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Abstract

Research suggests that concepts are distributed across brain regions specialized for 

processing information from different sensorimotor modalities. Multimodal semantic 

models fall into one of two broad classes differentiated by the assumed hierarchy of 

convergence zones over which information is integrated. In shallow models, 

communication within- and between-modality is accomplished using either direct 

connectivity, or a central semantic hub. In deep models, modalities are connected by 

cascading integration sites with successively wider receptive fields. Four studies provide 

the first direct test of these models using speeded behavioural tasks involving feature 

inference and pattern completion. Shallow models predict no within- versus cross-modal 

difference in either task, whereas deep models predict a within-modal advantage for 

feature inference, but a cross-modal advantage for pattern completion. Study 1 

investigated the prevalence of within- and cross-modal feature correlations in a large 

database of feature production norms. Studies 2 and 3 used relatedness judgments to tap 

participants’ knowledge of relations for within- and cross-modal feature pairs. Study 4 

was a dual feature verification task. The pattern of decision latencies across Studies 2 to 4 

is consistent with a deep integration hierarchy.

Keywords: semantic memory, multimodal representations, binding problem, embodied 

cognition
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Chapter One

Introduction

Semantic memory contains a great deal of knowledge regarding lexical concepts 

such as dog and banana, and as such is important for language processing, perception, 

reasoning, and action. Concepts referring to living and nonliving things include 

information such as how something looks, tastes, feels, and sounds, and how it is used. 

The manner in which this knowledge is represented and organized therefore greatly 

impacts behavior. It is intuitive to think of lexical concepts in terms of features. For 

example, how a typical dog looks or sounds can be described by features such as <has 

legs>, <has a tail>, <has a nose>, <has ears>, <barks>, and so on. Although some 

models of semantic memory are not based on feature representations - for example, 

Latent Semantic Analysis (Landauer & Dumais, 1997) - feature-based models, which 

describe concepts as collections of features at some level of abstraction, dominate the 

literature. The manner in which types of featural knowledge are neurally organized and 

interact is one aspect of theories of semantic memory that differentiates among them. The 

goal of the present research is to provide the first direct test of two broad assumptions 

that have been made concerning how the brain organizes and uses different types of 

knowledge of concrete object concepts.

To gain insight into the kinds of features that may comprise people’s concepts in a 

feature-based framework, researchers have used tasks in which participants list features 

such as <has four legs>, <has fur>, <has a tail>, and <barks> for concepts like dog. 

Features listed in these tasks have been useful in accounting for a range of behaviors, 

from similarity judgments (Tversky, 1977) to theory generation (Ahn, Marsh, Luhmann, 
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& Lee, 2002; McNorgan, Kotack, Meehan & McRae, 2007). Although some features 

listed for concepts like dog (<man ,s best friend>) reflect encyclopaedic-like knowledge, 

perhaps acquired linguistically, many features are learned by directly experiencing the 

referents of these concepts through the senses. For example, one can see that a dog has 

four legs, hear that it barks, or feel that it is covered in coarse fur. Many features are thus 

strongly associated with particular senses. Feature production norms, therefore, provide 

insight into the salience and amount of knowledge that people possess for each sensory 

modality with respect to individual concepts, categories, or in general.

Multimodal versus Amodal Representations

It has long been known that different brain regions are specialized for perception 

across different sensory modalities. The question of representational modality concerns 

the extent to which conceptual organization is tied to perceptual organization; that is, 

given that perception across the senses is distributed, at least in part, across specialized 

brain regions, it is possible that people’s conceptual representations are similarly 

organized. One way of contrasting feature-based representational models is to partition 

them into amodal and multimodal theories of representation. Although various amodal 

theories make different assumptions with respect to what is stored in semantic memory, 

all assume that objects or their properties are represented in a single homogenous store. 

For these models, the sensory modality through which knowledge is gained is irrelevant 

to the representation of that knowledge because this information is lost when it is stored 

using mental symbol systems. In contrast, multimodal theories posit that concepts are 

distributed across a wide network of brain areas, and that a concept’s features are tied to 

sensory modalities.
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The issue of whether the human representational system is multimodal or amodal is 

still under debate. However the bulk of recent evidence from a number of lines of 

research favours the multimodal account. The literature regarding patients with category­

specific semantic deficits has long been used to support the argument for multimodal 

representations. Warrington and McCarthy’s (1987) sensory/functional hypothesis 

accounts for patterns of category specific impairments of knowledge in patients that have 

suffered focal or diffuse brain damage, under the assumption that living things and 

artifacts differentially depend on visual and functional information - an assumption that 

is supported by analyses of feature production norms (Cree & McRae, 2003; Garrard, 

Lambon Ralph, Patterson, & Hodges, 2001), and by a number of functional neuroimaging 

experiments (see Martin, 2007, for a review).

Citing the prevailing opinion that the N400 ERP waveform reflects the brain’s 

processing of meaning, Sitnikova, West, Kuperberg, and Holcomb (2006) investigated 

the topographical distribution of the N400 for animals and tools in a picture naming task. 

Though it only provides coarse spatial resolution, the temporal resolution of the 

technique allowed the authors to discriminate between multiple late onset sub­

components at anterior and posterior sites. Animals and tools differed with respect to the 

distribution of the ERP waveforms, with animals more negative than tools at anterior- 

inferior sites, and the opposite pattern at posterior sites. This followed predictions based 

on previous literature that suggested that if categories such as animals depend more on a 

visual feature semantic system, they might be expected to evoke greater anterior N400 

effects than tools. Similarly, if tools depend more on functional representations, such as 
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that which might be encoded by motor sequences, they would be expected to evoke 

relatively greater posterior activity.

The imaging literature has also provided a wealth of evidence outside of the context 

of sensory∕functional theory that supports a distributed multimodal representational 

system. Goldberg, Perfetti and Schneider (2006a) used fMRI to tie together a number of 

previous findings that were suggestive of a multimodal semantic system. Several 

researchers had previously reported neuroimaging evidence individually supporting 

modally bound colour (Martin, Haxby, Lalonde, Wiggs, et al., 1995; Mummery, 

Patterson, Hodges, & Price, 1998), auditory (Kellenbach, Brett, & Patterson, 2001), 

olfactory and gustatory representations (Goldberg, Perfetti, & Schneider, 2006b). 

Goldberg et al. (2006a) found that sensory brain areas for each of the four tested 

modalities were recruited during a feature verification task for features of the 

corresponding modality, indicating that the semantic representations used in these 

decisions were modally distributed across brain regions. Taken together, a number of 

complimentary techniques have provided converging evidence that supports a distributed 

multimodal representational system.

Convergence Zones

Though concepts may be distributed across a wide network of brain regions, our 

mental experiences of them are not ajumble of features, disjointed across space and time, 

but instead appear to be represented as coherent unified objects. Any model using 

distributed feature representations must account for what is sometimes called the binding 

problem: How are representational elements integrated into conceptual wholes? 

Similarly, how are we able to infer one feature from the presence of another, such as the 
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likelihood that something flies if it has feathers? If one makes the additional assumption 

that semantic representations are modally-distributed, the binding problem becomes 

further complicated because it raises the question of whether within-modal binding is 

accomplished differently than cross-modal binding, or differs by modality. 

Understanding how distributed representations are integrated into conceptual wholes is 

therefore of central importance to generating and evaluating semantic memory models 

and understanding brain function.

A number of multimodal theories of semantic representations have been proposed in 

the last two decades, and each makes slightly different assumptions about the modalities 

that are represented and the relationships among them. These models can be broadly 

grouped into two classes, deep and shallow, on the basis of the assumed hierarchy of 

convergence zones, which are neural sites that integrate information (Damasio, 1989). 

The differences in assumed connectivity between these two classes of models lead to 

different and untested predictions for how modally distributed information is integrated. 

Thus, tasks that should be sensitive to the time course of integration of featural 

information either across or within modality boundaries may shed some light on which 

assumptions are most likely to be accurate, and thus constrain models of semantic 

representation.

Convergence Zone Hierarchies

Hierarchically Shallow Models. In this dissertation, I divide modality-specific 

models into two classes. I use the term “hierarchically shallow models” to refer to those 

in which modally segregated representational stores pass information to one another 
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either through direct connections (Figure 1), or through a single convergence zone that 

integrates and routs information from all representational modalities (Figure 2).

In these models, all units of representation are equidistant from one another. Examples of 

semantic models using direct connectivity include Farah and McClelland’s (1991) 

implementation of Warrington and McCarthy’s ( 1987) Sensory∕Functional theory, 

depicted in Figure 1, and the attractor network used in Cree, McNorgan, and McRae’s 

(2006) investigation of the roles played by distinguishing and shared features. Examples 

of models employing a single convergence zone include the attractor network described 

in Cree et al’s (1999) simulation of semantic priming effects and Humphreys and Forde’s 

(2001) Hierarchical Interactive Theory (HIT). In a recent review of the patient literature 

describing the pattern of deficits and brain atrophy associated with semantic dementia, 

Patterson, Nestor, and Rogers (2007) also presented a model with a single semantic 

convergence zone.

Hierarchically Deep Models. Hierarchically deep models are those for which 

connective distance differs. In these models, some convergence zones integrate 

information from nearby representational units, whereas others with successively larger 

receptive fields integrate information from more distant brain areas, passed forward from 

earlier convergence zones (Figure 3). Damasio’s (1989) convergence zone proposal 

envisioned such an organization, and Simmons and Barsalou (2003) further elaborated on 

this idea in their Conceptual Topography Theory.

Amodal Models. Amodal models span a range of structural hierarchies. In amodal 

models, because information is not functionally segregated by sensorimotor modality, 

convergence zones are not strictly required. Hierarchically flat models encode
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Figure 1. A hierarchically shallow model with two directly interconnected modalities.
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zones.

Figure 3. A hierarchically deep model containing three modalities, each possessing a 

unimodal convergence zone that feeds forward to bimodal and trimodal convergence
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associations among an object's features via direct connections reinforced through 

statistical learning (Moss & Tyler, 2001). Neither, however, does the absence of modality 

information in these models preclude convergence zones. For example, in Collins and 

Quillian’s (1969) semantic network model, concept names encapsulate features of the 

concepts they represent, and could therefore serve to integrating featural information. 

Moreover, concepts in this model are themselves organized in a deep hierarchical 

taxonomy (a sparrow is a bird, which is an animal, which is a living thing). It is 

important, however, to distinguish multimodal semantic models that are the focus of this 

dissertation from amodal hierarchical models. In the former, sensorimotor modality is the 

primary organizing principle, whereas in the latter, this information is not represented, 

and therefore plays no role in cognitive processing.

Argumentsfor Deep and Shallow Convergence Zone Hierarchies

Theoretical considerations seem to favour a shallow integration hierarchy.

Multimodal semantic models have been criticised by those arguing for a single amodal 

semantic system as lacking parsimony (Riddoch et al., 1998), therefore models specifying 

multiple hierarchical convergence zones would seem to be even more so. Furthermore, 

many semantic phenomena have been simulated using networks lacking convergence 

zones (Cree et al., 2006; Farah & McClelland, 1991), implying that a deep hierarchy of 

convergence zones may not be necessary. Indeed, Patterson et al. (2007) contend that a 

single semantic hub best explains the generalized impairments that accompany semantic 

dementia.

There are, however, anatomical constraints that seem to suggest a hierarchically deep 

organization. First, candidate brain regions for a single convergence zone multimodal 
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model should have reciprocal projections to all modalities, and ablation of such an area 

should preclude any sort of multimodal conceptualization. Damasio (1989) argues that 

the only such region is the hippocampus, and because bilateral ablation of this structure 

does not lead to a catastrophic loss of the ability to conceptualize, it is unlikely that 

semantic integration occurs within a single convergence zone. On the other hand, one 

could argue that the sort of generalized impairments that accompany semantic dementia 

constitute a progressive breakdown of the conceptual system. Because this disease is 

invariably accompanied by degeneration of anterior temporal lobes, Patterson et al. 

(2007) suggested this region as the locus for a single semantic hub. Finally, the 

arrangement of cells, such as in visual cortex, into functionally distinct layers with 

progressively larger receptive fields that respond to a greater array of stimuli may occur 

elsewhere in the brain, including those supporting conceptual processing, and would 

implement the sort of deep hierarchy of convergence zones suggested by Damasio (1989) 

and Simmons and Barsalou (2003).

The preceding discussion highlights a number of arguments favouring each of the 

two major assumptions regarding hierarchical organization, both of which being 

incorporated in models that have been used to explain a number of behavioural 

phenomena. Moreover, there is little empirical support for either assumption in the 

literature. A number of brain regions, including perirhinal cortex (Bussey, Saksida & 

Murray, 2002), anterior temporal cortex (Patterson et al., 2007), frontal and prefrontal 

cortex (Fuster et al., 2000; Green, Fugelsang, Kraemer, Shamosh, & Dunbar, 2006), and 

left inferotemporal cortex (Damasio, 2004) have been put forward in the neuroimaging, 

animal, and patient literatures as critical structures for learning abstract relationships 
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among features from multiple modalities. However, whether these areas represent a 

network of regions that act as a single convergence zone in a shallow hierarchy or 

convergence zones at different levels of a deep hierarchy is unclear. The behavioural 

literature is similarly ambiguous. Pecher, Zeelenberg and Barsalou (2003) contrasted 

feature verification latencies for consecutive triais involving features from either the 

same or different modalities and found a modality switching penalty. As is explained 

below, however, these results do not adjudicate between deep and shallow integration 

hierarchies. The goal of this dissertation, therefore, is to provide the first direct test of the 

predictions made by the two classes of models.

Proximity-Sensitive Integration

The physical relationships among modality-specific representational areas and their 

convergence zones are assumed to influence the time course over which, and extent to 

which, information from these areas is integrated. From a neural proximity perspective, 

proximal areas should generally communicate with one another in less time than distal 

areas. One way to view this information relay is in terms of processing steps, where each 

step represents the amount of time required to pass information from one processing unit 

to another. The assumed integration hierarchy within a model therefore influences the 

time course of semantic processing, and moreover this influence may differ by task.

The capacity to integrate featural knowledge is expected to facilitate performance in 

timed tasks in the following maimer. The imaging literature (Simmons, Martin & 

Barsalou, 2005; Simmons, Ramjee, Beauchamp, McRae, Martin, & Barsalou, 2007) has 

demonstrated that, given a single written feature (<has a blade>), the underlying neural 

representation for this feature becomes active. For example, the same brain regions that 
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respond strongly to visually presented colour stimuli are also activated when reading 

colour words, such as YELLOW (Simmons et al., 2007). This activity spreads outwards 

via neural connections to begin to activate other representations, which in turn spread 

their activation outwards, and so forth. In this way, if a convergence zone forms a path 

between representational stores, then verbally presented features can effectively prime 

subsequently presented ones, either individually as in feature-to-feature inferences 

(inferring that a gold brick would feel heavy if it was picked up), or entire clusters of 

features as in feature-to-concept activation (classifying a small animal as a skunk on the 

basis of its size, colouration, and waddling gait). The manner in which features are 

integrated should thus be reflected in the speed with which decisions based on this 

integration are made, and therefore influence decision latencies in speeded tasks. Two 

such tasks are described below, and understanding how performance is influenced by 

neural organization provides insight into how they can be used to test how the brain 

represents and uses multimodal information.

Feature Inference. Feature inference involves determining whether some feature B 

exists for an object, given that the object is known to possess feature A, and may be 

accomplished independently of object categorization. For example, given that a novel 

artifact <has a blade>, one might infer that it is also <usedfor cutting>, or that it <has a 

handle>, without any other supporting evidence. To make this inference, the activation of 

knowledge of the visual form of a blade must be propagated along neural circuitry to 

cause the activation of one’s knowledge of handles or functional knowledge of the action 

of cutting.
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Figure 4 is a simplified shallow model with a single convergence zone and two 

representational modalities. Integrating two pieces of information from either a single 

modality (integrating two form features, such as <has a blade> and <has a handle>, 

Figure 4a) or cross-modally (integrating a form and a functional feature, such as <has a 

blade> and <usedfor cutting>, Figure 4b) requires two steps: one step between each 

representational unit and the convergence zone. Therefore, in timed tasks that are 

sensitive to the number of processing steps, this model predicts no difference between 

within-modal and cross-modal semantic integration. Naturally, the speed with which this 

inference is made could reflect differences in the degree to which features are related, 

perhaps owing to a more efficient or dedicated neural pathway between the structures that 

encode this information. However, it should take no longer to infer either <has a 

handle> or <usedfor cutting> from <has a blade>, all else being equal.

Figure 5 is a simplified hierarchically deep model incorporating both within-modal 

and cross-modal convergence zones. Within-modal integration (Figure 5a) requires two 

steps: one step between each representational unit and the unimodal convergence zone. 

This architecture predicts that cross-modal integration (Figure 5b) should take more time, 

as four processing steps are required: one from each representational unit to their 

corresponding unimodal convergence zone, and one from each unimodal convergence 

zone to the cross-modal convergence zone. Therefore, assuming that additional 

processing steps require additional time, it should take longer to infer the cross-modal 

functional feature <usedfor cutting> from the form feature <has a blade>, than it would 

to infer the within-modal form feature <has a handle>, all else being equal.
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In amodal models, because features are not segregated according to sensorimotor 

knowledge type, there is no within- and cross-modal distinction, and therefore no 

predicted within- versus cross-modal advantage, all other factors being equal.

Activating Concepts from Features. For the purposes of this discussion, concept 

activation can be thought of in terms of pattern completion. In a system using distributed 

representations, an object’s identity and relevant features can be deduced from a subset of 

features through pattern completion. For example, if one determines that an object <has a 

blade> and <has a handle>, a number of other features may be inferred; the blade of the 

object is probably <made ofmetal> and <usedfor cutting>. Over time, the pattern of 

activated features comes to resemble the representation for some class of objects, 

allowing the object to be categorized. In this example, one may coarsely identify the 

object as some sort of manipulable tool, and with additional processing time, identify it 

more precisely as some sort of knife. •

Figure 6 illustrates a simplified hierarchically shallow model of a concept, consisting 

of just six features distributed across two modalities. In this example, I assume that 

concept identification requires that some proportion of the concept’s features reach some 

activation threshold. Suppose in the first case that two features from the same modality 

are presented, as when a person is told that an object <has a handle> and <has a blade> 

(two form features, Form A and Form B, as in Figure 6a). Activation from the two 

feature units spreads in the first processing step to the common convergence zone, and to 

all associated features in the second step. All of the concept’s features are soon active, 

Figure 6. Feature-concept activation in a shallow hierarchy takes the same number of 

processing steps from within-modal pairs as from cross-modal pairs.
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allowing the object to be identified. The cross-modal case, illustrated in Figure 6b, is 

similar. This might exemplify a situation in which a person is told that an object <has a 

blade> (form) and is <usedfor cutting> (function). Again, two processing steps are 

required to activate the remaining features in a shallow model. Activation of the two 

feature units spreads to the common convergence zone in the first step, and then to all 

associated features in the second. Thus, regardless of whether the presented information 

corresponds to a single or multiple modalities, shallow hierarchy models predict the same 

number of processing steps, and presumably the same amount of time, to activate a 

concept.

Figure 7 illustrates a simplified hierarchically deep model of a concept containing 

the same six representational units. Again, in the first scenario, two features from the 

same modality are presented (two form features, Form A and Form B, as in Figure 7a). 

After one processing step, activation has spread to the modality-specific convergence 

unit, and after two steps, it has begun to activate the remaining within-modal feature, 

Form C, and the top-level cross-modal convergence unit. It requires two additional 

processing steps, as activation passes first to the Function convergence unit, and then to 

the three function features, Function A, B and C, before all of the concept’s features are 

activated.

Consider now the case illustrated in Figure 7b, in which the model is given a cross- 

modal pair of features (Form A and Function A). After one processing step, activation 

has spread from both features to their respective modality-specific convergence unit. 

After the second step, both within-modal convergence units passes activation forward to 

the cross-modal convergence unit, but more importantly, each within-modal convergence 
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unit has an opportunity to pass activation backward from the function convergence unit to 

other correlated functional units (i.e., Function B and C), and similarly from the form 

convergence unit to other correlated form units (i.e., Form B and C). Thus, in the 

hierarchically deep model, cross-modal feature pairs activate more of the network faster 

than do within-modal feature pairs because each within-modal convergence area allows 

the parallel activation of clusters of correlated features within its modality.

Finally, as above, lacking any modality information, amodal models predict no 

within- versus cross-modal speed advantage, all other factors being equal.

The preceding discussion illustrates how theories that exemplify the two classes can 

be differentiated by the predictions they make about performance on tasks requiring fast 

integration of semantic information. For time-sensitive feature inference tasks, amodal 

and hierarchically shallow models predict no difference between within-modal and cross- 

modal inferences. Hierarchically deep models, in contrast, predict a latency advantage for 

within-modal decisions because additional steps are required to pass information between 

modalities. For time-sensitive tasks requiring activation of a concept’s meaning, amodal 

and hierarchically shallow models again predict no difference in the ability of within- or 

cross-modal feature pairs to facilitate pattern completion. In contrast hierarchically deep 

models predict a cross-modal advantage for pattern completion. One advantageous 

outcome of these tasks is that deep models predict opposite patterns of results. That is, 

within-modal feature inference is predicted to be faster than cross-modal feature 

inference, whereas cross-modal pattern completion is predicted to be faster than within- 

modal pattern completion.



19

It is important to reiterate that these predictions hold for tasks in which speed is an 

important factor (i.e., speeded tasks) because these effects are most likely to be observed 

during early semantic processing. Because the processing of even the slowest items is 

assumed to occur relatively quickly, differences related to the speed of processing should 

quickly drop off with additional processing time. Moreover, untimed tasks such as those 

that require participants to rate items on some dimension allow participants to engage in 

higher level reasoning and to use information from a number of sources that are assumed 

to be less sensitive to the temporal dynamics of semantic processing (McRae et al., 1997; 

Sloman, Love, & Ahn, 1998).

The present research uses an analysis of a large set of feature production norms 

(Study 1), along with predictions derived from a connectionist framework to guide the 

design of two sets of studies involving feature-to-feature (Studies 2 and 3) and feature-to- 

concept judgments (Study 4) to investigate and constrain assumptions made by neurally­

based models of semantic representations. Results from these behavioural studies, in the 

context of what is known from the imaging and patient literatures, are used to make 

inferences about functional connectivity within the representational system in the brain. 

In Study 1,1 set the stage by analyzing a large set of feature production norms to 

establish multiple statistics regarding the numbers of features of various modalities, and 

the statistical relationships among them. As outlined above, hierarchically shallow and 

deep models make different predictions for within- and cross-modal processing in the 

context of feature inference and conceptualization.



20

Chapter Two : Functional Connectivity and Feature Norms Analysis 

Study 1: Feature Production Norms Analysis

The predictions for both neural architectures were derived assuming all other factors 

being equated. It is likely, however, that all pathways of communication between 

representational modalities are not equal. For example, the orbitofrontal cortex, the area 

of the brain most commonly associated in the literature with taste and smell processing, is 

located on the ventral anterior surface of the brain, whereas primary visual areas are 

located in the occipital-parietal cortex on the posterior surface (both dorsal and ventral). 

The brain region encoding taste is thus topographically distant from that which encodes 

visual features. From a neural proximity perspective, it is reasonable to imagine that 

cross-modal feature integration of gustatory and olfactory information occurs more 

rapidly and strongly than the integration of gustatory and visual information. On the other 

hand, there may be well-worn pathways that connect even distant processing areas that 

permit faster communication between these regions than between other, more proximal 

areas.

The purpose of Study 1 was to gain a better understanding of how various modality 

specific representational stores may be related. Our awareness that features, such as <has 

wings> and <has feathers> often co-occur in the world is captured by our knowledge of 

feature correlations. It is assumed that this knowledge is encoded through a process such 

as hebbian learning, by which the pathways between neural populations representing 

correlated features are strengthened over time. In the brain connectivity literature, the 

term functional connectivity is used to refer to a pattern of time-dependent correlated 

activity between distributed and potentially remote neural units (Sporns & Tononi, 2007). 
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Thus, the degree to which two features are statistically correlated should be positively 

correlated with the functional connectivity between the neural populations encoding 

them. Study 1 therefore used three aggregate measures of feature correlations occurring 

in a large set of feature norms under the assumption that these metrics provide an 

estimate of the functional connectivity between the sensorimotor modalities appearing in 

these norms. These measures informed the design of Studies 2, 3 and 4.

Materials and Procedure

Features were drawn from McRae et al.’s (2005) feature production norms 

(henceforth, "our norms"), which consist of over 2500 features produced for 541 concrete 

object concepts. In the norming task, participants listed features when given the names of 

approximately 20 dissimilar concepts (30 participants listed features for each concept). 

Aggregated across a number of respondents, the norms provide insight into what 

information is salient for most people for different concepts. Because the present 

investigation concerns communication between modality specific brain regions, these 

norms are useful because they have been categorized by Cree and McRae (2003) into ten 

knowledge types that are linked to modality-specific neural processing regions. Thus, for 

example, some authors have associated retrieval of object colour knowledge (as opposed 

to retrieval of other sorts of visual knowledge) with ventral regions of the posterior 

temporal lobes (Chao & Martin, 1999; Martin et al., 1995), and so features that describe 

an object’s colour were assigned the visual-colour knowledge type. Three knowledge 

types corresponded to visual information (visual-color, visual-parts and surface features, 

and visual-motion), four corresponded to other primary sensory-processing channels 

(smell, sound, tactile, and taste), and one corresponded to functional/motor information 
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regarding the ways in which people interact with objects (function). In addition, one 

(taxonomie) corresponded to information regarding the categories to which concepts 

belong, and one (encyclopaedic) corresponded to other types of information that either 

could not be confidently mapped to particular neural processing regions given the state of 

the literature, or else did not form a coherent group of sufficient size be of practical use in 

their analyses (see Cree & McRae, 2003, for a detailed discussion of the considerations 

underlying selecting and assigning these knowledge types). Because no particular brain 

regions are associated with taxonomie and encyclopaedic knowledge, these knowledge 

types were excluded from all analyses.

Feature correlations are a useful tool for investigating information integration 

because a correlation describes the result of feature integration, which involves co­

occurrence detection. Learning associations between features is assumed to be a function 

of experience with objects containing both features. If people frequently encounter 

objects that both <have wings> and <have a beak>, then there will be many occasions 

on which these features are integrated, strengthening the learned relationship between 

them. Highly correlated features are those that tend to be listed together in the same 

concepts, and are assumed to be frequently experienced together and therefore be more 

strongly learned. Therefore, the shared variance (i.e., the squared correlation) between 

two features in the norms is taken as an index of the strength with which two features are 

associated in the mind. For example, within the norms, the pair <has legs> and <eaten 

as meat> has 5% shared variance. Neither feature intuitively implies (nor precludes) the 

other, and such a pair is likely to be weakly related in most people’s minds. In contrast, 

because our sense of taste relies so heavily on the sense of smell, the pair <smells 
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strong> and <tastes strong> is almost tautological. The pair has 99.95% shared variance 

within the production norms, and would almost certainly be related in most people’s 

minds.

Feature correlations were calculated between all features appearing in our norms. 

The entire set of norms included all features that were provided by at least 5 of 30 

participants for at least one concept. A 541 concepts × 2,526 features matrix was then 

constructed, where each matrix element corresponded to the number of participants 

listing a specific feature for a specific concept. Thus, each feature was represented by a 

541-element vector so that a Pearson correlation could be computed between each feature 

pair. For the present study, spurious correlations were avoided by considering only pairs 

involving the 340 features that were listed for more than 3 concepts. The Pearson 

correlation between each feature pair was squared to obtain shared variance between 

features. Consistent with other research involving these production norms (McRae et al., 

1997,1999), the threshold for inclusion in the analyses presented in this section was 

arbitrarily set at a shared variance of 5%, which serves as an estimate of the minimum 

degree of statistical relatedness required to become a psychologically real association.

Just as the statistical correlations between features is assumed to approximate the 

strengths of the learned association between them, an analysis of the broader - 

relationships among features from different modalities may provide insight into the 

overall functional connectivity between the brain regions that encode this information 

and the frequency with which information between any two modalities would be 

integrated. I classified the set of correlated feature pairs into 64 modality-pair types: 8 in 

which within-modal pairs were from the same knowledge type (e.g., pairs involving two 
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visual-colour features) and 56 types of cross-modal pairs in which features came from 

different knowledge types (e.g., pairs involving a visual-colour and a visual-form 

feature). Pair types with fewer than 6 members were omitted from the analyses that 

follow for reliability reasons. Numerosity, magnitude of shared variance, and a - 

combination of these two measures were then calculated for each pair type.

Results and Discussion

Table 1 presents the number and proportion of the total number of each type of 

within-modal and cross-modal correlated feature pairs. Because people generally rely 

primarily on vision for information about the environment, a large proportion of the 

entries in the norms describe visual features. There was therefore a concomitant 

dominance, with respect to numerosity, of within- and cross-modal pairs involving visual 

features, especially those describing an object’s form (<has legs>).

Table 2 presents the magnitude of shared variance for each type of within-modal and 

cross-modal correlated feature pair. Again, visual features tend to dominate, though for 

this measure, colour («is red>) and motion (<flies>) features tend to have the strongest, 

if not the most numerous, statistical relationships among themselves and with other 

modalities. Colour, for example, is highly diagnostic of the taste and texture of many 

fruits and vegetables because it often indicates ripeness, which explains the strong 

correlations between colour and taste features. For similar reasons, the relatively strong 

correlations between motion and sound features may arise from features listed for 

animals, which are often saliently associated with a particular manner of motion (<flies>, 

<slithers>, <runs>) and characteristic sounds (<chirps>, <hisses>, <roars>).
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Table 1

Numerosity and proportion of total correlations by correlated pair type

Pair Type N Proportion
Within-Modal
Visual - Form & Surface I Visual - Form & Surface 314 .16

Function / Function 277 .14
Visual - Motion / Visual - Motion 44 .02

Touch / Touch 12 .01
Visual - Colour / Visual - Colour 9 .00

Sound / Sound 8 .00
Taste / Taste 6 .00

Cross-Modal
Visual - Form & Surface / Function 611 .32

Visual - Form & Surface / Visual - Motion 132 .07
Visual - Form & Surface / Touch 77 .04

Visual - Colour / Visual - Form & Surface 67 .03
Touch / Function 66 .03

Visual - Colour / Function 57 .03
Visual - Form & Surface / Sound 35 .02

Sound / Function 32 .02
Visual - Motion / Function 30 .02

Visual - Form & Surface / Taste 26 .01
Touch / Function 21 .01

Visual - Motion / Sound 20 .01
Visual - Colour / Visual - Motion 19 .01

Visual - Colour / Touch 13 .01
Visual - Colour / Taste 13 .01

Visual - Colour / Sound 10 .01
Visual - Motion / Touch 9 .00
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Table 2

Mean magnitude of shared variance by correlated pair type

Pair Type Mean Rz SE
Within-Modal

Visual - Colour / Visual - Colour 39 34
Visual - Motion / Visual - Motion 34 19

Touch / Touch 32 25
Function / Function 20 17

Sound / Sound 17 8
Visual - Form & Surface / Visual - Form & Surface 15 13

Taste / Taste 12 5
Cross-Modal

Visual - Colour / Taste 53 43
Visual - Motion / Sound 29 33

Visual - Colour / Visual - Form & Surface 26 22
Visual - Motion / Touch 23 27

Visual - Motion / Function 23 19
Visual - Form & Surface / Visual - Motion 22 20

Touch / Function 22 21
Visual - Form & Surface / Function 22 21

Visual - Colour / Visual - Motion 22 18
Touch / Function 20 14

Visual - Colour / Function 17 12
Sound / Function 17 19

Visual - Form & Surface / Touch 17 16
Visual - Colour / Sound 16 10

Visual - Form & Surface / Taste 16 15
Visual - Form & Surface / Sound 15 12

Visual - Colour / Touch 15 15
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Finally, Table 3 presents the summed shared variance for each type of within- and 

cross-modal correlated feature pair, which summarizes the interaction between the 

previous two measures: pairs of modalities that have either many correlated pairs, or 

strong correlations, or both, have a higher summed shared variance. Thus, because neural 

functional connectivity between two modalities can be imagined as a function of both the 

number and strength of the pathways between them, it may best be estimated by this 

measure. Again, pairs involving visual form features dominate, but the largest proportion 

of estimated functional connectivity is between visual form and function feature pairs, 

which is consistent with the suggestion put forth by some researchers that form-function 

knowledge is particularly important in the representation of object concepts (Tyler & 

Moss, 2001).

These analyses suggest that functional connectivity may differ between modality­

specific representational areas. According to these estimates, visual areas are highly 

interconnected with most other modalities, and among themselves. There would therefore 

be the greatest need to integrate visual information with other visual information, and 

with information from other modalities. Interestingly, the greatest estimated functional 

connectivity does not occur within a single visual modality or even between two visual 

modalities as might be predicted. Instead, the highest estimated functional connectivity 

occurs cross-modally between the visual form and function modalities, though the within- 

modal functional connectivity for the functional and the visual form modalities have the 

second and third highest estimated functional connectivity, respectively. Because of the 

apparent importance of, and strong relationship between, visual form and functional 

knowledge, and because a rich literature exists examining categories that differentially
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depend on these knowledge types (Martin, 2007; Warrington & McCarthy, 1987), I 

began the investigation of the nature of cross-modal and within modal semantic 

integration with these modalities. Additional implications of these analyses are presented 

in the General Discussion.
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Table 3

Summed shared variance by correlated pair type

Pair Type Summed R2
Within-Modal

Function I Function 5533
Visual - Form & Surface / Visual - Form & Surface 4647

Visual - Motion / Visual - Motion 1499
Touch / Touch 384

Visual - Colour / Visual - Colour 355
Sound / Sound 132

Taste / Taste 69
Cross-Modal

Visual - Form & Surface / Function 13640
Visual - Form & Surface / Visual - Motion 2951
Visual - Colour / Visual - Form & Surface 1719

Touch / Function 1313
Visual - Form & Surface / Touch 1281

Visual - Colour / Function 978
Visual - Colour / Taste 693

Visual - Motion / Function 682
Visual - Motion / Sound 571

Sound / Function 547
Visual - Form & Surface / Sound 533

Touch / Function 469
Visual - Colour / Visual - Motion 417
Visual - Form & Surface / Taste 411

Visual - Motion / Touch 207
Visual - Colour / Touch 192
Visual - Colour / Sound 159
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Chapter Thr ee: Feature Integration in Feature Inference

Study 2

Study 2 used a speeded relatedness decision task between within- and cross-modal 

feature pairs to test the role that modality plays in feature inference. The speeded nature 

of this study makes this task sensitive to factors that influence processing time. 

Relatedness decisions were selected because, as has been argued elsewhere, they are a 

fairly transparent measure of people’s knowledge of the relations between object features, 

and should therefore tap the sort of processes that are used during feature inference 

(McNorgan et al., 2007). Both amodal and hierarchically shallow models predict no 

difference in decision latencies between the two types of correlated pairs on the basis of 

the time taken to integrate the features. Hierarchically deep models, in contrast, predict a 

speed advantage for form-form pairs because modal representations for form and 

function features are processed by modality-specific convergence zones before that 

information is passed forward to cross-modal convergence zones.

Method

Participants. Twenty-one University of Western Ontario undergraduates received 

$10 for participating in the speeded relatedness task. All participants in all of the studies 

reported herein were native English speakers and had either normal or corrected-to- 

normal visual acuity.

Materials. Twenty form-form and 20 function-form feature pairs were selected from 

our norms (see Appendix A). Because the task measures the time required to judge 

perceived feature relatedness, the groups were matched on a number of variables 

expected to influence both reading time and perceived relatedness (see Table 4).
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Table 4

Equated variables in Study 2

Factor

Function-form

M(SE)

Form-Form

M(SE) K(38) P

Mean % Shared Variance 18.5 (3.0) 18.7 (4.3) -0.04 0.9

Number of Shared Concepts 5.5 (0.7) 4.9 (0.8) 0.63 0.5

Length in characters (1st feature) 17.7 (0.4) 11.4 (0.7) 7.32 <.001

No. Concepts Unique to Feature (1st feature) 10.3 (3.4) 11.5 (3.8) -0.24 0.8

Concepts per feature (1st feature) 15.8 (3.7) 16.3 (4.0) -0.1 0.9

Length in characters (2nd feature) 13.7 (.6) 13.0 (0.7) 0.57 0.5

Number of Unique (2nd feature) 10.9 (3.0) 11.5 (3.2) -0.14 0.8

No. Concepts Unique to Feature (2πd feature) 16.4 (3.2) 16.3 (3.7) 0.01 0.9
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The mean percentage of shared variance is the mean of the squared Pearson correlations 

between the feature production frequency vectors created from our norms. The number of 

shared concepts is the number of concepts in which both features appear together, and 

reflects the ease of generating a concept possessing both features. This variable was 

matched in addition to shared variance because shared variance was calculated on feature 

production values, thus a pair of features may appear together in many concepts but have 

a lower proportion of shared variance than another pair appearing in fewer concepts. The 

length in characters of the first and second feature indicates the number of characters, 

including spaces, of the feature name, and is assumed to influence reading time. The 

number of unique concepts listed for the first and second features is the number of 

concepts within our norms in which the one feature appears without the other. This 

indexes the likelihood that, if a feature was to prompt the retrieval of a concept, the 

participant would fail to note a co-occurrence between the feature pair. Finally, the 

number of concepts per feature is the number of concepts appearing in our norms for 

which the feature was listed by at least five participants.

There were no differences between form-form and function-form pairs on eight of 

the ten variables. In addition, each group had similar distributions of higher (r2 > .25), 

medium (< .25 rz ≤ .15) and lower (r2 < .15) correlated pairs, such that the cross-modal 

group had 5, 3, and 12 and the within-modal group had 4, 2 and 14 high, medium and 

lower correlated pairs, respectively. Because the task was intended to measure judgments 

of relatedness between features without reference to any particular concepts, I avoided 

distinguishing features (i.e., features that are true of one or two concepts, such as 

<moos>). Rather, within- and cross-modal pairs included features that were true of an 
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average of approximately 16 concepts, and the number of concepts per feature did not 

differ between conditions. Note that the shorter length of the first feature of form-form 

pairs was not a critical issue for two reasons. First, decision latencies were measured 

from the onset of the presentation of the second feature. Second, the 500 ms SOA was 

expected provide participants ample time to read the first feature, regardless of length, so 

the longer feature names for function features were not expected to be a problem (see 

Cree et al,. 2006). Note that equating for word length of the second feature ensured that 

there was no effect of reading time on decision latency.

Relatedness Ratings. Twenty-two participants not participating in the on-line task 

produced off-line relatedness ratings to ensure that differences in decision latencies were 

not attributable to differences in perceived relatedness when time pressure was not an 

issue. Participants rated the relatedness of each pair (i.e., judged how well each pair “goes 

together in common living and/or non-living things”) on a 7-point scale, ranging from 1 

(“not at all related”) to 7 (“very highly related”). Note that hierarchical depth is predicted 

to influence the speed with which semantic information is retrieved, but with additional 

time, more slowly accessed information is expected to become available regardless of the 

underlying architecture. Therefore, a task such as feature relatedness rating in which 

participants take their time to decide on a particular rating value should not be sensitive 

to any influence of hierarchical depth. Because there was no time limit, this task was not 

expected to be sensitive to hierarchical depth, and accordingly, no predictions are made 

for shallow versus deep hierarchy models for the offline relatedness rating task.

Comparisons between relatedness ratings were conducted using modality (within vs. 

cross) as the independent variable. Modality was within participants (ti) but between 
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items (t2). Cross-modal pairs were judged to be more related (M= 5.7, SE = 0.23) than 

within-modal pairs (M= 5.4, SE - 0.20), though this difference was significant by 

participants, t (21)= 3.62, p < .002, but not by items, tz(38) = 0.71, p < .5. This difference 

should lead, if anything, to the facilitation of decision latencies of cross-modal pairs.

Filler items. Because this was a binary decision task, an equal number of ‘yes’ and 

‘no’ triais were used to avoid biasing the response. Thus, in addition to the 40 related 

pairs, I constructed 20 form-form and 20 function-form pairs that could not be construed 

as co-occurring in common objects. For example, <has branches> and <has sharp 

fangs> was used as an unrelated form-form pair because they do not occur together in 

common objects. I constructed an additional 15 related and 15 unrelated practice pairs 

using visual, functional, and other types of features. For example, <lives in aquariums> 

and <swims> conveyed information about location and motion. No feature used in the 

filler or practice pairs appeared in the experimental trials.

Procedure. Participants were tested using PsyScope (Cohen, MacWhinney, Flatt & 

Provost, 1993) on a Macintosh PowerMac 8600 computer, equipped with a 17-inch 

colour monitor. Response latencies were recorded using a CMU button box that 

measured the time in milliseconds between the onset of the presentation of the second 

feature of each pair and the button press. Participants responded “yes” by pressing a 

button with the index finger of their dominant hand and “no” using the index finger of 

their non-dominant. Participants received written and verbal instructions concerning how 

relatedness decisions were to be made, as well as examples of related (<is crunchy> and 

<grows in gardens>) and unrelated pairs (<covered infelt> and <used in salads>). They 

were instructed to silently read each feature and respond as quickly and accurately as 
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possible as to whether the paired features were related - that is, whether they go together 

in living or non-living things. All participants received the same list of related and 

unrelated pairs in a random order.

Each trial proceeded as follows: First, a fixation point (+) appeared in the center of 

the screen for 500ms. The fixation point was then replaced by the first feature for 500ms, 

after which time the second feature appeared on the line below the first one so that both 

were present until the participant responded. Participants received the 30 practice trials 

followed by the 80 experimental trials. Each session took approximately 15 minutes.

Design

The dependent variables were decision latency and the square root of the number of 

errors (Myers, 1979). The independent variable was modality (within vs. cross). Modality 

was within participants (^) but between items (t2).

Results and Discussion

Mean decision latencies were significantly faster for form-form (M= 888 ms, SE = 

51 ms) than for ftιnction-form pairs (M= 1032 ms, SE = 50 ms), t (20) = 5.94, p < 

.00001, ⅛(3 8) = 1.93,p = .06. Error rates were not expected to differ because both pair­

types were judged to be at least moderately related in the off-line relatedness rating task, 

with mean relatedness ratings greater than 5 out of 7 for both conditions. The error rates 

for form-form pairs (M= .05, SE = .01) did not significantly differ from that for function­

form pairs (M= .07, SE = .01), t (20) = 2.04,p > .05, tz(38) = 0.77,p> .4.

Despite being judged off-line as significantly less strongly related, relatedness 

decision latencies were shorter for within-modal pairs. These results are consistent with 

the assumption of a deep integration hierarchy in which modally distributed information 
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is first integrated in single-modality convergence zones, which then feed into cross-modal 

convergence zones. The latency advantage for within-modal items is inconsistent with the 

assumption of a shallow integration hierarchy and with the predictions of amodal models, 

both of which predict no modality effect. Because statistical factors were equated and 

differences in perceived relatedness favoured cross-modal pairs, if anything, these models 

would predict a cross-modal advantage. Instead, the reverse pattern was found.

One potential concern regarding Study 2 is that, although the length of the second 

feature was controlled, multiple word stimuli may be problematic for two reasons. The 

form features used in the experiment frequently begin with the five-character (including 

the space between words) phrase "has a", whereas the functional features frequently 

begin with the 8-character phrase "used for". This introduces two problems, the first of 

which concerns timing. The tendency for functional features to begin with longer phrases 

potentially demands longer reading times on average for these features. Although this 

was not believed to be a problem for Study 2 because the SOA was chosen to exceed the 

expected reading time for the first feature, it is possible that the SOA did not provide 

enough time to read some of the initially-presented features in cross-modal pairs. A 

second potential issue is that initial phrases are repeated between within-modal features 

for 12 of 20 pairs (<has fins>, <has gills>), although the remaining 8 contained different 

initial phrases (<has a lid>, <made of glass>). Initial phrases were never repeated in 

cross-modal pairs. Study 3 addresses these potential issues in two ways. First, the same 

features were used as targets for both the within- and cross-modal pairs, thus 

automatically controlling for a number of variables. Second, multiword items such as 

<has a handle> were divided into stem (has a) and content (handle) components which 
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were presented sequentially. Importantly, decision latency was measured from the onset 

of the content component, nullifying any potential advantage of repeated stems within a 

pair.

Study 3

Study 3 replicates Study 2 using a more rigorously controlled set of items, and using 

a modified presentation paradigm. I expected to replicate the results, which supported 

hierarchically deep models.

Method

Participants. Thirty-eight University of Western Ontario undergraduates received 

either course credit or $10 for their participation.

Materials. I selected 18 related form-form and 18 related function-form pairs from 

our norms (see Appendix B). The pairs were yoked to create function-form-form triples, 

such that one form feature was the second feature of a within- and cross-modal pair. For 

example, <usedfor storing food>, <has windows», <has doors> is a triplet containing a 

form-form (<has windows>, <has doors>) and a function-form pair (<usedfor storing 

food>, <has doors»).

The pairs comprising each triplet were selected to be as similar as possible with 

respect to several variables expected to influence decision latencies. In addition to the 

variables identified in Study 2 as potential influences on decision latencies, the pairs were 

matched on distinctiveness, which is the inverse of the number of concepts in which the 

feature appears in our norms, and thus indexes the likelihood with which the feature 

could cue a particular basic level concept. Because stem and content words were 

presented separately, content word length should primarily influence reading times and 
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was therefore equated. In addition, each group had similar distributions of higher (r2 > 

.25), medium (≤ .25 r2 ≤ .15) and lower (r2 < .15) correlated pairs, such that the cross- 

modal group had 10, 3, and 5 and the within-modal group had 9, 3 and 6 high, medium 

and lower correlated pairs, respectively. One of the 18 yoked triplets was dropped from 

the analyses that follow because, although judged to be moderately related in the offline 

relatedness rating task (M = 3.1 out of a possible score of 7), more than 40% of 

participants judged the within-modal pair (<has a motor>, <has sails>) to be unrelated 

in the speeded task. Item characteristics for the remaining 17 sets of yoked feature pairs 

are summarized in Table 5. Importantly, because the second features were identical for 

the within- and cross-modality groups, the groups are automatically matched on all 

variables concerning them. Within- and cross-modal pairs did not differ significantly on 

any variable, other than the number of concepts in which the features appeared together, 

and this difference favoured cross-modal pairs.

Relatedness Ratings. Forty University of Western Ontario students not participating 

in the main task provided off-line relatedness ratings. Each participant rated half of the 

within- and half of the cross-modal pairs, and saw only one pair from each triplet. The 

procedure and analyses were identical to the relatedness ratings in Study 2.

As in Study 2, the perceived relatedness of the cross-modal pairs (M= 4.3, SE ~ 0.1) 

was greater than that of the within-modal pairs (M= 4.1, SE = 0.1), though this difference 

was significant by participants t (39) = 2.64, p < .02, but not by items t2(16) = 0.39,p> 

.7. Again, this difference was expected to facilitate decision latencies of cross-modal 

pairs, if anything.
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Table 5

Equated variables in Study 3

Function-Form Form-Form M(SE)

Factor M(SE) f(16) p

Mean % SharedVariance 29.4(5.0) 27.2(4.7) 0.73 >.4

Number of Shared Concepts 2.6 (0.2) 2.2 (0.1) 2.38 .03

Content Word Length (1st feature) 6.6 (0.4) 6.2 (0.5) 0.78 >.4

Number of Unique (1st feature) 2.5 (0.7) 2.5 (0.9) 0.00 >.9

Concepts per Feature (1st feature) 5.2 (0.9) 4.8 (0.9) 0.57 >.5

Distinctiveness (1st feature) 0.25 (0.03) 0.32 (0.04) -1.77 >.1
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The sets of yoked pairs were divided in half between two experimental lists, such 

that one list contained the within-modal pairs for half of the sets, and the cross-modal 

pairs for the other half. The remaining items were assigned to the second list. An equal 

number of unrelated filler pairs (nine form-form, and nine function-form) were 

constructed using features not appearing among the related pairs, and were used in both 

lists.

All features were divided into stem and content components. The stem comprised the 

initial segment of the feature name and included prepositions, conjunctions, and the verbs 

(has a, used for, is). The content component comprised the final one or two words that 

carried much of the feature’s meaning. Because experimental and filler pairs were 

matched with respect to the number of times each stem appeared, ∕2(8) = 11.21,p > .15, 

and an equal number of within- and cross-modal pairs appeared among the experimental 

and filler items, the stems did not cue the response. Participants therefore needed to wait 

for and process the content component to make the relatedness judgment, and response 

latencies were measured with respect to the onset of the content component of the second 

feature.

Procedure. Participants were tested using E-Prime (Psychology Software Tools Inc., 

2002) on an AMD Athlon 64 3200+ personal computer, equipped with a 17-inch colour 

monitor. The instructions to participants were identical to Study 2.

Each trial proceeded as follows: First, a blank white screen was presented for 2000 

ms, followed by a vertically and horizontally centered fixation cross (‘+’) for 250 ms, 

after which time it disappeared. For purposes of displaying the stem and content 

components of the first and second features, the screen was divided into vertically and 
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horizontally centered quadrants, though the quadrant boundaries were not visible (see 

Figure 8). Each quadrant was justified opposite to its position (i.e., the top-left quadrant 

was lower-right justified, etc.). The left quadrants were used for presenting stem 

component (used by) and the right quadrants were used for presenting the content 

components for each feature. The first feature's stem component was presented in the top 

left quadrant immediately following the removal of the fixation cross. After 300 ms, its 

content component (riding) was then presented in the top right quadrant so that the first 

feature (used by riding) was displayed in the top half of the screen, centered on the 

boundary between stem and content components. After 700 ms, the second feature's stem 

(has) appeared in the lower left quadrant. Finally, after 300 ms, its content (handlebars) 

appeared in the lower right quadrant, so that the second feature (has handlebars) was 

displayed in the lower half of the screen immediately below the first feature. Both 

features remained on the screen until the participant responded. The use of quadrants 

avoided cuing the length (and possibly the identity) of the content words, and allowed 

them to always appear in the same screen position. Decision latencies were recorded 

using a button box that measured with millisecond accuracy the time between the onset of 

the presentation of the second feature's content component and the button press.

Participants received five lead-in triais immediately followed by 36 experimental 

trials. The experiment took less than 15 minutes to complete.
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Figure 8. Presentation sequence for stem and content components of stimuli in Study 3.
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Design

Analyses of variance were conducted using participants (Fi) and items (F2) as 

random variables. The dependent variables were decision latency and the square root of 

the number of errors (Myers, 1979). The independent variable was modality (within vs. 

cross), which was within both participants and items. List was included as a between- 

participants dummy variable and item rotation group as a between-items dummy variable 

to stabilize variance that may result from rotating participants and items over lists 

(Pollatsek & Well, 1995). Effects involving these dummy variables are not reported.

Results and Discussion

Incorrect trials and those with decision latencies greater than 3 standard deviations 

above the grand mean were removed from the analysis (3% of the triais). As indicated 

previously, one related pair («has a motor>, <has sails>) had an error rate that exceeded 

40%. Presumably this occurred because the motor on vehicles such as sailboats is not at 

all salient for most people without first-hand experience with these vehicles, and so 

participants saw these features as mutually exclusive. Thus, this pair and the 

corresponding yoked pair (<used for cruising>, <has sails>) were removed from the 

analyses.

For the remaining 17 pairs, relatedness decision latencies were greater for cross- 

modal (M= 1087 ms, SE = 44 ms) than for within-modal pairs (M= 1013 ms, SE = 37 

ms), which was significant by participants, Fr(1, 36) = 10.16, p < .004, but not by items, 

F2(1, 15) = 2.36, p > .1. Participants were quite accurate, and within-modal (M= .07, SE 

= .01) and cross-mode error rates (M = .09, SE = .02) did not differ, both F's<1.
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The pattern of results from Studies 2 and 3 suggests that multimodal feature 

representations activate one another relatively quickly in a hierarchically deep integration 

structure. Stimuli in both experiments were selected to be as closely matched as possible 

on several factors that are assumed to influence relatedness decision latencies, and where 

they differed, these variables tended to favour the cross-modal items. Nonetheless, there 

was an advantage for within-modal pairs in both studies.

One limitation of the design of Studies 2 and 3 is that feature inference predicts an 

advantage only for within-modal pairs. This introduces a potential issue in that cross- 

modal processing may involve some form of task-switching and thus incur a performance 

cost, reflected in longer decision latencies for cross-modal pairs. Modality-switch costs 

have been demonstrated in the perception literature (Spence, Nicholls, & Driver, 2000), 

and in the concepts literature using feature verification (Pecher, Zeelenberg, & Barsalou, 

2003). Thus, it is unclear whether the within-modal advantage in Study 2 and 3 is the 

outcome of a deep integration hierarchy or modality switching costs. To alleviate this 

concern, Study 4 uses a task in which deep models predict a latency advantage for cross- 

modal trials. '

A second potential issue is that functional features appeared only in cross-modal 

pairs, and it is possible that functional information takes longer to access. For example in 

Barsalou’s (1999) perceptual symbol systems account, retrieval of an object’s function 

(<usedfor opening cans>) would involve a simulation, or mental re-enactment of the 

sensorimotor elements of that function (visualizing the process of grabbing a can, 

applying a can-opener to the can, and then turning the key that causes the opener to 

follow and cut the rim of the can). Because these functions typically unfold over time, it 
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is reasonable to predict that retrieval of this information takes more time than retrieving 

relatively static form information, such as an object’s shape (though retrieval of some 

form information in the perceptual symbol systems framework may involve a mental 

rotation from an object’s canonical orientation, Edelman & Bülthoff, 1992). Though 

function features were always presented first, it is possible that they imposed additional 

processing demands that carried over during the processing of the second feature. The 

within-modal speed advantage observed in Studies 2 and 3 could therefore be interpreted 

as an advantage for pairs involving only form features over pairs involving functional 

features.

A final issue concerns whether these results extend to other representational 

modalities. Because only visual form and functional features were used in Study 2 and 3, 

then it remains unclear whether evidence for deep hierarchy models would be found 

using other modalities. Study 4 was designed to deal with all of these concerns.
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Chapter Fou r: Feature Integration in Pattern Completion

Study 4

People possess a rich knowledge of many objects that is not limited to just a single 

representational modality. Accordingly, when we identify an object, we generally do so 

using only a fraction of the information we possess about it, and yet are able to use this 

information to retrieve virtually any other knowledge that we have about the object. 

Thus, using knowledge of within- or cross-modal properties to retrieve concepts is a 

common event and is therefore an interesting test paradigm for a couple of reasons. First, 

like feature inference, it is a basic cognitive process in which we are constantly engaged, 

and therefore, elucidating the manner in which it occurs is of central importance to the 

study of cognitive function. Second, and most importantly in the present context, whereas 

deep hierarchy models predict a within-modal advantage for feature inference, they 

predict a cross-modal advantage for activating a concept from partial information. 

Finding a cross-modal advantage would therefore address the explanation that processing 

cross-modal information may be generally disadvantaged.

Study 4 tests the predictions for hierarchically deep and shallow models for a task 

involving pattern completion from incomplete information. Moreover, this study uses 

functional features in both within- and cross-modal conditions, and incorporates features 

from other knowledge types (smell, taste, sound, etc.). This design addresses the 

questions raised in the previous section: whether the results found in Studies 2 and 3 are 

attributable to a function versus form feature processing difference, and whether the 

results extend to other representational modalities. A novel dual feature verification task 

was used wherein two sequentially presented features were followed by a concept name. 
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Under the assumption that verbally presented features activate other features prior to the 

presentation of a concept name, and that this activation facilitates feature verification, the 

hierarchically deep and shallow models predict different patterns for concepts preceded 

by within- and cross-modal pairs. Hierarchically shallow models predict no difference 

between within- and cross-modal decision latencies, whereas hierarchically deep models 

predict a cross-modal advantage because two features should activate clusters of 

correlated features for two modalities in parallel. Amodal models again predict no effect 

of modality.

Because feature verification latencies have been shown to depend on the presence of 

feature clusters (McRae, de Sa, & Seidenberg, 1997), concept intercorrelational density 

was also manipulated. A feature cluster is a group of interrelated features. For example, 

birds such as robin and seagull are high-density concepts because there are many other 

objects in the world that possess similar sets of co-occurring features, such as <has 

feathers>, <has wings>, <has a beak>, <flies>. Because these features regularly occur 

together in many concepts, they are highly correlated with one another. Because they are 

mutually correlated, these features form a correlated feature cluster, one property of 

which being that activating any single feature in the cluster rapidly activates other 

features in the cluster. At the other end of the spectrum are concepts such as ashtray, 

which possesses features that may be idiosyncratic (fused for cigarettes>) or else occur 

with so many other features in other concepts as to be poor predictors for other features 

that the concept might possess (<made of plastic>). Such features are not part of 

correlated feature clusters, and therefore, activating such features would not be expected 

to lead to the rapid activation of other features belonging to the concept. Because the 



48

advantage for cross-modal pairs predicted by hierarchically deep models relies on 

clusters of intercorrelated features in each modality in which activation may occur in 

parallel, I divided the target concepts into those with low and high intercorrelational 

density. Intercorrelational density is the sum of the percentage of shared variance across 

all of a concept's significantly correlated feature pairs (because it is a sum, it is no longer 

truly a percentage). Low and high density concepts were those with a standardized 

intercorrelational density less than -1 and greater than 1, respectively. Though any effect 

of target density does not distinguish among shallow, deep, or amodal theories, because 

high density concepts possess larger clusters of intercorrelated features on which pattern 

completion depends, this factor was included in the analyses. All feature-based models 

that allow for influences of correlated features predict a latency advantage for high- 

density items. However hierarchically deep models allow (but do not require) that target 

density may interact with pair type, such that greater facilitation may be found for high- 

density than for low-density concepts, whereas shallow and amodal models do not make 

this prediction.

Method

Participants. Twenty-six University of Western Ontario undergraduates received $10 

for their participation. Three participants were dropped because their mean response 

latency (2 participants) or error rate was greater than three standard deviations above the 

grand mean.

Materials. Standardized intercorrelational density was calculated for all concepts in 

our norms. Thirty-six concept-feature sets of the form {<A>, <B>, <C>, TARGET} 

were selected such that {<A>, <B>} were correlated within-modal features (<has a 
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sheath>, <has a blade>), {<C>, <B>} were correlated cross-modal features (<used for 

cutting>, <has a blade>), and {<A>, <B>, <C>} were listed for the TARGET concept 

(sword) in our norms (see Appendix C). Of these 36 item sets, half contained low-density 

and half contained high-density targets, which possessed standardized density scores of 

less than -1 and greater than 1, respectively.

To control for factors that might be expected to influence decision latencies, items 

were selected such that characteristics of the first feature, and the relationships between it 

and the second feature and target concept were equated (see Tables 6 and 7). As 

described below, two low density items were dropped because of error rates of 

approximately 50% on both within- and cross-modal triais, so the equated statistics in 

Tables 6 and 7 are for the remaining items only. Because the effect of density was of 

secondary interest, less emphasis was placed on matching low and high density items. 

Nonetheless, as Table 6 shows, the conditions were generally matched on most variables 

of interest. These variables included concept familiarity, which was the subjective rating, 

from 1 to 9 of the degree to which people feel familiar with the concept; mean shared 

variance, which was the average of the shared variances in the feature norms for yoked 

pairs; mean production frequency, which is the average of the production frequencies in 

the feature norms for the first features of the yoked pairs; mean CPF, which was the 

average of the number of concepts associated with the first features of the yoked pairs; 

and mean intercorrelational strength, which was the average of the sum of shared 

variances in the feature norms between the first features of the yoked pairs and other 

features of the target concept. The significantly higher target concept density scores for
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Equated variables in Study 4 by density condition

Table 6

Factor

High Density Low Density

M SE M SE t(32) P

Target Concept Density 635 58 92 13 9.10 < .0001

Target Concept Familiarity 6.0 .5 6.9 .4 1.33 > .15

Mean % Shared Variance 17.7 2.3 21.4 5.9 0.61 > .5

Mean Production Frequency 10.9 0.8 11.2 1.1 0.21 > .8

Mean CPF 7.5 1.3 6.1 0.9 0.88 > .35

Mean Paired Concepts 4.6 0.7 2.9 0.2 2.30 < .05

Mean Intercorrelational Strength 264 33 220 35 0.94 > .35
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Equated variables in Study 4 by modality and density condition

Table 7

Factor

Within-Modal Cross-Modal

M SE M SE 1a P

High Density

% Shared Variance 18.3 2.8 17.1 2.8 0.40 > .7

Production Frequency 11.9 1.3 10.0 1.1 1.07 >.3

Paired Concepts 4.4 0.7 4.8 0.9 -0.59 > .5

Concepts per Feature 6.9 1.6 8.1 0.2 -0.55 > .5

IntercorreIational Strength 243.0 37.7 286.0 35.0 -1.32 > .2

Length 11.6 1.3 12.6 0.9 -0.59 > .5

Low Density

Mean % Shared Variance 22.1 6.2 20.8 6.0 0.43 > .6

Production Frequency 10.6 1.2 11.8 1.3 -0.87 > .3

Paired Concepts 2.8 0.2 2.9 0.2 -0.37 > .7

Concepts per Feature 6.4 1.3 5.8 1.0 -0.42 > .6

IntercorreIational Strength 230 37 209 37 0.79 > .4

Length 11.3 1.1 14.1 1.3 -1.49 > .15

a paired t-tests using 17 degrees of freedom for high density items, and 15 degrees of

freedom for low density items
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the high density items confirms that the two sets of items indeed differed on this 

dimension. The mean number of concepts in which the features were paired together was 

significantly higher for high density versus low density items, however, because 

correlated features were used in filler items, this would tend to slow decision latencies for 

high- relative to low-density items because the high-density target features should cue 

more potentially distracting targets.

To ensure that within- and cross-modal conditions were matched in both density 

conditions, yoked items were pairwise-matched on length in characters (including 

spaces), percent of shared variance, the number of concepts in which the features were 

paired together, and the number of concepts per feature. Because the features were 

associated with particular concepts, items were additionally matched on the production 

frequency (the number of people who listed each feature for that concept) to control for 

the likelihood of the feature bringing to mind the target concept (Ashcraft, 1978). 

Additionally, because the initially presented features are assumed to activate the target 

concept by activating its features, and the shared variance among these features influence 

the speed with which this occurs (McRae et al., 1997), I matched items on 

intercorrelational strength, which is the sum of the shared variance between the presented 

features and other features of the concept. This ensured that differences in feature 

verification latencies were not attributable to differences between the groups with respect 

to the degree to which the initially presented features are correlated with other features of 

the concept. Because it was not relevant to the task, perceived relatedness of the feature 

pairs was not matched for Study 4. The speeded relatedness decision task used in Studies 

2 and 3 could be seen as a detection task, in which participants were under time pressure 
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to detect the related correlated test items among the uncorrelated filler items. For these 

studies, relatedness ratings were a measure of extent, under the assumption that the 

greater the extent to which two features are perceived as related, the faster would be the 

detection of this relation under time pressure. In Study 4, correlated features were used in 

all triais - indeed, the correlated pairs used for some filler items was higher than that for 

some experimental items - and therefore, perceived relatedness would not cue the feature 

verification response. Instead, the extent to which the features belong to the concept was 

controlled by equating the conditions on the production frequency, paired concepts, and 

concepts per feature, all of which would be expected to influence the probability that 

each feature pair would cue the target concept. Because they are common to both 

members of a yoked pair, relations between the second feature and target concept were 

automatically equated. All knowledge types in our norms, with the exception of 

encyclopaedic and taxonomie features, were represented. Target concepts included both 

living and non-living concrete objects.

The 36 yoked within-modal and cross-modal items were assigned pseudo-randomly 

to two experimental lists, such that each list included 18 within- and 18 cross-modal 

triais, and no two yoked items appeared in the same list. Because each member of a 

yoked pair shared a target concept, half the items in each list had high-density targets, 

and half had low-density targets. Both lists contained an equal number of filler items in 

which it was not true that both features were true of the target concept. The filler items 

were divided into thirds (i.e., 12 of each kind) in which either the first feature, the second 

feature, or neither was true of the target concept. Filler items used features and medium­

density target concepts not appearing among the experimental items. The use of 
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correlated features in the filler items ensured that there was at least one concept in which 

both features occurred for both experimental and filler trials, and therefore participants 

needed to wait for the presentation of the target concept to respond accurately. No feature 

or target concept appeared more than once in either list.

Procedure. Participants were tested using E-Prime (Psychology Software Tools Inc., 

2002) on an AMD Athlon 64 3200+ personal computer, equipped with a 17-inch colour 

monitor. Each trial proceeded as follows. First, a blank white screen was presented for 

1500 ms, followed by a vertically and horizontally centered fixation cross (+’) for 500 

ms, after which time it disappeared. The first feature was displayed immediately above 

the position of the fixation cross, followed 1000 ms later by the second feature 

immediately below the first. Both features remained on the screen for an additional 1000 

ms, after which time the target concept was presented in upper case letters on the line 

immediately below the second feature. The 1000 ms SOA for each feature ensured that 

participants had sufficient time to read the longest multiword features. The two features 

and the target concept remained on the screen until the participant responded. Responses 

were collected using a button-box that recorded the time between the onset of the target 

concept and the button press with millisecond accuracy. Participants responded “yes” by 

pressing a button with the index finger of their dominant hand and “no” by pressing 

another button using the index finger of their non-dominant hand.

There were 16 lead-in practice trials comprising a mixture of yes and no triais 

immediately followed by 72 experimental trials. The experiment took about 15 minutes 

to complete.
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Design

Analyses of variance were conducted with decision latency and the square root of the 

number of errors as the dependent variables. The independent variables were modality 

(within vs. cross) and concept density (low vs. high). Modality was within participants 

(Fi) and items (F2), whereas density was within participants but between items. List and 

item rotation group were again included as dummy variables.

Results and Discussion

Two low-density items with error rates approaching 50% were dropped from the 

analysis. Because the proportions of error responses were similar for within- and cross- 

modal conditions for both items, the errors were attributed to ambiguity of, or 

unfamiliarity with, the relationship of the second feature to the target concepts (BEETS, 

and SCREWS). Decision latencies greater than 3 standard deviations above the grand 

mean were replaced by the cutoff value (4% of the trials).

Mean verification latencies and error rates are presented in Table 7. Critically, 

feature verification latencies were shorter for cross-modal (M = 773 ms, SE = 29 ms) than 

for within-modal items (M= 849 ms, SE = 34 ms), F,(1,24) = 15.68, p < .0007, F2(1,30) 

= 7.83, p < .009. Verification latencies were shorter for high-density concepts (M = 770 

ms, SE = 29 ms) than for low-density concepts (M= 851 ms, SE = 33 ms), which was 

significant by participants, Fi(1,24) = 26.80, p < .0002, but marginal by items, Fi(1,30) = 

3.46,p < .08. Concept intercorrelational density did not interact with feature modality, 

F,(1,24) = 2.80,p> .1, F2 <1.
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Feature verification latencies and error rates for Study 4

Table 8

Factor

Error Rate Latency (ms)

M SE M SE

High Density

Within-ModaI .05 .02 825 31

Cross-Modal .05 .02 725 32

Low Density

Within-Modal .11 .02 883 39

Cross-Modal .07 .02 826 30
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Because it was hypothesized that a greater cross-modal advantage might be apparent 

for high-density items than for low-density items, planned comparisons were conducted 

between the modality conditions for both levels of density. For low density targets, the 58 

ms advantage for cross-modal pairs was significant by participants, Fi(1,48) = 4.62,p < 

.04, but not by items, F2(1,30) = 2.11,p> .15. For high density targets, the 99 ms 

advantage for cross-modal pairs was significant, F1(1,48) = 14.23,p < .0006, F2(1,30) = 

6.46,p < .02. Thus, it appears that cross-modal pairs more quickly activated concepts 

than did within-modal pairs for concepts with relatively few and many clusters of 

intercorrelated features, though this difference was numerically but not statistically 

greater for higher density concepts.

Participants were generally quite accurate. There was no difference in error rates 

between within and cross modal pairs, Fi < 1, F2(1,30) = 1.02, p > .3. Error rates were 

marginally lower for high density than for low density concepts, Fi(1,24) = 3.44, p < .08, 

F2(1,30) = 3.57,p< .07. The two factors did not interact, Fx(1,24) = 1.48, p > .2, F2<1.

One potential concern was that the within-modal paired features could be construed 

as redundant for some items. For example, it is perhaps the case that little additional 

information is provided in pairing <eaten in sandwiches> with <is edible>, as the former 

implies the latter. One alternative explanation of these results, therefore, is that people are 

slower at responding to items for which less information is given. The above analyses 

were repeated with the removal of seven yoked pairs of items identified as potentially 

having features with overlapping meaning. A reanalysis of the item characteristics found 

the stimuli to be matched on all variables of interest, with the exception of the feature 

length (in characters) for low-density items, which favoured within-modal (M= 10.2, SE 
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= 0.8) over cross-modal (M- 14.4, SE= 1.5) items, t(12) = 2.29,p = .04. Despite this 

bias, feature verification latencies were again shorter for cross-modal (M= 778 ms, SE = 

31 ms) than for within-modal items (M= 875 ms, SE = 33 ms), f∕(l,24) = 24.29,p < 

.0001, F2(1,23) = 10.13,p < .004. Verification latencies were shorter for high-density 

concepts (M= 794 ms, SE = 32 ms) than for low-density concepts (M= 860 ms, SE = 32 

ms), which was significant by participants, F∕(1,24) = 12.43,^ < .002, but not by items, 

F∕(l,23) = 1.45,∕J > ∙2∙ Concept intercorrelational density interacted with feature 

modality by participants, F∕(1,24) = 7.00,/? < .015, but not by items F2 < 1. Error rates 

did not differ between conditions, nor was there an interaction in any analysis, all Fs < 1.

Study 4 advances our understanding of how pattern completion is influenced by the 

sensorimotor modality of available object features by suggesting a particular type of 

neural mechanisms that allow integration of distributed semantic representations into 

coherent concepts. Importantly, there was a clear cross-modal latency advantage that is 

predicted by deep hierarchy models. These results are inconsistent with the predictions of 

shallow hierarchy and amodal models. Although mode and density did not reliably 

interact, the cross-modal advantage was somewhat stronger for high density concepts.

One final thing to note is that there are other ways I could have measured the 

relationship between the feature pairs and the clusters of intercorrelated features within 

target concepts. The item groups were based on the intercorrelational density of the target 

concept, an index of the correlated feature clusters within the concept. However, McRae 

et al. (1997; 1999) showed that intercorrelational strength (i.e., the sum of the squared 

correlations between a feature and each other feature of a particular concept) influences 

feature verification latencies. For example, <hunted bypeople> is more strongly
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intercorrelated with other features of deer than of duck, and verification latency was 

shorter for deer. Because the cross-modal advantage for pattern completion depends on 

these features activating feature clusters that overlap with the concept, the data were 

reanalyzed using two alternative methods. First, I classified items into high and low 

intercorrelational strength on the basis of the mean intercorrelational strength of the 

presented features, using the same logic underlying McRae et al. (1997; 1999). The 

second method incorporated both intercorrelational strength and intercorrelational density 

by multiplying these two values together to create a composite variable. For both 

measures, the placement into high and low groups remained the same for the vast 

majority of items, and consequently, the pattern of results after re-analyses of the 

verification latency data did not qualitatively differ from those presented above.
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General Discussion

The present research used complementary behavioural tasks to identify the most 

likely neural architecture underlying integration of multimodal semantic representations. 

These tasks were of interest for numerous reasons. They were of practical interest 

because shallow and deep integration hierarchies make different predictions for them. 

From a broader perspective, however, they are of interest because of their ubiquity in 

cognitive processing. A sound or a smell can cause a concept to automatically come to 

mind, and allows access to a wealth of knowledge about that concept. Similarly, feature 

inference, both within and across sensorimotor modalities, is so routine that we 

commonly use texture words like “fuzzy” or “smooth” to describe objects we have seen 

but have never touched. Thus, understanding how the brain carries out these basic 

cognitive processes is central to our understanding of human behaviour.

An important implication of the ubiquity of feature inference is that the classification 

of features into modalities can be fuzzy. On one hand, features such as ‘red’ would seem 

to unambiguously describe an object’s colour. However, as mentioned the term ‘fuzzy’ 

itself can refer to a tactile experience, as when describing a tennis ball, or to a visual 

experience, as when describing the mould growing on something one would rather not 

touch. In McRae et al. (2005), single knowledge type labels were assigned to features by 

consensus. Thus, because some verbal descriptors, such as ‘fuzzy’ can refer to multiple 

modalities, this equivocation leads to uncertainty regarding the modality of the 

information retrieved when reading feature descriptors, such as <isfuzzy>. Given that 

support was found for deep hierarchy models in each of the studies, one concern might be 

whether these results might be attributable to an ambiguity regarding the knowledge 
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types for some stimuli. I do not believe this to be the case for a few reasons. First, these 

knowledge-type classifications have been used to explain a number of behavioural 

phenomena, including susceptibility to various neurological impairments (Cree & 

McRae, 2003), and speeded semantic decisions for concrete objects (Grondin, Lupker & 

McRae, in press), which therefore suggests that the knowledge type classifications are 

generally coherent. More importantly, however is that because multiple meanings are 

activated when polysemous words are read (Pexman, Hargreaves, Bodner & Pope, 2008), 

it is likely that all knowledge type senses are available when an ambiguous feature 

descriptor is read. However, the predicted effects depend not on the particular modalities, 

but instead on whether the relationship between the features is within- or cross-modal. 

Thus, the biggest concern is that there might be some sense in which a cross-modal 

feature is also within-modal, and vice versa. However, even if this were indeed the case 

for every item used in Studies 2, 3 and 4, then the contrasts in each of these experiments 

would be between items from the same condition, which should reduce between 

condition variability. In other words, knowledge type fuzziness should make it less likely 

to find an effect. Thus, while it is desirable that the knowledge type labels used in this 

research is an accurate description of the features to which they are applied, and I believe 

that, for the most part they are, a degree of ambiguity does not take away from the major 

findings of this work.

Studies 2 and 3 used a feature relatedness task. The results were consistent with the 

within-modal advantage predicted by hierarchically deep models. However, necessary 

aspects of these experiments' design yielded open questions. The first concern was that 

functional features, which may take longer to retrieve, only appeared in the slower cross- 
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modal condition, and so it was unclear whether the results reflected a general 

disadvantage for processing functional features. The second was that cross-modal items 

may have incurred a task-switching cost and correspondingly longer decision latencies. 

Finally, I wanted to extend the results to knowledge types other than visual form and 

function information. Study 4 addressed all three of these concerns using a double feature 

verification task, and again the results supported a deep integration hierarchy.

These results constrain semantic memory models in a few ways. First, multimodal 

models assume that people do not literally store lists of features, such as <has wings> or 

<buzzes> to represent concepts. Rather, verbal labels such as these are used as a short­

hand to refer to the underlying visual or auditory information. Thus, these results confirm 

that the orthographie presentation of these features can activate associated sensorimotor 

feature knowledge implicitly learned through real world experience. Second, these results 

indicate that, as feature knowledge becomes available, it activates clusters of associated 

semantic information distributed across a network of brain areas that gradually come to 

approximate a concept. This is not a trivial point because one may imagine that feature- 

to-feature and feature-to-concept activation is carried out using two different systems. In 

dual-coding theory (Paivio, 2007), for example, concrete concepts have both lexical and 

perceptual representations, and a concept’s lexical representation can act as a pointer to 

all of its features. Thus, brain areas specialized for language processing could act as a 

single convergence area during concept activation when a concept name is read or heard. 

The pattern of results across four studies was consistent with the assumption that 

multimodal semantic integration occurs in a deep integration hierarchy, wherein 

information encoded by modality-specific representational units is integrated in proximal 
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modally-tuned convergence zones which in turn pass activation forward to higher order 

convergence zones that integrate multiple modalities.

Relation to Previous Research

The results are clearly compatible with models such as those put forward by 

Damasio (1989) and Simmons and Barsalou (2003) that explicitly specify a deep 

organization. In these models, higher level convergence zones integrate more information 

sources and can therefore encode more abstract relationships. Because both Damasio’s 

and Simmons and Barsalou,s models predict that higher level convergence zones appear 

in more anterior brain regions, these results are also compatible with research showing 

that these regions support the learning of abstract concepts such as reward learning 

(Fuster et al., 2000), and feature conjunctions (Eacott & Gaffιn, 2005). Furthermore, the 

anterior shift described by Thompson-Schill (2003), which is the association between 

conceptual processing and activity in brain regions just anterior to perceptual areas, may 

reflect activity among focused integration units as they provide re-entrant activation to 

perceptual areas in what Barsalou (1999) would call a simulation of the concept.

The effects of modality found in the present experiments are inconsistent with 

amodal representational systems (Caramazza, 1991; Moss & Tyler, 2001). Lacking any 

modality distinction, semantic processing largely driven by statistical properties such as 

feature correlations. Because these factors are assumed also to play a role in multimodal 

models, stimuli used in Studies 2 to 4 were matched on these factors, making it difficult 

for these results to be explained by amodal models. This research therefore adds to the 

growing body of literature that challenges the argument that our representational system 

stores only abstract amodal representations.
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The support for a deep integration hierarchy is also inconsistent with the ways in 

which our own models have been implemented. For example, Cree et al. (2006) 

simulated influences of distinctive versus shared semantic features in a connectionist 

model that used direct connections among its feature units. That is, convergence zones 

were not incorporated in any way (which could be implemented as sets of hidden units in 

connectionist models). In fact, our implemented models have not even instantiated 

modality-specificity, but we have argued elsewhere that sensorimotor modality is an 

important organizing force in how the brain represents information (Cree & McRae, 

2003; McRae, 2004). Thus, the present results suggest that our future models should 

include intramodal hidden unit clusters that feed into a higher level convergence zone.

Humphreys and Forde’s (2001) HIT model was designed to capture some of the 

properties of Farah and McClelland’s (1991) fully interconnected network in a 

hierarchical model in which processing from a top-level layer cascades back to earlier 

functional and sensory representational units. Both are shallow models as presented, and 

would therefore need to be extended somewhat to be consistent with our results. Farah 

and McClelland’s model was an existence proof that category specific deficits can arise 

out of a segregation of sensory and functional knowledge and was not intended to be an 

argument about other aspects of the underlying neural architecture. The HIT model was 

designed to confirm that the same patterns hold in a system that allows reciprocal 

activation (or “cascading”) from a higher-level structure that acts as a convergence zone. 

Their model, however, includes only three types of knowledge: structural descriptions of 

the general visual form of objects, functional and inter-object associative information that 

they called “semantic” knowledge, and name representations. However, it has been 
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shown here and elsewhere that knowledge of other sensory modalities such as taste are 

important aspects of concepts for some categories, such as food (Simmons, Martin, & 

Barsalou, 2005). The main focus of Humphreys and Forde’s argument was the 

importance of the role of reentrant activation from higher-level integration sites, and the 

role of the various sensorimotor modalities in the model was secondary. Thus, they 

sketched alternative versions illustrating the role of cascading activation in different tasks 

relying primarily on different modalities, for example, the role of auditory knowledge 

when identifying a guitar by its characteristic sound. The present results show how the 

mechanism of cascading reentrant activation functions in a single deep hierarchy model 

capable of accounting for those phenomena that the HIT model was designed to address, 

and further refines the model by demonstrating that this cascade may function differently 

within and across modalities. These results are also consistent with a model of form­

colour synaesthestic activation proposed by Smilek, Dixon, Cudahy and Merikle (2001), 

in which reentrant activation of form information leads to activation of colour 

information before the visual form of a visually-presented character has been completely 

resolved. Because these results suggest that a similar process occurs during normal 

concept processing for multiple sensorimotor modalities, the model proposed by Smilek 

et al. may apply to other types of synaesthesias. Moreover, it suggests that the critical 

difference between synaesthetic and typical cross-modal processing may be with respect 

to speed: if cross-modal activation occurs rapidly enough, a simultaneous experience of 

two modalities may result, whereas slower cross-modal activation would allow within- 

modal inhibition of cross-modal experiences, and allow a sufficiently large temporal 
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delay as to promote the subjective feeling that any cross-modal information that reaches 

awareness was the result of an inference.

Plaut (2002) describes a hybrid semantic model in which functional specialization of 

semantic representations are graded, rather than all-or-none. Although this model may 

initially appear to make the assumption of a shallow integration hierarchy, a functionally 

quasi-deep integration hierarchy emerges through training. Although Plaufs model uses a 

single convergence area, it is biased to form short connections, which creates pools of 

connections that conjoin features from the same input modality adjacent to each sensory 

input layer. Longer connections tend to form mid-way, in multidimensional space, 

between input layers for multiple modalities. Because a connection in the model is 

represented by a single numerical value representing its weight, physical distance is not 

directly encoded in this network, but is instead simulated by weakening connections that 

link units that are more distant in multidimensional space. Because the ability for one unit 

to activate another depends on the strength of the connection between them, weakening 

this connection will reduce the efficiency with which the units may activate one another, 

thereby increasing the time required for activation to spread from one to the other.

It is not a requirement that convergence zones be clearly defined in the brain, and the 

graded organization in Plaut’s model may be an important property of convergence 

zones. Thus, though it lacks explicit boundaries between within- and cross-modal 

convergence areas (i.e., both types of units appear in the same layer), functionally 

equivalent pools of connections emerge as a result of this bias: integration units closer in 

multidimensional space to each input modality and approximate a within-modal 

convergence zone, and units that are more distant will form weaker cross-modal 
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connections. Because transmission speed is directly related to connectivity strength, this 

model predicts faster within-modal than cross-modal communication between two 

features, which is predicted by the deep, but not the shallow hierarchy assumption. It is 

therefore probable that Studies 2 and 3 could be simulated in a connectionist network 

without explicitly defined within- and cross-modal integration areas, similar to that 

described by Plaut. The model also predicts faster pattern completion from cross-modal 

than within-modal pairs for the same reason, because cross-modal input can activate 

other within-modal features for both modalities in parallel via the relatively stronger 

within-modal connections, whereas within-modal would propagate along relatively 

weaker cross-modal connections in order to activate other modalities. A model similar to 

Plaut’s would therefore also be likely capable of simulating Study 4. Note, however, that 

simulating Studies 2 to 4 in a quasi-hierarchical model would not imply that these studies 

fail to distinguish between shallow and deep hierarchical models. Rather, it would further 

support the central prediction of hierarchical models: that connective distance varies by 

modality and determines how information from each modality influences conceptual 

processing.

Finally, the present results are inconsistent with Patterson et al.’s (2007) claim that 

anterior temporal cortex is the sole hub through which semantic memory is routed 

because, as presented, theirs is a shallow hierarchy model. Although the evidence for 

deep hierarchy models does not refute their claim that this area plays an important role in 

integrating semantic information, it does suggest that this area is perhaps a top-level 

multimodal convergence zone in a deep integration hierarchy, and that their theory would 
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need to be modified to include lower-level unimodal convergence zones to account for 

these results.

Insights into Functional Connectivity

Mapping functional connectivity among various functional areas in the brain is a 

rather difficult undertaking, owing in part to the absence of natural anatomic boundaries 

in white matter, aside from notable exceptions, such as the corpus callosum. In recent 

years, techniques have been developed to estimate functional connectivity between brain 

areas by examining inter-regional correlations in fMRI time series (fcMRI), or measuring 

the shared variance between EEG signals measured simultaneously at different scalp 

locations. In addition to identifying those inter- and intra-modal relationships that would 

be most sensitive to the manipulations used in Studies 2 to 4, the functional connectivity 

estimates calculated in Study 1 provide testable hypotheses for those studying functional 

connectivity at the macroscopic level using anatomical and neuroimaging techniques. For 

example, Griffiths, Green, Rees, and Rees (2000) imaged participants while they listened 

to sounds with sources that appeared to move to one side of the head, or else remained 

apparently stationary. Activity within a network of areas involving right parietal cortex 

was involved in processing perceived sound movement, the implication being that 

information travels from auditory cortex to parietal cortex (an area implicated in motion 

perception) and presumably back to auditory cortex.

The role of the dorsal stream - a pathway of functional connectivity beginning in 

visual cortex and extending forward to parietal cortex -in the selection and programming 

of appropriate motor acts on objects has been studied extensively over the past two 

decades (Goodale & Milner, 1992). One relatively new method of assessing functional 
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connectivity involves combining transcranial magnetic stimulation (TMS) with 

measurements of event-related potentials (ERP) to investigate how activation of one 

brain region is causally responsible for activation in another region (Taylor, Walsh, & 

Eimer, 2008). Using the motion-sound and motion-vision functional connectivity 

estimates from Table 3, the functional connectivity between motion and vision processing 

areas may be as much as five times greater than between motion and sound areas, if one 

makes the simplifying assumption that these estimates apply bidirectionally. Because the 

imaging research described above provide potential loci for TMS and ERP 

measurements, one could assess whether the extent to which current measured at 

electrodes placed over visual cortex differs from that measured at electrodes placed over 

auditory cortex following the administration of an electromagnetic pulse to posterior 

parietal cortex, and if so, if it differs to the extent predicted by the functional connectivity 

estimates from Study 1.

Another application of the functional connectivity estimates from Study 1 is to the 

synaesthesia literature. In synaesthesia, sensations from one sensory modality are reliably 

experienced either as a direct superimposition (as in colours superimposed over numbers 

or letters in colour-grapheme synaesthesia) or as salient and reliable visualizations (as in 

perceiving time as physical locations in space in temporal-spatial synaesthesia). One 

proposed explanation is that synaesthesia results from a breakdown of the neural pruning 

that typically occurs in the developing brain (Baron-Cohen, 1996). According to this 

hypothesis, whereas many communication pathways between functional areas die off 

over the course of normal development, this does not happen normally in synaesthetes, 

allowing atypical cross-talk between perceptual processing systems. Thus, processing of 
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information in one modality causes atypical perceptual experiences in another modality. 

If synaesthesia is related to the degree of functional connectivity between brain regions, 

then perhaps the functional connectivity estimates from Study 1 could be used to predict 

the prevalence of various types of synaesthesias. Interestingly, using the average 

magnitude of shared variance measures in Table 2, colour has the highest estimated 

functional connectivity with other modalities, the noteworthiness of which being that 

forms of synaesthesia involving the perception of colour imposed on other senses are the 

most prevalent. Related statistically-based investigations of cross-modal correlation 

learning in synaesthetes may provide insight into the development of neural pathways in 

this population, and in general.

Perceptual and Conceptual Integration

I suggested in the Introduction that the question of how multimodal conceptual 

knowledge is integrated into unified concepts is the conceptual analog of the perceptual 

binding problem (Triesman, 1996), which argues that object perception requires a 

mechanism through which multiple input streams across multiple modalities are 

incorporated into single perceptual objects. A critical assumption underlying the present 

research and the body of research supporting distributed multimodal semantic 

representations is that the brain regions specialized for perceptual processing in each 

modality are also used in processing semantic information from the corresponding 

modality. From this perspective, the primary difference between perception and semantic 

processing is in the source of the inputs driving processing. In the case of perception, 

processing is initially driven by environmental inputs (though top-down processing 

introduces learned information not present in the environment into the processing 
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stream), whereas conceptual processing may be primarily driven by internal 

representations which act as inputs (though environmental cues provide context that may 

guide the retrieval of information and provide additional information). If concepts and 

percepts are indeed two sides of the same coin, then the present research and the 

investigation of multimodal perception mutually inform one another.

This issue is perhaps most clearly apparent in the synaesthesia literature, where there 

is some question of whether synaesthetic experiences reflect perceptual or semantic 

processes: In particular, Smilek and Dixon (2002) suggest that, because non-synaesthetes 

can be made to demonstrate patterns of interference in a Stroop task similar to those 

found in synaesthetes through extensive overtraining (e.g., naming a colour in response to 

a visually presented digit over thousands of triais), cross-modal synaesthetic activations 

may reflect semantic associations. However, as the authors point out, if one considers the 

subjective reports of such experiences- namely, that digit-colour synaesthetes such as C 

see coloured digits overlaid atop digits visually presented in black, and therefore sees two 

different colours. Because overtraining non-synaesthetes does not lead to such 

experiences, Stroop effects arising from automatic cross-modal activation induced in 

non-synaesthetes likely arises from different processes than those induced by synaesthetic 

experiences (Smilek & Dixon, 2002).

Because I used words as stimuli, rather than pictures or sounds, our studies clearly 

involve multimodal integration in the conceptual system. Nonetheless, in a perceptual 

symbols system framework (Barsalou, 1999), retrieval of the underlying meaning of 

these stimuli is assumed to induce a pattern of activation in the primary sensory areas 

similar to that experienced during perception, albeit presumably less vividly. If this is so, 
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then the same neural circuits could be used in both conception and perception, and 

therefore be subject to the same processes. The support for hierarchically deep 

representational models suggests a similar organization for the routing of multimodal 

information in perceptual processing.

Similarly, the idea of inhibitory processes is not new to either the perception or 

concept literature. Nonetheless, research into cross-modal integration circuits in 

perception have identified two ways in which cross-modal inhibition is accomplished 

during perception, and may provide insight into how multimodal inhibitory processes 

may influence concept processing. For example, the present research used only positively 

correlated features from the McRae et al. (2005) norms. In part, this is because these 

feature norms contain very few negatively correlated features, partly as a result of how 

people provide features for concepts - people overwhelmingly list properties that are true 

of concepts, rather than those that are not. One would expect negatively correlated 

features to be reciprocally inhibitory: if one feature occurs, the other does not. Thus, 

assuming one could overcome the challenge of generating an appropriate set of positively 

and negatively correlated features from different modalities, one might adapt the 

methodologies used here to investigate the role of within- and cross-modal inhibition in 

multimodal integration.

Alternative Experimental Paradigms and Future Directions

Given that this research fundamentally concerns the neural architecture underlying 

semantic processing, one might question the suitability of behavioural methods for such 

an investigation. For example, neuroimaging data appears to allow more transparent 

inferences of brain structure than do decision latencies. Aside from the relatively low 
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expense in terms of time and money, there were a number of advantages, however, to the 

methods employed in the present research. First, the consistency among the studies 

suggests that the experimental tasks reliably measure the mental processes that they are 

supposed to measure, and by extension, give insight into the underlying brain function. A 

second related advantage was that the assumed hierarchies provide clear behavioural 

predictions that were borne out in the data. As discussed in the Introduction, there are a 

number of candidate brain regions that may act as convergence zones, and thus any 

investigation that explicitly examined particular brain structures would require a number 

of additional assumptions regarding the particular functions of various brain regions. 

Additionally, each methodology carries with it its own set of considerations.

Neuroimaging. The ERP literature is included under this heading along with fMRI 

investigations of brain function, all of which have become mainstream techniques in 

recent years. The strength of ERP research rests in its excellent temporal resolution, with 

the ability to measure changes in brain electrical activity measured with millisecond 

resolution. Spatial resolution for ERP, however, is rather poor, limiting localization of 

brain activity to rather coarse discriminations of anterior versus posterior, or left versus 

right. Thus, although the temporal resolution of ERP would be suitable for studying the 

time-course of multimodal integration, its poor spatial resolution makes it inadequate for 

identifying the particular neural structures involved.

fMRI, in contrast, has the opposite profile, with excellent spatial but rather poor 

temporal resolution, measured in seconds. The behavioural data presented here found that 

decisions involving the integration of multiple semantic features typically occurred under 

one second, and therefore poses a problem for this experimental paradigm. Moreover, 
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even if one were to use a design able to overcome this limitation, another problem 

remains in that until the technology is able to identify the activity of individual neurons, 

one would have to make the unrealistic assumption that the clusters of neurons 

comprising individual voxels are homogenous. In the discussion of candidate 

convergence zone loci, it was suggested that the anterior shift described by Thompson- 

Schill (2003) may reflect activity in modality-specific convergence zones.

In Figure 3, the modality-specific convergence zones are represented as distinct areas 

placed ahead of the representational areas. It is just as likely, however, that the neurons 

that encode information and the neurons that integrate input from multiple neurons are 

not cleanly partitioned. One possibility is that the neurons are arranged in a gradient with 

distal areas containing predominantly either encoding or integration populations, but with 

the majority of the volume containing a relatively heterogeneous population. Such an 

arrangement would make distinguishing the different neural populations quite difficult.

TMS. Transcranial magnetic stimulation, or TMS, involves the application of an 

electromagnetic pulse (EMP) to the scalp, causing a temporary disruption of brain 

activity for a relatively small area, and has been used to create “virtual brain lesions”, 

which can be used to investigate the causal relationship between activity in a particular 

brain area and different types of behaviour. This technique has straightforward 

applications to the investigation of multimodal integration; by comparing performance on 

tasks, such as those used in the present experiment, that involve the integration of 

information from different modalities with and without virtual lesions, one can gain 

insight into what brain areas might be responsible for integrating information from 

different sensorimotor modalities. There are a few limitations of this approach however. 
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The first is that, as discussed above, the population of within-modal integration neurons 

may be interspersed among the representation neurons for that modality, making it 

impossible to selectively lesion integrative neurons. Thus, this technique may be more 

appropriate for identifying loci for cross-modal integration, which may be sufficiently 

distant from the areas that represent either modality. On the other hand, potential 

multimodal integration sites found in ventral and medial areas such as the perirhinal 

cortex cannot be investigated using this technique because the EMP delivered by TMS is 

limited to brain areas underlying the. scalp.

Behavioural Paradigms. The null hypothesis was the assumption of a shallow 

integration hierarchy for all experiments described in this investigation. Thus, the present 

set of studies was not ideally suited to testing the predictions of a shallow integration 

hierarchy. A more suitable test of the shallow hierarchy assumption might involve some 

type of disruptive attentional task. For example, if there were but a single integration site, 

then the processing load imposed by cross-modal feature integration would be expected 

to also influence within-modal integration. Under the assumption of a deep hierarchy, 

however, one might expect that even if a top-level integration site were under load, 

within-modal processing might be relatively unaffected because it uses different 

structures. In such an experiment, an effect is predicted for shallow models in the 

disruption versus no disruption for both within- and cross-modal integration, whereas the 

effect of disruption under the deep hierarchy assumption would depend on the nature of 

the disruption and the integration modality.
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Conclusion

In the present research, I combined insights regarding the influence of distributional 

statistics of concepts motivated by connectionist modeling with insights from neurally­

based theories of conceptual organization to test ideas regarding neural functional 

connectivity using complementary behavioural tasks. My studies provide clear evidence 

for the existence of a deep hierarchy in a multimodal distributed semantic memory

system.
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Appendix A

Within- and cross-modal pairs for Study 2

Feature A Feature B

Function-Form worn for warmth made of wool

used in bands made of brass

used for storage has doors

used for killing has a trigger

worn by women made of material

used for passengers has an engine

worn on feet made of leather

used for transportation has 4 wheels

eaten in pies has seeds

worn by men has pockets

worn around neck made of gold

used for cutting has a blade

used by riding has a seat

hunted by people has 4 legs

eaten in salads has leaves

used for holding things made of plastic

eaten by people has gills

used for cooking is electrical

used for cleaning has a handle

used for eating made of ceramic

Form-Form has fins has gills

has a lid made of glass

has sleeves made of cotton

made of brick has a roof
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has a blade has a wooden handle

has pockets has buttons

has blades is electrical

has windows has a roof

has 4 wheels has an engine

has a tail has hooves

has buttons made of material

made of wood has drawers

has scales has teeth

has a seat has wheels

has a tail has legs

is flat is rectangular

has seeds is round

has doors has windows

has fur has whiskers

has horns has hooves
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Appendix B

Yoked within- and cross-modal pairs used in Study 3

Within-Modal Feature A Cross-Modal Feature A Target Feature B

has two wheels used by riding has handle bars

has a stinger used for travel has wings

has a clasp used for gifts made of gold

has buckles worn for walking made of leather

has hinges used by opening has a lock

has sections used for juice has pulp

made of diamonds worn around neck made of silver

has buttons worn by men has cuffs

has pockets worn for covering has zippers

made of fur worn for rain has a hood

has a metal blade used for gardening has a handle

has heels worn on feet has soles

made of rubber used for games is round

has a roof used for living in made of brick

has cushions used for relaxing has armrests

has pedals used for cargo has wheels

has doors used for storage has shelves
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Appendix C

Yoked within- and cross-modal pairs and target concepts used in Study 4.

Within-Modal Feature A Cross-Modal Feature A \ FeatureB Density Target

has seeds tastes sweet is round High ORANGE

fires used by the police is loud High PISTOL

has a thumb worn on hands made of wool High GLOVES

has zippers worn for covering legs has buttons High TROUSERS

used for war has a trigger used for killing High GUN

talks eats seeds sings High PARAKEET

has feet waddles has a beak High DUCK

has laces worn on feet made of leather High BOOTS

has pockets worn for warmth has sleeves High COAT

eaten in sandwiches has fins is edible High TUNA

tastes tart has peel tastes sour High LEMON

eats rodents has talons flies High FALCON

has a blade used for digging has a wooden High HOE

handle

used for watching has armrests used for sleeping High COUCH

television

is soft used for relaxing is comfortable High SOFA

has a pit is juicy has skin High PLUM

used for passengers has an engine used for High JET

transportation

has a collar worn by women made of cotton High BLOUSE

has a cushion used by sitting on has legs Low STOOL

put on ceilings has lightbulbs used by hanging Low LAMP

is smooth used by throwing is hard Low STONE
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worn on heads has a strap worn for protection Low HELMET

is flat used for carrying made of plastic Low TRAY

things

used for construction has a pointed end used for holding Low SCREWS

is damp is dark is cold Low BASEMENT

tastes different flavours eaten by baking tastes good Low PIE

has fur used in experiments has whiskers Low MOUSE

has a plug is hot is electrical Low TOASTER

has taps used for washing has a drain Low BATHTUB

has fangs slithers has scales Low PYTHON

used for music is gold used in bands Low SAXOPHONE

has shelves used for storing food has doors Low CUPBOARD

is pointed used for writing is thin Low PEN

produces sound has strings produces music Low GUITAR "

is square used for storage is rectangular Low BOX..........

eaten as pickles has leaves eaten in salads Low BEETS
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