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Abstract 

Concussion is the most common form of mild traumatic brain injury (mTBI). TBI 

resolution is modulated by neuroinflammation, which is augmented by the infiltration of 

innate immune cells from the circulation. Peripheral, myeloid immune cells not only invade 

neural tissues but other organs as well causing local inflammation and tissue damage, 

known as systemic inflammatory response syndrome. Here, I assessed the temporal and 

anatomical nature of the neural and systemic cellular inflammatory response to repetitive, 

mTBI in a 3-hit mouse model of concussion. The results showed significant microglial 

activity, accumulation of peripheral myeloid cells and prominent axonal damage post-

injury. The peripheral immune cells emerged through the brain microvasculature and 

resided in the parenchyma, along the pia mater and within the ventricles. There was also 

evidence of systemic inflammation in the lungs as well as in the cervical spinal cords of the 

mTBI mice. 
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Summary for Lay Audience 

Traumatic brain injury (TBI) has emerged as a silent epidemic of increasing importance 

and frequency as it has gained global recognition as a high-profile public health issue. 

Concussion falls under the milder end of the TBI severity spectrum, accounting for 70-90% 

of all brain injury cases. However, since most individuals survive the initial trauma and do 

not seek medical treatment, the total number of concussion is greatly underreported. As 

there are many causes of TBI, injuries pertaining to the brain are often known as “the most 

complicated disease of the most complex organ in the human body.” Despite this increasing 

awareness of concussion and the possibility of long-term impairments, effective means of 

diagnosis, prognosis and treatment options fail to exist and remains as a major unmet 

clinical need. Furthermore, not only single but repeated occurrences of head injuries 

constitute mounting concerns, and emerging literature supports both pathological and 

behavioral differences between a single injury and multiple injuries. This is particularly a 

major concern in the context of sports or military activities where these individuals are 

subjected to multiple insults. There is evidence to suggest that immediately following a 

head trauma, a period of vulnerability window exists and if a second concussion was 

sustained within that period, a significant and even fatal damage can occur, known as 

second impact syndrome. Prognosis and effective management guidelines are difficult 

especially when social pressures exist for individuals to return to play or combat duties. 

Moreover, there is a high level of uncertainty regarding the threshold for diagnosis, the 

recovery trajectory and the predicted outcome. Here, I assessed the temporal and 

anatomical nature of the brain and systemic cellular inflammatory response to repetitive 

TBI in a 3-hit mouse model of concussion. The results showed significant activity of certain 

immune cells in the brain called microglia and an accumulation of other types of immune 

cells in the brain as well as in other organs. Overall, this study characterizes the 

inflammatory responses following repeated concussive injuries in a mouse model to 

establish its suitability for testing future therapeutics for clinical translation. 
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CHAPTER 1 – INTRODUCTION 

1.1 Overview 

Traumatic brain injury (TBI) has emerged as a silent epidemic of increasing 

importance and frequency as it has gained global recognition as a high-profile, public health 

issue. Concussion falls under the mild end of the TBI severity spectrum, accounting for 70-

90% of all brain injury cases (1, 2) out of 2.5–3.8 million TBI cases per year in the United 

States (3). However, since most individuals survive the initial trauma and do not seek 

medical treatment, the total incidence of concussion is greatly underreported (4). As a 

disease of multiple etiologies, injuries pertaining to the brain are often known as “the most 

complicated disease of the most complex organ in the human body” (5). Despite the 

increasing awareness of concussion and the possibility of long-term impairments, effective 

means of diagnosis, prognosis and treatment options fail to exist and remain as a major 

unmet clinical need (6, 7). Furthermore, not only single but repeated occurrences of head 

injuries constitute mounting concerns, and emerging literature supports both pathological 

and behavioral differences between a single injury and multiple injuries (8, 9). This is 

particularly a major concern in the context of sports or military activities where patients are 

subjected to multiple insults. There is evidence to suggest that immediately following a 

head trauma, a window of increased neural vulnerability exists during which a second 

concussion could result in a significant and even fatal brain injury. This is known as second 

impact syndrome (10-12). Prognosis and effective management guidelines are difficult 

especially when social and workplace pressures exist for individuals to return to play, work 

or combat duties (13). Moreover, there is a high level of uncertainty regarding the threshold 

for diagnosis, the recovery trajectory, and the predicted outcome.   

Overall, the clinical impact of TBI is not only highlighted by the incident rate but 

also by the long-term health consequences reported by individuals who have survived their 

injuries. Imprecise classification, methodological inconsistencies and some uncertainty 

about underlying pathophysiology hinder definitive methods of diagnosis and therapy for 

concussions (14). Thus, this study aims to further characterize the pathogenesis of repeated 

concussive injuries in an animal model in order to establish its suitability for testing future 

therapeutics for clinical translation.  
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1.2 Concussion 

The majority of TBI cases (70-90%) are categorized as a mild injury within the TBI 

severity spectrum (1). The term concussion has been popularized in the context of sports 

medicine which is an injury known to exist under the umbrella of mild TBI (15). Commonly 

found in literature, the word concussion and mTBI have been used synonymously. The 

Quality Standards Subcommittee of the American Academy of Neurology defines 

concussion as a transient neurological dysfunction induced by a biomechanical force 

without gross lesions and structural abnormalities (16). An external force to the head and 

neck region or a blow anywhere else in the body can produce a whiplash effect that is 

transmitted to the brain. The acceleration/deceleration and rotational forces induce a change 

in pressure and tissue strain that drives the pathological alterations associated with 

concussion (17). It typically results in a rapid onset of acute neurological dysfunction and 

the clinical symptoms of concussion reflect a functional disturbance induced by a 

neurometabolic cascade of events (18). When a brain injury is suspected, it is classified 

normally by the Glasgow Coma Scale (GCS) (19) ranging from mild, moderate to severe 

in one spectrum (20). Dizziness, nausea, headaches, and amnesia are common symptoms 

of mild to moderate TBI and usually resolves within days to weeks following the injury. 

Occasionally, these symptoms can progress into long term consequences leaving the patient 

with cognitive or behavioral deficits. It has been found that moderate to severe TBI and 

even multiple mTBI are associated with an elevated risk of certain neurodegenerative 

diseases including Alzheimer’s disease (21), chronic traumatic encephalopathy (CTE) (22) 

and Parkinson’s disease (23). Specifically, NFL football players, long-term career boxers 

as well as military personnel have been described to have some cognitive impairments (24), 

neuroimaging abnormalities (25) and altered brain metabolism (26), disproportionate to 

their age. This highlights the importance of understanding not only the impact of a single 

concussion but also repeated injuries as well. It is now understood that at some undefined 

point, concussion stops being a recoverable injury and accelerates to a chronic 

neurodegenerative disorder.  

 

1.3 Concussion pathophysiology theories  
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Despite all the recent research in concussion, there is still a lack of consensus on 

the pathophysiology which has led to an inconclusive pathological definition of concussion 

and thereby no effective clinical treatment (15). Many concussion researchers state that the 

literature is vast and that it may not be possible to simplify concussion into one 

neuropathological explanation (27). As there are many etiologies of concussion, there exist 

a plethora of theories for concussion pathophysiology (27). Concussions, like all other 

forms of TBI, have a dynamic and biphasic injury progression that evolves over time. The 

primary phase is the mechanical damage to the central nervous system (CNS) caused by 

the application of acceleration/deceleration and rotational forces. More importantly, 

regarding clinical aspects, secondary injuries arise from the complex network of vascular, 

cellular and biochemical cascades that lead to further damage and exacerbation of long-

term neurological symptoms (28-30).  

Older theories of concussion pathophysiology describe that immediately following 

a biomechanical injury, there is an abrupt disturbance in the electrochemical gradient and 

an indiscriminate release of glutamate (31, 32), a prominent excitatory neurotransmitter. 

The injury increases the permeability of the membrane to various ions that lead to a large 

influx of sodium ions (Na+) and calcium ions (Ca2+) and the efflux of potassium ions (K+) 

(31, 32). The rapid shift in ionic balances depolarizes the neuronal membrane and the result 

is a massive release of glutamate (18). The excessive extracellular glutamate leads to 

glutamate excitotoxicity via activation of neuronal glutamate receptors such as N-methyl-

D-aspartate (NMDA) receptor. Sudden excitation of the brain is followed by a wave of 

neuronal suppression called “spreading depression” (33). It is thought that loss of 

consciousness, amnesia and other cognitive dysfunction following a concussive impact is 

a manifestation of the post-traumatic spreading depression-like state. To restore the axonal 

membrane potential, the sodium-potassium pump is overworked, causing hyper-glycolysis 

and quick depletion of intracellular energy reserves (18). This state of hyper-metabolism 

leads to a disparity between glucose supply and demand which can result in an “energy 

crisis” (18). The effects of accelerated glucose consumption can be seen by the 

accumulation of lactate production and decreased cerebral blood flow, worsening the 

energy crisis (18). Elevated lactate levels, reduction in oxygen and glucose supply to 

hypermetabolic neurons further drives neuronal dysfunction and axonal damage. The latter 
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is referred to as diffuse axonal injury (DAI) (18). Shown by experimental animal studies 

using various TBI models, there is no question that TBI induces a multitude of cellular and 

molecular changes within the brain. However, it is problematic when these alterations do 

not necessarily manifest into clinical symptoms. Studies have seen depressed cerebral 

glucose metabolism after the initial period of hyperglycolysis in patients who presented 

with no clinical symptoms (34). Clearly, significant neurometabolic abnormalities can 

occur without any clear symptomatic indications. It is suggested that it takes 30 to 45 days 

for the physiological parameters to resolve, which is well beyond when symptoms usually 

settle (35). Much of the pathobiology of concussion has been elucidated through animal 

models of TBI, but, further validation of these mechanisms need to be established in 

humans.  

As concussions are a common occurrence in sports, more recent studies in the 

literature have described 5 predominant theories of pathophysiology specifically for sports-

related concussions: 1) tauopathy 2) white matter tract changes 3) changes in neuronal 

activity 4) reduced cerebral perfusion and 5) gray matter atrophy (27). 1) The tauopathy 

theory is described as the abnormal elevation of phosphorylated tau protein in the cortical 

sulci of the brain (36). Tau proteins are normally found in the brain, function to stabilize 

microtubules in axons and are essential for neuronal communication. Hyperphosphorylated 

tau leads to the accumulation of neurofibrillary tangles that affect neuronal network 

connectivity that can result in cell dysfunction and cell death (37). 2) The theory that 

involves the white matter tract changes is based on the degeneration of myelin, a lipid-rich 

insulator surrounding axons that is responsible for efficient transmission of electrical 

signals along neurons (38). Some examples of white matter tract changes include widening 

of frontal and occipital sulci, the release of neuronal protein into the damaged brain and 

DAI (39). 3) The neuronal connectivity theory indicates a reduction in global neuronal 

networks occur that lead to less efficient coordinated communication between different 

brain regions (40). 4) The cerebral perfusion theory is centered on the change in blood flow 

arising following trauma that potentially leads to ischemia (41). 5) Lastly, a less common 

theory proposes that concussion symptoms arise from trauma due to an overall shrinking 

of cortical and subcortical structures including the thalamus and hippocampus (42). 

Although many theories of concussion have been shared amongst TBI researchers, there is 
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still ongoing debate and new theories are constantly being generated. It is no surprise that 

concussion is caused by both structural and functional damage (43) that are heterogeneous 

and multifactorial.  

 

1.4 Repetitive concussion  

While patients typically recover from a single incidence of concussion, cumulative 

effects of multiple head injuries pose a more serious problem. Particularly in athletes and 

military personnel, repetitive concussions are a common occurrence.  Studies have shown 

that repetitive concussions that occur during a period of increased neural vulnerability can 

result in severe outcomes (12, 44). Clinical evidence of these severe outcomes is seen in 

athletes who have sustained multiple traumas as evidenced by poor performance in 

neurocognitive tests and demonstrating slower processing speed (45). Additionally, the 

extent to which these athletes show neurocognitive dysfunction is attributed to the length 

of time between sustained injuries. Clinical and experimental data have shown that 

repetitive injuries with shorter durations between consecutive insults result in a markedly 

greater cognitive, histological and behavioral impairments compared to injuries separated 

by a longer period (46, 47). As mentioned previously, research has shown the potential for 

multiple mTBI producing cumulative effects leading to long-lasting neurological 

impairment including age and non-age related neurodegenerative disorders (CTE, 

Alzheimer’s disease, Parkinson’s disease). Due to the high prevalence of concussions, it is 

becoming increasingly important to uncover the underlying secondary injury mechanisms 

that can explain brain sensitization to subsequent neurotraumas.  

 

1.5 Neuroinflammation  

The term neuroinflammation is used to describe the robust and complex 

inflammatory response generated by the interaction between the cellular and soluble 

components of the CNS and the periphery (48). Inflammation is a biological response to 

tissue injury that is both necessary and beneficial because it promotes the clearance of dead 

cells and debris and starts the process of tissue repair. However, too much inflammation 

for an extended period of time is detrimental to the surrounding tissues and can progress to 

chronic neurodegeneration (49-51). Immune targeting interventions for post-traumatic 
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inflammation aims to limit acute inflammation just enough to promote regeneration and 

prevent the development of chronic neuroinflammation. The mechanical damage of the 

primary injury during a TBI induces the release of self-derived warning signals called 

damage-associated molecular patterns (DAMPs) (52). DAMPs are endogenous molecules 

that are released from stressed or dying cells which can include host proteins, nucleic acids 

and metabolites (53) and they are sensed by pattern recognition receptors (PRRs). Upon 

binding of DAMPs to PRRs, an inflammatory response is generated and amplified such 

that pro-inflammatory mediators are released from all brain cell types and neural leukocytes 

(perivascular and meningeal macrophages). Although neurons, astrocytes, microglia, 

oligodendroglia, and endothelial cells are all capable of producing pro-inflammatory 

cytokines such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-, the microglia 

are the most critical immune cell in the first line of defense (54). Microglia are normally 

quiescent, anti-inflammatory and charged with maintaining neuro-homeostasis (55).  

However, activation of microglia lead to excessive amounts of pro-inflammatory cytokines 

being released that can exacerbate the initial trauma, and hinder both brain repair and 

functional recovery (54) while decreasing the levels of anti-inflammatory cytokines (IL-4, 

IL-10 transforming growth factor (TGF)-). Anti-inflammatory cytokines are important for 

counteracting and downregulating the inflammatory and cytotoxic reactions (56). TBI also 

compromises the blood brain barrier (BBB)- a physical barrier separating the brain 

parenchyma from cellular and soluble blood components (57). Breaching of this barrier 

allows infiltration of peripheral immune cells into the parenchyma to exacerbate the 

inflammatory response (58). A compromised BBB allows extravasation of not only cells, 

but also plasma proteins into the brain. An example of such plasma protein is fibrinogen, a 

plasma adhesion protein. Accumulation of fibrinogen induces neuroinflammation and 

astrocyte scar formation by initiating TGF- signalling pathway (59). Although primary 

injury occurs in a matter of seconds with a neuroinflammatory cascade commencing 

thereafter, a prolonged state of inflammation after the injury can linger for many years and 

predispose the patient to other neurodegenerative diseases (60). Chronic microglial 

activation, alterations in neuronal activity, reduced dendritic spine density in post-TBI 

patients all occur in parallel with long-lasting inflammatory responses (61). It is becoming 

increasingly clear that persistent neuroinflammation is associated with an elevated risk of 
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developing progressive life-long impairments in a patient’s physical, cognitive, behavioral 

and social performance (49, 50). However, the initial inflammation also sets the stage for 

neural regeneration and recovery (62). Inflammation is referred to as a “double-edged 

sword” with both ameliorating and deleterious effects. This could explain why immune-

suppressing drugs administered immediately post-TBI in human clinical trials have failed 

(63). Targeted therapeutic interventions are required to balance the benefits of the initial 

inflammatory response to promote neuro-regeneration and restoration of normal brain 

function while preventing detrimental, chronic inflammation that further undermines 

neurocognitive function.  

 

1.6 Microglia 

Microglial activation is a key hallmark of TBI. As the brain’s resident, parenchymal 

macrophages, it’s important to understand their normal functions during homeostasis, 

diseases and traumas inflicted on the CNS. It has been over a century since the discovery 

of microglia as the “third element” of the CNS (64). After much debate on the origin of 

microglia, it has only been recently shown that microglia arise from embryonic yolk sac 

(YS) precursors, which also gives rise to some tissue macrophages (65-67). This means 

that microglia and tissue resident macrophages are developmentally and functionally 

different from blood derived myeloid lineage cells (68). The previous notion that microglia 

are a static bystander in the healthy CNS that have minimal functions besides scavenging 

and immune surveillance has also been proved to be a misconception (68). In fact, 

microglia interact with all components of the CNS, constantly monitoring the brain 

microenvironment by extending their processes and maintaining tissue integrity (69, 70). 

Early in development during embryogenesis, the YS myeloid precursors travel to the brain 

before developing into immature microglia. Thus, microglia participate and interact with 

the development of other CNS cells including neurons, astrocytes and oligodendrocytes 

(71). It is not surprising that microglia activation is a key hallmark of almost all diseases 

and injuries related to the CNS (72, 73). While quiescent microglia have a ramified 

morphology, activated microglia are characterized by a hypertrophied, “bushy” and 

“amoeboid” phenotype (74). In a repetitive concussion rat model, microglial morphological 

change was clearly noticeable in the sub-cortical white matter, the cortex and the 
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hippocampus (75). Within hours after a TBI, the microglia adopted a pro-inflammatory, 

“classically activated” M-1 phenotype (75) exemplified by a significant upregulation of 

many M-1 markers including CD86, iNOS, MHC II, Nos2, IL-1, CCL2, CXCL1(76). 

Only a few M-2 “alternatively activated” markers such as Arg-1, TGF-, CCL22 and Lif 

(76) were upregulated, indicating that pro-inflammatory M-1 phenotype dominated in the 

early hours after concussive injury (75). However, other transcriptome analyses of 

microglia revealed that these states are transitory and during the chronic stage of microglial 

activation includes a mixed expression of both M-1 and M-2 phenotypic markers (55). The 

acute function of activated microglia following TBI is to migrate to the site of lesion, 

phagocytose cellular debris, re-establish a neuroprotective environment by orchestrating 

neurorestorative processes (54). However, microglia are also capable of producing 

inflammatory mediators such as reactive oxygen and nitrogen species, neurotransmitter 

glutamate and inflammatory cytokines (77). Depending on the amount released, glutamate 

can directly cause neurotoxic effects in neurons, synapses and astrocytic functions by 

hindering the glutamate buffering ability of astrocytes and blocking their glutamate 

transporters (78).   

Microglial cells are commonly identified by their ionized calcium-binding adaptor 

molecule 1 (Iba-1), also referred to as allograft inflammatory factor 1 (AIF-1). This 

molecule is an actin binding protein involved in membrane ruffling and phagocytosis (79). 

This marker has been widely accepted to identify microglia, as well as tissue-resident 

macrophages and monocyte-derived macrophages but is not expressed by circulating or 

infiltrating monocytes (80).  

 

1.7 Neutrophils  

As the most abundant leukocyte in peripheral circulation and the earliest to arrive 

at the site of injury, neutrophils come armed with an array of antimicrobial effector 

molecules (81). Many human and animal studies have shown that following TBI, profound 

neutrophilia is found in the bloodstream both in absolute number (82-84) as well as in 

frequency (82, 84). Neutrophils are polymorphonuclear cells, generated and matured in the 

bone marrow from a myeloid precursor (85). They are located in the bone marrow, spleen, 

lungs, liver and in circulation, but rarely found in the brain parenchyma due to the BBB 
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(86). They become activated and/or differentiate into more mature effector cells depending 

on the environmental stimuli. Endogenous factors such as granulocyte-colony stimulating 

factor (G-CSF) and granulocyte-macrophage-colony stimulating factor (GM-CSF) (87) as 

well as external stimuli induced by stress or trauma (88) lead to the upregulation of different 

membrane receptors and expression of various granule proteins essential for degranulation 

and become phagocytic (89). Additionally, the list of neutrophil-derived cytokines is 

extensive (90, 91). Tumor necrosis factor (TNF) family; pro-inflammatory cytokines; 

CXC- chemokines; CC- chemokines as well as other anti-inflammatory, 

immunoregulatory, angiogenic and neurotrophic factors were all associated with TBI-

induced cytokine release from neutrophils (92-97). Recruitment of neutrophils into the 

brain parenchyma and hence, their activation is associated with different characteristics of 

TBI. Hypoperfusion, seen in moderate to severe TBI cases enhances the interactions of 

neutrophils with blood vessels (98) increasing neutrophil adherence to endothelial cells 

(99). Neutrophil-derived neutrophil elastase (NE) (100, 101) and matrix metalloproteinase 

(MMP) also play a role in BBB dysfunction (102, 103). Free radicals generated by 

neutrophils also cause direct oxidative damage interfering with the BBB integrity (104).  

 

1.8 Monocytes/Macrophages  

Monocytes are crucial immune cells responsible for initiating innate immune 

responses (105). These myeloid-derived cells originate from the bone marrow and reside 

in peripheral blood and spleen until they are trafficked to the site of tissue injury. 

Monocytes are a heterogeneous population of inflammatory cells, making up 5-10% of 

leukocytes in the circulation. There are 3 subclasses of monocytes in humans, differentiated 

by their surface expression of CD14 and CD16: classical (CD14++16–), non-classical 

(CD14lo/+16++), and intermediate (CD14++16lo/+) (106). The role of each cell type has been 

studied extensively in infectious diseases, however, the importance of these cells in sterile 

injury is only just being elucidated. In a trauma-induced inflammatory cascade, classical 

monocytes are recruited out from the bone marrow and into the blood stream (105). Human 

studies have reported a significant elevation in the absolute number of circulating 

monocytes (83, 84) while murine models have shown a reduction in monocyte numbers in 

the early hours and days post-TBI (107). In mice, monocyte subtypes are classified into 
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classical (Ly6C+) and non-classical (Ly6C-), each with a unique phenotype and function. 

The classical monocytes have been described as inflammatory migrating cells that are 

recruited from the bone marrow to the inflamed tissues to produce TNFα and IL-1β. The 

chemokine, monocyte chemoattractant protein-1 (CCL2) is largely responsible for this 

monocyte chemotaxis along with its receptor, CCR2 (108). CCL2 is not only important for 

monocyte mobilization but it also promotes adhesion onto the endothelial vessel wall (109). 

Shown in a rat model of TBI, the epithelial cells of choroid plexus secreted CCL2 which 

encouraged monocyte migration across the blood-cerebrospinal fluid barrier (110). Once 

in the tissues, the classical monocytes differentiated into macrophages or dendritic cells 

(111). The non-classical monocytes arise from the classical monocytes with downregulated 

expression of Ly6C and are situated along blood vessel walls with the role of “patrolling” 

the vasculature (111). Thus, under conditions of injury and inflammation, non-classical 

monocytes rapidly extravasate into the tissues and participate as one of the first responders 

(112). Within the tissues, the non-classical monocytes convert into more specialized 

phagocytic cells such as CD11c+ MHC II+ dendritic cells and MHC II+ macrophages (111). 

In a closed-head mouse model of TBI, while classical monocyte frequency is 

downregulated, the non-classical monocytes increase in circulation 60 days post-injury, 

suggesting that TBI shifts into an anti-inflammatory state (107). In parallel, when 

monocytes were isolated from TBI patients at that time post-TBI, IL-10 expression was 

upregulated, indicating an anti-inflammatory response in circulating monocytes (113).  

While monocytes are in circulation, macrophages reside in tissues and have more 

of an M-2 phenotype to maintain tissue homeostasis. In disease pathology, the influx of 

pro-inflammatory monocytes at the site of injury outnumber the tissue-resident 

macrophages and differentiate into classically activated macrophages. Particularly in 

chronic inflammatory conditions and tissue degradation, macrophages stay activated, 

suppress their tissue-repair functions and delay wound-healing processes (114). Both 

monocytes and macrophages are not only implicated in TBI, but they also play a role in 

spinal cord injury, ischemic stroke injury, cardiovascular diseases as well as hepatic injury 

(114).  

 

1.9 Systemic inflammatory response syndrome  
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It has been established in the literature that trauma evokes a systemic immune 

reaction that can often be more fatal than the initial primary injury itself (115). This acute, 

nonspecific immune response results in damage to organs by the cascade of inflammatory 

events that subsequently lead to sepsis which the individual is susceptible to (115). 

Collectively, this is called systemic inflammatory response syndrome (SIRS). Particularly 

following a severe injury such as severe TBI or spinal cord injury, the initial inflammatory 

cascade elicits the release of endogenous factors, DAMPs and alarmins that bind and 

activate innate immune cells via PRRs (116). Alarmins are defined as self-molecules that 

are released during non-programed cell death, by some immune cells and have the ability 

to initiate homeostasis and repair mechanism (53).  DAMPs also activate the complement 

system, generating C3a and C5a (117, 118) further contributing to the pro-inflammatory 

milieu. Subsequently, pro-inflammatory mediators are rapidly generated and released into 

the damaged area and further contribute to an inflammatory state. Additionally, the 

increased pro-inflammatory cytokines also reduce the integrity of the blood brain barrier, 

allowing increased permeability. This not only permits the entry of peripheral cells and 

molecules to enter the CNS but the lesion-generated inflammatory mediators, DAMPs, 

cytokines and acute phase reactant mediators can now pass into the systemic circulation. 

Particularly, neutrophils have been shown to actively participate in migration to, 

sequestering in and damaging “by-stander” organs (119). Acute respiratory distress 

syndrome (ARDS) is a well-recognized complication in TBI patients and is a primary 

example of organ damage caused by a brain injury-driven systemic inflammatory 

responses. Neutrophils are known to migrate into the alveoli (120) and release toxic 

mediators including proteases and reactive oxygen species that normally function to kill 

pathogens but in the case of ARDS, also cause damage to healthy tissue. Alveolar edema 

and arterial hypoxaemia (121) occur as a result of increased lung epithelial and endothelial 

permeability (122). Importantly, although neutrophils are implicated in the acute 

development of SIRS, their functions are markedly decreased the following days after TBI 

(123).  

Understanding of the mechanisms that mediate central regulation of immune 

functions through the autonomic nervous system has been a major development in the field 

of neuroimmunology (124). The discovery of the vagal nerve stimulation causing 
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attenuation of the systemic inflammatory response is an important concept related to TBI. 

Under inflammatory conditions, the brain sends signals via the vagus nerve to attenuate 

inflammatory cytokine production as a brain protective mechanism (125). The vagus nerve 

is the 10th cranial nerve of the CNS, as a part of the parasympathetic nervous system, 

regulating critical organ functions necessary for survival. While 80% of the vagal nerve are 

sensory fibres, gathering information from the heart, liver, spleen and gastrointestinal tract, 

it also has the ability to sense and respond to peripheral inflammatory process through 

efferent fibres (125). Collectively, the efferent and afferent sensory fibers participate in a 

this mechanism known as the inflammatory reflex (126). The “Cholinergic anti-

inflammatory pathway” has been termed to describe the regulatory activity of the vagus 

nerve carrying signals to resident macrophages via their primary neurotransmitter, 

acetylcholine (ACh) to modulate local and systemic inflammation (125, 127). Upon 

ligation of ACh to 7 nicotinic acetylcholine receptor on macrophages and dendritic cells, 

the major pro-inflammatory cytokine TNF’s release was attenuated (127, 128). Thus, in 

TBI, this inflammatory reflex can become disrupted contributing to cytokine dysregulation 

and exacerbating the overall inflammatory response (125). Given the implication of 

inflammation in numerous diseases processes, the cholinergic anti-inflammatory 

mechanisms are being investigated for translational studies in animal models to humans.  

 

1.10 Mouse models of TBI 

Human TBI is challenging to study due to a large amount of heterogeneity in patient 

and injury characteristics with a wide variety of patient outcomes. To characterize such 

complex pathogenesis, no one pre-clinical animal model can capture the full breadth of 

TBI, thus many animal models have been developed and modified to enable systemic 

exploration of the concussion pathophysiology. Out of the various existing models of TBI 

that can be applied, the following four models have been shown to be well-suited for 

replicating concussive injuries; 1) fluid percussion injury (FPI), 2) Marmarou weight drop 

(WD) model, 3) the closed-head impact model of engineered rotational acceleration model 

(CHIMERA), and 4) the controlled cortical impact (CCI) (129).  

FPI uses a hydraulic pressure pulse onto the exposed dura of the brain following a 

craniotomy. The pulse is generated when a pendulum strikes a fluid-filled piston. Mild, 
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moderate or severe injury can be achieved by adjusting the intensity of the pressure and 

this model has been used on a number of animals including mice, rats, cats and pigs to 

generate a diffuse brain injury that has corresponding pathological and neurobehavioral 

changes (130-132). Brain contusions are clearly visible in this model, along with 

pronounced microglial activation and astrocytosis (133, 134) while cerebral hypoxia, death 

and apnea are common complications from FPI due to brainstem trauma (135, 136). The 

weight drop model involves a mass that is dropped from a certain height onto a metal plate 

that is attached to the skull of an animal. The metal plate prevents the skull from fracturing 

while allowing the head to accelerate during the impact causing DAI, axonopathy, 

neuromotor and cognitive deficits (137-139). CHIMERA is a newer variation of closed 

head injury model that enables traumatic flexion of the cervical spine and additional 

rotational acceleration of the head causing a whiplash effect. The neuropathological 

consequences seen in this model are DAI, reactive microgliosis, the release of 

inflammatory cytokines, and hyperphosphorylated tauopathy (140). CCI also delivers a 

direct impact to the intact dura through a craniotomy by using a pneumatic piston. The 

depth, speed and duration of the impact can be adjusted according to each experiment. CCI 

causes cortical tissue loss, disturbance of the BBB, neuroinflammation, axonopathy and 

brain contusions (141-144). While this model enables a continuum of injury severity, it also 

induces tissue necrosis in and around the impact depression area. Thus, an alternative 

configuration of this model has been developed where the impact is made onto the skull 

(extracranial CCI) to reflect more of a human concussion. Each animal model has its unique 

strengths and limitations. One of the biggest weaknesses in all of these models is the 

requirement of anesthesia during experimental neurotrauma (145). This is important to 

consider because time-dependent changes in reflex responses latencies are commonly 

employed for initial neurological assessment following concussions in humans. These 

include corneal, papillary and pinna reflexes, which are metrics used to capture the 

constellation of neurological signs and symptoms of concussion which are not translatable 

in animal models (129). The impact of the anesthesia is compounded when these models 

are used to create a repetitive TBI model requiring anesthesia to be applied each time the 

animal is subjected to an experimental TBI. A common strength in these models is the 

robust secondary injury that is elicited in all TBI models. Currently, it is evident that no 
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one model encompasses all aspects of human concussion perfectly (146), and thus the 

development of new animal models and extrapolation of findings from different models 

need to be adopted. This study used the extracranial CCI, or a closed-head injury (CHI) 

model as this model reliably delivers controlled impact to the skull of each animal that 

allows for a consistently reproducible head injury that is reflective of a human concussion.  

 

1.11 Lys-EGFP-ki transgenic mouse model 

The Lys-EGFP-ki mice is a transgenic mouse model that expresses the enhanced 

green fluorescent protein (EGFP) gene into the murine lysozyme (lys) M locus. Lysozyme 

is highly expressed in myelomonocytic cells, thus, only mature, granulomyelomonocytic 

cells will exclusively be EGFP positive (EGFP+) (147). This includes hematogenous 

macrophages, monocytes and neutrophils. The advantage of using this mouse strain is that 

it allows for the distinction between the hematogenous monocyte derived macrophages and 

the microglia which do not express EGFP.   

 

1.12 Purpose, goals and objectives  

In this study, I assessed the temporal and anatomical nature of the neural and 

systemic cellular inflammatory response to mTBI following repetitive concussive impacts 

using the extracranial CCI model. As there remains a clear medical need to treat brain 

injuries, there is a strong rationale supporting the need to understand and characterize TBI-

associated inflammation within the CNS as well as in the periphery to identify targets for 

pharmacological interventions. To accomplish this, it is essential to select a suitable animal 

model for testing anti-inflammatory therapies post- TBI. This study can lay the foundation 

for the early pre-clinical testing in a mouse model of TBI of anti-inflammatory 

immunotherapies to limit secondary injury and promote regeneration. Advances in 

understanding the central and peripheral inflammatory responses to TBI can open a new 

frontier in ways we can manage and prevent the ramifications of concussion and other 

forms of TBI. 

Thus, I hypothesize that the repetitive, closed-head injury of mTBI using a mouse 

model will initiate cellular inflammatory events in the brain and in the periphery manifested 
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via infiltration of hematogenous leukocytes. This will result in greater mature myeloid cell 

accumulation in the brain and in various organs, following the injury.  

 

1.13 Specific aims  

1) Qualitatively and quantitatively assess the spatial and temporal appearance of the 

microglial and the hematogenous myeloid inflammatory cell response in the brain 

after repetitive concussive impacts. 

2) Quantitatively assess the systemic hematogenous myeloid cell response to 

repetitive concussive impacts. 
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CHAPTER 2 – MATERIALS AND METHODS 

 

2.1 Animal ethics 

In accordance with the Canadian Guide to Care and Use of Experimental Animals, 

all animal procedures were approved by Animal Care Committee at Western University 

(London, ON) and were performed according to the principles of the Guide for the Care 

and Use of Laboratory Animals (AUP# 2016-019, Expiry date: 10/01/2020, Appendix 1).  

 

2.2 Lys-EGFP-ki mice 

C57BL/6, lysozyme-EGFP-knock in (lys-EGFP-ki) transgenic mice were originally 

provided by Thomas Graf, from Albert Einstein College of Medicine (Bronx, NY). 

Homozygous lys-EGFP-ki mice were bred in the barrier facility at the West Valley 

Building, Western University. Animals were housed single-caged with a 12 h light/dark 

cycle and free access to food and water at all times. This study involved a total of 

approximately 80 animals (males and females combined) which were between 11-17 weeks 

of age and between 17g-32g in weight. 

 

2.3 Pre-operative treatment 

Prior to experimental use, the animals were acclimated for 1 week in the pre- and 

post-operative animal room. The experimental lys-EGFP-ki mice were anaesthetized using 

4% isoflurane (Baxter Corporation, Mississauga, ON) in 2% oxygen, this was reduced and 

maintained at 3.5% isoflurane once the surgery began. The toe pinch reflex was performed 

to ensure the animals were anesthetized before the procedure commenced. The hair on the 

back of the head and neck was sterilized with 75% ethanol followed by a midline incision 

to peel back the skin and expose the skull.  

 

2.4 Closed-head injury model  

TBI was experimentally induced by a computer controlled Precision Systems 

Instruments TBI device (Lintech, Monrovia, CA). The piston settings to achieve the mild 

brain injury were the following: speed of 3.5m/s, depth of 1.5mm and dwell time of 500ms. 

The actual recorded impact speed can be found in Table 1. The 4mm silicone tip was set to  
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Table 1. The recorded velocity of the impactor shown in m/s 

 
 mTBI Cohorts 

8hr 24hr 48hr 72hr 1w 2w 

mouse 1 day 1 3.62 3.59 3.67 3.82 3.62 3.61 

day 2 3.72 3.83 3.47 3.80 3.64 3.70 

day 3 3.58 3.72 3.62 3.79 3.59 3.58 

mouse 2 day 1 3.44 3.57 3.76 3.86 3.86 3.78 

day 2 3.77 3.54 3.78 3.57 3.66 3.70 

day 3 3.55 3.56 3.64 3.73 3.79 3.74 

mouse 3 day 1 3.61 3.65 3.79 3.56 3.69 3.67 

day 2 3.59 3.85 3.68 3.59 3.72 3.73 

day 3 3.42 3.73 3.56 3.54 3.60 3.72 

mouse 4 day 1 3.75 3.70 3.74 3.72 3.68 3.59 

day 2 3.71 3.73 3.52 3.62 3.78 3.52 

day 3 3.61 3.58 3.85 3.62 3.86 3.66 

mouse 5 day 1 3.74 3.74 3.54 3.74 3.59 3.61 

day 2 3.60 3.64 3.83 3.69 3.64 3.70 

day 3 3.72 3.66 3.49 3.59 3.84 3.51 
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impact the brain in the middle of the skull, on the bregma suture. Immediately following 

the impact, the mice were injected with an analgesic, Buprenorphine (RB Pharmaceuticals 

Ltd, Berkshire, UK; 0.05 mg/kg) after the injury. The incision was closed and sutured with 

4-0 vicryl (Ethicon, USA) and the animals were placed under a heat lamp, in the dark for 

recovery. A total of three impacts were made, 24h apart. A group of sham-injured mice 

were also included in this study. Sham cohort received the same treatment as the injured 

group without the delivery of the impacts.  

 

2.5 Perfusion 

The mice were euthanized at 8h, 24h, 48h, 72h, 1- and 2-weeks post-surgery to 

evaluate the inflammatory response of circulating blood leukocytes to mTBI. Each time 

point included 6-10 mice of equal male/female ratio. For euthanasia, each mouse received 

a total of 50μL of ketamine (68 mg/mL) and xylazine (6.8 mg/mL) through intraperitoneal 

injection). The cardiac puncture method was used to withdraw peripheral blood from the 

right atrium of the heart after administration of 1μL of heparin (0.01 USP/mL). 

Subsequently, the spleens were harvested and placed on ice until processing.   

Immediately following the removal of the spleen, a 23G perfusion needle was 

inserted into the left ventricle of the heart and the mice were perfused into the apex of the 

heart with 100mL of RPMI 1640 medium (Gibco by Life Technologies, Dulbecco’s 

Modified Eagle Medium), followed by 100mL of freshly prepared 4% paraformaldehyde 

(PFA, polyoxymethylene, Bioshop Canada Inc., Burlington, ON) in phosphate-buffered 

saline (PBS). On completion of the perfusion, the following organs were removed: brain, 

cervical spinal cord, lungs, liver, kidneys, and heart. All organs were cryopreserved in 10%, 

20% and 30% sucrose solutions for 24h each at 4 °C.  

 

2.6 Cryosectioning  

All organs were frozen and embedded in optimum cutting temperature compound 

(OCT) (Sakura Finetek, USA, Torrance, CA) and cryosectioned using the Leica Cryostat 

(Leica CM 1950). One lung and one lobe of the liver from each mouse were transversely 

sectioned in 16m thickness. The cervical spinal cords were also cut in cross sections, in 

16m thickness. The peripheral organ sections were mounted onto a series of 6 Superfrost 
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plus-charged slides (Fisher Scientific, Pittsburgh, PA), with a distance of at least 96μm 

between each section on a single slide.  

The brains were coronally sectioned to generate 20m slices from the end of the 

olfactory bulb all the way to the beginning of the cerebellum. The brain sections were 

mounted in the same manner as described above for the organs, with a 120μm distance 

between each consecutive section on the same slide. Once the section of the brain directly 

underneath the bregma suture was identified and marked as 0mm, two consecutive sections 

0.5mm and 1mm rostral to the bregma and two consecutive sections 0.5mm and 1mm 

caudal to the bregma were identified (5 sections in total), see Fig. 1. These sections were 

later co-stained for immunohistochemical analyses. All slides were stored at -20C. 

 

2.7 Blood processing and staining for flow cytometry 

The blood collected from each mouse was processed and stained with appropriate 

antibodies to characterize the myeloid and lymphoid cell populations. 100μL of blood from 

each mouse was aliquoted to individual fluorescence activated cell sorting (FACS) tubes 

(Falcon, BD). All samples were incubated with LIVE/DEAD Fixable Aqua Dead Cell Stain 

(Thermo Fisher Scientific) in the dark for 20min. Then, fluorescently-labelled antibodies 

were added to the appropriate samples on ice for 20min. A comprehensive list of the 

antibodies used for the myeloid panel can be found in Table 2 and the antibodies used for 

the lymphoid panel can be found in Table 3. Anti-mouse CD19, NKp46, CD3 and CD45 

(BioLegend Inc., San Diego, CA) antibodies were used for the lymphoid panel. Anti-mouse 

CD11c, CD11b, CD45, Ly6G, Ly6C (BioLegend Inc.), CD115 (eBioscience Inc., San 

Diego, CA) and F4/80 (BIO-RAD, Hercules, CA) antibodies were used for the myeloid 

panel. All antibodies were incubated in a total cell suspension of 100 μL. Red blood cells 

(RBC) were lysed with BD Pharm Lyse Lysing buffer (BD) for 12 min before being washed 

with Hank’s Balanced Salt Solution (HBSS) (Thermo Fisher Scientific) +0.1% bovine 

serum albumin (BSA) (EMD Millipore, Billerica, MA). Samples were then centrifuged at 

4C for 5min at 500xg, the supernatant was poured off and the cells were washed again 

with HBSS+0.1%BSA. All samples were resuspended in 200μL of HBSS+0.1%BSA and 

100μL of 4% PFA. Finally, 50μL of CountBright Absolute Counting Beads (Thermo  
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Figure 1. The five alternate brain sections selected for analysis. The number above each 

brain image indicates the distance away from the bregma suture. 0mm section is the area 

directly underneath the bregma. +1mm section is 1mm distance rostral to the bregma and -

1mm section is 1mm distance caudal to the bregma. The images were obtained from ©1999 

RW Williams, designed by AG Williams, Atlas by T Capra.  
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Table 2. Antibodies used for the myeloid panel  

Cell/Protein target Antibody Antibody 

dilution 

Flurophore RRID Source 

Macrophage F4/80 1:200 PE 322048 BIO RAD 

Dendritic cell CD11c 1:80 PE/Dazzle 594 2563655 Bio Legend 

Monocyte CD115 1:160 PE-Cyanine7 2566460 Bio Legend 

Myeloid Lineage CD11b 1:400 Alexa 647 493546 Bio Legend 

Leukocyte CD45 1:500 Alexa 700 493715 Bio Legend 

Neutrophil Ly6G 1:40 Brilliant Violet 

421 

2562567 Bio Legend 

Monocyte Ly6C 1:200 Brilliant Violet 

711 

2562630  Bio Legend 

Dead cells Live/Dead 

Aqua Vital 

Dye 

1:200 N/A N/A Thermo 

Fischer 

Scientifc 
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Table 3. Antibodies used for the lymphoid panel  

Cell/Protein target Antibody Antibody 

dilution 

Flurophore RRID Source 

T cell CD3 1:40 Brilliant 

Violet 

11203705 Bio Legend 

B cell CD19 1:1500 PE 313643 Bio Legend 

NK cell Nkp46 1:50 APC 10612758 Bio Legend 

Leukocyte CD45 1:500 Alexa 700 493715 Bio Legend 

Dead cells Live/Dead 

Aqua Vital 

Dye 

1:200 N/A N/A Thermo 

Fischer 

Scientific 
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Fischer Scientific) were added and the samples were stored in the dark at 4C. UltraComp 

antibodies capture beads (eBioscience Inc.) were used for electronic compensation.  

 

2.8 Spleen processing and staining for flow cytometry  

The spleens collected from each mouse were minced and pushed through a 70μm 

filter (Falcon, BD) into a 50mL falcon tube. Splenocytes were washed with 1x PBS and 

spun at 4C for 5min at 500xg, the supernatant was poured off and the cells were 

resuspended in 4mL of RPMI media. Cells were filtered again with a 40μm filter, washed 

with 1x PBS and spun at 4C for 5min at 500xg, the supernatant was poured off and the 

cells were resuspended in 5mL of ammonium chloride lysis buffer (Stemcell Technologies, 

Vancouver, BC) for 7min to lyse RBC. Additional PBS was added to each sample before 

the spin and discarding of the supernatants and resuspension in 1x PBS. The cell 

suspensions were stained using the same protocol as for blood.  

 

2.9 Flow cytometry  

Blood cells and splenocytes were analyzed by an LSRII analytical flow cytometer 

(BD). All samples were run for maximum event collection and the data was analyzed using 

FlowJo Software version 10 (Tree Star Inc., Ashland, OR).  

 

2.10 Iba-1 and EGFP co-staining for immunohistochemistry 

To phenotype the EGFP cells and distinguish them from the microglial cells, the 

sectioned brains were co-stained with anti-Iba-1 and anti-GFP specific antibodies. Iba-1 is 

a calcium ion binding protein expressed on macrophages and microglia (79). On day 1, the 

slides were extensively washed with PBS and blocked for 3h with 5% normal goat serum 

(Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) and 0.3% Triton X-100 

(Bioshop, Burlington ON) for non-specific binding. The slides were then incubated with a 

rabbit monoclonal anti-Iba-1 antibody (1:300) (Abcam, Cambridge, United Kingdom) at 

4° C overnight in the dark. On Day 2, the slides were briefly washed with PBS before being 

incubated with a secondary goat anti-rabbit IgG directly conjugated to Alexa 546 (1:500) 

(Life technologies, Eugene, OR) at room temperature for 1h. Finally, the slides were stained 

with Alexa 488 conjugated anti-GFP rabbit polyclonal antibody (1:1000) (Invitrogen, 
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Carlsbad, CA) overnight at 4°C in the dark. On Day 3, the slides were washed and rinsed 

in double distilled (DD) water before being air-dried and cover-slipped with hard set 

mounting media containing DAPI (4,6-diamidino-2-phenylindole, Vector Laboratories, 

Burlingame, CA). A comprehensive list of all antibodies used for immunohistochemistry 

can be found in Table 4. The specificity of the Iba-1 antibody was confirmed by staining 

one section with the Iba-1 primary antibody and one section without the primary antibody. 

A representative image showing this specificity can be found in Appendix 2.  

 

2.11 Ly-6G DAB staining for immunohistochemistry 

DAB (3,3′-Diaminobenzidine) is a derivative of benzene and when oxidized by 

hydrogen peroxide, a brown precipitate forms. To distinguish between the neutrophils and 

the monocytes in the brain, DAB staining with Ly-6G antibody from the DAB peroxidase 

substrate kit (Vector Laboratories, Inc., Burlingame, CA) was used. Neutrophils are 

Ly6G+EGPF+ and monocytes are Ly6G-EGPF+. The slides were extensively washed with 

PBS followed by quenching of endogenous peroxidases using 3% H2O2 solution (RW 

Packaging Ltd., Winnipeg, MB) in PBS for 10 min at room temperature. Then, slides were 

washed with PBS and the sections were blocked with 5% normal goat serum for 2h at room 

temperature. Next, sections were blocked with fragment goat anti-mouse IgG (0.13mg/mL; 

Sigma Life Science) in PBS for 2h at room temperature to reduce non-specific binding of 

mouse IgG (Fc fragment specific). Then, the slides were incubated with biotin conjugated 

anti-mouse Ly-6G (1:300; eBiocience Inc.) overnight at 4°C. The next day, slides were 

washed with PBS, and incubated with secondary antibody horse radish peroxidase (HRP) 

conjugated to streptavidin (1:500; Invitrogen) for 1h. Following 4 washes with DD water, 

DAB solutions from the DAB peroxidase substrate kit were added for 7-10 min. The slides 

were then rinsed with DD water and air-dried before being dehydrated and cover-slipped 

with Cytoseal mounting media (Thermo Fisher Scientific).   

Spleen and excitotoxin brain sections were provided by a previous Master student 

in the Dekaban Lab, Oleksandr Prokopchuk, who used an excitotoxin-induced model of 

TBI to study immune responses in the CNS.  
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Table 4. Antibody used for immunohistochemistry  

 
Cell/Protein target Antibody Antibody 

Dilution 

Flurophore RRID Source 

Microglia & 

Macrophage 

Primary Rabbit 

monoclonal 

anti-Iba-1 

1:300 N/A 2636859 Abcam 

Microglia & 

Macrophage 

Secondary goat 

anti-rabbit 

1:500 Alexa 546 2534077 Life 

technologies 

Monocyte/Macrophage 

Neutrophils 

Rabbit anti-

GFP 

1:1000 Alexa 488 221477  Invitrogen 

Endothelial cells rabbit 

polyclonal anti-

CD31 

1:300 N/A 726362 Abcam 

Endothelial cells Secondary goat 

anti-rabbit IgG 

1:300 Alexa 546 2534077 Invitrogen 

Neutrophils fragmented 

goat anti-mouse 

IgG 

0.13mg/mL N/A N/A Sigma Life 

Science 

Neutrophils biotin 

conjugated 

monoclonal 

Anti-mouse Ly-

6G 

1:300 N/A 469757 eBioscience 

Neutrophils secondary 

antibody HRP 

conjugated to 

streptavidin 

1:500 N/A N/A Invitrogen 
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2.12 CD31 and EGFP co-staining for immunohistochemistry 

In order to evaluate whether EGFP+ cells enter the brain from the blood stream, the 

brain sections were stained for CD31, a platelet endothelial cell adhesion molecule. On day 

1, all slides were washed extensively with PBS and blocked with 5% normal goat serum 

and 0.3% Triton X-100 for non-specific binding for 3h. The slides were then incubated 

with the rabbit polyclonal anti-CD31 antibody (1:300; Abcam) at 4° C overnight in the 

dark. On Day 2, the slides were briefly washed with PBS before being incubated with 

secondary goat anti-rabbit IgG directly conjugated to Alexa 546 (1:300) at room 

temperature for 1h. Finally, the slides were incubated with Alexa 488 conjugated anti-GFP 

rabbit polyclonal antibody (1:1000) overnight at 4° C in the dark. On Day 3, the slides were 

washed with PBS and rinsed in DD water before being air-dried and cover-slipped with 

hard set mounting media containing DAPI.   

 

2.13 Silver staining  

To detect axonal damage in the concussed brains, 50m sections were cut on the 

cryostat and preserved as floating sections in 4% PFA for 1 week. Using FD NeuroSilverTM 

Kit II (FD NeuroTechnologies, Inc.), the exact protocol provided in the user manual was 

followed. Upon completion, the floating sections were mounted on a superfrost plus-

charged slides, washed in xylene before being coverslipped with cytoseal. The sections 

were viewed with a light microscope (Olympus BX50) and Q-Imaging Retiga 1300 camera 

was used to image the silver stained sections.  

 

2.14 Fluorescent microscopy  

The Iba-1/EGFP stained brain sections along with the chosen peripheral organ 

slides were cover-slipped using hard set mounting media containing DAPI. All brain 

sections were viewed on the epifluorescent microscope (Olympus IX50) and imaged at 10X 

magnification using a digital camera Q-Imaging Retiga 1300. Only certain areas of the 

brain region were imaged due to the large area of the whole brain. In total, eleven areas 

were individually acquired from one section of the brain. See Fig. 2 below for the areas that 

were imaged. These areas capture the most prominent parts of the brain; superior and lateral 

cerebral cortex, corpus callosum, hippocampus, third and lateral ventricles, cerebral  
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Figure 2. Areas of the brain that were acquired on the epifluorescent microscope. Each 

area labeled A to K were individually imaged at 10x magnification. These areas capture the 

most prominent parts of the brain; superior (A&B) and lateral cerebral cortex (D&G), the 

third ventricle (C), corpus callosum, hippocampus and lateral ventricles (E&F), cerebral 

peduncles and cerebral nuclei (H&I), optic tract and hypothalamus (J&K). The image of 

this brain was obtained from Melbourne Brain Center by Dr. Kay L Richards.  
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peduncles, optic tract, hypothalamus and cerebral nuclei. The Olympus GFP and RFP filter 

cubes were used appropriately to capture EGFP and Iba-1 fluorescent signal, respectively.  

All other organs slides including the lungs, livers and spinal cord sections were 

viewed and imaged on the EVOS FL Auto 2.0 microscope (Thermo Fisher Scientific). For  

each organ, five alternating sections were chosen to be acquired at 10x magnification to 

generate images of the entire organ. The 10x tiles were automatically tiled using the EVOS 

software. The GFP excitation wavelength of 470 nm and emission wavelength of 510 nm 

were used for GFP channel imaging, and 357 nm excitation and 447 nm emission 

wavelengths were used for DAPI channel imaging. 

 

2.15 Digital morphometry 

All images taken on the Olympus and EVOS fluorescent microscopes were viewed 

and the fluorescent signal was quantified using Image Pro Plus 7.0. Tissue sections were 

traced to outline the area of interest (AOI), excluding any spaces that are not part of the 

tissues, and any morphological abnormalities that were attributed to cryosectioning. Using 

manual colour selection, a mask was created to capture Iba-1 or EGFP fluorescent signals. 

The same mask was used for the five alternating sections of one organ (lung, liver, spinal 

cord). This allows consistency from one section to the next, picking up pixels above the 

threshold defined by the mask. Then, the program calculated the “area of EGFP 

fluorescence per AOI” and the average of all the five sections from one organ was 

generated.  

For each brain, five alternate sections 500m apart were selected, stained, and 

analyzed. The final Iba-1/EGFP fluorescence was determined by the taking the mean of 

individual “area of Iba-1/EGFP fluorescence per AOI” number from the five alternate 

sections. For example, the “area of Iba-1/EGFP fluorescence per AOI” number of “area A” 

was determined from each of the five alternate sections and those numbers were then 

averaged. The same thing was done for all areas A-K. This method of averaging the 

immunofluorescence from five alternate sections was used to produce graphs in the 

following figures, with the exception of graphs from Fig. 4. Thus, each point on the graph 

with the exception from Fig. 4 will represent the average of “A’s, B’s, C’s” etcetera... from 

one brain. See Fig. 3 below.  



 

 

31 

2.16 Confocal microscopy  

Images of microglial, EGFP and CD31 cells at a higher power were acquired on a 

Leica-TSC SP8 confocal microscope (Leica Microsystems, Concord, ON) at 63x 

magnification. This part of the project was done in conjunction with Dr. Natalie Kozyrev.  

 

2.17 Statistical analysis  

Kruskal-Wallis one-way analysis of variance (ANOVA) followed by post-hoc 

Dunnett’s tests were performed for the statistical analyses using GraphPad Prism software 

version 7.0 (GraphPad Software Inc, La Jolla, CA). Sample size for each group of animals 

was between 4 to 10 except for the group of animals used for silver staining, where n=3-4. 

Data is presented as a group mean  standard mean of error (SEM). Differences were 

considered significant when p<0.05. 
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Figure 3. Method of analysis for quantifying brain immunofluorescence. For each brain, 

five alternate sections were analyzed. Each “area of fluorescence per AOI” of “area A” 

from the five sections were determined individually, then the average immunofluorescence 

was calculated. This method was applied to all areas from A to K.  
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CHAPTER 3 – RESULTS 

 

3.1 Closed-head injury model of repetitive concussion is a diffuse brain injury 

Examining different areas within the same section of the brain and looking at five 

different sections within the same brain showed that this model of closed-head, repetitive 

concussion is a diffuse brain injury. Five alternate sections from each brain are shown in 

Fig. 4A with 0mm being the area directly underneath the bregma. I observed that while 

there were differences in the Iba-1 and EGFP immunoreactivity between the time points 

(8h, 24h, 48h, 72h, 1w, 2w) compared to controls, there were no spatial differences (+1mm, 

+0.5mm, 0mm, -0.5mm, -1mm) in the immunoreactivity within each time point. Thus, the 

increase in Iba-1 immunoreactivity at 8h compared to control is relatively constant 

regardless of which section is chosen within the same brain. The spatial progression of Iba-

1 immunoreactivity at each time point in areas A&B and E&F showed no significant 

differences between the five sections within each brain (Fig. 4B). The spatial progression 

of EGFP immunoreactivity within the same time points in areas A&B and E&F also 

showed no significant differences (Fig. 4C). Similarly, areas; C, D&G, H&I, J&K showed 

no significant differences between the five alternate sections at any given time point (graphs 

not shown). Taken together, the inflammatory response as seen by the increase in Iba-1 and 

EGFP immunoreactivity following repetitive mTBI at the indicated time points are 

consistent throughout the analyzed brain structure (from +1mm to -1mm). Since the tip of 

the impactor is 4mm in diameter, the five sections I have chosen were directly underneath 

the area of impact. However, other sections of the brain away from the site of injury should 

also be looked at to conclude whether no spatial difference in immunoreactivity exists in 

all sections of the brain.  

 

3.2 Increased microglial activation and Iba-1 immunoreactivity in repetitive mTBI brains   

To characterize the local CNS-specific inflammatory response following repetitive 

concussion in a closed-head injury model, the brains of the mice were removed at 8h, 24h, 

48h, 72h, 1w and 2w post-injury, sectioned and doubled stained with Iba-1 and GFP 

antibodies. This allows for the distinction of Iba-1+/EGFP- microglia and Iba-1+/EGFP+ 

hematogenous macrophages and Iba-1-/EGFP+ monocytes and neutrophils. Each area of  
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Figure 4. Closed-head, 3 hit model of concussion produces a diffuse brain injury. The five 

alternating sections from each brain are shown (A) with 0mm being the area directly 

underneath the bregma.  The spatial progression of Iba-1 immunoreactivity at each time 

point (CNTR, 8h, 24h, 48h, 72h, 1w, 2w) in areas A&B and E&F area shown (B). Similarly, 

other areas of the brain including C, D&G, H&I, J&K showed no significant differences 

between the five alternate sections (graphs not shown). The spatial progression of EGFP 

immunoreactivity at the same points in areas A&B and E&F also showed no significant 

differences (C). No significant differences were found between +1mm, +0.5mm, 0mm, -

0.5mm and -1mm in all the examined time points. One way ANOVA followed by Dunnett’s 

test was performed, significance was determined when *= p<0.05. Data is presented as the 

group mean  SEM with 4-5 mice per group.  
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Figure 5. Summary of the temporal assessment of Iba-1 immunoreactivity in the control 

and repetitive mTBI brains. Quantified Iba-1+ area within the AOI, as determined by digital 

morphometry are shown in various areas of the brain at the indicated time points. 

Significant increase in Iba-1 immunoreactivity were found at 8h p<0.0001 and 48h 

p=0.0015 post-injury in areas containing the superior cerebral cortex (A) as well as the 3rd 

ventricle p=0.0064 (B) lateral cortex p<0.0001, p<0.0001 (C), hippocampus and corpus 

callosum p<0.0001, p=0.0113 (D), cerebral peduncles nuclei p=0.0015, p=0.0275 (E) and 

hypothalamus, optic tract and cerebral nuclei p=0.0052, p<0.0001 (F) all showed the same 

pattern of increase in immunoreactivity at 8h and 48h. One way ANOVA followed by 

Dunnett’s test was performed, significance was determined when *=p<0.05. Data is 

presented as the group mean  SEM with 4-5 mice per group. 
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the brain labeled A to K (Fig. 5) were individually imaged and quantified by digital 

morphometric analyses. Compared to the controls, animals that sustained three concussive 

impacts had significantly higher Iba-1 immunoreactivity, reflective of microglial activation  

at 8h and 48h post-concussion for areas A and B which contain regions of the superior 

cerebral cortex (Fig. 5A). Examining other areas of the brain, the lateral cortex (Fig. 5C), 

hippocampus and corpus callosum (Fig. 5D), cerebral peduncles nuclei (Fig. 5E) and 

hypothalamus, optic tract and cerebral nuclei (Fig. 5F) all showed the same pattern of 

increase in immunoreactivity at 8h and 48h. The area of Iba-1 immunoreactivity 

encompassing the third ventricle and corpus callosum (Fig. 5B) was only significant at 8h. 

In all areas, the Iba-1 immunoreactivity returned to baseline levels by 1 week. Although 

the data showed no statistical significant increase in Iba-1 immunoreactivity at 24h, there 

was still a noticeable increase compared to controls. This may represent a biological 

significance, albeit statistically not significant.   

Digital brain images representative of the quantitative findings are presented in Fig. 

6. Compared to the controls (Fig. 6A, D), the mTBI brains had increased Iba-1 

immunoreactivity at 8h (Fig. 6B, D), which returned to control levels by 1 week (Fig. 6C, 

F) in both the cerebral cortex and in the corpus callosum. Fluorescent images of Iba-1 at 

48h were reflective of that shown at 8h (data not shown). Changes in microglial 

morphology were also clearly noticeable. While “resting” and quiescent microglia have a 

ramified morphology, activated microglia take on a hypertrophied and bushy appearance. 

In the control brains, ramified microglia were observed (Fig. 7A, D) while activated 

phenotype was evident at 8h post-injury in both the cortex and corpus callosum in the 3-hit 

brains (Fig. 7B, E). Iba-1 immunoreactivity decreased back to control levels at 1 week 

following repetitive concussion, although some microglia appeared to remain activated 

(Fig. 7C, F).  

 

3.3 Recruitment of EGFP+ myeloid peripheral immune cells into the brain following 

repetitive concussion  

Using the same double stained sections imaged for Iba-1, temporal assessment of 

EGFP immunoreactivity was determined. A significant increase in EGFP immunoreactivity 

was not observed until 1 and 2 weeks post-injury in all imaged areas of the brain (areas A-  
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Figure 6. Representative images of Iba-1 immunoreactivity in the superior cortex and 

corpus callosum. Fluorescent microscopic images of control and mTBI brains at 8h and 1 

week post-injury are shown. Panel A shows the superior cortex and panel D shows the 

corpus callosum of control brains. Panel B shows the superior cortex and panel E shows 

the corpus callosum of mTBI brains at 8h. Panel C shows the superior cortex and panel F 

shows the corpus callosum of mTBI brains at 1 week. All images were acquired on the 

Olympus IX50 microscope at 10x magnification.  
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Figure 7. Representative images of the change in microglial morphology following 

repetitive concussive injury. Images of small and ramified microglial morphology from the 

control brains in the superior cortex (A) and corpus callosum (D) are shown. Hypertrophied 

and busy microglial cells in the superior cortex and corpus callosum in mTBI brains at 8h 

(B, E) and 1 week (C, F) are shown. All images were acquired on the confocal microscope 

at 63x magnification.  
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Figure 8. Summary of the temporal assessment of EGFP immunoreactivity in the control 

and mTBI brains. Quantified EGFP+ area within the AOI, as determined by digital 

morphometry are shown in various areas of the brain at the indicated time points. 

Significant increases in EGFP immunoreactivity were found at 1 week p<0.0001 and 2 

weeks p<0.0001 post-injury in areas containing the superior cerebral cortex (A) as well as 

the 3rd ventricle p=0.0033, p=0.0108 (B) lateral cortex p<0.0001, p<0.0001(C), 

hippocampus and corpus callosum p<0.0001, p=0.0042 (D), cerebral peduncles nuclei 

p<0.0001, p<0.0001 (E) and hypothalamus, optic tract and cerebral nuclei p<0.0001, 

p<0.0001 (F) all showed the same pattern of increase in immunoreactivity at 1 and 2 weeks. 

One way ANOVA followed by Dunnett’s test was performed, significance was determined 

when *= p<0.05. Data is presented as the group mean  SEM with 4-5 mice per group. 
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Figure 9. Representative images of EGFP immunoreactivity in the superior cortex and 

corpus callosum. Fluorescent microscopic images of control and mTBI brains at 8h and 1 

week post-injury are shown. Panel A shows the superior cortex and panel D shows the 

corpus callosum of control brains. Panel B shows the superior cortex and panel E shows 

the corpus callosum of mTBI brains at 8h. Panel C shows the superior cortex and panel F 

shows the corpus callosum of mTBI brains at 1 week. All images were acquired on the 

Olympus IX50 microscope at 10x magnification.  
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K; Fig. 8). Representative immunohistological images showed no difference in EGFP 

immunoreactivity at 8h after repetitive concussion (Fig. 9B, E) compared to controls (Fig. 

9A, D) but a significant increase was distinctly visible at 1 week post-injury (Fig. 9C, F) in 

both the cortex and corpus callosum. Similarly, 2 weeks following repetitive mTBI showed 

significant EGFP immunoreactivity compared to controls (data not shown). Additionally, 

comparing between the different regions within one brain section, areas A&B, C and J&K 

had the highest levels of EGFP immunoreactivity. 

 

3.4 No neutrophils were found in the mTBI brains  

There are three predominant types of EGFP+ cells in the lys-EGFP-ki transgenic 

mice; neutrophils, monocytes and macrophages. To phenotype these cells and distinguish 

them from the brain resident microglial cells, the sections that were double-immunostained 

with Iba-1 and EGFP antibodies were observed more closely to see which cells co-

expressed or independently expressed Iba-1 and EGFP. As microglia are EGFP-Iba-1+ and 

hematogenous macrophages are EGFP+Iba-1+ and hematogenous monocytes and 

neutrophils are EGFP+Iba-1-, a merged image of EGFP and Iba-1 showed these phenotypes 

(Fig. 10C, F).  

To determine if any of the EGFP+ myeloid cells were neutrophils, the brain sections 

were stained with a neutrophil marker Ly6G. As the most abundant leukocyte in the 

circulation and the first responder to injury and inflammation, neutrophils are known to 

extravasate into the brain parenchyma following TBI (148). However, Ly6G staining 

showed that very few cells were Ly6G+ (Fig. 11). A stained section of a spleen served as a 

positive control (Fig. 11A) to confirm the staining procedure, and another section was 

stained without the addition of the primary antibody to show Ly6G specificity (Fig. 11B). 

A separate section of a brain from an excitotoxin TBI injury showed Ly6G+ neutrophils 

(Fig. 11C), however, in the closed-head repetitive mTBI model, almost no neutrophils were 

found in any of the brain regions. Fig. 11D shows the absence of neutrophils in the mTBI 

brain at 24h, and this is a representative image for all the time points examined.  

 

3.5 EGFP+ myeloid cells are found in the parenchyma, pia mater, along the choroid plexus 

and in the brain microvasculature  
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Figure 10. Representative images of EGFP and Iba-1 double immunofluorescence staining 

in the cortex of mTBI brains. Superior and lateral cortex areas of mTBI brains at 1 week 

showing EGFP immunoreactivity (A, D) Iba-1 immunoreactivity (B, E) and merged images 

of EGFP and Iba-1 immunoreactivity (C, F) are shown. Arrow heads indicate whether they 

are monocytes or neutrophils, microglia or macrophages. All images were taken on the 

confocal microscope at 63x magnification.  
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Figure 11. Almost no neutrophils get recruited to the brain following repetitive mTBI. 

Spleen was used as a positive control for the staining procedure (A), and the absence of a 

primary antibody served as a negative control (B). A separate section of a brain from an 

excitotoxin TBI injury showed Ly6G+ neutrophils at 24h (C) while no neutrophils were 

found in the closed-head repetitive mTBI brains at 24h (D). All images were acquired on 

the EVOS fluorescent microscope at 20x magnification. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



 

 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

53 

A separate set of brain sections were double-immunostained with antibodies 

recognizing EGFP and blood-vessel endothelial marker CD31. This was to determine the 

location of the EGFP+ myeloid cells and if these cells emerge from the brain 

microvasculature or through the choroid plexus of the lateral ventricles. Fluorescent images 

revealed that many larger, phagocytic looking EGFP+ cells were in the brain parenchyma 

in the cortex and in the corpus callosum (Fig. 12C, F). However, in the surrounding area, 

some smaller EGFP+ cells were found to be co-localized with CD31+ microvessels 

indicating the presence of these cells inside the microvasculature (Fig. 12C). Many EGFP+ 

cells were also found along the edge of the cortex, likely in the pia mater (Fig. 13C, F), but 

they did not co-localize with CD31. Lastly, EGFP+ myeloid cells were located along the 

choroid plexus within the lateral (Fig. 14C) and 3rd ventricle (Fig. 14F), but again, did not 

co-localize with CD31. Altogether, this suggests that the blood-derived myeloid cells 

entered the brain through the microvasculature and located in the parenchyma, pia mater 

and the ventricles.  

 

3.6 White matter abnormalities found after repetitive concussion 

Silver staining is used to observe white matter tract abnormalities based on the idea 

that degenerating neurons become argyrophilic, meaning that they have an affinity for 

silver. Silver staining was also performed on a separate group of mice (uninjured controls 

and those that received 3 closed-head hits; n=3-4 per time point) and sacrificed 72h, 1 and 

2 weeks post-injury. The corpus callosum was mainly examined to detect axonal pathology 

as this structure is the main white matter tract in the brain. The silver staining data showed 

no visual axonal damage in the controls (Fig. 15A) or in the 72h mTBI brains (Fig. 15C). 

Additionally, a very small number of EGFP+ cells were found in the corpus callosum (Fig. 

15B, D). However, a noticeable increase in axonal injury was evident at 1 and 2 weeks 

following repetitive concussion as indicated by strings of small black staining beads (Fig. 

15E, G). The presence of EGFP+ myeloid cells was also clearly visible in the corpus 

callosum at 1 and 2 weeks after repetitive concussion (Fig. 15F, H).  

 

3.7 Repetitive concussion alters circulating monocyte and neutrophil frequencies in blood 

and spleen  



 

 

54 

Figure 12. Representative images of EGFP+ cells that are found in the brain parenchyma. 

EGFP+ cells are shown in green (A, D) and endothelial cells of blood vessels are shown in 

red (B, E). Merged images of EGFP and CD31 showed EGFP+ cells located in the 

microvessels as well as in the parenchyma, indicated by arrow heads (C, F). All images 

were taken on the confocal microscope at 63x magnification.  
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Figure 13. Representative images of EGFP+ cells that are distributed along in the edge of 

the cortex, in the pia mater. EGFP+ cells in the pia mater of superior and lateral cortex are 

shown in green (A, D) and endothelial cells of blood vessels are shown in red (B, E) and 

merged images of EGFP and CD31 are also shown (C, F). All images were taken on the 

confocal microscope at 63x magnification.  
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Figure 14. Representative images of EGFP+ cells that are found along the choroid plexus 

in the lateral and 3rd ventricles. EGFP+ cells are shown in green (A, D) and endothelial cells 

of blood vessels are shown in red (B, E) and merged images of EGFP and CD31 are also 

shown (C, F). All images were taken on the confocal microscope at 63x magnification.  
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Figure 15. Axonal pathology found in mTBI brains, 1 and 2 weeks following repetitive 

concussion. Silver staining was performed on control (A) and repetitive mTBI brains at 

72hr (C), 1 week (E) and 2 weeks (G). Adjacent EGFP fluorescent images of areas 

surrounding the corpus callosum are shown at the corresponding time points (B, D, F, H). 

The rounded black spots in panels A and C show the stained nuclei of the axons. The arrows 

in panels E and G indicate the silver varicosities while the arrow heads in panels B, D, F 

and H point to the EGFP+ cells in the corpus callosum. Images of silver stained sections 

were acquired at 40x magnification on the Olympus BX50 microscope and the fluorescent 

images were acquired at 10x magnification by the EVOS microscope.  

 

 
 



 

 

61 

 

 

 

 

 

 

 

 



 

 

62 

To investigate the effects of repetitive concussion on circulating neutrophils and 

monocyte subsets, the leukocyte frequencies in peripheral blood and spleen were assessed. 

Peripheral whole blood samples and spleens from the control, sham-injured and closed-

head 3 hit mice cohorts were stained and analyzed by flow cytometry. Cell populations 

were determined using gating strategies for flow cytometry to delineate specific 

populations of myeloid cells (Appendix 3). Initial gating selected for, live, single CD45+ 

hematopoietic lineage cells and negatively selected for myeloid cells by selecting out 

CD19+, CD3+, NKp46+ lymphocyte lineage cells.  After gating the myeloid cells for 

CD11b+Cd11c+ cells, this population was separated based on the expression of F4/80 or 

Ly6G. The F4/80+ population was then selected for CD115+ surface expression followed 

by Ly6C surface expression. Pro-inflammatory CD11b+F4/80+CD115+Ly6C+/hi and non-

classical monocytes CD11b+F4/80+Ly6Clo/+, while neutrophils are distinguished by 

CD11b+F4/80-Ly6G+. EGFP expression was detected in all relevant myeloid subsets, while 

EGFP was not detected in the blood-derived lymphocyte subsets of T, B and NK cells. The 

graphs show the percentages of each of the cell populations out of the total number of 

CD45+ leukocytes. The results showed that in peripheral blood, the classical monocyte 

frequency decreased significantly from 8h-1week post-concussion and increased back to 

control levels at 2w (Fig. 16A). The non-classical monocytes however, increased slightly 

up to 1week before significantly increasing at 2 weeks (Fig. 16B). The trend for neutrophil 

frequency was similar to the trend seen in classical monocytes, the neutrophils in 

circulation decreased from 8h-1week before significantly increasing at 2 weeks (Fig. 16C). 

However, in the spleen, while classical monocytes decreased slightly from 8h to 1week 

post-injury (Fig. 16D), non-classical monocytes (Fig. 16E) and neutrophil (Fig. 16F) 

frequencies remained at control levels at the same times but also increased after 2 weeks.   

 

3.8 Repetitive concussion causes some changes in the adaptive immune cells in blood and 

spleen  

To determine the effects of repetitive concussion on circulating lymphocytes, B cell, 

T cell and NK cell frequencies in peripheral blood and spleen were assessed. The gating 

strategy for the lymphoid panel is shown in Appendix 4. The cells were first gated for the 

EGFP- population, followed by single, live CD45+ cells, then CD19+ B cells, and finally  



 

 

63 

Figure 16. Innate immune cell frequencies in peripheral blood and spleen following 

repetitive concussion. Ly6C+ Classical monocytes, Ly6C- non-classical monocytes and 

Ly6G+ neutrophils were identified using flow cytometry. Circulating classical monocyte 

frequency were significantly decreased at 8h p=0.0162, 24h p=0.0089, 48h p=0.0141, and 

1week p=0.0052 post-injury (A), while non-classical monocytes significantly increased at 

2 weeks p=0.0002 (B) and neutrophils were also significantly increased at 2 weeks 

p<0.0001 (C). In the spleens, the classical and non-classical monocyte frequencies 

significantly increased at 2 weeks p=0.0231, p<0.0001 (D, E). One way ANOVA followed 

by Dunnett’s test was performed, significance was determined when *= p<0.05. Data is 

presented as the group mean  SEM with 6-10 mice per group. 
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Figure 17. Adaptive immune cell frequencies in peripheral blood and spleen. Using flow 

cytometry, lymphocyte subsets were identified; B cells as CD19+, T cells as CD3e+ and NK 

cells as Nkp46+.  Circulating B cells were significantly decreased at 24h p<0.0001 and 48h 

p<0.0001 (A), while T cells were found to be significantly increased at 1 week p<0.0001 

(B) and NK cells were significantly decreased at 8h p=0.0165 and 72h p<0.0001 (C). In the 

spleens, T cells and NK cells were both significantly increased at 2 weeks p=0.0073, 

p=0.0043 (E, F). One way ANOVA followed by Dunnett’s test was performed, significance 

was determined when *= p<0.05. Data is presented as the group mean  SEM with 6-10 

mice per group. 
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NKp46+ NK cells and CD3+ T cells. In peripheral blood, B cell frequency significantly 

decreased from 24h-48h following TBI (Fig. 17A), while T cells significantly increased at 

1 week post-injury (Fig. 17B). In the spleens, T cells and NK cells significantly increased 

at 2 week following repetitive concussion (Fig. 17E, F).  

 

3.9 Change in EGFP fluorescence in myeloid cells in the peripheral organs following 

repetitive mTBI 

To investigate whether repetitive concussion induced a systemic inflammatory 

response, livers, lungs and cervical spinal cords were examined for the presence of EGFP+ 

cells by quantifying the EGFP immunofluorescent signal. These organs were obtained from 

the same groups of mice from which the brains, blood and spleens were obtained. Alternate 

sections from these organs were imaged using fluorescent microscopy and analyzed using 

digital morphometry. The results from livers indicate that while concussion elicited a small 

increase in EGFP fluorescent signal, no significant difference between healthy controls and 

injured group were found at the indicated time points (8h-2w) (Fig. 18A). Some clusters of 

EGFP+ cells were found in both the controls and injured cohorts for all time points (Fig. 

18B, C). The results from the lungs revealed that repetitive mTBI lead to a significant 

increase in EGFP immunofluorescent signal at 24h (Fig. 19A). However, the EGFP 

fluorescence digital signal returned to baseline levels at subsequent time points (48h-2w). 

Representative images of lungs from controls and mTBI mice are shown (Fig. 19B, C). 

Next, the cervical part of the spinal cords of each animal were analyzed. The cervical region 

is the most superior part of the cord, that is directly attached to the brainstem. This area 

would likely be the most affected non-brain area from mTBI due to the close, anatomical 

proximity to the brain. The results indicated that the 3-hit repetitive brain injury caused 

significant accumulation of EGFP+ cells in and surrounding the spinal cords at 8h post-TBI 

(Fig. 20A). The EGFP immunofluorescence was greater than a 2-fold increase compared 

to healthy controls. This increase was also observed at 24h and 48h, however, to a lesser 

extent. At 72h, the EGFP fluorescence returned to control levels and by 2 weeks, it reached 

below control levels. Representative images of the spinal cords from controls and injured 

cohorts at 8h is shown (Fig. 20B, C). 
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Figure 18. No change in EGFP fluorescence of the myeloid cells in the liver following 

repetitive mTBI. No significant change in EGFP immunoreactivity was found in the livers 

between controls and injured mice cohorts (A). Representative images of the livers are 

shown at 10x magnification (B, C). Confocal images of EGFP+ cells (D) acquired at 63x 

magnification, along with DAPI (E), and EGFP merged with DAPI (F) are shown. One 

way ANOVA followed by Dunnett’s test was performed, significance was determined 

when *= p<0.05. Data is presented as the group mean  SEM with 4-5 mice per group. Two 

livers from the control and 72h cohorts were omitted from the analysis due to loss of 

integrity of the tissue samples.  
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Figure 19. EGFP+ fluorescence of myeloid cells increase in the lungs at 24 hours post-

repetitive concussion. A significant change in EGFP fluorescent signal was found in the 

lungs at 24h in the injured mice cohort p=0.00026 (A). Representative images of the lungs 

are shown at 10x magnification (B, C). Confocal images acquired at 63x magnification of 

EGFP+ cells (D), along with DAPI (E), and EGFP merged with DAPI (F) are shown. One 

way ANOVA followed by Dunnett’s test was performed, significance was determined 

when *= p<0.05. Data is presented as the group mean + SEM with 4-6 mice per group. 
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Figure 20. EGFP+ fluorescence of myeloid cells increase in the cervical spinal cord at 

8hours post-injury. Significant increase in EGFP fluorescent signal was found in the 

cervical region of the spinal cord at 8h p<0.0001, 24h p=0.0009, 48h p=0.045 following 

repeated mTBI (A). At 2 weeks, the EGFP immunofluorescence decreased significantly 

p=0.0015. Representative images of the spinal cords are shown at 10x magnification (B, 

C). Close-up confocal images of EGFP+ cells (D), along with DAPI (E), and EGFP merged 

with DAPI (F) are shown. One way ANOVA followed by Dunnett’s test was performed, 

significance was determined when *= p<0.05. Data is presented as the group mean + SEM 

with 4-8 mice per group. 
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CHAPTER 4 – DISCUSSION  

The overarching goal of this project was to investigate the temporal and spatial 

appearance of the local CNS and peripheral immune cells that contribute to the evolving 

inflammatory response following repetitive concussion. The closed-head mouse model of 

repetitive mTBI generated robust neuroinflammation and some evidence of systemic 

inflammation. By using the lys-EGFP-ki transgenic mice, I was able to track the most 

prominent inflammatory cells at acute time points following mTBI and distinguish the brain 

resident microglia from the hematogenous myeloid cells that extravasate into the brain 

parenchyma. Following three concussive impacts, the injured mice exhibited brain 

pathologies including significant accumulation of EGFP+ cells in the brain, activated 

microglia and white matter abnormalities at sub-acute time points, in the absence of gross 

lesions. Furthermore, the injury caused significant increases in EGFP+ cells surrounding 

the cervical spinal cord at 8 hours and in the lungs at 24 hours. Altogether, these results 

demonstrated that repetitive, mild closed-head injuries produced a robust inflammatory 

response in the brain as well as subtle but measurable inflammatory response in the 

periphery. This suggests that our model of repetitive concussion is useful for investigating 

human concussion and could be further explored to test anti-inflammatory therapies as a 

means of providing neuroprotection against secondary injury.  

This project investigated the early changes in microglial activity following repeated 

concussive injury. The link between multiple concussions and chronic neurodegeneration 

has been established in the literature, but, the acute pathological changes following mild 

brain injuries need to be further elucidated. Human studies have shown increased microglial 

and astrocyte activity through position emission tomography imaging in young NFL 

players, which indicate the early onset of neuroinflammation (149).  This emphasizes the 

importance of understanding the early changes seen in concussion which may help design 

future diagnostic approaches and therapeutics before neurodegeneration and 

neurocognitive decline. The results of my research showed that this model of concussive 

injury produced key pathological hallmarks of repetitive concussion in the absence of 

visible contusions and gross lesions. Just 8 hours following the last injury, there was 

significant microglial activity as shown by quantitative analysis, Iba-1 immunoreactivity 

was markedly higher in the mTBI brains compared to healthy controls. Whether this is due 
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to cell proliferation, increase in cell size or both is unclear and requires clarification with 

further experiments. It is known that TBI alters the activation state of microglia which is 

characterized by distinct morphological features, including extended processes, amoeboid 

and hypertrophied appearance of the cell body (150). Although this does not reflect the 

RNA expression profile phenotype, it is still considered as a marker for neuroinflammation 

as it indicates that the cells are responding to altered homeostasis. Supported by the Iba-1 

staining, mTBI brains had microglia that appeared amoeboid, hypertrophied and bushy 

compared to controls which showed ramified morphology associated with normal 

surveillance activity. This finding is in accordance with other studies of repetitive 

concussion (75). 

My data clearly demonstrated the infiltration of hematogenous myeloid cells into 

the brain following repetitive mTBI. Examining five different sections (500m apart) of 

the brain underneath the site of impact showed that EGFP immunoreactivity remained 

consistent between these sections. However, when observing the various areas of the brain 

structure within one section, areas near the site of injury (regions encompassing the superior 

cerebral cortex) and areas the most ventral from the site of injury (base of the brain) had 

the highest levels of EGFP fluorescent signal. I speculate that this could be due to the 

“coup-contrecoup” effect. Since the force transmitted by the impactor drives the head and 

consequently the brain downward, the coup injury occurred directly underneath where the 

impactor made contact with the skull and the contrecoup injury occurred on the opposite 

side, which is the most ventral part of the brain. However, the brain is immersed in cerebral 

spinal fluid that absorbs the shock from an injury and restricts any significant movement 

caused by an external force (151). To further investigate the concept of “coup-contrecoup,” 

the exact biomechanical measurements would be required. 

The EGFP+ myeloid cells were found in the brain parenchyma, along the choroid 

plexus of the lateral and third ventricles, in the pia mater, as well in the microvessels 

distributed throughout the parenchyma. Co-localization of EGFP+ and CD31+ cells in the 

parenchyma but not in the blood vessels associated with the ventricles or the pia mater 

suggests that the myeloid cells emerge from the brain microvasculature and relocate to 

other areas. The existence of perivascular, meningeal and choroid plexus macrophages was 

previously established in the literature (152). These are non-parenchymal macrophages that 
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mediate immune responses at brain boundaries. This explains the presence of EGFP+ cells 

in the control brains. However, during neuroinflammatory conditions, the myeloid cells 

accumulated significantly more in the parenchyma as well in other areas of the brain. 

Additionally, recent research showed the existence of lymphatic vessels in the meninges 

that could allow peripheral immune cells to enter and exit the brain as well (153).  

It is still controversial as to whether the presence and function of monocyte-derived 

macrophages are beneficial or detrimental to recovery following TBI. Traditionally, it was 

believed that the recruited peripheral immune cells were more damaging to the brain. Since 

the initial wave of infiltrating monocytes involved are likely pro-inflammatory innate 

immune cells (154), they are thought to be inherently pathogenic in the context of a sterile 

injury such as mTBI. Thus, numerous research efforts have focused on preventing the entry 

of monocytes and macrophages by suppressing CCR2 signaling pathway. Reports have 

shown that abrogating CCR2-mediated events, thus, impeding monocyte/macrophage 

recruitment reduced neuroinflammation and cognitive decline by altering the expression of 

pro and anti-inflammatory cytokines (155). Other studies have shown that impaired CCR2 

signaling prevented monocyte accumulation and this reduced cavity volume and axonal 

pathology following FPI (156). In contrast, some researchers have suggested that peripheral 

macrophages enter the CNS to modulate microglial activity and ultimately reduce 

inflammation post-TBI (157). This latter in vitro study showed evidence of monocyte-

derived macrophages engaging in cell-to-cell interactions with microglia where infiltrating 

macrophages provided ways to mitigate detrimental acute and long-term microglial 

mediated inflammation. This occurred through negatively regulating the NF-B signaling 

pathway in microglia to reduce inflammatory mediators (157). Further studies are required 

to functionally phenotype the hematogenous macrophages in the mTBI brain and this may 

shine light on the role that these cells play in the course of TBI resolution or TBI induced 

neurodegenerative disease development.  

My results showed that in mild concussion-like head injuries, neutrophils were not 

the most prominent myeloid cells to infiltrate the brain parenchyma. However, in the 

literature, experimental severe TBI lead to the upregulation and release of inflammatory 

signals that initiate neutrophil trafficking into the brain (158). Neutrophils are among the 

first peripheral immune cells to arrive to the site of lesion, usually within hours after the 
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initial impact. They have been shown to extravasate across inflamed vessels, or through the 

choroid plexus and circulate in the cerebral spinal fluid near the lesion (158, 159). 

Additionally, neutrophils predominately migrate from the brain vasculature to the 

ipsilateral leptomeninges and choroid plexus as early as 4 hours after the initial injury and 

enter the parenchyma from 24 to 48 hours (160). This is incongruent with my preliminary 

results, which showed no neutrophils in the mTBI brains at all examined time points. This 

difference could be explained by the much less severe injury in this model of concussion 

as opposed to a severe TBI from open-head injury employed in the studies described above. 

It is also possible that the neutrophils had already reached and underwent apoptosis after 

the first impact. Since the injury was delivered a total of three times and the earliest time 

the brains were examined was 8 hours following the last impact, the neutrophils could have 

potentially entered and left the brain within those hours. Thus, shorter time points should 

also be examined as well as the between the injury intervals.  

An important pathological finding that is consistent across the spectrum of TBI 

severity (161), as well as in both animal and human studies (162-164) is the selective 

damage to axons, known as diffuse axonal injury. While the entire brain suffers from the 

mechanical force and the whole brain is susceptible to tissue deformation, white matter 

tracts are at the greatest risk of damage due to their direction specific, highly organized 

structure (165). The tensile and shear forces from rotational acceleration can damage the 

long axonal tracts. TBI causes breaks in the microtubule structures within the axons which 

serve as anatomical tracks for protein transport (166). This leads to proteins piling up at the 

microtubule disconnections and the evidence of this can be discerned by the appearance of 

varicose swelling (164, 166). Although this model of repetitive mTBI induced linear 

acceleration, axonal pathology was confirmed in the corpus callosum with silver staining 

that specifically reveals the presence of axonal varicosities. DAI is an important secondary 

injury marker of repeated concussions that could explain the accelerated path to 

neurodegeneration (167-169). Interestingly, EGFP+ cells were also found within the corpus 

callosum where there was prominent silver staining axonal varicosities, suggesting a 

possible cell-to-cell interaction between the damaged neurons and peripheral myeloid cells.  

Although concussion is a CNS injury, the extracranial effects of TBI cannot be 

underestimated. In humans, damage to the CNS through acquired TBI can lead to the 
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development of a systemic inflammatory response, that may evolve into multiple organ 

failure (170). Out of which, lungs are the most affected organ, manifested by ARDS (170). 

Pulmonary dysfunction is a critical condition that affects 20-25% of all brain injured 

patients and is an important independent factor determining mortality (171). While this is 

a more common occurrence in moderate to severe TBI, the effects of mTBI on peripheral 

organs is just being elucidated. In this model of repetitive mTBI, a significant accumulation 

of EGFP+ myeloid cells 24 hours after injury was shown in the lungs. This is in agreement 

with other recent experiments showing significant interstitial neutrophils in a FPI model of 

mTBI (172). This latter study demonstrated that concussion primes the lungs for subsequent 

neutrophil-mediated injury in a mouse model of mTBI (172). It was shown that mTBI 

increased pulmonary susceptibility to secondary injury such as microaspiration of acid 

which was mediated by alveolar neutrophil influx that developed into pulmonary 

hemorrhage (172).  

Additionally, focal brain injuries have shown to elicit a rapid hepatic response 

(173). This suggested that the production of chemokines by the liver in response to TBI 

acts as an amplifier of the initial inflammatory cascade. In a rat spinal contusion model of 

spinal cord injury (SCI), liver inflammation was detected through increased pro-

inflammatory gene expression, increased CD68+ macrophages as well as increased serum 

alanine transaminase, which is used to detect liver damage (174). These pathologies 

indicated that SCI could produce chronic liver damage with symptoms that resemble those 

of nonalcoholic fatty liver disease. Although SCI pathologies differ from that of TBI, SCI 

is still an injury inflicted on the CNS that elicits an inflammatory response in the periphery. 

No significant changes in EGFP+ myeloid cells were seen in the liver in my experiments at 

acute time points, however, repetitive concussion may still induce liver inflammation. 

Thus, longer time points post-injury as well as other inflammatory markers should be 

investigated.   

Interestingly, a significant increase in EGFP+ myeloid cells surrounding the cervical 

region of the spinal cord was observed at 8 hours following repetitive concussion. Dr. 

Arthur Brown’s lab from Western University, ON, coordinated with engineers also from 

Western University to capture a high-speed video of the closed-head injury of concussion 

in slow motion. Due to the high-speed impact of the TBI device, at the moment of injury, 
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the head of the mouse rapidly accelerates up and down. This could create a strain on the 

spinal cord, since the cervical part of the cord directly attaches to the brainstem. This could 

potentially explain the accumulation of EGFP+ cells in this region of the spinal cord. 

However, conflictingly, DAI and EGFP+ cells increased in the brain at 1 and 2 weeks 

following repetitive concussion and not at 8 hours. Additional silver staining of the cervical 

spinal cord would be required to determine whether axonal injury correlates with the 

accumulation of EGFP+ cells in the spinal cord at 8 hours. This would determine whether 

concussion affects both the brain and spinal cord independently of each other regardless of 

their anatomical close proximity.  

Lastly, an early loss of circulating classical monocytes and neutrophils was 

observed at 8 hours which was sustained for a week after the injury. This decrease may be 

associated with these cells shifting from the blood into other organs and or brain since there 

was an increase in the EGFP+ cells in the lungs and cervical spinal cord. The sudden 

increase in the frequencies of these cells at 2 weeks could be explained by the animal 

attempting to replenish the initial loss of the EGFP+ cells. Less obvious, yet, similar trends 

were seen in the spleen as well, where the classical monocytes and neutrophils slightly 

decreased at the earlier time points before increasing at 2 weeks. Importantly, it should be 

noted that the results of this study yielded a much lower frequency value of both spleen 

monocyte and neutrophil populations. While normal, murine spleen monocyte cell 

frequency is reported to be between 3.5-5% and neutrophil frequency is between 4-6% of 

total leukocytes (175), frequency values for both in these experiments are 10-fold lower. It 

is difficult to speculate the reason for these discrepancies as all cohorts showed the same 

lowered values and thus, this part of the project must be redone. Some researchers have 

suggested that in an ischemic injury, there exists a separate population of infiltrating 

monocytes that originate from the spleen and not from the circulation (176). Hence, it is 

believed that the splenic population of monocytes will behave differently from the 

monocytes in circulation when activated or recruited to tissues. This is relevant for this 

study in that raises the question of where the EGFP+ cells that are found in the organs 

originate from and whether their functions differ depending on their origin.  

In addition to the myeloid cell populations, 3-hit model of concussion induced some 

alterations in the adaptive immune cell populations. While the B cell frequency in 
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circulation decreased from 24 to 48 hours, the T cells remained at control levels until a 

striking increase at 1 week. In the literature however, a handful of studies have shown no 

changes in the frequency, absolute number, or proliferative capacity of B cells following 

severe TBI (177-180). In contrast, severe TBI caused significant decrease in the percentage 

and absolute number of T lymphocytes in circulation (178, 181) observed within 24 hours 

of injury as well as 4 days. The differences found between my data and what has been 

reported in the literature could be explained by the severity of the injury in the concussion 

models.  Since the role of lymphocytes are not as extensively studied in the TBI literature, 

it is difficult to speculate on the changes seen in this model and remains as an area that 

needs to be the further explored. Lastly, although the sham-injured cohort was initially 

included in the experiments, due to the limited time of this study, the immunohistochemical 

results were not completed. A comparison to the sham-injured mice would be necessary to 

ensure that the effects of the injury were strictly due to the concussive impacts rather than 

from the effects of the anaesthesia and skin incisions.  

Possible future directions for this project could be extended from looking beyond 

the time points that were examined in my studies. The follow up experiments could 

investigate whether the accumulation of EGFP+ cells and axonal injury subside in the brain 

and identify the time-point associated with this attenuation. This could clarify the 

relationship between peripheral myeloid cells and axonal damage found in the white matter 

tracts and help delineate the complex role of myeloid immune cells in the chronic effects 

of repetitive mild brain injuries. Additionally, immunohistochemical staining should be 

performed to look for gross histological abnormalities. Furthermore, immunostaining brain 

sections for a marker of astrocytes with glial fibrillary acidic protein (GFAP) antibody 

would also contribute to the overall understanding of the different cell types that play a role 

in concussion. Equally as important as the pathological changes, concussion can result in 

negative cognitive changes in humans. Thus, behavioural tests should be conducted in 

mouse models to determine whether pathological changes correlate with behavioural 

changes. An example of such sophisticated behavioural test that could be used is the 5-

choice serial reaction time test. This is an advanced cognitive testing procedure applicable 

to rodents using the touchscreen technology. These tests would model whether the animals 

experience decreased mental concentration, slower reaction time by measuring their 
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attentional control (182) and cognitive flexibility (183). It is critical to use cognitive testing 

that is reflective and relevant to clinical populations. Lastly, sex differences in TBI 

pathogenesis should be further explored as there is much evidence to support sexual 

dimorphism in the neuroinflammatory response to TBI. Studies have shown that the 

inflammatory response in male mice after moderate-CCI differed in comparison to age-

matched females and exhibited greater myeloid cell infiltration and microglial activation 

(184). Along with TBI, Alzheimer’s disease and ischemic stroke injury all lead to sexually 

dimorphic outcomes, suggesting sex-related and specific inflammatory signals (185) which 

must be accounted for when studying these diseases.  

Collectively, my data demonstrated that repetitive, closed-head injury in mice 

produces several known pathologies attributed to human concussion including localized, 

brain-specific inflammation as well as some evidence of systemic inflammation. Using the 

lys-EGFP-ki transgenic mouse model, I characterized the temporal and spatial progression 

of the inflammatory process involving the brain resident microglia and monocyte-derived 

macrophages in the context of TBI pathology. In addition to neuroinflammation, this model 

of concussive injury produced diffuse axonal damage, which is another key hallmark of 

concussion. Finally, I concluded that repetitive concussion not only affects the brain, but 

also mobilizes the myeloid cells into other organs as well, potentially inducing a cascade 

of inflammatory events systemically. Overall, my project sets the stage for further 

investigation on the inflammatory response in the CNS and in the periphery. Understanding 

the time course of events that lead to these pathologies is critical for the development of 

targeted therapies that could impede the progression towards potential long-term 

impairments.  
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Appendix 

 

Appendix 1. Animal ethics approval. 
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Appendix 2. The Iba-1 antibody specificity. Panel A and B show different areas of the 

brain that are not Iba-1+ due to the lack of primary Iba-1 antibody. Panel C and D show Iba-

1+ staining in different brain regions when the primary Iba-1 antibody is added. This 

confirms the specificity of the Iba-1 antibody.  
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Appendix 3. Optimized gating strategy for identifying myeloid lineage cell populations in 

both blood and spleen via flow cytometry. First, the counting beads were separated from 

the cell scatter, then viable and single cells were selected. Myeloid cells were gated for 

CD45+CD11b+ and discriminated against CD19+, CD3+ and NKp46+ cells. Classical 

monocytes were identified as F4/80+CD115+Ly6C+GFP+, non-classical monocytes as 

F4/80+CD115+Ly6C-GFP+ and neutrophils are Ly6G+GFP+. 
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Appendix 4. Optimized gating strategy for identifying lymphoid lineage cell populations 

in both blood and spleen via flow cytometry. First, the counting beads were separated from 

the cell scatter, then EGFP+ myeloid cell populations were gated out to select for lymphoid 

cells. After viable cells, singlets and CD45+ cell population were selected, T cells were 

identified by EGPF-CD45+CD3+, B cells as EGFP-CD45+CD19+, NK cells as EGFP-

CD45+NKp46+. 
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