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Abstract 
 

 

Introduction: Breast cancer recurrence continues to be a significant challenge in the clinic. 

Despite successful removal and/or treatment of the original tumour, many patients 

experience relapse in the breast or at distant sites. Furthermore, the diagnosis of metastatic 

disease often occurs too late for effective treatment. Methods: In this thesis, we combine 

iron-based cellular MRI and longitudinal BLI to noninvasively track the fate of breast 

cancer cells into overt tumours in the mouse brain. We then apply this imaging model to 

study the effect of a primary breast tumour on the growth of secondary metastases in an 

immune competent mouse model. Finally, we utilized dual-luciferase BLI to investigate 

the potential of self-homing circulating tumour cells (CTCs) as a novel cancer theranostic 

in both orthotopic and metastatic models of breast cancer. Results: BLI complemented our 

cellular MRI technologies well by providing longitudinal measures of cancer cell viability. 

Using in vivo BLI/MRI, we demonstrated the presence of a 4T1 primary tumour 

significantly enhances total brain tumour burden.  Finally, using dual-luciferase BLI, we 

demonstrated the ability of experimental CTCs to home to and treat primary tumours and 

disseminated breast cancer lesions. Conclusion: MRI and BLI are complementary 

technologies to noninvasively study the fate of breast cancer cells, as well as the 

mechanisms contributing to metastasis including CTR/CTE and tumour self-homing. 

Furthermore, we provide evidence that CTCs are a novel theranostic platform for the 

visualization and treatment of pre-established tumour sites throughout the body. 
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Summary for Lay Audience 

 
Introduction: Metastasis is defined as the spread of cancer cells from the original tumour 

to other parts of the body and is responsible for the majority of cancer related deaths. Thus, 

there is a need to better understand the mechanisms that contribute to the progression and 

spread of cancer. Methods: In this thesis, we used novel molecular imaging tools to study 

potential mechanisms of breast cancer metastasis in mouse models. We combined two 

complementary imaging technologies, cellular magnetic resonance imaging (MRI) and 

bioluminescence imaging (BLI) to get a more complete picture of breast cancer cell fate in 

the brain over time. We then applied these technologies to study the impact of a primary 

tumour on the growth of secondary metastases in the body. Finally, we applied non-

invasive imaging to investigate the potential of circulating tumour cells as a novel delivery 

vehicle for anti-cancer therapeutics in mouse models of breast cancer. Results: BLI 

complemented our cellular MRI technologies well by providing longitudinal measures of 

cancer cell viability. Using in vivo BLI/MRI, we demonstrated the presence of a primary 

tumour enhances total brain tumour burden.  Finally, using BLI, we demonstrated the 

ability of circulating tumour cells to home to and treat primary tumours and disseminated 

lesions. Conclusion: MRI and BLI are complementary technologies to noninvasively study 

the fate of breast cancer cells, as well as the mechanisms contributing to metastatic spread. 
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Chapter 1 
  

1 Introduction 
 

This thesis employs cellular magnetic resonance imaging (MRI) and bioluminescence 

imaging (BLI) to visualize metastatic disease in animal models of breast cancer, to 

investigate potential mechanisms that contribute to metastatic spread, and to evaluate the 

ability of circulating tumor cells to home to pre-established lesions. This introductory 

chapter discusses how metastasis occurs, the relevant mechanisms we are exploring, and 

the imaging technologies we are using. This chapter provides background information and 

motivation for the studies presented in this thesis. 

 

1.1 Motivation and Overview 
 

Breast cancer recurrence continues to be a significant challenge in the clinic. Despite 

successful removal and/or treatment of the original tumour, many patients experience 

relapse in the breast or at distant sites. Furthermore, the diagnosis of metastatic disease 

often occurs too late for effective treatment as a result of clinical imaging modalities that 

lack the sensitivity necessary for early detection.  

 

In this thesis, experimental imaging technologies are applied to study the mechanisms that 

contribute to breast cancer metastasis. In Chapter 2, we explore the advantages of 

combining iron-based cellular MRI and longitudinal BLI to noninvasively track the fate of 

solitary cancer cells into overt tumours in the mouse brain. In chapter 3, we apply this new 

imaging model to study the effect of a primary breast tumour on the growth of secondary 
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metastases in an immune competent mouse model. In chapter 4, we utilize dual-luciferase 

BLI to visualize the tumour self-homing capabilities of experimental circulating tumour 

cells (CTCs) in both orthotopic and metastatic models of breast cancer. Further, based on 

our self-homing results, we engineered CTCs with a suicide gene therapy system to explore 

their potential as a delivery vehicle for anti-cancer drugs. Finally, chapter 5 summarizes 

the major findings and significance of this thesis. In addition, limitations of this work and 

future directions are discussed.  

 

1.2 Metastatic Breast Cancer 
 

Breast cancer is the second leading cause of cancer related mortality in North America with 

a 99% 5-year survival rate for localized disease (stage I) that drops to 85% for regional 

disease (stages II-III), and further drops to a dismal 26% when the disease is metastatic 

(stage IV) at the time of diagnosis [1]. Breast cancer metastasis occurs when cells leave the 

original breast tumour, travel through the circulation and spread to other organs, most 

commonly the brain, bone, lung and liver [2]. 

 

Clinically, breast cancer can be divided into three main subtypes: 1) those expressing the 

estrogen receptor alpha (ER+), which typically also express the progesterone receptor 

(PR+), 2) those that overexpress human epidermal growth factor receptor 2 (HER2+) and 

3) those that do not express any of the three markers termed “triple negative” breast cancers 

(TNBC) [3-6]. More recently, five additional molecular subtypes of breast cancer have 

been identified as a result of advancements in gene expression profiling. These include 1) 

luminal A (ER+, with low proliferation signatures), 2) luminal B (ER+, with high 

proliferation signatures), 3) basal like, 4) HER2+ enriched, and 5) normal breast-like. 
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Additionally, the Claudin-low subtype was identified and characterized as having low 

expression of Claudins 3, 4 and 7 [7], enriched for mesenchymal markers [8], and often a 

triple-negative phenotype. Each subtype has been shown to have different clinical features 

including common sites of metastasis, treatment response and overall survival [9-10]. 

 

1.2.1 Brain Metastasis 
 

Breast cancer is the second most likely cancer to metastasize to the brain, estimated to be 

present in 0.41% of all breast cancer patients at the time of diagnosis [11-12]. Brain 

metastases can occur in all breast cancer patients; however, patients with triple negative 

and HER2+ breast cancer have a significantly higher incidence of brain metastasis than 

other breast cancer subtypes. A study by Jin and colleagues found that approximately one 

third of patients with TNBC and HER2+ breast cancer will develop brain metastases 

throughout the course of their disease [13]. Other studies have reported brain metastasis 

incidence rates of up to 50% for HER2+ breast cancer patients [14]. Furthermore, TNBC 

patients have a worse prognosis after developing brain metastases, with a shorter median 

survival time than in patients with other subtypes of breast cancer including HER2+ [13]. 

In this thesis, we utilize mouse models of TNBC and HER2+ breast cancers that 

metastasize to the brain. 

 

1.2.2 Metastatic Colonization 
 

Cancer metastasis has been shown to be a very inefficient process with the primary tumour 

shedding a high number of CTCs and very few going on to form overt metastases [15]. 

Experimental studies have shown that approximately 0.01% of cells injected into the 
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circulation will develop into metastases, with the majority of cells being destroyed by either 

the immune system or hemodynamic forces [16]. For metastatic cancer cells to successfully 

colonize the brain, they must survive within the vasculature, arrest in the microcirculation, 

and extravasate into the brain parenchyma. While many cancer cells will successfully 

execute these initial steps to get into the brain, survival outside the vasculature and 

adaptation to the surrounding tissue are both extremely inefficient steps, as they require 

sufficient oxygen and nutrients prior to any new tumour vasculature being formed [17-18].  

 

1.2.3 Dormancy 
 

Cancer cells that successfully colonize distant organs have three potential cell fates: 1) 

proliferation to form metastases, 2) cell death or 3) cell dormancy. Cancer cell dormancy 

is when a cancer cell goes into a quiescent state, remaining viable but not actively 

proliferating. A cancer cell can remain in a dormant state until it is triggered to become 

proliferative again. The factors that influence a cancer cell’s ability to escape dormancy 

remain fairly unclear but are likely to contribute to cancer recurrence [19-21]. 

 

Importantly, there are currently no definitive markers to identify dormant cancer cells in 

vivo, which makes the study of cancer cell dormancy very challenging. Previous work has 

included ex vivo studies that confirm the absence of both proliferative and apoptotic 

markers to suggest a state of dormancy, as well as the retention of imaging agents to exploit 

nondividing from dividing cell populations in vivo [22]. In 2002, Naumov and colleagues 

showed that breast cancer cells can be labeled with fluorescent nanospheres and imaged 

with intravital microscopy. They defined dormant cells as those that retain their fluorescent 

label over time in vivo, as proliferative cells lose their label through cell division and 
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become undetectable. They found a large proportion of cells persisted as dormant cancer 

cells and were able to confirm viability by recovering the tissue and showing these cells 

were capable of returning to a proliferative state both in culture and in vivo. Similarly, 

groups including ours have shown the retention of iron oxides can be used to longitudinally 

visualize nonproliferative cancer cells with cellular MRI technologies. This technique is 

further discussed in the subsection “Cellular MRI” [23-25]. 

 

1.2.4 Breast Cancer Recurrence 
 

In many cases, women presenting with only detectable primary tumours, and whose initial 

treatment was deemed successful, can relapse many years following initial treatment [26]. 

In a study by Dent et al., it was found that patients with TNBC had a significantly increased 

likelihood of cancer recurrence compared to those with other subtypes. However, the time 

of recurrence is also different between subtypes, with TNBC patients having an increased 

risk of recurrence at 1 to 3 years following diagnosis, that drops after 3 years, and patients 

with other subtypes having a fairly steady risk of recurrence throughout the entire follow 

up period [27].  In addition to dormancy reawakening, this may be a consequence of 

increased intra-tumoural heterogeneity in TNBC. Previous work has shown that primary 

TNBC can be very clonally diverse among patients with the same stage of cancer and that 

distinct sub-clones may be capable of maintaining homeostatic balance between clonal 

populations and thus, enhancing tumour growth [28]. However, intra-tumoural 

heterogeneity is not commonly considered in clinical practice. Patients are typically treated 

based on the hormone receptor status of their primary tumour, and metastatic sites 

(especially the brain) are not always biopsied for biomarker testing. As a result, cancer 
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recurrence may be attributed to treatment resistance of tumours that no longer carry the 

biomarkers/mutations that were present in the original tumour as well as the presence of 

dormant cells that are not effectively treated with common chemotherapeutic drugs that 

target proliferating cells [29]. This calls for a better understanding of cancer cell dormancy, 

the mechanisms of metastasis, and proactive treatments targeted at eliminating both 

dormant cancer cells and genetically diverse metastases. 

 

1.2.5 Treatment of breast cancer 
 

Most breast cancer patients will receive some form of surgery throughout the course of 

their disease. Surgical intervention is performed for a number of reasons including 

removing cancerous tissue (breast conserving surgery or mastectomy), investigative 

purposes (lymph node biopsy), breast reconstruction surgery, or to relieve symptoms 

associated with advanced cancer [30]. Often after breast conserving surgery or 

mastectomy, radiation therapy will be performed to lower the chance of the cancer 

returning in the breast and/or at distant sites. Alternatively, radiation therapy may be used 

to treat metastases in other parts of the body such as the bone or brain [31-32]. For those 

with hormone receptor positive breast cancers (ER- or PR- positive), hormone therapy is 

typically recommended as a way to systemically treat cancer cells throughout the body. 

For these cancers, high estrogen levels help the cancer cells grow and thus, most therapies 

work by lowering or preventing estrogen from acting on cancer cells. Many breast cancer 

patients may also receive some form of chemotherapy (i.e., doxorubicin, cisplatin, 

paclitaxel) throughout the course of their disease. Neoadjuvant chemotherapy is often used 

to try to shrink a tumour prior to surgery while adjuvant chemotherapy can be used to kill 
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off any remaining cells that may have been left behind during surgery or to lower the risk 

of cancer recurrence [33]. 

 

1.2.6 Treatment of brain metastasis 
 

While many of the above treatment options have shown to be effective in treating breast 

tumours, current therapies often fail at a time when metastatic disease is already present 

[34-35]. Treatment of breast cancer brain metastases typically involves a combination of 

surgery with radio- and/or chemotherapy. Treatment plans often depend on the number of 

metastases within the brain, whereby patients having multiple lesions typically receive 

whole brain radiotherapy treatment (WBRT), while surgery and stereotactic radiosurgery 

(SRS) are feasible options for patients with 1-3 metastases and an otherwise good 

prognosis. In WBRT, high energy beams are applied to the entire brain in efforts to kill 

multiple metastases throughout. However, in doing so, there is the potential to damage 

healthy, non-cancerous tissue and WBRT is associated with cognitive impairment [31-32]. 

Alternatively, SRS can deliver precise and targeted radiation in fewer, high dose 

treatments, sparing healthy surrounding tissue [36].  

 

Chemotherapy is often used in addition to WBRT, surgery or SRS to further decrease the 

chances of cancer recurrence. However, chemotherapy also presents some challenges in 

treating brain metastases. This is due to the highly selective barrier that surrounds the 

capillaries within the brain, known as the blood brain barrier (BBB), that allows entry of 

small molecules (hormones, nutrients etc.) but restricts entry of larger molecules such as 

toxins or bacteria. As a result, the BBB is typically very good at preventing most 
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chemotherapeutics from getting into the brain at an effective dose [29, 37]. Previous studies 

have shown that brain metastasis from breast cancer involves mediators such as 

cyclooxygenase (COX-2) and epidermal growth factor receptor (EGFR) to enhance 

extravasation through non-fenestrated capillaries [38]. When a cancer cell extravasates into 

the brain, the protective cells that make up the surrounding vasculature are compromised, 

and the BBB becomes known as the blood-tumour barrier (BTB).  While the BBB in a 

healthy brain prevents many therapeutics and contrast agents from diffusing out of the 

circulation, the BBB/BTB can be disrupted (naturally or drug induced) in metastases 

resulting in “leaky” tumours that have enhanced permeability [39]. As a result, imaging 

agents such as gadolinium chelates that do not typically cross the BBB in a healthy brain, 

have been adapted in the clinic to effectively image permeable tumours with magnetic 

resonance imaging (MRI). This technique is further discussed in the subsection “MRI of 

cancer”. Unfortunately, relying on BBB/BTB permeability for drug delivery has not been 

as successful, with common breast cancer drugs such as doxorubicin and trastuzumab 

showing effective treatment of extracranial metastases but not brain metastases [29, 38]. In 

recent years, there has been some development in small molecule therapies including 

capecitabine and lapatinib however, drug uptake has shown to be extremely variable [40].  

 

1.3 Mechanisms of metastasis 
 

Since metastasis is responsible for the majority of cancer related deaths, research has been 

focused on gaining a better understanding of the underlying mechanisms that regulate 

cancer metastasis in breast cancer as well as other cancer types. One group of potential 

mechanisms studied have suggested a relationship between the primary breast tumour and 
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the growth of secondary tumours in the body [41-67]. This thesis is focused on two of these 

concepts: concomitant tumour resistance (CTR) whereby the primary tumour restricts the 

growth of secondary tumours; and concomitant tumour enhancement (CTE) whereby the 

primary tumour stimulates secondary tumour growth (Figure 1.1).  
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Figure 1.1 Schematic of concomitant tumour resistance vs. concomitant tumour 

enhancement: CTR occurs when an existing tumour inhibits the growth of secondary 

tumours throughout the body. As a result, surgical resection of the primary tumour 

can lead to an abrupt acceleration of distant metastases. Conversely, CTE occurs 

when an existing primary tumour accelerates the growth of secondary tumours such 

that surgical resection can lead to regression of metastases. 
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1.3.1 Concomitant tumour resistance 
 

The phenomenon of concomitant tumour resistance (CTR) occurs when a host bearing a 

primary tumour inhibits the growth of secondary tumours throughout the body. The clinical 

relevance of CTR has been observed in patients where the removal of a primary tumour is 

followed by an abrupt acceleration of residual metastatic disease, suggesting the primary 

tumour mitigates the continued growth of secondary tumours [41-45]. For example, El 

Saghir and colleagues reported a case of non-small cell lung cancer whereby the patient, a 

43-year old male, had tumour recurrence and accelerated growth following a minor trauma 

to the skull bone. The authors suggest the unusual growth may be a result of dormant cancer 

cells that were triggered by a new environment of stimulating factors following injury [45]. 

 

A number of hypotheses have been proposed to explain the CTR phenomenon. The first 

was by Ehrlich and Tyzzer in 1905 who proposed the “athrepsia theory”, whereby nutrients 

that are necessary for secondary tumour growth are consumed by the primary tumour, 

restricting metastatic progression prior to resection [46]. They first observed this 

phenomenon in a rat sarcoma model, where the growth of one tumour was able to inhibit 

the growth of a subsequently injected tumour in the same animal. This theory was later 

supported by Marie and Clunet, who found a dramatic increase in the frequency of distant 

visceral metastases when a primary tumour was partially resected in mice in comparison 

to the number of spontaneous lesions that occur from an intact primary tumour [47]. In 

1913, Tyzzer similarly found that Japanese waltzing mouse tumours that were partially 

excised led to larger metastases compared to control mice not undergoing tumour resection 

[48]. This study was considered further support for the athrepsia hypothesis. 



 

 12 

 

The immunological hypothesis, coined “concomitant immunity” was originally proposed 

by Bashford et al., suggesting the growth of a tumour generates an anti-tumour immune 

response that is capable of preventing the growth of small secondary metastases [49]. This 

explanation has been supported by numerous preclinical studies using chemically or virally 

induced immunogenic murine tumour models [50-51]. For example, Franco and colleagues 

demonstrated in mouse models of bone and breast cancer that there may be two separate 

peaks of concomitant resistance that occur throughout tumour development. The first peak 

is caused only by small immunogenic tumours and is associated with a T-cell dependent 

immune reaction, while the second peak was found to be independent of tumour 

immunogenicity and caused by the presence of a serum factor in tumour bearing animals 

[51]. Similarly, Kirstein et al., demonstrated the ability to inhibit the growth of 

experimental lung metastases through reduction of circulating platelets and tumour 

associated thrombi in a mouse model of melanoma. Additionally, they restored platelet 

numbers and were able to re-establish tumour associated thrombus formation and 

experimental metastasis [52]. 

 

In addition, others have suggested the primary tumour can produce anti-proliferative and/or 

anti-angiogenic molecules into the circulation that indirectly limit the growth of secondary 

implants [53-57]. For example, O’Reilly et al, have shown that the systemic administration 

of angiostatin is capable of efficiently blocking neovascularization and thus, the growth of 

lung metastases in mouse models of cancer [56]. Ruggerio and colleagues also reported 

that serum from tumour bearing mice exhibited anti-proliferative properties that were 
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proportional to the size of the primary tumour as well as the relative amount of concomitant 

resistance observed [57]. The serum factors responsible for inhibition of secondary tumour 

growth were later identified as meta- and ortho-tyrosine (M- and O-tyrosine), two 

uncommon tyrosine isomers [58]. Mechanistic studies have since related the anti-tumour 

effects produced by these tyrosine isomers with inhibition of mitogen-activated 

protein/extracellular signal-regulated kinase pathway as well as inactivation of STAT3, 

which may induce a state of cancer cell dormancy [59]. 

 

1.3.2 Concomitant tumour enhancement 
 

In addition to CTR, concomitant tumour enhancement (CTE) also exists, whereby the 

presence of a primary tumour stimulates the growth of secondary tumours [60-62]. This 

was first observed by Ando and colleagues in studying a mouse model of fibrosarcoma. 

They found that animals with a growing subcutaneous tumour in the hindlimb developed 

significantly more lung metastases after secondary inoculation of intravenously injected 

cancer cells compared to control animals. Interestingly, they found that the growth of an 

intramuscular tumour at a distant site within the same animals could be prevented by the 

growth of an existing primary tumour [60]. This is the first reported case of CTR and CTE 

co-existing in the same animals. Similarly, Janik et al, found a tumour bearing host is first 

protected and then made more susceptible to the development of metastases. They showed 

that the number of experimental metastases in the lungs was highest in animals bearing the 

oldest primary tumour (day 28), however, a moderately sized tumour (day 16) caused fewer 

metastases than control mice without a primary tumour suggesting an initial inhibitory 

CTR effect [61]. 
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Other groups have suggested it is the ratio between the size of the primary and the 

secondary implant that determines whether CTR or CTE occurs. Bruzzo et al., 

demonstrated that a high ratio between the mass of the primary tumour relative to the mass 

of the secondary tumour can lead to CTR, while a low ratio can lead to a CTE effect [62]. 

More recently, McAllister and colleagues showed that osteopontin that is released into the 

circulation by the primary tumour is capable of promoting the growth of otherwise poorly 

growing implants. They demonstrated an activation of stromal cell precursors caused by 

osteopontin, consequently making it easier for cancer cells to recruit them and initiate 

growth [63]. Additionally, a few clinical cases of CTE have been reported whereby a 

nephrectomy for renal cell carcinoma is followed by a suspected regression of hepatic 

and/or pulmonary metastases [64-67]. 

 

Despite the relevance of CTR and CTE, clinical evidence of each remains lacking due to 

the fact that investigation depends on the presence of a growing primary tumour which 

often does not coincide with clinical treatment plans. Many groups have studied CTR and 

CTE in various experimental animal models; however, most of these studies have evaluated 

metastatic lesion growth using endpoint histology. Parts of this thesis focus on the 

development and application of longitudinal molecular imaging tools to noninvasively 

study CTR and CTE in mouse models of breast cancer metastasis. 
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1.3.3 Tumour self-seeding and/or self-homing 
 

As described above, in the traditional theory of metastasis, cancer cells can leave the 

original tumour and unidirectionally seed metastases in nodes and/or distant sites. 

However, in 2006, Norton and Massague suggested CTCs that are shed from the primary 

tumour may also return to, and grow in, the tumour of origin and other established lesions. 

This fairly new idea of multidirectional metastasis was termed tumour “self-seeding” or 

“self-homing” and has since been shown to occur in animal models of human breast, colon 

and melanoma cancer [68-69]. 
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Figure 1.2 Schematic of tumour self-homing: Tumour self-homing or self-seeding 

occurs when cancer cells are shed from an established tumour (primary or distant 

metastases) and travel through the circulation to return to and grow at the original 

tumour site.  
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The concept of tumour self-homing has been shown to involve both the recruitment 

capabilities of the original tumour as well as the migratory or “seeding” potential of the 

CTCs themselves. Firstly, Carmaliet and Jain have shown that the leaky vasculature 

associated with an established tumour may permit the seeding and survival of cancer cells 

more easily than at a new site [70]. While one of the rate-limiting steps of unidirectional 

metastasis is adaptation to distant organs, CTCs may not need further adaptation to initiate 

growth in the microenvironment of their source tumour. This hypothesis was further 

supported by work from Kim and colleagues showing that tumours can become efficiently 

seeded by CTCs derived from a secondary tumour implant, distant metastases, or systemic 

injection, suggesting the primary tumour has the ability to recruit CTCs. They further 

attributed these findings to the cytokines, IL-6 and IL-8, that are produced by the primary 

tumour and act as chemoattractants to efficiently recruit CTCs [69].  More recently, Vilalta 

and colleagues have shown that radiation of tumour cells produces granulocyte-

macrophage colony stimulating factor (GM-CSF) that can also act to enhance the 

recruitment of CTCs to irradiated sites. They provide evidence suggesting radiation 

induced cancer self-homing may act as a potential mechanism for cancer recurrence and, 

similar to studies by Kim et al., they show consistently increased self-homing irrespective 

of the route of CTC administration [71]. 

 

The characteristics of CTCs that contribute to their ability to self-home have also been 

studied. Kim et al., found that markers such as collagenase-1, fascin-1, and CXCL1 act as 

mediators of CTC infiltration into mammary tumours. The expression of these genes in 

primary breast tumours has been associated with priming of cancer cells for the seeding of 
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the lungs and brain as well as with relapse in cancer patients. Additionally, they provide 

evidence that tumour self-homing selects for a highly aggressive population of CTCs 

whereby, metastatic cell populations are more efficient seeders than their respective 

parental populations [69]. 

 

1.3.4 Development of Self-Homing Cancer Cells as Therapeutic 

Vectors 
 

In the last decade, several groups have begun to exploit the self-homing properties of 

cancer cells in order to use them as delivery vehicles for anti-cancer therapeutics [72-76].  

In 2004, Raykov et al, demonstrated the remarkable ability of metastatic cancer cells to 

efficiently deliver oncolytic viruses to pre-established tumours. Using a rat model, they 

show hepatoma cells can be successfully employed as H-1 parvovirus carriers to target and 

treat lung metastases [72]. Another group similarly showed that the limitations associated 

with systemic delivery of oncolytic virus can be overcome by using “carrier” cancer cells 

to shield virions from defense mechanisms. Furthermore, they showed that when cancer 

cells carrying oncolytic virus are administered systemically, lung tumour burden is 

significantly reduced and survival is prolonged compared to naked virion injection [73].  

 

Other groups have engineered self-homing tumour cells to express suicide genes which can 

transfer death signals to neighbouring cancer cells in pre-established lesions. Freeman and 

colleagues demonstrated this by engineering cancer cells to express the gene for herpes 

simplex virus thymidine kinase (HSV-TK). HSV-TK expressing cells are sensitive to 

killing by the drug ganciclovir (GCV) and also produce a “bystander effect” whereby 

adjacent HSV-TK negative cells can be killed. Freeman et al., showed that survival was 
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significantly improved when mice with a pre-existing HSV-TK negative tumour were 

injected with secondary HSV-TK positive cells followed by GCV treatment compared to 

control animals [74]. Garcia-Castro et al., also showed the value of using suicide gene 

therapy in treating metastatic disease. They transduced human breast (MDA-MB-231) or 

prostate (PC3) cell lines to express the therapeutic gene cytosine deaminase (CD) that 

converts the nontoxic pro-drug, 5 fluorocytosine (5’FC) into an active chemotherapeutic 

5-fluorouracil (5’FU). They found that tumour-bearing mice injected with CD expressing 

cells and treated with the pro-drug had significantly less primary tumour burden as well as 

fewer metastases in both the lungs and kidneys compared to control mice [75]. These 

suicide genes offer a unique opportunity to use cancer cells as a therapeutic carrier by 

enabling both a safety mechanism of self-induced toxicity as well as an efficacious 

bystander effect capable of killing surrounding non-engineered cells.  

 

Dondossola et al., have also shown that cancer cells can be engineered to express 

therapeutic genes that influence the tumour microenvironment. In a 2016 study, they 

showed that cancer cells can be genetically modified to produce and release tumour 

necrosis factor (TNF), a cytokine known to have anti-tumour effects. In mouse models, 

they successfully demonstrated that cancer cells engineered to express TNF homed to pre-

established tumours, released TNF and consequently damaged the neovascular 

endothelium and induced cancer cell death [76]. 

 

While the current approaches have shown promise, there are some important limitations of 

using cancer cells to carry therapeutic cargo. First and foremost, is the safety aspect of 
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introducing new cancer cells into a subject in efforts to treat them. The use of suicide genes 

has significantly improved the safety profile of using cancer cells as delivery vehicles 

however, further development is needed to enable noninvasive monitoring of their long-

term fate in vivo. Likewise, there is a need for imaging tools to determine the self-homing 

efficiency of engineered CTCs prior to implementing them as a therapeutic carrier. Parts 

of this thesis explore the use of imaging reporter genes to enable noninvasive imaging to 

be used to evaluate the self-homing efficiency and therapeutic efficacy of engineered CTCs 

in vivo. 

 

1.4 MRI of Cancer  
 

Non-invasive imaging technologies can be used for a number of reasons along the course 

of cancer progression. This can include screening and early detection methods (e.g., 

mammography), visualizing the spread and severity of disease, as well as monitoring for 

signs of cancer recurrence (active surveillance). Furthermore, imaging technologies play a 

pivotal role in cancer treatment including for biopsy needle guidance, surgical/radiotherapy 

treatment planning and evaluating responses to most therapies. A number of different 

imaging modalities are used both clinically and pre-clinically for imaging cancer, including 

optical imaging, ultrasound (US), photoacoustic imaging (PAI), computed tomography 

(CT), magnetic resonance imaging (MRI), single photon emission computed tomography 

(SPECT), and positron emission tomography (PET). Among these, MRI is one of the most 

employed technologies as it provides excellent soft tissue contrast, high resolution images, 

and uses non-ionizing radiation [77]. 

 



 

 21 

In the clinic, conventional MRI can be used to assess a variety of tumour characteristics 

including tumour size, tumour perfusion, cancer cellularity, tumour metabolism and 

tumour pH [78-85]. Among these, contrast enhanced T1-weighted MRI is considered the 

most accurate detection method for clinical brain tumours. In preclinical cancer models, 

MRI cell tracking can be employed as a way to track specific cell populations in vivo. 

Cellular MRI enables longitudinal tracking of both transplanted and endogenous cell 

populations depending on the strategy that is used to label cells with contrast agents such 

as iron (iron-based cellular MR) or perfluorocarbons (Fluorine-19 MR) [23, 24, 86, 87]. 

This thesis utilizes iron-based cellular MRI for tracking metastatic breast cancer cells in 

the mouse brain. 

 

1.4.1 Basic principles of MRI 
 

In conventional MRI, an image is generated from hydrogen atoms (1H or protons) within 

the tissues of our body, predominantly water and fat. A large magnetic field (B0) causes 

the protons to align within the body and a radiofrequency (RF) transmitter is applied to 

excite protons which results in a change in the orientation of the net magnetization vector. 

When the RF pulse is turned off, the protons dephase and relax back to equilibrium, 

generating energy that creates detectable MR signal [88]. Since cancerous tissues have 

different relaxation rates (T1 and T2) compared to healthy tissues they can generate 

different contrast, and therefore, anatomical MRI is a valuable tool to visualize changes in 

size, spread and composition of tumours throughout the body [89].  
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1.4.2 Generating contrast 
 

In an MR image, the most common forms of contrast weightings are dependent on proton 

density (PD), spin-lattice relaxation time (T1), or spin-spin relaxation time (T2). In PD-

weighted images, regions of hyperintensity represent regions with high numbers of 

hydrogen atoms, while T1-weighted contrast is reflective of how long it takes protons to 

realign with B0 after an RF pulse is applied. Tissues that have a short T1 such as fat appear 

bright in a T1-weighted image, while tissues with a long T1 like water or air appear dark. 

Contrast in T2-weighted images depends on the rate of dephasing (spin-spin relaxation) in 

a particular voxel following an RF excitation. In T2-weighted images, tissues with a long 

T2, like fluids, appear bright, while tissues with a short T2, such as fat, appear dark [88]. 

Contrast agents can be used to further enhance signal in an area of interest by shortening 

the T1 or T2 times of surrounding tissues. Paramagnetic agents such as gadolinium (Gd) 

and manganese (Mn) based agents act to shorten T1, resulting in bright or hyperintense 

areas in a T1-weighted image, while superparamagnetic agents such as iron-oxides shorten 

T2, resulting in signal loss or hypointense regions [88-90]. This thesis involves the use of 

iron-oxide nanoparticles. 

 

RF coils are applied to transmit and/or receive the energy necessary to acquire an MR 

image. There are two types of coil configurations categorized as either surface or volume 

coils, whereby the size, geometry and efficiency of the coil impacts the amount of signal 

that can be acquired. While surface coils have shown to have increased sensitivity, the 

signal drops off significantly the farther away from the coil one tries to image. In contrast, 

volume coils enable a more uniform signal that is independent of depth, making them the 
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more common choice for imaging deep tissues such as the brain [91-92]. In this thesis, we 

used a custom-built insert gradient as well as a birdcage mouse head RF volume coil to 

allow for preclinical imaging on a clinical MR system. This unique MR setup is discussed 

further in Chapters 2 and 3.  

 

The two main types of pulse sequences that can be used to generate an MR image are called 

spin echo (SE) and gradient echo (GE) sequences. SE imaging typically produces high 

quality images; however, can take relatively long to acquire. Alternatively, GE sequences 

have shorter TR and take less time to acquire but are susceptible to field inhomogeneities. 

In GE sequences, the signal intensity in the image is T2* weighted, which includes signal 

loss due to T2 relaxation as well as magnetic field inhomogeneity [88].  

 

In our lab, we have used the balanced steady state free precession (bSSFP) iron-sensitive 

MR pulse sequence to detect iron labeled cells (also known as FIESTA, TrueFISP and 

balanced FFE) [88]. bSSFP is a type of GE sequence with T2/T1-weighted image contrast. 

It is one of the most signal to noise ratio (SNR) efficient sequences as a result of refocusing 

the magnetization at the end of each repetition time (TR), generating a “steady state” in 

both the transverse and longitudinal planes [88]. Using a bSSFP sequence, iron labeled 

cells appear as regions of signal void. 

 

1.4.3 Iron-based Cellular MRI 
 

To increase the conspicuity of cells with MRI, one can label them with iron-oxide 

nanoparticles, which are available in different sizes including micron sized iron oxide 



 

 24 

(MPIO) nanoparticles (diameter  1um), superparamagnetic iron oxides (SPIOs; ~ 50-150 

nm in diameter), and ultra-small superparamagnetic iron oxides (USPIOs;  50 nm in 

diameter) [93-94]. There are two main techniques to label cells with iron-oxide 

nanoparticles. Firstly, cells can be pre-labeled in culture with MPIOs, SPIOs, or USPIOs 

prior to transplantation into a subject (Figure 1.3). Many cultured cell types readily take up 

these iron oxides by simple coincubation [86,90,95,96] or can be encouraged to internalize 

iron particles using transfection agents, electroporation or magnetofection [98-100].  

Labelling cells with MPIO offers substantially more iron content per cell and thus, 

improves MR detectability to low cell numbers, even single cells [86,90,95,96,101]. 

Alternatively, SPIOs and USPIOs can also be injected systemically for in vivo or “in situ” 

cellular labeling. In this instance, these particles are preferentially taken up by phagocytic 

cells of the reticuloendothelial system including macrophages and other immune cell types 

[87]. MPIO particles are limited to preclinical studies as their polymer matrix composition 

is not biodegradable. Ferumoxytol (Feraheme), a USPIO used for iron replacement therapy 

is being investigated for off-label use as an MR contrast agent [102-103].  
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Figure 1.3 Ex vivo iron labeling of cancer cells: Cancer cells can be labeled ex vivo with 

iron oxides prior to intracardiac injection into the beating mouse heart. These cells will 

travel through the circulation and arrest in distant organs including the brain where 

they can be visualized with cellular MRI. 
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Iron based cellular MRI has been applied to a number of different disease models to track 

different cell types including immune cells, stem cells, pancreatic islets and cancer cells 

[23, 24, 87, 97, 105-118]. While in its early years, there were concerns about iron having 

an effect on cell function, very few detrimental effects have been observed. However, in 

2011, Rohani and colleagues found that MPIO labeled dendritic cells showed differences 

in activation and maturation compared to unlabeled cells, though they reported no 

difference in cell viability [111]. Importantly, previous work has shown that MPIO and 

SPIO labeling of cancer cells does not cause significant changes in cell viability, 

proliferation, apoptosis or metastatic efficiency [23, 86, 105]. 

 

1.4.4 Cellular MRI of Cancer  
 

Cellular MRI has shown to be an invaluable tool to study the fate of cancer cells in vivo, 

enabling noninvasive monitoring of both proliferative and nonproliferative cells [23, 24, 

87, 96, 104-105, 114-115]. The main advantage of using iron-based cellular MRI to track 

cancer cells in vivo, is that it has high sensitivity. In 2006, Heyn et al., demonstrated for 

the first time, that solitary cells can be visualized in the mouse brain using in vivo cellular 

MRI. By labelling a macrophage cell line in culture with SPIO, they demonstrated an iron 

loading efficiency of approximately 60 picograms of iron per cell and consequently, were 

able to visualize single iron-labeled cells in the brain with MRI [105]. Similarly, they 

showed this technique was also possible with metastatic breast cancer cells such that, 

tracking the fate of individual cancer cells in the brain was feasible. In these studies, MDA-

MB-231BR cells, a highly brain metastatic variant of human MDA-MB-231 cells, were 

loaded with iron, injected into the left ventricle of mice, and monitored with bSSFP-based 
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cellular MRI over time. After a month of tumour development, they showed that cells that 

had arrested in the brain had three distinct cell fates: 1) signal voids that were present after 

injection but disappear for the remainder of the study, deemed “transient”, 2) proliferative 

cancer cells that appear as signal voids after injection and later appear as areas of 

hyperintensity, representing tumours, and 3) nonproliferative cancer cells that retain their 

iron label over time, deemed “dormant”.  Furthermore, they confirmed these findings by 

co-registering discrete signal voids (representing iron-labeled cells) in MR images with 

confocal microscopy images confirming the ability to visualize individual fluorescent cells 

with cellular MRI [86]. 

 

1.4.5 Limitations of cellular MRI 
 

The application of cellular MRI to study disease has shown tremendous growth in the last 

decade. However, there has not been nearly as much work done in tracking cancer cells 

compared to other cell populations such as immune, stem or therapeutic cell types [98-100, 

106-112, 115-117]. This is likely attributed to the iron label being diluted during rapid 

cancer cell division, leading to a limited timeframe for detection of proliferating cancer 

cells. Since the iron is stored in the cell body, the amount of iron-oxide will get divided 

between daughter cells through each cell division, or lost to the extracellular environment, 

until eventually there is no longer enough iron per cell to be detected with MRI. This, 

however, can also be beneficial in exploiting non-dividing cell populations, for example, 

dormant cancer cells that are not actively dividing and will retain their iron label over time 

[23, 24]. 
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Iron-based cellular MRI also lacks specificity compared to other cell tracking techniques. 

While the iron creates a distinct void and optimal contrast in anatomies such as the brain, 

there are many naturally dark or hypointense areas throughout the body that are difficult to 

distinguish from iron labeled cells, such as the lungs. In some cases, this limitation can be 

avoided by acquiring a pre-and post-iron image and determining the change in signal 

between the two acquisitions [87]. In addition, past studies have shown that iron oxides 

have a high R1 relaxivity that can lead to an increase in signal by using a T1-weighted 

pulse sequence with minimum echo time. Positive MR contrast has been demonstrated with 

both USPIOs and SPIOs and is becoming a common application for anatomies that 

naturally appear dark [118-120]. 

 

Another important limitation that needs to be considered when using iron-based cellular 

MRI is the difficulty in quantification [120-121]. Since the void created by the iron oxide 

is larger than the cell itself, it is quite difficult to determine the exact number of cells in a 

given area when many cells are present. Regardless, a number of different approaches have 

been developed to try to estimate the number of cell present by indirectly measuring the 

amount of signal loss produced by iron labeled cells. This has included counting the 

number of signal voids, measuring the percentage of black pixels in a particular region of 

interest, or measuring the amount of contrast produced by iron labeled cells known as 

fractional signal loss [87, 109, 120-123]. Others have also used T2/T2* relaxation rates to 

estimate the amount of iron in a given area [124]. 
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1.5 Reporter gene imaging 
 

In the last few decades, there has been significant progress in developing methods to stably 

track proliferating cell populations in vivo over time. Unlike iron-oxide nanoparticles that 

can be diluted through cell division, reporter gene based tracking involves engineering cells 

to stably express a transgene that makes a product that can be detected with a particular 

imaging modality. The inserted transgene will be passed to daughter cells, and thus will 

permit longitudinal tracking of both dividing and non-dividing cell populations. Reporter 

genes have most commonly been used for fluorescence microscopy studies of cultured 

cells. In 2008, the discovery and development of fluorescent reporter genes (GFP and its 

variants) was recognized with the chemistry Nobel prize to Drs. Roger Tsien, Osamu 

Shimomura and Martin Chalfie. However, in the last few decades with the development of 

whole-body small animal scanners, optical fluorescence and bioluminescence imaging 

(BLI) reporters have been used extensively for tracking various cell types in small animal 

models [125-131]. Moreover, since the early 2000s there has been many reporter genes 

developed for tracking of cells with clinically-relevant imaging modalities such as PET, 

SPECT, MRI and photoacoustic imaging [132-138]. Importantly, a landmark paper 

recently described the use of reporter gene-based tracking of therapeutic T cells in glioma 

patients, marking the first use of reporter genes to track a cellular therapeutic in the clinic 

[139]. 
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1.5.1 Bioluminescence imaging 
 

Bioluminescence imaging (BLI) was first described by Contag and colleagues in 1995 

[140]. Since then, many groups have used BLI to track a variety of cell types in small 

animal models. BLI has been adapted by cancer researchers as a valuable cell tracking tool 

due to its high sensitivity, relatively low cost, and ability to differentiate between dead and 

viable cell populations. Furthermore, BLI has high specificity as the signal acquired is a 

direct measure of engineered cells [131]. 

 

To track transplanted cells, cultured cells are typically engineered to stably express a 

luciferase transgene, most commonly Firefly luciferase (FLuc) or Renilla luciferase 

(RLuc), which reacts with the corresponding substrate (D-luciferin for Firefly luciferase or 

h-coelenterazine for Renilla luciferase). The enzymatic reaction produces light as a product 

of enzyme-based oxidation of the substrate and photons are collected by a highly-sensitive 

cooled charge coupled device (CCD) camera that converts photons into electrons after 

striking silicon wafers [141] (Figure 1.4). To generate an image, CCD cameras spatially 

encode the intensity of incident photons into electrical charge patterns and the signal 

generated can be overlaid onto a white light image, an X-Ray or CT image for anatomical 

reference. Firefly luciferase is most commonly used since the reaction also requires ATP 

and oxygen to produce light and as a result, only viable cells produce signal. It also has a 

red-shifted emission spectrum compared to Renilla luciferase so allows for better light 

penetration out of deep tissues [130-131]. In 2004, Bhaumik and colleagues showed that 

Firefly and Renilla luciferase have orthogonal substrates, demonstrating a lack of cross 
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reactivity and thus, the ability to monitor the fate of two engineered cell populations 

independently in the same animal [142]. In this thesis, we use both a red-shifted Firefly 

luciferase from Luciola italica and Renilla luciferase 8 from Renilla reniformis to track 

two different cancer cell populations in vivo using longitudinal BLI. 
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Figure 1.4 Schematic of BLI protocol: Luciferase expressing cells are implanted into 

the animal prior to imaging. Engineered cells will react with the corresponding 

substrate and produce light as a product of oxidation. Emitted photons are collected 

by a cooled CCD camera.  
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1.5.2 BLI of cancer models 
 

Perhaps the most commonly used application of BLI is to track the growth, dissemination, 

and viability of cancer cells in mice during both normal tumour progression and in response 

to treatment(s). Tumour burden of subcutaneous tumours has traditionally been monitored 

using manual caliper measurements. While this technique is quick and relatively 

inexpensive, it however does not account for areas of necrosis or edema within the tumour, 

which can accumulate upon treatment without any change in tumour size. Additionally, 

caliper measurements are only relevant to subcutaneous tumour models, which are not as 

relevant as orthotopic models, and caliper measurements are also not a feasible option for 

assessing metastatic tumour burden in deep tissues. As an alternative, many groups have 

shown that BLI can provide rapid throughput measurements of tumour growth and 

regression in animals over time [143-157]. For example, Jenkins and colleagues 

demonstrate the ability to monitor both primary and spontaneous metastatic tumour burden 

noninvasively with BLI. They implanted luciferase expressing colon cancer cells 

subcutaneously into mice that consistently produce metastases in both the lungs and lymph 

nodes. They were able to show correspondence between the frequency and size of 

metastases detected in vivo with ex vivo imaging of excised lungs and lymph nodes [148].  

 

BLI has also been employed to evaluate treatment response in vivo. Rehemtulla et al., 

showed that the survival of FLuc expressing gliosarcoma cells in rats can be noninvasively 

monitored following treatment with 1,3-bis (2-chloroethyl)-1-nitrosourea (BCNU). They 

compared serial anatomical MRI tumour volume measurements with BLI photon flux over 

time and demonstrate that both modalities yielded similar results, supporting the use of 
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BLI as an effective tool for evaluating treatment response in living subjects [152]. 

Furthermore, in recent years it has been shown that FLuc BLI may be superior to other 

imaging modalities in assessing treatment response since it can uniquely provide 

information on cellular viability. While imaging modalities including MRI and CT are 

useful for measuring changes in tumour volume following treatment, cancer cell death may 

occur much sooner than changes in tumour size. Thus, the high sensitivity of BLI as well 

as the ability to quantify only viable tumour cells, makes it a powerful complementary tool 

to evaluate early changes in tumour viability. In breast cancer models, BLI has been used 

extensively to evaluate the treatment effects of numerous therapies including but not 

limited to combretastatin A4 phosphate, trastuzumab, lapatinib, rapamycin, and 

cyclophosphamide [149-150] 

 

1.5.3 Limitations of BLI 
 

While BLI has significant value as a noninvasive cell tracking technology, it has some 

important limitations to consider. The most detrimental in studying a cancer metastasis 

model is the depth limitation. While BLI signal can be overlaid onto a brightfield or X-Ray 

image for anatomical reference, it is a two-dimensional modality and does not offer the 3-

dimensional high-resolution images that MRI can [131, 132, 143]. Currently, there is not a 

way to determine the depth of a tumour within the body based on the signal acquired with 

most BLI systems. In recent years, three dimensional (3D) BLI systems have been 

developed with the capability to overlay BLI signal with a 3D CT image set; however, due 

to the increased cost, time required to acquire such a dataset, and the ability to image only 

one animal at a time during 3D image collection, these systems have not been readily used. 
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BLI signal relies on the availability of substrate and in the case of FLuc, other co-factors 

such as ATP, magnesium, and oxygen. This can produce a false negative effect in the areas 

that the substrate cannot easily accumulate into such as the brain, or in tumours that may 

have compromised vasculature, again limiting access to substrate [147]. In addition, since 

BLI is a measure of light output there can be an attenuation effect such that light is absorbed 

or scattered by tissue, with hemoglobin being the main absorber of light within tissues 

[141]. This can be seen in subcutaneous cancer models whereby scabbing forms on the 

surface of large tumours and BLI signal is seen surrounding the scab [152]. This is more 

confounding in metastatic models, due to the inability to readily visualize areas of 

hemorrhage or necrosis that may be limiting light output.  Thus, the use of several imaging 

modalities together may overcome the inherent limitations of using only a single modality. 

 

1.5.4 Benefits of multimodality imaging 
 

As mentioned, multimodality imaging may provide a solution to overcome the limitations 

of using each modality independently. Technologies such as BLI and PET are commonly 

used to collect information on the biology of cells or groups of cells (their viability, tumour 

metabolism, etc.) while modalities such as MRI and CT can provide valuable anatomical 

information. Additionally, cellular or molecular MRI can enable visualization of molecular 

biomarkers, cells, or therapeutic drugs. By using a combination of these technologies, we 

can improve and expand the scope of information available regarding a certain disease state 

[146, 151, 157].  

 



 

 36 

In a recent study by Le et al., the utility of combing BLI with multiparametric MRI 

(mpMRI) was investigated for characterizing an orthotopic rat model of glioblastoma. 

They showed that T1 and T2 weighted MR measurements of tumour volume continued to 

increase up until endpoint (day 18), while on average, BLI signal peaks at day 11 and then 

plateaued. Immunostaining confirmed the presence of both necrotic and hypoxic regions 

in the majority of tumours, which is likely responsible for the decrease in BLI signal at 

later timepoints [151]. Similarly, Fritz and colleagues demonstrated the advantages of 

combing micro CT with BLI to evaluate early tumour-bone interaction in a mouse model 

of tumour osteolysis. They found luciferase expressing tumour cells could be detected with 

BLI as early as two days post implantation while the first clinical signs did not appear until 

three weeks post injection. Furthermore, BLI measurements revealed an exponential 

increase in BLI signal after two weeks, while micro CT measurements suggested a decrease 

in bone density and bone mineral content as early as seven days [157]. These studies 

highlight the value in using complementary modalities to obtain a more complete picture 

of disease progression in preclinical models. Parts of this thesis explore the advantages of 

combining cellular MRI and BLI in tracking the fate of metastatic cancer cells in vivo. 

 

1.6  Purpose of Thesis 
 

This thesis uses MRI and BLI techniques to study the mechanisms that influence breast 

cancer metastasis. The objectives of this work were to develop a multimodality imaging 

model to better visualize the stages of the metastatic cascade noninvasively using a mouse 

model of breast cancer brain metastasis and to apply these imaging tools to study two 
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potential mechanisms of cancer metastasis: concomitant tumour enhancement and tumour 

self-homing. 

 

1.6.1 Hypotheses 
 

1. Bioluminescence imaging will complement our current iron-based cellular MRI tools 

by allowing rapid throughput screening and longitudinal measurements of cell 

viability.  

2. In an immune competent mouse model of breast cancer metastasis, the presence of a 

primary tumour will inhibit the growth of metastasis. 

3. Systemically administered CTCs will preferentially home to and effectively treat 

previously established disseminated breast cancer metastases throughout the mouse 

body. 

 

In Chapter 2, cellular and conventional MRI techniques were combined with serial BLI to 

noninvasively track the fate of single breast cancer cells from their initial arrest in the brain 

to the formation of overt tumours. This chapter was published in Scientific Reports 

(Parkins KM, et al., “A multimodality imaging model to track viable cancer cells from 

single arrest to metastasis” Scientific Reports. October 2016). 

 

In Chapter 3, we used MRI and BLI to investigate the impact of a primary breast tumour 

on the growth of secondary tumours in an immune competent mouse model of breast cancer 

metastasis. In this work, we demonstrated concomitant tumour enhancement whereby the 

presence of the primary tumour stimulated the growth of secondary metastases both in and 
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outside of the brain. This work was published in Scientific Reports (Parkins KM, et al., 

“Multimodality cellular and molecular imaging of the impact of a primary tumor on 

metastatic growth in a syngeneic mouse model of breast cancer brain metastasis” 

Scientific Reports. June 2018)  

 

In Chapter 4, using dual-luciferase BLI, we demonstrated the ability of experimental CTCs 

to efficiently home to and treat primary tumours and disseminated breast cancer metastases 

throughout the mouse body. This chapter is in preparation for submission. 
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Chapter 2 
 

 

2 A multimodality imaging model to track viable breast cancer 

cells from single arrest to metastasis in the mouse brain 
 
 

 

Purpose: Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but 

cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) 

measures cellular viability, and thus we explored combining these tools to provide a more 

holistic view of metastatic cancer cell fate in mice. Methods: Human breast carcinoma 

cells stably expressing Firefly luciferase were loaded with iron particles, injected into the 

left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. Results: The 

number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated 

with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a 

loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 

28 also correlated with BLI signal. Conclusion: Overall, BLI complemented our sensitive 

cellular MRI technologies well, allowing us for the first time to screen animals for 

successful injections, and, in addition to MR measures of cell arrest and tumor burden, 

provided longitudinal measures of cancer cell viability in individual animals. We predict 

this novel multimodality molecular imaging framework will be useful for evaluating the 

efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade. 
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2.1 Introduction 
 

Breast cancer is the second most common cancer in both American and Canadian women1. 

The majority of breast cancer-associated mortality is due to metastasis; the dissemination 

of cancer cells from the primary tumour to other parts of the body, rather than the presence 

of a primary tumour. Therefore, the clinical need to better understand and prevent breast 

cancer metastasis is high.  

 

A number of in vivo imaging modalities can be used to measure tumour size, location and 

metastatic burden such as positron emission tomography (PET), ultrasound (US), magnetic 

resonance imaging (MRI), computed tomography (CT), single photon emission computed 

tomography (SPECT) and optical imaging. Among these, MRI continues to be one of the 

most employed modalities for studying cancer due to its high resolution and soft tissue 

contrast without the use of ionizing radiation2. 

 

Cellular MRI is an established tool to non-invasively visualize and track specific cell 

populations in vivo. This technique uses iron oxide nanoparticles to label cells in culture or 

in situ, enhancing their detectability by MRI3. The presence of intracellular iron causes a 

distortion in the magnetic field which leads to signal loss in iron-sensitive images3. 

Typically, millions of intracellular ultrasmall iron oxide particles (USPIOs) are needed to 

be detected by MRI, however Shapiro et al. were the first to show that single, micron-sized 

iron particles (MPIOs) can be loaded into cells and allow for single cell detection4. Wu et 

al. showed that these particles can also be used to label in situ for successful tracking of 

immune cells5. Although the amount of iron within these particles is significantly more 
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than in the USPIOs, many cellular MRI studies have found that there is minimal impact on 

cell function or phenotype6-8. While we and others have used cellular MRI extensively in 

various scenarios, this technology has its limitations. First, is its limited ability to 

definitively differentiate between dead and viable cells. Furthermore, when a cell dies the 

iron label may be transferred to phagocytic bystander cells leading to false positive imaging 

results9. This was demonstrated by Winter et al. who injected both dead and living iron-

labeled human epicardium-derived cells (EPDCs) into the infarcted heart of immune 

compromised mice10. The aim was to distinguish viable from dead cells by following the 

hypointensity of signal voids over time. They found that a difference could not be seen 

between signal intensity, void number, size or localization of live cells that migrate to the 

infarcted area, and dead cells that are taken up by macrophages or other bystander cells10. 

Thus, a complementary imaging tool to cellular MRI that could provide direct measures of 

cellular viability over time would enable a more complete picture of cell fate in preclinical 

models.   

 

Similar to cellular MRI technology, bioluminescence imaging (BLI) with the reporter 

Firefly luciferase (FLuc) has been adapted by many researchers as a valuable cell tracking 

tool in preclinical models of cancer metastasis. The intensity and location of the 

bioluminescent signal can provide insights into the biology of neoplastic cells, with respect 

to their biodistribution and proliferative potential. FLuc BLI requires adenosine 

triphosphate (ATP) as a cofactor and so the BLI signal is directly proportional to the 

number of viable cells at a particular location11. This has been shown to provide 

corresponding information to tumour volume measurements with more structure-based 
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imaging such as CT or MRI. This can be crucial in models of treatment response where the 

size or morphology of a tumour may not change but the amount of viable tissue within the 

tumour will be altered12. Similarly, when a tumour naturally becomes necrotic as it 

becomes larger, volume measurements can overestimate the number of viable cancer 

cells12. Furthermore, BLI is a highly sensitive technology that can enable the visualization 

and quantification of cancer cells at a stage where tumours are not yet detectable by these 

other relatively less affordable and less sensitive imaging modalities13.  Given its high 

sensitivity and ability to provide measures of cellular viability, in this study we evaluated 

whether BLI can be used in conjunction with cellular MRI to follow cancer cell fate from 

their initial arrest in the brain to the formation of overt tumors in a well-established mouse 

model of breast cancer metastasis. We demonstrate that BLI complements well with our 

sensitive cellular MRI technologies, allowing us for the first time to get direct longitudinal 

measures of whole-brain single cell arrest, tumour volumes, and cancer cell viability, 

providing a more holistic view of transplanted cancer cell fate in living subjects. 

Importantly, combining of these imaging technologies should be broadly applicable to 

numerous preclinical models of experimental metastasis.  

 

 

2.2 Materials & Methods 
 

2.2.1    Cell Labelling and Transduction Procedure 
 

Brain seeking human breast carcinoma cells (JIMT1-BR3) were engineered to stably co-

express FLuc and GFP following transduction with an LVP020 lentiviral vector 

(GenTarget Inc., CA, USA). These cells were transduced and generously gifted by Dr. 
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Patricia Steeg’s lab. Cells were maintained in DMEM containing 10% FBS at 37°C and 

5% CO2. For iron labeling, 2 x 106 cells were plated in a 75cm3 flask, supplemented with 

DMEM containing 10% FBS, and allowed to adhere for 24 hours. Then cells were 

incubated for an additional 24 hours with 10mL media containing 25g/mL of MPIO beads 

(0.9 um in diameter, 63% magnetite, labeled with Flash Red; Bangs Laboratory, Fishers, 

IN, USA). Cells were washed once in the flask with Hanks balanced salt solution (HBSS) 

and then trypsinized with 0.25% Trypsin-EDTA. The cells were then collected and 

thoroughly washed three more times with HBSS to remove unincorporated MPIO before 

cell injection and in vitro evaluation. 

 

2.2.2    In Vitro Studies  
 

To evaluate the relationship between cell number and BLI signal, cells were seeded in 24-

well plates in 0.5 mL of growth medium at concentrations of 5 x 103, 1 x 104, 2 x 104 and 

5 x 104 cells per well. Cells were allowed to adhere for 24 hours and then 5L of D-luciferin 

(30mg/mL; Perkin Elmer) was added to the growth medium 5 minutes prior to BLI using 

a hybrid optical/Xray scanner (In Vivo FX PRO; Bruker formerly Kodak). 

 

To evaluate if MPIO labeling effects BLI signal, cells were seeded in 24-well plates in 

2mL of growth medium with 1 x 104 cells per well. Cells were allowed to adhere for 24hr 

and then 25g/mL of MPIO was added to the growth medium for half of the wells. Cells 

were then incubated for an additional 24hr before 5L of D-luciferin (30mg/mL) was 

added for BLI. 
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2.2.3    Animal Model 
 

The animals were cared for in accordance with the standards of the Canadian Council on 

Animal Care, and under an approved protocol of the University of Western Ontario’s 

Council on Animal Care. To deliver MPIO-labeled FLuc/GFP+ cells into the brain, 

1.75x105 cells were injected into the left ventricle of 12 female nu/nu mice (6 –7 weeks 

old; Charles River Laboratories, Wilmington, MA, USA). Cells were suspended in 0.1mL 

of HBSS and image-guided slow injections into the left ventricle were performed using a 

Vevo 2100 ultrasound system (VisualSonics Inc.). 

 

2.2.4    Animal Work Design 
 

Figure 2.1 illustrates the 4-week timeline of our in vivo multimodality imaging model. 

Twelve mice received intracardiac injections of 1.75x105 MPIO-labeled JIMT1-BR3-

FLuc/GFP+ cells on day 0. BLI signal was detectable one-hour post injection and was used 

to differentiate between mice that had a successful intracardiac injection and mice that did 

not. Mice that did not have successful injections were excluded from the remainder of the 

study. Mice that had successful injections moved onto day 0 MRI four hours post injection. 

These mice were then imaged with both BLI and MRI on days 8, 21 and 28.  After endpoint 

imaging, one mouse was sacrificed for cryofluorescence imaging and the rest were 

sacrificed for histology. 
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Figure 2.1 Experimental design for in vivo imaging: Illustration of MRI, BLI and 

fluorescence cryo-imaging of metastases in mice with intracardiac injection of human 

breast carcinoma cells. Original image courtesy of Chelsey Gareau. 
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2.2.5    BLI Procedure 
 

All in vivo BLI was performed on a hybrid optical/Xray scanner (In Vivo FX PRO; Bruker 

formerly Kodak). Mice were anesthetized with isofluorane (2% in 100% oxygen) using a 

nose cone attached to an activated carbon charcoal filter for passive scavenging. 

Approximately one hour following cell injection whole body BLI imaging was used to 

screen mice for successful intracardiac injection on day 0. Only mice with BLI signal from 

the brain proceeded to MRI (i.e., only mice with successful intracardiac injections). On 

days 0, 8, 21 and 28, mice received 150 L of D-luciferin (30mg/mL) intraperitoneally and 

BLI images were captured every 5 minutes for up to 35 minutes.  

 

2.2.6    MRI Procedure 
 

All MRI scans were performed on a 3T GE clinical MR scanner (General Electric) using a 

custom-built gradient coil and a custom-built solenoidal mouse brain radiofrequency coil 

3,14. Mice were anesthetized with isofluorane (2% in 100% oxygen) using a nose cone 

attached to an activated carbon charcoal filter for passive scavenging and images were 

obtained using a 3D balanced steady state free precession (bSSFP) imaging sequence [Fast 

Imaging Employing Steady State Acquisition (FIESTA) on the GE system] which has been 

previously optimized for iron detection15. Mice were imaged on days 0, 8, 21 and 28. The 

scan parameters for days 0 and 8 were: repetition time (TR) = 8ms, echo time (TE) =4ms, 

bandwidth (BW) = 41.7kHz, flip angle (FA) = 35 degrees, averages (NEX)= 2, phase 

cycles=4, matrix = 150x150. Total scan time was approximately 15 minutes per mouse. 

For days 21 and 28, a longer scan time was required for tumour detection and so imaging 
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parameters were: TR=10ms, TE=5ms, BW= 12.5kHz, FA=35 degrees, NEX=2, phase 

cycles=8, matrix= 150x150. Total scan time was approximately 35 minutes per mouse.  

 

2.2.7    Image Analysis 
 

Brain BLI signal was measured using region-of-interest (ROI) analysis using the Bruker 

Molecular Imaging Software. An ROI was drawn around the brain, the mean photon flux 

(photons/second/mm2) was measured, and the peak value over the 30-minute imaging 

session was used for each mouse at each time point. MRI images were analyzed using 

OsiriX software (Pixmeo, SARL, Bernex, Switzerland). The number of dark pixels within 

the total brain volume was also determined from day 0 images; The brain was outlined as 

a region of interest where a threshold value is set based on the mean value of signal void 

2 standard deviations. The total number of black pixels under this threshold value was 

obtained from the entire tumour volume signal intensity histogram. For days 0 and 8 

images, signal voids were also manually counted in every 8th slice. The sum of all slices 

was then multiplied by 4 to account for a standard signal void that goes through an average 

of two slices. For days 21 and 28, brain metastases were manually traced by a single 

observer. 3D tumor volumes were reconstructed using the OsiriX volume algorithm from 

the manual segmentation of a region of interest around each tumor boundary in every 

bSSFP image slice for each mouse. 

 

2.2.8    Histology 
 

At endpoint, mice were sacrificed by pentobarbital overdose and perfusion fixed with 4% 

paraformaldehyde. Mouse brains were removed and cryopreserved in ascending 
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concentrations of sucrose (10, 20, and 30% w/v) in distilled water for 1 hour each. Brains 

were immersed in optimal cutting temperature (OCT) compound, oriented in a sectioning 

plane parallel to that of MRI, and frozen using liquid nitrogen. Contiguous 10-m frozen 

sections were collected and stained using the following: hematoxylin and eosin (H&E) to 

visualize tumour morphology, Firefly luciferase antibody (Abcam Inc., Cambridge, 

MA,USA; product # ab21176, dilution factor 1:1000) to identify luciferase positive cells, 

and Perl’s Prussian blue (PPB) staining to visualize iron. Stained sections were imaged 

using a Zeiss 510 laser scanning confocal microscope and GFP-positive cancer cells were 

also imaged. 

 

2.2.9    Cryo-Fluorescence Imaging 
 

After endpoint MR imaging (day 28), one mouse was sacrificed by pentobarbital overdose 

and then flash frozen in OCT freezing medium by liquid nitrogen immersion.  The entire 

mouse was sectioned and optically imaged every 50μm using a CryoVizTM (Bioinvision 

Inc., Cleveland, OH) cryo-imaging device. Block-face images were collected with an in 

plane resolution of 10.5 x 10.5 μm2.  Brightfield and fluorescent images were acquired, 

stitched together and visualized using proprietary software (Bioinvision Inc). 

 

2.2.10    Statistics 
 

We evaluated the effect of MPIO labeling on BLI signal in the JIMT1-BR3/FLuc-GFP cell 

line using a two-tailed t-test. Pearson correlational analysis of cell number to photon flux 

in culture was performed as well as on in vivo BLI and MRI data on days 0 and 28. For all 

tests, a nominal p-value <0.05 was considered statistically significant.  
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2.3 Results 
 

2.3.1    In Vitro Studies 
 

Figure 2.2A shows the JIMT1-BR3/FLuc-GFP cell line was efficiently labelled with 

MPIO. The Perl’s Prussian blue stain shows intracellular iron in blue within the breast 

cancer cells that appear pink. JIMT1-BR3/FLuc-GFP cells were seeded at 5x103, 1x104, 

2x104, and 5x104 cells per well and BLI was performed.  A significant positive correlation 

was seen between the number of JIMT1-BR3/FLuc-GFP cells seeded per well and BLI 

signal (R2 =0.928). More specifically, as cell number increased, BLI signal also increased 

(Figure 2.2B, 2.2C). There was no significant difference in BLI signal detected in cells that 

were labeled with MPIO (M= 2.00 x 107  5.17 x 106 p/s/mm2) and cells that were not 

labeled (M= 2.18 x 107  5.21 x 106 p/s/mm2) (ns, p value =0.82; Figure 2.2D, 2.2E). This 

suggests that MPIO labelling has no significant quenching effect on BLI signal. These 

results are from three independent experiments with three replicates of each condition.  
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 Figure 2.2 In vitro experiments: a) Perl’s Prussian blue stain identifies iron labelled 

cells in blue (scale bar x 100). b) JIMT1BR3-Fluc/GFP+ cells seeded at various 

concentrations c) A strong linear correlation is seen between cell number and BLI 

signal; R2 =0.928 d) MPIO labeled JIMT1BR3-Fluc/GFP+ cells (L) and non-labeled 

JIMT1BR3-Fluc/GFP+ cells (R). e) There was no significant difference in BLI signal 

detected in cells that were labeled with MPIO and cells that were not labeled (ns, p 

value =0.82). These results are representative of three experiments with three wells of 

each condition. 
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2.3.2    In Vivo Studies 
 

 

Figure 2.3 shows image data from day 0. On day 0, iron labeled cells were visualized as 

signal voids by MRI, distributed throughout the brain (Figure 2.3A). On average, 609 98 

discrete, signal voids per brain were quantified throughout the brains in MRI images from 

the nine animals that had successful injections of 1.75x105 MPIO-labeled cells. As 

mentioned, BLI signal was also detected in the brain of these nine mice on day 0 (Figure 

2.3B). Three of twelve mice did not have a successful intracardiac injection and showed 

signal in other organs such as the lungs or abdominal cavity but not in the brain. These 

mice were excluded from the remainder of the study. Figure 2.3C shows that the number 

of signal voids measured on day 0 by MRI showed a significant correlation with BLI signal 

in the brain on day 0 (R2=0.75, p < 0.01). Percent black pixels were also measured from 

day 0 MRI images with the average percent black pixels within the whole brain being 

3.35%; and showed a significant correlation with day 0 BLI signal in the brain (R2=0.74, 

p < 0.01) (Figure 2.3D).  
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Figure 2.3 Day 0 Imaging: a) single arrested cells could be visualized as signal voids 

(blue arrows) in day 0 MR images. b) BLI signal was detectable in the brain on day 

0. c) A significant correlation was found between total number of signal voids 

measured from day 0 MRI scans and day 0 BLI signal in the brain (R2=0.75, p < 0.01). 

d) A significant correlation was found between total percentage of black pixels 

measured from day 0 MRI scans and day 0 BLI signal in the brain (R2=0.74, p < 0.01).  
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Figure 2.4A shows imaging data over time and illustrates the MRI and BLI signal loss and 

recurrence over time with tumour development. Notably, on day 8, there were few to no 

voids seen by MRI and no detectable BLI signal in the brain; this is because the majority 

of cancer cells die and are cleared and those that remain are below our current BLI detection 

threshold. On day 21, three of nine mice showed BLI signal in the brain as well as small 

tumours detected by MRI. The remaining six mice did not have detectable tumours with 

either MRI or BLI at day 21. On day 28, these three mice had increased BLI signal and 

larger brain metastases detected by MRI. 

 

When we graph BLI signal over time, we found that the signal dropped at day 8 when the 

cells were cleared but returned again when tumours started to form by day 21 (Figure 2.4B). 

A one-way ANOVA was performed and BLI signal in the brain was found to be 

significantly different at all time points (p < 0.0001).  
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Figure 2.4 MRI and BLI over time a) Representative BLI (top) and MRI images 

(bottom) of one mouse imaged on days 0, 8, 21 and 28; blue arrow shows signal void 

progressing into tumour b) BLI signal in the brain over time. This graph is 



 

 77 

representative of 8 mice that made it to endpoint. A one-way ANOVA was performed 

and all time points were found to be significantly different (p < 0.0001). 
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Figure 2.5 shows image data from day 28. One mouse had to be sacrificed after day 21 

imaging and so day 28 data is representative of eight mice. By day 28, brain metastases 

appeared as regions of hyperintensity by MRI and BLI signal was detected in the brains of 

all eight mice that had made it to endpoint (Figures 2.5A, 2.5B). In BLI images, six out of 

eight mice also showed metastases in areas other than the brain. Total brain tumour burden 

measured by MRI at endpoint (day 28) showed a significant correlation with BLI signal in 

the brain on day 28 (R2=0.80, p < 0.01) (Figure 2.5C). 
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Figure 2.5 Day 28 Imaging: a) Brain metastases (blue arrows) appear as region of 

hyperintensity in day 28 MR images. b) Tumours were also detected using BLI on 

day 28. c) A significant correlation was found between total brain tumour burden 

measured by MRI at endpoint (day 28) and BLI signal in the brain (R2=0.80, p < 0.01). 
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2.3.3    Histology and Whole-mouse Cryo-fluorescence Imaging 
 

Mice were sacrificed 28 days after intracardiac cell injection. Dual fluorescence 

microscopy of immunostained sections demonstrated that the location of luciferase positive 

cells (labelled with red fluorescence) corresponded with the location of GFP expression 

(seen in green) (Figure 2.6). These dual labelled cells also corresponded well with tumours 

seen in MR images suggesting that metastases are composed of the FLuc-GFP positive 

cells. In one mouse, the presence of tumours was also confirmed using cryo-fluorescence 

which has the ability to perform whole-body brightfield and fluorescence imaging 

throughout the entire mouse. Cryo-imaging allowed for the detection of metastases at day 

28 in both the brain and other areas of the body (Figure 2.7). Some of the metastases seen 

with cryo-imaging could be matched to MR tumours but not all of them; this is likely 

because some were too small to be detected with MRI. Whole body cryo-imaging also 

allowed for the localization of metastases seen with BLI. Due to light scattering and depth 

limitations, we cannot be certain where within the body the BLI signal is coming from; 

cryo-imaging allows us to further explore a region of signal and find out where exactly the 

tumour is located within the mouse body. 
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Figure 2.6 Fluorescence microscopy and immunohistochemistry: Firefly luciferase 

stain (c,d) green fluorescence protein (a/c low magnification, b/d high magnification) 

e) Corresponding MRI image  f) Merged luciferase and GFP images at high 

magnification; blue arrows show tumour within whole slice image. Scale bars = 

300um 
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Figure 2.7 Cryoviz Imaging: (A) Brightfield image of cryoviz mouse imaged on day 

28 (B) Fluorescence microscopy detects GFP+ brain tumours and body tumours in 

same slice as brightfield image (C) Corresponding day 28 BLI and (D) Whole body 

MRI (E) Brain metastases (blue arrows) in cryo-image and corresponding MRI slice 

in the same orientation. Scale bar = 0.50mm 
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2.4 Discussion 
 

We have previously demonstrated that cellular MRI is a valuable cell tracking tool for 

preclinical investigation of brain metastatic breast cancer. However, it has limited ability 

to differentiate between dead and viable cells. Moreover, MRI can also provide measures 

of tumor volume in mouse models but this can potentially overestimate the number of 

viable cancer cells in those tumors. In this study, we have for the first time combined 

cellular MRI with BLI to provide longitudinal measures of cellular viability and better 

study the entire metastatic cascade, from initial arrest to tumor formation, in a well-

established breast cancer brain metastases mouse model. BLI complemented our cellular 

MRI techniques well, demonstrating for the first time that MR measures of early cell arrest 

are indeed viable cancer cells, that the decrease in MR void number from day 0 to day 8 is 

due to loss of arrested viable cells rather than loss of iron label, and that MR measures of 

brain tumor volumes at day 28 correlate well with BLI measures of cellular viability, 

indicating that tumors are mostly composed of viable cells in this model.  

 

Past studies have found that the left cardiac ventricular delivery of cells is an ideal model 

for monitoring in vivo single cell detection; this is due to the fact that the delivery to a given 

organ is initially proportional to the percentage of cardiac output (%CO) to that organ. In 

this case, the %CO to the brain is ~9.5% and therefore for an injection of 175,000 cells, we 

can expect ~16,625 cells to be delivered to the brain microcirculation16. However, <1% of 

these cells are expected to be retained in the brain by 2 hours post injection16. On average, 

609 98 discrete, signal voids were visualized throughout the brain in day 0 MRI images. 

The MPIO used to label the JIMT1BR3-FLuc/GFP cells affects the MR signal by creating 
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a blooming effect. As a result, a signal void appears much larger than the cell itself; making 

single cell detection feasible. It has been shown that a signal void is usually representative 

of a single cell, however it can also be representative of two or three cells clumped 

together3. Thus, the 400-700 cells we are detecting at day 0 may be closer to 1000 cells. 

 

When compared to other imaging technologies, BLI is often characterized as relatively 

inexpensive, user friendly and highly sensitive. As a result, BLI can be used as a high-

throughput screening tool for cell tracking studies. In this study, we used BLI to screen for 

successful intracardiac injections on day 0. Mice that did not have a successful injection, 

did not have any bioluminescent signal detected in the brain and thus were excluded from 

the study. Prior to developing this model, each mouse would need to undergo a day 0 MRI 

scan to determine if the injection was successful by detecting arrested cells (i.e., signal 

voids). BLI can also be used to guide experimental design as well as predict or evaluate a 

region of interest in less developed animal models. In this study, whole body BLI allowed 

for the detection of metastases at sites that we had not previously detected or evaluated. 

Day 28 BLI images helped to predict suspected organs of metastasis for ex vivo analysis. 

To achieve sufficient resolution to detect iron-labelled cells in the brain, within a suitable 

scan time, only the brain is imaged with MRI and metastases in other parts of the body may 

have been overlooked if they were not prominent. 

 

While MRI and BLI have been used separately as measures of overall tumour burden, 

primarily in models with singular tumours, the concurrent application of BLI and MRI to 

studying the entire process of brain metastasis has not been performed. In this work, BLI 
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allowed for repetitive, non-invasive, whole body imaging and MRI based measurements 

were used to validate BLI measurements of single cell arrest and tumour burden in the 

mouse brain. There was a significant linear relationship between tumour volume measured 

by MRI and light output measured by BLI. Although our MRI based measurements may 

be a result of both dead and live tumour cells, phagocytic bystander cells (for iron 

measurements), and other tumour stromal cells, BLI signal is representative of viable 

tumour cells only. The correspondence between modalities at day 28 suggests that our 

metastases are made up of mostly viable cancer cells at this time point. If we had imaged 

at a later time point the correlation between modalities may become weaker as tumours 

progress and develop a necrotic core. Similarly, if treatment was given, a decrease in viable 

tumour tissue will affect the correlation between our multimodality tumour burden 

measurements. This is an important advantage of BLI when evaluating potential treatment 

paradigms, as a tumour may not look anatomically different in early stages of treatment 

but the amount of viable tissue within that tumour may change.  

 

Cryo-imaging allowed for the detection of fluorescent micrometastases in the brain as well 

as other places in the body. While food in the abdominal cavity creates some 

autofluorescence this may be alleviated in the future using alfalfa-free diets. However, 

tumours detected with cryo-fluorescence imaging that appear to be in the middle right 

abdominal cavity and above the left hindlimb matched well with BLI images and appear 

much brighter than the autofluorescence from the food. Like MRI, the cryo-imaging can 

also allow us to localize and count the number of micrometastases in the brain where as 

the BLI image gives us one individual measure for all combined tumours. Some brain 
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metastases found in MR images matched our cryo-fluorescence images well while others 

appeared too small to be detectable with MRI. 

 

This study demonstrates how a multimodality imaging model that uses both MRI and BLI 

can overcome the limitations of using each modality independently. Although BLI can 

produce a measure of tumour burden within the brain, we are unable to collect information 

on the number, size or distribution of tumours within the region of interest. This can be a 

limiting factor in cancer metastasis models that use BLI only; numerous tumours or 

arrested cells that are close in proximity appear as one large region of signal due to light 

scattering, and at equivalent sizes tumours that are more superficial will appear to be 

brighter than those that are located deeper. In contrast, MRI can detect individual iron-

loaded cells and provide information on tumour 3D location and size. These modalities 

also complement each other at different time points throughout the experiment. Our current 

BLI protocol was not sensitive enough to detect signal in the brain on day 8, even though 

we know there are in fact viable cancer cells there (i.e., tumours formed in the brain and 

signal voids were seen on day 8). Future work using newer luciferase substrates or BLI 

machines with more sensitive CCD cameras could overcome this limitation17, 18. However, 

our cellular MRI technology was able to detect the limited number of cells that persisted 

in the brain on day 8. By day 21 tumours were easily detected by BLI in three of nine mice 

however, these tumours were very small and thus difficult to find with MRI. Tumours with 

minimal burden and MR contrast on day 21 may have been overlooked if BLI signal had 

not predicted metastases prior to MRI imaging. 
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2.5 Conclusion 
 

In this work, we applied multimodality imaging to monitor the growth of metastatic breast 

cancer cells in the brain from single arrested cells to overt tumours. BLI complemented our 

sensitive iron-based cellular MRI technologies well, allowing us for the first time to get 

direct longitudinal measures of whole-brain single cell arrest, tumour burden, and cancer 

cell viability in the brain. Future work will extend these tools for whole-mouse MRI/BLI 

of metastatic burden, which will be extremely valuable for enabling an improved 

understanding of the fate of single cancer cells throughout the body and evaluation of 

current and emerging treatment paradigms. 
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Chapter 3 

 

 

3 Multimodality cellular and molecular imaging of concomitant 

tumour enhancement in a syngeneic mouse model of breast 

cancer metastasis 
 

 

Introduction: The mechanisms that influence metastatic growth rates are poorly 

understood. One mechanism of interest known as concomitant tumour resistance (CTR) 

can be defined as the inhibition of metastasis by existing tumour mass. Conversely, the 

presence of a primary tumour has also been shown to increase metastatic outgrowth, termed 

concomitant tumour enhancement (CTE). The majority of studies evaluating CTR/CTE in 

preclinical models have relied on endpoint histological evaluation of tumour burden. 

Objective: The goal of this research was to use conventional magnetic resonance imaging 

(MRI), cellular MRI, and bioluminescence imaging to study the impact of a primary 

tumour on the development of brain metastases in a syngeneic mouse model. Results: 

Here, we report that the presence of a 4T1 primary tumour significantly enhances total 

brain tumour burden in Balb/C mice. Using in vivo BLI/MRI we could determine this was 

not related to differences in initial arrest or clearance of viable cells in the brain, which 

suggests that the presence of a primary tumour can increase the proliferative growth of 

brain metastases in this model. Conclusion: The continued application of our longitudinal 

cellular and molecular imaging tools will yield a better understanding of the mechanism(s) 

by which this physiological inhibition (CTR) and/or enhancement (CTE) occurs. 
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3.1 Introduction 
 

Breast cancer is the second leading cause of cancer related deaths in North America with 

the majority of deaths due to metastasis, the dissemination of cancer cells from the primary 

tumour to other parts of the body1. One of the most common, as well as most fatal sites of 

metastatic growth for breast cancer patients is the brain, with the incidence of brain 

metastasis increasing and prognosis remaining poor2. Improved knowledge regarding how 

quickly cancer cells disseminate from the primary tumour and the rate of secondary 

metastases development, as well as the mechanisms that control proliferation rate, are key 

to developing new therapies to prevent or halt metastatic growth and prevent cancer 

mortality.  

 

The mechanisms that influence metastatic growth rates are poorly understood. One 

mechanism of interest is concomitant tumour resistance (CTR), which describes the ability 

of the primary tumour to restrict the growth of distant metastases3,4. The relevance of CTR 

has been shown by numerous observations of the removal of a primary tumour being 

followed by an abrupt acceleration of residual metastatic disease. CTR has been observed 

in both breast cancer patients5 and animal models of breast cancer6.  It has also been 

observed in patients with other solid tumour types7,8. Conversely, it has been shown that 

the presence of a primary tumour can likewise increase metastatic outgrowth, a 

phenomenon coined concomitant tumor enhancement (CTE). However, in the clinic, very 

few examples of CTE have been reported with most of them being related to suspected 

regressions of hepatic and/ or pulmonary metastases following nephrectomy for renal cell 

carcinoma9-12. While imaging has been used to describe CTR/CTE effects in patients13, the 
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majority of studies evaluating CTR/CTE in preclinical models have relied on endpoint 

histological evaluation of tumour burden14,15. The application of cellular and molecular 

imaging tools will allow the non-invasive and longitudinal visualization of metastatic 

progression to study CTR/CTE effects in vivo, which will ultimately yield better evaluation 

of putative molecular mechanism(s) by which this physiological inhibition and/or 

enhancement occurs. In turn, this may lead to new anti-metastatic therapeutics aimed at 

these mechanisms and their non-invasive evaluation.  

 

Previously, we applied cellular MRI techniques to study the impact of a primary tumour 

on metastatic outgrowth in an immune deficient mouse model of experimental breast 

cancer metastasis to the brain and demonstrated clear CTR effects in the brain16. Cellular 

MRI involves pre-labeling cultured cancer cells with superparamagnetic iron oxide 

nanoparticles prior to transplantation into mice. This labeling allows transplanted cells to 

be tracked over time with iron-sensitive MRI techniques. Single cell imaging of cancer 

cells arresting in the brain at the time of injection and of non-dividing, iron-retaining cancer 

cells over time is achievable with this technique17. However, limitations of iron oxide based 

cellular MRI are that there is limited ability to differentiate between dead and viable cells, 

that it is possible for iron particles to be transferred to bystander cells such as macrophages 

upon cell death, and that the iron particles are diluted during cell division leading to loss 

of cell detection in proliferative cells. These limitations can be overcome using reporter 

gene based cell tracking tools, since a stably expressed reporter gene is passed on to 

daughter cells and will not be expressed in bystander cells. By engineering cells to express 

a luciferase reporter, bioluminescence imaging (BLI) can provide a direct readout of cell 
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viability in dividing cell populations. Overall, as recently described18, combining our 

highly sensitive cellular MRI tools and BLI yields complementary information on the fate 

of metastatic cancer cells in preclinical models. As others have pointed to a role of the 

immune system in CTR/CTE and differences in primary tumour effects have been seen 

across models of the same cancer type8, the purpose of this study was to apply our 

multimodality imaging tools to study whether CTR/CTE effects are present in the 

syngeneic 4T1 immune competent mouse model of breast cancer metastasis.  

 

3.2 Methods 
 

3.2.1    Cell Labelling and Transduction Procedure 
 

The 4T1-BR5 cells were received from Dr. Patricia Steeg’s lab and engineered to stably 

co-express red-shifted Luciola Italica luciferase (Red-FLuc) and green fluorescent protein 

(GFP) using a commercial lentiviral vector (RediFect Red-FLuc-GFP; PerkinElmer, USA). 

Cells were transduced and FACS sorted based on GFP expression using a FACSAria III 

flow cytometric cell sorter (BD Biosciences). The resultant 4T1BR5-Red-FLuc/GFP cells 

were maintained in DMEM containing 10% FBS and 1% antibiotics, at 37°C and 5% CO2. 

For iron labeling, 2x106 4T1BR5-Red-FLuc/GFP cells were plated, and 24 hours later were 

incubated with 25g/mL of micron-sized superparamagnetic iron oxide (MPIO) beads for 

an additional 24 hours (0.9 m in diameter, 63% magnetite, conjugated with Flash Red; 

Bangs Laboratory, Fishers, IN, USA). Cells were washed three times with Hanks balanced 

salt solution (HBSS), collected and thoroughly washed three more times with HBSS to 

wash off residual unincorporated MPIO before in vitro evaluation or injection into animals. 

 



 

 95 

3.2.2    In Vitro Studies  
 

All in vitro results are from three independent experiments with three replicates of each 

condition. To evaluate the relationship between cell number and BLI signal, 1x103, 5x103, 

1x104, 1.5x105, and 5x105 4T1BR5-Red-FLuc/GFP cells were seeded in each well of 24-

well plates. Twenty-four hours later, 5 L of D-luciferin (30 mg/mL; Syd Labs, Inc., MA, 

USA) was added to the growth medium and BLI images were collected 5 minutes later 

using a hybrid optical/X-ray scanner (IVIS Lumina XRMS In Vivo Imaging System, 

PerkinElmer). BLI signal was measured with region-of-interest (ROI) analysis using 

LivingImage Software (Perkin Elmer). An ROI was drawn around each well to measure 

the average radiance (photons/second/mm2/steradian), and the mean average radiance 

across replicates was determined for each independent experiment. 

 

To evaluate if MPIO labeling influenced BLI signal, 1.25 x 105 4T1BR5-Red-FLuc/GFP 

cells were seeded in each well of a 24-well plate. Twenty-four hours later, 25g/mL of 

MPIO was added for half of the wells. After an additional twenty-four-hour incubation 

period, the media for all wells was replaced with fresh media without iron, 5L of D-

luciferin (30mg/mL) was added for BLI, and BLI signal per well was analyzed as above. 

 

Vybrant MTT proliferation assays were used to evaluate the effects of genetic engineering 

on cell proliferation. 6.25x103 4T1BR5-Red-FLuc/GFP or naïve 4T1BR5 cells were 

seeded in each well of 96 well plates and cells were evaluated 24 and 48 hours later. Twenty 

microliters of MTT solution was added to each well and absorbance at 450nm was 

measured using a microplate spectrophotometer (Fluoroskan Ascent FL, 
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ThermoLabSystems). Cell labeling efficiency was assessed by Perl’s Prussian blue (PPB) 

staining, as previously described19.  

 

3.2.3    Animal Model 
 

Figure 3.1A illustrates the experimental mouse model used in this study. Animals were 

cared for in accordance with the standards of the Canadian Council on Animal Care, and 

under an approved protocol of the University of Western Ontario’s Council on Animal 

Care (2014-026). Six to eight-week-old female BALB/c mice (n=32) were obtained from 

Charles River Laboratories (Willington, MA, USA). Mice received a lower right mammary 

fat pad (MFP) injection of either vehicle (HBSS; Control mice; n=16) or 300,000 unlabeled 

4T1 cells (MFP mice; n=16). MFP tumour growth was evaluated by measurement with 

calipers in two perpendicular dimensions, and the tumour volume was estimated using the 

following formula volume = 0.52 (width)2(length), for approximating the volume (mm3) 

of an ellipsoid 20, 21. MFP tumours grew for either seven days (Small MFP) or 14 days 

(Large MFP) prior to all mice receiving an intracardiac injection of 2x104 MPIO-labeled 

4T1BR5-Red-FLuc/GFP cells in 0.1mL of HBSS. Injections were performed under image 

guidance using a Vevo 2100 ultrasound system (VisualSonics Inc.). 

 

 

 

 

 

 



 

 97 

 

Figure 3.1 Experimental design of animal model: A) Experimental design of animal 

model used for Small and Large MFP experiments B) On day 0, the number of 

discrete signal voids, representing iron-labeled cells, that arrested in the brain on day 

0 as well as brain BLI signal was not significantly different between mice with and 

without a small MFP tumour. C) There were also no significant differences in cell 

arrest for mice with large MFP tumours. D/E) All four groups of mice were not 

significantly different from each other in MRI cell arrest at day 0 as well as BLI signal 

in the brain at day 0.  Data is presented as mean +/- SD.  
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3.2.4    BLI Procedure 
 

BLI was performed on days 0, 7 and 14 for all mice after intracardiac injection using a 

hybrid optical/X-ray scanner (IVIS Lumina XRMS In Vivo Imaging System, 

PerkinElmer). Mice were anesthetized with isofluorane (2% in 100% oxygen) using a nose 

cone attached to an activated carbon charcoal filter for passive scavenging. Anesthetized 

mice received a 150 L intraperitoneal injection of D-luciferin (30 mg/mL) and BLI 

images were captured for up to 35 minutes. On day 0, approximately one hour following 

intracardiac injection, whole body BLI was used to screen mice for successful intracardiac 

injection on day 0 and to measure brain BLI signal. Only mice with brain BLI signal 

proceeded to MRI (i.e., only mice with successful intracardiac injections).  

 

3.2.5    MRI Procedure 
 

MRI was performed on a 3T GE clinical MR scanner (General Electric) using custom-built 

gradient and solenoidal mouse brain radiofrequency coils22,23. Mice were anesthetized with 

isofluorane (2% in 100% oxygen) and images were obtained using a 3D balanced steady 

state free precession (bSSFP) imaging sequence [Fast Imaging Employing Steady State 

Acquisition (FIESTA) on the GE system], which has been previously optimized for iron 

detection24. Small MFP and control mice were imaged on days 0, 7, and 14 and large MFP 

and control mice on days 0 and 14 after intracardiac injection. The scan parameters for day 

0 were: repetition time (TR)=8 ms; echo time (TE)=4 ms; bandwidth (BW)=41.7 kHz; flip 

angle (FA)=35 degrees; averages (NEX)=2; phase cycles=4; matrix=150x150; field-of-

view (FOV)= 1.5; resolution: 100 x 100 x 200 m; and scan time= 19.25 minutes. For days 
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7 and 14, a longer scan time was required for tumour detection using the following imaging 

parameters: TR=10 ms; TE=5 ms; BW=12.5 kHz; FA=35 degrees; NEX=2; phase 

cycles=8; matrix=150x150; FOV=1.5; resolution=100 x 100 x 200 m; scan time=36.76 

minutes. In addition, large MFP mice and corresponding control mice (n=16), a 3D bSSFP 

imaging sequence was used to obtain high resolution MR images of the whole mouse body 

on day 9 using a solenoidal whole-body radiofrequency coil. Sequence parameters were as 

follows: TR=6.3 ms; TE=3.1 ms; BW=31 kHz; FA=35 degrees; NEX=2; phase cycles=8; 

matrix=300 × 150; FOV = 60 × 30 mm; resolution=200 × 200 × 200 μm3; and scan time= 

22 minutes. One large MFP mouse and one control mouse also had whole body MR scans 

at endpoint (day 14) to allow us to match MR and BLI detectable metastases to whole-

mouse cryo-fluorescence images as described below. 

 

3.2.6    Image Analysis 
 

Brain BLI signal was measured with region-of-interest (ROI) analysis using LivingImage 

Software (Perkin Elmer). An ROI was drawn around the brain, the average radiance 

(photons/second/mm2/sr) was measured, and the peak value over the 35-minute imaging 

session was used for each mouse at each time point. Whole body BLI signal was measured 

the same way as listed above with the ROI drawn around the whole mouse body. MRI 

images were analyzed using OsiriX software (Pixmeo, SARL, Bernex, Switzerland). For 

days 0 and 7 images, total brain signal void number, representing iron labeled cancer cells, 

was determined by manually counting voids in every MR slice. For day 14 images, brain 

metastases were manually traced in every bSSFP image slice for each mouse and 3D 

tumour volumes were reconstructed using the OsiriX volume algorithm.  
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3.2.7    Cryo-Fluorescence Imaging 
 

After endpoint MR imaging (day 14), one large MFP and one control mouse were 

sacrificed by isoflurane overdose and then flash frozen in OCT freezing medium by liquid 

nitrogen immersion. The entire mouse was sectioned and optically imaged every 50-μm 

using a cryo-fluorescence imager (CryoVizTM; Bioinvision, Inc., Cleveland, OH). Block-

face images were collected with an in-plane resolution of 10.5 × 10.5 μm2. Brightfield and 

fluorescent images were acquired, stitched together and visualized using proprietary 

software (Bioinvision, Inc). 

 

3.2.8    Histology 
 

At endpoint, the majority of mice (n=26) were sacrificed by isoflurane overdose and 

perfused with 4% paraformaldehyde via the left ventricle. Mouse brains were removed and 

cryopreserved in ascending concentrations of sucrose (10, 20, and 30% w/v) for 24 hours 

each. Brains were immersed in optimal cutting temperature (OCT) compound, oriented in 

a sectioning plane parallel to that of MRI, and frozen using liquid nitrogen. Contiguous 10-

m frozen sections were collected and select sections were stained with hematoxylin and 

eosin (H&E). Stained sections were imaged using an Invitrogen EVOS FL Auto Cell 

Imaging System and histological images were manually matched to MR slices using 

anatomical landmarks such as the ventricles and MR-visible tumours. Fluorescence images 

of 4T1BR5-Red-FLuc/GFP cancer cells were also collected on the same microscope and 

matched to MR slices. Spleens were collected and weighed. Contiguous 10-m paraffin 

embedded sections were collected, select sections were stained with H&E, and imaged 
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using a Zeiss 510 laser scanning confocal microscope. 

3.2.9    Statistics 
 

A power analysis was performed using G*Power software to determine the appropriate 

sample size for this study. All statistics were calculated using GraphPad Prism 4.  A 

Shapiro-Wilk normality test found that some of our in vitro data was not normally 

distributed and thus, a non-parametric test (Mann-Whitney) was performed on proliferation 

experiments. Pearson’s rank correlation was used to determine a relationship between cell 

number and BLI signal. Student’s two-tailed unpaired t test was used to compare the other 

in vitro experiments as well as between animal groups. A nominal p-value less than 0.05 

was considered statistically significant.  

3.3 Results 
 

3.3.1    In Vitro Studies 
 

4T1-BR5 cells were 85.4% transduced with a lentiviral vector and sorted to stably co-

express Red-FLuc/GFP (Suppl. 1A/B). The resultant 4T1BR5-Red-FLuc/GFP cells were 

efficiently (>90%) labeled with MPIO prior to intracardiac injection (Suppl. 1C). There 

was no significant difference in BLI signal detected in 4T1BR5-Red-FLuc/GFP cells that 

were labeled with MPIO (2.14 x 107  1.37 x 106 p/s/mm2/sr) compared to those that were 

not labeled (2.48 x 107  1.80 x 106 p/s/mm2/sr) (Suppl. 1D). Furthermore, a significant 

positive correlation was detected between the number of 4T1BR5-Red-FLuc/GFP cells and 

BLI signal (R2 = 0.98, p<0.01; Suppl. 2A). There were no differences in cellular 

proliferation detected between naïve 4T1-BR5 and 4T1BR5-Red-FLuc/GFP cells (Suppl. 
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2B). 4T1-BR5-Red-Fluc/GFP cells also showed no significant change in Red-Fluc 

expression over multiple passages in culture (Suppl. 2C).  

 

3.3.2    In Vivo Studies 
 

We first looked at imaging data from the day of intracardiac injection (Day 0) shown in 

Figure 3.1. Iron labeled cells were visualized in MR images as discrete signal voids 

distributed throughout the mouse brain (Figure 3.1B, 3.1C). Across all 32 mice with a 

successful intracardiac injection, an average of 98  5 discrete signal voids per mouse were 

quantified throughout the brains in MR images. The number of discrete signal voids on day 

0 was not significantly different between mice with (100 7 voids) and without (121  10 

voids) a small primary MFP tumour (Figure 3.1D). Similarly, the number of discrete signal 

voids on day 0 was not significantly different between mice with (86  5 voids) and without 

(87  6 voids) a large primary MFP tumour (Figure 3.1D). BLI signal was also detected in 

the brain of these thirty-two mice on day 0 (Figure 3.1B, 3.1C). We found no significant 

difference in brain BLI signal between mice with (4.4x104  8.5x103 p/s/mm2/sr) and 

without (4.7x104  7.8 x103 p/s/mm2/sr) a small primary MFP tumour, nor with (2.9x104  

6.8x103 p/s/mm2/sr) or without (3.3x104  8.7x103 p/s/mm2/sr) a large primary MFP tumour 

(Figure 3.1E).   

 

All MFP tumors were manually assessed with caliper measurements throughout the study. 

We found a significant difference in Small MFP tumour volume between days 0 (time of 

intracardiac injection; 138.8 12.11 mm3) and 14 (endpoint; 666.4 20.89 mm3; p<0.001). 
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Similarly, we found a significant difference in Large MFP tumour volume between days 0 

(308.4  9.14 mm3) and 14 (817.9  15.12 mm3).  

 

For mice in the small MFP experiment we looked at imaging data over time and Figure 3.2 

illustrates the MRI and BLI signal loss over time representing viable cancer cell clearance 

in the brain for BLI as well as potential iron label dilution in MR images. The number of 

signal voids in the brain significantly decreased from day 0 (109.9  7.58 voids) to 7 (7  

0.27 voids) for control mice and from day 0 (92.88  6.96) to 7 (7.75  0.70; p<0.0001; 

Figure 3.2B) for small MFP mice. BLI signal in the brain also significantly decreased for 

control mice from day 0 (5.1x104  5.8x103 p/s/mm2/sr) to 7 (1.5x104  3.6x103 p/s/mm2/sr) 

and for small MFP mice from day 0 (4.4x105  8.5x103) to day 7 (2.9x105  9.8x103; 

p<0.01; Figure 3.2C).  
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Figure 3.2 Cell clearance imaging: A) BLI and MR imaging data illustrates the signal 

loss over time with cell clearance in the brain of small MFP and control mice. B) The 

number of signal voids in the brain decreases from days 0 to 7 as cancer cells are 

cleared from the brain. C) BLI signal also decreases from day 0 to 7 as cancer cells 

are cleared from the brain. Data is presented as mean +/- SD. * indicates p<0.05.  
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At day 14, brain metastases appeared as regions of hyperintensity by MRI in all twenty-

nine mice that made it to endpoint as well as two large MFP mice that had an early endpoint 

of day 10 due to illness (Figure 3.3 - Small MFP group; Figure 3.4 – Large MFP group). 

An additional mouse in the large MFP group had to be sacrificed at day 9 due to signs of 

illness but endpoint MRI was not performed and thus this mouse was not included in our 

endpoint analysis. Figures 3.3A, 3.4A show an MR slice from a representative mouse from 

each group. MR image analysis revealed that mice with a small primary MFP tumour 

(13.63  2.05 tumours) had significantly more brain metastases than control mice (6  0.84 

tumours) (Figure 3.3C). We also found that mice with a small MFP tumour (2.38  0.55 

mm3) had significantly higher total brain tumour volume than control mice (0.72  0.17 

mm3) (Figure 3.3D). Similarly, we found that mice with a large primary MFP tumour (30 

 2.22 tumours) had significantly more brain metastases than control mice (12  1.48 

tumours) (Figure 3.4C). We also found that mice with a large MFP tumour (4.81  0.59 

mm3) had significantly increased total brain tumour volume than control mice (1.65  0.44 

mm3) (Figure 3.4D).  

 

Figures 3B/4B show BLI images of a representative mouse from each group at endpoint 

(day 14). All 13 MFP mice that made it to endpoint had BLI signal in the brain while only 

13 of 16 control mice had signal in the brain. An additional 2 MFP mice (large) had BLI 

signal in the brain at day 10 (day of sacrifice) which were included in our endpoint 

measurements of brain tumour burden. BLI signal in the brain at endpoint was not 

significantly different between mice with (1.1x105  5.1x104 p/s/mm2/sr) and without (4.3 

x104  3.5x105 p/s/mm2/sr) a small MFP tumour (Figure 3.3E). However, BLI signal in the 
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brain at endpoint was significantly different between mice with (5.9x104  2.2x104 

p/s/mm2/sr) and without (1.1x104  4.7x103 p/s/mm2/sr) a large MFP tumour (Figure 3.4E). 

All MFP and control mice had BLI signal in the body at endpoint. Similarly, whole body 

BLI signal was not significantly different between mice with (1.2x107  5.9x106 

p/s/mm2/sr) and without (4.5x106  2.5x106 p/s/mm2/sr) a primary MFP tumour (Figure 

3.3F) or between mice with (3.1x105  1.7x105 p/s/mm2/sr) and without (1.2x105  7.9x104 

p/s/mm2/sr) a large MFP tumour (Figure 3.4F).  
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Figure 3.3 Endpoint imaging for small MFP mice: A) At day 14, brain metastases 

appeared as regions of hyperintensity by MRI, and B) regions of BLI signal in the 

brain and body. C) Mice with a primary small MFP tumor had significantly more 

brain metastases than mice without a primary tumor. D) Mice with a primary tumor 

had significantly more total brain tumor burden than mice without a primary small 

MFP tumor. E/F) There were no significant differences in BLI signal in the brain or 

body between mice with and without a primary small MFP tumour. Data is presented 

as mean +/- SD. * indicates p<0.05; ** indicates p<0.01. 
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Figure 3.4 Endpoint imaging for large MFP mice: A) At day 14, brain metastases 

appeared as regions of hyperintensity by MRI, and B) regions of BLI signal in the 

brain and body. C) Mice with a large MFP tumor had significantly more brain 

metastases than mice without a primary tumor. D) Mice with a large MFP tumour 

had significantly more total brain tumor burden than mice without a primary tumor. 

E/F) Similarly, mice with a large MFP tumour had significantly more BLI signal in 

both the brain and the body compared to control mice. Data is presented as mean +/- 

SD. * indicates p<0.05; ** indicates p<0.01. 
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3.3.3    Histology and whole-mouse cryo-fluorescence imaging 
 

In one large MFP mouse, lung metastases were detectable in whole-body MR images but 

not in the respective control mouse (Suppl. 3.3). In one small MFP mouse the presence of 

tumours was also confirmed in ex vivo BLI (Suppl. 3.4). Coronal MR images show 

corresponding orientation to BLI signal; in vivo and ex vivo whole body BLI were also 

matched presenting signal in the abdominal region. Fluorescence microscopy demonstrated 

that the location of 4T1BR5-Red-FLuc/GFP cells corresponded well with H&E as well as 

hyperintense signal representing tumors in the corresponding MR slice (Suppl. 3.5). This 

confirms that metastases detected with MRI contain 4T1BR5-Red-FLuc/GFP cells. In two 

mice, the presence of tumors was also confirmed using cryo-fluorescence imaging which 

has the ability to perform whole-body brightfield and fluorescence imaging throughout the 

entire mouse. Cryo-fluorescence imaging allowed for the detection of metastases at day 14 

in both the bone and other areas of the body (Figure 3.5). We were able to match some of 

the metastases seen with cryo-imaging to MR tumours. Cryo-fluorescence imaging also 

allowed for the localization of secondary metastases seen with BLI. Due to light scattering 

and the depth limitation of BLI, we cannot be certain where within the body as well as the 

number of metastases the signal is coming from; cryo-imaging allows us to further explore 

a region of interest and find out exactly where the tumor is located. Finally, we found that 

spleens from large MFP tumour-bearing mice (0.65  0.03g) were enlarged with 

significantly higher weights compared to spleens collected from control mice (0.15  

0.01g) (p<0.0001; Figure 3.6A, 3.6B). Normal spleen histology was observed in control 

mice but it was found that the spleens isolated from large MFP mice showed a reduction 

in red pulp compared to control mice (Figure 3.6C).  
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Figure 3.5 Cryoviz Imaging: In a mouse from the large MFP group we were able to 

detect distant metastases (head circled in yellow; bone circled in blue) with BLI (A) 

and match them to corresponding MR (B) and brightfield (C/E) and fluorescence 

(D/E) cryoviz images.  
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Figure 3.6 Observed splenomegaly: A/B) Spleens from large MFP tumor-bearing 

mice were enlarged and significantly higher in weight(g) than spleens collected from 

control mice. C) Normal spleen histology was observed in control mice (Top) but it 

was found that the spleens isolated from large MFP mice showed a reduction in red 

pulp (bottom) compared to control mice and normal spleen histology. Data is 

presented as mean +/- SD. **** indicates p<0.0001. 
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3.4 Discussion 
 

Clinical and experimental evidence suggests that a primary tumour can both accelerate 

(CTE) or retard (CTR) the growth of distant metastases4-14. In this study, we found CTE 

effects in the syngeneic 4T1 model using multimodality imaging. The presence of a 

primary MFP tumour increased the number and total volume of brain metastases as 

measured with MRI and BLI (in the large MFP group). Secondly, this effect was amplified 

when the primary tumour was larger at the time of secondary injection of experimental 

metastatic cells. To our knowledge, this is the first report of multimodality imaging being 

used to study the impact of a primary tumour on metastatic outgrowth in the 4T1 model. 

 

In our previous studies in immune compromised mice (nu/nu) we found the presence of a 

human primary breast tumour (MDA-MB-231) significantly inhibited the growth of MDA-

MB-231BR brain metastases (i.e., a CTR effect)16. For this study, MRI revealed fewer 

brain metastases developed in mice with than without a primary tumour. Interestingly, 

using cellular MRI, we also found that significantly more signal voids (representing non-

dividing cancer cells) persisted in endpoint images of mice that had a primary tumour 

compared to mice that did not. This highlighted that a primary tumour can in part maintain 

cancer cell dormancy and mitigate overt metastases formation, a potential new mechanism 

for CTR. We could not assess endpoint signal void number in the current study due to the 

very low number of cells arresting and remaining in the brain at endpoint.  In future studies, 

we could shorten the experimental timeline to enable a greater number of cells injected into 

the heart, which in turn could result in more voids persisting at endpoint. 
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Our results between the two models suggests the immune system may play a role in 

mediating CTR or CTE effects, as also suggested previously by others. Janik et al., found 

that immune competent mice are first protected and then made more susceptible to the 

growth of lung metastases by the presence of a progressively growing primary tumour7. 

Similarly, Vaage et al., showed that immunity decreases around day 20 after implanting 

tumour cells into mice and that this phenomenon was associated with an excess of tumour 

antigen, and that after removal of the primary tumour immunity is quickly restored26. This 

may provide support as to why we found an amplified CTE effect in our large MFP mice. 

This cohort of mice had 14 days of primary tumour growth (compared to 7 days in small 

MFP mice) before secondary injection, followed by 14 days of metastatic growth. This 

theoretical 20-day period would fall fairly early (6 days) into the period of metastatic 

growth, leaving these mice vulnerable to enhanced metastatic growth due to decreased 

immunity. Whether the immune system is playing a significant role in the CTE effects seen 

in this study could be determined by moving our 4T1/4T1BR5 model from BALB/c mice 

into an immune compromised mouse (e.g., nu/nu), expecting either a CTR effect or a lesser 

CTE effect than seen in the present study. Similarly, we may see a more significant CTR 

effect by studying the MDA-MB-231/MDA-MB231BR model into more immune deficient 

mice than used before (nu/nu) such as nod-scid-gamma (NSG) mice, or evaluating whether 

a CTE effect might appear in humanized mice. 

 

An immunological component to the CTE effects seen is also suggested from our findings 

in the spleens from our animals. We found splenomegaly in tumour-bearing mice however, 

this finding was associated with a reduction in red pulp and not differences in white pulp. 



 

 114 

Kirstein et al., found splenomegaly in tumour-bearing animals was associated with tri-

lineage extramedullary hematopoiesis as well as a reduction in white pulp in their mouse 

model of CTR14. Other groups have also seen splenomegaly in tumour-bearing animals, 

specifically in the 4T1-model. Thus, differences in the ratio of red vs. white pulp in splenic 

tissue needs to be studied further to determine whether this is an effect of prolonged 4T1 

tumor growth or an effect of CTE.  

 

Past studies have shown that the size of the primary tumour plays a key role in whether a 

CTE or CTR effect is observed. For instance, Bruzzo et al., previously demonstrated 

secondary tumour growth can be either stimulated or inhibited depending on the ratio 

between the mass of the primary tumour relative to that of the secondary tumour implant. 

They found that high ratios tended to cause inhibition of secondary tumour growth while 

low ratios induced a stimulation effect8. For the present study, we injected our secondary 

cancer cell line at an early time point (7 days post MFP injection) when the primary MFP 

tumour is relatively small. We did this in an effort to best match the size of our MDA-MB-

231 model at the time of secondary injection. However, despite similar primary tumour 

size at the time of secondary injection, these two models produced opposite effects 

(CTE/CTR). This may be due to differences in cell line aggressiveness; 4T1 metastases 

can be detected as early as 7 days whereas the less aggressive MDA-MB-231 model may 

take between 2-3 weeks before metastases start to form in the brain. This is significantly 

more time for the MDA-MB-231 primary tumour to grow (increasing the ratio between 

primary and secondary) to produce a CTR effect on secondary tumour growth. In the 4T1 

model, as metastases quickly develop, the ratio between primary and secondary tumours 
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becomes smaller over time. In the current study, we also injected a second cohort of 

animals at a late time point (14 days post MFP injection) when the primary tumour is 

relatively large to try to increase the ratio between primary and secondary tumour 

(producing a CTR effect). However, we found that increasing the size of the primary 

tumour at the time of secondary injection significantly amplified our CTE effect.  

 

An important step in the metastatic cascade is the initial arrest of cancer cells. When cancer 

cells enter the circulation, they can travel through the bloodstream and arrest in the 

capillary beds of distant sites throughout the body and extrasvasate into the interstitial 

space where they can begin to form new tumours. For breast cancer patients, metastases 

are most commonly found in the brain, bone, lung and liver25. Our multimodality imaging 

tools allow us to noninvasively monitor both the number (MRI) and viability (BLI) of 

arrested single cancer cells in the brain, allowing us to for the first time study the effect of 

a primary tumour on cancer cell arrest as well as cancer cell clearance. In the present study, 

we found there was not a significant difference in viable cancer cell arrest in the brain 

between mice with a primary MFP tumour and control mice. We also found that there was 

not a significant difference in cancer cell clearance from the brain, suggesting the presence 

of a primary MFP tumour does not influence the number of viable, iron labeled cancer cells 

that arrest in the brain at day 0, nor does it affect the clearance of these cells, indicating 

that in this model the increased tumour growth we detected in mice with primary tumors 

at endpoint is not due to effects at the early stages of the metastatic cascade.  Another 

important step is the intravasation of cells from the primary tumour. We will explore this 
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in the future by evaluating the effects of removal of the primary tumour on spontaneous 

metastasis formation. 

 

BLI was performed at endpoint on all mice to measure viable tumour burden in both the 

brain as well as whole body. Although our MR analysis shows a strong CTE effect in the 

brain of both the small and large MFP mice, we only found significant differences in brain 

bioluminescence signal between mice with a large primary MFP tumour and control mice. 

Previous studies have also shown disagreement in tumour volume and BLI measurements 

at endpoint27,28. Although surprising, it should be noted that MRI and BLI are measuring 

two different tumour characteristics; MRI is measuring tumour volume, which is affected 

by many things including the number of tumour or stromal cells present and the presence 

of edema, amongst other things, whereas BLI is providing a measure of the viability of the 

engineered cancer cells over time. Moreover, BLI is not without its caveats, particularly 

when studying metastatic disease. First, BLI signal is depth dependent. Small shallow 

tumours will appear brighter or equivalent in signal to larger deep tumours. Hence, BLI 

should be used for monitoring relative tumour viability over time rather than considering 

BLI signal at any one-time point to represent a direct measure of absolute tumour burden. 

Second, necrosis may be present within some of the metastases. While our MRI tumour 

burden may be composed of both live and dead tumour tissue, BLI signal is representative 

of viable cancer cells only. Third, any areas of hypoxia in a tumour may demonstrate lower 

BLI signal due to the need for oxygen in the luciferase/luciferin reaction. Despite these 

caveats, our previous work has shown that the information provided by both imaging 
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modalities over time makes them very complementary technologies for studying cancer 

metastasis18. 

 

To account for the possibility of spontaneous metastases developing from our naïve 

primary cell line and contributing to the main findings in this study, our metastatic cell line 

was engineered to express GFP. As a result, we can confirm that any GFP-positive 

metastases came from our intracardiac injection of metastatic cells, whereas GFP-negative 

metastases are likely spontaneous metastases. In our endpoint histology, we did not find 

any GFP-negative metastases (all 19 tumours found were GFP-positive), suggesting that 

all brain metastases detected with MRI at endpoint came from our metastatic cell line and 

not the primary tumour. In addition, we performed a study where we injected 300,000 4T1-

FLuc-GFP cells into the mammary fat pad of immune competent mice. We then monitored 

primary tumour growth over 28 days with BLI.  In this 4-week period we were not able to 

detect distant metastases in the brain or any other organ. Since BLI is more sensitive than 

MRI, we can be fairly confident that there are also not any MR-detectable metastases at 

this time point. This has also been shown by other groups studying spontaneous metastasis 

of 4T1 cells with BLI29.  For example, Tao et al., shows that by week 6 after mammary fat 

pad injection of 1x106 4T1 cells, only 1 of 6 mice had BLI-detectable metastases in the 

brain. This is more than three times the number of cells that we are injecting for the current 

study and thus, we do not expect spontaneous metastases to form in our 4-week time line. 

In this study, we also show significant differences in endpoint tumour burden in the brain 

with BLI measures. If a large portion of the MRI tumour burden was from spontaneous 
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metastases, we predict we would not have seen the differences we found in our BLI 

measurements. 

 

3.5 Conclusion 
 

In this work, we applied cellular and molecular imaging tools to evaluate the effect of a 

primary breast tumour and its size on the growth of brain metastases in the immune 

competent 4T1 mouse model. We found total brain tumour burden was significantly greater 

in mice with a primary MFP tumour (Small or Large) compared to those without. We also 

found that mice with a large MFP tumour had significantly more BLI signal in the brain at 

endpoint compared to control mice. Interestingly, using in vivo BLI and MRI we could 

determine that these differences in endpoint tumour burden were not related to differences 

in the initial arrest or clearance of viable cells in the brain, which suggests that the presence 

of a primary tumour can increase the proliferative growth of brain metastases in this 

syngeneic 4T1 mouse model. Future work will utilize our imaging tools to explore the role 

of the immune system in promoting or preventing metastatic growth. Understanding the 

different immunological and/or molecular mechanisms of stimulation (CTE) versus 

inhibition (CTR) will be extremely valuable in finding new therapeutic options for breast 

cancer patients. 
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Chapter 4 

 

4 Engineered self-homing circulating tumour cells as novel 

metastatic breast cancer theranostics 
 

 

Purpose: New ways to target and treat metastatic disease are urgently needed. Tumor 

“self-homing” describes the recruitment of circulating tumor cells (CTCs) back to a 

previously excised primary tumor location, contributing to tumor recurrence, as well as 

their migration to established metastatic lesions. Recently, self-homing CTCs have been 

exploited as delivery vehicles for anti-cancer therapeutics in preclinical primary tumor 

models. However, the ability of CTCs to self-home and treat metastatic disease is largely 

unknown. Methods: Here, we employ molecular imaging to explore whether systemically-

administered CTCs home to metastatic lesions and if CTCs armed with both a reporter 

gene and a cytotoxic prodrug gene therapy can be used to visualize and treat metastatic 

disease. Results: Bioluminescence imaging (BLI) performed over time revealed a 

remarkable ability of CTCs to home to primary and metastatic tumors throughout the body. 

Mice that received therapeutic CTCs had less BLI signal as well as less primary tumour 

burden than control mice. Preliminary data also showed self-homing therapeutic CTCs may 

be effective at treating disseminated breast cancer metastases. Conclusion: Using dual-

luciferase BLI, this study demonstrates the noteworthy ability of experimental CTCs to 

home to disseminated breast cancer lesions. Moreover, by incorporating a prodrug gene 

therapy system into our self-homing CTCs, we show exciting progress towards effective 

and targeted delivery of gene-based therapeutics to treat both primary and metastatic 

lesions.  
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4.1 Introduction 
 

Cancer patient outcomes have significantly improved in the last few decades due to 

superior cancer imaging, surgical, and radiotherapy techniques, the recent application of 

‘omics’ lesion profiling to guide therapy, and more efficacious drugs [1]. These advances 

now allow many patients with localized primary tumours or minimal metastatic disease at 

the time of diagnosis, or during recurrence, to be effectively managed. Yet despite these 

transformative advances, the ability to benefit patients with highly disseminated metastatic 

disease remains a significant challenge. Difficulties with controlling metastatic disease 

include, but are not limited to, the lack of tools to visualize lesions at an earlier stage when 

they may be more readily treated, insufficient systemic delivery of therapeutics to all 

lesions, and, most notably, extensive tumour heterogeneity both within and between lesions 

throughout the body [2,3]. These substantial barriers highlight an unmet need for new 

technologies to effectively visualize and treat metastatic lesions, preferably so-called 

theranostic tools that have both diagnostic and therapeutic capabilities.  

 

Cells are an attractive form of theranostic vector as they can be readily engineered ex vivo 

prior to transplantation with both molecular-genetic imaging reporter genes for 

noninvasive localization and therapeutic transgenes [4-7]. While some cell types have been 

shown to naturally home to lesions, such as stem cells and immune cells [8-14], one can 

also engineer cells with receptors targeting tumour-associated antigens to redirect in vivo 

cellular tropism. Recently, chimeric antigen receptor T cells (CAR-T cells) targeting the B 

cell antigen CD-19 became the first genetically-modified cell-based therapies to be 

approved for patients with relapsed or refractory B-cell precursor acute lymphoblastic 
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leukemia and large B cell lymphoma [15-18]. While substantial efforts are now aimed at 

using CAR-T cells for the treatment of solid tumours, so far, their less than ideal therapeutic 

effectiveness has been attributed to insufficient tumour-homing and/or intratumoural 

immunological barriers [19]. Thus, the continued exploration of alternative cell types that 

can effectively home to metastatic solid tumours for use as novel theranostic vectors is 

warranted. 

 

Paget’s “seed and soil hypothesis” describes the wide dissemination of “seeds”, or 

circulating tumour cells (CTCs), from a primary tumour and the formation of overt 

metastases selectively in “soils” that permit CTC survival and proliferation [20]. However, 

due to the non-permissive nature of tumour-free organs, metastasis has been shown to be 

an inefficient process in both experimental animal models and cancer patients [21-23]. The 

impedance of the formation of new metastases has been partly attributed to both vascular 

barriers that inhibit CTC extravasation from the blood as well as unfavorable survival 

conditions [24]. Conversely, shed CTCs have been shown to be highly capable of homing 

back to their tumour of origin, a concept termed tumour “self-seeding” that was first 

suggested and demonstrated by Kim and colleagues [25]. Self-seeding has been shown in 

animal models of human breast, colon and melanoma cancer, and is theorized to contribute 

to tumour recurrence following resection [25]. Unlike in tumour-free organs, tumour 

vasculature is often “leaky” due to a compromised vascular endothelium, and thus, more 

easily facilitates the extravasation of CTCs back into their original tumours [26]. Moreover, 

the primary tumour microenvironment is considered highly permissive soil for the 

continued survival and growth of recruited CTCs, leading to the expansion of highly 
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metastatic clones that have a higher capacity to seed distant organs [25]. Similarly, 

metastatic lesions that have formed in distant organs are also considered fertile soil for 

additional “self-homing” CTCs to migrate to, survive, and expand within, which may 

contribute to accelerated metastatic disease progression [25]. 

 

In the last two decades, several groups have exploited self-homing CTCs as “self-targeted” 

delivery vehicles for ex vivo loaded anti-cancer therapeutic cargo [27-32]. Cargo has 

included oncolytic viruses such as the H-1 parvovirus and vesicular stomatitis virus (VSV), 

prodrug converting enzyme genes including herpes simplex virus thymidine kinase (HSV-

TK) and cytosine deaminase (CD), transgenes that target the tumour microenvironment 

such as tumour necrosis factor (TNF), and the secretory version of TNF-related apoptosis-

inducing ligand (S-TRAIL). Additionally, a few groups have co-engineered the therapeutic 

CTCs and/or their viral cargo with optical or positron emission tomography (PET) imaging 

reporter genes to enable the fate of the cells/cargo to be monitored with molecular-genetic 

imaging [28-30, 32]. Importantly, while the ability to target, visualize, and treat singular 

pre-established subcutaneous tumours as well as orthotopic or metastatic lesions in a 

singular organ (e.g., lungs [28] or brain [32]) has been demonstrated, to the best of our 

knowledge, the ability of self-homing CTCs to migrate into and be used to visualize and 

treat spontaneous multi-organ metastatic disease is largely unknown.  

 

Here, we employed longitudinal molecular-genetic imaging to show that systemically-

administered engineered CTCs efficiently home to both orthotopic and spontaneous 

metastatic breast cancer lesions. Further, we demonstrate that CTCs armed with both an 
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imaging reporter gene and the gene for the prodrug converting enzyme cytosine deaminase-

uracil phosphoribosyltransferase (CD:UPRT) can be used to effectively visualize and treat 

metastatic disease, resulting in distinctly increased survival times. Our preclinical study 

supports engineered CTCs as a novel self-targeting cellular theranostic platform for the 

visualization and treatment of distributed metastases - the most relevant lesions to patient 

outcome. 

 

 

4.2 Results 

4.2.1 Tracking of Self-Homing Cancer Cells in a Contralateral 

Orthotopic Tumour Model 
 

Previous studies have shown that breast cancer cells from one mammary fat pad can home 

into a contralateral mammary fat pad (MFP) tumour [25]. Thus, we first started exploring 

the use of imaging to monitor tumour self-homing using this same experimental setup. We 

engineered the mouse breast cancer cell line (4T1) and its brain-seeking metastatic variant 

(4T1BR5) to express the orthogonal bioluminescence imaging (BLI) reporters Renilla 

luciferase (RLuc) and Firefly luciferase (FLuc), respectively.  This allowed us to 

sensitively track both populations in the same animal over time. 4T1 cells were transduced 

with a lentiviral vector encoding both RLuc and ZsGreen and sorted to obtain 4T1-RLuc 

cells (Suppl.  4.1A). No significant change in ZsGreen expression over multiple passages 

was seen (Suppl. 4.1B) and there was a significant positive correlation shown between the 

number of 4T1-RLuc cells and RLuc/ZsGreen signal (R2 = 0.99, p<0.001; Suppl. 4.1C). 

FLuc-expressing 4T1BR5 (4T1BR5-FLuc) cells were engineered and characterized 

similarly in a previous study [33]. We next ensured a lack of cross-reactivity of the 
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luciferase substrates. 4T1BR5-FLuc cells incubated with D-luciferin demonstrated 

significantly higher BLI signal than 4T1-RLuc cells, 4T1 parental cells, or equivalent 

volume of media, and 4T1-RLuc cells did not produce signal significantly different than 

4T1 parental cells or media alone (p<0.001; Suppl. 4.1D). Similarly, after the addition of 

h-Coelenterazine, 4T1-RLuc cells had significantly higher signal than 4T1BR5-FLuc cells, 

4T1 parental cells, or equivalent volume of media and 4T1BR5-FLuc cells did not produce 

signal significantly different than 4T1 parental cells or media alone (p<0.001; Suppl. 4.1E). 

We next explored the migration of our engineered cells towards conditioned media from 

both cell lines using transwell migration assays. A significant increase in cell migration 

was seen for 4T1BR5-FLuc cells when conditioned media from 4T1-RLuc cells was used 

compared to conditioned media from 4T1BR5-FLuc cells or unconditioned media (p<0.01; 

Suppl. 4.1F). A significant increase in cell migration was also seen for 4T1-RLuc cells 

when conditioned media from 4T1-RLuc cells was used compared to unconditioned media 

(p<0.01; Suppl. 4.1F). 

 

4T1-RLuc cells were then implanted into the right MFP of nude mice (n=5) and 4T1BR5-

FLuc cells were implanted into the contralateral (left) MFP (Figure 4.1A). This allowed us 

to validate the lack of substrate cross-reactivity in vivo at early time points after cell 

injection (Days 0 and 1; Figures 4.1 and Suppl. 4.2) as well as the ability to evaluate 

whether either of the cell lines migrated into the contralateral MFP tumour (Figure 4.1). 

On Day 0 after cell injection, 4T1-RLuc cells only showed signal after administration with 

h-coelenterazine and on Day 1, 4T1BR5-FLuc cells only showed signal after 

administration of D-Luciferin (Suppl. 4.2). By day 7, 4T1BR5-FLuc cells did not appear 
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to migrate as FLuc signal was not detected in the contralateral MFP (Figure 4.1D). In 

contrast, 4T1-RLuc cells could be detected in the contralateral MFP tumour, and RLuc 

signal was significantly higher in the contralateral compared to ipsilateral MFP (Figure 

4.1C). The presence of both 4T1-RLuc and 4T1BR5-FLuc cells in the left MFP was 

confirmed histologically (Figure 4.1E, 4.1F), supporting our non-invasive imaging results 

and validating that the 4T1-RLuc cells left their initial site of implantation and homed to 

the contralateral MFP tumour. 
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Figure 4.1 Experimental timeline for contralateral tumour self-homing model 

(n=5): On Day 0 after cell injection, 4T1-RLuc cells only showed signal after 

administration with h-coelenterazine and on Day 1, 4T1BR5-FLuc cells only 

showed signal after administration of D-Luciferin. By day 7, 4T1BR5-FLuc 

cells did not appear to migrate as FLuc signal was not detected in the 

contralateral MFP but 4T1-RLuc cells could be detected in the contralateral 

MFP tumour (B). RLuc signal on day 7 was significantly higher in the 

contralateral MFP compared to the ipsilateral MFP on day 8 (C/D). The 

presence of both 4T1-RLuc and 4T1BR5-FLuc cells in the left MFP was 

confirmed histologically (scale bars= 500 microns) (E/F). 
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4.2.2 Monitoring Self-Targeted Therapy in a Contralateral 

Orthotopic Tumour Model 
 

We next evaluated the ability of self-homing 4T1-RLuc cells expressing the therapeutic 

prodrug converting fusion enzyme cytosine deaminase-uracil phosphoribosyltransferase 

(CD:UPRT) to treat contralateral MFP tumours. CD:UPRT converts non-toxic 5’-

fluorocytosine (5’FC) into the cytotoxic compound 5’fluoruridine monophosphate 

(5’FUMP) and was chosen as a suicide switch to eliminate the therapeutic cells as well as 

a way to kill adjacent non-engineered cancer cells via the bystander effect [34-37]. 4T1-

RLuc and 4T1BR5-FLuc cells were transduced with a lentiviral vector co-expressing 

CD:UPRT (CD for brevity) and tdTomato (tdT), and sorted via tdT to obtain 4T1-RLuc/CD 

(4T1-CD) cells and 4T1BR5-FLuc/CD (4T1BR5-CD) cells (Figures 4.2A and Suppl. 

4.3A). After 96 hours of incubation with 5’FC (5mM), CD expressing cells showed 

significantly less survival than cells without drug as well as significantly less survival than 

4T1-RLuc and 4T1BR5-FLuc cells with or without drug (Figures 4.2B and Suppl. 4.3B). 

At all doses (0.005mM, 0.05mM, 0.5mM, 5mM), CD expressing cells show significantly 

less survival than cells without drug (Figures 4.2C and Suppl. 4.3C).  
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Figure 4.2 Therapeutic cell characterization: 4T1-RLuc cells were transduced with a 

lentiviral vector co-expressing the therapeutic prodrug converting fusion enzyme 

cytosine deaminase-uracil phosphoribosyltransferase (CD:UPRT) and tdTomato 

(tdT), and sorted via tdT to obtain 4T1-RLuc/CD cells (A). After 96 hours of 

incubation with 5’FC (5mM), CD expressing cells showed significantly less survival 

than cells without drug as well as significantly less survival than 4T1-RLuc cells with 

or without drug (B). At all doses, CD expressing cells show significantly less survival 

than cells without drug (C). 

 

 

 



 

 133 

Next, we performed in vivo experiments whereby either 4T1-RLuc (n=4) or 4T1-CD (n=4) 

cells were implanted into the right MFP and 4T1BR5-FLuc into the contralateral MFP. All 

mice were treated with 5’FC daily from days 8 to 14 (Figure 4.3A). As visualized with 

RLuc BLI, on day 7 before treatment, both 4T1-CD and 4T1-RLuc cells can be seen in the 

contralateral MFP tumour and RLuc signal at this site was not significantly different 

between mouse cohorts (Figure 4.3B, 4.3C). At day 14 following treatment, FLuc BLI 

signal was observed in both contralateral and ipsilateral MFPs and signal was not 

significantly different between the two mouse groups in both MFPs (Figure 4.3E, 4.3F).  

At endpoint, areas of necrosis were evident in MFP tumours from both mouse cohorts using 

hematoxylin and eosin (H&E) staining (Figure 4.3G).  
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Figure 4.3 Experimental timeline for contralateral tumour treatment (n=8): All mice 

were treated with 5’FC daily from days 8 to 14. As visualized with RLuc BLI, on day 

7 before treatment, both 4T1-RLuc/CD and 4T1-RLuc cells can be seen in the 

contralateral MFP tumour and RLuc signal at this site was not significantly different 

between mouse cohorts (B/C). tDT expressing therapeutic cells were visualized in the 

contralateral MFP using fluorescence microscopy at day 7 before drug 

administration (scale bars=200 microns). At day 14 following treatment, FLuc BLI 

signal was observed in both contralateral and ipsilateral MFPs and signal was not 

significantly different between the two mouse groups (E/F).  At endpoint, areas of 

necrosis were evident in MFP tumours from both mouse cohorts using hematoxylin 

and eosin (H&E) staining (black scale bars= 1mm; white scale bars= 20 microns) (G).  
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4.2.3 Intratumoural Injection of Therapeutic Cancer Cells Can 

Treat Orthotopic Tumours 
 

We hypothesized the lack of therapeutic effect in the previous experiment may have been 

due to insufficient numbers of 4T1-CD cells migrating into the contralateral MFP tumour. 

Immunostaining of mice sacrificed on day 7 confirmed the presence of both 4T1BR5-FLuc 

and 4T1-CD cells in the left MFP, but a relatively low ratio of 4T1-CD to 4T1BR5-FLuc 

cells was noted (Figure 4.3D). To further test our hypothesis, we allowed the 4T1BR5-

FLuc tumours to grow for 7 days prior to injecting 3x105 4T1-RLuc or 4T1-CD cells 

intratumourally and treated all mice with 5’FC daily from days 8 to 16 (Figure 4.4). 4T1 

cells were visualized with RLuc BLI on days 7 and 15, and 4T1BR5 cells with FLuc BLI 

on days 0, 4, 8 and 16 (Figure 4.4A). Importantly, RLuc BLI of mice intratumourally 

injected with 4T1-CD cells was significantly higher than in mice that had the same cells 

home from the contralateral MFP the day prior to treatment initiation (Figure 4.4B, 4.4C). 

At day 15 after treatment, mice that received 4T1-CD cells intratumourally had a larger 

percent signal loss of RLuc signal compared to mice that received 4T1-RLuc cells, 

indicating the ability to mitigate therapeutic cancer cell growth via suicide switch 

activation (Figure 4.4B, 4.4D). Furthermore, by day 16, mice that received 4T1-CD cells 

had significantly less FLuc signal compared to mice that received 4T1-RLuc cells, 

indicating kill of adjacent cells via the bystander effect (Figure 4.4E, 4.4F). Measuring 

FLuc signal by BLI was complicated by the development of tumour ulcerations in both 

groups, which partially blocked signal. Large areas of necrosis were seen in histological 

sections of MFP tumours from both mouse cohorts (Figure 4.4G). Therefore, we also 

assessed treatment response by measuring MFP tumour volumes over time with calipers. 

Mice that received 4T1-CD cancer cells had significantly smaller tumour volumes than 
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control mice at both days 14 and 17 (Figure 4.4H, 4.4I). Of the 4 control mice, 3 had to be 

sacrificed prior to the day 21 due to predetermined endpoints, either the size of the tumour 

(> 2cm3) and/or the presence of excessive ulceration. As a result, 5’FC treated mice that 

received 4T1-RLuc/CD cells showed significantly improved survival times compared to 

mice receiving 4T1-RLuc cells (p<0.01; Figure 4.4J). 
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Figure 4.4 Experimental timeline for intratumoural injection of therapeutic cancer 

cells (n=8): All mice were treated with 5’FC daily from days 8 to 16. 4T1-Rluc and 

4T1-RLuc/CD cells were visualized in the left MFP with BLI on days 7 and 15 (B) 

RLuc BLI of mice intratumourally injected with 4T1-RLuc/CD cells was significantly 

higher than in mice that had the same cells home from the contralateral MFP the day 

prior to treatment initiation (C). Mice that received 4T1-RLuc/CD cells 

intratumourally had a larger percent signal loss of RLuc signal compared to mice that 

received 4T1-RLuc cells, indicating the ability to mitigate therapeutic cancer cell 

growth via suicide switch activation (D). Furthermore, by day 16, mice that received 

4T1-RLuc/CD cells had significantly less FLuc signal compared to mice that received 
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4T1-RLuc cells, indicating kill of adjacent cells via the bystander effect (E/F). At 

endpoint, areas of necrosis were evident in MFP tumours from both mouse cohorts 

using hematoxylin and eosin (H&E) staining (black scale bars= 1mm; white scale 

bars= 20 microns) (G). Treatment response was also assessed by measuring MFP 

tumour volumes over time with calipers. Mice that received 4T1-RLuc/CD cancer 

cells had significantly smaller tumour volumes than control mice at both days 14 and 

17 (H/I). 5’FC treated mice that received 4T1-RLuc/CD cells showed significantly 

improved survival times compared to mice receiving 4T1-RLuc cells (J). 
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4.2.4 Primary Tumours and Spontaneous Metastases can be 

Visualized with Systemically-Administered “Diagnostic” CTCs  
 

We next assessed the ability of systemically-administered CTCs to home to primary 

tumours and spontaneous metastases. We implanted 4T1-RLuc cells into the right MFP of 

nude mice (n=5) and allowed tumours to grow for 7 days prior to injecting 4T1BR5-FLuc 

CTCs via an intracardiac injection under ultrasound guidance (Figure 4.5A). RLuc BLI 

was performed on days 0, 6, 13 and 19 to visualize cells in the right MFP and any 

spontaneous metastases and FLuc BLI was performed on days 7, 14 and 20 to visualize 

CTCs (Figure 4.5A, 4.5B). RLuc BLI showed the presence of metastases in 1 of 5 mice on 

day 6 prior to CTC injection. RLuc tumours were often found in the brain and/or hind 

limbs. FLuc BLI over time revealed the ability of FLuc-expressing CTCs to home to RLuc-

expressing primary tumours and spontaneous metastases throughout the body (Figure 

4.5B). Quantitative analysis of endpoint BLI images (day 19 and 20) revealed that the vast 

majority of metastases were composed of both 4T1-RLuc and 4T1BR5-FLuc cells 

(M=9.81.9), which was significantly higher than the number of metastases that were 

either 4T1-RLuc-positive only (M=0.60.4; p<0.01) or 4T1BR5-FLuc-positive only 

(M=0.20.2; p<0.001) (Figures 4.5C, 4.5D, Suppl. 4.4). The presence of both 4T1-RLuc 

and 4T1BR5-FLuc cells in numerous metastases was confirmed histologically (Figures 

4.5E, Suppl. 4.4B), supporting our non-invasive imaging results. 
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Figure 4.5 Experimental timeline for visualizing diagnostic CTCs (n=5): RLuc BLI 

was performed on days 0, 6, 13 and 19 to visualize cells in the right MFP and any 

spontaneous metastases and FLuc BLI was performed on days 7, 14 and 20 to 

visualize CTCs (B). FLuc-expressing CTCs efficiently homed to RLuc-expressing 

primary tumours and spontaneous metastases throughout the body (C). Quantitative 

analysis of endpoint BLI images (day 19 and 20) revealed that the vast majority of 

metastases were composed of both 4T1-RLuc and 4T1BR5-FLuc cells, which was 

significantly higher than the number of metastases that were either 4T1-RLuc-

positive only or 4T1BR5-FLuc-positive only (p< 0.001) (C/D). The presence of both 

4T1-RLuc and 4T1BR5-FLuc cells in metastases was confirmed histologically (scale 

bars= 500 microns) (E). 
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4.2.5  Self-Homing “Theranostic” CTCs Efficiently Migrate into 

and Treat  Primary Tumours and Spontaneous Metastases 
 

Finally, we investigated whether theranostic CTCs could be systemically administered to 

treat primary and disseminated lesions. Again, 4T1-RLuc cells were implanted into the 

right MFP of nude mice and allowed 7 days of tumour growth prior to intracardiac injection 

of either 4T1BR5-CD cells (n=6) or 4T1BR5-FLuc cells (n=6). These mice were treated 

with 5’FC daily from days 10 to 20. We also included an additional cohort of mice (n=4) 

who received an MFP injection of 4T1-RLuc cells only and were not administered 5’FC 

(“4T1 Only mice” in Figure 4.6). In our first cohort (n=4), all mice had primary tumour 

growth similar to our data with our “diagnostic” CTCs and also developed sufficient 

metastases to assess therapeutic effects on metastases (Figure 4.7). In our second cohort, 

12/12 mice had MFP tumours that did not develop as well as in previous cohorts at the time 

of secondary injection and thus, did not develop more than one or two metastases per mouse 

by endpoint. For these mice, we only assessed the effects of treatment on primary tumour 

growth (Figure 4.6). RLuc BLI was performed on days 0, 6, 13 and 19 to visualize cells in 

the right MFP and any spontaneous metastases and FLuc BLI was performed on days 7, 

14 and 20 to visualize CTCs (Fig. 6A). As visualized by RLuc BLI, by day 6 (prior to drug 

administration), mice receiving 4T1BR5-CD cells had MFP RLuc signal that was not 

significantly different than mice receiving 4T1BR5-FLuc cells or mice receiving 4T1 cells 

only (Figure 4.6B, 4.6C). However, by day 19, mice receiving 4T1 cells only, had a 

significantly higher percent increase of RLuc signal in the MFP compared to mice that 

received 4T1BR5-CD cells (Figure 4.6B, 4.6D). At endpoint, primary tumours were not 

palpable in mice that received 4T1BR5-CD expressing cells (Figure 4.6E, 4.6F). These 
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data support the notion that systemically administered “theranostic” CTCs are capable of 

returning to and effectively treating the primary tumour.  Of the 6 mice that received 

4T1BR5-FLuc cells, 2 had to be sacrificed prior to endpoint due to both the size of the 

tumours and presence of ulceration. Overall, mice that received 4T1BR5-CD cells showed 

significantly improved survival compared to mice receiving 4T1BR5-FLuc cells and mice 

receiving 4T1 cells only (p<0.01; Figure 4.6G).  In the 4 mice that developed notable 

metastases, mice receiving 4T1BR5-CD CTCs (n=2) and 4T1BR5-FLuc CTCs (n=2) had 

near equivalent FLuc signal on the day of CTC injection, but by day 14, mice receiving 

4T1BR5-CD CTCs had visibly less FLuc signal (Figure 4.7B, 4.7C). Both mice that 

received 4T1BR5-FLuc cells had to be sacrificed prior to endpoint due to both the size of 

primary tumours and presence of ulceration, and thus, FLuc imaging on days 20 and 29 

was only performed on mice that received 4T1BR5-CD cells. Importantly, mice in each 

cohort had similar RLuc signal on days 0 and 6 prior to CTC administration (Figure 4.7D, 

4.7E), but by day 19, the single mouse that received 4T1BR5-FLuc cells and survived until 

day 19, had visibly more RLuc metastases than both mice that received 4T1BR5-CD cells 

(Figure 4.7D, 4.7E).  
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Figure 4.6 Experimental timeline for visualizing self-homing theranostic CTCs 

(n=16): 4T1BR5-CD and 4T1BR5 mice were treated with 5’FC daily from days 10 to 

20. RLuc BLI was performed on days 0, 6, 13 and 19 to visualize cells in the right 

MFP and FLuc BLI was performed on days 7, 14 and 20 to visualize CTCs (B/E). By 

day 6 (prior to drug administration), mice receiving 4T1BR5-CD cells had MFP RLuc 

signal that was not significantly different than mice receiving 4T1BR5 cells or 4T1 

cells only (C). However, by day 19, mice receiving only 4T1-RLuc cells had a 

significantly higher percent increase of RLuc signal in the MFP compared to mice 

that received 4T1BR5-CD cells (D). At endpoint, primary tumours were not palpable 

in mice that received 4T1BR5-CD cells (F). These data support the notion that 

systemically administered “theranostic” CTCs are capable of returning to and 
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effectively treating the primary tumour (E). Mice that received 4T1BR5-CD cells 

showed significantly improved survival compared to mice receiving 4T1BR5 cells and 

mice receiving 4T1 cells only (G).  
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Figure 4.7 Treating metastases: On the day of intracardiac injection (day 7), mice 

receiving 4T1BR5-CD CTCs (n=2) and 4T1BR5 CTCs (n=2) had near equivalent 

FLuc signal (A/B), but by day 14, mice receiving 4T1BR5-CD CTCs had visibly less 

FLuc signal (C/D). Both mice that received 4T1BR5 cells had to be sacrificed prior to 

endpoint due to both the size of primary tumours and presence of ulceration, and 

thus, FLuc imaging on days 20 and 29 was only performed on mice that received 

4T1BR5-CD cells. Importantly, mice in each cohort had similar RLuc signal on days 

0 and 6 prior to CTC administration (E/F), but by day 19, the single mouse that 

received 4T1BR5 cells and survived until day 19, had visibly more RLuc metastases 

than both mice that received 4T1BR5-CD cells (G/H).  
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4.3 Discussion 
 

This study demonstrates that engineered “self-homing” CTCs co-expressing an imaging 

reporter and a therapeutic transgene can be used as a novel theranostic cellular vector to 

visualize and treat both primary tumours and disseminated spontaneous breast cancer 

metastases in mice. We first show using dual-luciferase BLI the remarkable ability of 

systemically-administered CTCs to preferentially home to pre-established spontaneous 

metastases in various organs throughout the body with minimal formation of new tumours. 

Leveraging on this highly preferential homing capability, we then show that CTCs co-

expressing the prodrug converting fusion enzyme system CD:UPRT, to kill neighboring 

cells via the bystander effect as well as act as a suicide switch, was able to decrease tumour 

burden and extend survival. 

 

Cancer, particularly in patients with metastatic disease, remains a leading cause of death in 

the world [38, 39].  Treatments that often work on localized disease are often not an option 

or fail in the patients with significant metastatic spread. Thus, the development of 

technologies for earlier detection and treatment of metastatic disease remains at the 

forefront of cancer research. Therapeutics that have natural tumour tropism or are designed 

to target lesions offer potential benefits of improved therapeutic effectiveness due to high 

intratumoural concentration of therapeutic payloads, as well as increased safety due to 

minimization of off-target cytotoxicity in normal tissues [4-19, 27-32]. The incorporation 

of imaging probes (e.g., radiolabels, iron oxides, etc.) into these targeted agents has been 

used to allow one to track their whole-body biodistribution to on-tumour and off-tumour 

sites [28-30, 32]. An agent that is very effective at naturally localizing to metastases with 
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little off-target accumulation could theoretically also be used as an effective agent for the 

early diagnosis and treatment of metastatic disease. 

 

In recent years, numerous classes of tumour-targeting agents have been developed 

including small molecules [40], antibodies [41-43], nanoparticles [44, 45], viral [46-48] and 

non-viral gene vectors [49-51], and cell-based vectors [4-19, 27-32]. Traditionally, the 

development of cell-based therapies has focused on the use of stem-cells including tissue-

specific stem cells, pluripotent stem cells or mesenchymal stem cells [5,6,8-14]. These 

approaches offer many important benefits including their innate homing capabilities and 

natural anti-tumour effects; however, they suffer from limited passaging in culture 

resulting in roadblocks throughout the engineering process as well as limited therapeutic 

potential in vivo. Similarly, others have used immune cell-based vectors in efforts to target 

and treat a variety of tumours including tumour-infiltrating lymphocytes (TILs) [52, 53] 

and cytokine induced killer (CIK) cells [54, 55]. CIK cells are a group of immune effector 

cells with a mixed T- and natural killer (NK) cell phenotype. Thorne and colleagues 

successfully showed this effector cell population could be loaded with an oncolytic virus 

for targeted delivery and treatment of murine tumours [55]. Currently, one of the most 

employed cell-based tumour-targeting strategies is the engineering of T lymphocytes with 

chimeric antigen receptors (CARs) in efforts to selectively recognize and kill cancer cells 

expressing the B cell antigen CD19, while sparing healthy tissue [15-18]. This strategy has 

shown tremendous promise in the clinic in upwards of 70% of patients with otherwise 

treatment-refractory B cell leukemia and other B cell malignancies such as diffuse large B-

cell lymphoma. However, in some cases, CAR-T cell therapy has shown no effect at all, 
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and in many cases, patients experience potentially lethal side effects as a result of CAR-T 

cells not proliferating and persisting in the body over time, proliferating and activating 

excessively, or nonspecific homing to healthy organs [19, 56]. CAR-T cells have also 

shown minimal therapeutic effectiveness for solid tumours due to less than ideal homing 

capacity. Thus, there remains a need for novel cell-based delivery vehicles that are capable 

of homing to solid tumours. 

 

In 2009, Kim and colleagues demonstrated the ability of cancer cells from an established 

lesion to enter the circulation and then return to this lesion to continue to survive and 

proliferate, a process they termed “self-seeding” [25]. The self-seeding capabilities of 

cancer cells was attributed to both the recruitment potential of the established tumour 

microenvironment as well as the seeding capabilities of cancer cells themselves. As a 

result, several groups have attempted to repurpose the self-homing properties of cancer 

cells to use them as “self-targeted” cell-based delivery vehicles for anti-cancer therapeutics 

[27-32]. In comparison to previously discussed cell-based vectors (i.e., stem cells and 

immune cells), cancer cells can be continuously grown in vitro enabling extensive cell 

engineering, may have superior homing capability to lesions, and may have prolonged 

survival and expansion once in tumours. Past studies have included using cancer cells as a 

vehicle to deliver oncolytic viruses [27, 28], engineering cancer cells to express suicide 

genes [29, 30] or apoptosis-inducing ligands [32] to transfer death signals to neighboring 

non-engineered tumour cells, and engineering cancer cells to express therapeutic agents 

that influence the tumour microenvironment [31], specifically angiogenesis. In this work, 

we exploit the innate self-homing properties of CTCs to investigate their potential as an 
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efficient diagnostic probe and drug delivery vehicle for self-targeted therapy of primary 

and metastatic tumours. In our model, the primary tumour had a week to grow and 

spontaneously metastasize prior to the injection of experimental CTCs and thus, we assume 

it is the experimental CTCs homing to those pre-established sites and not the alternative. 

Our imaging data from early time points supports this theory such that some animals 

displayed spontaneous metastases prior to the injection of CTCs. Furthermore, our 

transwell migration assay data shows that conditioned media from our primary 4T1 cells, 

causes increased migration compared to media from our experimental CTC 4T1BR5 cell 

line. Previous work using the MDA-MB-231 breast cancer model showed that the 

cytokines IL-6 and IL-8 produced by the primary tumour acted as chemoattractants to 

efficiently recruit CTCs25. Future work will look to investigate whether the production of 

these cytokines is enhanced in 4T1 conditioned media and whether they may contribute to 

the self-homing efficiency seen in this model.  

 

Based on our initial imaging results, we engineered our experimental CTCs to express a 

suicide gene and used noninvasive imaging to monitor the effects of self-targeted therapy 

in contralateral, intratumoural, and metastatic models. In a prodrug converting enzyme 

suicide gene therapy system, cancer cells are transfected with a gene that can express an 

enzyme with the ability to convert a nontoxic prodrug into an active chemotherapeutic [37]. 

By incorporating a suicide switch, we can visualize the killing of engineered therapeutic 

cancer cells as well as a bystander effect whereby adjacent non-engineered cancer cells are 

killed. While there are numerous enzyme/prodrug systems available, we chose to use the 

CD:UPRT fusion gene, due to the ability of 5’FU (the active form) to interrogate 
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neighbouring cells independently of gap junctions, as well as readily diffuse the blood brain 

barrier [34-36]. As a result, the CD/5’FC system has shown to have a more potent bystander 

effect than the commonly used HSV-TK/GCV system [57-60]. Furthermore, in comparison 

to the traditional CD/5’FC system, we used the CD:UPRT fusion gene, as UPRT can 

further convert 5’FU into 5’FUMP, which has shown to have significantly enhanced cancer 

killing efficiency in prostate, ovarian and breast cancer subtypes [61, 62]. In the current 

study, we were able to visualize therapeutic CTCs that had successfully migrated from the 

original to the contralateral MFP but did not observe a significant therapeutic effect. 

However, we did observe a decrease in tumour burden when our therapeutic cells were 

administered intratumourally (3x105 cells). These findings suggest the ratio of therapeutic 

cells to cancer cells may be crucial in generating a significant therapeutic effect in vivo. By 

using dual BLI, we also show effective homing and treatment of primary tumours when 

therapeutic CTCs were administered systemically and as a result, demonstrate extended 

survival in mice treated with 5’FC. Our preliminary data suggests systemically 

administered CTCs may also be capable of homing to and treating disseminated breast 

cancer metastases. Future work will look to validate these findings in additional mouse 

cohorts. 

 

While our findings suggest CTCs have potential as highly-efficient carriers of therapeutic 

cargo to primary and metastatic tumour sites, our approach has some limitations to 

consider. Most importantly, while CD:UPRT expression was able to kill off many of the 

engineered 4T1BR5 cells, some of these cells were capable of avoiding cell death and 

generated new tumours. Additionally, while we demonstrate the ability to kill off 
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neighbouring non-engineered cancer cells through a bystander effect, some mice show 

residual spontaneous metastases following treatment. Future work will explore 

incorporating more than one therapeutic gene into the engineered cells. For example, a 

CD/HSV-TK system, would allow the administration of two different pro-drugs, creating 

a higher likelihood of targeting and treating engineered CTCs while possibly also 

enhancing the bystander effect. Additionally, timing of CTC self-homing to pre-established 

tumours should be further explored. Our data suggests that three days may not be the 

optimal window for systemically administered CTCs to efficiently home to established 

metastases. If we administer the pro-drug too early, we may lose some of our therapeutic 

CTCs to self-induced toxicity prior to receiving any therapeutic effects on neighbouring 

non-engineered cancer cells. Furthermore, a larger window would allow time for 

therapeutic cells to proliferate and expand the therapeutic population once they have 

reached their tumour target. 

 

In conclusion, our work provides evidence that CTCs are a novel theranostic vector 

platform for the visualization and treatment of pre-established tumour sites throughout the 

body.  Overall, while further refinement is needed, this unorthodox strategy may have 

tremendous long term translational potential as a highly effective theranostic platform, 

specifically in patient populations presenting with metastatic disease at initial diagnosis, 

and those at high risk of cancer recurrence or metastatic relapse. 
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4.4 Materials and methods 
 

4.4.1 Cell Engineering 
 

The 4T1BR5 cells were a kind gift from Dr. Patricia Steeg’s lab and engineered to stably 

co-express red-shifted Luciola italica luciferase (FLuc) and green fluorescent protein 

(GFP) using a commercial lentiviral vector (RediFect Red-FLuc-GFP; PerkinElmer, USA). 

Cells were transduced and FACS sorted based on GFP expression using a FACSAria III 

flow cytometric cell sorter (BD Biosciences). The parental 4T1 cells were also received 

from Dr. Patricia Steeg’s lab and engineered to stably co-express Renilla luciferase-8 

(RLuc) and ZsGreen (ZsG) using a virus made in house. Cells were transduced and sorted 

based on ZsG expression using FACS. The resultant 4T1BR5-FLuc/GFP (4T1BR5-Fluc) 

and 4T1-RLuc/ZsG (4T1-Rluc) cells were maintained in DMEM containing 10% FBS and 

1% antibiotics, at 37°C and 5% CO2. The 4T1BR5-FLuc and 4T1-RLuc cells were then 

engineered a second time to stably express cytosine deaminase-uracil phosphoribosyl 

transferase (CD-UPRT) and tdTomato (tdT). Both cell lines were transduced and FACS 

sorted based on tdT expression. Cells were washed three times with Hanks balanced salt 

solution (HBSS) and collected for in vitro evaluation or injection into animals. 

 

4.4.2 In Vitro Studies  
 

Cell line characterization 

All in vitro results are from three independent experiments with three replicates of each 

condition. To evaluate the relationship between cell number and BLI signal, 1x104, 5x104, 

1x105, 1.5x105, and 5x105 4T1BR5-FLuc or 4T1-RLuc cells were seeded in each well of 



 

 154 

24-well plates. We acquired fluorescent images of each plate. We then added 10 L of D-

luciferin (30 mg/mL; Syd Labs, Inc., MA, USA) or 10 L of h-Coelenterazine (150g/mL; 

NanoLight Technology, Prolume, AZ, USA) to the growth medium in each well and BLI 

images were collected for up to 35 minutes. All images were acquired using a hybrid 

optical/X-ray scanner (IVIS Lumina XRMS In Vivo Imaging System, PerkinElmer). 

Signal was measured with region-of-interest (ROI) analysis using LivingImage Software 

(Perkin Elmer). An ROI was drawn around each well to measure the radiant efficiency 

(p/s/cm2/sr/uW/cm2) for fluorescence images and average radiance (p/s/mm2/sr) for 

bioluminescence images. The mean signal across replicates was determined for each 

independent experiment. 

 

Cross reactivity 

To assess in vitro cross reactivity, we seeded two identical 24-well plates with 1 x 105 4T1-

RLuc, 4T1BR5-Fluc, 4T1 naïve cells, and equivalent volume of media. We added 10uL of 

d-Luciferin to each well in plate 1 and 10uL of h-Coelenterazine to each well in plate 2. 

Images were acquired for up to 35 minutes and an ROI was drawn around each well to 

measure the average radiance (p/s/mm2/sr). The mean signal across replicates was 

determined for each independent experiment. 

 

Transwell Migration Assay 

A FluoroBlok™ Multiwell Insert System was used with an 8um porous polyethylene 

terephthalate membrane (Corning, Corning NY, USA). We seeded 5x104 cells (4T1-RLuc 

or 4T1BR5-Fluc) in 75cm2 flasks. At 48 hours post seeding, 650uL of new or conditioned 
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DMEM was collected and used for the bottom chamber of the transwell plate. We then 

seeded 2.5x104 cells (4T1-RLuc or 4T1BR5-Fluc) in the upper chamber of the transwell 

insert in 100ul of new DMEM. After 24 hours, the membranes were fixed in ethanol for 5 

minutes, washed with PBS, and stained with Hoechst 33342 (10ug/ml in water) for 5 

minutes. Membranes were cut out with a scalpel and mounted in 90% glycerol onto slides. 

Three random images were taken of the lower side of each membrane using an Invitrogen 

EVOS FL Auto Cell Imaging System and the mean fluorescence signal was calculated.  

 

CD:UPRT Functionality Testing  

To assess the functionality of the CD-UPRT gene in vitro, Vybrant MTT assays were used. 

2x104 4T1-RLuc or 4T1-CD cells were seeded in each well of 96-well plates and incubated 

in either the desired concentration of 5’FC (diluted in DMEM) or incubated in DMEM 

alone. Ten microliters of MTT solution was added to each well and absorbance at 450nm 

was measured using a microplate spectrophotometer (Fluoroskan Ascent FL, 

ThermoLabSystems) at 24, 48, 72 and 96 hours. This experiment was repeated for 

4T1BR5-FLuc and 4T1BR5-FLuc/CD cells. 

 

4.4.3 In Vivo Studies 
 

Animals were cared for in accordance with the standards of the Canadian Council on 

Animal Care, and under an approved protocol of the University of Western Ontario’s 

Council on Animal Care (2015-0558). Six to eight-week-old female nu/nu mice were 

obtained from Charles River Laboratories (Willington, MA, USA).  
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Contralateral tumour model 

Mice received a lower right mammary fat pad (MFP) injection of 300,000 4T1-Rluc or 

4T1-CD cells and a lower left MFP injection of 300,000 4T1BR5-Fluc cells on day 0 

(Figure 4.1A; n=5). RLuc BLI was performed on days 0 and 7 and FLuc BLI performed 

on days 1 and 8. Additional BLI was performed for experiments with CD expressing cells 

on days 15 (RLuc) and 16 (FLuc). For experiments with CD expressing cells, mice 

receiving 4T1-Rluc and 4T1-CD cells both received intraperitoneal injections of 5’FC 

(250mg/kg/day) on days 7 to 14 (Figure 4.3A; n=8). 

 

Intratumoural model 

Mice received a lower right mammary fat pad (MFP) injection of 300,000 4T1BR5-Fluc 

cells on day 0 and an intratumoural injection of 300,000 4T1-Rluc or 4T1-CD cells on day 

7 (Figure 4.4A; n=8). FLuc BLI was performed on days 0, 4, 8 and 16 and RLuc BLI 

performed on days 7 and 15. Mice receiving 4T1BR5-Fluc and 4T1BR5-CD cells both 

received intraperitoneal injections of 5’FC (250mg/kg/day) on days 8 to 16. 

 

Metastatic tumour model 

Mice received a lower right MFP injection of 300,000 4T1-Rluc cells. MFP tumours grew 

for seven days prior to all mice receiving an intracardiac injection of 2x104 4T1BR5-FLuc 

or 4T1BR5-CD cells in 0.1mL of HBSS (Figure 4.5A; n=5). Injections were performed 

under image guidance using a Vevo 2100 ultrasound system (VisualSonics Inc.). RLuc 

BLI was performed on days 0, 6, 13 and 19. FLuc BLI was performed on days 7, 14 and 

20. For experiments with CD expressing cells, mice receiving 4T1BR5-FLuc and 4T1BR5-
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CD cells both received intraperitoneal injections of 5’FC (250mg/kg/day) on days 10 to 20 

(Figure 4.6A; n=12). 

 

BLI Procedure 

BLI was performed using a hybrid optical/X-ray scanner (IVIS Lumina XRMS In Vivo 

Imaging System, PerkinElmer). Mice were anesthetized with isofluorane (2% in 100% 

oxygen) using a nose cone attached to an activated carbon charcoal filter for passive 

scavenging. For RLuc BLI, anesthetized mice received a 20 L intravenous injection of h-

Coelenterazine (150g/mL) and BLI images were captured for up to 30 minutes. For FLuc 

BLI, anesthetized mice received a 100 L intraperitoneal injection of d-Luciferin (30 

mg/mL) and BLI images were captured for up to 35 minutes. 

 

Image Analysis 

BLI signal was measured with region-of-interest (ROI) analysis using LivingImage 

Software (Perkin Elmer). ROIs were drawn throughout the mouse body of RLuc and FLuc 

image sets for each mouse.  

 

Histology 

At endpoint, mice were sacrificed by isoflurane overdose and perfused with 4% 

paraformaldehyde via the left ventricle. Tissues were removed and cryopreserved in 

ascending concentrations of sucrose (10, 20, and 30% w/v) for 24 hours each, then 

immersed in optimal cutting temperature (OCT) compound, and frozen using liquid 

nitrogen. Contiguous 10-m frozen sections were collected and select sections were stained 
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with hematoxylin and eosin (H&E), DAPI, Anti-GFP, Anti-Rluc. Stained sections were 

imaged using an Invitrogen EVOS FL Auto Cell Imaging System.  

Statistics 

All statistics were calculated using GraphPad Prism 7 Software. Data were expressed as 

mean ± SEM for in vitro and in vivo studies and analyzed by Student’s t test when 

comparing two groups. Survival times of mouse groups were analyzed using a log-rank 

test. Differences were considered statistically significant at *p < 0.05, **p < 0.01, ***p < 

0.001, and ****p < 0.0001.  
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12. Bagó, JR., Sheets, KT., Hingtgen, SD. Neural stem cell therapy for cancer, 

Methods. 99; 37–43. (2016). 

13. Song, K., Benhaga, N., Anderson, RL., Khosravi-Far, R. Transduction of tumor 

necrosis factor-related apoptosis-inducing ligand into hematopoietic cells leads to 

inhibi- tion of syngeneic tumor growth in vivo, Cancer Res. 66; 6304–6311.  

(2006). 

14. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., ... & 

Mahnke, Y. D.  Chimeric antigen receptor T cells for sustained remissions in 

leukemia. New England Journal of Medicine, 371(16), 1507-1517. (2014). 

15. Porter, D. L., Kalos, M., Zheng, Z., Levine, B., & June, C. Chimeric antigen 

receptor therapy for B-cell malignancies. Journal of Cancer, 2, 331. (2011). 



 

 161 

16. Grupp, S. A., Kalos, M., Barrett, D., Aplenc, R., Porter, D. L., Rheingold, S. R., 

& Milone, M. C.  Chimeric antigen receptor–modified T cells for acute lymphoid 

leukemia. New England Journal of Medicine, 368(16), 1509-1518. (2013). 

17. Davila, M. L., Bouhassira, D. C., Park, J. H., Curran, K. J., Smith, E. L., Pegram, 

H. J., & Brentjens, R. Chimeric antigen receptors for the adoptive T cell therapy 

of hematologic malignancies. International journal of hematology, 99(4), 361-

371. (2014). 

18. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C.  

CAR T cell immunotherapy for human cancer. Science, 359(6382), 1361-1365. 

(2018). 

19. Paget, S. Distribution of secondary growths in cancer of the breast. Lancet, 

I, 571.1989. (1989). 

20. Chambers, A F., Groom, A C., and MacDonald, I C.  Dissemination and growth 

of cancer cells in metastatic sites Nat. Rev. Cancer 2 563–72. (2002). 

21. Weiss, L. Metastatic inefficiency Adv. Cancer Res. 54 159–211. (1990). 

22. Tarin, D., Price, J E., Kettlewell, M G., Souter, R G., Vass, A C., and Crossley, B. 

Clinicopathological observations on metastasis in man studied in patients treated 

with peritoneovenous shunts Br. Med. J. (Clin. Res. Ed.) 288 749–51. (1984). 

23. Nguyen, DX., Bos, PD., Massague, J. Metastasis: from dissemination to organ-

specific colonization. Nat Rev Cancer. 9:274–284. (2009). 

24. Norton, L., Massague, J. Is cancer a disease of self-seeding? Nat Med. 12:875–

878. (2006). 



 

 162 

25. Carmeliet, P., Jain, RK. Angiogenesis in cancer and other diseases. Nature. 

407:249–257. (2000). 

26. Raykov, Z., Balboni, G., Aprahamian, M., Rommelaere, J. Carrier cell-mediated 

delivery of oncolytic parvoviruses for targeting metastases. Int. J. Cancer 109, 

742–749 (2004). 

27. Power,  AT., Wang, J., Falls, TJ., Paterson, JM., Parato, KA., Lichty, BD., Stojdl, 

DF. Forsyth, PA., Atkins, H., Bell, JC. Carrier cell-based delivery of an oncolytic 

virus circumvents antiviral immunity. Mol. Ther. 15, 123–130 (2007). 

28.  Freeman, SM., Abboud, CN., Whartenby, KA., Packman, CH., Koeplin, DS., 

Moolten, FL., Abraham, GN. The “bystander effect”: Tumor regression when a 

fraction of the tumor mass is genetically modified. Cancer Res. 53, 5274–5283 

(1993). 

29. Garcia-Castro, J., Mart.nez-Palacio, J., Lillo, R.,  Garc.a-S.nchez, F., Alemany, 

R., Madero, L., Bueren, JA., Ramrez, M.Tumor cells as cellular vehicles to 

deliver gene therapies to metastatic tumors. Cancer Gene Ther. 12, 341–349 

(2005). 

30. Dondossola, E., Dobroff, AS., Marchi, S., Card.-Vila, M., Hosoya, H., Libutti, 

SK., Corti, A., Sidman, RL., Arap, W., Pasqualini, R. Self-targeting of TNF-

releasing cancer cells in preclinical models of primary and metastatic tumors. 

Proc. Natl. Acad. Sci. U.S.A. 113, 2223–2228 (2016). 

31. Reinshagen, C., Bhere, D., Choi, S.H., Hutten, S., Nesterenko, I., Wakimoto, H., 

Le Roux, E., Rizvi, A., Du, W., Minicucci, C. and Shah, K. CRISPR-enhanced 



 

 163 

engineering of therapy-sensitive cancer cells for self-targeting of primary and 

metastatic tumors. Science translational medicine, 10(449), p.eaao3240. (2018). 

32. Parkins, KM., Hamilton, AM., Dubois, VP., Wong, SM., Foster, PJ., and Ronald, 

JA. “Cellular MRI Reveals Altered Brain Arrest of Genetically Engineered 

Metastatic Breast Cancer Cells,” Contrast Media & Molecular Imaging, vol. 2019, 

Article ID 6501231, (2019). 

33. Kanai, F., Lan, K. H., Shiratori, Y., Tanaka, T., Ohashi, M., Okudaria, T & 

Tamaoki, T.  In vivo gene therapy for α-fetoprotein-producing hepatocellular 

carcinoma by adenovirus-mediated transfer of cytosine deaminase gene. Cancer 

research, 57(3), 461-465. (1997). 

34. Ichikawa, T., Tamiya, T., Adachi, Y., Ono, Y., Matsumoto, K., Furuta, T., ... & 

Ohmoto, T.  In vivo efficacy and toxicity of 5-fluorocytosine/cytosine deaminase 

gene therapy for malignant gliomas mediated by adenovirus. Cancer gene 

therapy, 7(1), 74. (2000). 

35. Chai, L. P., Wang, Z. F., Liang, W. Y., Chen, L., Chen, D., Wang, A. X., & 

Zhang, Z. Q.  In vitro and in vivo effect of 5-FC combined gene therapy with 

TNF-α and CD suicide gene on human laryngeal carcinoma cell line Hep-2. PLoS 

One, 8(4), e61136. (2013). 

36. Altaner, C. Prodrug cancer gene therapy. Cancer letters, 270(2), 191-201. (2008). 

37. American Cancer Society, Cancer Facts & Figures 2014 (American Cancer 

Society). (2014). 

38. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. 

Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality 



 

 164 

worldwide for 36 cancers in 185 countries. CA: a cancer journal for 

clinicians, 68(6), 394-424. (2018). 

39. Hwang, J. Y., Li, Z., & Loh, X. J.  Small molecule therapeutic-loaded liposomes 

as therapeutic carriers: from development to clinical applications. RSC 

Advances, 6(74), 70592-70615. (2016). 

40. Patel, J., Amrutiya, J., Bhatt, P., Javia, A., Jain, M., & Misra, A.  Targeted 

delivery of monoclonal antibody conjugated docetaxel loaded PLGA 

nanoparticles into EGFR overexpressed lung tumour cells. Journal of 

microencapsulation, 35(2), 204-217. (2018). 

41. Weiner, L.M. et al. New approaches to antibody therapy. Oncogene. V.19., 

p.6144, (2000). 

42. Weiner, L.M. et al. Monoclonal antibodies: versatile platforms for cancer 

immunotherapy. Nat. Rev. Immunol., v.10, p.317. (2010). 

43. Vrignaud, S., Benoit, J. P., & Saulnier, P. Strategies for the nanoencapsulation of 

hydrophilic molecules in polymer-based nanoparticles. Biomaterials, 32(33), 

8593-8604. (2011). 

44. Vasir, J. K., & Labhasetwar, V.  Biodegradable nanoparticles for cytosolic 

delivery of therapeutics. Advanced drug delivery reviews, 59(8), 718-728. (2007). 

45. Lu, Y., Madu, CO. Viral-based gene delivery and regulated gene expression for 

targeted cancer therapy. Expert Opin Drug Deliv. 7:19-35. (2010). 

46. Kohn, DB., Sadelain, M., Glorioso, JC. Occurrence of leukaemia following gene 

therapy of X-linked SCID. Nat Rev Cancer. ;3:477-88. (2003). 



 

 165 

47. Marshall, E. Gene therapy death prompts review of adenovirus vector. Science. 

286:2244-5. (1999). 

48. Kaneda, Y., Tabata, Y. Non-viral vectors for cancer therapy. Cancer Sci. 97:348-

54. (2006). 

49. Morille, M., Passirani, C., Vonalbourg, A. Progress in developing cationic vectors 

for non-viral systemic gene therapy against cancer. Biomaterials. 29:3477-96 

50. Al-Dosari, MS., Gao, X. Nonviral gene delivery: principle, limitations, and recent 

progress. AAPS J 2009;11:671-81. (2008). 

51. Rosenberg, SA., Yannelli, JR., Yang, JC., Topalian, SL., Schwartzentruber, 

DJ., Weber, JS., Parkinson, DR., Seipp, CA., Einhorn, JH., White, DE. 

Treatment of patients with metastatic melanoma with autologous tumor-

infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst 86: 1159–1166. 

(1994). 

52. Dudley, ME., Wunderlich, JR., Robbins, PF., Yang, JC., Hwu, P., 

Schwartzentruber, DJ., Topalian, SL., Sherry, R., Restifo, NP., Hubicki, AM., 

Robinson, MR., Raffeld, M., Duray, P., Seipp, CA., Rogers-Freezer, L., 

Morton, KE., Mavroukakis, SA., White, DE., Rosenberg, SA. Cancer 

regression and autoimmunity in patients after clonal repopulation with 

antitumor lymphocytes. Science 298: 850–854. (2002). 

53. Edinger, M., Cao, Y. A., Verneris, M. R., Bachmann, M. H., Contag, C. H., & 

Negrin, R. S.  Revealing lymphoma growth and the efficacy of immune cell 

therapies using in vivo bioluminescence imaging. Blood, 101(2), 640-648. (2003). 



 

 166 

54. Thorne, S. H., Negrin, R. S., & Contag, C. H. Synergistic antitumor effects of 

immune cell-viral biotherapy. Science, 311(5768), 1780-1784. (2006). 

55. Labanieh, L., Majzner, R. G., & Mackall, C. L.  Programming CAR-T cells to kill 

cancer. Nature biomedical engineering, 2(6), 377. (2018). 

56. Fischer, U., Steffens, S., Frank, S., Rainov, NG., Schulze-Osthoff, K., Kramm, 

CM. Mechanisms of thymidine kinase/ganciclovir and cytosine deaminase/5-

fluorocytosine suicide gene therapy-induced cell death in glioma cells. Oncogene. 

24(7):1231–43. (2005). 

57. Kerr, IG., Zimm, S., Collins, JM., O'Neill, D., Poplack, DG. Effect of intravenous 

dose and schedule on cerebrospinal fluid pharmacokinetics of 5-fluorouracil in the 

monkey. Cancer Res. 44:4929–32. (1984). 

58. Shirakawa, T., Gardner, TA., Ko, S-C., Bander, N., Woo, S., Gotoh, A., et al. 

Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine 

gene therapy is superior to thymidine kinase plus acyclovir in a human renal cell 

carcinoma model. J Urol. 162(3 Pt 1):949–54. (1999). 

59. Trinh, QT., Austin, EA., Murray, DM., Knick, VC., E, HB. Enzyme/prodrug gene 

therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine 

kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell 

line. Cancer Res. 55(21):4808–12. (1995). 

60. Miyagi, T., Koshida, K., Hori, O., Konaka, H., Katoh, H., Kitagawa, Y., et al. 

Gene therapy for prostate cancer using the cytosine deaminase/uracil 

phosphoribosyltransferase suicide system. J Gene Med. 5(1):30–7. (2003). 



 

 167 

61. Richard, C., Duivenvoorden, W., Bourbeau, D., Massie, B., Roa, W., Yau, J. et al. 

Sensitivity of 5-fluorouracil-resistant cancer cells to adenovirus suicide gene 

therapy. Cancer Gene Ther. 14(1):57–65. (2006). 

 

 

 

                                                   Chapter 5 

 

5 Summary and Future Work 
 

In this thesis, we present the first study to use both iron-based cellular MRI and BLI to 

longitudinally track cancer metastasis in vivo. Further, we present the first application of 

this imaging model to study concomitant tumour enhancement in an immune competent 

mouse model of breast cancer metastasis. This is the first application of dual-luciferase 

BLI to monitor the long-term fate of two different cancer populations in the same animal 

and the first study to use molecular-genetic imaging to visualize whole body tumour self-

homing and effective self-targeted treatment of disseminated metastases.  

 

5.1 Discussion and Conclusions 
 

Tumour self-homing and CTR/CTE are potential mechanisms contributing to cancer 

metastasis whereby an existing primary tumour can influence the growth of secondary 

tumours at distant sites. The majority of studies have relied on endpoint histology to study 

these mechanisms. This thesis employed numerous imaging technologies to noninvasively 
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study these biological processes and the impact they may have on the progression of breast 

cancer metastasis. 

 

5.1.1    Chapter 2- A multimodality imaging model to track viable         

breast cancer cells from single arrest to metastasis in the 

mouse brain 
 

 

In Chapter 2, we combined iron-based cellular MRI with longitudinal BLI to track the fate 

of iron-labeled, luciferase expressing brain trophic breast cancer cells in nude mice. This 

is the first study demonstrating these complementary technologies can be used together to 

get a more holistic view of cancer cell fate in a model of experimental metastasis.  In this 

work, BLI allowed for repetitive, non-invasive, whole body imaging and MRI based 

measurements of single cell arrest and tumour burden were used to validate BLI 

measurements. The main findings were: 

 

1. The number of iron labeled cells that arrested throughout the brain on day 0 

correlated with BLI measurements of cell viability 

2. The decrease in MR void number from day 0 to day 8 correlated with changes in 

BLI signal 

3. Total brain tumour burden measured with MRI correlated with BLI measurements 

of cell viability at endpoint 

 

These findings demonstrate the value in using both technologies to noninvasively monitor 

the different stages of the metastatic cascade in vivo. The correlation seen between 
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modalities on the day of cell injection suggests that the majority of iron labeled cells that 

arrested in the brain are viable. The correlation seen between modalities at endpoint 

suggests that the majority of tumour burden visualized with MRI is viable tumour tissue. 

Our goal for the following experiment was to investigate the impact of a primary breast 

tumour on metastatic growth; thus, we chose to continue with this imaging model to acquire 

measurements of cell arrest, tumour burden and cellular viability over time. We predict this 

novel multimodality imaging framework will be broadly applicable to other experimental 

models of cancer metastasis and useful for evaluating the efficacy of emerging anti-cancer 

drugs at different stages of the metastatic cascade. 

 

5.1.2    Chapter 3- Multimodality cellular and molecular imaging 

of concomitant tumour enhancement in a syngeneic mouse 

model of breast cancer metastasis  
 

 

In Chapter 3, we successfully applied our multimodality imaging model to study the impact 

of a primary 4T1 breast tumour on the growth of 4T1BR5 derived metastases. Previous 

literature suggested the size of the primary tumour may influence whether CTR or CTE 

occurs [1]; thus, we investigated the impact of both a small and large primary tumour. 

While our MR analysis indicated a strong CTE effect regardless of primary tumour size, 

our BLI measurements suggested a significant effect on metastasis in mice with large 

primary tumours only. The main findings were: 

 

1. The initial arrest and clearance of 4T1BR5 cells in the brain was not significantly 

different between mice that had primary tumours and control mice.  
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2. Mice bearing small primary tumours had significantly more MR detectable brain 

tumour burden at endpoint compared to mice without primary tumours; however, 

BLI signal was not significantly different between groups. 

3. Mice bearing large primary tumours had significantly more MR detectable brain 

tumour burden and BLI signal at endpoint compared to mice without primary 

tumours. 

 

These findings further validate the importance of using more than one technology to 

evaluate tumour burden in models of metastasis. While we demonstrate strong agreement 

between these modalities in our previous study, others have shown that measurements of 

tumor size (MRI) and tumor viability (BLI) do not always correlate [2]. With MRI, we are 

measuring tumour volume which can include areas of edema, immune cells etc., whereas 

BLI is a direct measure of viable engineered cells. Thus, acquiring measurements from 

both MRI and BLI can offer valuable insight into the disease state. In this study, by using 

in vivo BLI and MRI we could determine differences in endpoint tumour burden were not 

related to differences in the initial arrest or clearance of viable cells in the brain, which 

suggests that the presence of a primary tumour can increase the proliferative growth of 

brain metastases in this syngeneic 4T1 mouse model. 

 

5.1.3    Chapter 4- Engineering self-homing circulating tumour 

cells as novel cancer theranostics 
 

 

In chapter 4, we employed dual-luciferase BLI to evaluate the efficiency of experimental 

CTCs to home to disseminated metastases throughout the mouse body. Our imaging data 
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supported extremely efficient self-homing of systemically administered CTCs to 

disseminated metastases. Based on these results, we next engineered our CTCs to express 

a suicide gene to investigate their potential as drug delivery vehicles for self-targeted 

therapy of primary and metastatic tumours. The main findings of this study were: 

 

1. Experimental CTCs home to disseminated spontaneous metastases. 

2. Systemically administered therapeutic CTCs can effectively home to and treat pre-

existing primary and metastatic tumours. 

3. Dual-luciferase BLI allowed for sensitive visualization of CTC arrest, homing 

efficiency, treatment efficacy and long-term fate. 

 

The application of dual-luciferase BLI allowed for sensitive tracking of both cell 

populations: metastatic breast cancer cells as well as engineered therapeutic cancer cells. 

By incorporating a suicide switch, we show efficient killing of engineered therapeutic 

cancer cells as well as a strong bystander effect whereby adjacent non-engineered cancer 

cells are killed. Together our findings suggest CTCs should continue to be investigated as 

highly-efficient carriers of therapeutic cargo to metastatic tumour sites.  

 

5.2 Limitations 
 

5.2.1    The use of cell lines 
 

The results presented in this thesis are based on observations of preclinical mouse models 

of breast cancer metastasis. We employed three commonly used authenticated cell lines, 

the murine 4T1/4T1BR5 model and the human derived JIMT1BR model. The use of cell 
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lines in preclinical studies provides many advantages. Cell lines are relatively easy and 

inexpensive to maintain.  Furthermore, the specific models that were used in this thesis are 

quite aggressive, providing a reasonable timeline for longitudinal imaging studies. 

However, previous studies have shown that cell lines may not accurately represent the 

heterogeneity of tumours that is seen in the clinic [3]. As a result, preclinical findings based 

on cell lines do not always translate accordingly. This limitation can be addressed by 

implementing patient derived xenograft (PDX) models for preclinical cancer studies. This 

involves implanting a tumour fragment or suspension from a patient directly into an 

immune compromised animal and continued passaging of any resultant tumours in 

additional mice cohorts [4]. In recent years, it has been shown that PDX models have 

similar tumour characteristics to those observed in the clinic and as a result, have more 

predictive value when translating to patient studies [5,6]. While our group is transitioning 

towards the use of PDX models, the aggressive cancer cell lines used in this thesis provided 

models of consistent and timely breast cancer brain metastasis that can take months to 

generate with PDX models, if at all in the majority of mice. In addition, the ease of 

expansion and stability of these cell lines in culture allowed us to genetically engineer them 

to express our imaging reporter genes with high efficiency. Moving forward, we will use 

the imaging framework and experimental techniques developed in this thesis to study 

metastasis in PDX models of breast cancer. 

 

5.2.2    Preclinical imaging techniques 
 

The imaging technologies presented in this thesis are extremely valuable tools for tracking 

cancer populations in preclinical animal models. Iron-based cellular MRI enables single 
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cell detection throughout the brain providing measurements of cell arrest, cell clearance, 

and cell dormancy [7,8]. BLI enables sensitive detection of whole-body metastatic burden 

and provides longitudinal measurements of cancer cell viability [9,10]. However, these cell 

tracking technologies are limited to preclinical use since they rely on the cancer cells being 

labeled in culture.  We chose to use these modalities to visualize very early stages of the 

metastatic cascade that are not possible to study using clinically relevant modalities. In the 

future, we could use conventional MR and/or PET imaging to acquire both anatomical and 

functional tumour measurements that would be feasible to obtain in a clinical setting. 

 

5.2.3    Genetically-engineered cells 
 

In this thesis, we employ lentiviral transduction methods to engineer cancer cells to stably 

express various imaging reporter genes. While lentiviruses are commonly used due to their 

high transduction efficiency, they have some concerns regarding whether the labeling can 

change the biology of the engineered cells. Most lentiviral systems that are currently in use 

are derived from the human immunodeficiency viruses (HIV) and lentiviral cargo 

integrates randomly into the genome upon infection to permit stable expression in both 

dividing and non-dividing cell populations [11]. Random integration can cause unwanted 

detrimental effects such as transgene silencing, altered cell behavior, or insertional 

activation of oncogenes [12-15]. To overcome this, our lab is currently developing 

clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-

associated protein 9 (Cas9) tools to allow for precise editing of cells at the adeno-associated 

virus site 1 (AAVS1) safe harbour. Our group has shown successful AAVS1 integration of 

large gene constructs necessary for molecular-genetic imaging using the CRISPR/Cas9 
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system [16]. Future work is focused on improving the efficiency of this first system, which 

will allow us to use it reporter gene-based for cell tracking studies the lack the issues 

associated with random integration.  

 

5.3 Future Work 
 

This thesis includes some of the first studies using longitudinal imaging to study the 

mechanisms contributing to breast cancer metastasis. Future work will be focused on 

translational studies that bridge the gap between our initial findings presented here and 

future clinical studies. First, we will implement PDX models of breast cancer to better 

understand clinical cases of CTR versus CTE. In addition, future work will focus on 

developing more clinically relevant imaging models to visualize CTC self-homing in vivo.  

 

5.3.1    Implementing PDX models to study CTR/CTE 
 

The clinical evidence of CTR and CTE remains lacking due to the fact that investigation 

depends on the presence of an existing primary tumour. While there have been reported 

cases of both CTR and CTE [17-22], it is not clear what stratifies patients into experiencing 

one or the other. With the use of cell lines, we have previously demonstrated CTR in an 

immune deficient mouse model as well as CTE in an immune competent mouse model in 

the current work [23]. Others have also shown that both CTR and CTE can occur within 

the same animals depending on the ratio of the size of primary tumour to secondary tumour 

[1]. By implementing PDX models to study CTR/CTE, we may be able to better represent 

the tumour heterogeneity that is evident in the clinic to more accurately identify breast 

cancer patients that would benefit from tumour resection or alternative therapy.  
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5.3.2    Visualizing CTC tumour self-homing with a clinically -

relevant imaging modality 
 

 

In chapter 4, we employed dual-luciferase BLI to sensitively monitor CTC self-homing 

efficiency to primary and metastatic tumour sites. In future studies, we want to investigate 

whether CTC self-homing can be visualized with other technologies we use in our lab such 

as iron-based cellular MR and Fluorine-19 MR. Iron-based cellular MRI may enable 

detection of single iron labeled self-homing CTCs, while Fluorine-19 MR would provide 

a quantifiable technique to estimate the number of CTCs that home to a targeted tumour 

site. 

 

We also plan to investigate the use of a human derived MR reporter gene to track the 

engineered CTCs in our mouse models. Our group has recently shown that the organic 

anion transporting polypeptide 1 (OATP1), a protein that is naturally expressed in the 

human liver, can be encoded into cancer cells for enhanced uptake of the gadolinium agent 

Gd-EOB-DTPA, and thus, improved detection by MR [24].   This reporter has high 

translational potential as it will avoid potential immune reactions in patients that may be 

caused by other reporter genes such as virally-derived HSV-TK, and Gd-EOB-DTPA is 

clinically used.  
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Appendices 
 

Appendix A: Supplementary Figures 
 

 

 

Supplementary Figure 3.1: A/B) 4T1-BR5 cells were transduced and sorted to stably 

co-express Red-FLuc/GFP using a commercial lentiviral vector (Scale bars = 100 

microns). C) The resultant 4T1BR5-Red-FLuc/GFP cells were efficiently labeled with 

> 90% of cells labeled with MPIO prior to intracardiac injection (Scale bar = 200 

microns). D) No significant difference in BLI signal was detected in 4T1BR5-Red-

FLuc/GFP cells that were labeled with MPIO and cells that were not labeled. Data is 

presented as mean +/- SD. 
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Supplementary Figure 3.2: A significant positive correlation was found between the 

number of 4T1BR5-Red-FLuc/GFP cells and BLI signal (A). There was not a 

significant difference in cellular proliferation detected between naïve 4T1-BR5 and 

4T1BR5-Red-FLuc/GFP cells (B). 4T1-BR5-Red-Fluc/GFP cells showed no 

significant change in Red-Fluc expression over multiple passages in vitro (C).  
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Supplementary Figure 3.3: A) Lung metastases (circled in yellow) were detectable at 

day 14 with whole body MRI in mice with a large MFP primary tumor, but C) not 

control mice. B) BLI signal was also detected in the lung region of large MFP mice on 

day 14, but D) not control mice. 
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Supplementary Figure 3.4: A representative in vivo MR image of the brain (A) and 

corresponding ex vivo BLI (B); in vivo (C) and ex vivo (D) whole body BLI were also 

matched presenting signal in the abdominal region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 183 

 

 

 
 

Supplementary Figure 3.5: A representative MR slice (A/D) corresponded well with 

GFP positive cells (B/E) and H&E staining (C/F) confirming that MR-detectable 

metastases contain 4T1BR5-Red-FLuc/GFP cells. Scale bars = 500 microns. 
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Supplementary Figure 4.1: 4T1 cells were transduced with a lentiviral vector 

encoding both RLuc and ZsGreen and sorted to obtain 4T1-RLuc cells (Suppl. Fig. 

1A). No significant change in ZsGreen expression over multiple passages was seen 

(B). There was a significant positive correlation shown between the number of 4T1-

RLuc cells and RLuc/ZsGreen signal (C). 4T1BR5-FLuc cells incubated with D-

luciferin demonstrated significantly higher BLI signal than 4T1-RLuc cells, 4T1 

parental cells, or equivalent volume of media, and 4T1-RLuc cells did not produce 

signal significantly different than 4T1 parental cells or media alone (D). Similarly, 

after the addition of h-coelenterazine, 4T1-RLuc cells had significantly higher signal 

than 4T1BR5-FLuc cells, 4T1 parental cells, or equivalent volume of media and 

4T1BR5-FLuc cells did not produce signal significantly different than 4T1 parental 

cells or media alone (E). A significant increase in cell migration was seen for 4T1BR5 

cells when conditioned media from 4T1 cells was used compared to conditioned media 

from 4T1BR5 cells or unconditioned media (F). A significant increase in cell 

migration was also seen for 4T1 cells when conditioned media from 4T1 cells was used 

compared to unconditioned media (F).  
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Supplementary Figure 4.2: In vivo cross reactivity: 4T1-RLuc cells were implanted 

into the right MFP of nude mice (n=5) and 4T1BR5-FLuc cells were implanted into 

the contralateral (left) MFP (A). This allowed us to validate the lack of substrate 

cross-reactivity in vivo at early time points after cell injection. On Day 0, 4T1-RLuc 

cells only showed signal after administration with h-coelenterazine and signal in the 

right MFP was significantly higher than the left (B). Similarly, on Day 1, 4T1BR5-

FLuc cells only showed signal after administration of d-Luciferin and signal in the 

left MFP was significantly higher than in the right MFP (C).  
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Supplementary Figure 4.3: 4T1BR5-FLuc cells were transduced with a lentiviral 

vector co-expressing the therapeutic prodrug converting fusion enzyme cytosine 

deaminase-uracil phosphoribosyltransferase (CD:UPRT) and tdTomato (tdT), and 

sorted via tdT to obtain 4T1BR5-FLuc/CD cells (A). After 96 hours of incubation with 

5’FC (5mM), CD expressing cells showed significantly less survival than cells without 

drug as well as significantly less survival than 4T1BR5-FLuc with or without drug 
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(B). At all doses, CD expressing cells show significantly less survival than cells without 

drug (C).  
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Supplementary Figure 4.4: At endpoint, the number of metastases that were 

composed of both 4T1-RLuc and 4T1BR5-FLuc cells was significantly higher than 
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the number of metastases that were either 4T1-RLuc-positive only or 4T1BR5-FLuc-

positive only (A). The presence of both 4T1-RLuc and 4T1BR5-FLuc cells in 

numerous metastases was confirmed histologically (B). Using dual-BLI, we detected 

some whole-body metastases that had stronger FLuc signal than RLuc signal as well 

as metastases that had stronger RLuc signal than FLuc signal (X-axis values= mouse 

number followed by tumour number) (C). 
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Appendix B: Permissions 
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