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Abstract 

Pneumatically-driven soft robotic grippers can elastically deform to grasp delicate, curved 

organic objects with minimal surface damage. However, common actuators have multipart 

geometries and are fabricated with ultra-soft hyperelastic elastomers not originally intended 

for scientific applications. The complexity of the actuator geometry and extreme nonlinearity 

of their material’s stress-strain behaviour make it difficult to predict the actuator’s deformation 

prior to experimentation. In this work, a compact soft pneumatic gripper made with 

polydimethylsiloxane (PDMS) is developed for grasping delicate organic objects, analyzed 

through computational modelling and experimentally validated. COMSOL Multiphysics is 

used to simulate the impact of geometrical parameters on the actuator’s behaviour, allowing 

for the refinement of the proposed geometry prior to fabrication. Optimal parameters are 

selected for fabrication, with experimental tests matching simulations within ± 1.11 mm. 

Gripper performance is evaluated for three actuator wall thicknesses in terms of contact area 

with target, contact force, and maximum payload before slippage. The comparative assessment 

between simulations and experiments demonstrate that the proposed soft actuators can be used 

in robotic grippers tailored for grasping delicate objects without damaging their surface. 

Furthermore, analysis of the actuators provides additional insight on how to design simple but 

effective soft systems. 

Keywords 

Soft robotic grippers; hyperelastic materials; polydimethylsiloxane; COMSOL Multiphysics 

simulation  
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Summary for Lay Audience 

Air-powered soft robotic grippers are made of rubber-like materials that can stretch and inflate 

to collect delicate objects like fruits and vegetables. However, the soft “finger” components of 

the robotic gripper commonly have multipart geometries, and the rubber materials used in their 

fabrication were not meant for scientific applications. The combination of these complex 

geometries and the extreme unpredictability of non-standard soft materials make it difficult to 

calculate the “finger’s” movement before performing experiments. In this work, a compact and 

soft air-powered gripper is developed and fabricated using a silicone material commonly used 

in the scientific community, polydimethylsiloxane (PDMS). The gripper is designed for 

grasping delicate produce. The inflation and behaviour of the soft gripper components are first 

analyzed using computer simulations based on geometrical dimensions and air pressure. Data 

acquired from these simulations is used to improve the proposed soft component geometry 

before building it, reducing the number of trial-and-error tests needed to previously develop 

soft robotic “fingers”. After fabricating soft “finger” components, experiments are performed 

to compare the simulated data with experimental results. This comparison shows a match 

between simulations and experiments within ± 1.11 mm. The “fingers” are then assembled into 

three different grippers and tested to assess each gripper’s effectiveness at grasping objects of 

different shapes and weights. The comparison between computer simulations and real 

experiments demonstrate that the proposed soft “fingers” can be used in grippers designed for 

picking up delicate objects without damaging them. Furthermore, analysis of the soft 

components provides additional insight on how to design simple but effective soft robots. 
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Chapter 1 

 Introduction 

 

Soft robotics can be defined as the research field covering robotic systems that interact 

with their environment by relying on inherent or structural compliance [1]. Soft-material 

robotics is a specific branch of this field that studies inherent material compliance, and how 

deformation of a soft material can be controlled to achieve robotic functionality. A 

common feature of soft materials, whether they be liquids, gels, polymers, etc., is that they 

consist of large molecules or assemblies of molecules that move collectively. As a result, 

they provide a large, slow and nonlinear response to small forces [1]. Most research on 

soft-material robotics focuses on materials with a low Young’s modulus (< 1 GPa) at 

ambient temperature [1], [2]. 

Soft robotic grippers can elastically deform to grasp irregularly shaped, delicate organic 

objects. In contrast with rigid robotic end-effectors that apply point forces on a target, soft 

grippers can distribute contact forces over a broader surface area, thereby minimizing 

contact damage to delicate organic structures. Soft robotic grippers can be based on a 

number of different operating principles including tendon-driven tension, particle 

jamming, and fluidic actuation [3]. Pneumatic actuation is commonly used because air is 

nearly inviscid and compressed air can be stored and dispensed at precisely controlled 

amounts [4]–[7]. During operation, the applied pressurized air causes the inflation and 

deformation of one or more inner cavities (i.e., chambers) embedded in the actuators of the 

grasping mechanism. Air-driven soft actuators can have multipart geometries fabricated 

from hyperelastic materials such as synthetic rubbers or silicone polymers [5] that have 
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very nonlinear stress-strain properties, making it difficult to predict the actuator’s 

behaviour. In many cases, the elastomeric materials used are commercially branded as 

special effects rubber for prosthetics in the performing arts, and thus the material data is 

rarely outlined. As a consequence of the inherent nonlinearity and lack of available material 

properties, most soft robotic grippers must be developed through an iterative design process 

based on trial-and-error experiments. 

 

1.1 Research Motivation 

There is an economic incentive to improving the design process of soft robotic grippers for 

horticultural product harvesting. A 2017 symposium report published by Vineland 

Research and Innovation Centre Inc. states that there are over 27,500 horticulture farms in 

Canada, covering approximately 1 million acres of land and producing $5 billion in annual 

direct farm cash receipts [8]. In the 5 years prior to the report, Ontario had accounted for 

nearly 60% of Canadian horticulture sales each year [8]. Labour costs take a significant 

toll on the horticulture sector, being as high as 40-50% of the cost of goods [8], [9]. In 

addition, a diminishing labour pool is recognizable in as early as 2014 when the industry 

was unable to fill 5,800 employment positions. This cost the industry over $350 million, 

with 60% of field-fruit and vegetable farms reporting sales losses. The shortage is projected 

to increase by 2025, and it is expected that 32-45% of the horticulture sector’s labour 

demands will not be met by domestic workers [8]. 

Shifting from manual labour to robotic automation has reduced the previously 

significant impact of labour costs and availability. Robotic automation has seen notable 

use in the harvesting of high-value crops; non-staple produce that typically require a high 

manual labour input [10]. Each type of automated system faces unique design requirements 

and constraints that are dependent of the harvested crop. For soft fruits and vegetables, it 

is important that a system’s end-effector can collect the produce without damaging its 

delicate structure [11]. Noticeable damage to any produce significantly reduces the quality 

of the crop yield, in turn diminishing farm profits. Automated, robotics-based harvesting 

systems have also faced challenges in the mushroom farming industry [12]–[21]. 
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Mushrooms have a very delicate body that can be easily damaged by conventional 

gripper designs. They do not grow in neat, orderly lines. Instead, they spread across large 

growing beds, packed together by the thousands. Conventional rigid end-effectors are ill-

suited for the manipulation of delicate organic objects in such a dense environment, as they 

are likely to damage both the collected target and mushrooms growing adjacent to it. 

Prior attempts have been made to eliminate the rigid end-effector by employing robotic 

vacuum end-effectors [12]–[14], [16]–[22]. In theory, a non-rigid suction cup with a soft 

sealing base can deform around a mushroom cap’s irregular geometry and pull it from its 

growing bed. This method has proven only partially successful, as gripping forces applied 

to the cap surface can still be excessive due to the limited contact area of the suction cup. 

Conventional cups have a fixed open diameter which require accurate positioning over the 

cap. Misalignment can lead to further damage. Optimizing the conventional suction cup 

designs are not likely to fully eliminate damage inflicted to the mushroom due to the high 

variability in mushroom size, orientation, and cluster density. 

 

1.2 Objectives of Research 

The primary objective of the research reported in this thesis is to provide a possible solution 

to the modelling limitations pertaining to soft robotic actuators by presenting a compact, 

single Degree-of-Freedom (DOF) geometry for a soft pneumatic actuator. To bypass the 

lack of material data available for typical ultra-soft materials used, the actuator geometry 

is fabricated with polydimethylsiloxane (PDMS), a better-known and therefore more 

predictable hyperelastic material frequently seen in microfluidics research. Choosing the 

more predictable PDMS as the actuator material allows the geometry to be modelled in 

nonlinear simulation software, specifically COMSOL Multiphysics. Simulations 

performed focus on analyzing the impact of geometrical parameters on the simple and 

straightforward actuator geometry to assess its performance prior to fabrication. Optimal 

geometric parameters can then be selected for the improved design of an actuator to be 

fabricated, resulting in fewer design iterations required. Performance of these actuators can 

then be verified experimentally in a laboratory environment, establishing a new and 

comparative method of optimizing actuators for soft robotics. 
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In collaboration with the Vineland Research and Innovation Centre Inc., this research 

also aims to investigate the validity of these actuators in a proposed soft gripper design by 

comparing their performance to both commercial and custom vacuum cup geometries for 

automated mushroom harvesting. The target fungi in question is Agaricus Bisporus, more 

commonly known as the white mushroom. Although literature exists on numerous attempts 

at designing and optimizing systems and methods for automated mushroom harvesting, 

little is found on the implementation of soft robotics in this field. Thus, the secondary 

objective is to investigate the proposed soft gripper design’s viability for this application. 

By comparing the gripper design to both standard and modified vacuum cup geometries, 

the validity of the proposed design can be evaluated. In addition, modifying existing cup 

geometries proves that attempting to optimize vacuum cup systems will not fully resolve 

the issues related to mushroom harvesting. 

 

1.3 Major Contributions 

This thesis provides the following major contributions to the scientific community: 

• Starting foundation for hybrid computational/experimental design of soft robotic 

grippers and actuators. A comparative method of assessing the performance of soft 

robotic actuators made of hyperelastic materials. This has been achieved through 

the classification of key parameters for analysis and comparing the impact of 

changing these parameters using nonlinear simulation software and experiments. 

This reduces the number of iterations required to be fabricated throughout the 

design process.  

• Pneumatically-driven soft robotic gripper for automated mushroom harvesting. 

Optimal geometrical parameters are selected in the fabrication of compliant soft 

PDMS grippers and combined with a rigid housing structure to enable the grasping 

and collection of delicate objects in experiments that simulate mushroom 

harvesting. The gripper design not only allows for damage-free mushroom handing 

but also serves as a potential replacement for vacuum cup end-effectors currently 

in use. 
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• Established summary of design guidelines for soft robotic grippers. A summarized 

set of design guidelines for adapting the proposed gripper structure for various 

applications. These guidelines provide instruction on which parameters to modify 

to redesign the soft compliant end-effector for grasping different targets. 

 

1.4 Thesis Organization 

This thesis is organized into seven chapters. The following chapter, Chapter 2, Background 

and Literature Review provides a detailed overview of the knowledge and information 

researched in this thesis. After an introduction to hyperelastic material theory, the chapter 

discusses relevant work on soft robotic technology, including the fabrication and operating 

principles of various soft actuators and grippers. Chapter 3, Design Methodology and 

Fabrication presents the geometric overview of the compliant soft actuator and 

corresponding gripper structure. The chapter also provides the actuator design’s fabrication 

process, and model generation and setup in COMSOL Multiphysics. Chapter 4, COMSOL 

Simulations and Results describes the hyperelastic studies performed and their resulting 

data. Chapter 5, Experimental Setup and Testing goes over the experiments performed and 

the comparison of their resulting data with the previous chapter’s simulation results. 

Chapter 6, Application Study and Discussion demonstrates the proposed design’s 

performance in terms of mushroom harvesting. Previous work on harvesting systems is 

presented. The systems are first discussed in general terms, followed by an overview of 

mushroom harvesting systems that utilize vacuum cups. A comparison is then made 

between the proposed gripper design and existing vacuum cups. The chapter also discusses 

results of simulation studies and experimental tests and summarizes design guidelines to 

modify the gripper design for different applications. Finally, Chapter 7, Concluding 

Remarks summarizes the primary conclusions of the thesis and provides recommendations 

for future work. 

 



 

 

 

Chapter 2 

 Background and Literature Review 

 

This chapter first provides an introduction to hyperelastic material theory. It also provides 

relevant background information on soft robotics technology, with a focus on air-driven 

soft material actuators and grippers. Additional background on the intended application, 

mushroom harvesting, is presented in this thesis. However, the goal of this chapter is to 

provide the necessary information fundamental to understanding soft robots and their 

functionality. Robotic harvesters in horticulture are presented at the beginning of Chapter 

6. All additional information related to mushrooms is available in Appendix C. 

 

2.1 Hyperelastic Theory 

Most silicone-based elastomers are considered to be hyperelastic. That is, materials that 

are capable of experiencing large deformations under small loads and then return to their 

original shape without any significant plastic deformation once that load is removed [23]. 

Hyperelastic materials, such as solid rubber, are close to ideally elastic. When deformed at 

constant temperature or adiabatically, stress is solely a function of current strain. It is 

independent of the history or rate of loading [24].  The stress-strain behaviour of a 

hyperelastic material is very nonlinear, meaning that the material’s elastic modulus is not 

enough to characterize its elastic behaviour (Figure 2.1) [25], [26]. A constitutive 

mathematical model is therefore necessary to represent the real behaviour of a hyperelastic 

material [23], [25], [27]. These hyperelastic models can be used with materials that undergo 
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large deformations, taking into account intrinsic (relating to the material microstructure) 

and geometric (relating to the material’s shape) nonlinearities [28], [29].  

  
(a) (b) 

Figure 2.1 Stress-strain curve during a loading cycle. (a) Elastomer hyperelastic material 

behaviour; (b) Linear elastic material behaviour. Note that the Young’s moduli are not to 

scale. As described by [24], [26], [27]. 

 

2.1.1 Governing Equations 

A material tends to store energy internally throughout its volume as it is deformed by an 

external load. This internal energy is related to material strain and is known as the strain-

energy. Consider an object under tension, where a volume element of the object is 

subjected to a uniaxial stress (Figure 2.2a) [30]. 

  

(a) (b) 

Figure 2.2 Volume element subjected to (a) uniaxial stress (𝜎) and (b) principal stresses.  
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This stress in turn develops a force on the top and bottom faces of the element once it 

undergoes a displacement. The difference in these forces is defined by 

∆𝐹 = 𝜎∆𝐴 =  𝜎(Δ𝑥Δ𝑦) (2.1) 

where (𝜎) is the uniaxial stress and (∆𝐴) is the change in cross-sectional area of the 

element normal to the stress, after the element of length Δ𝑧 undergoes a vertical 

displacement. Work is defined by the product of the force and related displacement. Since 

force is uniformly increased from zero to its final magnitude when this displacement is 

reached, the work done by the force on the element is equal to the product of the average 

force magnitude and the displacement. With the assumption of no energy loss, the external 

work becomes equal to the internal energy, also known as the strain-energy stored in the 

element. Therefore, the strain-energy can be defined by 

∆𝑈 = (
∆𝐹

2
) 𝜖∆𝑧 =

1

2
𝜎∆𝐴𝜖∆𝑧 (2.2) 

∆𝑈 =
1

2
𝜎𝜖∆𝑉 (2.3) 

where (𝜖) is the strain and (𝜖∆𝑧) is the material element’s vertical displacement. Equation 

(2.3) can be rewritten to formulate the strain-energy per unit volume of material. This is 

known as the strain-energy density. 

𝑊 =
∆𝑈

∆𝑉
=

1

2
𝜎𝜖 (2.4) 

Now consider this same volume element, now subject to three principal stresses (Figure 

2.2b). Equation (2.4) can be rewritten such that each principal stress contributes a portion 

of the total strain-energy density. 

𝑊 =
1

2
𝜎1𝜖1 +

1

2
𝜎2𝜖2 +

1

2
𝜎3𝜖3 (2.5) 

For linear-elastic material behaviour, Hooke’s law applies, and these formulas can be 

rewritten in terms of the material’s Young modulus. However, the stress-strain behaviour 

of a rubber-like material such as PDMS is highly nonlinear and, therefore, the material’s 
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elastic modulus is not sufficient for characterizing their behaviour when dealing with large 

deformations. A constitutive model is required for simulating the true behaviour of the 

hyperelastic material and associated structures at high strains [23], [25], [27], [28]. A 

suitable constitutive model can be derived from a strain-energy density function (𝑊) that 

represents the energy stored in the material per unit volume of the original geometry as a 

function of strain at that point in the material.  Mathematically, this relationship is defined 

as [23] 

𝑊 = 𝑓(𝐼1, 𝐼2, 𝐼3) = 𝑓((𝜆1
2 + 𝜆2

2 + 𝜆3
2), (𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆3

2𝜆1
2), (𝜆1

2𝜆2
2𝜆3

2)) (2.6) 

where 𝐼1, 𝐼2, and 𝐼3 are the three strain invariants of the Green deformation tensor. The 

individual strain invariants are a function of the principal stretch ratios (𝜆𝑖, 𝑖 = 1, 2 and 3). 

The stretch ratio is a measure of the extensional strain that is normal to a material line 

element. It can be defined within either the natural or deformed state as the ratio between 

the final and initial lengths of the material line. In other words, 

𝜆 =
𝑙

𝑙0
=

𝑙 − 𝑙0 + 𝑙0

𝑙0
= 𝜖 + 1 (2.7) 

where 𝑙 is the final length, 𝑙0 is the original length, and 𝜖 is the material strain. Stretch 

invariants are the properties by which the hyperelastic model can have a non-zero solution.  

The third invariant term given by equation (2.6) is related to the elastic volume ratio 

(𝐽) by 𝐼3 = 𝐽2. Introducing the volume ratio term enables a more convenient constitutive 

model to be developed for nearly incompressible materials where 

𝐼1̅ =
𝐼1

𝐽2 3⁄    and  𝐼2̅ =
𝐼2

𝐽4 3⁄  (2.8) 

and where 𝐼1̅ and 𝐼2̅ are assumed to remain constant under a pure volume change.    

The strain-energy density of a material (𝑊) given by equation (2.6) can be written as 

the sum of two parts [27]. The first part is the isochoric term, 𝑊𝑖𝑠𝑜(𝑓), which represents 

the energy needed to deform or distort the element while preserving volume. The second 

part represents the energy needed to cause a change in volume of the element with no 
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change in shape and is known as the volumetric term, 𝑊𝑣(𝑓). The strain-energy density 

can therefore be given as 

𝑊 = 𝑊𝑖𝑠𝑜(𝐼1̅, 𝐼2̅) + 𝑊𝑣(𝐽) (2.9) 

where 𝐽 = √𝐼3. By assuming an incompressible material, 𝐽 =  1. 

In this study, the Mooney-Rivlin model [23], [25], [27] is used to simulate the 

hyperelastic behaviour of the PDMS material used in the pneumatically-driven soft 

actuators. The generalized form of strain-energy density is given by 

𝑊 =
𝜇1

2
(𝐼1̅ − 3) +

𝜇2

2
(𝐼2̅ − 3) +

𝐾1

2
(𝐽 − 1)2 (2.10) 

where 𝜇 and 𝐾1 are the shear and bulk moduli of the solid, respectively. In this case, 𝜇1 =

𝐶10 =
7

16
𝜇 and 𝜇2 = 𝐶01 =

1

16
𝜇.  Correspondingly, the shear modulus is 𝜇 = 2(𝐶10 +

𝐶01). The material constants 𝐶10 and 𝐶01 are set as such to fulfill the approximation for 

rubber-like materials of 𝐶10 = 7𝐶01 [27], [31], [32]. 

Other hyperelastic models were available. From an experiment described in the 

textbook by Holzapfel [27], the Mooney-Rivlin model is used in comparison with the Neo-

Hookean, Varga, and Ogden models for the inflation of a rubber spherical balloon. The 

simplified Neo-Hookean and Varga models are capable of reproducing the real behaviour 

of the deforming hyperelastic shape for small strains. However, neither model is capable 

of tracking the local maximum and minimum displacement values for pressure, known as 

limit points. The Mooney-Rivlin and Ogden models are capable of showing these points. 

The Ogden model provides a more realistic approximation of the balloon’s deformation; 

however, it requires additional parameters that are beyond the capabilities and scope of this 

work. Thus, the Mooney-Rivlin model was selected. 
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2.2 Polydimethylsiloxane (PDMS) 

 

2.2.1 Ultra-soft, Unpredictable Elastomers 

Pneumatically-driven soft actuators have been fabricated from a variety of commercially 

available silicone elastomers like Ecoflex™, DragonSkin™ and pre-made tubes of 

commercial silicone [33]. Although these elastomeric materials are ultra-soft and can be 

moulded into single and multi-chambered actuators, they were developed for non-scientific 

applications like theatrical prosthetics and, therefore, very little information is available 

about their underlying engineering properties. Furthermore, these ultra-soft materials 

exhibit inconsistent hyperelastic behaviour under pressurization making it very difficult to 

analyze fabricated chambers either through simulation or controlled repeatable 

experiments. 

Ultra-soft elastomers are susceptible to modes of instability such as snap-through 

buckling, a bi-stable form of nonlinear buckling common in ultra-soft elastomers and thin-

walled geometries [34], [35]. At high air pressure inputs, the elastomeric chambers undergo 

large deformations at an accelerated and unstable rate. The actuator chamber walls are 

more susceptible to buckling under these conditions, where the displacement under load 

will “snap-through”. When this occurs, the actuator’s chambers will exhibit a sudden and 

significant change in geometry before stabilizing at a new configuration [36]. Removing 

the pressure causes the chamber geometry to revert to its original stable form, or “snap-

back”. 

In contrast, polydimethylsiloxane (PDMS) is a flexible silicone-based organic polymer 

that is used extensively in scientific research due to its viscoelastic, thermosetting and inert 

properties [37], [38]. The predictable and known material properties of PDMS make it a 

viable hyperelastic material for computational simulation on COMSOL Multiphysics 

software and enable a deeper understanding of the impact of geometric design parameters 

on actuator performance. 
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2.2.2 Properties of PDMS 

PDMS is a mineral-organic polymer, with a structure that contains both carbon and silicon, 

from the siloxane family (silicon, oxygen, alkane) [25]. The brand used in this research, 

Sylgard 184, is available as a fluid monomer base and curing agent. To fabricate solid 

PDMS, the liquid base is mixed with the cross-linking agent and then poured into a mould 

to create the desired geometry. The empirical formula (Figure 2.3) of PDMS is 

(𝐶2𝐻6𝑂𝑆𝑖)𝑛, and the fragmented formula is 𝐶𝐻3[𝑆𝑖(𝐶𝐻3)2𝑂]𝑛𝑆𝑖(𝐶𝐻3)3, where 𝑛 is the 

number of monomer repetitions in the polymer chain [25]. 

 

Figure 2.3 Empirical formula of PDMS. As shown on Sigma-Aldrich [39]. 

 

Properties of PDMS can be tuned and adjusted by varying the mixing ratio between the 

monomer base and cross-linking agent [40], curing temperature [41], and cure time. Kim 

et al. [40] investigated the nonlinear mechanical properties of Sylgard 184 in relation to 

the base/agent mixing ratio. They found that the amount of curing agent used will influence 

the elastic properties of PDMS, with more curing agent resulting in a hard PDMS and less 

agent creating a softer elastomer, both with differing stress-strain curves. Johnston et al. 

[41] investigated the mechanical properties of Sylgard 184 PDMS with regard to curing 

temperatures ranging from 25 °C to 200 °C. A linear relationship between the elastic 

modulus, 𝐸, and the curing temperature is shown. Note that letting PDMS cure at 25 °C 

(room temperature) requires at least 48 hours before a solid elastomer is formed. Liu et al. 

[42] investigated the mechanical properties of Sylgard 184 PDMS in relation to long cure 

times at high temperatures (100 – 500 °C). They found that longer cure times at 

temperatures greater than 200 °C drastically reduce the mechanical strength of PDMS. This 
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reduction is attributed to thermal decomposition, which starts at 200 °C and reaches a peak 

at 310 °C. Work by McDonald and Whitesides [43] summarizes the material properties of 

Sylgard 184 PDMS, shown in Table 2.1. 

Table 2.1 Properties of PDMS, Sylgard 184, summarized from [43]. 

Property Characteristic Consequence 

Mechanical 
Elastomeric; tunable Young’s Modulus 

𝐸 =  0.75 𝑀𝑃𝑎 –  4 𝑀𝑃𝑎 

Conforms to surface; allows actuation by 

reversible deformation; facilitates release 

from moulds 

Thermal 

Insulating; thermal conductivity, 

0.2 𝑊(𝑚 · 𝐾); coefficient of thermal 

expansion, 310 𝜇𝑚/(𝑚 · °𝐶) 

Can be used to insulate heated solutions; 

does not allow dissipation of resistive 

heating from electrophoretic separation 

Interfacial 
Low surface free energy 

~ 20 𝑒𝑟𝑔/𝑐𝑚2 

Replicas release easily from the mould; 

can be reversible sealed with materials 

Permeability 
Impermeable to liquid water; permeable 

to gases and nonpolar organic solvents 

Contains aqueous solutions in channels; 

allows gas transport through the bulk 

material; incompatible with many organic 

solvents 

 

The established and well-documented procedures for creating softer or harder PDMS 

elastomer structures provide control on the fabrication processes for creating functional 

soft hyperelastic pneumatic actuators. For the purposes of this research, a 10:1 base/curing 

agent mixing ratio is used with a thermal cure at ambient temperature for 48 hours. As an 

elastic material, PDMS can withstand repeated loading. However, it is not as deformable 

as ultra-soft Ecoflex 00-30. Under bending load, PDMS will fracture above a maximum 

strain of 150%, whereas Ecoflex 00-30 will only fracture above a maximum strain of 900% 

[6]. An alternative elastomer comparable to PDMS, in terms of material properties, is RTV 

615 Silicone [44]. Sharing similar material and mechanical properties, RTV 615 is better 

suited for optical applications than Sylgard 184 PDMS [45], and was thus not acquired for 

this research.. 
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2.2.3 Importance of Degassing PDMS 

Uncured PDMS is in the form of a thick liquid with a viscosity of approximately 3.5 kg/m·s 

[39]. This means that the fluid is susceptible to trapped gas bubbles before curing. Sylgard-

184 PDMS is sold as a kit containing a monomer base and curing agent and mixing these 

two compounds together creates many air bubbles. Once the PDMS is cured, any bubbles 

that haven’t dissipated will remain trapped in the solid geometry, creating points of 

weakness in the actuator structure. Even worse, an air bubble that creates a hole through 

any of the actuator walls renders the whole geometry useless. Therefore, it is critical that 

all gas bubbles be completely removed before the PDMS can cure. 

Techniques exist to improve the removal of gas bubbles from the uncured PDMS 

mixture by increasing the buoyant forces that the viscous liquid exerts upon them. The 

buoyancy force acting in the opposite direction of gravity, 𝑔, of a submerged body [46] is 

given by 

𝐹𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 = 𝜌𝑓𝑉𝑏𝑔 (2.11) 

where 𝜌𝑓 is the density of the fluid and 𝑉𝑏 is the submerged body’s volume. Vacuum 

degassing is the most common method of degassing PDMS. It is used in microfluidics [37], 

[38], as well as existing soft robotic [47], [48] literature where open cavity moulds are 

placed in a vacuum chamber. The mixed and heavily-aerated PDMS then becomes subject 

to negative pressure. The trapped air bubbles, previously at atmospheric pressure, now 

expand in volume. This also increases the exerted buoyant force in equation (2.11). 

Degassing with a vacuum chamber may require a long time to fully remove all bubbles 

depending on the initial number of bubbles present, the vertical distance they must rise to 

reach the surface, and wall friction effects. 

Agitating the mixture by stirring or pouring can create tiny gas pockets which must be 

removed. Vacuum degassing is a common and proven method of removing any trapped 

gasses, though with a fluid as viscous as PDMS it can take over an hour. Any further 

agitation after the PDMS is degassed can introduce new bubbles to the mixture. Given the 
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multi-step moulding techniques described in Chapter 3 of this work, multiple degassing 

sessions are therefore necessary. 

 

2.2.4 Removing PDMS from a Mould 

Chapter 3 will present the multi-step moulding techniques used to fabricate the soft PDMS 

actuators. Extracting the part from the mould is a crucial and delicate process to preserve 

the overall quality of the demoulded geometry. For soft actuators, any defects, cuts or tears 

due to careless or improper removal techniques greatly diminishes, if not fully ruins, the 

functionality of the device. As mentioned in Table 2.1, the elastomeric properties of PDMS 

make fabricated geometries easy to peel off a complex master pattern. However, this is 

assuming that there is little-to-no adhesion between the PDMS and mould surface. Soft 

pneumatic actuators require much larger moulds compared to conventional microfluidics 

work, resulting in greater contact between the PDMS and multiple complex surface 

geometries. If enough adhesion between the mould surfaces and the PDMS part exists, 

actuator features may bond to the mould surface and tear when removal is attempted. 

Unwanted adhesion may result in high strains on the PDMS geometry during removal, 

which may cause permanent deformation. 

A common method for preventing damage during part removal is to apply a thin layer 

of anti-adhesion coating to the mould surfaces. Commonly known as a surfactant, release 

agent or demoulding agent, these coatings lower the mould’s surface energy to prevent the 

PDMS from bonding. Silane anti-adhesion layers are commonly used as release agents for 

PDMS fabrication in microfluidics. They are typically applied with vapour deposition on 

SU-8 or PDMS when master patterns are used and need to last for a limited number of soft 

lithography replications. Friend et al. [37] used gaseous dimethyloctadecylchlorosilane in 

vacuum conditions to form a thin anti-adhesive monolayer on SU-8 patterns. Work by 

Chen et al. [49] uses (tridecafluoro-1,1,2,2,-terahydrooctyl)-1-trichlorosilane on PDMS 

patterns, while both Con et al. [50] and Zhang et al. [51] use trichloro-(1, 1H, 2H, 2H-

perfluorooctyl)silane on SU-8 and PDMS patterns. It is important to note however, that 

when a material like a rigid polymer is used to fabricate the mould or master pattern, silane-

based release agents can chemically interact with the polymer. This can cause cracking or 
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structure warping, depending on the combined polymer and silane agent. Silanes can also 

be hazardous and costly. Chang-Yen et al. [52] proposes a safer and more cost-effective 

solution by replacing the silane agent with an industrial cleaning solution. The work found 

that a detergent-based agent on SU-8 patterns performed with greater success than silane 

agents. 

 

2.2.5 Partial Moulding Techniques 

The multi-step fabrication technique mentions partially curing the PDMS in some steps, 

where the PDMS is cured for only half the required time. In this case, the PDMS has only 

just solidified and its surface still contains bondable polymer chains. More uncured PDMS 

can be poured over this surface, and this will bond with the surface’s available polymer 

chains. Work by Eddings et al. [53] states that partial curing showed the highest bond 

strength compared to any other bonding technique. 

 

2.3 Soft Robotics Technology 

Research on soft-material robotic grippers using soft elastomers can be dated back to the 

late 1980s and early 1990s [1]. One of the first pieces of published work for a continuously-

deforming elastomeric geometry is by Wilson and Mahajan in 1989 [54]. They present a 

pneumatically-driven arm made of soft elastomeric bellows. The attached grippers are 

made of additional bellows to create a soft robotic assembly. The actuation and bending of 

these bellows allowed the arm to perform pick-and-place operations of irregularly shaped 

objects [1], [54]. Other pieces of critical work include research by Suzumori et al. [55], 

[56]. In this research, the bellows-like actuators are replaced with novel tri-cellular units. 

The three cells are distributed about a central axis, each spanning 120°. The precise 

configuration of these units could be implemented in gripper designs and hexapod walkers 

for object manipulation and soft robotic locomotion [1], [55], [56]. 

Though the basic concepts behind pneumatically-actuated soft grippers have remained 

the same, the overall field of soft-material robotics has changed with the development and 
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improvement of new technologies. Interest in the field has rekindled in the early 21st 

century since the establishment of soft materials as a field of material science research in 

the early 1990s. Many new soft materials have been created and made available on a 

commercial scale. The development of diverse fabrication techniques for soft materials, 

and the level of accessibility of these techniques, has increased. An increase is also noted 

in the magnitude of the research and work, published in high-profile journals, that 

demonstrate the use of soft materials in robotic applications. Overall, it is generally agreed 

in the relevant scientific community that soft robotic technologies can and should be used 

in future robotic applications where they would provide a naturally cheaper, safer, and 

more adaptive solution for intricate applications in unstructured environments as opposed 

to conventional rigid systems [57]. 

 

2.3.1 Review of Soft Pneumatic Actuators 

Also known as Fluidic Elastomer Actuators, soft pneumatic actuators are one of the most 

common and widespread soft robotic design. During operation, the applied pressurized air 

causes the inflation and deformation of one or more inner chambers (i.e., cavities). These 

actuators are typically fabricated from ultra-soft and highly deformable materials including 

synthetic rubbers or silicone polymers and elastomers [3], [5]. Soft lithography techniques 

and the integration of soft composite materials (i.e., embedded strain-limiting membranes) 

are combined to fabricate the soft actuator structure and predict its motion [2]. Predicting 

actuator behaviour is further improved with design asymmetry and the careful selection of 

constituent materials. 

 

2.3.1.1 Pneumatic Networks 

Designed by the Whitesides Research Group at Harvard University, Pneumatic Networks 

(PneuNets) consist of a series of chambers connected by a long channel, all embedded 

within an extensible elastomeric layer [4]. This compliant structure is bonded to an 

inextensible layer that includes an embedded film of non-stretching but flexible material 

like cloth or paper. A single air input pressurizes the structure, causing the chambers to 
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expand and press against each other. This creates a difference in strain between the 

extensible and inextensible layers, resulting in a directional bending motion (Figure 2.4). 

The PneuNet actuator is meant to approximate the behaviour of a biological finger. Each 

additional inflating chamber within the PneuNet corresponds to an additional bending 

DOF. With the use of ultra-soft elastomers, the actuator can have an infinite number of 

DOF [58]. The principle behind the PneuNet’s bending motion has been implemented in a 

number of applications including multigait movement [5], medical rehabilitation devices 

[59], and the manipulation of various objects [58].  

  

(a) (b) 

  

(c) (d) 

Figure 2.4 Pneumatic Network soft bending actuators. (a) Deflated state; (b) Inflated State; 

(c) Ultra-soft material instability; (d) Limitations as a gripper design for the research 

application. Note that the actuators shown in this figure were fabricated as part of 

preliminary work for this research thesis. 
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The most recent PneuNet design by Mosadegh et al. [4], of which a custom fabrication 

is shown in Figure 2.4, investigates the impact of reducing the expansion volume of the 

structure by adding gaps between the chambers. Less material between the chambers allow 

the chamber walls to expand preferentially under pressure, reducing the deformation and 

strain on portions of the structure not critical for bending. The study shows that reducing 

the expansion volume increases the speed at which the actuator bends (the actuation speed) 

and reduces the operating pressure for full actuation. The reduced deformation and 

operating pressure in turn reduce the material strain, significantly improving the actuator’s 

durable life. However, these improvements come at the reduction of applicable tip forces.  

The lower operating pressures reduce the actuator’s contact forces, consequently 

diminishing the structure’s payload capabilities as a gripper. The work also studied the 

impact of using different materials. The original design is fabricated with Ecoflex 00-30 

and PDMS as the extensible and inextensible layers, respectively. Replacing the soft 

Ecoflex with a stiffer elastomer (Elastosil M4601) showed that while stiffer material 

geometries required significantly more pressure to fully actuate (approximately 8X more), 

a smaller change in volume is needed (approximately 1.5X less) to bend completely. It was 

also shown that the greater expansion volume required with softer material geometries is a 

direct consequence of the additional and extraneous expansion of non-critical actuator 

sections (i.e., walls not used in the bending motion). This means that actuators fabricated 

from a softer elastomer have a reduced actuation speed and apply lower tip forces for a 

given inflation pressure as compared to the same structure made with a stiffer material [4]. 

Performance parameters for the PneuNet design are established by Mosadegh et al. [4]. 

They are: 

1. Speed achieved for a given rate of inflation. 

2. Force exerted for a given pressure. 

3. Change in volume required for a given degree of bending. 

4. Number of actuation cycles before failure. 

5. Correlation between actuation pressure and degree of bending without a load. 
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Two major limitations are present in Mosadegh et al.’s design. The length and size of 

the PneuNet structure, combined with the lack of material between the inflating chamber 

walls, cause the actuator to bend slightly under gravity. In addition, the actuator’s chambers 

may not expand simultaneously and uniformly when pressurized above a certain threshold 

(200 kPa). This is due to snap-through instability, as mentioned in Section 2.2.1.  

Soft Robotics Toolkit, the website created for educational purposes by the Harvard 

Biodesign Lab, provides several methods of fabricating soft robotic sensors and actuators 

[60]–[62], including a simple method of creating a basic PneuNet actuator. As previously 

explained, the PneuNet actuators are composed of two parts; the top extensible body 

containing the chambers that deform when the actuator is pressurized, and a bottom 

inextensible layer containing a strip of strain-limiting material. These two parts are 

fabricated separately in specific mould geometries before being bonded together. The 

webpage discusses fabrication of the PneuNet with Ecoflex 00-30 as the hyperelastic 

material, a strip of paper as the strain-limiting layer and suggests using an oven to 

accelerate the curing process. The work by Mosadegh et al [4] elaborates on the fabrication 

process for the most recent PneuNet design in a supporting document [7]. Moulds are made 

of acrylonitrile butadiene styrene (ABS) polymer with a three-dimensional (3D) printer. 

Three mould parts are used: interior and exterior pieces for the top body, and a flat 

rectangular mould for the inextensible bottom. The flaw with this method lies in the strain-

limiting material used. Paper strips are prone to tearing and can break down when 

submerged in a fluid (i.e., the elastomer mixture). A more durable strain-limiting material 

is therefore required. Some preliminary work is performed on the fabrication of a PneuNet 

design. It is presented in Appendix A. 

 

2.3.1.2 Fiber-Reinforced Actuators 

Similar in bending motion to the PneuNet, Fiber-Reinforced (FR) actuators use fiber 

strands or meshes to radially constrain the actuator geometry (Figure 2.5). The actuator is 

typically fabricated by first embedding a strain-limiting layer into the flat surface of a half-

cylinder elastomer tube. Fiber strands are then wrapped around the structure. The 

reinforcing fibers prevent radial expansion, limiting the actuator to axial deformation. With 
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the strain-limiting layer preventing the flat surface of the actuator from stretching, the 

geometry will perform a bending motion. The fibrous material can include, but is not 

limited to, Kevlar thread, nylon, and string [33], [63], [64]. Contact points between the soft 

actuator membrane and the reinforcing fibers create sources of highly localized strains and 

abrasion, which are both known causes of actuator failure by rupture [33]. To reduce these 

strains, a sleeve cover can be placed over the fiber strands. 

 

Figure 2.5 Fiber-Reinforced actuators at different sleeve spacing configurations (Galloway 

et al. [63] © 2013 IEEE, included with permission). 

 

Research by Galloway et al. [63] investigates the impact of sleeve placement over the 

actuator’s length. The work also verifies the impact of different materials, using 

DragonSkin 10 (Shore hardness 10A) and Elastosil M4601 (Shore hardness 28A) for a 

comparative study. A third case is created by fabricating another FR actuator out of 

Elastosil with sheets of fiberglass laminate bonded to the flat surface of the structure and 

held beneath the sleeve cover. Three sleeve spacing configurations are tested. They are 0 

mm (no spacing), 15 mm, and 30 mm between each sleeved section. The study shows that 

increasing the spacing of the sleeve portions in turn increases the actuator’s bending 

deflection at a given pressure. Adding the more rigid laminate sheets causes the flattest 

response to a given pressure for the two lesser sleeve spacing configurations. The 30 mm 
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configuration exhibits the lowest radius of curvature for a given pressure. This suggests 

that the rigid laminate sheets can localize actuation to the sleeve spacing, an important 

concept for the purposes of this research thesis as it shows that incorporating passive rigid 

elements into a soft actuator assembly can improve control over the system [63].  

Comparing the two elastomers used shows that the softer material (DragonSkin 10) 

exhibited the highest sensitivity to a given pressure with respect to bending deflection [63]. 

In all cases and configurations, the softer elastomer can achieve smaller radii of curvature. 

However, the softer material is also more susceptible to instabilities at high pressures (over 

400 kPa) and becomes highly prone to failure by rupture. Like the work by Mosadegh et 

al. on the PneuNet [4], this suggests that while a softer material structure may initially 

produce forces comparable to a stiffer elastomer, the stiffer material can support higher 

pressures. Thus, it can also produce larger forces. In summary, the described research 

presents trade-offs in actuator performance between sensitivity of deformation to air 

pressure, output force, and radius of curvature for a FR actuator. 

Galloway et al.’s soft FR actuator also uses 3D printed polymer moulds for casting the 

elastomer mixtures in the geometries desired (Figure 2.6). The interior of the actuator is 

defined by the insertion of a half-round steel rod within the mould assembly. Several 

elastomer layers are casted and removed from the mould assembly, with modifications and 

additions made to the actuator between casting sessions. Once complete, the steel rod is 

removed, and the actuator is closed off on both sides with rigid caps. The input cap of the 

actuator includes a pneumatic fitting. Frequently removing the soft structure from the 

mould assembly increases the likelihood of damaging the actuator. Multiple modifications 

and additions also increase the possibility of non-identical actuators, resulting in varied 

performance. This is further compounded by the need to realign the actuator structure and 

steel rod within the mould assembly between each fabrication step. 
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(a) (b) 

Figure 2.6 FR actuator fabrication (Galloway). (a) Mould components; (b) Multi-step 

fabrication process (Galloway et al. [63] © 2013 IEEE, included with permission). 

 

Another study by Miron et al. [33] in Sherbrooke, QC, presents a similar design. 

Though the design is primarily tested as a gripper system (and thus will be discussed in 

Section 2.3.2), the proposed design presents an emphasis on three fatigue principles for FR 

actuators. These are: 

1. Reduction in local stresses and strains. 

2. Reduction in surface damage from abrasion and fiber-on-membrane cutting. 

3. Operating below a material’s fatigue limit; the strain under which the fatigue life 

tends towards infinity. 

Fabrication for the FR actuator by Miron et al. [33] is accelerated by using a pre-made, 

open-ended tube of silicone elastomer known to have a fatigue limit of over 50%. A woven 

elastic band sewn in an inelastic nylon-fabric strip forms the FR sleeve that produces the 

bending motion. This sleeve is then positioned over the elastomer tube. The ends of the 

tube are once again capped (Figure 2.7). Using a pre-made elastomer structure significantly 

limits the shape and size of any actuator designed in this research thesis. 



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

24 

 

 

 

Figure 2.7 FR actuator fabrication (Miron) (Miron et al. [33] © 2018 CC-BY, included 

with permission). 

 

2.3.1.3 Pneumatic Artificial Muscles 

One of the earliest and simplest air-driven soft actuators is the Pneumatic Artificial Muscle 

(PAM), shown in Figure 2.8, where an internal elastomeric membrane (typically a 

cylindrical bladder) is surrounded by a woven braided shell [65], [66]. The behaviour of a 

PAM is dependent on its fabrication. Fitting the woven shell evenly along the muscle length 

(or making it slightly shorter) will cause it to contract when pressurized (contractor 

muscle). Using a shell that is slightly longer than the muscle will cause the actuator to 

extend under pressure (extensor muscle). The length of the shell is quantified by the pitch, 

braid, or weave angle. A contractor muscle will have a maximum braid angle of 54.7° at 

full contraction [65]. Extensor muscles will have the same braid angle when at rest. No 

single PAM can achieve both types of motion. Contractor muscles are significantly more 

established in research [66]. A common variant of the contracting PAM is the McKibben 

actuator. When pressure is applied at a constant value within the inner cavity, a contraction 

force is produced. This decreases with the contraction ratio, which is defined as the ratio 

between the muscle’s reduction and its initial length [67]. Like all PAMs, the McKibben 

actuator generates a linear and unidirectional axial force, resulting in linear motion that 

transfers forces to an attached load [65]. 
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(a) (b) 

Figure 2.8 Pneumatic artificial muscles. (a) PAM contraction for increasing pressure with 

constant mass; (b) Enhanced view of PAM braided sleeve. Figures created at Western 

University. 

 

Research by Al-Fahaam et al [66] starts with a McKibben PAM, and reconfigures it to 

become an extensor muscle by replacing the fitted woven shell with one significantly 

longer than the muscle (i.e., the shell now has a braid angle greater than 54.7° when the 

actuator is at rest). This modifies the McKibben actuator into an extensor muscle. The 

structure was then reinforced along one side with a strain-limiting layer to keep it at a fixed 

length. When pressurized, the new design is unable to extend in length and therefore 

performs a bending motion. This new variant of the PAM is proposed as an extensor 

bending pneumatic artificial muscle (EBPAM). An example of the EBPAM is shown in 

Figure 2.9. 
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(a) 

 

(b) 

Figure 2.9 McKibben EBPAM. (a) Modified extensor McKibben actuator; (b) Extensor 

McKibben actuator further modified to bend (Al-Fahaam et al. [66], © 2018 Elsevier, 

included with permission). 

 

A summary of the performance of each type of described actuator, including operating 

pressures and applicable forces, is available in Table 2.2. Note that the percentages listed 

along the force values for the McKibben PAM are based on the muscle’s level of 

contraction. 
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Table 2.2 Performance summary of actuator designs. 

Actuator Material Mass 
Operating 

Pressure 

Actuation 

Speed 

Applied 

Force 
Comments Reference 

PneuNet 

EcoFlex 00-30 

(extensible); 

PDMS 

(inextensible); 

Paper (strain-

limiting layer) 

- 72 kPa 
130 

milliseconds 
1.4 N - [4] 

FR 

Actuator 

DragonSkin 

10 
- 172 kPa - 2.75 N 

30 mm 

sleeve 

spacing 
[63] 

Elastosil 

M4601 
- 414 kPa - 7.12 N 

30 mm 

sleeve 

spacing 

McKibben 

PAM 

- 50 g 300 kPa - 

650 N 

(rest); 

300N 

(15%); 

0 N 

(30%) 

150 mm 

rest length, 

14 mm 

diameter 

[65] 

- 32 g 300 kPa - 

220 N 

(rest); 

100 N 

(10%); 

0 N 

(20%) 

150 mm 

rest length 

McKibben 

EBPAM 
- - 500 kPa - 42 N 

bending 

actuator 
[66] 

 

Soft robotic designs exist for end-effectors or manipulators that implement PAM 

actuators in object manipulation applications [68], [69]. These systems typically emulate 

the complex biological behaviour of elephant trunks or cephalopod tentacles, the nature of 

which is not suited for the purposes of this research thesis. 

 

2.3.2 Review of Soft Pneumatic Grippers 

A six-fingered PneuNet gripper was originally developed by the Whitesides group [6]. 

Though little numerical data was found for this proof-of-concept design, the gripper was 

able to pick up a raw egg without breaking the shell. It was also capable of handling a 

sedated mouse without causing it any harm (Figure 2.10). The soft structure of the PneuNet 
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gripper distributes the target’s load over the gripper’s entire surface instead of a few force 

points. 

 

Figure 2.10 Early Whitesides PneuNet grippers. Grasping an egg (top) and a sedated 

mouse (bottom) (Whitesides et al. [6], ©  2011 WILEY, included with permission). 

 

Another PneuNet gripper design is presented by Galloway et al. [70]. In this case, the 

contact surfaces of the gripper’s four fingers are modified to fit a block of memory foam 

for additional soft contact. Payload tests for this gripper design are performed for both 

horizontal and vertical configurations, and a case study is performed for collecting delicate 

reef samples at depths of up to 170 m (Figure 2.11) [70].   
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Figure 2.11 PneuNet Gripper for delicate ocean reef sampling (Galloway et al. [70], © 

2016 Mary Ann Liebert, Inc., included with permission). 

 

Research by Hao et al. [58] describes another four-fingered PneuNet gripper design 

Figure 2.12). The core of their work focuses on investigating the performance of tunable 

effective finger lengths. A nylon strand is selectively placed to mechanically control the 

length of the PneuNet actuators that inflates. The study concludes that there exists an 

optimal PneuNet length capable of providing the maximum pull-off force for specific 

gripper shapes and sizes. That is, longer effective lengths are best-suited for larger objects 

whereas shorter lengths were better for smaller structures. For this work, the PneuNet 

fingers are made entirely out of DragonSkin 30 silicone elastomer. Payload tests are 

performed with a variety of different shapes. The work suggest that the gripper’s payload 

capabilities is partially dependent on the effects of friction and geometrical overlapping or 

interlocking of the gripper fingers. When gripping objects by their vertical sides, like in the 

case of larger objects such as a rectangular prism, friction forces acting tangentially to the 

grasped surface are the primary means of grasping the object. As such, recorded pull-off 

forces are significantly smaller compared to smaller objects. However, the gripper fingers 

can enclose and wrap around objects like spheres and smaller cubic structures. In this case, 

the fingers overlap or interlock geometrically around the object. This effect becomes the 

dominant principle behind the gripper’s grasping capabilities, with friction forces having a 

less significant role. The work also found that when the gripper holds flatter, more cubic-

shaped objects, the maximum pull-off force observed is approximately double that of 

grasping a spherical structure [58]. 
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Figure 2.12 Universal PneuNet gripper testing tunable actuator lengths (Hao et al. [58], © 

2016 IEEE, included with permission). 

 

Soft Robotics Inc., a company based in Cambridge, MA, produces and sells basic 

PneuNet grippers for industrial pick-and-place operations. Though information on their 

design is proprietary, application videos on their website show an alleged maximum 

payload of 4.5 kg [33]. 

 

2.3.2.1 Fiber-Reinforced Grippers 

The Fiber-Reinforced actuators previously described by Galloway et al. [63] were also 

tested in a two-fingered gripper assembly. The gripper was tested with three actuator 

configuration cases: a sleeveless actuator, an actuator with 0 mm sleeve spacing, and 

another with 0 mm sleeve spacing and the laminate sheets beneath the sleeve cover. All 

three cases were performed with Elastosil M4601 as the primary actuator material [63]. 

During payload tests (Figure 2.13), the sleeveless configuration would bow at the sides, 

leaving considerable compliance for the actuators to deform further as the applied payload 

increased. The 0 mm sleeve spacing case exhibited reduced bowing, demonstrating 

improved conformability to the payload. The case with laminate sheets exhibited the best 

conformability to the payload, in turn resulting in a higher maximum payload capacity [63].  
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Figure 2.13 Maximum payload test of Fiber Reinforced grippers with different actuator 

sleeve spacing configurations (Galloway et al. [63], © 2013 IEEE, included with 

permission). 

 

Using a similar FR actuator design, Miron et al. [33] developed two gripper assemblies: 

one small and one large. Both grippers are assembled by fixing the actuators to a 3D printed 

polymer plate. By configuring the actuators around the plate, the gripper can be organized 

as “fingers” on a “palm” [33]. The smaller gripper has three actuators in a 2-1 facing 

configuration, while the larger gripper can hold four actuators in a 2-2 offset configuration. 

However, the study performed its experiments with a large gripper having a 2-1 

configuration to allow comparison between the two designs (Figure 2.14). 

 

Figure 2.14 Small (left) and large (right) variants of the Fiber Reinforced gripper 

developed at Sherbrooke University (Miron et al. [33], © 2018 CC-BY, included with 

permission). 
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A summary of the performance of several gripper designs, including operating 

pressures and applicable forces and payloads, is available in Table 2.3.  

Table 2.3 Performance summary of gripper designs. 

Gripper Material Mass 
Operating 

Pressure 

Contact 

Force 

Contact 

Pressure 

Slip 

Tests 
Payload Comments Reference 

PneuNet 

Gripper 

Elastosil 
M4601 

core; 

Smooth-Sil 
950 exterior 

- 

68.9 kPa 
- 2 kPa - 

2 kg 

- 

[70] 

With foam 

insert 

- 7 kPa - - 

124 kPa - - 
16.6 N Vertical 

5.6 N Horizontal 

DragonSkin 
30 

 50 kPa - - 13.5 N - 

Maximum 

value for all 

trials 

[58] 

- - - - - - 4.5 kg 
SoftRobotics 

Inc. 
[33] 

FR 

Actuator 

Gripper 

Elastosil 
M4601 

90 g 345 kPa - - - 

3.45 kg 
No sleeve 

cover 

[63] 

4.68 kg 
0 mm sleeve 

spacing 

6.1 kg 

0 mm sleeve 

spacing; FR 
Laminate 

sheets 

- 112.6 g 
275 kPa 

20 N - - 52 N Small 
[33] 

- 594 g 28 N - - 200 N Large 

 

2.4 Chapter Summary 

This chapter provided the background information in context with this research thesis. A 

detailed summary of hyperelastic theory and PDMS has been presented. The unique 

capabilities and advantages of pneumatically-driven soft robotic actuators and grippers 

have led to their continued development in recent history. However, methods to 

characterize their performance and behaviour are limited to primarily empirical testing and 

lengthy iterative design processes.



 

 

 

Chapter 3 

 Design Methodology and 

Fabrication 

 

This chapter outlines the design and fabrication of a pneumatically-driven soft robotic 

gripper. The geometric design for the soft actuator and gripper is proposed. Fabrication of 

the gripper actuators is outlined in detail, involving a multi-step moulding process. The 

role and functionality of the computational software, COMSOL Multiphysics, is presented.  

 

3.1 Geometric Design of Elastomeric Actuators 

Soft pneumatic actuators reviewed in Section 2.3.1 all included long compliant structures 

that underwent a bending motion when pressurized. The resulting gripper systems were 

therefore larger assemblies, taking up more volume in the manipulator’s workspace. Larger 

soft actuators, especially ones made of ultra-soft elastomers, are also more susceptible to 

gravity and other external sources of disturbance that may impact their performance. To 

verify this, preliminary work was performed on a simple ultra-soft PneuNet gripper. All 

associated work can be found in Appendix A, but it is shown that the ultra-soft structure is 

not well-suited for the intended application. In addition, Section 2.2.2 points out that PDMS 

can only withstand maximum strains of 150% [6]. Therefore, a smaller gripper geometry 

was considered. 
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A soft pneumatic gripper comprised of three compact PDMS actuators (Figure 3.1a) is 

developed for grasping irregular shaped organic objects such as mushroom tops, 

strawberries, and small citrus fruits during automated harvesting [10]. Each constituent 

actuator has a curved geometry (Figure 3.1b) and operates similarly to a single chamber 

PneuNet [2] with only one deformable concave wall that expands toward the center of the 

gripper assembly during pressurization (Figure 3.1c). Therefore, unlike bending actuator-

based grippers that use a combination of interlocking actuator fingers and friction forces to 

grasp a target, the proposed design holds the target through friction forces alone. The 

modular single-DOF actuator was designed for functional simplicity, ease of fabrication 

and assembly, reliability, and repeatable performance. In addition, the design enabled a 

realistic model of the stress behaviour to be simulated using COMSOL Multiphysics 

software. The simulations were necessary to predict the impact of key design parameters 

on the gripper’s performance during air inflation. 

 

 
 

(a) (b) (c) 

Figure 3.1 (a) Bottom view of a gripper comprised of three soft pneumatic actuators. (b) 

Outside geometry of the actuator’s pneumatic chamber. (c) Internal structure of the 

chamber walls, location of the strain-limiting fiber mesh (blue) and the impact of inflation 

(𝛿𝑑) on the active deformable wall (red). Note that the deformation is for visualization 

purposes only. 

 

The dimensional parameters for the actuator correspond to the inflatable chamber 

height (ℎ) and depth (𝑑), the angle of the actuator’s arc (𝛼), the thickness of the outer wall 

attached to the rigid housing unit (𝑡𝑟), and the thickness of the expandable deformable 



CHAPTER 3. DESIGN METHODOLOGY AND FABRICATION 

35 

 

 

inner wall (𝑡𝑑). The majority of chamber expansion will occur along the inner concave 

wall and, therefore, it is labeled the actuator’s primary active deformable wall. When 

inflated with pressurized air the freely moving expandable primary wall produces a center 

displacement (𝛿𝑑) with a predictable contact pressure (𝑃𝑐). The displacement and contact 

pressure are dependent upon both the actuator’s chamber geometry and the applied air 

pressure input (𝑃𝑎). The geometric parameters used to simulate and experimentally assess 

the performance of the proposed hyperelastic actuator are given in Table 3.1. Furthermore, 

the impact of these parameters will be evaluated over a range of low applied air pressures 

(𝑃𝑎). 

Table 3.1 Key design parameters used to analyze soft pneumatic actuators during 

operation. 

Parameter Range of Values 

Wall thickness, 𝑡𝑑 1.5 mm, 2 mm, 2.5 mm 

Actuator chamber height, ℎ 10 - 30 mm; increments of 2 mm 

Actuator arc angle, 𝛼 45° −  90°; increments of 5° 

Applied air pressure, 𝑃𝑎 6.89Pa – 68.9 kPa (1psi - 10 psi) 

 

3.2 Actuator Fabrication 

Section 3.3 introduces the model setup in COMSOL Multiphysics for simulations that are 

described in Chapter 4. However, to keep the design and fabrication of the actuators 

together, Section 3.2 first describes the moulding process used to create the actuator 

prototypes. These actuators are validated through experiments presented in Chapter 5. The 

process described in Section 3.2 is general to all actuator prototypes fabricated. Note that 

the actuators are fabricated for testing after the simulations are completed. 

Fabrication methods of various actuator designs were described in Section 2.3.1, 

including flaws prevalent in each methodology. Specific design decisions were made to 

circumvent these limitations. First, the paper strain-limiting strip from the PneuNet’s 

fabrication has been replaced with durable synthetic fiber mesh. A complicated fabrication 

process using metal rods and requiring frequent removal of the partially fabricated actuator 
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has been bypassed by using only 3D printed ABS polymers for the mould components and 

by embedding the strain-limiting layer at the end of the whole process. Elastomers are 

acquired as pre-polymer mixtures to be prepared and poured into the moulds, avoiding the 

limitations imposed by purchasing pre-made silicone structures. This fabrication 

methodology provides complete control over every aspect of the soft PDMS actuator 

including geometry and material properties. The hyperelastic actuators are fabricated using 

a multistep soft lithography moulding process. The method requires two circular mould 

bases (Mould 1 and Mould 2) and a detachable outer wall as shown in Figure 3.2, where 

each reusable mould assembly can produce up to three compact pneumatic actuators at a 

time. Mould 1 is used to form the majority of the part geometry with a single open exposed 

surface while Mould 2 creates the final surface used to close the pneumatic chamber for 

the actuators. The moulds are designed for proper alignment during assembly and a 

combination of partial curing and adhesive bonding for assembling the discrete PDMS 

components. Before coming into contact with any PDMS pre-polymer, every surface of 

the mould assemblies is coated with a layer of surfactant. A mixture of soft detergent and 

water is used to prevent the pre-polymer from adhering to the 3D printed mould 

components. 

   

(a) (b) (c) 

Figure 3.2 Top view of the (a) base for Mould 1; (b) base for Mould 2; and (c) detachable 

outer walls. 

 

The key steps in fabricating the individual PDMS actuators (Figure 3.3) are now 

summarized. Mould 1 is first assembled by attaching the outer mould wall to the base (3.3a) 
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and ensuring that there are no leaks along the joins. Mixed PDMS pre-polymer is then 

slowly poured into each of the actuator cavities (3.3b). Once filled, the assembly is placed 

in a vacuum chamber and fully degassed until no bubbles remain in the PDMS. After 

degassing the PDMS, the entire assembly is left to cure at ambient temperature for 48 

hours. Upon completion of curing, the outer walls attached to the Mould 1 base are 

removed and the cured PDMS part is carefully extracted (3.3c). The bottom section of the 

Mould 2 base is then partly filled with PDMS (3.3d), degassed, and partially cured for 24 

hours. Typically, the thickness of the layer would be half the height of the post located at 

the center of the Mould 2 base. The post forms the through-hole on the bottom PDMS layer 

which becomes the air inlet for the assembled actuator. The process of partially curing 

allows the PDMS part to reach a solid state but remain bondable to another PDMS 

structure. To ensure a strong bond between the discrete moulded parts, the remainder of 

the bottom section (slightly below the height of the central post) is filled with PDMS pre-

polymer and further degassed to eliminate bubbles in the polymer. The fully cured PDMS 

part previously extracted from Mould 1 is then carefully aligned and placed over the 

uncured PDMS layer (3.3e). Light pressure is applied to the part in order to form a tight 

seal for the bonding process. To ensure that the assembly remains in place during the curing 

process, the outer walls are attached to the base of Mould 2. The completed Mould 2 

assembly is then left to cure at ambient temperature for 48 hours, after which it is taken 

apart and the finished PDMS geometry is removed (3.3f). Finally, a strip of synthetic fiber 

mesh is adhered to the convex surface of the actuator geometry with a thin coating of more 

pre-polymer. This forms the strain-limiting inextensible layer of the actuator. Engineering 

drawings for these mould components are available in Appendix D. 
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Figure 3.3 Key steps in the fabrication actuator fabrication process. (a) Assembly of outer 

walls on the base for Mould 1; (b) Pour PDMS pre-polymer in mould cavity; (c) Extract 

PDMS part from disassembled mould; (d) Fill bottom of base cavity of Mould 2 with 

partially cured PDMS and then uncured pre-polymer; (e) Align and secure PDMS part on 

partially cured layer; and (f) disassemble mould to remove completed actuator with a single 

air inlet through-hole to chamber. 

 

The PDMS pre-polymer is first degassed as soon as it is mixed until no air bubbles are 

observable. It is then slowly poured into the open moulds in small increments at a time. 

Once the moulds are filled, they are placed into the vacuum chamber and degassed again. 

Every step that involves the agitation of the PDMS pre-polymer is followed by another 

degassing session. This is to ensure that there are no bubbles in the mixture. 

In some instances, bubbles that rose to the surface remained and would not dissipate. 

When this occurred, a heat gun was quickly passed over the surface at its lowest setting. 

The jet of air would remove any bubbles at the mixture’s surface and was applied quickly 

enough that the pre-polymer would not be heated by any significant amount. 



CHAPTER 3. DESIGN METHODOLOGY AND FABRICATION 

39 

 

 

Once fabricated, three identical actuators (Figure 3.4a) are inserted into the 3D printed 

housing unit to form the circular ring-like gripper (3.4c and 3.4d). The rigid ring has inlets 

that allow polyurethane tubing to connect to the actuators. A coupling extension connects 

the gripper ring to a manipulator arm (3.4b). It also adds clearance between the arm and 

the gripper ring. All rigid structural components of the gripper housing unit and robot 

attachment are made of ABS polymer. The ring structure can hold the actuators of varying 

chamber heights and arc angles, but all experiments focus on the deformable inner concave 

wall thicknesses. The ABS ring weighs approximately 34 g, and each actuator weighs 

approximately 14 g. In total, each gripper weighs approximately 76 g. 

  

(a) (b) 

  

(c) (d) 

Figure 3.4 (a) Single moulded PDMS actuator; (b) Robotic end-effector with the 

elastomeric actuators inserted into the gripper assembly (coloured white); Top view of 

gripper ring in (c) deflated state and (d) moderate inflated state. For the sake of picture 

clarity, the actuators shown in (c) and (d) of this figure were fabricated out of Ecoflex 00-

30. Ecoflex is white while PDMS is nearly transparent. 
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3.3 Role and Functionality of COMSOL Multiphysics Software 

COMSOL Multiphysics is an extensive, multi-functional finite element analysis (FEA) 

solver and simulation software package. Starting as a base program, additional software 

modules can be added to solve specific multiphysics problems. For this research, the 

Structural Mechanics Module was used with the Nonlinear Structural Materials Module 

for the analysis of hyperelastic geometries under static loads. The Material Library Module 

is used to implement material properties related to PDMS (10:1 mixing ratio, cured at 

25°C). The CAD Import Module and LiveLink for SolidWorks add-on are used to 

synchronize the generated SolidWorks models with COMSOL simulations. 

COMSOL Multiphysics provides a reliable and efficient method of analysis. Based on 

the simulations, the deformation of a particular actuator geometry can be calculated and 

used to quantify performance. This is advantageous to the process of soft robotic design, 

as it permits numeric comparison of various design geometries, identification of sources of 

strain, and a benchmark for assessing acceptability of performance. 

Performing simulations introduces the benefit of being able to assess the impact of 

numerous geometrical parameters on the actuator’s performance at a significantly 

accelerated rate relative to fabricating physical iterations. By selecting a single geometrical 

parameter at a time, COMSOL can solve for a swept range of parameter values and provide 

quantitative results for each. These simulations can be performed in time-independent 

(stationary) and time-dependent conditions. In addition, COMSOL includes a detailed 

data-solving system with which a single simulation can provide a multitude of different 

results including displacements, stresses, strains, and contact forces generated by pressure 

loads. These results can be viewed in one, two, or three dimensions. 

 

3.3.1 Defining PDMS Material Properties for Finite Element Modelling 

COMSOL’s Material Library Module includes data for PDMS, shown in Figure 3.5. Initial 

bulk and shear moduli for PDMS are listed as 3.333 × 107 Pa and 6.67 × 105 Pa, 

respectively [25]. 
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Figure 3.5 Material data for PDMS from COMSOL Multiphysics’ Material Library 

Module. 

To satisfy both the shear moduli relation and approximation described in Section 2.1.1, 

𝜇1 =
7

16
𝜇 = 2.918𝑥105 and 𝜇2 =

1

16
𝜇 = 0.417𝑥105. Separate tests were performed on 

standard tensile specimens to assess the mechanical properties of the PDMS material used 

in the prototype development. In general, the measured results were in agreement with the 

trends reported by Johnston et al. [41] with minor deviations arising from slight differences 

in the ambient curing temperature. 

When a rubber-like material is subjected to a very high hydrostatic pressure, the 

observed change in volume is very small. Changing the shape of a rubber-like material is 

much easier than changing its volume. Thus, it is common practice in computational 

modelling to consider them as incompressible [27], introducing the constraint condition of 

the elastic volume ratio 𝐽 =  1,as described in Section 2.1.1. With this assumption, the 

Poisson’s ratio (𝜈) of the simulated PDMS is 0.5. However, this results in computational 

errors due to the use of the Poisson’s ratio in the denominator of equations of properties 

such as, for example, the bulk moduli 

𝐾1 =
𝐸

3(1 − 2𝜈)
 (3.1) 

To avoid division by zero, the Poisson’s ratio is set to 0.49. However, this introduces 

the possibility of displacement-based finite element analysis producing skewed results due 

to volumetric locking. Locking affects the model by creating an overly stiff response. 

Locking effects can be diminished by ensuring that the “Nearly Incompressible Material” 
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option is selected in the COMSOL hyperelasticity toolbar. In this case, the compressibility 

of the material is small enough to be considered negligible. 

 

3.3.2 Model Implementation in COMSOL Multiphysics 5.3 

A model for a single actuator geometry is imported from SolidWorks. To replicate the 

strain-limiting layer and 3D printed structure backing on the physical actuator, a fixed 

constraint is applied to the model’s rear convex wall, highlighted in yellow in Figure 3.6a. 

A boundary load is applied to the chamber’s primary deforming wall, highlighted in blue 

in Figure 3.6b. 

  

(a) (b) 

 

(c) 

Figure 3.6 Wireframe of single actuator. (a) Fixed constraint highlighted in yellow; (b) 

Boundary load to concave deformable wall highlighted in blue; (c) Finite element mesh 

generated over model geometry and locally refined at concave deformable wall surface. 
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Data is solved for at a point located in the center of the concave primary active 

deformable wall. The goal of the model is to solve for the actuator’s wall displacement for 

input pressures and geometry (e.g., 𝑡𝑑, ℎ, 𝛼). Total displacement at the point (𝛿𝑑) is 

determined by the (𝑥, 𝑦, 𝑧) components of the displacement field, 𝑢, 𝑣,  and 𝑤. 

𝛿𝑑 =  √𝑢2 + 𝑣2 + 𝑤2 (3.2) 

 

3.3.3 Mesh Generation for Finite Element Modelling 

As mentioned, COMSOL Multiphysics primarily uses the finite element method (FEM) to 

solve for any given study. Thus, creating a mesh is necessary, and COMSOL provides a 

detailed system to create meshes both automatically and manually. Mesh settings 

determine the resolution of the mesh created to discretize the model by dividing the model 

into small elements of geometrically simple shapes [71]. A set of partial differential 

equations (PDEs) is used in each of these elements to approximate the structural 

displacement field. That is, how much the model deforms in the (𝑥, 𝑦, 𝑧) directions. 

Analysis of the three coordinate directions means that each element has its own volume. 

Ideally, COMSOL would quickly solve for an incredibly fine mesh, providing accurate 

results in but a few seconds of computations. That is unfortunately not the case, as meshes 

made too fine may never converge to a solution. It is again important to note that the 

accuracy of a solution is directly related to the size of the created mesh (Figure 3.6c). All 

computations are limited by finite computational resources and time; thus, it is 

unreasonable to try to solve for the exact solution with a mesh size nearing or equaling 

zero. Computations must instead rely on an approximation of the real solution. It is 

therefore critical that the difference or error between the exact solution and its computed 

approximation is minimized. This is known as mesh refinement or independence. This was 

ensured in this research thesis by performing the same simulation over a range of finite 

meshes, from very coarse to very fine. Once the computed data stopped being affected by 

the coarseness of the mesh, it was considered mesh-independent. In addition, it is important 

to consider the quality of the mesh itself. Mesh quality is an indication of the length-to-

width ratio of the mesh elements. For thin membrane geometries, a general rule of thumb 
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is to keep a minimum mesh quality of at least 0.1. For this research, the minimum mesh 

quality solved for was 0.1734, and the average mesh quality was 0.599.  

As shown in Figure 3.6c, mesh refinement is localized to the primary deformable wall. 

A custom mapped mesh generates quadrilateral mesh elements over the wall surface. This 

allows the quality of the mesh over the primary surface to be controlled. Quadrilateral 

elements are also mapped over the end surfaces of the actuator’s extremities. The Free 

Tetrahedral operation is used over the remainder of the unmeshed geometry. This creates 

tetrahedral elements over the rest of the model, which can be refined through the selection 

of simple classifications (i.e., very fine, fine, normal, coarse, very coarse, etc.). COMSOL 

applies optimized solver types and settings based on the chosen domain, physics, and study 

type [71]. 

 

3.4 Chapter Summary 

This chapter outlined the design of a compact single-DOF PDMS actuator in preparation 

for assembly into a soft pneumatic gripper. Key design parameters for analysis in nonlinear 

software are listed. The multi-step fabrication process was presented, and the 3D printed 

and interchangeable mould components can create up to three actuators at a time. Care is 

taken throughout the process to ensure that air bubbles are removed to the uncured PDMS, 

and each mould surface is prepared with a surfactant consisting of gentle detergent and 

water to prevent PDMS-surface adhesion during the curing process. The role and 

functionality of COMSOL Multiphysics was described. Material properties for PDMS used 

in simulation were shown, and the model setup was presented, including the steps taken to 

ensure study accuracy. This model can now be used to simulate deformation under load, 

and the impact of various parameter changes on that deformation. 

 

 



 

 

 

Chapter 4 

 COMSOL Simulations and Results 

 

This chapter outlines the simulations performed with the generated actuator model. The 

displacement of the primary concave wall is simulated under different parameter 

conditions. Contact pressures are calculated for use in the next chapter. Simulation data is 

additionally acquired to investigate the legitimacy of the results by relating studies 

performed back to the governing equations presented in Section 2.1. Finally, principal 

stretches and principal strains are presented, and their relationship is shown. 

 

4.1 Wall Displacement for a Parameter Change 

Each simulation starts with the same initial conditions as described in Section 3.3.2. That 

is, the PDMS structure is restricted so that the applied pressure (𝑃𝑎) causes only the concave 

wall of the chamber to deform (Figure 4.1). For the first study, 𝑃𝑎 = 34.47 kPa (5 psi) is 

applied to the expandable chamber wall with different wall thicknesses (i.e., 𝑡𝑑 = 1.5 mm, 

2 mm, 2.5 mm). The material behaviour in the hyperelastic PDMS structure is simulated 

using the Mooney-Rivlin model given by equation (2.10). 
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(a) (b) 

Figure 4.1 (a) Simulated model showing wall displacement due to expansion; (b) top view 

of simulated model of single actuator with expansion of the principle active wall. 

 

A graph extracted from COMSOL Multiphysics is shown in Figure 4.2. The thinnest 

wall exhibits the greatest displacement of approximately 𝛿𝑑 = 5.50 mm. In contrast, the 

thickest wall (𝑡𝑑 = 2.5 mm) has a displacement of only 𝛿𝑑 = 4.11 mm. The result is 

realistic because the additional PDMS on the deformable wall provides greater resistance 

to the applied load. 

 



CHAPTER 4. COMSOL SIMULATIONS AND RESULTS 

47 

 

 

 

Figure 4.2 Simulated displacement (𝛿𝑑) values for three expandable wall thicknesses (𝑡𝑑) 

at 𝑃𝑎 = 34.47 kPa. 

 

To examine the impact of applied pressure (𝑃𝑎) on actuator wall deformation, a range 

of pressures of 𝑃𝑎 = 0 – 68.94 kPa (0 – 10 psi) is applied to each wall thickness (Figure 

4.3). Note that the rate at which the wall displaces does decrease at higher pressures 

because the PDMS is already stretched to near maximum. 
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Figure 4.3 Simulated displacement values (𝛿𝑑) of different applied pressures (𝑃𝑎, kPa). 

 

A series of simulations were then performed to assess the impact of chamber height 

and actuator arc angle on the actuator’s active wall displacement. In each case, the 

thickness of the active wall is kept at 𝑡𝑑 = 2 mm, and 𝑃𝑎 = 6.89 kPa of pressure is applied.  

The results show a near linear change in displacement for increased actuator height (Figure 

4.4a) while increasing the arc angle (Figure 4.4b) only has a minimal impact on the actuator 

displacement. Note that as the 𝛼 increases the active surface area of the actuator becomes 

bigger and modestly reduces the observed displacement when given the same internal 

pressure (𝑃𝑎). 
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(a) (b) 
 

Figure 4.4 Displacement (𝛿𝑑) as a function of both (a) actuator height (ℎ) and (b) arc angle 

(𝛼) for 𝑡𝑑 = 2 𝑚𝑚 and 𝑃𝑎 = 6.89 𝑘𝑃𝑎. 

 

4.2 Surface Loads 

Conditions identical to the first study were then used to solve for surface loads (Figure 4.5). 

At an applied pressure of 𝑃𝑎 = 34.47 kPa, each wall thickness can apply a proportional 

load. These surface loads can be defined as applicable contact pressures. With a 𝑡𝑑 =

1.5 mm wall thickness, the actuator can apply a load of 𝑃𝑐   = 37 kPa, whereas with 

thicknesses of 𝑡𝑑 = 2 mm and 𝑡𝑑 = 2.5 mm the actuator can apply loads of 𝑃𝑐   = 36.8 and 

𝑃𝑐   = 35.5 kPa, respectively. These pressure values will be used later on in Chapter 5. 
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(a) (b) 

 

(b) 

Figure 4.5 Simulated surface loads (𝑃𝑐) with an applied pressure of 34.37 kPa. (a) 𝑡𝑑 =

1.5 𝑚𝑚; (b) 𝑡𝑑 = 2 𝑚𝑚; (c) 𝑡𝑑 = 2.5 𝑚𝑚 

 

4.3 Relating to the Strain-Energy Function 

To validate the accuracy of the simulations performed prior to comparison of computed 

results with the experiments outlined in Chapter 5, simulation results can be tied back to 

the governing equations. Recall from Section 2.1.1, where strain-energy is defined as the 

energy stored internally throughout a material’s volume under deforming load. The total 

elastic strain-energy for the hyperelastic actuator model subjected to an applied pressure 

range of 𝑃𝑎 = 0 – 68.94 kPa is shown in Figure 4.6. The data in the graphs shown in this 

section, as well as Section 4.4 for pressure-dependent data, are acquired from the same 

simulations as the data shown in Figure 4.6. 
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Figure 4.6 Simulated total elastic strain-energy (𝑈) at different pressures (𝑃𝑎, kPa). 

 

Equation (2.4) then redefines the function to become the strain-energy per unit volume 

of material. The total stored strain-energy density is shown in Figure 4.7.  The energy 

density is quantified in terms of 𝐽/𝑚3. 
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Figure 4.7 Simulated stored energy density (𝑊) at different pressures (𝑃𝑎, kPa). 

 

As per equation (2.9), the strain-energy density function from equations (2.4) and (2.6) 

can be split into two distinct parts. The volumetric strain-energy density for all three 

actuator wall thicknesses is shown in Figure 4.8. The isochoric strain-energy density for 

all three actuator wall thicknesses is shown in Figure 4.9. Note that the sum of both graphs 

results in the total stored energy density from Figure 4.7. Thus, the relationship described 

by equation (2.9) is proven and the validity of the model setup in COMSOL Multiphysics 

is established.  
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Figure 4.8 Simulated volumetric strain energy density (𝑊𝑣) at different pressures (𝑃𝑎, kPa). 

 

 

Figure 4.9 Simulated isochoric strain energy density (𝑊𝑖𝑠𝑜) at different pressures (𝑃𝑎, kPa). 
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4.4 Principal Strain and Principal Stretch 

Principal strain directions for nodes on the model’s primary wall surface are shown in 

Figure 4.10 at the extremes of the applied pressure range of 𝑃𝑎 = 0 – 68.94 kPa. Note the 

distinct change in direction between the two models shown, which define the deformation 

of the wall for a given applied pressure.  

  

(a) (b) 

Figure 4.10 Principal strain directions under applied pressures (𝑃𝑎, kPa). (a) 0 kPa; (b) 

68.94 kPa. 

 

The three principal strains for the element at the point in the center of the concave wall 

surface is shown in Figure 4.11. Recall from equation (2.7) that the principal stretch can 

be defined as the sum of the associated principal strain and 1. This is shown in Figure 4.12. 

Graphs shown are for a wall thickness of 𝑡𝑑 = 1.5 mm. Graphs for the 𝑡𝑑 = 2 mm and 

𝑡𝑑 = 2.5 mm show a similar trend and relationship.  
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Figure 4.11 Principal strains (𝜖𝑖) under applied pressure (𝑃𝑎, kPa) for an actuator wall 

thickness of 𝑡𝑑 = 1.5 mm. 

 

 

Figure 4.12 Principal stretches (𝜆𝑖) under applied pressure (𝑃𝑎, kPa) for an actuator wall 

thickness of 𝑡𝑑 = 1.5 mm. 
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Next, principal stretch ratios are simulated over a period of 1 second with an applied 

pressure of  𝑃𝑎 = 34.47 kPa. For each wall thickness, the time-dependent simulations 

exhibit instability in the first few milliseconds of the study. Despite the instability shown, 

each case follows a trend similar to the principal stretches over a pressure range (Figures 

4.13 – 4.15). 

 

Figure 4.13 Principal stretches (𝜆𝑖) over time for an actuator wall thickness of 𝑡𝑑 = 1.5 

mm. 
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Figure 4.14 Principal stretches (𝜆𝑖) over time for an actuator wall thickness of 𝑡𝑑 = 2 mm. 

 

 

Figure 4.15 Principal stretches (𝜆𝑖) over time for an actuator wall thickness of 𝑡𝑑 = 2.5 

mm. 
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For both time-dependent and independent cases, simulation results for principal stretch 

ratios exhibit values less than 1.3. As per equation (2.7), this corresponds to a maximum 

strain value of 130%. Recall that in Section 2.2.2 the maximum strain of PDMS is listed as 

150%. Thus, the strains produced in simulations are within acceptable limits. 

 

4.5 Chapter Summary 

This chapter outlined the simulations performed on the computational actuator model for 

deformation under load. Initially, displacement over a pressure range and displacement  

given different wall thicknesses were presented. Simulated data showed that for both cases 

the thinnest of the three simulated wall thicknesses exhibits the greatest displacement. 

Contact pressures were simulated in terms of surface loads, to be used in the following 

chapter. Results from simulating various chamber heights and arc lengths were presented. 

Data showed that while increasing chamber height in turn increases wall displacement, 

modifying arc length has a less significant impact. Simulations tying back to the strain-

energy density function were performed. They proved that the use of COMSOL 

Multiphysics and the model setup implemented did not produce erroneous results. Principal 

stretches and principal strains were presented and related to each other. Time-dependent 

results exhibited a form of instability that may be caused by the application of an 

instantaneous load. Simulated values for maximum strain, acquired in terms of stretch 

ratios, are lower than the maximum strain before fracture of PDMS. 

 

 

 

 

 

 

 

 

 



 

 

 

Chapter 5 

 Experimental Setup and Testing 

 

With simulations completed, complementary experiments were developed and performed. 

This chapter outlines the setup for these experiments. Experimental results for an actuator 

subjected to a deforming pressure load are presented and compared to their associated 

COMSOL simulations. The setup and results of tests investigating the designs’ gripping 

capabilities with curved geometries are also provided. Literature related to the design of 

soft pneumatic actuators typically include experiments investigating the actuator’s durable 

life cycle [4], [33]. These tests may take weeks to complete and thus require a secure 

environment without any possibility of interference. The entirety of the experiments 

presented in Chapter 5 are performed in an open-access undergraduate laboratory. It is 

therefore not possible to perform any durability tests that may require a substantial period 

of time. 

 

5.1 Actuator Displacement Under Applied Pressure 

A series of experimental tests were performed on several fabricated PDMS actuators to 

examine the impact of changes in key design parameters (𝑡𝑑, 𝑃𝑎) on the active wall 

displacement (𝛿𝑑).  In all cases, the chamber height was fixed at ℎ = 20 mm to match the 

width of the strain-limiting fiber strips used in fabrication. Furthermore, an arc angle of 
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𝛼 = 60° was selected because simulation studies showed that it was near optimal for the 

various fixed parameters of the proposed soft actuators and gripper housing unit.  The 

thicknesses of the deformable walls for the tested actuators were 𝑡𝑑 =

1.5 mm, 2 mm and 2.5 mm. Fabrication of these actuators is described in Section 3.2. 

 

5.1.1 Experimental Setup 

Fabricated actuators are attached to a 3D printed ABS backing structure. The displacement 

of the actuating surface was measured using a 3D Guidance TrakSTAR position sensor 

system (static accuracy ± 1.4 mm)  [72] with an EM sensor capable of measuring 6 DOF 

(Figure 5.1a). The measurement values correspond to the distance between the sensor 

probe and fixed transmitter location. The displacement (𝛿𝑑) is, therefore, the change in 

distance with respect to the initial non-inflated actuating surface. For the experiments the 

applied pressure (𝑃𝑎) was varied between 34.47 to 68.94 kPa (5 – 10 psi) at 6.89 kPa (1 

psi) increments. For each (𝑃𝑎) the displacement (𝛿𝑑) was measured three separate times 

over a 10 second time trial, for 1 second of actuation, at a sampling frequency of 120 Hz 

(Figure 5.1b). An average displacement reading is then calculated.  The pressure range was 

selected because 𝑃𝑎 < 34.47 kPa resulted in inaccurate readings due to the limitations of 

the pressure regulator and gauge used in the experiments. In addition, 𝑃𝑎 > 68.94 kPa 

caused a number of the fabricated actuators to prematurely rupture. 
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(a) (b) 

Figure 5.1 Experimental setup and test procedure. (a) Testing of a single actuator with a 

positioning sensor; (b) Sensor data for displacement testing of a single actuator. The dips 

in the figure show three separate instances of displacement for one test. Note that this the 

test shown in this figure is performed over a period of 20 seconds. The time period is 

reduced to 10 seconds after the TrakSTAR system underwent initial calibration. 

 

5.1.2 Measured Actuator Displacement 

The measured and COMSOL simulated displacements for the three different wall 

thicknesses and an applied air pressure input of 𝑃𝑎 = 34.47 kPa are shown in Figure 5.2.  

Note that the measured value is the average steady-state displacements over a 0.5 second 

window. The observed differences in the measured and simulated displacements (|Δ𝛿𝑚−𝑠|) 

are partly the result of limitations in the Mooney-Rivlin hyperelastic model, the theoretical 

values for the shear and bulk moduli, and the computational limitations imposed by the 

size of the finite element mesh used in the simulations. These deviations may also be due, 

in part, to limitations in precise pneumatic control of the basic regulator used in testing 

(accuracy ± 1 psi) and the static accuracy of the TrakSTAR positioning sensor (± 1.4 mm). 

The smallest difference occurs at 𝑡𝑑 = 2 𝑚𝑚 where |Δ𝛿𝑚−𝑠| = 0.08 𝑚𝑚 and the largest 

at 𝑡𝑑 = 2.5 𝑚𝑚 where |Δ𝛿𝑚−𝑠| = 1.11 𝑚𝑚. The latter case represents a ~25% error. 
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Figure 5.2 Comparison of measured and simulated data for wall displacements (𝛿𝑑) for 

different wall thicknesses (𝑡𝑑). 

 

5.1.3 Wall Displacement over Pressure 

Figure 5.3 shows the impact of changes in (𝑃𝑎) on the displacement of the actuating wall 

(𝛿𝑑) for each wall thickness. The deviation between simulated and experimental data may 

be due to limitations introduced by the hyperelastic material model. Though simple in its 

implementation, the Mooney-Rivlin model is unable to capture larger strains measurable 

by more comprehensive material models [23]. However, a more accurate model would 

require additional variables that can only be acquired through additional testing of material 

samples. Again, discrepancies between the compared data sets could also be attributed to 

experimental errors related to pneumatic pressure control and sensor positioning. 
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Figure 5.3 Comparison of experimental and simulation data for wall displacement (𝛿𝑑) at 

different input pressures (𝑃𝑎) for different wall thicknesses (𝑡𝑑). 

 

5.2 Gripper Contact Forces and Maximum Payload Capabilities 

 

5.2.1 Experimental Setup 

Contact forces of each gripper geometry are characterized with a combination of simulation 

results and experimental testing. For simulations, a pressure of 𝑃𝑎 = 34.47 kPa is applied 

to the interior of the COMSOL model’s displacing wall. Contact pressure is acquired in 

kPa as a load applied by the displacing wall’s whole concave surface in Section 4.1. To 

experimentally measure contact area when the actuator applies pressure to the surface of 

the target object, paint is applied to the deformable walls of the soft actuators in the gripper 

assembly and the device is then used to grasp a Styrofoam sphere (dia. 60 mm). When the 

target sphere is released after pressure has been applied, an imprint of (𝐴𝑐) is left on the 

surface in the form of three marks. The dimensions of these marks are measured and 

recreated in SolidWorks (Figure 5.4), where the contact area can then be obtained. In 
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general, the contact force is a function of the contact pressure (𝑃𝑐) and area of contact with 

the target (𝐴𝑐), and can be simply given as  

𝐹𝑐 = 𝑃𝑐 ∙ 𝐴𝑐 (5.1) 

   

(a) (b) (c) 

Figure 5.4 Setup for contact force tests. Top view of painted gripper ring in (a) deflated 

and (b) inflated states; (c) 3D model of contact area on sphere. 

 

It is also important to investigate the design’s grip strength by measuring the payload 

capabilities of the pneumatic gripper with different actuator wall thicknesses. In this 

experiment, a Styrofoam sphere and cylinder with equal diameters (dia. 60 mm, cylinder 

height 30 mm) are used as the target objects (Figure 5.5). Each target was modified by 

attaching a 50 g payload platform that would enable additional weights to be applied in a 

controlled fashion. This apparatus created a downward force on the grippers hold on the 

object and is represented as a slip test payload mass (𝑚𝐿). The maximum payload of the 

soft pneumatic gripper is verified using free weights. 
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(a) (b) (c) 

Figure 5.5 Experimental setup for payload tests. (a) Close-up of spherical target held in 

gripper; (b) sphere target for payload test; and (c) cylindrical target for payload test. 

 

5.2.2 Contact Force and Maximum Payload Results 

At a single constant pressure input of 𝑃𝑎 = 34.47 kPa, thicker actuator walls result in lower 

displacements and lower contact pressures. This means that the actuator wall is not being 

forced against the target object, in this case the foam sphere, and is not pushing the soft 

target structure away. The result is that more of the actuator’s deforming wall is in contact 

with the target, thus the contact area is greater. Using equation (5.1) it is found that thicker 

deforming wall thicknesses offer greater contact forces as the contact pressures are 

distributed over a larger area. 

Overall, the grippers exhibit roughly double the maximum payload capacity for 

cylindrical shapes over spheres. This may be due to the greater surface area that the 

actuators can come into contact with. At these maximum payloads, and with similar gripper 

weights of about 76 g, the 𝑡𝑑 = 1.5 mm, 2 mm and 2.5 mm gripper variants have respective 

payload-to-weight ratios of 30, 26, and 18. These results, however, appear contrary to an 

initial assumption that the maximum payload tests would follow the same trend as contact 

force experiments. The inverse relationship may be the result of increased surface friction 

between the thinner inflated elastic actuator and target object. Clearly, the surface effects 
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between the hyperelastic actuator and object need to be explored in greater detail. Results 

for both contact force and payload tests are shown in Table 5.1.  

Table 5.1 Contact force and payload test results for all gripper geometries. Test object is a 

foam sphere unless stated otherwise in brackets. 

Wall Thickness 

(𝒕𝒅) 

Contact 

Pressure 

(𝑷𝒄) 

Contact Area 

(𝑨𝒄) 

Contact Force 

(𝑭𝒄) 

Slip Test Payload 

(𝒎𝑳) 

1.5 mm 37 kPa 424.4 𝑚𝑚2 15.7 N 1.175 kg 

2.3 kg (cylinder) 

2 mm 36.8 kPa 498.5 𝑚𝑚2 18.4 N 0.875 kg 

1.975 kg (cylinder) 

2.5 mm 35.5 kPa 542.3 𝑚𝑚2 19.3 N 0.675 kg 

1.375 kg (cylinder) 

 

5.3 Chapter Summary 

This chapter outlined the experiments performed in this research. Actuator wall 

displacement showed a match within ± 1.11 mm between simulated and experimental 

results. Comparison of displacement values over a range of applied pressures showed 

greater discrepancy between simulations and experiments. This may be attributed to 

limitations of the hyperelastic material model used or experimental error. Regardless, the 

close match between the displacement values proves that simulations could be used to 

improve the design of soft robotic actuators by reducing the number of iterations required. 

However, the associated ~25% error also shows that the method presented is not yet a 

precision tool. Gripper tests investigating contact forces present that the applied load is 

distributed over a broad surface area. Thicker actuator walls allowed the load to be applied 

over a greater area, resulting in a higher contact force. Payload tests that establish the 

designs’ gripping capabilities with curved geometries are provided. Payload capabilities 

are greater with thinner actuator walls, and the maximum payload is doubled for curved 

geometries with larger applicable contact area. 

 

 



 

 

 

Chapter 6 

 Application Study and Discussion 

 

This chapter outlines the comparative study between the novel soft PDMS gripper designs 

and standard vacuum cup grippers in a mushroom harvesting application. The performance 

of each tested gripper is evaluated in terms of gripper success and damage inflicted. In 

addition, a summary of design guidelines to modify the gripper design for different 

applications is provided. It is important to note the difference between experiments in 

laboratory and field settings. Individual mushrooms are used for in-lab testing. In reality, 

mushrooms grow in densely packed growing beds. Different sizes and shapes of fungi may 

overlap one another, making gripping with the design proposed in this thesis difficult if not 

impossible. This is due, in part, to the 3D printed housing ring to which the actuators are 

connected. The 3D printed ring is neither optimal nor appropriate for a true field test. Its 

sole purpose is to act as a robust frame that can hold and protect the PDMS actuators. The 

goal of the application study presented in this chapter is therefore not to verify the current 

design for a true field test, but to assess the design’s capability of grasping a delicate 

structure without inflicting any damage. 

 

6.1 Robotic Harvesting Systems in Horticulture 

Every automated harvesting system in the horticultural sector is dependent on its unique 

working environment (i.e., crop environment). A system’s specific crop environment is 
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influenced by sources of variation. There can be significant variety between objects in the 

same crop. They can be in uncertain or poorly defined positions, and have different shapes, 

sizes and colors. In some cases, these objects can be overlapping or covered by obstacles, 

making them difficult to reach and collect. Environmental conditions suitable for 

production of a specific crop can also introduce new factors such as weather, lighting, 

humidity, and harvesting space. Both sources of variation become distinct when 

considering a specific high-value crop [10].  

Though each robotic harvesting system must be designed for a specific high-value crop, 

they share common engineering specifications. A review by N. D. Tillett [73] states that, 

for horticultural applications, typical robotic manipulator systems have a maximum 

payload of at least 1 kg. For manipulators using pneumatic gripper systems, the static point-

to-point accuracy for target alignment is generally ± 1 mm, though it can be influenced by 

the degree of compliance in the gripper structure. Dynamic accuracy for trajectory control 

and collision prevention can be ± 10 mm, though it is usually only considered in special 

cases such as outdoor applications in high wind conditions. It can be considered for this 

research thesis, as a compliant soft gripper is likely to sway and jolt under motion. 

Common performance indicators can be used to evaluate all robotic harvesting systems. 

Indicators relevant to this research thesis are shown in Table 6.1. Reported performance 

values are listed from the review by Wouter Bac et al. [10]. They are calculated averages 

over several different harvesting studies. 

Table 6.1 Standard performance indicators for robotic harvesting systems. 

Performance Indicator Reported Performance Description 

Harvest Success (%) 75% Successfully Harvested vs. 

Sample Size 

Damage Rate (%) 5 % Damaged vs. Sample Size 

Sample Size (#) 6 – 2500 Number of Objects per Test 
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6.1.1 Review of Existing Mushroom-Harvesting End-Effectors 

There have been numerous patented attempts at developing suction-based robotic 

mushroom harvesters. This following section provides a description of some of these 

systems. Though the patents are for the whole robotic system, this section will focus 

primarily on their vacuum-based end-effectors. 

 

6.1.1.1 “Harvesting of Delicate Produce”, Patent Number US 5,058,368  

Issued on October 22, 1991, the device patented by Wheeler et al. [18] includes a bellows-

style suction gripper with an internal porous foam block. The block is intended to support 

the mushroom cap, distributing the grasping forces generated by vacuum pressure over a 

larger area. Once the cup has a hold on the target mushroom, it is harvested with a series 

of lifting and twisting actions. After being lifted from its growing bed, the mushroom stem 

is removed with a cutting blade. The mushroom is then deposited in an adjacent box. The 

flaw discovered with this design is that the porous foam block would quickly fill with 

compost and debris from the mushroom growing bed. This resulted in a disruption of the 

vacuum flow required to pick up the mushrooms. 

 

6.1.1.2 “Device for the Automatic Selective Harvesting of Mushrooms”, Patent 

Number US 5,471,827 

Another system, the patent of which was issued on December 5, 1995, to Janssen et al [21], 

includes a suction cup gripper with a long series of bellows. This long bellows is intended 

to compensate for the possibility of angled mushroom targets. Not all mushrooms grow in 

a completely vertical direction. Some grow on oblique angles or are pushed to some 

orientations by their larger neighbors. Using a longer bellows component allows the suction 

cup to deform to match an angled target’s orientation. Once the suction cup is aligned with 

the mushroom and grasping contact is made, the target is again harvested with a series of 

lifting and twisting motions before being destemmed with a cutting blade. The problem 

with this design is that it was not capable of providing sufficient angular and axial rigidity 
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to make the required lifting and rotating motions to harvest the target from its growing bed. 

A longer column of flexible and uncontrolled bellows also creates additional complexity 

in trying to make contact with any mushroom targets, angled or vertical. 

 

6.1.1.3 “Apparatus for Picking Mushrooms”, Patent Number US 8,033,087 B2 

The patent issued on October 11, 2011, by Rapila et al. [17], describes a harvesting system 

that uses commercially available suction pads for gripping mushrooms. The system again 

collects the target through a series of twisting and lifting actions. Testing of several 

commercially available suction cups [19] has shown that they are not well-suited for 

harvesting mushrooms. Standardized commercial suction cups inflict increased damage to 

the mushroom cap, in the form of discoloration, bruising and denting. Standard cups are 

also unable to support a practical range of cap diameters. This patent is mentioned in this 

thesis to introduce the use of commercially available vacuum cups. It provides justification 

for the work on custom vacuum cup geometries, as described in Appendix B. 

 

6.1.1.4 “Mushroom Harvester”, Patent Number WO/029299 A1 

The system patented on March 3, 2016 by Van De Vegte et al. [19] includes a robotic end-

effector that is configured to interchangeably switch between multiple different suction 

grippers. Each gripper configuration has a suction cup with a size and shape profile 

intended for gripping a range of mushroom cap diameters and geometries. This system is 

still at the Vineland research facility and was in use before the switch over to the 

PreciseFlex infrastructure (Appendix C). Vineland’s reasoning behind the transition to the 

PreciseFlex system is partly due to the complexity of this design and the size constraints 

associated with the cramped Dutch Shelving organization method. The manipulator system 

that this gripper design is intended for is unable to fit within the cramped growing 

environment with Vineland’s proprietary identification system. In addition, despite the 

wide range of grasping capabilities introduced by the interchangeable cup sizes, the suction 

cups still inflicted damage to the grasped mushroom. 
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6.1.2 Standard Vacuum Cups Provided by Vineland 

Vineland has also provided two of the vacuum cups that they use for harvesting 

mushrooms. The first (Figure 6.1a) is a common bellows-type cup [74] commonly used for 

robotic pick-and-place operations. The second (Figure 6.1b) is the bell-type suction cup 

[75], originally used to collect soft chocolates. The bell-type cup is used as the starting 

template for iterations that are presented in Appendix B. 

  

(a) (b) 

Figure 6.1 Commercially-available vacuum cups provided by Vineland. (a) Bellows-type 

cup; (b) Bell-type cup. 

 

6.2 Parameters for Evaluation 

Application tests are performed to compare the performance of the proposed soft gripper 

with the commercial vacuum cups. Each test consists of manually placing the gripper over 

a mushroom and attempting to lift it. The mushrooms are wedged onto a threaded bolt to 

simulate being embedded in a soil bed, as shown in Figure 6.2. Parameters for analysis are 

grasping success and damage inflicted. 
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 (a) (b) (c) 

Figure 6.2 Experimental setup and manual test procedure. (a) Gripper placed over 

mushroom; (b) Gripper lifting mushroom from threaded rod; (c) Organic test object (i.e., 

mushroom) embedded on threaded rod. 

 

Grasping success is determined by whether the end-effector is capable of getting a hold 

of the target mushroom on the first attempt. Dropping the mushroom or being unable to 

make sufficient contact to lift it are both considered failures. Damage infliction is assessed 

by whether the gripper causes any disfigurement to the mushroom surface on contact. Note 

that damage tests are qualitative and based on observation, not measurement. 

 

6.3 Application Testing 

Commercial vacuum cup structures have already been discussed in Section 6.1.2. 

Designated as the Bellows and Bell-type cups, each is tested for a sample size of n = 8 

mushrooms. The Bell-type cup is also the starting template for three custom cup 

geometries. All information related to these custom structures is available in Appendix B. 

Tests for the vacuum gripper are initially performed at 68.94 kPa of compressed air 

input. Conversion to vacuum pressure and losses in the rudimentary vacuum system used 

result in a corresponding vacuum pressure of 0.85 kPa. Note that for the bellows cup, 

another series of tests were performed at 82.73 kPa, which corresponds to 1.19 kPa. 

Performance data for the vacuum cup gripper geometries are shown in Figure 6.3. 
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Figure 6.3 Results of grasp-and-hold experiments (success/failure) and observed damage 

to mushroom surfaces during the tests (damaged/undamaged). These results are for tests 

with the vacuum cups. 

 

The Bell-type suction cup was able to successfully collect the mushroom for less than 

½ of the grasping attempts. Only one of the grasping attempts resulted in damage to the 

mushroom cap structure. The Bellows-type cup was unable to grasp the target mushroom 

in any case. Damage was inflicted to the mushroom cap in all but one attempt. Damage 

inflicted was typically observed in the form of an indented ring (Figure 6.4). 
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(a) (b) 

 

(c) 

Figure 6.4 Observed damage on mushroom cap inflicted by vacuum cup. (a) Indented ring 

of damage; (b) Inflicted damage outlined with red circle; (c) Bell-type cup geometry 

collapsing under vacuum pressure. 

 

The PDMS soft actuators were assembled in three gripper assemblies with concave 

wall thicknesses of 𝑡𝑑 = 1.5 mm, 2 mm and 2.5 mm. For each gripper assembly two sets 

of tests were performed with the applied air pressure (𝑃𝑎) equal to 34.47 kPa (5 psi) and 

41.37 kPa (6 psi), respectively. A single test involved grasping, pulling and holding n = 30 

organic mushrooms of similar size. At 𝑃𝑎 = 34.47 kPa, the experimental observations of 
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the various soft grippers (Figure 6.5) indicate that PDMS actuators with 𝑡𝑑 =

1.5 mm and 2 mm performed well for both the grasp-and-hold(success/failure) and 

minimal infliction of surface damage (damaged/undamaged).  In contrast, the gripper with 

soft actuators that had wall thickness of 𝑡𝑑 = 2.5 mm failed 2/3rds of the grasp-and-hold 

tests but still did not produce any significant surface damage on the target mushroom. For 

the second test set, at 𝑃𝑎 = 41.37 kPa, all soft gripper variants exhibited perfect rasping 

success. In all cases, the proposed soft pneumatic gripper did not inflict any damage to the 

mushroom cap surface.  

 

Figure 6.5 Results of grasp-and-hold experiments (success/failure) and observed 

damage to mushroom surfaces during the tests (damaged/undamaged). These results are 

for tests with the soft PDMS gripper variants. 

 

6.4 Discussion of Results 

The new soft gripper design has demonstrated greater performance than the conventional 

vacuum cups. This higher performance suggests that the broader force distribution applied 

by the soft grippers resulted in the elimination of contact-based damage. Table 6.2 provides 
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a quantitative comparison of the soft grippers’ performance with respect to the vacuum 

cups. The table also lists the general performance indicators listed in Table 6.1, including 

the ± 1 mm static accuracy standard in harvesting manipulator systems. Using the ± 1.11 

mm match between the simulated and experimental results for wall displacement, 

presented in Chapter 4 and Chapter 5, respectively, the accuracy of the actuator’s 

displacement is in relative accordance with the reported value for harvesting manipulators. 

The listed ± 1.4 mm static accuracy for the TrakSTAR positioning sensor is also acceptable 

relative to the listed manipulator value. 
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Comparing the vacuum cup performance to the reported indicators show that, within 

the conditions of the experiment, the cups are not suitable for a mushroom harvesting 

application. The only cup to achieve any success in grasping the mushroom, the Bell cup, 

exhibited a grasping success percentage (37.5%) that was only half the reported indicator 

(75%). Increasing the vacuum pressure may improve grasping success at the potential risk 

of increasing the damage rate. Figure 6.4c shows the Bell-type cup deforming under the 

vacuum pressure. The more rigid Bellows-type cup did not exhibit such compliance, which 

may have caused the significantly higher damage rate. During the first test case for the 

Bellows-type cup, all mushrooms are damaged (100%). The second case shows a lower 

damage rate (87.5%), corresponding to 1 of an n = 8 sample size. Future studies should be 

conducted with higher sample sizes to provide more accurate characterization of the 

vacuum cup’s performance. 

In terms of the reported performance, the soft gripper design surpasses the performance 

of current harvesting systems. At an applied air pressure of 𝑃𝑎  = 41.37 kPa, each tested 

variant of the soft gripper design exhibits 100% grasping success and a 0% damage rate. A 

sample size of n = 30 for each test provides greater accuracy over the vacuum cup tests’ 

smaller sample size, but future studies should be conducted with significantly higher sizes. 

It is important to note that these reported indicators are for multiple harvesting manipulator 

systems, for different crops, in both lab and field operations. This research focuses entirely 

on the performance of a single manipulator component, the end-effector, in a lab 

environment. Performing tests in a field environment, that is by attaching the gripper design 

to the PreciseFlex manipulator and attempt to harvest mushrooms from a growing bed, 

would have the dual benefit of significantly increasing the sample size and provide a 

realistic assessment of the gripper’s utility. Due to unforeseen and unknown circumstances 

it was not possible to perform field experiments for this research. 
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6.5 Design for Different Applications 

The proposed pneumatic hyperelastic actuator and curved gripper design were able to 

successfully grasp and hold light-weight delicate objects. In addition, the compact gripper 

geometry was not affected by gravity in the same manner as longer soft actuator designs, 

thereby making it suitable for attachment to conventional robotic manipulators with 

spherical wrists. Simulated studies on the generated model and experimental tests on the 

fabricated prototypes suggest that the current gripper design could be easily modified and 

adapted for a variety of applications including, but not limited to, the harvest of 

horticultural products. By modifying the geometrical parameters and input pressure, the 

gripper design can be adapted for different targets. For example, the thickness of the 

actuator’s deforming wall (𝑡𝑑) could be adjusted for different target loads or target 

geometries. In addition, the actuator height (ℎ) can be changed for different target sizes or 

to change the number of active actuators in the gripper assembly (i.e., more than three).  

Modifying the arc of the actuator (𝛼) had minimal impact on the performance but this 

parameter can be adjusted to accommodate more or fewer actuators in an assembly. For 

example, the design can be reduced to two actuators opposing each other to grasp flat 

objects by its sides. Another example would be to increase the number of actuators (and, 

therefore, the gripper’s overall size) to grasp a much larger object that would require a 

greater number of contact points. A summary of application-dependent design guidelines 

is provided in Table 6.3. 

Table 6.3 Summary of design guidelines. 

Target Condition Performance Requirement Design Adjustment 

Heavier Target 
Increased Maximum Payload 

(𝑚𝐿) 
Decrease 𝑡𝑑 

Larger Target 
Greater 𝐴𝑐 and 𝐹𝑐 

 

Increase both 𝑡𝑑  and ℎ; 

Increase Number of Actuators 

Delicate Target Structure 
Greater Distribution of 

𝐴𝑐  and 𝐹𝑐 
Increase 𝑡𝑑 

Flat Target Geometry 
Adapt to Different Target 

Shape 

Reduce Number of Actuators (i.e., 

only 2) 



CHAPTER 6. APPLICATION STUDY AND DISCUSSION 

80 

 

 

6.6 Chapter Summary 

This chapter outlined the comparative study between the soft PDMS gripper and vacuum 

cup grippers in use at the Vineland facility. The comparison was presented in terms of a 

mushroom harvesting application. All soft gripper prototypes tested at 𝑃𝑎 =

41.37 kPa showed overall higher grasping success than the vacuum cups. What 

distinguished the soft grippers as viable replacements for vacuum cups is the observed 

damage inflicted. Both vacuum cup geometries tested inflicted some damage to the 

mushroom surface in at least one of the tests. The soft grippers inflicted no damage to the 

mushroom surface during any of the tests. Simulated and experimental data from Chapters 

4 and 5, combined with the application performance evaluated in Chapter 6, suggest that 

the actuator and gripper designs can be modified and adapted for different applications. A 

summary of design guidelines is finally provided. 

 



 

 

 

Chapter 7 

 Concluding Remarks 

 

7.1 Summary of Thesis 

In its entirety this thesis offers the background information, theoretical equations and 

analysis required for the design of a compliant hyperelastic actuator, using a hybrid 

simulation-experiment design process. Polydimethylsiloxane (PDMS) was selected 

because it is a hyperelastic material with well-known properties and, therefore, can be 

analyzed through computational simulations using nonlinear COMSOL Multiphysics 

software, which are detailed in Chapter 4. The comparative analysis described in this work 

was able to match data for the simulated displacement of a deforming actuator wall with 

its empirical equivalent within ± 1.11 mm. Once the comparison was performed, three 

identical soft actuators were formed in a gripper assembly to investigate the design’s 

viability for harvesting delicate structures like the Agaricus Bisporus mushroom. Tests 

performed at 𝑃𝑎 = 41.37 kPa in a laboratory environment showed that the gripper design 

performed with a 100% success rate for gripping the mushroom cap by its sides, and a 0% 

damage rate by not leaving any mark on the mushroom geometry. 

Chapter 1 of the thesis describes how this work fits into the scientific community of 

existing research on the topic of pneumatically-driven soft robotic grippers. Specifically, 

existing research typically implements tedious trial-and-error experimentation on multiple 

design iterations of soft actuators and grippers fabricated with ultra-soft and unpredictable 
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hyperelastic elastomers. Chapter 1 also presents a summary of the economic incentive for 

these devices, specifically for Canadian mushroom harvesting, to emphasize the 

importance of this work. Existing mushroom harvesting systems use vacuum cup grippers. 

These frequently damage the target’s delicate cap structure by applying forces over a 

narrow contact area. Chapter 2 provides a review of hyperelastic material theory as well as 

relevant literature in the field of soft robotic technology. 

Chapter 3 details the design methodology and fabrication process used in the 

development of the compact single-DOF soft actuator, describing the key parameters used 

to evaluate the actuator’s performance. This chapter includes the role and functionality of 

COMSOL Multiphysics nonlinear software in the generation of a soft PDMS actuator’s 3D 

model. Chapter 4 focuses on the simulations performed on this model, chiefly on the 

deformation of the curved actuator’s primary concave wall. The parameters described in 

the previous chapter were analyzed for their impact on the primary wall’s deformation. 

Optimal parameter values were selected for the fabrication of three separate actuator 

variants, distinguishable by the thickness of their primary wall. Chapter 5 goes through the 

experiments performed on these actuators, followed by a comparison of the acquired results 

with simulated data. This chapter demonstrates the close match between some of the 

experiments performed with their corresponding simulations, with the furthest match 

within ± 1.11 mm. 

Chapter 6 demonstrates the actuators’ capabilities in a soft gripper assembly. From the 

controlled experiments, it was shown that increasing the thickness of the actuating wall 

allows the gripper to apply greater contact forces over a broader surface. Three tested wall 

thicknesses of 1.5 mm, 2 mm, and 2.5 mm at 34.47 kPa air pressure exhibited contact forces 

with the target object of 15.7 N, 18.4 N, and 19.3 N, respectively. In contrast, further slip 

testing showed that the thinnest tested wall exhibited almost double the payload capacity 

over the thickest. In the same order, for a cylindrical test object, the actuators show 

maximum payloads of 2.3 kg, 1.975 kg, and 1.375 kg. The grasp-and-hold capabilities of 

the proposed gripper were further assessed by performing a series of application tests 

involving organic mushrooms. These preliminary tests showed that the gripper, with the 

soft pneumatic actuators, performed better than conventional vacuum cup end-effectors 

and inflicted less surface damage on the target produce. These simulations and 
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experimental tests have enabled a number of key design guidelines to be summarized for 

the development of other types of similar pneumatic hyperelastic actuators and gripper 

assemblies. 

 

7.2 Summary of Conclusions 

This thesis explores the issues surrounding the development of compliant hyperelastic 

actuators for a pneumatic soft robotic gripper tailored for grasping delicate produce. Each 

single-chambered pneumatically-driven actuator has only one deformable wall that 

expands when inflated to make contact and then conform to the non-planar surface of the 

target object. Initial analysis is performed using COMSOL Multiphysics simulations which 

illustrate the impact of changing key geometrical parameters on the deformation of the 

primary concave wall. This work is supported with experimental tests that help confirm the 

predicted results. 

In addition, the design and performance of a simple robotic gripper with three identical 

soft actuators assembled in a circular configuration was investigated. This design enabled 

the gripper to grasp and pick up round organic shapes, such as mushroom caps, without 

causing damage to the delicate surface. The design guidelines established in Chapter 6 of 

this thesis provide a method of adapting the proposed actuator and gripper designs for 

different applications. 

The soft actuators presented in this thesis differ from existing work in several ways; 

primarily that they combine both computational modelling and experimental testing. The 

soft actuator design is compact and simple, deviating from conventional bending actuators 

with long multipart structures. This reduces or negates the impact of disturbances such as 

structure swaying or gravity. Besides being compatible with COMSOL Multiphysics’ 

material library, the use of PDMS over more common ultra-soft materials also reduces 

sources of material instability such as snap-through buckling. 

The PDMS actuator’s simple and straightforward geometry make it widely applicable 

for compliant soft end-effectors capable of delicately grasping irregularly-shaped objects. 
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According to the requirements and constraints of the target application, the optimal 

geometry may be identified by the guidelines presented in Chapter 6 of this thesis, in order 

to design an effective soft pneumatic gripper for a wide variety of applications. Analysis 

through simulation reduces the need for extensive design iterations fabricated. In 

conclusion this thesis describes the successful design and hybrid analysis of a mechanically 

compliant soft robotic gripper capable of grasping delicate curved objects. 

 

7.3 Recommendations for Future Research 

The research performed in this thesis also shows the limitations of the current 

computational modelling approach. The hyperelastic material model used, the Mooney-

Rivlin model, cannot accurately interpret an elastomer’s behaviour at higher strains [23]. 

In order to further validate and improve the results of COMSOL Multiphysics simulations, 

it is necessary to implement a more comprehensive hyperelastic model capable of more 

accurately depicting the stress-strain relationship of hyperelastic materials at higher 

pressures. These more accurate models require additional data that can only be acquired 

through experimental testing of PDMS samples, the acquisition of which were beyond the 

scope and capabilities of this work. It is therefore recommended that future work on this 

topic starts with a focus on experimentally acquiring the additional data required for more 

detailed, and therefore more accurate, hyperelastic models. 

In addition, COMSOL Multiphysics is capable of performing contact modelling 

between contacting geometries of different materials. However, these studies require 

material data on all geometries involved. In this case, this would include material data for 

Agaricus Bisporus. Future work for this specific gripper application could include material 

sampling of fresh mushrooms. Simulations could then be performed that study the 

interaction between the soft gripper and the delicate mushroom cap surface. 

Additional future work could address some of the limitations of the gripper experiments 

performed, specifically that they were performed in a laboratory environment. By 

transitioning from a lab to a field environment, a more realistic assessment of the design’s 
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performance can be made. Field tests would also benefit from the significantly larger 

sample size available on the mushroom growing bed. 

Time and resources permitting, future work could also include verifying the durability 

and life cycle of the proposed actuator design. Appropriate experiments can take days, if 

not weeks, to perform, and require a secure environment free of disturbances. This was 

beyond the scope and capabilities of this work. 
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Appendix A 

 PneuNet Actuators 

 

Pneumatic networks, or PneuNets are a series of chambers and channels embedded within 

an extensible elastomer layer. This layer is bonded to a flat inextensible layer. A single 

pressure source inflates the top layer’s chambers, which creates a strain difference between 

the extensible and inextensible layers. This creates a bending motion [4]. A series of 

PneuNet actuators were fabricated at Western University. Standard PneuNet actuators were 

fabricated in collaboration with the MME 4499 Undergraduate Design Project group, led 

by Marcus Dottermann. Under the supervision of Dr. George Knopf, the author of this 

graduate research thesis provided consultation on soft robotic technology, fabrication 

methods, and 3D printed mould design. In that capacity, the author fabricated a number of 

PneuNet actuators to demonstrate proper fabrication techniques to the undergraduate 

design team. These actuators were kept, and tests were attempted for the purposes of this 

thesis. 

Each PneuNet actuator is fabricated using methods as described by the Harvard 

Biodesign Lab website Soft Robotics Toolkit [62]. Acrylonitrile butadiene styrene (ABS) 

moulds were created using a 3D printed based on SolidWorks models. Each mould was 

cast with EcoFlex 00-30. A narrow strip of synthetic fiber mesh was placed in the bottom-

most mould halfway through casting to create the inextensible layer. Each actuator is 11.5 

cm in length, with chambers 2 cm tall. Deforming inner walls are 3 mm in thickness. 
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At low pressures and brief actuation times, the PneuNets performed as shown in Figure 

A.1. However, high input pressures or actuation for any significant period of time resulted 

in unstable and unpredictable behaviour. Tests were ultimately not performed due to these 

instabilities. The excessive compliance of the ultra-soft Ecoflex also rendered the 

associated gripper unable to grasp any object. A series of attempts at actuation and grasping 

is illustrated in Figures A.2–A.6. 

  

(a) (b) 

 

(c) 

Figure A.1 PneuNet Actuator. (a) At rest; (b) Full Actuation; (c) Observed Instability due 

to ultra-soft hyperelastic Ecoflex 00-30. 
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(a) (b) 

 

(c) 

Figure A.2 PneuNet Gripper. (a) At rest; (b) and (c) show two separate instances of snap-

through instability. 

 

  

(a) (b) 

Figure A.3 Grasping attempt with 4 cm diameter foam sphere. (a) Positioning the sphere 

between the PneuNet actuators; (b) PneuNet gripper failing to properly hold 4 cm diameter 

foam sphere by its fingertips. 
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Figure A.4 PneuNet gripper failing to properly hold 6 cm diameter foam sphere by its 

fingertips. 

 

  

(a) (b) 

Figure A.5 PneuNet gripper failing to properly hold the (a) spherical and (b) cylindrical 

payload rigs by its fingertips. 

 

  

(a) (b) 

Figure A.6 PneuNet gripper attempting to grasp a soft foam mushroom. (a) Initially 

succeeding but (b) eventually failing to grasp by its fingertips. 



 

 

 

Appendix B 

 Vacuum Cups 

 

A vacuum cup does not function by attaching itself to an object’s surface. It is instead 

pressed against the surface by the internal application of a vacuum pressure. This is 

achieved when the internal pressure between the cup and the surface is lower than the 

external ambient pressure (Figure B.1). 

 

Figure B.1 Sketch of vacuum cup operating principle. 

 

Members of Vineland Research and Innovation Centre Inc. have graciously provided 

two standard vacuum cups currently used for mushroom harvesting operations. These are 

the common bellows-type (Figure B.2a) and bell-type (Figure B.3b) cups previously shown 

in Section 6.1.2. The bell-type vacuum cup is used as a basis for the development of three 
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vacuum cup iterations, labelled as Cup Iterations 1, 2, and 3. In each case, the cup has a 

height of 35 mm and a bottom diameter of 30 mm. Iteration 1 (B.2c) has structural beams 

running along the side of the cup structure and rings around the cup neck. These additions 

are intended to fortify the cup’s structure to allow fabrication with ultra-soft elastomers 

like Ecoflex 00-30. The base of the cup has a wall thickness of 2 mm. Iteration 2 (B.2d) 

has a thicker cup neck, and the base thickness is reduced from 2 mm to 1 mm. Iteration 3 

(B.2e) reduces the width of the structural beams and increases their number from 4 to 12. 

The base thickness is further reduced to 0.5 mm. To investigate the merit of changing 

material flexibility, each of the three vacuum cup iterations are fabricated with both PDMS 

and Ecoflex 00-30. 

  

(a) (b) 

   

(c) (d) (e) 

Figure B.2 Vacuum cup geometries tested. (a) Bellows-type cup; (b) Bell-type cup; (c) 

Cup Iteration 1; (d) Cup Iteration 2; (e) Cup Iteration 3. 
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Grasping tests use the same evaluation parameters as described in Section 6.2, and the 

identical conditions to test results presented in Section 6.3. Performance data for the 

vacuum cup gripper geometries, including commercial and custom structures, are shown 

in Figure B.3. Overall, the custom geometries do significantly improve grasping success. 

Observable cap surface damage is still present in every case. Using the softer Ecoflex 00-

30 does reduce damage inflicted to the cap structure to some extent for each custom 

geometry, however damage is not fully eliminated. 

 

Figure B.3 Results of grasp-and-hold experiments (success/failure) and observed damage 

to mushroom surfaces during the tests (damaged/undamaged). These results are for tests 

with all vacuum cups. 
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Appendix C 

 Supporting Information on 

Mushrooms 

 

C.1 The White Mushroom, Agaricus Bisporus 

Of the thousands of edible mushrooms, only about 20 are grown on an industrial scale. The 

most commercially popular species of mushroom is the white or button mushroom, 

Agaricus Bisporus, making up 90% of the total mushroom crop in Canada [76]. A 

mushroom’s basic anatomy is shown in Figure C.1. 

 

Figure C.1 Basic anatomy of a mushroom (Leeuwen et al. [77], © 1999 Elsevier, included 

with permission). 
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Variants of Agaricus Bisporus are distinguishable by their level of development, which 

are categorized into 7 stages [78]. Cap geometries undergo significant changes in diameter 

and shape throughout the mushroom’s growth. Early-to-mid stage variants all have a round 

cap, whereas the final stage of development has a flat cap surface. Development stages are 

shown in Figure C.2 and described in Table C.1. 

 

Figure C.2 Development stages of Agaricus Bisporus in terms of growth (Hammond et al. 

[79], © 1976 Journal of General Microbiology, included with permission). 

 

Table C.1 Development stages of Agaricus Bisporus in terms of mushroom cap diameter 

ranges. Adapted from [78]. 

Stage Description Cap 

Diameter 

1 Pinhead, characterized by undifferentiated velum < 5 mm 

2 Button, characterized by visible and intact (but not stretched) 

velum 

20-30mm 

3 Closed cup, velum is stretched but still intact 30-40mm 

4 Cup, velum starting to tear 30-40mm 

5 Cup, velum torn, cap still cup shaped, gills clearly visible 30-50mm 

6 Flat, gill surface flat or slightly concave 40-60mm 

7 Flat, gill surface curving upwards 50-70mm 
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Mushroom bed positioning follows the conventional Dutch Shelving organizational 

structure [22]. There is approximately 30 𝑐𝑚 between the growing bed stacks. 

 

C.2 Graze Harvesting Strategy 

Graze harvesting involves the strategic collection of produce to maximize crop yield. For 

mushrooms, graze harvesting is more sophisticated than simply collecting the largest 

mushrooms from the soil bed. It requires the identification and harvesting of smaller 

mushrooms, making room for the adjacent fungi to grow to their optimal size. This pre-

emptive harvest is known as separation [22]. Mushroom graze harvesting mush also 

consider the varying maturities of the growth flushes within the growing bed. Harvesting 

the appropriate generation of fungi ensures that the bed consistently holds mushrooms 

ready to be picked throughout the entire harvesting process. This maturity-based selection 

process is known as staggering [22]. Controlling both separation and stagger is critical for 

efficiently and consistently harvesting a mushroom bed. 

Another research team at Vineland is developing an identification system for graze 

harvesting, the details of which are proprietary. As such, this research thesis focuses solely 

on the end-effector, and no identification methods shall be discussed.  

 

C.3 Overview of Existing Infrastructure at Vineland Research 

and Innovation Centre Inc.  

Parts of this research are in collaboration with the Vineland Research and Innovation 

Centre (Vineland). They have a testing facility that approximates the working environment 

common for mushroom harvesting. This includes a robotic manipulator upon which the 

proposed soft gripper design would be attached. 

Vineland has graciously provided a reference manual for a version of this robotic 

system, the PreciseFlex400 [80]. The four-axis robotic system includes a 48 VDC motor 

power supply and a 24 VDC logic power supply located in the manipulator’s base. A 
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kinematic diagram of the manipulator is shown in Figure C.3. The diagram outlines the 

manipulator components as named in the reference manual. Note that Vineland has 

replaced the original end-effector with a vacuum cup mounted on an aluminum plate. An 

embedded pneumatic system provides up to 75 psi of air pressure to a compact Venturi 

vacuum ejector fixed to this mounting plate. This ejector converts the compressed (plenum) 

air pressure into vacuum pressure. Vineland has loaned a similar ejector [81] for work on 

Western University campus.  

 

Figure C.3 Kinematic diagram of PreciseFlex robotic manipulator in use at the Vineland 

facility. Adapted from PreciseFlex reference manual [80].  

 

The vacuum-generating ejector’s principle of operation is based on the Venturi 

principle [82] (Figure C.4). Compressed air is introduced into the ejector (A). It is directed 

through a tapered section known as the motive or Venturi nozzle (B). Due to the reduced 

cross-section of this segment, the compressed air is accelerated. The dynamic pressure 

increases, while the static air pressure simultaneously decreases. Once it has passed the 

motive nozzle, the accelerated air expands and leaves a void. This void must be filled, and 

thus a vacuum is generated. Air is drawn through the vacuum connection (D) into the 

ejector. The ejector that Vineland provided for lab testing includes a silencer to reduce 
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sound (C). The compressed air, along with the drawn-in vacuum air, both escape through 

this component. 

 

Figure C.4 Operating principle of Venturi vacuum ejector. (A) Ejector inlet; (B) Venturi 

nozzle; (C) Sound-reducing silencer; (D) Vacuum connection. As described by the 

SCHMALZ webpage [82]. 

 

The manipulator is fixed to a horizontal track as shown in Figure C.3. Along with the 

vertical column to which the shoulder is connected, this allows the system to travel along 

the rows and columns that make up the stacked mushroom growing beds. The referenced 

hardware manual lists the original gripper’s payload as up to 500 g [80]. However, it is 

important to note that this payload value is for the specific gripper and not the whole 

manipulator system. In addition, the provided manual is for an older version of the 

manipulator. Sources at Vineland responsible for purchasing the manipulator state the 

modern version they purchased has a manipulator payload of up to 3 kg. 

 

C.4 Mushroom Sample Measurements 

As mentioned in Appendix C.1, Agaricus Bisporus grows through 7 distinguishable 

stages of development, during which the cap geometries can change drastically. To 

accelerate the design process and reduce costs incurred from purchasing multiple sizes of 
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test mushrooms, the size class was reduced to a small range of cap diameters. Mushrooms 

were purchased from a local grocery store (n = 8 mushroom) to acquire consistent testing 

dimensions. Both external and cross-sectional measurements were taken. Measurement 

data can be found in Table C.2. Cap diameters and physical appearance approximate these 

samples to the 5th stage of development. 

Though masses are recorded, it is important to note that the purchased mushrooms have 

a cut stem, meaning that a portion of their true mass is missing. Measurements were also 

taken two days after purchase. They were stored at 35 °𝐹, the standard refrigerator 

temperature. Though they were left at ambient temperature for 2 hours before being 

measured and weighed, the storage time does affect the mushroom’s moisture content and 

therefore its mass [83]. As a result, the mass values shown may not be an accurate 

representation of a whole and embedded mushroom. Figure C.6 illustrates the 

measurements taken of the mushroom samples. Figure C.7 presents the sample group for 

n = 8 mushrooms. 

Summary of mushroom sizes and experimental parameters. 

• Sample Size (n = 8) 

• Mushrooms Purchased on: 2018/07/08 

• Measurements taken on: 2018/07/10 

• Mass Measurements taken with: Mettler Toledo ME204E (max = 220 g, d = 

0.0001 g) 

• Stored in refrigerator at: T = 35 °F (1.6 °C) 

• Cross-sections of mushroom middle cut of approx. 5 mm thickness 
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Table C.2 Summary of mushroom sample measurements. 

Mushroom 

Cap [mm] Stem (Cut) [mm] Whole Specimen 

Diameter Height 
Radius of 

Curvature 

Diameter 

(Thickness) 
Height Mass [g] Height [mm] 

1 50.44 29.15 14.68 17.75 39.13 26.67 49.82 

2 52.28 28.76 14.24 19.21 33.37 23.46 46.70 

3 51.62 28.43 15.21 19.59 28.80 29.06 46.32 

4 54.64 27.59 14.86 18.61 37.11 31.19 52.42 

5 57.16 29.08 15.76 19.86 43.17 34.69 59.81 

6 56.20 30.50 14.71 17.92 37.93 35.56 56.81 

7 48.57 27.23 12.16 18.49 35.73 25.66 49.23 

8 49.53 27.14 14.19 18.17 31.52 23.92 49.46 

Average 52.56 28.49 14.48 18.70 35.85 28.78 51.32 

 

  

(a) (b) 

Figure C.5 Mushroom sample measurements. (a) Cross-section dimensions; (b) Mass 

measurements with Mettler Toledo digital scale. 
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Figure C.6 Mushroom population for sample measurements (sample size n = 8). 

 

 

 

 

 

  



 

 

 

Appendix D 

 Actuator Moulding System CAD 

& Drawings 

 

The following pages are CAD drawings from SolidWorks Student Edition. The mould 

drawings shown are for fabricating actuators with wall thicknesses of 2 mm. Some design, 

assembly, and dimensions are not detailed within these drawings compared to traditional 

engineering CAD drawings. Instead, the drawings are intended for design insight and to 

give the reader an idea of how these mould sets were fabricated using a 3D printer. Several 

3D printers were used in the fabrication of multiple mould sets, based on printer 

availability. The final mould sets used were fabricated with the Dremel 3D45 Printer. Each 

part was fabricated with an infill density of 18%, a layer height of 0.2 mm, and auto-

generated support structures for overhanging parts of the printed model. Fragile parts of 

the mould, like the inlet ports in the bottom mould, have a 1 mm filet at their base to help 

prevent shearing. Sharp corners that may come into contact with the actuator that are not 

critical to the soft geometry are also curved with filets. Each SolidWorks model is saved 

as an STL file and uploaded to the Dremel DigiLab 3D Slicer software. The software 

converts the solid model into layered paths that the printer follows is it extrudes the 

filament. The prepared model is then uploaded to the printer as a G-code file by USB. Each 

mould assembly is bolted together with M4 socket button head cap screws and M4 hex 

nuts. Figure D.1 shows the CAD models for each mould set. 
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(a) (b) 

Figure D.1 CAD of actuator mould assemblies. (a) Mould set for actuator body; (b) Mould 

set for actuator bottom. Both models shown have the closest wall, nuts, and bolts hidden 

to provide a view of the mould interior. 

 

The following pages of this research thesis present the CAD drawings for the mould sets. 

Units are in mm, and the drawings are at a 1:1 scale. 
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Appendix E 

 Copyright Permissions 

 

The following pages provide confirmation of acquired copyright permissions for the 

appropriate referenced figures in this thesis. Included is a table summarizing the copyright 

information, followed by excerpts of the relevant emails. The table presents the figure 

permissions as they appear in the thesis. The excerpts are provided as figures. They are 

cropped to remove any personal information and only outline the copyright permission. 

Note that copyright permission from IEEE publications is provided based on the conditions 

outlined in the relevant statement below. Also note that copyright permission from MDPI 

publications is provided through the Creative Commons license (CC BY). 
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