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Abstract 

Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein expressed apically on 

proximal tubule epithelia during acute kidney injury (AKI). KIM-1, as a phagocytic receptor, 

facilitates clearance of apoptotic cells (efferocytosis) from tubular lumen, thereby reducing 

inflammation and promoting repair. Human KIM-1 undergoes spontaneous and accelerated 

ectodomain shedding into urine and blood via metalloproteases; tumour necrosis factor-a 

converting enzyme (TACE/ADAM17) and a disintegrin and metalloprotease 10 (ADAM10). 

Blood and urine KIM-1 are clinical AKI biomarkers, however, biological significance of KIM-

1 shedding is unknown. To study this in vivo in mice, I first aimed to identify murine KIM-1 

cleavage site and study its functional relevance in vitro. 

I202 was mapped out as the potential cleavage site and mutated to Q or A. Mutants showed 

significantly reduced ability to accelerate KIM-1 shedding and efferocytosis. ADAM10 

mediated both baseline and accelerated shedding of murine KIM-1. Surprisingly, ADAM10-

mediated KIM-1 shedding was required for efficient efferocytosis. 

Keywords 

Kidney injury molecule-1 (KIM-1), cleavage site, murine, efferocytosis, ADAM10, 

ectodomain shedding, acute kidney injury, phagocytosis, baseline shedding, accelerated 

shedding. 
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Lay Summary 

Background 

Acute kidney injury (AKI) affects about 5-20% of hospitalized patients and is associated with 
increased mortality and risk of future chronic kidney disease. Severe AKI results in massive 
death of kidney epithelial cells. Rapid removal of dead cells occurs via "phagocytosis" which 
is vital for preventing further inflammation and hastening tissue repair. Recently, we 
discovered that injured kidney epithelial cells express KIM-1, a gene product not normally 
found in healthy kidney, which transforms surviving kidney epithelial cells into phagocytes 
that clear dead or dying cells and protect from AKI. KIM-1 is expressed on the cell membrane 
and “cut” by an enzyme and shed into urine and blood from kidney cells. In humans, KIM-1 
is known to be primarily shed by tumour necrosis factor-a converting enzyme 
(TACE/ADAM17) and a disintegrin and metalloprotease 10 (ADAM10). Blood and urinary 
KIM-1 are used in clinics to identify kidney injury, but the importance of this shedding 
mechanism in biology is yet to be understood. We therefore attempted to identify and alter the 
cut site on mouse KIM-1 (mKIM-1) to study any changes in its shedding and phagocytic 
function, in hopes of eventually generating a KIM-1 shedding defective mutant mouse. This 
will be an invaluable tool to study the importance of shedding in the context of the animal as 
a whole. 

Hypothesis 

The cleavage site of mKIM-1 is in a region near the cell membrane outside the cell (T194 to 
I202) and altering nearby amino acids will render it shedding defective but maintain phagocytic 
function. 

Methods 

Mapped out potential cut site based on patterns observed on other proteins cut by TACE and/or 
ADAM10. Alter relevant amino acids at the predicted cut site of mKIM-1 to make mutants for 
testing effect on shedding and phagocytosis. 

Results 

Interestingly, it was observed that ADAM10 is the major enzyme cutting mKIM-1. Position 
I202 was determined to be a potential cut site. Reducing mKIM-1 shedding unexpectedly 
resulted in reduced phagocytosis levels. 
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Chapter 1  

1 Introduction 

1.1 Kidney Disease 

Kidneys are highly vascularized vital organs receiving approximately 20% of cardiac 

output to perform its primary function in blood filtration and processing urinary filtrate. In 

addition to regulating excretion of waste products, the kidneys are also involved in tightly 

regulating plasma osmolarity, electrolyte balance, blood pH, blood pressure, hormone 

production, and gluconeogenesis (Gerich 2010, Lote 2012).  

1.1.1 Renal Physiology 

The kidney is encased in a fibrous capsule and has an outer cortex layer and inner medulla 

layer. The basic structural and functional unit is the nephron, surrounded by peritubular 

capillaries in this highly vascularized organ. Nephrons are made up of two components; 

renal corpuscle and the tubule. Renal corpuscles are found in the outer cortex layer, while 

portions of the renal tubule extend into the renal medulla. On average, each human kidney 

is comprised of about 1 million nephrons, in comparison to mice which possess about 

12,000 nephrons per kidney (Bonvalet, Champion et al. 1977, Nyengaard and Bendtsen 

1992, Wang and Garrett 2017).  

Renal corpuscles consist of the glomerulus and the glomerular capsule known as the 

Bowman’s capsule. The glomerulus is a leaky capillary bed, surrounded by the Bowman’s 

capsule composed of a single layer of epithelial cells. The glomerulus acts as a sieve 

allowing small molecules such as water, ions, glucose, amino acids, urea, creatinine and 

other waste products to filter through, enter the Bowman’s space and eventually move into 

the tubular lumen. Larger substances like proteins and erythrocytes are retained in 

circulation. The filtered component flowing through the tubular lumen is referred to as 

filtrate. The tubule is responsible for further processing the filtrate before it collects in the 

bladder as fully processed urine ready to be excreted. This processing occurs via secretion, 

or the movement of substances from the surrounding peritubular capillaries into the filtrate, 

or reabsorption which involves the movement of substances from the filtrate back into 
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peritubular capillary circulation. The entire renal tubule is lined with a single layer of 

epithelial cells held together by tight junctions and adhesion junctions. The apical 

membrane of these epithelial cells faces the tubular lumen and is distinct from the 

basolateral membrane positioned towards the peritubular capillaries giving the cells a 

polarized phenotype. There are numerous transporters and channels found distinctively on 

these membranes to regulate filtrate processing. The tubule can be further divided into 

different sections starting from the proximal tubule (PT), down the descending limb of the 

Loop of Henle, up the ascending limb of the Loop of Henle, the distal convoluted tubule 

and finally the collecting duct which eventually drains into the ureter. Each section 

processes the filtrate differently. The PT is where majority of reabsorption, about 65% of 

the filtrate volume, first occurs. Then mostly water reabsorption occurs in the descending 

limb of the Loop of Henle, followed by ion reabsorption in the ascending limb and distal 

convoluted tubule. The collecting duct acts as a fine tuner and can be regulated by 

hormones such as antidiuretic hormone and aldosterone to regulate water and Na+/K+ 

reabsorption, respectively. 

1.1.2 Renal Pathophysiology 

There are various forms of kidney disease ranging from acute kidney injury (AKI), 

chronic kidney disease (CKD) and end stage renal disease (ESRD). 

1.1.2.1 Acute Kidney Injury  

AKI is defined as a sudden and rapid decline in renal function in response to ischemic 

(Ichimura, Bonventre et al. 1998) or toxic insults (Thadhani, Pascual et al. 1996, Ichimura, 

Hung et al. 2004) most often in response to conditions such as acute interstitial nephritis 

and acute tubular necrosis (Wilson, Turner et al. 1976, Perazella 2014). With an incidence 

rate of 5-20% in all hospitalized patients, the prognosis is very poor with high morbidity 

and mortality rates (Waikar, Liu et al. 2008, Coca, Yusuf et al. 2009, Susantitaphong, Cruz 

et al. 2013). AKI is most often caused by ischemia-reperfusion injury (IRI) to the kidneys 

which frequently occurs in patients suffering from septic shock (Rangel-Frausto, Pittet et 

al. 1995), or undergoing cardiac bypass surgery (Bhat, Gluck et al. 1976). 
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The lack of blood flow (ischemia) resulting in hypoxic conditions, followed by restoration 

of blood flow (reperfusion) leads to the generation of reactive oxygen species which can 

cause tissue damage (Thadhani, Pascual et al. 1996). The PT is especially susceptible to 

hypoxic conditions. It is a highly metabolic region responsible for most filtrate reabsorption 

and relies on oxidative phosphorylation for adenosine triphosphate (ATP) production, 

unlike other portions of the nephron which continue to produce ATP via anaerobic 

glycolysis during prolonged periods of ischemia (Bagnasco, Good et al. 1985). It has been 

demonstrated that epithelial cells in the S3 segment, latter portion of the PT, are most 

susceptible to IRI in vivo. (Venkatachalam, Bernard et al. 1978, Lieberthal and Nigam 

1998). This is likely the result of hemodynamic factors which result in disproportionately 

prolonged blood flow reduction to the outer portion of the medulla during ischemic events 

(Olof, Hellberg et al. 1991, Bonventre and Yang 2011). 

ATP depletion and oxidative stress resulting from IRI leads to various structural and 

functional changes in these epithelial cells. Firstly, lack of ATP causes actin cytoskeleton 

and microtubule structures to dissociate such that transmembrane proteins like Na+/K+ 

ATPase and integrins, normally observed on the basolateral membrane redistribute to the 

apical membrane, leading to inefficient salt reabsorption and cell detachment from the 

extracellular matrix, respectively (Molitoris, Dahl et al. 1992, Goligorsky and DiBona 

1993, Abbate, Bonventre et al. 1994). In response to ischemic injury, renal tubular 

epithelial cells can become necrotic via two major forms of regulated cell death, 

necroptosis or ferroptosis. Ferroptosis is an iron-dependent form of necrosis that results 

from lipid peroxide accumulation under conditions of oxidative stress (Linkermann, 

Skouta et al. 2014). Although, intracellular iron levels is key in regulating ferroptosis, the 

exact mechanism is still unknown (Lei, Bai et al. 2019). These processes can result in acute 

tubular necrosis (ATN), the standard diagnosis for patients with AKI. Necrotic and 

apoptotic cells, along with live cells that have now detached from the extracellular matrix 

and neighbouring epithelial cells due to loss of tight junctions and adhesion junctions, 

slough off into the tubular lumen (Figure 1.) (Racusen, Fivush et al. 1991, Thadhani, 

Pascual et al. 1996, Racusen 1998). Tubular obstruction of dead cells is believed to be a 

major contributor to decreased kidney function or glomerular filtration (Wahlberg, 

Karlberg et al. 1984). 
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In addition, injured tubular cells can induce inflammation by generating pro-inflammatory 

cytokines and chemokines to recruit inflammatory cells to the injured site and further 

amplify these responses via their Toll-like receptors and T-cell costimulatory molecules 

(Bonventre and Yang 2011). Neutrophils, macrophages, natural killer T cells and dendritic 

cells all contribute to the immune response and can aggravate kidney injury (Bonventre 

and Yang 2011). Necrotic cells are especially known to initiate a more robust inflammatory 

response, when compared to apoptotic cells because of their distinctive loss of cell 

membrane integrity, expulsion of intracellular contents, and activation of innate immune 

responses to exacerbate tissue injury (Kaushal, Basnakian et al. 2004). During renal IRI, 

necrotic cells release endogenous molecules termed damage-associated molecular patterns 

(DAMPs) that activate cell surface receptors (e.g. Toll-like receptors), triggering 

inflammatory and cytotoxic responses (Wu, Chen et al. 2007, Andrassy, Volz et al. 2008). 

Ultimately, induced inflammation by these injured and dying epithelial cells plays an 

important pathophysiological role in mediating AKI by propagating further tissue damage 

(i.e. secondary tissue damage). 
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Figure 1 Renal cellular pathophysiology.   

Modified schematic from (E and Humphreys 2017), depicting cellular level 

pathophysiological changes in renal tissue during various stages of kidney disease 

transitioning from healthy kidney to AKI and CKD. 
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1.1.2.2 Chronic Kidney Disease and End Stage Renal Disease 

AKI also increases the risk for progressing to a more severe, irreversible stage of kidney 

injury known as CKD (Coca, Yusuf et al. 2009, Wald, Quinn et al. 2009). Other more 

common causes of CKD include diabetes and hypertension (Ghaderian and Beladi-

Mousavi 2014). 

CKD patients develop fibrosis or scarring in their renal tissue leading to a further decline 

in renal function (Zhang, Humphreys et al. 2007). Myofibroblasts secrete extracellular 

matrix (ECM) proteins such as collagen and fibronectin and are essential for wound repair, 

however excess ECM deposit can lead to pathological fibrosis. The origin of these 

myofibroblasts during kidney fibrosis was somewhat controversial with some earlier 

suggestions that most originate from epithelial precursors (Okada, Danoff et al. 1997), 

whereas more recent studies suggest that pericytes, fibroblasts wrapped around blood 

vessels, are primarily responsible for transforming into myofibroblasts (Humphreys, Lin et 

al. 2010). Pericytes normally help to stabilize blood vessels and their increased detachment 

can lead to capillary rarefaction (Figure 1.) (E and Humphreys 2017, Kramann, 

Wongboonsin et al. 2017). Reduced blood flow in this otherwise highly vascularized organ 

can further compound hypoxic conditions.  

Cells which have sloughed off into the tubular lumen after AKI and not been cleared can 

then adhere to each other and other proteins in the tubular lumen such as Tamm-Horsfall 

protein (Patel, McKenzie et al. 1964) or fibronectin (Zuk, Bonventre et al. 2001) to form 

intraluminal casts often observed in patients with ATN (Figure 1.). These casts result in 

tubular obstruction and increased intratubular pressure to further exacerbate tissue damage 

(Goligorsky and DiBona 1993). Moreover, the disrupted barrier of epithelial cells from the 

absence of tight junctions along the tubule allows for backleak of filtrate contents into the 

interstitial space (Donohoe, Venkatachalam et al. 1978). As filtered solutes re-enter 

circulation, the glomerular filtration rate (GFR) is effectively reduced leading to post-

ischemic renal failure (Donohoe, Venkatachalam et al. 1978).  

The progression of CKD ultimately can result in ESRD at which point there is only one of 

two treatment options: either dialysis or renal transplantation (Wald, Quinn et al. 2009). 
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Kidney disease, being a worldwide phenomenon, is highly underdiagnosed with no 

effective treatment for AKI, which at a severe and recurring level can further progress to 

CKD and ESRD (Yang, Xing et al. 2015). 

1.2 Kidney Injury Molecule-1  

1.2.1 Structure and expression 

Kidney injury molecule -1 (KIM-1) is a type I transmembrane glycoprotein found on the 

apical surface of proximal tubule epithelial cells (PTEC) of the nephron (Ichimura, 

Bonventre et al. 1998, van Timmeren, van den Heuvel et al. 2007). While KIM-1 is not 

normally expressed in healthy kidneys, it is transiently upregulated during periods of AKI 

(Ichimura, Bonventre et al. 1998) or other conditions when PTECs dedifferentiate such as 

renal cell carcinoma (Han, Alinani et al. 2005), tubulointerstitial disease (van Timmeren, 

Bakker et al. 2006), polycystic kidney disease (Kuehn, Park et al. 2002) or drug-induced 

nephrotoxicity (Perez-Rojas, Blanco et al. 2007). More recently, KIM-1 has been shown 

to be upregulated in CKD (Sabbisetti, Waikar et al. 2014) and potentially a marker of 

recurrent tubular injury that may be driving disease progression (Nowak, Skupien et al. 

2016). 

KIM-1 is also known as T cell immunoglobulin and mucin domain-1 (TIM-1) as it is 

expressed on various immune cells such as CD4+ T cells, CD8+ T cells, natural killer cells, 

macrophages, dendritic cells, B regulatory cells and mast cells (Freeman, Casasnovas et al. 

2010, Ding, Yeung et al. 2011). It can also be referred to as hepatitis A virus cellular 

receptor-1 (HAVCR-1) when expressed on hepatocytes (Govorkova, Murti et al. 1996). 

However, TIM-1 expression levels on immune cells has been shown to be orders of 

magnitudes less than that of KIM-1 on injured PTECs (Ichimura, Asseldonk et al. 2008, 

Nozaki, Nikolic-Paterson et al. 2012, Brooks, Yeung et al. 2015) In humans, the TIM-1 

family has three members (TIM-1, TIM-2 and TIM-4) located on chromosome region 

5q33, whereas in mouse there are eight members (TIM-1-8) on chromosome 11. Both 

human and mouse TIM-1 family genes are highly homologous (Kuchroo, Umetsu et al. 

2003).  
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KIM-1 has five major structural domains (Figure 2). The outermost portion is the N-

terminal immunoglobulin variable (IgV) domain containing six cysteine residues important 

for its metal-ion dependent binding to ligands like phosphatidylserine expressing apoptotic 

cells (Ichimura, Bonventre et al. 1998, Santiago, Ballesteros et al. 2007, Bonventre 2009). 

The mucin domain, a threonine, serine, proline (TSP)-rich region, is commonly known to 

be heavily glycosylated with O-linked, and to a lesser extent, N-linked glycans. Mouse 

KIM-1 (mKIM-1) specifically has 37 potential sites for O-linked glycosylations in this 

region. The stalk-region is the membrane proximal region of the ectodomain with potential 

sites for 3 N-linked glycans. There is a single transmembrane domain and a short C-

terminal cytoplasmic domain which contains a conserved tyrosine phosphorylation motif 

(QAEDNIY). 

In addition, human KIM-1 has two isoforms that can result from alternative splicing; KIM-

1a predominantly expressed in the liver and KIM-1b in the kidneys (Bailly, Zhang et al. 

2002). KIM-1a and KIM-1b are identical except that the cytoplasmic tail is shorter for 

KIM-1a and therefore lacks the tyrosine phosphorylation site. Human KIM-1 (hKIM-1) 

has 3 cytoplasmic tyrosine residues (Y314, Y350 and Y356) of which two are conserved 

in mouse and rat (Y314 and Y350). 

1.2.2 Function 

KIM-1 acts as a receptor for phosphatidylserine, an ‘eat me’ signal, expressed on the outer 

leaflet of apoptotic cells (Ichimura, Asseldonk et al. 2008). Oxidized phospholipids can 

also be found to accumulate on the outer leaflet of dying cells and allow them to bind KIM-

1 (Ichimura, Asseldonk et al. 2008). This binding induces a semi-phagocytic phenotype on 

surviving KIM-1 expressing epithelial cells to facilitate clearing of apoptotic cells from the 

tubular luminal area in a process known as efferocytosis (Ichimura, Asseldonk et al. 2008, 

Ismail, Zhang et al. 2015, Yang, Brooks et al. 2015). Necrotic debris can also be cleared 

by KIM-1 after being opsonized with Apoptosis Inhibitor of Macrophage (AIM) (Arai, 

Kitada et al. 2016) which is also filtered through the glomerulus and excreted in urine 

during AKI (Yamazaki, Sugisawa et al. 2016). This clearance of dead and dying cells 

dissipates obstruction in the tubular lumen, thereby reducing inflammation and permitting 

repair. Failure to clear these cells can lead to the production of autoantibodies to induce 
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detrimental inflammatory responses (Savill, Dransfield et al. 2002, Umetsu, Lee et al. 

2005, Nakayama, Akiba et al. 2009). In the setting of kidney transplantation, where IRI is 

inevitable, genetic ablation of KIM-1 in the donor kidneys has been shown to lead to severe 

graft dysfunction and systemic inflammation in the recipients in a mouse model of kidney 

transplantation (Lee, Ismail et al. 2018). 

Only a few studies have looked at the downstream signaling mechanisms of KIM-1 and 

potential interacting proteins during efferocytosis and tissue repair after injury. Therefore, 

the complete signaling cascade is not well understood. As a phagocytic receptor, it is 

expected that KIM-1 will have downstream effects on cytoskeletal remodeling. Our group 

has shown that Dynein Light Chain Tctex Type-1 (DYNLT-1) also known as T-complex 

testis specific protein-1 (Tctex-1), acts as a cytosolic interaction partner for KIM-1, playing 

a crucial role in mediating the early phases of KIM-1 dependent efferocytosis in a 

cytoskeleton dependent manner via actin and microtubule associations (Ismail, 

Sriranganathan et al. 2018). Our group has also reported the alpha subunit of heterotrimeric 

G protein 12 (Gα12) as a negative regulator of KIM-1 mediated efferocytosis (Ismail, 

Zhang et al. 2016). In response to renal IRI, Gα12 becomes activated by inflammatory 

stimuli such as reactive oxygen species (ROS) and inhibits efferocytosis (Ismail, Zhang et 

al. 2015). This inhibitory process is mediated by downstream activation of a small GTPase, 

RhoA, which induces actin cytoskeletal remodeling to inhibit efferocytosis (Ismail, Zhang 

et al. 2016). Gα12 can also stimulate Src-dependent injury pathways that further exacerbate 

tissue damage by disrupting tight junctions which normally seal adjacent PTECs lining the 

renal tubule (Ismail, Zhang et al. 2015). Like all GTPases, both Gα12 and RhoA, are 

inactive when GDP-bound and become active when GTP bound (Ridley 2001, Kozasa, 

Hajicek et al. 2011). KIM-1, when expressed, can bind directly to Gα12 to block GTP 

binding and prevent its activation thereby protecting against the damaging downstream 

effects of renal IRI.  

Others have reported the anti-inflammatory effect of KIM-1 expression via a signaling 

cascade which involves direct binding of phosphorylated KIM-1 to p85 and subsequent 

PI3K mediated downmodulation of NF-κB signaling (de Souza, Oak et al. 2008, Yang, 

Brooks et al. 2015). This pathway leads to reduced toll-like receptor 4 (TLR4) expression 
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which normally amplifies innate immune responses, reduced proinflammatory cytokine 

production, and reduced ability to activate macrophages (Yang, Brooks et al. 2015). 

Importantly, apoptotic cell ligand binding to KIM-1 is the initial trigger for 

phosphorylation of its cytosolic tyrosine residue and subsequent interaction with p85 (de 

Souza, Oak et al. 2008, Brooks, Yeung et al. 2015). KIM-1 association with p85 has also 

been linked with promoting phagosome maturation via the autophagy ‘self-eating’ pathway 

(Brooks, Yeung et al. 2015). This results in apoptotic cell self-antigen presentation by these 

phagocytic epithelial cells that leads to an anti-inflammatory response by suppressing T 

cell proliferation.  

KIM-1 can also induce dedifferentiation, proliferation and migration of renal epithelial 

cells via the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase 

(MAPK) signaling cascade pathway (Zhang and Cai 2016). All these processes are 

crucially important for surviving KIM-1 expressing PTECs to repair and replace damaged 

tubular epithelium (Figure 1). During renal injury, the basement membrane becomes 

exposed as PTECs slough off into the tubular lumen, leading to loss of nephron functional 

integrity (Bonventre 2003). The loss of this barrier results in backleak of filtrate contents 

into the interstitital space and peritubular capillaries as well as the appearance of plasma 

proteins, like fibronectin, in the tubule which can further exacerbate tubular obstruction 

(Zuk, Bonventre et al. 1998). The high proliferative capacity of dedifferentiated KIM-1 

expressing PTECs and their ability to migrate are both important to replace irreversibly 

damaged epithelial cells. 

On the other hand, it is interesting to note that KIM-1 was discovered to be an endogenous 

ligand for leukocyte mono-Ig like receptor 5 (LMIR5) expressed on myeloid immune cells 

and this binding interaction leads to neutrophil recruitment to the kidney and tubular 

damage in response to IRI (Yamanishi, Kitaura et al. 2010). Overall, it is clear that KIM-1 

signaling is quite complex and likely a multitude of different interacting proteins are at 

play in terms of mediating renal response to IRI. 
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1.2.3 KIM-1 Shedding 

Human KIM-1 undergoes constitutive and accelerated ectodomain shedding by 

metalloprotease-mediated membrane proximal proteolytic cleavage to release soluble 

KIM-1 (sKIM-1) (Bailly, Zhang et al. 2002, Zhang, Humphreys et al. 2007, Gandhi, Yi et 

al. 2014) (Figure 2.). Human sKIM-1 has a molecular weight of ~90-kDa with a 14-kDa 

cleaved portion remaining in the membrane (Bailly, Zhang et al. 2002), whereas mouse 

sKIM-1 has a molecular weight of ~60-kDa as previously reported (Ichimura, Bonventre 

et al. 1998, Gandhi, Yi et al. 2014). Human KIM-1 is also shed into the urine of patients 

afflicted with AKI and can be readily detected using western blotting or enzyme linked 

immunosorbent assay (ELISA). Urine sKIM-1 is a sensitive and specific biomarker for 

AKI in humans and rodent models (Han, Bailly et al. 2002, Vaidya, Ozer et al. 2010, Coca, 

Garg et al. 2014). 

Constitutive and accelerated hKIM-1 shedding has been shown to be differentially 

regulated by ERK MAPK and p38 MAPK signaling, respectively, suggesting different 

downstream signaling mechanisms can be at play under various shedding conditions. 

Studies using broad spectrum hydroxamate-based matrix metalloprotease (MMP) and 

ADAM enzyme inhibitors, such as batismastat (BB-94) and ilomastat (GM6001), showed 

efficient inhibition of baseline and accelerated KIM-1 shedding indicating cleavage is 

likely mediated by a metalloprotease enzyme (Bailly, Zhang et al. 2002, Zhang, 

Humphreys et al. 2007). Tumour necrosis factor-a converting enzyme, also known as a 

disintegrin and metalloprotease protein 17 (TACE or ADAM17), is a zinc-dependent 

membrane anchored metalloprotease. TACE has been previously shown to be involved in 

constitutive as well as accelerated cleavage of hKIM-1 in its ectodomain region (Gandhi, 

Yi et al. 2014). Accelerated shedding of transmembrane proteins is often induced with 

phorbol esters such as phorbol 12-myristate 13-acetate (PMA), a chemical activator of 

protein kinase C which can stimulate downstream TACE activity and potentially other 

metalloproteases (Bazzi and Nelsestuen 1989, Hahn, Pischitzis et al. 2003). PMA is used 

to induce accelerated KIM-1 shedding along with other stimulators such as H2O2, apoptotic 

cells, or pervanadate (PV), a potent inhibitor of protein tyrosine phosphatases (Bazzi and 

Nelsestuen 1989, Hahn, Pischitzis et al. 2003, Gandhi, Yi et al. 2014). A disintegrin and 
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metalloprotease protein 10 (ADAM10) has also been reported as a sheddase that mediates 

hKIM-1 shedding (Schweigert, Dewitz et al. 2014). Membrane-type MMP-1 (MT-MMP1), 

when co-expressed with KIM-1, is also capable of moderating baseline shedding (Guo, 

Takino et al. 2012). Thus far, MMP3 is the only matrix metalloprotease implicated to play 

a role not only in hKIM-1 but also mKIM-1 shedding (Lim, Chan et al. 2012).  

KIM-1 expressed on the apical surface of PTECs can release sKIM-1 into urine, but it has 

also been demonstrated that sKIM-1 can be found in blood and used as a useful blood 

biomarker for AKI, CKD and progression to ESRD (Sabbisetti, Waikar et al. 2014). In 

response to renal injury, loss of tubular cell polarity can result in KIM-1 expression on the 

basolateral membrane of PTECS to allow direct entry into the interstitial space (Zuk, 

Bonventre et al. 1998, Sabbisetti, Waikar et al. 2014). Increased transepithelial 

permeability after injury will also allow for tubular content backleak (Myers, Chui et al. 

1979). Additionally, increased microvascular permeability after injury will allow sKIM-1 

to enter blood circulation more efficiently (Sutton 2009, Sabbisetti, Waikar et al. 2014). 

An increase in urinary and plasma sKIM-1 can be detected in mice subjected to bilateral 

IRI as early as 3 hours after reperfusion (Sabbisetti, Waikar et al. 2014). In humans, KIM-

1 can be detected in urine within 12 hours post-ischemic injury, and elevated at much 

higher levels in plasma for patients who develop AKI or CKD compared to healthy controls 

(Han, Bailly et al. 2002, Sabbisetti, Waikar et al. 2014). KIM-1 is a highly specific and 

sensitive blood and urinary biomarker for injury specific to the proximal tubule in response 

to ischemic or nephrotoxic insults (Ichimura, Hung et al. 2004, Sabbisetti, Waikar et al. 

2014). 

Most studies have been focused on elucidating the shedding mechanism of hKIM-1, 

whereas mKIM-1 shedding has been largely unexplored. 
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Figure 2 Murine KIM-1 structural domains. 

Type I transmembrane glycoprotein KIM-1 (282 amino acids) structural domains 

consisting of IgV domain (P16 to T122), mucin domain and stalk region (T133 to K213), 

transmembrane domain (G214 to T236) and cytoplasmic domain (R237 to P282). O-linked 

and N-linked glycosylations on extracellular domains. Membrane proximal cleavage 

releases sKIM-1. Tyrosine phosphorylation site (Y276) on cytoplasmic domain. 
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1.3 TACE-/ADAM10-mediated proteolytic cleavage 

TACE/ADAM17 and ADAM10 are both expressed in the kidney and are the two major 

sheddases in the ADAM gene family responsible for ectodomain proteolytic cleavage of 

over 100 substrates including various growth factors, cytokines, receptors and adhesion 

molecules (Edwards, Handsley et al. 2008, Kato, Hagiyama et al. 2018). TACE is the 

principal sheddase for substrates such as tumour necrosis factor (TNF)-alpha, transforming 

growth factor (TGF)-alpha, amphiregulin, L-selectin, heparin-binding epidermal growth 

factor, and interleukin 6 receptor (IL-6R) (Black, Rauch et al. 1997, Peschon, Slack et al. 

1998, Sahin, Weskamp et al. 2004, Schumacher, Meyer et al. 2015). ADAM10 is involved 

with shedding substrates such as Notch, Fas ligand, N-cadherin, and E-cadherin (Pan and 

Rubin 1997, Kirkin, Cahuzac et al. 2007, Edwards, Handsley et al. 2008). Many of these 

substrates can be cleaved by either TACE and/or ADAM10 depending on the substrate, 

cell type or the stimulus used to induce shedding.  

Chemical stimulators such as PMA and ionomycin, as well as physiological stimulators 

such as ATP, G protein coupled receptor ligands, insulin (Chen, Podvin et al. 2007), serum 

albumin (Lim, Chan et al. 2012), and apoptosis induction (Edwards, Handsley et al. 2008), 

can be used to activate various ADAM proteases and induce shedding of transmembrane 

substrates. Many studies use PMA as a PKC activator to induce TACE-mediated 

accelerated shedding of substrates, whereas ionomycin is generally used as an ionophore 

to allow the rapid influx of calcium to stimulate ADAM10- mediated shedding (Horiuchi, 

Le Gall et al. 2007). 

Interestingly, TACE and ADAM10 are closely related and have been previously shown to 

differentially regulate shedding of the same substrate (Scheller, Chalaris et al. 2011). In the 

case of the transmembrane protein IL-6R, TACE is responsible for PMA-induced 

accelerated shedding whereas ADAM10 mediates constitutive baseline shedding in both 

humans and mice (Schumacher, Meyer et al. 2015). The CX3C chemokine fractalkine 

(CX3CL1) transmembrane protein also undergoes baseline cleavage via ADAM10 and 

PMA-induced cleavage via TACE (Hundhausen, Misztela et al. 2003). 
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1.4 Rationale, Objective, Hypothesis 

1.4.1 Rationale 

AKI has an incidence rate of 5-20% in all hospitalized patients, with high morbidity and 

mortality rates (Waikar, Liu et al. 2008, Coca, Yusuf et al. 2009, Susantitaphong, Cruz et 

al. 2013). Despite advances in technology over the past few decades, mortality rates for 

critically ill AKI patients remain high and unchanged at about 50% (Ympa, Sakr et al. 

2005), highlighting the need for effective treatments. It is important that we focus on 

treatments for early stages of AKI to prevent the progression to more severe and 

irreversible renal damage associated with CKD or ESRD (Coca, Yusuf et al. 2009, Wald, 

Quinn et al. 2009, Yang, Xing et al. 2015). In light of this, KIM-1, which is used as an 

early biomarker for AKI, has tremendous potential to be targeted for therapy. 

IRI is a model often used to study AKI in mice which involves clamping and releasing the 

renal pedicle to regulate blood flow to the kidney (Zhang, Shek et al. 2010, Ismail, Zhang 

et al. 2015). Using this model, we have shown that during moderate (warm) IRI with 35 

minutes of ischemia, KIM-1 is protective in AKI (Ismail, Zhang et al. 2015). In addition, 

KIM-1 upregulation in the donor kidneys during transplantation was found to be protective 

against tissue damage and graft dysfunction from transplant-related (cold) IRI. However, 

unpublished data from our lab suggests that during severe IRI with 45 minutes of ischeima, 

this protective ability is lost and KIM-1 paradoxically promotes renal fibrosis, a phenotype 

observed in CKD. We show that KIM-1-deficient mice, in comparison to wild type mice, 

are protected from renal fibrosis when subjected to severe AKI. Also, genetic 

overexpression of KIM-1 in renal tubular cells in the absence of injury has been shown to 

spontaneously trigger renal fibrosis (Humphreys, Xu et al. 2013, Humphreys, Xu et al. 

2013). Therefore, KIM-1 may play a key role in mediating the transition from AKI to CKD 

by triggering profibrotic pathways.  

Importantly, the mechanism of KIM-1 shedding into urine and blood needs to be further 

explored. Although the clinical significance is apparent in its use as sensitive and specific 

biomarker for AKI, the biological significance of KIM-1 shedding is not so well 

understood. Previous in vitro studies have shown that accelerated shedding of human KIM-
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1 via TACE activity induction, inhibits clearance of apoptotic cells, as sKIM-1 acts as a 

decoy receptor to competitively inhibit binding of phagocytic KIM-1 expressing epithelial 

cells (Gandhi, Yi et al. 2014). This was, however, a sKIM-1 concentration dependent 

effect, and not reflective of in vivo conditions. The biological significance of KIM-1 

shedding in AKI in vivo is yet to be determined.  

In order to conduct in vivo studies, the specific shedding enzymes and cleavage site on 

mKIM-1 needed to be elucidated. TACE, believed to be the major sheddase for hKIM-1, 

is responsible for shedding a wide range of susceptible growth factor substrates and lacks 

any particular sequence specificity around the cleavage site (Caescu, Jeschke et al. 2009, 

Thorp, Vaisar et al. 2011), therefore the exact cleavage site on KIM-1 cannot be easily 

deduced. 

1.4.2 Objective and Aims 

The overall aim was to identify the cleavage site for mKIM-1 and ultimately alter the 

relevant amino acid(s) to generate a shedding defective mutant. This information would be 

necessary for generating transgenic mice expressing shedding defective KIM-1. These 

mice will then be instrumental for studying the biological significance of KIM-1 shedding 

in an in vivo model, including the possible effect of KIM-1 shedding on AKI to CKD and 

ESRD transition as well as the functional relevance of sKIM-1 in blood and urine. Studies 

characterizing the functional differences between wild type KIM-1 and the shedding 

defective mutant KIM-1 will be critical for deepening our understanding of the shedding 

mechanism and any further considerations that should be made when using the shedding 

defective mouse model for further studies.  

The specific aims of the work outlined in this thesis were 1) to identify the cleavage site of 

mKIM-1, 2) generate shedding defective mutant mKIM-1 in vitro, and 3) study the 

functional relevance of a shedding defect in vitro.  
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1.4.3 Hypothesis 

I hypothesized that the mKIM-1 cleavage site is situated between T194 and I202, based on 

basic local alignment search tool (BLAST) sequence alignment with the predicted cleavage 

region on hKIM-1 and that altering relevant amino acids around the cleavage site will result 

in a shedding defective mutant that will remain functionally intact in terms of its phagocytic 

capacity. Based on previous studies, I predicted that the spontaneous shedding of KIM-1 

has biological significance in protecting against kidney fibrosis and transition from AKI to 

CKD.  
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Chapter 2 

2 Materials & Methods 

2.1 Cell culture 

Human Embryonic Kidney 293 (HEK293) cells were cultured at 37°C in 5% (v/v) CO2 in 

Dulbecco’s Modified Eagle Medium (DMEM; Lonza, Walkersville, MD) containing 10% 

(v/v) fetal bovine serum (FBS; GIBCO Cat No. 10437028) and 5% (v/v) 

penicillin/streptomycin solution (P/S; Invitrogen, Carlsbad, CA). HEK293 cells made to 

stably express the expression plasmid for Flag (DYKDDDDK)-tagged mKIM-1 (Addgene 

plasmid # 49205) were maintained in DMEM at 37°C in 5% (v/v) CO2 supplemented 400 

μg/mL Geneticin (G418) Sulfate (Santa Cruz Biotechnology, CA) in addition to 10% (v/v) 

FBS, and 5% (v/v) P/S. All HEK293 cell lines were maintained in plates coated with poly-

DL-lysine hydrobromide (Sigma-Aldrich, St. Louis, MO) for better cell attachment. 

 

Renal epithelial cell carcinoma cells (RENCA) transduced with lenti ORF particles 

containing a vector with murine KIM-1 (RENCA KIM-1; MR203831L3V; Origene, 

Rockville, MD) or control vector (RENCA Control; MR203831L3V; Origene, Rockville, 

MD) were cultured at 37°C in 5% (v/v) CO2 in RPMI-1640 medium containing 10% FBS, 

5% P/S, 0.1 mM non-essential amino acids (ThermoFisherScientific, Waltham, MA), 1 

mM sodium pyruvate (ThermoFisher Scientific), and 2 mM L-glutamine (ThermoFisher 

Scientific). 

 

Primary PTECs were obtained from 3-6 week old C57Bl/6 wild-type mice (WT PTECs) 

and IRI-injured mice (IRI PTECs) and maintained in serum-free DMEM supplemented 

with 5% Insulin-Transferrin-Selenium (Invitrogen), 5% P/S, 0.5 μg/mL of mouse 

epidermal growth factor (Peprotech, Rocky Hill, NJ), and 50 ng/mL hydrocortisone 

(Thermo Fisher Scientific, Rockford, IL) for 6 days at 37°C with 5% (v/v) CO2. After 6 

days, media was supplemented with 5% (v/v) FBS. 
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2.2 Western Blots 

Cell lysates were collected with 4% (w/v) sodium dodecyl sulfate (SDS; BioBasic Inc.) in 

1 × phosphate buffered saline (PBS; 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HOP4, 1.47 

mM KH2PO4, pH 7.4), and conditioned media were collected from cell monolayers 

following the appropriate treatments. Media samples were centrifuged at 16,000 g for 15 

mins to pellet any cell remnants, supernatant was collected and EDTA-free mini protease 

inhibitor tablets (Sigma Aldrich Cat No. 4693159001) were added. Equal volumes of the 

supernatant (70 µL) was combined with 10 µL of 6× loading dye containing ß-

mercaptoethanol as a reducing reagent. Protein concentrations of cell lysates were 

determined using the Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) and lysate 

samples were prepared to contain 50 µg for loading. All samples were boiled for 5 minutes 

at 95°C to denature. Samples were separated by SDS-PAGE, and transferred to 

polyvinylidene difluoride membranes (Millipore, Billerica, MA) for 50 minutes at 90 V. 

Membranes were blocked with 3% (w/v) BSA (bovine serum albumin; BioBasic Cat No. 

AD0023) in TBST (Tris-buffered saline, 0.2% Tween-20) for 30 minutes and then 

incubated overnight at 4°C with anti-KIM-1 goat primary antibody (dilution 1:2000; Cat 

No. AF1817, R&D Systems, Minneapolis, MN) against the extracellular domain of KIM-

1, anti-GAPDH (6C5) mouse antibody (dilution 1:1500; Santa Cruz Biotechnology) or 

anti-ADAM10 rabbit antibody (dilution 1:500, Cat # AB19026, Millipore) . Membranes 

were subsequently washed with TBST four times for 7 minutes each and then incubated 

with the appropriate horseradish peroxidase-conjugated secondary antibody (dilution 

1:20000; Jackson ImmunoResearch Laboratories, West Grove, PA) for 1 hour at room 

temperature in blocking buffer in the dark, and then washed again four times for 7 minutes 

each. Proteins were visualized using chemiluminescent HRP substrate (Millipore) on Licor 

C-digit imaging device. Results were quantified by analyzing densitometric values from 

western blot images using Image Studio Lite. 
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2.3 Endogenous cleavage of KIM-1 method 

2.3.1 Accelerated KIM-1 shedding into media 

HEK293 cells stably expressing flag (DYKDDDDK)-tagged murine KIM-1 were plated 

on twenty 15cm plates and grown to about 90% confluency. Cells were washed with PBS, 

then treated with 1 µM phorbol 12-myristate 13-acetate (PMA) (Sigma-Aldrich, St. Louis, 

MO) in serum-free DMEM for 1 hour at 37°C with 5% (v/v) CO2 to induce accelerated 

shedding of KIM-1 ectodomain into condition media. Media samples were collected and 

centrifuged at 500 g for 5 mins to remove any cellular remnants leaving behind the cleaved 

ectodomain portion of KIM-1 in the supernatant. Mini-protease inhibitor tablets (Sigma 

Aldrich) were added to prevent any further unwanted degradation of protein.  

2.3.2 Immunoprecipitation, Deglycosylation, Dialysis 

Media samples were incubated with Anti-DYKDDDDK Tag (L5) affinity gel (BioLegend) 

at 4°C overnight to immunoprecipitate cleaved KIM-1. Gel was then washed and 

centrifuged at 500 g for 5 mins three times with PBS. Immunoprecipitated KIM-1 was 

released from the gel by boiling at 95°C for 5 mins in 1% (w/v) SDS. This was repeated 

three times and kept in separate aliquots to ensure complete release of KIM-1 from gel. 

Samples were lyophilized before undergoing chemical deglycosylation (Sigma 

Glycoprofile IV Deglycosylation Kit). To remove N- and O- linked glycans 

trifluoromethanesulfonic (TFMS) acid, anisole was used as a free-radical scavenger to 

increase yield of reaction product. Enzyme-mediated deglycosylation method was also 

tried with PNGase F (Promega) to remove only N-linked glycans. This deglycosylation 

step is critically important for efficient protein sequencing during the subsequent analysis 

stages. Samples are then either desalted using Amicon Ultra-0.5 centrifugal filters 

(Millipore Sigma) to remove any impurities and concentrate or dialyzed using a 3,500 Da 

molecular weight cut-off dialysis membrane (BioDesign Inc.) in acetonitrile (ACN)/50 

mM ammonium bicarbonate (ABC) buffer solution to remove any impurities. Dialysis was 

performed with 3 exchanges against 1L buffer with a minimum of 8 h between exchanges.  
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2.3.3 Coomassie gel stain, in-gel digest and mass spectrometry 

The protein samples were concentrated with a Speedvac vacuum concentrator 

(ThermoFisher Scientific) before being run on SDS-PAGE to resolve deglycosylated 

soluble KIM-1. The polyacrylamide gels are then stained with Coomassie Brilliant Blue 

R-250 (Bio Basic Canada Inc.) to better visualize KIM-1 bands. Gels were first fixed for 

30 minutes in fixing solution (50:10:40 (v/v); 100% methanol: glacial acetic acid: H2O), 

then stained in Coomassie solution for 30 minutes. Gels were then destained until no 

background remained using destaining solution (45:10:45 (v/v); 100% methanol: glacial 

acetic acid: H2O). Gels were stored in 5% glacial acetic acid until bands were excised. 

Bands of interest are cut using EttanTM Spot Picker robotic system as 1 mm rounds and in-

gel digestion performed with thermolysin (Promega) and/or ArgC (Promega) at the 

Functional Proteomics Facility at Western University using the Waters MassPREP Station 

for Automated In-gel Digestion (Appendix A6). Digested samples were analyzed by 

protein identification services at the UWO Biological Mass Spectrometry Laboratory / Dr. 

Don Rix Protein Identification Facility using Ultra High Pressure Liquid Chromatography 

Electrospray Ionization Mass Spectrometry (ESI-MS/MS) (Appendix A7) and Peaks 7.5 

(Bioinformatics Solutions Inc., Waterloo, ON) for data analysis. Figure legend for post-

translational modifications marked on ESI-MS/MS results can be found in Appendix A5. 

2.4 Synthetic KIM-1 peptide cleavage method 

As a second strategy, a twenty amino acid long KIM-1 custom synthetic peptide 

(Genscript) was made to contain the predicted cleavage region (T194 to I202 

SSGDTWSNHTEAIPPGKPQK, Figure 2.) devoid of any N- and O- linked glycans which 

are normally observed on the endogenous protein. This prevents the need to perform any 

deglycosylation or desalting steps, as required in the first strategy, which is where most of 

the sample is likely to become lost. The synthesized peptides were first analyzed by size 

exclusion chromatography to assess purity. The AKTA Pure 25L Fast Protein Liquid 

chromatography (FPLC) (GE Healthcare) system housed at ~6°C was used with size-

exclusion Superdex Peptide 10/300 column for gel filtration. KIM-1 peptide (200ug) 

elution was monitored using UV absorbance at 214 nm. The flow rate was set to 0.5 

mL/min and the running buffer was 50 mM Tris-HCl (pH=9.0) solution. 
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The KIM-1 synthetic peptide (10 µM) was incubated with and without (negative control) 

recombinant mouse TACE (rmTACE, 0.01 µg, R&D systems) in TACE assay buffer (50 

mM Tris, pH 9.0) or recombinant mouse ADAM10 (rmADAM10, 0.1 µg, Cat # 946-AD, 

2978-AD, R&D systems) in ADAM10 assay buffer (25mM Tris, 2.5µM ZnCl2, 0.005% 

(w/v) Brij-35, pH 9.0) for 1 h shaking at 37°C then another 15 h without shaking at 37°C 

with 5% (v/v) CO2. Samples incubated with detergent (ie. Brij-35) had to be purified using 

Zip Tips C18 (EMD Millipore, Cat no. ZTC18S096) before being sent for analysis by 

protein identification services at the UWO Biological Mass Spectrometry Laboratory / Dr. 

Don Rix Protein Identification Facility by ESI-MS/MS. Enzymatic activity was confirmed 

for both rmTACE and rmADAM10 using the positive control fluorescent substrate 

MCA-P-L-A-Q-A-V-DPA-R-S-S-S-R-NH2 (Cat# ES003, R&D) and  MCA-P-L-OH 

(Bachem, Catalog # M-1975) as the calibration standard as described by the R&D enzyme 

activity assay manufacturer protocol.   

2.5 Generation of KIM-1 mutants 

2.5.1 Site-directed mutagenesis and stable transfections 

Site-directed mutagenesis (SDM) (Stratagene Protocol) was performed with Quikchange 

Lightning mutagenesis kit (Agilent Technologies, Cat No. 210518), expression plasmid for 

Flag (DYKDDDDK)-tagged mKIM-1 (Addgene plasmid # 49205) and forward and 

reverse primers (IDT) designed with the mutated sequence I202Q or I202A, as shown in 

Table 1. According to the stratagene protocol mutated plasmids were transformed into 

XL10 Gold ultracompetent DH5a bacteria and plated on lysogeny broth (LB) agar plates 

with 100 µg/mL ampicillin (Fisher Bioreagents, Cat No. BP17605) for selection. Single 

colonies were picked and inoculated in LB broth with ampicillin (100 µg/mL) for 12-16 h 

before plasmids were extracted using Monarch Plasmid Mini-prep kits (NEB, Cat No. 

T1010). Extracted plasmids were sequenced at Robarts Research Institute DNA 

sequencing facility with Ef1a and/or PrimerBlast designed primer KIM-1 Sequence 1 

(Table 1.) to ensure successful mutation. Correctly mutated plasmids were transfected into 

parental HEK293 cells (Lipofectamine® 2000 Thermo Fisher Scientific) in 6-well dishes 

(2000 ng/well) for 48 h. Cells from a single well were then transferred to a 15 cm plate to 
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select stably transfected cells by culturing in complete selection media containing 800 

µg/mL of G418 antibiotic for 10 consecutive days until non-transfected cells were 

completely killed. Individual G418-resistant colonies were picked by aspirating medium, 

washing cells with 1x PBS, and incubating cells with filter paper soaked in 0.25% trypsin-

EDTA (Invitrogen) for 5 minutes in a 37°C, 5% (v/v) CO2 incubator. Filter paper with 

attached cells were picked and grown in 24-well plates in full medium containing 400 

μg/ml G418 until cells reached confluency. Individual colonies were then expanded and 

colonies with highest expression of KIM-1 according to western blot analysis were 

maintained for further studies.  

Table 1. Primer Sequences  

Sequence details of forward (FW) and reverse (RV) primers designed for site-directed 

mutagenesis (Quikchange primer design – Agilent Technologies) or DNA sequencing 

(PrimerBlast) of pCDEF3-CD8SS Flag mKIM-1. (nucleotide, nt.; melting temperature, 

Tm) 

Primer Name Primer Sequence 5’à 3’  Length 
(nt) 

Tm 
(°C) 

KIM-1 I202Q FW: gcggcttccctggaggttgtgcttcagtgtgattactccag 

RV: ctggagtaatcacactgaagcacaacctccagggaagccgc 
 

41 

41 

79.72 

79.72 

KIM-1 I202A FW: ttccctggaggggctgcttcagtgtgattactccagg 

RV: cctggagtaatcacactgaagcagcccctccagggaa 

37 

37 

78.91 

78.91 

Ef1a FW: tcaagcctcagacagtggtt 21 57 

KIM-1 Sequence 1 FW: ccacagctacaggaagaccc 20 60 

 

2.5.2 Cell Surface KIM-1 Expression 

Experimental cells from culture were detached using 0.25% trypsin-EDTA (Invitrogen) 

and incubated for 5 mins at 37°C. DMEM media with 10% FBS was then added to stop 

trypsin activity and for single cell resuspension. Cells were counted using a hemocytometer 

to allocate 1 x 106 cells of each cell type for experimentation. Negative control sample had 

a mixture of all cell types tested. Samples were centrifuged at 500 g for 5 mins and 
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resuspended in 100 µL of staining buffer (PBS + 0.2% BSA) before being transferred to 

flow tubes on ice. Then 5 µL of KIM-1 antibody (AF1817; R&D Systems, Minneapolis, 

MN) was added to each tube, except the negative control, vortexed and incubated on ice 

for 30 – 60 minutes. Samples were vortexed again half-way through incubation period. 

After incubation, samples were washed with 1 mL – 2 mL of staining buffer, centrifuged 

at 500 g for 5 minutes and resuspended in 100 µL of staining buffer. Then 5 µL of 

secondary antibody rabbit anti-goat IgG (H+L) Dylight 488 (Invitrogen, SAS-10078) was 

added to each tube including the negative control, vortexed and incubated on ice for another 

30 – 60 minutes. Wash step was then repeated, and stained cells were resuspended in 300 

µL of staining buffer to be transferred to a 96-well plate. Samples were analyzed by flow 

cytometry on cytoFLEX cytometer as a single colour experiment with FITC and analyzed 

using FlowJo X software. 

2.6 KIM-1 shedding assay 

I compared KIM-1 ectodomain shedding between HEK293 cells stably transfected with 

wild type (WT) or the mutated KIM-1 constructs. Cells were cultured in 6-well plates until 

>80% confluency. I then treated cells with either DMSO, PMA (Calbiochem, Cat No. 

524400) (1 µM), ionomycin (Peprotech, Cat No. 5608212 ) (500 nM), and/or ADAM10 

selective inhibitor GI254023X (Sigma Aldrich, Cat No. SML0789) (4 µM) to study 

differences in accelerated and spontaneous KIM-1 shedding and the possible role of 

ADAM10 and/or ADAM17 in mediating this shedding mechanism. Condition media was 

collected, centrifuged at 16,000 g for 15 minutes to remove any cellular debris. Equal 

volumes of the supernatant (70 µL) was combined with 10 µL of 6X loading dye containing 

ß-mercaptoethanol as a reducing reagent. Samples were boiled for 5 minutes at 95°C to 

denature. Cell lysates were collected and quantified as previously described. Results were 

quantified by analyzing densitometric values from western blot.  

2.7 Phagocytosis assay 

2.7.1 Collection and staining of apoptotic thymocytes 

Thymuses were dissected from sacrificed C57BL/6 mice and placed in DMEM media + 

1% P/S. All animal work was conducted under an animal protocol (2018-36), approved by 
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the Animal Use Subcommittee at Western University. Generally, the thymus from one 

mouse results in about 10 million apoptotic thymocytes for staining. Cells were strained 

through a 40 µm cell strainer (Fisherbrand, Cat No. 22363547) into a 50 mL tube using the 

plunger of a syringe to break up the thymus. PBS (1x) was added 5 mL at a time three times 

during the straining process to help break up the tissue. Strained thymocytes were 

centrifuged at 500 g for 5 mins and supernatant was aspirated. Ammonium chloride 

potassium (ACK) lysis buffer (ThermoFisher Scientific) was then used to lyse any remnant 

red blood cells in the mixture by adding 1 mL directly to tube and resuspending cells 

immediately. The solution was incubated with cap open for 3 mins at room temperature. 

Subsequently, 1 x PBS was added to stop lysis buffer activity by diluting the solution. 

Tubes were centrifuged at 500 g for 5 mins and supernatant was aspirated. DMEM media 

with low serum (2% FBS) + 1% P/S was used to resuspend cells and break up any visible 

clumps. Cells were transferred to a Petri dish and placed under UV light for 7 mins with 

the lid off to induce apoptosis. Cells were then moved to the 37°C incubator with 5% (v/v) 

CO2 to incubate overnight. This method results in over 90% of cells becoming early 

apoptotic cells based on positive staining with FITC-conjugated annexin V (Biolegend) 

and exclusion of propidium iodide which stains necrotic cells, as previously reported 

(Ichimura, Asseldonk et al. 2008). 

The next day, apoptotic cells were washed with 1 x PBS, centrifuged at 500 g for 5 mins, 

and resuspended in 20 mL of 1 x PBS. Thymocytes were counted using a hemocytometer 

and 30 million cells were centrifuged at 500 g for 5 mins and resuspended in 1 mL of 1 x 

PBS. Next, 1.5 µL of 1 mg/µL pHrodoTM Red, SE (ThermoFisher Scientific, Cat No. 

P36600) was added to 1 mL PBS per 30 million thymocytes in the dark. Cells were stained 

at room temperature for 30 mins in the dark. Then, 5 mL of 1 x PBS was used to wash the 

cells, the mixture was centrifuged at 500 g for 5 mins and the supernatant was aspirated. 

This wash procedure was repeated a second time to ensure removal of excess dye. 

2.7.2 Phagocytosis and Flow Cytometry  

Experimental HEK293 cells were plated in 6-well plates and cultured to be 70% confluent 

on day of phagocytosis experiment. Cells were washed with 1 x PBS, then replaced with 1 

mL antibiotic-free DMEM + 10% (v/v) FBS per well. pHrodoTM Red stained thymocytes 
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were added directly to the media (3 million cells per well) and plates were briefly rocked 

back and forth before 90 mins incubation at 37°C with 5% (v/v) CO2. Cells were then 

placed on ice for 30 minutes to reduce non-specific binding of apoptotic cells. Media was 

then aspirated from wells and cells were washed three times with cold 1 x PBS. Cells were 

detached with 0.25% EDTA-trypsin (Invitrogen) and incubated for 5 mins at 37°C. DMEM 

media with 10% (v/v) FBS was then added to stop trypsin activity and for cell resuspension. 

Cells were transferred to labelled flow tubes and centrifuged at 500 g for 5 mins. The 

supernatant was decanted, and cells were resuspended in 300 µL of 1 x PBS and vortexed 

prior to transfer to a 96-well flat bottom plate. Samples were analyzed by cytoFLEX flow 

cytometry as a single colour experiment. HEK293 cells not incubated with apoptotic 

thymocytes were used as a negative control for gating (<103 fluorescence intensity). 

Percentage phagocytosis was determined as the fraction of HEK293 cells that have 

internalized apoptotic thymocytes as indicated by higher fluorescence (104 – 105 

logarithmic scale) out of all HEK293 cells. 

2.8 siRNA transfection for ADAM10 silencing 

On the day before transfection, 5 x 105 HEK293 cells stably expressing WT KIM-1 were 

seeded per well in a 12-well plate with DMEM + 10% (v/v) FBS culture media free of 

antibiotics. The next day, cells were 90-95% confluent and ready for transfection with 

EndofectinTM Max Transfection reagent (Cat. EF103, GeneCopoeiaTM Inc.). ADAM10 

siRNA (sc-41410-h, Santa Cruz) was used as a pool of 3 target specific 19-25 nucleotides 

long siRNAs. Control siRNA-A (Santa Cruz) was used alongside as a negative control for 

transfections. siRNA was reconstituted to 10 µM of which 4 µL was diluted with 46 µL of 

Opti-MEM I Reduced Serum media (Cat. 31985-088, Life Technologies) per well and 

incubated at room temperature for 5 mins. EndofectinTM Max Transfection reagent (2 µL) 

was diluted with 48 µL of Opti-MEM per well. Diluted DNA and diluted transfection 

reagent were combined and incubated at room temperature for another 15 minutes to allow 

DNA-transfection reagent complexes to form. Cells were washed three times with 1 x PBS 

and 900 µL of antibiotic-free DMEM with 10% FBS was added to each well. Then 100 µL 

of the combined DNA-transfection reagent mixture were added to the cells in a dropwise 

manner and rocked back and forth to mix before incubation at 37°C in 5% (v/v) CO2 for 
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24 h. Control cells were washed three times with 1 x PBS, then replaced with 1 mL of 

antibiotic-free DMEM with 10% FBS per well. After 24 h, all cells were washed three 

times with 1 x PBS to remove any remaining transfection reagents, then replaced with 350 

µL of serum-free antibiotic-free DMEM per well to start the shedding assay. Samples were 

incubated at 37°C in 5% (v/v) CO2 for 1 h to allow for KIM-1 shedding into media. Media 

and lysate samples were collected and run on SDS-PAGE for western blot as described 

above. 

2.9 Data and Statistical Analysis 

ESI-MS/MS sequencing results for KIM-1 were analyzed by determining the percentage 

of full-length KIM-1 construct sequence coverage and the number of supporting peptides 

analyzed.  Western blot results were quantified by analyzing densitometric values from 

images using Image Studio Lite. KIM-1 in lysates was normalized using densitometric 

values for GAPDH in the respective lanes. Differences in KIM-1 shedding after control 

siRNA and ADAM10 siRNA transfections was compared using Student’s unpaired 

parametric t-test. Differences in KIM-1 shedding between WT and mutants in response to 

drug treatments was compared using two-way analysis of variance (ANOVA) and Tukey’s 

post-hoc multiple comparisons test to compare individual means. Percentage of 

phagocytosis between treatment groups was analyzed using one-way ANOVA and Tukey’s 

post-hoc test to compare individual means. All statistical analysis and graphing were done 

in GraphPad Prism 6.01 (GraphPad Software Inc.; La Jolla, CA) and all data are presented 

as mean ± standard error of the mean (SEM) with a p-value less than 0.05 considered to be 

significant. 
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Chapter 3 

3 Results 

3.1 ESI-MS/MS sequencing to identify mKIM-1 cleavage 

site 

The predicted cleavage region on mKIM-1 was determined to be between T194 and I202 

based on BLAST sequence alignment with the predicted cleavage region on hKIM-1 

(Bailly, Zhang et al. 2002) (Figure 3). T194 to I202 is situated in the stalk region with a 

heavily glycosylated mucin domain upstream and the transmembrane region downstream 

(Figure 3). 
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Figure 3 Murine KIM-1 sequence and BLAST alignment 

(A) mKIM-1 sequence (NCBI accession sequence ID Q3V033) with 282 amino acids. O- 

and N-linked glycosylation sites in mucin domain were predicted using NetOGlyc 4.0 

(Steentoft, Vakhrushev et al. 2013) and NetNGlyc 1.0 servers (Gupta 2004), respectively. 

Transmembrane region predicted using TMHMM v.2.0 server (Krogh, Larsson et al. 

2001). Predicted cleavage region determined from (B) BLAST sequence alignment. (B) 

BLAST sequence alignment of KIM-1 from different species. Homo sapiens - sequence 

ID Q96D42, Mus musculus - sequence ID Q3V033, Rattus norveqicus sequence ID - 

O54947 and Chlorocebus aethiops sequence ID - O46598. Predicted cleavage region on 

hKIM-1 (Bailly, Zhang et al. 2002), G267 to L278, outlined in purple and aligns with T194 

to I202 on mKIM-1. Deletion mutant D278-283 outlined in blue on hKIM-1 results in 

shedding defective mutant (Zhang, Humphreys et al. 2007, Gandhi, Yi et al. 2014).  
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3.1.1 Endogenous enzyme cleavage method 

To find the exact cleavage site within mKIM-1, transfected HEK293 cells stably expressing 

FLAG-tagged WT mKIM-1 were stimulated with PMA, a known potent inducer of TACE 

(Lorenzen, Lokau et al. 2016). mKIM-1 was cleaved and a portion of the extracellular 

domain was shed into media via enzymes endogenously expressed by these cells. Media 

samples were immunoprecipitated for FLAG-KIM-1 and run on SDS-PAGE gels for 

western blot or spot-picking for ESI-MS/MS sequence analysis.  

Sequence coverage for cleaved mKIM-1 covered the N-terminus region from FLAG to 

phenylalanine (F113) as observed on Figure 4. Predicted glycosylation sites (Figure 3.) 

start downstream of this position and is likely interfering with digesting, ionizing, 

fragmenting, and sequencing peptides in this region. Therefore, I then performed 

deglycosylation of shed mKIM-1 to allow for efficient protein digestion and sequencing. 
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Figure 4. ESI-MS/MS analysis of sKIM-1.  

FLAG mKIM-1 HEK293 cells were treated with PMA for 1 hour. sKIM-1 (55 kDa) was 

immunoprecipitated from media and run on SDS-PAGE and Coomassie brilliant blue 

stained. Samples were spot-picked near 55 kDa mark and digested in-gel with trypsin and 

chymotrypsin. Protein coverage was 37% of full-sized KIM-1, or approximately 51% of 

sKIM-1, supported by 51 peptides. Blue lines indicate successfully massed peptides. 
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Chemical deglycosylation with TFMS acid would be the most efficient for removing 

complex O-linked glycans commonly observed in mucin domains as well as N-linked 

glycans in the stalk region. A major issue with running samples that were deglycosylated 

with a harsh acid like TFMS on SDS-PAGE is the aberrant migration and distortion of 

bands (Figure 5A and 5B.). This made it difficult to pinpoint where deglycosylated sKIM-

1 was situated on the Coomassie brilliant blue stained gel (Figure 5C) for further spot-

picking and downstream ESI-MS/MS sequencing analysis. I therefore used enzyme-

mediated deglycosylation method as an alternate strategy to overcome this problem.  
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Figure 5. Endogenous enzyme cleavage of mKIM-1 and deglycosylation with TFMS 

(A) Western blot with goat anti-mKIM-1 antibody (Ab) (AF1817, 1:2000). Samples 

collected at various stages of endogenous enzyme cleavage method using TFMS acid for 

deglycosylation and Amicon centrifugal filter tubes for desalting. Samples from left to right 

include lysates of RENCA control cells (negative control), primary PTEC lysates from IRI 

C57Bl/6 mice (positive control), HEK293 FLAG mKIM-1 cell lysates, condition media 

with sKIM-1 after PMA treatment, lyophilized sample of immunoprecipitated sKIM-1, two 

lanes of TFMS deglycosylated sKIM-1 (with and without anisole treatment), two lanes of 

TFMS deglycosylated and desalted sKIM-1 (with and without anisole treatment). (B) SDS-

PAGE gel corresponding to the blot shown in (A). Samples in last four lanes running in 

distorted fashion. (C) Coomassie brilliant blue stained gel with deglycosylated and desalted 

samples also ran in distorted fashion.  
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PNGase F is a specific deglycosylation enzyme which only removes N-linked glycans. An 

equivalent enzyme capable of removing mucin domain linked heterogenous complex of O-

linked glycans was not available. Next, I tested if removal of N-linked glycans surrounding 

the predicted cleavage region (T194-I202) was sufficient for sequencing near the potential 

cleavage site. As observed in Figure 6A, PNGase treatment of sKIM-1 collected from 

HEK293 FLAG mKIM-1 samples resulted in a slight downward smear likely because each 

N-glycan has a predicted weight of about 2.5 kDa which will be removed upon 

deglycosylation. No bands were observed on the corresponding Coomassie stained gel 

(Figure 6B), however samples were still picked at 50 kDa for in-gel digestion with 

thermolysin and sequence analysis. No KIM-1 was detected. Therefore, more cleaved 

KIM-1 samples were collected in a second trial (six 15 cm plates vs ten 15 cm plates) and 

incubated with PNGase F for a longer period of time (1 h vs. 3 h) in an effort to increase 

yield of deglycosylated cleaved mKIM-1. When compared to non-deglycosylated samples 

(Figure 4), sequence coverage in PNGase treated samples (Figure 7) did not improve, and 

the same region predicted to be rich in O- and N-linked glycosylations remained 

unsequenced. 
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Figure 6. Endogenous enzyme cleavage of mKIM-1 and deglycosylation with PNGase 

F enzyme (First Trial) 

 (A) Western blot with goat anti-mKIM-1 Ab (AF1817, 1:2000). Samples collected at 

various stages of endogenous enzyme cleavage method using PNGase F for 

deglycosylation. Samples from left to right include lysates of HEK293 parental cells 

(negative control), HEK293 FLAG mKIM-1 cell lysates, conditioned media from HEK293 

FLAG mKIM-1 cells after 1 h PMA treatment, and the last four lanes are 

immunoprecipitated sKIM-1 samples (10 µL) from HEK293 parental or HEK293 FLAG 

mKIM-1 cultured on six 15 cm plates treated with or without 4 µg PNGase F for 1 h at 

37°C. (B) Coomassie brilliant blue stained gel with aliquots (40 µL) of immunoprecipitated 

sKIM-1 samples from (A).  
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Figure 7. Endogenous enzyme cleavage of mKIM-1 and deglycosylation with PNGase 

F enzyme with higher KIM-1 sample concentration and longer incubation time 

(Second Trial) 

(A) Western blot with goat anti-mKIM-1 Ab (AF1817, 1:2000). Immunoprecipitated shed 

mKIM-1 samples (8 µL) from HEK293 parental cells (negative control) and HEK293 

FLAG mKIM-1 cells cultured from ten 15 cm plates treated with 4 µg PNGase F for 3 h at 

37°C. Green arrow indicates band observed in FLAG mKIM-1 lane but not parental 

HEK293. (B) Coomassie brilliant blue stained gel with larger aliquots (80 µL) of 

immunoprecipitated sKIM-1 samples from (A). Red arrow indicates band observed in 

FLAG mKIM-1 lane but not parental HEK293. (C) ESI-MS/MS sequencing for mKIM-1 

samples spot-picked at 55 kDa (top panel with 28% KIM-1 sequence coverage with 15 

supporting peptides) and 50 kDa (bottom panel 21% KIM-1 sequence coverage with 7 

supporting peptides) and in gel digested with thermolysin. 

 

 

 

 

 

  



42 

 

Therefore, I resorted back to using chemical deglycosylation with TFMS, but this time 

performed dialysis (Figure 8.) to remove any impurities or residual acid that could be 

distorting the gel during electrophoresis. This method efficiently removed the impurities 

and allowed the samples to migrate more linearly. The deglycosylated and dialyzed sample 

showed a dramatic drop in molecular weight to 37 kDa from 60 kDa in cell lysates (Figure 

8A). Samples were picked for sequencing near the 37 kDa mark on the corresponding 

Coomassie stained gel (Figure 8B). When compared to non-deglycosylated samples 

(Figure 4), and PNGase treated samples (Figure 7), TFMS treatment and dialysis also did 

not improve sequencing coverage even though a large shift in molecular weight was 

observed.  
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Figure 8. Endogenous enzyme cleavage of mKIM-1, deglycosylation with TFMS and 

dialysis 

(A) Western blot with goat anti-mKIM-1 Ab (AF1817, 1:2000). Samples collected at 

various stages of endogenous enzyme cleavage method using TFMS acid for 

deglycosylation and dialysis with 3.5 kDa cut off membrane for desalting. (B). Coomassie 

brilliant blue stained gel with deglycosylated and desalted cleaved mKIM-1 sample. (C) 

ESI-MS/MS sequencing for mKIM-1 samples spot-picked at 37 kDa from Coomassie 

stained gel (B) and in -gel digested with thermolysin. 35% mKIM-1 sequence coverage 

with 24 supporting peptides.  
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Similar sequencing results with all forms of deglycosylation and purification methods 

suggested there could perhaps be an issue with collecting and digesting protein samples 

from Coomassie stained gel in preparation for ESI-MS/MS. I decided to digest the spot-

picked KIM-1 sample with a different combination of enzymes that is more likely to extract 

the peptides near our region of interest (Figure 9A.) out of the gel in preparation for ESI-

MS/MS. I used Arg-C and thermolysin, rather than just thermolysin alone as I had done 

previously to ensure the region of interest is being digested into small enough peptides that 

could be extracted from the gel. 
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Figure 9. Endogenous enzyme cleavage of mKIM-1, deglycosylation with TFMS, 

dialysis and in-gel digestion with Arg-C and thermolysin 

(A) Predicted cut sites for thermolysin and Arg-C along KIM-1 construct as determined by 

ExPASy peptide cutter software. Predicted cleavage region outlined with red box. (B) 

Western blot with goat anti-mKIM-1 Ab (AF1817, 1:2000). Samples collected at various 

stages of endogenous enzyme cleavage method using TFMS acid for deglycosylation and 

dialysis with 3.5 kDa cut off membrane for desalting. (C) Sequencing results from samples 

collected from HEK293 cells, deglycosylated with TFMS, and in-gel digested with Arg-C 

and thermolysin. 20% protein sequence coverage with 7 matching peptides. 
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Combined digestion with Arg-C and thermolysin also resulted in sequencing information 

up to the same position (F113) on the KIM-1 construct sequence (Figure 9B). 

 

Overall, all methods used for sequencing mKIM-1 cleaved by the endogenous enzyme 

cleavage method resulted in sequencing information from the N-terminal FLAG tag up to 

the same site (F113) with no information near the predicted cleavage region (T194 to I202).  

3.1.2 Synthetic KIM-1 peptide cleavage with rmTACE 

An alternate method for identifying the cleavage site of KIM-1 was to use a synthetic 

peptide containing the putative cleavage site (T194-I202) flanked by additional residues to 

allow room for the sheddase to bind and exposing this peptide to rmTACE. We designed a 

peptide 20 amino acids long that contained the sequence region highlighted in Figure 3C 

(S190 to K219) which aligned with the predicted cleavage region on hKIM-1.  

The synthesized peptides were analyzed by size exclusion chromatography to assess purity. 

Based on the single and symmetrical elution peak eluting at ~14 mL, it was determined 

that there was a highly homogeneous population of peptides (Figure 10A). The expected 

theoretical molecular weight of the synthetic peptide is 2137.29 Da (Protein molecular 

weight – Bioinformatics.org) and proteins/peptides eluted with this column between 10 to 

15 mL is between ~1500 to 6000 Da (Appendix A4), so the peptide is eluting as expected 

when it is uncleaved.  

This is important to ensure any cleaved peptides observed after incubation with enzyme 

are the result of enzyme-mediated cleavage and not the impurity of the synthesized sample. 

Although a significant amount of cleavage did not take place, there was a particular site 

(I202) that was being cleaved with rmTACE (Figure 10B). When repeated with and 

without rmTACE (Figure 10C) some cleaved peptides in this region were also observed in 

the negative control, resulting in inconclusive results with this experiment. 
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Figure 10. Synthetic KIM-1 peptide cleavage with rmTACE 

(A) FPLC purification of KIM-1 synthetic peptide using Superdex Peptide 10/300 column 

gel filtration. Measured absorbance at 214 nm in milli absorbance units (mAU) plotted 

against elution volume of sample in 50 mM Tris-HCl solution. (B) KIM-1 peptide 

incubated with rmTACE for 16 h at 37°C. ESI-MS/MS sequencing showed 1359 scans for 

full length peptide 14 scans for cleaved peptide at I202 position. (C) KIM-1 peptide 

incubated with and without rmTACE (negative control). Red arrows indicate cleaved 

peptides at potential cleavage site (I202). 
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3.2 Mapping I202 as potential mKIM-1 cleavage site 

Based on a previously published study by (Caescu, Jeschke et al. 2009), the KIM-1 

synthetic peptide and potential cleavage site at I202 was mapped against common 

structural residue patterns observed around the cleavage site of various TACE substrates 

(Figure 11). I202 looked promising as a potential cleavage site for TACE. 
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Figure 11. Mapping I202 as potential TACE-mediated mKIM-1 cleavage site.  

KIM-1 synthetic peptide sequence mapped against common structural residue patterns 

observed around cleavage site of various TACE substrates. Hydrophobic residues at P1’ 

position and small residues at P3’ position appear with the highest frequency (~60%) 

amongst various TACE substrates (Caescu, Jeschke et al. 2009). Amino acids highlighted 

in green matched with observed patterns at that position, whereas those highlighted in red 

do not. 
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3.3  Mutant I202Q mKIM-1 

To test if I202 is the putative cleavage site within mKIM-1, I performed site-directed 

mutagenesis to alter this position. The first mutation attempted was a base substitution 

mutation, producing the (I202Q) variant. I (non-polar) and Q (polar) were similar in size 

but differed in polarity. 

3.3.1 Generating I202Q mutant mKIM-1 

I generated HEK293 cells stably expressing pCDEF3 vector encoding the mutant KIM-1 

after confirming its sequence (Figure 12A.) HEK293 cell colony #3 and #10 were stably 

expressing I202Q mutant KIM-1 at a high expression level comparable to cells expressing 

WT mKIM-1 (Figure 12B.) Colony #3 was selected and used for further testing to ensure 

homogenous population of cells were being used. 
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Figure 12. Generating I202Q mutant mKIM-1 expressing HEK293 cell line 

(A) Sequencing results confirming I202Q mutation into pCDEF3 mKIM-1 plasmid after 

site-directed mutagenesis. (B) HEK293 cells stably expressing I202Q mKIM-1. Western 

blot of lysates from RENCA KIM-1 cells (positive control), HEK293 cells stably 

expressing WT mKIM-1, and various colonies of HEK293 cells stably expressing I202Q 

mutant mKIM-1. Goat anti-mKIM-1 (1:2000) and mouse anti-GAPDH (1:2000) 

antibodies were used. 
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3.3.2 Reduced PMA-accelerated shedding with I202Q 

The I202Q mKIM-1 mutant was still capable of baseline KIM-1 shedding, however 

accelerated shedding with PMA was defective compared to WT mKIM-1 expressing 

HEK293 cells (Figure 13.). According to the densitometric values shown, PMA treatment 

doubled the level of sKIM-1 in media compared to no PMA treatment for WT, whereas 

with the mutant the sKIM-1 levels remained unchanged. 
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Figure 13. Baseline and accelerated shedding assay with HEK293 cells (parental, 

WT KIM-1 and I202Q KIM-1).  

Western blot with media and lysates samples collected after 1 h treatment with or without 

1 µM PMA in serum-free media (n=2). Goat anti-KIM-1 (1:2000) and mouse anti-

GAPDH (1:2000) antibodies were used. Relative densitometric values of KIM-1 bands in 

media presented. 
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3.3.3 ADAM10 mediated baseline shedding of mKIM-1 

PMA-accelerated TACE mediated KIM-1 shedding was defective with I202Q mutant, 

therefore this prompted investigation into the possibility of another closely related 

sheddase, ADAM10 and its involvement (Schweigert, Dewitz et al. 2014). For 

subsequent experiments, I introduced an ADAM10 specific inhibitor (GI253023X) to the 

shedding assays (Ludwig, Hundhausen et al. 2005). Surprisingly, baseline shedding of 

both WT mKIM-1 and I202Q mKIM-1 were drastically reduced with GI254023X 

compared to DMSO vehicle control (Figure 14). 
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Figure 14. Baseline and accelerated shedding assay of HEK293 cells (parental, WT 

KIM-1 and I202Q KIM-1) with ADAM10 specific inhibitor 

 Western blot with media and lysate samples collected after 1 h treatment with either 

DMSO, 4 µM GI254023X or 1 µM PMA in serum-free media (n=1). Goat anti-KIM-1 

(1:2000) and mouse anti-GAPDH (1:2000) antibodies were used. Relative densitometric 

values of KIM-1 bands in media normalized to DMSO control within each cell type. 
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3.4 Mutant I202A mKIM-1 

The second mutation attempted was a base substitution mutation, producing the (I202A) 

variant. I (non-polar) and Q (polar) were similar in size but differed in polarity, whereas 

A (non-polar) is smaller. 

3.4.1 Generating I202A mutant mKIM-1 

I generated HEK293 cells stably expressing pcDEF3 vector encoding the mutant KIM-1 

after confirming its sequence (Figure 15A.) According to figure 15B., HEK293 cell colony 

#2 was stably expressing I202A mutant KIM-1 at a high expression level comparable to 

HEK293 cells expressing WT and I202Q mKIM-1 and was used for further testing to 

ensure homogenous population of cells were being used. 
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Figure 15. Generating I202A mutant mKIM-1 expressing HEK293 cell line  

(A) Sequencing results confirming I202A mutation into pCDEF3 mKIM-1 plasmid after 

site-directed mutagenesis. (B) HEK293 cells stably expressing I202A mKIM-1. Western 

blot of lysates from RENCA KIM-1 cells (positive control), HEK293 parental cells 

(negative control), HEK293 cells stably expressing WT mKIM-1, I202Q mKIM-1 and 

various colonies of HEK293 cells stably expressing I202A mutant mKIM-1. Goat anti-

mKIM-1 (1:2000) and mouse anti-GAPDH (1:2000) antibodies were used. 
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3.4.2 Comparing expression levels of WT, I202Q and I202A 

mKIM-1 

Total protein expression from lysates showed slightly higher expression levels in I202Q 

and I202A compared to WT KIM-1 expressing HEK293 cells (Figure 16A.) 

Given that KIM-1 is a cell-surface phagocytic receptor, I also examined surface expression 

of WT and the various KIM-1 mutants in the respective HEK293 cell lines. Cell surface 

KIM-1 expression was comparable between WT and I202A, with a homogenously high 

expression profile (Figure 16B). I202Q surface KIM-1 expression depicted varying levels 

that was generally lower than both WT and I202A (Figure 16B). Although, the total 

percentage of HEK293 cells expressing the various mutants or WT mKIM-1 were similar 

(Figure 16C), the expression profile according to flow cytometry data (Figure 16B) 

revealed more cells had lower KIM-1 surface expression levels in the I202Q mutants. 
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Figure 16. Comparing total protein and surface KIM-1 expression levels between 

HEK293 cells expressing WT (colony #13), I202Q (colony #3) or I202A (colony #2) 

mKIM-1.  

(A) Western blot of total protein lysates with relative densitometric values of KIM-1 

normalized to GAPDH (n=1). Goat anti-mKIM-1 (1:2000) and mouse anti-GAPDH 

(1:2000) antibodies were used. (B) Cells were stained for surface KIM-1 using goat anti-

mKIM-1 (AF1817) as primary and rabbit anti-goat Dylight 488 as secondary antibodies. 

The level of KIM-1-surface expression was determined by flow cytometry. Blue sample 

population is the negative control sample stained without primary antibody. (C) Comparing 

percentage of HEK293 cells expressing surface KIM-1 for WT and KIM-1 mutants from 

independent experiments (n=2).  

  



62 

 

3.5 KIM-1 Shedding Assays 

3.5.1 WT, I202Q and I202A mKIM-1 expressing HEK293 

Both I202Q and I202A mKIM-1 were spontaneously shed from HEK293 cells, however, 

the ability to accelerate shedding via PMA or ionomycin is significantly reduced compared 

to WT mKIM-1 (Figure 17). For WT mKIM-1 expressing cells, PMA and ionomycin 

treatment resulted in significant increases in the levels of shed KIM-1 in media, with 

p=0.0014 and p<0.0001, respectively (Two-way ANOVA, Tukey’s post hoc test, Figure 

17). No significant differences were observed between baseline and accelerated shedding 

of I202Q or I202A. 
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Figure 17. Baseline and accelerated shedding assay with WT, I202Q and I202A 

mKIM-1 expressing HEK293 cells.  

(A) Western blot of media and lysate samples collected from HEK293 cells (WT, I202Q 

and I202A mKIM-1) after 1 h treatment in serum-free DMEM with or without 1 µM PMA 

or 500 nM ionomycin. Goat anti-KIM-1 (1:2000) and mouse anti-GAPDH (1:2000) 

antibodies were used. Densitometry values for sKIM-1 are relative to the no treatment 

group for each cell type. (B) Compiled data of relative densitometry values of sKIM-1 from 

independent shedding assay experiments. (n=3, ** p=0.0014 and ****p<0.0001, Two-way 

ANOVA, Tukey’s post hoc test) 
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3.5.2 GI254023X Dose Response on HEK293 WT mKIM-1 

 

Figure 18. ADAM10 inhibitor (GI254023X) dose response on inhibition of baseline 

KIM-1 shedding in HEK293 cells expressing WT mKIM-1.  

Cells were treated with various log doses of GI254023X for 1 h in serum-free DMEM 

before media and lysate samples were collected for Western blot analysis (n=1). Goat anti-

KIM-1 (1:2000) and mouse anti-GAPDH (1:2000) antibodies were used. Densitometry 

values for sKIM-1 are relative to the no treatment (0 µM) control group. IC50 = 0.74 µM 
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3.5.3 Baseline and accelerated shedding inhibited by GI254023X 

 

Figure 19. Baseline and accelerated shedding assay with PMA, ionomycin, 

GI254023X and combination drug treatments 

(A) Western blot of media samples collected from HEK293 cells (WT, I202Q and I202A 

mKIM-1) after 2 h treatment in serum-free DMEM with or without 1 µM PMA, 500 nM 

ionomycin and 4 µM GI254023X ADAM10 inhibitor (n=2). DMSO used as a vehicle 

control for GI254023X. Goat anti-KIM-1 (1:2000) antibody was used. Relative 

densitometry values normalized to DMSO control in each cell type. 
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The ADAM10 specific inhibitor, GI254023X, effectively blocked both baseline and 

PMA/ionomycin accelerated shedding of KIM-1 from HEK293 cells (Figure 19.)  

3.5.4 ADAM10 siRNA 

siRNA-mediated ADAM10 knockdown in HEK293 cells expressing WT mKIM-1 

significantly reduced shedding of KIM-1 into media (p=0.0027, Figure 20), confirming the 

role of ADAM10 in mediating KIM-1 shedding. 
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Figure 20. Baseline shedding assay in WT mKIM-1 HEK293 cells upon silencing of 

ADAM10.  

(A) Western blot of media and lysate samples collected from HEK293 cells expressing WT 

mKIM-1 after siRNA mediated ADAM10 knockdown. Media samples collected after 1 h 

treatment in serum-free DMEM. Goat anti-KIM-1 (1:2000), mouse anti-GAPDH (1:2000), 

and rabbit anti-ADAM10 (1:500) antibodies were used. Densitometry values relative to the 

no siRNA group. (B) Compiled data of densitometry values of sKIM-1 from independent 

shedding assay experiments. (n=3, ** p=0.0027, Student’s unpaired t-test) 
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3.6 Functional studies: KIM-1 Phagocytosis Assays 

3.6.1 WT, I202Q and I202A mKIM-1 

The primary function of KIM-1 in kidney epithelial cells is to mediate the phagocytic 

clearance of apoptotic cells following injury (Yang, Brooks et al. 2015). Compared to 

HEK293 cells with WT mKIM-1, cells with I202Q or I202A mKIM-1 had significantly 

reduced phagocytosis levels with p<0.0001 and p<0.01, respectively (Figure 21). 
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Figure 21. Phagocytosis assay with HEK293 cells expressing WT, I202Q, or I202A 

mKIM-1.  

HEK293 parental cells (no KIM-1 negative control) and HEK293 cells transfected with 

either WT, mut I202Q or mut I202A KIM-1 were incubated with pHRodo stained apoptotic 

thymocytes for 90 minutes before flow cytometry analysis. Phagocytosis percentage 

represents percentage of HEK293 cells that have internalized stained apoptotic cells as 

indicated by higher fluorescence (104–105 on logarithmic scale) (One-way ANOVA, 

Tukey’s post-hoc test, n=3, ****p<0.0001, **p<0.01). 
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3.6.2  ADAM10 inhibitor GI254023X 

Treatment with ADAM10 inhibitor significantly reduced phagocytosis levels compared to 

no treatment controls (p<0.005, Figure 22.) No significant differences were observed 

between DMSO and no treatment groups.  
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Figure 22. Phagocytosis assay with GI254023X.  

HEK293 cells expressing WT mKIM-1 were treated with either 4µM of GI254023X, 

DMSO vehicle control or no treatment for 1 h. Cell were then incubated with pHRodo 

stained apoptotic thymocytes for 90 minutes before flow cytometry analysis. Phagocytosis 

percentage represents percentage of HEK293 cells that have internalized stained apoptotic 

cells as indicated by higher fluorescence (104–105 on logarithmic scale) (One-way 

ANOVA, Tukey’s post-hoc test, n=3, **p<0.005). 
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3.7 Synthetic KIM-1 peptide cleavage with rmADAM10 

Since I identified ADAM10 as an important enzyme involved in KIM-1 processing, the in 

vitro cleavage assay with synthetic KIM-1 peptide was repeated with recombinant mouse 

ADAM10 for ESI-MS/MS analysis. 

First, enzymatic activity of rmADAM10 and rmADAM17 was verified for functionality. 

Specific activity was calculated to be 79162 pmol/min/µg for rmTACE, -2523 

pmol/min/µg for an older lot of rmADAM10 (non-functional) and 11755 pmol/min/µg for 

a newer lot of rmADAM10 (Figure 23). The new lot rmADAM10 was used for cleavage 

experiment with synthetic KIM-1 peptide. No distinct cleaved peptides were observed in 

the treatment group (KIM-1 peptide + rmADAM10) that were absent in the negative 

control (KIM-1 peptide only) (Figure 24). 
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Figure 23. rmADAM10 and rmADAM17 enzyme activity assay.  

Enzymatic activity (B) was confirmed for both rmADAM17 and rmADAM10 using the 

positive control fluorescent substrate MCA-P-L-A-Q-A-V-DPA-R-S-S-S-R-NH2 (Cat# 

ES003, R&D) and MCA-P-L-OH (Bachem, Catalog # M-1975) as the calibration standard 

(A) as described by the R&D enzyme activity assay protocols (Appendix A1 and A2). 

Human prostate cancer cell line (PC3) media contains cocktail of secreted enzymes and 

used as a positive control for fluorescent substrate.  
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Figure 24. Synthetic KIM-1 peptide cleavage with rmADAM10. 

KIM-1 synthetic peptide (10 µM) incubated with and without (negative control) 

rmADAM10 (0.1 µg) for 16 h at 37°C. Samples then analyzed by ESI-MS/MS for 

sequencing cleaved peptides (n=2). 
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3.8 ADAM10 specific inhibition reduces mKIM-1 cleavage 

in RENCA mouse cell line 

Thus far, my studies utilized human HEK293 cells (containing human ADAM10) 

overexpressing mKIM-1 or mutants thereof. Next, I wanted to confirm that murine 

ADAM10 regulated the shedding of mKIM-1 using a murine kidney epithelia cell line 

expressing ADAM10. GI254023X inhibited shedding of mKIM-1 expressed in mouse 

renal epithelial cancer cell line in a dosage-dependent manner (Figure 25). 
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Figure 25. GI254023X dose response on RENCA KIM-1.  

RENCA KIM-1 cells were treated with various log doses of GI254023X for 1 h in serum-

free DMEM before media samples were collected for Western blot analysis (n=1). RENCA 

control cells were used as negative control. KIM-1 shedding was accelerated with 1 µM 

PMA or 500 nM ionomycin. Goat anti-KIM-1 (1:2000), mouse anti-GAPDH (1:2000), and 

rabbit anti-ADAM10 (1:500) antibodies were used. Densitometry values for sKIM-1 are 

relative to the no treatment (0 µM) control group. 
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Chapter 4 

4 Discussion 

4.1 Major Findings 

4.1.1 Mapping I202 as potential cleavage site on mKIM-1 

In all attempts to precisely identify the cleavage site using the endogenous enzyme 

cleavage method, the MS sequencing results stopped at the same particular amino acid 

(F113), with no further downstream sequencing towards the predicted cleavage region 

(Figure 4, 7C, 8C, 9C) This site is unlikely to be the cleavage site for a few reasons. First, 

the predicted O-linked glycosylation sites of the mucin region start immediately 

downstream of this site, therefore it is highly likely that incomplete deglycosylation still 

remains a problem for sequencing this region (Figure 3). FLAG mKIM-1 sequence 

construct has 272 amino acids and a predicted weight of 30.04 kDa for full-length 

completely deglycosylated protein (Protein molecular weight – Bioinformatics.org). Full-

length mKIM-1 runs much higher at ~60 kDa on western blots because of added mass from 

post-translational modifications on the protein (ie. glycosylations). These glycosylations 

can also alter protein shape and relative mass to charge ratios to cause a smeared 

appearance when run on gels (Figure 8A). If cleaved, the molecular weight should be 

smaller than 30 kDa, however the biggest shift I was able to detect was to 37 kDa from 60 

kDa after TFMS deglycosylation and dialysis (Figure 8A, 9B). This could suggest 

incomplete deglycosylation or other post-translational modifications still present on the 

protein. Second, the F113 site is not within the predicted cleavage region (T194-I202). This 

region was mapped based on BLAST sequence alignment with the predicted cleavage 

region on hKIM-1, the epitope of ABE3 antibody which when bound to hKIM-1 blocks 

shedding (Bailly, Zhang et al. 2002). Third, it is commonly observed for enzymes like 

TACE and ADAM10 to cleave their substrates in the extracellular stalk region proximal to 

the transmembrane domain, typically within 15 amino acids (Caescu, Jeschke et al. 2009). 

For example, TACE-mediated cleavage of the efferocytosis receptor CD36 and Mer 

tyrosine kinase (MerTK) were mapped to be 12 amino acids away from the transmembrane 

region (Thorp, Vaisar et al. 2011, Driscoll, Vaisar et al. 2013). F113 is about 90 amino 
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acids away from the transmembrane region, and therefore does not fit with the typical 

cleavage pattern observed. Interestingly, I202 is the site on mKIM-1 that lies 12 amino 

acids away from the transmembrane region. 

With the KIM-1 peptide cleavage method, no significant conclusions could be made, 

however, I202 stood out as a potential site as observed in Figure 10B. It is important to 

note that this synthetic peptide lacks any glycans normally observed on the endogenous 

protein. This may be problematic as glycosylation sites could be important for mediating 

the interaction between TACE/ADAM10 and KIM-1. This could be one of the reasons why 

I did not observe a higher concentration of peptides being cleaved at the potential cleavage 

site (I202). In fact, just upstream there lies an important N-linked glycosylation site (N197) 

which remains phylogenetically conserved from rodents to primates (Sizing, Bailly et al. 

2007). This is why the first strategy involving endogenous cleavage of KIM-1 would be 

more reliable, and a similar cut site with this method would have increased my confidence 

with these results. 

Although there is no definitive consensus amino acid sequence requirement for cleavage 

by TACE or ADAM10, some common residue properties are observed at specific positions 

relative to the cleavage site on various substrates (Caescu, Jeschke et al. 2009) (Figure 11). 

Importantly, it has been observed that just downstream of the cut site towards the C-

terminus at position P1’, TACE substrates are more likely to contain aliphatic hydrophobic 

residues such as leucine, valine, isoleucine. Alanine is the most common amino acid 

observed in TACE and ADAM10 substrates in the P1 position just upstream of the cut site 

(Caescu, Jeschke et al. 2009). The cleavage site between A201 and I202 on mKIM-1 

matched with these sequence patterns making it more likely to be a potential site. 

4.1.2 I202Q revealed potential involvement of ADAM10 

The I202Q mutant was generated first based on published data of other TACE substrate 

cleavage sites (Caescu, Jeschke et al. 2009) to generate a mutant which was shedding 

defective with minimal alterations to the sequence in order to preserve other physiological 

functions. Q was similar in size to I but differed in polarity. Initial shedding assays with 

I202Q revealed an altered phenotype, where the ability to accelerate shedding via PMA, a 
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known potent inducer of TACE, was reduced (Figure 13). TACE was the most prominent 

enzyme studied with hKIM-1 cleavage and was assumed to be the major sheddase for 

mKIM-1 when I started my investigation (Gandhi, Yi et al. 2014). The observation that 

baseline shedding was still occurring alongside a defect with TACE-induced shedding 

suggested the possibility for a different sheddase to be involved. These results convinced 

me look deeper into another potential candidate metalloprotease, ADAM10, as an 

important sheddase involved in mKIM-1 shedding since both TACE and ADAM10 share 

numerous other common substrates (Edwards, Handsley et al. 2008, Kato, Hagiyama et al. 

2018).  

The ADAM10 specific inhibitor, GI254023X, with 100-fold more potency for ADAM10 

(IC50 = 5.3 nM) than TACE ( IC50 = 541 nM), was used for further experimentation 

(Ludwig, Hundhausen et al. 2005, Hoettecke, Ludwig et al. 2010). As a hydroxamate-based 

inhibitor, GI254024X works by binding to the metal-ion binding active site of ADAM10 

and has a higher affinity for ADAM10 than ADAM17 because of increased hydrophobic 

interactions (Ludwig, Hundhausen et al. 2005). Intriguingly, GI254023X blocked baseline 

shedding of not only I202Q mKIM-1 but also WT mKIM-1 suggesting that ADAM10 is 

involved with baseline shedding of mKIM-1 (Figure 14). Ionomycin, a commonly used 

ionophore, induces rapid Ca2+ influx and downstream ADAM10 mediated shedding of 

various substrates and was also incorporated into further experiments to elucidate the role 

of ADAM10 (Horiuchi, Le Gall et al. 2007, Herzog, Haun et al. 2014) 

Looking at the structural residue patterns near the cleavage site within the substrate, Q at 

position P1’ is more selective of ADAM10 than TACE, and the same study showed that 

substitution to A at P1’ position reduced selectivity and cleavage kinetics with both TACE 

and ADAM10 (Caescu, Jeschke et al. 2009). Therefore, the next mutation I made was 

I202A mKIM-1. 

4.1.3 ADAM10 regulates both baseline and accelerated shedding 

GI254023X inhibited baseline shedding as well as PMA and ionomycin accelerated 

shedding of WT mKIM-1 as well as the two mutants I202Q and I202A (Figure 19). This 

suggested that ADAM10 was involved with both baseline and accelerated shedding of 
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KIM-1, and perhaps the major sheddase at play. The dose response of GI254023X on 

HEK293 cells expressing WT mKIM-1 revealed that KIM-1 shedding could be 

completely abolished with higher doses of this ADAM10 specific inhibitor (Figure 18). 

Potential off-target effects of drug treatment inhibition of ADAM10 with GI254023X 

were still possible. Therefore, ADAM10 siRNA mediated specific knockdown was used 

to confirm the role of ADAM10 in KIM-1 shedding. Accordingly, ADAM10 siRNA 

knockdown significantly reduced WT mKIM-1 shedding in HEK293 cells confirming the 

specific role of ADAM10 in mediating baseline KIM-1 shedding (Figure 20). 

 

4.1.4 WT, I202Q and I202A mKIM-1 expression 

Once the respective mutants I202Q and I202A mKIM-1 were generated and stably 

transfected into HEK293 cells, single high mKIM-1 protein expression colonies were 

selected for further testing (Figure 12 and Figure 15). When comparing total lysate mKIM-

1 protein expression in the colonies selected, WT mKIM-1 had slightly lower expression 

than I202A, which was lower than I202Q (Figure 16A). The differences in mKIM-1 protein 

expression (in total lysate) levels is reflective of total KIM-1 expression anywhere in the 

cell, including the membrane, and could influence the levels of sKIM-1 observed in media 

therefore meaningful comparisons between these colonies for baseline shedding could not 

be made. Cell surface mKIM-1 expression profiles were similar for WT and I202A mKIM-

1 with a homogenous population of high KIM-1 expression HEK293 cells (Figure 16B). 

I202Q, however, displayed a more heterogenous population with slightly lower and varied 

surface mKIM-1 expression (Figure 16B). It should be noted that the total percentage of 

HEK293 cells expressing KIM-1, regardless of level of expression, were comparable 

between WT and the two mutants (Figure 16C). The slightly lower expression levels in 

I202Q could potentially be the result of a disruption with trafficking the protein to the cell 

surface as KIM-1 undergoes dynamic endocytic recycling (Santiago, Ballesteros et al. 

2007). Further testing to study endosomal trafficking would be required to elucidate the 

mechanisms behind this unique phenotype observed in the I202Q mutant. It is also possible 

that during stable integration of the gene into the genome, the WT and I202A mutants were 
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inserted into a region with a high expression promoter in the vicinity whereas, I202Q was 

inserted into a region which is transcribed less frequently. This could account for the 

differences that were being observed in the specific colonies that were picked for each 

mutation. This could be verified by studying cell surface KIM-1 expression on other stable 

colonies with I202Q mutant (ie. colony #10) (Figure 12). 

4.1.5 Reduced accelerated shedding with I202Q and I202A 

PMA and ionomycin treatment both significantly increased sKIM-1 levels of WT mKIM-

1 compared to baseline levels indicating that both drugs were able to accelerate WT mKIM-

1 shedding (Figure 17). However, no significant increases in sKIM-1 levels were observed 

after PMA or ionomycin treatment for both mutant I202Q and I202A (Figure 17). The 

reduced ability to accelerate shedding in these mutants is highly suggestive of the potential 

for I202 to be the actual mKIM-1 cleavage site.  

It is likely that a single amino acid mutation at the cleavage site will not render a complete 

shedding defective phenotype as ADAM10 and TACE are both promiscuous enzymes and 

could possibly still cleave KIM-1 with minor alterations to the cleavage site. A larger 

deletion mutant spanning the predicted cleavage site is more likely to have a more 

prominent effect on shedding. For example, the shedding defective phenotype of a 

transmembrane efferocytosis receptor, MerTK, which is also cleaved in the ectodomain 

region by TACE, was generated by deleting 6 amino acids that spanned the determined 

cleavage site (Thorp, Vaisar et al. 2011). Moreover, the shedding defective mutant for 

hKIM-1 was generated with a 6 amino acid mutation in the membrane proximal region 

(Zhang, Humphreys et al. 2007). Therefore, it is likely that a deletion mutant (D199-204) 

spanning the predicted cleavage site I202 for mKIM-1 will result in a more noticeable 

shedding defective mutant. 

4.1.6 KIM-1 shedding defect/inhibition reduces phagocytic function 

It was expected that reduced shedding would increase the available full-length KIM-1 at 

the cell surface to act as a phagocytic receptor and therefore should increase phagocytosis 

levels. However, both mutants I202Q and I202A had significantly reduced phagocytic 

function compared to WT mKIM-1 (Figure 21). Within the mutants, I202Q showed 
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significantly lower phagocytic function than I202A (Figure 21). The observed phenotype 

of I202Q could potentially be explained by the lower cell surface expression of mKIM-1 

(Figure 16B and 16C) which would mean that not as many receptors are available at the 

cell surface to internalize nearby apoptotic cells. The significant difference between WT 

and I202A however cannot be explained by differences in cell surface expression.  

The presence of apoptotic cells has been shown to be a physiological inducer of hKIM-1 

receptor shedding from human cell lines (Gandhi, Yi et al. 2014). We know that I202A 

mKIM-1 has an accelerated shedding defect after PMA or ionomycin treatment, so it 

remains possible that the presence of apoptotic cells in the phagocytosis assay accelerated 

receptor shedding of WT mKIM-1 but not I202A mKIM-1. It is intriguing to note the 

possible link between the accelerated receptor shedding defect and reduced phagocytic 

function. 

Similarly, after treating HEK293 cells expressing WT mKIM-1 with GI254023X inhibitor, 

phagocytic function was significantly reduced (Figure 22). I observed that GI254023X 

treatment blocked baseline and accelerated mKIM-1 receptor shedding (Figure 19), so this 

again may suggest a possible link between reduced KIM-1 receptor shedding and reduced 

phagocytic function. 

The intriguing link between reduced shedding and reduced phagocytosis is uncommon, 

however has been observed with triggering receptor expressed on myeloid cells 2 

(TREM2). TREM2 is a phagocytic receptor expressed on myeloid immune cells and is also 

shed by ADAM10 (Schlepckow, Kleinberger et al. 2017). A particular missense mutation 

on the extracellular domain results in reduced shedding as well as reduced TREM2-

dependent phagocytosis (Schlepckow, Kleinberger et al. 2017). However, this phenotype 

could be explained by misfolding of the protein which resulted in retention of TREM2 in 

the endoplasmic reticulum and subsequent low cell surface expression (Schlepckow, 

Kleinberger et al. 2017). With KIM-1, unlike with TREM2, reduced shedding with 

I202Q/A is not the result of reduced cell surface KIM-1 expression. This reduced shedding 

effect is being observed because ADAM10 is unable to cleave KIM-1 either because 

ADAM10 itself is dysfunctional (GI254023X inhibitor) or the KIM-1 mutants cause 
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misfolding or some other alteration which prevents the sheddase from recognizing, binding 

to and/or cleaving KIM-1.  

It is possible that sKIM-1 or the process of KIM-1 cleavage is somehow required for 

efficient efferocytosis. A possible mechanism for this requirement is that sKIM-1 in the 

extracellular milieu decorates apoptotic cells to mark them for phagocytosis via homo- and 

/or heterophilic interactions with full length KIM-1 or other phagocytic receptors, 

respectively as observed in Figure 26.  
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Figure 26 Working model for possible mechanism linking KIM-1 shedding and 

efferocytosis. Image created using biorender.com. 

Heterophilic interactions of KIM-1/TIM-1 have been identified with other cell surface 

proteins such as TIM-4, P-selectin and E-selectin (Meyers, Chakravarti et al. 2005, Angiari, 

Donnarumma et al. 2014). TIM-4 is the ligand of TIM-1, binding to its IgV domain and 

this interaction has been shown to mediate T-cell proliferation (Meyers, Chakravarti et al. 

2005). Moreover, TIM-1 expressed on T helper 1 (Th1) and Th17 cells can bind to the 

adhesion receptor P-selectin, an interaction which requires both the IgV and mucin 

domains, or E-selectin which only requires the IgV domain (Angiari, Donnarumma et al. 
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2014). This interaction is important in mediating tethering and rolling of these TIM-1 

expressing immune cells on vascular beds to regulate leukocyte trafficking during 

inflammation (Angiari, Donnarumma et al. 2014). 

The shed ectodomain portion contains the phosphatidylserine binding IgV domain which 

allows it to bind to apoptotic cells (Gandhi, Yi et al. 2014). Based on the predicted cleavage 

site, sKIM-1 also contains the heavily glycosylated mucin domain (Figure 3B). Studies 

have shown that both the IgV domain and glycosylated mucin domain of murine sKIM-1 

are capable and required for homophilic adhesion interactions with extracellular portions 

of full length KIM-1 receptors (Santiago, Ballesteros et al. 2007). Tubular epithelial 

apoptotic cells which have sloughed off into the tubular lumen may not be in close enough 

proximity to full length KIM-1 expressed on the apical surface of surviving epithelial cells 

to be phagocytosed directly. In this scenario, the biological significance of KIM-1 shedding 

would be to generate free sKIM-1 that can go off to bind and mark these far off apoptotic 

cells for homophilic interactions with sKIM-1 as well as full length KIM-1 and increase 

the chances of clearing it out from the tubular lumen. Previous in vitro studies using the 

shedding defective mutant for hKIM-1 (D278-283) showed reduced phagocytic potential 

compared to WT hKIM-1 which is consistent with my results with mKIM-1(Gandhi, Yi et 

al. 2014).  

It was recently shown that mice expressing KIM-1Dmucin lacking the mucin domain showed 

reduced KIM-1 mediated phagocytosis compared to their WT counterparts which is a 

phenotype that could be explained by this biological mechanism involving adhesion 

interactions between sKIM-1 and KIM-1 via the mucin domain (Yang, Brooks et al. 2015). 

Reduced KIM-1 mediated efferocytosis from the tubular lumen leads to increased pro-

inflammatory cytokine production, downregulation of anti-inflammatory growth factor 

secretion, and an increase in activation of tissue macrophages leading to an overall 

proinflammatory phenotype which is initiated by AKI (Yang, Brooks et al. 2015). Kidney 

function and overall survival rates after AKI is also worse in these KIM-1Dmucin mice, which 

signifies the potential therapeutic relevance in attempting to facilitate apoptotic cell 

clearance by regulating KIM-1 shedding to increase concentrations of sKIM-1 in the 

tubular lumen (Yang, Brooks et al. 2015). 
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4.1.7 Confirming murine ADAM10 mediates shedding of mKIM-1 

An important next step in this process was to confirm that murine ADAM10 mediates 

shedding of mKIM-1, as previous studies were conducted in HEK293 cells expressing 

human ADAM10. RENCA cells express mADAM10, and the dose response to GI254023X 

inhibitor showed reduced sKIM-1 levels in response to increasing concentrations of the 

ADAM10 inhibitor (Figure 25). This provides compelling evidence that ADAM10 is a 

major sheddase responsible for mKIM-1 shedding, whereas it has previously been shown 

that TACE is the major sheddase involved with hKIM-1 shedding (Gandhi, Yi et al. 2014). 

These species differences in shedding enzymes is not uncommon, with examples such as 

the transmembrane interleukin-6 receptor (IL-6R) which is shed primarily by TACE in 

humans and ADAM10 in mice (Garbers, Janner et al. 2011) 

4.2 Limitations 

Some of the major limitations with this project entailed biochemical obstacles that needed 

to be overcome for successful sequencing of the mKIM-1 cleavage site with ESI-MS/MS. 

The first major problem was the inability to use digestive enzymes efficiently to generate 

small enough peptides of sKIM-1 to be sequenced by ESI-MS/MS because of its heavily 

glycosylated TSP-rich mucin domain. In fact, many glycans have primary biological 

functions to increase the stability and half-life of proteins by protecting them against 

proteolysis (Russell, Oldham et al. 2009), so it was important to remove the glycans and 

generate clean sKIM-1 peptides for sequencing. Full length FLAG-mKIM-1 from lysates 

has an apparent molecular weight of about ~60 kDa as observed on western blot (Figure 

17A), however the predicted molecular weight based on the 272 amino acid sequence of 

FLAG mKIM-1 is 30.04 kDa (Protein molecular weight – Bioinformatics.org), suggesting 

that about half the weight (30 kDa) could be attributed to post-translational modifications 

such as glycosylations, which not only add to the mass themselves but may also cause 

aberrant migration by altering protein shape and charge. The second major problem was 

the type of glycosylation. Although the majority of glycoproteins tend to have N-linked 

glycans (~90%) as opposed to O-linked glycans (~20%) (Apweiler, Hermjakob et al. 

1999), KIM-1 consisted of mostly O-linked glycans with fewer N-linked glycans (Figure 

2) (Bailly, Zhang et al. 2002). PNGase F is a common enzyme available for efficiently 
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removing all N-linked glycans, but a parallel enzyme for removing O-linked glycans, 

especially one capable of removing the complex heterogenous branches (eight possible 

core glycan subtypes) attached to O-glycans of a mucin domain, was not available (Van 

den Steen, Rudd et al. 1998, Wopereis, Lefeber et al. 2006). Therefore, preparing the 

sample for sequencing presented with a unique challenge. The third major problem with 

the heterogeneity of mucin domain glycosylations was that mass to charge (m/z) values 

can be altered in an unpredictable manner. Therefore, the option to use the molecular mass 

of a single strong peak from MS to map back to the cleavage site using the predicted mass 

of the FLAG mKIM-1 amino acid sequence was not available.  

Other transmembrane protein substrates for TACE and /or ADAM10 have been 

successfully sequenced for their cleavage site, like CD36, IL-6R, MerTK and TREM2 

using similar strategies (Mullberg, Oberthur et al. 1994, Thorp, Vaisar et al. 2011, Driscoll, 

Vaisar et al. 2013, Schlepckow, Kleinberger et al. 2017). CD36 and MerTK are heavily 

glycosylated proteins with N-glycans, therefore PNGase F was sufficient for complete 

deglycosylation before sequencing (Thorp, Vaisar et al. 2011, Driscoll, Vaisar et al. 2013). 

In the case of IL-6R, carboxypeptidase enzymes were used to determine which amino acid 

was on the C-terminal end of sIL-6R (ie. Q), then western blot analysis using various 

antibodies and their epitope information was used to deduce which Q was the exact 

cleavage site (Mullberg, Oberthur et al. 1994). TREM2 had a similar structure to KIM-1 

with mucin domain glycosylations (Figure 2). Therefore an insertion was made with 

TEVFLAG sequence into the stalk region upstream of the predicted cleavage site, but 

downstream of the heavily glycosylated mucin domain (Schlepckow, Kleinberger et al. 

2017). Using this approach, sTREM2 could be digested with the TEV enzyme to remove 

the mucin domain, and immunoprecipitated with FLAG to collect the portion of sTREM2 

that was not glycosylated for cleavage site sequencing. This is an approach that can be 

taken for future KIM-1 sequencing attempts.  

Another major limitation was the inability to normalize sKIM-1 with a loading control in 

the shedding assays. Since sKIM-1 is detected in media samples rather than lysates, there 

is no house-keeping loading control gene such as GAPDH or actin in the sample to use for 

normalizing sKIM-1 levels. A previous study running similar shedding assays, used a 
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technique involving Ponceau S staining to visualize residual albumin to serve as a loading 

control (Herzog, Haun et al. 2014). However, this technique did not produce any visual 

protein bands with the media samples I used (Appendix A3). 

Species differences is a major limitation that needs to be addressed in order to confirm 

some of the major conclusions made with this study. HEK293 cells expressing mKIM-1 

sets up a system where human sheddase enzymes (i.e. ADAM10/TACE) are made to cleave 

mKIM-1. HEK293 cells can be easily transfected compared to other cell lines making it an 

ideal candidate to use for initial studies. Repeating some of these studies in RENCA or 

another mouse cell line will help to confirm these findings. 

Another limitation with this study was the inability to back up my findings with I202 and 

ADAM10 with ESI-MS/MS sequencing results for the cleavage site using KIM-1 synthetic 

peptide and rmADAM10. It is possible that a larger peptide (ie. >20 amino acids) was 

required for the enzyme to efficiently bind to nearby recognition sites. However, an 

interesting point to note was that the fluorescent peptide substrate 

(MCA-P-L-A-Q-A-V-DPA-R-S-S-S-R-NH2), used for assessment of enzymatic activity, 

was only 11 amino acids long and was still capable of being cleaved suggesting that length 

of peptide may not be such a critical factor.  

4.3 Future Directions and Significance 

From my current studies, I202 likely overlaps with the recognition site for mKIM-1 

cleavage. As mentioned earlier, due to the promiscuous nature of the sheddase ADAM10, 

it may be necessary to generate a larger spanning deletion mutant (D199-204 mKIM-1) 

encompassing I202, to see a more noticeable effect on mKIM-1 shedding. This has been 

observed before with IL-6R, a common substrate for ADAM10 and ADAM17, in which 

point mutations at the cleavage site lead to reduced shedding, however 5 to 10 amino acid 

long mutations were capable of completely abolishing shedding (Mullberg, Oberthur et al. 

1994). With hKIM-1, for which TACE is a major sheddase, the deletion D278-283 results 

in a shedding defective mutant (Zhang, Humphreys et al. 2007). This deletion is however 

in the stalk region downstream of the actual predicted cleavage site region G267 to L278 

(Figure 3C) (Bailly, Zhang et al. 2002). BLAST sequence alignment of G267 to L278 on 
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hKIM-1 aligns with P204 to K209 on mKIM-1 so evidently deletion D204-209 mKIM-1 is 

another mutation worth attempting (Figure 3C). It should be noted that studies with IL-6R, 

another common substrate amongst ADAM10 and TACE, have shown that TACE 

mediated cleavage depends on the length of the stalk whereas ADAM10 mediated cleavage 

does not (Riethmueller, Ehlers et al. 2016). This could mean that the D278-283 mutation 

on hKIM-1 which shortens the stalk region could render it shedding defective because 

TACE is the major sheddase for hKIM-1 shedding, whereas the same phenotype may not 

be observed with D204-209 mutation on mKIM-1 which we now know is predominantly 

controlled by ADAM10 shedding. These species differences and functional differences 

between ADAM10 and TACE need to be further carefully elucidated for KIM-1 shedding.  

I focused my studies on the cleavage site and shedding mechanisms of mKIM-1 as opposed 

to hKIM-1 with the intention of eventually being able to generate an in vivo mouse model 

expressing the shedding-defective mutant of KIM-1 (DShedKIM-1) and test renal response 

to both moderate and severe IRI. This will help to elucidate the biological significance of 

KIM-1 shedding in response to AKI in vivo. 

I have hypothesized that DShedKIM-1 mice will exhibit more renal fibrosis (CKD 

phenotype) in response to severe IRI in comparison to WT. In mice, KIM-1 plays an 

important protective role during periods of moderate IRI. Unpublished data from our lab 

show that transient KIM-1 expression in WT mice during these times, correlates with lower 

levels of renal tissue injury in comparison to mice that lack KIM-1 expression altogether. 

However, with more severe levels of IRI, transient KIM-1 expressing mice show increased 

levels of fibrotic renal tissue in comparison to WT mice, indicating that KIM-1 may be 

more harmful than beneficial at this stage. Other studies have also shown that mice made 

to genetically overexpress KIM-1 constitutively, exhibit spontaneous triggering of renal 

fibrosis even in the absence of injury (Humphreys, Xu et al. 2013). Overall, this led us to 

conclude that KIM-1 has protective abilities, but only when it is expressed when necessary. 

KIM-1 ectodomain shedding can potentially be an important biological mechanism for 

regulating KIM-1 activity with regard to renal fibrosis. Perhaps this link between 

ectodomain shedding and fibrosis could be linked to phagocytic function to clear up tubular 

debris/cells which have sloughed off after AKI. Subsequent intraluminal casts, which form 
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when debris is not cleared out adequately, can result in tubular obstruction and increased 

intratubular pressure to exacerbate tissue damage and fibrosis (Goligorsky and DiBona 

1993). 

For this future study I would use the CRISPR-Cas system (Wiedenheft, Sternberg et al. 

2012), to generate homozygous knockin (C57BL/6) mice expressing the shedding-

defective mutant of KIM-1 (DShedKIM-1) and test its renal response to both moderate (35 

minutes ischemia) and severe (45 minutes ischemia) IRI using established models in the 

laboratory (Ismail, Zhang et al. 2015). Comparisons can then be made with regards to renal 

function (serum creatinine), renal histology (for injury and fibrosis using Trichrome stain), 

markers of fibrosis such as collagen I (PCR, western blot & immunohistochemistry), and 

mortality (kidney failure) between WT littermates and DShedKIM-1 mice after 3, 7 and 28 

days of reperfusion.  

Furthermore, these DShedKIM-1 mice will be an invaluable tool for studying the role of 

sKIM-1, which not only gets expelled into renal tubules and urine, but also back leaks into 

plasma after acute and chronic AKI (Sabbisetti, Waikar et al. 2014). DShedKIM-1 mice in 

relation to their WT counterparts are predicted to have lower plasma sKIM-1 

concentrations and it would be therapeutically relevant to see how this effects progression 

of phenotypes characteristic of ESRD and type I diabetes (Sabbisetti, Waikar et al. 2014). 
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Appendices  

Appendix A 1: R&D recombinant enzyme activity assay protocol for rmADAM10 
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Appendix A 2: R&D recombinant enzyme activity assay protocol for rmTACE 
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Appendix A 3: Ponceau S stained transfer membrane with media samples 

confirmed no residual albumin bands could be detected for normalizing sKIM-1 

levels.  
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Appendix A 4: Separation of standard peptides using Superdex Peptide 10/300 GL 

Column 

 

https://www.gelifesciences.co.jp/catalog/pdf/18116379.pdf 
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Appendix A 5: Legend for post-translational modifications marked on ESI-MS/MS 

sequence results. 
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Appendix A 6: Automated In-gel digestion protocol performed by Functional Proteomics 

Facility (FPF), Western University. 

Instrument- MassPREP Station, Robotic Protein Handling System 

FPF AUTOMATED PROGRAM INSTRUCTIONS 

START IN-GEL DIGESTION PROTOCOL 

FA = 2%formic acid/2% CAN 
ACN = 100% Acetonitrile 
ABC = 100 mM Ammonium bicarbonate 

Coomassie de-staining (~ 20 min) 

- Heater to 40 deg C (omit) 
- Remove excess liquid 
- Add 50uL 100 mM ABC + 50uL 100% ACN (first coomassie de-stain) 
- Pause 10 min, remove and save supernatant 
- Add 50uL 100 mM ABC + 50uL 100% ACN (second coomassie de-stain) 
- Pause 10 min, remove and save supernatant 

Reduction (~1 h, 15 min) 

- Add 50uL ACN (Pre-reduction dehydration) 
- Pause 5 min, remove and save supernatant 
- Pause 10 min, after supernatant removal (Pre-reduction evaporation) 
- Add 50uL 10mM DTT (Reduction) 
- Pause 30 min  

Alkylation  

- Add 50uL 55mM iodoacetamide (IAA) 
- Pause 25 min 

Wash (~ 5) 

- Add 100uL 100% ACN 
- Pause 5 min, remove and store supernatant 

Dehydration (~20 min) 

- Add 50uL 100 mM ABC + 50uL 100% ACN 
- Pause 5 min, remove and store supernatant 
- Add 50uL 100% ACN (First gel dehydration) 
- Pause 5 min, remove and store supernatant 
- Add 50uL 100% ACN (Second gel dehydration) 
- Pause 5 min, remove and store supernatant 
- Pause 5 min, after supernatant removal (ACN evaporation) 
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HEATER (40 deg C) SWITCHED OFF 

HEATER SET TO 20 deg C 

Trypsin Addition (Overnight ~16 h + dry time) 

- Add 25uL of 3-6 ng/uL overnight (7 h, amount of trypsin is determined by the 
intensity of stain) (WLS- Use 4 ng/uL trypsin in 50 mM ABC (pH 7.8 – check w 
pH paper) 

- Pause 30 min (Trypsin absorption) 

HEATER SET TO 40 deg C (WLS wants to omit) 

- Pause 7 h (Digestion) (WLS wants at 37 deg. C, 16 h) 

HEATER SET TO 20 deg C  

- Add 20uL FA (we will dry instead of FA) 
- Pause 30 min 

START EXTRACTION PROTOCOL 

FA = 2%formic acid/2% ACN  

Extraction (~1 h 30 min) 

- Add 30 uL FA (extraction #1) 
- Pause 30 min, remove and save supernatant 
- Add 15 uL FA, 17 uL ACN (extraction #2) 
- Pause 30 min, remove and save supernatant 
- Add 16 uL FA, 19 uL ACN (extraction #3) 
- Pause 30 min, remove and save supernatant 

END EXTRACTION PROTOCOL 
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Appendix A 7: Thermo Scientific Orbitrap Elite Mass spectrometer instrument setup 

used for ESI-MS/MS sequencing by Biological Mass Spectrometry Laboratory at 

Schulich School of Medicine & Dentistry, Western University 

Creator: Thermo, Orbitrap Elite 

Last modified: 5/28/2019 by Thermo 

  

MS Run Time (min): 120.00 

MS Detector Settings: 

Experiment Type: Nth Order Double Play 

Tune Method: Current_Tune_NSI 

  

Scan Event Details: 

 1:  FTMS + p norm o(300.0-1500.0) 

       CV = 0.0V 

 2:  FTMS + c norm Dep MS/MS Most intense ion from (1) 

       Activation Type:         HCD 

       Min. Signal Required:    5000.0 

       Isolation Width:         1.50 

       Normalized Coll. Energy: 28.0 

       Default Charge State:    2 

       Activation Time:         0.100 

       FT first mass mode: relative to parent mass 

       FT first mass value: 0.10 

       CV = 0.0V 

Scan Event 2 repeated for top 6 peaks. 

  

Lock Masses: 

   Pos List Name:                   445 

          Source:                   API Source 

       Mass List:                   445.120025 

   Neg List Name:                   N/A 

          Source:                   API Source 

       Mass List:                  (none) 

  

Data Dependent Settings: 

       Use separate polarity settings disabled 

       Parent Mass List:            (none) 

       Reject Mass List:            (none) 

       Neutral Loss Mass List:      (none) 

       Product Mass List:           (none) 

       Neutral loss in top:         3 

       Product in top:              3 

       Most intense if no parent masses found enabled 

       Add/subtract mass not enabled 

       FT master scan preview mode enabled 

       Charge state screening enabled 
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       Charge state dependent ETD time not enabled 

       Monoisotopic precursor selection enabled 

       Charge state rejection enabled 

         Unassigned charge states : rejected 

                   Charge state 1 : rejected 

                   Charge state 2 : not rejected 

                   Charge state 3 : not rejected 

                   Charge states 4+ : not rejected 

       Chromatography mode is disabled 

  

  

Global Data Dependent Settings: 

       Predict ion injection time enabled 

       Use global parent and reject mass lists not enabled 

       Exclude parent mass from data dependent selection not enabled 

       Exclusion mass width relative to mass 

       Exclusion mass width relative to low (ppm):  10.0 

       Exclusion mass width relative to high (ppm): 10.0 

       Parent mass width relative to mass 

       Parent mass width relative to low (ppm):  10.0 

       Parent mass width relative to high (ppm): 10.0 

       Reject mass width relative to mass 

       Reject mass width relative to low (ppm):  10.0 

       Reject mass width relative to high (ppm): 10.0 

       Zoom/UltraZoom scan mass width relative to mass 

       Zoom/UltraZoom scan mass width relative to low (ppm):  10000.0 

       Zoom/UltraZoom scan mass width relative to high (ppm): 10000.0 

       FT SIM scan mass width low:         5.00 

       FT SIM scan mass width high:        5.00 

       Neutral Loss candidates processed by decreasing intensity 

       Neutral Loss mass width by mass 

       Neutral Loss mass width low:  0.50 

       Neutral Loss mass width high: 0.50 

       Product candidates processed by decreasing intensity 

       Product mass width by mass 

       Product mass width low:  0.50 

       Product mass width high: 0.50 

       MS mass range:  300.00-4000.00 

       MSn mass range by mass 

       MSn mass range:  0.00-1000000.00 

       Use m/z values as masses not enabled 

       Analog UV data dep. not enabled 

       Dynamic exclusion enabled 

              Repeat Count:         1 

              Repeat Duration:      5.00 

              Exclusion List Size:  500 

              Exclusion Duration:   15.00 

              Exclusion mass width relative to mass 
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              Exclusion mass width relative to low (ppm):  10.0 

              Exclusion mass width relative to high (ppm): 10.0 

                      Expiration:   disabled 

       Isotopic data dependence not enabled 

  

  

LC Method: 

 

Method 

   RunTime: 120.00 

   AcquityTVMMethod 

      AnalyticalRightValvePosition: ValvePosition_1 

      TrapRightValvePosition: ValvePosition_2 

      SetColumnTemperature: 35.0 

      EnableAlarmBand: false 

      SetAlarmBandDegC: 5.0 

 

   nAcquityBSMMethod 

      Scale: ScaleNano_1 

      ApplicationMode: ApplicationMode_2 

      PumpRole: PumpType_1 

      FlowSourceA: 1 

      FlowSourceB: 1 

      SolventNameA: Water 

      SolventNameB: Acetonitrile 

      SealWashPeriod: 120.0 

      GradientTable 

         GradientRow 

            Time: Initial 

            Flow: 0.300 

            CompositionA: 95.0 

            CompositionB: 5.0 

            Curve 

         GradientRow 

            Time: 90.00 

            Flow: 0.300 

            CompositionA: 60.0 

            CompositionB: 40.0 

            Curve: 6 

         GradientRow 

            Time: 95.00 

            Flow: 0.300 

            CompositionA: 5.0 

            CompositionB: 95.0 

            Curve: 6 

         GradientRow 

            Time: 105.00 

            Flow: 0.300 
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            CompositionA: 5.0 

            CompositionB: 95.0 

            Curve: 6 

         GradientRow 

            Time: 105.50 

            Flow: 0.300 

            CompositionA: 95.0 

            CompositionB: 5.0 

            Curve: 6 

         GradientRow 

            Time: 120.00 

            Flow: 0.300 

            CompositionA: 95.0 

            CompositionB: 5.0 

            Curve: 6 

      EventTable 

      ElutionCompositionA: 95.0 

      ElutionCompositionB: 5.0 

      LowPressureLimit: 0 

      HighPressureLimit: 13000 

       

         TrappingLowPressureLimit: 0 

         TrappingHighPressureLimit: 5000 

         VariableFlowFactor: 0.10 

         TrappingMode: TrappingMode_2 

       

      GradientTableTP 

         GradientRow 

            Time: Initial 

            Flow: 5.000 

            CompositionA: 99.0 

            CompositionB: 1.0 

            Curve 

      LoadingTime: 6.00 

 

   nAcquitySMMethod 

      LoopOption: LoopOptionPartial_1 

      WeakWashSolvent: Water 

      WeakWashVolume: 600 

      StrongWashSolvent: Acetonitrile 

      StrongWashVolume: 200 

      SampleTemperature: 8.0 

      SampleTemperatureLimit: 5 

      SampleLoop: 10.0 
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