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Abstract

Water vapor is the most dominant greenhouse gas in Earth’s atmosphere. It is highly variable

and its variations strongly depend on changes in temperature. Atmospheric water vapor can

be expressed as relative humidity (RH), the ratio of the partial pressure of water vapor in

the mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a

given temperature. Liquid water can exist as super-cooled water for temperatures between

0◦C to −38◦C. Thus, RH can be measured either relative to water (RHw) or to ice (RHi). RHi

measurements are important in the upper tropospheric region, where the temperature is always

less than 0◦C, to study ice supersaturation (ISS) and its relation to the formation of cirrus

clouds.

I present three studies all using a mathematical scheme called the optimal estimation method

(OEM). The OEM is an inverse method that determines the most probable state consistent with

the measurements and a priori knowledge. These studies use parts of a large set of existing

measurements from the Raman Lidar for Meteorological Observations (RALMO) instrument

located at the meteorological observatory in Payerne, Switzerland.

I first develop an OEM retrieval for temperature using RALMO’s two pure rotational Ra-

man (PRR) channel measurements. Retrieved temperatures show excellent agreement with

coincident balloon-borne radiosonde measurements. A second OEM scheme is introduced to

retrieve RHw directly from RALMO measurements of back-scatter due to water vapor and ni-

trogen. I validate the OEM retrievals developed for temperature and RHw. I then combine

the OEM-retrieved temperature and RHw with data from the European Centre for Medium-

Range Weather Forecasts Re-analysis (ERA5) to compute a new and improved temperature

and relative humidity product. The retrieval is enhanced by assimilating it with the ERA5 data.

The quality of the RHw retrievals from the assimilated OEM scheme greatly improves over

retrievals which use less accurate a priori information.

Thirdly, I retrieve RHi to detect ISS layers. I find the frequency of ISS layers in the free

troposphere over Payerne to be about 27% using 82.5 hours of measurements.

Keywords: 1D Var Data Assimilation, Reanalysis, Optimal Estimation Method, ERA5,

Raman lidar, Rotational Raman temperature, UTLS, Water vapor mixing ratio, Relative hu-

midity, Ice supersaturation, Particle extinction
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Summary for Lay Audience

Water vapor is the most dominant greenhouse gas in Earths atmosphere that is highly vari-

able. Variations of the atmospheric water vapor strongly depend on changes in temperature.

Accurate estimates of humidity and temperature and as well as the uncertainties associated

are required for both weather and climate forecasting purposes. I present a new mathematical

and statistical approach to estimate both atmospheric humidity and temperature using Raman

lidar backscatter measurements. The new method provides full uncertainty budgets for each

estimated temperature and relative humidity profile, that represent the errors due to instrumen-

tation, estimation method and so on. I have also combined the Raman lidar measurements into

the data from the ERA5 that is the latest major global reanalysis produced by European Cen-

tre for Medium- Range Weather Forecasts (ECMWF), to enhance the quality of the humidity

and temperature estimates. My results show that the quality of the temperature and humid-

ity retrievals are greatly improved and agree best with the measurements made by coincident

radiosondes.
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Chapter 1

Introduction

1.1 Overview

Earth’s climate is changing with time and in recent years, interest in better understanding the

factors affecting the climate has increased. Only over the last two centuries has measuring the

Earth atmospheric parameters such as temperature and humidity, and monitoring the changes

of those parameters have become a scientific interest. Since the late 18th century, temperature

measurements made by thermometers and other surface instruments have been available (Riehl

et al., 1972). Balloon-borne sounding (radiosonde) measurements in the free atmosphere be-

gan after the Second World War (Riehl et al., 1972). Since the 1960s satellites have also been

employed to measure and monitor the Earth’s atmospheric parameters and the climate (Thies

and Bendix, 2011). In the recent past, most atmospheric measurements were used primar-

ily for weather forecasting purposes. Accuracy of the measurements plays a key role in both

climate and weather predictions (Chahine, 1992; Palmer, 2000). Hence, improving measur-

ing instrumentation and data analysis techniques has become a major interest in the scientific

community.

Atmospheric water vapor is a fundamental parameter in the Earth’s climate system and it is

also with atmospheric temperature. Water vapor is known as the most significant greenhouse

gas and plays a key role in thermodynamic and radiative processes in the atmosphere as well as

in many other atmospheric processes (Wallace and Hobbs, 2006; Marshall and Plumb, 1989).

The amount of water vapor is high in the atmospheric regions where the temperature is high.

1
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High concentrations of water vapor in the atmosphere increase the absorption of long wave

radiation, inducing warmer climate. The positive feedback of water vapor is by far the strongest

feedback acting in the atmosphere (Held and Soden, 2000). Understanding the distribution and

variability of the water vapor in the atmosphere along with the temperature variations allows

for better understanding of the Earth’s weather and climate systems.

The global radiosonde network provides most of the temperature and relative humidity in-

formation required for the forecast models. Even though there are thousands of stations where

radiosondes are launched, the temporal resolution of the routine sonde measurements is rather

low, with typically two radiosondes per day (Durre et al., 2006). Typically, radiosondes can

take measurements up to about 30 km (a pressure altitude of about 11 hPa). However, it is

also well known that the radiosonde relative humidity measurements are often not reliable in

the upper troposphere (Leiterer et al., 1997; Nagel et al., 2001; Miloshevich et al., 2001; Noh

et al., 2016; Ferreira et al., 2019). Among several other techniques available for improved

water vapor measurements and temperature measurements, such as satellites and microwave

radiometers, Raman lidar has become one of the potential tools that can provide water vapor

and temperature measurements throughout the troposphere with high vertical and temporal

resolutions (Whiteman et al., 1992; Vérèmes et al., 2016; Zuev et al., 2017). The Raman lidar

technique uses the weak inelastic scattering of light by atmospheric water vapor, nitrogen and

oxygen molecules. A typical Raman lidar system either measures temperature or water vapor as

a function of height. Water vapor measurements from Raman lidars use the frequency-shifted

backscattered radiation due to the excitation of the vibrational energy of the nitrogen and wa-

ter vapor molecules to measure a mixing ratio (ratio of the number of water vapor molecules

relative to the dry air molecules). However, for Raman lidar temperature measurements, the

frequency shifted backscattered radiation, due to the rotational energies of the nitrogen and

oxygen is considered. Among the three lidar techniques for temperature profiling (Rotational

Raman, Rayleigh, and resonance fluorescence), Rotational Raman (RR) lidar has become the

most efficient remote sensing technique for temperature profiling from the ground to the upper

stratosphere. At lower altitudes, Mie scattering on aerosols prevents the use of the Rayleigh

lidar method for temperature measurements (Alpers et al., 2004). Therefore, the RR spectra of

atmospheric molecules are best to be used to measure the lower atmospheric temperatures. Par-
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ticle extinction measurements are also possible with both vibrational-rotational and rotational

Raman-scattered lidar signals. One can combine Raman lidar water vapor mixing ratio and

temperature measurements to obtain a vertical profile of relative humidity. Measuring water

vapor content in terms of relative humidity, where relative humidity is defined as the relation

between the amount of water vapor present and the maximum amount that is physically possi-

ble at a given temperature, is important as it not only provides a measure of humidity but also a

measure of temperature. Also, for temperatures below 0◦C, relative humidity can be measured

relative to water or ice. The necessity of measuring relative humidity over ice is crucial for

atmospheric temperatures below -38◦C as often liquid water does not exist beyond that tem-

perature (except as super-cooled water). However, making direct measurements of water vapor

pressure relative to ice are challenging. Using a variety of mathematical extrapolations such as

Goff Gratch equation (List, 1984), Hyland and Wexler (Hyland, 1983), Magnus Teten (Mur-

ray, 1966), one can convert saturated vapor pressure measurements made with respect to water

into saturated vapor pressure relative to ice. Hence, an estimation of relative humidity over ice

(RHi) is possible in the atmospheric regions where the temperatures reach beyond -38◦C. The

RHi measurements are important in the upper tropospheric region to study ice supersaturation

(ISS) and formation of the cirrus clouds.

Generally, atmospheric humidity measurements are scientifically challenging to obtain due

to their high variability. Thus, detecting ISS is difficult with lack of RHi measurements. Vari-

ous aircraft-based studies have shown the existence of frequent ISS in the UT (Krämer et al.,

2009; Jensen et al., 2001; Gierens et al., 2000). An aircraft-based study by Jensen et al. (2005)

has made extreme supersaturation measurements where RHi reached up to 230% in clear sky

conditions. Another study by Popp et al. (2007) using aircraft-based measurements showed

high ISS of 230-250% in cloudy conditions. Due to the limited number of observations and

their constrained temporal and spatial resolutions, it is difficult to understand the accuracy of

RHi measurements including the extreme observations made by aircraft. The main question

that arises about the extreme observations is whether they are due to instrument artifacts or

lack of knowledge of the physics of the ISS (Peter et al., 2006). In comparison to radiosonde

and aircraft-based RHi measurements, geostationary satellites provide a better set of global

water vapor measurements. However, the spatial resolution of the satellite measurements is
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poor compared to the other instruments. Even though traditional Raman lidar techniques do

not measure direct RHi, one can use the Raman lidar water vapor mixing ratio measurements

together with ancillary temperature measurements to calculate RHi. In addition to high tempo-

ral and spatial resolutions of the Raman lidar measurements, the measurements are made from

a single ground-based location. Hence, using Raman lidar water vapor measurements has ad-

vantages for studying the climate impact of water vapor, supersaturation, and cloud formation.

The first known study of atmospheric ISS using Raman lidar measurements was made by

Comstock et al. (2004). A year’s worth of nighttime Raman lidar water vapor mixing ratio

measurements calibrated against microwave radiometer water vapor measurements was used

with radiosonde temperature measurements to estimate RHi. That study focused on the fre-

quency of high ISS in cirrus clouds. The results indicated that RHi > 120% frequently occurs

at temperatures above -70◦C. The study by Comstock et al. (2004) does not provide for the

uncertainty of the calculated RHi measurements. A study by Immler et al. (2008) also used a

combination of Raman lidar water vapor measurements with radiosonde temperature measure-

ments to investigate cirrus, contrails, and ice supersaturated regions in high pressure systems at

northern mid-latitudes. Raman lidar measurements made from August to September in 2000, in

clear sky conditions (without low and mid-level clouds) were used to estimate RHi. The results

showed that the occurrence of cirrus and ISS are closely related. They observed frequent ice

supersaturated regions in the uppermost troposphere (8 km to tropopause). Further investiga-

tions of optical depths, cirrus cloud classification, and contrails were also presented by Immler

et al. (2008). Even though studies of ISS made using Raman lidar measurements are available,

no study can be found that provides a direct retrieval of RHi with retrieval uncertainties.

For the first time I present the application of the Optimal Estimation Method (OEM) mainly

to retrieve temperature and relative humidity over water, and, as well, as over ice from the

Raman lidar measurements. The OEM is an inverse method that has shown the potential to

retrieve atmospheric aerosol, water vapor mixing ratio, ozone, and atmospheric temperature

using lidar measurements (Povey et al., 2014; Sica and Haefele, 2016, 2015; Farhani et al.,

2018; Mahagammulla Gamage et al., 2019). The OEM requires minimization of a cost func-

tion that measures the degree of fit of estimates of the atmospheric state to the measurements

and to the a priori information (Palmer et al., 2000). In my work I have shown that the OEM
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has several advantages over the traditional Raman lidar algorithms used to calculate temper-

ature and water vapor mixing ratios. One of the important advantages of the OEM is that it

can retrieve multiple other parameters such as overlap, particle extinction, lidar constant etc

directly from the raw lidar measurements. The OEM also provides a full uncertainty budget

including both random and systematic uncertainties on a profile-by-profile basis. The OEM

provides estimates of retrievals of the atmospheric parameters such as temperature, humidity,

and particle extinction with an estimate of a full uncertainty budget. Using the OEM-retrieved

measurements and their uncertainty estimates in the weather and climate forecasts will provide

better predictions with a well-defined uncertainty. The OEM-retrieved overlap functions, dead

times, and lidar constants allow better understanding of the instrument used.

I applied an OEM analysis in three projects, all involving existing Raman lidar measure-

ments from the Raman lidar measurements from the Meteoswiss/EPFL RAman lidar for Me-

teorological Observations (RALMO), located in Payerne, Switzerland. The OEM-retrieved

temperature from the RALMO measurements in different sky conditions such as clear day-

time, clear nighttime, low level clouds/aerosol, and cirrus cloud showed good agreement with

the coincident sonde measurements and as well as better results than the traditional Raman

temperature measurements especially in cloudy conditions. The relative humidity retrievals

using the OEM use measurements from eight Raman channels in RALMO and allow direct

retrievals of relative humidity. I further studied the time series of relative humidity over water

and validated my results with coincident sonde measurements. The relative humidity over ice

retrievals from the RALMO measurements were later used to investigate the frequency of ice

super saturated event occurring above Payerne. Thus, I have successfully shown the OEM to

retrieve relative humidity over water or ice from the Raman lidar measurements without the

need of separate temperature and mixing ratio calculations.

Chapter 1 focuses on the Earth’s atmosphere and atmospheric parameter measuring tech-

niques. The first section of Chapter 1 gives a brief introduction to the Earth’s atmosphere,

temperature structure, and atmospheric humidity. Section 1.3 gives a brief introduction to li-

dars, atmospheric scattering and the lidar equation. Sections 1.4 and 1.5 introduce the RALMO

lidar system and the traditional Raman lidar algorithm used to calculate relative humidity and

temperature profiles. The Optimal Estimation Method (OEM) and some advantages of using it
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over the traditional Raman lidar algorithms are given in Section 1.6.

The focus of Chapters 2 and 3 is to introduce and to describe the implementation of the

Optimal Estimation Method (OEM) with Raman backscatter measurements to retrieve of tem-

perature, relative humidity over water. Chapter 2 gives the results of the OEM-retrieved tem-

peratures in four sets of conditions. Chapter 3 presents the assimilation of the set of Raman

lidar measurements into European Centre for Medium-Range Weather Forecast Reanalysis

(ERA5) data set. Chapter 4 of this thesis focuses on implementing the OEM scheme to retrieve

relative humidity over ice to determine the occurrence of supersaturation events over Payerne,

Switzerland. Chapter 5 summarizes and gives conclusions from all three projects and ideas for

future work.

1.2 Introduction to Earth’s atmosphere

Our Earth is enveloped by a relatively thin gaseous layer called the atmosphere, extending

several thousands of kilometers above Earth’s surface. Approximately 99% of the mass of the

atmosphere is concentrated in the first 30 km from the surface (Wallace and Hobbs, 2006). In

the early 1800s, John Dalton was able to recognize that the atmosphere is composed of several

chemically distinct gases such as nitrogen and oxygen. He also determined the relative amounts

of each gas found within the lower atmosphere. Later, in the 1920s, with the development of the

spectrometer scientists were able to discover the atmospheric gases such as ozone and carbon

dioxide that are very low in concentration. Table 1.1 shows the atmospheric gases and their

composition (Wallace and Hobbs, 2006).

Table 1.1: Composition of Earth’s atmosphere
Constituent Molecular weight Content (fraction of the total molecules)

Nitrogen (N2) 20.016 0.7808 (75.51% by mass)
Oxygen (O2) 32.00 0.2095 (23.14% by mass)

Argon (A) 39.94 0.0093 (1.28% by mass)
Water vapor (H2O) 18.02 0.5 (% by volume)

Carbon dioxide (CO2) 44.01 325 ppm
Neon (Ne) 20.18 18 ppm

Helium (He) 4.00 5 ppm
Krypton (Kr) 83.7 1 ppm
Hydrogen (H) 2.02 0.5 ppm
Ozone (O3) 48.00 0-12 ppm
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A significant amount of atmospheric oxygen is produced by the photosynthesis reactions.

Due to a variety of chemical reactions the oxygen in the atmosphere leads to the formation

of an ozone (O3) layer in the upper atmosphere. Ozone filters the incoming solar radiation

in the ultraviolet region (Wallace and Hobbs, 2006). The nitrogenous compounds from the

metabolism of living organisms are returned to the atmosphere as nitrogen. Even though nitro-

gen is the most important component for all living beings, as DNA, RNA, and other proteins

are made up of nitrogen, the atmospheric nitrogen is not in the usable form for most living

beings. Lightning converts the atmospheric nitrogen to the usable molecules for life such as

nitrate ions (NO−3 ), ammonia (NH3), and urea [(NH2)2CO] (Wallace and Hobbs, 2006). Two

of the minor constituents of the atmosphere, water vapor and carbon dioxide play a key role in

controlling the warming of the atmosphere. Atmospheric water vapor is the dominant green-

house gas. It is highly variable and typically takes up to 0.5% of the volume of the Earth’s

atmosphere (Marshall and Plumb, 1989). The main source of the atmospheric water vapor is

the evaporation from the ocean’s surface. As moist air rises through the atmosphere, the air

gets cooler and the water vapor in the air parcel condenses to form clouds. The water vapor

condenses into water droplets to form clouds when it has a particle to condense upon. Such

particles are called condensation nuclei and dust, pollen, sea salt, and black carbon are a few

examples. Clouds that contain moisture are transported around the globe due to air currents

and eventually the moisture returns to the ground as precipitation. Precipitation can occur in

different forms such as rain, snow and hail. Once the water reaches the ground, a portion of

it may evaporate back into the atmosphere and rest of the water may penetrate through the

surface and become groundwater. Groundwater can either seep into the oceans, rivers, and

streams, or it can be released back into the atmosphere through transpiration. Also, water runs

over land into streams and lakes which eventually forms major rivers and carries all the water

into the ocean. Then, again the water will be evaporated from the oceans. This process is

called the hydrologic cycle of the Earth. The hydrologic cycle acts as an energy transfer and

storage medium for the Earth’s climate system. Both water vapor and carbon dioxide in the

atmosphere absorb and emit infrared wavelengths of the solar spectrum (Marshall and Plumb,

1989; Wallace and Hobbs, 2006). The carbon dioxide concentration in the atmosphere is con-

trolled by the processes such as photosynthesis, respiration, and exchange between the ocean
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and the atmosphere (Marshall and Plumb, 1989; Wallace and Hobbs, 2006). Carbon dioxide is

the most important of Earths long-lived greenhouse gases. Compared to water vapor, carbon

dioxide absorbs less heat but it stays in the atmosphere much longer. Even though, carbon

dioxide is less abundant and less powerful than water vapor on a molecule per molecule basis,

it absorbs wavelengths of thermal energy that water vapor does not. Thus, carbon dioxide adds

to the greenhouse effect in a unique way and increases in atmospheric carbon dioxide are re-

sponsible for about two-thirds of the total energy imbalance that is causing global temperature

to rise (Lindsey, 2018).

Today human activities are altering key dynamic balances in the atmosphere by increasing

greenhouse gas levels in the lower atmosphere. This leads to raise the Earth’s surface tempera-

ture by increasing the amount of heat radiated from the atmosphere back to the ground. Thus,

leads to changing the Earth’s climate. Two of the most important atmospheric parameters that

alter the Earth’s climate, temperature and humidity, are discussed in the following sections.

1.2.1 Temperature structure

Temperature is a key parameter of the state of the atmosphere that varies greatly both ver-

tically and horizontally. As the vertical structure of the temperature is qualitatively similar

everywhere, it is often used in characterizing and understanding the atmosphere. The vertical

temperature structure mostly depends on atmospheric pressure, humidity, and the effects of

solar radiation. The atmosphere can be divided into 4 main layers based on its temperature,

as shown in Fig. 1.1. Starting from the surface the layers are troposphere, stratosphere, meso-

sphere, and thermosphere. For the purposes of this work I only consider the lowermost two

regions of the atmosphere.

Troposphere

The troposphere is the lowest part of the atmosphere that contains about 75% of all of the

atmospheric air molecules including all most all of the water vapor and dust particles in Earth’s

atmosphere (Riehl et al., 1972). Thus, most of the weather such as clouds, rain, snow, wind,

heat occurs in the troposphere. In this part of the atmosphere the temperature decreases with
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Figure 1.1: An atmospheric temperature profile based on the US Standard Atmosphere values
showing the regions of the atmosphere based on temperature structure.

height. The troposphere is warmest near Earth’s surface as it heated from the below and coldest

at its top, where it meets up with the layer above (the stratosphere) at a boundary region called

the tropopause. The tropopause is lowest in the poles, where it is 7-10 km above the Earth’s

surface and it is highest ( 17-18 km) near the equator. The tropopause is also an inversion layer,

where the air temperature starts to decrease with height. The inversion layers hold warmer air

above cooler air, allowing only a little mixing between the troposphere and the stratosphere.

The solar radiation that streams through the atmosphere heats the Earth’s surface, and the

surface radiates the heat back into the atmosphere warming the air molecules near the surface.

Due to the pressure difference the warm air moves upwards and starts to expand. When air

expands it cools. So, air higher up in the troposphere is cooler than the air lower down. The
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cooler air tends to form clouds, rain, and snow. This continuous process of the rising of warm

air and sinking or condensation of cool air makes the troposphere a layer with well mixed air

(Riehl et al., 1972; Wallace and Hobbs, 2006; Marshall and Plumb, 1989).

The concept ”standard atmosphere” is used by atmospheric scientists to describe an av-

erage atmosphere with no variations caused by weather, latitude, season and so on. In the

standard atmosphere model, the bottom of the atmosphere is considered to be at sea level and

the temperature at the sea level is 15◦C. The temperature at the top of the troposphere is given

as −57◦C . The rate at which the temperature changes with the height is called the lapse rate

and in the troposphere the lapse rate is about 6.5 degrees per kilometer (Atmosphere, 1976).

Stratosphere

The stratosphere extends upwards from the tropopause to about 50 km. It contains most of the

ozone in the atmosphere. The temperature in the stratosphere increases with height due to the

absorption of the ultraviolet (UV) radiation by the ozone. This means the stratosphere has a

negative lapse rate. The temperature inversion in the stratosphere suppresses convection and

damps out the vertical motions of tropospheric air. Therefore, it is significantly less turbulent

than the troposphere. Hence, almost all commercial airliners cruise inside the stratosphere.

Stratospheric temperatures are also affected by the seasonal changes, reaching particularly low

temperatures in winter (Riehl et al., 1972; Wallace and Hobbs, 2006).

There are strong interactions among radiative, dynamical, and chemical processes, in the

stratosphere. This leads to more rapid horizontal mixing of gaseous components as compared

to the vertical mixing in the stratosphere. Due to the complexity of the stratospheric circu-

lations the existing global climate models and stratospheric chemistry-climate models fail to

simulate or produce temperature trends or temperature profiles that match with the observa-

tions in the stratosphere (Solomon et al., 2010). Therefore, measuring accurate stratospheric

temperatures is of particular interest in the climate science community.

Upper troposphere - lower stratosphere (UTLS)

The upper troposphere-lower stratosphere (UTLS) plays a key role in radiative forcing and

chemistry-climate coupling of the Earth’s atmosphere. The UTLS is the region between the
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upper troposphere and the lower stratosphere, from roughly 5 to 22 km in height. The coupling

between dynamics, chemistry, and radiation is found to be strong in the UTLS. The under-

standing of the chemical and dynamical behavior of the tropopause region, and its long-term

variability has become one of the main interests in atmospheric science. The primary motiva-

tion is to understand the coupled processes in UTLS to identify their role in climate change,

which is a necessity for improving weather and climate model simulations of this region (Wal-

lace and Hobbs, 2006).

Figure 1.2: This figure shows the important processes such as coupling dynamics, chemistry,
and cloud microphysics in the UTLS region. The dashed green line represents the time average
tropopause. In the tropics, maximum outflow from deep convection occurs near 12-14 km,
while the cold point tropopause occurs near 17 km. The intervening region has characteristics
intermediate between the troposphere and stratosphere, and is termed the tropical transition
layer (TTL). Extratropical stratosphere-troposphere exchange occurs in tropopause folds and
intrusions linked with synoptic weather systems; these events transport stratospheric air high in
ozone into the troposphere. Transport above the subtropical jet couples the TTL and the extra-
tropical lower stratosphere. In addition, synoptic scale uplift and deep convection brings near-
surface emissions of gases and particles into the upper troposphere, where they can strongly
influence global-scale chemistry. Gravity wave generation and breaking also contribute to the
mixing of chemical constituents in the UTLS. (Adapted from Pan et al. (2010); Stohl et al.
(2003)).
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The UTLS processes depend crucially on the distribution of greenhouse gases (GHGs),

such as ozone and water vapor, as well as aerosols and clouds. The Fig. 1.2 illustrates some

features of the UTLS region.

Each of the three projects for this thesis provides a means to more accurately measure

temperature and relative humidity in the UTLS, and contributes to our understanding of the

important coupling processes in the UTLS region.

1.2.2 Atmospheric humidity

Water can be found in all three phases in Earth’s atmosphere - solid, liquid, and vapor. The

release of latent heat of water vapor when it condenses into the liquid or solid phase, together

with the Earth’s rotation, drives the large-scale circulation of the atmosphere. Water vapor is

the most dominant greenhouse gas in the Earth’s atmosphere that is highly variable and poorly

understood. Even relatively small changes in the atmospheric water vapor can play a significant

role in the Earth’s atmospheric energy balance (Wallace and Hobbs, 2006).

The amount of the water vapor in the atmosphere can be expressed in many different ways.

In this section the various measures of variable atmospheric water vapor content are presented.

Mixing ratio

The mixing ratio is the ratio of mass of the water vapor mwv to the mass of the dry air md in a

certain volume of air and is expressed as

w ≡
mwv

md
. (1.1)

The mixing ratio is often expressed in the units of grams of water vapor to kilograms of the dry

air.
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Specific humidity

The specific humidity, q is a measure of the mass of the water vapor with respect to the mass

of air per unit volume defined as,

q =
ρwv

ρ
, (1.2)

where ρ = ρd + ρwv is the total mass of the air (dry air plus water vapor) per unit volume. The

specific humidity is conserved in the absence of mixing or of condensation. In other words,

specific humidity does not vary as the temperature or pressure of an air parcel changes if the

moisture in the air parcel is not removed or added. The stability of the specific humidity makes

it a useful parameter to identify the properties of a moving air mass.

Vapor pressure

The vapor pressure is the partial pressure of the atmospheric water vapor. Vapor pressure can

be expressed as,

e =
w

0.622 + w
P (1.3)

where P is the total air pressure, assuming water vapor behaves as an ideal gas.

Saturated vapor pressure

The saturation vapor pressure is the partial pressure of the water vapor in equilibrium with

a plane surface of pure water. It solely depends on the temperature. If the temperature is

increased, the molecules will have more internal energy and will vibrate faster. Thus, more

molecules will be able to break free and evaporate from the liquid surface. As a result, the

vapor pressure to increase. For the temperatures below −38◦C water will no longer be found

in the liquid form. Therefore, the saturation will occur over the plane surface of ice instead of

water (Gierens et al., 2000). As the bonds between adjacent molecules are stronger in an ice

surface than they are in a liquid surface, at the same temperature fewer molecules will escape

from an ice surface than from a liquid surface. Therefore, the saturation vapor pressure over

ice is lower than the saturation vapor pressure over liquid water (shown in Fig. 1.3).
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Figure 1.3: Variation with temperature of the saturation vapor pressure es over a plane surface
of pure water (red line) and the difference between es and the saturation vapor pressure over a
plane surface of ice es,i (blue line)(Adapted from Wallace and Hobbs (2006)).

There are several existing formulations that allow the estimation of saturation vapor pres-

sure over both water and ice. For this thesis, I use the saturation vapor pressure equations from

(Hyland, 1983).

The saturation vapor pressure over liquid water (es,w) for temperatures below 0◦ is given

by:

log es,w =
−0.58002206 × 104

T
+ 0.13914993 × 101 − 0.48640239 × 10−1 × T

+0.41764768 × 10−4 × T 2 − 0.14452093 × 10−7 × T 3

+0.65459673 × 101 × log(T ).

(1.4)

The saturation vapor pressure over liquid ice (es,i) for ice is given by (Hyland, 1983):

log es,i =
−0.56745359 × 104

T
+ 0.63925247 × 101 − 0.96778430 × 10−2 × T

+0.62215701 × 10−6 × T 2 + 0.20747825 × 10−8 × T 3

−0.94840240 × 10−12 × T 4 + 0.41635019 × 101 × log(T ).

(1.5)
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Relative humidity

Relative humidity is expressed as a ratio of the vapor pressure to the saturation vapor pressure.

Thus, relative humidity can be estimated over water or ice. The general formulation of the

relative humidity is

RH =
e
es
× 100. (1.6)

where es is the saturated vapor pressure over water or ice. Relative humidity is the most popular

scale in both meteorology and atmospheric science as it has certain advantages over absolute

measures of water vapor concentration. It is usually in the range of 0% (completely dry) and

100% (saturation) where an absolute scale must be much wider because the concentration of

water molecules decreases from the ground to the tropopause by roughly a factor of 10 000

(Gierens et al., 2012). However, there is nothing to forbid relative humidity from exceeding

100%. Such conditions where the relative humidity exceeds 100% are called supersaturation.

Supersaturation is an unstable state if there is no condensed phase. Another advantage is that

cloud formation is controlled by relative humidity, not by absolute humidity (Gierens et al.,

2012).

Ice supersaturation (ISS)

Ice supersaturation is a frequent atmospheric phenomenon that occurs mainly in the UTLS

region where the temperature reaches below the freezing point. In the upper troposphere, tem-

peratures easily go below −40◦C (Gierens et al., 2012). Thus, the super-cooled pure water

droplets would freeze spontaneously. However, if the water droplets are not pure (contain

aerosol particles, etc.) or are highly diluted they will not freeze spontaneously even at temper-

atures below −40◦C. In order for the droplets to freeze, they need to gain more water molecules

from the ambient air. That requires ambient water vapor concentration corresponding to rela-

tive humidity with respect to ice to be more than 145%. Ice formation in these relatively high

supersaturation levels are called ISS. ISS can last for hours or even days and the thickness of

such formations can be from 100 m to 3-4 km. The horizontal extensions of the ISS layers

are not well known yet. ISS is often found within cirrus clouds (ice clouds) and contrails, but

also can be formed even in cloud free regions. ISS regions are known to have small effects on
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atmospheric radiation flow (Gierens et al., 2012). However, it was found that as soon as thin

cirrus clouds form within ISS regions, the radiation effects double by two orders of magnitude

(Fusina et al., 2007). Thus, ISS plays an important role in cloud formation and as well as in

Earth’s weather and climate.

1.2.3 Instruments and techniques to measure relative humidity

As discussed in the Overview in Section 1.1, measurements from Raman lidars, typically

ground-based, provide an excellent way to obtain vertical temperature and relative humidity

profiles, and I use the Raman lidar technique in this thesis. Details will be discussed in the fol-

lowing sections. In this section I will provide a brief discussion on other humidity measuring

instruments such as radiosondes, microwave radiometers, and weather satellites.

Radiosonde is the most common atmospheric humidity measuring technique and has been

in use since the late 1930s (DuBois, 2002). Radiosondes play an important role in providing

long-term high-quality time series of climatology trends of various parameters. There are about

1,300 radiosonde launch sites all over the globe and most countries share data with the rest of

the world through international agreements. Almost all routine radiosondes are launched 45

minutes before the official observation times of 0000 UTC and 1200 UTC (Seidel et al., 2011).

This provides an instantaneous snapshot of the atmosphere. The radiosonde is a small package

consisting of multiple instruments including sensors that measure pressure, temperature, and

relative humidity, and a GPS that returns position information. The radiosonde is suspended

below a large balloon inflated with hydrogen or helium gas and as the balloon rises at about

5 ms−1 the radio transmitter sends the measurements obtained by the sensors to the ground

station. Radiosondes can provide continuous and detailed profiles from the ground to altitudes

of 30 km and above. The hygristor is the relative humidity sensor employed in the radiosondes

located at a place where the outside air passes can reach. A hygristor consists of a glass

slide or plastic strip covered with a moisture sensitive film of lithium chloride (LiCl) and a

binder; metal strips are located along the edges. The electrical resistance of the LiCl changes

with a change in the atmospheric humidity. The hygristor on most radiosondes is designed to

record the ambient relative humidity with respect to water in the range from 15% to 100%.
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Hygristors do not provide accurate measurements of relative humidity at temperatures below

the freezing point. When the radiosonde passes through a cloud or a layer of ice, the humidity

sensor can freeze and it will then either not provide any measurements or measure the humidity

inaccurately. To prevent water condensing on the sensors during the ascent of the balloon,

some radiosonde products now occupy two sensor elements that include heating of the of a

sensor elements (Hopkins). However, the radiosonde technique is still not developed enough

to measure relative humidity over ice in regions below freezing. In Chapters 3 and 4 of this

thesis I use the radiosonde measured relative humidity profiles to compare the relative humidity

retrieved from the Raman lidar measurements. For more details of the radiosonde humidity

measurements and their accuracy refer to Miloshevich et al. (2001); Peixoto and Oort (1996);

Sapucci et al. (2005); Bock et al. (2013), and Dirksen et al. (2014).

Weather satellites are outfitted with various types of sensors that can measure atmospheric

water vapor from space (Jones et al., 2009). The operational meteorological observational sys-

tems use nadir sounding (down-looking) instruments to measure the tropospheric water vapor.

Vertical resolution of the nadir microwave humidity sounders is typically several kilometers

and the horizontal resolution is about 10-15 km at nadir. Nadir observations cover approxi-

mately the entire globe (mostly on polar orbits) and the observations are made in both day and

nighttime. Some of the limitations of nadir observations are: limited altitude information from

pressure broadening, only sensitive to region with largest water abundance (troposphere), and

sensitivity to tropospheric clouds (large ice particles or water drops) (Urban, 2013). Satellites

use the limb sounding technique to measure the trace amounts of water vapor in the upper

troposphere and throughout the entire middle atmosphere with resolution of typically only a

few kilometres. The limb observations in the troposphere and lowermost stratosphere are often

limited by the water, cloud, or aerosol absorption depending on wavelength. Further details

of satellite instruments measuring atmospheric water vapour and observation techniques are

available in Urban (2013).

Microwave radiometer is another instrument that is used to measure atmospheric water

vapor. It can be used as a ground-based instrument to measure humidity from the surface

and it can also be used in satellites to measure humidity from space. Microwave radiometers

measure thermal emissions from the downwelling brightness temperature in the atmosphere.
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Most commercial microwave radiometers operate in the 2060 GHz frequency range, where the

atmospheric thermal emissions are influenced by atmospheric temperature and humidity. A

microwave radiometer consists of an antenna system, microwave radio-frequency components

and a signal processing unit. When appropriate detection frequencies are used, the emission of

microwave radiation from the atmospheric trace gases of liquid water and of ice crystals can

be measured. The emissivity of the substances and their radiative temperature depends on the

substance concentration, pressure, and temperature in the atmosphere. Thus, each substance

can be estimated by measuring its radiative temperature in appropriate frequency bands. The

absorption band of water vapour is located between the frequencies of 20 and 30 GHz. Thus,

measurements of the radiative temperatures in water vapor absorption band allow us to estimate

the integrated water vapour (IWV) content and a profile of absolute humidity. More details of

microwave radiometers are given in Löhnert et al. (2009); Hewison (2007), and Liljegren et al.

(2005).

Raman lidars are another potential tool that provides atmospheric humidity measurements

with high spatial and temporal resolution. In this thesis I use the Raman lidar measurements to

retrieve relative humidity and details will be discussed in Section 1.3.

HATPRO Radiometers, dropsondes, and aircraft based instruments are a few other atmo-

spheric humidity measuring techniques. Further details of these instruments and comparisons

of measurements made by each instrument are available in Soden and Lanzante (1996), Wal-

lace and Hobbs (2006), and Buehler et al. (2004).

1.3 Lidars and atmospheric measurements

General description of a lidar

The lidar (light detection and ranging) technique is an active remote sensing technique. It is

one of the tools that has the ability to measure the atmosphere at ambient conditions with high

temporal and spatial resolution, and the potential of covering large altitude ranges in the atmo-

sphere. A typical lidar system (shown in Fig. 1.4) consists of a transmitting system (laser) and a

receiving system (telescope, optical analyzer, etc). Lidars emit light pulses into the atmosphere

and the light is scattered by the atmospheric molecules in all directions. A portion of the light
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that is scattered back is collected by the lidar telescope. Using the lidar’s photon detecting sys-

tem the amount of backscattered light can be measured as a function of altitude. Depending on

the type of interaction processes of the emitted light with the atmospheric constituents, differ-

ent atmospheric parameters and conditions such as temperature, humidity, ozone, particulates,

cloud and wind can be detected (Weitkamp, 2006). To improve the precision of the detection

Figure 1.4: Schematic drawing of lidar system.

the lasers used in the lidars are monochromatic (i.e. one colour /one wavelength), collimated

(i.e. very small divergence over large distances), intense (i.e. lots of energy in a small area) and

polarized (i.e. energy is aligned in one direction). There are different types of lidars depending

on the laser used and the type of scattering studied. Different types atmospheric scattering are

discussed in the next section. The main 5 basic lidar techniques are, elastic-backscatter lidar,

differential absorption lidar (DIAL), Raman lidar, fluorescence lidar, and Doppler lidar. For

all three projects in this thesis I am interested in the measurements from Raman lidars and

atmospheric Raman scattering processes.

As shown in Fig. 1.4, the lidar receiving system consists of a telescope that collects all the

backscattered light, an optical analyzer where the signal is spectrally separated, amplified and

transformed to an electrical signal, and a data acquisition system where the signal is digitized
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and stored in a computer unit. The diameter of the telescope depends on the purpose of the

lidar and it can vary from 0.1 m to a few meters. The optical analysis of the backscattered light

is often done before the detection. In most cases interference filters are placed in front of the

detector to allow only a certain pass-band around the wavelength of interest enter the detector

(Kovalev and Eichinger, 2004).

Signal detection is typically realized with photomultiplier tubes (PMTs). PMTs are very

sensitive and is used when the backscatter signal is weak ( <10 MHz). PMTs store only the

number of photon counts per time interval after emission of the laser pulse. The efficiency

of a PMT to measure and record pulses depends on the time taken up by all components of

the signal processing. The number of photons detected by the PMTs can be measured using

a photon counting system. There are two types of counting systems, nonparalyzable systems

that require a fixed recovery time and paralyzable systems that don’t. The fixed recovery time

of a counting system is called the dead time of the system. In a paralyzable system if the

time gap between two signals reaching the detector is larger than dead time then the event

will be recorded. Thus, the observed rate is equal to the rate at which time intervals occur

that exceed dead time. The main difference between the two types of counting systems is

that nonparalyzable detector systems are not effected if the signal is not processed whereas

paralyzable detector systems are effected (Wandinger, 2005a).

In lidars for strong backscatter signals typically the measurements in lower altitudes are

recorded using analog recorders where the average current produced by the photo pulses is

measured. Then analog-to-digital signal conversion and digital signal processing need to be

performed (Wandinger, 2005a).

Atmospheric scattering related to lidar

Atmospheric scattering is the redirection of the original path of electromagnetic (EM) radiation

(i.e. an incident light ray) traveling through the atmosphere due to particles or gas molecules

present in the atmosphere. As the EM wave interacts with the atmospheric particles or gas

molecules the electron’s cloud within the atmospheric constituent starts to oscillate periodically

with the same frequency as the incident EM wave. This oscillation later induces a dipole mo-

ment on the atmospheric constituent. The oscillating induced dipole moment creates a source
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of EM radiation, thereby resulting in scattered light. The atmospheric scattering depends on

the wavelength of the incident radiation and also on the size of the atmospheric constituent that

scatters the radiation. In this section, I will briefly discuss three main atmospheric scattering

processes: Mie scattering, Rayleigh scattering, and Raman scattering.

Rayleigh scattering is the most dominant scattering mechanism in the upper atmosphere

and it is a type of an elastic scattering, meaning Rayleigh scattered radiation has the same

frequency as the incident radiation. Rayleigh scattering occurs when particles are very small

compared to the wavelength of the radiation. These could be particles such as small specks of

dust or nitrogen and oxygen molecules (Kovalev and Eichinger, 2004).

The intensity of Rayleigh scattering varies inversely with the fourth power of the wave-

length (λ−4). Rayleigh scattering is the phenomenon behind the sky appearing blue during the

day and red/orange during sunrise and sunset. As sunlight travels through the atmosphere,

the shorter wavelengths (i.e. blue) of the visible spectrum scatter more than the longer wave-

lengths. At sunrise and sunset, the light has to travel farther through the atmosphere than

daytime. Hence, the scattering of the shorter wavelengths is more complete and this allows a

greater proportion of the longer wavelengths of the visible spectrum to penetrate through the

atmosphere (Kovalev and Eichinger, 2004).

For the atmosphere, assuming that the scattering is from a spherically symmetric molecule

the total Rayleigh scattering cross-section can be approximated (Kovalev and Eichinger, 2004):

σ '
32π3

3λ4

(
n − 1

N

)2

(1.7)

where N is the number density of the molecules and n is the refractive index.

When using Rayleigh scattering for diagnostics usually the scattered light is collected over

a limited solid angle. Therefore, it is useful to define a differential cross-section for Rayleigh

scattering such that
∂σ

∂Ω
'

4π2

λ4

(
n − 1

N

)2

sin2 φ, (1.8)

where φ is the scattering angle and Ω is the solid angle (Kovalev and Eichinger, 2004).

Mie scattering is an elastic scattering that occurs due to the particles that are about the

size of the wavelength of the incident radiation. Atmospheric aerosols, smoke particles, water
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vapor molecules, and other large atmospheric molecules cause Mie scattering. The Mie sig-

nal is proportional to the square of the particle diameter and is much stronger than Rayleigh

scattering.

Raman scattering is an inelastic process where monochromatic light or photons is scattered

off a molecule at a different wavelength than the incident. Thus, the scattered photons energy

will be different than the incident photon. The change in energy is proportional to the rotational

or vibrational energy levels of the atom or the molecule that the photon scattered off (Kovalev

and Eichinger, 2004). As shown in Fig. 1.5, the scattered photon can either gain energy from

Figure 1.5: The different types of light scattering: Rayleigh scattering (no exchange of en-
ergy: incident and scattered photons have the same energy), Stokes Raman scattering (atom or
molecule absorbs energy: scattered photon has less energy than the incident photon) and anti-
Stokes Raman scattering (atom or molecule loses energy: scattered photon has more energy
than the incident photon).

the interaction and shift to a higher frequency (red-shift) or lose energy from the interaction and

shift to a lower frequency (blue-shift). The processes of gaining and losing energy are known

as Stokes and anti-Stokes shift respectively. The frequency shift for the scattering molecules is

given by,

∆ṽ = ṽi − ṽs =
∆E
hc

(1.9)

where ṽi is the incident frequency, ṽs is the scattering frequency, ∆E is the energy difference
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between the molecular energy levels involved, h is the Planck’s constant, and c is the speed of

light in a vacuum.

Figure 1.6: Raman backscatter spectrum of the atmosphere for an incident laser wavelength of
355 nm, normal pressure, a temperature of 300 K, an N2 and O2 content of 0.781 and 0.209,
respectively, and a water-vapor mixing ratio of 10 g/kg. The curves for liquid water and ice are
arbitrarily scaled. (Figure 9.2 in Wandinger (2005b))

Since the scattering targets of interest are mostly diatomic molecules in the atmosphere such

as nitrogen and oxygen, I expect that there will be an energy shift due to both the vibrational and

rotational transitions as shown in Fig. 1.6. The vibrational energy transition levels for diatomic

molecules can be approximated using the model of a freely rotating harmonic oscillator:

Evib,v = hc0 ˜vvib(v + 1/2), for v = 0, 1, 2, .... (1.10)

where vvib is the specific vibrational wave-number of the molecule and v is the vibrational

quantum number (Behrendt, 2005). For the energy levels for the rotational quantum numbers

is approximated by,

Erot,J,v = hc0[BvJ(J + 1) − DvJ2(J + 1)2], for J = 0, 1, 2, .... (1.11)
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where J is the rotational quantum number that belongs to each vibrational level. The specific

rotational constant and centrifugal distortion or stretching constant of the molecule are Bv and

Dv respectively. The two constants Bv and Dv depend on the actual vibrational state of the

molecule. For more details of the constants refer to Weber (1979).

Equations 1.10 and 1.11 can be applied into Eq. 1.9 to find the frequency shift of a certain

molecule due to Raman scattering. Thus, it is not possible to obtain every frequency transition

in vibrational or rotational Raman scattering. The selection rules for vibrational and rotational

transitions, are
∆v = 0, ±1 (vibrational)

∆J = 0, ±2 (rotational),
(1.12)

where ∆J is the difference between higher rotational quantum number to the lower quantum

number, which is independent of the initial or the final quantum state of the molecule. The

difference between the vibrational quantum numbers of the final and the initial states is ∆v

(Behrendt, 2005).

The intensity of the observed Raman line depends on the cross-section of the corresponding

rotational scattering process. The Raman differential cross-section for backscattered (scattering

angle is 180◦) photons is approximated by

(
dσ
dΩ

)
RR

= kṽṽ1
4
(

7
60
γ2

)
(1.13)

where kṽ =
π2

ε2
0

with ε0 is the permittivity of vacuum and γ is the anisotropy of the polarizability

(Placzek, 1934). Simplified forms of Raman rotational differential cross-sections for Stokes

and anti-Stokes branches are given in Section 1.3.

Elastic scattering and Raman lidar equations

In the following sections I will use Raman lidar measurements to retrieve both atmospheric

temperature and humidity. I will also use elastic lidar measurements to estimate the particle

extinction in the atmosphere. In this section I will explain the general forms of lidar equa-

tion that explains the relationship between the number of collected backscattered photons to

the atmospheric and instrumental parameters. The observed backscattered photocount rate at
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particular altitude can be represented as:

Nobs(z) = N0
ct
2

Λη
O(z)

z2 β(z, λ)e−(τλ0 +τλ) + B(z), (1.14)

where N0 is the average rate of photons emitted by the laser, B(z) is the background photon

count rate, c is the speed of light, t is the temporal resolution of the laser, O(z) is the geometrical

function, Λ is the area of the telescope, η is the detection efficiency of the lidar system, β(z, λ)

is the volume backscatter cross-section for the particle that is scattering the radiation and the

two terms τλ0 and τλR are scattering the atmospheric transmission.

The function O(z) shows that the geometrical effect of the laser emitting and receiving

systems of the lidar. The geometric setup of the emitter and the receiving optics determines

the capability of the detection of backscatter signals at distances close to the lidar. At short

distances the laser beam can not be fully imaged onto the detector. Thus, only a portion of the

scattered signal is received. The signals received by the lidar vary with the height and depends

on the laser beam diameter, shape, and divergence, the receiver field of view, and the location

of emitter and receiver optical axes relative to each other. This variation is represented by

the function O(z) and its value is zero at the lidar and becomes unity when the laser beam is

completely imaged onto the detector (Wandinger, 2005a).

For different lidar systems the background photon count rate either can be a constant or

a function of altitude. The term
ct
2

together represents the effective pulse length of the laser

or often referred to as the vertical resolution of the system. I define the lidar constant C as a

product of all the system specific constants,

C = N0
ct
2

Λη (1.15)

The differential cross-section indicates the amount of radiation back-scatted scattered by a

particular particle within the solid angle dπ (Wandinger, 2005a).

β(z, λ) =
∑

j

n j(z)
dσ j,sca(λ, π)

dΩ
. (1.16)

The volume backscatter cross-section for the particle that is scattering the radiation, β(z, λ)
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can be represented as the sum of the product of particle number density n j(z) and the differen-

tial scattering cross-section of the particular particle
dσ j,sca(λ, π)

dΩ
at a particular altitude. The

volume backscatter cross-section is measured in the SI unit of per meter per steradian.

The optical depth at the transmitted wavelength τλ0 and at the return wavelength τλR together

express the fraction of laser radiation attenuated by the atmosphere that is shown in the term

e−(τλ0 +τλR ) in Eq. 1.14.

The general lidar equation given in Eq. 1.14 changes depending on the type of the scattering

that each lidar system measures. The two main forms of the lidar equation are elastic and

the Raman lidar scattering equations. In elastic scattering the emitted and the returned wave

lengths are the same. Hence, the volume backscatter cross-section will only expanded into two

terms,

β(z, λ) = βmol(z, λ0) + βaer(z, λ0) (1.17)

where βmol(z, λ0), βaer(z, λ0) are the volume backscatter cross-section due to molecular scatter-

ing and due to aerosol scattering at the laser’s wavelength λ0, respectively.

The other term that changes in the lidar equation for elastic scattering is the atmospheric

transmission. The two terms τλ0 and τλR are equal to each other as λ0 = λ. Hence, the optical

depth terms for elastic transmission take the simple form:

τλ0 + τλR = 2
∫ z

0
[αmol(r, λ0) + αaer(r, λ0)]dr (1.18)

where αmol(r, λ0) and αaer(r, λ0) are the extinction coefficient due to molecular and aerosol

absorption and scattering respectively. Eq. 1.18 is evaluated from the surface to the altitude z.

For Raman scattering lidars the laser wavelengths λ0 do not equal to the wavelength de-

tected at the telescope. Therefore, the volume backscatter cross-sections need to be evaluated

at both wavelengths.

β(z, λ) = β(z, λ0, λR) (1.19)

where β(z, λ0, λR) is the volume backscatter cross-section due to molecular scattering at the

Raman shifted wavelength λR detected at the telescope.

The atmospheric transmission for Raman scattering also needs to be evaluated at both λ0
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and λR wavelengths. Therefore, the optical depth terms for Raman transmission is

τλ0 + τλ =

∫ z

0
[αmol(r, λ0) + αmol(r, λR) + αaer(r, λ0) + αaer(r, λR)]dr (1.20)

where αmol(r, λ0) and αmol(r, λR) are the molecular extinction coefficients at λ0 and λR wave-

lengths respectively. αaer(r, λ0) and αaer(r, λR) are the extinction coefficients due to aerosol

scattering at λ0 and λR wavelengths respectively. Both aerosol and molecular extinction coeffi-

cients are measured in the SI units of inverse meters.

The molecular and aerosol extinction terms occurring in the atmospheric transmission are

related:

αaer = LR · βaer = LR · βmol · (<β − 1) (1.21)

where LR is the lidar ratio and<β is the backscatter ratio.

<β =
(βmol + βaer)

βmol
. (1.22)

The lidar ratio is different for different types of particles. For molecules, the lidar ratio is
8π
3 sr assuming no absorption (Cattrall et al., 2005). The lidar ratio for aerosols depends on the

size and shape of the particle, the wavelength scattered, and the refractive index of the aerosol

being scattered. For visible wavelength the aerosol lidar ratio can vary from 20 sr to 100 sr

(Ansmann et al., 1992). The lidar ratio for clouds is usually smaller for clouds than aerosols

and can vary between 6 sr and 60 sr depending on the cloud type and altitude (Reichardt, 1999;

Giannakaki et al., 2007; Chen et al., 2002).

For Raman lidar systems that detect pure rotational Raman wavelengths, the atmospheric

transmissions are approximately the same as the atmospheric transmission for elastic scattering

as given in Eq. 1.18. However, the volume backscatter coefficient needs to be evaluated at each

return wavelength for pure rotational Raman scattering.

The differential backscatter cross-section for single lines of the PRR spectrum is expressed
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by (Behrendt, 2005):

(
dσ
dΩ

)RR,i

Π

(J) =
112.Π4gi(J)hcB0,i(vo + ∆vi(J))4ζi

2

(2Ii + 1)2kT

×X(J) exp
(
−Erot,i(J)

kT

) (1.23)

where for the Stokes branch

X(J) =
(J + 1)(J + 2)

2J + 3
for J = 0, 1, 2, .... (1.24)

and for the anti-Stokes branch

X(J) =
J(J − 1)
2J − 1

. for J = 2, 3, 4, .... (1.25)

Here gi(J) is the statistical weighting factor, which depends on the nuclear spin, Ii, for each

atmospheric constituent, h is Planck’s constant, c is the velocity of light, k is Boltzmann’s

constant,B0,i is the ground-state rotational constant, v0 is the frequency of the incident light,

and ζi is the anisotropy of the molecular polarizability.

The rotational energy, Erot,i(J) for each Stokes and anti-Stokes branch is estimated based

on the assumption of a homonuclear diatomic molecule in the quantum state J for nitrogen and

oxygen molecules with no electronic momentum coupled to the scattering (Behrendt, 2005).

Accounting for all changes in the lidar equation (Eq. 1.14) for elastic and Raman scattering,

Nelastic(z, λ0) = C
O(z)

z2 [βmol(z, λ0) + βaer(z, λ0)]e−2
∫ z

0 [αmol(r,λ0)+αaer(r,λ0)]dr + B(z), (1.26)

NRaman(z, λ0, λR) = C
O(z)

z2 β(z, λ0, λR)e−
∫ z

0 [αmol(r,λ0)+αmol(r,λR)+αaer(r,λ0)+αaer(r,λR)]dr + B(z), (1.27)

where Nelastic(z, λ0) and NRaman(z, λ0, λR) are the observed photon count rates for elastic scatter-

ing and Raman scattering.

The lidar equation given in Eq. 1.14 presumes that the count rates linearly depend on the
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number of received photons that are valid for analog channels and for digital channels when

the count rates are below 1 MHz. For the digital channels at higher count rates, the true (Ntr)

and observed (Nobs) counts are related by dead time γ (Donovan et al., 1993).

For a non-paralyzable counting system (Kovalev and Eichinger, 2004):

Nobs =
Ntr

1 + Ntrγ
. (1.28)

For a paralyzable counting system (Kovalev and Eichinger, 2004):

Nobs = Ntr exp(−γNtr) (1.29)

1.4 Raman lidar for Meteorological Observations (RALMO)

The Raman scattering cross-sections are several orders of magnitude smaller than those for

elastic scattering. Thus, Raman lidars are the best and widely used lidar technique to measure

lower atmospheric temperature and humidity. Raman lidars detect rotational Raman bands that

contain information on the temperature and the vibrational Raman bands that contain water

vapor information in the scattering volumes.

The main objective of this thesis is to develop a new technique to accurately retrieve atmo-

spheric temperature and relative humidity from Raman lidar measurements. Therefore, I use

Raman lidar measurements from the Meteoswiss/EPFL RAman lidar for Meteorological Ob-

servations (RALMO), located in Payerne, Switzerland (46◦48′N, 6◦56′ E). RALMO is a fully

automated lidar, operating since 2008 with an average data availability of 50%. The trans-

mitting system of the RALMO consists of a frequency tripled, Q-switched Nd:YAG laser of

354.7 nm supplying up to 400 mJ emission energy at a 30 Hz repetition rate with a 8 ns pulse

duration. The lidar telescope receiver consists of four 30 cm in diameter telescopes that are

tightly arranged around a 15x beam expander and a near range optical fiber, located off of the

optical axis of one of the four telescopes.

The RALMO consists of two polychromators that allow water vapor, temperature, and

aerosol profiling. All five telescopes of the RALMO are coupled by fiber optics to the wa-
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ter vapor grating polychromator that separates the spectrum of the nitrogen and water vapor

signals. A simple setup of RALMO is shown in Fig. 1.7. In two of the telescopes, the edge

filters that reflect Mie, Cabannes, and atmospheric pure rotational Raman (PRR) spectra are

installed. The filter reflected light is then transmitted to a double stage grating polychromator

for temperature and aerosol profiling.

Figure 1.7: Optical diagram of the transceiver of RALMO (PB - Pellin Broka prism). Adapted
from Dinoev et al. (2010).
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1.4.1 Pure rotational Raman (PRR) lidar

RALMO detects the returns of the Raman-shifted backscatter arising from rotational energy

state transitions of nitrogen and oxygen molecules due to the excitation at the laser wavelength

at 354.7 nm in analog and photon counting mode. RALMO consists of two PRR channels

whose measurements are used to calculate the atmospheric temperature as a function of height.

The high quantum number channel (JH) of RALMO is assigned to the backscattered signals

from the energy exchange that occurs in the high quantum states for both the Stokes (355.77-

356.37 nm) and anti-Stokes (353.07-353.67 nm) branches. The low quantum number channel

(JL) is assigned to the signals from the energy exchange occurring in the low quantum states

in the Stokes (355.17-355.76 nm) and anti-Stokes (353.67-354.25 nm) branches. Using the

equations given by Herzberg (2013) the quantum numbers detected by each PRR channel for

both nitrogen and oxygen molecules can be calculated. Table 1.2 shows the quantum states

detected by each PRR channel.

Table 1.2: Detected quantum lines from nitrogen and oxygen in PRR spectrum.
PRR channel Nitrogen quantum lines (Stokes and anti-Stokes) Oxygen quantum lines (Stokes and anti-Stokes)

JL 3,4,5,7,8,9 5,7,9,11,13
JH 10,11,12,13,14,15 15,17,19,21

1.4.2 Vibrational Raman/water vapor system

The second polychromator in the RALMO is designed to isolate the rotational-vibrational Ra-

man signals of nitrogen and water vapor (wavelengths of 386.7 and 407.5 nm, respectively).

The optical signals are detected by photomultipliers and acquired by a transient recorder. These

measurements are used to estimate the atmospheric mixing ratio as a function of height.

A detailed description of RALMO is given by Dinoev et al. (2010), and the instruments

validation is given in (Brocard et al., 2013).
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1.5 Traditional Raman lidar algorithms to calculate temper-

ature and relative humidity

This section presents the application of traditional Raman lidar algorithms to estimate temper-

ature, water vapor mixing ratio, and relative humidity using the Raman lidar measurements.

1.5.1 Temperature measurements

The traditional method for calculating temperature from lidar PRR measurements, originally

proposed by Cooney (1972), can be broken down into four steps.

1. Correction of the raw measurements for effects including dead time, background, signal-

induced noise, gluing, etc., and then smoothing of the corrected PRR lidar signals.

2. Determination of the coefficients of the calibration function using a reference temper-

ature profile (from a co-located radiosonde, for example) and the previously smoothed

lidar measurements.

3. Calculation of temperature using the inversion of the calibration function.

4. Estimation of the random and systematic temperature uncertainties.

To determine temperature in this method, the ratio Q(T, z) is formed:

Q(T, z) =
NRR2(T, z)
NRR1(T, z)

(1.30)

where NRR1 and NRR2 are the corrected PRR signals, each of which has an opposite temper-

ature dependence. Assuming both channels have the same geometrical overlap function and

atmospheric extinction, the temperature dependence of the ratio Q is:

Q(T, z) =

 ∑
i=O2,N2

∑
Ji
τRR2(Ji)ηi

(
dσ
dΩ

)RR,i

π

(Ji)
 ∑

i=O2,N2

∑
Ji
τRR1(Ji)ηi

(
dσ
dΩ

)RR,i

π

(Ji)
 . (1.31)
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The differential backscatter coefficients for the above equation need to be estimated depending

on which branch of the PRR spectrum is used. The transmissions of the lidar receiver for each

rotational Raman line (Ji) are τRR1(Ji) and τRR2(Ji).

The ratio Q(T, z) can be expressed as a function of temperature by a simple analytic formula

(Arshinov et al., 1983) that is also known as the calibration function (Behrendt, 2005):

Q(T, z) = exp
(
a −

b
T

)
(1.32)

where a and b are the calibration coefficients. Behrendt (2005) shows the uncertainties due

to the choice of calibration function, such as using a second-order polynomial. He concluded

that when measurements which cover a large range of temperature (> 50 K) are available for

calibration, an extended version of Eq. 1.32 with a second-order temperature term is the best-

suited calibration function. Otherwise, Eq. 1.32 with two calibration coefficients should be

used to avoid large extrapolation uncertainties. In practice, temperature measurements from

radiosondes flown coincidentally with the lidar measurements are used to estimate the cali-

bration coefficients. The frequency of the re-calibration differs for individual lidar systems.

Equation 1.32 is widely used in many lidar systems that detect single or multiple RR lines in

each RR channel (Arshinov et al., 1983; Behrendt and Reichardt, 2000). The frequency of

the calibration differs for individual lidar systems. Eq. 1.32 is also valid for lidar systems that

retrieve multiple RR lines in each RR channel (Behrendt and Reichardt, 2000).

Further studies of approximation of calibration functions and effect on the temperature

calculations can be found in Cooney (1972); Arshinov et al. (1983); Di Girolamo et al. (2004);

Behrendt (2005), and Zuev et al. (2017).

1.5.2 Water vapor mixing ratio

The traditional Raman method for water vapor mixing ratio measurements uses two Raman

signals, one of which is the backscatter signal from the water vapor (Nobs,wv, 406 nm), and

the backscatter signal from the nitrogen (Nobs,n2, 386 nm) which is considered as the reference

signal. Usually, a single line from the Stokes vibration-rotation of the water vapor and nitrogen

spectra is detected by each channel. The water vapor mixing ratio (mwv(z)) relative to dry
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air can be obtained from the signal ratio of water vapor and nitrogen measurements, that are

corrected for non-linearity and background and then rearranging the resulting equation:

mwv(z) =
nwv(z)
nn2(z)

= Kwv
(Nobs,wv(z) − Bwv)
(Nobs,n2(z) − Bn2)

exp
(
−

∫ z

0
αλwv(z)dz

)
exp

(
−

∫ z

0
αλn2(z)dz

) . (1.33)

Kwv is the water vapor calibration constant that depends on the instrumental transmission, de-

tector deficiencies, Raman scattering cross-sections of water vapor and nitrogen and the ratio of

the number densities of nitrogen to the dry air. The calibration constant can be determined by

comparison with in situ water vapor measurements. Hence, the lidar water vapor mixing ratio

profiles depend on the accuracy of the measurements made by the second instrument. Often,

the relative humidity measurements (later converted to water vapor mixing ratios for compari-

son) from the coincident radiosonde are used to determine the water vapor calibration constant.

Accuracy of the water vapor calibration constant depends on the sonde measurements, and im-

proved calibration techniques are given in the literature (Whiteman et al., 1992; Ferrare et al.,

1995).

In Eq. 1.33 the overlap functions for water vapor and nitrogen channels are assumed to

be identical, which is reasonable because both channels are connected to the same receiving

system in the RALMO. The atmospheric transmission at water vapor and nitrogen wavelengths,

due to Rayleigh scattering that is required for the calibration process, can be estimated using

the equations given in Nicolet (1984).

The traditional Raman lidar temperature algorithm uses the ratio of two corrected pure

rotational Raman (PRR) signals (Cooney, 1972). Corrected PRR signals can be obtained by

applying, if required, a non-linear correction to the raw lidar measurements and by removing

the background signal. The traditional retrieval algorithm also requires a determination of a li-

dar calibration function and the calibration function coefficients using ancillary measurements.

Primary importance is in the calibration of the lidar returns to allow absolute temperature mea-

surements. In the traditional method, the ratio of the corrected photocounts from the two PRR

channels is fit to a set of corresponding temperature data points usually obtained from ra-

diosondes. The calibration function is an approximation of the relationship of the signal ratio

and temperature and depends on two or more coefficients. Calibration errors exceeding 0.5 K
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can arise if the calibration data do not cover a sufficient temperature range (Behrendt, 2005).

Based on the determined lidar calibration function, temperature, and absolute and relative un-

certainties can be estimated. Studies by Di Girolamo et al. (2004); Gerasimov and Zuev (2016);

Zuev et al. (2017) have shown application of various types of calibration functions and their

uncertainties to estimate temperature from the Raman lidar measurements.

The Raman lidar technique for water vapor mixing ratio calculation also requires a ratio

of corrected measurements from water vapor and nitrogen signals. A calibration constant that

relates to the molecular and optical properties of both scattering species and systematic cor-

rections is required. Similar to the traditional Raman lidar temperature algorithm, the water

vapor calibration constant can also be determined using ancillary measurements. Also, to ob-

tain relative humidity profile one has to combine the calculated water vapor mixing ratio and

temperature profiles. The uncertainty of the relative humidity profiles can be calculated by

error propagation and only a statistical uncertainty can be estimated without any effort. The

first attempt to calculate relative humidity by combining Raman water vapor and temperature

measurements was made by Mattis et al. (2002) and the relative uncertainty of the calculated

relative humidity was between 5 to %, the uncertainty of the temperatures being the dominat-

ing source of uncertainty. A 1 to 2 K temperature accuracy is required for reducing the relative

uncertainty in the relative humidity to, on average, less than 10%. The Raman lidar measure-

ments used to calculate temperature and water vapor mixing ratios need to be corrected for

non-linearity and background.

1.5.3 Relative humidity

Raman lidar measurements are not sensitive to the relative humidity but to densities of wa-

ter vapor molecules in the atmosphere (mixing ratio). Thus, direct determination of relative

humidity profiles from the Raman lidar measurements is not possible. One has to calculate

temperature from pure-Rotational Raman (PRR) lidar channels and water vapor mixing ratios

from water vapor Raman lidar channels simultaneously to calculate relative humidity. A first

attempt to calculate relative humidity over water from Raman lidar measurements by combin-

ing Raman temperature and water vapor mixing ratio is presented by Mattis et al. (2002).
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As discussed in Section 1.2.2 relative humidity can be expressed as the ratio of vapor pres-

sure to saturated vapor pressure over water or ice (Eq. 1.6). Also, as shown in Eq. 1.3 vapor

pressure is a function of mixing ratio where the ratio of mass of water vapor to mass of dry air

is considered. However, as given in Eq. 1.33, Raman lidar measures mixing ratio relative to

the nitrogen. Therefore, I can approximate the lidar mixing ratio mwv using

mwv =
nwv

nn2
≈

nwv

0.78ndry
. (1.34)

Hence, vapor pressure e can be expressed as,

e =
mwv

0.797 + mwv
P. (1.35)

The pressure P(z) required to find the water vapor pressure, can be obtained either from

routine sonde measurements or can be estimated using the hydro-static equilibrium or even

from standard atmospheric models. Hydro-static equilibrium describes the complete balance

between the force of gravity and the atmospheric pressure:

PHS EQ(z) = P0exp
[
−

∫ ztop

z0

M(z)g(z)
R∗T (z)

dz
]
. (1.36)

where PHS EQ(z) is the pressure, M(z) is the height-dependent mean molecular mass, g(z) is the

acceleration due to gravity, P0 is the pressure at the maximum altitude, and R∗ is the universal

gas constant.

Relative humidity over water can be obtained by applying the saturated vapor pressure over

water ( Eq. 1.4) and the vapor pressure from Eq. 1.35 in Eq. 1.6. Similarly, relative humidity

over ice can be obtained by applying saturated vapor pressure over ice (log inverse of Eq. 1.5)

and the vapor pressure from Eq. 1.35 in Eq. 1.6.

One of the advantage of calculating relative humidity over water from the Raman lidars is

that those can be compared with the radiosonde relative humidity profiles that are measured

over water. The majority of the existing records of relative humidity for temperatures below

0◦C are expressed relative to water. For the studies such as ice supersaturation it is required to

consider relative humidity over ice for temperatures below 0◦C (Tables, 1951).
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1.6 Optimal estimation method (OEM)

The OEM is an inverse method that uses the measurements y to estimate the state (retrieval)

variables x of a system via a forward model. The forward model F contains all the physical

and instrumental factors describing the measurements including the atmospheric state and the

instrument. The forward model can include model parameters b which are assumed and not

retrieved, and their effect on the retrieved quantities uncertainty can be calculated. A short

summary of the method is given below. For more details refer to Rodgers book on inverse

modelling (Rodgers, 2000). The measurements are related to the forward model by:

y = F(x, b) + ε (1.37)

where ε is the difference between the measurements and the forward model, that is the mea-

surement uncertainty. In the presence of measurement uncertainties, a statistical estimate for

the state vector can be obtained from an estimate of the a priori state vector (xa).

Under the assumption that all parameters have Gaussian probability density functions Bayes

theorem, to determine the probability that the system has a state xa, given the measurements y,

P(xay),

−2 ln P(x|y) = [y − F(x, b)]T S−1
y [y − F(x, b)] + [x − xa]TS−1

a [x − xa], (1.38)

where Sy is the measurement covariance that describes the random measurement uncertainty

and Sa is the a priori covariance. The quantity −2 ln P(xa|y) normalized by the length of y is

referred to the cost of the OEM retrieval. It measures the goodness of fit for a solution, and for

good models the cost is on the order of unity. The first term in the cost function is similar to the

root-mean square deviation (RMSD) of the modelled measurement to the observed, weighted

by the error on that observation. The second term in the cost function represents the deviation

of the state from the a priori, weighted by its expected distribution.

The maximum probability state x̂ then solves,

∇x(−2 ln P(x|y)) = −KT S −1
y [y − F(x̂, b)] + S −1

a [x̂ − xa] = 0 (1.39)
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where K = ∇xF(x̂, b) is the Jacobian that describes the sensitivity of the forward model to the

state.

For linear forward models Eq. 1.24 can be solved with Newton iteration. For quasi-linear

forward models, it can be solved using the Gauss-Newton iteration. For the forward models

that are nonlinear the Marquardt-Levenberg method can be used:

xi+1 = xi + [(1 + Γi)S −1
a + KT

i S −1
y Ki]−1

{
KT

i S −1
y [y − F(xi, b)] − S −1

a [xi − xa]
}

(1.40)

where Γi is chosen at each iteration to minimize the cost function. An initial guess for Γ needs

to be set up and the factor by which it is increased or decreased is a matter for the experiment

in each particular case. In my work I use the factor by which Γ increases or decreases at each

step to be 10 that is also the value suggested by Marquardt.

Figure 1.8: Schematic of the optimal estimation method retrieval algorithm.

The schematic of the OEM algorithm is shown in Fig. 1.8. If the cost function increases

after an iteration, Γi is increased by a factor of ten. Otherwise, it is reduced by a factor of ten.

I consider only 15 maximum iteration steps in my OEM algorithm and the OEM algorithm is

considered to be converged when the cost is decreased and the change in the state is less than

some fraction of the predicted error,

(xi+1 − xi) j < ε

√
Ŝ j j ∀ j. (1.41)
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When the cost function reaches its minimum, the optimum retrieval parameters x̂ can be

obtained using the following expression:

x̂ = (I − A)xa + Ax + (K̂T S −1
y K̂ + S −1

a )−1K̂T S −1
y ε (1.42)

where G is the gain matrix. It indicates the sensitivity of the retrieval to the measurement:

G =
∂x̂
∂y
. (1.43)

Once K and G are found, the averaging kernels (or weighting functions) A can be calculated.

The averaging kernel matrix describes the sensitivity of the retrieved state to the true state,

while the width of each element defines the resolution of the retrieval. The product of the gain

and the Jacobian is the averaging kernel:

A =
∂x̂
∂x

= GK. (1.44)

For a perfect retrieval, A is the unit matrix. In reality, rows of A are generally peaked functions

and the width of each element defines the spatial resolution of the retrieval. The area of the av-

eraging kernel, or the sum of its elements, can also be regarded as the response of the retrieval.

The response is found to be approximately unity at the levels where the retrieval is accurate,

and in general can be considered as a rough measure of the fraction of the information that

comes from the measurements, rather than from the a priori profile.

The uncertainty budget is determined from the measurement and model parameter covari-

ance matrices (Rodgers, 2000). The total covariance S total is:

S total = S m + S F . (1.45)

where S m is the retrieval covariance due to measurement noise and S F is the retrieval covari-

ance due to the forward model parameter uncertainty. The retrieval covariance due to measure-

ment noise S m is

S m = GS yGT . (1.46)
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The retrieval covariance due to the forward model parameters S F is

S F = GKbS bKT
b GT , (1.47)

where Kb and S b are the forward model parameter Jacobian and covariance matrices respec-

tively. More details of the OEM are given in the Rodger’s textbook (Rodgers, 2000).

1.6.1 Advantages of implementing the OEM for lidar temperature and

relative humidity retrievals.

The OEM offers several significant advantages over the traditional Raman lidar retrievals:

• The OEM uses raw lidar measurements without the need of gluing or corrections for

background or non-linearities.

• The OEM allows the retrieval of multiple parameters from the same measurements. For

an example temperature, overlap function, and particle extinction can be retrieved from

the Raman PRR measurements.

• The OEM provides a complete uncertainty budget, including random and systematic

uncertainties due to model parameters.

• No post or pre-filtering of the retrieval is required and the height resolution of the re-

trieved profile is the full width at half maximum of the averaging kernels, which is com-

puted at each height bin.

• The OEM is fast computationally (on the order of the traditional method), and is ex-

tremely fast relative to some other inversion methods such as the grid-search technique.

• The OEM can be applied at any required height or time resolution, e.g., nightly aver-

aged profiles that are co-added in height or individual profiles at high temporal-spatial

resolution.

• The OEM is flexible and can be extended with further measurements in the forward

model and/or additional retrieval parameters.
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Chapter 2

Application of the OEM to retrieve

temperature from the pure Rotational

Raman lidar measurements 1

2.1 Overview

High time and space resolution measurements of atmospheric temperature are necessary to

improve our understanding of many atmospheric processes, both dynamical and chemical. Ra-

diosounding is the most widely used method for temperature profiling in the troposphere and

lower stratosphere, and has the advantage of operation in most weather conditions, but is typ-

ically limited to 2 flights per day. Pure rotational Raman (PRR) lidars have excellent vertical

and temporal resolution, and can be combined with vibrational Raman channels to determine

relative humidity. Lidar temperature measurements can be assimilated with atmospheric mod-

els to improve weather forecasts, as recently demonstrated by Adam et al. (2016).

The traditional Raman lidar temperature retrieval method, introduced by Cooney (1972),

uses the ratio of two PRR signals from the Stokes branch which have been corrected for sat-

uration, background and other instrumental effects as required. The PRR spectrum contains

1A version of this chapter has been published as a discussion paper: Mahagammulla Gamage, S., Sica, R. J.,
Martucci, G., and Haefele, A.: Retrieval of Temperature From a Multiple Channel Pure Rotational Raman-Scatter
Lidar Using an Optimal Estimation Method, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-107,
2019, Creative Commons 4.0 copyright.
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two branches: Stokes and anti-Stokes. Both branches have approximately the same intensity

and they are positioned symmetrically in wavelength on either side of the excitation line. The

traditional Raman lidar temperature retrieval algorithm requires the assumption of an analytic

form of a lidar calibration function whose coefficients are usually determined with external

measurements, such as radiosondes (Behrendt, 2005). The calibration function is an approx-

imation of the relationship of the signal ratio and temperature and depends on two or more

coefficients. Calibration errors exceeding 0.5 K can arise if the calibration data do not cover a

sufficient temperature range (Behrendt, 2005).

Of primary importance is in the calibration of the lidar returns to allow absolute temperature

measurements. In the traditional method, the ratio of the corrected photo-counts is fit to a set of

corresponding temperature data points usually obtained from radiosondes. The application of

the Optimal Estimation Method (OEM) for temperature retrievals using Pure Rotational Raman

(PRR) lidar measurements has several advantages over the traditional method, including the

ability to find temperature without assuming an analytic form of the temperature/count ratio

relation. Our OEM retrieval does not use the ratio of the counts. Rather we use a forward

model which includes complete physics to describe the raw count profiles. For calibration the

ratio of the lidar constants, here from referred to as coupling constant, needs to be determined.

The coupling constant can in principle be estimated at a single point, such as a nearby flux tower

or surface measurement. Our OEM retrieval has other important benefits over the traditional

method, as it can directly retrieve ancillary parameters to temperature, such as geometrical

overlap, particle extinction, and the lidar constant. Our OEM is also capable of providing a

full uncertainty budget, including both random and systematic uncertainties on a profile-by-

profile basis, including the systematic uncertainty introduced in the retrieved temperature by

the estimation of the coupling constant. The OEM is an inverse method, and is a standard tool in

the retrieval of geophysical parameters from passive atmospheric remote sensing instruments.

Recent studies including (Povey et al., 2014; Sica and Haefele, 2015, 2016; Farhani et al.,

2019) have shown that OEM can be used to retrieve atmospheric aerosol, water vapor mixing

ratio, middle and upper atmospheric temperature and ozone using lidar measurements.

In Section 2.2 a brief description of the instrument and the measurements used in this study

is presented. Section 2.3 presents the development of the PRR lidar equation.The develop-
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ment of a forward model for application of the OEM to PRR temperature retrieval is given in

Section 2.4. The OEM-retrieved temperature results from the PRR measurements for different

atmospheric conditions are shown in Section 2.5. A discussion of these results is presented in

Section 2.6 followed by conclusions.

2.2 The Raman Lidar for Meteorological Observations

PRR measurements from the RAman Lidar for Meteorological Observations (RALMO), lo-

cated in Payerne, Switzerland (46◦48′N, 6◦56′ E) are used for the OEM temperature profiling.

RALMO is a fully automated lidar built at the École Polytechnique Fédérale de Lausanne and

operated by MeteoSwiss (Dinoev et al., 2013). It is dedicated to operational meteorology, val-

idating models and satellite measurements, and climate studies. RALMO has been operating

nearly continuously since 2008, with an average data availability of 50%. Data gaps are due

to rain and low clouds (approximately 30% of the time), maintenance (1 - 2 days per month)

and other occasional technical problems. RALMO consists of a frequency tripled, Q-switched

Nd:YAG laser of 354.7 nm producing up to 400 mJ emission energy at 30 Hz repetition rate.

The pulse duration is 8 ns. The laser is operated at 300 mJ energy per pulse to extend the life-

time of the flash lamps from 20 to approximately 60 million shots. The RALMO receiver uses

four parabolic mirrors each with 1 m focal length and 30 cm diameter, and it is fiber coupled to

a two stage grating polychromator. The data acquisition system consists of photo-multipliers

and analog/digital transient recorders from Licel. The system obtains a measurement by adding

together 1800 laser shots (every minute) at a vertical resolution of 3.75 m. For a detailed de-

scription of the lidar and a detailed validation of the temperature measurements the reader is

referred to Dinoev et al. (2013).

The returns of the Raman-shifted backscatter arising from rotational energy state transitions

of nitrogen and oxygen molecules due to the excitation at the laser wavelength at 354.7 nm

are detected in analog and photon counting mode. The high quantum number channel (JH)

of RALMO is assigned to the backscattered signals from the energy exchange that occurs

in the high quantum states for both the Stokes (355.77-356.37 nm) and anti-Stokes (353.07-

353.67 nm) branches. The low quantum number channel (JL) is assigned to the signals from
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the energy exchange occurring in the low quantum states in the Stokes (355.17-355.76 nm) and

anti-Stokes (353.67-354.25 nm) branches.

2.3 The PRR lidar equation

The backscattered PRR signal is given by the Raman lidar equation:

NRR,t(z) =
CRR

z2 O(z)n(z)Γ2
atm(z)

 ∑
i=O2,N2

∑
Ji

ηi

(
dσ
dΩ

)i

π

(Ji)

 + BRR(z) (2.1)

where the true backscattered PRR signal NRR,t, is a function of height z, CRR is the lidar constant,

n(z) is the number density of the air molecules, O(z) is the geometrical overlap, ηi is the vol-

ume mixing ratio of nitrogen and oxygen, Γatm(z) is the atmospheric transmission,
(

dσ
dΩ

)i

π

(Ji)

is the attenuated differential backscatter cross-section for each RR line Ji and BRR(z) is the

background of the measured signal. For different lidar systems the background can either be

a constant or vary with height. Since air below 80 km is a constant mixture of oxygen and ni-

trogen, ηi is a constant. The lidar constant CRR depends on the number of transmitted photons,

detector efficiency, and the area of the telescope.

The attenuated differential backscatter cross section for Stokes and anti-Stokes line pairs of

equal quantum number of the PRR spectrum is expressed as (Penney et al., 1974):

(
dσ
dΩ

)i

π

(J) =
112
15

.
π4gi(J)hcB0,i(vo + ∆vi(J))4ζi

2

(2Ii + 1)2kT

×(X+(J)τ+(Ji) + X−(J)τ−(Ji)) exp
(
−Erot,i(J)

kT

) (2.2)

where for the Stokes branch

X+(J) =
(J + 1)(J + 2)

2J + 3
for J = 0, 1, 2, . . . (2.3)

and for the anti-Stokes branch

X−(J) =
J(J − 1)
2J − 1

for J = 2, 3, 4, . . . and X−(J) = 0 for J = 0, 1. (2.4)
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τ+(Ji) and τ−(Ji) are the transmissions of the receiver for the Stokes and anti-Stokes lines Ji,

respectively. gi(J) is the statistical weighting factor, which depends on the nuclear spin Ii for

each atmospheric constituent, h is Planck’s constant, c is the velocity of light, k is Boltzmann’s

constant, B0,i is the ground-state rotational constant, v0 is the frequency of the incident light,

and ζi is the anisotropy of the molecular polarizability. The rotational energy Erot,i(J) for

each Stokes and anti-Stokes branch is estimated based on the assumption of a homonuclear

diatomic molecule in the quantum state J for nitrogen and oxygen molecules with no electronic

momentum coupled to the scattering (Behrendt, 2005).

The response of photomultiplier tubes used as detectors in lidar systems and operated in the

digital mode can become nonlinear at high count rates. In the case of RALMO, the true and

observed counts are related by the equation for non-paralyzed systems where γ is the counting

system dead time:

Nobserved =
Ntrue

1 + Ntrueγ
. (2.5)

The dead time of the counting system is the time taken after measuring a photon, before the

detector is able to accurately measure another incident photon.

2.4 Application of the OEM for PRR temperature retrieval

2.4.1 Brief review of the optimal estimation method

The OEM is an inverse method that uses the measurements y to estimate the state (retrieval)

variables x of a system via a forward model. The forward model F contains all the atmospheric

and instrumental physics that describe the measurements.The forward model can include model

parameters b, which are assumed and not retrieved, and their effect on the retrieved quantity

uncertainties can be calculated.

The measurements are related to the forward model by:

y = F(x, b) + ε (2.6)

where ε represents measurement noise. Under the assumption that all parameters have Gaus-
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sian probability density functions Bayes theorem can be applied to determine the cost function,

cost = [y − F(x, b)]TS−1
y [y − F(x, b)] + [x − xa]TS−1

a [x − xa], (2.7)

where xa is the a priori, Sy is the measurement covariance, which describes the random mea-

surement uncertainty and Sa is the a priori covariance. The cost function measures the good-

ness of fit for a solution, and for good models the cost is on the order of unity. For non-linear

forward models, the Marquardt-Levenberg method can be used iteratively to minimize the cost

of the retrieval (see Section 5.7 in Rodgers (2000) for details).

2.4.2 The forward model for a PRR lidar

The forward model describes the measurement as a function of both the state of the atmosphere

and instrumental parameters. The core of our forward model is the lidar equation as presented

in Section 2.3. It is called 4 times to generate the measurements corresponding to high and

low quantum numbers, i.e. JH and JL, with digital and analog detection. Analog detection is

assumed to be linear and hence the saturation equation (Equation 2.5) is not applied.

We use Eq. 2.1 as the forward model after replacing the density n(z) in terms of pressure

and temperature.

n(z) =
P(z)

kT(z)
(2.8)

where k is the Boltzmann constant. The pressure required in the forward model obtained from

an ancillary measurements, from an atmospheric model, or can be replaced as a function of

temperature by assuming hydro-static equilibrium (Eq. 1.36).

Moreover, there are three different ways density can be included in the forward model.

1. Density is replaced by ideal gas law given in Eq. 2.1 (FM1). The forward model will

include the temperature dependency of both the differential cross-section and density.

2. Forward model as given in Eq. 2.1 in terms of density. Thus, the temperature dependency

of the density is not included (FM2). The only temperature dependent term in the forward

model is the differential cross-section.
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3. Replacing the density in the forward model given in Eq.2.1 using the ideal gas law and re-

placing the differential cross-section term as a model parameter (FM3). Thus, we need to

calculate the differential cross-section using ancillary measurements. This third type of

the forward model will be similar to the forward model used by Sica and Haefele (2015),

and should be less sensitive to temperature since the rotational temperature information

is not used. Cooney (1972) used this model to retrieve temperature from Rayleigh lidar

measurements.

To find out the forward model with maximum sensitivity to the measurements we com-

pared the temperature Jacobians for each forward model. It was evident from the Jacobians

(Appendix A figures) that FM1 has the most sensitivity to the temperature. FM2 only include

the temperature dependency of the differential cross-sections terms similar to the traditional

rotational temperature method (as when the ratio of PRR measurements is considered the tem-

perature dependency of the density cancels). In FM3 the only temperature dependent term

is density. For FM3 we assume the differential cross sections are model parameters, discard-

ing the temperature dependency of the Raman measurements. Therefore, neither of FM2 or

FM3 are complete or do not have the maximum sensitivity to retrieve temperature from the

Raman back-scatter measurements. We recommend to use a forward model with the complete

physics as given in Eq. 2.1 with the density replaced with Eq. 2.8 and pressure replaced with

hydro-static equilibrium.

As stated earlier, in our work we use the most sensitive forward model, FM1; Eq. 2.1 where

the density is replaced by ideal gas law. The pressure, P(z), and temperature, T(z), required

can be taken from either a radiosonde measurement or an atmospheric model. The background

noise, BRR, is in general a function of height, z, but is constant with height for RALMO. Unlike

all the other existing forward models for lidar except Povey et al. (2012) (which was designed

specifically to determine overlap) we retrieve O(z) the geometrical overlap function in addition

to temperature.

The atmospheric transmission, Γatm(z) in Eq. 2.1, includes both molecular and particle

scattering.

Γatm(z) = exp
[
−

∫ z

0
(αmol + αpar)dz

]
(2.9)
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where αmol is the molecular extinction coefficient and αpar is the particle extinction coeffi-

cient. The molecular extinction can be expressed using the Rayleigh cross section σRay and air

density nair as:

αmol = σRay.nair (2.10)

where σRay is calculated using the expressions given by Nicolet (1984).

For each channel the subscript RR is replaced by JL and JH ,the high and low quantum

number PRR channels. Then CRR, BRR and J i then have different values.

RALMO detects multiple Stokes and anti-Stokes lines from both nitrogen and oxygen

PRR spectrum. Therefore, to determine the attenuated backscatter cross-section in the for-

ward model we require knowledge of the exact number of quantum states detected by each the

RALMO PRR channel. From the JH and JL channel characteristics we can calculate the range

of frequency shifts for each channel relative to the elastic wavelength 354.7 nm. Then using the

equations given by Herzberg (2013) we can determine the quantum numbers J i for both nitro-

gen and oxygen molecules. This calculation process is repeated to determine the J i numbers

for the JL channel of the RALMO. The summary of the findings are given in Table 2.1.

Table 2.1: Return PRR wavelengths detected by the RALMO and the respective quantum lines
from nitrogen and oxygen PRR spectrums.

Channel Nitrogen Oxygen
JL Detected wavelengths 355.17-355.76 nm 353.67-354.25 nm

Quantum lines (Stokes and anti-Stokes) 3,4,5,7,8,9 5,7,9,11,13
JH Detected wavelengths 355.77-356.37 nm 353.07-353.67 nm

Quantum lines (Stokes and anti-Stokes) 10,11,12,13,14,15 15,17,19,21

In order to establish absolute calibration, we define the coupling constant R as the ratio of

the lidar constants CJL and CJH

R =
CJH

CJL
(2.11)

and use the substitution CJH = RCJL. The coupling constant is height-independent and can

be determined with no assumptions at, if desired, a single altitude using the following equation

derived from Eq. 2.1.

R =

(Nt,JH − BJH

Nt,JL − BJL

) / (
σJH(T, z)
σJL(T, z)

)
. (2.12)

The differential cross section terms are determined by applying temperature from a coinci-
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dent reference temperature, typically from a radiosonde. For a well designed lidar system

the coupling constant should be stable over weeks. Unlike the fitting of an analytic calibration

function to the data as in the traditional method, R can be estimated at a specific height or range

of heights, which can be over a narrow range of temperature without introducing extrapolation

errors. We extensively tested this assertion using both synthetic and real measurements. The

results show that the estimation of R is indeed height independent. The value of R is only af-

fected by the measurement noise. Hence, we recommend using a range of heights or a specific

height where the photocounts have a high signal-to-noise ratio.

Using R in the forward model allows us to retrieve only one lidar constant, while constrain-

ing the two channels to vary so as to satisfy Eq. 2.11. We will see in the next section that any

variations or uncertainty in the determination of R introduces an uncertainty on the order of

0.2 K to the retrieved temperature profile.

The retrieval parameters (Table 2.2) in our OEM algorithm are temperature, background

signals (including photo multiplier shot noise, sky background, and offset for analog channels),

the lidar constants, dead times of the digital photon counting systems, geometrical overlap, and

particle extinction as a function of height. In OEM we can retrieve parameters on a height grid

where the resolution can be same or different than the vertical resolution of the height grid that

the measurements obtained. If the retrieval grid is coarser than the measurement grip we use

linear interpolation on retrieved quantities when they are required in the forward model.

Table 2.2: Values and associated uncertainties for the OEM retrieval and forward model pa-
rameters.

Parameter Value Standard Deviation
Measurements

Digital Measured Poisson Statistics
Analog Measured Auto Covariance Method

Retrieval Parameters ( a priori)
Temperature US Standard Model 35 K

geometrical overlap Function Estimated using the forward model and measurements 50% below and at transition height
10−3 above transition height

Particle Extinction Estimated using measurements 10−6km−1 below and at transition height
50% above transition height

Lidar Constants (analog/digital) Estimated using the forward model 100%
Digital Background Noise Mean above 50 km Standard Deviation above 50 km
Analog Background Noise Mean above 50 km nighttime- Standard Deviation above 50 km

daytime- normalized standard deviation above 50 km
Dead Time Empirical fitting 10%

Forward Model Parameters
Pressure Radiosonde 30 Pa

Coupling Constants (analog/digital) Estimated measurements and sonde temperature Standard deviation of the coupling constants over a height range
Air density Radiosonde 1%
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2.4.3 Implementation of the RR temperature retrieval

The OEM solver in the Qpack software package is used for our retrieval (Eriksson et al., 2005).

The solver requires the following as inputs: the measurements from each lidar channel and

their covariances, a priori values for the retrieval parameters and their covariances, model (b)

parameters and their covariances, and the Jacobians of the forward model.

The lidar measurements from the digital channels follow Poisson counting statistics in the

range where the counts are linear. Thus, the measurement variance Sy is equal to the number

of photons in each height bin, assuming no correlation between the height bins (that is, the off-

diagonal terms in the Sy matrix are zero). The auto-correlation function method of Lenschow

et al. (2000) is used to estimate the measurement covariance of the analog and digital measure-

ments in the non-linear region. For both analog and digital channels, the a priori backgrounds

and their variances are taken as the mean and the variance of the measurements above 50 km

height.

The U. S. Standard Atmosphere (Atmosphere, 1976) model temperature profile is normal-

ized to the surface temperature from the coincident sonde temperature, and then used as the

a priori temperature profile in our retrievals. Due to the high variability of the temperature, a

standard deviation of 35 K for all heights is used to specify the covariance matrix for a priori.

Other choices of a priori temperature profile are possible, but as an operational, fully auto-

mated lidar system RALMO retrievals must be performed automatically every 30 min, so the

choice of the US Standard Model with this covariance simplifies this procedure. As discussed

in Eriksson et al. (2005), the elements of the retrieval and model parameters are often corre-

lated, and some of the covariance matrices should have off-diagonal elements. Off-diagonal

elements are parametrized with the correlation length and an appropriate analytical function

describing the decay of the correlation. For this study, we used a tent function with a 1 km

correlation length for temperature retrievals (Eriksson et al., 2005).

Molecular and particle extinction terms occur in the atmospheric transmission term of

Eq. 2.9. An a priori particle extinction profile is estimated based on the following expres-

sion:

αpar = LR · βpar = LR · βmol · (<β − 1) (2.13)



2.4. Application of the OEM for PRR temperature retrieval 59

where LR is the lidar ratio, βpar is the particle backscatter coefficient. βpar can be related to

the backscatter ratio<β as (Whiteman, 2003):

<β =
(βmol + βpar)

βmol
(2.14)

The backscatter ratio<β is estimated using the RALMO PRR and elastic measurements. Bu-

choltz (1995) gives a method for calculating βmol using pressure, temperature and Rayleigh

cross sections. The Rayleigh extinction cross sections required for βmol estimation are com-

puted using the formula of Nicolet (1984). Calculated Rayleigh extinction cross sections are

also used to estimate the air density profile used as a b parameter in the forward model, assum-

ing an uncertainty of 1% for the standard deviation.

The lidar ratio LR is chosen based on the<β values for the given measurements. Typically

<β values inside clouds are greater than 2. Thus, for this study the height at which <β is

first equal to 2 is considered as the height of the cloud base or the height of an aerosol layer

(cloud/aerosol layer base height). The cloud/aerosol layer base height is later used to deter-

mine the transition height that constrains the range of the geometrical overlap and the particle

extinction retrievals. In clear sky conditions (that is if<β does not exceed 2), LR is assumed

to be 80 sr inside the boundary layer and 50 sr elsewhere. In cloudy conditions, LR is assumed

to be 20 sr within the clouds present below 6 km. If the cloud is above 6 km, LR is assumed to

be 15 sr within the cloud. These choices for lidar ratios are taken from Ansmann et al. (1992a)

and Pappalardo et al. (2004). Accurate LR is not crucial, as it is used to estimate an a priori

particle extinction profile. However, we can calculate a LR profile using the OEM-retrieved

αpar and compare it with the initially chosen LR values to evaluate how good a choice of the

initial value is.

The effect of geometrical overlap and particle extinction on the signals are strongly linearly

dependent and hence retrieving both parameters simultaneously with the given data channels

is not possible unless at least one of the effects is highly constrained. In this work we assume

that particle extinction is well known from the backscatter ratio outside clouds and that overlap

is well known above the height of full overlap, i.e. above 6 km. Hence we define a transition

height at 6 km or cloud base height, whatever is lower, below which particle extinction is
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retrieved and above which overlap is retrieved. The a priori overlap function is estimated from

the measurements in clear sky conditions with little effect due to particles. A 50% standard

deviation is used for geometrical overlap below the transition height and a constant value of

10−3 is used above this height, constraining the geometrical overlap to the a priori above the

transition height. For particle extinction, a small standard deviation of 10−6km−1 is used below

the transition height, but a 50% standard deviation is used above this height, allowing the

OEM to retrieve exclusively the particle extinction. The a priori covariance matrices for both

particle extinction and geometrical overlap are determined using a tent function with a 100 m

correlation length.

A priori lidar constants for the JL analog and JL digital channels are estimated by fitting

the measurements generated using the sonde temperature and pressure used in the forward

model to the PRR measurements. For analog measurements, the fitting range is between 1.5 to

2 km height. For digital measurements with clear conditions or cloud/aerosol presence above

8 km, 6 to 8 km is used as the fitting range, to insure the photocounts are linear. If the digital

measurements contain a cloud or aerosols in the geometrical overlap region, a fitting range

below this is used, typically 3.5 - 4 km height. The fitting uncertainty for each analog and

digital lidar constants is used as the variance of the a priori lidar constant.

The a priori dead times for the two digital photon counting systems are considered to be

3.8 ns, consistent with estimations from previous studies for RALMO and with values specified

by the manufacturer (Sica and Haefele, 2016, 2015; Dinoev et al., 2010). The uncertainty in

the dead time is taken as 10%. Coincident radiosonde pressure profile are used assuming

a 10% standard deviation. The coupling constants for analog (Ra) and digital (R) channels

are estimated by fitting the ratio of PRR measurements with the ratio of the differential cross

section (Eq. 2.12). The coupling constants are estimated using the same fitting range as the

lidar constants. Table 2.2 gives a summary of the parameters and associated uncertainties of

the retrieval and b parameters used in the forward model.
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2.5 Results from the temperature retrieval

We present four different measurement situations which demonstrate the robust nature of our

OEM temperature retrieval. Details of each case study are given in Table 2.3. The RALMO

measurements used in the retrievals are added in time over 30 min and to 15 m in height. Analog

measurements are used from the surface to 6 km height, while digital measurements are used

from from 4 to 28 km. The retrieval grid has a vertical resolution of 60 m at all heights. For all

the cases given in Table 2.3 we used radiosonde measurements that coincide within 1 hour of

the lidar measurements for comparison purposes, to estimate the required a priori information,

and to determine the forward model b parameters (Table 2.2).

Table 2.3: Details of the 4 cases in different sky conditions we present to demonstrate the
flexibility of our OEM temperature retrieval.

Case Date Time (UT) Sonde Launch (UT) Sky Condition
1 20110909 2300-2330 2200 Clear-nighttime
2 20110910 1100-1130 1100 Clear-daytime
3 20110705 2300-2330 2300 Cirrus Cloud (∼ 6 km)-nighttime
4 20110621 2300-2330 2300 Lower Cloud ( 4 km)-nighttime

The traditional temperature profiles shown are calculated using count profiles consisting of

glued analog and digital measurements which are corrected for non-linearity and background

before processing. The vertical resolution of the traditional temperature profiles is 30 m at

the lowest heights, increasing to 400 m by the upper heights to decrease the magnitude of the

statistical uncertainty. A calibration function linear in 1/T is used and the two coefficients have

been determined with radiosonde data using the altitude range from surface to 10 km. Hence,

for this comparison the temperature profile is smoother than the OEM retrieved temperature

profile. The change in vertical resolution is based on the random uncertainty of the temperature

profile at each height. The vertical resolution is decreased until the temperature uncertainty

becomes less than a threshold value, set here as 1 K.

2.5.1 Case 1: Nighttime with clear conditions

Fig. 2.1 shows the RALMO 30 min coadded count measurements in the four PRR channels for

case 1 given in Table 2.3. Analog signals suffer day and night from a high electrical offset which
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becomes dominant above 5 km. On the other hand, the analog signals stay linear over the entire

encountered range. The digital signals on the other hand have a very low system background

but become saturation above 2 MHz. Fig. 2.2 shows the residuals, which are defined as the

difference between the forward model and the measurements. For a good retrieval with cost on

the order of unity, the residuals (blue curve) should be on the order of the standard deviation of

the measurement noise (red curve), and indeed this is the case, hence the forward model is not

over-fitting the measurements (e.g. cost much less than unity).

Figure 2.1: Count rate for 30 min of coadded RALMO measurements from 2300 UT on 09
September 2011, a clear night. Left panel: digital channels (blue curve, JL; red curve, JH).
Right panel: analog channels.

The averaging kernels of temperature and the vertical resolution of the retrievals are shown

in Fig. 2.3. The area of the averaging kernels is defined as the response function of the retrievals

and is close to 1.0 below 24 km, meaning that contribution of the a priori temperature profile to

the retrieved temperature is negligible (Rodgers, 2000). With decreasing signal-to-noise ratio

the measurement response quickly decreases above about 27 km (Fig. 2.3). The full-width

at half-maximum of the averaging kernels is the retrieval’s vertical resolution (Fig. 2.3, right
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Figure 2.2: Difference between the forward model and clear nighttime RALMO measurements
on 09 September 2011 for the four channels (blue). The red curves show the standard deviation
of the measurements noise.

panel). The vertical resolution of the retrieval is smaller than the resolution of the retrieval grid

above about 10 km. We consider the height at which response function decreases to 0.9 as the

cutoff height for the OEM retrievals as at this level the contribution of the a priori temperature

profile is about 10%.

Figure 2.4 shows a comparison of the OEM-retrieved temperature profile with coincident

sonde temperature and temperature obtained using the traditional method. The traditional

method profile from the RALMO glued (digital and analog) measurements provided by Me-

teoSwiss has a vertical resolution of 30 m, below 12.5 km and 400 m above this height, and is

interpolated to the same retrieval grid as the OEM and shown in black. The change in vertical

resolution and the cutoff height of the traditional temperature retrieval are based on temperature

uncertainty thresholds.

As shown in the right panel of Fig. 2.4, the temperature difference between OEM-retrieved

and sonde temperature (blue curve) fits inside the statistical uncertainty of the OEM-retrieved

temperature. Temperature from the traditional method follow the same trend as the sonde and

the OEM-retrieved temperature.
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Figure 2.3: Averaging kernels (left) and vertical resolution (right) for temperature retrievals
from the clear nighttime RALMO measurements on 09 September 2011. The area of the
averaging kernels at each height, the response function, is the red solid line. The horizontal
dashed line shows the height below which the retrieval is due primarily to the measurement
and not the a priori temperature profile. For clarity averaging kernels for every fifth height bin
of the retrieval grid are shown.
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Figure 2.4: Left panel: Retrieved temperature profile and the statistical uncertainty (red curve
and shaded area) using the OEM from the clear nighttime RALMO measurements on 09
September 2011. The blue curve is the radiosonde measurement. The sonde was launched
at 2200 UT. The green curve is the a priori temperature profile used by the OEM. The black
curve shows the temperature retrieved using the traditional analysis method from glued ana-
log and digital signals. The horizontal dashed line shows the height below which the retrieval
is due primarily to the measurement and not the a priori temperature profile. Right panel:
The blue curve shows the temperature difference between OEM-retrieved temperature and the
sonde temperature. The red curves in the figure show the statistical uncertainty of the OEM
temperature.
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The OEM provides a complete uncertainty budget of both random and systematic uncer-

tainties (Figure 2.5). Uncertainties due to the Rayleigh cross section is in the order of 0.01 mK.

Pressure accounts for up to 0.1 K below 10 km and up to 0.7 K up to 25 km and is a non-

negligible source of uncertainty in the stratospheric part of the retrieval. Note that this error

could be reduce by choosing a better pressure profile. The uncertainty due to the analog cou-

pling constant Ra is in the order of 0.07 K up to 4 km and the uncertainty due to digital coupling

constant R is 0.15 K in 4-7 km height range and less than 0.1 K everywhere else. The largest

contribution to the temperature uncertainty is from measurement noise, which increases with

height.

Figure 2.5: Random uncertainties (red curve) and systematic uncertainties due to the forward
model parameters for the temperature retrievals from the clear nighttime RALMO measure-
ments on 09 September 2011. The systematic uncertainties included are Rayleigh-scatter cross
section (purple dot-dash curve), R digital coupling constant (orange triangle-dash curve), Ra
analog coupling constant (yellow cross-dash curve), and pressure (blue dot-dash curve).

Figure 2.6 shows the OEM-retrieved geometrical overlap function for the RALMO PRR

channels. It illustrates that the overlap retrieval is constrained to be equal to 1 above the tran-

sition height (6 km), above which the extinction coefficient is retrieved (see Sec. 2.4.3).
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Figure 2.6: Retrieved geometrical overlap function (red curve) from the clear nighttime
RALMO measurements on 09 September 2011 compared to the a priori geometrical overlap
function (green curve).
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2.5.2 Case 2: Daytime with clear conditions

The retrieval setup for second case study, which is a daytime measurement (Table 2.3), is

identical to the one used for nighttime. The major difference between daytime and nighttime

retrievals is the large solar background in the measurements, which is evident in the measure-

ments of the digital PRR channels (Fig. 2.7).

Figure 2.7: Count rate for 30 min of clear coadded RALMO measurements from 1100 UT on
10 September 2011. Left panel: digital channels (blue curve, JL; red curve, JH). Right panel:
analog channels.

The residuals are unbiased and fall within the limits of the measurement standard deviation

(Fig. 2.8). This result confirms the capability of our forward model in daytime conditions. As

shown in Fig. 2.9, the vertical resolution (right panel) is the same as the retrieval grid below

13 km where response function (left panel) is equal to 0.9. The vertical resolution starts to

deviate from the retrieval grid as the response function decreases and the background starts to

dominate the digital channels.

Similar to the clear nighttime case, the OEM-retrieved temperature agree with the sonde

temperature within the statistical uncertainty (Fig. 2.10). It is also evident for this specific case

study that the temperature from the traditional method deviate from the sonde temperature more
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Figure 2.8: Difference between the forward model and the clear daytime RALMO measure-
ments on 10 September 2011 for the four channels (blue). The red curves show the standard
deviation of the measurements.

Figure 2.9: Same as Fig. 2.3 but for 10 September 2011.
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than the OEM retrieved temperature. This difference compared to the traditional method is due

to the fact that the OEM adapts the vertical resolution in an optimal way as a function of height

while the traditional method is, constrained by the filter employed to a specific signal-to-noise

ratio of the measurements from both channels.

The analog coupling constant Ra uncertainty of the temperature from the daytime measure-

ments are also in the order of 0.07 K and the uncertainty due to digital coupling constant R is

less than 0.2 K for all heights.

The retrieved geometrical overlap function for the clear daytime case (not shown) agrees

with the geometrical overlap retrieved for the nighttime case within 10% statistical uncertainty.

Figure 2.10: Same as Fig. 2.4 but for 10 September 2011.

2.5.3 Case 3: Nighttime with cirrus cloud

The third case (details are given in Table 2.3) features a cirrus cloud at 6 km height (Fig. 2.12).

The retrieval setup is identical to the previous cases, as the cloud base is above the height of
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Figure 2.11: Same as Fig. 2.5 but for 10 September 2011.

full geometrical overlap of the transmitter and receiver. The a priori profile of the particle

extinction coefficient is derived from the back-scatter ratio assuming a lidar ratio of 15 sr.

The residuals (Fig. 2.13) are unbiased and fall within the square root of the measurement

variance. This is also true for the altitude range of the cirrus cloud demonstrating that the

particle extinction coefficient was determined correctly. The response function (left panel,

Fig. 2.14) decreases to the 0.9 cutoff value at about 23.5 km, clearly lower than the clear-sky

nighttime case because of the attenuation of the cirrus cloud. Similar to the two previous

cases, the OEM-retrieved temperature agree with the sonde temperature within the statistical

uncertainty of the OEM retrieved temperature (Fig. 2.15).

The retrieved geometrical overlap function from the measurement with the cirrus cloud

(not shown) agrees within 10% uncertainty with the geometrical overlap functions retrieved

from the measurement with clear sky conditions, as the cloud is above the region of complete

geometrical overlap. The red curve in the first plot in Fig. 2.16 shows the OEM-retrieved

particle extinction and the green curve is the a priori particle extinction estimated using the

RALMO PRR and elastic measurements, assuming a lidar ratio for cirrus clouds in order to
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Figure 2.12: Count rate for 30 min of coadded RALMO measurements from 2300 UT on 05
July 2011. Left panel: digital channels (blue curve, JL; red curve, JH). Right panel: analog
channels.

Figure 2.13: Difference between the forward model and the nighttime RALMO measurements
on 05 July 2011 with the presence of a cirrus cloud for the four channels (blue). The red curves
show the standard deviation of the measurements.
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Figure 2.14: Same as Fig. 2.3 but for 05 July 2011 with a cirrus cloud at 6 km height.

Figure 2.15: Same as Fig. 2.4 but for 05 July 2011 with a cirrus cloud at 6 km height, using the
OEM.
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Figure 2.16: Left: Retrieved particle extinction (red) and the a priori particle extinction used
in the OEM (green). Center: Backscatter coefficient calculated from the nighttime RALMO
measurements on 05 July 2011 with of a cirrus cloud present at 6 km height. Right: Lidar ratio
used to determine a priori particle extinction (green) and the estimated lidar ratio using the
OEM-retrieved particle extinction (red).

estimate an a priori extinction. Above 6.75 km, the OEM-retrieved particle extinction is around

0.25km−1 and approximately two times smaller than the a priori yielding a lidar ratio of 5-

15 sr while the initial guess was 20 sr (Fig. 2.16. Ansmann et al. (1992b), using independent

measurements of particle extinction and backscatter profiles in cirrus clouds, show similar

extinction values (0 - 0.5km−1) and also similar values for the lidar ratio inside the cloud 0-

10 sr. Thus, the OEM-retrieved extinctions for this cirrus cloud appears to be reasonable.Below

6.75 km, the lidar ratio is around 20 sr which could be and indication that this part of the cloud

is super-cooled liquid.

The uncertainty budget for this case (not shown) is similar to the previous 2 cases shown;

the cloud has little effect on the uncertainty values. As before, the statistical uncertainty makes

the largest contribution to the full uncertainty.

2.5.4 Case 4: Nighttime with lower level cloud

A cloud at about 4 km is present in measurements used for the last case study (Table 2.3). In

this situation we use our OEM-retrieved geometrical overlap during clear conditions as our a
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priori geometrical overlap profile. We then retrieve geometrical overlap to the cloud base (4 km

height) and particle extinction above 4 km. In this case the retrieved geometrical overlap up

to 4 km agrees within 10% uncertainty with the OEM-retrieved geometrical overlap for clear

conditions.

Figure 2.17 shows the measurements in the four PRR channels and the elastic channel

measurement (left panel, green curve). It can be seen in the elastic signal that a cloud base is

at around 4 km height. The Raman measurements drop above 4 km and are fully attenuated at

7 km.

We use these measurements obtained at a cloudy condition as input to our OEM, and obtain

unbiased residuals which fall within the standard deviation of the measurements, meaning the

forward model accurately retrieve temperature in the presence of the cloud.

Figure 2.17: Count rate for 30 min of coadded RALMO measurements from 2300 UT on 21
June 2011, which has a cloud base at an height about 4 km. Left panel: digital channels (blue
curve, JL; red curve, JH; green, Elastic). Right panel: analog channels.

The response function (left panel, Fig. 2.19) is 0.9 at 6 km, which is considered the maxi-

mum height where the OEM-retrieved temperature are valid. At this height the vertical reso-

lution (right panel, Fig. 2.19) rapidly increases as the cloud thickens. As shown in Fig. 2.20

(right panel), up to 6 km, the temperature from the sonde launched at 2300 UT from Payerne
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Figure 2.18: Difference between the forward model and the nighttime RALMO measurements
on 21 June 2011 with the presence of a lower level cloud for the four channels (blue). The red
curves show the standard deviation of the measurements.

and OEM temperature agree with each other within the statistical uncertainty of the OEM tem-

perature. Temperature retrieved using the traditional method are similar to the OEM and sonde

measurements up to 3.5 km, while inside the cloud the traditional temperature starts to deviate.

Below 5.25 km the retrieved particle extinction coefficient agrees well with the a priori

values and the corresponding lidar ratio is between 15 and 20 sr indicating a liquid cloud.

Above 5.25 km the retrieved particle extinction is smaller than the first guess yielding again

a lidar ratio around 5 sr (left panel in Fig. 2.21). This could be an indication that the cloud

became an ice cloud above 5.25 km.

2.6 Discussion

The four retrievals discussed in the previous section demonstrate that the OEM provides ro-

bust and accurate retrievals of temperature, geometrical overlap, and particle extinction coef-

ficients, during both clear and cloudy day and night conditions. Unlike the traditional Raman

lidar temperature analysis method (Cooney, 1972; Arshinov et al., 1983; Di Girolamo et al.,
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Figure 2.19: Same as Fig. 2.3 but for 21 June 2011 with the presence of lower level cloud.

Figure 2.20: Same as Fig. 2.3 but for 21 June 2011 with the presence of a lower level cloud,
using the OEM.
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Figure 2.21: Same as Fig. 2.16 but for 21 June 2011 with the presence of a lower level cloud.

2004; Behrendt, 2005; Zuev et al., 2017), the OEM does not require an analytic form of a cal-

ibration function; rather a single calibration coefficient has to be estimated using a reference

temperature profile and were shown to have a small effect on the retrieved temperature.

The calibration function plays a key role in the traditional temperature retrieval algorithm

from the PRR backscattered signals, in particular if calibration is not done over a the entire

observed temperature range. Typically, a calibration function linear in 1/T is used for systems

that detect only one or multiple RR lines (Behrendt, 2005), although other forms of calibration

functions have been employed. Recently Zuev et al. (2017) showed closer agreement at times

with temperature calculation used a higher order polynomial for the calibration function. All

calibration coefficient estimation methods require multiple reference data points which span

ideally the entire range of temperatures to avoid extrapolation errors.

The only calibration required in our OEM scheme is the determination of the two coupling

constants, R and Ra. The coupling constants can be estimated at a specific height (that is over

a narrow range of temperature) without introducing extrapolation errors. Using the OEM we

can show that the contribution of the coupling constant to the temperature uncertainty is in the

order of 0.07 K in the height below 4 km and about 0.2 K or less above 4 km for a wide variety

of sky conditions.



2.6. Discussion 79

The OEM temperature retrievals of 4 very different sky conditions have been compared

against coincident radiosonde temperature measurements. cases presented is the US Stan-

dard model normalized to the surface temperature from the coincident sonde temperature. We

successfully used other a priori temperature profiles, such as the smoothed sonde tempera-

ture measurements and temperature from the Mass Spectrometer and Incoherent Scatter radar

(MSIS) model to retrieve temperature using our OEM algorithm. All the retrieved temperature

profiles using each a priori profile for heights where the response function is 0.9 or greater are

identical within the statistical uncertainty.

In our study, we have successfully retrieved a geometrical overlap function for the RALMO

system using the PRR measurements simultaneously with the temperature retrieval. Ray-

tracking studies have concluded that the RALMO system reaches its full geometrical overlap

by 5.0-5.5 km in height. These calculations are consistent with our geometrical overlap re-

trievals in both clear daytime and nighttime conditions. Measuring the geometrical overlap

function and its uncertainty allows a more accurate estimation of the particle extinction co-

efficient when clouds or aerosols are present. The particle extinction profiles we retrieved in

the two cloudy condition cases are consistent with measurements collected by Ansmann and

Müller (2005) for cirrus clouds and with O’Connor et al. (2004) for liquid clouds.

The particle extinction coefficient is retrieved in the full geometrical overlap region, i.e.

above 6 km or above the cloud base. The extinction values and lidar ratios we obtained for

high and mid-level clouds are in agreement with other publications. The two case studies

featuring clouds suggest, that both clouds consisted of a liquid and a ice part with lidar ratios

at 18 and 5 sr.

For all the case studies we presented, the lidar constants for the lower quantum channels

(analog and digital), the dead times for each digital channel (JL and JH), and background for all

four channels are also retrieved. The retrieved lidar constants for each channel agreed within

20% uncertainty for all four cases. The retrieved dead times are about 3.8 ns and consistent

with the dead times specified by the manufacturer and other independent estimates.

The uncertainty budget provided by the OEM contains both random and systematic uncer-

tainties. Estimation of the uncertainty budget requires assignment of appropriate covariances

to the model parameters. Using the standard deviations given in Table 2.2, the uncertainty
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budgets for all the case studies are estimated. The largest contribution towards the temperature

uncertainty originates from the statistical uncertainty due to the measurement noise. Overall

contribution from the coupling constants to the temperature uncertainty are less than 0.2 K for

all heights. Given the fact that the measurement noise can be reduced with longer integra-

tion times this result suggests that the OEM method very precise temperature measurements

are possible even if calibration is only possible over a small temperature range. The system-

atic uncertainties of pressure and air density are on the order of 0.1 K to 0.1 mK respectively.

Understanding the full uncertainty budget of temperature is of particular importance for trend

analysis and process studies. The observational basis for super-saturation studies in the upper

troposphere is still unsatisfactory and the OEM framework allows to combine different data

sources to provide a high quality data set including profile-by-profile uncertainty budgets. .

2.6.1 Conclusion

We have demonstrated the ability of the OEM to retrieve multiple geophysical and instrumental

parameters from PRR lidar measurements. The first-principle forward model adequately rep-

resents the raw PRR measurement and allows us to retrieve temperature, geometrical overlap,

particle extinction, lidar constants, background counts, and dead time using multiple analog

and digital channels. The retrievals discussed for four different cases that represent different

(and typical) sky conditions. We found the following results from our OEM temperature re-

trievals from PRR measurements:

• The forward model presented, based on the lidar equation, contains the essential physics

to reproduce the analog and digital measurements, leading to unbiased residuals and

robust estimates of temperature.

• Our OEM retrieval does not require a calibration function as used in the traditional tem-

perature retrieval method. It only requires determination of the two coupling constants,

R and Ra, using a reference temperature profile that can be estimated at a specific height

bin (or over a range). Retrieved temperature profiles from both day and night uncorrected

PRR measurements in clear and cloudy conditions agree well with coincident radiosonde

measurements.
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• The OEM provides a cutoff height for the temperature retrievals that specify up to which

height the retrieved profile is primarily due to the measurements and not the a priori

temperature profile.

• Vertical resolution is determined at each height, and is automatically adapted in the re-

trieval in response to increasing measurement noise with height.

• The OEM provides a complete uncertainty budget, including random and systematic

uncertainties due to model parameters, including the assumed pressure, air density and

the coupling constants.

• Simultaneous analog, which are linear, and digital measurements allow the dead time to

be retrieved.

• The OEM-retrieved geometrical overlap function for the RALMO using the measure-

ments in clear conditions is determined and shown to be consistent with, but not the

same, as that calculated by Dinoev et al. (2013). Hence, retrievals of the particle extinc-

tion coefficient are possible using the OEM from the measurements in cloudy conditions

or when aerosol layers are present.

• The OEM is a computationally fast and practical for routine temperature retrievals from

lidar measurements as required for operational lidar systems.

We have demonstrated that the OEM allows retrieval of temperature from Pure Rotational

Raman lidar measurements that are consistent with the coincident sonde temperature. We

discussed the advantages of the OEM over the traditional temperature retrieval algorithm. We

can use the OEM-retrieved temperature to study temperature trends with the benefit of a full

uncertainty budget provided by our OEM. Our OEM temperature retrieval can also be used

for routine measurements in a wide variety of observing conditions, and is applicable to any

similar PRR lidar system.

We are in the process of implementing the OEM for routine temperature measurements

from the RALMO system. Currently we are also combining the OEM PRR temperature re-

trieval with the OEM water vapor mixing ratio retrieval of Sica and Haefele (2016) to directly
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retrieve relative humidity from the RALMO measurements, both for its importance to opera-

tional forecasting and to allow the study of ice super-saturation events.
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Chapter 3

1DVar reanalysis of 10 years of ERA5

assimilating a Raman lidar for

temperature and humidity 1

3.1 Overview

Water vapor is a key factor for the atmosphere’s radiative budget, chemistry and dynamics.

Upper tropospheric humidity exhibits a large radiative forcing (Comstock et al., 2004; Sinha

and Harries, 1995) and is a driving factor of the formation of cirrus clouds, which in turn

modify the radiative budget. However, there are still large uncertainties associated with cirrus

cloud formation since observations of high levels of ice super saturation up to 200%RH (we

refer the unit of relative humidity as %RH and standard percentages as %) have been reported

by Gensch et al. (2008) and references therein. These extreme observations may reveal a gap

in our knowledge of the physics and chemistry of cirrus cloud formation (Peter et al., 2006).

These observations, though, still show large uncertainties and do not bring the necessary obser-

vational evidence to confirm or prove incomplete our understanding of cirrus cloud formation

(Gierens et al., 2012; Comstock et al., 2004). To improve the situation good quality profiles

with uncertainty budgets are needed.

1A version of this chapter is in its final preparation stage for submission in the near future.
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The global radiosonde network provides most of the relative humidity information for fore-

cast models. Even though the radiosonde network is widely spread over the world, the temporal

resolution of the routine sonde measurements is typically two radiosondes per day. Also, it is

well known that the radiosonde relative humidity measurements are often not reliable in the

upper troposphere (Miloshevich et al., 2001; Noh et al., 2016; Ferreira et al., 2019).

Among several other techniques available for improved water vapor measurements, such

as satellites and microwave radiometers, Raman lidar has become one of the best tools that

provides water vapor measurements throughout the troposphere with high spatial and temporal

resolutions (Whiteman et al., 1992; Vérèmes et al., 2016). For Raman lidars which possess

temperature profiling capability exploiting pure rotational Raman scattering from nitrogen and

oxygen, the water vapor information can be combined with temperature to yield relative hu-

midity (Mattis et al., 2002). These authors report a relative uncertainty of the calculated relative

humidity between 5-25%RH, the uncertainty of the temperatures being the dominating source

of uncertainty. A 1-2 K temperature accuracy is required for reducing the relative uncertainty

in the relative humidity to, on average, less than 10%RH. Brief description of the conventional

Raman lidar relative humidity estimation method is given in Appendix B.

Here we apply a 1D Var data assimilation scheme to reanalyze the ERA5 relative humidity

profiles above Payerne assimilating data from a Raman water vapor and temperature lidar. The

1D Var scheme is based on the work in (Mahagammulla Gamage et al., 2019) and (Sica and

Haefele, 2016) and uses raw data from the lidar, i.e. Raman backscatter profiles, as opposed

to retrievals, i.e. water vapor or temperature profiles. The reanalyzed ERA5 profiles, hereafter

referred to as ERA5-reRH, come along with a complete profile-by-profile characterization in

terms of uncertainty, sensitivity and vertical resolutions. We have chosen to reanalyze relative

humidity profiles in units of relative humidity with respect to water, RHw, since this allows

an easy validation with radiosondes which generally report RHw (Dirksen et al., 2014; Milo-

shevich et al., 2009). RHw is derived from temperature and water vapor mixing ratio using

the Hyland and Wexler formulation (see Section 3.3.1). Note that for this study this is simply

a choice of the unit and the data can be converted to relative humidity with respect to ice if

needed.

The main purpose of the ERA5-reRH data set is to study ice super saturation events.The
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paper is organized as follows: In Section 3.2 we provide a description of the Raman lidar and

ERA5 data we used in the study. The forward model and the implementation of the 1D Var

algorithm together with a characterization of the ERA5-reRH profiles are given in Section 3.3.

Section 3.5 contains a validation of the ERA5-reRH data set versus radiosondes. A detailed dis-

cussion of the results, conclusions and an outlook to future work are given in Sections 3.6, 3.7.

3.2 Data used in 1DVar reanalysis

3.2.1 RAman lidar for Meteorological Observations (RALMO)

For this study we use Raman lidar measurements from the RAman lidar for Meteorologi-

cal Observations (RALMO), operated by MeteoSwiss and located in Payerne, Switzerland.

(46◦48′N, 6◦56′ E). RALMO is a fully automated lidar, operating since 2008, with an av-

erage up-time of 50%. The transmitting system of RALMO consists of a frequency tripled,

Q-switched Nd:YAG laser at 354.7 nm generating up to 400 mJ per shot at a 30 Hz repetition

rate. The laser pulses are 8 ns pulse in duration. The lidar telescope receiver consists of four

30 cm diameter telescopes that are tightly arranged around a 15x beam expander. The telescope

is fiber coupled to the spectral unit. A near range optical fiber, located off of the optical axis

of one of the four telescopes improves the signal-to-noise ratio in the partial overlap region

and allows water vapor and temperature measurements down to roughly 100 m above ground.

The RALMO detection system consists of two polychromators isolating the water vapor and

nitrogen Raman return at 407 and 387 nm, respectively, as well as four portions of the pure

rotational Raman spectrum including high and low quantum number lines in the Stokes and

anti-Stokes branches. All signals are acquired in analog and digital mode which yields a total

of 8 channels. A detailed description of RALMO is given by Dinoev et al. (2013), and the

instrument’s validation is given in Brocard et al. (2013).

3.2.2 ERA5 reanalysis data

ERA5 is the fifth generation of the European Centre for Medium-Range Weather Forecasts

(ECMWF) atmospheric reanalyses of the global climate. ERA5 was produced using 4D-Var
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data assimilation. It provides hourly temperature, relative humidity (over water above freez-

ing and over ice below freezing temperature), specific humidity, geopotential and many other

atmospheric parameters with an uncertainty estimate at different pressure levels between the

surface and the mesopause from the year 1979 on wards. ERA5 is combined with observations

from several satellites and in-situ measurements worldwide to provide a complete and consis-

tent data set. The data assimilation is done twice per day using 12 hour windows from 09 UTC

to 21 UTC and 21 UTC to 09 UTC (the following day). The two types of ERA5 data sets

contain one (31 km) high resolution realisation (HRES) and a reduced resolution ten member

ensemble (EDA) (Hennermann and Berrisford, 2017).

Humidity is reported both as specific and as relative humidity. For temperatures above

0◦C relative humidity is given with respect to water, for temperatures below −23◦C it is given

with respect to ice, and a mix of the two for temperatures between 0◦C to −23◦C (ECMWF,

2018). Since here we systematically use relative humidity with respect to water, RHw, as unit,

we convert ERA5 specific humidity, temperature and pressure data to relative humidity with

respect to water for all temperatures, hereafter referred to as RHw,ERA5. For this calculation we

use the Hyland and Wexler formulation as given in Eq. 3.7.

The ERA5 reanalysis assimilate both satellites and in-situ measurements. A list of all the

observations is presented in Hennermann and Berrisford (2017) and the data usage in ERA5

for the segment from 1979 is presented in Hersbach et al. (2019). The number of temper-

ature observation sources in the model is comparatively larger than the number of humidity

observation sources. ERA5 also provides uncertainty (ensemble spread) estimates from a 10-

member ensemble data assimilation. In general lower ensemble spreads in ERA5 indicate the

high confidence in the data due to the bulk data coverage. As shown in (Hersbach et al., 2019)

the accuracy of the ERA5 temperature data is improved over the years due to the increase of

the number of temperature observations that are assimilated into the model. The temperature

ensemble spreads for ERA5 reanalysis in year 2000’s are about 0.5 K and hence close to the

uncertainty of the Raman lidar temperature. Thus, Raman lidar temperatures will have only

a limited impact on the ERA5-reRH data quality. As there is no available comparison of the

accuracy of the ERA5 specific humidity data over the years, we studied ERA5 specific humid-

ity ensemble spreads for the same date in every decade starting from 1980-2010. Our results
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(not shown in the paper) showed no significant improvements in the ERA5 specific humidity

data over the time even with the higher observational coverage. Thus, the accuracy of the rel-

ative humidity data derived from the ERA5 data is not validated. However, the ERA5 relative

humidity ensemble spreads for the same date in every decade starting from 1980-2010 from

surface to about 15 km are 10%RH . Where the relative humidity standard uncertainty of the

lidar is better than 5%RH. Thus, the we expect significant impact on the ERA5-reRH relative

humidity data from the lidar measurements.

Further details of the ERA5 reanalysis can be obtained from Hennermann and Berrisford

(2017) and the ERA5 data can be accessed either from the Meteorological Archival and Re-

trieval System (MARS) archive or from Climate Data Store (CDS) cloud server that has com-

paratively fast access (Hersbach et al., 2019).

3.3 1D Var retrieval of relative humidity from Raman lidar

measurements and ERA5 (ERA5-reRH)

For the 1D Var data assimilation we use the optimal estimation method (OEM) solver in

the Qpack software package, developed by Eriksson et al. (2005) to retrieve relative humid-

ity, temperature and other parameters. The OEM solver requires the following inputs: the

measurements and their error covariances, a priori values and their error covariances (more

commonly referred to as background and background error covariance in data assimilation),

forward model (b) parameters and their error covariances, and the forward model and its Jaco-

bians.

3.3.1 Forward model

The forward model for the lidar measurements is based on the Raman lidar equation and re-

lates the observed backscattered photon-counts of the ith channel, Nobs,i, to the atmospheric

parameters of ERA5:

Nobs,i(z) =
Ci

z2 Oi(z)
(
ni(z)

dσi(π)
dΩ

+ βi,aer

)
exp

(
−

∫ z

0
[αλ0(z) + αλi(z)]dz

)
+ Bi(z), (3.1)
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where Ci is the lidar constant for channel i that depends on the number of transmitted photons,

detector efficiency and area of the telescope. Oi(z) is the geometrical overlap that describes

the overlap between the transmitted laser beam and the field of view of the telescopes. ni(z) is

the number density of the scattering molecule, βi,aer is the aerosol backscatter coefficient and

Bi(z) is the background of the observed signal.
dσi(π)

dΩ
is the differential Raman backscatter

cross-section. αλ0(z) and αλi(z) are the extinction coefficients at the transmitted wavelength and

at the wavelength of receiver channel i.

The lidar equation given in Eq. 3.1 presumes that the count rates linearly depend on the

number of received photons that are valid for analog channels and for digital channels when

the count rates are below 1 MHz. For the digital channels at higher count rates, the true and

observed counts are related by the saturation equation. For non-paralyzable counting system

observed counts Nobs are given by Kovalev and Eichinger (2004):

Nobs =
Ntr

1 + Ntrγ
. (3.2)

The dead time, γ, characterizes the response speed of the digital acquisition system. The

forward model (Eq. 3.1 and 3.2 for digital channels only) is evaluated 8 times to produce the 4

digital and 4 analog signals corresponding to rotational-vibrational Raman scattering of water

vapor (i = Wd,Wa) and nitrogen (i = Nd,Na) and pure rotational Raman (PRR) scattering of

high (i = JHd, JHa) and low (i = JLd, JLa) quantum numbers.

For the PRR channels the number densities are equal to the air number density, nair =

nJHd = nJHa = nJLd = nJLa, which is replaced by pressure and temperature assuming the

hydro-static equilibrium and the ideal gas law (Behrendt, 2005).

nair(z) =
PHS EQ(z)

kT (z)
, (3.3)

where PHS EQ(z) is:

PHS EQ(z) = P0exp
[∫ ztop

z0

M(z)g(z)
R∗T (z)

dz
]
. (3.4)

M(z) is the height-dependent mean molecular mass, g(z) is the acceleration due to gravity, P0

is the pressure at the maximum altitude, and R∗ is the universal gas constant.
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The relative humidity over water is defined as:

RHw(z) =
e(z)
ew(z)

, (3.5)

where e(z) is the water vapor pressure and ew(z) is the saturation vapor pressure. The water

vapor pressure can be given as a function of the water vapor mixing ratio (Yau and Rogers,

1996),

e(z) =
P(z)mwv(z)

0.622 + mwv(z)
. (3.6)

The saturation vapor pressure can be expressed as a function of temperature (Hyland, 1983):

Logew(z) =
−0.58002206104

T
+ 0.13914993101 − 0.4864023910−1T

+0.4176476810−4T 2 − 0.1445209310−7T 3 + 0.65459673101Log(T ).
(3.7)

The saturation vapor pressure is obtained by the log inverse of Eq. 3.7.

The number density of water vapor nwv = nWd = nWa can be replaced using the definition

of the relative humidity given in Eq. 3.5.

nwv(z) =
e(z)

kT (z)
=

RHw(z)ew(z)
kT (z)

. (3.8)

The nitrogen number density, nn2 = nNd = nNa, can be related to relative humidity as:

nn2(z) =
PHS EQ(z) − RHw(z)ew(z)

0.643kT (z)
. (3.9)

It can be seen from the lidar equations that temperature information comes predominantly

from the PRR channels humidity information from the nitrogen and water vapor Raman chan-

nels. Substituting water vapor mixing ratio with relative humidity couples the two sets of

channels and hence relative humidity information comes from all channels.

The extinction coefficients αλ0(z) and αλi(z) in Eq. 3.1 contains the effects of both molecules

and particles.

αλ0(z) = αλ0,mol(z) + αλ0,par(z) (3.10)
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where αλ0,mol(z) is the molecular extinction coefficient at the emitted wavelength and αλ0,par(z) is

the particle extinction coefficient at the emitted wavelength. Similarly, αλi(z) can be represented

as a summation of molecular and particle extinction. For PRR channels (i = JHd, JHa, JLd, JLa)

αλ0(z) is assumed to be equal to αλi(z), as the emitted and the received wavelengths are very

close to each other. αλ0,mol(z) given in Eq. 3.10 can be expressed using the Rayleigh cross-

section, σλ0,Ray and air density, nair(z).

αλ0,mol(z) = σλ0,Raynair(z) (3.11)

σλ0,Ray is calculated for each wavelength using the expressions given by Nicolet (1984). In our

work the air density term in Eq. 1.39 is considered as a model parameter; thus estimated using

the pressure and temperature either from sonde measurements or reanalysis data.

All the particle extinction coefficients are expressed at their respective return wavelength

using the following expression:

αλi,par(z) = αλ0,par(z)
(
λi

λ0

)−ä(z)

. (3.12)

where ä(z) is the Ångstrom exponent as a function of height.

For a stable calibration of the lidar we further introduce the calibration factors, R, to elimi-

nate CWd,CWa,CJHd and CJHa from the forward model:

RWVd =
CWd

CNd
(3.13a)

RWVa =
CWa

CNa
(3.13b)

RPRRd =
CJHd

CJLd
(3.13c)

RPRRa =
CJHa

CHLa
(3.13d)

(3.13e)

These calibration factors are determined outside the 1D Var process using collocated radiosonde

profiles. For details concerning the calibration see Sica and Haefele (2016) and Mahagam-
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mulla Gamage et al. (2019).

3.3.2 Error covariance matrices

In this section we explain how the various error covariance matrices are constructed prior to

run the 1D Var retrieval. An overview is given in Table 3.1.

Measurement noise

The covariance matrices of the 2 sets of Raman lidar measurements, analog and digital, are

diagonal assuming no correlation of the noise between channels. For the analog channels and

the digital measurements that are not in the linear range (count rate is >10 MHz) the variances

are estimated using the auto-correlation function method introduced by Lenschow et al. (2000).

The measurements from the digital channels that are in the linear range follow Poisson statistics

and the variance is equal to the signal itself.

A priori (background) relative humidity and temperature

The a priori or background error covariance matrices of temperature and relative humidity is

a key parameter in the 1D Var process since it controls directly the weight that is given to the

background, i.e. ERA5. As it was mentioned earlier, reanalysis data is produced assimilating

an extensive set of global observations. Thus, the accuracy the reanalysis data is higher than

typical forecasts. To construct numerically suited a priori error covariance matrices for tem-

perature and relative humidity we use a tent function to parametrize the off-diagonal elements

which decay linearly from the variance on the diagonal 1/e over a correlation length. Negative

values are set to zero.

We first calculated the mean and the standard deviation of the temperature and relative

humidity differences between sonde measurements (observations) and ERA5 data from 2004-

2015. Since the routine sonde measurements made at 1100 and 2300 UT from Payerne are

assimilated in the ERA5 data, we only consider a set of special sonde measurements that were

made at times between 0600-0900 UT, 1300-1500 UT, and 1800-2100 UT. Fig. 3.1 shows dates

and times of the total of 56 special soundings that were considered in the calculation. We
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Figure 3.1: Dates and times of the sondes were launched from Payerne, Switzerland that co-
incide with the ERA5 reanalysis data used to estimate the correlations of the temperature and
relative humidity. The two black lines indicate the usual sonde launching times 1100 and
2300 UT from Payerne.

observed a systematic bias in the ERA5 temperature and relative humidity with respect to the

sonde measurements (shown in Fig. 3.2), as has been previously noted by Hersbach and Dee

(2016); Yegui et al. (2018); Lompar et al. (2019) (Fig. 3.2). Up to about 12 km from the ground

ERA5 shows a warm bias with maximum temperature biases of about 4.5 K and 3.6 K at the

surface and at about 8 km. About 0.5 K cold bias is observed in the ERA5 temperatures above

12 km. From the ground to about 1.5 km ERA5 relative humidity is too low by up to 20%RH

while above 1.5 km ERA5 shows a dry bias of 0 to 15%RH. To obtain bias corrected ERA5 data

we subtract the temperature and relative humidity biases from the ERA5 reanalysis temperature

and relative humidity data. For the rest of the paper ERA5 refers to the bias corrected profiles

above Payerne and constitutes the a priori information used in the 1D Var process.

To determine the correlation lengths of the temperature and relative humidity errors we

first computed the correlation matrices of the differences between ERA5 and the coincident

sonde measurements (see Fig. 3.3). By eye the correlation lengths for temperature and rel-

ative humidity was then estimated to be 1 km and 750 m, respectively, throughout the entire

troposphere.
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Figure 3.2: Left Panel: Profiles of ERA5-sonde mean temperature bias (solid black curve) and
standard bias (dash ash curve). Right Panel: Profiles of ERA5-sonde mean relative humidity
bias (solid black curve) and standard bias (dash ash curve). The data are obtained from 56
available sonde measurements launched between year 2004-2015 from Payerne, Switzerland.
Sonde launch date and time information are given in Fig. 3.1.

Figure 3.3: (a)Temperature and (b) relative humidity a priori covariance matrices. For clarity
covariance for every tenth altitude bin the retrieval grid are shown. The correlation matrices of
temperature and relative humidity differences used to estimate the covariances matrices that are
calculated based on sonde and ERA5 data are shown in the subplots (c) and (d) respectively.
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Particle extinction and overlap

For particle extinction we derive an a priori or background profile from the backscatter ratio

measured by the lidar rather than to use data from ERA5. To convert the backscatter ratio to

particle extinction we assume a lidar ratio and use the same molecular extinction profile as in

the OEM retrieval. As in previous studies we assume the lidar ratio for clear sky conditions

(backscatter ratio smaller than 2) to be 80 sr inside the boundary layer and 50 sr elsewhere.

Inside clouds we assume the lidar ratio to be 20 sr below 6 km (liquid cloud), and 15 sr above

(cirrus cloud; Ansmann et al. (1992); Pappalardo et al. (2004)). We identify the presence of

cloud based on the backscatter ratio using a threshold of 2. The cloud layer base height is

used to define the altitude where the retrieval of overlap hands over to the retrieval of parti-

cle extinction since retrieving both simultaneously at the same altitude is mathematically not

possible due to the high degree of linear dependence. In cloud free conditions, this handover

takes place at 6 km where full overlap has been reached. For the particle extinction (overlap)

error covariance matrix we assume a standard deviation of 50%RH above (below) the handover

height and 10−6 km−1 (10−3) below (above). The off diagonal elements are parametrized using

a tent function with a correlation length of 100 m. Same as for temperature and humidity, neg-

ative values are set to zero. For further details the reader is referred to Mahagammulla Gamage

et al. (2019).

Background, lidar constants, and dead times

The a priori backgrounds and their variances for both analog and digital channels are deter-

mined by the mean and the variance of the measurements above 50 km altitude. The four a

priori lidar constants (CJLd,CJLa,CNd, and CNa) required for the 1D Var process are estimated

by fitting the forward model to the respective Raman lidar measurements. We consider 3.8 ns

as the a priori dead times for the digital photon counting systems, values which were found by

previous studies of using RALMO, and also consistent with the values specified by the man-

ufacturer (Sica and Haefele, 2016, 2015; Dinoev et al., 2010; Mahagammulla Gamage et al.,

2019).
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Forward model parameters

The model (b) parameters used in the forward model are the calibration factors (for analog

channels: RPRR,a,Rwv,a and for digital channels: RPRR,d,Rwv,d ), Ångstrom exponent, seed pres-

sure, and density of air for the atmospheric transmission. The values and uncertainties of the

other b parameters and a summary of all the parameter uncertainties are given in Table 3.1.

Table 3.1: Values and associated uncertainties for the retrieval and forward model parameters.
Parameter Value Standard Deviation
Measurements
Digital (JL, JH, Water
vapor, Nitrogen)

Measured Poisson Statistics

Analog (JL, JH, Water
vapor, Nitrogen)

Measured Auto Covariance Method

Retrieval Parameters (a
priori)

Temperature ERA5 reanalysis
Standard deviation of ERA5 and
coincident sonde temperature
measurements

Relative humidity
Recalculated using ERA5
reanalysis temperature, pressure,
and specific humidity

Standard deviation of ERA5 and
coincident sonde relative
humidity measurements

Overlap Functions
Estimated using the forward
model and measurements

50% below and at transition
height
10−3 above transition height

Particle Extinction Estimated using measurements 10−6km−1 below and at
transition height
50% above transition height

Lidar Constants
(analog/digital)

Estimated using the forward
model

100%

Digital Background Noise Mean above 50 km Standard Deviation above 50 km

Analog Background Noise Mean above 50 km
nighttime- Standard Deviation
above 50 km
daytime- normalized standard
deviation above 50 km

Dead Time Empirical fitting 10%
Forward Model
Parameters
Coupling constants
(analog/digital)

Estimated measurements and
sonde temperature

Standard deviation of the linear
fitting

Air density Radiosonde 1%

Seed Pressure
HSEQ: pressure at the heights
point of the retrieval grid

10%

Ångstrom exponent 1 for all heights 10%
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3.3.3 Other 1D Var retrieval specifications

Prior to the assimilation the lidar raw data are co-added to 30 m bins in height and 30 min in

time (±15 min around ERA5 analysis time). The retrieval grid spans from 600 m asl to 20 km

asl with a grid spacing of 90 m.

3.3.4 Characterization of ERA5-reRH

In this section we present two representative instances from the new ERA5-reRH data set

corresponding to day and nighttime. For comparison, ERA5-reRH is compared to coincident

sonde measurements. While the focus of this section is the characterization in terms of the

uncertainty budget and lidar data impact, a statistical validation of ERA5-reRH is given in

3.5.1.

Case 1: Nighttime, cloudy sky, 28 August 2012 2241-2311 UT

We consider 30 min of measurements started from the launch time of the coincident sonde

from Payerne. The calibration coupling constants required in the OEM, were estimated using

the 30 min raw lidar measurements and coincident sonde measurements. During the time of

the lidar measurement period a cirrus cloud was present around 8 to 10 km.

Figure. 3.4 shows the ERA5-reRH results in comparison with coincident sonde measure-

ments. Figure 3.4(a), shows the ERA5-reRH temperature (red curve) with the statistical uncer-

tainty (shaded area), coincident sonde temperature (blue curve) and ERA5 temperature (black

curve). In the 6 to 10 km region the ERA5-reRH temperatures are about 1.5 K colder than the

sonde and ERA5 temperatures. However, as shown in Fig. 3.4(d), the ERA5-reRH relative hu-

midity (red curve) is in good agreement with the coincident sonde measurements (blue curve)

in the same region.

The measurement response function (impact of lidar data) is the sum of the averaging ker-

nels and indicates the contribution of the measurement to the retrieval. For a retrieval fully

dependent on measurements the response function is equal to one; when a retrieval fully de-

pendent on the a priori profile the response function is equal to zero. The measurement re-

sponse function (red curve) for temperature (Fig. 3.4(b)), reveals between 50 and 60% lidar
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Figure 3.4: (a)The OEM-retrieved temperature profile and the statistical uncertainty (red curve
and shaded area) from RALMO measurements on 28 August 2012 with 30 min temporal and
90 m vertical resolutions. The blue curve is the radiosonde measurement. The sonde was
launched at 2241 UT. The black curve is the ERA5 bias corrected a priori temperature profile
used by the OEM. (b) Averaging kernels for temperature retrievals. The red curves shows the
response functions. For clarity averaging kernels for every fifth altitude bin the retrieval grid
are shown. (c) Random and systematic uncertainties due to the forward model parameters for
the temperature retrievals. Total uncertainty (ash curve), statistical uncertainty (red curve),
RPRR,d digital coupling constant for PRR (blue curve), RPRR,a analog coupling constant for PRR
(green curve),Rwv,d digital coupling constant for WV/N2 (yellow curve), Rwv,a analog coupling
constant for WV/N2 (black curve), air density (cyan curve), Ångstrom exponent (purple curve),
and seed pressure (red-dash curve). (d) The OEM-retrieved Relative humidity profile and the
statistical uncertainty (red curve and shaded area). (e) Averaging kernels for relative humidity
retrievals. (f) The total uncertainty budget for the relative humidity retrievals.
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measurements contribution up to 12 km. Above 12 km the lidar impact drops quickly and the

ERA5-reRH becomes identical to ERA5. Previous work by the authors (Sica and Haefele,

2015, 2016; Farhani et al., 2018; Mahagammulla Gamage et al., 2019) used a cutoff height of

0.9 in the response function for each retrieval. However, here we are not interested in a fair

representation of the measurement but in the best combination of measurement and ERA5 re-

analysis and hence such a cut-off does not make sense. Unlike for temperate, the measurement

response for relative humidity (red curve in Fig. 3.4(e)), is greater than 90% on the measure-

ments up to about 8 km. The difference in lidar impact on temperature and humidity is related to

the fact that the ERA5 reanalysis assimilates many temperature data sets while there are fewer

humidity data sets available. Hence the background error is much smaller for temperature than

for relative humidity which reduces the impact of the lidar data on temperature.

One of the main features of ERA5-reRH is the full uncertainty budget on a profile-by-

profile basis that contains both random and systematic uncertainties. Fig. 3.4(c) shows the

uncertainty budget for the temperature retrievals. Measurement noise is the dominant source

of uncertainty where the total temperature uncertainty is less than 0.5 K up to 8 km in height and

maximizes around 8 to 12 km to a value of 0.9 K. The second most important contribution is the

uncertainty of the analog coupling constant for WV/N2 channels. Below 2 km the uncertainty

due to analog coupling constant for WV/N2 channels is in the order of 0.3 K and it drops to

about 0.02 K above. Contribution from each of the other forward model parameters such as

seed pressure, digital and analog coupling constants from PRR channels, Ångstrom exponent,

and etc. to the temperature uncertainty is less than 0.1 K.

The full relative humidity uncertainty budget is shown in Fig. 3.4(f). For all height the

total uncertainty is in the order of 5%RH and maximum of 5.15%RH is observed at about

9 km. Below 3 km contribution from the analog coupling constant for WV/N2 channels is

about 4%RH. Above 3 km the statistical uncertainty dominates most to the total uncertainty

and it is as same order as the total uncertainty.

Case 2: Daytime, clear sky, 10 September 2011 1010 - 1040 UT

For the second case study measurements from the coincident radiosonde from Payerne that was

launched at 1010 UT is used to determine the model parameters and for comparisons. During
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the time of the measurements sky conditions remained clear but the signal to noise ratio (SNR)

of the RALMO daytime water vapor measurements drop below 1 at 5 to 6 km.

Day time ERA5-reRH retrieved temperature (red curve) shown in Fig. 3.5(a) is in good

agreement with both sonde temperature (blue curve) and bias corrected ERA5 temperature

(black curve) in most heights. The ERA5-reRH retrieved temperature is about 1.5 K colder

than both sonde and bias corrected ERA5 temperatures in between 2 to 3 km region. Similar

to the nighttime case study, the measurement response function for temperature (red curve) in

Fig. 3.5(b) drops below 0.5 at 7 km. Up to 6 km ERA5-reRH temperature retrieval depends

about 70% on measurements.

Daytime ERA5-reRH retrieved relative humidity (red curve) shown in Fig. 3.5(d) is in

good agreement with the sonde measured relative humidity (blue curve) below 2 km. Above

2 km ERA5-reRH retrieved relative humidity closely follow the same trend as sonde relative

humidity measurements. Below 8 km in height ERA5 (black curve) is significantly different

than the sonde measurements. From the measurement response function for relative humidity

(red curve) shown in Fig. 3.5(e), it is evident that the ERA5-reRH retrieved relative humidity

depends to over 90% of lidar measurements up to about 5 km. As the lidar water vapor signals

gets weaker the relative humidity retrievals starts to rely more on the a priori relative humid-

ity profile. Above 5 km we can clearly see that the ERA5-reRH retrieved relative humidity

becomes identical to ERA5.

The temperature and the relative humidity uncertainty budgets are shown in Fig. 3.5(c) and

(f) respectively. The total temperature uncertainty is in the order of ∼0.5 K for most heights

and it maximize to ∼0.9 K from 10 to 12 km. Uncertainty due to the water vapor calibration

factors (RPRR,a and RPRR,d) dominates the total temperature uncertainty below 1 km (∼ 0.5 K).

Everywhere else the statistical uncertainty dominates the total uncertainty. Uncertainty from

other model parameters lies in the order of ∼0.1 K each.

The total relative humidity uncertainty is less than 7%RH for all heights. The maximum

value of ∼7%RH is observed below 1 km and uncertainty again peaks to about ∼6 to 6.5%RH

between 5.5 to 6 km in height. Uncertainty due to digital WV/N2 coupling constant (RWV,d)

is dominant below 3 km (<∼5%RH) while the statistical uncertainty dominates above. Uncer-

tainty due to other model parameters are in the order of <1%RH each for all heights.
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Figure 3.5: (a)The OEM retrieved temperature profile and the statistical uncertainty (red curve
and shaded area) from RALMO measurements on 10 September 2011 with 30 min temporal
and 90 m vertical resolutions. The blue curve is the radiosonde measurement. The sonde was
launched at 1010 UT. The black curve is the ERA5 bias corrected a priori temperature profile
used by the OEM. (b)Averaging kernels for temperature retrievals. The red curves shows the
response functions. For clarity averaging kernels for every fifth altitude bin the retrieval grid
are shown. (c) Random and systematic uncertainties due to the forward model parameters for
the temperature retrievals. Total uncertainty (ash curve), statistical uncertainty (red curve),
RPRR,d digital coupling constant for PRR (blue curve), RPRR,a analog coupling constant for PRR
(green curve),Rwv,d digital coupling constant for WV/N2 (yellow curve), Rwv,a analog coupling
constant for WV/N2 (black curve), air density (cyan curve), Ångstrom exponent (purple curve),
and seed pressure (red-dash curve). (d) The OEM retrieved Relative humidity profile and the
statistical uncertainty (red curve and shaded area). (e) Averaging kernels for relative humidity
retrievals. (f) The total uncertainty budget for the relative humidity retrievals.
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3.4 1D Var retrieval of relative humidity from Raman lidar

and U.S. standard atmospheric model

In order to be able to demonstrate the benefit of combining Raman lidar with ERA5, we re-

peated the same processing using the U.S. standard atmospheric climatology instead of ERA5.

Apart from the a priori and a priori error covariance matrix, all parameters are kept the same

and this data set is referred to as RALMO, indicating that this is essentially a pure lidar mea-

surement, since the choice of a large error covariance greatly reduces the impact of the a priori.

We use an a priori temperature error covariance matrix with a standard deviation of 35 K

and off-diagonal elements parametrized using a tent function with 1 km correlation length. The

U.S. Standard Atmosphere model temperature serves as a priori profile. The a priori relative

humidity profile is constant in height with a value of 50%RH. The error covariance matrix is

constructed in the same way as for temperature with a standard deviation of 100%RH and a

correlation length of 1 km.

Two cases studies and a time series of relative humidity retrievals using RALMO OEM

scheme are presented in Appendix C.

3.5 Results

3.5.1 Validation of the reanalysis against radiosonde measurements

In this section we provide a comparison of ERA5, RALMO, and ERA5-reRH temperature and

relative humidity profiles with coincident sonde measurements to evaluate the improvements

in the ERA5-reRH retrievals. The comparison includes 14 nighttime and 6 daytime cases from

2011 to 2015. The dates that are used in the comparison were not effected by precipitation,

thick cloudy conditions or missing data.

Calibration of the lidar is performed with respect to coincident sonde measurements for

all 20 day and nighttime profiles to estimate coupling constants for temperature (Mahagam-

mulla Gamage et al., 2019).
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Nighttime

Figure 3.6 shows the differences (black curves) between ERA5, RALMO and ERA5-reRH

with respect to coincident sonde temperatures in terms of temperature and relative humidity

for nighttime. The red curve is the mean of the 14 differences and the green shaded area shows

the standard deviation. To improve readability we call the mean of the differences between

ERA5/RALMO/ERA5-reRH and sonde the bias and the standard deviation of the differences

of ERA5/RALMO/ERA5-reRH and sonde the spread.

Figure 3.6: (a) Nighttime temperature differences between bias corrected ERA5 and sonde
measurements in black curves for 14 nights. (b) Temperature difference between nighttime
RALMO retrievals and sonde measurements. (c) Temperature difference between nighttime
ERA5-reRH retrievals and sonde measurements. (d) Relative humidity differences between
nighttime bias corrected ERA5 and sonde measurements in ash curves for 14 nights. (e) Rel-
ative humidity difference between nighttime RALMO retrievals and sonde measurements. (f)
Relative humidity difference between nighttime ERA5-reRH retrievals and sonde measure-
ments. Red curves and green shaded areas show the mean and the standard deviations of the
temperature and relative humidity differences of each subplot.

In comparison with ERA5 and ERA5-reRH (Fig. 3.6 subplots (a) and (c)), RALMO tem-

peratures show more scatter. There is a significant warm bias in ERA5 between 10 to 12 km
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that is not detected in the RALMO and ERA5-reRH data sets. For a quantitative comparison

we have shown bias and spread of the three data sets (red curves and green shaded areas shown

in each subplot (a), (b), and (c) in Fig. 3.6) in Fig. 3.7.

Figure 3.7: (a) Nighttime temperature biases of ERA5-Sonde (red curve), RALMO-Sonde
(blue curve), and ERA5-reRH -Sonde (green curve) (b) Spread of the temperature differences.
(c) Nighttime relative humidity biases.(d) Spread of the relative humidity differences.

Figure 3.7 subplots (a) and (b) show the nighttime temperature bias and spread of ERA5

(red curve), RALMO (blue curve), and ERA5-reRH (green curve). Below 4 km the temperature

bias of RALMO and ERA5-reRH follow the same trend. This indicates that the ERA5-reRH

temperature retrievals rely more on the lidar measurements in the heights below 4 km. Even

though both RALMO and ERA5-reRH temperature retrievals rely on lidar measurements in

heights below 4 km the spreads are significantly different. The spread of RALMO is in the

range of 1 to 7 K and the spread of the ERA5-reRH is in the range 0.5 to 1.5 K for heights

below 4 km. This large difference in spread is due to the use of different a priori temperature

profiles and error covariances.

ERA5 shows a significant warm bias between 0.5 to 2 K in the heights above 8 km. In the

same height range RALMO’s bias varies from -3 to 2 K and the ERA5-reRH bias is in the range
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of -1 to 0.5 K. Overall, above 8 km ERA5-reRH temperature has the smallest bias compared

to ERA5 and RALMO. Thus, ERA5-reRH temperatures agrees best with the coincident sonde

measurements.

As shown in Fig. 3.7 subplot(b), the spread of RALMO temperatures increases with height.

The spread of ERA5 is smaller than the one of ERA5-reRH and RALMO except at 1 to 2 km

and 11.5 to 12.5 km height ranges. In those two height regions the spread of ERA5-reRH

becomes the smallest. Thus, ERA5-reRH overcome the variations in the ERA5 data and lidar

measurements and retrieve an optimal temperature profile. The overall performance of ERA5-

reRH temperatures retrievals are high as they agree best with the sonde measurements and also

ERA5-reRH could eliminate the biases in ERA5 and lidar measurements (as seen in RALMO

retrievals).

The subplots (d), (e), and (f) in Fig. 3.6 show the nighttime relative humidity differences

(black curves) between ERA5, RALMO and ERA5-reRH with respect to sonde. The spread of

RALMO relative humidity shown in subplot (e) in Fig. 3.6 is comparatively smaller than the

spread of ERA5. However, the RALMO relative humidity retrievals are restricted to an average

height of about 11 km where the RALMO retrievals response function reaches 0.9. Above the

cutoff height the RALMO retrievals depend on the a priori and the spread (green shaded area)

increases significantly. The spread of ERA5-reRH shown in subplot(f) in Fig. 3.6 is smaller

compared to ERA5 and RALMO. Thus, by comparing the three subplots (d), (e), and (f) we

can conclude that by assimilating the lidar into ERA5 we have improved the relative humidity

retrievals in a way that they agree best with the coincident sonde measurements. Also, it is

evident that above 11 km (average cutoff height of the RALMO retrievals) bias and spread of

ERA5-reRH are identical to ERA5 and hence the lidar impact is negligible.

Figure 3.7 subplots (c) and (d) shows bias and spread ERA5 (red curve),RALMO (blue

curve), and ERA5-reRH (green curve) in relative humidity. Below 6 km the bias of ERA5

varies between ±6%RH. The bias of RALMO is between -10 to 4%RH and the bias of ERA5-

reRH is in the range of -6 to 2%RH. Also, below 6 km ERA5-reRH has the smallest spread

while ERA5 shows the largest spread. Therefore, below 6 km ERA5-reRH relative humidity

agrees best with the coincident sonde measurements and ERA5 relative humidity is in the least

agreement with the sonde measurements.
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As shown in Fig. 3.7 subplots (c), from 6 to 11.5 km ERA5 has a wet bias with a maximum

of 18%RH at 9 km. In the same height range ERA5-reRH shows a smaller bias than ERA5 and

at 9 km the ERA5-reRH bias is about 8%RH. RALMO and ERA5-reRH biases between 6 to

9 km are about -6 to 2%RH. However, above 9 km RALMO’s bias increases significantly. In

terms of spread, ERA5 shows the largest values up to about 9 km followed by RALMO. Above

9 km ERA5 and ERA5-reRH both have almost the same bias and spread indicating that the

lidar impact reduces quickly above this level.

Daytime

Daytime temperature differences between ERA5-sonde,RALMO-sonde, and ERA5-reRH-sonde

are given in Fig. 3.8 subplots (a),(b), and (c). The red curves in each subplot indicates the tem-

perature bias of the differences and the green shaded area shows the spread of the temperature

differences. For comparison purposes we have shown the temperature biases and the spreads

of the temperature differences of ERA5-sonde (red curve),RALMO-sonde (blue curve), and

ERA5-reRH-sonde (green curve) in Fig. 3.9 subplots (a) and (b).

The RALMO-sonde daytime temperature differences (black curves) shown in subplot (b)

Fig. 3.8 are more spread out than ERA5-sonde and ERA5-reRH-sonde differences. As seen in

subplot (a) Fig. 3.9 at heights below 4 km, RALMO and ERA5-reRH temperature biases are in

the same order of ±1.5 K and the ERA5 bias is about ±0.5 K. The spreads of the temperature

differences in subplot (b) Fig. 3.9 shows below 4 km the spreads of ERA5-sonde, RALMO-

sonde, and ERA5-reRH temperature differences are about 1.6 K, ∼1 K, and 1 K respectively.

Below 4 km, ERA5 temperatures agree best with the coincident sonde measurements.

From 4 to 13 km in height, bias of the temperature differences of ERA5-reRH and sonde

measurements is in between the biases of ERA5 and RALMO temperature differences with

sonde. This indicates both lidar measurements and ERA5 have an impact on the ERA5-reRH

temperatures in 4 to 13 km region. Above 13 km, bias and the spread of the temperature differ-

ences of ERA5-reRH and sonde are same as the ERA5 and sonde indicating a priori has more

impact on the the ERA5-reRH temperature retrievals at heights above 13 km. For all heights

below 13 km, both RALMO and ERA5-reRH temperatures show a significant bias compared

to the sonde measurements.
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Figure 3.8: Daytime temperature differences between bias corrected ERA5 and sonde mea-
surements in black curves for 6 days. (b) Temperature difference between nighttime RALMO
retrievals and sonde measurements. (c) Temperature difference between nighttime ERA5-reRH
retrievals and sonde measurements. (d) Relative humidity differences between nighttime bias
corrected ERA5 and sonde measurements in ash curves for 14 nights. (e) Relative humidity
difference between nighttime RALMO retrievals and sonde measurements. (f) Relative humid-
ity difference between nighttime ERA5-reRH retrievals and sonde measurements. Red curves
and green shaded areas show the mean and the spreads of the temperature and relative humidity
differences of each subplot.
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Figure 3.9: (a) Daytime temperature biases of ERA5-Sonde (red curve), RALMO-Sonde (blue
curve), and ERA5-reRH -Sonde (green curve) (b) Spread of the relative temperature differ-
ences. (c) Daytime relative humidity biases.(d) Spread of the relative humidity differences.
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Figure 3.8 subplots (d), (e), and (f) show the daytime relative humidity differences between

ERA5-sonde (red curve), RALMO-sonde (blue curve), and ERA5-reRH-sonde (green curve).

The corresponding relative humidity biases and spread of the differences are shown in Fig. 3.9

subplots (c) and (d). Unlike the ERA5 temperatures, the daytime relative humidity shows

significantly large bias to sonde measurements in lower heights (see Fig. 3.9 subplot(c)). Below

2.5 km ERA5 has a dry bias with a maximum of 18%RH and from 2.5 to 4 km a large wet bias

with a maximum of 30%RH are found.

Up to about 5 km in height the relative humidity biases of RALMO and ERA5-reRH with

the sonde are in the same order indicating, that both relative humidity retrievals are in good

agreement with the sonde measurements. Moreover, it also shows that the impact of the Raman

lidar measurements on the ERA5-reRH relative humidity retrievals are high in heights below

5 km. The spreads of the relative humidity differences in Fig. 3.9 subplot (d) shows that below

5 km, the spread of the ERA5 and sonde relative humidity difference is the greatest. Thus,

ERA5 relative humidity has the worst agreement with the sonde measurements in the heights

below 5 km.

Above 5 km the biases and the spreads of the relative humidity differences of ERA5-sonde

and ERA5-reRH-sonde start to overlap with each other, indicating the ERA5-reRH relative

humidity retrievals essentially depend on the a priori relative humidity. Thus, above 5 km

both ERA5 and ERA5-reRH relative humidity profiles are in good agreement with the sonde

measurements.

3.6 Discussion

In this paper, we have combined Raman lidar measurements with ERA5 reanalysis data using

a 1D Var data assimilation approach (optimal estimation method) to generate the ERA5-reRH

temperature and humidity data set. Data assimilation of the lidar measurements into ERA5 is

done using raw lidar measurements, i.e. backscatter profiles from rotational and vibrational

Raman scattering, without any data treatments such as filtering or smoothing. Output of the

1D Var data assimilation process are profiles of relative humidity with respect to water and

temperature above Payerne, Switzerland. The data set comes along with a full characterization
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on a profile per profile basis in terms of uncertainty and vertical resolution. Prior to assimilation

ERA5 temperature and relative humidity have been bias corrected using a set of special radio-

soundings which have not been assimilated into ERA5. The same set of sonde has been used

to determine the ERA5 background (a priori) error covariance matrix.

The comparison of ERA5, ERA5-reRH and RALMO temperature and relative humid-

ity profiles with coincident sonde measurements given in Section 3.5.1 reveals that ERA5-

reRH relative humidity profiles could be significantly improved compared to both ERA5 and

RALMO. The lidar impact is most visible where the raw signals have a sufficient signal to

noise ratio, i.e. below 5 km during daytime and below 11 km during nighttime. This improve-

ment could be expected since ERA5 assimilates relatively few humidity data sets and since

water vapor is very variable and therefore difficult to model accurately. For temperature the

improvement is much less significant and most visible in the lowest layers below 2 km and at

tropopause level. This result could be expected since many temperature data sets are assim-

ilated in ERA5 and hence ERA5 quality is already excellent, apart from a bias. The ERA5

reanalysis temperature data has being improved over the last few decades (Hersbach et al.,

2019) and the temperature uncertainty is in the same order as the standard uncertainty of ra-

diosonde. Where as the ERA5 relative humidity data for the last few decades does not show

any significant improvement.

In general the lidar has a positive impact on the reanalysis up to 6 km during day and up to

about 11 km during night. ERA5-reRH retrieved temperature and relative humidity both agree

with the coincident sonde measurements. Full uncertainty budgets showed the total ERA5-

reRH temperature uncertainties for both day and night are less than 1 K for all heights. The

ERA5-reRH relative humidity uncertainty is less than 4%RH for nighttime and for daytime

it goes up as high as 7%RH (refer Fig. 3.4 and Fig. 3.5 subplot (f)). Statistical and WV/N2

coupling uncertainties dominates the most to the total relative humidity uncertainty. For com-

parison, ERA5 relative humidity uncertainty is greater than 10%RH up to 10 km reaching a

maximum of 25%RH at 2 km (Fig. 3.2). The relative humidity uncertainty of less than 10%RH

up to the height of 2 km is reported by Wang et al. (2011), where they calculated relative humid-

ity using water vapor mixing ratio and temperature measurements from two different Raman

lidars. Also, relative humidity study by Mattis et al. (2002) report a relative uncertainty of
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5 to 25%RH for relative humidity and state a 1 to 2 K temperature accuracy is required for

reducing the relative uncertainty in the relative humidity to, on average, less than 10%RH.

Our Era5-reRH relative humidity uncertainties for both day and nighttime retrievals are less

than 10%RH with a temperature accuracy of 1 K. Thus, our findings prove the speculation by

Mattis et al. (2002) is correct. Moreover, ERA5-reRH relative humidity uncertainties can be

compared to the uncertainties recorded by the studies mentioned above and studies by Brocard

et al. (2013),Sakai et al. (2000); thus, ERA5-reRH OEM scheme provides accurate relative

humidity retrievals.

Accurate relative humidity retrievals and uncertainties are essential to detect ice supersat-

uration layers (ISS) in the upper troposphere. The first known study of atmospheric ISS using

Raman lidar measurements was made by Comstock et al. (2004). A year’s worth of nighttime

Raman lidar water vapor mixing ratio measurements calibrated against microwave radiometer

water vapor measurements was used with radiosonde temperature measurements to estimate

relative humidity over ice (RHi). The study focuses on the frequency of high ISS in cirrus

clouds. The results indicated that RHi > 120%RH frequently occurs at temperatures above

-70◦C. With a ±1◦C temperature accuracy, Comstock et al. (2004) report the RHi variance to

be ∼8%RH at −40◦C and ∼10%RH at −60◦C. The study by Immler et al. (2008) also used a

combination of Raman lidar water vapor measurements with radiosonde temperature measure-

ments to investigate cirrus, contrails, and ice supersaturated regions in high pressure systems at

northern mid-latitudes. Raman lidar measurements made from August to September in 2000,

in clear sky conditions (without low and mid-level clouds) were used to estimate RHi. The

results showed that the occurrence of cirrus and ISS are closely related. They observed fre-

quent ice supersaturated regions in the uppermost troposphere (8 km to tropopause). Further

investigations of optical depths, cirrus cloud classification, and contrails were also presented

in the study by Immler et al. (2008). All these studies uses partial amounts of Raman lidar

measurements to determine RHi; thus to detect ISS layers. Also, there are no studies available

that provides comprehensive error analysis with their RHi. Therefore, our ERA5-reRH OEM

scheme is the first method that provide quality relative humidity retrievals with well defined

uncertainties directly retrieved from Raman lidar measurements to accurately study the ISS

events occur in the upper troposphere.
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3.7 Conclusion

We have successfully assimilated ERA5-reanalysis with the Raman lidar measurements to re-

trieve optimum temperature and relative humidity profiles. Our ERA5-reRH retrievals are

influenced by both Raman lidar measurements and ERA5 data. Both day and nighttime ERA5-

reRH retrieved temperature and relative humidity profiles are in excellent agreement with the

coincident radio sonde measurements. Moreover, the quality of the ERA5-reRH relative hu-

midity retrievals are improved, and the full uncertainty budget for each retrieved profile is

well-defined; thus the proposed method can be used to detect ice supersaturation events occur

in both day and night-times more precisely. As the future work we will use ERA5-reRH OEM

scheme to study the ice super saturation events over Payerne, Switzerland.
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Chapter 4

Detecting ice supersaturation (ISS) layers

over Payerne, Switzerland by assimilating

Raman lidar measurements with ERA5

reanalysis 1

4.1 Overview

In this chapter we present preliminary detection of ice supersaturation (ISS) layers over Pay-

erne using an optimal estimation method which assimilated RALMO lidar measurements into

ERA5 reanalysis. Supersaturation is necessary for cloud formation, for crystal and droplet

growth and sedimentation, and for the formation of precipitation (Gierens et al., 2012). An ISS

layer can be simply identified as a regions where relative humidity over ice (RHi) values are

greater than 100%RH. ISS is an frequent phenomenon that is found in the atmospheric regions

where the temperatures reach below 0◦C. It has a small effect on the radiation flow through

the atmosphere. However, Fusina et al. (2007) has shown that as soon as a thin cirrus cloud

forms in ISS layers, the radiation effect grows by almost two orders of magnitude. Thus, ISS

layers play an essential role in cloud formation and the evolution that makes supersaturation

1A version of this chapter will be submitted for publication in the near future.
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important for weather and climate.

ISS layers can be found in both cloudy and cloud-free regions in the atmosphere. Various

techniques such as radiosonde, satellites, aircraft, and Raman lidar are used to measure atmo-

spheric RHi. In our work we use Raman lidar measurements to detect ISS layers. Traditional

Raman lidar techniques do not measure direct RHi. However, study by Comstock et al. (2004)

use Raman lidar water vapor mixing ratio measurements combined with radiosonde tempera-

ture measurements to estimate RHi. The results show that RHi > 120%RH frequently occurs

at temperatures above -70◦C. However, Comstock et al. (2004) does not provide uncertainties

associated with the RHi measurements. Immler et al. (2008) also used a combination of Ra-

man lidar mixing ratios with radiosonde temperatures to investigate ISS layers. In their study

they only used Raman lidar measurements are made in clear sky conditions (without low and

mid-level clouds). They observed frequent ISS layers in the uppermost troposphere (8 km to

tropopause). Overall, measuring ISS layers in clear and cloudy conditions is difficult due to

instrumental limitations. Therefore, a clear distinction between ISS layers as cloud-free layers

and ISS within clouds cannot be guaranteed in all databases (Gierens et al., 2012), especially

with radiosonde ISS layer studies.

Accurate RHi measurements are important in the upper tropospheric (UT) region to study

ISS and formation. We have adapted the OEM algorithm to discussed in 3 to retrieve RHi.

We refer to this new process as 1D Var assimilation of lidar data into ERA5. The new OEM

algorithm retrieves RHi, temperature, particle extinction, dead times, overlap functions, back-

grounds, and lidar ratios with a full uncertainty budget. The OEM-retrieved RHi assimilated

into ERA5 will allow us to identify the ISS layers with a better accuracy. Unlike other Ra-

man lidar ISS studies, we do not require separate temperature measurements from sonde or

other instruments. We retrieve RHi directly from vibrational and pure rotational Raman lidar

measurements (Mahagammulla Gamage et al., 2019b). Furthermore, we can use the OEM-

retrieved particle extinction profiles to accurately estimate the lidar ratio profiles. Based on the

lidar ratios we can distinguish between clear and cloudy conditions in the atmosphere.

We applied the OEM to RALMO 12 nighttime measurements made from June-November

2011 to calculate the frequency of ISS occurrence over Payerne. Further analysis of ISS layer

thickness, temperatures and heights at which ISS layers occur, and ISS layers in clear and
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cloudy conditions are also presented. In this study, we have only use a very small sample of

the existing RALMO measurements to demonstrate the ability of our new method and to detect

ISS layers. However, this study by far does not provide a comprehensive understanding of the

ISS layer detection nor ISS layer related statistics. Therefore, in future extend our study by

applying the proposed method to RALMO nighttime measurements from 2008-2019 to detect

ISS layers over Payerne.

4.2 Method

In this study we use an optimal estimation method (OEM) to assimilate lidar data into ERA5

to retrieve relative humidity over ice (RHi). In a previous study we retrieved relative humidity

over water from Raman lidar measurements and bias corrected ERA5 data using the OEM. The

accuracy of the retrievals were greatly improved with the use of bias corrected ERA5 data as a

priori and using a priori error covariances. Thus, we use the same OEM setup as presented in

Mahagammulla Gamage et al. (2019b) with bias corrected ERA5 data used to retrieve relative

humidity over water with a forward model that uses the saturation vapor pressure over ice. The

only changes made to the forward model used in the Mahagammulla Gamage et al. (2019b)

are:

• Replace the saturation vapor pressure over water (Equation 1.4) to saturation vapor pres-

sure over ice (Equation 1.5).

• Replace the relative humidity over water terms to RHi using Equation 1.6.

ERA5 reanalysis relative humidity is calculated over water (in temperatures above 0◦C), over

ice (in temperatures below 0◦C), and over a mixed phase (which lies in between these tempera-

tures). Hence, for studying ISS layers we calculated ERA5 RHi using ERA5 specific humidity

and temperatures. We also estimated the ERA5 bias for the ERA5-derived RHi and the error

covariance for RHi based on the differences between the lidar and RS92 radiosonde measure-

ments as explained in Mahagammulla Gamage et al. (2019b) (see Appendix D).
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4.3 Preliminary results

We applied our improved OEM scheme for a pilot study to detect ISS layers using bias cor-

rected ERA5 reanalysis based on lidar measurements (henceforth ERA5-reice) to 12 nights of

measurements (total of 94 hours) obtained from June-November 2011. Dates used in the study

and the number of hours are shown in Table 4.1.

Table 4.1: Dates and hours of measurements used in the ISS study. The dates with the ∗ symbol
indicates the dates that we performed the calibration to estimates coupling constants. We used
30 min co-added raw lidar signals with 90 m vertical resolution, starting from the sonde launch
time for the calibration

Date No Number of Hours Start and End times
20110621∗ 10 0000-0500, 1900-2359
20110705∗ 10 0000-0500, 1900-2359
20110706 10 0000-0500, 1900-2359
20110719 5 1900-2359
20110802∗ 10 0000-0500, 1900-2359
20110817 10 0000-0500, 1900-2359
20110901 5 1900-2359
20110909∗ 5 1900-2359
20110910 10 0000-0500, 1900-2359
20110913 9 0000-0500, 1900-2259
20111005∗ 5 1900-2359
20111116∗ 5 1900-2359

The grid spacing for the ERA5-reice retrieval is set to 90 m at all heights. For each night

the raw lidar data have been co-added to 30 m bins in height and co-added over 30 min in time.

Therefore, we use same hourly ERA5 reanalysis data as the a priori profiles for two consecutive

iterations in the ERA5-reice algorithm. For example, if the lidar measurements were obtained

from 18:00 to 18:30 UT and 18:30 to 19:00 UT, we picked 18:00 UT ERA5 reanalysis data in

the ERA5-reice for both retrievals. We applied the ERA5-reice to a total of 188 time profiles

and only 165 (82.5 hours) of those converged to give an optimal solution. The profiles that did

not converge the measurements were affected by thick clouds. Thus, the results shown below

are from 165 ERA5-reice retrieval profiles that were made using RALMO measurements from

nights shown in Table 4.1. As the first step of our analysis, we selected the ERA5-reice RHi,

temperature and particle extinction retrievals from 4 to 15 km to identify ISS layers. Also,
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our retrievals are constrained by the signal strength of RALMO water vapor signals. Typical

30 min coadded nighttime water vapor signal can reach up to about 12 to 15 km maximum

before turning into background. Therefore, most nighttime ERA5-reice RHi retrievals above

12 km in height have less impact from the water vapor lidar measurements and the retrievals

errors are expected to be higher.

From all 165 profiles (82.5 hours) of measurements, 44 profiles contained RHi values over

100%RH at temperature below 0◦C in 4 to 15 km height region. Thus, 27% of the time an ISS

region was present over Payerne in the months from June-November 2011. This finding from

our study fits well with the findings from Jensen et al. (2001) based on in situ measurements of

water vapor and temperature from aircraft campaigns that showed the occurrence frequency of

ISS ranged from about 20% to 45%.

Figure 4.1: Thickness of the 44 individual ISS layers detected over Payerne, Switzerland with
90 m vertical resolution.

Thickness of the ISS layers found in the 44 individual profiles are shown in Fig. 4.1. We

found 2 profiles contain ISS layers that are thicker than 3 km (5%). About 75% of the ISS

layers were less than 1.5 km thick and about 20% had a thickness between 1.5 to 3 km. With

our ERA5-reice retrievals we estimated an average thickness of 1070 m with 90 m for the ISS

layers above Payerne. Previous studies by Spichtinger et al. (2003), Treffeisen et al. (2007), and
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Rädel and Shine (2007) used radiosonde data to infer the thickness of ISS layers. The average

layer thickness obtained by Spichtinger et al. (2003) is about 560 m with an vertical resolution

of approximately 30 m. Treffeisen et al. (2007) and Rädel and Shine (2007) estimated a larger

average vertical thickness of ISS layers at 600 to 1100 m and 1300 to 2400 m with lower vertical

resolutions of 200 and 250 to 300 m respectively. A study by Dickson et al. (2009) with 10 m

vertical resolution showed that more than 80% of the ISS layers are shallower than 1.5 km and

roughly 5% of the ISS layers are over 3 km thick (these are the ones that satellite instruments

preferentially detect). Results from our study agree with Dickson et al. (2009) and all studies

agree that shallow ISS layers are more frequent than thick ones.

As seen in Fig. 4.1 most RHi profiles contain multiple height bins with RHi values over

100%RH. Therefore, we now refer to each height bin as an individual region; the total num-

ber of layers (bins) amounts to 23,760 (165 time profiles x 144 height bins, see Appendix D

Fig. D.3). Figure 4.2 shows the histogram of all the ISS layers detected and the portion of

ISS layers that occur in temperatures below -38◦C. Approximately 67% of the ISS layers were

form at temperatures below -38◦C. Less than 1% of ISS layers recorded RHi values greater

than 160%RH and all those layers occur at temperatures between -34 to -32◦C.

Further analysis of temperatures at which ISS layers are formed is presented in Fig. 4.3.

About 40% of ISS layers occur at temperatures between -50 to -40◦C. About 18%,23%, and

16% of ISS layers were found in temperatures between -60 to -50◦C, -40 to -30◦C, and below

-30◦C respectively.

Although it is expected that most ISS layers occur in between the 4 to 15 km height region

in the atmosphere where the sub zero temperatures exist, we further investigated the altitudes

where ISS events are most prominent. Fig. 4.4 shows that 44% of the ISS events are in the

range of 8 to 10 km height; similar to the findings of Immler et al. (2008), at this altitude,

the typical atmospheric temperature is about -60 to -40◦C. In our pilot study no ISS layers

are found in heights above 14 km and only about 0.3% found in heights between 12 to 14 km.

However, it is possible to have ISS layers in the heights above 14 km.

We used the ERA5-reice retrieved particle extinction profiles and aerosol scattering ratios

calculated using RALMO elastic and PRR measurements to estimate lidar ratios profile-by-

profile basis (Mahagammulla Gamage et al., 2019a). We use the calculated lidar ratios to
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Figure 4.2: The frequency of ISS layers that occur at temperatures below freezing point are
shown in blue bars while layers made from super-cooled water (temperatures below -38◦C) are
represented by the orange bars. The dark orange color indicates areas of the histogram where
overlap between the red and orange bars occur.

Figure 4.3: Number of ISS layers occur at every 10 degree temperature ranges below freezing
temperature.
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Figure 4.4: ISS layers presented at different height layers in the atmosphere. Red scatters
shows the ISS layers occur between 4 to 6 km, blue scatters between 6 to 8 km, green scatters
between 8 to 10 km, yellow scatters between 10 to 12 km, and black scatters between 12 to
14 km. No ISS layers are detected above 14 km.

determine the clear/cloudy conditions in the atmosphere when the RHi measurements were

made. A study by Haarig et al. (2016) showed the mean lidar ratio of 31±5 sr for cirrus clouds

and Chen et al. (2002) has found an average lidar ratio of 29±12 sr for all clouds that they

measured in 1999 and 2000. Moreover, Chen et al. (2002) show lidar ratios are in the 20 to

40 sr range for clouds at heights of 12.5 to 15 km. Studies by Ansmann et al. (1992), Young

(1995), O’Connor et al. (2004), Sakai et al. (2003) also present lidar ratio values for optically

thin clouds, cirrus clouds and as well as liquid clouds all in the range of 10 to 40 sr. Therefore,

in our study, height bins with lidar ratios in the range of 10 to 40 sr are referred to as clouds

and anything not in that range is clear. In our study what we mean by clear sky is a cloud-

free atmosphere with sufficiently small aerosol particles. the lidar ratios of typical aerosol

types such as urban/industrial, biomass burning, and dust are recorded as 71 sr,60 sr, and 42 sr

respectively (Cattrall et al., 2005).

As stated before, ISS layers can occur in both clear and cloudy conditions. Figure 4.5

shows the ISS layers that formed in clear and cloudy sky conditions. The left panel shows all

ISS (temperature below freezing) that is present during clear and cloudy conditions. From all
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the ISS layers, 72% were found in clear conditions and about 30% of those regions were in RHi

100-105%RH. From the 28% of the cloudy ISS bin layers, about 42% had RHi values of 100-

110%RH. The ISS layers forming in temperatures below -38◦C are shown in the right panel of

the Fig. 4.5. From all the bin layers 46% of them had ISS layers occur at temperature below

-38◦C in clear sky conditions and 20% of all bin layers had ISS layers in cloudy conditions.

Overall, the majority of ISS layers we detected have occurred in clear sky conditions.

Figure 4.5: Left Panel: Number of ISS layers presence at clear and cloudy sky conditions.
Right Panel: Number of ISS layers presence at temperature below -38◦C in clear and cloudy
sky conditions.

The spatial extensions of ISS layers and their lifetimes are two other parameters that are in

interest of the climate scientists. Unfortunately, we can not use lidar measurements to detect the

spatial extensions. However, we can study the lifetime of ISS layers by analyzing a continuous

data set. According to Gierens et al. (2012), the lifetime of an ISS region is an ill-defined

notion for open dynamic systems that incessantly change their shape and size and where air

is flowing in and out. These layers can perhaps stay in the atmosphere from minutes to days.

Spichtinger et al. (2005) shows a case an where ISS region that stays for about 6 hours duration

and states the possibility of ISS region lifetimes shorter than that. Due to the data gaps in our

study we did not explicitly investigate the lifetime of ISS layers. However, in our study we
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Figure 4.6: Top panel: Elastic backscatter signal of the RALMO measurements made on 01
September 2011 from 1900-2200 UT. The contour lines indicate the lidar ratio values. Mid-
dle Panel: Temperature retrievals for the 3 hours of measurements, Bottom Panel: Relative
humidity over ice retrievals.



128 Chapter 4. Detecting ice supersaturation layers over Payerne

detected a few ISS layers that last for more than 2 hours. One such region is shown in Fig. 4.6.

As shown in the bottom panel of Fig. 4.6, RHi over 100%RH were found in between the

10 to 11 km region from 1900-2200 UT. Temperatures of the ISS region stayed around -55 to

-45◦C. From the top panel of Fig. 4.6 we observed the lidar ratio values in the 10to 12 km are

over 20 sr. Thus, this particular ISS layer has occurred inside of a cloud. To draw more specific

conclusion in future, further investigations on the lifetime of ISS layers will be performed with

a continuous data set.

4.4 Discussion and conclusions

We have detected ice supersaturation layers over Payerne, Switzerland using an OEM scheme

from the RALMO lidar nighttime measurements assimilated into ERA5 reanalysis. From a

total of 165 measurements with 30 min temporal and 90 m vertical resolution in the June to

November 2011 period, we found the frequency of ISS region occurrence over Payerne to be

27%. Our findings agree with the results from aircraft measurements of ISS by Jensen et al.

(2001). The thickness for each ISS layer detected over the 82.5 hours periods of measurements

are determined, and 5% of the ISS layers are thicker than 3 km with about 75% having a vertical

thickness less than 1.5 km. Our findings agree with Dickson et al. (2009) who found roughly

5% of the ISS layers they measured to be greater than 3 km thick, and more than 80% of the

ISS layers less than 1.5 km in vertical extend. Most previous studies, i.e. Jensen et al. (2001);

Treffeisen et al. (2007); Rädel and Shine (2007); Spichtinger et al. (2003) agree that shallow

ISS layers form more frequently than do thick ones.

A theoretical explanation about why ISS layers are often only a few hundred meters thick

are presented by Gierens et al. (2012). To explain these layers requires the assumption that

ISS originated mainly from lifting in the atmosphere (Gierens et al., 2012). Gierens et al.

(2012) further states that a humid air parcel with initial humidity below saturation that gets

lifted adiabatically, first reaches ice saturation at a certain altitude and then reaches liquid

saturation somewhat higher up. Thus, the thickness of ice saturation and liquid saturation

approximately 200 to 500 m. According to Gierens et al. (2012), thickness of the ISS layers

mainly decreases with temperature; thus explains thermodynamically why ISS layers are often
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only a few hundred meters thick.

We have detected a few ISS layers occurring at the same time at different heights. There-

fore, further statistics of ISS layers are calculated based on the total number of bins we had in

both height and time of the analysis. Our study contains a total of 23760 bin layers and 598 of

the bins contained RHi over 100%RH ( 2.5%). From the total 598 ISS bin layers 67% of layers

occur in temperature below -38◦C. The maximum RHi detected in the study is about 162%RH

at -32◦C. The aircraft-based studies by Jensen et al. (2005) and Popp et al. (2007) have made

several ISS measurements where RHi reached up to 230%RH in a clear sky condition and 230-

250%RH in cloudy conditions respectively. The highest values of RHi, over 1000%RH, by far

given in Lübken et al. (2009) and Fan et al. (2013) are related to ice clouds at altitudes of 80 to

85 km at temperatures around -130◦C.

The heights and temperatures of the ISS layers are correlated with each other. In the tro-

posphere temperature decreases with height; at about 10 km it reaches approximately -60◦C.

Between 10 to 15 km is where we find the typical tropopause, at this height the temperatures

still remains below -60◦C range. Thus, we expect ISS layers to occur mostly in the upper

tropospheric region. We found about 44% of layers occur in 8 to 10 km altitude range at tem-

peratures between -60 to -40◦C. Less than 1% of the layers are found to exist above 12 km

and this could be due to the limitations of the ERA5-reice water vapor data set in the upper

troposphere or limitation of number profiles we consider in the pilot study.

Most ISS data sets cannot distinct between clear and cloudy conditions due to instrumental

limitations (Gierens et al., 2012). Based on the estimated lidar ratio profiles we can distinguish

ISS layers in clear and cloudy conditions. Bins with a LR between 10 to 40 sr are labelled

as clouds; otherwise it is clear. The results showed 51% of the ISS bin layers occur in clear

conditions and from total bin layers 46% of ISS layers that occur below -38◦C were found to be

in clear sky conditions. Thus, we have some first evidence that ISS do not occur preferentially

within ice clouds.

Even though ISS layers have a small effect on the radiation budget of the atmosphere, they

still play an essential role in cloud formation. Thus, these layers have a considerable impact on

modelling Earth’s weather and climate system.

Our pilot study, which utilizes a limited set of nighttime lidar measurements, demonstrates



130 Chapter 4. Detecting ice supersaturation layers over Payerne

the ability of RALMO to detect ISS layers. Even though studies of ISS made using Raman lidar

measurements are available our RHi retrievals are far more accurate as they are assimilated into

ERA5 reanalysis to provide an optimal estimate of the current state of the atmosphere. Our next

step will be to extend our study to detect the frequency of ISS occurrence for the entire RALMO

data-set from 2008 on wards. We are also interested in investigating the temporal evolution

of the ISS layers as well as seasonal variability of the ISS layers. We are also interested in

extending our work to detecting ISS layers to the day time measurements.
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Chapter 5

Conclusions and future work

5.1 Summary

I have applied an OEM to retrieve temperature and relative humidity using PRR and Vibra-

tional Raman lidar back-scatter measurements. I used Raman lidar measurements from the

Meteoswiss/EPFL RAman lidar for Meteorological Observations (RALMO), located in Pay-

erne, Switzerland (46◦48′N, 6◦56′ E). The RALMO transmitting system consists of a Nd:YAG

laser Ultraviolet laser of 354.7 nm and four telescopes that collect backscattered photons. The

telescopes deliver by backscattered light to the two polychromators of the RALMO. One poly-

chromator is attached to a photomultiplier tube that detects the pure rotational Raman back-

scattering due to atmospheric oxygen and nitrogen molecules in the high (JH) and low (JL)

energy transitions. The second polychromator is connected to a photomultiplier tube that de-

tects the rotational-vibrational Raman signals of nitrogen and water vapor (wavelengths of

386.7 and 407.5 nm, respectively).

I have presented a first-principle forward model based on the Raman lidar equation that

reproduces the RALMO raw PRR measurements. In the first project in this thesis, I have

successfully retrieved temperature, geometrical overlap, particle extinction, lidar constants,

background counts, and dead time using multiple RALMO PRR measurements using both the

analog and digital channels. The OEM has shown great advantages over the traditional temper-

ature calculation for the PRR measurements. The OEM uses raw PRR measurements without

noise filtering or any other data pre-processing, it does not require a calibration function for
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temperature but allows us to calibrate using one single temperature reference measurement

instead of multiple points over an extended temperature range. It can retrieve multiple other

atmospheric and instrumental parameters along with temperature, provides a full uncertainty

budget with both random and systematic uncertainties, provides the vertical resolution of the

retrievals, and retrieval cutoff height that specify up to which height the retrieved profile is

primarily due to the measurements and not the a priori temperature profile. It also provides

averaging kernels, which are important for comparing correlative measurements and for val-

idating measurements. Using four case studies it has been demonstrated that the OEM can

retrieve temperature from RALMO PRR measurements in both day and nighttime, clear and

cloudy (thin clouds and aerosol layers) sky conditions as evidenced by the excellent agree-

ment of the temperatures with coincident radiosonde temperature measurements. My OEM

temperature retrieval scheme is also applicable to any similar Raman lidar system.

The second project presented uses measurements from both the PRR and vibrational Ra-

man channels of RALMO to retrieve relative humidity. Previous studies of relative humidity

using Raman lidar measurements required estimation of temperature and water vapor mixing

ratio profiles separately, which were then combined to form a relative humidity product. The

forward model I developed retrieves relative humidity with respect to water directly from the

Raman lidar measurements, without the need of a separate determinations of temperature or

mixing ratio. Thus, my relative humidity OEM scheme does not require traditional water va-

por calibrations to determine relative humidity. Our relative humidity OEM scheme was further

enhanced by assimilating lidar data into ERA5 reanalysis data. ERA5 is the fifth generation

of the ECMWF atmospheric reanalysis of the global climate and it combines model data with

observations from all over the world. The accuracy of the ERA5 reanalysis on a particular day

is higher than a forecast model. Thus, it can be used to provide accurate a priori information

for retrieving temperature and relative humidity. ERA5 provides hourly temperature, specific

humidity, relative humidity and data for many other atmospheric parameters on 37 pressure

levels from the surface to 31 km. The relative humidity data product from ERA5 is calculated

over water for temperatures above zero, over ice below freezing temperature (below 0◦C), and

over a mixture of water and ice between theses temperatures. Thus, the direct output of ERA5

relative humidity cannot be used in our OEM scheme to retrieve relative humidity over water
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for all heights. Therefore, we re-derived a relative humidity over water (RHw) product based

on the ERA5 specific humidity and temperature data to use as an a priori profile for relative

humidity in our OEM scheme. The new OEM scheme with ERA5 temperature and re-derived

relative humidity is called ERA5-reRH scheme.

We compared ERA5 temperature and RHw data with 56 sonde measurements that were

launched from Payerne, Switzerland during period of 2004-2015 at times between 0600-0900 UT,

1300-1500 UT, and 1800-2100 UT. We did not use routine sonde measurements made at 1100

and 2300 UT from Payerne as most sonde observations made at standard times are assimilated

in the ERA5 data. From the comparison results we observed a systematic bias in both ERA5

temperature and RHw with respect to the sonde measurements. ERA5-derived relative humid-

ity is greater than the sonde measurements. ERA5 temperatures showed a warm bias varying

between 0 to 5 K up to about 12 km and the RHw showed a dry bias of 0 to 15%RH in the

same height range. Thus, we applied a bias correction to the ERA5 temperature and relative

humidity data used in our ERA-reRH OEM scheme. We also used the standard deviations of

the differences between ERA5 and the sonde measurements (the model uncertainty) to esti-

mate correlation lengths allowing me to construct improved a priori covariance matrices for

temperature and RHw.

In order to be able to demonstrate the quality of the retrievals after combining Raman li-

dar with ERA5, we repeated the same processing using the U. S. standard atmospheric model

(hereafter referred to as RALMO retrieval scheme) instead of ERA5. In comparison to both day

and nighttime ERA5 data and RALMO retrievals, ERA5-reRH retrievals show the best agree-

ment with the coincident sonde measurements. The EAR5-reRH relative humidity retrievals

are improved compared to the temperature retrievals, especially in daytime. Overall, the lidar

measurements have a significant impact on the ERA5-reRH relative humidity retrievals up to

6 km during day and up to about 11 km during night. Also, full uncertainty budgets showed

the total ERA5-reRH temperature uncertainties for both and night are less than 1 K for all

heights. The ERA5-reRH relative humidity uncertainty is less than 4%RH for nighttime and

for daytime it goes up as high as 7%RH. Our main objective of implementing ERA5-reRH is

to improve the quality relative humidity retrievals to obtain an optimal estimate of the true state

was achieved successfully.
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The third project of this thesis presents a preliminary study of detecting the ice supersatura-

tion (ISS) layers over Payerne using the 12 nighttime RALMO measurements that were made

from June-November in 2011. ISS is a frequent phenomenon which occurs in the atmospheric

regions where the temperature is below 0◦C. These layers can be found inside ice crystal clouds

or even outside the clouds. Typically, ISS layers can last for minutes to hours. In our work we

refer to RHi values that are over 100% in temperatures below 0◦C as ISS. The forward model

used in ERA-reRH OEM scheme was reformed by changing the physics of the relative hu-

midity estimation over water to ice by changing the saturation vapor pressure calculation over

water to ice to be able to retrieve relative humidity over ice (RHi) for all heights. The bias

corrected ERA5 relative humidity was also calculated with respect to ice to include detection

of ISS layers. The new ISS OEM scheme is referred to as ERA5-reice.

The ERA5-reice OEM scheme was applied to RALMO nighttime measurements. The fre-

quency of an ISS layer occurrence over Payerne for the months of June-November, 2011 is

found to be 27%. About 5% of the detected ISS layers are vertically spread over 3 km in

height. About 75% of the ISS layers were less than 1.5 km thick. In some profiles we detected

multiple ISS layers. Thus, each height bin in with RHi greater than 100%RH is considered

as a single ISS bin layer. From the total 598 ISS bin layers 67% of layers occur in tempera-

tures below -38◦C. The maximum RHi detected in the study is about 162%RH at -32◦C. About

44% of the ISS layers were present in the heights between 8-10 km. We also classified the

presence of ISS layers in clear and cloudy conditions using the lidar ratio values estimated

from ERA5-reice retrieved particle extinction and aerosol scattering ratio estimated from the

RALMO elastic and PRR measurements. The results showed 51% of the ISS layers occur in

clear conditions.

5.2 Conclusion

Accurate knowledge of atmospheric temperature and relative humidity trends, their associated

uncertainties and physical significance are crucial to understand Earth’s climate system. Often,

trends are estimated based on long-term measurements made by a single or multiple instru-

ments, sometimes at only a few locations. Space-based measurements have a large global
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coverage, but have poor vertical and temporal resolutions. Observations can be combined with

climate models to improve the interpretation of any trends detected. However, the estimated

trends can be affected by numerous factors, such as the temporal and spatial resolution of the

measurements, the uncertainties of the measurements, observational times, observational en-

vironment, methods and instruments used to make the measurements, data assimilation errors,

etc. Thus, the need of making accurate atmospheric measurements and knowing the associ-

ated uncertainties is crucial. Developing new techniques to accurately retrieve or assimilate

atmospheric parameters from the existing data sets is also essential. The unifying aspect of

this thesis is the new information about the atmosphere that will be discovered by applying the

optimal estimation method (OEM) to both the RALMO measurements obtained over the last

decade and to other lidar systems which adopt our analysis methods.

This thesis provides the means of accurate estimates of the atmospheric temperature and

water vapor (expressed as a relative humidity) from Raman lidar measurements. I have in-

troduced a first principle optimal estimation method (OEM) for temperature retrievals from

pure Rotational Raman (PRR) lidar measurements that works for both clear and cloudy sky

conditions (provided the clouds or aerosol layers are thin enough that the lidar’s laser can pen-

etrate them) and can be applied to any Raman lidar system with PRR measurements. The new

OEM technique allows retrievals of temperature and multiple other atmospheric and instru-

mental parameters such as particle extinction, lidar constant, and background simultaneously.

Each retrieval parameter has it is own estimate uncertainty budget, including both random and

systematic uncertainties. Knowledge of the uncertainties is critical for atmospheric change

studies. Knowledge of the uncertainties also allows a better understanding of contribution of

each model parameter to the retrieval parameters. The OEM retrieved atmospheric parameters

and their uncertainties can be used for trend analysis. Similarly, changes which occur in the

instrument over time can be evaluated using the OEM retrieved instrumental parameters. The

new OEM temperature retrieval method was tested on PRR temperature measurements from

the MeteoSwiss Raman Lidar for Meteorological Observations system in different sky condi-

tions, compared to temperature calculated using the traditional PRR calibration formulas, and

validated with coincident radiosonde temperature measurements.

For the first time I have introduced an OEM scheme for direct retrieval of relative humidity
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from Raman lidar measurements. This new method uses both PRR and vibrational Raman li-

dar measurements from both day and night time measurements. The relative humidity retrieval

method does not require separate temperature or water vapor mixing ratio estimates to calcu-

late relative humidity. The OEM relative humidity retrieval scheme can retrieve atmospheric

parameters relative humidity, temperature, and particle extinction, in addition to instrumental

parameters such as lidar constants, overlap, dead time, and background signal.

Reanalysis allows the reconstruction of past atmospheric data sets by assimilating global

observations into existing weather and climate models. I used the OEM as a data assimilation

technique to assimilate Raman lidar measurements into ERA5 reanalysis data set. I identified

the biases in the ERA5 temperature and relative humidity data sets using measurements from

56 special radiosondes. My conclusion from this work is that users of ERA5 reanalysis temper-

ature and relative humidity data must correct for the respective biases as described in Chapter

4.

The new data assimilation OEM technique introduced in thesis was used for detecting ice

supersaturation layers in the upper troposphere. This new technique differentiates between ice

supersaturation layers which occur in different temperature ranges, height ranges, as well as

sky conditions. Unlike other existing lidar studies of ice supersaturation, my method provide a

complete uncertainty estimate of the relative humidity values of each detected ice supersatura-

tion layer.

In the near future, the OEM technique that assimilate Raman lidar measurements into ERA5

reanalysis will be used to reprocess the existing RALMO Raman lidar data set, and hopefully

other Raman lidar groups will adopt this methodology. The improved temperature and relative

humidity retrievals and their uncertainties can be used to improve our understanding of climate

and weather.

The major outcomes of my thesis are the following.

• First principle optimal estimation method (OEM) temperature retrievals from pure Rota-

tional Raman (PRR) lidar measurements that works for clear and cloudy sky conditions.

• Application of the OEM for direct retrieval of relative humidity using both PRR and

vibrational Raman lidar measurements from both day and night times.



5.3. Future work 139

• Assimilation of Raman lidar measurements into the European Weather Centre for Medium-

range Weather Forecast Re-analysis (ERA5) reanalysis to obtain improved estimates of

relative humidity over water and over ice.

5.3 Future work

For future work I recommend including RALMO measurements from the two elastic chan-

nels (analog and digital) and the measurements from the additional near range telescope to the

OEM schemes I have introduced. The new information will allow the temperature retrievals to

be more accurate as the OEM will get additional information from the elastic measurements

and the retrievals are expected to reach higher altitudes. I recommend adapting the developed

OEM schemes in the MeteoSwiss routine temperature and relative humidity data products.

Additionally, elastic and near field telescope measurements will also improve the particle ex-

tinction and overlap function retrievals from all the RALMO Raman channels.

Future direction for the ISS layer detection study is to apply OEM algorithm ERA5-reice to

RALMO nighttime measurements from 2008-2019 and to provide a comprehensive statistical

analysis. Also, after a validation of ERA5-reice daytime retrievals against coincident sonde

or other available sources measurements an effort to detect ISS layers from RALMO daytime

measurements will be made.

Future work should also include using the methodology I have developed to re-process the

entire RALMO data set and search for trends in the temperature and relative humidity time

series. The full uncertainty budgets provided with the OEM-retrieved temperature and relative

humidity profiles allows accurate trend estimates. The averaging kernels of the re-processed

RALMO data sets should be used for inter-comparisons with measurements from satellites or

other instruments. Also, by assimilating lidar retrievals with those measurements I can further

improve the accuracy of the results.



Appendix A

Jacobians of the three types of PRR

temperature forward models

The Jacobian represent the sensitivity of the forward model to the change of the state vector

(here temperature).

Figure A.1: Left Panel: Jacobians for FM1 where the density is replaced by ideal gas law given
in Eq.2.1. Middle Panel: Jacobians for FM2. FM2 is same as given in Eq.2.1 where the only
temperature dependent term in the forward model will be the differential cross-section. Right
Panel: Jacobians for the FM3 where the density in the FM2 is replaced by using the ideal gas
law and using differential cross-section term as a model parameter.
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Conventional method of calculating

relative humidity from Raman lidar

measurements

Direct determination of relative humidity profiles from the Raman lidar measurements is not

possible. One has to calculate temperature from pure-Rotational Raman(PRR) lidar channels

and water vapor mixing ratios from water vapor Raman lidar channels simultaneously to cal-

culate relative humidity. The Raman method for water vapor mixing ratio measurements uses

two Raman signals, one of which is the back-scatter signal from the water vapor (406 nm), and

the other one is the back-scatter signal from the nitrogen (386 nm) that is considered as the ref-

erence signal. Usually, a single line from the Stokes vibration-rotation of the water vapor and

nitrogen spectra are detected by each channel. The water vapor mixing ratios (mwv(z)) relative

to dry air can be obtained by forming the signal ratio of water vapor and nitrogen measurements

that are corrected for non-linearity and background (Whiteman et al., 1992).

The traditional method of estimating water vapor mixing ratio from the Raman measure-

ments require a determination of a calibration constant that can be determined by comparison

with in situ water vapor measurements. Hence, the lidar water vapor mixing ratio profiles de-

pend on the accuracy of the measurements made by the second instrument. Often, the relative

humidity measurements (later converted to water vapor mixing ratios for comparison) from the

coincident radiosonde are used to determine the water vapor calibration constant. Accuracy
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of the water vapor calibration constant depends on the sonde measurements, and improved

calibration techniques are given in the literature (Whiteman et al., 1992; Ferrare et al., 1995).

Traditional Raman lidar temperature calculation method originally proposed by Cooney

(1972), also requires a ratio of signals from two PRR channels (JH higher quantum number

channel, JL lower quantum number channel) that has opposite temperature dependency. Un-

like water vapor and nitrogen, most PRR channels in temperature Raman lidars detect multiple

back-scattered wavelengths from both nitrogen and oxygen molecules in both Stokes and anti-

Stokes portions of the PRR spectrum. Thus, a suitable temperature dependent function (often

called the calibration function) for the ratio of the PRR measurements needs to be approximated

to calculate the temperature (Cooney, 1972; Behrendt, 2005). In practice, temperature mea-

surements from the radiosondes that coincide with lidar measurements in space and time are

used to determine the calibration coefficients of the approximated calibration function. Often,

a simple form of calibration function with only two calibration coefficients. Work by Behrendt

(2005), Zuev et al. (2017) and Gerasimov and Zuev (2016) shows that the uncertainty of the

calculated temperature from the Raman lidar measurements depends on the approximated cali-

bration function and as well as the accuracy of temperature measurements made by the second

instrument.

Water vapor mixing ratio profiles calculated from the vibrational Raman lidar measure-

ments can be combined with the temperature profiles calculated from the PRR lidar measure-

ments to calculate relative humidity over water. The calculation requires estimation of vapor

pressure and saturated vapor pressure. Pressure required to find the water vapor pressure, can

be obtained either from routine sonde measurements or from standard atmospheric models.

The saturation vapor pressure is obtained by the log inverse of Eq.1.4.

Summary of the process of estimating relative humidity from the Raman lidar measure-

ments using the conventional method is given below.

• Raw Raman lidar measurements used in the water vapor and temperature calculations

need to be corrected for non-linearity and background noise and glued.

• An estimation of a calibration constant to calculate water vapor mixing ratio using the

ancillary water vapor measurements is required.
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• An approximation of a calibration function and determination of calibration function

coefficients are required to calculate temperature from the Raman lidar measurements.

• The water vapor pressure can be estimated using the water vapor mixing ratio profiles

from the Raman lidar measurements and ancillary pressure measurements in Eq.1.35.

• The saturated vapor pressure can be calculated using Raman lidar temperature measure-

ments in Eq.1.4.

• The calculated water vapor pressure and the saturated vapor pressure profiles can be used

to calculate the relative humidity over water using the Eq.1.6.

The conventional method of calculating relative humidity from the Raman lidar measurements

does not provide a complete uncertainty budget or a cutoff height that the calculated relative

humidity can be trusted. Also, to improve the accuracy of both water vapor mixing ratios and

temperature calculations frequent calibration is required.
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Appendix C

1D Var retrieval of relative humidity from

Raman lidar and U. S standard

atmospheric model

In this section we present two case studies from the RALMO day and nighttime measure-

ments using the 1D Var retrieval of relative humidity from Raman lidar and U.S standard

atmospheric model. Due to the high variability of the atmospheric humidity and for inter-

comparison purposes, we use 15 min time integrated RALMO measurements that coincident

with the radiosonde measurements. To demonstrate the robust nature of the OEM we then

present a 24 hours time series of the OEM retrieved relative humidity, temperature, and parti-

cle extinction using the RALMO measurements with 15 min time and 30 m vertical resolution.

To reduce the processing time of the OEM we have restricted the analog measurements up to

6 km altitude (analog measurements above 6 km go to noise) and digital measurements from 2

to 28 km. The grid spacing of the retrieval grid is set to 90 m at all heights and the raw data

have been co-added to 30 m bins.
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C.1 Case 1: Nighttime, clear sky, 09 September 2011 2200 -

2215 UT

A coincident radiosonde from Payerne is launched at 2200 UT; it is used for the determination

of the model parameters. Fig. C.1 shows the raw data in the four PRR channels, two water

vapor channels, and two nitrogen channels.

Figure C.1: Count rate for 15 min of RALMO measurements from 2200 UT on 09 September
2011, a clear night. (a) digital channels (blue curve, JL; red curve, JH). (b) analog channels
(blue curve, JL; red curve, JH). (c) digital channels (blue curve, N2; red curve, WV). (d) analog
channels (blue curve, N2; red curve, WV)

Standard OEM diagnostics are shown in Fig. C.2, C.3 and C.4 revealing a healthy retrieval.

The retrieved profiles reach a maximum height (measurement response > 0.9) of 25 km and

12 km for temperature and relative humidity, respectively (Fig. C.3). The vertical resolution

increases with height and reaches 300 m (700 m) at the profile top for temperature (relative

humidity), as illustrated in Fig. C.4.

Fig. C.5 shows the OEM retrieved temperature (left panel) and relative humidity (right

panel) from the RALMO clear nighttime measurements. For comparison, the coincident sonde

temperature and relative humidity measurements (blue curves) and the a priori profiles (green

curves) are shown in each panel. In this case study, the OEM retrieved temperatures and relative

humidity profiles agree with the coincide sonde measured temperatures and relative humidity
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Figure C.2: Residuals between the forward model and clear nighttime RALMO measurements
on 09 September 2011 for the eight channels (blue curves). The red curves show the standard
deviation of the measurements. (a)JH digital (b) JL digital (c) JH analog (d) JL analog (e)WV
digital (f) N2 digital (c) WV analog (d) N2 analog.

Figure C.3: Averaging kernels for temperature retrievals (left panel) and relative humidity
(right panel) from the clear nighttime RALMO measurements on 09 September 2011. The
red curves shows the response functions. The horizontal dashed line shows the height below
which the retrieval is due primarily to the measurement and not the a priori profiles. For clarity
averaging kernels for every fifth altitude bin the retrieval grid are shown.
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Figure C.4: Vertical resolution for temperature retrievals (left panel) and relative humidity
(right panel) from the clear nighttime RALMO measurements on 09 September 2011. The
horizontal dashed line shows the height below which the retrieval is due primarily to the mea-
surement and not the a priori profiles.

within the statistical uncertainty up to the cutoff height of each retrieval.

One of the main features of the OEM is its full uncertainty budget that contains both random

and systematic uncertainties. Fig. C.6 shows the uncertainty budget for the temperature (left

panel) and relative humidity (right panel) retrievals. Measurement noise is the dominant source

of uncertainty for both temperature and relative humidity followed by calibration. The total

uncertainty in the upper troposphere is 1 K and 8% at 8 km.

C.2 Case 2: Daytime, clear sky, 10 September 2011 1000 -

1015 UT

For the second case study measurements from the coincident radiosonde from Payerne that

was launched at 1000 UT is used to determine the model parameters. Raw measurements from

all 8 Raman channels of the RALMO are shown in Fig. C.7. The residuals of all the 8 chan-

nels (not shown) agree within the square root of the measurement covariance, indicating the

goodness of the forward model to generate measurements that represent the RALMO daytime

measurements.
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Figure C.5: Left panel: Retrieved temperature profile and the statistical uncertainty (red curve
and shaded area) using the OEM from the clear nighttime RALMO measurements on 09
September 2011. The blue curve is the radiosonde measurement. The sonde was launched
at 2200 UT. The green curve is the a priori temperature profile used by the OEM. The horizon-
tal dashed line shows the height below which the retrieval is due primarily to the measurement
and not the a priori temperature profile. Right panel: Retrieved relative humidity profile and
the statistical uncertainty (red curve and shaded area). The blue curve is the radiosonde mea-
surement. The green curve is the a priori temperature profile used by the OEM. The horizontal
dashed line shows the height below which the retrieval is due primarily to the measurement
and not the a priori relative humidity profile.
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Figure C.6: Left panel: Temperature, Right panel: Relative humidity, random and systematic
uncertainties due to the forward model parameters for the temperature retrievals from the clear
nighttime RALMO measurements on 09 September 2011. In both panels, statistical uncertain-
ties (red curve), RPRR,d digital coupling constant for PRR (blue curve), RPRR,a analog coupling
constant for PRR (green curve), Rwv,d digital coupling constant for wv/n2 (yellow curve), Rwv,a

analog coupling constant for wv/n2 (black curve), air density (cyan curve), Angstrom exponent
(purple curve), and seed pressure (brown curve).
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The OEM retrieved profiles reach a maximum height (measurement response > 0.9) of

12 km and 7 km for temperature and relative humidity, respectively (Fig. C.8). Unlike nighttime

measurements, daytime digital measurements go to background about 10 km and the analog

measurements go to background even before that (Fig. C.7). Hence, it is understandable that

the retrievals tend to get more information from the a priori as it go beyond the height where

the signals go to background.

Figure C.7: Count rate for 15 min of RALMO measurements from 1000 UT on 10 September
2011, a cloudy daytime. (a): digital channels (blue curve, JL; red curve, JH). (b): analog
channels (blue curve, JL; red curve, JH). (c) digital channels (blue curve, N2; red curve, WV).
(d): analog channels (blue curve, N2; red curve, WV)

The OEM retrieved temperature and relative humidity from the RALMO clear daytime

measurements are shown in Fig. C.9 left and right panels respectively. The coincident sonde

temperature and relative humidity measurements (blue curves) and the a priori profiles (green

curves) are shown in each panel. Similar to the nighttime case study, the OEM retrieved tem-

perature profile agree with the coincident sonde measured temperature within the statistical

uncertainty up to the cutoff height of each retrieval. Relative humidity retrievals also agree

with the sonde measurements up to about 6 km within the statistical uncertainty.
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Figure C.8: Averaging kernels for temperature retrievals (left panel) and relative humidity
(right panel) from the cloudy daytime RALMO measurements on 10 September 2011. The
red curves shows the response functions. The horizontal dashed line shows the height below
which the retrieval is due primarily to the measurement and not the a priori profiles. For clarity
averaging kernels for every fifth altitude bin the retrieval grid are shown.
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Figure C.9: Left panel: Retrieved temperature profile and the statistical uncertainty (red curve
and shaded area) using the OEM from the cloudy daytime RALMO measurements on 10
September 2011. The blue curve is the radiosonde measurement. The sonde was launched
at 1000 UT. The green curve is the a priori temperature profile used by the OEM. The horizon-
tal dashed line shows the height below which the retrieval is due primarily to the measurement
and not the a priori temperature profile. Right panel: Retrieved relative humidity profile and
the statistical uncertainty (red curve and shaded area). The blue curve is the radiosonde mea-
surement. The green curve is the a priori temperature profile used by the OEM. The horizontal
dashed line shows the height below which the retrieval is due primarily to the measurement
and not the a priori relative humidity profile.



154 Chapter C. 1D Var retrieval of relative humidity from Raman lidar

C.3 Temperature, relative humidity and particle extinction

time series

Figure C.10: The OEM retrieved temperature profiles from RALMO measurements on 02
August 2011, from 1000-2359 UT with 15 min temporal and 90 m vertical resolutions.

We present a 14 hour time series of OEM retrieved temperature, relative humidity, and

particle extinction measurements from 02 August, 2011( C.10). We have used the nighttime

sonde measurements to determine the coupling constants required for the OEM. Estimations

of lidar constants are done with respect to the day and nighttime sonde measurements. For

the lidar measurements made between 0000-0500 UT, sonde measurements made by the sonde

launched on 01 August 2011 are considered. For lidar measurements made between 0500-

1700 UT, same day daytime sonde measurements are considered; for lidar measurements made

between 1700-2359 UT sonde measurements from the sonde launched on same day nighttime

are considered.

The RALMO measurements on 02 August 2011, from 1000-2359 UT are used with 15 min

temporal and 30 m vertical resolutions. The retrieval grid resolution is 90 m. In the first plot

of the Fig. C.10 we have shown the temperature variation for the 14 hours starting from 10 UT.

The white area indicates the retrievals that are above the cutoff height for that retrieval. For

comparison purposes, we have only shown temperature retrievals up to 12 km even though



C.3. Temperature, relative humidity and particle extinction time series 155

Figure C.11: Left: Retrieved particle extinction (red) and the a priori particle extinction used in
the OEM (green). Center: Back-scatter coefficient calculated from the RALMO measurements
2245-2300 UT, on 02 August 2011 with of a cloud present about 4 km altitude. Right: Lidar
ratio used to determine a priori particle extinction (green) and the estimated lidar ratio using
the OEM-retrieved particle extinction (red).
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the OEM retrieved nighttime temperatures reach up to 25 km. For 02 August 2011, we observe

increase in temperature at night than the day time. It is possible that nighttime warming can add

more moister to the air. This can be seen in the second plot in Fig. C.10 where we have shown

the relative humidity time series. We observe a greater increase in relative humidity overnight

than the day time. Another feature we observe in the relative humidity time series is the dry

layer present from 10-14 UT around 2-3 km in height. Beyond 14 UT we, observe a growth of

high relative humidity layer around 4-6 km that can be due to the particle extinction layer we

observe same time in the third plot shown in the Fig. C.10. Even though we cannot differentiate

the thin layer particle extinction is due to a thin cloud or an aerosol layer. We can still conclude

the high relative humidity that is present after 14 UT is because of the particle extinction layer

present at the same time. The white dash-line in the particle extinction plot in the Fig. C.10

indicates the transition height. Below this transition height we have constrained the particle

extinction retrieval. Hence, below the white dash-line the particle extinction retrievals that are

shown depend more on the particle extinction profiles calculated using the RALMO elastic

and PRR measurements. In our OEM algorithm we only recognize clouds that have aerosol

scattering ratios above 2. After 22 UT in the time series we observe a case where we consider

to be a cloud that appears below the complete overlap region of the RALMO. Hence, the

transition height has changed accordingly.

In Fig. C.11 we present the OEM retrieved particle extinction profile for the measurements

from 2245-2300 UT where the low-level cloud is present. The transition height for this retrieval

is around 4.3 km. The red curve with the red shaded area in the first plot in Fig. C.11 shows

the OEM-retrieved particle extinction and the green curve is the a priori particle extinction

estimated using the RALMO PRR and elastic measurements. As stated in Section 2.4.3, we

have assumed a lidar ratios to estimate an a priori extinction. Fig. C.11 shows that the OEM-

retrieved particle extinction is much smaller than the a priori. The plot on the right in Fig. C.11

shows that the initially assumed lidar ratios, to estimate the a priori particle extinction (green

curve) is much larger than the the estimated lidar ratio using the OEM-retrieved particle extinc-

tion (red curve). The back-scatter coefficient profile estimated from RALMO measurements is

shown with the statistical uncertainty in the center plot in Fig. C.11.
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C.4 Summary

We have applied an OEM algorithm to retrieve relative humidity (over water), temperature,

particle extinction and multiple other parameters from the Raman lidar measurements in any

clear and cloudy conditions. The a priori temperature profiles are obtained from the U.S. stan-

dard atmospheric model with a 35 K standard deviation. The relative humidity a priori profile

of a constant value of 50% for all heights was chosen and the 100% standard deviation was

considered. The OEM retrievals are not well constrained as the two a priori profiles of used

for temperature and relative humidity are less accurate and the associated uncertainties are

very high. The retrievals are discussed for two different cases that represent day and night-

time clear sky conditions. The time series presented shows the ability of the OEM to retrieve

relative humidity and other parameters in different sky conditions. The retrievals from both

day and nighttime measurements agree well with the coincident sonde relative humidity and

temperature measurements. In our work presented here we consider the retrievals are valid up

to a cutoff height where the response function become 0.9. The cutoff heights for nighttime

temperature and relative humidity are 25 km and 12 km respectively. Daytime cutoff heights

for temperature and relative humidity are 12 km and 7 km, respectively. Thus, 1D Var OEM

retrievals of temperature and relative humidity from Raman lidar presented here depend on the

Raman lidar measurements up until the cutoff height.



Appendix D

Estimated bias and the covariance for

relative humidity over ice data in the

ERA5 reanalysis

The a priori RHi used in the ISSR study, is calculated from the ERA5 specific humidity and

temperature data. To find the a priori uncertainty we followed a similar exercise as given in

Chapter 3.

Figure D.1: Bias in the ERA5 relative humidity over ice measurements to the observational
measurements from sonde. 56 sonde measurements from year 2008-2011 are shown. Solid
black curve is the bias in percentage and black dash curve is the standard deviation.
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Figure D.2: Left Panel: Correlation of the bias corrected ERA5 relative humidity over ice.
Right Panel: Covariance matrix for a priori relative humidity over ice estimated assuming a
tent function with a correlation length of 750 m and standard deviation of the ERA5 relative
humidity over ice bias.

Figure D.3: ERA5-reIce retrieved RHi from the RALMO measurements made from June-
November, 2011
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