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Abstract
In the thesis, we introduce a two-dimensional semi-linear credibility model, which is an

extension of the classical credibility or split credibility models used by practicing actuaries.
Our model predicts the future expected losses of a policyholder by considering its historical
primary and excess losses. The optimal split point is derived based on the mean squared error
criterion. We show when and why splitting a policyholder’s historical losses into primary and
excess parts work analytically. In addition, we derived formulas for estimating our model
parameters nonparametrically. Finally, we show the application of our model through three
examples.

Keywords: Two-dimensional semi-linear credibility model, split credibility, primary and
excess credibility, linear function, mean square error
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Summary for Lay Audience
Credibility theory is a set of quantitative tools that allows an insurer to adjust premiums

based on policy holders’ past loss experience. The theory features the combination of data
with other information, such as the mean loss of policyholders in the same rating class.

In this thesis, we introduce a two-dimensional semi-linear credibility model, which consid-
ers policyholders’ small losses and large losses separately. Our model is an extension of the
classical credibility or split credibility models used by practicing actuaries.
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Chapter 1

Introduction

Credibility theory is a quantitative tool that enables us to estimate and adjusts the future pre-
mium given a policyholder’s loss experience. For a detailed introduction of credibility theory,
readers are referred to Klugman et al. [8]. Assume that the risks are homogeneous, the manual
rate is designed to reflect the past and future expected experience of the entire rating class.
Because the policyholders in a rating class are different, the manual rate can not reflect individ-
uals’ actual risk. However, it is important that higher risks should have higher rate and lower
risks should have lower rate.

Therefore, the insurer is forced to determine how much of the difference between the pol-
icyholder’s own experience and the expected experience is due to random fluctuations as well
as how much is due to the fact that the policyholder’s own risk is higher or lower than the
average risk. That is, how much credibility does the policyholder’s own experience have? The
credibility necessarily depends on the amount of data. The more past information we have on a
given policyholder, the more credible the policyholder’s own experience, all other things being
equal. In group insurance, the loss experience of larger groups are more credible than that of
small groups.

Another use for credibility is in the setting of rates for classification systems. For example,
there may be many occupational classes in workers compensation insurance, some of which
may provide very little data. In order to accurately estimate the expected cost for insuring these
classes, limited empirical data can be combined with other information, such as past rates and
so on.

From a statistical point of view, if loss experience data from an insured or group of insureds
is avaiable, we should use the sample mean or some other unbiased estimator to determine
the premium. But the results in credibility theory show that it is optimal to give only partial
weight to this experience and give the remaining weight to an estimator produced from other
information. For details, readers are referred to Klugman et al. [8].

Credibility theory is an approach to combine the manual rate with the policyholder’s own
loss experience, so that future premium will reflect the future losses accurately. In this chapter,
we firstly introduce limited fluctuation crediblity theory, a subject developed in the early part of
the twentieth century. The theory provides an approach to assign full or partial credibility to a
policyholder’s experience. Then, we will introduce greatest accuracy credbility theory, which
was formalized by Bühlmann [1]. The simplest model of Bühlmann [1] is introduced in this
section and will be our assumption in the thesis. Besides that, we will introduce an improved

1



2 Chapter 1. Introduction

model that developed by Bühlmann and Straub [3], after the simplest Bühlmann model.
Then, we will introduce split credibility which is the research object of the thesis. We firstly

introduce semi-linear credibility with truncation (referred to Bühlmann et al. [4]). Then we
propose our two-dimensional semi-linear credibility model.

The thesis is organised as follows. In chapter 2, we discuss our two-dimensional semi-
linear credibility model and also discuss the nonparametric estimation method associated with
our model. In chapter 3, we show the application of the model with three examples. Chapter 4
concludes the thesis.

1.1 Limited fluctuation crediblity theory

Limited fluctuation crediblity theory is an approach to determine whether we should assign
full credibility on the policyholder’s own past experience or not and decide to assign partial
credibility if full credibility is inappropriate. Suppose that a policyholder has experienced X j

claims or losses in past experience period j, where j ∈ {1, 2, 3, · · · , n}. Suppose that E(X j) = ξ
and Var(X j) = σ2 for all j. The past experience may be summarized by the average X̄ =
1
n

∑n
j=1 X j. Notice that E(X̄) = ξ and if the X j are independent, Var(X̄) = σ2

n .
The insurer’s goal is to determine the value of ξ. One way is to ignore the past experience

and simply charge M, a value obtained from experience on other similar but not identical
policyholders, which is often called the manual premium. Another way is to ignore M and
charge X̄, which is full credibility. A third way is to choose some combination of M and X̄,
which is partial credibility.

For full credibility, we use statistical method to decide whether the losses are stable or not.
That is, selecting two numbers r > 0 and 0 < p < 1 (with r close to 0 and p close to 1) and
assigning full credibility if

Pr(−rξ ≤ X̄ − ξ ≤ rξ) ≥ p. (1.1)

Restate (1.1) as

Pr


∣∣∣∣∣∣∣ X̄ − ξ

σ/
√

n

∣∣∣∣∣∣∣ ≤ rξ
√

n

σ

 ≥ p. (1.2)

Let yp be defined by

yp = inf
y

Pr


∣∣∣∣∣∣∣ X̄ − ξ

σ/
√

n

∣∣∣∣∣∣∣ ≤ y

 ≥ p

 . (1.3)

Then the condition for full credibility is

rξ
√

n

σ
≥ yp. (1.4)

Rewrite (1.4) as

σ

ξ
≤

r

yp

√
n =

√
n

λ0
, (1.5)
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where λ0 = (yp/r)2. If the X j are independent, we can rewrite (1.5) as

Var(X̄) =
σ2

n
≤
ξ2

λ0
. (1.6)

Alternatively, solving (1.5) for n gives the number of exposure units required for full cred-
ibility, namely,

n ≥ λ0

σξ
2

. (1.7)

For details, readers are referred to Klugman et al. [8]. Thus, we can get the condition of
sample size which meets the standard for full credibility.

If full credibility above is inappropriate, we consider partial credibility which contains the
past experience X̄ in the net premium as well as the externally obtained mean, M. Then we get
the formula of credibility premium,

Pc = ZX̄ + (1 − Z)M, (1.8)

where the credibility factor Z ∈ [0, 1] needs to be chosen. The theoretical method on the basis
of a statistical model to determine the optimal Z will be presented in next section. Another
method is based on the same idea as full credibility. We see from (1.6) that there is no assurance
that the variance of X will be small enough. However, it is possible to control the variance of
the credibility premium, Pc, as follows:

ξ2

λ0
= Var(Pc)

= Var
[
ZX̄ + (1 − Z)M

]
= Z2Var(X̄)

= Z2
σ2

n
.

Thus, Z = (ξ/σ)
√

n/λ0. Due to Z ∈ [0, 1], we have that

Z = min

 ξσ
√

n

λ0
, 1

 . (1.9)

1.2 Greatest accuracy credbility theory
Bühlmann [1] introduced a model-based approach to solve the credibility problem. Sup-
pose that we have the past claims for a particular policyholder with n exposure units, X =

(X1, X2, · · · , Xn)T , and a manual rate µ (it is the same as M above) applicable to this policy-
holder. However, the mean of claims is quite different from the manual rate. This difference
raises the question of whether next year’s net premium (per exposure unit) should be based on
µ, on X̄, or on a combination of the two. That is, how credible is the manual rate and how cred-
ible is the past experience for this policyholder? For this question, the Bayesian methodology
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is discussed in Klugman et al. [8]. But here we do not discuss the Bayesian methodology in
detail, and focus on the Bühlmann model (the simplest credibility model).

Under the Bühlmann model, for each policyholder, past losses X1, . . . , Xn are assumed to
have the same mean and variance and are i.i.d. conditional on Θ. Assume that Θ is a random
variable which is the risk parameter associated with the policyholder. Define

µ(θ) = E(X j|Θ = θ),
v(θ) = Var(X j|Θ = θ),
µ = E(µ(Θ)),
v = E(v(Θ)),
a = Var[µ(Θ)].

We are interested in setting a rate to cover Xn+1. Define

µn+1(θ) = E(Xn+1|Θ = θ),
µn+1 = E(µn+1(Θ)).

Now, we can calculate the unconditional mean and variance of X j as well as X̄ as follows,

E(X j) = E[E(X j|Θ)] = E[µ(Θ)] = µ = E(X̄),

and

Var(X j) = E[Var(X j|Θ)] + Var[E(X j|Θ)]
= E[v(Θ)] + Var[µ(Θ)]
= v + a,

and

Var(X̄) = E[Var(X̄|Θ)] + Var[E(X̄|Θ)]

= E

v(Θ)
n

 + Var[µ(Θ)]

=
v

n
+ a.

Because the losses are i.i.d. conditional on Θ, the unconditional mean and variance of Xn+1

are the same as X j’s. That is,

E(Xn+1) = E[E(Xn+1|Θ)] = E[µn+1(Θ)] = E[µ(Θ)] = µ = µn+1,

and

Var(Xn+1) = E[Var(Xn+1|Θ)] + Var[E(Xn+1|Θ)]
= E[v(Θ)] + Var[µ(Θ)]
= v + a.



1.2. Greatest accuracy credbility theory 5

Bühlmann [1] suggested a linear function of past loss data to estimate a policyholder’s
expected loss next year µn+1(θ). Thus, the credibility premium is

Pc = α0 +

n∑
j=1

α jX j, (1.10)

where α0, α1, · · · , αn are parameters that are needed to be chosen. Hence, we choose the opti-
mal α’s to minimize mean squared error(MSE), which is

Q = E
{[
µn+1(Θ) − Pc]2

}
(1.11)

= E
{[
µn+1(Θ) − α0 −

n∑
j=1

α jX j

]2}
. (1.12)

Thus, by taking derivatives with regard to α’s in (1.12), it can be shown that the credibility
premium is given by

Pc = µ̂X(θ) = α̂0 +

n∑
j=1

α̂ jX j (1.13)

= ẐX̄ + (1 − Ẑ)µ, (1.14)

where

Ẑ =
n

n + k
(1.15)

and

k =
v

a
=

E[Var(X j|Θ)]
Var[E(X j|Θ)]

(1.16)

and α̂0 is the optimal α0 and α̂ j is the optimal α j for all j and Ẑ is the optimal credibility factor,
Z. For details, readers are referred to Klugman et al. [8].
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The minimum mean squared error(MMSE) in the Bühlmann model is

Q̂ = E
{[
µn+1(Θ) − α̂0 −

n∑
j=1

α̂ jX j

]2}
= E

{[
µn+1(Θ) − ẐX̄ − (1 − Ẑ)µ

]2}
= E

{
µn+1(Θ)2 +

[
ẐX̄ + (1 − Ẑ)µ

]2
− 2Xn+1

[
ẐX̄ + (1 − Ẑ)µ

]}
= E

{
µn+1(Θ)2 + Ẑ2X̄2 + (1 − Ẑ)2µ2 + 2Ẑ(1 − X̂)µX̄ − 2ẐXn+1X̄ − 2(1 − Ẑ)µXn+1

}
= E(µn+1(Θ)2) + Ẑ2E(X̄2) + (1 − Ẑ)2µ2 + 2Ẑ(1 − X̂)µ2 − 2ẐE(Xn+1X̄) − 2(1 − Ẑ)µ2

= Var(µn+1(Θ)) + E(µn+1(Θ))2 + Ẑ2
(
Var(X̄) + E(X̄)2

)
− 2ẐE

[
E(Xn+1X̄|Θ)

]
− (1 − Ẑ)2µ2

= a + µ2 + Ẑ2

v

n
+ a + µ2

 − 2ẐE
[
E(Xn+1Θ)E(X̄|Θ)

]
− (1 − Ẑ)2µ2

= a + µ2 + Ẑ2

v

n
+ a + µ2

 − 2ẐE[µ(Θ)2] − (1 − Ẑ)2µ2

= a + µ2 + Ẑ2

v

n
+ a + µ2

 − 2Ẑ
(
Var(µ(Θ)) + E(µ(Θ))2

)
− (1 − Ẑ)2µ2

= a + µ2 + Ẑ2

v

n
+ a + µ2

 − 2Ẑ(a + µ2) − (1 − Ẑ)2µ2

= Ẑ2
v

n
+ (a + µ2)(1 − Ẑ)2 − (1 − Ẑ)2µ2

= Ẑ2
v

n
+ (1 − Ẑ)2a

=

 na

na + v

2 v

n
+

 v

na + v

2

a

=
va(na + v)
(v + na)2

=
va

v + na
. (1.17)

However, the Bühlmann model does not allow for variations in exposure or size. Therefore,
the Bühlmann-Straub model is presented in Bühlmann and Straub [3] to correct the problem.
The difference between the Bühlmann-Straub model and the Bühlmann model is the condi-
tional variances. The conditional variances is assumed to be

Var(X j|Θ = θ) =
v(θ)
m j

, (1.18)

where m j is a known constant measuring exposure. This model would be appropriate if each
X j were the average of m j independent (conditional on Θ) random variables each with mean
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µ(θ) and variance v(θ). Therefore, the unconditional variance of X j becomes

Var(X j) = E[Var(X j|Θ)] + Var[E(X j|Θ)]

= E

v(Θ)
m j

 + Var[µ(Θ)]

=
v

m j
+ a.

To obtain the new credibility premium (1.10), we should take derivatives with regard to α’s
in (1.12) again. Define

m = m1 + m2 + · · · + mn

to be the total exposure. Then, the credibility premium (1.10) becomes

Pc = µ̂X(θ) = α̂0 +

n∑
j=1

α̂ jX j = ẐX̄ + (1 − Ẑ)µ, (1.19)

where

Ẑ =
m

m + k
(1.20)

where k = v/a from (1.16) and

X̄ =

n∑
j=1

m j

m
X j. (1.21)

For details, readers are referred to Klugman et al. [8]. They are a simple introduction for
traditional credibility theory. From now on, we will discuss the split credibility.

1.3 Split credibility
National Council on Compensation Insurance (NCCI) [10] introduced that NCCI’s Experience
Rating Plan Manual for Workers Compensation and Employers Liability Insurance (Plan) was
an integral part of determining the cost of workers compensation. This is a way to customize
insurance costs based on the characteristics of the employer. It provides employers with the
incentive to manage their own expenses through measurable and meaningful cost-saving pro-
grams.

However, very large losses including the entire portion of the claim beyond a certain level in
the experience period reduces the predictive ability of the Plan. Although very large losses are
less likely to occur and are seen as more fortuitous than smaller claims, we should reduce cred-
ibility of them for making accurate estimates of future premium. Hence, the split credibility is
presented.

NCCI [10] indicates a split rating approach is used to reflect both the frequency and severity
of losses. The split point of individual losses is approved as part of each state’s rate or loss cost
filing. The amount of any individual loss up to the split point is known as primary loss, which
reflects frequency. The amount in excess of the split point is known as excess loss, which
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reflects severity. For individual claims below the split point, the entire amount is primary loss
and the excess loss is 0.

Robbin [11] introduced that the Experience Rating Plan for Workers Compensation with a
primary-excess split promulgated by the NCCI made the actual losses, denoted by X, divided
into primary losses, denoted by Xp, and excess losses, denoted by Xe. That is,

X = Xp + Xe, (1.22)

where
Xp = min(X,K) and Xe = X − Xp. (1.23)

This plan estimates the future losses by adding together the credibility-weighted estimates
of primary and excess losses separately. That is,

Pc = M + ZpX̄p + ZeX̄e (1.24)

where Pc is estimator of the future losses, M = (1 − Zp)E(Xp) + (1 − Ze)E(Xe) as well as Zp

and Ze are constant to be determined, which are credibility factors. The difference between
the conventional non-split credibility and two split credibility is clear by comparing (1.8) and
(1.24).

Robbin [11] assumed that the distributions of Xp and Xe were dependent on a risk parameter,
Θ. Define

µp(Θ) = E(Xp|Θ), µe(Θ) = E(Xe|Θ),
vp(Θ) = Var(Xp|Θ), ve(Θ) = Var(Xe|Θ),

µp = E(µp(Θ)), µe = E(µe(Θ)),
vp = E(vp(Θ)), ve = E(ve(Θ)),
ap = Var[µp(Θ)], ae = Var[µe(Θ)],

C(Θ) = Cov(Xp(Θ), Xe(Θ)), ρ = E(C(Θ)),
λp = vp + ap, λe = ve + ae,

π = Cov(µp(Θ), µe(Θ)), κ = ρ + π.

In the above, ρ is the process covariance and π is the parameter covariance.
The MSE is

Q = E
{[

ZpXp + (1 − Zp)µp − µp(Θ) + ZeXe + (1 − Ze)µe − µp(Θ)
]2}

. (1.25)

where µn+1(Θ) = µ(Θ) = µp(Θ) + µe(Θ).
By taking derivatives with regard to Zp and Ze separately in (1.25) and setting them to zero,

the credibility premium is

Pc = µ̂X(θ) = ẐpX̄p + (1 − Ẑp)µp + ẐeX̄e + (1 − Ẑe)µe, (1.26)

where

Ẑp =
λe(ap + π) − κ(ae + π)

D
, (1.27)

Ẑe =
λp(ae + π) − κ(ap + π)

D
, (1.28)
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and
D = λpλe − κ

2. (1.29)

Hence, the MMSE is

Q̂ = E
{[

ZpXp + (1 − Zp)µp − µp(Θ) + ZeXe + (1 − Ze)µe − µp(Θ)
]2}

(1.30)

= (ap + π)(1 − Ẑp) + (ae + π)(1 − Ẑe). (1.31)

For details, readers are referred to Robbin [11].
In Robbin [11], the MSE was regarded as a criterion for optimization. If the MMSE in split

credibility would be less than the MMSE in non-split credibility, then the split method should
be better than the non-split way. After considering the correlation between Xp and Xe, Robbin
[11] derived the optimal split credibility of each loss by the least squares method and showed
when split in effective. However, under collective risk model (CRM), the following situations
may make the split ineffective:

1. Inversion: The optimal excess credibility is bigger than the optimal primary credibility.
2. Out of range: One of the optimal split credibilities is beyond 100% or negative.
In fact, Gillam [6][7] showed that there were many empirical evidences for the practicality

of split credibility. Why the situations above never happened among those evidences? We find
that a pivotal assumption in Gillam [6] is that primary and excess losses are uncorrelated. In
addition, the optimal split credibility factors, Ẑp and Ẑe, given by Gillam [6] are different from
Robbin [11]’s. However, we find that they will be same if both the process covariance and
parameter covariance are zero in Robbin [11].

As we all know, it is not possible that the process covariance and parameter covariance both
become zero because Xp and Xe must exit a correlation because they are from one same X. So
the assumption in Gillam [6] should not be satisfied in reality. This means that we should not
ignore the covariances between the primary and excess losses.

1.4 Semi-linear credibility with truncation

Bühlmann et al. [2] assumed that the claims(losses) were from two different sources: ordinary
claim with density Do(X|Θ) with probability 1 − π and excess claim with density De(X) with
probability π. Then, the density function of claims, fΘ(X), is given by

fΘ(X) = (1 − π)Do(X|Θ) + πDe(X) (1.32)

To estimate the future premium, we can use Equation (1.13) as before and minimize the
MSE (1.11) to get the optimal parameters. However, Bühlmann et al. [2] gave us a new way to
estimate the future premium. That is,

Pc = a + b
n∑

j=1

(X j ∧ M) (1.33)
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where a, b and M should be chosen by minimizing the MSE,

Q = E
{[

E(µ(Θ)|X) − Pc

]2}
(1.34)

= E
{[

E(µ(Θ)|X) − a − b
n∑

j=1

(X j ∧ M)
]2}

(1.35)

= E
{[
πµe + (1 − π)E(µo(Θ)|X) − a − b

n∑
j=1

(X j ∧ M)
]2}

(1.36)

This method is standard credibility technique combined with data trimming, where the
parameter, M, is the trimming point.

Notice that in the model, only the ordinary part of the distribution depends on risk parame-
ter, Θ. What’s more, we realize that it is a method that keeps only the primary part of the loss
distribution. The excess part is ignored. More details about this credibility estimation tech-
nique based on transformed data will be seen in Bühlmann et al. [4]. It is called semi-linear
credibility.

In order to avoid the impact of large claims on the overall credibility premium, Bühlmann
et al. [4] look for transformations of the data. The credibility estimator is then applied to the
transformed data. One approach is to truncate either the aggregate or the individual claims.

In the thesis, the transformed data we assign is given by

Y j = f (X j) = min(X j,K) (1.37)

where K is the truncation point. The new credibility premium is

µ̂X(θ) = α̂0 +

n∑
j=1

α̂ jY j (1.38)

In Bühlmann et al. [4], the semi-linear credibility estimator of µX(θ) in the Bühlmann
model, based on Y j above, is given by

Pc = ̂̂µ(K)

X (θ) = µX +
nτXY

nτ2
Y + σ2

Y

(Ȳ − µY) (1.39)

where

µX = E(µX(Θ)), (1.40)
µY = E(µY(Θ)), (1.41)
τXY = Cov(µX(Θ), µY(Θ)), (1.42)
τ2

Y = Var[µY(Θ)], (1.43)
τ2

X = Var[µX(Θ)], (1.44)
σ2

Y = E[Var(Y j|Θ)]. (1.45)
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The MMSE is given by

Q̂ = E
{[̂̂
µ

(K)

X (Θ) − µX(Θ)
]2}

(1.46)

= τ2
X −

nτ2
XY

nτ2
Y + σ2

Y

(1.47)

We notice that semi-linear credibility includes non-split credibility model because the cred-
ibility premium (1.38) would become (1.13) if the optimal K went to infinity.

1.5 Our model
As we said before, semi-linear credibility considers only the primary part of the loss distri-
bution. To reflect all parts of the loss distribution, we add the excess part into semi-linear
credibility. We calculate the optimal parameters α’s given K by minimizing the MSE (1.11)
and also calculate the value of MMSE compared with non-split credibility’s and semi-linear
credibility’s to see if split credibility is effective. If the value of MMSE of split credibility is the
smallest between them, then the split credibility is effective and is able to make the estimator
of future premium more accurate. Finally, we hope to give a way to identify when we should
use split credibility and which K should be chosen.



Chapter 2

Two-dimensional semi-linear credibility
model

In this chapter, we look for general results of our model, called two-dimensional semi-linear
credibility model, including the optimal coefficients, α’s, and the value of MSE. Then we will
make a summary for general results. Next, we will give specific results in split credibility. We
will also discuss some properties of credibility in this model and the method for the optimal
split point will be presented. Furthermore, nonparametric estimation will be discussed, which
is helpful for us to solve the real problems. Finally, we derive the estimators of credibility
premium of the primary part and excess part.

In the thesis, we consider the two-dimensional semi-linear credibility model in the simple
Bühlmann model, that is for each policyholder(conditional on Θ), past losses X1, . . . , Xn have
the same mean and variance and are i.i.d. conditional on Θ. For details, readers are referred to
Klugman et al. [8].

2.1 General results

Based on semi-linear credibility, we have only one transformed data Y j = f (X j). Now, we add
another transformed data L j = g(X j) that is different from Y j into the model. Hence, we get a
new credibility premium(or called estimator). That is,

µX(θ) = α0 +

n∑
j=1

αY jY j +

n∑
j=1

αL jL j. (2.1)

2.1.1 The optimal α’s

To choose the optimal α’s, we minimize the MSE. That is,

Q = E
{[
µn+1(Θ) − α0 −

n∑
j=1

αY jY j −

n∑
j=1

αL jL j

]2}
. (2.2)

12
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Taking derivatives with regard to α’s and setting them to zero yields for i = 1, . . . , n,

∂Q

∂α̂0
= 0 = E

{
2
[
µn+1(Θ) − α̂0 −

n∑
j=1

ˆαY jY j −

n∑
j=1

α̂L jL j

]
(−1)

}
, (2.3)

∂Q

∂α̂Yi
= 0 = E

{
2
[
µn+1(Θ) − α̂0 −

n∑
j=1

ˆαY jY j −

n∑
j=1

α̂L jL j

]
(−Yi)

}
, (2.4)

∂Q

∂α̂Li
= 0 = E

{
2
[
µn+1(Θ) − α̂0 −

n∑
j=1

ˆαY jY j −

n∑
j=1

α̂L jL j

]
(−Li)

}
, (2.5)

where α̂0 is the optimal α0 and α̂Yi is the optimal αYi and α̂Li is the optimal αLi for all i.
Then, expanding them yields

E[µn+1(Θ)] = α̂0 +

n∑
j=1

ˆαY jE(Y j) +

n∑
j=1

α̂L jE(L j), (2.6)

E[µn+1(Θ)Yi] = α̂0E(Yi) +

n∑
j=1

ˆαY jE(Y jYi) +

n∑
j=1

α̂L jE(L jYi), (2.7)

E[µn+1(Θ)Li] = α̂0E(Li) +

n∑
j=1

ˆαY jE(Y jLi) +

n∑
j=1

α̂L jE(L jLi). (2.8)

The left-hand side of Equation (2.7) can be rewritten as

E[µn+1(Θ)Yi] = E
{
E[µn+1(Θ)Yi|Θ]

}
= E

{
µn+1(Θ)E[Yi|Θ]

}
= E

{
E[Xn+1|Θ]E[Yi|Θ]

}
= E

{
E[Xn+1Yi|Θ]

}
= E[Xn+1Yi],

where the second from the last step follows by independence of Xi and Xn+1 conditional on Θ,
which is same as Klugman et al. [8]. Then, Equation (2.7) becomes

E[Xn+1Yi] = α̂0E(Yi) +

n∑
j=1

ˆαY jE(Y jYi) +

n∑
j=1

α̂L jE(L jYi). (2.9)

Hence, we also have

E[Xn+1Li] = α̂0E(Li) +

n∑
j=1

ˆαY jE(Y jLi) +

n∑
j=1

α̂L jE(L jLi), (2.10)

which is from (2.8) and whose reason is followed by above.
Besides, the left-hand side of Equation (2.6) can be rewritten as

E[µn+1(Θ)] = E[E(Xn+1|Θ)] = E[Xn+1].
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Hence, we rewrite Equation (2.6) as

E[Xn+1] = α̂0 +

n∑
j=1

ˆαY jE(Y j) +

n∑
j=1

α̂L jE(L j). (2.11)

Next, mutiply (2.11) by E[Yi] and subtract from (2.9) to obtain

Cov(Xn+1,Yi) =

n∑
j=1

ˆαY jCov(Y j,Yi) +

n∑
j=1

α̂L jCov(L j,Yi), (2.12)

in the meantime mutiplying (2.11) by E[Li] and subtract from (2.10), we get

Cov(Xn+1, Li) =

n∑
j=1

ˆαY jCov(Y j, Li) +

n∑
j=1

α̂L jCov(L j, Li), (2.13)

for i = 1, . . . , n.
For the convenience of expression, we give a table of our notations in the thesis. That is,

Notation Expression Notation Expression Notation Expression
µX(Θ) E[X|Θ] µY(Θ) E[Y |Θ] µL(Θ) E[L|Θ]
µX E[µX(Θ)] µY E[µY(Θ)] µL E[µL(Θ)]
τ2

X Var[µX(Θ)] τ2
Y Var[µY(Θ)] τ2

L Var[µL(Θ)]
σ2

X E[Var(X|Θ)] σ2
Y E[Var(Y |Θ)] σ2

L E[Var(L|Θ)]
τXY Cov(µX(Θ), µY(Θ)) τXL Cov(µX(Θ), µL(Θ)) τYL Cov(µY(Θ), µL(Θ))

δXY(Θ) Cov(X|Θ,Y |Θ) δXL(Θ) Cov(X|Θ, L|Θ) δYL(Θ) Cov(Y |Θ, L|Θ)
δXY E[δXY(Θ)] δXL E[δXL(Θ)] δYL E[δYL(Θ)]

Table 2.1: A list of notations

Using the notation above, the left-hand side of Equation (2.12) can be rewritten as

Cov(Xn+1,Yi) = E[Xn+1Yi] − E[Xn+1]E[Yi]
= E

{
E[Xn+1Yi|Θ]

}
− E[µX(Θ)]E[µY(Θ)]

= E
{
E[Xn+1|Θ]E[Yi|Θ]

}
− E[µX(Θ)]E[µY(Θ)]

= E[µX(Θ)µY(Θ)] − E[µX(Θ)]E[µY(Θ)]
= Cov(µX(Θ), µY(Θ))
= τXY ,

for i = 1, . . . , n and the reason of the third step is independence of Xi and Xn+1 conditional on
Θ.

Under the same reason, we have

Cov(Y j,Yi) = τ2
Y and Cov(L j,Yi) = τYL,

for j , i and i, j = 1, . . . , n.
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Now, we rewrite Equation (2.12) as

τXY =

n∑
j=1
j,i

ˆαY jCov(Y j,Yi) + α̂YiVar(Yi) +

n∑
j=1
j,i

α̂L jCov(L j,Yi) + α̂LiCov(Li,Yi) (2.14)

=

n∑
j=1
j,i

ˆαY jτ
2
Y + α̂Yi(σ2

Y + τ2
Y) +

n∑
j=1
j,i

α̂L jτYL + α̂Li(δYL + τYL) (2.15)

=

n∑
j=1

ˆαY jτ
2
Y + α̂Yiσ

2
Y +

n∑
j=1

α̂L jτYL + α̂LiδYL, (2.16)

where

Var(Yi) = E[Var(Yi|Θ)] + Var[E(Yi|Θ)] (2.17)
= σ2

Y + Var[µY(Θ)] (2.18)
= σ2

Y + τ2
Y , (2.19)

Cov(Li,Yi) = E[Cov(Li|Θ,Yi|Θ)] + Cov(E[Li|Θ], E[Yi|Θ]) (2.20)
= E[Cov(L|Θ,Y |Θ)] + Cov(µL(Θ), µY(Θ)) (2.21)
= δYL + τYL. (2.22)

Compared with (2.16), Equation (2.13) can be rewritten as

τXL =

n∑
j=1

ˆαY jτYL + α̂YiδYL +

n∑
j=1

α̂L jτ
2
L + α̂Liσ

2
L, (2.23)

for i = 1, . . . , n.
Next, mutiply (2.16) by σ2

L and mutiply (2.23) by δYL, then subtract each other to obtain

α̂Yi =
τXYσ

2
L − τXLδYL − (τ2

Yσ
2
L − τYLδYL)

∑n
j=1 ˆαY j − (τYLσ

2
L − τ

2
LδYL)

∑n
j=1 α̂L j

σ2
Yσ

2
L − δ

2
YL

, (2.24)

if σ2
Yσ

2
L , δ

2
YL and for i = 1, . . . , n.

We notice that the right-hand side of Equation (2.24) does not depend on i. So we have that
ˆαY j = α̂Yi for i , j and i, j = 1, . . . , n. We let them be α̂Y . With the same reason, we let all α̂Li

be α̂L for i = 1, . . . , n. Then, we have

τXY = α̂Y(nτ2
Y + σ2

Y) + α̂L(nτYL + δYL),
τXL = α̂Y(nτYL + δYL) + α̂L(nτ2

L + σ2
L),

which can be rewritten in matrix form as(
nτ2

Y + σ2
Y nτYL + δYL

nτYL + δYL nτ2
L + σ2

L

) (
α̂Y

α̂L

)
=

(
τXY

τXL

)
. (2.25)
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Hence, α̂Y and α̂L have a unique solution,

α̂Y =
τXY(nτ2

L + σ2
L) − τXL(nτYL + δYL)

(nτ2
Y + σ2

Y)(nτ2
L + σ2

L) − (nτYL + δYL)2
, (2.26)

α̂L =
τXL(nτ2

Y + σ2
Y) − τXY(nτYL + δYL)

(nτ2
Y + σ2

Y)(nτ2
L + σ2

L) − (nτYL + δYL)2
, (2.27)

if

(nτ2
Y + σ2

Y)(nτ2
L + σ2

L) , (nτYL + δYL)2. (2.28)

Let A represent (nτ2
Y + σ2

Y), B represent nτ2
L + σ2

L and C represent (nτYL + δYL). The matrix
becomes (

nτ2
Y + σ2

Y nτYL + δYL

nτYL + δYL nτ2
L + σ2

L

)
=

(
A C
C B

)
.

If the determinant of this matix is zero, that is AB = C2. Then, there are no solution for
Equation (2.25) if τXY/τXL , C/B, and there are infinite solutions if τXY/τXL = C/B. For details
of matrix with zero determinant, readers are referred to Marcus et al. [9].

Now, we get the value of α̂Y and α̂L. Then, we can get the value of α̂0 from Equation (2.11).
That is

α̂0 = µX − nα̂YµY − nα̂LµL. (2.29)

Now, we get the new credibility premium from (2.1). That is

µ̂X(θ) = α̂0 + α̂Y

n∑
j=1

Y j + α̂L

n∑
j=1

L j (2.30)

= µX − nα̂YµY − nα̂LµL + nα̂Y Ȳ + nα̂LL̄ (2.31)
= µX + nα̂Y(Ȳ − µY) + nα̂L(L̄ − µL), (2.32)

where (α̂Y , α̂L) are the optimal α’s.
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2.1.2 The minimum value of MSE
Next, we also need to calculate the minimum value of MSE (2.2) because we will compare it
with the MMSEs of non-split credibility and semi-linear credibility. So, we have

Q̂ = E
{[
µn+1(Θ) − ̂µX(Θ)

]2}
(2.33)

= E
{[
µn+1(Θ) − α̂0 − nα̂Y Ȳ − nα̂LL̄

]2}
(2.34)

= E
[(
µn+1(Θ) − nα̂Y Ȳ

)2

+

(
α̂0 + nα̂LL̄

)2

− 2
(
µn+1(Θ) − nα̂Y Ȳ

)(
α̂0 + nα̂LL̄

)]
(2.35)

= E
(
µn+1(Θ)2

)
+ n2α̂Y

2E
(
Ȳ2

)
− 2nα̂Y E

(
µn+1(Θ)Ȳ

)
+ α̂0

2 + n2α̂L
2E

(
L̄2

)
+ 2nα̂0α̂LE

(
L̄
)

−2α̂0E (µn+1(Θ)) − 2nα̂LE
(
µn+1(Θ)L̄

)
+ 2nα̂0α̂Y E

(
Ȳ
)

+ 2n2α̂Lα̂Y E
(
Ȳ L̄

)
(2.36)

= τ2
X + µ2

X + n2α̂Y
2
(
1
n
σ2

Y + τ2
Y + µ2

Y

)
− 2nα̂Y(τXY + µXµY) + α̂0

2

+n2α̂L
2
(
1
n
σ2

L + τ2
L + µ2

L

)
+ 2nα̂0α̂LµL − 2α̂0µX − 2nα̂L(τXL + µXµL)

+2nα̂0α̂YµY + 2n2α̂Lα̂Y

(
1
n
δYL + τYL + µYµL

)
(2.37)

= τ2
X − µ

2
X + nα̂Y

2σ2
Y + n2α̂Y

2τ2
Y − n2α̂Y

2µ2
Y + (µX − nα̂YµY − nα̂LµL)2

+nα̂L
2σ2

L + n2α̂L
2τ2

L − n2α̂L
2µ2

L + 2n(µX − nα̂YµY)α̂LµL + 2nα̂YµXµY

+2nα̂Lα̂YδYL + 2n2α̂Lα̂YτYL − 2nα̂YτXY − 2nα̂LτXL (2.38)
= τ2

X + nα̂Y
2σ2

Y + n2α̂Y
2τ2

Y − 2nα̂YτXY

+nα̂L
2σ2

L + n2α̂L
2τ2

L − 2nα̂LτXL

+2nα̂Lα̂YδYL + 2n2α̂Lα̂YτYL, (2.39)

where α̂L and α̂Y meet Equation (2.25).The details of why Equation (2.36) goes to (2.37) will
be seen in Appendix A.

Remark The minimum value of MSE above(or called Q̂) is the minimum value given by one
K in our model. Giving a different K will result in a different MMSE.

2.1.3 Summary
In summary, we give two Theorems as follows.

Theorem 2.1.1 The two-dimensional semi-linear credibility estimator of µX(θ) in the simple
Bühlmann model, based on two different transformed data Y j = f (X j) and L j = g(X j), is given
by

µ̂X(θ) = µX + nα̂Y(Ȳ − µY) + nα̂L(L̄ − µL),

where (α̂Y , α̂L) satisfies (
nτ2

Y + σ2
Y nτYL + δYL

nτYL + δYL nτ2
L + σ2

L

) (
α̂Y

α̂L

)
=

(
τXY

τXL

)
,
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or

α̂Y =
τXY(nτ2

L + σ2
L) − τXL(nτYL + δYL)

(nτ2
Y + σ2

Y)(nτ2
L + σ2

L) − (nτYL + δYL)2
,

α̂L =
τXL(nτ2

Y + σ2
Y) − τXY(nτYL + δYL)

(nτ2
Y + σ2

Y)(nτ2
L + σ2

L) − (nτYL + δYL)2
,

if (nτ2
Y + σ2

Y)(nτ2
L + σ2

L) , (nτYL + δYL)2.

Theorem 2.1.2 The minimum mean square error of the two-dimensional semi-linear credibil-
ity estimator in the simple Bühlmann model is given by

ˆQmin = E
{[
µn+1(Θ) − α0 −

n∑
j=1

αY jY j −

n∑
j=1

αL jL j

]2}
= τ2

X + nα̂Y
2σ2

Y + n2α̂Y
2τ2

Y − 2nα̂YτXY

+nα̂L
2σ2

L + n2α̂L
2τ2

L − 2nα̂LτXL

+2nα̂Lα̂YδYL + 2n2α̂Lα̂YτYL.

Remarks The two-dimensional semi-linear credibility model includes non-split credibility
model and semi-linear credibility model. It will be semi-linear credibility model if Y j =

f (X j) = g(X j) = L j for j = 1, . . . , n. Furthermore, it will be non-split credibility model if
Y j = f (X j) = X j = g(X j) = L j for j = 1, . . . , n.

In general, condition (2.28) will not be met if Y j = f (X j) = g(X j) = L j for j = 1, . . . , n,
which means that we will not be able to use Equations (2.26) and (2.27) to get the optimal α’s.
However, Equation (2.25) will always be established whatever the transformed data are.

2.2 Split results

According to Section 1.3, split credibility model has two different partial losses, primary loss
and excess loss. So, generally, we should let Y j be the primary loss and let L j be the excess
loss. However, in order to simplify the expressions of optimal α’s and MSE as well as be more
intuitive to compare with non-split credibility model and semi-linear credibility model with
truncation, we keep Y being Xp = min(X,K) but set L = X. The relationship between their
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parameters is as follows,

µX(θ) = α0 + αp

n∑
j=1

Xp j + αe

n∑
j=1

Xe j

= α0 + αp

n∑
j=1

Xp j + αe

n∑
j=1

(X j − Xp j)

= α0 + (αp − αe)
n∑

j=1

Xp j + αe

n∑
j=1

X j

= α0 + αY

n∑
j=1

Y j + αL

n∑
j=1

L j

= α0 + αY

n∑
j=1

Y j + αX

n∑
j=1

X j,

where Xp j = min(X j,K) and Xe j = X j − Xp j as well as K is a split point. In the meantime, we
change the notation αL to αX and change the notation L to X.

Hence, we should have

α̂p = α̂Y + α̂L = α̂Y + α̂X, (2.40)
α̂e = α̂L = α̂X. (2.41)

In this way, we have the accurate expressions of credibility premium and MMSE as follows,

µ̂X(θ) = µX + nα̂Y(Ȳ − µY) + nα̂X(X̄ − µX) (2.42)
= µX + ẐY(Ȳ − µY) + ẐX(X̄ − µX), (2.43)

where α̂Y and α̂X meet (
nτ2

Y + σ2
Y nτXY + δXY

nτXY + δXY nτ2
X + σ2

X

) (
α̂Y

α̂X

)
=

(
τXY

τ2
X

)
, (2.44)

and

Q̂ = τ2
X + nα̂Y

2σ2
Y + n2α̂Y

2τ2
Y − 2nα̂YτXY

+nα̂X
2σ2

X + n2α̂X
2τ2

X − 2nα̂Xτ
2
X

+2nα̂Xα̂YδXY + 2n2α̂Xα̂YτXY (2.45)

= τ2
X +

1
n
ẐY

2
σ2

Y + ẐY
2
τ2

Y − 2ẐYτXY

+
1
n
ẐX

2
σ2

X + ẐX
2
τ2

X − 2ẐXτ
2
X

+
2
n
ẐXẐYδXY + 2ẐXẐYτXY , (2.46)

where ẐY = nα̂Y and ẐX = nα̂X which are credibility of each part.
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Again, we let A represent (nτ2
Y + σ2

Y), B represent nτ2
X + σ2

X and C represent (nτXY + δXY).
The matrix becomes (

nτ2
Y + σ2

Y nτXY + δXY

nτXY + δXY nτ2
X + σ2

X

)
=

(
A C
C B

)
. (2.47)

If the determinant of this matix is zero, there are no solution for Equation (2.44) if τXY/τ
2
X ,

C/B, and there are infinite solutions if τXY/τ
2
X = C/B. For details of matrix with zero determi-

nant, readers are referred to Marcus et al. [9].
In general, A and B are not equal to 0, but A = 0 when K = 0. In this situation, τXY = 0,

C = 0, Y = 0 and our credibility model becomes non-split credibility model.
When we have infinite solutions, the solution of non-split credibility model is also a solution

for us in our credibility model, which means that the minimum value of MSE in our credibility
model is same as the minimum value of MSE in non-split credibility model. Hence, we choose
the solution of non-split credibility model as the solution of our credibility model in this time.

2.2.1 Properties of credibility
Before we study the optimal split point, we present some properties of credibility. This will
help us gain intuition and make practical sense of our model.

Rewrite Equation (2.25) as

ẐX =
nτXY

nτXY + δXY
−

nτ2
Y + σ2

Y

nτXY + δXY
ẐY , (2.48)

ẐY =
nτ2

X

nτXY + δXY
−

nτ2
X + σ2

X

nτXY + δXY
ẐX, (2.49)

if nτXY + δXY , 0. In general, this condition should be always met because if X < K, then
Y = X and τXY would be τ2

X, which is always bigger than zero except µX(Θ) is a constant but it
should not be happened, as well as δXY would be σ2

X, whose property is same as τ2
X. Otherwise,

Y would be always equal to K and we would get nτXY + δXY = 0. In an extreme case which is
that all of X are bigger or equal to K, our model would become non-split credibility model and
this situation would be the same as K = 0.

Let n→ +∞, (2.48) and (2.49) become

ẐX = 1 −
τ2

Y

τXY
ẐY , (2.50)

ẐY =
τ2

X

τXY
−
τ2

X

τXY
ẐX, (2.51)

thus we get ẐX → 1 and ẐY → 0 if τ2
XY , τ

2
Xτ

2
Y . In general, this condition is met except Y = X

or K = 0 or K → +∞. As we all know, we should give more credibility to the data if there are
a lot of losses we get. The properties of credibility above meet our expectation.

For the time being, we don’t restrict Y = min(X,K) and let it can be any functions on X for
now and go to find the influences of parameters τXY and δXY .

Let τXY → ∞, we get ẐX → 1 and ẐY → 0. From the results, we know that this influence
is the same as n’s if we choose a function on X, Y = f (X), with a large value of τXY . Both of
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them will cause more credibility on X. Notice that the value can be either very small or very
large.

Similarly, let δXY → ∞, we get ẐX → 0 and ẐY → 0. From the results, we know that
we should use the manual rate, µX, to estimate the future loss if we choose a function on X,
Y = f (X), with a large value of δXY . Notice that the value can be either very small or very
large.

Remarks In the above, we discuss the sensitivity of the credibility to the values of a parameter
assuming that other parameters remain unchanged. In fact, other paramters may be changed
with τXY or δXY , but we don’t consider this situation here. So, further research can be whether
any other parameters would be changed or not when the parameters we specify change if you
are interested in these results and want to explore more.

Notice that the credibility of primary loss, Ẑp, is equal to ẐY + ẐX and the credibility of
excess loss, Ẑe, is equal to ẐX. We are not able to ensure that Ẑp and Ẑe are between 0 and 1 as
commented in Robbin [11].

2.2.2 The optimal split point

The optimal split point minimizes the mean square error. Let the MMSE of non-split credibility
be Q̂nsp, the MMSE of semi-linear credibility be Q̂tsl and the MMSE of two-dimensional semi-
linear credibility be Q̂tdsl. From (1.17), (1.47) and (2.45), we respectively have

Q̂nsp =
σ2

Xτ
2
X

σ2
X + nτ2

X

, (2.52)

Q̂tsl = τ2
X −

nτ2
XY

σ2
Y + nτ2

Y

, (2.53)

Q̂tdsl = τ2
X + nα̂Y

2σ2
Y + n2α̂Y

2τ2
Y − 2nα̂YτXY

+nα̂X
2σ2

X + n2α̂X
2τ2

X − 2nα̂Xτ
2
X

+2nα̂Xα̂YδXY + 2n2α̂Xα̂YτXY . (2.54)

We notice that Q̂tdsl is a function of the split point, K, because α̂X, α̂Y , µY , σ2
Y , τ2

Y , δXY and
τXY are functions on K. In theory, we take derivatives of Q̂tdsl with respect to K and let the
expression equal to zero for getting the optimal split point, K̂. In the mathematical formula, it
is

∂Q̂tdsl

∂K̂
= 0.

However, it is hard to solve this equation because the processes are extremely complex. For
practical application, we decide to use another simple method to determine the optimal split
point. Before that, we give an inspiring and accurate approach as well as hope that it will be
helpful with future research. Now we give the Leibniz’s Rule. For details, readers are referred
to Border [5].
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Lemma 2.2.1 (Leibniz’s Rule) Let A ⊂ Rn be open, let I = [a, b] ⊂ R be a compact interval,
and let f be a (jointly) continuous mapping of A × I into R. Let α and β be two continuously
differentiable mappings of A into I. Then

g(x) =

∫ β(x)

α(x)
f (x, t) dt,

is continuous in A. If in addition, the partial derivative ∂ f
∂x exists and is (jointly) continuous on

A × I, then g is continuously differentiable on A and

g′(x) =

∫ β(x)

α(x)

∂ f (x, t)
∂x

dt + f (x, β(x))β′(x) − f (x, α(x))α′(x).

Notice that the conditional mean of Y = Xp is the function on X and K. Under the integral
expression, the integral interval is only related to K and the function is only integrated on X.
Therefore, we can use the Leibniz’s Rule to get our partial differential equations. Suppose that
the losses, X, have the same distribution with pdf, fX|Θ(x), and cdf, FX|Θ(x), conditional on Θ.
Let Y = min(X,K), then

µY(Θ) =

∫ K

0
x fX|Θ(x) dx + K(1 − FX|Θ(K)).

Under the Leibniz’s Rule, we take partial derivative of µY(Θ) with respect to K, then

∂µY(Θ)
∂K

=

∫ K

0

∂
(
x fX|Θ(x)

)
∂K

dx + K fX|Θ(K) − 0 fX|Θ(0)

+1 − FX|Θ(K) − K fX|Θ(K)
= K fX|Θ(K) + 1 − FX|Θ(K) − K fX|Θ(K)
= 1 − FX|Θ(K).

Using the same method, all of the partial differential equations of parameters are derived.
In the end, the numerical solution of K should be obtained. However, we guess that the solution
would be so complex that it is not easy to be used in reality and we give another way to get
it. Let us turn to research for size relationships between Q̂nsp, Q̂tsl and Q̂tdsl. Then, we get a
Theorem as follows,

Theorem 2.2.2 Let the MMSE of non-split credibility be Q̂nsp, the MMSE of semi-linear cred-
ibility be Q̂tsl and the MMSE of two-dimensional semi-linear credibility be Q̂tdsl. Then, Q̂tdsl

will be the minimum value between them, that is,

Q̂tdsl ≤ Q̂nsp and Q̂tdsl ≤ Q̂tsl,

where Q̂nsp is (2.52), Q̂tsl is (2.53) and Q̂tdsl is (2.54).

Proof: We only proof the first inequality, Q̂tdsl ≤ Q̂nsp, and the other’s proof is similar. Notice
that when α̂Y is equal to 0, we have

Q̂tdsl = τ2
X + nα̂X

2σ2
X + n2α̂X

2τ2
X − 2nα̂Xτ

2
X

= nα̂X
2σ2

X + (1 − nα̂X)2τ2
X,
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where α̂X =
τ2

X
σ2

X+nτ2
X
. Then,

Q̂tdsl = nα̂X
2σ2

X + (1 − nα̂X)2τ2
X

=
nτ4

Xσ
2
X

(σ2
X + nτ2

X)2
+

σ4
Xτ

2
X

(σ2
X + nτ2

X)2

=
σ2

Xτ
2
X

σ2
X + nτ2

X

= Q̂nsp,

which shows again that the two-dimensional semi-linear credibility includes non-split credibil-
ity.

Assume that the MMSE of two-dimensional semi-linear credibility, Q̂tdsl, is bigger than
Q̂nsp with the optimal α̂X and α̂Y where α̂Y , 0. However, we know that we could find the

value of MMSE, ˆ̂Qtdsl = Q̂nsp as long as we selected ˆ̂αY = 0 and ˆ̂αX =
τ2

X
σ2

X+nτ2
X
. And we could

get a smaller value. Therefore, Q̂tdsl with the optimal α̂Y , 0 is not the MMSE and it is not
existed.

In total, we have Q̂tdsl ≤ Q̂nsp for all times.

As we said before, if the determinant of matix (2.47) is zero, then there are no solution for
Equation (2.44) or the solution of non-split credibility model would be chosen as the solution
of our credibility model. However, there is a special case that we do not need to split the losses
if the determinant of matrix (2.47) is not zero. We give a Theorem as follows.

Theorem 2.2.3 Assume that τ2
X , 0, τXY , 0 and δXY/τXY = σ2

X/τ
2
X, as well as,∣∣∣∣∣∣ nτ2

Y + σ2
Y nτXY + δXY

nτXY + δXY nτ2
X + σ2

X

∣∣∣∣∣∣ , 0.

Then, the two-dimensional semi-linear credibility model becomes non-split credibility model
whatever the split point is.

Proof: Because the determinant of matrix (2.47) is not equal to zero, α̂Y and α̂X have a unique
solution. And if δXY/τXY = σ2

X/τ
2
X, then we know that (α̂Y , α̂X) = (0, τ2

X/(nτ
2
X + σ2

X)) is a
solution of Equation (2.44) because

α̂X =
τXY

nτXY + δXY
=

1

n + δXY
τXY

=
1

n +
σ2

X
τ2

X

=
τ2

X

nτ2
X + σ2

X

.

Hence, we know that the solution (α̂Y , α̂X) = (0, τ2
X/(nτ

2
X + σ2

X)) is the unique solution of
Equation (2.44). And notice that this solution of two-dimensional semi-linear credibility model
is also the solution of non-split credibility model, so the two-dimensional semi-linear credibil-
ity model becomes non-split credibility model whatever the split point is in this situation.
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Under Theorem 2.2.3, the split way is invalid and we do not need to split the losses if the
conditions of Theorem 2.2.3 are met.

Now we give our method to get the optimal split point. Firstly, we sort the losses, X, from
small to large. And then, we take some percentiles as our split point according to the accuracy
we need. The more precise, the more points. From our practical experience, the K value
generally is chosen a relatively large value, so we can take more points at larger percentiles to
determine the best K value.

For example, we could choose the 0th, 25th, 50th, 75th, 80th, 85th, 90th, 95th and 100th
percentiles as our split points. Then, we use our formulas to calculate the parameters and the
optimal α’s. Next, we calculate the values of MMSE given by different split points. We choose
the minimum one and choose the corresponding K value, which is the percentile and would
be different in number’s value according to different data, as the future optimal percentile in
future data from the same source(or the same group).

In this method, we can not guarantee that the K value we choose is the exact optimal K
value for each group of data, but the worst result is only the minimum of MMSE of non-split
credibility and MMSE of semi-linear credibility.

2.2.3 Nonparametric estimation
In this section, we consider unbiased estimation of our parameters, µX, τ2

X, σ2
X, τXY and δXY .

Let us use the simple Bühlmann model as an example.
Suppose that n j = n > 1 for all j and we have policyholders with number of m > 1. That

is, for policyholder i, we have the loss vector

Xi = (Xi1, Xi2, · · · , Xin)T , i = 1, 2, · · · ,m.

Furthermore, conditional on Θi = θi, Xi j has mean

µX(θi) = E(Xi j|Θi = θi),

and variane

VX(θi) = Var(Xi j|Θi = θi),

as well as Xis and Xit are independent if s , t conditional on Θi = θi. In the meantime, Xi j and
Xst are also independent if i , s because of the independence of different policyholders. So we
have

X̄i =
1
n

n∑
j=1

Xi j,

X̄ =
1

nm

m∑
i=1

n∑
j=1

Xi j.

An unbiased estimator of µX is

µ̂X = X̄,
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because

E(µ̂X) = E(X̄) =
1

nm

m∑
i=1

n∑
j=1

E(Xi j)

=
1

nm

m∑
i=1

n∑
j=1

E(µX(Θi))

=
1

nm

m∑
i=1

n∑
j=1

µX

= µX.

At the same time, an unbiased estimator of the conditional variance of Xi j is

̂VX(Θi) =
1

n − 1

n∑
j=1

(Xi j − X̄i)2.

Hence, an unbiased estimator of σ2
X is

σ̂2
X = E( ̂VX(Θi)) =

1
m

m∑
i=1

̂VX(Θi)

=
1

m(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)2.

For details, readers are referred to Klugman et al. [8].
We now turn to determine unbiased estimator of τ2

X. Since

Var(X̄i) = Var
[
E(X̄i|Θi)

]
+ E

[
Var(X̄i|Θi)

]
= Var

[
µX(Θi)

]
+ E

VX(Θi)
n


= τ2

X +
σ2

X

n
,

an unbiased estimator of τ2
X is

τ̂2
X = ̂Var(X̄i) −

σ̂2
X

n

=
1

m − 1

m∑
i=1

(X̄i − X̄)2 −
σ̂2

X

n

=
1

m − 1

m∑
i=1

(X̄i − X̄)2 −
1

mn(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)2,
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where σ̂2
X is given and

̂Var(X̄i) =
1

m − 1

m∑
i=1

(X̄i − X̄)2.

For µY , τ2
Y and σ2

Y , we firstly get the data Y from the losses X. In our case, Y = min(X,K)
given a split point K. Then, their unbiased estimators are

µ̂Y = Ȳ =
1

nm

m∑
i=1

n∑
j=1

Yi j,

σ̂2
Y = E( ̂VY(Θi)) =

1
m(n − 1)

m∑
i=1

n∑
j=1

(Yi j − Ȳi)2,

τ̂2
Y = ̂Var(Ȳi) −

σ̂2
Y

n

=
1

m − 1

m∑
i=1

(Ȳi − Ȳ)2 −
1

mn(n − 1)

m∑
i=1

n∑
j=1

(Yi j − Ȳi)2.

For estimation of τXY and δXY , we firstly consider an unbiased estimator of the covariance.
Suppose that S 1, S 2, · · · , S r are independent random variables with same mean µS = E(S j)
and T1,T2, · · · ,Tr are independent random variables with same mean µT = E(T j). And we are
only talking about paired data where S i and T j are only correlated when i = j.

Let

S̄ =
1
r

r∑
j=1

S j,

T̄ =
1
r

r∑
j=1

T j.

Then, consider the statistic
∑r

j=1(S j − S̄ )(T j − T̄ ). It can be rewritten as

r∑
j=1

(S j − S̄ )(T j − T̄ ) =

r∑
j=1

(S jT j − S jT̄ − T jS̄ + S̄ T̄ )

=

r∑
j=1

S jT j − rS̄ T̄ − rS̄ T̄ + rS̄ T̄ )

=

r∑
j=1

S jT j − rS̄ T̄ .
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Taking expectation of both sides yields

E

 r∑
j=1

(S j − S̄ )(T j − T̄ )

 = E

 r∑
j=1

S jT j

 − rE(S̄ T̄ )

= E

 r∑
j=1

S jT j

 − r
[
Cov(S̄ , T̄ ) + µSµT

]
= E

 r∑
j=1

S jT j

 − r

Cov(
1
r

r∑
j=1

S j,
1
r

r∑
j=1

T j) + µSµT


= E

 r∑
j=1

S jT j

 − r

 1
r2Cov(

r∑
j=1

S j,

r∑
j=1

T j) + µSµT


= E

 r∑
j=1

S jT j

 − 1
r

r∑
j=1

Cov(S j,T j) − rµSµT

= E

 r∑
j=1

S jT j

 −Cov(S ,T ) − rµSµT

= rE(S T ) −Cov(S ,T ) − rµSµT

= r
[
E(S T ) − µSµT

]
−Cov(S ,T )

= (r − 1)Cov(S ,T ).

Therefore, an unbiased estimator of the covariance is 1
r−1

∑r
j=1(S j − S̄ )(T j − T̄ ).

To estimate δXY , notice that we have an unbiased estimator of δXY(Θi) as follows,

̂δXY(Θi) =
1

n − 1

n∑
j=1

(Xi j − X̄i)(Yi j − Ȳi).

Hence, an unbiased estimator of δXY is

ˆδXY = E( ̂δXY(Θi)) =
1
m

m∑
i=1

̂δXY(Θi)

=
1

m(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)(Yi j − Ȳi).

Now we consider the value of Cov(X̄i, Ȳi). Recall that Xi1, Xi2, · · · , Xin are independent
conditional on Θi = θi and so are Ys. So we also know that Xis and Yit are independent if s , t
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conditional on Θi = θi. Then

Cov(X̄i, Ȳi) = E
[
Cov(X̄i|Θi, Ȳi|Θi)

]
+ Cov

[
E(X̄i|Θi), E(Ȳi|Θi)

]
= E

Cov(
1
n

n∑
j=1

Xi j|Θi,
1
n

n∑
j=1

Yi j|Θi)

 + Cov(µX(Θ), µY(Θ))

= E

 1
n2Cov(

n∑
j=1

Xi j|Θi,

n∑
j=1

Yi j|Θi)

 + τXY

= E

 1
n2

n∑
j=1

Cov(Xi j|Θi,Yi j|Θi)

 + τXY

= E

1
n
Cov(X|Θ,Y |Θ)

 + τXY

=
δXY

n
+ τXY .

We also have an unbiased estimator of Cov(X̄i, Ȳi) as follows,

̂Cov(X̄i, Ȳi) =
1

m − 1

m∑
i=1

(X̄i − X̄)(Ȳi − Ȳ).

Thus, we get an unbiased estimator of τXY . That is,

ˆτXY = ̂Cov(X̄i, Ȳi) −
ˆδXY

n

=
1

m − 1

m∑
i=1

(X̄i − X̄)(Ȳi − Ȳ) −
1

mn(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)(Yi j − Ȳi).

Now, we give all unbiased estimation of our needed parameters and you can review the
whole results of this section in Appendix B.

2.2.4 The estimators of µp(θ) and µe(θ)

Besides the estimator of µX(θ), we also concern about the estimators of primary part(µp(θ)) and
excess part(µe(θ)). In reality, the large claims generally are large relative to all of data and we
do not want that they occupy so large proportion that it will influence our future income as well
as increase risk and instability. In the other words, we hope that the mean of the excess part is
very small to reduce the overall impact of that part. Therefore, we could control the influence
and risk if we could estimate µp(θ) and µe(θ).

We discuss µe(θ) only and the other is similar. Let Y be Xp = min(X,K) and L be Xe =

X − Xp. Then µp(Θ) = µY(Θ) and µe(Θ) = µL(Θ). And we let the estimator of µp(θ) be µ̂p(θ)
and the estimator of µe(θ) be µ̂e(θ). We change α̂0 to be β̂0, α̂Y to be β̂Y and change α̂X to be β̂X.



2.2. Split results 29

We still use Ys and Xs as data to estimate µe(θ). Because the independence of L is the same as
X, the processes are the same as the processes of the estimator of µX(θ). Therefore, we have

µ̂e(θ) = µ̂L(θ) = β̂0 + β̂Y

n∑
j=1

Y j + β̂X

n∑
j=1

X j

= µL − nβ̂YµY − nβ̂XµX + nβ̂Y Ȳ + nβ̂X X̄
= µL + nβ̂Y(Ȳ − µY) + nβ̂X(X̄ − µX),

compared with (2.32) as well as where β̂X and β̂Y meet(
nτ2

Y + σ2
Y nτXY + δXY

nτXY + δXY nτ2
X + σ2

X

) (
β̂Y

β̂X

)
=

(
τYL

τXL

)
, (2.55)

compared with (2.44). Because we only want to use the parameters we have used and calcu-
lated, we rewrite τYL and τXL as

τYL = Cov(µY(Θ), µL(Θ))
= Cov(µY(Θ), µX(Θ) − µY(Θ))
= Cov(µY(Θ), µX(Θ)) −Cov(µY(Θ), µY(Θ))
= τXY − Var[µY(Θ)]
= τXY − τ

2
Y ,

τXL = Cov(µX(Θ), µL(Θ))
= Cov(µX(Θ), µX(Θ) − µY(Θ))
= Cov(µX(Θ), µX(Θ)) −Cov(µX(Θ), µY(Θ))
= Var[µX(Θ)] − τXY

= τ2
X − τXY ,

because

µX(Θ) = E[X|Θ] = E[Xp + Xe|Θ] = E[Y + L|Θ] = E[Y |Θ] + E[LΘ]
= µY(Θ) + µL(Θ) = µp(Θ) + µe(Θ),

µX = µY + µL = µp + µe.

For µp(θ), we change α̂0 to be γ̂0, α̂Y to be γ̂Y and change α̂X to be γ̂X. The estimator is

µ̂p(θ) = µ̂Y(θ) = γ̂0 + γ̂Y

n∑
j=1

Y j + γ̂X

n∑
j=1

X j

= µY − nγ̂YµY − nγ̂XµX + nγ̂Y Ȳ + nγ̂X X̄
= µY + nγ̂Y(Ȳ − µY) + nγ̂X(X̄ − µX),

where (
nτ2

Y + σ2
Y nτXY + δXY

nτXY + δXY nτ2
X + σ2

X

) (
γ̂Y

γ̂X

)
=

(
τ2

Y
τXY

)
. (2.56)
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Notice that the right-hand side of Equation (2.44) is the sum of the right-hand side of
Equation (2.55) and the right-hand side of Equation (2.56). That is,

µ̂X(θ) = µ̂p(θ) + µ̂e(θ),

which meets our expectation. Now, we can estimate µp(θ) and µe(θ). More elegantly, using
matrix notation we can write

µ̂X(θ)
µ̂p(θ)
µ̂e(θ)

 =

 µX

µY

µL

 +

 nα̂Y nα̂X

nγ̂Y nγ̂X

nβ̂Y nβ̂X


(

Ȳ − µY

X̄ − µX

)
, (2.57)

where µY = µp and µL = µe.



Chapter 3

Examples

In this chapter, we discuss three examples. The first one is that the losses follow an Exponential
distribution conditional on risk parameters. The second one is that the losses follow a Poisson
distribution conditional on risk parameters. The final one is that the losses follow a mixture of
two Exponential distributions where one distribution is conditional on risk parameters. All of
risk parameters, Θ, follow a Gamma distribution.

3.1 Exponential distribution conditional on Θ

We consider an example much like the collective risk model (CRM) in Robbin [11]. Suppose
that the losses Xi1, Xi2, Xi3, . . . , Xin conditional on Θi = θi follow an Exponential distribution
with the same mean and same variance as well as Θ follows a Gamma distribution with shape
parameter, α, and rate parameter, β. Let fX|Θ(x) be the probability density function(pdf) of the
losses conditional on Θ and fΘ(θ) be the pdf of the Θ. Let FX|Θ(x) be the cumulative distribution
function(cdf) of the losses conditional on Θ. Then, we have

fX|Θ=θ(x) = θe−θx, (3.1)
FX|Θ=θ(x) = 1 − e−θx, (3.2)

fΘ(θ) =
βα

Γ(α)
θα−1e−βθ. (3.3)

Hence, the mean and variance of losses conditional on Θ as well as the mean and variance
of Θ are

E(X|Θ = θ) =
1
θ
, (3.4)

Var(X|Θ = θ) =
1
θ2, (3.5)

E(Θ) =
α

β
, (3.6)

Var(Θ) =
α

β2. (3.7)

31
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Assume that there are m = 6 policyholders. Each policyholder’s risk parameter is repre-
sented by a random variable Θ = (Θ1 = θ1,Θ2 = θ2, . . . ,Θ6 = θ6), which follows a Gamma
distribution with shape parameter, α = 6, and rate parameter, β = 50. For each policyholder,
conditional on Θi = θi, n = 45 past losses are observed. Then, we use R code to randomly
generate risk parameters and losses. For details of data, readers are referred to Table 3.1 and
for details of R code, readers are referred to Appendix C.

3.1.1 Parametric estimation
By (3.4), µX(θ) = E(X|Θ = θ) = 1/θ. Thus, the unconditional mean of X is

µX = E[µX(Θ)] = E

 1
Θ

 =

∫ 1
θ

fΘ(θ) dθ,

=

∫ 1
θ

βα

Γ(α)
θα−1e−βθ dθ,

=

∫
βα

Γ(α)
θα−2e−βθ dθ,

=

∫
β

α − 1
βα−1

Γ(α − 1)
θα−2e−βθ dθ,

=
β

α − 1

∫
βα−1

Γ(α − 1)
θα−2e−βθ dθ,

=
β

α − 1
. (3.8)

The unconditional variance of X is

σ2
X = E[Var(X|Θ)] = E

 1
Θ2

 =

∫ 1
θ2

βα

Γ(α)
θα−1e−βθ dθ,

=

∫
βα

Γ(α)
θα−3e−βθ dθ,

=
β2

(α − 1)(α − 2)

∫
βα−2

Γ(α − 2)
θα−3e−βθ dθ,

=
β2

(α − 1)(α − 2)
, (3.9)

where Γ(α) = (α − 1)Γ(α − 1).
Hence, we can calculate τ2

X as follows,

τ2
X = Var[µX(Θ)] = Var

 1
Θ

 = E

 1
Θ2

 − E

 1
Θ

2

,

=
β2

(α − 1)(α − 2)
−

β2

(α − 1)2,

=
β2

(α − 1)2(α − 2)
. (3.10)
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Then, we calculate the parameters of Y = min(X,K) given by split point, K. The mean of
Y conditional on θ is

µY(θ) =

∫ K

0
x fX|Θ(x) dx + K(1 − FX|Θ(K)),

=

∫ K

0
xθe−θx dx + Ke−θK ,

=

∫ K

0
−x d

(
e−θx

)
+ Ke−θK ,

=
(
−xe−θx

)∣∣∣∣K
0
−

∫ K

0
−e−θx dx + Ke−θK ,

= −Ke−θK + Ke−θK −

1
θ
e−θx


∣∣∣∣∣∣∣
K

0

,

=
1
θ
−

1
θ
e−θK . (3.11)

Now, the unconditional mean of Y is

µY = E[µY(Θ)] = E

 1
Θ
−

1
Θ

e−ΘK

 = E

 1
Θ

 − E

 1
Θ

e−ΘK

 ,
=

β

α − 1
−

∫ 1
θ
e−θK fΘ(θ) dθ,

=
β

α − 1
−

∫ 1
θ
e−θK

βα

Γ(α)
θα−1e−βθ dθ,

=
β

α − 1
−

∫
βα

Γ(α)
θα−2e−(β+K)θ dθ,

=
β

α − 1
−

βα

(β + K)α−1(α − 1)

∫ (β + K)α−1

Γ(α − 1)
θα−2e−(β+K)θ dθ,

=
β

α − 1
−

βα

(β + K)α−1(α − 1)
,

=
β

α − 1

1 −
 β

β + K

α−1 . (3.12)

According to the calculation of (3.8), (3.9) and (3.12), we can easily calculate the following
equations.

E

 1
Θ

e−2ΘK

 =
β

α − 1

 β

β + 2K

α−1

, (3.13)

E

 1
Θ2e−ΘK

 =
β2

(α − 1)(α − 2)

 β

β + K

α−2

, (3.14)

E

 1
Θ2e−2ΘK

 =
β2

(α − 1)(α − 2)

 β

β + 2K

α−2

. (3.15)
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Then, the value of τ2
Y is

τ2
Y = Var[µY(Θ)],

= E[µY(Θ)2] − E[µY(Θ)]2,

= E


 1
Θ
−

1
Θ

e−ΘK

2 −
 β

α − 1

1 −
 β

β + K

α−1


2

,

= E

 1
Θ2 +

1
Θ2e−2ΘK − 2

1
Θ2e−ΘK

 − β2

(α − 1)2

1 −
 β

β + K

α−1
2

,

= E

 1
Θ2 +

1
Θ2e−2ΘK − 2

1
Θ2e−ΘK

 − β2

(α − 1)2

1 −
 β

β + K

α−1
2

,

=
β2

(α − 1)(α − 2)
+

β2

(α − 1)(α − 2)

 β

β + 2K

α−2

−

2β2

(α − 1)(α − 2)

 β

β + K

α−2

−
β2

(α − 1)2

1 −
 β

β + K

α−1
2

,

=
β2

(α − 1)(α − 2)

1 +

 β

β + 2K

α−2

− 2

 β

β + K

α−2 −
β2

(α − 1)2

1 −
 β

β + K

α−1
2

. (3.16)

In addition, τXY is

τXY = Cov(µX(Θ), µY(Θ)),
= E[µX(Θ)µY(Θ)] − µXµY ,

= E

 1
Θ2 −

1
Θ2e−ΘK

 − β2

(α − 1)2

1 −
 β

β + K

α−1 ,
=

β2

(α − 1)(α − 2)
−

β2

(α − 1)(α − 2)

 β

β + K

α−2

−

β2

(α − 1)2

1 −
 β

β + K

α−1 ,
=

β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 −
β2

(α − 1)2

1 −
 β

β + K

α−1 . (3.17)
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To calculate σ2
Y and δXY , we need to calculate the following equations.

E[Y2|Θ = θ] =

∫ K

0
x2θe−θx dx + K2e−θK ,

=
(
−x2e−θx

)∣∣∣∣K
0
−

∫ K

0
−2xe−θx dx + K2e−θK ,

= −K2e−θK + 2
∫ K

0
xe−θx dx + K2e−θK ,

= 2
∫ K

0
xe−θx dx,

= 2
∫ K

0
−

x

θ
d
(
e−θx

)
,

=

−2x

θ
e−θx


∣∣∣∣∣∣∣
K

0

−
2
θ

∫ K

0
−e−θx dx,

= −
2K

θ
e−θK −

2
θ

1
θ
e−θx


∣∣∣∣∣∣∣
K

0

,

= −
2K

θ
e−θK +

2
θ2 −

2
θ2e−θK . (3.18)

In addition,

E[XY |Θ = θ] =

∫ K

0
x2θe−θx dx +

∫ +∞

K
Kxθe−θx dx,

= −
2K

θ
e−θK +

2
θ2 −

2
θ2e−θK − K2e−θK +

K
(∫ +∞

0
xθe−θx dx −

∫ K

0
xθe−θx dx

)
,

= −
2K

θ
e−θK +

2
θ2 −

2
θ2e−θK − K2e−θK +

K

1
θ
−

1
θ

+
1
θ
e−θK + Ke−θK

 ,
= −

K

θ
e−θK +

2
θ2 −

2
θ2e−θK . (3.19)
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Therefore, the value of σ2
Y is

σ2
Y = E[Var(Y |Θ)] = E

[
E(Y2|Θ) − E(Y |Θ)2

]
,

= E

−2K

Θ
e−ΘK +

2
Θ2 −

2
Θ2e−ΘK −

 1
Θ
−

1
Θ

e−ΘK

2 ,
= E

−2K

Θ
e−ΘK +

2
Θ2 −

2
Θ2e−ΘK −

1
Θ2 −

1
Θ2e−2ΘK +

2
Θ2e−ΘK

 ,
= E

−2K

Θ
e−ΘK +

1
Θ2 −

1
Θ2e−2ΘK

 ,
=

β2

(α − 1)(α − 2)
− 2K

β

α − 1

 β

β + K

α−1

−

β2

(α − 1)(α − 2)

 β

β + 2K

α−2

,

=
β2

(α − 1)(α − 2)

1 −
 β

β + 2K

α−2 − 2Kβ

α − 1

 β

β + K

α−1

. (3.20)

In addition, δXY is

δXY = E[Cov(X|Θ,Y |Θ)] = E
[
E(XY |Θ) − µX(Θ)µY(Θ)

]
,

= E

−K

Θ
e−ΘK +

2
Θ2 −

2
Θ2e−ΘK −

1
Θ2 +

1
Θ2e−ΘK

 ,
= E

−K

Θ
e−ΘK +

1
Θ2 −

1
Θ2e−ΘK

 ,
=

β2

(α − 1)(α − 2)
− K

β

α − 1

 β

β + K

α−1

−

β2

(α − 1)(α − 2)

 β

β + K

α−2

,

=
β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 −
Kβ

α − 1

 β

β + K

α−1

. (3.21)

Remarks According to the formulas above, the shape parameter, α, of Gamma distribution
must be bigger than 2. That is, α > 2.

If α → +∞ and β = M is a constant, then all of the parameters mentioned above go to
zero whatever the split point K is. In this situation, the MMSE of two-dimensional semi-linear
credibility model goes to zero, which is the same as the MMSE of non-split credibility model.
Furthermore, the credibility premium goes to zero too in this situation.
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However, it is worth noting that when the determinant of matrix (2.47) is not equal to
zero, this example is a very special case because regardless of the split point, the MMSE of
our credibility model is always the same as the MMSE of non-split credibility model, which
means that we don’t need to split the losses. Because this example under the situation meets
the conditions of Theorem 2.2.3. That is,

σ2
X

τ2
X

=

β2

(α − 1)(α − 2)
β2

(α − 1)2(α − 2)

= α − 1.

Now we turn to calculate δXY/τXY and we have

δXY

τXY
=

β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 − Kβ

α − 1

 β

β + K

α−1

β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 − β2

(α − 1)2

1 −
 β

β + K

α−1
,

=

β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 − Kβ2

(α − 1)(β + K)

 β

β + K

α−2

β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 − β2

(α − 1)2

1 −
 β

β + K

  β

β + K

α−2
,

which can be simplified to

δXY

τXY
=

1
α − 2

1 −
 β

β + K

α−2 − K

β + K

 β

β + K

α−2

1
α − 2

1 −
 β

β + K

α−2 − 1
α − 1

1 −
 β

β + K

  β

β + K

α−2
.

Let D be the denominator of the fraction above. We have

D =
1

α − 2

1 −
 β

β + K

α−2 − 1
α − 1

1 −
 β

β + K

  β

β + K

α−2 +

1
α − 1

 β

β + K

α−2

−
1

α − 1

 β

β + K

α−2

,

=
1

(α − 1)(α − 2)

1 −
 β

β + K

α−2 +
1

α − 1

 β

β + K

  β

β + K

α−2

−
1

α − 1

 β

β + K

α−2

,

=
1

(α − 1)(α − 2)

1 −
 β

β + K

α−2 − 1
α − 1

 K

β + K

  β

β + K

α−2

.
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Now, we easily get that

δXY

τXY
= α − 1.

Therefore, the conditions of Theorem 2.2.3 are met and we do not need to split the losses
in this example under the situation.

Under the assumptions and data of Table 3.1, we can use R code to calculate the parameters
we need by parametric estimation. For details of R code, readers are referred to Appendix C.
Suppose that K = 5 and let Ẑ be the optimal credibility of non-split credibility model. Let
the MMSE of non-split credibility be Q̂nsp, the MMSE of semi-linear credibility be Q̂tsl and
the MMSE of two-dimensional semi-linear credibility be Q̂tdsl. For details of their formulas,
readers are referred to Equations (2.52), (2.53) and (2.54). Then we have Table 3.2.

Parameter Value Parameter Value Parameter Value
µX 10 σ2

X 125 τ2
X 25

µY 3.790787 σ2
Y 2.626232 τ2

Y 0.1582076
δXY 8.577252 τXY 1.71545 Ẑ 0.9
α̂Y -2.49E-16 α̂X 0.02 α̂0 1

Q̂nsp 2.5 Q̂tsl 11.41182 Q̂tdsl 2.5

Table 3.2: The value of parameters by parametric estimation calculated using R in example1
(when K = 5)

From Table 3.2, we know that Q̂nsp = Q̂tdsl, Ẑ = nα̂X and α̂0 = (1 − Ẑ)µX. These above
mean that the two-dimensional semi-linear credibility model is the same as non-split credibility
model in this time. You will see all of the MMSEs of each model for all of the split points, K,
which are from 0 to the maximum value of the losses, X, in Figure 3.1. Notice that the line of
MMSE of the two-dimensional semi-linear credibility model coincides with the line of MMSE
of non-split credibility model in Figure 3.1.

3.1.2 Nonparametric estimation

The results of nonparametric estimation are different from the results of parametric estimation
because our parameters are estimated from data and our method is sensitive to estimation error.
In addition, because this example does not have a fixed optimal split point, the optimal split
point given by nonparametric estimation has a large variance. For details of the formulas of
nonparametric estimation, readers are referred to Appendix B.

Again, under the assumptions and data of Table 3.1, we use R code to calculate the pa-
rameters we need by nonparametric estimation. For details of R code, readers are referred to
Appendix C. Suppose that K = 5 and let Ẑ be the optimal credibility of non-split credibility
model. Let the MMSE of non-split credibility be Q̂nsp, the MMSE of semi-linear credibility
be Q̂tsl and the MMSE of two-dimensional semi-linear credibility be Q̂tdsl. For details of their
formulas, readers are referred to Equations (2.52), (2.53) and (2.54). Then we have Table 3.3.
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Figure 3.1: MMSEs by parametric estimation given K in example1

We can see the estimation error in Table 3.3 and they are large in the variance and covari-
ance. You will see all of the MMSEs of each model by nonparametric estimation for all of the
split points, K, which are from 0 to the maximum value of the losses, X, in Figure 3.2.

Thus, we get that the optimal split point is the 97th percentile (38.2). For details, readers
are referred to Appendix C.

Accoring to the method in Section 2.2.2, we choose the 0th, 25th, 50th, 75th, 80th, 85th,
90th, 95th and 100th percentiles as our split points. Then, we use R code to calculate the
parameters and the optimal α’s. We calculate the values of MMSE given by different Ks. You
will see all of the MMSEs of each model by nonparametric estimation for specific split points
in Figure 3.3.

We choose the minimum one and choose the corresponding K value as the future optimal
percentile in future data from the same source(or the same group). In this case, the optimal
split point is the 95th percentile.

3.2 Poisson distribution conditional on Θ

Suppose that the losses Xi1, Xi2, Xi3, . . . , Xin conditional on Θi = θi follow a Poisson distribution.
Θ follows a Gamma distribution with shape parameter, α, and rate parameter, β. Let fX|Θ(k) be
the probability mass function(pmf) of the losses conditional on Θ and fΘ(θ) be the pdf of the
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Parameter Value Parameter Value Parameter Value
µX 9.622611 σ2

X 115.353 τ2
X 8.223654

µY 3.759468 σ2
Y 2.673828 τ2

Y 0.08377466
δXY 9.389524 τXY 0.7828881 Ẑ 0.7623633
α̂Y 0.01151496 α̂X 0.01588295 α̂0 0.7969588

Q̂nsp 1.954242 Q̂tsl 3.943323 Q̂tdsl 1.940266

Table 3.3: The value of parameters by nonparametric estimation calculated using R in exam-
ple1 (when K = 5)

Θ. Then, we have

fX|Θ=θ(k) =
θke−θ

k!
, (3.22)

fΘ(θ) =
βα

Γ(α)
θα−1e−βθ. (3.23)

The mean and variance of X conditional on Θ are

E(X|Θ = θ) = θ, (3.24)
Var(X|Θ = θ) = θ. (3.25)

Hence, we easily get that

µX = E(Θ) =
α

β
, (3.26)

σ2
X = E(Θ) =

α

β
, (3.27)

τ2
X = Var(Θ) =

α

β2. (3.28)

Let Y = min(X,K), then the mean of Y conditional on Θ is

µY(Θ = θ) =

K−1∑
k=0

k
θke−θ

k!
+

+∞∑
k=K

K
θke−θ

k!
,

=

K−1∑
k=0

(k − K)
θke−θ

k!
+ K. (3.29)
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Figure 3.2: MMSEs by nonparametric estimation given K in example1

We calculate E(Θke−Θ) as follows,

E(Θke−Θ) =

∫
θke−θ

βα

Γ(α)
θα−1e−βθ dθ,

=

∫
βα

Γ(α)
θα+k−1e−(β+1)θ dθ,

=

∫
Γ(α + k)

Γ(α)
βα

(β + 1)α+k

(β + 1)α+k

Γ(α + k)
θα+k−1e−(β+1)θ dθ,

=
(α + k − 1)!

(α − 1)!
βα

(β + 1)α+k. (3.30)

Hence, the unconditional mean of Y is

µY =

K−1∑
k=0

(k − K)
E

(
Θke−Θ

)
k!

+ K,

=

K−1∑
k=0

k − K

k!
(α + k − 1)!

(α − 1)!
βα

(β + 1)α+k + K. (3.31)
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Figure 3.3: MMSEs by nonparametric estimation given specific K in example1

To calculate τXY and δXY , we need to calculate the following equations.

E(XY |Θ = θ) =

K−1∑
k=0

k2
θke−θ

k!
+

+∞∑
k=K

Kk
θke−θ

k!
,

=

K−1∑
k=0

k2
θke−θ

k!
+ K

θ − K−1∑
k=0

k
θke−θ

k!

 ,
=

K−1∑
k=0

k(k − K)
θke−θ

k!
+ Kθ, (3.32)

E(µX(Θ)µY(Θ)) =

K−1∑
k=0

(k − K)
E

(
Θk+1e−Θ

)
k!

+ KE(Θ),

=

K−1∑
k=0

k − K

k!
(α + k)!
(α − 1)!

βα

(β + 1)α+k+1 + K
α

β
. (3.33)
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Hence, we have

τXY = E(µX(Θ)µY(Θ)) − µXµY ,

=

K−1∑
k=0

k − K

k!
(α + k)!
(α − 1)!

βα

(β + 1)α+k+1 + K
α

β
−

K−1∑
k=0

k − K

k!
α

β

(α + k − 1)!
(α − 1)!

βα

(β + 1)α+k − K
α

β
,

=

K−1∑
k=0

k − K

k!
(α + k − 1)!

(α − 1)!
βα

(β + 1)α+k

α + k

β + 1
−
α

β

 , (3.34)

δXY = E[E(XY |Θ)] − E(µX(Θ)µY(Θ)),

=

K−1∑
k=0

k(k − K)
E

(
Θke−Θ

)
k!

+ KE(Θ) −

K−1∑
k=0

k − K

k!
(α + k)!
(α − 1)!

βα

(β + 1)α+k+1 − K
α

β
,

=

K−1∑
k=0

k − K

k!
(α + k − 1)!

(α − 1)!
βα

(β + 1)α+k

k − α + k

β + 1

 . (3.35)

Notice that

β

α + k

β + 1
−
α

β

 =
kβ − α

β + 1
,k − α + k

β + 1

 =
kβ − α

β + 1
.

Hence, we easily get that

δXY

τXY
= β =

σ2
X

τ2
X

.

From now on, when the determinant of matrix (2.47) is not equal to zero, the conditions
of Theorem 2.2.3 are met and we do not need to split the losses in this example under the
situation. This results are the same as the first example’s.

Assume that there are m = 6 policyholders. Each policyholder’s risk parameter is repre-
sented by a random variable Θ, which follows a Gamma distribution with shape parameter,
α = 50, and rate parameter, β = 5. For each policyholder, conditional on Θi = θi, n = 45 past
losses are observed. Then, we use R code to randomly generate risk parameters and losses. For
details of data, readers are referred to Table 3.4 and for details of R code, readers are referred
to Appendix C.

You will see all of the MMSEs of each model by nonparametric estimation for all of the
split points, K, which are from 0 to the maximum value of the losses, X, in Figure 3.4.
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Figure 3.4: MMSEs by nonparametric estimation given K in example2
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Thus, we get that the optimal split point is the 78th percentile. For details, readers are
referred to Appendix C.

Accoring to the method in Section 2.2.2, we choose the 0th, 25th, 50th, 75th, 80th, 85th,
90th, 95th and 100th percentiles as our split points. Then, we use R code to calculate the
parameters and the optimal α’s. We calculate the values of MMSE given by different Ks. You
will see all of the MMSEs of each model by nonparametric estimation for specific split points
in Figure 3.5.

Figure 3.5: MMSEs by nonparametric estimation given specific K in example2

We choose the minimum one and choose the corresponding K value as the future optimal
percentile in future data from the same source(or the same group). In this case, the optimal
split point is the 80th percentile.

3.3 Mixture of two Exponential distributions conditional on
Θ

Suppose that the losses Xi1, Xi2, Xi3, . . . , Xin follow a mixture of two Exponential distribution
where one distribution has mean 1/Θi = 1/θi with weight ω and the other has mean 1/λ with
weight 1 − ω. Θ is a Gamma distribution with shape parameter, α, and rate parameter, β.

Let fX|Θ(x) be the probability density function(pdf) of the losses conditional on Θ and fΘ(θ)
be the pdf of the Θ. Let FX|Θ(x) be the cumulative distribution function(cdf) of the losses
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conditional on Θ. Then, we have

fX|Θ=θ(x) = ωθe−θx + (1 − ω)λe−λx, (3.36)
FX|Θ=θ(x) = ω(1 − e−θx) + (1 − ω)(1 − e−λx) = 1 − ωe−θx − (1 − ω)e−λx, (3.37)

fΘ(θ) =
βα

Γ(α)
θα−1e−βθ. (3.38)

Hence, the mean and variance of losses conditional on Θ are

E(X|Θ) = ω
1
Θ

+ (1 − ω)
1
λ
, (3.39)

Var(X|Θ) = E(X2|Θ) − E(X|Θ)2,

= ω
2

Θ2 + (1 − ω)
2
λ2 −

ω 1
Θ

+ (1 − ω)
1
λ

2

,

= (2ω − ω2)
1

Θ2 −
2ω(1 − ω)

λ

1
Θ

+
1 − ω2

λ2 . (3.40)

Assume that there are m = 6 and λ = 0.1 and ω = 0.75. Each policyholder’s risk parameter
is represented by a random variable Θ = (Θ1 = θ1,Θ2 = θ2, . . . ,Θ6 = θ6), which follows
a Gamma distribution with shape parameter, α = 6, and rate parameter, β = 25. For each
policyholder, conditional on Θi = θi, n = 45 past losses are observed.

Then, we use R code to randomly generate risk parameters and losses. For details of data,
readers are referred to Table 3.5 and for details of R code, readers are referred to Appendix C.

3.3.1 Parametric estimation
Because this example is an extension of Example1, the derivation of the following formulas
can be referred to Example1’s. The unconditional mean of X is

µX = E[µX(Θ)] = E

ω 1
Θ

+ (1 − ω)
1
λ

 ,
= ω

β

α − 1
+ (1 − ω)

1
λ
. (3.41)

The unconditional variance of X is

σ2
X = E[Var(X|Θ)] = E

(2ω − ω2)
1

Θ2 −
2ω(1 − ω)

λ

1
Θ

+
1 − ω2

λ2

 ,
= (2ω − ω2)

β2

(α − 1)(α − 2)
−

2ω(1 − ω)
λ

β

α − 1
+

1 − ω2

λ2 . (3.42)
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Hence, we can calculate τ2
X as follows,

τ2
X = Var[µX(Θ)] = Var

ω 1
Θ

+ (1 − ω)
1
λ

 ,
= Var

ω 1
Θ

 ,
= ω2

β2

(α − 1)2(α − 2)
. (3.43)

Then, we calculate the parameters of Y = min(X,K) given by split point, K. The mean of
Y conditional on θ is

µY(θ) = ω

1
θ
−

1
θ
e−θK

 + (1 − ω)

1
λ
−

1
λ

e−λK

 . (3.44)

Now, the unconditional mean of Y is

µY = E[µY(Θ)] = ω

 β

α − 1

1 −
 β

β + K

α−1
 + (1 − ω)

1
λ
−

1
λ

e−λK

 . (3.45)

Then, the value of τ2
Y is

τ2
Y = Var[µY(Θ)],

= Var

ω  1
Θ
−

1
Θ

e−ΘK

 + (1 − ω)

1
λ
−

1
λ

e−λK

 ,
= Var

ω  1
Θ
−

1
Θ

e−ΘK

 ,
= ω2

 β2

(α − 1)(α − 2)

1 +

 β

β + 2K

α−2

− 2

 β

β + K

α−2−
β2

(α − 1)2

1 −
 β

β + K

α−1
2 . (3.46)

In addition, τXY is

τXY = Cov(µX(Θ), µY(Θ)),
= E[µX(Θ)µY(Θ)] − µXµY ,

= E

ω2

 1
Θ2 −

1
Θ2e−ΘK

 − ω2
β2

(α − 1)2

1 −
 β

β + K

α−1 ,
= ω2

 β2

(α − 1)(α − 2)

1 −
 β

β + K

α−2 − β2

(α − 1)2

1 −
 β

β + K

α−1
 . (3.47)



3.3. Mixture of two Exponential distributions conditional on Θ 51

To calculate σ2
Y and δXY , we firstly calculate the following equations.

E[Y2|Θ = θ] = ω

−2K

θ
e−θK +

2
θ2 −

2
θ2e−θK

 + (1 − ω)

−2K

λ
e−λK +

2
λ2 −

2
λ2e−λK

 . (3.48)

In addition,

E[XY |Θ = θ] = ω

−K

θ
e−θK +

2
θ2 −

2
θ2e−θK

 + (1 − ω)

−K

λ
e−λK +

2
λ2 −

2
λ2e−λK

 . (3.49)

Therefore, the value of σ2
Y is

σ2
Y = E[Var(Y |Θ)] = E

[
E(Y2|Θ) − E(Y |Θ)2

]
,

= E

ω −2K

Θ
e−ΘK +

2 − ω
Θ2 +

2ω − 2
Θ2 e−ΘK −

ω

Θ2e−2ΘK

 + (1 − ω)

−2K

λ
e−λK +

1 + ω

λ2

−
2ω
λ2 e−λK −

1 − ω
λ2 e−2λK

 − 2ω(1 − ω)

1
λ
−

1
λ

e−λK

  1
Θ
−

1
Θ

e−ΘK

 ,
=
− 2Kωβ

α − 1

 β

β + K

α−1

+
(2 − ω)ωβ2

(α − 1)(α − 2)
+

2ω(ω − 1)β2

(α − 1)(α − 2)

 β

β + K

α−2

−

ω2β2

(α − 1)(α − 2)

 β

β + 2K

α−2

+ (1 − ω)

−2K

λ
e−λK +

1 + ω

λ2 −
2ω
λ2 e−λK −

1 − ω
λ2 e−2λK

 −
2ω(1 − ω)

1
λ
−

1
λ

e−λK

 β

α − 1

1 −
 β

β + K

α−1 . (3.50)

In addition, δXY is

δXY = E[Cov(X|Θ,Y |Θ)] = E
[
E(XY |Θ) − µX(Θ)µY(Θ)

]
,

= E

ω −K

Θ
e−ΘK +

2 − ω
Θ2 −

2 − ω
Θ2 e−ΘK

 +

(1 − ω)

−K

λ
e−λK +

1 + ω

λ2 −
1 + ω

λ2 e−λK

 −
ω(1 − ω)

1
λ
−

1
λ

e−λK

 1
Θ
−
ω(1 − ω)

λ

 1
Θ
−

1
Θ

e−ΘK

 ,
=
− Kωβ

α − 1

 β

β + K

α−1

+
(2 − ω)ωβ2

(α − 1)(α − 2)
−

ω(2 − ω)β2

(α − 1)(α − 2)

 β

β + K

α−2

+

(1 − ω)

−K

λ
e−λK +

1 + ω

λ2 −
1 + ω

λ2 e−λK

 −
ω(1 − ω)

1
λ
−

1
λ

e−λK

 β

α − 1
−
ω(1 − ω)

λ

β

α − 1

1 −
 β

β + K

α−1 . (3.51)
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Under the assumptions and data of Table 3.5, we can use R code to calculate the parameters
we need by parametric estimation. For details of R code, readers are referred to Appendix C.
You will see all of the MMSEs of each model for all of the split points, K, which are from 0 to
the maximum value of the losses, X, in Figure 3.6.

Figure 3.6: MMSEs by parametric estimation given K in example3

From Figure 3.6, we get that the optimal split point is the 77th percentile (7.99) under
parametric estimation. For details, readers are referred to Appendix C.

Suppose that K = 7.99 and let Ẑ be the optimal credibility of non-split credibility model.
Let the MMSE of non-split credibility be Q̂nsp, the MMSE of semi-linear credibility be Q̂tsl and
the MMSE of two-dimensional semi-linear credibility be Q̂tdsl. For details of their formulas,
readers are referred to Equations (2.52), (2.53) and (2.54). Then we have Table 3.6.

Parameter Value Parameter Value Parameter Value
µX 6.25 σ2

X 54.29687 τ2
X 3.515625

µY 4.188381 σ2
Y 7.933374 τ2

Y 0.5068244
δXY 15.04467 τXY 1.233023 Ẑ 0.7444853
α̂Y 0.009024379 α̂X 0.013548843 α̂0 0.7384988

Q̂nsp 0.8982939 Q̂tsl 1.290039 Q̂tdsl 0.8714286

Table 3.6: The value of parameters by parametric estimation calculated using R in example 3
(when K = 7.99)

From Table 3.6, we know that Q̂tdsl ≤ Q̂nsp, which means that our model improves non-split
credibility model. In this time, we have that ẐY = nα̂Y = 0.406097 and ẐX = nα̂X = 0.6096979,
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so the credibility permium under our model is that µ̂X(θ) = µX + ẐY(Ȳ − µY) + ẐX(X̄ − µX) =

5.548993.

3.3.2 Nonparametric estimation
The results of nonparametric estimation are different from the results of parametric estimation
because our parameters are estimated from data and our method is sensitive to estimation error.
For details of the formulas of nonparametric estimation, readers are referred to Appendix B.

Again, under the assumptions and data of Table 3.1, we use R code to calculate the pa-
rameters we need by nonparametric estimation. For details of R code, readers are referred to
Appendix C. You will see all of the MMSEs of each model by nonparametric estimation for all
of the split points, K, which are from 0 to the maximum value of the losses, X, in Figure 3.7.

Figure 3.7: MMSEs by nonparametric estimation given K in example3

Thus, we get that the optimal split point is the 88th percentile (11.6). For details, readers
are referred to Appendix C. However, due to our method being sensitive to estimation error,
the minimum value of MMSE is smaller than zero, which should not be happened.

Accoring to the method in Section 2.2.2, we choose the 0th, 25th, 50th, 75th, 80th, 85th,
90th, 95th and 100th percentiles as our split points. Then, we use R code to calculate the
parameters and the optimal α’s. We calculate the values of MMSE given by different Ks. You
will see all of the MMSEs of each model by nonparametric estimation for specific split points
in Figure 3.8.

We choose the minimum one and choose the corresponding K value as the future optimal
percentile in future data from the same source(or the same group). In this case, the optimal
split point is the 85th percentile.
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Figure 3.8: MMSEs by nonparametric estimation given specific K in example3



Chapter 4

Conclusion

In this thesis, we proposed a two-dimensional semi-linear credibility model. This model ex-
tended the commonly used semi-linear credibility model with truncation and the split credulity
model by explicitly considering the covariance between the primary and excess losses.

For the two-dimensional semi-linear credibility model, we derived the parameter values by
minimizing the mean squared errors. The formula for the value of MSE at its minimum is also
derived. The key results are repeated in the following:

1. No solution if the determinant of matix (2.47) is zero and τXY/τ
2
X , (nτXY + δXY)/(nτ2

X +

σ2
X).

2. Non-split solutions if the determinant of matix (2.47) is zero and τXY/τ
2
X = (nτXY +

δXY)/(nτ2
X + σ2

X) or if Theorem 2.2.3 is accepted.
3. Split solutions if the determinant of matix (2.47) is not zero and Theorem 2.2.3 is not

accepted.
We then suggested a simple method to determine the optimal split point. Furthermore, the

formulas of nonparametric estimation have been derived.
We showed the application of our model through three examples: an Exponential distribu-

tion with the rate parameter following a Gamma distribution and a Poisson distribution with the
rate parameter following a Gamma distribution and a mixture of two Exponential distributions
where one distribution is conditional on the rate parameter following a Gamma distribution.

In the first two examples, we showed that, in theory, splitting the loss into primary and
the excess did not reduce the MSE. However, in our numerical examples, since parameters
are estimated from data, our method is sensitive to estimation error and one may find that the
splitting does help reducing MSE.

In the third example, we showded that splitting the loss into primary and the excess did
reduce the MSE. However, since parameters are estimated from data, our method is sensitive to
estimation error and the minimum value of MMSE under nonparametric estimation is smaller
than zero.

In reality, whether one should split the losses or not is an important but complicated issue.
The classical split credibility model used by NCCI assumes that the primary and the excess
losses are independent, which in our view is inaccurate. However, the method is used by
actuaries for many years. Our model is an attempt to improve the NCCI model by considering
the dependence between the primary and excess losses, but more theoretical and empirical
investigations are needed.
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Appendix A

Propositions

We continue using Table 2.1 as the notations here.

Proposition A.0.1
E

(
µn+1(Θ)2

)
= τ2

X + µ2
X (A.1)

Proof:

E
(
µn+1(Θ)2

)
= Var(µn+1(Θ)) + E(µn+1(Θ))2 (A.2)

= τ2
X + µ2

X (A.3)

Proposition A.0.2

E
(
Ȳ2

)
=

1
n
σ2

Y + τ2
Y + µ2

Y (A.4)

Proof:

E
(
Ȳ2

)
= Var(Ȳ) + E(Ȳ)2 (A.5)

= E
[
Var(Ȳ |Θ)

]
+ Var

[
E(Ȳ |Θ)

]
+ µ2

Y (A.6)

= E
[

1
n2 Var(Y1 + · · · + Yn|Θ)

]
+ Var

[
1
n

E(Y1 + · · · + Yn|Θ)
]

+ µ2
Y (A.7)

= E
[
1
n

Var(Y |Θ)
]

+ Var [E(Y |Θ)] + µ2
Y (A.8)

=
1
n
σ2

Y + τ2
Y + µ2

Y (A.9)

With the same proof, we have

E
(
L̄2

)
=

1
n
σ2

L + τ2
L + µ2

L (A.10)
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Proposition A.0.3
E

(
µn+1(Θ)Ȳ

)
= τXY + µXµY (A.11)

Proof:

E
(
µn+1(Θ)Ȳ

)
= E

(
E

(
µn+1(Θ)Ȳ |Θ

))
(A.12)

= E
(
µn+1(Θ)E

(
Ȳ |Θ

))
(A.13)

= E (µn+1(Θ)µY(Θ)) (A.14)
= Cov(µn+1(Θ), µY(Θ)) + E(µn+1(Θ))E(µY(Θ)) (A.15)
= τXY + µXµY (A.16)

With the same proof, we have

E
(
µn+1(Θ)L̄

)
= τXL + µXµL (A.17)

Proposition A.0.4

E
(
Ȳ L̄

)
=

1
n
δYL + τYL + µYµL (A.18)

Proof:

E
(
Ȳ L̄

)
= E

(
E

(
Ȳ L̄|Θ

))
(A.19)

= E
{

1
n2 E

[
(Y1 + · · · + Yn)(L1 + · · · + Ln)|Θ

]}
(A.20)

=
1
n2 E

[
nE(YiLi|Θ) + (n2 − n)E(YiL j|Θ)

]
(A.21)

=
1
n

E
[
E(YiLi|Θ) + (n − 1)E(Yi|Θ)E(L j|Θ)

]
(A.22)

=
1
n

E(YiLi) + (1 −
1
n

)E (µY(Θ)µL(Θ)) (A.23)

=
1
n

[
Cov(Yi, Li) + µYµL

]
+ (1 −

1
n

)
[
Cov(µY(Θ), µL(Θ)) + µYµL

]
(A.24)

=
1
n

(
δYL + τYL + µYµL

)
+ (1 −

1
n

)
(
τYL + µYµL

)
(A.25)

=
1
n
δYL + τYL + µYµL (A.26)

for i , j and the reason of the fourth step is independence of Xi and X j conditional on Θ. The
second from the last step follows by Equation (2.22).
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Formulas of nonparametric estimation

We continue using Table 2.1 as the notations here. Suppose that we have the data as follows,

Theta’s
Losses X Y = min(X,K)

Θ1 = θ1 X11 X12 X13 · · · X1n Y11 Y12 Y13 · · · Y1n

Θ2 = θ2 X21 X22 X23 · · · X2n Y21 Y22 Y23 · · · Y2n

Θ3 = θ3 X31 X32 X33 · · · X3n Y31 Y32 Y33 · · · Y3n
...

...
...

...
. . .

...
...

...
...

. . .
...

Θm = θm Xm1 Xm2 Xm3 · · · Xmn Ym1 Ym2 Ym3 · · · Ymn

Table B.1: A list of data

And the unbiased estimation of our needed parameters are

µ̂X = X̄ =
1

nm

m∑
i=1

n∑
j=1

Xi j, (B.1)

µ̂Y = Ȳ =
1

nm

m∑
i=1

n∑
j=1

Yi j, (B.2)

and

σ̂2
X = E( ̂VX(Θi)) =

1
m(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)2, (B.3)

σ̂2
Y = E( ̂VY(Θi)) =

1
m(n − 1)

m∑
i=1

n∑
j=1

(Yi j − Ȳi)2, (B.4)
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and

τ̂2
X = ̂Var(X̄i) −

σ̂2
X

n
(B.5)

=
1

m − 1

m∑
i=1

(X̄i − X̄)2 −
1

mn(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)2, (B.6)

τ̂2
Y = ̂Var(Ȳi) −

σ̂2
Y

n
(B.7)

=
1

m − 1

m∑
i=1

(Ȳi − Ȳ)2 −
1

mn(n − 1)

m∑
i=1

n∑
j=1

(Yi j − Ȳi)2, (B.8)

and

ˆδXY = E( ̂δXY(Θi)) =
1
m

m∑
i=1

̂δXY(Θi) (B.9)

=
1

m(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)(Yi j − Ȳi), (B.10)

and

ˆτXY = ̂Cov(X̄i, Ȳi) −
ˆδXY

n
(B.11)

=
1

m − 1

m∑
i=1

(X̄i − X̄)(Ȳi − Ȳ) −
1

mn(n − 1)

m∑
i=1

n∑
j=1

(Xi j − X̄i)(Yi j − Ȳi). (B.12)



Appendix C

R code of examples

Example1 and Example2 are referred to the following R code.

memory.limit(102400)

#### n represents the numer of losses and m represents the number

#### of thetas.

n <- 45

m <- 6

#### Randomly generate thetas with gamma distribution.

alpha <- 6

beta <- 50

theta <- rgamma(m,alpha,rate = beta)

#### Randomly generate losses with exponential distribution

#### conditional on thetas.

X <- matrix(nrow=0,ncol=n)

for(value in theta){

random_exp <- rexp(n,rate = value)

X <- rbind(X,random_exp)

# -------------------------------------------------------------

#### use the code when we generate losses with poisson distribution

#### conditional on thetas.

#random_pois <- rpois(n,lambda = value)

#X <- rbind(X,random_pois)

}

# -------------------------------------------------------------

#### use the code when we collect the value of parameters.

#hat_total <- matrix(nrow=0,ncol=15,dimnames = list(c(),c(

# "mu_{X}","sigma_{X}ˆ{2}","tau_{X}ˆ2",

# "mu_{Y}","sigma_{Y}ˆ{2}","tau_{X}ˆ2",

# "delta_{XY}","tau_{XY}","hat{Z}",

# "hat{alpha_{Y}}","hat{alpha_{X}}","hat{alpha_{0}}",

# "hat{Q}_{nsp}","hat{Q}_{tsl}","hat{Q}_{tdsl}")))

# -------------------------------------------------------------

#### Calculate the mean, variance and covariance of losses by

#### nonparametric estimation.

X_mu_theta <- rep(0,m)
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X_v_theta <- rep(0,m)

for(index in 1:m){

X_mu_theta[index] <- mean(X[index ,])

X_v_theta[index] <- var(X[index ,])

}

X_mu <- mean(X_mu_theta) #### mu_X

X_v <- mean(X_v_theta) #### sigmaˆ2_X

X_a <- var(X_mu_theta)-X_v/n #### tauˆ2_X

#### Calculate the mean, variance and covariance of losses by

#### parametric estimation under exponential distribution

#### conditional on thetas.

X_mu_para <- beta/(alpha -1)

X_v_para <- betaˆ2/(alpha -1)/(alpha -2)

X_a_para <- X_v_para-X_mu_paraˆ2

#### Z_hat is the credibility solution of non-split credibility

#### model by nonparametric estimation.

Z_hat <- n/(n+X_v/X_a)

#### Z_hat_para is the credibility solution of non-split credibility

#### model by parametric estimation under exponential distribution

#### conditional on thetas.

Z_hat_para <- n/(n+X_v_para/X_a_para)

# -------------------------------------------------------------

#### MMSE_split represents the value of MMSE in our credibility model

#### by nonparametric estimation.

#### MMSE_split_Y represents the value of MMSE in

#### semi-linear credibility model by nonparametric estimation.

#### MMSE_nonsplit represents the value of MMSE in non-split

#### credibility model by nonparametric estimation.

# -------------------------------------------------------------

#### MMSE_split_para represents the value of MMSE in our credibility

#### model by parametric estimation.

#### MMSE_split_Y_para represents the value of MMSE in

#### semi-linear credibility model by parametric estimation.

#### MMSE_nonsplit_para represents the value of MMSE in non-split

#### credibility model by parametric estimation.

# -------------------------------------------------------------

#### kk is the chosen split point.

# -------------------------------------------------------------

#### use this code when we choose the 0th,25th,50th,75th,80th,85th,

#### 90th,95th,100th percentiles split point

#PP <- sort(X)

#RESULT <- c("0th","25th","50th","75th","80th","85th","90th","95th",

# "100th")

#kk <- c(0,PP[0.25*n*m],PP[0.5*n*m],PP[0.75*n*m],PP[0.8*n*m],

# PP[0.85*n*m],PP[0.9*n*m],PP[0.95*n*m],PP[n*m])

# -------------------------------------------------------------

#### Under poisson distribution conditional on thetas, we change
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#### ’by=0.1’ to ’by=1’.

kk<-seq(from=0,to=max(ceiling(X)),by=0.1)

MMSE_split <- rep(0,length(kk))

MMSE_split_Y <- rep(0,length(kk))

MMSE_nonsplit <- rep(0,length(kk))

MMSE_split_para <- rep(0,length(kk))

MMSE_split_Y_para <- rep(0,length(kk))

MMSE_nonsplit_para <- rep(0,length(kk))

#### Begin to calculate all of the MMSEs given by split points

#### and choose the optimal split point.

number <- 0

for(k in kk){

number <- number + 1

# -------------------------------------------------------------

#### use the code when we need to specify K.

# k <- 5

# -------------------------------------------------------------

#### Generate Y=min(X,K) given by split point, K.

Y <- matrix(nrow=0,ncol=n)

for(index in 1:m){

random_function <- ifelse(X[index,]<k,X[index,],k)

Y <- rbind(Y,random_function)

}

#### Calculate the mean, variance and covariance of Y by

#### nonparametric estimation.

Y_mu_theta <- rep(0,m)

Y_v_theta <- rep(0,m)

for(index in 1:m){

Y_mu_theta[index] <- mean(Y[index ,])

Y_v_theta[index] <- var(Y[index ,])

}

Y_mu <- mean(Y_mu_theta) #### mu_Y

Y_v <- mean(Y_v_theta) #### sigmaˆ2_Y

Y_a <- var(Y_mu_theta)-Y_v/n #### tauˆ2_Y

#### Calculate the mean, variance and covariance of Y by

#### parametric estimation under exponential distribution

#### conditional on thetas.

Y_mu_para <- beta/(alpha -1)*(1-(beta/(beta+k))ˆ(alpha -1))

Y_v_para <- betaˆ2/(alpha -1)/(alpha -2)*(1-(beta/(beta+2*k))ˆ

(alpha -2))-2*k*beta/(alpha -1)*(beta/(beta+k))ˆ(alpha -1)

Y_a_para <- betaˆ2/(alpha -1)/(alpha -2)*(1+(beta/(beta+2*k))ˆ

(alpha -2)-2*(beta/(beta+k))ˆ(alpha -2))-Y_mu_paraˆ2

#### Calculate tau_XY and delta_XY by nonparametric estimation.

pi_theta <- rep(0,m)

for(index in 1:m){

pi_theta[index] <- cov(X[index,],Y[index ,])

}
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delta <- mean(pi_theta) #### delta_XY

tau <- cov(X_mu_theta,Y_mu_theta)-delta/n #### tau_XY

#### Calculate tau_XY and delta_XY by parametric estimation under

#### exponential distribution conditional on thetas.

delta_para <- betaˆ2/(alpha -1)/(alpha -2)*(1-(beta/(beta+k))ˆ

(alpha -2))-k*beta/(alpha -1)*(beta/(beta+k))ˆ(alpha -1)

tau_para <- betaˆ2/(alpha -1)/(alpha -2)*(1-(beta/(beta+k))ˆ

(alpha -2))-betaˆ2/(alpha -1)ˆ2*(1-(beta/(beta+k))ˆ

(alpha -1))

# -------------------------------------------------------------

#### use the code when we generate losses with poisson distribution

#### conditional on thetas.

#### Calculate tau_XY and delta_XY by parametric estimation

#### under poisson distribution conditional on thetas.

#delta_para <- 0

#tau_para <- 0

#for (i in 0:(k-1)) {

# delta_para <- delta_para+(i-k)*betaˆalpha/(beta+1)ˆ(alpha+k)*

# gamma(alpha+k)/gamma(alpha)*(k-(alpha+k)/(beta+1))

# tau_para <- tau_para+(i-k)*betaˆalpha/(beta+1)ˆ(alpha+k)*

# gamma(alpha+k)/gamma(alpha)*((alpha+k)/(beta+1)-alpha/beta)

#}

# -------------------------------------------------------------

#### Calculate the optimal alphas by nonparametric estimation.

left <- matrix(c(n*Y_a+Y_v,n*tau+delta,n*tau+delta,n*X_a+X_v),

nrow=2,ncol=2)

right <- matrix(c(tau,X_a))

b_hat <- matrix(c(0,0)) #### (alpha_Y, alpha_X)ˆT

if(det(left)>1e-5){

b_hat <- solve(left,right)

}else{

if(tau/X_a-(n*tau+delta)/(n*X_a+X_v)<1e-5){

b_hat[1,1] <- 0

b_hat[2,1] <- X_a/(n*X_a+X_v)

}else{

cat("No solution when K=",k,"\n",sep="")

next

}

}

a_hat <- X_mu-n*Y_mu*b_hat[1,1]-n*X_mu*b_hat[2,1] #### alpha_0

#### Calculate the optimal alphas by parametric estimation under

#### exponential distribution conditional on thetas.

left_para <- matrix(c(n*Y_a_para+Y_v_para,n*tau_para+delta_para,

n*tau_para+delta_para,n*X_a_para+X_v_para),

nrow=2,ncol=2)

right_para <- matrix(c(tau_para,X_a_para))

b_hat_para <- matrix(c(0,0))
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if(det(left_para)>1e-5){

b_hat_para <- solve(left_para,right_para)

}else{

if(tau_para/X_a_para-

(n*tau_para+delta_para)/(n*X_a_para+X_v_para)<1e-5){

b_hat_para[1,1] <- 0

b_hat_para[2,1] <- X_a_para/(n*X_a_para+X_v_para)

}else{

cat("No solution when K=",k,"\n",sep="")

next

}

}

a_hat_para <- X_mu_para-n*Y_mu_para*b_hat_para[1,1]-

n*X_mu_para*b_hat_para[2,1]

#### Calculate the MMSEs by nonparametric estimation.

MMSE_split[number] <- X_a + n*b_hat[1,1]ˆ2*Y_v +

nˆ2*b_hat[1,1]ˆ2*Y_a - 2*n*b_hat[1,1]*tau +

n*b_hat[2,1]ˆ2*X_v + nˆ2*b_hat[2,1]ˆ2*X_a - 2*n*b_hat[2,1]*X_a +

2*n*b_hat[1,1]*b_hat[2,1]*delta + 2*nˆ2*b_hat[1,1]*b_hat[2,1]*tau

MMSE_nonsplit[number] <- Z_hatˆ2*X_v/n+(1-Z_hat)ˆ2*X_a

if(k==0){

MMSE_split_Y[number] <- MMSE_nonsplit[number]

}else{

MMSE_split_Y[number] <- X_a-n*tauˆ2/(n*Y_a+Y_v)

}

#### Calculate the MMSEs by parametric estimation under

#### exponential distribution conditional on thetas.

MMSE_split_para[number] <- X_a_para + n*b_hat_para[1,1]ˆ2*Y_v_para+

nˆ2*b_hat_para[1,1]ˆ2*Y_a_para - 2*n*b_hat_para[1,1]*tau_para +

n*b_hat_para[2,1]ˆ2*X_v_para + nˆ2*b_hat_para[2,1]ˆ2*X_a_para -

2*n*b_hat_para[2,1]*X_a_para +

2*n*b_hat_para[1,1]*b_hat_para[2,1]*delta_para +

2*nˆ2*b_hat_para[1,1]*b_hat_para[2,1]*tau_para

MMSE_nonsplit_para[number] <- Z_hat_paraˆ2*X_v_para/n+

(1-Z_hat_para)ˆ2*X_a_para

if(k==0){

MMSE_split_Y_para[number] <- MMSE_nonsplit_para[number]

}else{

MMSE_split_Y_para[number] <- X_a_para-n*tau_paraˆ2/

(n*Y_a_para+Y_v_para)

}

# -------------------------------------------------------------

#### use the code when we collect the value of parameters.

#hat_total <- rbind(hat_total,c(X_mu,X_v,X_a,

# Y_mu,Y_v,Y_a,

# delta,tau,Z_hat,

# b_hat[1,1],b_hat[2,1],a_hat,
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# MMSE_nonsplit[number],

# MMSE_split_Y[number],

# MMSE_split[number]))

# -------------------------------------------------------------

}

# -------------------------------------------------------------

#### use this code when we choose the 0th,25th,50th,75th,80th,85th,

#### 90th,95th,100th percentiles split point

#### Draw a picture for comparing with each other by nonparametric

#### estimation with specific K.

#plot(kk,MMSE_split,ylim = c(min(min(MMSE_split)),max(MMSE_split)),

# main="MMSEs by nonparametric estimation given specific K",

# xlab="The specific split point,K",

# ylab="MMSEs",lty=1,pch=2,type=’o’)

#lines(kk,MMSE_split_Y,lty=2,pch=4,type=’o’,col=’2’)

#lines(kk,MMSE_nonsplit,lty=4,pch=1,type=’o’,col=’3’)

#legend("bottomleft", cex=0.7, pch=c(2,4,1),lty=c(1,2,4),

# col=c("black", "red", "green"),

# legend=c("Two-dim. semi.", "Trad. semi.", "Non-split."))

#### K is the optimal specific split point in percentage mode by

#### nonparametric estimation.

#K <- RESULT[which(MMSE_split==min(MMSE_split))]

# -------------------------------------------------------------

#### Draw a picture for comparing with each other by

#### nonparametric estimation.

plot(kk,MMSE_split,ylim = c(min(min(MMSE_split)),max(MMSE_split)),

main="MMSEs by nonparametric estimation given K",

xlab="The split point,K,\nfrom 0 to the maximum value of Xs",

ylab="MMSEs", lty=1,type = ’l’)

lines(kk,MMSE_split_Y,lty=2,col=’2’)

lines(kk,MMSE_nonsplit,lty=4,col=’3’)

legend("bottomleft", cex=0.7, lty=c(1,2,4),

col=c("black", "red", "green"),

legend=c("Two-dim. semi.", "Trad. semi.", "Non-split."))

#### K is the optimal split point in percentage mode by

#### nonparametric estimation.

K <- kk[which(MMSE_split==min(MMSE_split))]

K <- sum(X<K)/n/m

# -------------------------------------------------------------

#### Draw a picture for comparing with each other by parametric

#### estimation.

plot(kk,MMSE_split_para,ylim = c(min(-1,min(MMSE_split_para)),

max(MMSE_split_Y_para)),

main="MMSEs by parametric estimation given K",

xlab="The split point,K,\nfrom 0 to the maximum value of Xs",

ylab="MMSEs", lty=1,type = ’l’)

lines(kk,MMSE_split_Y_para,lty=2, col=’2’)
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lines(kk,MMSE_nonsplit_para,lty=4, col=’3’)

legend("topright", lty=c(1,2,4), col=c("black", "red", "green"),

legend=c("Two-dim. semi.", "Trad. semi.", "Non-split."))

#### K_para is the optimal split point in percentage mode by

#### parametric estimation.

K_para <- kk[which(MMSE_split_para==min(MMSE_split_para))]

K_para <- sum(X<K_para)/n/m

Example3 is referred to the following R code.

memory.limit(102400)

#### n represents the numer of losses.

#### m represents the number of thetas.

#### omega is the weight of the first exponential distribution.

#### 1/lambda is the mean of the second exponential distribution.

n <- 45

m <- 6

omega <- 0.75

lambda <- 0.1

#### Randomly generate thetas with gamma distribution.

alpha <- 6

beta <- 25

theta <- rgamma(m,alpha,rate = beta)

#### Randomly generate losses with a mixture of two exponential

#### distribution conditonal on thetas.

X <- matrix(nrow=0,ncol=n)

for(value in theta){

#### Sample n random uniforms U.

U =runif(n)

#### Variable to store the samples from the mixture distribution

rand.samples = rep(NA,n)

#### Sampling from the mixture

for(i in 1:n){

if(U[i] < omega){

rand.samples[i] = rexp(1,rate = value)

}else{

rand.samples[i] = rexp(1,rate = lambda)

}

}

X <- rbind(X,rand.samples)

}

# -------------------------------------------------------------

#### use the code when we collect the value of parameters.

#hat_total <- matrix(nrow=0,ncol=15,dimnames = list(c(),c(

# "mu_{X}","sigma_{X}ˆ{2}","tau_{X}ˆ2",

# "mu_{Y}","sigma_{Y}ˆ{2}","tau_{X}ˆ2",

# "delta_{XY}","tau_{XY}","hat{Z}",

# "hat{alpha_{Y}}","hat{alpha_{X}}","hat{alpha_{0}}",
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# "hat{Q}_{nsp}","hat{Q}_{tsl}","hat{Q}_{tdsl}")))

# -------------------------------------------------------------

#### Calculate the mean, variance and covariance of losses by

#### non-parametric estimation.

X_mu_theta <- rep(0,m)

X_v_theta <- rep(0,m)

for(index in 1:m){

X_mu_theta[index] <- mean(X[index ,])

X_v_theta[index] <- var(X[index ,])

}

X_mu <- mean(X_mu_theta) #### mu_X

X_v <- mean(X_v_theta) #### sigmaˆ2_X

X_a <- var(X_mu_theta)-X_v/n #### tauˆ2_X

#### Calculate the mean, variance and covariance of losses by

#### parametric estimation.

X_mu_para <- omega*beta/(alpha -1)+(1-omega)/lambda

X_v_para <- (2*omega-omegaˆ2)*betaˆ2/(alpha -1)/(alpha-2)-

2*omega*(1-omega)/lambda*beta/(alpha -1)+(1-omegaˆ2)/lambdaˆ2

X_a_para <- omegaˆ2*betaˆ2/(alpha -1)ˆ2/(alpha -2)

#### Z_hat’s are the credibility solution of non-split credibility

#### model.

Z_hat <- n/(n+X_v/X_a)

Z_hat_para <- n/(n+X_v_para/X_a_para)

# -------------------------------------------------------------

#### use this code when we choose the 0th,25th,50th,75th,80th,85th,

#### 90th,95th,100th percentiles split point

PP <- sort(X)

RESULT <- c("0th","25th","50th","75th","80th","85th","90th","95th",

"100th")

kk <- c(0,PP[0.25*n*m],PP[0.5*n*m],PP[0.75*n*m],PP[0.8*n*m],

PP[0.85*n*m],PP[0.9*n*m],PP[0.95*n*m],PP[n*m])

# -------------------------------------------------------------

kk<-seq(from=0,to=max(ceiling(X)),by=0.01)

MMSE_split <- rep(0,length(kk))

MMSE_split_Y <- rep(0,length(kk))

MMSE_nonsplit <- rep(0,length(kk))

MMSE_split_para <- rep(0,length(kk))

MMSE_split_Y_para <- rep(0,length(kk))

MMSE_nonsplit_para <- rep(0,length(kk))

#### Begin to calculate all of the MMSEs given by split points and

#### choose the optimal split point.

number <- 0

for(k in kk){

number <- number + 1

# -------------------------------------------------------------

#### use the code when we need to specify K.

# k <- 7.99
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# -------------------------------------------------------------

#### Generate Y=min(X,K) given by split point, K.

Y <- matrix(nrow=0,ncol=n)

for(index in 1:m){

random_function <- ifelse(X[index,]<k,X[index,],k)

Y <- rbind(Y,random_function)

}

#### Calculate the mean, variance and covariance of Y by

#### non-parametric estimation.

Y_mu_theta <- rep(0,m)

Y_v_theta <- rep(0,m)

for(index in 1:m){

Y_mu_theta[index] <- mean(Y[index ,])

Y_v_theta[index] <- var(Y[index ,])

}

Y_mu <- mean(Y_mu_theta) #### mu_Y

Y_v <- mean(Y_v_theta) #### sigmaˆ2_Y

Y_a <- var(Y_mu_theta)-Y_v/n #### tauˆ2_Y

#### Calculate the mean, variance and covariance of Y by

#### parametric estimation.

Y_mu_para <- omega*beta/(alpha -1)*(1-(beta/(beta+k))ˆ(alpha -1))+

(1-omega)*(1/lambda -1/lambda*exp(-lambda*k))

Y_v_para <- -2*k*omega*beta/(alpha -1)*(beta/(beta+k))ˆ(alpha -1)+

(2-omega)*omega*betaˆ2/(alpha -1)/(alpha -2)+

2*omega*(omega -1)*betaˆ2/(alpha -1)/(alpha -2)*

(beta/(beta+k))ˆ(alpha -2)-

omegaˆ2*betaˆ2/(alpha -1)/(alpha -2)*(beta/(beta+2*k))ˆ(alpha -2)+

(1-omega)*(-2*k/lambda*exp(-lambda*k)+(1+omega)/lambdaˆ2-

2*omega/lambdaˆ2*exp(-lambda*k)-(1-omega)/

lambdaˆ2*exp(-2*lambda*k))-

2*omega*(1-omega)*(1/lambda -1/lambda*exp(-lambda*k))*

beta/(alpha -1)*(1-(beta/(beta+k))ˆ(alpha -1))

Y_a_para <- omegaˆ2*(betaˆ2/(alpha -1)/(alpha -2)*

(1+(beta/(beta+2*k))ˆ(alpha-2)-

2*(beta/(beta+k))ˆ(alpha -2))-betaˆ2/(alpha -1)ˆ2*

(1-(beta/(beta+k))ˆ(alpha -1))ˆ2)

#### Calculate tau_XY and delta_XY by non-parametric estimation.

pi_theta <- rep(0,m)

for(index in 1:m){

pi_theta[index] <- cov(X[index,],Y[index ,])

}

delta <- mean(pi_theta) #### delta_XY

tau <- cov(X_mu_theta,Y_mu_theta)-delta/n #### tau_XY

#### Calculate tau_XY and delta_XY by parametric estimation.

delta_para <- -k*omega*beta/(alpha -1)*(beta/(beta+k))ˆ(alpha -1)+

(2-omega)*omega*betaˆ2/(alpha -1)/(alpha-2)-

omega*(2-omega)*betaˆ2/(alpha -1)/(alpha -2)*
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(beta/(beta+k))ˆ(alpha -2)+

(1-omega)*(-k/lambda*exp(-lambda*k)+(1+omega)/lambdaˆ2-

(1+omega)/lambdaˆ2*exp(-lambda*k))-

omega*(1-omega)*(1/lambda -1/lambda*exp(-lambda*k))*

beta/(alpha-1)-

omega*(1-omega)/lambda*beta/(alpha -1)*

(1-(beta/(beta+k))ˆ(alpha -1))

tau_para <- omegaˆ2*(betaˆ2/(alpha -1)/(alpha -2)*

(1-(beta/(beta+k))ˆ(alpha -2))-

betaˆ2/(alpha -1)ˆ2*(1-(beta/(beta+k))ˆ(alpha -1)))

#### Calculate the optimal alphas by non-parametric estimation.

left <- matrix(c(n*Y_a+Y_v,n*tau+delta,n*tau+delta,n*X_a+X_v),

nrow=2,ncol=2)

right <- matrix(c(tau,X_a))

b_hat <- matrix(c(0,0)) #### (alpha_Y, alpha_X)ˆT

if(det(left)>1e-5){

b_hat <- solve(left,right)

}else{

if(tau/X_a-(n*tau+delta)/(n*X_a+X_v)<1e-5){

b_hat[1,1] <- 0

b_hat[2,1] <- X_a/(n*X_a+X_v)

}else{

cat("No solution when K=",k,"\n",sep="")

next

}

}

a_hat <- X_mu-n*Y_mu*b_hat[1,1]-n*X_mu*b_hat[2,1] #### alpha_0

#### Calculate the optimal alphas by parametric estimation.

left_para <- matrix(c(n*Y_a_para+Y_v_para,n*tau_para+delta_para,

n*tau_para+delta_para,n*X_a_para+X_v_para),

nrow=2,ncol=2)

right_para <- matrix(c(tau_para,X_a_para))

b_hat_para <- matrix(c(0,0))

if(det(left_para)>1e-5){

b_hat_para <- solve(left_para,right_para)

}else{

if(tau_para/X_a_para-

(n*tau_para+delta_para)/(n*X_a_para+X_v_para)<1e-5){

b_hat_para[1,1] <- 0

b_hat_para[2,1] <- X_a_para/(n*X_a_para+X_v_para)

}else{

cat("No solution when K=",k,"\n",sep="")

next

}

}

a_hat_para <- X_mu_para-n*Y_mu_para*b_hat_para[1,1]-

n*X_mu_para*b_hat_para[2,1]
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#### Calculate the MMSEs by nonparametric estimation.

MMSE_split[number] <- X_a + n*b_hat[1,1]ˆ2*Y_v +

nˆ2*b_hat[1,1]ˆ2*Y_a - 2*n*b_hat[1,1]*tau +

n*b_hat[2,1]ˆ2*X_v + nˆ2*b_hat[2,1]ˆ2*X_a - 2*n*b_hat[2,1]*X_a +

2*n*b_hat[1,1]*b_hat[2,1]*delta + 2*nˆ2*b_hat[1,1]*b_hat[2,1]*tau

MMSE_nonsplit[number] <- Z_hatˆ2*X_v/n+(1-Z_hat)ˆ2*X_a

if(k==0){

MMSE_split_Y[number] <- MMSE_nonsplit[number]

}else{

MMSE_split_Y[number] <- X_a-n*tauˆ2/(n*Y_a+Y_v)

}

#### Calculate the MMSEs by parametric estimation.

MMSE_split_para[number] <- X_a_para + n*b_hat_para[1,1]ˆ2*Y_v_para+

nˆ2*b_hat_para[1,1]ˆ2*Y_a_para - 2*n*b_hat_para[1,1]*tau_para +

n*b_hat_para[2,1]ˆ2*X_v_para + nˆ2*b_hat_para[2,1]ˆ2*X_a_para -

2*n*b_hat_para[2,1]*X_a_para +

2*n*b_hat_para[1,1]*b_hat_para[2,1]*delta_para +

2*nˆ2*b_hat_para[1,1]*b_hat_para[2,1]*tau_para

MMSE_nonsplit_para[number] <- Z_hat_paraˆ2*X_v_para/n+

(1-Z_hat_para)ˆ2*X_a_para

if(k==0){

MMSE_split_Y_para[number] <- MMSE_nonsplit_para[number]

}else{

MMSE_split_Y_para[number] <- X_a_para-n*tau_paraˆ2/

(n*Y_a_para+Y_v_para)

}

# -------------------------------------------------------------

#### The credibility permium given by the optimal split point

#### under parametric estimation.

# X_mu_para+n*b_hat_para[1,1]*(Y_mu-Y_mu_para)+

# n*b_hat_para[2,1]*(X_mu-X_mu_para)

# -------------------------------------------------------------

#### use the code when we collect the value of parameters.

#hat_total <- rbind(hat_total,c(X_mu,X_v,X_a,

# Y_mu,Y_v,Y_a,

# delta,tau,Z_hat,

# b_hat[1,1],b_hat[2,1],a_hat,

# MMSE_nonsplit[number],

# MMSE_split_Y[number],

# MMSE_split[number]))

# -------------------------------------------------------------

}

# -------------------------------------------------------------

#### use this code when we choose the 0th,25th,50th,75th,80th,85th,

#### 90th,95th,100th percentiles split point

#### Draw a picture for comparing with each other by

#### non-parametric estimation with specific K.
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plot(kk,MMSE_split,ylim = c(min(MMSE_split),max(MMSE_split+0.01)),

main="MMSEs by non-parametric estimation given specific K",

xlab="The specific split point,K",ylab="MMSEs",

lty=1,pch=2,type=’o’)

lines(kk,MMSE_split_Y,lty=2,pch=4,type=’o’,col=’2’)

lines(kk,MMSE_nonsplit,lty=4,pch=1,type=’o’,col=’3’)

legend("bottomright", cex=0.7, pch=c(2,4,1),lty=c(1,2,4),

col=c("black", "red", "green"),

legend=c("Two-dim. semi.", "Trad. semi.", "Non-split."))

#### K is the optimal specific split point in percentage mode by

#### non-parametric estimation.

K <- RESULT[which(MMSE_split==min(MMSE_split))]

# -------------------------------------------------------------

#### Draw a picture for comparing with each other by

#### non-parametric estimation.

plot(kk,MMSE_split,ylim = c(min(MMSE_split),max(MMSE_split+0.01)),

main="MMSEs by non-parametric estimation given K",

xlab="The split point,K,\nfrom 0 to the maximum value of Xs",

ylab="MMSEs", lty=1,type = ’l’)

lines(kk,MMSE_split_Y,lty=2,col=’2’)

lines(kk,MMSE_nonsplit,lty=4,col=’3’)

legend("bottomright", cex=0.7, lty=c(1,2,4),

col=c("black", "red", "green"),

legend=c("Two-dim. semi.", "Trad. semi.", "Non-split."))

#### K is the optimal split point in percentage mode by

#### non-parametric estimation.

K <- kk[which(MMSE_split==min(MMSE_split))]

K <- sum(X<K)/n/m

# -------------------------------------------------------------

#### Draw a picture for comparing with each other by

#### parametric estimation.

plot(kk,MMSE_split_para,ylim = c(min(MMSE_split_para),

max(MMSE_split_para+0.01)),

main="MMSEs by parametric estimation given K",

xlab="The split point,K,\nfrom 0 to the maximum value of Xs",

ylab="MMSEs", lty=1,type = ’l’)

lines(kk,MMSE_split_Y_para,lty=2, col=’2’)

lines(kk,MMSE_nonsplit_para,lty=4, col=’3’)

legend("bottomright", cex=0.8,lty=c(1,2,4),

col=c("black", "red", "green"),

legend=c("Two-dim. semi.", "Trad. semi.", "Non-split."))

#### K_para is the optimal split point in percentage mode by

#### parametric estimation.

K_para <- kk[which(MMSE_split_para==min(MMSE_split_para))]

K_para <- sum(X<K_para)/n/m
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