.  Since the trophic guild analysis uses a 

generalized linear mixed-effects model (GLMM) p-values cannot be reliably determined 

due to correlations between observations as a result of using random effects (Bates et al. 

2019).  Thus, in place of p-values 95% CIs were used to determine if trophic guild catch 

ratios were significantly different from each other.  All modelling and calculations were 

performed in R version 3.4.1 (R Core Team 2017). 
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2.4 Age analysis 

2.4.1 Spatial extent 

The spatial extent used in the previous catch analysis was not large enough to provide 

meaningful sample sizes for a variety of species.  Thus, I decided to expand the spatial 

extent for this analysis.  I filtered the 2017 FLAP data for complete data (data with both 

an address and a date) and then plotted these data on a map using ggmap in R (Kahle & 

Wickham 2013).  I selected the area between the latitudes 43.64123 and 43.76346 and 

the longitudes -79.41287 and -79.32006 as the spatial extent, since it included the 

majority of the data in the Toronto, Ontario area.  I then filtered the data for individuals 

found within this spatial extent. 

2.4.2 Species selection 

After filtering the 2017 FLAP data for fall and spatial extent, I calculated the total count 

for each species and only included species that had a count of at least 20.  From this list 

of species, I selected eight species (Brown Creeper, Nashville Warbler, Ovenbird, Black-

throated Blue Warbler, Dark-eyed Junco, White-throated Sparrow, Golden-crowned 

Kinglet and Swainson’s Thrush) such that I had a variety of families and included species 

of interest.  This selection of eight then became seven, as I eliminated the Brown Creeper 

due to a lack of age data at TTP. 

2.4.3 Age data collection 

The age data for the banding programs were collected and recorded by volunteers at the 

stations.  I filtered the banding data for individuals of the seven study species caught by 

mist nets in the fall for 2017 and 2018.  These programs had a third age class 

“Unknown”, for when the individual could not be aged.  Individuals from this age class 

were excluded from the analysis.  The FLAP volunteers do not age the birds they collect.  

To collect this data for the FLAP data, I acquired the carcasses from FLAP and brought 

them back to the laboratory to age via skulling.  Skulling is one way to age birds in the 

fall, since hatch year (HY) birds migrate before their skull is fully pneumatized.  To age 

birds this way, one examines the skull and checks if it is fully pneumatized, as seen in 
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after-hatch year (AHY) birds, or partially pneumatized, as seen in HY birds.  The 

carcasses were stored in the freezer at -20°C until aging, at which point they were thawed 

before skulling.  As these were carcasses, I was able to expose the entire skull for 

observation.  Birds that had fully pneumatized skulls, characterized by uniform, white 

speckling over the entire skull, were classified as AHY.  Birds that had partially 

pneumatized skulls, characterized by patches of white speckling or no white speckling on 

the skull, were classified as HY.  In cases where the speckling pattern of the 

pneumatization was difficult to see, as a result of internal bleeding, a piece of the skull 

was removed, cleaned and examined.  All carcasses collected within the spatial and 

temporal extents were obtained for each species to a maximum of 50 carcasses.  When a 

species had more than 50 carcasses, 50 carcasses were chosen at random to age.  Random 

selection was done by assigning a random number to each individual in Microsoft Excel 

using the RAND() function and then selecting the 50 individuals with the lowest 

numbers.  The actual sample sizes used for some species were less than anticipated, due 

to inability to locate all carcasses at FLAP’s headquarters. 

2.4.4 Statistical analysis of age 

For this objective, I analyzed the data using species-specific logistic mixed-effect models 

that modeled age in terms of site and year as a random effect (Age ~ Site + (1|Year)).  I 

conducted a nonparametric dispersion test on this model to evaluate fit using the 

DHARMa package in R (Hartig 2019).  I estimated the change in log odds ratios (Δ 

ln(odds of HY: odds of AHY)) using the site effects for each species-specific model.  I 

inverse logit-transformed these estimated changes (now Δ odds) and calculated their 

respective transformed 95% confidence intervals.  Since this analysis also uses a GLMM, 

95% CIs were used to determine if the mist net (TTP and LPBO) probabilities were 

significantly different from FLAP.  If there was no change in log odds ratio from FLAP 

to TTP or LPBO, then the Δ odds would equal one.  Thus, probabilities were deemed 

significantly different from FLAP if their 95% CI did not include one.  Species were 

determined to have lower odds of catching a HY bird at TTP or LPBO than FLAP, if the 

Δ odds was significantly less than one.  Alternatively, species with Δ odds significantly 
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greater than one were determined to have higher odds of catching a HY bird at TTP or 

LPBO than FLAP.  All tests were completed using R version 3.4.1 (R Core Team 2017). 
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Results 

3.1 Catch analysis 

3.1.1 Tommy Thompson Park species catch ratio 

Based on the TTP data, catch ratios differed among species (Figure 5).  This suggests that 

there is differential vulnerability to colliding with windows among migratory songbird 

species.  The six species with the highest catch ratios, and therefore the lowest 

vulnerability, from highest catch ratio to lowest were: Blue-headed Vireo (TTP Catch 

Ratio  = 204.24, 95% CI [27.88, 1496.07]), Yellow-rumped Warbler (TTP Catch Ratio  = 

134.13, 95% CI [74.97, 240.00]), Ruby-crowned Kinglet (TTP Catch Ratio  = 107.91, 

95% CI [73.09, 159.33]), Eastern Phoebe (TTP Catch Ratio  = 74.17, 95% CI [26.19, 

210.04]), Golden-crowned Kinglet (TTP Catch Ratio  = 55.20, 95% CI [36.71, 83.01]) 

and Veery (TTP Catch Ratio  = 45.88, 95% CI [14.02, 150.10]).  The six species with the 

lowest catch ratios, and therefore the highest vulnerability, from lowest catch ratio to 

highest were: Ovenbird (TTP Catch Ratio  = 0.72, 95% CI [0.51, 1.01]), Common 

Yellowthroat (TTP Catch Ratio  = 1.73, 95% CI [1.27, 2.37]), Fox Sparrow (TTP Catch 

Ratio  = 2.23, 95% CI [1.36, 3.67]), Bay-breasted Warbler (TTP Catch Ratio  = 2.26, 95% 

CI [1.13, 4.50]), Red-breasted Nuthatch (TTP Catch Ratio  = 2.75, 95% CI [1.30, 5.81]) 

and Black-throated Blue Warbler (TTP Catch Ratio  = 3.52, 95% CI [2.37, 5.23]; see 

Table 2 for the estimates, standard errors, z-statistics and p-values from all the species-

specific models).  The p-values for the pairwise comparisons of catch ratios for all 

species combinations are displayed in Figure 6.  Evidence of a site effect can clearly be 

seen in boxplots of the six least vulnerable species (Figure 7) and is less noticeable in the 

boxplots of the six most vulnerable species (Figure 8).  The effect of site for each 

species-specific model is recorded in Table 3.   
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Figure 5. Transformed catch ratios between Tommy Thompson Park (TTP) and the Fatal Light Awareness Program (FLAP) 

for 35 songbird species organized from largest to smallest catch ratio.  The natural antilog-transformed catch ratios are 

represented by the points and error bars are 95% confidence intervals.  Catch ratios were estimated using species-specific negative 

binomial regressions (Catch ~ Site + offset(Net_Days))).  A large catch ratio means that relatively more of that species was caught at 

TTP than FLAP, which suggests lower vulnerability to colliding with windows than mist nets.  Alternatively, a small catch ratio 

means that relatively more of that species was caught at FLAP than TTP, which suggests higher vulnerability to colliding with 

windows than mist nets.  Species whose 95% confidence intervals overlap are not significantly different from each other (p-values are 

provided in Figure 6).  The Blue-headed Vireo catch ratio (204.24, 95% CI [27.88, 1496.07]) was removed from plot due to its 

extremely large error bars impeding the ability to discern the smaller catch ratios. 
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Table 2.  Estimated coefficients (β) for each site (FLAP: Fatal Light Awareness Program, TTP: Tommy Thompson Park, 

LPBO: Long Point Bird Observatory) with respective standard errors (SE), z-values (z) and p-values (p) from each species-

specific negative binomial regression (Catch ~ Site + offset(log(Net_Days)).  Species are sorted by decreasing catch ratio according 

to the TTP estimates.  The catch ratios comparing TTP and LPBO (TTP:LPBO) are provided for each species.  Asterisks indicate 

significant differences (p < 0.05) between the catch at TTP and LPBO. 

 FLAP TTP LPBO  

Species β SE z p β SE z p β SE z p TTP:LPBO 

Blue-headed Vireo -6.28 1.01 -6.23 <0.005 5.32 1.02 5.24 <0.005 5.76 1.01 5.68 <0.005 -0.44* 

Yellow-rumped Warbler -3.25 0.25 -12.90 <0.005 4.90 0.30 16.5

0 

<0.005 5.65 0.29 19.2

4 

<0.005 -0.75* 

Ruby-crowned Kinglet -2.44 0.17 -14.43 <0.005 4.68 0.20 23.5

5 

<0.005 4.94 0.20 25.1

0 

<0.005 -0.26* 

Eastern Phoebe -4.69 0.51 -9.13 <0.005 4.31 0.53 8.11 <0.005 3.60 0.53 6.76 <0.005 -0.71* 

Golden-crowned Kinglet -1.12 0.16 -7.20 <0.005 4.01 0.21 19.2

7 

<0.005 3.49 0.21 16.9

9 

<0.005 -0.53* 

Veery -4.65 0.59 -7.91 <0.005 3.83 0.60 6.33 <0.005 4.43 0.60 7.37 <0.005 -0.60* 

Gray-cheeked Thrush -3.21 0.25 -12.69 <0.005 3.52 0.28 12.6

9 

<0.005 3.89 0.27 14.1

4 

<0.005 -0.36* 

Philadelphia Vireo -4.32 0.48 -9.03 <0.005 3.51 0.51 6.94 <0.005 3.85 0.50 7.67 <0.005 -0.34* 

Swainson's Thrush -2.35 0.17 -13.80 <0.005 3.33 0.20 16.3

8 

<0.005 3.79 0.20 18.9

0 

<0.005 -0.46* 

Orange-crowned Warbler -4.26 0.43 -9.98 <0.005 3.25 0.45 7.16 <0.005 3.34 0.45 7.42 <0.005 -0.09* 

Cape May Warbler -4.50 0.57 -7.86 <0.005 3.24 0.64 5.02 <0.005 4.16 0.63 6.56 <0.005 -0.92* 

Blackpoll Warbler -3.35 0.29 -11.69 <0.005 3.19 0.33 9.62 <0.005 4.21 0.33 12.9

1 

<0.005 -1.02* 

American Tree Sparrow -2.88 0.47 -6.13 <0.005 3.15 0.54 5.81 <0.005 2.65 0.54 4.88 <0.005 -0.50* 

Northern Parula -3.71 0.41 -9.04 <0.005 3.02 0.47 6.48 <0.005 1.96 0.47 4.14 <0.005 -1.06* 

Red-eyed Vireo -3.19 0.24 -13.32 <0.005 3.00 0.27 11.1

1 

<0.005 3.67 0.27 13.8

2 

<0.005 -0.67* 

Nashville Warbler -2.08 0.14 -15.04 <0.005 2.92 0.16 17.7

3 

<0.005 2.46 0.16 15.0

6 

<0.005 -0.46* 

Wilson's Warbler -2.58 0.21 -12.46 <0.005 2.46 0.24 10.4

5 

<0.005 2.19 0.23 9.38 <0.005 -0.27* 

Winter Wren -2.54 0.20 -12.65 <0.005 2.44 0.24 10.1

1 

<0.005 2.43 0.24 10.2

2 

<0.005 -0.01* 
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 FLAP 

TTP 

LPBO 

TTP 

TTP 

LPBO 

LPBO  

Species β SE z p β SE z p β SE z p TTP:LPBO 

Hermit Thrush -0.92 0.13 -6.83 <0.005 2.34 0.18 12.8

3 

<0.005 2.31 0.18 12.9

1 

<0.005 -0.02* 

Swamp Sparrow -3.01 0.21 -14.30 <0.005 2.26 0.24 9.25 <0.005 2.85 0.24 11.9

5 

<0.005 -0.58* 

American Redstart -2.27 0.18 -12.67 <0.005 2.16 0.22 9.86 <0.005 3.09 0.21 14.4

9 

<0.005 -0.93* 

Gray Catbird -3.13 0.21 -15.10 <0.005 2.12 0.23 9.13 <0.005 3.73 0.22 16.8

1 

<0.005 -1.61* 

Black-throated Green Warbler -2.47 0.19 -12.94 <0.005 2.02 0.23 8.73 <0.005 1.27 0.23 5.44 <0.005 -0.75* 

White-crowned Sparrow -2.55 0.24 -10.41 <0.005 2.00 0.30 6.60 <0.005 2.24 0.30 7.53 <0.005 -0.24* 

Tennessee Warbler -2.66 0.21 -12.49 <0.005 1.92 0.26 7.38 <0.005 2.01 0.26 7.85 <0.005 -0.09* 

Dark-eyed Junco -0.93 0.17 -5.40 <0.005 1.89 0.24 7.94 <0.005 1.90 0.23 8.11 <0.005 -0.01* 

Song Sparrow -2.54 0.18 -13.85 <0.005 1.89 0.23 8.21 <0.005 2.43 0.22 10.8

6 

<0.005 -0.54* 

Brown Creeper -1.21 0.14 -8.47 <0.005 1.87 0.19 9.74 <0.005 2.22 0.19 11.7

6 

<0.005 -0.34* 

Magnolia Warbler -0.97 0.15 -6.45 <0.005 1.81 0.21 8.80 <0.005 2.21 0.20 10.9

8 

<0.005 -0.40* 

White-throated Sparrow 0.10 0.11 0.88 0.376 1.54 0.15 10.0

7 

<0.005 1.76 0.15 11.7

4 

<0.005 -0.22* 

Black-throated Blue Warbler -1.29 0.15 -8.65 <0.005 1.26 0.20 6.23 <0.005 1.84 0.20 9.34 <0.005 -0.58* 

Red-breasted Nuthatch -2.97 0.29 -10.37 <0.005 1.01 0.38 2.65 0.008 2.04 0.36 5.63 <0.005 -1.02* 

Bay-breasted Warbler -2.02 0.26 -7.74 <0.005 0.81 0.35 2.31 0.021 0.89 0.34 2.59 0.010 -0.08* 

Fox Sparrow -1.48 0.19 -7.89 <0.005 0.80 0.25 3.17 <0.005 0.84 0.25 3.40 <0.005 -0.03* 

Common Yellowthroat -0.94 0.12 -8.16 <0.005 0.55 0.16 3.45 <0.005 1.19 0.15 7.79 <0.005 -0.64* 

Ovenbird -0.24 0.12 -1.99 0.047 -0.33 0.17 -1.90 0.057 -0.21 0.17 -1.26 0.209 -0.12* 
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Figure 6.  Matrix displaying the p-values from pairwise comparisons of the catch 

ratios between Tommy Thompson Park (TTP) and the Fatal Light Awareness 

Program (FLAP) for 36 songbird species.  Each row in the matrix reflects one species’ 

(labeled to the left) comparisons with each of the 36 species that are labeled across the 

top.  Each column in the row is colour-coded based on significance level: black: p-value 

< 0.005, gray: p-value < 0.05 and white: p-value > 0.05.  The “X” is placed in the column 

that corresponds to the species that the row belongs to, since a species cannot be 

compared against itself.  Comparisons were completed using negative binomial 

regressions that were specific to each pairing of species (Catch ~ Site + Species + 

Site:Species + offset(log(Net_Days))). 
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Figure 7.  Catch at Tommy Thompson Park (TTP), Long Point Bird Observatory (LPBO) and the Fatal Light Awareness 

Program (FLAP) for the six songbird species with the highest catch ratios (based on TTP:FLAP) from 2003-2017.  Each 

boxplot represents the distribution of data for that species at the different sites.  Each box represents the inter-quartile range with the 

median marked by a vertical line.  All six species show a clear difference between the mist net catch (TTP and LPBO) and the window 

catch (FLAP), with mist net catch being greater than window catch.  The species-specific site effect values are provided in Table 3. 
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Figure 8.  Catch at Tommy Thompson Park (TTP), Long Point Bird Observatory (LPBO) and the Fatal Light Awareness 

Program (FLAP) for the six songbird species with the lowest catch ratios (based on TTP:FLAP) from 2003-2017.  Each 

boxplot represents the distribution of data for that species at the different sites.  Each site’s box represents the inter-quartile range 

with the median marked by a vertical line.  The five lowest species (first row, bottom-left and bottom-center) show minimal 

differences between the mist net catch (TTP and LPBO) and the window catch (FLAP), with the difference increasing in Black-

throated Blue Warblers.  The species-specific site effect values are provided in Table 3. 
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Table 3.  Residual deviance due to site (X2) for the species-specific negative binomial 

regressions (Catch ~ Site + offset(log(Net_Days)) with their respective degrees of 

freedom (df) and p-values (p).  The dispersion index (DI) of each model is also 

included as a measure of fit. 

Species X2 df p DI 

Blue-headed Vireo 36.60 41 <0.005 0.9 

Yellow-rumped Warbler 50.99 41 <0.005 1.2 

Ruby-crowned Kinglet 47.51 41 <0.005 1.2 

Eastern Phoebe 42.08 41 <0.005 1.0 

Golden-crowned Kinglet 44.96 41 <0.005 1.1 

Veery 41.56 41 <0.005 1.0 

Gray-cheeked Thrush 49.55 41 <0.005 1.2 

Philadelphia Vireo 43.70 41 <0.005 1.1 

Swainson's Thrush 43.78 41 <0.005 1.1 

Orange-crowned Warbler 39.31 41 <0.005 1.0 

Cape May Warbler 42.34 41 <0.005 1.0 

Blackpoll Warbler 44.50 41 <0.005 1.1 

American Tree Sparrow 46.94 41 <0.005 1.1 

Northern Parula 43.89 41 <0.005 1.1 

Red-eyed Vireo 43.17 41 <0.005 1.1 

Nashville Warbler 48.13 41 <0.005 1.2 

Wilson's Warbler 57.29 41 <0.005 1.4 

Winter Wren 45.50 41 <0.005 1.1 

Hermit Thrush 45.59 41 <0.005 1.1 

Swamp Sparrow 41.81 41 <0.005 1.0 

American Redstart 44.61 41 <0.005 1.1 

Gray Catbird 44.10 41 <0.005 1.1 

Black-throated Green Warbler 58.40 41 <0.005 1.4 

White-crowned Sparrow 46.22 41 <0.005 1.1 

Tennessee Warbler 45.73 41 <0.005 1.1 

Dark-eyed Junco 45.06 41 <0.005 1.1 

Song Sparrow 47.19 41 <0.005 1.2 

Brown Creeper 43.11 41 <0.005 1.1 

Magnolia Warbler 47.60 41 <0.005 1.2 

White-throated Sparrow 47.28 41 <0.005 1.2 

Black-throated Blue Warbler 49.54 41 <0.005 1.2 

Red-breasted Nuthatch 46.80 41 <0.005 1.1 

Bay-breasted Warbler 47.08 41 0.026 1.1 

Fox Sparrow 51.63 41 <0.005 1.3 

Common Yellowthroat 47.90 41 <0.005 1.2 

Ovenbird 46.44 41 0.148 1.1 
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3.1.2 Long Point Bird Observatory species catch ratio 

Catch ratios differed among species based on the LPBO data (Figure 9).  This further 

supports that there is differential vulnerability to colliding with windows among 

migratory songbird species.  The six species with the highest catch ratios, and therefore 

the lowest vulnerability, from highest catch ratio to lowest at LPBO were: Blue-headed 

Vireo (LPBO Catch Ratio  = 318.67, 95% CI [43.66, 2326.17]), Yellow-rumped Warbler 

(LPBO Catch Ratio  = 284.39, 95% CI [159.91, 505.76]), Ruby-crowned Kinglet (LPBO 

Catch Ratio  = 139.71, 95% CI [95.00, 205.46]), Veery (LPBO Catch Ratio  = 83.57, 95% 

CI [25.77, 271.08]), Blackpoll Warbler (LPBO Catch Ratio  = 67.37, 95% CI [35.56, 

127.63]) and Cape May Warbler (LPBO Catch Ratio  = 64.09, 95% CI [18.50, 221.99]).  

The six species with the lowest catch ratios, and therefore the highest vulnerability, from 

lowest catch ratio to highest were: Ovenbird (LPBO Catch Ratio  = 0.81, 95% CI [0.58, 

1.13]), Fox Sparrow (LPBO Catch Ratio  = 2.31, 95% CI [1.42, 3.73]), Bay-breasted 

Warbler (LPBO Catch Ratio  = 2.44, 95% CI [1.24, 4.81]), Common Yellowthroat 

(LPBO Catch Ratio  = 3.27, 95% CI [2.43, 4.41]), Black-throated Green Warbler (LPBO 

Catch Ratio  = 3.57, 95% CI [2.26, 5.65]) and White-throated Sparrow (LPBO Catch 

Ratio  = 5.79, 95% CI [4.32, 7.77]; see Table 2 for the estimates, standard errors, z-

statistics and p-values from all the species-specific models, as well as catch ratios 

comparing the catch at TTP and LPBO).  The p-values for the pairwise comparisons of 

catch ratios for all species combinations are displayed in Figure 10.  The rankings of the 

species by vulnerability were slightly different between TTP and LPBO but were 

strongly correlated (Spearman’s rho = 0.88, p-value < 0.001; Figure 11).  The three least 

vulnerable species and four most vulnerable species (with a slightly different order) were 

the same at both sites.  However, when looking at each species independently, the 

majority of species had TTP:LPBO catch ratios significantly greater than zero (Table 3).  

This suggests that regional-scale abundance data is adequate for broad ranking of relative 

vulnerability, however local-scale abundance data is required for accuracy in catch ratio 

size.  The clear site effect of LPBO is also shown in the boxplots of the six least 

vulnerable species for TTP (Figure 7) and is, again, less noticeable in the boxplots of the 
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six most vulnerable species for TTP (Figure 8).  The effect of site from all species-

specific models are recorded in Table 3.   
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Figure 9.  Transformed catch ratios between Long Point Bird Observatory (LPBO) and the Fatal Light Awareness Program 

(FLAP) for 35 songbird species organized from largest to smallest catch ratio.  The natural antilog-transformed catch ratios are 

represented by the points and the error bars are 95% confidence intervals.  Catch ratios were estimated using species-specific negative 

binomial regressions (Catch ~ Site + offset(log(Net_Days))).  A large catch ratio means that relatively more of that species was caught 

at LPBO than FLAP, which suggests lower vulnerability to colliding with windows than mist nets.  Alternatively, a small catch ratio 

means that relatively more of that species was caught at FLAP than LPBO, which suggests higher vulnerability to colliding with 

windows than mist nets.  Species whose 95% confidence intervals overlap are not significantly different from each other (p-values are 

provided in Figure 10).  The Blue-headed Vireo catch ratio (318.67, 95% CI [43.66, 2326.17]) was removed from plot due to its 

extremely large error bars impeding the ability to discern the smaller catch ratios. 
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Figure 10.  Matrix displaying the p-values from pairwise comparisons of the catch 

ratios between Long Point Bird Observatory (LPBO) and the Fatal Light 

Awareness Program (FLAP) for 36 songbird species.  Each row in the matrix reflects 

one species’ (labeled to the left) comparisons with each of the 36 species that are labeled 

across the top.  Each column in the row is colour-coded based on significance level: 

black: p-value < 0.005, gray: p-value < 0.05 and white: p-value > 0.05.  The “X” is 

placed in the column that corresponds to the species that the row belongs to, since a 

species cannot be compared against itself.  Comparisons were completed using negative 

binomial regressions that were specific to each pairing of species (Catch ~ Site + Species 

+ Site:Species + offset(log(Net_Days))). 
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Figure 11. Correlation between the rank orders of species at TTP and LPBO for the catch analysis.  The rank order of the 

species at TTP was significantly correlated with the rank order at LPBO (Spearman’s rho = 0.88, p-value < 0.001).  This suggests that 

regional-scale abundance data can be used for broad ranking of relative vulnerability among species.
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3.1.3 Trophic guild catch ratio 

There were significant differences between the catch ratios of the granivore trophic guild 

and the insectivore-not ground trophic guild at both TTP (Figure 12; granivore = 5.70, 

95% CI [4.45, 7.31], insectivore-not ground = 12.29, 95% CI [10.73, 14.09]) and LPBO 

(Figure 13; granivore = 6.36, 95% CI [4.99, 8.10], insectivore-not ground = 15.46, 95% 

CI [13.53, 17.67]).  At both sites granivores had smaller catch ratios than insectivores 

that do not forage on the ground, suggesting that granivores are more vulnerable to dying 

from window collisions than this guild of insectivores.  At TTP there was a significant 

difference between the insectivore-ground trophic guild (6.42, 95% CI [4.91, 8.38]) and 

the insectivore-not ground trophic guild, suggesting that insectivores that forage at the 

ground level are more vulnerable to dying from window collisions than insectivores that 

forage above the ground level.  At TTP there was not a significant difference between 

granivores and ground foraging insectivores, suggesting that these guilds have equal 

vulnerability.  At LPBO there was not a significant difference between insectivore 

trophic guilds (insectivore-ground = 11.66, 95% CI [8.92, 15.24]), however at this site 

the catch ratio of ground foraging insectivores was significantly greater than the 

granivore catch ratio, suggesting ground foraging insectivores are less vulnerable than 

granivores.  The estimates, standard errors, z-statistics and p-values, as well as catch 

ratios comparing the catch at TTP and LPBO from the trophic guild model are provided 

in Table 4.  A small site effect can be seen between mist net catch (TTP and LPBO) and 

FLAP in the boxplots of these three guilds (Figure 14). 

3.1.4 Validation of models 

The dispersion indices for all the species-specific models ranged between 0.9 and 1.4, 

indicating good model fit based on the general rule that the dispersion index should be 

less than two.  The dispersion indices for each of the species-specific models are 

provided in Table 3.  The dispersion ratio for the trophic guild model was not 

significantly different from one, indicating good fit (dispersion ratio = 1.3, p-value = 

0.352). 
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Figure 12.  Transformed catch ratios between Tommy Thompson Park (TTP) and the Fatal Light Awareness Program 

(FLAP) for three trophic guilds (granivore, insectivore-not ground and insectivore-ground) organized from largest to smallest 

catch ratio. The natural antilog-transformed catch ratios are represented by the points and the error bars are 95% confidence 

intervals.  Catch ratios were estimated using a negative binomial mixed-effects model (Catch ~ Trophic_Guild + Site + 

Trophic_Guild:Site + (1|Species) + offset(log(Net_Days))).  A large catch ratio means that relatively more of that trophic guild was 

caught at TTP than FLAP, which suggests lower vulnerability to colliding with windows than mist nets.  Alternatively, a small catch 

ratio means that relatively more of that trophic guild was caught at FLAP than TTP, which suggests higher vulnerability to colliding 

with windows than mist nets.  The 95% confidence intervals of the two insectivore guilds are distinct, indicating that they are 

significantly different.  This suggests that foraging height influences vulnerability, with ground foragers being more vulnerable.  Diet 

is partially supported as an influence of vulnerability with granivorous species being more vulnerable than insectivorous species that 

do not forage on the ground, as the granivorous guild’s 95% CI does not overlap with the insectivorous–not ground guild.  However, 

granivorous species were not significantly different from ground foraging insectivores, as these two guilds had overlapping 95% CIs.  
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Figure 13.  Transformed catch ratios between Long Point Bird Observatory (LPBO) and the Fatal Light Awareness Program 

(FLAP) for three trophic guilds (granivore, insectivore-not ground and insectivore-ground) organized from largest to smallest 

catch ratio.  The natural antilog-transformed catch ratios are represented by the points and the error bars are 95% confidence 

intervals.  Catch ratios were estimated using a negative binomial mixed-effects model (Catch ~ Trophic_Guild + Site + 

Trophic_Guild:Site + (1|Species) + offset(log(Net_Days))).  A large catch ratio means that relatively more of that trophic guild was 

caught at LPBO than FLAP, which suggests lower vulnerability to colliding with windows than mist nets.  Alternatively, a small catch 

ratio means that relatively more of that trophic guild was caught at FLAP than LPBO, which suggests higher vulnerability to colliding 

with windows than mist nets.  The 95% confidence intervals of the two insectivore guilds overlap, indicating that they are not 

significantly different.  This suggests that foraging height does not influence vulnerability.  Diet is supported as an influence of 

vulnerability with granivorous species being more vulnerable than insectivorous species, as the granivorous guild’s 95% CI does not 

overlap with either insectivorous guild. 
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Table 4.  Estimated coefficients (β) for each site (FLAP: Fatal Light Awareness Program, TTP: Tommy Thompson Park, 

LPBO: Long Point Bird Observatory) with respective standard errors (SE), z-values (z) and p-values (p) from the trophic 

guild negative binomial mixed-effects model (Catch ~ Trophic_Guild + Site + Trophic_Guild:Site + (1|Species) + 

offset(log(Net_Days))).  Trophic guilds are sorted by decreasing catch ratio according to the TTP estimates.  The catch ratios 

comparing TTP and LPBO (TTP:LPBO) are provided for each trophic guild.  Asterisks indicate significant differences (p < 0.05) 

between the catch at TTP and LPBO. 

 FLAP TTP LPBO  

Trophic Guild β  SE z p β SE z p β SE z p TTP:LPBO 

Granivore -1.57 0.40 -3.95 <0.005 1.74 0.13 13.7 <0.005 1.85 0.12 15.0 <0.005 0.11* 

Insectivore-not ground -0.88 0.44 -1.99 0.05 0.77 0.14 5.32 <0.005 0.89 0.14 6.30 <0.005 0.12* 

Insectivore-ground -0.41 0.56 -0.72 0.47 0.12 0.19 0.63 0.53 0.61 0.18 3.29 <0.005 0.49* 
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Figure 14.  Catch at Tommy Thompson Park (TTP), Long Point Bird Observatory (LPBO) and the Fatal Light Awareness 

Program (FLAP) for three trophic guilds from 2003-2017.  Each boxplot represents the distribution of data for that trophic guild at 

the different sites.  Each site’s box represents the inter-quartile range with the median marked by a vertical line.  Site effects are seen 

between the mist net catch (TTP and LPBO) and the window catch (FLAP).  Larger outliers were excluded from the plots to allow a 

better comparison of the distributions. 
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3.2 Age analysis 

3.2.1 The odds of catching a hatch year bird 

The change in the odds of catching a hatch year (HY) bird from FLAP to TTP was 

significant for five of the seven species included in the analysis (Figure 15).  Nashville 

Warbler (Δ odds = 0.42, 95% CI [0.22, 0.80]), Golden-crowned Kinglet (Δ odds = 0.33, 

95% CI [0.21, 0.53]), Ovenbird (Δ odds = 0.21, 95% CI [0.06, 0.76]), Dark-eyed Junco 

(Δ odds = 0.18, 95% CI [0.04, 0.79]) and Swainson’s Thrush (Δ odds = 0.07, 95% CI 

[0.02, 0.25]) all had significantly lower odds (Δ odds < 1) of catching a HY bird at TTP 

compared to FLAP suggesting that for these species HY birds are more vulnerable to 

dying from window collisions than after-hatch year (AHY) birds.  The change in odds of 

catching a HY from FLAP to LPBO was inconsistent with the results based on TTP.  

Only three of the seven species were significantly different from FLAP at LPBO (Figure 

16).  White-throated Sparrow (Δ odds = 2.21, 95% CI [1.05, 4.63]) and Golden-crowned 

Kinglet (Δ odds = 1.92, 95% CI [1.20, 3.09]) had significantly higher odds (Δ odds > 1) 

of catching a HY bird at LPBO compared to FLAP suggesting that for these species HY 

birds are less vulnerable to dying from window collisions than AHY birds.  Swainson’s 

Thrush (Δ odds = 0.25, 95% CI [0.08, 0.81]) had significantly lower odds (Δ odds < 1) of 

catching a HY bird at LPBO compared to FLAP suggesting that for this species HY birds 

are more vulnerable to dying from window collisions than AHY birds.  The rankings of 

the species by the odds of catching a HY bird were not significantly correlated between 

TTP and LPBO (Spearman’s rho = 0.71, p-value = 0.09; Figure 17) and the majority of 

species had TTP:LPBO catch ratios significantly greater than zero (Table 5).  This could 

explain the inconsistencies between the two sites.  The estimates, standard errors, z-

statistics and p-values, as well as catch ratios comparing the catch at TTP and LPBO 

from all the species-specific models are provided in Table 5.  A clear site effect can be 

seen in Figure 18 with TTP’s AHY proportions being distinctly greater than FLAP’s for 

the majority of species in both years.  LPBO’s AHY proportions compared to FLAP’s 

have a less clear and consistent pattern across species and years, which is reflective of the 

majority of species not being significantly different from FLAP, and the variable 
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direction of the significant effects.  The dispersion ratios for all the species-specific 

models ranged between 0.98 and 1.02 and were not significantly different from one, 

indicating good model fit (all p-values > 0.05).  The dispersion ratios and associated p-

values for each species-specific model are provided in Table 5. 
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Figure 15.  Comparison of the Tommy Thompson Park (TTP) to the Fatal Light Awareness Program (FLAP) changes in odds 

of catching hatch year (HY) birds for the seven aged songbird species.  Estimated changes in odds are represented by the points 

and the error bars are 95% confidence intervals.  Log odds ratios were estimated using species-specific logistic mixed-effects models 

(Age ~ Site + (1|Year)).  The vertical dashed line represents the null hypothesis where the HY log odds at TTP is equal to the HY log 

odds at FLAP, and therefore the change in log odds is equal to zero.  Species with 95% confidence intervals that do not cross the 

vertical line have significantly different odds at TTP and FLAP.  Species to the left of the dashed line have lower odds of catching a 

HY bird at TTP than at FLAP.  This means that the proportion of HY birds caught at FLAP is greater than at TTP.  This suggests that 

in these species HY birds have higher vulnerability to window collisions than after-hatch year birds. 
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Figure 16.  Comparison of the Long Point Bird Observatory (LPBO) to the Fatal Light Awareness Program (FLAP) changes 

in odds of catching hatch year (HY) birds for the seven aged songbird species.  Estimated changes in odds are represented by the 

points and the error bars are 95% confidence intervals.  Log odds ratios were estimated using species-specific logistic mixed-effects 

models (Age ~ Site + (1|Year)).  The vertical dashed line represents the null hypothesis where the HY log odds ratios at LPBO and 

FLAP are equal, and therefore the change in log odds ratios is zero.  Species with 95% confidence intervals that do not cross the 

vertical line have significantly different odds at LPBO and FLAP.  Species to the left of the dashed line have lower odds of catching a 

HY bird at LPBO than at FLAP.  This means that the proportion of HY birds caught at FLAP is greater than at LPBO, suggesting that 

in these species HY birds have higher vulnerability to window collisions than after-hatch year (AHY) birds.  Species to the right of the 

dashed line have higher odds of catching a HY bird at LPBO than at FLAP, meaning that the proportion of HY birds caught at FLAP 

is less than at LPBO.  This suggests that in these species HY birds have lower vulnerability to window collisions than AHY birds. 
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Figure 17. Correlation between the rank orders of species at TTP and LPBO for the age analysis.  The rank order of the species 

at TTP was not significantly correlated with the rank order at LPBO (Spearman’s rho = 0.71, p-value = 0.09).  This suggests that 

regional-scale abundance data should not be used when analyzing relative vulnerability between age classes. 
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Table 5.  Estimated coefficients (β) for each site (FLAP: Fatal Light Awareness Program, TTP: Tommy Thompson Park, 

LPBO: Long Point Bird Observatory) with respective standard errors (SE), z-values (z) and p-values (p) from each species-

specific logistic mixed-effects model (Age ~ Site + (1|Year)).  Dispersion ratio (DR) and its associated p-value are also provided for 

each model as a measure of fit.  Species are sorted by decreasing Δ odds according to the TTP estimates.  The catch ratios comparing 

TTP and LPBO (TTP:LPBO) are provided for each species.  Asterisks indicate significant differences (p < 0.05) between the catch at 

TTP and LPBO. 

 FLAP TTP LPBO  

Species β SE z p β SE z p β SE z p DR p TTP:LPBO 

Black-throated Blue Warbler 1.25 0.69 1.82 0.07 -0.06 0.63 -0.09 0.93 0.65 0.61 1.07 0.28 0.98 0.86 0.71* 

White-throated Sparrow 2.00 0.34 5.94 <0.005 -0.17 0.38 -0.46 0.64 0.79 0.38 2.09 0.04 1.00 0.93 0.97* 

Nashville Warbler 1.49 0.28 5.38 <0.005 -0.88 0.33 -2.64 0.01 -0.25 0.35 -0.71 0.48 1.00 0.98 0.63* 

Golden-crowned Kinglet 0.99 0.36 2.77 0.01 -1.11 0.24 -4.64 <0.005 0.65 0.24 2.70 0.01 0.98 0.68 1.76* 

Ovenbird 2.05 0.53 3.85 <0.005 -1.58 0.67 -2.37 0.02 -0.18 0.69 -0.26 0.80 1.02 0.89 1.40* 

Dark-eyed Junco 3.07 0.72 4.24 <0.005 -1.72 0.76 -2.27 0.02 -1.40 0.77 -1.82 0.07 1.01 0.94 0.32* 

Swainson’s Thrush 2.96 0.59 5.00 <0.005 -2.59 0.61 -4.28 <0.005 -1.39 0.61 -2.30 0.02 1.00 0.91 1.20* 
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Figure 18.  After-hatch year (AHY) proportion of species-specific catch at Tommy Thompson Park (TTP; black), Long Point 

Bird Observatory (LPBO; light gray) and the Fatal Light Awareness Program (FLAP; dark gray) for the seven aged songbird 

species from 2017 and 2018.  A distinct site effect is seen in the majority of species for both years.  TTP clearly shows a greater 

proportion of AHY in these species’ catches, and therefore a lower proportion of hatch years in the catches, compared to FLAP.  The 

effect of LPBO is less clear and consistent across species and years compared to FLAP. 
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Discussion 

Bird-window collisions are a serious concern in cities and residential areas.  As such it is 

important to determine factors that influence the vulnerability to dying from window 

collisions.  We can then prioritize high-risk species and direct preventive measures and 

research to these species.  A new approach to studying differential vulnerability to 

window collisions in birds that accounts for local abundance of species has been initiated 

by a handful of researchers (Nichols et al. 2018, Wittig et al. 2017, Kahle et al. 2016, 

Sabo et al. 2016, Aymí et al. 2017, Winger et al. 2019).  These researchers have found 

evidence supporting differential vulnerability to window collisions across bird species, as 

well as various groupings of species (e.g., feeding guilds).  I provide further support of 

differential vulnerability among and within bird species using long-term migratory 

songbird window collision and local abundance data from Southern Ontario.  More 

specifically, I found that (1) there is differential vulnerability among migratory songbird 

species, (2) that trophic guild contributes to window collision mortality vulnerability and 

(3) age may contribute to window collision mortality vulnerability, but effects appear to 

be species-specific. 

4.1 Key Findings 

4.1.1 Differential vulnerability among migratory songbird species 

My results suggest that there is differential vulnerability to window collision mortality 

present among migratory songbird species.  Catch ratios significantly varied across the 

36 species studied, suggesting that the species did not collide proportionally to their local 

abundances estimated by mist net surveys.  This finding corroborates previous studies 

that found differential vulnerability among species after accounting for local abundance 

(Wittig et al. 2017, Nichols et al. 2018, Winger et al. 2019, Kahle et al. 2016, Sabo et al. 

2016, Aymí et al. 2017).  I did not test for a taxonomic family effect, however based on 

the rankings of warblers it is likely that my results agree with what Nichols et al. (2018) 

observed with Parulidae being more variable than any other family they investigated.  

Individuals of this family are seen in the most (e.g., Ovenbird) and least vulnerable (e.g., 
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Yellow-rumped Warbler) ranks as well as throughout the mid-ranks (e.g., Wilson’s 

Warbler).   

Ovenbirds have previously been reported as highly vulnerable to window collisions by 

researchers (Winger et al. 2019, Nichols et al. 2018, Wittig et al. 2017).  I also found this 

species to have the highest vulnerability.  Common Yellowthroats were another species 

that I found highly vulnerable which supports the findings reported by Nichols et al. 

(2018) and Winger et al. (2019).  Additionally, there were several parallels between my 

results and the results from Winger et al. (2019).  For example, White-throated Sparrows, 

Fox Sparrows and Brown Creepers were vulnerable in both studies, and Kinglets were 

less vulnerable in both studies.  There were also conflicting results for some species, such 

as Swainson’s Thrush, which I found to be less vulnerable and they found to be more 

vulnerable, and Black-throated Blue Warbler, which they found to collide as expected 

and I found to be a species with high vulnerability.  The varying results between our 

studies could stem from Winger et al. (2019) using spring and fall data, whereas I only 

used fall.  Perhaps some species have consistent vulnerability in spring and fall, while 

others vary depending on the season.  Like Nichols et al. (2018) and Winger et al. (2019), 

I found that Vireos had relatively lower vulnerability, which disagrees with the findings 

reported by Wittig et al. (2017) who found that Red-eyed Vireos collided more than 

expected.  The results of my study further agree with Winger et al.’s (2019) results that 

suggest Yellow-rumped Warblers have low vulnerability to window collisions.  This 

opposes the results of Sabo et al. (2016) that suggest Yellow-rumped Warblers have high 

vulnerability, as well as the results of Kahle et al. (2016) who reported Yellow-rumped 

Warblers collided as expected based on local abundance.  Inconsistencies that arise when 

comparing the estimates of relative vulnerability for a species from different studies are 

perhaps due to differences in the locales’ building, window and landscape characteristics, 

all of which have been reported as factors affecting window collisions (Borden et al. 

2010, Hager et al. 2013, Cusa et al. 2015, Kahle et al. 2016, Hager et al. 2017).  The 

similarities that are observed among studies, despite site differences, suggest that certain 

species-specific window collision vulnerabilities are strong enough to be conserved 

across locations (e.g., high vulnerability in Ovenbirds is observed in Toronto, Ontario, 

Minneapolis, Minnesota (Nichols et al. 2018), Chicago, Illinois (Winger et al. 2019) and 
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the Raleigh-Durham-Chapel Hill area, North Carolina (Wittig et al. 2017)).  The 

similarities between the rankings at my two study sites supports that some vulnerability 

trends are also strong enough to be observed at different scales (i.e., local versus 

regional).      

Many behavioural and physiological differences among species might contribute to the 

differences that are observed in species’ vulnerabilities to colliding with windows.  I 

investigated trophic guild (i.e. diet and foraging height), as a partial explanation for the 

differential vulnerability among species, however there are many other potential sources 

of variation that are described in the literature.  For example, one common behavioural 

trait that differential vulnerability is attributed to is migratory status.  Nichols et al. 

(2018) proposed two aspects of nocturnal migration that could increase this group’s 

window collision risk.  First, cognitive (e.g. reaction time) and physical deficits during 

descent at stopover sites could alter normal functions, increasing the propensity for 

collision.  Second, altered stopover site choice due to low lighting during descent in 

combination with phototaxis to artificial light of lit buildings could increase window 

exposure and therefore collision risk (Nichols et al. 2018).  The majority of the species I 

used in my study are considered nocturnal migrants, thus this is likely a minor, if present, 

source of variation across species in my study.  Flocking behaviour is another trait that 

varies species to species and has been considered as a factor with mixed results.  There 

are two main schools of thought when it comes to flocking and window collisions.  The 

first is that flocking reduces window collisions because the group collectively has higher 

window detection rates as a result of predator vigilance being divided (Kahle et al. 2016).  

Alternatively, it has been suggested that flocking could increase window collision risk as 

more conspecifics are drawn to dangerous, high-risk areas increasing local density which 

has been shown to increase window collision risk (Winger et al. 2019, Sabo et al. 2016).  

My results show support for both schools of thought, as I found some species that display 

flocking behaviour to have high vulnerability, while other flocking species have low 

vulnerability, suggesting that the influence of flocking is complex.  For instance, Blue-

headed Vireos (low vulnerability) and Bay-breasted Warblers (high vulnerability) are 

two species that have been observed joining mixed-species flocks during fall migration.  

Habitat preference (open area vs forested area) is also believed to impact window 
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collision risk (Winger et al. 2019, Wittig et al. 2017).  Physiological features of the eye 

such as lateral eye placement, fovea area of the retina and visual range have also been 

proposed as potential factors in power line collision susceptibility which can readily be 

applied to window collision susceptibility (Bernardino et al. 2018, Martin 2011, Martin 

2012, Sillman 1973, Ödeen et al. 2011).  Varying maneuverability across species as a 

result of differences in wing and tail morphology has also been proposed as a contributor 

to collisions.  For example, species that are heavy with small wings (high wing loading 

with low wing aspect ratio) have been observed as frequent power line collision victims 

(Rayner 1988, Bernardino et al. 2018).  Tail length is also a factor in maneuverability as 

it has been reported to help with balance, stability and flight control (Hedenström 2002).  

It is possible that the difference between birds that avoid windows, birds that collide as 

expected, and birds that collide with windows more than expected could be their ability 

to escape collision via efficient maneuvering that is defined by their wings and tails.  I 

did not have the necessary data to discover patterns related to these factors in my relative 

vulnerability rankings.  However, further research of habitat preference, eye physiology 

and maneuverability in a variety of species that show differences in their vulnerabilities 

could elucidate additional patterns in differential vulnerability among species and 

improve our understanding of this issue.  Overall body size has also been reported in the 

literature as influencing vulnerability, with smaller-bodied species being more prone to 

dying from window collisions than larger-bodied species (Kahle et al. 2016).  Based on 

average body sizes reported in the Birds of North America species accounts  

(https://birdsna.org/Species-Account/bna/species), my results do not appear to support 

body size having a strong influence on vulnerability, as large and small-bodied species 

are observed scattered throughout the relative vulnerability ranking at both sites. 

There were some deviations in the relative rankings of the 36 species between the two 

sites (TTP and LPBO), however the most vulnerable and least vulnerable species were 

consistent at both sites.  The species whose ranks varied between the sites were not 

significantly different from each other, which could explain the discrepancies in ranks 

from site to site.  Perhaps they have equal vulnerability and therefore the exact ordering 

is irrelevant.  While the relative ranking indicates the priority species, it does not show 

the threshold where the catch ratio should become a matter for greater priority.  Further 
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research is needed using a similar framework to Arnold and Zink (2011) that correlates 

relative collision vulnerability to annual rate of population change but using a local scale 

to estimate the impact of window collision mortality on local populations.  This research 

could also provide evidence supporting the classification of urban centers as ecological 

traps for migratory birds if the impact is significant. 

4.1.2 Differential vulnerability among trophic guilds 

Trophic guild has previously been reported as a contributing factor of vulnerability 

(Wittig et al. 2017).  My results corroborate that trophic guild influences vulnerability.  

However, I observed that granivores were at higher risk than insectivores that forage 

above the ground, which is opposite of previous findings where insectivores were 

reported as the more vulnerable guild (Wittig et al. 2017).  According to the local TTP 

data, my results suggest that foraging height is a more important factor of vulnerability 

than diet, as ground foraging insectivores and granivores, which also forage on the 

ground, were not significantly different, but were both significantly more vulnerable than 

insectivores foraging above the ground.  However, this finding was not supported at 

LPBO, where my results suggest that diet has greater influence on vulnerability than 

height, as both insectivore guilds were significantly less vulnerable than the granivore 

guild, but not significantly different from each other.  Differences between the results of 

the sites, as well as the differences between my study and Wittig et al.’s (2017), could be 

due to site differences, which suggests that local data is more appropriate for trophic 

guild analyses, rather than regional data, as proportions may fluctuate across locations.  

This conclusion is further supported by the catch ratios comparing TTP and LPBO 

presented in Table 4.  The catches for the granivore and insectivore-not ground trophic 

guilds are not significantly different between TTP and LPBO, and the results for these 

guilds are consistent.  However, the catch for the insectivore-ground trophic guild is 

significantly between the banding sites, and the results for this guild are inconsistent.   

Focusing on the local results from TTP, it appears that ground foragers, despite diet 

preferences, are more vulnerable.  It has previously been suggested that differential 

vulnerability across trophic guilds is likely attributed to the differences in movement 

between guilds (Wittig et al. 2017, Aymí et al. 2017).  Insectivores typically move in 
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darting fashions, quickly flying amongst branches, meanwhile granivores generally hop 

or make short flights between locations (Aymí et al. 2017, Wittig et al. 2017).  A similar 

observation was made by Kahle et al. (2016) who reported that hummingbirds had the 

highest collision frequency of any other species and this could be connected to their trap-

lining flight behaviour.  My results do not support these conclusions, as I found 

granivores to be more vulnerable.  Instead of differences in foraging behaviour, perhaps 

this increased vulnerability in granivores is a result of the greater availability of ground 

foraging habitat in Toronto than above ground foraging habitat as a result of less 

vegetation being present.  This could potentially increase the density of ground foragers 

in downtown Toronto, which has been shown to increase vulnerability (Nichols et al. 

2018).  Thus, differences in the amount of vegetation in the survey areas between my 

study and previous studies could explain why our results are conflicting.  Further 

differences were observed between my results and those of Wittig et al.’s (2017) 

regarding the influence of foraging height.  I found evidence of ground foragers being 

more vulnerable, whereas Wittig et al. (2017) reported lower canopy foragers as more 

vulnerable.  It is possible that these differences are due to site differences (e.g. amount of 

vegetation present) as well as small sample sizes in my study.  Since samples for the 

various heights were limited, different heights were combined into two categories.  

Perhaps combining the various heights into the broad categories of ground and not 

ground masked the true effect of foraging height. 

4.1.3 Differential vulnerability among age classes 

My results were not consistent across sites when it came to an effect of age.  It was clear 

at both sites that the age effect was dependent on the species, however significance and 

effect direction varied site to site.  At TTP, all age effects were either insignificant or less 

than one (i.e., HY birds are more vulnerable), meanwhile, at LPBO some species had 

effects that were estimated to be greater than one (i.e., HY birds are less vulnerable). 

These variable effects of age that are dependent on the species could explain why there is 

such controversy in the literature regarding the presence of differential vulnerability 

between age classes.  Sabo et al. (2016) investigated the effect of age using 11 different 

species and found no effect, while Kahle et al. (2016) investigated the effect of age using 
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37 species and found evidence of an effect.  Both studies pooled species together and 

compared the number of HY to the number of AHY of the entire bird population, which 

could be the reason these results are at odds.  My results suggest that species differ in the 

effect of age on window collision vulnerability.  If this is true then by pooling all species 

together to investigate age, as these two studies have done, could produce very different 

results depending on which species are used and their age effect’s strength and direction.  

It is possible that how age class affects window collision vulnerability varies species to 

species and as a result cannot simply be stated as a general rule, for or against, for all 

species.  Rather, it needs to be investigated separately for each species. 

High HY vulnerability is generally attributed to inexperience (Bernardino et al. 2018, 

Aymí et al. 2017, Kahle et al. 2016, Hager et al. 2013).  Behavioural differences in 

stopover duration as well as differences in migration routes between age classes could 

also influence vulnerability across age classes.  Increased stopover duration for HY birds 

could increase their exposure to windows which ultimately increases their vulnerability.  

Increased stopover length has been observed in some studies (Yong et al. 1998, Rguibi-

Idrissi et al. 2003, Mackenzie 2010, Dossman et al. 2016, Morbey et al. 2018), but has 

also been absent in others (Morris et al. 1996, Morris & Glasgow 2001, Morris et al. 

2003, Mackenzie 2010, McKinnon et al. 2014).  It is likely that the difference in stopover 

duration between age classes is species-specific which could explain why certain species 

showed an age effect while others collided proportionally.  It is also possible that some 

HY birds of certain species circumnavigate Lake Ontario and Lake Erie during fall 

migration.  If HY birds are travelling along the coast of Lake Ontario and Lake Erie this 

could impact the catch at TTP and LPBO.  It is possible that by flying around the lake, 

rather than across it, a portion of the HY birds migrating through Toronto never reaches 

TTP because this portion stops over further down the coast.  This could inflate the 

perceived vulnerability of species that travel through Toronto and are colliding with 

windows, but then are caught at TTP in low numbers because they stop over elsewhere.  

Perhaps, TTP is the stopover site of birds preparing to cross the lake rather than go 

around it, which skews the data for the species that display this migration tactic.   
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Other behavioural factors could also result in greater vulnerability for HY birds, such as 

flying behind parents or at the back of flocks.  This following behaviour could mean that 

HY birds have less time to react to obstacles, increasing collision events (Bernardino et 

al. 2018).  There may also be physiological differences between age classes that affect 

window collision risk in HY birds, such as incomplete cranial pneumatization, decreased 

maneuverability and slower reaction time (Bernardino et al. 2018).  If decreased 

maneuverability is paired with the following behaviour in certain species, then collision 

risk could be amplified in these species.  Differences in the number of contributing 

factors that are present in species could explain why an age effect was observed in some 

species but not others. 

There were differences in my age analysis results between TTP and LPBO.  One possible 

explanation for this is that the city attracts and traps HY birds and acts as a filter that 

changes the age demographic of the population before the birds arrive at TTP.  In the 

future, it would be interesting to measure the population’s age demographic before an 

urban center and after to see if the population’s structure is in fact changing as it moves 

through the city.  Alternatively, these differences could be the result of the assumption 

that LPBO and TTP sample from the same population not being met.  If this is the case, 

then there may be proportional differences between the two sites that cause the 

discrepancies seen in my results.   

4.2 Assumptions and limitations 

Several assumptions were made in the development of the conceptual model (Section 

2.3.1).  Unfortunately, it is unlikely that many of these assumptions are met, however 

they are necessary for the analysis given the available data.  First, I assumed that the 

probability of stopping over at one of the programs (P1) is constant over years and 

species.  This assumption is arguably met as all 36 species stopped over in Toronto and 

Long Point during fall migration each year.  The next assumption I made in the model 

was that the capture efficiencies for LPBO and TTP (Pt) are constant over years and 

species.  It is very unlikely that this assumption is true, however there is insufficient data 

to estimate variable capture efficiencies.  Thus, this assumption is necessary to complete 

the analysis.  Constant window kill rate for FLAP (ϕ) over the years was also assumed in 
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the conceptual model.  This assumption is reasonably met, however minor fluctuations 

may be seen year to year due to new building developments or newly implemented 

window collision deterrents.  Constant detection rate for FLAP (ρ) over years and species 

was assumed, however it is probable that this is wrong for two reasons: differences in 

species size and colouration, and variable search effort depending on a carcass detection.  

It is indisputable that some species are easier to detect in carcass surveys than others.  

Larger-bodied individuals and brightly coloured individuals will both be more readily 

detected than smaller-bodied or dull coloured individuals.  Furthermore, detection rate is 

likely affected by what the volunteer completing the carcass survey expects.  For 

example, if it is common to find multiple individuals at the same site, then once one 

carcass is found, the volunteer may increase search effort knowing they are likely to find 

more.  Likewise, if it is uncommon to find additional individuals at the same site, then 

once one carcass is found, the volunteer may reduce search effort and possibly move onto 

the next site.  All probabilities in this model were assumed to conform to binomial 

distributions which assume independent trials.  Independence among trials may not be 

achieved due to flocking and/or communication among individuals, via recruitment or 

alert calls, that encourages or discourages the trapping of following individuals.  While 

many of these assumptions are not met, they are necessary as a replacement for the 

unavailable data that would be required to make estimates for these variables.  In addition 

to replacing the unavailable data, these assumptions are also needed to make window kill 

rate (ϕ) the only source of variation contributing to species differences.  Without these 

assumptions, there are too many sources of variation to make reliable conclusions 

specific to differential vulnerability to window collision mortality. 

Beyond these model assumptions, I also assumed that FLAP’s subset was representative 

of the window collisions in downtown Toronto.  However, it is possible that this 

assumption was not met as there is generally volunteer biases introduced during 

collection in these types of citizen science programs.  A common bias is volunteers 

targeting areas with high mortality more than areas with low or none (Johnston et al. 

2019).  In order to meet this assumption, I narrowed my survey extent to one area of 

Toronto that seemed to be evenly surveyed, however even within this area it is probable 

that some areas received more survey effort than others.  Although, this likely has little 
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impact on my conclusions due to the size and general uniformity of the survey extent 

used.  It is also possible that the window collision counts were underestimated due to the 

lack of parallel scavenging surveys conducted alongside the carcass survey.  Some 

studies have estimated that anywhere from 13-65% of carcasses could be removed by 

scavengers (Klem et al. 2004, Kahle et al. 2016, Hager et al. 2012).  Nevertheless, Hager 

et al. (2012) reported that scavenger activity was highest at buildings with little pavement 

and high canopy cover, while scavenger activity was lowest at buildings with larger areas 

of pavement and little canopy cover.  Thus, if this description of scavenger activity is 

accurate in downtown Toronto where there is mostly pavement and little canopy cover, 

then it is possible that scavenging has a minimal effect on FLAP’s carcass surveys and 

therefore minimal effect on my conclusions.   

I further assumed that both TTP and LPBO mist net surveys provided accurate indices of 

the local abundances of the 36 species studied.  However, there could be underestimation 

in the local abundance count data for certain species due to mist net biases.  While mist 

net surveys offer an excellent method for estimating local abundance and also provide an 

opportunity to age and sex birds in the hand, which allows estimations of population 

demographics that would otherwise be impossible to accomplish, they are limited to the 

lower canopy region.  Thus, upper canopy species are likely to be underrepresented in the 

surveys.  It is also possible that trapped birds influence the survey results by drawing 

individuals into the area via recruitment calls.  Alternatively, they could also alert 

conspecifics of the mist net via alarm calls, movement or simply their presence in the net. 

These potential biases in the mist net surveys limited my study as I was unable to 

distinguish between high vulnerability to window collision mortality and low 

vulnerability to being caught by a mist net.  Each estimated catch ratio had two 

components: (1) window catch and (2) mist net catch, and I assumed that the mist net 

catch was reflective of local abundance and therefore interpreted low catch ratios as high 

vulnerability to window collision mortality.  However, low catch ratios could be the 

result of relatively low mist net vulnerability rather than high window collision mortality 

vulnerability. 
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4.3 Future directions 

4.3.1 Future research 

While there is some controversy regarding the causes of differential window collision 

vulnerability, the conclusion that window collision vulnerability is a complex 

phenomenon with complex interactions among a variety of physiological and behavioural 

traits is fairly unanimous.  As such, future studies should aim to make more 

comprehensive models that include a variety of traits to account for the various complex 

combinations of factors that could be additively contributing to a single species’ 

vulnerability.  Some of the factors that should be considered when developing future 

models are body size, maneuverability, eye placement, visual range, flocking behaviour, 

migratory status, migratory distance, aggressiveness, bone fragility, minimum flight 

speed, foraging height, diet and all the resulting interactions.  Furthermore, by focusing 

on previously reported high-risk and low-risk species in future comparative studies, it 

may be possible to pinpoint why certain species are colliding more than others and what 

features are associated with this increased window collision risk.  As previous studies 

have observed high percentages (13-65%) of carcass removal by scavengers that vary by 

location and time of year, future studies should also use parallel scavenging data to 

ensure that carcass survey results can be corrected to accurate detection rates (Klem et al. 

2004, Kahle et al. 2016, Hager et al. 2012).  Additionally, future studies should use local 

abundance data, rather than regional abundance data, when possible to maximize the 

accuracy of estimated vulnerabilities.  As seen in my results, regional abundance data is 

not always an accurate representation of local abundance. 

It is evident that there are certain species being affected by this aspect of urbanization 

more than others.  Future research should utilize this rapidly growing collection of results 

to develop effective innovations and solutions that cater to the reported high-risk species 

in order to minimize bird-window collisions.  There are many preventive measures being 

produced, however the effectiveness of these deterrents is still in question.  Further 

research to determine which deterrents are effective is needed, but testing the 

effectiveness of these products directly can be unethical.  Therefore, future work should 
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monitor building collisions before and after window treatments are implemented to 

determine the effectiveness of these products (e.g., Kahle et al. 2016). 

4.3.2 Citizen science recommendations 

Based on my experience working with citizen science datasets in this thesis, I have three 

recommendations for citizen science programs to consider regarding record keeping and 

unbiased surveying.  The range of questions that citizen science datasets could be 

successfully applied to could be vastly increased by recording GPS coordinates.  This not 

only improves location accuracy but also data cleanliness.  By recording location as GPS 

coordinates the data are in an easily usable format and there is less opportunity for 

submission errors (i.e., typographical errors) and inconsistent formatting that need to be 

addressed before the data can be utilized.  The record keeping of effort is also an 

important aspect of the data collection that should receive more consideration where 

possible.  Effort data is essential for the standardization of count data that allows 

comparisons to be made across sites and time.  Without recorded survey effort it is 

difficult to accurately extrapolate beyond the original dataset.  Citizen science programs 

could also minimize survey bias by expanding survey routes beyond known hotspots and 

ensuring that sites with fewer or no collisions are regularly included in sampling and 

records.  If survey protocols are amended to include this change, it is important that 

program coordinators inform and educate volunteers on the importance of recording 

zeroes in their surveys. 

Improving the rigidity of citizen science programs can be difficult.  It can be easy to 

discourage and bore citizen scientists who may simply be looking to casually participate 

in a program that has minimal protocol and requires little detail during their data 

collection.  Some citizen scientists will also be less informed on the importance of their 

work, and perhaps be more inclined to cut corners without realizing the overall effect of 

this (Dickinson et al. 2010).  To avoid these situations communication and 

encouragement are of utmost importance to ensure strong understanding of the 

importance of their contributions and to ensure a reliable level of dedication.  There is a 

trade-off between participation and quality of data that results in a delicate balancing act 

performed by citizen science program coordinators who have varying levels of scientific 
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training (Johnston et al. 2019, Dickinson et al. 2010).  Loss et al. (2015) suggest that the 

best way to ensure high quality data with high participation and enthusiasm is 

collaboration between professional scientists and citizen science program coordinators to 

find the best way to implement the most effective and useful sampling techniques for 

citizen science programs on a case by case basis. 

4.4 Conclusions  

Bird-window collisions are a growing concern as populations grow and urbanization 

increases.  Much is still unknown when it comes to the extent and impact of window 

collisions on avian species.  How vulnerability to window collisions varies across species 

is an important area of research to advance as we begin to develop and implement 

preventive measures to protect birds.  In this thesis, I investigated two hypotheses: (1) 

there is differential vulnerability to dying from window collisions among migratory 

songbird species, and trophic guild contributes to these differences and (2) age 

contributes to differential vulnerability.  My results support both hypotheses as there was 

evidence of differential vulnerability among the species studied, as well as among the 

trophic guilds investigated, and various species-dependent age effects were observed, 

indicating that there is an age effect in some, but not all species. 

My results contribute to the rapidly growing literature on this topic, lending support to 

previous findings in other locales.  Furthermore, the temporal extent of my study offers a 

unique source of support that is arguably stronger and more robust as, to my knowledge, 

the majority of previous studies focus on short-term, snapshots of collision data based on 

one to four years of observations, while my study used 15 years of data.  By using such a 

long period of observation, there is a better chance of observing reliable trends as the 

effects of outlying years, that are possibly influenced by external factors affecting 

stopover duration, such as weather or resource abundance, are diluted by the many other 

years of observation also considered in the model.  However, the similarities between my 

results and the results of previous studies support the credibility of short-term studies as 

well as studies monitoring fewer buildings.  Although, the differences among reported 

results could also indicate that there are site differences, and perhaps year differences, 

that create diversity in the conclusions of these short-term studies that are only observing 
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part of the overall trend.  If this is the case, then long-term studies should reduce the 

variation that is observed across studies.  In conclusion, it is possible that coarse trends 

can be observed in short-term studies, however longer observational periods are ideal for 

finer, more consistent conclusions.  These long-term studies are also required to 

investigate year-to-year fluctuations in vulnerability.  Long-term studies that are able to 

elucidate species-specific trends, as well as show if and how vulnerability is evolving or 

improving, are imperative in developing solutions that will allow society to continue to 

use the desired large glass panes during development, while protecting the unaware, 

innocent birds as they traverse the continents. 
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Appendix 1.  Total net days for each site from 1 September to 31 October from 2003 

to 2017. 

Site Year Total net days 

FLAP 2003 50 

LPBO  56 

TTP  57 

FLAP 2004 50 

LPBO  54 

TTP  56 

FLAP 2005 54 

LPBO  58 

TTP  51 

FLAP 2006 54 

LPBO  55 

TTP  45 

FLAP 2007 49 

LPBO  61 

TTP  54 

FLAP 2008 49 

LPBO  61 

TTP  NA 

FLAP 2009 54 

LPBO  58 

TTP  36 

FLAP 2010 55 

LPBO  58 

TTP  44 

FLAP 2011 45 

LPBO  61 

TTP  41 

FLAP 2012 52 

LPBO  58 

TTP  45 

FLAP 2013 44 

LPBO  59 

TTP  47 

FLAP 2014 44 

LPBO  60 

TTP  48 

FLAP 2015 39 

LPBO  59 

TTP  52 
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Site Year Total net days 

FLAP 2016 42 

LPBO  61 

TTP  47 

FLAP 2017 35 

LPBO  61 

TTP  40 
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