
Western University Western University 

Scholarship@Western Scholarship@Western 

Electronic Thesis and Dissertation Repository 

8-6-2019 1:30 PM 

Ricci Curvature of Noncommutative Three Tori, Entropy, and Ricci Curvature of Noncommutative Three Tori, Entropy, and 

Second Quantization Second Quantization 

Rui Dong, The University of Western Ontario 

Supervisor: Khalkhali, Masoud, The University of Western Ontario 

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree 

in Mathematics 

© Rui Dong 2019 

Follow this and additional works at: https://ir.lib.uwo.ca/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Dong, Rui, "Ricci Curvature of Noncommutative Three Tori, Entropy, and Second Quantization" (2019). 
Electronic Thesis and Dissertation Repository. 6294. 
https://ir.lib.uwo.ca/etd/6294 

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted 
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of 
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca. 

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6294&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=ir.lib.uwo.ca%2Fetd%2F6294&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6294?utm_source=ir.lib.uwo.ca%2Fetd%2F6294&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


Abstract
In noncommutative geometry, the metric information of a noncommutative space is en-

coded in the data of a spectral triple (A,H ,D), where D plays the role of the Dirac operator
acting on the Hilbert space of spinors. Ideas of spectral geometry can then be used to define
suitable notions such as volume, scalar curvature, and Ricci curvature. In particular, one
can construct the Ricci curvature from the asymptotic expansion of the heat trace Tr(e−tD2

).
In Chapter 2, we will compute the Ricci curvature of a curved noncommutative three torus.
The computation is done for both conformal and a non-conformal perturbation of the flat
metric. By applying Connes’ pseudodifferential calculus for the noncommutative tori, we
explicitly compute the second density of the heat trace expansion for the perturbed Lapla-
cians on both functions and 1−forms. On the other hand, in noncommutative geometry one
also wants to get a good notion of an action functional which depends only on the spectrum
of D, called spectral action functional. It is known that such a functional can be expressed
as Tr(f(D)) for some function f . In chapter 3, we show that the von Neumann entropy,
average energy, and negative free energy of the Gibbs state of the second quantized Dirac
operator dΓD has a spectral action functional interpretation of the original Dirac operator
D. To be able to carry on the computations, we have to incorporate the chemical poten-
tial µ. All those spectral action coefficients can be given in terms of the modified Bessel
functions.
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Summary for lay audience
In mathematics one can describe the topological properties of a compact Hausdorff

space M via the algebra C(M) of all continuous complex-valued functions over M, which
is a commutative C∗−algebra. By analogy, a noncommutative C∗−algebra encodes all the
topological information of a noncommutative space.

In Section 1.1 and 1.2, we shall briefly review the definition of a spectral triple which
encodes the geometric information of a noncommutative space. Then in Chapter 2, we
shall recall the definition of the noncommutative three tori. Then we will compute the
Ricci density of curved noncommutative three tori under the conformally flat metric and a
specific non-conformal metric by analyzing the spectral properties of the Laplace operators.

In Section 1.3 and 1.4, we shall give a brief introduction to the spectral action principle
and the second quantization. A spectral action functional is an additive functional with
respect to direct sum of the spectral triples and the second quantization is one method to
describe a multi-particle system in the quantum statistical mechanics. We will show, in
Chapter 3, that the entropy and energy of the Gibbs state of the second quantized Dirac op-
erator can be interpreted as spectral action functionals of the original Dirac operator. More-
over, we will explicitly compute all the spectral action coefficients for the above quantities
in both Bosonic and Fermionic cases.
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Chapter 1

Introduction to noncommutative
geometry

In this chapter, we will briefly review the pseudodifferential operators and elliptic opera-
tors first, then we will introduce some basic concepts in noncommutative geometry, such
as spectral triples and spectral action. Finally, we will give a short introduction about en-
tropy and energy in the quantum statistical mechanics. This chapter contains introductory
material needed to understand my two joint papers [5, 6].

1.1 Pseudodifferential operators and elliptic operators

We first briefly review the theory of pseudodifferential operators on Rm, then we shall
review the theory of pseudodifferential operators on an m−dimensional oriented closed
manifold M following Gilkey’s book [7].

To simplify the notations, we let dx, dy, and dξ denote the Lebesgue measure on Rm

with an additional normalizing factor of (2π)−m/2. Following this notation, we define the
convolution product of two Schwartz class functions f , g ∈ S(Rm) by

( f ∗ g)(x) =

∫
Rm

f (x − y)g(y)dy =

∫
Rm

f (y)g(x − y)dy,

and the Fourier transform of f by

f̂ (ξ) =

∫
Rm

e−ix·ξ f (x)dx.

1



2 Chapter 1. Introduction to noncommutative geometry

We shall also use the following notation

dαx =

(
∂

∂x1

)α1

· · ·

(
∂

∂xm

)αm

, Dα
x = (−i)|α|dαx .

The following properties of Fourier transform will be used:

Dα
ξ f̂ (ξ) = (−1)|α|

(
x̂α f

)
(ξ), ξα f̂ (ξ) =

(
D̂α

x f
)

(ξ).

1.1.1 Pseudodifferential operators

Definition 1.1.1 Let U ⊂ Rm be an open subset. We say p(x, ξ) is a symbol of order d, and
we denote it by p ∈ S d(U), if

(1) the function p(x, ξ) is smooth in (x, ξ) ∈ U × Rm with compact x support,

(2) for all multi-indices (α, β), there are constants Cα,β such that

|Dα
x Dβ

ξ p(x, ξ)| ≤ Cα,β(1 + |ξ|)d−|β|.

We also denote by S −∞(U) =
⋂
d

S d(U), and when U is the whole Euclidean space Rm, we

may simply write the set of all symbols of order d as S d. For a given symbol p, we define
the associated operator P(x,D) : S(Rm)→ S(Rm) by

P(x,D)( f )(x) =

∫
Rm

eix·ξp(x, ξ) f̂ (ξ)dξ =

∫
Rm

∫
Rm

ei(x−y)·ξp(x, ξ) f (y)dydξ.

By definition P(x,D) is a linear map from S(Rm) to S(Rm). We can extend P(x,D) from
S(Rm) to the Sobolev space Hs. We refer to Gilkey’s book [7] for more details in this
regard.

Lemma 1.1.2 Let p ∈ S d. Then |P f |s−d ≤ C| f |s for all f ∈ S(Rm). Thus P can be extended
to a continuous map P : Hs → Hs−d for all s.

The class of pseudodifferential operators is closed under the composition and adjoint.
Moreover, if P and Q are two pseudodifferential operators whose symbols are p(x, ξ) and
q(x, ξ) respectively, then we have the following asymptotic expansions of the symbols of
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adjoint and composition

σ(P∗) ∼
∑
α

dαξ Dα
x p∗/α!,

σ(PQ) ∼
∑
β

dβξ p(x, ξ)Dβ
xq(x, ξ)/β!.

Here the relation ∼ means that the difference of two symbols is infinitely smoothing,
namely,

p ∼ p′ ⇔ p − p′ ∈ S −∞ =
⋂

d

S d.

Let p(x, ξ) ∈ S d have x support in U ⊂ Rm, and we denote by C∞c (U) the set of all
smooth functions with support in U. We restrict domain of P to be C∞c (U). Then the range
of P is C∞c (U) as well, and thus the operator P : C∞c (U) → C∞c (U) is well-defined. We
denote the set of all such operators by Ψd(U).

In general, let p(x, ξ) be a matrix-valued symbol, i.e., all the components of p(x, ξ)
belong to S d. The corresponding operator P is then given by a matrix of pseudodifferential
operators. Thus P is a map whose domain and range are vector-valued functions with
compact support in U.

Now we can extend the theory of pseudodifferential operators on an oriented smooth
closed Riemannian manifold M. We shall consider scalar functions first.

Definition 1.1.3 Let C∞(M) be the space of smooth functions on M, and let P : C∞(M)→
C∞(M) be a linear operator. We say P is a pseudodifferential operator of order d if for
any open chart U on M, and for any φ, ψ ∈ C∞c (U), the localized operator φPψ is a
pseudodifferential operator with order d on U.

The pseudodifferential operators acting on a vector bundle V over M is defined as below.

Definition 1.1.4 Let M be an oriented closed manifold, and V → M be a vector bun-
dle. Let C∞(V) denote the space of smooth sections of V. We say a linear operator
P : C∞(V) → C∞(V) is a pseudodifferential operator of order d if for any open chart
U on M which is a local trivilization for V and for any φ, ψ ∈ C∞c (U), the localized opera-
tor φPψ : C∞c (U,Cn) → C∞c (U,Cn) is a pseudodifferential operator of order d on U acting
on C∞c (U,Cn).

If the vector bundle V is equipped with a Hermitian product (·, ·), then we can define an
inner product over C∞(V) by

〈ξ, η〉 :=
∫

M
(ξ(x), η(x))dx, ξ, η ∈ C∞(V),
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and complete it to a Hilbert space, which we denote by L2(M,V). We can then define the
adjoint operator P∗ with respect to this inner product. For this adjoint operator P∗, we have

σL(P∗) = σL(P)∗.

The order d of a pseudodifferential operator P puts some restrictions on P. In fact, we
have the following theorem. One can check [7] for a proof.

Theorem 1.1.5 Let M be an oriented closed smooth Riemannian manifold with dimension
m, and V → M be a Hermitian vector bundle. For any P ∈ Ψd(M,V), as a densely defined
operator on L2(M,V), we have:

(1) P is a bounded operator if d ≤ 0.

(2) P is a compact operator if d < 0.

(3) P is a Dixmier class operator if d ≤ −m.

(4) P is a trace class operator if d < −m.

Let U be an open subset of M. For a symbol p ∈ S d(U) of order d, we define the leading
(principal) symbol pL of p to be the class of p in the quotient spaces S d(U)/S d−1(U).
Following this definition, if P and Q are pseudodifferential operators of order d1 and d2

over U, then PQ is a pseudodifferential operator of order d1 + d2 and

σL(PQ) = σL(P)σL(Q).

The symbol σ(P) is not globally well-defined on M since it is not invariant under the
change of coordinates, while the leading symbol σL(P) is invariant under the change of
coordinates. Thus the leading symbol σL(P) is globally well-defined.

Definition 1.1.6 Let p ∈ S d(U) be a square matrix and U1 be an open set such that U1 ⊂

U. We say p is elliptic on U1 if there is an open subset U2 with U1 ⊂ U2 ⊂ U2 ⊂ U and
there exists a symbol p′ ∈ S −d(U) such that

pp′ − I ∈ S −∞(U2), p′p − I ∈ S −∞(U2).

We call an operator P ∈ Ψd(M,V) elliptic if for any open chart U ⊂ M and for any
φ, ψ ∈ C∞c (U), the localized operator φPψ is elliptic when φψ(x) , 0.
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If a pseudodifferential operator P ∈ Ψd(M,V) is an elliptic operator, then there exists an
operator Q ∈ Ψ−d(M,V) such that

PQ − I ∈ Ψ−∞(M,V), QP − I ∈ Ψ−∞(M,V).

We call Q a parametrix of P. According to Theorem 1.1.5, both PQ − I and QP − I are
compact operators, thus P is invertible in the Calkin algebra and therefore P is a Fredholm
operator.

1.2 Spectral geometry

Recall that for an operator T : H → H over a Hilbert space H , the spectrum of T is
defined by

spec(T ) = {λ ∈ C : (T − λ) is not invertible in B(H)}.

According to the spectral theory if T ∈ K(H) is a self-adjoint compact operator, we can
then find a complete orthonormal basis {φn} ofH consisting of eigenvectors of T . The main
idea of spectral geometry is to figure out how much geometric information one can extract
by analyzing the spectrum of some given geometric operator such as the Laplace operator,
on a Riemannian manifold M. The most well-known example in spectral geometry is
Weyl’s law (see e.g. [8]).

Theorem 1.2.1 (Weyl’s Law) Let M be a compact smooth Riemannian manifold of di-
mension m. Let 4 : L2(M) → L2(M) be the Laplace operator over M, whose eigenvalues
are 0 = λ0 < λ1 ≤ · · · , each eigenvalue repeated according to its multiplicity. We denote
by

N(λ) := #{ j : λ j ≤ λ}.

Then we have
N(λ) ∼

ωm

(2π)m Vol(M)λm/2, as λ→ ∞,

where ωm is the volume of the unit ball in Rm, that is

ωm =
π

m
2

Γ(m
2 + 1)

.

From Weyl’s Law, one can deduce an asymptotic formula of the j−th eigenvalue of 4:

λ j ∼

√
2π

(ωmVol(M))2/m j2/m, j→ ∞.
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In fact, we have the following more general result (see e.g. [7]).

Lemma 1.2.2 Let V → M be a smooth Hermitian vector bundle over a closed smooth
Riemannian manifold M of dimension m. Let P : C∞(V) → C∞(V) be an elliptic self-
adjoint pseudodifferential operator of order d ≥ 0. If we order the eigenvalues such that
|λ1| ≤ |λ2| ≤ · · · , then there exists a constant C such that |λ j| ∼ C jd/m.

1.2.1 Laplace type operators

Let (M, g) be an oriented closed smooth Riemannian manifold of dimension m, and V → M
be a rank n smooth vector bundle.

Definition 1.2.3 We say a second order differential operator P : C∞(V) → C∞(V) is a
Laplace type operator if σL(P) = gi jξiξ j. Namely, in any local chart U, P can be written as

P = −gi j ∂

∂xi

∂

∂x j
+ Ak ∂

∂xk
+ B, Ak, B ∈ C∞(U,End(V)).

For instance, let ∇ : C∞(V) → C∞(T ∗M ⊗ V) be a connection on the vector bundle V , that
is, a C-linear map satisfying

∇( fφ) = d f ⊗ φ + f∇φ, ∀ f ∈ C∞(M), φ ∈ C∞(V).

We define ∇ : C∞(T ∗M ⊗ V)→ C∞(T ∗M ⊗ T ∗M ⊗ V) by

∇(ω ⊗ ξ) 7→ ∇LCω ⊗ ξ + ω ⊗ ∇ξ, ω ∈ Ω1(M), ξ ∈ C∞(V),

here ∇LC is the Levi-Civita connection for the cotangent bundle T ∗M. Now consider the
second covariant derivative operator ∇2 given by the following composition map

C∞(V)
∇
−→ C∞(T ∗M ⊗ V)

∇
−→ C∞(T ∗M ⊗ T ∗M ⊗ V).

Taking the trace over T ∗(M) ⊗ T ∗(M), we define a differential operator

P∇ = −Tr(∇2) : C∞(V)→ C∞(V).

In a local coordinate, we have

P∇ = −gi j∇∂i∇∂ j + gi jΓk
i j∇∂k .
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Here Γk
i j’s are the Christoffel symbols for the Levi-Civita connection, namely,

∇LC∂ j = Γk
i jdxi ⊗ ∂k.

Hence P∇ is a Laplace type operator. In fact, we have the following result [7].

Lemma 1.2.4 Let P : C∞(V) → C∞(V) be a Laplace type operator. Then there exists a
unique connection ∇ on V and a unique endomorphism E ∈ C∞(End(V)) so that

P = P∇ − E.

Remark For a given closed smooth Riemannian manifold M, if we denote its Levi-Civita
connection by

∇LC : C∞(T (M))→ C∞(T ∗(M) ⊗ T (M)),

we can always extend ∇LC to the tensor fields:

∇LC : T p
q → T p+1

q .

In more details, in a local chart, the Levi-Civita connection ∇LC follows the following rules:

(1) ∇LCdxk = −Γk
i jdxi ⊗ dx j,

(2) ∇LC (∂xI ) =
∑
∂xi1 ⊗ · · · ⊗ ∇

LC∂xik ⊗ · · · ⊗ ∂xiq for ∂xI = ∂xi1 ⊗ · · · ⊗ ∂xiq ,

(3) ∇LC(dxJ) =
∑

dx j1 ⊗ · · · ⊗ ∇LCdx jk ⊗ · · · ⊗ dx jp for dxJ = dx j1 ⊗ · · · ⊗ dx jp ,

(4) ∇LC(ω ⊗ η) = ∇LCω ⊗ η + ω ⊗ ∇LCη for any tensors ω, η,

(5) ∇LC f = d f for f ∈ T 0
0 = C∞(M),

(6) ∇LC(γ) =
∑

(−1)i−1γ1 ∧ · · · ∧ ∇LCγi ∧ · · · ∧ γk for any k−form γ = γ1 ∧ · · · ∧ γk.

When there is no confusion, we simply denote the Levi-Civita by ∇, and denote the adjoint
of ∇ by ∇∗. Then we have the following result (see e.g. [11]).

Theorem 1.2.5 (Weitzenböck Formula) Let 41 : Ω1(M) → Ω1(M) be the Laplacian on
1−forms of M. We have the formula:

41 = ∇∗∇ + Ric.

Here Ric ∈ End(T ∗M) is the Ricci operator.
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1.2.2 Heat equation

Let V → M be a smooth Hermitian vector bundle over M. We take P : C∞(V) → C∞(V)
to be an elliptic pseudodifferential operator with order d > 0. We also require P to be self-
adjoint and σL(P) to be positive definite for all x ∈ M. Then there exists some constant C,
such that spec(P) ⊂ [C,∞). The heat equation is the partial differential equation given by:(

∂

∂t
+ P

)
f (x, t) = 0, f (x, 0) = f (x) ∈ C∞(V).

Formally, it has a solution f (x, t) = e−tP f (x). We define the heat kernel K(t, x, y) : Vy → Vx

to be:
K(t, x, y) =

∑
n

e−tλnφn(x) ⊗ φn(y).

Here φn is the eigenfunction of λn with norm 1. Thus

e−tP f (x) =

∫
M

K(t, x, y) f (y)dy.

Also, e−tP is a trace class operator for all t > 0 and we define the heat trace as

Tr
(
e−tP

)
=

∑
n

e−tλn =

∫
M

tr (K(t, x, x)) dx.

Since spec(P) ⊂ [C,∞), we get an integral representation for the operator e−tP;

e−tP =
1

2πi

∫
γ

e−tλ(P − λ)−1dλ,

where γ is a contour in the complex plane that goes around the spec(P) in the clockwise
direction without touching it.

While the operator (P − λ)−1 is not a pseudodifferential operator, the method given in
[7] is trying to approximate (P − λ)−1 by some pseudodifferential operator R(λ) and then
obtain properties of e−tP via R(λ). First, we shall generalize our definition of symbol:

Definition 1.2.6 Let R be the closed region of C consisting of γ together with the compo-
nent of C\γ which does not contain the interval [C,∞). We say q(x, ξ, λ) ∈ S k(λ)(U) is a
symbol of order k depending on the complex parameter λ ∈ R if

(1) q(x, ξ, λ) is smooth in (x, ξ, λ) ∈ Rm × Rm × R, has compact x−support in U and it is
holomorphic in λ.
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(2) For all (α, β, γ) there exist constants Cα,β,γ such that

|Dα
x Dβ

ξD
γ
λq(x, ξ, γ)| ≤ Cα,β,γ(1 + |ξ| + |λ|1/d)k−|β|−d|γ|.

We say q(x, ξ, λ) is homogeneous of order k in (ξ, λ) if

q(x, tξ, tdλ) = tkq(x, ξ, λ), ∀t ≥ 1. (1.2.1)

We let Ψk(λ)(U) be the set of all operators Q(λ) : C∞c (U)→ C∞c (U) with symbols q(x, ξ, λ) ∈
S k(λ) having x−support in U.

Lemma 1.2.7 ([7]) Take Qi ∈ Ψki(λ)(U) with corresponding symbols qi for i = 1, 2. Then
Q1Q2 ∈ Ψk1+k2(λ)(U) has symbol q where

q ∼
∑
α

dαξ q1Dα
x q2/α!.

Lemma 1.2.8 ([7]) If h : U → Ũ is a diffeomorphism between U, Ũ ⊂ Rm, then it induces
a map h∗ : Ψk(λ)(U)→ Ψk(λ)(Ũ) and

σ(h∗P) − p(h−1x1, (dh−1(x1))tξ1, λ) ∈ S k−1(λ)(Ũ).

Using Lemma 1.2.8, we can extend the class Ψ(λ) to closed manifolds using a partition of
unity argument. We now wish to solve the following equation recursively:

σ(R(λ)(P − λ)) − I ∼ 0. (1.2.2)

We define R(λ) with symbol r0 + r1 + · · · , where r j ∈ S −d− j(λ). We also define p′j(x, ξ, λ) =

p j(x, ξ) for j < d and p′d(x, ξ, λ) = pd(x, ξ) − λ. Then σ(P − λ) =
d∑

i=0
p′j. We denote

p′j ∈ S j(λ), and (p′d)−1 ∈ S −d(λ). The equation (1.2.2) yields:∑
α, j,k

dαξ r j · Dα
x p′k/α! ∼ I.

We rewrite it as ∑
n

∑
|α|+ j+d−k=n

dαξ r j · Dα
x p′k/α! ∼ I,

where j, k ≥ 0 and k ≤ d. There are no terms with n < 0. For the term with n = 0, we get
the requirement that r0 p′d = I. Thus r0 = (pd − λ)−1 and by induction, for n > 0 we get the
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recursive formula:
rn = −r0

∑
|α|+ j+d−k=n

j<n

dαξ r jDα
x p′k/α!.

We can also write
rn = −r0

∑
|α|+ j+d−k=n

j<n

dαξ r jDα
x pk/α!.

We define E(t) = 1
2πi

∫
γ

e−tλR(λ)dλ. Let K′(t, x, y) be the kernel of E(t), and K(t, x, y) be
the kernel of e−tP. It is proved in [7] that K′(t, x, y) is a smooth kernel and that K′(t, x, y)
can approximate K(t, x, y) to arbitrary orders of t as t → 0. Thus we can get the information
of e−tP by studying E(t). We let

an(x, P) =
1

2πi

∫ ∫
γ

e−λrn(x, ξ, λ)dλdξ.

Suppose d is an even number. If we replace ξ by −ξ, we conclude from (1.2.1) that

an(x, P) = 0, when n is odd.

According to [7], an(x, P) ∈ End(V,V) is invariantly defined independent of the coor-
dinate system and the local frame of V . Thus an(x, P) is globally well-defined as an endo-
morphism of the vector bundle V . We can also get the following asymptotic expansion of
the heat kernel on diagonal:

K(t, x, x) ∼
∞∑

n=0

t
n−m

d an(x, P), as t → 0+.

Thus we have the asymptotic expansion of the trace of the heat operator e−tP:

Tr
(
e−tP

)
=

∫
M

tr (K(t, x, x)) dx

∼

∞∑
n=0

t
n−m

d

∫
M

tr (an(x, P)) dx

∼

∞∑
n=0

t
n−m

d an(P),

where an(P) =
∫

M
tr (an(x, P)) dx. The terms of an(P) are spectral invariants of P, i.e., they

only depend on the spectrum of P, which can be computed using local expressions obtained
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from the symbol of P. In Chapter 2, we will use the terms of a2(x,40) and a2(x,41) to
compute the Ricci curvature of noncommutative torus T3

θ .

1.3 Noncommutative Riemannian geometry

The geometric properties of a closed Riemannian spin manifold M can be described by the
triple (C∞(M), L2(M, S ),D), where S is a spinor bundle of M, and D is the Dirac operator
associated with the Levi-Civita connection lifted to the spinor bundle. In fact, one can
recover the geodesic distance on M by [3]

d(x, y) = sup{| f (x) − f (y)| : ||[D, f ]|| ≤ 1}.

This triple is called the canonical spectral triple and was introduced by Alain Connes [3].

1.3.1 Spectral triples

Definition 1.3.1 A spectral triple (A,H ,D) consists of an involutive (unital) ∗−algebra
A with a faithful representation π on a Hilbert space H , and a self-adjoint operator D
defined on a dense subspace ofH such that (D± i)−1 is a compact operator and [D, π(a)] is
a bounded operator for all a ∈ A. A spectral triple is called even if there is a Z2−grading
γ : H → H , i.e., γ2 = 1 and γ∗ = γ, such that γπ(a) = π(a)γ and γD = −Dγ.

When there is no confusion, we may simply write the representation π(a) as a for any
a ∈ A. Another example of a spectral triple is the Hodge-de Rham spectral triple. Let M
be an oriented closed Riemannian manifold. The triple

(C∞(M), L2(M,ΛT ∗CM), d + d∗)

forms a spectral triple, and in this case, there is a Z2−grading γ defined by γ : ω 7→ (−1)|ω|ω.

Definition 1.3.2 We define a real structure on a spectral triple (A,H ,D) to be an anti-
linear isometry J : H → H such that:

(1) J2 = ε,

(2) JD = ε′DJ,

(3) Jγ = ε′′,



12 Chapter 1. Introduction to noncommutative geometry

n 0 1 2 3 4 5 6 7
ε 1 1 -1 -1 -1 -1 1 1
ε′ 1 -1 1 1 1 -1 1 1
ε′′ 1 -1 1 -1

Table 1.1: KO-dimension

where the signs ε, ε′, ε′′ ∈ {±1} are given by the Table 1.1. Moreover,

(4) [a, b◦] = 0, for all a, b ∈ A, where b0 = Jb∗J−1.

(5) [[D, a], b◦] = 0, for all a, b ∈ A.

The condition (4) is called the order zero condition. It implies that H is an A−bimodule
with left and right action of A given by a and b◦, and condition (5) is called the order one
condition. It corresponds to the property of geometric Dirac operators of being first order
elliptic differential operators.

Definition 1.3.3 A spectral triple is finitely summable if |D|−α is a trace class operator for
some α > 0.

Definition 1.3.4 A spectral triple is regular if for all a ∈ A, a and [D, a] are in the domain
of δm for all positive integers m. Here δ(·) = [|D|, ·].

Definition 1.3.5 A finitely summable spectral triple is of metric dimension m if the operator
|D|−s is a trace class operator on the half plane {s ∈ C : Re(s) > m}.

Definition 1.3.6 The dimension spectrum is the set of poles in C of the zeta functions
ζb,D(s) := Tr (b|D|−s) associated to the spectral triple, where b is an element in the algebra
generated by the elements δm(a) and δm([D, a]) for all a ∈ A, and m ∈ N.

1.3.2 Noncommutative tori

We shall first define the two dimensional noncommutative torus, and then give the definition
for higher dimensional noncommutative tori. For a real number θ ∈ [0, 1), the noncommu-
tative two torus C(T2

θ) is the universal C∗−algebra generated by two unitary elements U
and V subject to the commutation relation

VU = e2πiθUV. (1.3.1)
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By universality of C(T2
θ), we mean that for any C∗−algebra C∗(Ũ, Ṽ) with two unitary

elements Ũ and Ṽ which satisfy (1.3.1), there exists a unique homomorphism from C(T2
θ)

to C∗(Ũ, Ṽ) which maps U to Ũ and V to Ṽ . The C∗−algebra C(T2
θ) can be considered as

the algebra of all continuous functions over a noncommutative torus T2
θ . We can also define

the dense subalgebra C∞(T2
θ) ⊂ C(T2

θ) by

C∞(T2
θ) =

a ∈ C(T2
θ)
∣∣∣∣a =

∑
m,n

am,nUmVn, am,n ∈ C rapid decay sequence

 .
This dense subalgebra C∞(T2

θ) can be regarded as the algebra of smooth functions on the
noncommutative torus T2

θ . In fact, when θ = 0, C(T2
0) is isomorphic to the C∗−algebra of

all continuous functions on torus T2, and C∞(T2
0) is the ∗−algebra of all smooth functions

on T2.

Similar to the two dimensional case, one can construct higher dimensional noncom-
mutative tori. Let Θ = (θi j) ∈ Mn (R) be an n × n skew-symmetric matrix. The algebra
C(Tn

Θ
) is the universal C∗−algebra generated by n unitaries U j for 1 ≤ j ≤ n, subject to the

commutation relations
U jUk = e2πiθ jkUkU j, 1 ≤ j, k ≤ n.

One can consult [9] for more details about noncommutative tori. In Chapter 2, we will
compute the Ricci curvature and scalar curvature of noncommutative 3−tori equipped some
specific metrics.

1.3.3 Spectral action

In noncommutative geometry, we are interested in constructing an action functional for
a finitely summable spectral triple (A,H ,D). A suitable construction of such an action
functional is the spectral action that was proposed in [2]. A spectral action for (A,H ,D)
is defined as

Tr( f (D/Λ)),

where f is a non-negative even smooth function that is rapidly decreasing at infinity and Λ

is a positive real number. We usually assume that there exists a function h(x) such that

f (x) =

∫ ∞

0
h(t)e−tx2

dt.
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We also assume the existences of an asymptotic expansion of the heat trace of the form

Tr
(
e−tD2)

∼
∑
α

aαtα, t → 0+. (1.3.2)

We define the spectral zeta function to be

ζD(s) = Tr
(
|D|−s) .

Here we regard |D| as an operator over the orthogonal complement of kerD ⊂ H . Accord-
ing to [4], we have the following formula to calculate the residues of ζD(s):

Lemma 1.3.7 Each non-zero term aα with α < 0 corresponds to a pole of ζD(s) at −2α
with

Ress=−2αζD(s) =
2aα

Γ(−α)
,

and ζD(s) is regular at 0 with

ζD(0) + dim kerD = a0.

By this lemma, we can get an asymptotic formula for the spectral action. For more details,
one can check [4], [12] or [10].

Theorem 1.3.8 Let (A,H ,D) be a spectral triple that satisfies (1.3.2). Then there is an
asymptotic expansion of the spectral action

Tr ( f (D/Λ)) =
∑
β∈Sp+

fβ Λβ Ress=βζD(s) + f (0)ζD(0) + o(1), Λ→ ∞,

where fβ =
∫ ∞

0
f (x)xβ−1dx, and the summation is taken over the positive part of the dimen-

sion spectrum.

In Chapter 3 we will construct some spectral actions via the second quantization of the
Dirac operator D. Before that, we shall review some background about quantum statistical
mechanics.

1.4 Basics of quantum statistical mechanics

In quantum statistical mechanics, the quantum mechanical states of n particles in the con-
figuration space Rν are described by vectors of the Hilbert space L2(Rnν). If the number of
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particles is not fixed, the states are given by vectors of the full Fock space

F =
⊕
n≥0

L2(Rnν),

where ψ = {ψ(n)}n≥0 ∈ F with ψ(0) ∈ C and ψ(n) ∈ L2(Rnν) for n ≥ 1. The norm of ψ is given
by

||ψ||2 = |ψ(0)|2 +
∑
n≥1

∫
Rnν
|ψ(n)(x1, · · · xn)|2dx1 · · · dxn.

In microscopic physics, identical particles are indistinguishable and in mathematics this is
reflected via the symmetry of the probability density under the interchange of coordinates.
If the component ψ(n) of a state ψ is symmetric under the interchange of coordinates for all
n ∈ N, the particles are called bosons and they are said to satisfy Bose-Einstein statistics.
We denote the set of all functions that satisfy such symmetric conditions by F+. On the
other hand, if the component ψ(n) of a state ψ is anti-symmetric for all n ∈ N, the particles
are called fermions and we say they satisfy Fermi-Dirac statistics. We denote the set of all
functions that satisfy the anti-symmetric conditions by F−. Both F+ and F− are Hilbert sub-
spaces of F . In this chapter, we will briefly review the Fock space and second quantization.
One can check [1] and [8] for more details.

1.4.1 Definition of Fock spaces

In this section we denote byH the Hilbert space of one-particle configuration space. Here
we consider the inner product (·, ·) of H to be conjugate linear in the first component and
linear in the second component. We shall first recall the definition of the Fock space F (H),
and the corresponding Fermionic Fock space F−(H) and the Bosonic Fock space F+(H).

We denote by Hn = H ⊗H ⊗ · · · ⊗ H the n-fold tensor power of H when n > 0, and
let H0 = C. The Fock space F (H) is the completion of the pre-Hilbert space

⊕
n≥0
Hn. We

define the operators P± onHn by

P+ ( f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n!)−1
∑
π∈S n

fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n),

P− ( f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n!)−1
∑
π∈S n

(−1)|π| fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n),

for all f1, ..., fn ∈ H . Here S n is the symmetric group of degree n. It is not difficult to see
that both P+ and P− are projections, namely, P2

± = P± = (P±)∗. Thus P± can be extended
by continuity to projection operators over the Fock space F (H). The Bosonic Fock space
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F+(H) and the Fermionic Fock space F−(H) are then defined as

F±(H) = P±(F (H)),

and the corresponding n-particle subspacesHn
± are defined as

Hn
± = P±Hn.

1.4.2 Second quantization of operators

The structure of the Fock space allows us to amplify an operator on H to the whole
Bose/Fermi Fock spaces F±(H). This procedure is commonly referred to as the second
quantization.

Let H be a self-adjoint operator on H with domain D(H). For any f1, · · · , fn ∈ D(H),
we define Hn onHn

± by

Hn (P± ( f1 ⊗ · · · ⊗ fn)) =


P±

 n∑
i=1

f1 ⊗ f2 ⊗ · · · ⊗ H fi ⊗ · · · ⊗ fn

 n > 0,

0 n = 0.

The direct sum operator
⊕
n≥0

Hn is essentially self-adjoint according to [1], and the self-

adjoint closure of this direct sum operator is called the second quantization of the operator
H and it is denoted by dΓ(H). Namely,

dΓ(H) =
⊕
n≥0

Hn.

In particular, if H = 1 is the identity operator, then we have

dΓ(1) = N.

We call the operator N the number operator on F±(H). The domain of N is

D(N) =

ψ = {ψ(n)}n≥0;
∑
n≥0

n2||ψ(n)||2 < ∞

 ,
and for any ψ ∈ D(N)

Nψ = {nψ(n)}n≥0.
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The number operator N plays an important role in quantum statistics, as it counts the num-
ber of particles in the statistical system.

We now consider a unitary operator U onH . First, we define Un onHn
± by

Un (P± ( f1 ⊗ f2 ⊗ · · · ⊗ fn)) =

P± (U f1 ⊗ U f2 ⊗ · · · ⊗ U fn) n > 0,

1 n = 0,

and then extend it to the whole Fock space. We denote this extension by Γ(U). It is called
the second quantization of the unitary operator U,

Γ(U) =
⊕
n≥0

Un.

It is worth mentioning here that Γ(U) is also a unitary operator on F±(H). Also, if
Ut = eitH is a strongly continuous one-parameter unitary group acting onH , then

Γ(Ut) = eitdΓ(H)

on the Fock spaces F±(H).
If H is a self-adjoint Hamiltonian operator on the one-particle Hilbert spaceH , then the

dynamics of the ideal Bose gas and the ideal Fermi gas are described by the Schrödinger
equation

i~
dψt

dt
= dΓ(H)ψt

on F+(H) and F−(H) separately with the initial value ψ0 = ψ ∈ F±(H). We choose the
units so that ~ = 1. The solution of the Schrödinger equation gives us the evolution

ψ ∈ F±(H) 7→ ψt = e−itdΓ(H)ψ = Γ(e−itH)ψ.

The evolution τt(A) of a bounded observable A ∈ B(F±(H)), on the other hand, is the
conjugation by Γ(eitH):

A ∈ B(F±(H)) 7→ τt(A) = Γ(eitH)AΓ(e−itH).

1.4.3 CAR and CCR relations

The CAR and CCR are acronyms of “canonical anti-commutation relations” and “canonical
commutation relations”, correspondingly. To describe the CAR and CCR relations, we
shall define the annihilation operators and creation operators first.



18 Chapter 1. Introduction to noncommutative geometry

Suppose H is a complex Hilbert space. For a vector f ∈ H , we shall define the
operators a( f ), and a∗( f ) acting on the Fock space F (H) by initially setting a( f )ψ(0) = 0,
a∗( f )ψ(0) = f , ∀ f ∈ H , and

a( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) =
√

n ( f , f1) f2 ⊗ f3 ⊗ · · · ⊗ fn,

a∗( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) =
√

n + 1 f ⊗ f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fn.

Here ψ(0) = 1 ∈ C. Extension by linearity then yields two densely defined operators on
F (H). In fact, if ψ(n) ∈ Hn, we can see that

||a( f )ψ(n)|| ≤
√

n|| f || ||ψ(n)||, ||a∗( f )ψ(n)|| ≤
√

n + 1|| f || ||ψ(n)||.

Thus a( f ) and a∗( f ) are well-defined in the domain D(N1/2) of N1/2, and

||a( f )ψ|| ≤ || f || ||(N + 1)1/2ψ||, ||a∗( f )ψ|| ≤ || f || ||(N + 1)1/2ψ||.

We call a( f )’s the annihilation operators, and a∗( f )’s the creation operators on the Fock
space F (H). One can see that the maps f 7→ a( f ) are anti-linear while the maps f 7→ a∗( f )
are linear. Moreover, we have that a∗( f ) is the adjoint of a( f ); namely, one has

(a∗( f )φ, ψ) = (φ, a( f )ψ)

for any φ, ψ ∈ D(N1/2).

We can then define the annihilation operators a±( f ) and the creation operators a∗±( f ) on
the Fermi/Bose Fock spaces F±(H) correspondingly by

a±( f ) = P±a( f )P±, a∗±( f ) = P±a∗( f )P±.

Since both F+(H) and F−(H) are invariant subspaces of the annihilation operator a( f ), and
a( f )∗ = a∗( f ), thus we have

a±( f ) = a( f )P±, a∗±( f ) = P±a∗( f ).

A straightforward computation shows that on the Fermionic Fock space F−(H),

{a−( f ), a−(g)} = {a∗−( f ), a∗−(g)} = 0, {a−( f ), a∗−(g)} = ( f , g)1, (1.4.1)



1.4. Basics of quantum statistical mechanics 19

and on the Bosonic Fock space F+(H),

[a+( f ), a+(g)] = [a∗+( f ), a∗+(g)] = 0, [a+( f ), a∗+(g)] = ( f , g)1. (1.4.2)

The first relations (1.4.1) are called the canonical anti-commutation relations (CAR), and
the second relations (1.4.2) are called the canonical commutation relations (CCR).

By CAR algebra we mean an algebra generated by elements that satisfy (1.4.1). In fact,
we have the following proposition [1]:

Proposition 1.4.1 LetH be a complex Hilbert space, F−(H) be the Fermionic Fock space,
and a−( f ) and a∗−(g) the corresponding annihilation and creation operators on F−(H).

(1) For all f ∈ H , we have

||a−( f )|| = || f || = ||a∗−( f )||.

Therefore both a−( f ) and a∗−(g) have bounded extensions on F−(H).
(2) Taking Ω = (1, 0, 0, · · · ), called the vacuum vector, and an orthonormal basis { fα}

ofH , then
ψ( fα1 , · · · , fαn) := a∗−

(
fα1

)
· · · a∗−

(
fαn

)
Ω

form an orthonormal basis of F−(H), when { fα1 , · · · , fαn} runs over all the finite subsets of
the orthonormal basis { fα}.

(3) The set of bounded operators {a−( f ), a∗−(g); f , g ∈ H} is irreducible on F−(H),
i.e., the only closed subspaces of F−(H) which are invariant under the action of the set
{a−( f ), a∗−(g); f , g ∈ H} are the trivial subspaces {0} and F−(H).

Definition 1.4.2 We call the subalgebra of B(F−(H)) generated by a−( f ), a∗−(g) and 1 the
CAR algebra and denote it by CAR(H).

Although the CCR relations look very similar to the CAR relations, one can not simply
mimic the way to define CAR algebras to deduce the definition of CCR algebras. The
reason is that the annihilation operators a+( f ) and the creation operators a∗+(g) are not
bounded operators on F+(H). In fact, we have

||a( f )ψ(n)|| =
√

n||ψ(n)|| || f ||,

where ψ(n) is the n−fold tensor product of f ∈ H with ifself. Thus to define the CCR
algebra, we first introduce the set of operators {Φ( f ), f ∈ H} by

Φ( f ) =
a+( f ) + a∗+( f )

√
2

.
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Since the map f 7→ a+( f ) is anti-linear, and f 7→ a∗+( f ) is linear, then

a+( f ) =
Φ( f ) + iΦ(i f )

√
2

, a∗+( f ) =
Φ( f ) − iΦ(i f )

√
2

.

Thus it suffices to examine the set of operators {Φ( f ), f ∈ H}.
Let F+(H) = P+

(⊕
n≥0H

n
)
⊆ F+(H), i.e., F+(H) contains the sequences ψ = {ψ(n)}n≥0

which have only finitely many nonvanishing components.
Since for each f ∈ H , Φ( f ) is essentially self-adjoint on F+(H), Φ( f ) has a unique

self-adjoint extension. We still use Φ( f ) to denote this self-adjoint extension

Φ( f ) =
a( f ) + a∗( f )

√
2

.

We have the following proposition [1].

Proposition 1.4.3 For any f ∈ H , let

Φ( f ) =
a( f ) + a∗( f )

√
2

, W( f ) = exp (iΦ( f )).

Let CCR(H) denote the algebra generated by {W( f ), f ∈ H}. It follows that
(1) For any f , g ∈ H , W( f )D(Φ(g)) = D(Φ(g)), and

W( f )Φ(g)W( f )∗ = Φ(g) − Im( f , g)1.

(2) For each pair f , g ∈ H

W( f )W(g) = e−iIm( f ,g)/2W( f + g).

(3) W(− f ) = W( f )∗.
(4) For each non-zero f ∈ H , we have

||W( f ) − 1|| = 2,

and W(0) = 1.

(5) The set {W( f ); f ∈ H} is irreducible on F+(H), and CCR(H) is a simple algebra.
(6) If || fα − f || → 0, then

|| (W( fα) −W( f ))ψ|| → 0

for all ψ ∈ F+(H).
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The operators W( f ) are called Weyl operators, and the algebra CCR(H) is called the
CCR algebra ofH .

1.4.4 Gibbs state

Let H be the one-particle Hilbert space and H : H → H be a positive operator such that
e−βH is trace class. The Gibbs state ωβ is defined as a state over B(H) by

ωβ(A) =
Tr(e−βHA)
Tr(e−βH)

, A ∈ B(H),

where β > 0 is the inverse temperature. Now we want to define a Gibbs state over CAR(H)
and CCR(H). We define the modified Hamiltonian operator Kµ by

Kµ = dΓH − µN : F±(H)→ F±(H).

The Gibbs state ωβ,µ is defined as

ωβ,µ(A) =
Tr(e−βKµA)
Tr(e−βKµ)

, A ∈ CCR(H) or CAR(H).

To make sure the Gibbs state is well-defined, it is necessary to confirm that Tr(e−βKµ) < ∞.
In fact, we have the following propositions from [1].

Proposition 1.4.4 Let H be a self-adjoint operator on the Hilbert space H and let β ∈ R.
The following conditions are equivalent:

(1) e−βH is trace class on the one-particle Hilbert spaceH .

(2) e−βdΓ(H−µ1) is trace class on the Fermionic Fock space F−(H) for all µ ∈ R.

Proposition 1.4.5 Let H be a self-adjoint operator on the one-particle Hilbert space H ,
and let β, µ ∈ R. The following conditions are equivalent:

(1) e−βH is trace class on the one-particle Hilbert spaceH and β(H − µ1) > 0,

(2) e−βdΓ(H−µ1) is trace class on the Bosonic Fock space F+(H).

1.4.5 Entropy and energy via second quantization

In this section we shall briefly introduce the density matrix and the definitions of von Neu-
mann entropy, average energy and free energy.
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Definition 1.4.6 A density matrix ρ : H → H is a self-adjoint operator such that ρ ≥ 0
and Tr(ρ) = 1.

In particular, let H : H → H be a Hamiltonian operator. We denote the associated partition
function by Z = Tr(e−βH). If Z < ∞, we can get a density matrix ρβ = e−βH

Tr(e−βH) .

Definition 1.4.7 Let ρ be a density matrix over a Hilbert space H . We define the von
Neumann entropy of ρ to be S(ρ) = −Tr(ρ log ρ).

According to this definition, von Neumann entropy is additive, i.e., given two density ma-
trices ρ1 and ρ2,

S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2).

There is another important quantity in quantum statistical mechanics called “average
energy”, which is defined by

〈H〉β =
1
Z

Tr(He−βH).

One can also compute the average energy by taking the derivative of log Z with respect to
β:

〈H〉β = −
∂

∂β

(
log Z

)
.

The quantity
F(ρβ) := 〈H〉β − β−1S(ρβ)

is often called free energy. It is also given by

F(ρβ) = −β−1 log(Z).

In Chapter 3 we will show how to define the spectral actions via the second quantization.
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Chapter 2

Ricci curvature for noncommutative
three tori

2.1 Introduction

This chapter is a reproduction of my joint paper with Asghar Ghorbanpour and Masoud
Khalkhali [8]. The spectral geometry and study of local spectral invariants of curved non-
commutative tori has been the subject of intensive studies in recent years. In particular a
Gauss-Bonnet theorem, the definition of scalar curvature, and the computations of scalar
curvature for noncommutative two tori equipped with a curved metric has been achieved in
[6, 10, 5, 9]. Building on these results, computing the scalar curvature in other dimensions
and settings is carried out in [11, 17, 18, 14, 1, 7, 4, 15]. Beyond the scalar curvature, in
[12] a definition of Ricci curvature in spectral terms is proposed and the Ricci density is
computed for conformally flat metrics on noncommutative two tori.

In the present work we shall compute the Ricci curvature of noncommutative three tori
for conformally flat metrics as well as non-conformal perturbations of the flat metric. Study
of non-conformally flat metrics in three dimension is justified since even in the commuta-
tive case the class of conformally flat metrics on a three dimensional manifold is much
smaller than the class of all metrics.

At the heart of the spectral formulation of Ricci curvature lies the Weitzenböck formula.
This formula measures how far the Laplacian on 1-forms is from the Bochner Laplacian of
the Levi-Civita connection on the cotangent bundle. It states [13, Lemma 4.8.13] that the
difference is the Ricci tensor lifted to an endomorphism of the cotangent bundle denoted

24
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by Ric, and called the Ricci operator in [12]. More precisely, we have

41 = ∇∗∇ + Ric. (2.1.1)

This result combined with Gilkey’s formulas for the heat trace [13] reveals immediately
that a linear combination of the Ricci operator and the scalar curvature is the density of the
second coefficient of the heat trace of the Laplacian on 1-forms. That is

Tr(e−t41) ∼ a0(41)t−m/2 + a2(41)t1−m/2 + · · · , t → 0+,

where
a2(41) = (4π)−m/2

∫
M

tr
(1
6

R − Ric
)
dvolg,

and R denotes the scalar curvature. These densities can be recovered by studying the local-
ized heat trace Tr(Fe−t41), where F is a smooth endomorphisms of the cotangent bundle.
To isolate the Ricci operator, the second density of the heat trace of the Laplacian on func-
tions a2(40) = (4π)−m/2 1

6R enters the game where it is used to eliminate the scalar curvature
present in a2(x,41). Then the Ricci functional, as a functional on the algebra of sections of
the endomorphism bundle of the cotangent bundle of M, is introduced as

Ric(F) = lim
t→0+

t
m
2 −1 (

Tr(tr(F)e−t40) − Tr(Fe−t41)
)
, F ∈ C∞(End(T ∗M)).

If we denote the second density of the localized heat trace by a2(tr(F),40), the above for-
mula can then be written as

Ric(F) = a2(tr(F),40) − a2(F,41), F ∈ C∞(End(T ∗M)).

An equivalent version of the Ricci functional in terms of the spectral zeta function can be
given by [12]

Ric(F) =


ζ(0, tr(F),40) − ζ(0, F,41) + Tr(tr(F)Q0) − Tr(FQ1), m = 2

Γ(m
2 − 1)Ress= m

2 −1

(
ζ(s, tr(F),40) − ζ(s, F,41)

)
, m > 2,

where Q j is the orthogonal projection on the kernel of 4 j.

This paper is organized as follows. In Section 2, we first recall the definition of the
noncommutative Ricci curvature from [12]. To define the Ricci functional for the non-
commutative three torus, it suffices to define the Laplacian on functions and on 1-forms.
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We also recall the rearrangement lemma and Connes’ pseudodifferential calculus in this
section. The analogue of the de Rham complex for the noncommutative three torus is
discussed in Section 2.2.2.

For the analogues of conformal e−2h(dx2+dy2+dz2) and non-conformal e−2h(dx2+dy2)+
dz2 families of metrics, the Laplacians are computed in later sections. In Section 2.3, ap-
plying the pseudodifferential calculus, the densities of the second terms are computed in the
conformal case and the scalar curvature and Ricci density are computed for these metrics
in Proposition 2.3.5 and Theorems 2.3.3 and 2.3.6. Finally in Section 2.4 we first compute
the scalar curvature of the noncommutative three torus equipped with a non-conformally
flat metric. We then compute the Ricci density for this class of metrics. It is interesting to
note that two of the functions that appear in the expression for scalar curvature, Theorem
2.4.3, are the same as functions that appear in the scalar curvature of the two dimensional
curved noncommutative tori [5, 10]. In Appendix A, we produce the steps that were used
to compute the scalar curvature in the non-conformal case. In Appendix B, we give the list
of functions obtained from the rearrangement lemma that are used in our computations.

2.2 Preliminaries

In this section we shall fix notations and review preliminaries required for the rest of the
work. We will start with the definition of noncommutative three torus and then we construct
the de Rham complex for it and discuss how one can define the Laplacians by fixing a metric
on the noncommutative torus. Finally, we recall the definition of the Ricci functional from
[12] for noncommutative three tori.

2.2.1 Noncommutative three tori

For a general introduction to topology and geometry of noncommutative tori the reader can
consult [3]. Let θ = (θ jk) ∈ M3(R) be a skew-symmetric matrix. The noncommutative 3-
torus C(T3

θ) is the universal unital C∗-algebra generated by three unitary elements u1, u2, u3

satisfying the relations:
uku j = e2πiθ jku juk, j, k = 1, 2, 3.

We shall use both notations C(T3
θ) and T3

θ to refer to the noncommutative space represented
by the algebra C(T3

θ). For θ = 0, the C∗-algebra C(T3
θ) is isomorphic to the algebra of

continuous functions on the 3-torus T3 = R3/Z3.
There is an action of T3 on C(T3

θ), which is given by the 3−parameter group of auto-
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morphisms {αz}, such that
αz(um) = zmum, (2.2.1)

where for m = (m1,m2,m3) ∈ Z3, we set um = um1
1 um2

2 um3
3 , and similarly, for z = (z1, z2, z3) ∈

T3, we denoted zm1
1 zm2

2 zm3
3 by zm. The set of all elements a ∈ C(T3

θ) for which the map
z 7→ αz(a) is smooth, form an involutive dense subalgebra of C(T3

θ), which will be denoted
by C∞(T3

θ). Alternatively, C∞(T3
θ) can be expressed as

C∞(T3
θ) =

{ ∑
m∈Z3

amum : {am}m∈Z3 is rapidly decreasing
}
.

By rapidly decreasing, we mean the Schwartz class condition that for all k ∈ N,

sup
m∈Z3

(1 + |m|2)k|am|
2 < ∞.

There is a normalized faithful tracial state ϕ on C(T3
θ), determined by

ϕ(um) = 0, ∀m , (0, 0, 0), and ϕ(1) = 1.

The tracial state ϕ here plays the role of integration over T3
θ . The algebra C∞(T3

θ) possesses
three derivations, which are defined by the following relations:

δ j(
∑
m∈Z3

amum) =
∑
m∈Z3

m jamum, j = 1, 2, 3.

These derivations δ j satisfy the relations

(δ j(a))∗ = −δ j(a∗),

ϕ(aδ j(b)) + ϕ(δ j(a)b) = 0.

2.2.2 De Rham complex for noncommutative three tori

We will first construct the space of differential forms on T3
θ . Let W = C3 and Λ•W =⊕3

j=0 Λ jW be the exterior algebra of W. The algebra

Ω•T3
θ := C∞(T3

θ) ⊗ Λ•W,

will play the role of the algebra of complex differential forms of the noncommutative 3-
torus.
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We define the exterior derivative on functions, d0 : Ω0T3
θ → Ω1T3

θ , by

d0(a) = (iδ1(a), iδ2(a), iδ3(a)), ∀a ∈ C∞(T3
θ).

Correspondingly, exterior derivative on 1-forms, d1 : Ω1T3
θ → Ω2T3

θ , and on 2-forms d2 :
Ω2T3

θ → Ω3T3
θ are given by

d1(a1, a2, a3) = (iδ1(a2) − iδ2(a1), iδ2(a3) − iδ3(a2), iδ1(a3) − iδ3(a1)),

d2(b1, b2, b3) = iδ1(b2) − iδ2(b3) + iδ3(b1).

It is not difficult to check that d j+1d j = 0. We define the de Rham complex of the noncom-
mutative 3-torus to be the following complex

Ω0T3
θ

d0
−→ Ω1T3

θ

d1
−→ Ω2T3

θ

d2
−→ Ω3T3

θ . (2.2.2)

In the commutative case, to define the Laplacian on forms, we need to fix a Riemannian
metric first and find the adjoint of the exterior derivatives, d∗j with respect to that metric.
Then the Laplacian ∆ j on j-forms is defined as

∆ j =

d j−1d∗j−1 + d∗jd j j = 1,

d∗jd j j = 0,

In the noncommutative case we can study specific forms of metrics where the effect of the
metric can be implemented through a volume form. Then this helps us to define the adjoint
of the exterior derivatives and similar to the classical case, one can define the Laplacian on
j-forms. These metrics include conformal perturbation of a flat metric, as it is studied in
[6, 9, 5, 10] for noncommutative two tori, and a new class of non-conformally flat metrics
in which only two directions are perturbed by a conformal factor. The geometry of confor-
mally flat metrics on T3

θ will be studied in section 2.3, and the geometry of non-conformally
flat metrics will be studied in section 2.4.

2.2.3 The Ricci functional

In a noncommutative setting, as a general rule, spectral methods must be employed to for-
mulate metric invariants. For example, in the noncommutative formulation of the Ricci
curvature in [12], instead of a tensorial algebraic definition, the spectral properties of the
Laplacians are used to define and compute what is called the Ricci density. This formula-
tion allows us to define this quantity for the noncommutative three torus. In this section,
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we quickly review the definitions and motivations for this new formulation.

Suppose M is an m−dimensional closed oriented Riemannian manifold. Let V → M be
a smooth Hermitian vector bundle over M and P : C∞(V) → C∞(V) be a positive elliptic
differential operator of order d. The heat operator e−tP is trace class for all positive values
of t and it has a short time asymptotic expansion (cf. [13])

Tr(e−tP) ∼
∞∑

n=0

an(P)t
n−m

d , t → 0+.

The coefficients an(P) are given by an integral formula

an(P) =

∫
M

tr(an(x, P))dvol(x), (2.2.3)

where tr(an(x, P)) is the fibrewise trace and dvol(x) =
√

detg dx1...dxm is the Riemannian
volume form of M.

To recover the densities an(x, P), one needs to study the localized heat trace Tr(Fe−tP)
by a localizing factor F ∈ C∞(End(V)). For an endomorphism F ∈ C∞(End(V)), there is
also a complete asymptotic expansion

Tr(Fe−tP) ∼
∞∑

n=0

an(F, P)t
n−m

d , t → 0+,

where, this time the coefficients an(F, P) can be written as the integral

an(F, P) =

∫
M

tr(F(x)an(x, P))dvol(x).

A method to compute these densities, which uses the pseudodifferential calculus, will be
outlined in the next section, and will be used for differential operators on the noncommu-
tative tori.

On the other hand, if P is a Laplace type operator, namely, a positive elliptic operator
whose leading symbol is given by the inverse of the metric tensor, then there exists a unique
connection ∇ on V and a unique endomorphism E ∈ C∞(End(V)) such that [13]

P = P∇ − E,

where P∇ : C∞(V) → C∞(V) is the Bochner Laplacian of the connection defined as the
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composition of operators as follows

P∇ : C∞(V)
∇
−→ C∞(T ∗M ⊗ V)

∇
−→ C∞(T ∗M ⊗ T ∗M ⊗ V)

−g⊗1
−−−→ C∞(V).

The first two densities of the corresponding heat kernel for P are given by

a0(x, P) = (4π)−m/2I,

a2(x, P) = (4π)−m/2(
1
6

R(x) + E),

where R(x) is the scalar curvature of M.
We apply the above general idea to Laplacians 40 and 41 on Ω0(M) and Ω1(M). The

endomorphism E for the Laplacian on functions ∆0 is zero, therefore, the first two densities
in the heat kernel of 40 are given by

a0(x,40) = (4π)−m/2,

a2(x,40) = (4π)−m/2(
1
6

R(x)).

By Weitzenböck formula (2.1.1), the endomorphism for Laplacian on 1-forms 41 is −Ricx,
the Ricci operator on the cotangent bundle. Thus we have

a0(x,41) = (4π)−m/2I,

a2(x,41) = (4π)−m/2(
1
6

R(x) − Ricx).

These observations lead us to the following definition from [12].

Definition 2.2.1 The Ricci functional Ric : C∞(End(T ∗M))→ C is defined as

Ric(F) = a2(tr(F),40) − a2(F,41). (2.2.4)

The Ricci functional can also be described in terms of the spectral zeta function [12, Propo-
sition 2.2]:

Ric(F) =

ζ(0, tr(F),40) − ζ(0, F,41) + Tr(tr(F)Q0) − Tr(FQ1), m = 2

Γ(m
2 − 1)Ress= m

2 −1 (ζ(s, tr(F),40) − ζ(s, F,41)) , m > 2.
(2.2.5)

Here ζ(s, F,41) is the localized spectral zeta function defined by Tr(F4−s
1 ) for<(s) > m/2,

ζ(s, f ,40) is defined similarly, and Q j is the orthogonal projection on the kernel of 4 j.
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2.2.4 Pseudodifferential calculus and local computations

In this section, we briefly recall the definition of Connes pseudodifferential calculus [2]
for C∗-dynamical systems adapted to 3-dimensional noncommutative tori and outline the
necessary steps to use it to compute the heat trace densities. These densities then can be
used to define the Ricci density and the scalar curvature density for the noncommutative
three torus.

The action (2.2.1) on C(T3
θ) defines a C∗−dynamical system (C(T3

θ),R
3, α). A pseu-

dodifferential calculus can be assigned to the given C∗-dynamical system. The symbols of
order d are given by smooth maps ρ : R3 → C∞(T3

θ) such that

(i) For any non-negative multi-indices α, β, there exists a positive number Cα,β such that

‖δα∂βρ(ξ)‖ 6 Cα,β(1 + |ξ|)d−|β|.

(ii) There is a smooth map f : R3\{0} → C∞(T3
θ) such that

lim
λ→∞

λ−dρ(λξ1, λξ2, λξ3) = f (ξ1, ξ2, ξ3).

Here, we use the notation that for any multi-index α = (α1, α2, α3) we have

∂α =
∂α1

∂ξα1
1

∂α2

∂ξα2
2

∂α3

∂ξα3
3

, δα = δα1
1 δ

α2
2 δ

α3
3 .

We shall denote the set of all symbols of order d by S d(T3
θ). The pseudodifferential

operator associated to a given symbol ρ ∈ S d(T3
θ) is defined by

Pρ(a) = (2π)−3
∫ ∫

e−iz·ξρ(ξ)αz(a)dzdξ, a ∈ C∞(T3
θ).

The following theorem from [2] gives a formula for the symbol of the product of pseudod-
ifferential operators.

Theorem 2.2.2 If ρ j ∈ S d j(T3
θ), j = 1, 2, there exists a ρ ∈ S d1+d2 such that Pρ = Pρ1 Pρ2 ,

and moreover, ρ has an asymptotic expansion given by

ρ ∼
∑
α

1
α!
∂α(ρ1)δα(ρ2). (2.2.6)

Remark For our purposes, we need more general symbols which take values in C∞(T3
θ) ⊗

Mn(C). The above calculus easily extends to this setting.
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In the rest of this section we outline the steps through which one can find the second density
of the heat trace a2 for a positive elliptic differential operator on T3

θ using the pseudodiffer-
ential calculus. For more details we refer the readers to [13] for the commutative case and
[6, 10, 5] for the noncommutative case.

Let P be a second order positive elliptic operator on T3
θ with positive principal symbol,

i.e., if we write the symbol of P as the sum of the homogeneous parts a2(ξ) + a1(ξ) + a0(ξ),
a2(ξ) is positive and it is invertible for any nonzero ξ ∈ R3. Then the parametrix (P − λ)−1

for any λ ∈ C\R+ is a pseudodifferential operator of order −2 and its symbol σ((P − λ)−1)
can be written as b0(ξ, λ) + b1(ξ, λ) + · · · , where b j(ξ, λ) is homogeneous of order −2− j in
(ξ, λ), that is it satisfies b j(tξ, t2λ) = t−2− jb j(ξ, λ) for all t ≥ 0. The terms b j can be written
in terms of a j’s and b0 using the recursive formula for symbol product (2.2.6) applied to
the equality (P − λ)−1(P − λ) ∼ 1:

b0(ξ, λ) =(a2 − λ)−1,

b1(ξ, λ) = − b0a1b0 −

3∑
j=1

∂ j(b0)δ j(a2)b0,

b2(ξ, λ) = − b0a0b0 − b1a1b0

−

3∑
i=1

(
∂i(b0)δi(a1)b0 + ∂i(b1)δi(a2)b0 +

1
2
∂i∂ j(b0)δiδ j(a2)b0

)
.

(2.2.7)

Using the Cauchy integral formula and the formula for the trace in terms of the sym-
bols of a smoothing operator, one has the asymptotic expansion of the localized heat trace
Tr(Fe−tP) as follows:

Tr(Fe−tP) ∼
∞∑

n=0

t
n−3

2 ϕ
(
tr
(
F

1
(2π)3

∫
R3

1
2πi

∫
γ

e−λbn(ξ, λ)dλdξ
))
.

The geometric meaning of the second density a2(P), i.e., densities for the coefficient of the
term t−

1
2 , in the classical case is discussed in section 2.2.3. In the noncommutative case, by

analogy, the second density which is given by

a2(P) =
1

(2π)3

∫
R3

1
2πi

∫
γ

e−λb2(ξ, λ)dλdξ, (2.2.8)

can be used to define the Ricci and scalar curvature for the noncommutative torus when
P is a carefully chosen geometric operator. By a homogeneity argument given in [14] for
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noncommutative three tori, we can rewrite a2(P) as

a2(P) =
1

8π7/2

∫
R3

b2(ξ,−1)dξ. (2.2.9)

To compute the integral (2.2.9) above, one needs to apply the rearrangement lemma.
Here we shall use a general version from [16, Corollary 3.5].

Proposition 2.2.3 Suppose A is a C∗−algebra. Let f0, ..., fp : R>0 → C be smooth func-
tions such that for each pair of positive numbers 0 < C1 < C2 and each multi-index
α ∈ Nn+1, the function f (x0, ..., xp) :=

∏p
j=0 f j(x j) satisfies∫ ∞

0
sup

C16s j6C2
06 j6n

|u|α|(∂α f )(us)|du < ∞,

Let A = ea for some selfadjoint element a ∈ A. Then for ρ1, · · · , ρp ∈ A∫ ∞

0
f0(uA) · b1 · f1(uA) · · · · · bp · fp(uA)du

= A−1Fγ(∆(1),∆(1)∆(2), · · · ,∆(1) · · ·∆(p))(ρ1 · ρ2 · · · · ρp),

where ∆( j) is the modular operator acting on b j by ∆(b) = A−1bA, and the smooth function
F is given by

F(s1, ..., sp) =

∫ ∞

0
f0(u) · f1(us1) · · · · · fp(usp)du.

In the following, we first compute the Laplacians 40,h and 41,h and show that they are
anti-unitary equivalent to operators 4̃0,h and 4̃1,h which are second order positive elliptic
differential operators. Hence, the above theory can be applied to find their second densities
a2(4̃0,h) and a2(4̃1,h). Now we can define

Definition 2.2.4 The scalar curvature functional R : C∞(T3
θ)→ C is defined as

R(a) := ϕ(aa2(40,h)), a ∈ C∞(T3
θ), (2.2.10)

and a2(40,h) will be called the scalar curvature density or just the scalar curvature and we
denote it by R.

Similar to Definition 2.2.1, we define
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Definition 2.2.5 The Ricci curvature functional Ric : C∞(T3
θ) ⊗ M3(C)→ C is defined as

Ric(F) := ϕ(tr(F)a2(40,h)) − ϕ(Fa2(41,h)), F ∈ C∞(T3
θ) ⊗ M3(C). (2.2.11)

The Ricci density is then defined by the equation

Ric(F) = ϕ(tr(FRic)), F ∈ C∞(T3
θ) ⊗ M3(C).

It can be readily seen that
Ric = R ⊗ I3 − a2(41,h).

Using the Mellin transform, one can show that the above definition is equivalent to the
equation (2.2.5).

Remark Note that we choose to drop the effect of the volume form density vol on the Ricci
and scalar curvature densities. We have also dropped the overall multiplicative constants
in our definitions above. This means that we are ignoring a factor of 1

48π3/2 vol for the scalar
curvature density and a factor of 1

8π3/2 vol for the Ricci density. Moreover, we shall use
operators which are anti-unitary equivalent to the Laplacians while computing the densities.
It can be seen readily that if 4̃ = U∗4U, for some anti-unitary operator U then

Tr(Fe−t4̃) = Tr(FU∗e−t4U) = Tr(UFU∗e−t4).

Similarly, the localized heat trace densities are related as above. These two points should be
taken into account while we recover the classical results in the limit θ → 0 of our formulas
for the noncommutative tori.

2.3 Ricci density for conformally flat metrics

In this section we first investigate how the geometry of conformally flat metrics on three
torus T3 can be implemented on the noncommutative three tori T3

θ . We then use it to define
the Laplacian on functions and on 1-forms; that is we find the Laplacian of the de Rham
complex (2.2.2) with respect to the induced inner products. Then using the pseudodifferen-
tial calculus we compute the second densities of heat trace asymptotic for these operators
which by Definitions 2.2.4 and 2.2.5 can be used to define the scalar curvature density and
the Ricci curvature density for T3

θ .
In the commutative case, if h ∈ C∞(M) is a real valued function, conformally changing

the Riemannian metric by the function e−2h will result in changing the volume form. For
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instance, if the dimension of a closed Riemannian manifold M is m, and we denote the
conformal change of g by g̃ = e−2hg, then the new volume form d̃x is e−mhdx. As a result,
the inner products on Ω0(M), Ω1(M), and Ω2(M) are given by

〈 f1, f2〉g̃ =

∫
M

f1 f̄2e−mhdx,

〈α1, α2〉g̃ =

∫
M

g−1(α1, ᾱ2)e(2−m)hdx,

〈ω1, ω2〉g̃ =

∫
M

(∧2g−1)(ω1, ω̄2)e(4−m)hdx.

Inspired by these classical equations, we are able to study the conformal change of
metrics for noncommutative three tori. Let h be a self-adjoint positive element of C∞(T3

θ)
and let ϕ0(a) = ϕ(ae−3h), for any a ∈ C(T3

θ). Denote the Hilbert space given by the GNS
construction of C(T3

θ) with respect to the positive linear functional ϕ0 by H (0)
h . In other

words, the inner product ofH (0)
h is given by

〈a, b〉0,h = ϕ(b∗ae−3h).

Let H (1)
h denote the Hilbert space completion of Ω1T3

θ with respect to the inner product of
H

(1)
h given by

〈(a1, a2, a3), (b1, b2, b3)〉1,h = ϕ(
3∑

i=1

b∗i aie−h).

Similarly, let H (2)
h denote the Hilbert space completion of Ω2T3

θ with respect to the inner
product ofH (2)

h given by

〈(a1, a2, a3), (b1, b2, b3)〉2,h = ϕ(
3∑

i=1

b∗i aieh).

We identify the formal adjoint operator d∗j of d j acting on elements of Ω j+1T3
θ ⊂ H

( j+1)
h as

follows. Let us denote eh/2 by k. Then we have

d∗0(a1, a2, a3) = −i
3∑

j=1

δ j(a jk−2)k6,
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and

d∗1(a1, a2, a3) =(
iδ3(a3k2)k2+iδ2(a1k2)k2, iδ3(a2k2)k2−iδ1(a1k2)k2,−iδ1(a3k2)k2−iδ2(a2k2)k2

)
.

Now, we can define the Laplacian on 0-forms to be 40,h = d∗0d0, and the Laplacian on
1-forms to be ∆1,h = d∗1d1 + d0d∗0. We have

40,h(a) = d∗0d0(a) =

3∑
j=1

δ j(δ j(a)k−2)k6,

On the other hand, the Laplacian on 1-forms is given by

41,h (a1, a2, a3) =

( (
δ2(δ2(a1)k2) + δ3(δ3(a1)k2) − δ2(δ1(a2)k2) − δ3(δ1(a3)k2)

)
k2 +

∑
δ1(δ j(a jk−2)k6),(

δ1(δ1(a2)k2) − δ1(δ2(a1)k2) + δ3(δ3(a2)k2) − δ3(δ2(a3)k2)
)

k2 +
∑
δ2(δ j(a jk−2)k6),(

δ1(δ1(a3)k2) − δ1(δ3(a1)k2) − δ2(δ3(a2)k2) + δ2(δ2(a3)k2)
)

k2 +
∑
δ3(δ j(a jk−2)k6)

)
.

The right multiplication operator Rk3 satisfies the property

〈Rk3a,Rk3b〉0,h = ϕ0(k3b∗ak3) = ϕ(k3b∗ak−3) = ϕ(b∗a) = 〈a, b〉0,0,

and thus extends to a unitary operator from H (0)
0 to H (0)

h , which we still denote by Rk3 .
Let J : C(T3

θ) → C(T3
θ) be the adjoint map J(a) = a∗. Then Rk3 J : H (0)

0 → H
(0)
h is an

anti-unitary operator. Thus 40,h is anti-unitary equivalent to

4̃0,h := JR∗k340,hRk3 J = k−3(J40,hJ)k3 =

3∑
j=1

k3δ jk−2δ jk3.

It can also be seen that

〈Rk(a1, a2, a3),Rk(b1, b2, b3)〉1,h = 〈(a1, a2, a3), (b1, b2, b3)〉1,0.

Hence Rk can be extended to a unitary operator fromH (1)
0 toH (1)

h , which we still denote by
Rk. Then we get an anti-unitary operator RkJ : H (1)

0 → H
(1)
h . Therefore, 41,h is anti-unitary
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equivalent to
4̃1,h := JR∗k41,hRkJ = k−1J41,hJk.

Since JRkm J = km, and Jδ j = −δ jJ, for j = 1, 2, 3, we have

JRkmδiRknδ jJ = JRkm JJδiRknδ jJ = kmδiknδ j.

Thus,

4̃1,h(a1, a2, a3) =(
kδ3k2δ3ka1 + kδ2k2δ2ka1 − kδ2k2δ1ka2 − kδ3k2δ1ka3 +

∑
k−1δ1k6δ jk−1a j,

−kδ1k2δ2ka1 + kδ3k2δ3ka2 + kδ1k2δ1ka2 − kδ3k2δ2ka3 +
∑

k−1δ2k6δ jk−1a j,

−kδ1k2δ3ka1 + kδ1k2δ1ka3 − kδ2k2δ3ka2 + kδ2k2δ2ka3 +
∑

k−1δ3k6δ jk−1a j

)
.

2.3.1 Scalar curvature

The scalar curvature for conformally flat metrics on noncommutative three tori was first
computed in [14]. For the sake of completeness, we shall compute it again here. As
discussed in Section 2.4, we define the scalar curvature of T3

θ to be

R = a2(4̃0,h) =
1

8π7/2

∫
R3

b2(ξ,−1)dξ. (2.3.1)

where b2(ξ,−1) is the second term in the asymptotic expansion of the symbol of the
parametrix of 4̃0,h.

To compute b2 we need first to find the symbol of the Laplacian on functions.

Lemma 2.3.1 Let the symbol of 4̃0,h be written as the sum of its homogeneous parts,
σ(4̃0,h) = a2 + a1 + a0. Then we have

a2 = k4ξ2
1 + k4ξ2

2 + k4ξ2
3,

a1 =

3∑
i=1

(2kδi(k3) + k3δi(k−2)k3)ξi,

a0 =

3∑
i=1

(
kδ2

i (k3) + k3δi(k−2)δi(k3)
)
.
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To evaluate the integral in (2.3.1), for this case, we shall first move to spherical coor-
dinates. After performing the angular integrals, we are left with sums of integrals of the
form ∫ ∞

0
bm0

0 ρ1bm1
0 ρ2bm2

0 · · · ρlb
mp

0 u(−3/2+
∑p

j=0 m j)du.

To compute these latter integrals we need to use the following version of the rearrangement
lemma. Here we present it as a corrollary of Proposition 2.2.3, but a straightforward proof
can be found in [14].

Corollary 2.3.2 Let b0 = (1 + k4u)−1, ρ j ∈ C∞(T3
θ), m j ∈ Z, for j = 0, 1, ..., p, and set the

modular operator ∆ be ∆(x) = k−6xk6. Then∫ ∞

0
bm0

0 ρ1bm1
0 · · · ρplbmp

0 u(− 3
2 +

∑
m j)du =

k(2−4
∑

m j)Fm0,,...,mp(∆(1), · · · ,∆(p))(ρ1 · ρ2 · · · ρp),

where

Fm0,··· ,mp(s1, · · · , sp) =

∫ ∞

0
(1 + u)−m0

p∏
j=1

(
u

j∏
h=1

s
2
3
h + 1

)−m j
u(− 3

2 +
∑

m j)du.

Proof Let u be t2/3. Then we have b0 = (1 + (tA)2/3)−1 where A = k6 = e3h, and it is enough
to consider the following functions;

f0(x) := x−4/3+3/2
∑p

j=0 m j(1 + x2/3)−m0 , f j(x) := (1 + x2/3)−m j , j = 1, ..., p.

If we set Fm0,··· ,mp(s1, ..., sp) = F(s1, s1s2, · · · , s1 · · · sp), by Proposition 2.2.3, the result is
proven.

For instance

F1,1(s1) =
π

s
2
3
1 + 3
√

s1

, F2,1(s1) =
π
(

3
√

s1 + 2
)

2
(

3
√

s1 + 1
)2

3
√

s1

,

F1,1,1(s1, s2) =
π
(

3
√

s1

(
3
√

s2 + 1
)

+ 1
)(

3
√

s1 + 1
)

s1

(
3
√

s2 + 1
)

3
√

s2

(
3
√

s1
3
√

s2 + 1
) ,

F2,1,1(s1, s2) =
π
((

3
√

s1 + 2
)

3
√

s1

(
3
√

s2 + 1
) (

3
√

s1
3
√

s2 + 2
)

+ 2
)

2
(

3
√

s1 + 1
)2

s1

(
3
√

s2 + 1
)

3
√

s2

(
3
√

s1
3
√

s2 + 1
)2 .
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The complete list of these functions can be found in Appendix B.
All the ρ j’s appeared in our computations are multiples of δ j(k) or δ2

j(k). We want to
write all ρ j’s in terms of log k. To perform this step, using the expansional formula applied
in [5, section 6.1], we find the corresponding formula

k−1δ j(k) = f (∆)(δ j(log k)),

k−1δ2
j(k) = f (∆)(δ2

j(log k)) + 2g(∆(1),∆(2))(δ j(log k) · δ j(log k)),

where,

f (x) =

∫ 1

0
xs/6ds =

6(x1/6 − 1)
log x

,

g(x, y) =

∫ 1

0

∫ s

0
xs/6yt/6dtds =

36
(
x1/6((y1/6 − 1) log x − log y) + log y

)
log x log y(log x + log y)

.

And finally, the result is rewritten in terms of ∇ := log ∆ = −3[h, ·].

Theorem 2.3.3 For the noncommutative three tori T3
θ equipped with a conformally flat

metric g = e−2h I3, the scalar curvature R is given by

R = a2(4̃0,h) =
k−2

π3/2

(
K(∇)

(
4(log k)

)
+ H(∇(1),∇(2))

(∑
δ j(log k) · δ j(log k)

) )
,

where 4(x) =
∑3

j=1 δ
2
j(x), k = eh/2. The one variable function K is given by

K(s) =
1 − es/3

s(es/6 + es/2)
, (2.3.2)

and the two variable function H is given by

H(s, t) = −
3
((

es/3 + 3
)

s
(
et/3 − 1

)
−

(
es/3 − 1

) (
3et/3 + 1

)
t
)

st(s + t)e
1
6 (s+t) (e(s+t)/3 + 1

) . (2.3.3)

The classical limit θ → 0, is obtained by taking the limits of K(s) and H(s, t) as t, s→ 0.
We obtain

lim
s→0

K(s) = −
1
6
, lim

(s,t)→(0,0)
H(s, t) =

1
6
.

This implies that the scalar curvature R approaches the limit

−
k−2

24π3/2

∑
(2δ2

j(h) − δ j(h)δ j(h)),
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as θ → 0. It matches with the scalar curvature −2e2h ∑
(−2h j j + h2

j) for the three torus with
the metric g = e−2h(dx2 + dy2 + dz2) up to the factor of k648π3/2 due to our convention (see
Remark 2.2.4).

2.3.2 The Ricci density

In this section, we shall compute the Ricci density of T3
θ equipped with a conformally flat

metric. To this end, we first need to find the term (2.2.9) for 4̃1,h which is anti-unitarily
equivalent to the Laplacian on 1-forms. We shall follow all the computational steps listed
in the previous section to compute the scalar curvature, with one difference that the symbols
are matrix valued in this case and the results will be in the matrix form. We start with the
symbol of 4̃1,h.

Lemma 2.3.4 If we denote the symbol of 4̃1,h by σ(4̃1,h) = a2 + a1 + a0, then we have

a2 =(k4ξ2
1 + k4ξ2

2 + k4ξ2
3)I3,

a1 =


k5δ1(k−1) + k−1δ1(k5) −kδ2(k4)k−1 −kδ3(k4)k−1

k−1δ2(k4)k k3δ1(k) + kδ1(k3) 0
k−1δ3(k4)k 0 k3δ1(k) + kδ1(k3)

 ξ1

+


k3δ2(k) + kδ2(k3) k−1δ1(k4)k 0
−kδ1(k4)k−1 k5δ2(k−1) + k−1δ2(k5) −kδ3(k4)k−1

0 k−1δ3(k4)k k3δ2(k) + kδ2(k3)

 ξ2

+


k3δ3(k) + kδ3(k3) 0 k−1δ1(k4)k

0 k3δ3k + kδ3(k3) k−1δ2(k4)k
−kδ1(k4)k−1 −kδ2(k4)k−1 k5δ3(k−1) + k−1δ3(k5)

 ξ3,

a0 =
∑

16i, j63

(
k−1δi(k6δ j(k−1)) − kδ j(k2δi(k))

)
Ei j +

3∑
j=1

kδ j(k2δ j(k))I3.

Here Ei j’s are the matrix units.

To compute b2(ξ,−1), we use the symbol of 4̃1,h and (2.2.7). Then (2.2.8) gives the
second heat trace density a2(4̃1,h).
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Proposition 2.3.5 With notation as above, we have

π3/2k2a2(4̃1,h) =

(
−

1
2

K(∇)
(
4(log k)

)
+ T (∇(1),∇(2))

(∑
δi(log k) · δi(log k)

))
I3

+

3∑
i, j=1

(
F(∇)

(
δiδ j(log k)

)
+ W(∇(1),∇(2))

(
δi(log k) · δ j(log k)

)
+S (∇(1),∇(2))

(
[δ j(log k), δi(log k)]

))
Ei j,

where K is the function in (2.3.2), and the other functions are given as follow:

F(s) =
e−

s
2 (es − 1)

2(1 + e
s
3 )s

,

T (s, t) =
3s(1 − e

t
3 )(e

2s+t
3 − e

s+t
3 − e

2s
3 − 1) + 3t(1 − e

s
3 )(e

s+2t
3 + e

s
3 + e

t
3 − 1)

st(s + t)e
3s+t

6 (e
(s+t)

3 + 1)
,

W(s, t) =
6(e

s+t
3 + e

2(s+t)
3 + 1)(se

s+t
3 − e

s
3 (s + t) + t)

st(s + t)e
s+t
2 (e

s+t
3 + 1)

,

S (s, t) =
1

st(s + t)e
1
2 (s+t)(e

s+t
3 + 1)

(
3s(e

t
3 − 1)(2e

s+t
3 + e

2s+2t
3 − e

2s+t
3 + 1)

− 3t(e
s
3 − 1)(2e

s+2t
3 + e

2s+3t
3 − e

s+t
3 + e

t
3 )
)
.

Using definitions 2.2.4 and 2.2.5, Theorem 2.3.5, and Proposition 2.3.3, we can compute
the Ricci density of the noncommutative three tori T3

θ equipped with a conformally flat
metric g = e−2h I3.

Theorem 2.3.6 The Ricci density of T3
θ equipped with the conformally flat metric g =

e−2h I3 is given by

Ric =π−
3
2 k−2

(
3
2

K(∇)
(
4(log k)

)
+ (H − T )(∇(1),∇(2))

(∑
δ`(log k) · δ`(log k)

))
I3

− π−
3
2 k−2

∑(
F(∇)

(
δiδ j(log k)

)
+ W(∇(1),∇(2))

(
δi(log k) · δ j(log k)

)
+ S (∇(1),∇(2))

(
[δ j(log k), δi(log k)]

) )
Ei j.

Here k = eh/2, and 4(a) =
∑
δ2

j(a) denotes the flat Laplacian.

Remark To check the result with the commutative case, we need to find the following
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limits:
lim
s→0

F(s) =
1
4
, lim

(s,t)→(0,0)
T (s, t) = −

1
3
, lim

(s,t)→(0,0)
W(s, t) =

1
2
.

Since in the commutative case the commutator term [δ j(log k), δi(log k)] on which S acts,
automatically vanishes, we find that the (i, j)th entry of the Ricci density for θ = 0 is given
by

−
k−2

8π3/2

δi j
( 3∑
`=1

δ2
`(h) − δ`(h)2) + δi(h)δ j(h) + δi(δ j(h))

 , (2.3.4)

where the δi j denotes the Kronecker delta. On the other hand, a direct computation in
the commutative case for the metric g = e−2h I3 gives the (i, j)th component of the Ricci
operator as

e2h

δi j(
3∑
`=1

h`` − h`2) + hih j + hi j

 ,
which matches with the corresponding Ricci density in (2.3.4) after taking into the account
the Remark 2.2.4.

2.4 Ricci density for non-conformal perturbations

In this section we shall compute the Ricci curvature for a metric on the noncommutative
three torus which is an analogue of the metric

e−2h(dx2 + dy2) + dz2, (2.4.1)

for some h ∈ C∞(T3) in the classical case. The inner products on functions, 1-forms and
2-forms for a torus equipped with this metric are given as follows:

〈 f1, f2〉 =

∫
T3

f1 f2e−2hdxdydz,

for all f1, f2 ∈ Ω0(T3),

〈α, β〉 =

∫
T3

(
α1β1 + α2β2 + α3β3e−2h

)
dxdydz,

for all α = (α1, α2, α3), β = (β1, β2, β3) ∈ Ω1(T3), and

〈ξ, η〉 =

∫
T3

(
ξ1η1e2h + ξ2η2 + ξ3η3

)
dxdydz,
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for all ξ = (ξ1, ξ2, ξ3), η = (η1, η2, η3) ∈ Ω2(T3).

Let k = eh for h ∈ C∞(T3
θ). Motivated by the classical case, we denote by H (0)

h the
Hilbert space given by the GNS construction of C(T3

θ) with respect to the positive linear
functional

ϕ0(a) = ϕ(ak−2).

For 1-forms, we denote by H (1)
h the Hilbert space, which is the completion of Ω1T3

θ with
respect to the inner product given by

〈a, b〉 = ϕ
(
b∗1a1 + b∗2a2 + b∗3a3k−2

)
.

For 2-forms, we denote by H (2)
h the Hilbert space, which is the completion of Ω2T3

θ with
respect to the inner product given by

〈a, b〉 = ϕ
(
b∗1a1k2 + b∗2a2 + b∗3a3

)
.

We also need adjoints of de Rham differentials (2.2.2) with respect to the given metric. It
can be shown that the adjoint of d0 is given by

d∗0 : b 7→ (−i)(δ1(b1)k2 + δ2(b2)k2 + δ3(b3) − b3k−2δ3(k2)), b = (b1, b2, b3) ∈ Ω1T3
θ .

Similarly, the adjoint of d1 acting on an element a = (a1, a2, a3) ∈ Ω2T3
θ is given by

d∗1 : a 7→
(
iδ2(a1k2) + iδ3(a3), iδ3(a2) − iδ1(a1k2),−iδ2(a2)k2 − iδ1(a3)k2

)
.

To compute the spectral densities of the Laplacians for these metrics, we will follow
the steps presented in section 2.2.4. By a homogeneity argument, again, the computation
of contour integral can be bypassed by setting λ = −1;

1
(2π)3

∫
R3

1
2πi

∫
b2(ξ, λ)dλdξ =

1
8π7/2

∫
R3

b2(ξ,−1)dξ.

Then we have integrals in ξ variable where the dependence of the integrand comes from
the powers of b0(ξ,−1) = (1 + a2(ξ))−1 and ξ j. To compute these integrals, we first apply a
change of variables,

ξ1 =
√

u(1 + η2) cos θ, ξ2 =
√

u(1 + η2) sin θ, ξ3 = η, (2.4.2)
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where the domain of the new variables (u, η, θ) is given by

u ∈ [0,+∞), η ∈ (−∞,+∞), θ ∈ [0, 2π).

The Jacobian of this substitution is 1
2 (1 + η2), and this substitution decomposes b0 to (1 +

η2)−1 multiplied by a noncommutative part which depends only on u. More precisely

b0(ξ,−1) = (1 + k2ξ2
1 + k2ξ2

2 + ξ2
3)−1 = (1 + η2 + u(1 + η2)k2)−1 =

1
1 + η2 b0(u).

Here we denoted (1 + uk2)−1 by b0(u). As a result, after applying the substitution, each
term of b2 ends up with a triple integral whose two variables (η, θ) can be separated and
integrated, without involving any noncommutative terms. For instance,∫

R3
ξ4

2ξ
2
3b3

0(ξ,−1)δ3(k2)b0(ξ,−1)δ3(k2)b0(ξ,−1)dξ

=

∫ ∞

0

∫ ∞

−∞

∫ 2π

0

u2η2(1 + η2)2 sin4 θ

(1 + η2)5 b3
0(u)δ3(k2)b0(u)δ3(k2)b0(u)

1
2

(1 + η2)dηdθdu

=

(∫ ∞

−∞

η2

2(1 + η2)2 dη
) (∫ 2π

0
sin4 θdθ

) ∫ ∞

0
u2b3

0(u)δ3(k2)b0(u)δ3(k2)b0(u)du

=
3π2

16

∫ ∞

0
u2b3

0(u)δ3(k2)b0(u)δ3(k2)b0(u)du.

Applying the substitution and integrating out the η and θ variables, we end up with
sums of u integrals in one of the following forms:∫ ∞

0
b0(u)m0ρ1b0(u)m1ρ2 · · · ρpb0(u)mpu−2+

∑
m jdu,

or ∫ ∞

0
b0(u)m0ρ1b0(u)m1ρ2 · · · ρpb0(u)mpu−3+

∑
m jdu.

Here we need Proposition 2.2.3 for

f0(x) := x
∑

m j−ν(1 + x)−m0 ,

f j(x) := (1 + x)−m j , j = 1, ..., p,

and a = 2h. Here ν is equal to 2 or 3. We then get the following version of the rearrange-
ment lemma.

Corollary 2.4.1 Let b0 = (1 + uk2)−1, ρ j ∈ C∞(T3
θ), m j ∈ Z, for j = 0, 1, 2, ..., p, and
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∆(x) = k−2xk2. Then∫ ∞

0
b0(u)m0ρ1b0(u)m1ρ2b0(u)m2 · · · ρlb0(u)mpu(−ν+

∑
m j)du

= k2(−
∑p

j=0 m j+ν−1)F[ν]
m0,m1,...,mp

(∆(1),∆(2), ...,∆(p))(ρ1 · ρ2 · · · ρp),

where

F[ν]
m0,m1,...,mp

(s1, s2, ..., sp) =

∫ ∞

0
(1 + u)−m0

p∏
j=1

(
u

j∏
h=1

sh + 1
)−m j

u(
∑

m j−ν)du.

For instance,

F[2]
1,1(s1) =

log(s1)
s1 − 1

,

F[3]
2,1(s1) =

s1(log(s1) − 1) + 1
(s1 − 1)2 ,

F[2]
1,1,1(s1, s2) =

(s1s2 − 1) log(s1) − (s1 − 1) log(s1s2)
(s1 − 1)s1(s2 − 1)(s1s2 − 1)

,

F[3]
1,1,1(s1, s2) =

−s1s2 log(s1) + s1s2 log(s1s2) − s2 log(s1s2) + log(s1)
(s1 − 1)(s2 − 1)(s1s2 − 1)

.

We also need the following result from [5, Section 6.1], according to which we find the
formula

k−1δ j(k) = f (∆)
(
δ j(log k)

)
,

k−1δ2
j(k) = f (∆)(δ2

j(log k)) + 2g(∆(1),∆(2))(δ j(log k) · δ j(log k)),
(2.4.3)

where

f (x) =

∫ 1

0
xs/2ds =

2(
√

x − 1)
log x

,

g(x, y) =

∫ 1

0

∫ s

0
xs/2yt/2dtds =

4
(√

x((
√

y − 1) log x − log y) + log y
)

log x log y(log x + log y)
.

Now we can start computing the Laplacians and their spectral densities.

2.4.1 Scalar curvature

In this section, we first find the Laplacian on functions 40,h for the given metric and its
anti-unitary equivalent differential operator 4̃0,h. Then we use its symbol and its resolvent
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expansion to find the scalar curvature.

The Laplacian on functions 40,h : C∞(T3
θ) → C∞(T3

θ) for the metric (2.4.1), which is
given by 40,h = d∗0d0, computes as

40,h(a) = δ2
1(a)k2 + δ2

2(a)k2 + δ3(δ3(a)k−2)k2.

We define the map R0,k : H0,0 → H0,h by R0,ka = ak, for all a ∈ C(T3
θ). It is not hard to see

that R0,k is an isometry from H0,0 to H0,h. That is, 〈R0,ka,R0,kb〉0,h = 〈a, b〉0,0. Hence, the
Laplacian on functions 40,h for the metric (2.4.1) is anti-unitary equivalent to the differential
operator

(
R0,kJ

)∗
40,hR0,kJ on Ω0T3

θ , which we denote by 4̃0,h.

Lemma 2.4.2 The homogeneous components of the symbol σ(4̃0,h) are:

a2 = k2ξ2
1 + k2ξ2

2 + ξ2
3,

a1 = 2kδ1(k)ξ1 + 2kδ2(k)ξ2 +
(
k−1δ3(k) − δ3(k)k−1)ξ3,

a0 = kδ2
1(k) + kδ2

2(k) + k−1δ2
3(k) − δ3(k)k−2δ3(k) − k−1δ3(k)k−1δ3(k).

Proof It can be readily checked that the operator 4̃0,h, on the elements of C∞(T3
θ), is given

by

4̃0,h(a) = k2δ2
1(a) + k2δ2

2(a) + δ2
3(a)

+ 2kδ1(k)δ1(a) + 2kδ2(k)δ2(a) − k−1δ3

(
k2

)
k−1δ3(a) + 2k−1δ3(k)δ3(a)

+ k−1δ2
3(k)a + kδ2

1(k)a + kδ2
2(k)a − k−1δ3

(
k2

)
k−2δ3(k)a.

(2.4.4)

Then the symbol is given by replacing δ j by ξ j.

The scalar curvature of T3
θ equipped with the metric (2.4.1) is defined as in Definition

2.2.4. Similar to the conformal case it is given by (2.3.1) where b2 is the second term in the
symbol of the parametrix of ∆̃0,h for this metric. The computation then shows that we have:

Theorem 2.4.3 The scalar curvature R of the noncommutative 3-torus T3
θ equipped with

the non-conformal metric (2.4.1), is given by

π3/2a2(4̃0,h) =K1(∇)(δ2
1(h) + δ2

2(h)) + H1(∇(1),∇(2))(δ1(h) ·δ1(h) + δ2(h) ·δ2(h))

+ k−2K2(∇)(δ2
3(h)) + k−2H2(∇(1),∇(2))(δ3(h) · δ3(h)),
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where

K1(s) =
e

s
2 (2es − ses − 2 − s)

4s(es − 1)2 ,

K2(s) =
1 − e2s + 2ses

4se
s
2 (1 − es)2

,

H1(s, t) =
1

e−
s+t
2 (es − 1)s(et − 1)t(es+t − 1)2(s + t)

(
es(et − 1)2s2 − et(es − 1)2t2

− (es − et)(es+t − 1)st + (1 − es)(et − 1)(es+t − 1)(t − s)
)
,

H2(s, t) =
1

4e
1
2 (s+t)(es − 1)(et − 1)(es+t − 1)2st(s + t)

×(
(et − 1)2(es+t − 3e2s+t − es − 1)s2

+ (es − 1)2(es+2t + es+3t − e2t + 3et)t2

− 2(es − 1)(et − 1)(e2(s+t) − 1)(s − t)

+ (es+t − 1)(4es+t + e2s+t − 5es+2t + e2s+2t + es − 5et + 2e2t + 1)st
)
.

We can get the classical scalar curvature in the limit θ → 0, which is obtained by taking
the limits of the above functions as s, t → 0. We have

lim
(s,t)→(0,0)

H1(s, t) = 0, lim
(s,t)→(0,0)

H2(s, t) =
1
8
,

lim
s→0

K1(s) = −
1

24
, lim

s→0
K2(s) = −

1
12
.

Therefore, when θ → 0, the scalar curvature approaches to

−
1

48π3/2

(
2δ2

1(h) + 2δ2
2(h) + 4e−2hδ2

3(h) − 6e−2hδ3(h)2
)
,

which is e−2h

48π3/2 multiple of the scalar curvature, 2e2h(h11 + h22) + 4h33 − 6(h3)2, in the com-
mutative case. This matches with our normalization of the scalar curvature density.

Remark Comparing the functions K1 and H1 with the corresponding functions K and H
found in [5, 10] for the spectral densities of the Laplacian k∂∗∂k reveals that

K1(s) = −
1
8

K(s), H1(s, t) = −
1
8

H(s, t). (2.4.5)
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The factor −1
8 is the result of the use of two different normalizations. In the rest of this

section we shall look for a clarification of why such a relation (2.4.5) should be true.

First note that the Laplacian on functions 4̃(1)
0,h, given in (2.4.4), is the sum of two Lapla-

cians when we assume that δ3(k) = 0;

4̃0,h = 4̃
(1)
0,h ⊗ 1 + 1 ⊗ 4̃(2)

0,h,

where

4̃
(1)
0,h =

2∑
i=1

k2δ2
i (a) + 2kδi(k)δi(a) + kδ2

i (k)a, 4̃
(2)
0,h = δ2

3.

The operator 4̃(1)
0,h is equal to the operator k∂∗∂k, which is anti-unitarily equivalent to the

Laplacian on C∞(T2
θ) in [10, Section 4.1] when the complex structure is given by τ = i,

namely τ1 = 0, τ2 = 1. The operator 4̃(2)
0,h is the Laplacian of T1 with flat metric. Then, the

local spectral invariants of 4̃0,h are related to those of 4̃(1)
0,h and 4̃(2)

0,h as we discuss next.

Let P and Q be two elliptic second order positive differential operators on C(Td
θ ) and

C(Td′
θ′ ) respectively. Then P ⊗ 1 + 1 ⊗ Q forms a positive second order elliptic differential

operator on C(Td
θ ) ⊗C(Td′

θ′ ). Moreover, for any t > 0 and a ∈ Aθ and b ∈ Aθ, we have

Tr(a ⊗ be−t(P⊗1+1⊗Q)) = Tr(ae−tP)Tr(be−tQ), a ∈ C∞(Td
θ ), b ∈ C∞(Td′

θ′ ), t > 0.

This not only gives a relations between the coefficients of asymptotic expansions as t → 0+,
but also it provides a relation among the densities of these coefficients. In other words if

Tr(ae−tP) ∼
∞∑

n=0

tn− d
2ϕθ(aan(P)), Tr(be−tP) ∼

∞∑
m=0

tm− d′
2 ϕθ′(bam(Q)),

where ϕθ and ϕθ′ is the tracial state on C∞(Td
θ ) and C∞(Td′

θ′ ), respectively, then

Tr(a ⊗ be−t(P⊗1+1⊗Q)) =

∞∑
n=0

∞∑
m=0

tm+n− d′
2 −

d
2ϕθ(aan(P))ϕθ′(bam(Q))

=

∞∑
l=0

tl− d′+d
2 ϕθ ⊗ ϕθ′

a ⊗ b
( ∑

l=m+n

an(P) ⊗ am(Q)
) .

In our case, we have

a2(4̃0,h) = a2(4̃(1)
0,h) ⊗ a0(4̃(2)

0,h) + a0(4̃(1)
0,h) ⊗ a2(4̃(2)

0,h).
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However, since σ(4̃(2)
0,h) = ξ2, we have a2(4̃(2)

0,h) = 0 and a0(4̃(2)
0,h) =

√
π. Thus

a2(4̃0,h) =
√
πa2(4̃(1)

0,h).

This is the main reason why the functions of two-dimensional noncommutative two torus
with conformally flat metric emerge in the formulas for the noncommutative three torus
with non-conformal metric (2.4.1). On the other hand, we note that the functions K2 and H2

in Theorem 2.4.3 are new and do not seem to be related to functions for the noncommutative
two torus.

2.4.2 Laplacian on 1-forms and the Ricci density

In this section, after finding the Laplacian on 1-forms on T3
θ equipped with the metric

(2.4.1), we compute its second heat trace density. Combining with the results from the
previous section, we shall then compute the Ricci density of this metric.

Recall that exterior derivative on 1-forms is given by

d1(a1, a2, a3) = (iδ1(a2) − iδ2(a1), iδ2(a3) − iδ3(a2), iδ1(a3) − iδ3(a1)) ,

and hence its formal adjoint with respect to the metric is

d∗1(a1, a2, a3) =
(
iδ2(a1k2) + iδ3(a3), iδ3(a2) − iδ1(a1k2),−iδ2(a2)k2 − iδ1(a3)k2

)
.

Thus, the Laplacian on 1-forms 41,h computes as

41,h(a1, a2, a3) = d0d∗0(a1, a2, a3) + d∗1d1(a1, a2, a3) =

(
δ1(δ1(a1)k2) + δ2(δ2(a1)k2) + δ2

3(a1) + δ2(a2)δ1(k2) − δ1(a2)δ2(k2) − δ1(a3k−2δ3(k2)),

δ1(a1)δ2(k2) − δ2(a1)δ1(k2) + δ1(δ1(a2)k2) + δ2(δ2(a2)k2) + δ2
3(a2) − δ2(a3k−2δ3(k2)),

δ1(a1)δ3(k2) + δ2(a2)δ3(k2) + δ2
1(a3)k2 + δ2

2(a3)k2 + δ3(δ3(a3k−2)k2)
)
.

Lemma 2.4.4 The Laplacian on 1-forms 41,h is anti-unitary equivalent to a differential
operator 4̃1,h whose symbol is the sum of the homogeneous components given by

a2 = (k2ξ2
1 + k2ξ2

2 + ξ2
3) I3,
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a1 =


δ1(k2)ξ1 + δ2(k2)ξ2 δ1(k2)ξ2 − δ2(k2)ξ1 −δ3(k2)k−1ξ1

δ2(k2)ξ1 − δ1(k2)ξ2 δ1(k2)ξ1 + δ2(k2)ξ2 −δ3(k2)k−1ξ2

k−1δ3(k2)ξ1 k−1δ3(k2)ξ2 2k
2∑

i=1
δi(k)ξi + [k−1, δ3(k)]ξ3

,

a0 =


0 0 −δ1(δ3(k2)k−1)
0 0 −δ2(δ3(k2)k−1)
0 0 kδ2

1(k) + kδ2
2(k) + k−1δ3(k2δ3(k−1))

 .
Proof Denote by R1,k : H1,0 → H1,h the operator defined as

R1,k (b1, b2, b3) = (b1, b2, b3k) .

We notice that R1,k : H1,0 → H1,h is an isometry fromH1,0 toH1,h. Thus 41,h is anti-unitary
equivalent to 4̃1,h =

(
R1,kJ

)∗
41,hR1,kJ which is given by the formula

4̃1,h(a1, a2, a3) =(
δ1(k2δ1(a1)) + δ2(k2δ2(a1)) + δ2

3(a1) + δ1(k2)δ2(a2) − δ2(k2)δ1(a2) − δ1(δ3(k2)k−1a3),

δ2(k2)δ1(a1) − δ1(k2)δ2(a1) + δ1(k2δ1(a2)) + δ2(k2δ2(a2)) + δ2
3(a2) − δ2(δ3(k2)k−1a3),

k−1δ3(k2)δ1(a1) + k−1δ3(k2)δ2(a2) + kδ2
1(ka3) + kδ2

2(ka3) + k−1δ3(k2δ3(k−1a3))
)
.

This proves the lemma.

Then computation can be carried out to compute a2(4̃1,h), and the final result is given
in the following proposition. In this proposition to make the formulas concise, we shall use
the notation

F∇(ρ) := F(∇)(ρ), F∇(ρ1 · ρ2) := F(∇(1),∇(2))(ρ1 · ρ2),

for a given function F with one or two variables.

Proposition 2.4.5 The second density of the heat trace for the operator 4̃1,h is given by

π
3
2 a2(4̃1,h) =(
K∇22(δ2

2(h)) + 2W∇
22(δ2(h)2) + k−2K∇3 (δ2

3(h)) + k−2H∇3 (δ3(h)2)
)

E11

+
(
K∇11(δ2

1(h)) + 2W∇
11(δ1(h)2) + k−2K∇3 (δ2

3(h)) + k−2H∇3 (δ3(h)2)
)

E22

+
(
K∇1 (δ2

1(h) + δ2
2(h)) + H∇1 (δ1(h)2 + δ2(h)2) + k−2H∇4 (δ3(h)2)

)
E33

+
∑

k−c(i, j)
(
K∇i j(δiδ j(h)) + S ∇i j([δi(h), δ j(h)]) + W∇

i j({δi(h), δ j(h)})
)

Ei j.
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Here [δi(h), δ j(h)] and {δi(h), δ j(h)} denote the commutator and anti-commutator. The func-
tions are given as the entries of the following matrices.

K =
1

4s(es − 1)


e2s−2ses−1

es−1 0 (s − 1)e
s
2 + e−

s
2

0 e2s−2ses−1
es−1 (s − 1)e

s
2 + e−

s
2

es − s − 1 es − s − 1 1−e2s+se2s+s
e

s
2 (es−1)

 ,

S(s, t) =


0 1 1

2e−
s+t
2

1 0 1
2e−

s+t
2

1
2

1
2 0

 S 1(s, t),

where

S 1(s, t) =
1

2st
−

(es − 1)2ett + ess(et − 1)2

2st(es − 1)(et − 1)(es+t − 1)
.

Also,

W(s, t) =


1
2 cosh( s+t

2 ) 0 e−s−t−1
4

0 1
2 cosh( s+t

2 ) e−s−t−1
4

1
2 sinh( s+t

2 ) 1
2 sinh( s+t

2 ) W33(s,t)
H1(s,t)

 H1(s, t).

Here, H1 is the function from Theorem 2.4.3. The function W33, together with the remaining
functions, are given below:

W33(s, t) =
1

16e
s+t
2 (es − 1)(et − 1)(es+t − 1)2st(s + t)

×(
(et − 1)2(1 − 4es − e2s − es+t − 4e2s+t + e3s+t)s2

+ 2(es + 1)(et + 1)(es+t − 1)(es − et)st

− (es − 1)2(1 − 4et − e2t − es+t − 4e2t+s + e3t+s)t2

− 4(es − 1)(et − 1)(e2(s+t) − 1)(s − t)
)
,

H3(s, t) =
1

4es(es − 1)(et − 1)(es+t − 1)2st(s + t)
×(

es(et − 1)2(−1 − 3es + es+t − e2s+t)s2

+ (es − 1)2(1 − et + 3es+t + es+2t)t2

− 4es(es − 1)(et − 1)(es+t − 1)(s − t)

+ (7es+t − 7e2(s+t) − e3(s+t) + 2e3s+t

+ 3e3s+2t + e2s+3t − 3es − 2e2s − et + 1)st
)
,
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K3(s) =
2 − 2es + ses + s

4s(es − 1)2 , H4(s, t) =
(es − 1)(et − 1)(s + t)

8e
s+t
2 (es+t − 1)st

.

The power of k in the sum denoted by c(i, j), counts how many of indices i, j are equal to
3.

Unlike the phenomena observed for the scalar curvature in Remark 2.4.1, the functions
of the heat trace densities of the Laplacian on 1-forms are not related, at least in the same
way as before, to those of the Laplacian on 1-forms of the conformally flat metric. This is
a consequence of a simple fact that the Laplacian on 1-forms of the product Riemannian
manifolds is not the sum of the Laplacians on 1-forms of the components. In fact, if (M1, g1)
and (M2, g2) are two oriented Riemannian manifolds, then the Laplacian on 1-forms on the
product manifold (M1 × M2, g1 × g2) is given by

41 ⊗ 1 + 1 ⊗ 41 + 40 ⊗ 1 + 1 ⊗ 40 + 2d0 ⊗ d∗0 + 2d∗0 ⊗ d0,

where 40 and 41 are the Laplacians on functions and 1-forms for the corresponding mani-
folds.

Using the above proposition and Theorem 2.4.3, we obtain the Ricci density in the
following theorem.

Theorem 2.4.6 The Ricci density Ric of T3
θ equipped with the metric (2.4.1) is given by

π
3
2 Ric = −

(
K̃∇22(δ2

2(h)) + 2W̃∇
22(δ2(h)2) + k−2K̃∇3 (δ2

3(h)) + k−2H̃∇3 (δ3(h)2)
)

E11

−
(
K̃∇11(δ2

1(h)) + 2W̃∇
11(δ1(h)2) + k−2K̃∇3 (δ2

3(h)) + k−2H̃∇3 (δ3(h)2)
)

E22

− k−2H̃∇4 (δ3(h)2)E33

−
∑

k−c(i, j)
(
K̃∇i j(δiδ j(h)) + S ∇i j([δi(h), δ j(h)]) + W̃∇

i j({δi(h), δ j(h)})
)

Ei j.

where K̃i j (resp. W̃i j and H̃i j) is different from Ki j (resp. W̃i j and Hi j) only in their diagonal
entries. The new functions are given by

K̃22 = K̃11 = K11 − K1 =
−1 + es + ses/2

4s(1 + es/2)2 , K̃33 = K33 − K2 =
1

4es/2 ,

K̃3 = K3 − K2 =
−1 + es + ses/2

4ses/2(1 + es/2)2 , W̃11 = W̃22 = W11 −
1
2

H1,

and H̃3 = H3 − H2, H̃4 = H4 − H2, and W̃33 = W33.

The classical limit of the Ricci density can be obtained by letting s, t → 0. First note
that in the commutative case the terms involving functions S i j disappear because they act
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Figure 2.1: The graph of functions S 12, W32 and W̃11.

on the commutator [δi(h), δ j(h)] which is zero. On the other hand, functions Wi j are anti-
symmetric in their variables; Wi j(s, t) = −Wi j(t, s). Hence, the terms involving them will
vanish too. Moreover, since lim

(s,t)→(0,0)
H1(s, t) = 0, we have lim

(s,t)→(0,0)
W̃i j(s, t) = 0. The limit

of the other terms are given by

lim
s→0

K̃(s) =


1
8 0 1

8
0 1

8
1
8

1
8

1
8

1
4

 , lim
s→0

K̃3(s) =
1
8
,

and also
lim

(s,t)→(0,0)
H̃3(s, t) = −

1
4
, lim

(s,t)→(0,0)
H̃4(s, t) = −

1
4
.

Thus when θ → 0, the Ricci density Ric approaches to

Ric0 =
1

8π
3
2

×
e−2h(2δ3(h)2 − δ2

3(h)) −
2∑

i=1
δ2

i (h) 0 −e−hδ1δ3(h)

0 e−2h(2δ3(h)2 − δ2
3(h)) −

2∑
i=1
δ2

i (h) −e−hδ2δ3(h)

−e−hδ1δ3(h) −e−hδ2δ3(h) 2e−2h(δ3(h)2 − δ2
3(h))

,
while the Ricci density in the classical case is given by

Riccom =
e2h(h11 + h22) + h33 − 2(h3)2 0 h13

0 e2h(h11 + h22) + h33 − 2(h3)2 h23

e2hh13 e2hh23 2h33 − 2(h3)2

.
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The apparent discrepancy between the limit case Ric0 and the commutative formula Riccom

is due to our convention for the Ricci functional, and as mentioned in Remark 2.2.4 we
have the relation

(R1,kJ)Ric0(R1,kJ)∗ = R1,kJRic0JR1,k−1 =
1

8π
3
2

Riccome−2h.



Appendix A

Computations

In this section we give some details of the computation of the scalar curvature for the non-
conformal metric. The full details can be found in the Mathematica file accompanying this
paper.

The computation starts from the formula for b2 given by (2.2.7). We first plug in for-
mula b1 and write b2(ξ, λ) in terms of b1 and the homogeneous parts of the symbol a2, a1

and a0:

b2(ξ, λ) = − b0a0b0 − b1a1b0 − ∂1(b0)δ1(a1)b0 − ∂2(b0)δ2(a1)b0 − ∂3b0δ3(a1)b0

− ∂1(b1)δ1(a2)b0 − ∂2(b1)δ2(a2)b0 − ∂3(b1)δ3(a2)b0

−
1
2
∂2

1(b0)δ2(a2)b0 −
1
2
∂2

2(b0)δ2
2(a2)b0 −

1
2
∂2

3(b0)δ2
3(a2)b0

− ∂2∂3(b0)δ3δ2(a2)b0 − ∂1∂2(b0)δ2δ1(a2)b0 − ∂1∂3(b0)δ1δ3(a2)b0.

The next step is to plug a j’s from Lemma 2.3.1 into the above formula. Note that the
derivatives of b0 can be written as

∂1(b0) = −2ξ1k2b2
0, ∂2(b0) = −2ξ2k2b2

0, ∂3(b0) = −2ξ3b2
0.

The complete outcome is long and involves 465 terms. Here we only display the result for
a sample term ∂3(b0)δ3(a2)b0 below.

∂3(b0)δ3(a2)b0

= −4ξ5
1ξ3k2b2

0δ1(k2)b2
0δ3(k2)b0 − 8ξ5

1ξ3k2b3
0δ1(k2)b0δ3(k2)b0

−4ξ4
1ξ

2
3b2

0δ3(k2)b2
0δ3(k2)b0 − 8ξ4

1ξ
2
3b3

0δ3(k2)b0δ3(k2)b0

+2ξ4
1b2

0δ3(k2)b0δ3(k2)b0 − 4ξ4
1ξ2ξ3k2b2

0δ2(k2)b2
0δ3(k2)b0

55
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−8ξ4
1ξ2ξ3k2b3

0δ2(k2)b0δ3(k2)b0 − 8ξ3
1ξ

2
2ξ3k2b2

0δ1(k2)b2
0δ3(k2)b0

+4ξ3
1ξ3b0kδ1(k)b2

0δ3(k2)b0 − 16ξ3
1ξ

2
2ξ3k2b3

0δ1(k2)b0δ3(k2)b0

+4ξ3
1ξ3b2

0kδ1(k)b0δ3(k2)b0 + 4ξ2
1ξ

2
2b2

0δ3(k2)b0δ3(k2)b0

−8ξ2
1ξ

2
2ξ

2
3b2

0δ3(k2)b2
0δ3(k2)b0 − 16ξ2

1ξ
2
2ξ

2
3b3

0δ3(k2)b0δ3(k2)b0

+2ξ2
1ξ

2
3b0k−1δ3(k)b2

0δ3(k2)b0 − 2ξ2
1ξ

2
3b0δ3(k)k−1b2

0δ3(k2)b0

+2ξ2
1ξ

2
3b2

0k−1δ3(k)b0δ3(k2)b0 − 2ξ2
1ξ

2
3b2

0δ3(k)k−1b0δ3(k2)b0

−ξ2
1b0k−1δ3(k)b0δ3(k2)b0 + ξ2

1b0δ3(k)k−1b0δ3(k2)b0

−8ξ2
1ξ

3
2ξ3k2b2

0δ2(k2)b2
0δ3(k2)b0 − 16ξ2

1ξ
3
2ξ3k2b3

0δ2(k2)b0δ3(k2)b0

+4ξ2
1ξ2ξ3b0kδ2(k)b2

0δ3(k2)b0 + 4ξ2
1ξ2ξ3b2

0kδ2(k)b0δ3(k2)b0

−4ξ1ξ
4
2ξ3k2b2

0δ1(k2)b2
0δ3(k2)b0 − 8ξ1ξ

4
2ξ3k2b3

0δ1(k2)b0δ3(k2)b0

+4ξ1ξ
2
2ξ3b0kδ1(k)b2

0δ3(k2)b0 + 4ξ1ξ
2
2ξ3b2

0kδ1(k)b0δ3(k2)b0

+2ξ4
2b2

0δ3(k2)b0δ3(k2)b0 − ξ
2
2b0k−1δ3(k)b0δ3(k2)b0

+ξ2
2b0δ3(k)k−1b0δ3(k2)b0 − 4ξ4

2ξ
2
3b2

0δ3(k2)b2
0δ3(k2)b0

−8ξ4
2ξ

2
3b3

0δ3(k2)b0δ3(k2)b0 + 2ξ2
2ξ

2
3b0k−1δ3(k)b2

0δ3(k2)b0

−2ξ2
2ξ

2
3b0δ3(k)k−1b2

0δ3(k2)b0 + 2ξ2
2ξ

2
3b2

0k−1δ3(k)b0δ3(k2)b0

−2ξ2
2ξ

2
3b2

0δ3(k)k−1b0δ3(k2)b0 − 4ξ5
2ξ3k2b2

0δ2(k2)b2
0δ3(k2)b0

−8ξ5
2ξ3k2b3

0δ2(k2)b0δ3(k2)b0 + 4ξ3
2ξ3b0kδ2(k)b2

0δ3(k2)b0

+4ξ3
2ξ3b2

0kδ2(k)b0δ3(k2)b0.

Then we apply the substitution given in (2.4.2) and integrate with respect to η and θ.
The result then is

1
π2

∫ +∞

−∞

∫ 2π

0
b2(u, η, θ,−1)

1 + η2

2
dθdη =

2u3k2b2
0δ1(k)k3b2

0kδ1(k)b0 + 2u3k2b2
0δ1(k)k3b2

0δ1(k)kb0 + 2u3k2b2
0δ2(k)k3b2

0kδ2(k)b0

+2u3k2b2
0δ2(k)k3b2

0δ2(k)kb0 + 4u3k4b3
0kδ1(k)b0kδ1(k)b0 + 4u3k4b3

0kδ1(k)b0δ1(k)kb0

+4u3k4b3
0kδ2(k)b0kδ2(k)b0 + 4u3k4b3

0kδ2(k)b0δ2(k)kb0 + 4u3k4b3
0δ1(k)kb0kδ1(k)b0

+4u3k4b3
0δ1(k)kb0δ1(k)kb0 + 4u3k4b3

0δ2(k)kb0kδ2(k)b0 + 4u3k4b3
0δ2(k)kb0δ2(k)kb0

+2u3k2b2
0kδ1(k)k2b2

0kδ1(k)b0 + 2u3k2b2
0kδ1(k)k2b2

0δ1(k)kb0 − 2u2k4b3
0kδ1 (δ1(k)) b0

+2u3k2b2
0kδ2(k)k2b2

0δ2(k)kb0 + 2u3k2b2
0kδ2(k)k2b2

0kδ2(k)b0 − 2u2k4b3
0kδ2 (δ2(k)) b0

−4u2k4b3
0δ1(k)δ1(k)b0 − 2u2k4b3

0δ1 (δ1(k)) kb0 − 4u2k4b3
0δ2(k)δ2(k)b0

−2u2k4b3
0δ2 (δ2(k)) kb0 − 2u2b2

0kδ3(k)b0kδ3(k)b0 − 2u2b2
0kδ3(k)b0δ3(k)kb0
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+2u2b2
0kδ3(k)b2

0kδ3(k)b0 + 2u2b2
0kδ3(k)b2

0δ3(k)kb0 − 2u2b2
0δ3(k)kb0kδ3(k)b0

−2u2b2
0δ3(k)kb0δ3(k)kb0 + 2u2b2

0δ3(k)kb2
0kδ3(k)b0 + 2u2b2

0δ3(k)kb2
0δ3(k)kb0

+4u2b3
0kδ3(k)b0kδ3(k)b0 + 4u2b3

0kδ3(k)b0δ3(k)kb0 + 4u2b3
0δ3(k)kb0kδ3(k)b0

+4u2b3
0δ3(k)kb0δ3(k)kb0 − 8u2k2b2

0kδ1(k)b0kδ1(k)b0 − 6u2k2b2
0kδ1(k)b0δ1(k)kb0

−8u2k2b2
0kδ2(k)b0kδ2(k)b0 − 6u2k2b2

0kδ2(k)b0δ2(k)kb0 − 6u2k2b2
0δ1(k)kb0kδ1(k)b0

−4u2k2b2
0δ1(k)kb0δ1(k)kb0 − 6u2k2b2

0δ2(k)kb0kδ2(k)b0 − 4u2k2b2
0δ2(k)kb0δ2(k)kb0

−2u2b0kδ1(k)k2b2
0kδ1(k)b0 − 2u2b0kδ1(k)k2b2

0δ1(k)kb0 − 2u2b0kδ2(k)k2b2
0kδ2(k)b0

−2u2b0kδ2(k)k2b2
0δ2(k)kb0 + ub2

0kδ3 (δ3(k)) b0 + 2ub2
0δ3(k)δ3(k)b0

+ub2
0δ3 (δ3(k)) kb0 − 2ub3

0kδ3 (δ3(k)) b0 − 4ub3
0δ3(k)δ3(k)b0

−2ub3
0δ3 (δ3(k)) kb0 + 3uk2b2

0kδ1 (δ1(k)) b0 + 3uk2b2
0kδ2 (δ2(k)) b0

+4uk2b2
0δ1(k)δ1(k)b0 + uk2b2

0δ1 (δ1(k)) kb0 + 4uk2b2
0δ2(k)δ2(k)b0

+uk2b2
0δ2 (δ2(k)) kb0 + ub0k−1δ3(k)b0kδ3(k)b0 + ub0k−1δ3(k)b0δ3(k)kb0

−ub0k−1δ3(k)b2
0kδ3(k)b0 − ub0k−1δ3(k)b2

0δ3(k)kb0 + 4ub0kδ1(k)b0kδ1(k)b0

+2ub0kδ1(k)b0δ1(k)kb0 + 4ub0kδ2(k)b0kδ2(k)b0 + 2ub0kδ2(k)b0δ2(k)kb0

−ub0δ3(k)k−1b0kδ3(k)b0 − ub0δ3(k)k−1b0δ3(k)kb0 + ub0δ3(k)k−1b2
0kδ3(k)b0

+ub0δ3(k)k−1b2
0δ3(k)kb0 − ub2

0k−1δ3(k)b0kδ3(k)b0 − ub2
0k−1δ3(k)b0δ3(k)kb0

−ub2
0kδ3(k)b0k−1δ3(k)b0 + ub2

0kδ3(k)b0δ3(k)k−1b0 + ub2
0δ3(k)k−1b0kδ3(k)b0

+ub2
0δ3(k)k−1b0δ3(k)kb0 − ub2

0δ3(k)kb0k−1δ3(k)b0 + ub2
0δ3(k)kb0δ3(k)k−1b0

−b0k−1δ3 (δ3(k)) b0 − b0kδ1 (δ1(k)) b0 − b0kδ2 (δ2(k)) b0 + b2
0k−1δ3 (δ3(k)) b0

−b2
0δ3 (δ3(k)) k−1b0 + b0δ3(k)k−2δ3(k)b0 + b0k−1δ3(k)k−1δ3(k)b0

−b2
0k−1δ3(k)k−1δ3(k)b0 + b2

0δ3(k)k−1δ3(k)k−1b0 +
1
2

b0k−1δ3(k)b0k−1δ3(k)b0

−
1
2

b0k−1δ3(k)b0δ3(k)k−1b0 −
1
2

b0δ3(k)k−1b0k−1δ3(k)b0

+
1
2

b0δ3(k)k−1b0δ3(k)k−1b0.

To perform u integration, we apply Corollary 2.4.1 where the functions F[v]
m0,··· ,mp show

up in the result. The ρ terms appearing in the outcome expression include δ j(k) and δ2
j(k)

multiplied by a power of k. We use the following identities to bring all these ρ’s into the
form k−1δ j or k−1δ2

j(k).

F(∆)(ρ1ρ2) = F(∆(1)∆(2))(ρ1 · ρ2), F(∆)(kmρkn) = km+n∆
n
2 F(∆)(ρ),
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F(∆(1),∆(2))(klρ1 · kmρ2kn) = kl+m+n∆
m+n

2
(1) ∆

n
2
(2)F(∆(1)∆(2))(ρ1 · ρ2).

These identities are consequences of the fact that ∆ is a C∗-algebra automorphism which
commutes with k and also xk = k∆

1
2 (x). Applying the aforementioned identities, the inte-

gral of b2, up to the total factor π2, is equal to(
(3 + ∆

1
2 )F[2]

2,1(∆)
(
k−1δ2

1(k)
)
− F[2]

1,1(∆)
(
k−1δ2

1(k)
)
− 2(1 + ∆

1
2 )F[2]

3,1(∆)
(
k−1δ2

1(k)
) )

+
(
2∆(1)(∆

1
2
(2) + 2)F[2]

1,1,1(∆(1),∆(2))
(
k−1δ1(k) · k−1δ1(k)

)
− 2∆2

(1)(∆
1
2
(2) + 1)F[2]

1,2,1(∆(1),∆(2))
(
k−1δ1(k) · k−1δ1(k)

)
− 2∆(1)(3∆

1
2
(2) + 2∆

1
2
(1)∆

1
2
(2) + 3∆

1
2
(1) + 4)F[2]

2,1,1

(
∆(1),∆(2))(k−1δ1(k) · k−1δ1(k)

)
+ 2∆2

(1)(1 + ∆
1
2
(1))(1 + ∆

1
2
(2))F

[2]
2,2,1(∆(1),∆(2))

(
k−1δ1(k) · k−1δ1(k)

)
+ 4∆(1)(1 + ∆

1
2
(1))(1 + ∆

1
2
(2))F

[2]
3,1,1(∆(1),∆(2))

(
k−1δ1(k) · k−1δ1(k)

)
+ 4∆

1
2
(1)F

[2]
2,0,1

(
∆(1),∆(2))(k−1δ1(k) · k−1δ1(k)

)
− 4∆

1
2
(1)F

[2]
3,0,1

(
∆(1),∆(2))(k−1δ1(k) · k−1δ1(k)

) )
+

(
(3 + ∆

1
2 )F[2]

2,1(∆)
(
k−1δ2

2(k)
)
− F[2]

1,1(∆)
(
k−1δ2

2(k)
)

− 2(1 + ∆
1
2 )F[2]

3,1(∆)
(
k−1δ2

2(k)
) )

+
(
2∆(1)(∆

1
2
(2) + 2)F[2]

1,1,1(∆(1),∆(2))
(
k−1δ2(k) · k−1δ2(k)

)
− 2∆2

(1)(∆
1
2
(2) + 1)F[2]

1,2,1(∆(1),∆(2))
(
k−1δ2(k) · k−1δ2(k)

)
− 2∆(1)(3∆

1
2
(2) + 2∆

1
2
(1)∆

1
2
(2) + 3∆

1
2
(1) + 4)F[2]

2,1,1

(
∆(1),∆(2))(k−1δ2(k) · k−1δ2(k)

)
+ 2∆2

(1)(1 + ∆
1
2
(1))(1 + ∆

1
2
(2))F

[2]
2,2,1(∆(1),∆(2))

(
k−1δ2(k) · k−1δ2(k)

)
+ 4∆(1)(1 + ∆

1
2
(1))(1 + ∆

1
2
(2))F

[2]
3,1,1(∆(1),∆(2))

(
k−1δ2(k) · k−1δ2(k)

)
+ 4∆

1
2
(1)F

[2]
2,0,1

(
∆(1),∆(2))(k−1δ2(k) · k−1δ2(k)

)
− 4∆

1
2
(1)F

[2]
3,0,1

(
∆(1),∆(2))(k−1δ2(k) · k−1δ2(k)

) )
+ k−2

(
− F[2]

1,1(∆)
(
k−1δ2

3(k)
)

+ (1 + ∆
1
2 )F[2]

2,1(∆)
(
k−1δ2

3(k)
)

− 2(1 + ∆
1
2 )F[3]

3,1(∆)
(
k−1δ2

3(k)
)

+ (1 − ∆−
1
2 )F[3]

2,1(∆)
(
k−1δ2

3(k)
) )

+ k−2
(
(∆(1) − ∆

1
2
(1))(∆

1
2
(2) + 1)F[2]

1,1,1(∆(1),∆(2))
(
k−1δ3(k) · k−1δ3(k)

)
− 2∆(1)(∆

1
2
(1) + 1)(∆

1
2
(2) + 1)F[2]

2,1,1(∆(1),∆(2))
(
k−1δ3(k) · k−1δ3(k)

)
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+ 2∆
1
2
(1)F

[2]
2,0,1(∆(1),∆(2))

(
k−1δ3(k) · k−1δ3(k)

)
+ (1 + ∆

− 1
2

1 )F[2]
1,0,1(∆(1),∆(2))

(
k−1δ3(k) · k−1δ3(k)

)
+ (∆

1
2
(1) − ∆(1))(∆

1
2
(2) + 1)F[3]

1,2,1(∆(1),∆(2))
(
k−1δ3(k) · k−1δ3(k)

)
− (∆

1
2
(1) − ∆

− 1
2

(2) )(1 + ∆
1
2
(1) − ∆

1
2
(2) + ∆

1
2
(1)∆

1
2
(2))

F[3]
2,1,1(∆(1),∆(2))

(
k−1δ3(k) · k−1δ3(k)

)
+ 2∆(1)(∆

1
2
(1) + 1)(∆

1
2
(2) + 1)F[3]

2,2,1(∆(1),∆(2))
(
k−1δ3(k) · k−1δ3(k)

)
+ 4∆(1)(∆

1
2
(1) + 1)(∆

1
2
(2) + 1)F[3]

3,1,1(∆(1),∆(2))
(
k−1δ3(k) · k−1δ3(k)

)
+

1
2

(∆−
1
2

(1) − 1)(∆−
1
2

2 − 1)F[3]
1,1,1(∆(1),∆(2))

(
k−1δ3(k) · k−1δ3(k)

)
− 4∆

1
2
(1)F

[3]
3,0,1(∆(1),∆(2))

(
k−1δ3(k) · k−1δ3(k)

)
− (1 − ∆

− 1
2

1 ∆
− 1

2
2 )F[3]

2,0,1(∆(1),∆(2))
(
k−1δ3(k) · k−1δ3(k)

) )
.

In the above formula, we grouped the terms with the same sequence of ρ j’s together.
The terms which has k−1δ2

1(k) have exactly the exactly the same functions as the term
k−1δ2

2(k), and it reads

π2
(
(3 + ∆

1
2 )F[2]

2,1(∆) − F[2]
1,1(∆) − 2(1 + ∆

1
2 )F[2]

3,1(∆)
)
.

If we substitute the functions F[v]
m0,m1 in the above expression, we get:

ψ1(s1) := −
π2√s1(s1 log(s1) + log(s1) − 2s1 + 2)

(
√

s1 − 1)3(
√

s1 + 1)2
.

The function for k−1δ1(k) · k−1δ1(k) is the same as the function for k−1δ1(k) · k−1δ1(k) and it
is given by

φ1(s1, s2) =
2π2√s1

√
s2

(
√

s1 − 1)(s1 − 1)(
√

s2 − 1)(s2 − 1)(
√

s1s2 − 1)(s1s2 − 1)2
×(

s3/2
1 (s5/2

2 − s1/2
2 + 2s3/2

2 log(s2) + s2
2(log(s1s2) − 2) − 2s2 log(s1s2) + log(s1s2) + 2)

+ s2s5/2
1 (s3/2

2 (log(s1) − 1) − (s2 − 1)(log(s1s2) − 2) −
√

s2(log(s1s2) − 1))

+ s2s2
1(s2(log(s2) − 1) + 1) − s1(s2

2(log(s1s2) − 1) − 2s2 log(s1) + log(s1s2) + 1)

−
√

s1(s3/2
2 (log(s1s2) + 1) − s2(log(s1s2) + 2) + log(s1s2) −

√
s2(log(s1) + 1) + 2)

+ 1 − s2 + log(s2)
)
.
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Also, the functions for k−1δ3(k)k−1δ3(k) and k−1δ2
3(k) are given by

ψ2(s1) =
2π2

(
−s2

1 + 2s1 log (s1) + 1
)

√
s1 (s1 − 1)2 log (s1)

,

and

φ2(s1, s2) =
2π2

√
s1s2(s1 − 1)(s2 − 1)(s1s2 − 1)2 log(s1) log(s2) log(s1s2)

×(
(s2

1s2
2 − 5s1s2

2 + s2
1s2 + 2s2

2 + 4s1s2 − 5s2 + s1 + 1)(s1s2 − 1) log(s1) log(s2)

+ (s1−1)2(s3
2s1 + s1s2

2 − s2
2 + 3s2) log(s2)2−(s2−1)2(3s2

1s2−s2s1 + s1 + 1) log(s1)2

+ 2(s2 − 1)(s1 − 1)(s2
1s2

2 − 1) log(
s2

s1
)
)
.

Finally, we would like to express the result in term of log k and ∇ := log ∆ = [−2h, ·].
To do so we first need to use the formula (2.4.3), then replace ∆ with e∇. For example, the
term involving δ2

1(log(k)) comes from ψ1(∆)(k−1δ2
1(k)) and it is given by

ψ1(∆) f (∆) = −
π2
√

∆(s1 log(∆) + log(∆) − 2∆ + 2)

(
√

∆ − 1)3(
√

∆ + 1)2

2(
√

∆ − 1)
log(∆)

= 2π2 e
∇
2 (2e∇ − ∇e∇ − 2 − ∇)
∇(e∇ − 1)2 ∇.

Multiplying the overall factor (4π)−
3
2 and factoring out the powers of π, we get the function

K1(s) given in Theorem 2.3.3. Similarly, other function are obtained as

K2(s) =
1

8π2ψ2(es) f (s)

H1(s, t) =
1

8π2

(
φ1(es, et) f (es) f (et) + 2ψ1(eset)g(es, et)

)
,

H2(s, t) =
1

8π2

(
φ2(es, et) f (es) f (et) + 2ψ2(eset)g(es, et)

)
.



Appendix B

Functions from the rearrangement
lemma

In this appendix we list all the functions obtained from the rearrangement lemmas 2.3.2
and 2.4.1 which are required in the computations. First we have the functions from the
conformally flat case in section 2.3:

F1,1(s1) = π/
(
s2/3

1 + 3
√

s1

)
,

F2,1(s1) = π
(

3
√

s1 + 2
)
/
(
2
(

3
√

s1 + 1
)2

3
√

s1

)
,

F3,1(s1) = π
(
3s2/3

1 + 9 3
√

s1 + 8
)
/
(
8
(

3
√

s1 + 1
)3

3
√

s1

)
,

F1,1,1(s1, s2) =
π
(

3
√

s1

(
3
√

s2 + 1
)

+ 1
)(

3
√

s1 + 1
)

s1

(
3
√

s2 + 1
)

3
√

s2

(
3
√

s1
3
√

s2 + 1
) ,

F1,2,1(s1, s2) =

π
(
2s2/3

1

(
3
√

s2 + 1
)2

+ 3
√

s1

(
3
√

s2 + 2
)2

+ 3
√

s2 + 2
)

2
(

3
√

s1 + 1
)2

s5/3
1

(
3
√

s2 + 1
)2

3
√

s2

(
3
√

s1
3
√

s2 + 1
) ,

F2,1,1(s1, s2) =
π
((

3
√

s1 + 2
)

3
√

s1

(
3
√

s2 + 1
) (

3
√

s1
3
√

s2 + 2
)

+ 2
)

2
(

3
√

s1 + 1
)2

s1

(
3
√

s2 + 1
)

3
√

s2

(
3
√

s1
3
√

s2 + 1
)2 ,

F2,2,1(s1, s2) =
π

2
(

3
√

s1 + 1
)3

s5/3
1 ( 3
√

s2 + 1)2 3
√

s2( 3
√

s1
3
√

s2 + 1)2
×

(
( 3
√

s2 + 1)2(s4/3
1

3
√

s2 + s2/3
1 ( 3
√

s2 + 6) + s1(3 3
√

s2 + 2))

+ 3
√

s1(2s2/3
2 + 7 3

√
s2 + 6) + 3

√
s2 + 2

)
,
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F3,1,1(s1, s2) =
π

8s1
3
√

s2( 3
√

s1 + 1)3( 3
√

s2 + 1)( 3
√

s1s2 + 1)3
×(

(24 3
√

s1 + 3s2/3
2 s5/3

1 + 27 3
√

s2s1 + 8s2/3
2 s1 + 8s1)

(
3
√

s2 + 1
)

+ (9s4/3
1

3
√

s2 + 24s2/3
1 )

(
3
√

s2 + 1
)2

+ 8
)
.

The list of functions required in the computations for the non-conformal metric is the
following:

F[2]
1,1(s1) = log(s1)/(s1 − 1),

F[2]
2,1(s1) = (s1 − log(s1) − 1)/(s1 − 1)2,

F[2]
3,1(s1) =

(
(s1 − 4)s1 + 2 log(s1) + 3

)
/(2(s1 − 1)3),

F[3]
3,1(s1) = (s2

1 − 2s1 log(s1) − 1)/(2(s1 − 1)3),

F[3]
2,1(s1) = (s1(log(s1) − 1) + 1)/(s1 − 1)2,

F[2]
1,0,1(s1, s2) = log (s1s2)/(s1s2 − 1),

F[2]
1,1,1(s1, s2) =

(
(s1s2 − 1) log(s1) − (s1 − 1) log(s1s2)

)
(s1 − 1)s1(s2 − 1)(s1s2 − 1)

,

F[2]
2,0,1(s1, s2) =

(
s1s2 − log(s1s2) − 1

)
/(s1s2 − 1)2,

F[2]
1,2,1(s1, s2) =

1
(s1 − 1)2s2

1(s2 − 1)2(s1s2 − 1)

(
(s1 − 1)2 log(s1s2)

+ (s1s2 − 1)(s1(−s2) + (s1(s2 − 2) + 1) log(s1) + s1 + s2 − 1)
)
,

F[2]
2,1,1(s1, s2) =

1
(s1 − 1)2s1(s2 − 1)(s1s2 − 1)2

(
(s1 − 1)2 log(s1s2)

+ (s1s2 − 1)((s1 − 1)s1(s2 − 1) + (1 − s1s2) log(s1))
)
,

F[2]
2,2,1(s1, s2) =

1
(s1 − 1)3s2

1(s2 − 1)2(s1s2 − 1)2

(
− (s1 − 1)3 log(s1s2)

+ (s1 − 1)(s2 − 1)(s1s2 − 1)(s1(s1s2 − s1 + s2) − 1)

− (s1s2 − 1)2(s1(2s2 − 3) + 1) log(s1)
)

F[2]
3,0,1(s1, s2) =

(s1s2 − 3)(s1s2 − 1) + 2 log(s1s2)
(2(s1s2 − 1)3)

,

F[2]
3,1,1(s1, s2) =

1
2(s1 − 1)3s1(s2 − 1)(s1s2 − 1)3×(
2(s1s2 − 1)3 log(s1) − 2(s1 − 1)3 log(s1s2)

+ s1(s1 − 1)(s2 − 1)(s1s2 − 1)((s1 − 3)s1s2 − 3s1 + 5)
)
,



BIBLIOGRAPHY 63

F[3]
1,1,1(s1, s2) =

(−s1s2 + 1) log(s1) + (s1 − 1)s2 log(s1s2)
(s1 − 1)(s2 − 1)(s1s2 − 1)

,

F[3]
2,0,1(s1, s2) =

(
−s1s2 + s1s2 log(s1s2) + 1

)
/(s1s2 − 1)2,

F[3]
3,0,1(s1, s2) =

(
s2

1s2
2 − 2s1s2 log(s1s2) − 1

)
/(2(s1s2 − 1)3),

F[3]
1,2,1(s1, s2) =

1
(s1 − 1)2s1(s2 − 1)2(s1s2 − 1)

(
(s1s2 − 1)((s1 − 1)(s2 − 1)

+ (s1 − s2) log(s1)) − (s1 − 1)2s2 log(s1s2)
)
,

F[3]
2,1,1(s1, s2) =

1
(s1 − 1)2(s2 − 1)(s1s2 − 1)2

(
(s1s2 − 1)2 log(s1)

− (s1 − 1)((s2 − 1)(s1s2 − 1) + (s1 − 1)s2 log(s1s2))
)
,

F[3]
2,2,1(s1, s2) =

1
(s1 − 1)3s1(s2 − 1)2(s1s2 − 1)2

(
s2

1 + s3
2s3

1(log(s1) − 2)

+ s2
2s3

1(3 − 2 log(s1)) + s2s3
1(log(s1s2) − 1) + s3

2s2
1(log(s1) + 2)

− s2
2s2

1(2 log(s1)) + s2s2
1(4 log(s1) − 3 log(s1s2) − 3) − 2s1 log(s1)

+ s2
2s1(−2 log(s1) − 3) + s2s1(log(s1) + 3 log(s1s2) + 3)

+ s2(log(s1) − log(s1s2) + 1) − 1
)

F[3]
3,1,1(s1, s2) =

1
2(s1 − 1)3(s2 − 1)(s1s2 − 1)3×(
2(s1 − 1)3s2 log(s1s2) − 2(s1s2 − 1)3 log(s1)

+ (s1 − 1)(s2 − 1)(s1s2 − 1)((s1 + 1)s1s2 + s1 − 3)
)
.
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Chapter 3

Second quantization and spectral action

3.1 Introduction

This chapter is a reproduction of my joint paper with Masoud Khalkhali [4]. The spectral
action principle of Connes and Chamseddine was originally developed mainly to give a
conceptual and geometric formulation of the standard model of particle physics [2]. The
spectral action can be defined for spectral triples (A,H ,D), even when the algebra A is not
commutative. An interesting feature here is the additivity of the spectral action with respect
to the direct sum of spectral triples. Conversely, one can wonder whether a given additive
functional on spectral triples is obtained via an spectral action.

In a recent paper [3], Chamseddine, Connes, and van Suijlekom have shown that the von
Neumann entropy of the Gibbs state naturally defined by a Fermionic second quantization
of a spectral triple is in fact spectral and they find a universal function that defines the
spectral action.

In this paper we show that by incorporating chemical potentials one can extend the
formalism of spectral action principle to both Bosonic and Fermionic second quantization.
In fact we show that the von Neumann entropy, the average energy, and the negative free
energy of the thermal equilibrium state defined by the Bosonic, or Fermionic, grand par-
tition function, with a given chemical potential, can be expressed as spectral actions. We
show that all spectral action coefficients can be expressed in terms of the modified Bessel
functions of the second kind. In the Fermionic case, we show that the spectral action coeffi-
cients for the von Neumann entropy, in the limit when the chemical potential µ approaches
to 0, can be expressed in terms of the Riemann zeta function. This recovers the recent result
of Chamseddine-Connes-van Suijlekom in [3].

It should be noted that without the use of chemical potentials, the natural spectral func-

66



3.2. Second quantization basics 67

tion for the von Neumann entropy in the Bosonic case is singular at t = 0, and in fact the
corresponding functional is not spectral.

In searching for a suitable expression of spectral action coefficients in all six cases
studied in this paper, we were naturally led to the class of modified Bessel functions of the
second kind. In Section 3 some basic properties of these functions are derived. In section
2 we recall some of the main concepts and results from the theory of second quantization.
Our main results are presented in Sections 4 and 5.

3.2 Second quantization basics

In this section, mainly to fix our notation and terminology, we shall recall some basic defi-
nitions and facts from the theory of second quantization in quantum statistical mechanics.
We shall largely follow [1].

3.2.1 Fock space and second quantization

In this section we shall first recall the definition of the Fock space F (H) of a Hilbert space
H , and the correspondding Fermionic Fock space F−(H) and the Bosonic Fock space
F+(H) [1]. Here we will regard F±(H) as subspaces of F (H), although one can also treat
them as the quotient spaces of F (H) instead. After that we shall recall the procedure of
second quantization.

Let H be a complex Hilbert space. We denote by Hn = H ⊗ H ⊗ · · · ⊗ H the n-fold
tensor product of H with itself when n > 0, and let H0 = C. The Fock space F (H) is the
completion of the pre-Hilbert space

⊕
n≥0
Hn. Define the projection operators P± onHn by

P+ ( f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n!)−1
∑
π∈S n

fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n),

P− ( f1 ⊗ f2 ⊗ · · · ⊗ fn) = (n!)−1
∑
π∈S n

(−1)|π| fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n),

for all f1, ..., fn ∈ H . Since P± are bounded operators with norm 1 on
⊕
n≥0
Hn, they can

be extended by continuity to bounded projection operators on the Fock space F (H). The
Bosonic Fock space F+(H) and the Fermionic Fock space F−(H) are then defined by

F±(H) = P±(F (H)).
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The corresponding n-particle subspacesHn
± are defined byHn

± = P±Hn.
The structure of the Fock space allows us to amplify an operator on H to the whole

Bose/Fermi Fock spaces F±(H). This procedure is commonly referred to as second quan-
tization.

Let H be a self-adjoint operator onH with domain D(H). We define Hn onHn
± by

Hn (P± ( f1 ⊗ · · · ⊗ fn)) =


P±

 n∑
i=1

f1 ⊗ f2 ⊗ · · · ⊗ H fi ⊗ · · · ⊗ fn

 n > 0,

0 n = 0,

for all fi ∈ D(H). The direct sum operator
⊕
n≥0

Hn is essentially self-adjoint, and the self-

adjoint closure of this direct sum operator is called the second quantization of the operator
H and it is denoted by dΓ(H). Namely,

dΓ(H) =
⊕
n≥0

Hn.

In particular, let H = 1 be the identity operator. Then we have

dΓ(1) = N,

where N is the number operator on F±(H), whose domain is defined by

D(N) =

ψ = {ψ(n)}n≥0;
∑
n≥0

n2||ψ(n)||2 < ∞

 ,
and for any ψ ∈ D(N)

Nψ = {nψ(n)}n≥0.

For a unitary operator U onH , first we define Un onHn
± by

Un (P± ( f1 ⊗ f2 ⊗ · · · ⊗ fn)) =

P± (U f1 ⊗ U f2 ⊗ · · · ⊗ U fn) n > 0,

1 n = 0,

and then extend it to the whole Fock space.
We denote this extension by Γ(U), called the second quantization of the unitary operator

U,
Γ(U) =

⊕
n≥0

Un.
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It is worth noticing that here Γ(U) is also a unitaty operator on F±(H). Also, if Ut = eitH

is a strongly continuous one-parameter unitary group acting onH , then

Γ(Ut) = eitdΓ(H)

on the Fock spaces F±(H).

If H is a self-adjoint Hamiltonian operator on the one-particle Hilbert spaceH , then the
dynamics of the ideal Bose gas and the ideal Fermi gas are described by the Schrödinger
equation

i~
dψt

dt
= dΓ(H)ψt

on F+(H) and F−(H), separately. We choose the units so that ~ = 1. The solution of the
Schrödinger equation gives us the evolution

ψ ∈ F±(H) 7→ ψt = e−itdΓ(H)ψ = Γ(e−itH)ψ,

and the evolution of a bounded observable A ∈ B(F±(H)) is given by conjugation as

A ∈ B(F±(H)) 7→ τt(A) = Γ(eitH)AΓ(e−itH).

Next we shall introduce the Gibbs grand canonical equilibrium state ω of a particle
system at inverse temperature β ∈ R, and with chemical potential µ ∈ R. Let

Kµ = dΓ(H − µ1) = dΓ(H) − µN

be the modified Hamiltonian. Then ω is defined by

ω(A) =
Tr

(
e−βKµA

)
Tr

(
e−βKµ

) , A ∈ B(F±(H)).

Here we assume the operator e−βKµ is a trace-class operator.

If we have two one-particle spacesH1 andH2, and self-adjoint operators

H1 : H1 → H1, H2 : H2 → H2,

then we can form the direct sum H1 ⊕ H2 : H1 ⊕H2 → H1 ⊕H2.

Lemma 3.2.1 We have e−dΓ(H1⊕H2) = e−dΓ(H1) ⊗ e−dΓ(H2). Moreover, when e−dΓ(Hi) are trace-
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class operators for i = 1, 2, we can define the density operators

ρ =
e−dΓ(H1⊕H2)

Tr(e−dΓ(H1⊕H2))
,

ρi =
e−dΓ(H1)

Tr(e−dΓ(H1)
, i = 1, 2,

and we have ρ = ρ1 ⊗ ρ2.

Proof It is clear that e−H1⊕H2 = e−H1 ⊕ e−H2 . Thus

e−dΓ(H1⊕H2) = Γ
(
e−H1 ⊕ e−H2

)
= Γ

(
e−H1

)
⊗ Γ

(
e−H2

)
= e−dΓ(H1) ⊗ e−dΓ(H2).

When the operators e−dΓ(Hi) are positive trace-class operators for i = 1, 2, then

ρ =
e−dΓ(H1⊕H2)

Tr(e−dΓ(H1⊕H2))
=

e−dΓ(H1) ⊗ e−dΓ(H2)

Tr(e−dΓ(H1))Tr(e−dΓ(H2))
= ρ1 ⊗ ρ2.

3.2.2 CAR and CCR algebras

Both of the CAR and CCR algebras are constructed with the help of creation and annihila-
tion operators. Because of that, we shall recall the definitions of annihilation and creation
operators first.

LetH be a complex Hilbert space. For each f ∈ H , we define the annihilation operator
a( f ), and the creation operator a∗( f ) acting on the Fock space F (H) by initially setting
a( f )ψ(0) = 0, a∗( f )ψ(0) = f , for all f ∈ H , and

a( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) =
√

n ( f , f1) f2 ⊗ f3 ⊗ · · · ⊗ fn,

a∗( f )( f1 ⊗ f2 ⊗ · · · ⊗ fn) =
√

n + 1 f ⊗ f1 ⊗ f2 ⊗ f3 ⊗ · · · ⊗ fn.

Here ψ(0) = 1 ∈ C. One can see that the maps f 7→ a( f ) are anti-linear while the maps
f 7→ a∗( f ) are linear. Also, one can show that a( f ) and a∗( f ) have well-defined extensions
to D(N1/2), the domain of the operator N1/2. Moreover, we have that a∗( f ) is the adjoint of
a( f ); namely, for any φ, ψ ∈ D(N1/2), one has

(a∗( f )φ, ψ) = (φ, a( f )ψ) .

We can then define the annihilation operators a±( f ) and the creation operators a∗±( f ) on
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the Fermi/Bose Fock spaces F±(H) by

a±( f ) = P±a( f )P±, a∗±( f ) = P±a∗( f )P±.

Moreover, since the annihilation operator a( f ) keeps the subspaces F±(H) invariant, we
have

a±( f ) = a( f )P±, a∗±( f ) = P±a∗( f ).

One computes straightforwardly that on the Fermionic Fock space F−(H),

{a−( f ), a−(g)} = {a∗−( f ), a∗−(g)} = 0, {a−( f ), a∗−(g)} = ( f , g)1,

and on the Bosonic Fock space F+(H),

[a+( f ), a+(g)] = [a∗+( f ), a∗+(g)] = 0, [a+( f ), a∗+(g)] = ( f , g)1.

The first relations are called the canonical anti-commutation relations (CAR), and the sec-
ond relations are called the canonical commutation relations (CCR).

Roughly speaking, the CAR algebra is the algebra generated by the annihilation opera-
tors a−( f ) and creation operators a∗−( f ). In fact, we have the following proposition [1]:

Proposition 3.2.2 LetH be a complex Hilbert space, F−(H) be the Fermionic Fock space,
and a−( f ) and a∗−(g) the corresponding annihilation and creation operators on F−(H).

(1) For all f ∈ H , we have
||a−( f )|| = || f || = ||a∗−( f )||.

Therefore both a−( f ) and a∗−(g) have bounded extensions on F−(H).

(2) Taking Ω = (1, 0, 0, · · · ), called the vacuum vector, and { fα} an orthonormal basis of
H , then

ψ( fα1 , ..., fαn) := a∗−
(
fα1

)
· · · a∗−

(
fαn

)
Ω

is an orthonormal basis of F−(H), when { fα1 , ..., fαn} runs over all the finite subsets
of the orthonormal basis { fα}.

(3) The set of bounded operators {a−( f ), a∗−(g); f , g ∈ H} is irreducible on F−(H).

Definition 3.2.3 We call the subalgebra of B(F−(H)) generated by a−( f ), a∗−(g) and 1 the
CAR algebra and denote it by CAR(H).
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Although the CCR rules looks very similar to the CAR rules, however, one can not
simply mimic the previous definition of CAR algebras to deduce the definition of CCR
algebras. The reason is that the annihilation operators a+( f ) and the creation operators
a∗+(g) are not bounded operators on F+(H).

First we introduce the set of operators {Φ( f ), f ∈ H} by

Φ( f ) =
a+( f ) + a∗+( f )

√
2

.

Since the map f 7→ a+( f ) is anti-linear, and f 7→ a∗+( f ) is linear, then

a+( f ) =
Φ( f ) + iΦ(i f )

√
2

, a∗+( f ) =
Φ( f ) − iΦ(i f )

√
2

.

Thus it suffices to examine the set of operators {Φ( f ), f ∈ H}.
Let F+(H) = P+

(⊕
n≥0H

n
)
⊆ F+(H), i.e. F+(H) contains the sequences ψ = {ψ(n)}n≥0

which have only a finite number of nonvanishing components.
Since for each f ∈ H , Φ( f ) is essentially self-adjoint on F+(H), Φ( f ) can be extended

to a self-adjoint operator, we still use Φ( f ) to denote the selfadjoint operator

Φ( f ) =
a( f ) + a∗( f )

√
2

.

We have the following proposition [1]:

Proposition 3.2.4 For each f ∈ H , let

Φ( f ) =
a( f ) + a∗( f )

√
2

, W( f ) = exp (iΦ( f )).

Let CCR(H) denote the algebra generated by {W( f ), f ∈ H}. It follows that

(1) For any f , g ∈ H , W( f )D(Φ(g)) = D(Φ(g)), and

W( f )Φ(g)W( f )∗ = Φ(g) − Im( f , g)1.

(2) For each pair f , g ∈ H

W( f )W(g) = e−iIm( f ,g)/2W( f + g).

(3) W(− f ) = W( f )∗.
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(4) For each f ∈ H\{0}
||W( f ) − 1|| = 2,

and W(0) = 1.

(5) The set {W( f ); f ∈ H} is irreducible on F+(H), and CCR(H) is a simple algebra.

(6) If || fα − f || → 0, then
|| (W( fα) −W( f ))ψ|| → 0

for all ψ ∈ F+(H).

The operators W( f ) are called Weyl operators, and the algebra CCR(H) is called the CCR
algabra ofH .

3.2.3 Gibbs states

Let Kµ denote the modified Hamiltonian operator

Kµ = dΓ (H − µ1) .

In the Fermionic case, we can define the Gibbs state ω(A) over the CAR algebra
CAR(H) by

ω(A) =
Tr

(
e−βKµA

)
Tr

(
e−βKµ

) , ∀A ∈ CAR(H).

Here we assume the operator e−βKµ is a trace-class operator on F−(H). In fact, we have the
following proposition [1]:

Proposition 3.2.5 Let H be a self-adjoint operator on the Hilbert space H and let β ∈ R.
The following conditions are equivalent:

(1) e−βH is trace-class on the one-particle Hilbert spaceH .

(2) e−βdΓ(H−µ1) is trace-class on the Fermionic Fock space F−(H) for all µ ∈ R.

In the Bosonic case, we can define the Gibbs state ω(A) over the CCR algebra CCR(H)
by

ω(A) =
Tr

(
e−βKµA

)
Tr

(
e−βKµ

) , ∀A ∈ CCR(H).

Similarly as in the case of Fermionic Fock space F−(H), it is implicitly assumed that the
operator e−βKµ is trace-class on F+(H), in fact, we have the fololowing proposition [1]:
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Proposition 3.2.6 Let H be a self-adjoint operator on the one-particle Hilbert space H ,
let β, µ ∈ R. The following conditions are equivalent:

(1) e−βH is trace-class on the one-particle Hilbert spaceH and β(H − µ1) > 0,

(2) e−βdΓ(H−µ1) is trace-class on the Bosonic Fock space F+(H).

3.2.4 Entropy and energy

Let (A,H ,D) be a spectral triple. We can construct the Bosonic and Fermionic Fock spaces
F+(H) and F−(H), respectively. Let Dµ =

√
D2 − µ1. Suppose the operator e−dΓDµ is a

trace-class operator on F+(H), or on F−(H). Then we can define the density matrix

ρ =
e−dΓDµ

Tr
(
e−dΓDµ

) .
In this section, we will show that when the operator e−Dµ is trace class on H , the von
Neumann entropy, the average energy, as well as the negative free energy of ρ can be
expressed as spectral actions for the spectral triple (A,H ,D).

First let us briefly recall the von Neumann entropy and the energy. Consider a density
matrix ρ on a Hilbert space H , i.e. ρ is a positive trace-class operator with Tr(ρ) = 1. Its
von Neumann entropy is defined to be

S(ρ) := −Tr(ρ log ρ).

Consider an observable, that is a self-adjoint operator H : H → H , and let ρ = 1
Z exp(−βH)

be a thermal density matrix, at some inverse temperature β. Here Z = Tr(exp(−βH)) is the
canonical partition function. Then the average energy 〈H〉 = Tr(ρH) is given by

〈H〉 = −
∂

∂β

(
log Z

)
, (3.2.1)

and the free energy F(ρ) is defined by

F(ρ) = −
1
β

log Z.

It is easy to see that

−F(ρ) =
1
β

S (ρ) − E(ρ). (3.2.2)
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In a given spectral triple (A,H ,D), the operator e−dΓDµ is well-defined on both F+(H)
and F−(H).

According to the proposition 3.2.5, the operator e−dΓDµ is trace-class on F−(H) if and
only if the operator e−Dµ is trace-class onH . Thus suppose e−Dµ is trace-class onH . Then
we can define a density matrix

ρ(dΓDµ) =
e−dΓDµ

Tr(e−dΓDµ)

on F−(H). The map D 7→ S(ρ(dΓDµ)) gives rise to a spectral action, and this spectal action
is an additive functional on spectral triples. In fact, suppose D = S ⊕ T is an orthogonal
decomposition, then √

D2 − µ1 =
√

S 2 − µ1 ⊕
√

T 2 − µ1,

which we denote as Dµ = S µ ⊕ Tµ. According to Lemma 3.2.1,

ρ(dΓDµ) = ρ(dΓS µ) ⊗ ρ(dΓTµ),

and since we have the entropy

S(ρ(dΓS µ) ⊗ ρ(dΓTµ)) = S(ρ(dΓS µ)) + S(ρ(dΓTµ)),

thus the map D 7→ S(ρ(dΓDµ)) gives rise to a well-defined spectral action.
Now for a given chemical potential µ, the map D 7→ 〈dΓDµ〉 gives us a spectral action

as well. According to Lemma 3.2.1, this action is additive. For simplicity, we take the
inverse temperature β = 1 here.

3.3 Modified Bessel functions of the second kind

The modified Bessel functions {Iν(z),Kν(z)} are the solutions of the modified Bessel’s equa-
tion

z2y′′ + zy′ − (z2 + ν2)y = 0,

where

Iν(z) =

(
1
2

z
)ν ∞∑

n=0

(
1
2z

)2n

Γ(n + ν + 1)n!
,

and
Kν(z) =

π

2
I−ν(z) − Iν(z)

sin νπ
, −π < argz < π. (3.3.1)
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The right-hand side of (3.3.1) should be determined by taking the limit when ν is an integer.
The function Iν(z) is called the modified Bessel function of the first kind, and Kν(z) the
modified Bessel function of the second kind.

We shall introduce some basic properties of the modified Bessel function of the second
kind. For more detail, one can check the references [8, 7, 5].

Lemma 3.3.1 When α ∈ R, one has the formula

Kα(z) = K−α(z).

Lemma 3.3.2 We have the formula

d
dz

K0(z) = −K1(z).

Lemma 3.3.3 For α > 0, when z→ 0+, one has the asymptotics

Kα(z) ∼

 − log( z
2 ) − γ α = 0,

Γ(α)
2

(
2
z

)α
α > 0,

where γ is Euler’s constant. When z↗ ∞, one has

Kα(z) ∼
√
π

2z
e−z.

Lemma 3.3.4 One has the integral representation formula of the function Kν(z):

Kν(z) =

√
π

Γ
(
ν + 1

2

) ( z
2

)ν ∫ ∞

1
e−zx(x2 − 1)ν−1/2dx for ν > −

1
2
.

Lemma 3.3.5 Let Kν(z) be the modified Bessel functions of the second kind. Then one has
[5, 8.486]

zKν−1(z) − zKν+1(z) = −2νKν(z), (3.3.2)

Kν−1(z) + Kν+1(z) = −2
∂

∂z
Kν(z), (3.3.3)

z
∂

∂z
Kν(z) + νKν(z) = −zKν−1(z), (3.3.4)

z
∂

∂z
Kν(z) − νKν(z) = −zKν+1(z). (3.3.5)
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Lemma 3.3.6 When ν > −1
2 , a > 0, and x > 0, we have the integral formula [5, 8.432]

xνKν(ax) =
Γ
(
ν + 1

2

)
(2a)ν

Γ
(

1
2

) ∫ ∞

0

cos xt

(t2 + a2)ν+
1
2

dt.

Using Lemma 3.3.6, we obtain the following Lemma:

Lemma 3.3.7 When ν > −1
2 , a > 0, and x ∈ R\{0}, one has

|x|νKν (a|x|) =
πΓ

(
ν + 1

2

)
(2a)ν

Γ
(

1
2

) ψ̂ν,a(x), (3.3.6)

and

eiπx|x|νKν (a|x|) =
πΓ

(
ν + 1

2

)
(2a)ν

Γ
(

1
2

) φ̂ν,a(x), (3.3.7)

where

ψν,a(t) =
1(

(2πt)2 + a2)ν+ 1
2

, φν,a(t) = ψν,a

(
t +

1
2

)
,

and ψ̂ν,a, φ̂ν,a denote the corresponding Fourier transforms of ψν,a and φν,a. Namely,

ψ̂ν,a(x) =

∫ ∞

−∞

ψν,a(t)e−2πixtdt, φ̂ν,a(x) =

∫ ∞

−∞

φν,a(t)e−2πixtdt.

Proof According to Lemma 3.3.6, one has

|x|νKν(a|x|) =
Γ
(
ν + 1

2

)
(2a)ν

2Γ
(

1
2

) ∫ ∞

−∞

1(
t2 + a2)ν+ 1

2

e−ixtdt,

and then changing the variable t 7→ 2πt, one can get formulae (3.3.6) and (3.3.7).

From Lemma 3.3.7, one can easily deduce the following lemma:

Lemma 3.3.8 When ν ≥ −1
2 , a > 0, and x ∈ R\{0}, one has

|x|ν+2Kν (a|x|) =
Γ
(
ν + 1

2

)
(2a)ν

−4πΓ
(

1
2

) ψ̂′′ν,a(x), (3.3.8)
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and

eiπx|x|ν+2Kν (a|x|) =
Γ
(
ν + 1

2

)
(2a)ν

−4πΓ
(

1
2

) φ̂′′ν,a(x). (3.3.9)

3.3.1 Poisson summation and asymptotic expansions

To continue, we need the following version of the Poisson’s summation formula:

Lemma 3.3.9 (Poisson’s summation formula [6]) If a function f (x) is integrable, tends
to zero at infinity, and x f ′(x) ∈ Lp(0,∞), (1 < p ≤ 2), then

lim
N→∞

 N∑
n=1

f (n) −
∫ N

0
f (t)dt

 = lim
N→∞

 N∑
n=1

g(n) −
∫ N

0
g(x)dx

 ,
where

g(x) = 2
∫ ∞

0
cos(2πxt) f (t)dt.

By this lemma we can deduce the following asymptotic expansion formulae [6]:

Lemma 3.3.10 When a→ 0+, we have the following asymptotic expansions

∞∑
n=1

(−1)n+1K0(an) ∼
log π − γ

2
−

log a
2

, (3.3.10)

∞∑
n=1

(−1)n+1a n K1(an) ∼
1
2
, (3.3.11)

∞∑
n=1

K0(an) ∼
γ − log(4π)

2
+

log a
2

+
π

2a
, (3.3.12)

∞∑
n=1

a n K1(an) ∼ −
1
2

+
π

2a
, (3.3.13)

where γ is Euler’s constant.

Proof Let us consider the formula (3.3.12) first. Let

f0(t) =
π

((2πt)2 + a2)1/2 , g0(x) = K0(ax), a > 0, x > 0.
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By the equation (3.3.6), we have

g0(x) = 2
∫ ∞

0
cos(2πxt) f0(t)dt.

And

lim
N→∞

 N∑
n=1

f0(n) −
∫ N

0
f0(t)dt


=

∞∑
n=1

(
π

((2πn)2 + a2)1/2 −
1

2n

)
+ lim

N→∞

 N∑
n=1

1
2n
−

log N
2


+ lim

N→∞

(
log N

2
−

∫ N

0

π

((2πt)2 + a2)1/2 dt
)

=

∞∑
n=1

(
π

((2πn)2 + a2)1/2 −
1

2n

)
+
γ

2
+ lim

N→∞

 log N
2
−

1
2

log

2πN
a

+

√
1 +

(
2πN

a

)2



=

∞∑
n=1

(
π

((2πn)2 + a2)1/2 −
1

2n

)
+
γ

2
−

1
2

log
4π
a
,

(3.3.14)
and

lim
N→∞

 N∑
n=1

g0(n) −
∫ N

0
g0(x)dx

 =

∞∑
n=1

K0 (an) −
π

2a
, (3.3.15)

applying Lemma 3.3.9 to (3.3.14) and (3.3.15),

∞∑
n=1

(
π

((2πn)2 + a2)1/2 −
1

2n

)
+
γ

2
−

1
2

log
4π
a

=

∞∑
n=1

K0 (an) −
π

2a
.

Thus we get the asymptotic formula (3.3.12).

If we replace a by 2a in formula (3.3.12), we get

∞∑
n=1

K0(2an) ∼
γ − log(4π)

2
+

log(2a)
2

+
π

4a
, a→ 0+,

and

∞∑
n=1

(−1)n+1K0(an) =

∞∑
n=1

K0(an) − 2
∞∑

n=1

K0(2an)
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∼

(
γ − log(4π)

2
+

log a
2

+
π

2a

)
− 2

(
γ − log(4π)

2
+

log(2a)
2

+
π

4a

)
=

log π − γ
2

−
log a

2
.

Thus we proved (3.3.10).
To prove (3.3.13), let

f1(t) =
aπ

((2πt)2 + a2)3/2 , g1(x) = x K1(ax), a > 0, x > 0.

We have
g1(x) = 2

∫ ∞

0
cos(2πxt) f1(t)dt. (3.3.16)

Since

lim
N→∞

 N∑
n=1

f1(n) −
∫ N

0
f1(t)dt

 =

∞∑
n=1

(
aπ

((2πn)2 + a2)3/2

)
−

1
2a
, (3.3.17)

and

lim
N→∞

 N∑
n=1

g1(n) −
∫ N

0
g1(x)dx

 =

∞∑
n=1

n K1(an) −
π

2a2 , (3.3.18)

Applying Lemma 3.3.9 to (3.3.17) and (3.3.18) again, we have

∞∑
n=1

(
aπ

((2πn)2 + a2)3/2

)
−

1
2a

=

∞∑
n=1

n K1(an) −
π

2a2 ,

multiplying by a on both sides, we get the asymptotic formula (3.3.13).
Finally, since

∞∑
n=1

(−1)n+1a n K1(an) =

∞∑
n=1

a n K1(an) −
∞∑

n=1

2 a n K1(2an)

∼ −
1
2

+
π

2a
− 2

(
−

1
2

+
π

4a

)
=

1
2
.

Thus we proved (3.3.11).

Remark This is consistent with the formulae given in [5, 8.526], where if we take t = 0,
when x→ 0+, we can get the formulae (3.3.10) and (3.3.12) then.
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3.4 The case of Fermionic Fock space

When the one-particle Hilbert space isH = C, then the Fermionic Fock space is F−(H) =

C
⊕
H . Suppose we have a Dirac operator D : H → H . Thus D = D∗ and σ(D) = x ∈ R.

Consider the Hamiltonian operator given by H = D2. Clearly the spectrum of H is σ(H) =

x2. Denote the chemical potential by µ, where µ ≤ 0, and let Dµ =
√

H − µ1. Then the
spectrum of dΓDµ is σ(dΓDµ) = {0,

√
x2 − µ}, and we get a density matrix

ρ =
e−dΓDµ

Tr
(
e−dΓDµ

) .
3.4.1 The von Neumann entropy in the Fermionic second quantization

In the Fermionic Fock space, the von Neumann entropy of ρ is given by

S(ρ) = −Tr
(
ρ log ρ

)
=

√
x2 − µ

e
√

x2−µ + 1
+ log

(
1 + e−

√
x2−µ

)
. (3.4.1)

It is worth noticing that we can still define Dµ for a general spectral triple, and when
µ < 0, the difference between D and Dµ is

D − Dµ =
µ

D + Dµ

,

which is a compact operator. Thus Dµ here plays the role of a fluctuation of D, even though
there is no ∗−algebra here.

Let

hµ(x) = S(ρ) =

√
x2 − µ

e
√

x2−µ + 1
+ log

(
1 + e−

√
x2−µ

)
.

Notice that when µ = 0, we get the same function h(x) as in [3]. The derivative of hµ(x) is

h′µ(x) = −
x

4 cosh2
( √

x2−u
2

) .
According to [3],

h(
√

x) = log (2) +

∞∑
n=1

(−1)n 1 − 2−2n

n
π−nξ(2n)

xn

n!
.
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Thus we get the expansion of hµ(x):

hµ(x) = log(2) +

∞∑
n=1

(−1)n 1 − 2−2n

n
π−nξ(2n)

(x2 − µ)n

n!
.

Also, according to proposition 4.4 in [3],

h(x) =

∫ ∞

0
e−tx2

g̃(t)dt,

where
g̃(t) =

1
2t

∑
n∈Z

(
2π2(2n + 1)2t − 1

)
e−π

2(2n+1)2t. (3.4.2)

Thus
hµ(x) =

∫ ∞

0
e−t(x2−µ)g̃(t)dt =

∫ ∞

0
e−tx2

g̃µ(t)dt, (3.4.3)

where g̃µ(t) := eµtg̃(t).

Now we want to compute the moments of the function hµ(x), that is the integral∫ ∞

0
hµ(x)xνdx.

To this end, one can first compute the two integrals∫ ∞

0
log

(
1 + e−

√
x2−µ

)
xνdx and

∫ ∞

0

√
x2 − µ

e
√

x2−µ + 1
xνdx,

separately, and then sum them up.

Lemma 3.4.1 We have the integral formula:∫ ∞

1
e−zx(x2 − 1)ν−

1
2 xdx =

2ν
√
π

Γ

(
ν +

1
2

)
z−νKν+1(z). (3.4.4)

Proof According to Lemma 3.3.4, one has the integral formula:∫ ∞

1
e−zx(x2 − 1)ν−

1
2 xdx = −

2ν
√
π

Γ

(
ν +

1
2

)
z−ν

(
∂

∂z
Kν(z) − νKν(z)z−1

)
,
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and using (3.3.4) and (3.3.5)

∂

∂z
Kν(z) = −

1
2

(Kν−1(z) + Kν+1(z)) ,

νKν(z)
z

= −
1
2

(Kν−1(z) − Kν+1(z)) .

From which we get the formula (3.4.4).

Lemma 3.4.2 We have the following integral formula:∫ ∞

1
e−zx(x2 − 1)ν−

1
2 x2dx =

2ν
√
π

Γ

(
ν +

1
2

)
z−ν−1(zKν(z) + (1 + 2ν)Kν+1(z)

)
. (3.4.5)

Proof Taking the derivative with respect to z on both sides of the formula (3.4.4), one has∫ ∞

1
e−zx(x2 − 1)ν−

1
2 x2dx =

2ν
√
π

Γ

(
ν +

1
2

) (
νz−ν−1Kν+1(z) − z−ν

∂

∂z
Kν+1(z)

)
. (3.4.6)

Using (3.3.4), one has
∂

∂z
Kν+1(z) = −Kν(z) −

ν + 1
z

Kν+1(z). (3.4.7)

Now substituting (3.4.7) into (3.4.6), finally we get the desired formula (3.4.5).

Lemma 3.4.3 When ν > −1, one has∫ ∞

0
log

(
1 + e−

√
x2−µ

)
xνdx = (−µ)

ν+2
4 2

ν
2

1
√
π

Γ

(
ν + 1

2

) ∞∑
n=1

(−1)n+1n−
ν
2−1K ν

2 +1

(
n
√
−µ

)
.

(3.4.8)

Proof Notice that

log
(
1 + e−

√
x2−µ

)
=

∞∑
n=1

(−1)n+1 1
n

e−n
√

x2−µ,

and hence ∫ ∞

0
log

(
1 + e−

√
x2−µ

)
xνdx =

∞∑
n=1

(−1)n+1 1
n

∫ ∞

0
e−n
√

x2−µxνdx. (3.4.9)

Consider the integral ∫ ∞

0
e−n
√

x2−µxνdx,
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and substitute x by y =
√

x2 − µ to get:∫ ∞

0
e−n
√

x2−µxνdx =

∫ ∞

√
−µ

e−ny(y2 + µ)
ν−1

2 ydy.

Substitute z =
y
√
−µ

, to obtain∫ ∞

0
e−n
√

x2−µxνdx = (−µ)
ν+1

2

∫ ∞

1
e−n

√
−µz(z2 − 1)

ν−1
2 zdz.

Thus using Lemma 3.4.1, one has∫ ∞

0
e−n
√

x2−µxνdx =
2
ν
2

√
π

Γ

(
ν + 1

2

) (
n
√
−µ

)− ν2 K ν
2 +1

(
n
√
−µ

)
. (3.4.10)

Using (3.4.10) and (3.4.9), then finally we get formula (3.4.8).

Lemma 3.4.4 When ν > −1,∫ ∞

0

√
x2 − µ

e
√

x2−µ + 1
xνdx

= (−µ)
ν+2

4 2
ν
2

1
√
π

Γ

(
ν + 1

2

) ∞∑
n=1

(−1)n+1
(√
−µ n−

ν
2 K ν

2

(
n
√
−µ

)
+ (1 + ν)n−

ν
2−1K ν

2 +1

(
n
√
−µ

))
.

(3.4.11)

Proof Since
y

1 + ey = (−y)
(
log

(
1 + e−y))′ ,

for y > 0 we obtain
y

1 + ey =

∞∑
n=1

(−1)n+1ye−ny.

Let y =
√

x2 − µ. Then∫ ∞

0

√
x2 − µ

e
√

x2−µ + 1
xνdx =

∫ ∞

√
−µ

y
ey + 1

(y2 + µ)
ν−1

2 ydy

=

∞∑
n=1

(−1)n+1
∫ ∞

√
−µ

e−ny(y2 + µ)
ν−1

2 y2dy.
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Changing the variable again, let z =
y
√
−µ

. We obtain the formula:

∫ ∞

0

√
x2 − µ

e
√

x2−µ + 1
xνdx = (−µ)

ν+1
2

∞∑
n=1

(−1)n+1
∫ ∞

1
e−n

√
−µz

(
z2 − 1

) ν−1
2 z2dz.

Now applying Lemma 3.4.2 to this equation, one gets the integral formula (3.4.11).

Lemma 3.4.5 For ν > −1, one has∫ ∞

0
hµ(x)xνdx = (−µ)

ν
4 +12

ν
2

1
√
π

Γ

(
ν + 1

2

) ∞∑
n=1

(−1)n+1
(
n−

ν
2 K ν

2 +2

(
n
√
−µ

))
. (3.4.12)

And ∫ ∞

0
hµ(x)xνdx ∼

1 − 2−ν−1

ν + 1
Γ(ν + 3)ζ(ν + 2)

as µ→ 0−.

Proof Using propositions 3.4.3 and 3.4.4, we have∫ ∞

0
hµ(x)xνdx

= (−µ)
ν
4 + 1

2 2
ν
2

1
√
π

Γ

(
ν

2
+

1
2

) ∞∑
n=1

(−1)n+1
(√
−µK ν

2

(
n
√
−µ

)
n−

ν
2 + (2 + ν)K ν

2 +1

(
n
√
−µ

)
n−

ν
2−1

)
.

By applying (3.3.2) to this equation, we get the integral formula (3.4.12).
For the second statement, we use the asymptotics

Kα(z) ∼

 − log( z
2 ) − γ α = 0,

Γ(α)
2

(
2
z

)α
α > 0.

Thus for ν ≥ 0,∫ ∞

0
hµ(x)xνdx ∼ 2ν+1 1

√
π

Γ

(
ν + 1

2

)
Γ

(
ν

2
+ 2

) ∞∑
n=1

(−1)n+1n−ν−2 (3.4.13)

as µ→ 0−. By using
∞∑

n=1

(−1)n+1n−ν−2 =
(
1 − 2−ν−1

)
ζ(ν + 2), (3.4.14)
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and the Legendre duplication formula for the gamma function

Γ

(
ν + 1

2

)
Γ

(
ν + 2

2

)
= 2−ν

√
πΓ (ν + 1) , (3.4.15)

in (3.4.13), we get ∫ ∞

0
hµ(x)xνdx ∼ (ν + 2)Γ (ν + 1) (1 − 2−ν−1)ζ(ν + 2)

=
1 − 2−ν−1

ν + 1
Γ(ν + 3)ζ(ν + 2),

which is the same as [3, Lemma 4.5].

We denote the a−th order spectral action coefficient of hµ(
√

x) by γµ(a); namely,

γµ(a) =

∫ ∞

0
tag̃µ(t)dt =

∫ ∞

0
taeµtg̃(t)dt. (3.4.16)

It is clear that for a fixed chemical potential µ < 0, the equation (3.4.16) is an entire function
with respect to a ∈ C. According to the Lemma 3.4.5, we can deduce that when the order
a < 0, the coefficient of ta in the heat expansion is

γµ(a) =
1

Γ(−a)

∫ ∞

0
hµ(x

1
2 )x−a−1dx (3.4.17)

=
2

Γ(−a)

∫ ∞

0
hµ(x)x−2a−1dx (3.4.18)

=
1
√
π

2−a+ 1
2 (−µ)−

a
2 + 3

4

∞∑
n=1

(−1)n+1
(
na+ 1

2 K−a+ 3
2

(
n
√
−µ

))
, a < 0. (3.4.19)

Now we show that for any fixed chemical potential µ < 0, the function (3.4.19) is an
entire function with respect to a ∈ C , so that the function (3.4.19) can give rise to spectral
action coefficients for any order a.

Proposition 3.4.6 For any fixed chemical potential µ < 0, the function (3.4.19) is an entire
function in a ∈ C. Hence we have the formula

γµ(a) =
1
√
π

2−a+ 1
2 (−µ)−

a
2 + 3

4

∞∑
n=1

(−1)n+1
(
na+ 1

2 K−a+ 3
2

(
n
√
−µ

))
(3.4.20)

for all a.
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Proof We only need to show that the series

∞∑
n=1

(−1)n+1
(
na+ 1

2 K−a+ 3
2

(
n
√
−µ

))
(3.4.21)

is an entire function in a ∈ C. In fact, using the integral expression for the Bessel function
Kν(z) [5, 8.432], we have

Kν(z) =

∫ ∞

0
e−z cosh t cosh(νt)dt, |argz| <

π

2
or Re(z) = 0 and ν = 0.

We see that for a fixed z > 0 the function Kν(z) is an entire function with respect to ν ∈ C.
Now we need to show that equation (3.4.21) is locally uniformly convergent. In fact, for
|ν| ≤ R,

|Kv(z)| ≤
∫ ∞

0
e−z cosh t cosh(Rt)dt = KR(z).

For | − a + 3
2 | ≤ R, where R < ∞, we have∣∣∣∣∣∣∣

∞∑
n=1

(−1)n+1
(
na+ 1

2 K−a+ 3
2

(
n
√
−µ

))∣∣∣∣∣∣∣ ≤
∞∑

n=1

nR+2KR

(
n
√
−µ

)
.

Since we have the asymptotic expansion

Kν(z) ∼
√
π

2z
e−z z→ ∞,

it follows that the series
∞∑

n=1

nR+2KR

(
n
√
−µ

)
is convergent. Therefore the series (3.4.21) is locally uniformly convergent, and the func-
tion (3.4.20) is an entire function. Now according to (3.4.16), γµ(a) is an entire function,
hence the function (3.4.20) gives the spectral action coefficients for all a.

Interestingly, we can express the spectral action coefficients γµ(a) in a more concise
way via the Poisson summation formula.

Proposition 3.4.7 For any fixed chemical potential µ < 0, we have the expression for
γµ(a):

γµ(a) =
Γ(a)

2

∞∑
n=−∞

(2a − 1)(2n + 1)2π2 + µ

((2n + 1)2π2 − µ)a+1 . (3.4.22)
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.

Proof Using Lemma 3.3.8, and using the Poisson summation formula, when ν ≥ − 1
2 ,

a > 0, we have

∞∑
n=1

(−1)n|n|ν+2Kν(a|n|) =
1
2

Γ
(
ν + 1

2

)
(2a)ν

−4πΓ
(

1
2

) ∞∑
n=−∞

φ′′ν,a(n), (3.4.23)

where φν,a(x) = 1

((2x+1)2π2+a2)ν+
1
2
. Since we have the equation

K−a+ 3
2

(
n
√
−µ

)
= Ka− 3

2

(
n
√
−µ

)
,

applying the formula (3.4.23) to proposition 3.4.6 we then get the equatoin (3.4.22) when
a ≥ 3

2 . Now, in proposition 3.4.6 we saw that γµ(a) is an entire function. It follows that
the function (3.4.22) has an analytic extension to the whole complex plane C, and therefore
equation (3.4.22) is true for all a ∈ C.

Remark The second expression of γµ(a) is in the sense of analytic continuation. Thus
for example we have,

γµ

(
1
2

)
= lim

a→1/2+

Γ(a)
2

∞∑
n=−∞

(2a − 1)(2n + 1)2π2 + µ

((2n + 1)2π2 − µ)a+1 ,

and

lim
µ→0−

γµ

(
1
2

)
= lim

a→1/2+

Γ(a)
2

∞∑
n=−∞

(2a − 1)
((2n + 1)2π2)a =

1
2
√
π
.

Next we prove that when the chemical potential µ → 0−, we can get the same coeffi-
cients given in [3]. We follow the same notation as in [3], and denote

γ(a) =
1 − 2−2a

a
π−aξ(2a),

where ξ(z) is the Riemann ξ−function.

Theorem 3.4.8 For all a ∈
{ n

2 : n ∈ Z
}
, when the chemical potential µ approaches to 0, we

have
lim
µ→0−

γµ (a) = γ (a) .
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Proof Since the spectral action coefficients are given by

γµ(a) =

∫ ∞

0
g̃µ(t)tadt =

∫ ∞

0
eµtg̃(t)tadt,

where g(t) is given by equation (3.4.2), we obtain

lim
µ→0−

γµ(a) =

∫ ∞

0
g̃(t)tadt = γ(a).

Summarizing the above computations, we get the following proposition:

Proposition 3.4.9 (1) For a given chemical potential µ < 0, the coefficient of ta in the heat
expansion is given by γµ(a), where

γµ(a) =

∫ ∞

0
tag̃µ(t)dt,

and we have the following two explicit expressions of γµ(a):

γµ(a) =
1
√
π

2−a+ 1
2 (−µ)−

a
2 + 3

4

∞∑
n=1

(−1)n+1
(
na+ 1

2 K−a+ 3
2

(
n
√
−µ

))
,

and

γµ(a) =
Γ(a)

2

∞∑
n=−∞

(2a − 1)(2n + 1)2π2 + µ

((2n + 1)2π2 − µ)a+1 .

Moveover, γµ(a) is an entire function in a ∈ C.
(2) For any given order a, when the chemical potential µ approaches to 0, γµ(a) converges
to γ(a), namely,

lim
µ→0−

γµ(a) = γ(a), a ∈
{n

2
: n ∈ Z

}
,

where γ(a) = 1−2−2a

a π−aξ(2a).

3.4.2 The average energy in the Fermionic second quantization

Now we shall consider the average energy when the one-particle Hilbert space is H = C.
We denote by Z = Tr(e−βdΓDµ) the partition function. Then

Z = 1 + e−β
√

x2−µ.
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According to (3.2.1),

〈dΓDµ〉 = −
∂

∂β

(
log Z

) ∣∣∣∣
β=1

=

√
x2 − µ

1 + e
√

x2−µ
.

Interestingly, this is just the first part on the right-hand side of our von Neumann entropy
formula (3.4.1).

We denote this function by uµ(x),

uµ(x) =

√
x2 − µ

1 + e
√

x2−µ
.

Now let us consider the function u0(x) first. Since we have the expansion

u0(x) =
x

1 + ex =

∞∑
n=1

(−1)n+1xe−nx, (3.4.24)

and (cf. e.g. [7])
√

xe−n
√

x =
1
√
π

∫ ∞

0
t−5/2

(
n2

4
−

t
2

)
e−

n2
4t e−txdt,

we obtain

uµ(x) =

∞∑
n=1

(−1)n+1 1
√
π

∫ ∞

0
t−5/2

(
n2

4
−

t
2

)
e−

n2
4t e−t(x2−µ)dt.

When µ < 0, using the Fubini theorem, we can exchange the infinite sum and the integral,
so that

uµ(x) =
1
√
π

∫ ∞

0
t−5/2

∞∑
n=1

(−1)n+1
(
n2

4
−

t
2

)
e−

n2
4t e−t(x2−µ)dt, x ≥ 0.

Let

rµ(t) =
1
√
π

t−5/2
∞∑

n=1

(−1)n+1
(
n2

4
−

t
2

)
e−

n2
4t eµt.

Then we obtain the following expression for the Laplace transform of rµ:

uµ(
√

x) =

∫ ∞

0
rµ(t)e−txdt, µ < 0, x ≥ 0.

Therefore, the function uµ(
√

x) is a well-defined spectral action function. Notice that here
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we can not take the chemical potential µ = 0, since the function u0(x) is singular at x = 0.
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(a) The image of u0(x)
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(b) The image of u−0.1(x)

Figure 3.1: The image of u0(x) and u−0.1(x)

When a < 0, the spectral action coefficient of ta is given by

ωµ(a) =
1

Γ(−a)

∫ ∞

0
uµ(
√

x)x−a−1dx =
2

Γ(−a)

∫ ∞

0
uµ(x)x−2a−1dx.

Using Lemma 3.4.4, we can express ωµ(a) as follows:

Proposition 3.4.10 For any fixed chemical potential µ < 0, the function ωµ(a) is given by

ωµ(a) =
(2
√
−µ)−a+ 1

2

√
π

∞∑
n=1

(−1)n
(
2a na− 1

2 K−a+ 1
2

(
n
√
−µ

)
− na+ 1

2
√
−µK−a− 1

2

(
n
√
−µ

))
,

(3.4.25)
and moreover, it can be extended to an entire function in a.

Proof Taking any µ < 0, and using the same argument as in the proof of proposition 3.4.6,
we can show that ωµ(a) can be extended to an entire function as well.

Now we want to find a more explicit expression for ωµ(a) using the Poisson summation
formula.

Proposition 3.4.11 For any fixed chemical potential µ < 0, we can express ωµ(a) as

ωµ(a) = Γ(a + 1)
∞∑

n=−∞

(2n + 1)2π2

((2n + 1)2π2 − µ)a+1 −
(−µ)−a+ 1

2

4
√
π

Γ

(
a −

1
2

)
. (3.4.26)
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Proof Using (3.3.7) and applying Poisson’s summation formula, we obtain, for any ν > 0
and z > 0,

∞∑
n=1

(−1)nnνKν(z n) =

√
π

2
Γ

(
ν +

1
2

)
(2z)ν

∞∑
n=−∞

1

((2πn + π)2 + z2)ν+
1
2

−
Γ(ν)

4

(
2
z

)ν
. (3.4.27)

When a > 1
2 , we can combine the above equation with (3.4.25), and after simplification,

we can deduce the equation (3.4.26). Now since ωµ(a) is an entire function, we conclude
that (3.4.26) is valid in the whole complex plane.

Now we want to see how the spectral action coefficients ωµ(a) behave when µ→ 0−.

Proposition 3.4.12 When the order a ≤ 0, we have the limit

lim
µ→0−

ωµ(a) =
2 − 21−2a

2a − 1
π−aξ(2a).

When a = 1
2 , we have the asymptotic formula

ωµ(a) ∼
1 − log π + γ

2
√
π

+
log
√
−µ

2
√
π

, µ→ 0−.

When a > 1
2 , we have the asymptotic approximation

ωµ(a) ∼
2 − 21−2a

2a − 1
π−aξ(2a) −

(−µ)−a+ 1
2

4
√
π

Γ

(
a −

1
2

)
, µ→ 0−. (3.4.28)

Proof For a < 0, we have

lim
µ→0−

ωµ(a) = lim
µ→0−

2
Γ(−a)

∫ ∞

0
uµ(x)x−2a−1dx =

2
Γ(−a)

∫ ∞

0

x−2a

1 + ex dx.

Applying (3.4.24), we get∫ ∞

0

x−2a

1 + ex dx =
(2 − 21+2a)Γ(1 − 2a)ζ(1 − 2a)

Γ(−a)
=

2 − 21−2a

2a − 1
π−aξ(2a).

When a = 0, since
ωµ(0) = uµ(0),

we deduce that
lim
µ→0−

ωµ(0) = lim
µ→0−

uµ(0) = 0.
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When a = 1
2 , using Lemma 3.3.10, we see that

ωµ(a) =
1
√
π

∞∑
n=1

(−1)n+1
(
n
√
−µK1(n

√
−µ) − K0(n

√
−µ)

)
∼

1 − log π + γ

2
√
π

+
log
√
−µ

2
√
π

, µ→ 0−.

When a > 1
2 , using proposition 3.4.11, we have the limit

lim
µ→0−

ωµ(a) +
(−µ)−a+ 1

2

4
√
π

Γ

(
a −

1
2

) = Γ(a + 1)
∞∑

n=−∞

1
((2n + 1)2π2)a

= Γ(a + 1)
(
2 − 21−2a

)
π−2aζ(2a)

=
2 − 21−2a

2a − 1
π−aξ(2a).

From which (3.4.28) follows.

In particular, using proposition 3.4.12, we get the expansion of u0(
√

x) as follows:

u0(
√

x) =

√
x

2
+

∞∑
n=1

(−1)n 2 − 21−2n

(2n − 1)n!
π−nξ(2n)xn.

3.4.3 The negative free energy in the Fermionic Fock space

Since the free energy is the difference between average energy and von Neumann entropy,
in the case of Fermionic second quantization it is natural to define the spectral action func-
tion with respect to the negative free energy to be

vµ(x) = hµ(x) − uµ(x) = log
(
1 + e−

√
x2−µ

)
. (3.4.29)

Proposition 3.4.13 When chemical potential µ < 0, we have the following equation:

vµ(x) =
1

2
√
π

∫ ∞

0

∞∑
n=1

(−1)n+1 t−
3
2 e−

n2
4t +tµe−tx2

dt.

Proof Since

log(1 + e−x) =

∞∑
n=1

(−1)n+1 e−nx

n
,
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and
e−n

√
x =

n
2
√
π

∫ ∞

0
t−

3
2 e−

n2
4t e−txdt,

we have

vµ(x) =
1

2
√
π

∞∑
n=1

∫ ∞

0
(−1)n+1 t−

3
2 e−

n2
4t +tµe−tx2

dt.

Now since µ < 0, we can apply the Fubini theorem to get the equation (3.4.29).

Therefore the function vµ(
√

x) is a well-defined spectral action function when µ < 0,
while when µ = 0, v0(

√
x) is not a well-defined spectral action function since it is singular

at x = 0.
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(a) The image of v0(x)
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(b) The image of v−0.1(x)

Figure 3.2: The image of v0(x) and v−0.1(x)

We denote by λµ(a) the spectral action coefficient of vµ(x) of order a. For a < 0 we
have

λµ(a) =
1

Γ(−a)

∫ ∞

0
vµ(
√

x)x−a−1dx =
2

Γ(−a)

∫ ∞

0
vµ(x)x−2a−1dx. (3.4.30)

Using an argument similar to the subsection 3.4.2, we obtain the following proposition. We
omit the proof which is similar to the proof of proposition 3.4.10, 3.4.11,3.4.12.

Proposition 3.4.14 For a given chemical potential µ < 0, we can get a spectral action
from the negative free energy of the Fermionic second quantization, and this spectral action
function is given by the function vµ(

√
x), where

vµ(x) = log
(
1 + e−

√
x2−µ

)
,
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The spectral action coefficients of vµ(
√

x) are given by the following two functions:

λµ(a) =
2−a+ 1

2

√
π

(−µ)−
a
2 + 1

4

∞∑
n=1

(−1)n+1na− 1
2 K−a+ 1

2

(
n
√
−µ

)
,

and

λµ(a) = −
Γ(a)

2

∞∑
n=−∞

1
((2n + 1)2π2 − µ)a +

(−µ)−a+ 1
2

4
√
π

Γ

(
a −

1
2

)
.

Moreover, for any fixed chemical potential µ < 0, λµ(a) is an entire function. When the
order a < 0, we have the limit

lim
µ→0−

λµ(a) =
2−2a − 1

(2a − 1)a
π−aξ(2a).

When a = 0,
lim
µ→0−

λµ(0) = log 2.

When a = 1
2 , we have the asymptotic expansion:

λµ

(
1
2

)
∼

log π − γ
2
√
π
−

log
√
−µ

2
√
π

, µ→ 0−.

When a > 1
2 , we have the asymptotic approximation:

λµ(a) ∼
2−2a − 1

(2a − 1)a
π−aξ(2a) +

(−µ)−a+ 1
2

4
√
π

Γ

(
a −

1
2

)
, µ→ 0−.

Also, we can expand v0(
√

x) as

v0(
√

x) = log 2 −
√

x
2

+

∞∑
n=1

(−1)n 2−2n − 1
n(2n − 1)n!

π−nξ(2n)xn.

3.5 The case of Bosonic Fock space

As in the case of Fermionic Fock space, we can also define the spectral actions in the case
of Bosonic Fock space. Let H = C be the 1-particle Hilbert space. Then the Bosonic

Fock space is given by F+(H) =
∞⊕

n=0
Hn. Let D : H → H be the Dirac operator on H .

We denote by H = D2 the corresponding Hamiltonian operator. If the spectrum of D is
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σ(D) = {x}, x∈ R, then obviously σ(H) = {x2}. Let µ < 0 be the chemical potential, and
let Dµ =

√
H − µ1. The spectrum of dΓDµ is σ(dΓDµ) = {n

√
x2 − µ : n = 0, 1, 2, 3, · · · }.

Since the chemical potential µ < 0, we can define a density matrix

ρ =
e−dΓDµ

Tr
(
e−dΓDµ

) .
3.5.1 The von Neumann entropy in the Bosonic second quantization

We define a function kµ(x) by

kµ(x) := S(ρ) = −Tr
(
ρ log ρ

)
= −

√
x2 − µ

1 − e
√

x2−µ
− log

(
1 − e−

√
x2−µ

)
.

In the Bosonic Fock space case, we cannot take the chemical potential µ = 0, since the
function k0(x) is singular at x = 0:

Lemma 3.5.1 The function k0(x) is an even positive function of the variable x ∈ R\{0},
and its derivative is

k′0(x) = −
x

4 sinh2( x
2 )
.
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(a) The image of k0(x)
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Figure 3.3: The image of k0(x) and k−0.1(x)

Compare this to the function h0(x) in section 3.4.1, or the function h(x) in [3], where

h′0(x) = −
x

4 cosh2
(

x
2

) .



3.5. The case of Bosonic Fock space 97

Similar to h0(x), we shall prove that the function k0(
√

x) is also given by the Laplace trans-
form when x , 0. To prove this, we need the following lemma(compare this with Lemma
4.2 in [3]):

Lemma 3.5.2 For x > 0, ∑
Z

(2πn)2 − x
((2πn)2 + x)2 = −

1

4 sinh2(
√

x
2 )
.

Proof We use the Eisenstein series [3]∑
Z

1
(πn + x)2 =

1
sin2 x

,

in conjunction with
sinh x = −i sin(ix).

Thus
1

4 sinh2(
√

x
2 )

= −
1

4 sin2(i
√

x
2 )

= −
∑
Z

1

4(πn + i
√

x
2 )2

= −
∑
Z

(2πn)2 − x
((2πn)2 + x)2 .

Now since one has the equation∫ ∞

0

(
2(2πn)2t − 1

)
e−(2πn)2t−txdt =

(2πn)2 − x(
(2πn)2 + x

)2 ,

by the Fubini theorem we have the formula

−
1

4 sinh2
√

x
2

=

∫ ∞

0
f (t)e−txdt, f (t) :=

∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t,

when x > 0.
Now we have the following lemma:

Lemma 3.5.3 Let
f (t) =

∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t.
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The function f (t) is rapidly decreasing as t → 0+.

Proof Consider the theta function

θ(t) =
∑
n∈Z

e−πn2t.

Let
g(t) = −2t θ′(t) − θ(t).

We have f (t) = g(4πt). Thus it suffices to show that g(t) is rapidly decreasing as t → 0+.

Now, using the Jacobi inversion formula,

θ(t) =
1
√

t
θ

(
1
t

)
,

we have

g(t) = −2t
(
−

1
2

t−3/2θ

(
1
t

)
−

1
√

t
θ′

(
1
t

)
t−2

)
− θ(t) (3.5.1)

= t−1/2θ

(
1
t

)
+ 2t−3/2θ′

(
1
t

)
− θ(t) (3.5.2)

= 2t−3/2θ′
(
1
t

)
. (3.5.3)

Since as t → 0+, θ′
(

1
t

)
is rapidly decreasing, g(t) is rapidly decreasing, and also the function

f (t) is rapidly decreasing as t → 0+.

Thus we have the following proposition:

Proposition 3.5.4 When x > 0, one has

k0(x) =

∫ ∞

0
e−tx2

f̃ (t)dt, (3.5.4)

where
k0(x) = −

|x|
1 − e|x|

− log
(
1 − e−|x|

)
,

and
f̃ (t) =

f (t)
2t

=
1
2t

∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t.
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Proof According to Lemma 3.5.3, f̃ (t) is rapidly decreasing as t → 0+. Thus when x > 0,
the integral on the right hand side is well-defined. We denote the integral on the right hand
side of (3.5.4) by k̃(x). We have

∂xk̃(x) = −2x
∫ ∞

0
e−tx2

t f̃ (t)dt =
x

4 sinh2 x
2

= −∂xk0(x), (3.5.5)

and since both k0(x) and k̃(x) approach to 0 when x→ ∞, thus k0(x) = k̃(x).

Thus immediately we have

Proposition 3.5.5 When the chemical potential µ < 0, for all x ∈ R,

kµ(x) =

∫ ∞

0
e−tx2

f̃µ(t)dt,

where

f̃µ(t) = eµt f̃ (t) =
eµt

2t

∑
n∈Z

(
2(2πn)2t − 1

)
e−(2πn)2t.

For the Bosonic Fock space, we can get similar results as in the Fermionic Fock space
case. The main difference between them is that we get alternating sum from Fermionic
second quantization, while we get just a sum in the Bosonic second quantization.

Lemma 3.5.6 When ν > −1, one has the integral formula∫ ∞

0
kµ(x)xνdx = (−µ)

ν
4 +12

ν
2

1
√
π

Γ

(
ν + 1

2

) ∞∑
n=1

n−
ν
2 K ν

2 +2

(
n
√
−µ

)
,

and ∫ ∞

0
kµ(x)xνdx ∼ Γ (ν + 1) (ν + 2)ζ(ν + 2)

as µ→ 0−.

Proof The proof of this proposition is the same as the proof of the Lemma 3.4.5.

We denote by χµ(a) the a−th order spectral action coefficient of kµ(
√

x), that is,

χµ(a) =

∫ ∞

0
ta f̃µ(t)dt =

∫ ∞

0
taeµt f (t)dt.

Similar to the proposition 3.4.6 and proposition 3.4.7, we have the following proposition:
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Proposition 3.5.7 For a fixed chemical potential µ < 0, we can express the a−th order
spectral action coefficient of kµ(

√
x) as:

χµ(a) =
1
√
π

2−a+ 1
2 (−µ)−

a
2 + 3

4

∞∑
n=1

na+ 1
2 K−a+ 3

2

(
n
√
−µ

)
, (3.5.6)

and

χµ(a) = −
Γ(a)

2

∞∑
n=−∞

(2a − 1)(2n)2π2 + µ

((2n)2π2 − µ)a+1 . (3.5.7)

Moreover, the expressions (3.5.6) and (3.5.7) both are entire functions of a ∈ C.

Proof The proof is similar to the proof of proposition 3.4.6 and proposition 3.4.7.

Now let us investigate the behaviour of χµ(a) when µ→ 0−.

Proposition 3.5.8 When a < 0, we have the limit

lim
µ→0−

χµ(a) = −
2−2a

a
π−aξ(2a).

When a = 0, we have the asymptotic expansion

χµ(0) ∼ 1 − log
√
−µ, µ→ 0−. (3.5.8)

When a ≥ 1
2 , we have the asymptotic expansion

χµ(a) ∼ −
2−2a

a
π−aξ(2a) +

Γ(a)
2

(−µ)−a, µ→ 0−.

Moreover, we have the expansion of k0(x) as follows

k0(
√

x) = 1 −
log x

2
+

∞∑
n=1

(−1)n+1 ξ(2n)xn

22nπnn n!
. (3.5.9)

Proof When a < 0, using the equation (3.5.6) and Lemma 3.3.3, we have

χµ(a) ∼
2−2a+1

√
π

Γ

(
−a +

3
2

)
ζ(−2a + 1)

=

(
−a +

1
2

)
2−2a+1

√
π

Γ

(
−a +

1
2

)
ζ(−2a + 1)

= −
2−2a

a
π−aξ(−2a + 1).
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Now since ξ(−2a + 1) = ξ(2a), we have that

lim
µ→0−

χµ(a) = −
2−2a

a
π−aξ(2a).

When a = 1
2 , using Lemma 3.3.10, we have

χµ

(
1
2

)
=

1
√
π

√
−µ

∞∑
n=1

n K1(n
√
−µ) ∼ −

1
2
√
π

+

√
π

2
√
−µ

.

When a > 1
2 , according to proposition 3.5.7,

χµ(a) −
Γ(a)

2
(−µ)−a = −

Γ(a)
2

∑
n,0

(2a − 1)(2n)2π2 + µ

((2n)2π2 − µ)a+1 .

Taking the limit of both sides,

lim
µ→0−

(
χµ(a) −

Γ(a)
2

(−µ)−a

)
= −

Γ(a)
2

∑
n,0

(2a − 1)
((2n)2π2)a = −

2−2a

a
π−aξ(2a),

we get the asymptotic expansion

χµ(a) ∼ −
2−2a

a
π−aξ(2a) +

Γ(a)
2

(−µ)−a, µ→ 0−.

Since when a = n is a positive integer,

χµ(n) = (−1)n
(
kµ(
√

x)
)(n) ∣∣∣∣

x=0
,

we have (
kµ(
√

x)
)(n) ∣∣∣∣

x=0
∼ (−1)n

(
−

2−2n

n
π−nξ(2n) +

(n − 1)!
2

(−µ)−n

)
, µ→ 0−.

Thus we can expand k0(
√

x) as

k0(
√

x) = c −
log x

2
+

∞∑
n=1

(−1)n+1 ξ(2n)
22nπnn

xn

n!
,

where c is a constant. To find the value of c, we can simply take lim
x→0

(
k0(
√

x) +
log x

2

)
, that
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is,

c = lim
x→0

(
k0(
√

x) +
log x

2

)
= lim

x→0

(
−

√
x

1 − e
√

x
− log

(
1 − e−

√
x
)

+
log x

2

)
= 1.

Then we get the expansion of k0(
√

x):

k0(
√

x) = 1 −
log x

2
+

∞∑
n=1

(−1)n+1 ξ(2n)xn

22nπnn n!
, (3.5.10)

where ξ(s) is the Riemann’s ξ function.

Since when the order a = 0,

χµ(0) = kµ(0) = k0(
√
−µ),

according to (3.5.9) we can deduce the asymptotic approximation of χµ(0):

χµ(0) ∼ 1 − log
√
−µ, µ→ 0−. (3.5.11)

3.5.2 The average energy in the Bosonic second quantization

As in the case of Fermionic second quantization, if we take the one-particle Hilbert space
to beH = C, we get the partition function

Z = Tr
(
e−βdΓDµ

)
=

1

1 − e−β
√

x2−µ
.

Then by the formula (3.2.1),

〈dΓDµ〉 = −
∂

∂β

(
log Z

) ∣∣∣∣
β=1

= −

√
x2 − µ

1 − e
√

x2−µ
.

We define pµ(x) by

pµ(x) = −

√
x2 − µ

1 − e
√

x2−µ
.

As with the discussion in section 3.4.2, with the chemical potential µ < 0, the function
pµ(x) is given by the following Laplace transform:

pµ(
√

x) =

∫ ∞

0
sµ(t)e−txdt, µ < 0, x ≥ 0, (3.5.12)
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where

sµ(t) =
1
√
π

t−5/2
∞∑

n=1

(
n2

4
−

t
2

)
e−

n2
4t eµt.

Unlike the Fermionic second quantization, here we cannot take µ = 0, as the integral on
the right-hand side of the formula (3.5.12) does not converge. This is consistent with the
fact that p0(x) is singular at x = 0.
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(a) The image of p0(x)
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(b) The image of p−0.1(x)

Figure 3.4: The image of p0(x) and p−0.1(x)

When the order a < 0, we denote by αµ(a) the spectral action coefficient of the spectral
action function pµ(

√
x), namely,

αµ(a) =
1

Γ(−a)

∫ ∞

0
pµ(
√

x)x−a−1dx =
2

Γ(−a)

∫ ∞

0
pµ(x)x−2a−1dx.

Using the same argument as in section 3.4.2, we have

Proposition 3.5.9 For any fixed chemical potential µ < 0,

αµ(a) =
2−a+ 1

2

√
π

(−µ)−
a
2 + 1

4

∞∑
n=1

(
na+ 1

2
√
−µK−a− 1

2

(
n
√
−µ

)
− 2 a na− 1

2 K−a+ 1
2

(
n
√
−µ

))
, (3.5.13)

and it can be extended to a holomorphic function on C. Thus this formula gives the spectral
action coefficients of all orders. Moreover, we have yet another expression for αµ(a):

αµ(a) = −Γ(a + 1)
∞∑

n=−∞

(2n)2π2

((2n)2π2 − µ)a+1 +
(−µ)−a+ 1

2

4
√
π

Γ

(
a −

1
2

)
, (3.5.14)

and it can also be extended to an entire function for any fixed chemical potential µ < 0.
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When the chemical potential µ→ 0−, we have the following proposition.

Proposition 3.5.10 For a fixed order a ≤ 0, we have

lim
µ→0−

αµ(a) =
21−2a

1 − 2a
π−aξ(2a).

For a = 1
2 , we have the asymptotic expansion:

αµ

(
1
2

)
∼
−γ − 1 + log(4π)

2
√
π

−
log
√
−µ

2
√
π

, µ→ 0−.

For a > 1
2 , we have the asymptotic approximation

αµ(a) ∼
21−2a

1 − 2a
π−aξ(2a) +

(−µ)−a+ 1
2

4
√
π

Γ

(
a −

1
2

)
, µ→ 0−.

Moreover, we have the expansion of p0(
√

x)

p0(
√

x) = 1 −
√

x
2

+

∞∑
n=1

(−1)n 21−2n

1 − 2n
π−nξ(2n)

xn

n!
.

3.5.3 The negative free energy in the Bosonic second quantization

Similar to the Fermionic second quantization, we define the spectral action function with
respect to the negative free energy in the Bosonic second quantization to be

qµ(
√

x) = − log
(
1 − e−

√
x2−µ

)
.

It is obvious that the chemical potential must be negative, µ < 0.
We denote by βµ(a) the spectral action coefficients of qµ(

√
x); namely,

βµ(a) =
1

Γ(−a)

∫ ∞

0
qµ(
√

x)x−a−1dx =
2

Γ(−a)

∫ ∞

0
qµ(x)x−2a−1dx.

Using the same argument as before, we deduce that

Proposition 3.5.11 For any fixed chemical potential µ < 0, βµ(a) is an entire function.
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Figure 3.5: The image of q0(x) and q−0.1(x)

Moreover it has the following two explicit expressions:

βµ(a) =
2−a+ 1

2

√
π

(−µ)−
a
2 + 1

4

∞∑
n=1

na− 1
2 K−a+ 1

2

(
n
√
−µ

)
,

and

βµ(a) =
Γ(a)

2

∞∑
n=−∞

1
((2n)2π2 − µ)a −

(−µ)−a+ 1
2

4
√
π

Γ

(
a −

1
2

)
.

When µ→ 0−, the behaviour of the spectral action coefficients is as follows

Proposition 3.5.12 For any order a < 0, we have

lim
µ→0−

βµ(a) =
2−2aπ−a

(2a − 1)a
ξ(2a).

When a = 0,
βµ(0) ∼ − log

√
−µ, µ→ 0−.

When a = 1
2 ,

βµ

(
1
2

)
∼
γ − log(4π)

2
√
π

+
log
√
−µ

2
√
π

+

√
π

2
√
−µ

, µ→ 0−.

When a > 1
2 ,

βµ(a) ∼
2−2aπ−a

(2a − 1)a
ξ(2a) +

Γ(a)
2

(−µ)−a −
(−µ)−a+ 1

2

4
√
π

Γ

(
a −

1
2

)
, µ→ 0−.
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Moreover, we have the expansion of q0(
√

x) as follows:

q0(
√

x) =

√
x

2
−

log x
2

+

∞∑
n=1

(−1)n 2−2nπ−n

(2n − 1)n
ξ(2n)

xn

n!
.



Appendix C

Spectral action basics

In this appendix we shall briefly recall the spectral action principle, originally formulated
by Chamseddine and Connes [2]. Assume (A,H ,D) is a finitely summable regular spectral
triple with simple dimension spectrum, The spectral action is defined as

Tr( f (D/Λ)),

where f (x) is a non-negative even smooth function which is rapidly decreasing at ±∞,
and Λ is a positive number called mass scale, or cutoff. Note that f (D/Λ) is a trace-class
operator. We denote by χ(x) = f (

√
x), and assume that χ(x) is given as a Laplace transform

χ(x) =

∫ ∞

0
e−sxg(s)ds,

where g(s) is rapidly decreasing near 0 and ∞. We also assume that there is a heat trace
expansion

Tr
(
e−tD2)

∼
∑
α

aαtα, t → 0+,

It was proved in [2] that the spectral action has an asymptotic expansion for Λ → ∞,
namely,

Tr(χ(D2/Λ)) ∼
∑

aαΛ−α
∫ ∞

0
sαg(s)ds.

When α < 0, by the Mellin transform,

sα =
1

Γ(−α)

∫ ∞

0
e−sxx−α−1dx.
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Thus the spectral action coefficient is∫ ∞

0
sαg(s)ds =

1
Γ(−α)

∫ ∞

0
χ(x)x−α−1dx.

When α = 0, ∫ ∞

0
g(s)ds = χ(0).

When α > 0, the spectral action coefficient
∫ ∞

0
sαg(s)ds is of order Λ−1. Thus we get

Tr(χ(D2/Λ)) ∼
∑
α<0

aαΛ−α
1

Γ(−α)

∫ ∞

0
χ(x)x−α−1dx + a0χ(0) + O(Λ−1), Λ→ ∞.

And when α = n is a positive integer, since (∂x)n(e−sx) = (−1)nsne−sx, we have that∫ ∞

0
sng(s)ds = (−1)n

(∫ ∞

0
(∂x)n(e−sx)g(s)ds

) ∣∣∣∣∣∣
x=0

= (−1)nχ(n)(0).
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Chapter 4

Conclusion

In noncommutative geometry, the geometric information is encoded in a spectral triple
(A,H ,D). If we take

A = C∞(T3
θ), H = L2(T3

θ , Ω•T3
θ), D = d + d∗,

where d∗ is determined by the metric over T3
θ , then the spectral triple

(C∞(T3
θ), L

2(T3
θ , Ω•T3

θ), d + d∗)

encodes all the geometric information of this given noncommutative three-torus. By com-
puting the coefficients a2(40) and a2(41), we can get the Ricci density under the given
metric, which is given in section 2.3.2 and section 2.4.2. Moreover, we can obtain the
scalar curvature as a byproduct, which is given in section 2.3.1 and section 2.4.1.

On the other hand, in the noncommutative geometry setting, we would like to get a good
notion of an action functional, which can be associated to an arbitrary finitely summable
spectral triple that depends only on the spectrum of D. The spectral action

Tr( f (D/Λ))

is a suitable construction of such an action functional. Moreover, by doing the second
quantization, we can obtain the second quantized operator edΓ

√
D2−µ, where µ is the chemi-

cal potential. When the partition function Z = Tr(edΓ
√

D2−µ) < ∞, we can obtain a density
matrix ρ. We can interpret the entropy, average energy, and negative free energy of ρ as
the spectral actions of the Dirac operator D with the help of the chemical potential µ. It is
worth to mention that the spectral action coefficients deduced from the Bosonic /Fermionic
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second quantization are very similar to each other. For instance, The spectral action coef-
ficients of the entropy via Fermionic second quantization given in Proposition 3.4.9 can be
expressed by an alternating sum of modified Bessel functions of the second kind, while the
spectral action coefficients of the entropy via Bosonic second quantization given in Propo-
sition 3.5.7 can be expressed by the sum, instead of alternating sum, of the same terms.
This phenomenon reflects the difference between the anti-symmetric property of Fermionic
second quantization and the symmetric property of Bosonic second quantization.
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