August 2019

A Novel Method for In Vivo Evaluation of Finger Kinematics for Analysis of Activities of Daily Living

Ahmed M. Tanashi
The University of Western Ontario

Supervisor
Lalone, Emily A.
The University of Western Ontario

Graduate Program in Biomedical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Engineering Science

© Ahmed M. Tanashi 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd

Part of the Biomechanical Engineering Commons

Recommended Citation
https://ir.lib.uwo.ca/etd/6295

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.
Abstract

This thesis examines the development of a six degrees of freedom finger coordinate system that employs electromagnetic tracking to measure finger kinematics. Secondarily, this thesis validated the in vivo finger coordinate system using a cadaveric study, with bone fixed trackers, as the gold standard. This thesis also compares the proposed method to the clinically used technique of manual goniometry. Lastly, this thesis examines the range of motion of individuals with and without hand arthritis during various activities of daily living, performed with and with joint protection program principles. This study presents a foundation for finger kinematic evaluation for in vivo use and describes a methodology that will be used for larger studies to be conducted to examine finger kinematics in various clinical and functional applications.

Keywords

Finger kinematics, landmark coordinate system, in vivo finger kinematics, activities of daily living, hand osteoarthritis, electromagnetic tracking, validation, functional tasks
Summary for Lay Audience

Finger kinematics is a common measurement in biomechanics to study the motion of objects. Measuring the motion of the finger bones and joints can be complicated because the hand is made up of many bones and is used a wide variety of tasks. In this thesis, a new measurement technique was developed and can be used to measure the motion pathway of the fingers in the hands when flexing and extending the fingers, but also when the hands are being used to perform an activity of daily living. This approach is novel because it can be applied to human subjects performing functional tasks. In order to ensure that the measurement technique is accurate and reliable, several smaller validation studies were also conducted. Following this, the new method was used to examine nine everyday tasks performed by both healthy participants and participants with hand osteoarthritis. Both groups performed the tasks normally and with a clinically used joint protection method. Joint protection programs are recommended to patients who have hand arthritis as they can reduce pain in the joints. However, no quantitative data exists as to their effectiveness, and they have not been updated to reflect current technology. A comparison between the recorded range of motion during these tasks was done.

In this study, the newly developed finger kinematic measurement technique is found to be comparable to finger kinematics measured clinically and is consistent with what is already presented in the literature. In terms of the clinical data, this study showed that the participants with hand osteoarthritis had less total range of motion (flexion/extension) in many of their joints. Participants with hand osteoarthritis also had less range of motion during some tasks in some of their joints. These findings are important as they show that individuals with hand osteoarthritis do perform tasks differently, and that they do have a more limited range of motion in their finger joints. It also shows that while some joint protection recommendations do decrease the range of motion, not all of them do, which may mean that these recommendations need to be updated.

This research has impact on the study of finger motion in people. Having a way to measure finger motion that is applicable to everyday tasks is important and is the foundation for many more potential studies on finger motion and diseases.
Co-Authorship Statement

Chapter 1: Ahmed Tanashi – sole author; Emily Lalone – reviewed manuscript

Chapter 2: Ahmed Tanashi – concept and design of study, acquisition of data, data analysis, interpretation of data, drafting of written document; Emily Lalone – concept and design of study, interpretation of data, reviewed manuscript; Louis Ferreira – concept and design of study, interpretation of data; O. Remus Tutunea-Fatan – concept and design of study; Mike Szekeres – concept and design of study

Chapter 3: Ahmed Tanashi – concept and design of study, acquisition of data, data analysis, interpretation of data, drafting of written document; Emily Lalone – concept and design of study, interpretation of data, reviewed manuscript; Louis Ferreira – concept and design of study, interpretation of data; O. Remus Tutunea-Fatan – concept and design of study; Mike Szekeres – concept and design of study

Chapter 4: Ahmed Tanashi – sole author; Emily Lalone – reviewed manuscript
Acknowledgments

This work would not have been possible without the help, support, and encouragement of many people. First, I would like to deeply thank my supervisor, Dr. Emily Lalone. I am so grateful for your support, guidance, and expertise throughout this undertaking. I am also blown away by the positive and innovative lab environment you fostered for not only myself, but everyone under your supervision. You have helped to solidify in me the skills, drive, and appreciation for the pursuit of positive and impactful change in health, healthcare, and any topics I may choose to apply myself to. Thank you also to my advisory committee members Dr. Louis Ferreira, Dr. Mike Szekeres, and Dr. O. Remus Tutunea-Fatan for the guidance and direction in my work, your input was invaluable in my learning experience.

Thank you to my parents, Arlene and Madi. Without them I would not have been able to accomplish what I have to this date, and their support has been unyielding during my time on this work. I am deeply grateful to them. I’d also like to thank my brother for listening to me talk about what I have done. Thank you as well to my partner Trina. You have been encouraging and supportive, and you helped to keep me focused and determined in my work.

I would like to also take this opportunity to thank the wonderful people in my network of friends and colleagues. Thank you to Michael Riddle for his help and support during participant testing, lively conversation in the lab, and always being willing to lend a hand with things. Thank you as well to Sara Holland, for being a person I could bounce ideas off and being there to help with participant testing. Thank you as well to Mohammad Haddara for helping with the motion simulator and cadaveric specimen testing. Thank you to Paulo for running my code for me during the busy summer. Thank you to everyone else in the Human Biomechanics Lab at Western. Thank you to the Hand and Upper Limb clinic at St. Joseph’s Hospital.

Thank you to all my family and friends, especially Peter, Joe, Geoff, Ron and Janice, Terri and Ross, Brad and Ryan and Scott, and my Tante for all their support.
Table of Contents

Abstract ... ii
Summary for Lay Audience .. iii
Co-Authorship Statement .. iv
Acknowledgments... v
Table of Contents .. vi
List of Tables .. ix
List of Figures ... x
List of Appendices .. xv
Symbols and Acronyms ... xvi
Chapter 1 ... 1
 1 Introduction .. 1
 1.1 Hand and Finger Anatomy ... 1
 1.2 Finger Kinematics ... 6
 1.3 Coordinate Systems and Definitions in Biomechanics ... 8
 1.4 Quantifying Finger Kinematics ... 9
 1.4.1 Finger Kinematics ... 9
 1.4.2 Kinematics Tracking Tools .. 12
 1.4.3 Skin Motion Artefact .. 14
 1.5 Hand Osteoarthrosis ... 15
 1.5.1 Treatment .. 16
 1.6 Rationale .. 19
 1.7 Objectives and Hypotheses .. 20
 1.8 Thesis Overview .. 22
Chapter 2 ... 23
Chapter 2

Development of a Novel Landmark Coordinate System Definition for Measurement of In Vivo Finger Kinematics

2.1 Introduction

2.2 Electromagnetic Tracking System

2.3 Finger Mount Development

 2.3.1 Mount Profile and Features

 2.3.2 Mount Fixation Method

2.4 Coordinate System Definition

 2.4.1 Coordinate System Selection

 2.4.2 Anatomical Landmark Definition

 2.4.3 Creation of Anatomical Frames from Anatomical Landmarks

 2.4.4 Calculation of Joint Motion

 2.4.5 Data Processing

 2.4.6 In Vivo Test Protocol

 2.4.7 Cadaveric Validation Study

2.5 Data Analysis

2.6 Results

2.7 Discussion

2.8 Chapter Summary

Chapter 3

Examination of In Vivo Finger Kinematics in Healthy and Arthritic Hands During Activities of Daily Living

3.1 Introduction

3.2 Experimental Apparatus

 3.2.1 Activities and Measured Variables

3.3 Experiment

3.4 Data Analysis
3.5 Results.. 56
3.6 Discussion.. 63
3.7 Chapter Summary .. 67
Chapter 4.. 67

4 Conclusion .. 67
 4.1 Summary... 68
 4.2 Limitations and Strengths ... 69
 4.3 Future Directions ... 73
 4.4 Significance.. 75
References... 76
Appendices... 85
Curriculum Vitae ... 124
List of Tables

Table 1: Landmark location descriptions... 28

Table 2: Transformation matrix descriptions... 32

Table 3: Active RoM for a healthy participant in full flexion-full extension motion....... 39

Table 4: Comparison of EM and goniometer measurement of joint RoM in a healthy participant (n=1, 3 trials) ... 42

Table 5: Relative motion of skin mounted EM sensors compared to paired bone mounted EM sensors.. 43

Table 6: Description of tasks, JPP recommendations, and assistive devices used 52

Table 7: Demographics data .. 57

Table 8: Mean (SD) RoM during finger flexion and extension of healthy participants and participants with arthritis ... 58

Table 9: Mean (SD)° RoM of participants during activities of daily living in Flex/Ext and Abd/Add directions for the Thumb (IP and MCP) finger segments. .. 58

Table 10: Mean (SD)° RoM of participants during activities of daily living in Flex/Ext and Abd/Add directions for the Index (DIP and PIP) finger segments. .. 60

Table 11: Mean (SD)° RoM of participants during activities of daily living in Flex/Ext and Abd/Add directions for the Middle (DIP and PIP) finger segments............................... 61

Table 12: Goniometer and EM tracking comparison in the Flex/Ext full RoM task........... 63

Table 13: Absolute differences between skin mounted trackers, bone mounted trackers, and goniometer measurements in the mannequin hand test .. 91

Table 14: Repeatability of in vivo landmark digitization protocol 95
List of Figures

Figure 1: Hand bone locations ... 2

Figure 2: Joints of the fingers ... 3

Figure 3: Collateral ligaments of the finger joints ... 4

Figure 4: Major intrinsic muscles for finger and thumb motion .. 5

Figure 5: Soft tissues surrounding the finger .. 6

Figure 6: Finger segments range of motion capabilities ... 7

Figure 7: Thumb segment range of motion capabilities .. 7

Figure 8: Examples of joint protection program recommendations and tools to avoiding positions that foster deformity .. 18

Figure 9: 3D printed finger mount - press fit design .. 25

Figure 10: Sensor placement in vivo ... 26

Figure 11: Anatomical landmark locations ... 30

Figure 12: Landmark frame creation .. 31

Figure 13: Visual representation of the flexion/extension range of motion calculation 33

Figure 14: Data processing flowchart ... 34

Figure 15: In vitro finger motion simulator setup .. 37

Figure 16: In Vivo Finger RoM measured for Flex/Ext motion ... 40

Figure 17: In Vivo Finger RoM measured for Abd/Add motion .. 40

Figure 18: In Vivo Finger RoM measured for Int/Ext rotation ... 41
Figure 19: Comparison of measured EM and goniometer Flex/Ext RoM for a healthy participant (n=1, 3 trials) .. 42

Figure 20: Comparison of bone and skin mounted EM tracker reported Flex/Ext RoM (n=1, 16-19 trials) .. 44

Figure 21: Comparison of bone and skin mounted EM tracker reported Abd/Add RoM (n=1, 16-19 trials) .. 44

Figure 22: Comparison of bone and skin mounted EM tracker reported Int/Ext RoM (n=1, 16-19 trials) ... 44

Figure 23: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking for the Flex/Ext RoM .. 45

Figure 24: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking for the Abd/Add RoM .. 46

Figure 25: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking for the Int/Ext RoM .. 46

Figure 26: Bland Altmann plot of goniometer and EM tracker reported Flex/Ext range of motion .. 62

Figure 27: Mannequin hand setup .. 89

Figure 28: RoM for mannequin hand .. 91

Figure 29: Bland-Altmann plot of the difference between bone EM tracking and goniometer RoM in the mannequin hand test .. 92

Figure 30: Bland-Altmann plot of the difference between skin EM tracking and goniometer RoM in the mannequin hand test .. 93

Figure 31: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking RoM in the mannequin hand test .. 93
Figure 52: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottlejpp task
Figure 53: Difference in Flex/Ext (black) and Abd/Add (blue) for the snap task
Figure 54: Difference in Flex/Ext (black) and Abd/Add (blue) for the lever tap task
Figure 55: Difference in Flex/Ext (black) and Abd/Add (blue) for the tap task
Figure 56: Difference in Flex/Ext (black) and Abd/Add (blue) for the tapjpp task
Figure 57: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task
Figure 58: Difference in Flex/Ext (black) and Abd/Add (blue) for the buttonjpp task
Figure 59: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentence task
Figure 60: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentencejpp task
Figure 61: Difference in Flex/Ext (black) and Abd/Add (blue) for the plug task
Figure 62: Difference in Flex/Ext (black) and Abd/Add (blue) for the key task
Figure 63: Difference in Flex/Ext (black) and Abd/Add (blue) for the spray bottle task
Figure 64: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottle task
Figure 65: Difference in Flex/Ext (black) and Abd/Add (blue) for the tap task
Figure 66: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task
Figure 67: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentence task
Figure 68: Difference in Flex/Ext (black) and Abd/Add (blue) for the plug task
Figure 69: Difference in Flex/Ext (black) and Abd/Add (blue) for the key task
Figure 70: Difference in Flex/Ext (black) and Abd/Add (blue) for the spray bottle task
Figure 71: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottle task
Figure 72: Difference in Flex/Ext (black) and Abd/Add (blue) for the tap task 122

Figure 73: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task 122

Figure 74: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentence task 123
List of Appendices

Appendix A: Iterations of 3D printed dorsal finger mount .. 85

Appendix B: *In vivo* participant test protocol .. 86

Appendix C: *In vitro* joint range of motion using a hand motion simulator (Table) 88

Appendix D: Mannequin hand proof of concept testing ... 89

Appendix E: Repeatability of generated coordinate system frames 94

Appendix F: *In vivo* electromagnetic tracking hand evaluation data collection sheets 96

Appendix G: *In vitro* finger motion simulator protocol ... 99

Appendix H: Graphical representation of joint RoM (SD) comparison between healthy participants and participants with H-OA ... 101

Appendix I: Difference in joint RoM between healthy participants and participants with H-OA ... 107

Appendix J: RoM differences in healthy participants performing tasks normally and with JPP recommendations ... 116

Appendix K: RoM differences in participants with hand osteoarthritis performing tasks normally and with JPP recommendations ... 120
Symbols and Acronyms

- **°** Degree(s)
- **%** Percentage
- **1D** One dimensional
- **2D** Two dimensional
- **3D** Three dimensional
- **4DCT** Four-dimensional computed tomography
- **Abd/Add** Abduction/adduction motion direction
- **ADL** Activities of daily living
- **ANOVA** Analysis of variance
- **CI** Confidence interval
- **CMC** Carpometacarpal
- **CT** Computed tomography
- **DIP** Distal interphalangeal
- **DoF** Degrees of freedom
- **EM** Electromagnetic
- **Flex/Ext** Flexion/extension motion direction
- **Int/Ext** Internal/external rotation motion direction
- **IP** Interphalangeal
- **JPP** Joint protection program
- **MCP** Metacarpophalangeal
- **mm** Millimeter(s)
- **MRI** Magnetic resonance imaging
- **H-OA** Hand Osteoarthritis
- **OA** Osteoarthritis
- **PIP** Proximal interphalangeal
- **RA** Rheumatoid arthritis
- **RoM** Range of Motion
- **RMS** Root Mean Squared
- **SD** Standard deviation
Chapter 1

1 Introduction

The hand is an end effector to a long kinematic chain extending from the trunk, to shoulder, elbow and then to the wrist. The human hand is used to manipulate, palpate, and interact with the world around us. The hand also allows us to grasp, pinch, and manipulate all manner of objects, and is comprised of many tissue types. The hand is important in daily function and independence, with problems due to disease causing physical and psychological impact on the health of an individual. Understanding the kinematics of the fingers is of great importance when looking at function and performance of tasks. One clinical application of measurement of finger kinematics is Hand Osteoarthritis (H-OA). It affects many individuals, and with the population aging, the proportion will continue to increase. Current methods of non-invasive treatment lack quantitative data obtainable through kinematic tracking and motion capture. This chapter will describe the finger anatomy, associated kinematics, osteoarthritis, and common treatments. Methods of biomechanical tracking and types of coordinate system definition are also described. Finally, the chapter concludes with the rationale, objectives, and hypotheses for this research work.

1.1 Hand and Finger Anatomy

The anatomy of the hand can be broadly grouped into that of the wrist, long fingers, and thumb. Within this document, the focus is entirely on the fingers, so these will be described in detail. The fingers consist of 19 bones, which make up the five digits (Figure 1). There are five metacarpals, five proximal phalanges, four middle phalanges (the thumb does not have one), and five distal phalanges\(^1\). The most proximal bones are metacarpals, and proceeding distally are the proximal, middle, and distal phalanges. The joints of the long fingers are located at the interface between each bone and are (from most proximal to most distal) the metacarpophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints. The main joints of interest in the thumb are the carpometacarpal (CMC), metacarpophalangeal (MCP), and interphalangeal (IP) joints\(^1,2\).
All discussed joints have articular cartilage that provides the gliding surface between joints that allows for smooth and pain free motion (Figure 2).

Figure 1: Hand bone locations
The bony segments of the hand: the metacarpals are in the palm of the hand (yellow), the proximal phalanges are distal to them (green), with the middle phalanges more distal (blue), and finally the distal phalanges are the most distal bones of the fingers (red). The thumb does not contain a middle phalnx.
The joints of the fingers: The carpals and metacarpals articulate, forming the carpometacarpal (CMC) joints. The metacarpals and proximal phalanges form joints termed the metacarpophalangeal (MCP) joints. The proximal and middle phalanges form the proximal interphalangeal (PIP) joints. The middle and distal phalanges form the distal interphalangeal (DIP) joints.

There are many soft tissues that surround and interact with the bones of the fingers. The joints of the fingers have collateral ligaments that serve to connect the bones across the joint, mostly present on the palmer and medial/lateral sides of the joint (Figure 3). There are also annular and cruciate pulleys that run along the palmer side of the fingers and insert into the distal phalanx. These pulleys keep the tendons that run along the palmar side of the hand close to the bone. Intrinsic muscles in the hand include the muscles of the thumb responsible for abduction, flexion, and opposition (abductor pollicis brevis, flexor pollicis brevis, and opponens pollicis) and adduction (adductor pollicis transverse and oblique heads) (Figure 4). The lumbricals are muscles that originate on the radial aspect of the flexor digitorum profundus and insert into the extensor expansions (palmar side). The dorsal and volar interossei are the muscles in the palm of the hand responsible for abduction
and adduction (respectively) of the fingers. The phalanges have no muscles within them, instead having tendons that attach them to muscles in the forearm (Figure 5). The extrinsic muscles on the palmer side of the forearm responsible for flexion are the flexor digitorum profundus and flexor digitorum superficialis. The extensor digitorum is the muscle primarily responsible for extension of the fingers, located in the dorsal side of the forearm.

Figure 3: Collateral ligaments of the finger joints
Figure 4: Major intrinsic muscles for finger and thumb motion

The muscles of the hand: the adductor pollicis, flexor pollicis brevis, abductor pollicis brevis, abductor pollicis longus, and opponens pollicis contribute to the Abd/Add motion of the thumb. The extensor pollicis brevis and flexor pollicis longus contribute to the thumb Flex/Ext motion.
Figure 5: Soft tissues surrounding the finger
A selection of soft tissues surrounding the bony anatomy of the finger include the extensor tendon, the fibrous sheath surrounding the fingers, and the flexor digitorum profundus (FDP).

1.2 Finger Kinematics

The joints of the fingers are hinge joints, with the active motion produced being that of flexion (bringing the finger segments toward the palm) and extension (bringing the segments away from the palm) (Figure 6). The exception to this joint type is the thumb CMC joint, which is classified as a saddle joint (Figure 7), and allows for active abduction and adduction of the thumb2,3. These joints are true hinges, as there is a small amount of joint laxity, allowing for small amounts of lateral (Abd/Add) and axial (Int/Ext) rotation4.

Figure 6: Finger segments range of motion capabilities
The (a) MCP joint for radial and ulnar deviation, and (b) DIP, PIP, and MCP joints for flexion/extension (lateral view).

Figure 7: Thumb segment range of motion capabilities
The (a) basal CMC joint for flexion/extension, radial/ulnar deviation, and circumduction and (b) IP and MCP joints for flexion/extension.
1.3 Coordinate Systems and Definitions in Biomechanics

To track the motion of an object, it is necessary to have a way of describing its position and orientation (pose) in space with respect to other objects or references. This is commonly done in biomechanics using a coordinate system and describing the motion of the object based on it. The cartesian coordinate system is used in biomechanics, describing the movement in terms of translations and rotations about three orthogonal axes. Coordinate systems are attached to rigid bodies, with bones being considered rigid bodies in most biomechanics applications.

Functional Frames

A functional frame is a frame definition that can be used in applications that involve joint motion. This type of frame has an axis aligned with the joint functional axis, or axis about which it rotates.

Landmark (Anatomical) Frames

A commonly used method of examining biomechanics, landmarks are used for local definition (individual bones, such as the metacarpal) of coordinate systems. This method is defined using palpable (typically bony) landmarks to create a coordinate frame that generally follows the global anatomical reference planes (frontal, sagittal, and transverse). These local definitions are used to compare the relative motion of one bone to an adjacent one, thus tracking the motion across the joint in question. Since this method typically uses bony landmarks, it is commonly used in *in vitro* test settings, where access to the bones is relatively easy. A unique advantage to using anatomical frames was highlighted by Goislard de Monsabert *et al.* stating that landmark definitions are applicable to cases of finger deformity or compromised joint motion.

Reference Frames

A reference frame definition is another approach to create coordinate systems used for kinematic analysis and in biomechanical assessment. This frame definition involves aligning the frame created with an external reference frame, external to the system being...
examined. This is typically done in a static postural pose. This approach is similar to landmark frames in the sense that landmarks on the bony segments must still be digitized\(^5\). This type of definition can report results that are not physiologically relevant, and this can be seen in joints with multiple DoF\(^5\).

1.4 Quantifying Finger Kinematics

There are many barriers in evaluating and quantifying finger kinematics. The fingers themselves are made up of many small rigid bodies, and associated degrees of freedom. Additionally, the fingers themselves are narrow and provide a very limited amount of surface area for attaching sensors to. Skin motion artifact may also be significant as the skin can be lax. The range of motion of the fingers is quite large compared to the size of the segments. This skin motion obscures the underlying bone kinematics in in vivo measurement\(^6\). Fingers also allow for the dexterous manipulation of objects and are what allow for execution of precise tasks and complex functions. This results in the fingers having very complex motion pathways that are difficult to capture\(^7\).

1.4.1 Finger Kinematics

One very prominent resource for defining finger kinematics and the associated frames is the International Society of Biomechanics (ISB). Specific joint coordinate systems for reporting a variety of joints in the upper extremity has been proposed\(^8\). In this previously developed coordinate system, the origin of the metacarpal coordinate system is defined as the location midway between the center of the head and base of the bone, at the center of the tubular section of the bone. The Y-axis is defined as the line parallel to the line from the center of the distal head to the midpoint of the metacarpal. The X-axis is defined such that the X-Y plane creates a sagittal plane that splits the metacarpal bone into mirror images. Finally, the Z axis is defined as the common perpendicular to the X and Y planes\(^8\). The coordinate systems for the remaining finger segments (phalanges) are created analogous to those of the metacarpal. This coordinate system definition requires bony landmarks that are not palpable in vivo, limiting its applicability.
Previous studies have examined the active RoM of the finger joints. Coupier et al (2016) reported kinematics of the long fingers and thumb. They reported Flex/Ext values of 64-114°, Abd/Add of 9-27°, and Int/Ext of 8-20° for the Flex/Ext motion of the long fingers. For the thumb, they reported Flex/Ext values of 59° for the MCP and 83° for the IP joint for the Flex/Ext motion of the thumb. One limitation noted in this study was the presence of skin motion. Carpinella et al reported values of 90-109° for Flex/Ext of the long fingers. They used passive optical trackers, examined five static postures, and did not consider the thumb. Bain et al. examined the active RoM of the long fingers in total Flex/Ext motion, and found values of 109° (MCP), 108° (PIP), and 90° (DIP) using a manual goniometer. The measurement method used meant that they could not perform continuous motion capture.

Quantification of finger kinematics in relation to functional tasks has been limited. A study by Buffi et al. looked to quantify the kinematics of the CMC joints, which are important for functional tasks. They used CT scans of one participant in a variety of hand positions in order to develop their model, and concluded that the fourth and fifth metacarpal has RoM in all three rotational axis. The kinematics of a thumb and index finger pinch have been quantified using optical tracking. The extension mean angle range from 15-34°, abduction angle from -2-25°, and axial rotation from -1-95°. Another study examined finger joint motion during a thumb and index tip-to-tip task, which reported approximate flexion extension values for the thumb TM (18-32°), thumb MCP (10-20°), thumb IP (23-33°), index MCP(40-80°), index PIP(35-55°), and index DIP(25-70°) across four participants. A study looking at the thumb CMC joint reported range of motion of 11-26° during lateral key pinch. Bain et al. examined the functional range of motion of the finger joints by examining 20 functional tasks from the Sollerman test of hand grip function. They examined only flexion/extension RoM, and found the functional envelope of motion to be 19-71° for the MCP joints, 23-87° for the PIP joints, and 10-64° for the DIP joints. Metcalf et al. proposed a markerless motion capture system for measurement of hand kinematics for home-based assessment. This system utilized a Microsoft Kinect camera and validated their approach against an optical tracking method utilizing the VICON system on one participant. Reported maximum error was reported as 10° (MCP), 12° (PIP), and 11° (DIP). A comparison between healthy and reduced function hands was done by
Leitkam *et al.* Passive optical trackers were used on 22 healthy participants and 21 participants with self-reported doctor-diagnosed arthritis in the hand. A comparison of the RoM of each group during a set of basic motions was done, with results indicating that participants with arthritis had decreased RoM compared to healthy individuals in the MCP (5.50°), PIP (6.88°), and DIP (19.42°)\(^{16}\).

Kinematic models of the hand have been developed to examine finger motion in various applications. A study by Leitkam *et al.* compared 9 healthy participants joint RoM to a computer model for all fingers of the hand. The participant joint RoM was reported as -13 to 60° for thumb MCP flexion, -28 to 100° for thumb IP flexion, -33 to 90° for index MCP flexion, -6 to 112° for index PIP flexion, -4 to 89° for index DIP flexion, -28 to 101° for middle MCP flexion, -6 to 120° for middle PIP flexion, and -2 to 97° for middle DIP flexion\(^{17}\). Sancho-Bru *et al.* proposed a dynamic model of the human finger to examine muscular forces. This model utilized optical tracking on one participant. They modelled the DIP and PIP joints as hinges, and the MCP joint as a 2DOF joint, with joint angles reported as approximately 50° (MCP), 100° (PIP), 50° (DIP), and 20° (MCP Abd/Add)\(^{18}\). A more developed application of this model was done by Sancho-Bru *et al.* to model grasping motions. The model was validated using a Cyberglove system (Cyberglove, Immersion Corp. San Jose, California, USA) while one participant grasped cylinders of different diameters. The joint angles reported for grasping one cylinder ranged from 13-20° for the MCP joints, 32-47° for the PIP joints, and 8-40° for the DIP joints\(^{19}\). Another study by Blana *et al.* utilized a kinematic model of the hand with experimentally-derived kinematics for motion control of a prosthetic hand. The model treated the fingers as rigid bodies connected by joints and simulated the formation of the letters A, B, C, and L in American Sign Language\(^{20}\). Barry *et al.* developed an index and thumb model for investigation of impairment. They created a model using 3D modelling software and validated it against cadaveric specimen force results\(^ {21}\), and focused more on musculature than kinematics directly.
1.4.2 Kinematics Tracking Tools

Any method of describing an object’s position, orientation, or both in space may be a kinematic tracking technique. There are a multitude of methods for tracking, however in this document the most relevant methods will be described.

1.4.2.1 Goniometer

Clinically, goniometry is a common method used to measure a patient’s finger RoM. It is a physical measurement tool, and joint angle is determined by aligning the arms of the goniometer across the joint in question. A study by Ellis et al. compared the reliability of goniometer measurement with another clinical measurement technique, composite finger flexion. For goniometry, they found that the intra-rater measurements were within 5°, and inter-rater measurements were within 9°.

1.4.2.2 Electromagnetic Tracking

Electromagnetic (EM) tracking in biomechanics involves the use of active-source systems. The system has a coil that produces an electromagnetic field. Sensors generally are comprised of three orthogonal magnetic sensor units, which when individually excited produce a component of the 3D vector that describes the sensors pose. This allows for estimation of the sensor location and orientation with respect to the source unit (coil). Electromagnetic tracking systems are susceptible to field distortions from metallic objects. An EM tracking system has been used for evaluation of trigger fingers and was reported as having positional accuracy of 1.8mm, and rotational accuracy of 0.5° (miniBirdTM electromagnetic tracking system, Ascension Technology Corporation, Burlington, VT, USA). Another study of knee kinematics used the FASTRAK (Polhemus, Colchester, VT), with accuracy of 0.2mm and 0.2°.

Electromagnetic tracking is an alternative approach for in vivo finger kinematics. It seeks to eliminate issues with line of sight, improve the wearability of the measurement apparatus, and provide information on skin motion. EM trackers take up a much smaller space on the finger when compared to inertial sensors, have been used in the measurement of trigger finger kinematics previously, and do not suffer from the line of sight restrictions.
of optical sensors. A direct comparison was made using a mechanical articulator to assess
the accuracy of EM tracking when compared to digital optical tracking. The examiners
used the gold standard known ranges of motion to compare both the optical and EM
trackers. From their results, they determined that measurements from both systems are
clinically comparable26. It is important to note, however, that they were using an articulator
designed to simulate the elbow, so the magnitude of the acceptable accuracy and precision
may be different than those required for the finger. The investigation also mimicked bone
fixation and did not consider skin motion.

1.4.2.3 Imaging

Imaging techniques can also be used to measure kinematics. Radiographic
techniques such as X-ray, computed tomography (CT), and magnetic resonance imaging
(MRI) can be used to examine position of bone and soft tissue in the body27,28. Four-
dimensional computed tomography (4DCT) can also examine the mechanics of the body
through a motion, providing continuous scanning capabilities. This type of motion capture
is referred to as osteokinematics29, but is limited to a small field of view and limited to the
types of functional tasks that can be examined. Reported in-plane resolution in a study
involving thumb CMC motion was 0.39mm29.

1.4.2.4 Inertial Tracking

Inertial tracking involves using the motion and orientation of the object to track the
motion. Commonly used inertial sensors contain three angular—rate gyroscopes (to
measure orientation) and three orthogonal accelerometers (to measure position). These
position values are fixed to the body frame, but can be transformed using orientations
obtained from the gyroscopes through a rotation matrix23. In biomechanics it is assumed
that both the accelerometer and the underlying body experience the same accelerations30.
Accuracy of inertial sensor pose has been reported, with the correct setup, to be 2° during
dynamic motion31.
1.4.2.5 Optical Tracking

Optical sensors are usually considered as two main types: active (emit light) and passive (reflect light). These systems are composed of the sources and the sensors. Sensors for optical tracking transform the sensed intensity and direction of light into voltages, and can map direction in either 1D or 2D, depending on the sensor type. To achieve 3D pose data using optical tracking, there must be 3 targets visible for each segment of interest, and additionally there must not be any obstruction that causes less than 3 targets to be visible to the cameras. Some ways to counteract this limitation have been to use effective and varied camera angles, increase the number of markers in a cluster, or changing the mounting geometry.

Many previous studies have relied on optical tracking to measure finger kinematics. These studies involved active or passive reflective markers attached to the surface of the skin to measure the joint kinematics. Optical tracking requires continuous line of sight with the sensors, which is difficult with the so many rigid bodies moving and moving in complex motion pathways. The number of joints within a relatively small volume also plays a factor and therefore the experimental setup must be highly controlled for the use of optical tracking. Alternatively, a previous study used an instrumented glove to measure functional range of motion. The size of the joints, motion pathways, and skin motion were all limitations presented by the authors. The use of bulky trackers may introduce unintended skin motion, fatigue, and produce awkward motion in the participant. Within a study assessing hand kinematics using inertial sensors, a comparison to an optical system was performed. Active optical markers were placed on top of the inertial sensors. The testing involved first full flexion of the index finger (80° RoM), then circular motions of the index finger while fully extended.

1.4.3 Skin Motion Artefact

Measuring in vivo kinematics requires skin mounted tracking techniques when using optical, inertial, or EM tracking systems. This however, results in skin motion relative to underlying bone, changing what is being tracked. This is known commonly as the skin motion artefact (SMA) or soft tissue artefact (STA), and contributes to error in
skin mounted measurement techniques. The effects of this are most severe when analysis involves movement, functional assessment, and cases where deformations may be large. There have been numerous studies attempting to address skin motion in other joints of the body. Benoit et al reported that procedures to compensate for skin motion are required to accurately capture the motion of the bony segments. There are currently no standards for STA reporting in the fingers, however a system has been proposed with a variety of metrics for standard comparison for any STAs35. Metrics such as root mean squared amplitude (RMS) and mean position vector are used35. One paper that examined finger STAs used optical tracking, and therefore reported skin motion in terms of the component translations, as well as a net translation27. They have reported magnitudes of skin marker translation as high as 10.9 mm. A study by Ryu et al. looked at skin motion utilizing MR imaging and skin mounted optical trackers27. The hand postures examined involved the neutral position and two cylindrical grasps of different diameters. They reported that while magnitude of skin motion (1-11mm) varied across healthy subjects, the direction was common, and primarily along the long axis of the finger, tending to move distally. One drawback is that they did not report the effect on the total pose of each marker set, but rather only the displacement. They also did not examine dynamic motion, but rather static positions in grip. Another study by Coupier et al. proposed a method of in vivo finger kinematic evaluation using optical tracking9. Movement examined included finger Flex/Ext and Abd/Add motion, and comparison of the skin mounted optical tracker data to CT data was done. This previous paper reported the STAs in 6DoF, with the mean difference in their three translations (x: 1-2mm, y: 1-10mm, z: 1-2mm) and three rotations (x: 2-7°, y: 5-17°, z: 2-9°) expressed in terms of their landmark coordinate system definition9.

1.5 Hand Osteoarthritis

Osteoarthritis (OA) is a disease of the whole joint which leads to breakdown of joint cartilage and the bone underneath. Though individuals may experience differing symptoms, common characteristics of OA are joint pain, stiffness, reduced RoM, and swelling36. This degeneration occurs due to the inability of the joint to maintain and repair the joint cartilage. Hand osteoarthritis (H-OA) is defined as OA affecting the IP and CMC joints of the hand37. Within the U.S, 40% of adults will likely develop H-OA in at least one
hand by the age of 8538. One study published by Haugen \textit{et al.} looked at H-OA in the general population using hand radiographs. Their results showed that, among elderly individuals, about 40\% of the population had radiographic H-OA, and over 90\% of those with H-OA at baseline had progression of the disease in a nine year follow up examination39. The incidence of radiographic H-OA was found to be around 34\% in this same population39. Another study examined the prevalence of H-OA and used imaging to determine diagnosis. Dahaghin \textit{et al.} found that around 60\% of the population (greater than 55 years of age) had radiographic H-OA in at least one joint28.

Diagnosis of H-OA is typically based on symptoms reported by patients and through confirmation using X-ray imaging. Imaging can show loss of cartilage, formation of bone spurs, and other changes commonly associated with H-OA.

Physical activity of the hand is important to maintaining the structural and functional capabilities of the hand. Without enough physical activity, joints weaken, become less mobile, and function decreases. As described earlier in section 1.2, pain and immobility due to the response to joint degeneration may impair and discourage the use of the hands. This lack of activity may contribute to the decrease in hand function and weakness of the affected joints37. Additionally, the joint may suffer from increased laxity, due to ligaments around the joint being stretched or damaged due to inflammation or degeneration.

\subsection*{1.5.1 Treatment}

\textbf{Conservative Management}

One popular non-invasive method of treating H-OA is the use of a tool or device to aid in daily function. Assistive devices include any component, grip, tool, or mechanism used or designed to help an individual perform a certain task. When applied to H-OA, the most common devices are those used to improve the ability of an individual to perform ADLs, allowing them to continue to function independently (built up handles for tools, altered grips of handles). These devices work by helping to keep the joints better aligned, as well as decrease the force or grip strength required to perform a task40. A study by Roda-
Sales et al. looked at the effect that various assistive devices had on ADLs. A camera system was used to collect data, and the arm and hand postures were classified qualitatively, with total time in each grasp/posture and total time completing each task being quantified. They showed a reduction in pinch grasps and an increase in palm contact through use of assistive devices41.

Another non-invasive method, commonly combined with assistive devices, is behavioral change. This can be accomplished by using a joint protection program (JPP)42. Often formatted as a pamphlet, booklet, or handout, these programs center around maintaining function, promoting independence, and preventing further damage through proper alignment of the joints. These programs typically have background knowledge on the disease, overarching principles (avoid positions that foster deformity, avoid tight gripping, avoid positions that put pressure on joints, avoid positions that put constant pressure on the joints, and a variety of behavioral changes), and lifestyle modifications (Figure 8) to help improve quality of life and maintain function42. Although these methods are thought to be effective, there has been no quantitative examination of joint deformity during functional tasks, and whether adherence to the advice given in JPPs is effective. The recommendations mentioned earlier are therefore not evidence based, and they represent the current best assumptions regarding the use and protection of the damaged finger joints.

Another non-surgical method of H-OA treatment is injection of some type of substance to attempt to reduce pain and/or improve mobility. These intra-articular therapies commonly use either corticosteroids or hyaluronic acid43. Currently, JPPs are implemented as a non-invasive form of OA treatment, but they have some notable deficiencies. The recommendations can be severely outdated, such as recommendations on the use of rotary phones42.

Examination of joint protection programs, activities of daily living, and functional tasks has been limited. Vergara et al. examined grasp types used during ADLs and reported usage and grasp type. They have reported that in an eight hour day, the pinch grasp is the most commonly used grasp, with it being highly utilized in activities involving food preparation and leisure activities44. It is important to note that no quantification of joint kinematics was done in this study. Another study by Amaral et al. looked at the
effectiveness of assistive devices against the standard information pamphlet about JPPs. This study measured performance primarily based on the Canadian Occupational Performance Measure and the Score for the Assessment and Quantification of Chronic Rheumatoid Affections of the Hands. They found that assistive devices were more effective for treatment than the information about joint protection40. A study by Gracia-Ibáñez \textit{et al} examined the functional RoM of individuals performing a variety of ADLs by using an instrumented glove. They reported absolute and functional range of motion, with an observation that in many cases the absolute RoM of the joints exceeds the functional RoM by more than 10\textdegree33. The use of a glove could have resulted in performance of tasks differently, as well as loss of accuracy due to the glove surface sliding with respect to the underlying skin.

\textbf{Figure 8: Examples of joint protection program recommendations and tools to avoiding positions that foster deformity}

\textit{Example joint protection recommendations:} When writing, the recommended modification is to use built up handles to help avoid the closed position and soften grip. When using tools, the same recommendation is made, with the added modification of avoiding pressing with the thumb along the handle of the tool.
Surgical Management

Hand Osteoarthritis can be treated, towards the end stage of this disease, using surgical management techniques. Finger joints may be replaced by implants or spacers, or the joint may be fused, which would eliminate movement altogether45. The finger joint replacements have been made with pyrocarbon45, degradable biomaterials46, and silicone47. The pyrocarbon implants were found to have issues with implant migration and limited effectiveness, resulting in Reissner \textit{et al.} (2014) no longer using the implants. The biomaterial implants were found to have complications in many study patients and had a high repeat surgery percentage46. Silicone implants have been the most studied and have been found to be very sensitive to ulnar deviation, which caused more wear and plastic deformation of the implant in a study conducted by Drayton \textit{et al.} (2016). There has been research into a surgical procedure involving specifically the thumb CMC joint, which is one of the most common locations for handOA48. This procedure involved denervation of the joint, and was shown to help decrease pain and improve function of the thumb48.

1.6 Rationale

Current methods of evaluation of \textit{in vivo} finger kinematics involve using a manual goniometer (clinical settings) or using optical tracking. A goniometer cannot be used during functional tasks49, optical tracking has line of sight constraints9,13,50, and inertial tracking is bulky and may restrict motion considerably30,50. Electromagnetic tracking seeks to eliminate these issues by providing non-obstructive, real time measurement that has no line of sight restriction. Application to functional tasks is of high importance, and EM tracking shows potential to be a successful option.

Previous authors have looked at quantification of skin motion artefact, reporting displacements with respect to the underlying bone9,27. Limitations of this research was that it only captured skin motion during basic motions of the fingers and was limited to the marker type tested (optical marker clusters). No research was found regarding EM tracking and skin motion, which is important in determining the feasibility of the technique for use. There is a gap in knowledge regarding skin motion of EM trackers during finger motion.
There is currently little quantitative analysis of the kinematic differences (or lack thereof) between normal motion and following a conservative management strategy (JPP techniques). This knowledge would be useful in helping to determine the efficacy of JPPs, improving different task recommendations, and examining new tools or techniques that are to be implemented. This may also help to address the issue of compliance to these JPPs, as patient compliance is low, and quantitative backing may help improve it.

Development of a novel method of describing in vivo finger kinematics that focuses on application to activities of daily living (ADLs) and patient specific definition can lead to a better understanding of kinematics of patients with H-OA. These advances can then be used in various clinical applications including examining the effectiveness of various joint protection programs in patients with hand arthritis, but also in the examination of finger kinematics in other fields (athletics, office environments, and so on). This research can also have application to design of ergonomic devices and equipment.

1.7 Objectives and Hypotheses

This research seeks to employ the use of electromagnetic tracking to examine finger kinematics (6 degrees of freedom) during functional tasks involving the hand in an in vivo biomechanical application. The objectives of this research are:

1. Proposal of an in vivo finger kinematic coordinate system, which employs landmark digitization to measure 6 DoF finger kinematics (Chapter 2).

2. Quantify soft tissue artefact and the effect it has on the proposed method (Chapter 2).

3. Validate the proposed method of in vivo tracking using a cadaveric model, with bone markers as the gold standard (Chapter 2).

4. Compare in vivo RoM reported by the proposed method to a clinically relevant reporting method (goniometer) (Chapter 2 & 3).

5. Examine finger range of motion in a sample of healthy individuals during a selection of activities of daily living (focused on the pinch and precision grasps)
using the proposed method to examine typical RoM values required to perform various functional tasks (Chapter 3).

6. To examine the how these RoM values change when H-OA is present and to quantify how deficiencies in joint RoM translates into functional tasks involving the fingers (Chapter 3).

7. To examine RoM changes when instructing individuals to perform tasks using current JPP principles, and whether the RoM associated with deformity (Abd/Add) changes (Chapter 3).

8. To examine differences in active RoM reported between healthy participants and participants with H-OA (Chapter 3)

Hypotheses

The hypotheses are closely tied to the objectives of this work. The threshold values in the hypotheses are given based on considering literature and guidance from an occupational therapist.

1. Skin motion will be comparable to literature values (no greater than 15mm total displacement) (objective 2)

2. The proposed method will be comparable to the gold standard used in this research, with less than 10° difference between the RoM reported (objective 3)

3. The proposed method will be comparable to goniometer measurement (within 5° for reported RoM) (objective 4)

4. Participants with H-OA will have decreased Flex/Ext RoM when compared to healthy participants when performing tasks (at least 10° in at least one joint) (objective 6)
5. Participants with H-OA will have decreased Abd/Add RoM when compared to healthy participants when performing tasks (at least 10° in at least one joint) (objective 6)

6. Use of JPPs will decrease the Flex/Ext and Abd/Add requirements in both healthy and H-OA affected hands (at least 10° in at least one joint) (objective 7)

7. Participants with H-OA will have reduced active RoM of the finger joints when compared to healthy individuals (at least 10° in at least one joint) (objective 8)

1.8 Thesis Overview

Chapter 2 describes the development of a novel in vivo landmark coordinate system approach to measuring finger kinematics. Results from a single participant baseline RoM examination and a single specimen cadaver test (to also measure skin-motion artifact) and are shown to investigate the capabilities of the EM tracking method for kinematic evaluation. This measurement method is evaluated against a manual goniometer, and in the cadaveric specimen also evaluated against bone fixed EM trackers.

Chapter 3 investigates the RoM and joint laxity of a small group of participants (n=10 healthy, n=9 with H-OA) performing ADLs. This chapter examines the effect of health status, task, and method of execution (normal or with JPP principles) on the finger joint motions. The methodology for measuring finger RoM from chapter 2 is applied here, and manual goniometer measurements are compared to EM tracker measurement for simple flexion/extension of the long fingers and thumb. Values are reported for total RoM of the thumb IP, thumb MCP, index DIP, index PIP, middle DIP, and middle PIP during a RoM baseline evaluation (flexion/extension motion), 9 ADLs, and 7 JPP variations corresponding to the ADLs selected.

Chapter 4 provides conclusions, strengths and limitations, and future directions of this research.
Chapter 2

Development of a Novel Landmark Coordinate System Definition for Measurement of In Vivo Finger Kinematics

In this chapter, a novel method for measuring in vivo finger kinematics is proposed. This involved the description of the sensors, fixation method, and landmarks used. Testing was conducted using a healthy participant (n=1), and a cadaveric specimen (n=1). Comparison between the novel method, goniometry and current literature values was done. Cadaveric testing was used to examine skin motion artefact contribution to reported RoM changes and to validate the EM tracking.

2.1 Introduction

Quantifying in vivo finger kinematics is a critical component in determining and assessing function of the hand13. When considering joint laxity, examining finger kinematics could provide insight into progression and severity of damage to the joint structures. It is also beneficial for improving kinematic modelling of the hand by providing more information of in vivo finger segment motion pathways7.

To measure finger kinematics, the International Society of Biomechanics had proposed standards for kinematic reporting and landmark palpation. They have since updated their recommendations (in 2005)8,51. It has since been reported that these landmarks are not practical for in vivo applications, as they are not easily accessed5,9,27,51. Many papers have reported their methods for landmark palpation or marker location, with no standard protocol being adhered to across research groups4,5,9,51.

The purpose of this study was to propose an in vivo landmark digitization protocol (objective 1) for use with EM trackers in kinematic evaluation, to quantify the soft tissue artefact for EM tracking of finger kinematics (objective 2), to validate the proposed method with a gold standard method of quantifying finger motion (objective 3), and to compare to a clinically relevant measurement tool (objective 4). Measurement of finger segment Flex/Ext and Abd/Add motion are variables of interest for in vivo testing. Reported RoM
differences between measurement methods are of interest in in vitro testing for examining the impact of skin motion.

2.2 Electromagnetic Tracking System

Data acquisition during all testing methods was conducted employing a 3D Guidance trakSTAR sensor system (Ascension Technologies Corporation, Trakstar, Northern Digital, Waterloo, ON, Canada). This tracking system utilizes a transmitter to create an EM field, within which the sensors operate. The sensors utilize orthogonal inductors, allowing for the pose of each sensor within the magnetic field to be tracked with 6 DoF.

The sensors used were model 180 2mm OD EM sensors purchased from the sensor system manufacturer. The manufacturer specified static accuracy of the sensor system was reported as less than ±1.4mm RMS, and ±0.5° RMS. The sampling rate of 120hz was chosen based on previous studies that investigated finger kinematics, which had sampling rate of 60-120hz7,34,50,52.

The data format retrieved from the TrakSTAR was chosen to be matrix format, having a position vector and a 3x3 rotation matrix. Sample code from the manufacturer was edited to allow for smooth data acquisition, as the demonstration application they provided did not have the correct formatting. The code allowed for sampling at a specified frequency for a specified duration of time, and the option to exit or collect more samples after each sampling period.

2.3 Finger Mount Development

2.3.1 Mount Profile and Features

Mount design was conducted in solidworks, and mounts were printed using a 3D printer (Figure 9). During the design phase, requirements and specifications were collected and used as a guide for the design process. Mounts were designed so they did not constrain mobility, had curvature that provided good skin contact, and had a hole for the sensor to be secured in using a press fit tolerance with the possibility of a liquid medical adhesive to be added. The skin mounting method utilized a medical adhesive in tandem with medical
tape to ensure a secure fit while maintaining the subject’s mobility as much as possible. Athletic tape was used to loosely secure sensor wires to the wrist in \textit{in vivo} applications, as this helped to reduce sensor shifting due to tension on the sensor wires.

\textbf{Figure 9: 3D printed finger mount - press fit design}

\subsection*{2.3.2 Mount Fixation Method}

The mount-skin interface was very important to consider. The mount/sensor assembly needed to be attached to the surface of the skin securely, to eliminate additional movement caused by slippage of the mount over the skin. To do this, a variety of methods were attempted. Medical tape wrapped around the finger and mount was attempted, and it was found that the adhesion was not enough nor consistent. Due to this, a medical grade adhesive (Mastisol) was investigated to supplement the adhesion provided through the medical tape. The adhesive was applied to the underside of the sensor mount and to the dorsal surface of the finger segment (Figure 10) before being attached with medical tape. This combination provided good adhesion to the skin, and was the method used throughout the remainder of this work to fix the sensor mounts to the skin surface.
Figure 10: Sensor placement *in vivo*

Sensors (in mount) were placed on the dorsal side of the hand, in approximately the center of the middle and proximal phalanges. The sensor was placed proximal to the nail in the distal phalanges.

2.4 Coordinate System Definition

2.4.1 Coordinate System Selection

As discussed in Chapter 1, there are three main types of coordinate system definition commonly used in biomechanical applications (functional, landmark, and reference). For this application, the following requirements were considered:

- The definition must be as accurate as possible
- It must capture motion in an anatomically relevant way
- The ability to examine laxity should be possible
- Easy to apply *in vivo*
• Cannot be invasive

• Must be applicable in cases of deformity of the joints

Accuracy of the system was an important consideration in this work, as the fingers are very small, and measurement of the motions may prove challenging due to their size. Additionally, it is important for making clinically relevant measurements, as being able to confidently quantify changes through time is important for rehabilitation and treatment purposes. It was important to capture motion in an anatomically relevant way, as without the anatomical reference, the range of motion values and components (Flex/Ext, Abd/Add, Int/Ext) would not be distinguished easily. In joint degenerative disease, as mentioned in Chapter 1, the joints and bony segments may undergo some degree of deformity as the condition progresses. Being able to examine this through the coordinate system definition was of interest. Joint laxity (Abd/Add motion) measurement is important for application to functional tasks. Being applicable in vivo while also being non-invasive were major considerations during design. The definition would not be practical if these two criteria were not met.

Through analysis of previous methods and consideration of the requirements discussed above, a landmark coordinate system definition was selected. Using this definition required the selection of landmarks on the finger segments in order to create the anatomically relevant frames for each bony segment, and in turn report the joint RoM measurements.

2.4.2 Anatomical Landmark Definition

Selection of the appropriate landmarks is essential for an effective coordinate system definition. The requirements defined to help aid in selection were:

• Easily accessible in vivo

• Easily identifiable

• Easily palpable
• Cannot cause pain or involve any invasive procedures

• Follows guidelines in the literature wherever reasonable

• Allows for simple creation of coordinate frames

To define the landmark coordinate system, information was taken from a variety of papers in the literature\(^8,51\), most notably one that compared functional, landmark, and reference coordinate system definitions\(^5\). The landmarks found in the literature were adapted to reference features noticeable \textit{in vivo} without the need for an invasive procedure or imaging. Since the landmarks described are all on the surface of the skin, they were easily accessed and palpated using the EM sensor used as a digitizer. Table 1 describes each landmark for each bony segment of interest in this work. Figure 11 gives a visual schematic of the approximate location of each landmark.

Table 1: Landmark location descriptions

<table>
<thead>
<tr>
<th>Thumb</th>
<th>Distal Phalanx</th>
<th>1. Center of the tip of the finger</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2. Medial bony flare, on the distal side of the IP joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Lateral bony flare, on the distal side of the IP joint</td>
<td></td>
</tr>
<tr>
<td>Proximal Phalanx</td>
<td>4. Medial bony flare, on the proximal side of the IP joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. Lateral bony flare, on the proximal side of the IP joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. Medial bony flare, on the distal side of the MCP joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. Lateral bony flare, on the distal side of the MCP joint</td>
<td></td>
</tr>
<tr>
<td>Metacarpal</td>
<td>8. Medial bony flare, on the proximal side of the MCP joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9. Lateral bony flare, on the proximal side of the MCP joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10. Medial bony flare, on the distal side of the basal CMC joint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11. Lateral bony flare, on the distal side of the basal CMC joint</td>
<td></td>
</tr>
<tr>
<td>Index Finger</td>
<td>Distal Phalanx</td>
<td>12. Center of the tip of the finger</td>
</tr>
<tr>
<td></td>
<td>13. Most medial point of the DIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14. Most lateral point of the DIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td>Middle Phalanx</td>
<td>15. Most medial point of the DIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16. Most lateral point of the DIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17. Most medial point of the PIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18. Most lateral point of the PIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td>Proximal Phalanx</td>
<td>19. Most medial point of the PIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Most lateral point of the PIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>Most medial point of the MCP joint, toward the distal end (try to palpate the bony bump)</td>
<td></td>
</tr>
<tr>
<td>22.</td>
<td>Most lateral point of the MCP joint, toward the distal end (try to palpate the bony bump)</td>
<td></td>
</tr>
<tr>
<td>Middle Finger</td>
<td>Distal Phalanx</td>
<td></td>
</tr>
<tr>
<td>23.</td>
<td>Center of the tip of the finger</td>
<td></td>
</tr>
<tr>
<td>24.</td>
<td>Most medial point of the DIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>Most lateral point of the DIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td>Middle Phalanx</td>
<td>Middle Phalanx</td>
<td></td>
</tr>
<tr>
<td>26.</td>
<td>Most medial point of the DIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td>27.</td>
<td>Most lateral point of the DIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>Most medial point of the PIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td>29.</td>
<td>Most lateral point of the PIP joint, toward the distal end</td>
<td></td>
</tr>
<tr>
<td>Proximal Phalanx</td>
<td>Proximal Phalanx</td>
<td></td>
</tr>
<tr>
<td>30.</td>
<td>Most medial point of the PIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td>31.</td>
<td>Most lateral point of the PIP joint, toward the proximal end</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Most medial point of the MCP joint, toward the distal end (try to palpate the bony bump)</td>
<td></td>
</tr>
<tr>
<td>33.</td>
<td>Most lateral point of the MCP joint, toward the distal end (try to palpate the bony bump)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 11: Anatomical landmark locations
Description of all anatomical landmarks developed: The distal landmarks consist of 3 per digit (yellow), and the middle and proximal landmarks consist of 4 per segment (orange and blue, respectively)

2.4.3 Creation of Anatomical Frames from Anatomical Landmarks

Each anatomical frame was defined in comparison to the corresponding tracker attached to the segment (i.e. the proximal index segment frame was defined in relation to the proximal index tracker, resulting in a transformation matrix from the sensor to the landmark frame. This frame was defined using the digitizations as nodes to create vectors between the digitizations (Figure 12). The long axis vector was defined as the vector between the midpoints of the proximal and distal pairs of digitizations respectively. In finger segments with three landmarks, the long axis was defined as the vector from the midpoint of the proximal or distal digitizations to the single digitization (at the finger tip for distal phalanges).
2.4.4 Calculation of Joint Motion

To report the angular motion of the joints, a comparison between the frames axis was considered. This was achieved by regarding the more proximal segment as “fixed” and tracking the motion of the vector between frames with respect to the proximal segments frame definition. The transformation matrix between the two segments was created through Equation 1, with each transformation matrix denoted as described in Table 2. It was important to translate the origin to the joint in question, represented by the midpoint of the vector between the proximal segment’s distal digitization points. Care was taken to ensure all manipulations were done within the same frame of reference. All frames and descriptions were done using Euler angle notation, with the rotation order corresponding to the Flex/Ext, Int/Ext, and Abd/Add rotations in order. The middle rotation was chosen to be the Int/Ext rotation as it is highly constrained. Through this method, the angular changes in the vector between the frames in each plane of the proximal coordinate system was considered as representing the Flex/Ext, Abd/Add, and Int/Ext rotations. Equation 1 shows the simplified transformations done to describe the rotation of the distal segment of the joint with respect to the proximal segment, within the proximal segment frame.
definition. As all measurement and descriptions were done in cartesian coordinate space, the required matrix manipulations and transformations were done between sensor, transmitter, and segment coordinate system descriptions to achieve the joint motion description (Figure 13). Computation was done using MATLAB.

\[
T_{DTP}^{P} = T_{PS}^{P} * T_{TP}^{PS} * T_{DST}^{TP} * T_{DSP}^{TP}
\]

(1)

Table 2: Transformation matrix descriptions

<table>
<thead>
<tr>
<th>Transformation matrix description</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_{DTP}^{P})</td>
<td>Transformation matrix from the proximal segment frame to the distal segment frame, in the proximal segment coordinate description.</td>
</tr>
<tr>
<td>(T_{PS}^{P})</td>
<td>Transformation matrix from the proximal segment frame to the proximal sensor frame.</td>
</tr>
<tr>
<td>(T_{TP}^{PS})</td>
<td>Transformation matrix from the proximal sensor frame to the transmitter frame.</td>
</tr>
<tr>
<td>(T_{DSP}^{TP})</td>
<td>Transformation matrix from the transmitter frame to the distal sensor frame.</td>
</tr>
<tr>
<td>(T_{DST}^{TP})</td>
<td>Transformation matrix from the distal sensor frame to the distal segment frame.</td>
</tr>
</tbody>
</table>
Figure 13: Visual representation of the flexion/extension range of motion calculation

2.4.5 Data Processing

The reported metrics were chosen to be in the form of an anatomically relevant kinematic comparison (joint RoM). In all data processing (Figure 14), a 6th order low-pass Butterworth filter with a cutoff frequency of 5 Hz was used to filter out background noise. A Butterworth filter was selected as it known to have a pass band that is very flat, and higher order filters better approximate the ideal 0 gain past the desired cutoff. The cutoff frequency was chosen based on similarity with literature for kinematic sensing in similar applications6,10,25,33–56.
Digitization and trial data were automatically sorted by sensor. To create the coordinate frames, each digitization was paired with the appropriate skin mounted sensor. The coordinates of each digitization with respect to the skin mounted sensor were used to create a long axis vector, proximal medial-lateral vector, and distal medial-lateral vector for each segment. The long axis and proximal medial-lateral vector were then crossed to get the anterior/posterior axis for the segment. This was then crossed with the long axis vector to get the final frame medial-lateral vector as shown previously. These steps created a coordinate frame for each finger segment, allowing for comparison between segments, resulting in the ability to calculate anatomically relevant RoM for each joint based on the segment kinematics.

Figure 14: Data processing flowchart
2.4.6 In Vivo Test Protocol

A right-handed participant (27, F) with no history of trauma or injuries to the hand participated in the study after signing consent. Nine 6 DoF EM trackers (Trakstar, Northern Digital, Waterloo, ON, Canada) were press fit into custom finger mounts, then attached to the dorsal side of the thumb, index, and middle finger segments of the dominant hand using medical adhesive and medical tape. The sensor wires were secured to the wrist using athletic tape, with enough slack that the participant could move freely. Landmark digitization was then done using another EM tracker as the stylus. The tip of the digitization sensor was held in place on each landmark for five seconds. The participant was instructed to rest their hand and forearm in a comfortable position before digitization took place. The participant’s hand remained stationary during each digitization but could be moved between digitizations. The hand was positioned with the forearm in a neutral position during digitization of the thumb landmarks for ease of access. The hand was positioned with the forearm in full pronation. After digitization, the participant was asked to perform two main motions, Flex/Ext of the long fingers and Flex/Ext of the thumb. These tasks were chosen as they have been previously used in finger motion evaluation. Each task was done three times, with EM tracker data collected simultaneously with the Flex/Ext measurements from a manual goniometer. The goniometer was used by a trained operator, and this operator was the same across all measurements.

2.4.7 Cadaveric Validation Study

Finger Motion Simulator

In order to examine skin motion effects, a previously developed finger motion simulator was used to simulate Flex/Ext motions using the cadaveric specimen’s tendons. Calibration of the flexion and extension endpoints were determined with the aid of a surgical fellow and set as the position parameters within the simulator. Since all tendons were attached to the same motors, full flexion or extension was not guaranteed for all finger joints, as damage to the cadaveric specimen due to excessive force was to be avoided. The simulator operated separate from the sensor system and data acquisition computer.
Data Acquisition

The TrakSTAR system was used in this experiment. The system consisted of four data acquisition boxes synced to one medium range electromagnetic transmitter. A total of 15 sensors were utilized simultaneously, with 7 “paired” based on the segment they were attached to, and the final sensor was used for landmark digitization.

Noise

Noise is created in the data through interference due to metals, especially ferrous metals. To mitigate this during the experiments, the area around the transmitter and sensors was kept as free from metal as possible. The only components that were metal were screws used for cadaver fixation, and the electronics and motors used to manipulate the cadaver hand. The EM tracking system reported noise along with the t-matrix output, allowing for continuous monitoring of the amount of noise present. The numbers associated with the amount of noise were reported in a unique scale created by the manufacturer. After consulting with the manufacturer of the data acquisition system, it was determined that noise at the level of 20 in their noise scale was significant noise. One solution that was found through trial and error was reduction of sampling frequency of the system, as the default was set to be 240hz, much higher than required. A sampling frequency was chosen to be 120hz, which is still high considering the motion being examined, but had the benefit of reducing the noise to 9-12 at the highest, which was viewed as acceptable by the manufacturer.

Experimental Protocol

One fresh frozen cadaver (Female, age 62) was thawed for 22 hours before the test. Radiograph images were examined by the surgical fellow to confirm there was no visible joint damage in the hand. On the testing day, the surgical fellow isolated the flexor and extensor tendons of the index, middle, and ring finger. These tendons were then sutured and attached to the finger motion simulator using 0-Vicryl. No soft tissue or muscle was removed from the cadaver during the entire test procedure. The specimen was then mounted and secured to the simulator using screws to hold the radius and ulna in place,
while the dorsal part of the hand rested on a foam block (Figure 15). Holes were then drilled to accommodate the bone mounted trackers, with the middle finger holes being tilted 45 degrees from the medial-lateral plane to prevent interference with the motion of the other fingers. The trackers were then press-fit into the drilled holes. The skin mounted trackers were press-fit into the finger mounts, and then attached to the dorsal side of the hand using tape and medical adhesive. A full cycle of motion was defined as beginning with the simulator in extension, simulating flexion to the surgeon specified endpoint, then simulating extension to the beginning position. In this study, the gold standard was bone-fixed EM trackers, and this was used to compare results from the skin-fixed EM trackers. Joint RoM reported by the bone and skin mounted trackers was compared for each joint for Flex/Ext, Abd/Add, and Int/Ext rotational directions.

Figure 15: In vitro finger motion simulator setup
The simulator used was previously developed by Mohammad Haddara under the supervision of Dr. Louis Ferreira. The simulator allows for the simulation of long finger flexion/extension.57

2.5 Data Analysis
Data were tested for normality of distribution using the Shapiro-Wilk test (SPSS v25, SPSS Inc, Chicago, IL) for the in vivo, and in vitro test data. The skin mounted tracker Abd/Add data did not satisfy the requirements for normality in the in vitro cadaveric test.
In Vivo Participant Test

EM tracker and goniometer reported RoM were examined for homogeneity of variance using Levene’s Test (SPSS v25, SPSS Inc, Chicago, IL). Bland-Altman plots were generated for difference between the EM tracker and goniometer reported RoM in Flex/Ext, Abd/Add, and Int/Ext respectively. A paired t-test was conducted to examine the difference between sampling techniques. Linear regression was done for each pair to look at correlation.

Soft Tissue Artefact

To examine the effect of skin motion on relative sensor motion, proposed guidelines by Cereatti et al. were followed. These guidelines use a metric called the RMS amplitude that is used in this work as well\(^\text{35}\). The metrics reported were the cartesian RMS amplitudes (x, y, and z axis) and the total displacement amplitude.

In Vitro Cadaver Validation

Bone mounted EM and skin mounted EM tracker reported RoM were examined for homogeneity of variance using Levene’s Test (SPSS v25, SPSS Inc, Chicago, IL). The Abd/Add RoM data did not satisfy this test. Paired t-tests (95% CI) were conducted on the range of motion data (Flex/Ext and Int/Ext) from all trials, with pairs being between the skin mounted and bone mounted RoM values for each rotation direction. A Related Samples Wilcoxon Signed Ranks Test was performed for the Abd/Add RoM comparison of skin mounted and bone mounted trackers. Linear regression was done for each pair to look at correlation, and Bland Altman plots were constructed for each RoM direction (Flex/Ext, Abd/Add, and Int/Ext rotation). The Bland Altman plots were used to identify if there were any trends in the variability of the data, and to give a general indication of the spread of the data as they show the difference between the measurement methods plotted against the average value reported.
2.6 Results

In Vivo Finger Motion

Table 3 shows the Mean and standard deviation (SD) of total active range of motion (RoM) reported for each finger segment (thumb, index and middle) for flexion/extension, varus/valgus, and internal/external rotation motions for a single participant (3 trials per motion). Comparison of participant Flex/Ext, Abd/Add, and Int/Ext RoM to literature values\(^9\) is shown in Figure 16, Figure 17, and Figure 18 respectively.

Table 3: Active RoM for a healthy participant in full flexion-full extension motion

<table>
<thead>
<tr>
<th>Participant Flexion/Extension Range of Motion (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
</tr>
<tr>
<td>StdDev</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participant Varus/Valgus Range of Motion (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
</tr>
<tr>
<td>StdDev</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Participant Internal/External Range of Motion (Degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>Avg</td>
</tr>
<tr>
<td>StdDev</td>
</tr>
</tbody>
</table>

All results are in degrees
Figure 16: In Vivo Finger RoM measured for Flex/Ext motion (Mean and (SD)) measured in (A) this study (n=1, 3 trials) compared to (B) literature values (n=20)°.

Figure 17: In Vivo Finger RoM measured for Abd/Add motion (Mean and (SD)) measured in (A) this study (n=1, 3 trials) compared to (B) literature values (n=20)°.
Figure 18: *In Vivo* Finger RoM measured for Int/Ext rotation
(Mean and (SD)) measured in (A) this study (n=1, 3 trials) compared to (B) literature values (n=20)⁹.

Table 4 shows the total RoM and mean absolute difference (SD) reported by the EM tracking system compared to the goniometer for the thumb, index, and middle fingers of the dominant hand during finger Flex/Ext. Within the current study, mean absolute differences (SD) reported in the thumb were 7°(2) (IP) and 6°(4) (MCP); index finger differences were 6°(6) (DIP) and 7°(4) (PIP); middle finger differences were 5°(4) (DIP) and 4°(3) (PIP). This is also visually displayed in Figure 19 for the Flex/Ext RoM.
Table 4: Comparison of EM and goniometer measurement of joint RoM in a healthy participant (n=1, 3 trials)

<table>
<thead>
<tr>
<th>Trial</th>
<th>Goniometer</th>
<th>Sensor</th>
<th>Difference</th>
<th>Goniometer</th>
<th>Sensor</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>65</td>
<td>73</td>
<td>8</td>
<td>65</td>
<td>63</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>65</td>
<td>5</td>
<td>60</td>
<td>69</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>70</td>
<td>63</td>
<td>7</td>
<td>65</td>
<td>72</td>
<td>7</td>
</tr>
<tr>
<td>Avg</td>
<td>65</td>
<td>67</td>
<td>7</td>
<td>63</td>
<td>68</td>
<td>6</td>
</tr>
<tr>
<td>StdDev</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial</th>
<th>Goniometer</th>
<th>Sensor</th>
<th>Difference</th>
<th>Goniometer</th>
<th>Sensor</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80</td>
<td>68</td>
<td>12</td>
<td>100</td>
<td>89</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>70</td>
<td>64</td>
<td>6</td>
<td>100</td>
<td>97</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>75</td>
<td>76</td>
<td>1</td>
<td>105</td>
<td>98</td>
<td>7</td>
</tr>
<tr>
<td>Avg</td>
<td>75</td>
<td>69</td>
<td>6</td>
<td>102</td>
<td>95</td>
<td>7</td>
</tr>
<tr>
<td>StdDev</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Figure 19: Comparison of measured EM and goniometer Flex/Ext RoM for a healthy participant (n=1, 3 trials)
No significant differences were found between the EM and goniometer reported RoM values (p=0.735, 95% CI [-2.3, 3.2]). Correlation between the measurements was good (R2 = 0.78).

Soft Tissue Artefact

Table 5 shows the Mean relative motion of the skin mounted sensors compared to the bone mounted sensors. Total translation ranged from 4-11mm. It is important to note that the bone mounted sensor in the middle phalanx of the middle finger broke during testing, so no data could be retrieved from it.

Table 5: Relative motion of skin mounted EM sensors compared to paired bone mounted EM sensors

<table>
<thead>
<tr>
<th></th>
<th>Distal Index</th>
<th>Middle Index</th>
<th>Proximal Index</th>
<th>Distal Middle</th>
<th>Proximal Middle</th>
<th>Distal Ring</th>
<th>Middle Ring</th>
<th>Proximal Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>total translation (mm)</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>x (mm)</td>
<td>4</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>y (mm)</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>z (mm)</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

In Vitro Validation

Figure 20, Figure 21, and Figure 22 show absolute differences in Flex/Ext reported in the index finger were 4°(3) (DIP) and 5°(4) (PIP); ring finger differences were 6°(4) (DIP) and 7°(4) (PIP). Absolute differences in Abd/Add reported in the index finger were 6°(5) (DIP) and 5°(3) (PIP); ring finger differences were 5°(4) (DIP) and 8°(12) (PIP). Absolute differences in Int/Ext reported in the index finger were 5°(3) (DIP) and 5°(3) (PIP); ring finger differences were 5°(4) (DIP) and 5°(4) (PIP).
Figure 20: Comparison of bone and skin mounted EM tracker reported Flex/Ext RoM (n=1, 16-19 trials)

Figure 21: Comparison of bone and skin mounted EM tracker reported Abd/Add RoM (n=1, 16-19 trials)

Figure 22: Comparison of bone and skin mounted EM tracker reported Int/Ext RoM (n=1, 16-19 trials)
Significant differences were found in the Flex/Ext (p=0.000, 95% CI [-5.4, 2.7]) and Int/Ext (p=0.000, 95% CI [1.7, 4.5]). No significant difference was found in the Abd/Add RoM comparison (p=0.490, 95% CI [-0.7, 2.2]). Linear correlation between measurements was good in Flex/Ext (R² = 0.82) and Adb/Add (R² =0.29), and low in Int/Ext (R² =0.15).

Bland-Altmann plots of the reported skin and bone mounted RoM are presented in Figure 23-Figure 25. There is no clear pattern of the spread of the data increasing or decreasing as joint RoM changes. The mean difference between the bone and skin mounted measurement methods was -4.0° (Flex/Ext), 0.8° (Abd/Add), and 3.1° (Int/Ext).

Figure 23: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking for the Flex/Ext RoM
N=1 hand, 89 measured comparisons across the index, middle, and ring fingers.
Figure 24: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking for the Abd/Add RoM
N=1 hand, 89 measured comparisons across the index, middle, and ring fingers.

Figure 25: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking for the Int/Ext RoM
n=1 hand, 89 measured comparisons across the index, middle, and ring fingers.
2.7 Discussion

The purpose of this study was to develop an in vivo landmark digitization protocol that employs EM trackers to measure finger kinematics (objective 1) and to then quantify skin motion artefact (objective 2) and validate measured finger kinematics using a gold standard (objective 3). Range of motion of six finger joints (including the thumb, index, and middle fingers) were presented from data collected on a single participant performing total Flex/Ext. Results are comparable to values measured using a manual goniometer for Flex/Ext total RoM across all joints to within 5° (objective 4), and absolute RoM values fall within ranges previously reported in the literature. The in vitro cadaver validation (comparing bone marker to skin marker) led to similar Flex/Ext, Abd/Add, and Int/Ext RoM values (mean differences lower than 7°) during the Flex/Ext motion. In the Bland Altmann plots, at least 95% of the data fell within the upper and lower limits, indicating a good result. Skin marker translation was found to be 4-11mm RMS. Through the results presented, the proposed method of in vivo finger kinematic tracking is equivalent to manual goniometer measurement and allows for the measurement of Abd/Add as well. Skin motion did not have a clinically significant effect on joint RoM (differences in cadaveric specimen reported joint RoM were less than 5°).

The finger RoMs reported in this study were compared to those reported in similar studies for Flex/Ext, Abd/Add, and Int/Ext. It was found that the Flex/Ext (67-95°), Abd/Add (5-30°), and Int/Ext (8-26°) values reported in in vivo testing paper were comparable to those reported in other studies. The values presented in this study agree with values presented in the literature review, however there are still areas where error could be introduced. The coordinate frames created for each finger segment will not always be perfectly aligned with the axis of rotation or the underlying bone, which could have introduced small errors in all rotation directions. Noise was present in the signal throughout testing and could have introduced error into the measurement as well.

Soft tissue artefact in finger Flex/Ext motion was examined in this paper, and reported as RMS difference to follow proposed standards in the literature. Ryu et al. used magnetic resonance imaging and optical tracking to examine skin movement of the metacarpal during Flex/Ext motion and found total motion up to 10.88mm. This was
comparable to the current paper, with skin movement reported below 12mm. An important
distinction to make is that the relative motion values give an indication of the magnitude
of skin motion, but do not necessarily indicate how much the reported RoM differs, as seen
in the in vitro validation. Since RoM values are close, and skin motion magnitude agrees
with the literature, skin motion does not affect the reported RoM by more than 5° on
average.

In vitro validation resulted in an examination of the difference in the finger joint
RoM reported by each method. A study by Metcalf et al. examined using markerless
motion capture for measurement of hand kinematics in home-based applications. They
examined the grasping motion for holding a cup, and found that their methods reported
joint angles with 10-12° maximum error when compared to their gold standard15. Chang et al. compared surface markers, geometric modelling, and fluoroscopy and found index
finger Flex/Ext RoM differences up to 9.7° between fluoroscopy and surface markers and
up to 7.34° between the geometric model and fluoroscopy58. This was comparable to this
current paper, with differences up to 7° in Flex/Ext RoM. The in vitro results in this paper
showed that skin motion does not severely impact the measured flexion/extension range of
motion through skin and bone fixed sensor comparison (mean difference less than 5°
on average). The Abd/Add and Int/Ext measurements made during the flexion/extension
motion were not severely impacted as well (mean differences less than 5° overall). It is
important to note that the difference in reported values could be attributed to several
limitations. Some error may be attributed to sensor accuracy and the higher amounts of
noise seen in the in vitro testing, but other factors, such as skin or bone (or both) trackers
slipping or moving unintentionally could attribute to the larger discrepancies. The cadaver
skin was much harder to apply tape to, even after wiping it down to try to increase adhesion
of the medical tape. This led to the use of a different, more adhesive tape that would not be
applied in vivo. This may have changed the kinematics of the experiment; however, it was
the best option to achieve the same effect as the in vivo application.

In cases where there was a statistically significant difference between groups being
compared, the 95% CI was examined to see if the difference reported was also clinically
significant. In all cases, the 95% CI range for the mean difference was always within 5° of zero. This is an acceptable level of difference between Mean RoM reported.

Previous studies measuring finger kinematics have also compared their results to other tracking methods. In this study, finger flexion and extension were measured using the EM sensors as well as using a hand-held goniometer. Coupier et al. compared their results with goniometer measurements and reported a mean difference of Flex/Ext 10°±14 between stereophotogrammetry and goniometer measurements9. Similarly, this current study reported a maximum difference in Flex/Ext of 11° for one joint. It is important to note that in both studies, this maximum was much higher than the values for mean difference and may indicate an issue with sensor or marker fixation. Nataraj et al (2013) compared a kinematic model to an optical marker set and found differences in the Flex/Ext angle reported as great as 19°±713. Both the in vitro and in vivo testing within this current study demonstrate smaller differences between skin mounted EM tracking and the comparison measurement for Flex/Ext RoM.

There has been research into the quality of goniometer measurement as a gold standard. McVeigh et al (2016) examined trained professionals in the field and found that goniometer measurements were not consistently measuring to ±5° of the measurements on radiographs49. The consistency of goniometer measurement may have influenced the statistical significance of comparisons that were not quite statistically similar. The in vitro validation conducted within this paper did a comparison that used bone mounted EM trackers as the comparison measurement. This increases the robustness of this study, showing that the measured angles of skin mounted trackers are comparable to those of bone mounted trackers for flexion/extension range of motion.

An alternative to landmark coordinate systems is utilizing screw displacement axis methods (also called helical axis). This is referred to as a functional frame and has been described in Chapter 1. Landmark and functional frames were compared in the literature, and they found that there was no significant difference between the two for examining motion5. In this paper, landmark frames were selected to allow for patient-specific
definitions. The use of a landmark frame definition in this study is done to help better capture deformity in the finger segments and joints.

The methodology of this study allowed for a robust examination of the use of EM tracking for in vivo finger kinematics. Utilizing cadaveric validation, in vivo testing, digitization repeatability, goniometer comparison, and literature comparisons helps strengthen the results obtained. The challenge of quantifying skin motion was considered using the cadaveric test and helped to examine the effect in this application. The in vivo methods focused on evaluation of the thumb, index, and middle fingers for in vivo application, which has relevance to pinch and precision tasks. These grips are utilized heavily in daily activities, with a study finding that the pinch grasp is the most frequently used grasp overall.

There are some general limitations in this study. The thumb was not simulated in vitro, as the simulator was not designed to simulate thumb motion. The Flex/Ext RoM was the only plane in which goniometer comparisons were done, as Abd/Add and Int/Ext were not done due to limitations of using a manual goniometer. The in vivo data is only pilot test data and may not completely capture the results of a larger sample group.

2.8 Chapter Summary

This chapter presented a novel method for digitizing landmarks on the finger in vivo, creation of anatomically relevant frames, and measurement of RoM using EM tracking technology. Pilot in vivo participant testing, in vitro cadaveric validation, and a skin motion artefact analysis was conducted. The measurement technique was determined to be able to measure in vivo finger kinematic RoM, and additionally was not severely impacted by skin motion.

To examine the in vivo finger kinematics of individuals during different tasks, this landmark definition methodology needs to be applied in a pilot study. A small sample of participants with and without H-OA should be recruited, and a selection of ADLs should be performed. The developed protocol offers the opportunity to examine the differences between healthy and arthritic joint RoM in real time, during ADLs.
Chapter 3

3 Examination of *In Vivo* Finger Kinematics in Healthy and Arthritic Hands During Activities of Daily Living

In this chapter, examination of healthy participants and participants with arthritis performing ADLs was performed. This involved utilizing the *in vivo* experimental protocol from Chapter 2 to examine the finger kinematics of healthy participants (n=10) and participants with arthritis (n=9) performing nine ADLs, with and without JPP principles applied. Joint RoM was compared between each group during each task. Additionally, a comparison within each group (healthy and H-OA) was done to examine RoM differences in the performance of tasks based on JPP principles. A comparison of goniometer and EM tracker reported RoM of the finger joints was also done.

3.1 Introduction

As stated previously in Chapter 1, there are many barriers to evaluating and quantifying finger kinematics, especially when functional tasks/motions are examined. It is important to examine finger kinematics during functional activities because the hand is the most used part of the body for ADLs\(^5\). Previous studies have quantified finger kinematics\(^9,10,13,16,17,60,61\), however kinematic analysis of functional tasks is still limited\(^5\). Studies that have examined functional tasks are limited by sample size\(^11,19,41,62\), variety of tasks examined\(^19,63\), joints examined\(^62,63\), and lack of quantitative joint kinematic data\(^41,44,64\). Comparisons between healthy participants and participants with a joint degenerative disease were also limited, and only considered in a few studies found\(^16\).

Therefore, the purpose of this study was to use the EM tracking system and novel landmark digitization protocol described in Chapter 2 to examine joint RoM during ADLs involving pinch and precision grip tasks (objective 5), to examine healthy and arthritic RoM requirements for these tasks (objective 6), to compare RoM and finger laxity between the two groups, and to compare the normal and JPP recommended methods of performing each ADL (objective 7). A comparison of joint RoM between groups was also done for the baseline active RoM measurements as outlined in the *in vivo* testing protocol of Chapter 2.
(objective 8). Finally, a comparison of goniometer and EM tracker reported RoM was done (objective 4).

3.2 Experimental Apparatus

3.2.1 Activities and Measured Variables

Activity selection was based on the selection of fingers to sensorize. In this study, the thumb, index, and middle fingers were to be examined, due to their relative importance in significant grasps such as pinching, which make up a larger proportion of hand postures used during ADLs. Nine activities of daily living (ADLs) were selected with input from an Occupational Therapist that used precision and pinch grasps and are commonly performed. The JPP recommendations were based on previously recommended techniques as well as the principles of JPP (Avoid positions that foster deformity, avoid tight gripping, and avoid positions that put severe pressure on the joints). Table 6 lists the tasks examined in this study, the associated JPP recommendations, and images of the tasks and assistive devices (where applicable).

<table>
<thead>
<tr>
<th>Task</th>
<th>JPP</th>
<th>Task Image</th>
<th>Assistive Device</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plug in/unplug an electrical plug</td>
<td>Keep wrist in neutral position, use multiple fingers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Unlock a doorknob with a key</td>
<td>Use assistive device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Task Description</td>
<td>Instructions</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Squeeze a spray bottle</td>
<td>Use multiple fingers</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Open a water bottle</td>
<td>Use assistive device</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Do up a snap</td>
<td>Do not do</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Turn a lever tap on/off</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Turn a standard tap on/off</td>
<td>Use the palm of the hand to apply pressure, keep wrist in neutral position</td>
<td></td>
</tr>
</tbody>
</table>
8. Do up a button on a shirt

Use assistive device

9. Write a sentence

Use assistive device

3.3 Experiment

Study Protocol

Ten healthy participants (mean age = 28) and nine participants with arthritis (mean age = 72) that met the inclusion criteria participated in this study after reviewing the letter of information and signing consent. Inclusion Criteria for healthy participants was over 18 years of age with no history of hand disease or injury. Participants with arthritis were chosen such that they were above the age of 18 and had a clinically diagnosed joint degenerative disease (H-OA, or both H-OA and rheumatoid arthritis).

Each participant then filled out a patient demographic form, and a patient rated hand and wrist evaluation (PRWHE) form. Data acquisition was conducted using the EM tracking system (3D Guidance trakSTAR sensor system, Ascension Technologies Corporation) investigated in Chapter 2. The sensor position, fixation method, and landmark
digitization followed the process outlined in Chapter 2. The participant was then asked to perform flexion/extension of the long fingers. Goniometer measurements were taken at full extension and full flexion. This was repeated three times. This procedure was then repeated for the thumb (full flexion, full extension, three repetitions).

Following the digitization and baseline range of motion testing, the participants were guided through the set of nine ADLs chosen for the experiment. In each task, the participant was instructed on what task they would be doing and asked to perform the task with no guidance from the examiner. They were then asked to repeat the task again.

As previously described in Chapter 1, joint protection programs are a self-management strategy to help individuals preserve their joints. Joint protection includes alternative movement patterns/strategies perform a task, which typically aim to reduce forces at the joint and avoid positions that foster deformity. The programs also include the use of assistive devices to protect the joints. In this study, individuals were asked to perform the ADL’s in their ‘normal’ way, and then individuals were given instruction on how to incorporate joint protection strategies in their next trial. The second trial for each method (normal and JPP) were included for analysis. Tasks were not randomized in this study.

Range of Motion Calculation

The post processing used to examine the joint RoMs was conducted as described in Chapter 2, repeated for the thumb, index, and middle fingers. Using this method of describing relative rotation across a joint, the Flex/Ext, Abd/Add, and Int/Ext rotations of each joint were calculated during each ADL.

3.4 Data Analysis

The results of this study examine Mean RoM in Flex/Ext and Abd/Add directions for n=10 healthy participants and n=9 participants with arthritis performing a variety of ADLs. It also examines differences between RoM based on health status and method of performance (uninstructed/normal vs JPP instruction). For statistical analysis, all significance values were based on an α=0.05 (two-tailed). For all analyses that include tests of normality and variance, the Shapiro-Wilk test for normality was used, and the Levene’s
test for equivalence of variance was used. Analysis was conducted using SPSS (SPSS v25, SPSS Inc, Chicago, IL).

To detect differences between healthy and H-OA affected RoM during baseline measurement an independent samples test was run. Since the data did not consist of only normally distributed data sets, the Mann Whitney U test for independent samples was run for each joint in the Flex/Ext and Abd/Add RoM values.

To detect differences between healthy and H-OA affected RoM during ADLs, a few steps were taken. First, all data was examined for normality and equivalence of variance. The data was not normally distributed in all cases, and not all cases satisfied the equivalence of variance test, so a non-parametric Kruskal Wallace test was used in the comparison of healthy and arthritic joint RoM during ADLs (for each joint, during each task).

To detect differences between normally performed ADLs and the same ADLs performed using JPP recommendations, a repeated measures analysis of the healthy and H-OA affected groups (respectively) was done. Since the data was not normally distributed, a non-parametric repeated measures Wilcoxon signed ranks test was done across all joints for each pair of tasks (plug, key, spray, bottle, tap, button, and sentence) for each group based on health status (healthy or H-OA affected).

To detect differences between EM measured RoM and goniometer measured RoM, a paired samples test was conducted. Both groups of data satisfied the normality and equivalence of variance tests, so a paired samples t-test was used.

3.5 Results

The primary objective of this study was to examine differences in RoM between healthy participants and participants with arthritis performing ADLs involving pinch and precision grasps that utilize the thumb, index, and middle finger. The secondary objective was to examine differences in RoM based on how each activity was performed (normal or with JPP recommendations). RoM values for the thumb IP and MCP, index DIP and PIP,
and middle DIP and PIP joints are presented for 10 healthy participants and 9 participants with arthritis performing 9 ADLs.

Demographics

Nineteen (19) participants (10 healthy participants; 9 participants with H-OA) were examined in this study (demographics data is shown in Table 7). Participants with H-OA were clinically diagnosed, with varying degrees of severity and joints affected. The PRWHE score was used to stratify the pain and disability of each participant's wrist/hand. In this study, the scores were grouped into 3 categories: a score of 0-20 was classified as low-no pain/disability, a score of 20-80 was classified as moderate pain/disability, and a score over 80 was classified as severe pain/disability. Through this scoring, the degree of hand related disability was quantified.

Table 7: Demographics data

<table>
<thead>
<tr>
<th></th>
<th>Healthy Participants</th>
<th>Participants with Hand Arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-35</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>36-50</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>51-65</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>65+</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Hand Dominance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Left</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Form of Arthritis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osteoarthritis</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Osteoarthritis + Rheumatoid Arthritis</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Patient Rated Wrist/Hand Evaluation (PRWHE)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Pain (PRWHE < 20)</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Moderate Pain (20 < PRWHE < 80)</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Extreme Pain (PRWHE > 80)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Missing</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Years Arthritis Diagnosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-10</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10+</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Unsure/missing</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Participant RoM

Mean RoM for healthy participants and participants with arthritis were collected during flexion/extension motion for the long finger and thumb (Table 8).

Table 8: Mean (SD) RoM during finger flexion and extension of healthy participants and participants with arthritis

<table>
<thead>
<tr>
<th></th>
<th>Flex/Ext</th>
<th>Abd/Add</th>
<th>Int/Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H</td>
<td>A</td>
<td>H</td>
</tr>
<tr>
<td>Finger Flexion/extension movement (SD)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thumb</td>
<td>IP</td>
<td>77(21)</td>
<td>70(18)</td>
</tr>
<tr>
<td></td>
<td>MCP</td>
<td>48(17)</td>
<td>43(18)</td>
</tr>
<tr>
<td>Index</td>
<td>DIP</td>
<td>71(19)</td>
<td>42(10)*</td>
</tr>
<tr>
<td></td>
<td>PIP</td>
<td>96(10)</td>
<td>78(17)*</td>
</tr>
<tr>
<td>Middle</td>
<td>DIP</td>
<td>82(18)</td>
<td>55(19)*</td>
</tr>
<tr>
<td></td>
<td>PIP</td>
<td>102(11)</td>
<td>80(30)</td>
</tr>
</tbody>
</table>

* Denotes significant differences when compared to healthy RoM (α=0.05)
H - Healthy participants A - Participants with H-OA

Participant RoM During ADLs

The RoM for each participant during each task was recorded. Mean RoM was reported for all joints, for all tasks (both performed normally and with JPP recommendations), within each status group (healthy and H-OA). A graphical representation can be found in Appendix H. Significant differences between healthy and H-OA RoM, healthy normal and JPP recommended task RoM, and H-OA normal and JPP recommended task RoM are visually presented. Differences between compared RoM values of 10° or more are also noted (Table 9, Table 10, Table 11)
Table 9: Mean (SD)° RoM of participants during activities of daily living in Flex/Ext and Abd/Add directions for the Thumb (IP and MCP) finger segments.

Red text indicates a difference of greater than 10° from the comparable healthy or normal RoM. Symbols represent the associated significant difference as indicated in the table legend.

<table>
<thead>
<tr>
<th>Task</th>
<th>Thumb IP</th>
<th>Arthritis</th>
<th>Thumb MCP</th>
<th>Arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Healthy</td>
<td></td>
<td>Healthy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flex/Ext</td>
<td>Abd/Add</td>
<td>Flex/Ext</td>
<td>Abd/Add</td>
</tr>
<tr>
<td></td>
<td>Normal</td>
<td>JPP</td>
<td>Normal</td>
<td>JPP</td>
</tr>
<tr>
<td>Plug</td>
<td>48 (25)</td>
<td>38 (23)</td>
<td>11 (8)</td>
<td>9 (4)</td>
</tr>
<tr>
<td>Key</td>
<td>73 (17)</td>
<td>51 (21) †</td>
<td>25 (8)</td>
<td>14 (5)</td>
</tr>
<tr>
<td>Spray</td>
<td>49 (30)</td>
<td>51 (29)</td>
<td>8 (2)</td>
<td>7 (2)</td>
</tr>
<tr>
<td>Bottle</td>
<td>40 (18)</td>
<td>47 (23)</td>
<td>12 (5)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>Tap</td>
<td>38 (25)</td>
<td>42 (18)</td>
<td>8 (1)</td>
<td>9 (4)</td>
</tr>
<tr>
<td>Button</td>
<td>29 (23)</td>
<td>26 (20)</td>
<td>8 (4)</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Sentence</td>
<td>41 (25)</td>
<td>40 (22)</td>
<td>6 (2)</td>
<td>8 (3)</td>
</tr>
<tr>
<td>Snap</td>
<td>35 (32)</td>
<td>7 (2)</td>
<td>30 (12)</td>
<td>8 (4)</td>
</tr>
<tr>
<td>Lever tap</td>
<td>32 (13)</td>
<td>9 (4)</td>
<td>31 (15)</td>
<td>9 (3)</td>
</tr>
</tbody>
</table>

* = significantly different from healthy RoM
† = significantly different from normal RoM for healthy participants
‡ = significantly different from normal RoM for participants with hand osteoarthritis
Table 10: Mean (SD)° RoM of participants during activities of daily living in Flex/Ext and Abd/Add directions for the Index (DIP and PIP) finger segments.

Red text indicates a difference of greater than 10° from the comparable healthy or normal RoM. Symbols represent the associated significant difference as indicated in the table legend.

![Table 10](image)

* = significantly different from healthy RoM
† = significantly different from normal RoM for healthy participants
‡ = significantly different from normal RoM for participants with hand osteoarthritis
Table 11: Mean (SD)° RoM of participants during activities of daily living in Flex/Ext and Abd/Add directions for the Middle (DIP and PIP) finger segments.
Red text indicates a difference of greater than 10° from the comparable healthy or normal RoM. Symbols represent the associated significant difference as indicated in the table legend.

<table>
<thead>
<tr>
<th>Task</th>
<th>Healthy Flex/Ext Normal</th>
<th>Healthy Abd/Add Normal</th>
<th>Arthritis Flex/Ext Normal</th>
<th>Arthritis Abd/Add Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug</td>
<td>67 (16)</td>
<td>21 (12)</td>
<td>45 (20)†</td>
<td>17 (7)</td>
</tr>
<tr>
<td>Key</td>
<td>80 (14)</td>
<td>27 (11)</td>
<td>54 (8)</td>
<td>31 (10)</td>
</tr>
<tr>
<td>Spray</td>
<td>46 (26)</td>
<td>11 (0)</td>
<td>30 (12)</td>
<td>8 (2)</td>
</tr>
<tr>
<td>Bottle</td>
<td>67 (30)</td>
<td>16 (9)</td>
<td>55 (9)</td>
<td>15 (6)</td>
</tr>
<tr>
<td>Tap</td>
<td>61 (20)</td>
<td>14 (5)</td>
<td>45 (14)</td>
<td>16 (6)</td>
</tr>
<tr>
<td>Button</td>
<td>70 (22)</td>
<td>12 (7)</td>
<td>48 (17)</td>
<td>12 (5)</td>
</tr>
<tr>
<td>Sentence</td>
<td>74 (14)</td>
<td>18 (10)</td>
<td>47 (11)</td>
<td>17 (5)</td>
</tr>
<tr>
<td>Snap</td>
<td>61 (31)</td>
<td>11 (6)</td>
<td>42 (14)</td>
<td>12 (3)</td>
</tr>
<tr>
<td>LeverTap</td>
<td>51 (27)</td>
<td>15 (8)</td>
<td>34 (11)</td>
<td>15 (5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy Flex/Ext Normal</td>
<td>84 (12)</td>
<td>25 (9)</td>
<td>60 (25)</td>
<td>19 (11)</td>
</tr>
<tr>
<td>Healthy Abd/Add Normal</td>
<td>87 (15)</td>
<td>21 (5)</td>
<td>55 (26)</td>
<td>20 (9)</td>
</tr>
<tr>
<td>Arthritis Flex/Ext Normal</td>
<td>45 (10)</td>
<td>18 (3)</td>
<td>53 (21)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>Arthritis Abd/Add Normal</td>
<td>19 (8)</td>
<td>21 (5)</td>
<td>47 (30)</td>
<td>13 (5)</td>
</tr>
</tbody>
</table>

* = significantly different from healthy RoM
† = significantly different from normal RoM for healthy participants
I = significantly different from normal RoM for participants with hand osteoarthritis
Goniometer Comparison

A comparison of the EM tracker RoM and goniometer RoM was made for the flexion/extension baseline RoM task. A Bland Altman plot was also constructed to show the spread of the data, with horizontal lines at the mean and two standard deviations to either side (Figure 26).

![Bland Altman plot of goniometer and EM tracker reported Flex/Ext range of motion](image)

Figure 26: Bland Altman plot of goniometer and EM tracker reported Flex/Ext range of motion

Mean differences between EM tracker reported RoM and goniometer RoM were also reported (Table 12). No significant difference was found between the measurement methods.
Table 12: Goniometer and EM tracking comparison in the Flex/Ext full RoM task

<table>
<thead>
<tr>
<th>EM and Goniometer Measured RoM Comparison (°)</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>95% Confidence Interval</th>
<th>p (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
<td>13</td>
<td>-3</td>
<td>2</td>
</tr>
</tbody>
</table>

3.6 Discussion

Joint RoM was quantified during nine ADLs in both healthy participants and participants with arthritis. The results compare well to similar studies in the literature. It is important to note that studies in the literature that have examined these tasks look at healthy participants only in most cases. Bain et al. reported the functional F/E RoM for 10 healthy participants performing 20 tasks as 19-71° (MCP), 23-87° (PIP), and 10-64° (DIP), and the active F/E RoM as -19-90° (MCP), -7-101° (PIP), and -6-84° (DIP)11. They reported total active RoM and functional RoM for the entire set of tasks performed and did not separate based on task or grasp type11. Leitkam et al reported significant differences in RoM in the Flex/Ext direction during a series of basic RoM tasks16. Stansfield et al. examined the upper limb kinematics of healthy participants performing 5 functional tasks at varying points of interest. They reported MCP joint angles of the long fingers, as well as thumb MCP and IP joint angles62. due to limitations of line of sight, they did not report the DIP and PIP values for the long fingers. A study by Tamara et al. looked at the kinematics of opening a jar. This study measured rotational contribution of each hand during restrained and unrestrained opening of the jar, and found that the restrained procedure changed the contribution of each hand to the task63.

Significant differences in RoM between healthy participants and participants with H-OA were found for a variety of joints during a variety of the ADLs examined. These results indicate there is a difference in how healthy individuals and individuals with H-OA perform the ADLs specified. These differences indicate that H-OA quantitatively affects the ability of an individual to perform ADLs. This finding agrees with current literature.
regarding kinematic differences in the hand between healthy and affected individuals. Leitkam et al compared healthy and reduced function hands. Their results indicated that participants with arthritis had decreased RoM compared to healthy individuals in the MCP (5.50°), PIP (6.88°), and DIP (19.42°)\(^{16}\). The study was limited in that it did not examine ADLs, but rather looked at different static postures.

When examining whether JPP recommendations affected how healthy participants performed ADLs, significant differences were found. This indicates that JPP recommendations change the way that healthy individuals perform ADLs from a kinematic perspective. When examining whether JPP recommendations affected how participants with H-OA performed ADLs, significant differences were found in specific joints during specific tasks. This indicates that JPP recommendations change the way individuals with H-OA perform ADLs from a kinematic perspective. Some JPP recommendations reduce the required RoM in some joints during the performance of some tasks. Roda-Sales et al. quantified hand and arm kinematics based on posture during ADLs, and how assistive device use affected time spent in each posture. They tested assistive devices for tasks such as unscrewing a bottle cap, using a tap, and eating with utensils. They found that assistive devices reduced the frequency of precision grasp use, and increased the use of power grasps\(^{41}\), as defined by Vergara et al\(^{44}\). They did not however, present quantitative values for the change in RoM used.

In this study, healthy participants have higher baseline RoM values when compared to participants with H-OA. Within the literature, studies have examined RoM of the fingers. When comparing these results to the healthy RoM reported in this research, it was found that the RoM was similar for the joints examined (PIP and DIP). It is important to note that Bain et al. does not report thumb RoM values. Leitkam et al. examined nine healthy participants and recorded RoM values for all finger of the hand using optical tracking. They reported total joint F/E RoM for the thumb IP (128.0°), thumb MCP (73.3°), index DIP (92.5°), index PIP (117.6°), middle DIP (99.5°), and middle PIP (126.0°)\(^{17}\), all of which are higher than those reported within this research or within other joint RoM papers. It is
possible that these differences are due to the small sample size of this work and the definition of full flexion and full extension. A study by Gracia-Ibáñez et al. examined RoM of the finger using a glove during a variety of tasks. They reported participant F/E RoM to be 114.5° (thumb IP), 47.1° (thumb MCP), 112.6° (index PIP), and 103.3° (middle PIP)33. These values are slightly higher than those reported in this research, which may be due to differing methods of testing full extension and full flexion of the finger joints. The study did not look at Abd/Add RoM for joints other than the MCP joints of each finger. A study by Coupier et al. examined RoM of the long fingers in the Flex/Ext and Abd/Add directions. They reported Flex/Ext RoM in 20 healthy participants for the thumb IP (83°), thumb MCP (59°), index DIP (64°), index PIP (100°), middle DIP (81°), and middle PIP (108°), and Abd/Add RoM for the thumb IP (15°), thumb MCP (10°), index DIP (17°), index PIP (9°), middle DIP (9°), and middle PIP (9°). These values agree well with the results of this chapter, as ADLs were examined, which are expected to increase the Abd/Add motion of the joints.

When comparing between goniometer and EM reported joint angles, the mean difference was less than 5°, and there was no significant difference between the measurement techniques. This result confirms results presented in chapter 2 that state the EM tracker estimated joint RoMs are similar to those provided by a manual goniometer for Flex/Ext. This is a clinically relevant comparison, as goniometers are the most commonly used reference tool for joint RoM evaluation in practice49.

Within this study, there were many RoM comparisons that were not statistically significant that reported RoM differences of 10° or greater. These values indicate that there is opportunity for future studies to investigate these tasks/joints to examine the differences more closely. When results are reported, statistical as well as clinical significance are important. Currently, goniometer accuracy is clinically accepted as ±5°68. When discussing clinically relevant joint RoM change, many more factors are considered in addition to the accuracy of the measuring instrument. The joint total RoM is also considered, as the amount of change that is seen may be compared to the total RoM such that a larger change
may need to be seen in more mobile joints for it to be considered clinically significant. Generally, 10° of change in a finger joint’s RoM is considered clinically significant. Another factor examined in clinic is how receptive a joint is to being stretched when heat is applied. This is commonly tested using the modified weeks test. This helps to better inform a clinician’s decisions when looking at recovery from an injury but may also have application to degenerative diseases. In almost all tasks, at least one finger joint showed a difference of greater than 10° in Flex/Ext RoM when comparing healthy and H-OA, as well as when comparing between normal and JPP recommended motion techniques. Though these were not always statistically significant differences, they show that this approach has promise as a clinically relevant tool.

An important distinction to mention is total RoM and functional RoM. This research measured total range of motion for each task, as participants returned to a fully extended position after each task was completed. Other literature has examined the functional RoM of the fingers, and is a consideration for future research.

This research looked at only the thumb, index, and middle fingers. This was done for a variety of reasons. Each EM tracker has a physical wire that must be connected to the DAQ boxes. When examining the test protocol, it was found that attaching sensors to the 3 digits specified took about 10 minutes, in addition to the time needed to conduct the digitization protocol. Increasing the protocol length was a concern, as the possibility of fatigue was a concern. Additionally, a study examining grasping techniques during a work day found that pinch grasps were the most frequently used grasps. This informed the decision to proceed by examining the thumb, index, and middle fingers in this study, and does not rule out the possibility of examining the other fingers in future work.

When examining demographic data, the mean age for the healthy participants was much lower than that of the participants with H-OA. This was a limitation of the study, as a confounding factor of age was not controlled for. Additionally, study participation requirements were not very strict, resulting in the potential grouping of individuals with varying severities of H-OA, varying ages, and varying functional impairment. This may
have increased the spread of the data and may have caused RoM differences to become less apparent in the small sample set.

Soft tissue artefact and goniometer accuracy were limitations as discussed and characterized in Chapter 2. These areas of variability increase the amount of error present in the experiment. The lack of an imaging gold standard, such as CT, was a limitation. The data was compared to goniometer measurement and literature sources to check agreement; however, CT data would provide a much stronger comparison. This was not done due to constraints as well as the desire to not require imaging for this protocol. Another limitation was that, although the individual administering the test procedure was experienced with the use of a manual goniometer, they were not a clinician. Inaccuracies or increased error may have resulted from this during the goniometer measurements. Noise in the EM tracker signal was also a limitation. Sources of noise were kept to a minimum in all cases, removing any metal in the area when possible. Additionally, a Butterworth low pass filter was used to filter out high frequency background noise to improve evaluation of the RoM.

3.7 Chapter Summary

In this chapter the novel method for measuring finger kinematics in vivo was applied to a small group of participants. Nine tasks were completed, each with and without the JPP recommendations available (when possible). The results showed that individuals with H-OA have reduced RoM in some joints and that JPP recommendations change how both healthy participants and participants with H-OA move one or more of their thumb, index, and middle finger joints during certain ADLs (Table 9, Table 10, and Table 11). These results indicate more investigation into the kinematic differences resulting from JPP application is necessary, and additionally whether these principles are beneficial to healthy individuals as well.

4 Conclusion

This chapter provides a summary of the work presented in this thesis. A review of the objectives and hypothesis from Chapter 1 is presented. It then provides a discussion of
the strengths and limitations of the work, followed by a discussion of future directions considered, and finally closes with the significance of this research.

4.1 Summary

Studies have examined finger kinematics and ADLs. Previous studies have been limited by a variety of factors, such as landmark access, task diversity, and sample size. Additionally, JPPs lack quantitative backing, and limited research has been done on the effect of joint disease and JPP application on finger kinematics. The most utilized method of measuring finger kinematics is currently optical tracking systems, which suffer from line of sight restrictions, limiting the applicability to functional tasks at times. The application of EM tracking to in vivo finger kinematic tracking during ADLs has not yet been assessed.

Proposed in Chapter 2, the novel landmark coordinate system developed in this thesis was designed specifically for use in vivo, with easily palpated landmarks. The digitization protocol was used in conjunction with 6 DoF EM trackers and allowed for anatomically relevant kinematic tracking for Flex/Ext and Abd/Add motions (objective 1). Quantification of STA effects on joint RoM (objective 2) was accomplished through cadaveric specimen testing, reporting a maximum RoM difference of 7°, and a maximum magnitude of skin motion of 11mm. This agreed with the hypothesis that differences due to skin motion would be less than 10°. An in vivo pilot study and a cadaveric validation study (objective 3) were conducted to examine the applicability of the proposed coordinate system definition to in vivo finger kinematic measurement. This was less than the 10° cutoff hypothesized. Through the in vivo testing protocol, it was found that EM reported RoM values were within 5° of manual goniometer reported measurements (objective 4), as hypothesized.

Chapter 3 used the procedure examined in Chapter 2, examining the RoM requirements of healthy participants and participants with arthritis during nine ADLs (objective 5). A comparison based on health status was conducted (objective 6), as well as
a comparison of the method used for task completion (objective 7) (normal or with JPP recommendation). There were significant differences in at least one joint across tasks in the Flex/Ext direction. There were no significant differences in joint RoM in the Abd/Add direction. Range of motion requirements are statistically different in Flex/Ext for some joints in both participant groups based on the method used in each task (normal or with JPP recommendation). Differences were also reported that were greater than 10° in Flex/Ext RoM based on task performance. This indicates that JPP techniques have a measurable effect on the kinematics of the fingers in the Flex/Ext direction. This supports the hypothesis that JPP techniques decrease joint Flex/Ext RoM. Differences reported in Abd/Add RoM based on task performance were not greater than 10°. This does not support the initial hypothesis that JPPs decrease the Abd/Add motion of the joints. It was found that there are significant differences in baseline Flex/Ext RoM between healthy and arthritic joints (objective 8), and additionally that there were cases where the joint RoM difference was greater than 10°. This supported the hypothesis that participants with H-OA would have decreased RoM in baseline Flex/Ext evaluation. Similar to the analysis in Chapter 2, a comparison to goniometer RoM values was made for the baseline measurements (objective 4). These were found to be statistically similar, with a mean difference less than 5°. This further supports the hypothesis that reported RoM values would not differ from goniometer values by more than 5°.

This work has demonstrated that EM tracking is a viable method of measurement for in vivo finger kinematics during ADLs. Differences in RoM between healthy participants and participants with H-OA during ADLs were also demonstrated. This research also showed that JPPs have a quantifiable effect on joint RoM for some tasks, and that the joints that are influenced vary depending on the task. Further work must be done to confirm these initial results, and to stratify participant groups with more detail.

4.2 Limitations and Strengths

The studies within this thesis are not without limitation. One such limitation was the comparison measurements used (goniometer measurement and literature results). The
goniometer itself has a degree of uncertainty in its measurements, and these errors may contribute to differences between the goniometer reported joint angle and the EM tracker measured angle. Use of literature results was necessary as the goniometer did not provide a method for measuring the Abd/Add and Int/Ext motions of the joints.

This thesis used a commercial electromagnetic tracking system, resulting in some limitations. The system itself has accuracy specifications for both position and rotation, which add error to measurements made with the system. This error becomes larger when comparisons between different sensors are done, as each sensor’s position and orientation are subject to the system error. This may contribute to larger or smaller differences between reported joint RoM and goniometer/literature values and may also affect the RoM values reported during participant testing (ADLs).

Noise from the environment was another limitation of this study. The amount of noise was controlled as best as possible given the experimental apparatus (metal was removed when possible, the sensors and transmitter were as far away from any metal as possible). Finally, the system utilized in this thesis was wired. This was not a limitation for the studies presented in this document however it would be a barrier to applications such as evaluation at home, over a workday, or in applications where travelling across distances is required.

The use of a cadaveric model to examine skin motion and validate the proposed method was another limitation. Cadaveric specimens, even fresh-frozen ones, do not behave exactly as a hand would in vivo. Additionally, the insertion of the bone mounted sensors involved cutting of the skin and underlying tissue, which may have influenced the kinematics of skin motion in the in vitro testing.

Goniometry was used to measure and compare in vivo Flex/Ext values with the proposed method. There was no inter/intra-rater reliability conducted on these values, which provides another potential source of error in the study.
Since a landmark digitization definition was selected, it has some inherent drawbacks. The frame of reference generated, although it has been shown to be consistent, is subject to some error due to misalignment. This may cause rotational error due to the frame not being perfectly aligned with the true bony anatomy position. This was a known limitation when choosing this definition and explained previously in chapter 2. A repeatability analysis was conducted, and the results can be found in Appendix E.

This work was only concerned with the thumb, index, and middle fingers during in vivo participant testing. This may exclude useful information about the ring and small fingers. A large amount of wires would have been necessary to sensorize each finger, and this was a consideration when selecting the fingers to examine. The thumb, index, and middle fingers were selected due to their impact during pinch and precision tasks.

Though there are many tasks considered ADLs, there were only nine selected and examined in this study. Due to this limitation, the results presented may not fully capture the differences or similarities in the performance of the ADL based on health status or performance method.

When performing in vivo testing, the participants were not instructed on how to perform each task in the “normal” situation. This resulted in individual variability in the method of completing each task, which was not accounted for. Additionally, fatigue and time of day were not explicitly controlled for. The time of day for all testing was between 9am and 2pm, and the test procedure was approximately one hour in duration. This could have led to decreased RoM in tasks performed later in the test procedure.

When conducting statistical analysis for this work, there were cases where non-parametric tests had to be used due to limitations in the data sets. Since this work included development of the method, a small pilot sample of in vivo participants was taken. The lack of a large sample size could cause significant differences to appear insignificant and may also cause individual differences to have a much larger influence on the reported results. This also brings up the discussion of power analysis. Power analysis was not completed on
these experiments, as the sample size was low already. Power analysis is crucial in future testing to determine in advance the required sample size, or in post-hoc analysis to ensure the testing had adequate power. These limitations can be avoided in future testing by increasing the sample size for each group to allow for the use of parametric statistical testing and ensuring appropriate statistical power.

Another limitation is the demographics in this study. Overall, the age of participants with arthritis was higher than those who were healthy, which is not accounted for in the analysis. One study by White et al. looked at differences in CMC joint RoM based on age and gender, and found a weak correlation for only the CMC abduction motion69. Further research may need to be conducted on age related differences in finger RoM to determine whether this must be controlled for in future studies. This may be remedied in future testing by age-matched participant selection. Another possible issue is stratification of the severity of disease, as well as stratification based on joints affected. With a larger sample size and a more involved questionnaire, this limitation could be resolved.

There were also many strengths to this research. This research described a novel method for evaluating finger kinematics \textit{in vivo}, which also introduced a novel set of palpable features for non-invasive digitization. This technique does not require line of sight and is not bulky to wear, resulting in it being very useful for examination of ADLs. The experimental protocol also was non-invasive and did not require any imaging to be completed. In the literature review, no research was found that was able to provide this combination of advantages.

The approach proposed in this research allows for patient specific definition of coordinate frames. This has an advantage when considering the deformity of finger segments that may occur with H-OA, which may cause the finger segments to become mal-aligned. The landmark approach allowed the method to consider this variation, and resulted in anatomically derived frames being used, capturing the pose of the deformed bony segments.
Another strength of this work was that it was possible to quantitatively measure joint range of motion in ADLs and examine the ADLs with and without JPP recommendations. Previously, no quantitative evaluation of JPP recommendations for the fingers has been found.

Six DoF EM trackers were used in this study, which always provided not only position but also orientation of each sensor. This was a strength that allowed for flexibility in the post-processing procedure, as well as information on sensor rotation with respect to the skin (roll) which was noted as a possible concern.

This approach also offered continuous, real time sampling, allowing for uninterrupted motion from the participant during functional tasks. This was advantageous as static or quasi-static performance of the tasks may have altered the kinematics and would have been difficult to train participants to do.

4.3 Future Directions

A major topic of interest would be to sensorize all the fingers and evaluate the performance of a more diverse set of ADLs. This would allow for a more complete understanding of the RoM requirements and interaction between digits in healthy and arthritic hands. The sample size would also need to be much higher than the sample presented in this work. This would help to better quantify in vivo finger kinematics and would assist in evaluating treatment options for these tasks (JPPs).

Combining kinematic measurement with force measurement techniques would be very useful. With combined kinematic and force data, it would be possible to identify quantitatively the tasks that require the most force and RoM and identify any patterns in these values. It would also be possible to examine the differences between healthy and arthritic joint force and the relationship of laxity to force output. This would inform recommendations on how to reduce the risk of permanent deformity of the finger joints for people with H-OA. This could lead to the development of a “profile” of tasks, and what joints are most important for each task, the RoM requirements, and alternatives (essentially...
an updated JPP recommendations manual). This would allow for clinical recommendations to have more quantitative backing, which may help increase patient compliance and improve outcomes.

Another possible area of research is comparing the EM tracking technology to another measurement method (besides goniometry). The comparison could use 4DCT and involve real time performance of a limited number of tasks (constraints based on 4DCT capture area and type of task). This would allow for further, more in-depth analysis of the difference between the true bony RoM (osteokinematics) and the sensor reported RoM, as well as more in-depth investigation of skin motion effects.

Improvement of the EM system is another potential area of research. Creation of a wireless system would be useful, as currently the participant’s ability to move around a room is limited by the sensor wire length. Work could also be done to provide a user facing program to show the joint RoM and the motion pathways in real time, eliminating the need for time consuming post-processing of the data. This would improve clinical viability and would allow for patients to immediately see the impacts of treatment methods such as JPPs being applied.

Conducting a study to examine the progression of H-OA may also be of interest in the future. By conducting RoM and task RoM evaluation of people with H-OA at multiple stages of the disease in a longitudinal study, the effects of the disease may be better understood. Another area of interest would be examining whether adherence to JPPs influences patient outcomes.

Another interesting area of study may be to look at finger involvement in tasks, and the relative importance of each digit. This may lead to increased information on which digits are easier to manage without, and which are key factors in performing ADLs effectively.

The technology and methods within this work could also be applied to other settings, such as other activities. An investigation into the kinematics of office work,
production line work, or sports could provide useful insight into repetitive or awkward actions. It may also be interesting to examine the effects of corrective measures on joint RoM, such as bracing, splints, or other treatments. Evaluation of the marketed finger joint implants mentioned in Chapter 1 would also be of interest.

4.4 Significance

This research presented a novel method of evaluating in vivo finger kinematics using 6 DoF EM tracking and a novel landmark coordinate system definition. It fills a gap in the literature, as studies have focused on examining functional tasks/ADLs11,33,41,44,59 or the effect of joint degenerative diseases16,59, but not usually both. Investigation of the effects of skin motion was also done on a cadaveric specimen. The results of this research provide a foundation and framework for evaluating in vivo finger kinematics in the future and presents potential research areas to pursue. The method proposed is applicable for use in vivo, shows that EM tracking is viable for finger kinematic tracking, and it is comparable to goniometer measurement of joint RoM of the thumb, index, and middle finger joints.

This study also showed that health status affects joint RoM, and that use of JPPs for some tasks significantly changes the RoM needed in certain joints to perform them, in both healthy and arthritic subsets. This demonstrates that while there are important differences introduced by using JPPs, future efforts need to increase the sample size and standardize/categorize the way individuals perform tasks further.
References

16. Leitkam ST, Bush TR. Comparison Between Healthy and Reduced Hand Function Using Ranges of Motion and a Weighted Fingertip Space Model. *J Biomech Eng*.

22. Ellis B, Bruton A. A study to compare the reliability of composite finger flexion with goniometry for measurement of range of motion in the hand. 2002:562-570.

42. Institute KK. Joint Protection Program Handbook.

49. McVeigh KH, Murray PM, Heckman MG, Rawal B, Peterson JJ. Accuracy and

doi:10.1016/j.jht.2017.02.003

Appendices

Appendix A: Iterations of 3D printed dorsal finger mount

Version 2

Version 1

Version 3
Appendix B: *In vivo* participant test protocol

Examination of motion patterns *in vivo* during activities of daily living

Purpose: To measure and examine motion patterns (joint excursion, joint deformity) of participants performing various activities of daily living (ADLs).

Protocol:

Pre-Test:
1. Day before: Set up apparatus and ensure it is functioning (program runs, all sensors are working, all tasks are present and accounted for, fastening materials are not running low).

Setup:
2. Check software and sensors again to ensure they are working.
3. Plug in all sensors accordingly to small tag labels to ensure proper placement.
4. Instruct participant to sit comfortably and to position hand palm down on a flat desk.
5. Determine which mount curvatures to use for each segment of the finger.
6. Place trackers in each mount, ensuring that they do not rotate within the mount. Use adhesive to secure them if they are loose.
7. Mount EM trackers to hand (start at distal phalange of finger, then proceed proximally).
 a. Placed on surface of volar side of the phalanges. EM tracker long axis in line with long axis of the finger and attached to the surface with medical adhesive and medical tape.
 b. Place a metacarpal sensor on the third metacarpal, again in line with long axis of finger.
 c. Ensure participant is unrestricted during motion of hands and wrist joint. Adjust slack if necessary.
8. Secure loose wires to the participant’s hand/wrist using self-stick tape as necessary.

Landmark Digitization:

Ensure that during each landmark digitization, the participant remains as still as possible. They may move between digitizations though.

9. Perform the landmark digitization protocol following the landmark guide provided.
10. Record any problems/anomalies during this, such as difficulty locating landmarks or sensor movement.
Calibration/Check:

11. Ask participant to keep hand inside working bounds at all times. This is not a problem given.
12. Instruct participant to perform a series of basic motions as indicated below. Each task is to be repeated 3 times, at a constant, slow speed. Begin recording data before each task. Use a goniometer for measurements at the extremes of motion.
 a. Flexion/extension of the 4 fingers, starting with flexion.
 b. Flexion/Extension of the thumb, starting with flexion.

Testing:

13. Set up the task to be performed in the test area in front of the participant.
14. Explain the task.
15. Tasks are to be performed according to the test sheet, with data being recorded each time (separate data sets for each task run). The participant will perform each task 2 times their natural way and 2 times with JPP practises involved. Tasks (9) are as follows:
 a. Write a sentence.
 b. Open water bottle.
 c. Squeeze spray bottle.
 d. Turn standard tap on/off.
 e. Turn lever tap on/off.
 f. Do up and undo a snap.
 g. Do up and undo a button on a shirt
 h. Unlock a doorknob with key (place in keyhole, twist, pull out).
 i. Plug in/unplug toaster
16. Repeat starting from step 13 until all tasks are completed.

Clean-up:

17. Ensure all data was collected appropriately and all files saved correctly.
18. Remove all sensors and fastening material from participant.
19. Clean up cords and sensors neatly.
20. Thank participant, compensate for help.
21. Clean up task materials and work area.
Appendix C: *In vitro* joint range of motion using a hand motion simulator (Table)

<table>
<thead>
<tr>
<th></th>
<th>IND DIP Bone</th>
<th>IND PIP Bone</th>
<th>RING DIP Bone</th>
<th>RING PIP Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexion/Extension (Degrees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg StdDev</td>
<td>78 17 4</td>
<td>78 14 4</td>
<td>86 11 4</td>
<td>70 12 4</td>
</tr>
<tr>
<td></td>
<td>79 17 3</td>
<td>82 14 4</td>
<td>89 11 4</td>
<td>77 13 4</td>
</tr>
<tr>
<td>Varus/Valgus (Degrees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg StdDev</td>
<td>21 8 6</td>
<td>21 5 6</td>
<td>29 6 5</td>
<td>24 12 4</td>
</tr>
<tr>
<td></td>
<td>17 6 5</td>
<td>21 5 6</td>
<td>30 6 5</td>
<td>16 4 12</td>
</tr>
<tr>
<td>Internal/External Rotation (Degrees)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avg StdDev</td>
<td>21 6 5</td>
<td>20 6 5</td>
<td>21 5</td>
<td>19 4</td>
</tr>
<tr>
<td></td>
<td>18 7 3</td>
<td>19 5 3</td>
<td>23 7 4</td>
<td>15 4</td>
</tr>
</tbody>
</table>
Appendix D: Mannequin hand proof of concept testing

Mannequin Hand Test

To look for errors introduced by the matrix manipulation and post-processing protocol during testing, a proof of concept validation was conducted with a wooden mannequin hand. This experiment is done with both the “bone” and “skin” mounted trackers rigidly fixed to the rigid bodies to simulate an ideal case of no skin motion.

The test was conducted using two adjacent wooden segments across the DIP joint of the index finger. Four sensors were attached to the segments, two medial-lateral ones inserted for the bone ‘perpendicular’ sensors, and two mounted on the dorsal side of the finger to simulate the skin ‘parallel’ sensors (Figure 27). Digitizations were performed as per the protocol used in the *in vivo* testing. Finally, 10 flexion/extension trials were performed, with manual goniometer measurements taken at full flexion and full extension. The operator in this test was the same as the operator for the *in vivo* testing outlined in section 2. For these trials, the adhesive used was electrical tape, as the medical adhesive used *in vivo* did not adhere well to the wooden components.

![Figure 27: Mannequin hand setup](image-url)
Sensors placed in the mannequin hand were press fit into the holes, drilled in the same manner as in the cadaveric testing.

Data Analysis

Bone mounted EM, skin mounted EM, and goniometer reported RoM were examined for homogeneity of variance using Levene’s Test (SPSS v25, SPSS Inc, Chicago, IL). A one-way MANOVA statistical test was conducted for the Bone mounted EM, skin mounted EM, and goniometer reported RoM. Linear regression was done for each pair to look at correlation, and Bland Altmann plots were constructed.

Results

Mean absolute difference (SD) of the total RoMs for the mannequin finger joint during Flex/Ext motion are presented in Table 13. For flexion/extension motion, differences in joint angle were found between bone trackers and goniometer values (4°(4)), skin trackers and goniometer values (3°(2)), and bone trackers and skin trackers (5°(6)). The differences between bone trackers and skin trackers for varus/valgus motion (3°(2)) and for internal/external motion (4°(4)) was also found. A visual comparison of the goniometer, skin mount, and bone mount reported values is presented in Figure 28.
Table 13: Absolute differences between skin mounted trackers, bone mounted trackers, and goniometer measurements in the mannequin hand test

<table>
<thead>
<tr>
<th>Trial</th>
<th>Flexion/Extension</th>
<th>Varus/Valgus</th>
<th>Internal/External</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B - S</td>
<td>G - B</td>
<td>G - S</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>14</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Avg</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>StdDev</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Figure 28: RoM for mannequin hand

Comparison of skin mounted, bone mounted, and goniometer measured flexion/extension.

No significant differences were found between bone EM and goniometry (p=0.892, 95% CI [-1.1, 6.1]), bone EM and skin EM (p=0.779, 95% CI [-8.6, 1.2]), and skin EM and goniometry (p=0.974, 95% CI [-4.0, 1.6]). Linear correlation between measurements was good for bone EM and goniometer (R² = 0.89), bone EM and skin EM (R² =0.76), and skin EM and goniometer (R² =0.89) pairs.
Bland-Altman plots of the mannequin hand Flex/Ext data are presented in Figure 29, Figure 30, and Figure 31. There is no clear pattern of the spread of the data increasing or decreasing as joint RoM increases. The mean difference between measurement methods was 2.5° (bone EM and goniometer), -1.2° (skin EM and goniometer), and -3.7° (bone EM and skin EM).

Figure 29: Bland-Altman plot of the difference between bone EM tracking and goniometer RoM in the mannequin hand test
Figure 30: Bland-Altmann plot of the difference between skin EM tracking and goniometer RoM in the mannequin hand test

Figure 31: Bland-Altmann plot of the difference between bone EM tracking and skin EM tracking RoM in the mannequin hand test
Appendix E: Repeatability of generated coordinate system frames

Apparatus

The data acquisition system utilized in this experiment was the 3D Guidance TrakSTAR electromagnetic tracking system (Ascension Technologies). This experiment’s system consisted of three data acquisition boxes synced to one medium range electromagnetic transmitter. A total of 11 sensors were utilized, 10 of which were attached to finger segments of the test subject, and the final one being used for digitization. 3D printed finger mounts were utilized for each sensor (except for the digitization sensor). To attach the sensors to the skin, the equipment outlined in section 2.2 was used.

Experimental Procedure

One participant (24, M) was equipped with ten mounted EM trackers across the thumb, index, and middle fingers of the dominant hand (right). Once secured with medical adhesive and medical tape, digitization was performed using an EM tracker inserted into a stylus. The participant was asked to place their hand on the table, thumb facing upwards. Digitization began on the thumb, proceeding sequentially as described in Section 2.4.2. The participant was then asked to place their hand palm down on the table, with some space between each finger. Sequential digitization was then performed on the index and middle finger segments. This process was repeated five times. Sensors were removed the adhesive was taken off using an adhesive remover. Landmark location and Euler angles between the skin mounted trackers and the associated landmark coordinate system were calculated.

Experiment Results

Table 14 shows the mean absolute difference (SD) of five repetitions of the digitization protocol on one test subject (M,24). These differences were calculated for the coordinate system origin and pose of the axis. Displacement differences ranged from 0±0mm to 3±2mm (x), from 1±0mm to 2±1mm (y), from 1±0mm to 3±1mm (z), from 3°±1 to 7°±4 (γ), from 2°±1 to 9°±6 (β), and from 3°±3 to 9°±6 (α).
Table 14: Repeatability of *in vivo* landmark digitization protocol

<table>
<thead>
<tr>
<th></th>
<th>x (mm)</th>
<th>y (mm)</th>
<th>z (mm)</th>
<th>gamma (°)</th>
<th>beta (°)</th>
<th>alpha (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg</td>
<td>Stddev</td>
<td>Avg</td>
<td>Stddev</td>
<td>Avg</td>
<td>Stddev</td>
</tr>
<tr>
<td>FI</td>
<td>1 (1)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>3 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Proximal Phalanx</td>
<td>1 (1)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>5 (4)</td>
</tr>
<tr>
<td></td>
<td>Metacarpal</td>
<td>1 (1)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>7 (5)</td>
</tr>
<tr>
<td>FII</td>
<td>1 (0)</td>
<td></td>
<td>1 (0)</td>
<td></td>
<td>4 (4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distal Phalanx</td>
<td>0 (0)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>6 (4)</td>
</tr>
<tr>
<td></td>
<td>Middle Phalanx</td>
<td>1 (0)</td>
<td></td>
<td>1 (0)</td>
<td></td>
<td>6 (4)</td>
</tr>
<tr>
<td></td>
<td>Proximal Phalanx</td>
<td>1 (0)</td>
<td></td>
<td>1 (0)</td>
<td></td>
<td>6 (4)</td>
</tr>
<tr>
<td>FIII</td>
<td>1 (0)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>4 (3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Distal Phalanx</td>
<td>1 (1)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>6 (5)</td>
</tr>
<tr>
<td></td>
<td>Middle Phalanx</td>
<td>1 (0)</td>
<td></td>
<td>1 (0)</td>
<td></td>
<td>6 (5)</td>
</tr>
<tr>
<td></td>
<td>Proximal Phalanx</td>
<td>2 (0)</td>
<td></td>
<td>1 (1)</td>
<td></td>
<td>7 (4)</td>
</tr>
<tr>
<td></td>
<td>Metacarpal</td>
<td>3 (2)</td>
<td></td>
<td>2 (2)</td>
<td></td>
<td>6 (5)</td>
</tr>
</tbody>
</table>
Appendix F: *In vivo* electromagnetic tracking hand evaluation data collection sheets

EM Tracking Hand Evaluation

<table>
<thead>
<tr>
<th>Study ID:</th>
<th>Date:</th>
</tr>
</thead>
</table>

Basic Motions (Recorded in Degrees, not time, use a manual goniometer):

<table>
<thead>
<tr>
<th>Task</th>
<th>Trial 1</th>
<th>Trial 2</th>
<th>Trial 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex/Ext of the fingers, beginning with flexion.</td>
<td>Start</td>
<td>End</td>
<td>Start</td>
</tr>
<tr>
<td></td>
<td>Ind PIP</td>
<td>Ind PIP</td>
<td>Ind PIP</td>
</tr>
<tr>
<td></td>
<td>Ind DIP</td>
<td>Ind DIP</td>
<td>Ind DIP</td>
</tr>
<tr>
<td></td>
<td>Mid MCP</td>
<td>Mid MCP</td>
<td>Mid MCP</td>
</tr>
<tr>
<td></td>
<td>Mid PIP</td>
<td>Mid PIP</td>
<td>Mid PIP</td>
</tr>
<tr>
<td></td>
<td>Mid DIP</td>
<td>Mid DIP</td>
<td>Mid DIP</td>
</tr>
<tr>
<td>Flex/Ext of thumb, starting with flexion</td>
<td>Start</td>
<td>End</td>
<td>Start</td>
</tr>
<tr>
<td></td>
<td>Th CMC</td>
<td>Th CMC</td>
<td>Th CMC</td>
</tr>
<tr>
<td></td>
<td>Th MCP</td>
<td>Th MCP</td>
<td>Th MCP</td>
</tr>
<tr>
<td></td>
<td>Th IP</td>
<td>Th IP</td>
<td>Th IP</td>
</tr>
<tr>
<td>J.P. Tasks</td>
<td>Run 1 (natural)</td>
<td>Run 2 (natural)</td>
<td>Run 3 (JPP)</td>
</tr>
<tr>
<td>------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>1. Push in plug and pull plug out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Unlock a key (place in to unlock and pull the key out)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Squeeze a spray bottle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Open a water bottle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Undo and do up a snap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Turn lever tap on and off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. Turn standard tap on and off</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Do up a button on shirt and undo button</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Write a sentence</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
List of tasks:

1. Push in plug of toaster and pull plug out
 a. Run 1 & 2 – naturally
 b. Run 3 & 4 – use 3 fingers to grip
2. Squeeze a spray bottle and release
 a. Run 1 & 2 – naturally
 b. Run 3 & 4 – use multiple fingers
3. Open a water bottle
 a. Run 1 & 2 - naturally
 b. Run 3 & 4 – use assistive device
4. Undo and do up a snap (thumb on top)
5. Turn lever tap on and off
 a. Run 1 & 2 - naturally
6. Turn standard tap on and off
 a. Run 1 & 2 – naturally
 b. Run 3 & 4 – flat palm rather than grip
7. Unlock a key (place in to unlock and then pull the key out)
 a. Run 1 & 2 - naturally
 b. Run 3 & 4 – use assistive device (blue handle)
8. Do up a button on a shirt and undo button
 a. Run 1 & 2 - naturally
 b. Run 3 & 4 – use assistive device
9. Write a sentence
 a. Run 1 & 2 – regular pen
 b. Run 3 & 4 – built up pen
Appendix G: *In vitro* finger motion simulator protocol

Comparison of Surface Mount and Bone Mount EM Tracking Methods

Purpose:

To evaluate the viability of surface mounted electromagnetic trackers for the study of in-vivo finger kinematics. This comparison looks at bone mounted EM trackers and compares skin mounted EM trackers against it. It also examines a method for digitizing surface landmarks for bony coordinate system definition, and to look at the flexion/extension and varus/valgus motions.

Protocol:

Pre-Test:

1. Day before: Set up apparatus and ensure it is functioning (program runs, motor controlled properly, all sensors are working).
2. Identify and thaw cadaver hand, record ID number.
3. Check CT of hand for degeneration.

Setup/Specimen Preparation:

4. Isolate flexor and extensor tendons for the index, middle, ring, and pinky fingers.
5. Suture the tendons with available suture (0-Vicryl).
7. Drill holes in the Medial-Lateral direction for the index and ring finger phalanges (proximal, middle, and distal on the middle fingers) for EMG trackers.
8. Drill holes at 45° to the M-L direction in the finger phalanges (proximal, middle, and distal on the middle fingers) for EMG trackers.
9. Check software, motors, and sensors again to ensure function.
10. Attach all FDP flexors to one actuator and all FDS flexors to another and all extensors to a 3rd actuator.
11. Test motor control with tendons attached.

Testing:

12. Irrigate regularly throughout.

Bone mounted and skin mounted on 2 fingers (with metacarpal reference)
Sensor attachment and Landmark digitization protocol:

13. Attach bone and skin mounted sensors to the distal, middle, and proximal segments of the index and middle fingers. Attach another pair to the middle metacarpal (skin sensor on the metacarpal, bone is in the metacarpal bones).
14. Using digitization sensor, perform the landmark digitization as outlined by the protocol document. Save each landmark separately in the data collection.

Calibration/Check:

15. Perform a test cycle to determine extension and flexion, confirmed by surgeon/fellow.

Continuous

16. With system at extension, begin recording data in software (ensure data has a file path it is saving to).
17. Initiate flexion, wait for system to stabilize.
18. Initiate extension, wait for system to stabilize.
19. Repeat until tracker system has stopped recording for the designated window (1 minute).
20. Repeat steps 16-19 until at least 15 trials have been collected

Attach skin and bone mounted trackers to the ring finger, repeat steps 14-20 above

Cleanup:

1. Ensure all data was recorded appropriately.
2. Detach tendons and all sensors from hand.
3. Power down test devices appropriately.
5. Dispose of/refreeze cadaver hand.
6. Check all sensors and related devices for damage.
7. Clean up work area thoroughly.
8. Clean sensors thoroughly using hand sanitizer, soap, and disposable Lysol wipes (in that order). Clean the cords as well as the sensor itself, clean up until the silver connector to the DAQ.
Appendix H: Graphical representation of joint RoM (SD) comparison between healthy participants and participants with H-OA

Figure 32: Thumb IP joint Flex/Ext RoM (SD) Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).

Figure 33: Thumb IP joint Abd/Add RoM (SD) Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).
Figure 34: Thumb MCP joint Flex/Ext RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).

Figure 35: Thumb MCP joint Abd/Add RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).
Figure 36: Index DIP joint Flex/Ext RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).

Figure 37: Index DIP joint Abd/Add RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).
Figure 38: Index PIP joint Flex/Ext RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).

Figure 39: Index PIP joint Abd/Add RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).
Figure 40: Middle DIP joint Flex/Ext RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).

Figure 41: Middle DIP joint Abd/Add RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).
Figure 42: Middle PIP joint Flex/Ext RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).

Figure 43: Middle PIP joint Abd/Add RoM (SD)
Comparison across tasks for healthy participants and participants with arthritis (* denotes significant differences from healthy).
Appendix I: Difference in joint RoM between healthy participants and participants with H-OA

Figure 44: Difference in Flex/Ext (black) and Abd/Add (blue) for the basic flexion/extension motion

Figure 45: Difference in Flex/Ext (black) and Abd/Add (blue) for the plug task
Figure 46: Difference in Flex/Ext (black) and Abd/Add (blue) for the plugpp task

Figure 47: Difference in Flex/Ext (black) and Abd/Add (blue) for the key task
Figure 48: Difference in Flex/Ext (black) and Abd/Add (blue) for the keyjpp task

Figure 49: Difference in Flex/Ext (black) and Abd/Add (blue) for the spray bottle task
Figure 50: Difference in Flex/Ext (black) and Abd/Add (blue) for the spray bottle task

Figure 51: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottle task
Figure 52: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottlejpp task

Figure 53: Difference in Flex/Ext (black) and Abd/Add (blue) for the snap task
Figure 54: Difference in Flex/Ext (black) and Abd/Add (blue) for the lever tap task

Figure 55: Difference in Flex/Ext (black) and Abd/Add (blue) for the tap task
Figure 56: Difference in Flex/Ext (black) and Abd/Add (blue) for the tapjpp task

Figure 57: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task
Figure 58: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task

Figure 59: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentence task
Figure 60: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentencejpp task
Appendix J: RoM differences in healthy participants performing tasks normally and with JPP recommendations

Figure 61: Difference in Flex/Ext (black) and Abd/Add (blue) for the plug task

Figure 62: Difference in Flex/Ext (black) and Abd/Add (blue) for the key task
Figure 63: Difference in Flex/Ext (black) and Abd/Add (blue) for the spray bottle task

Figure 64: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottle task
Figure 65: Difference in Flex/Ext (black) and Abd/Add (blue) for the tap task

Figure 66: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task
Figure 67: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentence task
Appendix K: RoM differences in participants with hand osteoarthritis performing tasks normally and with JPP recommendations

Figure 68: Difference in Flex/Ext (black) and Abd/Add (blue) for the plug task

Figure 69: Difference in Flex/Ext (black) and Abd/Add (blue) for the key task
Figure 70: Difference in Flex/Ext (black) and Abd/Add (blue) for the spray bottle task

Figure 71: Difference in Flex/Ext (black) and Abd/Add (blue) for the bottle task
Figure 72: Difference in Flex/Ext (black) and Abd/Add (blue) for the tap task

Figure 73: Difference in Flex/Ext (black) and Abd/Add (blue) for the button task
Figure 74: Difference in Flex/Ext (black) and Abd/Add (blue) for the sentence task
Curriculum Vitae

Ahmed Tanashi

Education

Master of Engineering Science, Biomedical Engineering
Western University
Sept 2017-Present
Thesis: Evaluation of Finger Kinematics for Analysis of Joint Protection Programs
Supervisor: Dr. Emily Lalone

Bachelor of Mechanical Engineering with Professional Internship
Western University
Sept 2012-Apr 2017
- Dean's Honor List: 2013, 2014, 2015, and 2017
- Graduated Spring 2017 with distinction

Practical Elements of Mechanical Engineering College Certificate
Fanshawe College
May-Aug 2014

Research Experience

Graduate Research Assistant, Musculoskeletal Biomechanics Laboratory
Western University, London, Ontario
May 2017-Present

Research Assistant
Robarts Research Institute, London, Ontario
May-Aug 2016

Conferences and Publications

London Health Research Day (LHRD) 2019
London, ON
May 2019
Evaluation of Finger Kinematics to Measure Hand Function During Grip
Poster Presentation
Authors: Ahmed Tanashi, Dr. Louis Ferreira, Dr. Emily Lalone

Ontario Biomechanics Conference
Victoria, BC
March 2019
Evaluation of Finger Kinematics to Measure Hand Function During Grip
Poster Presentation
Authors: Ahmed Tanashi, Dr. Louis Ferreira, Dr. Emily Lalone

Canadian Orthopaedic Research Society Annual Meeting
Victoria, BC
June 2018
Evaluation of Finger Kinematics to Measure Hand Function During Grip
Poster Presentation
Authors: Ahmed Tanashi, Dr. Louis Ferreira, Dr. Emily Lalone
Canadian Bone and Joint Conference May 2018
London, ON
Evaluation of Finger Kinematics to Measure Hand Function During Grip
Poster Presentation
Authors: Ahmed Tanashi, Dr. Louis Ferreira, Dr. Emily Lalone

London Health Research Day (LHRD) 2018 May 2018
London, ON
Evaluation of Finger Kinematics to Measure Hand Function During Grip
Poster Presentation
Authors: Ahmed Tanashi, Dr. Louis Ferreira, Dr. Emily Lalone

Teaching Experience

Graduate Teaching Assistant, Western University Jan-Apr 2019
Materials Science, Dr. Hamidreza Abdolvand

Graduate Teaching Assistant, Western University Sept-Dec 2018
Advanced Topics in Computer Aided Design, Dr. Pawel Kurowski

Graduate Teaching Assistant, Western University Jan-Apr 2018
Advanced CAE: Reverse Engineering, Dr. O.R. Tutunea-Fatan

Graduate Teaching Assistant, Western University Sept-Dec 2017
Mechanics of Materials, Dr. Emily Lalone

Work Experience

Engineering Intern May 2015-Apr 2016
McCormick Canada, London, Ontario

Awards and Scholarships

CMHR Transdisciplinary Bone & Joint Training Award
Received in September 2018 for a duration of 3 terms

Ontario Graduate Scholarship
Received in September 2018 for a duration of 3 terms

Western Graduate Research Scholarship

Western Engineering Competition
1st Place Group in Senior Design 2016
1st Place Group in Senior Design 2017
McCormick International Scholarship
Received in 2013 and renewed in 2014, 2015, and 2017

IDEA Competition
2014 IDEA of the year – top finalist
 Phineas Sensor System